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Abstract 

This work explores effects of selected sources of variability on mechanical properties 

of textile composites. Current modelling approaches rely on an idealised 

representation of the geometry and properties of composites while in reality the 

properties are not uniform and the structure has local variations. Existing approaches 

to model these variations showed that they can affect manufacturing processes for 

textile composites and compressive strength of unidirectional composites. This work 

is an attempt to extend existing methods for modelling of idealised composites and 

combine them with stochastic approaches in order to predict variability of strength 

and Young‘s modulus of textile composites. 

Three sources of variability were selected for this study: single fibre strength 

variability, yarn path and layer shift variability. All three were analysed 

experimentally for selected textile reinforced composites. Statistical models were 

derived for fibre strength and yarn path variabilities using the experimental data. The 

effect of layer shift was estimated by means of mechanical testing. A multi-scale 

framework was developed for modelling of composites with single fibre strength 

variability, closing the gap between micro- and macro-scale variability. An approach 

based on a Gaussian random field was successfully employed for modelling of yarn 

path variability and its effect on mechanical properties of textile composites. 

It was found that the variability of single fibre strength introduces small variability in 

the final composite strength, which results in decrease of the strength with increase 

of macro-scale length.  The variability of yarn paths was found to have minimum 

effect on variability of Young‘s modulus but severely reduces the strength of 

composites. Layer shift was found to be responsible for changes in the shape of the 

stress-strain curve. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

Since the early 20th century composite materials were used in the aircraft industry, 

first in the form of plywood in the first commercial airliner Sikorsky Ilya Muromets 

and now in the form of carbon fibre reinforced composites (FRCs) in aircrafts 

produced by Airbus and Boeing. In contrast to conventional materials like metals, 

FRCs are inherently heterogeneous due to their internal structure. Still further, 

properties of composites can be engineered by changing their internal structure e.g. 

fibre orientation, architecture of fibre assemblies. High-end applications of FRCs still 

rely on relatively simple internal structures formed from unidirectional (UD) 

composites. However, being engineered materials, composites can have quite a 

complex internal structure. Woven textiles, which are one of the most common 

reinforcements, can facilitate easier manufacturing of complex shapes when 

compared to UD reinforcements. Recently, woven nearly net-shape 3D textiles have 

attracted much attention from industry. 

An extensive development of new materials and their application in aircraft industry 

requires strict validation and certification of their performance by means of 

mechanical testing which has the philosophy of the so-called testing pyramid [1]. 

This approach implies decreasing of the number of tests when moving from coupon 

tests level to testing of the entire aircraft. This approach still results in a large number 

of mechanical tests required for certification of a new material (~10
4
) [2]. The total 

number of tests becomes enormous when several candidate materials are considered. 

At this stage, the testing pyramid is often combined with a pyramid of virtual testing 

[2] shown in Figure 1.1. Modelling of mechanical behaviour can facilitate the 

development of new materials at all stages of the design chain and reduce the number 

of real experiments during the certification process. It is believed that the shape of
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the pyramid will be altered in the future by having more ―weight‖ on the modelling 

side in order to reduce time and cost of new product development.  

 

Figure 1.1 The composite testing pyramid. Reprinted from [1] with kind permission from Springer 

Science and Business Media. 

Most of the modern approaches to composites' modelling are based on the well 

established multi-scale approach which suggests to build a hierarchy of scale levels 

starting from the micro-scale of individual fibres up to the macro-scale of 

components. The multi-scale concept of scale separation is used in bottom-up or top-

down models [2]. The bottom-up approach starts with detailed models at the micro-

scale and progresses towards the macro-scale by homogenising mechanical 

behaviour at lower scales and using this as material properties at higher scales. By 

contrast, the top-down approach starts with a macro-scale component and then 

introduces low scale complexities locally in regions of interest. Both methods have 

their advantages and disadvantages but a truly multi-scale approach usually employs 

both of them in the form of a continuous loop where the model at every scale is 

refined at each iteration. 
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Nowadays, the multi-scale approach in various forms has become a standard 

approach for composites modelling among researchers. However, most state of the 

art research imposes a critical assumption of structure regularity. In other words, 

internal structure of composites is assumed to be represented in an idealised form. 

One of the most common modelling idealisations is modelling of UD composites 

with a regular fibre arrangement whereas it is inherently random as shown in Figure 

1.2. This idealisation results in incorrect micro-stress prediction [3] which in turn 

results in incorrect prediction of the transverse strength of UD composites.  

 

Figure 1.2 Idealised model (left), more realistic model (middle) and micrograph (right) of fibre 

arrangements 

There is no complete list of all variabilities in FRCs but taxonomy of defects arising 

in manufacturing proposed by Potter [4] includes 132 items with 14 related to 

variability in reinforcement geometry. In addition to this large number of 

variabilities, there are variabilities which affect mechanical behaviour of composites, 

which is the topic of this thesis. However, only a few of these variabilities have been 

studied in detail.  

There are two concurrent approaches to modelling of FRCs with variabilities: 

deterministic and stochastic. The deterministic approach makes it possible to perform 

sensitivity study of a defect in order to find out its importance and critical state of the 

defect. For example, compressive strength of a UD composite with straight fibres 

misaligned with the loading direction by 0.25º can be up to 30% lower than the 

compressive strength of a UD composite with perfectly straight and aligned fibres 

[5]. An alternative deterministic model of a UD composite with constant waviness of 

fibres yields a strength higher than predicted with the simple model referenced 

above. Results of the deterministic analysis can provide engineers with guidelines for 
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a conservative design by choosing a safety factor which will account for a certain 

critical variability in the structure. 

The stochastic approach exploits the probability of the occurrence of variability e.g. 

variability of amplitude of fibre waviness in a UD composite. Analysis of a 

stochastic model yields a statistical distribution of FRCs properties. Following the 

example with compressive strength, introduction of randomness in a fibre waviness 

model gives a coefficient of variation (CoV) of around 8% [6]. This value of CoV 

means that there can be UD composites with compressive strength as low as 80% of 

the mean value. It must be emphasised, stochastic models require much more 

description of the material structure than idealised models. Experimentally gathered 

statistical data about variabilities in geometry, manufacturing and constituents are 

required. 

A shift from a deterministic modelling to probabilistic approaches makes it possible 

to change the design of structures made out of FRCs. Stochastic models can be used 

to design a part with a lower probability of failure e.g. by altering a manufacturing 

process or the choice of source materials [7]. Alternatively, distribution of FRCs 

properties can be ―widened‖ in the case of non-critical applications in order to reduce 

manufacturing costs. When distributions of mechanical properties are known, it is 

possible to choose the safety factor to avoid failure completely (for critical 

applications) or allow a low probability of failure (for non-critical applications).  

The present work attempts to develop a framework of multi-scale modelling, which 

includes variability within the models. The work is focused mainly on meso-scale 

modelling of textile composites but also extends to micro- and macro-scales in some 

aspects. Three types of variability are considered in this thesis: yarn path variability, 

layer shift and variability of single fibre strength. 

The thesis consists of seven chapters. Chapter 2 reviews well established techniques 

of composites modelling such as homogenisation and multi-scale modelling. 

Approaches to damage modelling of composites are also reviewed. Finally, the 

chapter discusses and characterises possible variabilities at several scales and 

identifies common techniques for their modelling. 
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Chapter 3 is focused on experimental characterisation of geometrical and constituent 

variabilities in the selected textile composite. It presents a statistical description of 

yarn path variability at the meso- and macro-scales. An attempt to create different 

layer shift configurations is presented. Results of mechanical testing are presented 

and discussed in terms of effects of variability. In addition, the chapter looks at 

statistical characterisation of mechanical strength of carbon fibre constituents.  

Chapter 4 is devoted to the unit cell modelling of 2D and 3D woven composites. An 

idealised geometry is used for numerical predictions of their non-linear mechanical 

behaviour. Results of the numerical modelling are compared with available 

experimental data.  

Chapter 5 employs stochastic simulations for prediction of the effect of single fibre 

strength variability on the strength of textile composites. Analytical micromechanical 

model, numerical meso-scale models and a simplistic macro-scale model are 

combined together in order to create a multi-scale stochastic framework. 

Chapter 6 considers textiles with yarn path variability. The chapter describes 

analytical and numerical models both based on the experimental data from Chapter 3. 

The chapter includes a limited analysis of the effect of layer shift on mechanical 

properties. 

Chapter 7 discusses the overall results of the thesis, draws conclusions and gives 

recommendations for future work. 
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CHAPTER 2  
 

 

LITERATURE REVIEW 

 

The modelling of FRCs provides a quick, potentially precise and relatively cheap 

way to predict the properties of a composite component as was discussed in 

Chapter 1. This chapter presents a review of the state of the art approaches for 

mechanical modelling of composite materials. The purpose of the review is to 

identify useful strategies for mechanical modelling of textile composites with use of 

both idealistic and stochastic models. 

The first part of this review highlights multi-scale modelling approaches which are 

based on reduction of the complexity of the modelling problem by separating the 

composite material into structures of different scales by their typical size. The second 

part introduces a range of damage modelling approaches. The first two parts of the 

review consider only ideal structures while the last part reviews methods and 

concepts of modelling for FRCs with uncertainties and variabilities.  

 

2.1 Review of multi-scale modelling of FRCs 

Prediction of mechanical behaviour of FRCs is a complicated task due to their 

complex structure. Typically, a composite laminate consists of several plies and each 

of these plies can be considered as a composite itself, for example a textile composite 

with interwoven yarns. In turn each yarn consists of thousands of single fibres. This 

complexity leads to limitations that make it impractical to create a theoretical or 

numerical model which takes account of all these features at once. At the same time, 

an FRC can be considered as a hierarchy of structures at different scale levels: 

individual fibres in matrix at the micro-scale, textile reinforcement in matrix at the
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meso-scale and a whole component at the macro-scale. Extracting and modelling of 

individual geometrical scale levels of the composite structure is the key feature of the 

multiscale approach, as described, for example, by Ghosh [8] or by Lomov et al [9]. 

There are two ways to apply this concept: ―bottom-up‖ and ―top-down‖, which are 

sometimes applied together during the iterative design process [2]. 

In general, according to the ―bottom-up‖ concept, a heterogeneous medium at any 

scale level can be replaced by a homogeneous medium with the same properties at a 

higher level. This procedure, called homogenisation, can be applied through all the 

scale levels in order to predict mechanical behaviour [10] or permeability [11, 12]. 

When applied to FRCs, the ―bottom-up‖ concept proposes to start at the micro-scale 

level of fibres following to the level of textile plies (meso-scale) assuming yarns to 

be homogeneous with properties predicted on the previous level. The same concept is 

then applied at the macro-scale level of laminate. A schematic of this concept is 

shown in Figure 2.1.  

 

Figure 2.1 Hierarchical multiscale modelling, adapted from Sherburn [13] 

The ―top-down‖ concept is applied when the local mechanical behaviour needs to be 

assessed e.g. for failure analysis of a macro-scale component. The concept is based 

on heterogenisation which is inverse to the homogenisation bottom-up procedure. 

The procedure starts at the macro-scale level of a structural part and then descends to 

the level of laminate plies etc. It assumes that, at any scale, the model is exposed to 

the loads calculated during the analysis of the previous higher scale. As input for the 
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analysis at the macro-scale, mechanical properties of the structure at the meso-scale 

are required. The latter are usually predicted with the ―bottom-up‖ concept or found 

experimentally.  

As has already been mentioned, the homogenisation procedure assumes substitution 

of a heterogeneous structure with a homogeneous medium exhibiting equivalent 

properties (only mechanical properties are discussed here but in general this 

framework can be applied for predicting thermal or electrical properties). Central to 

the homogenisation of composite materials is the concept of a representative volume 

element (RVE). An RVE is a part of the heterogeneous structure which can be 

considered instead of the whole composite structure by the means of mechanical or 

other properties. The RVE should be large enough to contain a sufficient number of 

geometrical features in order to represent typical properties at the chosen level. On 

the other hand, the RVE should be small enough to be considered as a typical region 

of heterogeneous medium (meaning that it does not contain large structural features 

e.g. component edges) [8]. The homogenised (averaged or effective) properties of a 

heterogeneous medium relate the average applied strain to the average stress in the 

medium through tensor of average stiffness     : 

              (2.1) 

where   and   are stress and strain tensors in the RVE respectively and     is the 

volume averaging operator  

     
 

 
  

 

   (2.2) 

where   is the volume of RVE domain  . 

Approaches for determination of effective elastic properties can vary depending on 

the composite, RVE type etc. However, all of them should satisfy the Hill-Mandel 

condition of homogeneity [14] which defines the energy equivalence of the 

homogeneous and heterogeneous media represented by the RVE  :   

               (2.3) 



   CHAPTER 2: LITERATURE REVIEW 

9 

 

Next subsections review various analytical and numerical homogenisation 

procedures at the micro- and meso-scale of FRCs, including choice of RVE and 

boundary conditions (BCs).  

 

2.1.1 Micro-scale modelling 

The micro-scale of an FRC is the scale of individual fibres bound together with 

matrix material. A composite with all the fibres aligned in one direction is called UD 

composite which is presented at the micro-scale as a fibre array. Two idealisations 

are usually made for simplification of the modelling of UD composites. The first 

common assumption for models at this scale is to assume an infinite length of fibres 

[15, 16]. Obviously, this is not the case in real structures where fibres have a finite 

length. However, the ratio of fibre diameter to length of fibre is small and the 

influence of a fibre end due to stress concentrations is negligibly small in most 

regions of the FRC. In addition, it is assumed that fibres are perfectly straight and 

parallel to each other. Micrographs and other visualisation techniques show that in an 

FRC fibres exhibit waviness and twist i.e. they are not perfectly straight.  This 

assumption, however, makes it possible to simplify the model greatly.  

One of the first models for the prediction of elastic properties of UD composites 

were suggested by Voigt and Reiss [15]. It was suggested that the components of a 

composite structure (fibres and matrix) can be represented as springs connected in 

parallel or series with weights proportional to their volume fraction. The elastic 

properties of these two models can be estimated applying uniform strain or stress 

respectively. These approaches are widely known as the ―rule of mixtures‖. In the 

case of parallel connection, the stiffness in a specified direction is equal to the 

weighted average of the individual stiffness components in this direction. In the case 

of serial connection, the compliance is equal to weighted average of compliances. 

The UD composite‘s stiffness tensor   and compliance tensor   can be expressed as: 

 
     

 

   

     (2.4) 
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     (2.5) 

where    are volume fractions of the i-th component, N is number of components and 

   and    are the stiffness and compliance tensors of i-th component, respectively. 

It was shown by Christensen [15] that these formulae provide lower and upper 

bounds for the elastic properties for a real composite. In general, these bounds are 

usually far from experimental values. This approach can be considered as a one-

dimensional approach while for certain directions UD composites should be 

considered as at least a 2D structure. However, the rule of mixtures for the Young‘s 

modulus in the fibre direction predicts the experimental value with a good accuracy. 

Another attempt to derive closer bounds for the properties of UD composites was 

made by Hashin and Rosen [16]. An RVE was constructed as a single fibre 

surrounded by a cylindrical bulk of matrix material for their study. Two sets of BCs 

were applied to the RVE: traction and displacement (von Neumann and Dirichlet 

BCs). That allowed prediction of theoretical lower and upper bounds for the effective 

elastic properties of UD composites. These predictions are more precise than the 

―rule of mixtures‖ but still cannot predict properties sufficiently close to 

experimental data. 

Chamis [17] modified the ―rule of mixtures‖ formulae for engineering constants to fit 

experimental data. This semi-empirical approach does not require any modelling and 

is widely used due to its simplicity [18, 19]. The Chamis formulae are reproduced 

below [17]: 

                    (2.6) 

       
  

                 
 (2.7) 

         
  

                 
 (2.8) 
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(2.9) 

                          (2.10) 

                        
   

  
    

(2.11) 

where the index 1 corresponds to the longitudinal direction and indices 2 and 3 

correspond to the transversal directions. Equation (2.6) which is the original ―rule of 

mixtures‖ gives good precision and is often used to estimate the longitudinal 

Young‘s modulus. 

Another idealisation is often made when an RVE of UD composites is constructed. 

Fibres are assumed to be arranged in one of two regular patterns: square or 

hexagonal, as shown in Figure 2.2. These two patterns are periodic and the smallest 

period of the patterns is called a unit cell. The unit cell of a periodic pattern allows 

recreation of a whole pattern using translations only. 

 

Figure 2.2 Square and hexagonal arrangement of fibres in a UD composite (red box represents the unit 

cell) 

From geometric periodicity it follows that the elastic properties  , stresses   and 

strains   but not displacements are periodic with the same period   as the geometry: 

             (2.12) 

             (2.13) 

             (2.14) 

It should be noted here that the exact choice of unit cell is arbitrary but the most 

common choices are as shown in Figure 2.2. 
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A periodic representation of UD composite requires correctly formulated BCs. Von 

Neumann and  Dirichlet BCs both satisfy the Hill-Mandel principle of homogeneity 

[20]. However, von Neumann and Dirichlet boundary conditions do not provide a 

purely periodic solution in the case of a periodic unit cell. As was mentioned 

previously, applying von Neumann and Dirichlet BCs provide solutions which are 

lower and upper bounds for elastic properties for a periodic arrangement, 

respectively. For periodic unit cells, periodic BCs are required to satisfy both 

periodicity of the stress-strain field and the Hill-Mandel condition. The periodic BCs 

illustrated in Figure 2.3 for an arbitrary pair of corresponding points A and B, can be 

written as: 

             (2.15) 

where    and    are displacements at corresponding points A and B,     is the 

average applied strain and   is the translational vector for the pair A-B (for a 

different pair vector d will be different as well depending on the location of points on 

the boundary). 

 

Figure 2.3 Unit cell with applied periodic BCs: no load (left), load (right) 

General periodic BCs for various periodic fibre arrangements were presented e.g. by 

Li [21]. Additionally, it can be shown that by exploiting internal symmetries of unit 

cells the BCs can be simplified. For example, it was shown that for the special case 

of a periodic unit cell which possesses internal symmetries in all three dimensions, 

periodic BCs are equivalent to Dirichlet (displacement) BCs [22]. 

A mathematical approach for the homogenisation of a UD composite with a periodic 

square fibre arrangement was utilised by Skudra and Bulavs [23]. The mathematical 

solution for the stress fields was found in the form of a series of double periodic 

functions. Averaging of the stresses in the volume led to determination of the 

A B 

d 

A B 

    = 0       0 
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homogenised elastic properties of the UD composite. However, this solution is 

available for a square arrangement of fibres only. 

A numerical approach used by Ernst et al [24] showed that hexagonal and square 

fibre arrangements yielded the same longitudinal Young‘s modulus while transverse 

modulus was different by 21% for the UD composite of 60% fibre volume fraction. 

The same conclusions were made by Huang et al [25].  

Despite there is a large number of models dealing with a regular arrangement of 

fibres the concept of regular arrangement contradicts all the experimental 

observations which show that a realistic fibre arrangement is inherently stochastic. 

The approaches for modelling random fibre arrangement will be reviewed in 

Section 2.3.1. 

 

2.1.2 Meso-scale modelling 

At the meso-scale, yarns are interwoven together in textile structures and form textile 

composites together with a matrix material. Following the multi-scale approach, 

yarns are assumed to be homogeneous and transversely isotropic with the effective 

properties calculated at the micro-scale. The geometry of textile composite is defined 

by the reinforcement, in particular the weave style and weave parameters (e.g. 

number of ends/picks per cm, yarn linear density). The repetitive patterns of common 

weave styles are shown in Figure 2.4.  

 

Figure 2.4 Textiles with various patterns 

Plain weave Twill weave Satin weave 
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The periodicity of the weave pattern is usually used to reduce the RVE of the textile 

composite to a periodic unit cell. Obviously, a unit cell of a textile composite is an 

idealisation similar to the assumption of a regular fibre arrangement in a UD 

composite, while real samples exhibit some variations from this pattern. However, 

usage of the averaged unit cell geometry has proved to be an effective way to study 

properties of composites. The unit cell geometry can be defined by parameters 

measured directly from the textile composite as shown in Figure 2.5. This section 

reviews studies which exploit the unit cell approach only. Textile composites with 

variability will be considered in Section 2.3. 

An exhaustive review of analytical and numerical mechanical modelling of textile 

composites has been published by Crookston et al [26]. It was concluded that 

analytical models usually simplify the geometry of a unit cell and the mechanical 

interaction between yarns and matrix which can compromise the precision of 

analysis. On the other hand, they can provide an efficient first estimation of elastic 

properties while precise numerical models require some time for model preparation 

(pre-processing), solution and analyses of the results (post-processing). 

 

Figure 2.5 The unit cell of a plain weave textile and its parameters 

A simple analytical model based on an orientation averaging approach for 3D woven 

composites was suggested by Cox and Dadkhah [27]. A periodic unit cell of textile 

composite was proposed and assumed to consist of a mixture of non-interacting 

yarns and matrix. An averaged response of the components under iso-strain allows 

the stiffness tensor to be estimated using a similar approach to that of Reiss [15] for 

UD composites. This approach can be used to take into account yarn crimp 
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(waviness) but generally it oversimplifies the geometry and the mechanics. However, 

it can be used as a first approximation of the elastic properties. 

A number of analytical methods are based on the assumptions of iso-strain or iso-

stress and use the classical laminate theory (CLT) to calculate the stiffness properties 

of textile composites. Examples of this approach are ‗mosaic‘, ‗fibre undulation‘ and 

‗bridging‘ models by Ishikawa and Chou [28] for the prediction of properties. For 

example, in the ―fibre undulation‖ model, yarns in a unit cell were considered as 

piecewise structures consisted of straight and crimped segments. Then in every 

section a textile weave was considered as a laminate consisting out of four layers of 

material: two for yarns and two for matrix layers on the top and bottom of the 

laminate. The resulting structure was analysed with CLT and approach was found 

accurate in predictions of elastic properties giving less than 5% difference when 

compared to experimental results. However, it fails to predict the stress-strain field 

accurately due to simplified assumptions regarding the geometry. 

Huysmans et al [29] used the Mori-Tanaka method [30] based on Eshelby‘s theory of 

inclusions to predict the elastic properties of a unit cell of knitted textile composites. 

According to the proposed approach, yarns can be subdivided into smaller segments. 

Each of these segments is characterized by a fibre volume fraction and a fibre 

orientation within this segment. Then each heterogeneous segment is transferred into 

a homogeneous element using Eshelby‘s strain transformation rule. Coupling this 

approach with the unit cell geometry created in textile geometry pre-processor 

WiseTex [31] showed that the predicted properties are comparable with experimental 

data and FE calculations for the stiffness of the composite. However, the precision of 

this method for prediction of the stress distribution has not been shown. 

Numerical modelling allows the analysis of more complex geometries with more 

complex interaction of constituents compared to analytical approaches. As was 

mentioned in Section 2.1.1, periodic BCs should be applied for correct predictions of 

the stress-strain state. Periodic BCs for a unit cell of plain and satin weave textile 

composites and their reduced unit cells were presented e.g. by Whitcomb [32]. 

Whitcomb and Tang [33] simplified the unit cell geometry of a plain weave 

composite by representing yarn paths as sine functions and by putting yarns in 
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contact with each other in a predefined manner. The results were in a good 

agreement with the experimental elastic properties. A major problem of this 

approach relates to the artificial yarn paths which may be not fully adequate. 

A more advanced geometry can be created with one of the textile pre-processors e.g. 

TexGen [34] or WiseTex [31]. TexGen software is based on representation of yarns 

in a textile as periodic cubic splines. Automatic geometry (yarn path and cross-

section) refinement provides a tool for avoiding yarn interpenetrations. Despite the 

fact that, there is no physical basis behind these procedures, built-in refinements of 

the geometry based on extensive experimental measurements provide good results 

when it is compared to micro-computed tomography (μ-CT) scans of a textile unit 

cell. WiseTex software is based on a mechanical approach using the principle of 

minimum mechanical energy [31]. Using the data about a weaving pattern and 

mechanical behaviour of dry yarns WiseTex software can accurately predict yarn 

paths. However, experimental determination of mechanical behaviour of dry yarns 

requires additional studies and can be a challenging problem. 

A completely different way to create geometry is based on modelling of the textile 

mechanics. The initial research by Wang and Sun [35] relied on representing yarns in 

a textile in the form of chains of 1D rods connected by frictionless pins. The chains 

are then put into contact to predict the textile geometry. This method, called the 

digital chain element method, was further developed by Zhou et al [36] by 

representing yarns as multi-chain bundles. It allowed the shape of the yarns along 

with the textile geometry to be predicted. The digital chain element method can be 

useful in prediction of complex geometries when a textile pre-processor is unable to 

predict the correct geometry [37] .  

Many successful attempts have been made to numerically estimate the elastic 

properties of textile composites using the preprocessors mentioned above, e.g. a 

geometry created in WiseTex was used for FE analysis of a plain weave by 

Kurashiki et al [38], a braided composite by Ivanov et al [19] and a satin weave by 

Daggumati et al [39]. TexGen was used for analysis of a 3D textile composite by 

Crookston et al [40],  for 2D textiles by Ruijter [18] and by Shultz and Garnich for 

modelling of a braided textile [41]. 
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The textile generators described above can also be applied to the modelling of 3D 

woven composites. The large size of their unit cells requires extensive computational 

resources and a reduction of the model is therefore desirable. An algorithm for 

deriving periodic BCs exploiting all the symmetries in a 3D composite was proposed 

by De Carvalho et al [42]. Of course, this algorithm can also be applied to 2D 

composites. 

An objection may be raised that periodic BCs in the through thickness direction are 

incorrect when compared to composite laminates with a finite number of layers. Still 

further, through thickness periodic BCs mean that each layer is placed and oriented 

exactly in the same way as adjacent layers while in real life it can be shifted or 

rotated in plane. Ivanov et al [43] studied stress distributions in inner and outer layers 

of a textile laminate. A full FE solution for the composite under tensile loading was 

compared with a solution obtained using a one-layer model with applied periodic 

BCs. It was shown that the relative error for the inner layers is relatively small 

(below 10%) while for the outer levels the error can be up to 50% in certain areas, as 

shown in Figure 2.6. The relative error was shown to decrease with increase in the 

number of layers in the laminate. Special BCs for a single layer model were proposed 

to approximate the behaviour of the outer layers. This method was developed for 

application to laminates with arbitrary shift between layers [44]. 

 

Figure 2.6 Stress distributions in longitudinal yarns under longitudinal tension obtained by full FE 

analysis and a periodic analysis. Adopted from Ivanov et al [43] with permission from Elsevier. 

Full FE solution Periodic solution Difference, % 

204.4–464.8 MPa 291.7–379.9 MPa 0–49.8% 
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A major problem in FE analysis is posed by the generation of a FE model (mesh) 

from a textile geometry. The mesh quality of a conformal tetrahedral mesh, 

expressed in terms of solution error, can be estimated a priori in terms of mesh 

parameters or a posteriori in terms of solution parameters. Krizek [45] derived a 

priori estimation of the solution error which was found to be in direct proportion with 

maximal dimension of element and the inverse ratio of the sine of the maximum 

angle between faces in an element. Abaqus/Standard™ defines mesh quality a priori 

in terms of aspect ratio which is the ratio between the longest and shortest edges of 

an element [46]. It is recommended that aspect ratio in Abaqus/Standard™ should 

not exceed 10. Hence, distorted elements (high aspect ratio and small internal angles) 

are highly undesirable because they increase solution error. Kim and Suh [47] and 

Potter et al [48] stated that for textile composite unit cells conformal FE meshes 

usually contain distorted elements in regions between the yarns. This problem is 

worsened when periodic BCs need to be applied due to the requirement of matching 

nodes on opposite faces of the unit cell. This problem is often solved by introducing 

an artificial gap between yarns. This allows better quality meshes to be generated 

although a clearance between yarns is not usually observed in real textile composites. 

Also, the fibre volume fraction within the yarns, which need to be increased to 

maintain the required global fibre volume fraction, can become unrealistically high. 

The mesh superposition technique [49, 50] and domain superposition technique [51] 

suggest the textile structure and matrix boundary domain to be meshed separately 

and then linked during FE analysis. This approach allows easy meshing of any 

complex geometry without any poorly shaped elements. This technique showed good 

results in predicting elastic and strength properties of woven composites [18, 47]. 

However, discontinuity of the stresses and strains at the interface of yarns and matrix 

appears in solutions obtained using superposition techniques. 

Meshing problems discussed above can be avoided using a voxel mesh technique 

[47]. A voxel mesh consists of rectangular cuboidal elements and the element 

attributes are defined by those present at the voxel centroid. The quality of the voxel 

mesh is known a priori, the mesh can be generated for any geometry without any 

artificial changes in textile geometry and periodic BCs can be easily applied. On the 

other hand, the high resolution of a voxel mesh (large number of elements), which is 
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required to achieve a good quality representation of the textile geometry, is limited 

by computational costs. Furthermore, a voxel mesh introduces additional stress 

concentrations at an interface between geometrical features. However, the voxel 

mesh can be locally refined [47, 52] or a smoothing algorithm can be used to 

improve the interface surface [48]. 

Another solution to the meshing problem can be provided by developments in the 

form of the X-FEM (eXtended Finite Element Method) technique [53] which 

provides an opportunity to model arbitrary discontinuities (inclusions and cracks) 

without remeshing a model.  In contrast with conventional meshing techniques, X-

FEM is a modification of a common FE method which approximates discontinuity 

behaviour (inclusions and cracks) with additional terms for the displacement field: 

 

                  

   

        

   

     

              

 

   

 

   

 

(2.16) 

where   is the set of all nodes in the mesh,       is the nodal shape function,    is the 

standard DOF of node  ,    and     are the DOF of nodes from sets   and   enriched 

with the Heaviside function      and crack-tip function      , respectively. A 

detailed discussion about X-FEM implementation can be found in [53]. 

X-FEM proposes enrichment of a conventional mesh with specially constructed 

nodal functions to accommodate the heterogeneity of material without constructing a 

conformal mesh. This approach was utilised by Ling et al [54] to compute the stress 

distribution in a textile composite as shown in Figure 2.7. However, implementation 

of the X-FEM in commercial codes still has some limitations e.g. no automatic 

facility to mesh inclusions, the FE domain can contain only a single crack or non-

interacting cracks, no parallel processing is available. 
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Figure 2.7 Material domains (left); Longitudinal stress distribution predicted with X-FEM (right). 

Adopted from Ling et al [54] with kind permission from Springer Science and Business Media. 

In summary, unit cell modelling provides an effective way to predict the stress-strain 

field and elastic properties of textile composites. The unit cell can be analysed by a 

range of methods from simple analytical schemes to FE analysis. However, an 

accurate geometry is the key for the correct prediction of composite properties. It has 

been shown that the complex geometry of the unit cell can be generated accurately 

using a textile pre-processor e.g. TexGen which will be used later in the work.  

In the absence of an automated meshing technique which can yield a conformal mesh 

for an arbitrary complex geometry with no distorted elements, the voxel meshing 

technique seems to be an appropriate compromise between meshing efforts and 

computational costs. 

 

2.2 Review of damage modelling of FRCs 

Multi-scale analysis of composites requires not only effective elastic properties of 

structures at different scale levels but also its behaviour in the non-elastic region. 

Exceeding a local strength limit causes damage initiation and further damage 

propagation under an increasing load. The first stage predefines the other stage e.g. 

initial crack orientation defines the direction of damage propagation.  

The following subsections review damage modelling approaches at two scale levels 

in application to FRCs and particularly textile composites. The analysis of fibre 

arrays or UD composites at the micro-scale allows the determination of an 

appropriate constitutive law to implement in a meso-scale model of textile 

composites. 
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2.2.1 Micro-scale damage modelling  

The strength of a UD composite at the micro-scale level depends on the strength of 

the fibres, the matrix and the bonding between the fibres and the matrix. Usually, the 

longitudinal strength of fibres is higher than the strength of the matrix. Disregarding 

imperfect bonding between fibres and the matrix, it can be said that failure initiates 

in the matrix except when a composite is under tensile loading in the fibre direction. 

The elastic behaviour of a UD composite under longitudinal load can be found by 

assuming uniform strain in the fibres and matrix (applying the ―rule of mixtures‖). 

Assuming a uniform strength of all the fibres to be Sf, the longitudinal strength SL can 

be found by the ―rule of mixtures‖ for strengths: 

            
        (2.17) 

where   
       is the stress in the matrix at the fibre failure strain   , Vf is the 

fibre volume fraction. 

The strength of a UD composite under transverse tension or shear cannot be correctly 

estimated by the ―rule of mixtures‖. An attempt to provide simple empirical formulae 

for strength of UD composites was made by Chamis [17]: 

        
      

        
     (2.18) 

            
      

        
          (2.19) 

        
      

        
          (2.20) 

The transverse or shear loading of UD composites usually results in damage 

initiation in the matrix material or debonding of matrix from fibres. Brittle failure 

can be described by a maximum stress criterion or maximum principal stress 

criterion. However, failure under a complex loading is better described by an 

interactive criterion such as von Mises: 
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  (2.21) 

where Sm is the strength of the matrix, determined by a unidirectional tensile test. 

Polymers often exhibit a difference in tensile and compressive strength which can 

play a crucial role when pressure is applied to the material. This can be better 

described by criteria which take hydrostatic pressure into account e.g. modified von 

Mises (or Raghava) criterion [55]: 

 
  

    
 

  
   

            
 

   
   

      (2.22) 

where    is von Mises stress defined by the left hand side of equation (2.21), and   
  

and   
  are compressive and tensile strengths of the matrix respectively. 

Once failure is initiated, cracks start to propagate under increasing load. One of the 

many methods for numerical modelling this process in the mechanics of composites 

have been developed: CDM (continuum damage mechanics) and the linear elastic 

fracture mechanics. The latter has also now been implemented in a more general 

form of X-FEM. 

CDM was initially suggested by Kachanov [56] as a method for modelling damage in 

isotropic materials. The main idea of the concept was to represent damaged media 

with microcracks as a homogeneous media with the reduced properties. Assuming 

that cracks are equally distributed in all directions actual stress   was proposed be 

equal to: 

   
  

   (2.23) 

where       and   is a damage variable which is equal to the ratio of volume 

of undamaged material to the initial volume,    is applied stress. 

CDM was used by Ernst et al [24] for multi-scale analysis of textile composite 

including comparison of non-linear behaviour of UD composites with square and 

hexagonal packing. Both models predicted reasonable results but hexagonal model 

predicted strength values closer to experimental results and the model with square 
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packing yielded elastic properties close to experimental results. Maligno et al [57] 

used a CDM model for prediction of transverse strength of a UD composite with 

hexagonal packing. However, the question of which packing alows better predictions 

remains open. Alternative approaches which consider random packing of fibres will 

be reviewed in Section 2.3.1.1. 

By contrast with CDM which represents discontinuities by degrading the properties 

of a continuous material, X-FEM makes it possible to model discontinuities using a 

special FE formulation (see Section 2.1.2), using well developed fracture mechanics 

for simulation of damage propagation, including a cohesive zone near the crack tip. 

The transverse strength of a UD composite was studied by Bouhala et al [58] via the 

use of X-FEM. The modelling of debonding and damage initiation was shown to be 

possible along with the simplification of the meshing procedure. However, no 

comparisons with experimental data were presented.  

Kastner et al [59] employed X-FEM for modelling of non-linear behaviour of UD 

composites with strain-rate dependent matrix. The approach yielded a good 

agreement with experimental results at lower strains but failed to predict final failure 

correctly which was explained but absence of fibre debonding mechanism in the 

model. 

 

2.2.2 Meso-scale damage modelling  

Damage modelling at the meso-scale assumes yarns in textile composites to be 

homogeneous and transversely isotropic with properties and behaviour equal to those 

of UD composites. As for the other homogeneous materials, failure of yarns can be 

classified by one of the modes of failure shown in Figure 2.8. 
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Figure 2.8 Possible modes of failure. Adopted from Lomov et al [60] with permission from Elsevier 

The simplest criterion for a UD composite as a homogeneous body is the maximum 

stress criterion which can show the mode of failure. Once strengths in all the 

directions are predicted with one of the micro-scale methods, it can be stated that 

damage initiates when stresses exceeds limiting values of the tensile and compressive 

strength in the corresponding direction: 

   
        

  (2.24) 

   
        

  

etc 

(2.25) 

where upper indices t and s correspond to tensile and compressive strength 

respectively and lower indices L, T and Z correspond to strength in the longitudinal, 

transverse or Z-direction respectively. Stress tensor components are written in the 

LTZ-coordinate system. 

Azzi and Tsai [61] suggested the use of the Hill criterion which is based upon the 

distortion energy criterion for UD composites an under the assumption of plane 

stress and orthotropic properties. The Tsai-Hill criterion for UD composites is 

expressed as follows: 
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The Hoffman polynomial criterion was used by Zako et al [50] to predict damage 

onset in the yarns of the composite reinforced with a plain weave textile. The 

criterion can be written as: 

 

                    
                 

                
       

       
    (2.27) 

where the coefficients    are defined by the following formulae: 

   
 

 
 

 

  
   

  
 

  
   

  
 

  
   

      
 

 
 

 

  
   

  
 

  
   

  
 

  
   

    

    
 

 
 

 

  
   

  
 

  
   

  
 

  
   

   

   
 

  
  

 

  
             

 

  
  

 

  
             

 

  
  

 

  
  

    
 

   
  

 

            
 

   
  

 

              
 

   
  

 

 

Damage propagation in UD composites or yarns in textile composite is often 

modelled with use of CDM based on a phenomenological or a theoretical model. 

Blacketter et al [62] performed numerical studies of a composite reinforced with a 

plain weave textile. The maximum stress and maximum principal stress criteria were 

applied to predict damage initiation in yarns and matrix, respectively. The damage 

initiation was assumed to degrade properties of a material down to 1% of initial 

value for the Young‘s moduli and to 20% of initial value for shear moduli. The 

strength under tensile loading was overpredicted by 10% while predicted non-linear 

behaviour and ultimate strength under shear loading were in relatively good 

agreement with experimental data. 

Zako et al [50] used a phenomenological damage model based on CDM together 

with the Hoffman criterion given by equation (2.27). The stress-strain relationship 

was assumed to be as follows: 
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 (2.28) 

where  

                        

     
     

     
 

 

      
     

     
 

 

               
     

     
 

 

 

where          are components of the damage tensor which is defined with respect 

to the modes of failure shown in Figure 2.8. These components were allowed to have 

binary values of 0 or 1 when undamaged and damaged, respectively. The analysis 

predicted damage initiation near the edges of transverse yarns similar to experimental 

observations. However, the predicted stiffness degradation with the abrupt 

degradation model was overestimated compared to experimental data by Zako et al 

[50]. 

A phenomenological damage model suggested by Ruijter [18] was based on a 

modified maximum principal stress criterion for the transverse direction and 

maximum stress criterion in the longitudinal direction. Three damage variables Di 

were defined as: 
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where    and    are principal stresses in plane 2-3 perpendicular to the fibre 

direction. 
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The longitudinal Young‘s modulus degrades according to the following rule: 

      
    

      
          

  (2.32) 

         
                             (2.33) 

            
                             (2.34) 

After the initiation of failure (Di > 1) the transverse and shear moduli degrade 

according to the damage factor function expressed by: 

         
 

              
 (2.35) 

where    and    are empirical constants. 

From equation (2.32) it can be seen that damage initiation in the longitudinal 

direction causes catastrophic failure. Damage in the transverse direction is assumed 

to propagate gradually similar to Puck‘s theory [63]. Poisson‘s ratios are assumed to 

remain unchanged. Constants    and    in equation (2.35) were determined by 

Ruijter [18] and the ratio       equal to 1.62 (  =8.0) was found to give a good 

prediction of the stress-strain curve for a plain weave composite under tensile. 

Assuming    and    are zero leads to an abrupt degradation scheme similar to the 

schemes used in [50, 62]. The ratio       determines the value of damage variable Di 

when properties are fully degraded and the appropriate elastic modulus becomes 

insignificantly low. The numerical predictions with use of the damage model were in 

line with experimental stress-strain curves for a plain weave textile composite under 

tensile loading regarding the point of final failure. The main disadvantage of this 

method is the purely empirical choice of damage factor function and its parameters 

   and   . 

A number of damage models based on the first law of thermodynamics were 

proposed by Ladeveze and Lubineau [64] and Maimi et al [65] for UD composites. 

Differing in defining damage variables and their coupling under various modes of 

failure, both models are based on the principle of strain energy dissipation. Maimi et 

al [65] used the definition of the complementary free energy as follows [65]: 
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(2.36) 

where d1, d2, d3, d6 are damage variables representing longitudinal, transverse (two of 

them) and shear modes of failure, respectively, and stress components are calculated 

in a coordinate system rotated in such a way that      . The proposed definition 

for the free energy can be extended in order to take into account thermal and 

hygroscopic expansion [65]. 

Then the strain tensor is defined through the free energy as: 

   
  

  
     (2.37) 

where the compliance tensor   is equal to (still in rotated coordinate system): 

   

 

 
 
 
 
 
 
 
 
 

 

        
 

   

  
 

   

  
  

 
   

  

 

        
 

   

  
  

 
   

  
 

   

  

 

        
  

   
 

         
 

    
 

          

 
 
 
 
 
 
 
 
 

 (2.38) 

The evolution model for the transverse damage parameter     under tensile load was 

based on a linear softening law with stress-strain relationship as follows: 

                   (2.39) 

The described model was applied to a range of UD laminates and good agreement 

between predictions and experiments was shown. However, this kind of model 

requires correct determination of fracture toughness for all the modes of failure. 
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Melro et al [66] conducted studies of non-linear response of a 5-harness satin weave 

composite under tensile, shear and mixed loadings utilising Maimi‘s model [65] as 

the damage model for the yarn material. The matrix damage model was also based on 

the same free energy concept as a damage model for yarns. The predicted stress-

curves were in a good qualitative agreement with experimental data but no 

quantitative comparisons were presented. 

Ivanov et al [19] used the Puck criterion and the Zako damage model [50] coupled 

with a thermodynamic evolution law for predicting the damage development of  a 

triaxial braided composite. The parameters of the degradation law were defined by 

the inverse experimental-FEA modelling of the stress-strain state of a UD composite. 

The developed approach showed good agreement with experiments for the braided 

composite. 

In FE implementation all these CDM models are often named ―element discount 

methods‖ due to stiffness degradation of damaged elements. A large number of 

published papers show that this method can be usefully applied in a range of 

modelling problems. However, Gorbatikh et al [67] highlighted that some of these 

models may be inadequate under  shear loading causing widening of the zones with 

transverse damage in the direction perpendicular to fibres instead of increasing the 

crack length in the transverse direction. It was proposed that this happens not due to 

―discounting‖ elements but due to the application the CDM approach to modelling of 

meso-cracks while initially it was developed to model ―diffused‖ damage (i.e. micro-

cracks) before any substantially large cracks (meso-cracks) had occurred. 

One of the possible solutions is to reduce locality of the CDM application (also 

called volume averaging) i.e. consider damage variables to describe not at single 

element but a group of elements. Ivanov et al [19] used such an approach to model a 

triaxial braided composite which consisted of yarns subdivide into segments which 

can be considered as series of UD composites. These segments were analysed via a 

CDM framework as described above.  

An alternative to the CDM approach is modelling of damage as discontinuities as for 

example reviewed by Wisnom [68]. Introduction of cohesive elements makes it 

possible to simulate discrete cracks and delamination in UD composites. This allows 
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interaction between intralayer and interlayer cracks to be taken into account, and at 

the same time avoids non-physical effects of CDM as discussed above. This method 

has proved to be adequate for various UD laminates (e.g. Hallett et al [69]) and was 

utilised to model damage in a textile composite by McLendon and Whitcomb [70]. 

However, it required a priori knowledge about crack orientation which is not always 

possible for some loading cases, especially in the matrix. A possible way to extend 

this approach is via X-FEM techniques as discussed earlier. 

The choice of the damage model is still debatable especially for 3D numerical 

models like textile composites. In this light, the best validation for any modelling 

approach is an experiment. The extensive studies undertaken within ―The World-

Wide Failure Exercises‖ [71]  reviewed and benchmarked more than 10 damage 

theories for various loading cases of various UD laminates. The further studies of 

failure under 3D stress state [72] found that even for better theories failure was 

predicted between 10% – 50% from experimental results in 45% of the cases. 

Additionally, a reliable prediction required extensive experimental data set (~ 20-70 

parameters). 

Two additional techniques are often employed to validate the damage modelling in 

addition to common mechanical testing, namely Digital Image Correlation (DIC) and 

Acoustic Emission (AE). The advantages of using the both techniques together were 

highlighted e.g. by Lomov et al [73] (with emphasis on AE analysis) and by Ivanov 

et al [74] (with emphasis on DIC). It was observed that for a triaxial braided 

composite three notable strain levels could be identified. The first strain value 

corresponded to cracks initiation, the second strain value corresponded to cracks 

clustering and delamination while the third strain value was related to events 

immediately prior to final failure. The full-field strain measurements revealed that 

results of FE modelling qualitatively agrees with experimental results. However, the 

uncertainty due to unknown position of layers relative each other (layer shift), 

precise geometry and variations of local fibre volume fraction did not allow 

quantitative validation of FE modelling results. 

Overall, the CDM framework is the most efficient scheme for modelling damage in 

textile composites. CDM can predict emergence of most of the failure modes in 
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FRCs under complex loading. Secondary effects such as delamination are not within 

the scope of CDM and can be predicted using a cohesive zone technique if required. 

One of the difficulties in choosing a damage model is data availability which can 

limit the choice. It has been decided that in the absence of experimental data for 

fracture toughness the phenomenological model proposed by Ruijter [18] can be 

employed.  

 

2.3 Review of modelling of variabilities in FRCs 

The previous two sections reviewed multi-scale approaches to elastic and non-linear 

analyses of FRCs with an idealised geometry of reinforcement i.e. a unit cell. These 

approaches make it possible to predict properties of textile composites. At the same 

time, it is acknowledged that textiles and textile composites possess variability that 

can significantly affect properties such as static compressive strength [75], fatigue 

strengths [76] and repeatability of a manufacturing process [77]. Of course, 

variability of mechanical properties can be experimentally characterised at the 

macro-scale [78] and then implemented in a macro-scale model [79]. However, this 

approach does not give an insight into the processes behind the variability. This 

section follows a multi-scale approach in describing types and sources of variabilities 

and effects of those on mechanical behaviour of composite materials.  

 

2.3.1 Micro-scale variability 

2.3.1.1 Fibre arrangement 

A regular fibre arrangement makes it possible to simplify the prediction of UD 

composite properties using periodicity of RVEs and reducing it to a unit cell (with 

square or hexagonal arrangement) as discussed in Section 2.1.1. However, the 

assumption of a regular fibre arrangement is not supported by experimental 

observations. Trias et al [3] utilised a uniform distribution of fibre positions to 

generate an RVE of a fibre bundle for predictions of mechanical properties. It was 

shown that the von Mises stresses in a random UD composite are typically 2.5 times 
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higher than in the periodic UD composite with hexagonal packing and the same fibre 

volume fraction. However, the proposed method did not allow the generation of fibre 

arrays with high fibre volume fractions. Trias [80] showed that size of the RVE 

domain should be at least 15 times larger than the radius of a filament to satisfy the 

Hill-Mandel condition with 5% error and 50 times larger than the radius of a filament 

to exhibit a distribution of local stresses and strains equivalent to that in a larger 

domain. The same approach as used by Huang et al [25] showed that all the elastic 

constants of a fibre array with a random arrangement agree to within 10% of those of 

fibre arrays with the square and hexagonal packing. 

Several improvements to the arrangement generation algorithm were implemented to 

generate fibre arrays with high fibre volume content using artificial stirring or 

shaking of fibres [81, 82]. The Monte Carlo approach was employed to predict 

properties of UD composites and it was found that the coefficient of variation of the 

transverse Young‘s modulus is less than 1% [81]. However, the fibre arrays 

generated with these artificial steps may not possess the same statistical properties as 

real fibre arrays. Measurements from a real microstructure were used by Vaughan 

and McCarthy [83] and implemented in an algorithm based on the nearest neighbour 

distance distribution to describe the fibre arrangement and its distribution without 

any artificial steps. The method was refined by Gommer et al [84] to consider the 

distribution in angles between filaments, allowing realistic fibre volume fraction for 

tows to be achieved. A range of similar algorithms were used for prediction of 

stiffness [85, 86] and strength [82, 87] of fibre arrays.  

The CDM approach was used by Wang [82] for FE modelling of damage in a UD 

composite with random packing under transverse loading. The maximum principal 

stress criterion was used to model the onset of damage. Matrix damage was modelled 

using the original CDM of Kachanov (see equation (2.23) in Section 2.2.1) which 

uses only one damage variable to define Young‘s modulus degradation. Every finite 

element was assumed to have two states: damaged and undamaged. The method was 

shown to be convergent with mesh refinement but results were not compared with 

any experiments. 
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This approach was used by Raghavan and Ghosh [87] to model randomly packed UD 

composites. They developed the CDM model with isotropic and orthotropic damage 

tensors for UD composites with interfacial debonding and achieved results in 

agreement with the solution given by the homogenisation technique based on the 

Voronoi cell FEM [88]. However, the authors stressed that a fundamental flaw of a 

CDM approach is the main assumption of equally distributed damage. Strictly 

speaking, the assumption of distributed damage in the element does not allow 

consideration of large discrete cracks which are observed in FRCs at high load. 

The importance of the fibre arrangement for a stress-strain state when load is applied 

in the longitudinal direction was studied by Swolfs et al [89]. FE simulations were 

used to show that stress concentration factors in the neighbouring fibres in the 

presence of a broken fibre are higher in a fibre array with random packing than in a 

fibre array with regular packing. 

 

2.3.1.2 Fibre waviness 

The inevitability of in-plane and out-of-plane fibre waviness in a UD prepreg was 

shown and characterised by Potter et al [90]. It was found that as-delivered UD 

prepreg can have fibre misalignment up to 3.8°. It was shown that this level of fibre 

waviness could result in fibre wrinkling or in defects during draping [91]. Fibre 

waviness affects the mechanical properties of UD composites, for example Piggot 

summarised [92] that the fibre waviness reduces the composite‘s stiffness, 

compressive and fatigue strengths.  

Fibre waviness (or any fibre misalignment) at the micro-scale [5] leads to a reduction 

of the compressive strength of a UD composite due to a microbuckling damage 

mechanism. In the case of uniform fibre misalignment, the compressive strength    

is equal to [5, 93]: 

     
 

   
 

  

    
 

  

 (2.40) 

where     is the shear modulus of the composite,      is the critical interfacial shear 

stress and    is the initial fibre misalignment. 
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A sensitivity analysis showed that a constant fibre misalignment of 0.25° can cause 

around 30% reduction of the compressive strength as shown by Wisnom [5]. 

However, this study assumed constant misalignment over the entire composite while 

experimental studies show that fibre misalignment varies spatially [93]. In this 

context, the effect of regular and random waviness on the compressive strength was 

studied analytically by Slaughter and Fleck [6] and numerically by Liu et al [94]. A 

Monte Carlo approach was applied in both cases to study compressive strength of 

UD composites with random waviness. It was shown that increasing the mean value 

of the fibre misalignment decreases the compressive strength. Also, waviness with a 

shorter wavelength has less effect on the compressive strength than waviness with a 

longer wavelength. It was reported that the predicted distribution of compressive 

strength is approximated well by a Weibull distribution and is close to experimental 

results. A numerical model with constant waviness was used by Lemanski and 

Sutcliffe [95] who concluded that the compressive strength of a composite with 

waviness also depends on the spatial position of defects in the sample. It was shown 

that the compressive strength of the composite with a defect close to the edge is 

lower than that of a composite with defect far from the edges. 

 

2.3.1.3 Fibre properties 

The mechanical properties of an FRC in the longitudinal direction are dominated by 

the properties of the fibres. The fibres themselves do not show uniformity of their 

physical properties. The coefficient of variation (CoV) of carbon fibre strength can 

be up to 20% [96]. The variation of fibre strength also heavily depends on the length 

of the fibre e.g. an increase of length by 10 times can reduce strength by 10% [97, 

98]. The common approach to describe the variation of the fibre strength is the 

Weibull distribution which assumes that the probability P of failure of a fibre with 

length L under applied load σ is expressed as follows [99]: 

                           (2.41) 

where L0 is reference gauge length, σ0 is the Weibull modulus and  is the Weibull 

shape parameter. 
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It was found that the classical Weibull distribution (2.41) tended to overestimate the 

strength of some types of fibres of shorter length [96], and the experimental fibre 

strength distribution on different length scales is better described by  

                           (2.42) 

where α is an additional parameter satisfying      .  

Curtin [100] proposed that the empirical relationship (2.42) came from fibre-to-fibre 

variation of the scale parameter and derived the Weibull of Weibulls (WoW) model 

to describe this. Then the cumulative probability of fibre failure, Pf, under loading 

stress σ is equal to 

                     
   

  
  (2.43) 

where L is a fibre length, L0 is a reference gauge length,        is a Weibull shape 

parameter and the Weibull scale parameter   
  has a cumulative distribution    

 as 

follows: 

    
            

         (2.44) 

where   is a Weibull shape parameter and     is a Weibull scale parameter. Curtin 

showed that equations (2.43) and (2.44) give a strength distribution close to that 

given by equation (2.42). However, the parameters of these equations can be directly 

measured from single fibre tests or single fibre composite tests. 

For the prediction of the longitudinal strength of the UD composite with fibre 

strength following the Weibull distribution, two types of model can be considered. 

The first type, based on the Equal Load Sharing (ELS) concept, postulates that the 

load from a broken fibre is equally distributed over all the surviving fibres. This 

concept was used by Daniels [101] to derive mean strength and its distribution for an 

unimpregnated fibre bundle. It was also shown that the distribution of bundle 

strength tends to be normal with increasing number of fibres in the bundle. This 

model can be developed into a chain of bundles model using a weakest link 

approach [99]. A drawback of this concept for an impregnated bundle is obvious – it 

does not take into account the redistribution of stresses between fibres. A refinement 
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of the model, the Global Load Sharing (GLS) approach suggested elastic unloading 

from broken fibre on nearby fibres. An asymptotic analysis showed that the resulting 

strength distribution tends to be normally distributed. A direct comparison of various 

theoretical models for fibre bundle strength was made by Phoenix [99]. It was shown 

that the difference between the ELS and the GLS is below 3% for mean strength and 

less than 15% for CoV. Hui et al [102] generalised the GLS model proposing 

continuous correlated variation of strength along the fibres. This generalisation does 

not change results in principle but allowed to add a bit more complexity into the 

model. 

By contrast to the ELS and the GLS, the Local Load Sharing (LLS) concept assumes 

that the load from a broken fibre is distributed unequally to a number of 

neighbouring fibres according to a sharing rule [103, 104]. The number of 

neighbouring fibres that take the load depends on the properties of fibres and matrix 

as well as on the chosen theory.  Although a number of more analytical LLS models 

[100, 105] are able to predict final strength and its distribution, they cannot take into 

account a random fibre arrangement which is found in real composites. The 

importance of the fibre arrangement was shown by Swolfs et al [89] who conducted 

numerical studies of stress concentrations near a broken fibre.  

Computational strength models enable direct numerical simulations to be performed 

either using a lattice of springs as a representation of fibre bundles (so-called spring 

models) or using the finite element (FE) method. Okabe [106] used a spring model in 

conjunction with a shear lag law to simulate the strength of UD composites. 

Mishnaevsky [107] studied the tensile strength of a UD composite combining a 

Weibull distribution and random arrangement of fibres using 3D FE simulations. 

Fibre breakages were allowed only in one of the randomly predetermined fibre 

sections whose strength followed the Weibull distribution. The model yielded 

significant non-linear behaviour and lower strength when compared to a UD 

composite with constant fibre strength. A random number of damageable zones per 

fibre was used in an improvement to the model to capture gradual damage 

propagation in fibres [108]. The Mishnaevsky‘s model included many realistic 

features but has not been compared with any experimental data. Moreover, no 



   CHAPTER 2: LITERATURE REVIEW 

37 

 

framework was developed to adapt these computational micro-scale models for 

multi-scale modelling. 

 

2.3.2 Meso-scale variability 

The multi-scale approach aims to consider a textile structure at the meso-scale 

assuming that the yarns (either dry or impregnated) are homogeneous media with the 

effective properties predicted at the micro-scale. A unit cell approach provides a 

reliable prediction of the elastic properties of textile composites [26]. This assumes 

that the geometry of the textile reinforcement is ideally periodic and predefined by a 

repetitive weave pattern and its parameters which are yarn spacing, yarn width, yarn 

thickness and overall textile thickness as shown in Figure 2.5. However, the 

manufacturing process which includes weaving, handling, preforming and composite 

moulding introduces inevitable variability to a textile structure.  

 

2.3.2.1 Unit cell geometric parameters 

The geometry of reinforcement defined by unit cell dimensions denoted in Figure 2.5 

plays a significant role in the properties of textile composites. Sensitivity studies of a 

yarn waviness ratio H/L were performed by Woo and Whitcomb [109] who showed 

that the higher the waviness ratio, the higher the reduction of the Young‘s modulus 

of textile composites due to yarn crimp. However, the unit cell dimensions of any 

textile composite vary stochastically and the main techniques to measure them are 

direct observations using optical microscopy or μ-CT which are widely used for all 

kinds of textiles [110-112]. These observations show typical CoV in yarn dimensions 

of around 3-10%. However, these methods can be labour intensive and do not easily 

allow analysis of variations in large samples. An alternative method was proposed by 

Gan et al [113] who used a light transmitting method to observe variations of the 

areal weight in a glass plain weave and non-crimp fabrics (NCF). For both materials 

the CoV of tow width was about 10% and the tow orientation varied within 5° from a 

mean value. However, this method is suitable only for estimating properties of light 

transparent dry reinforcements while statistical properties in composites can be 
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different due to compaction of layers of reinforcement during the manufacturing 

process.  

The geometry of a 3D woven textile was characterised by Desplenter et al [112] 

using microfocused X-ray computer tomography (micro-CT), along with microscopy 

of cross-sections and direct measurement from the top surface. The textile 

dimensions measured on the surface were lower than the dimensions measured using 

μ-CT and microscopy and a CoV of spacing of up to 6% was observed. Monte Carlo 

analysis of the textile composite with the variable spacing was performed using 

Eshelby‘s method of inclusions. It was shown that the spacing variation gives a CoV 

of Young‘s modulus of less than 5%. However, this analysis was performed only for 

a model representing one unit cell and variations of yarn orientation were not 

allowed. 

The method of inclusions was also applied by Olave et al [114] to model the effect of 

yarn spacing, laminate thickness, individual ply thickness and orientation on the 

Young‘s modulus of textile laminates. The geometries of two laminates 

manufactured from prepregs with 3K and 12K yarns were investigated using 

microscopy of cross-sections. The CoV of the yarn spacing was found to be about 

3% in both laminates while the variation of the yarn orientation was higher in the 

12K laminate which was attributed to a larger size of unit cell in 12K reinforcement. 

Monte Carlo analysis showed that the variation of the yarn spacing contributes to the 

elastic properties less than the variation of the thickness and orientation. The CoVs 

of the Young‘s modulus when all the parameters were varied were lower than the 

experimental values, around 1% compared 2.9-4.2% for the different composites. It 

can be argued that the lower CoV is a result of the simplified model or caused by 

neglecting other sources of variability. Additionally, the mechanical testing 

procedure also can introduce some variability to the experimental results. 

 

2.3.2.2 Yarn waviness 

The variation of unit cell dimensions can be considered as a local effect of yarn 

waviness (in-plane and out-of-plane). In early work, Bolotin [115] derived the 
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stiffness of a laminate in which layers have out-of-plane waviness, using Classical 

Laminate Theory, and showed that stiffness varies approximately with the inverse 

square of the angular deviation of waviness. Extending this approach, Bogetti et al 

[116] showed that stiffness reduction is most significant in the direction which is 

transverse to the wavy ply while other in-plane properties were relatively insensitive 

to the waviness. Using the same approach, Chan and Chou [117] analysed the effect 

of ply waviness in a cross-ply laminate and showed that some orientations of ply 

waviness do not affect stiffness. A similar approach was used by Rudd et al [118] for 

prediction of the Young‘s modulus of laminates with in-plane fibre waviness. The 

laminates were manufactured using a tow placement facility and tow paths followed 

a sine wave. The model predicted the reduction of the modulus to be 60% of the 

initial value for the case of a constant waviness of 0.1 (amplitude of 

wave/wavelength). The predicted stiffness reduction was very close to the 

experimental results.  

The yarn waviness in 3D composites was measured and modelled by Cox and 

Dadkhah [27]. The yarns were assumed to be unidirectional in small segments and 

the overall properties were found by averaging of all these segments under a uniform 

strain. In the case when an angle deviation   of a yarn segment was given by a 

distribution     , the longitudinal Young‘s modulus    of the yarn was found with 

the equation: 

 
 

  
  

    

    
  

 

 

 (2.45) 

where      is the Young‘s modulus of a yarn segment in the longitudinal direction 

and L is the length of the yarn. 

This orientation averaging approach showed a good approximation of the mechanical 

properties and was used by Yushanov and Bogdanovich [119]. The variation of a 

yarn path was described as a function of one variable (angle) which allows any 

distribution and correlation function to be used to define the angle distribution. The 

proposed representation of the yarn path was used for orientational averaging to 

obtain the stiffness tensor of a composite. The analysis of a braided textile and a 3D 
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woven composite showed that yarn path with an assumed normal distribution of 

angle and a standard deviation of 5° reduces the Young‘s modulus by about 3% for 

both composites. More importantly it was shown that the yarn path variation 

introduced additional coupling coefficients into the stiffness tensor. However, no 

comparison with experimental data was given. 

Wong and Long [120] performed a Monte Carlo numerical analysis of the 

permeability of a biaxial NCF and a plain weave with in-plane variability of the yarn 

paths. The variation of centre points of the yarns was assumed to follow a normal 

distribution. It was found that the variation of the permeability of the NCF is higher 

than that of the plain weave. The distribution of permeability of the plain weave was 

close to normal and the distribution of permeability of the NCF was unsymmetrical. 

However, all the yarns were assumed to vary independently, while variation of 

adjacent yarns can affect each other. The correlation of the variation along the yarn 

and between the yarns was neglected. 

The Monte Carlo method was used by Endruweit and Long [121] for prediction of 

the permeability of a NCF with in-plane waviness of the yarns. It was shown that the 

permeability and fill time can vary by up to 20% from their mean values. The 

spacing between yarns was assumed to follow a periodic function: 

                  
 

 
           

   

   

  (2.46) 

where   is spacing between yarns,    is half of width of a yarn,    is the initial 

spacing between yarns,                      and                      

and    ,        ,     are random numbers. 

The same approach to describe the yarn waviness was used by Crookston et al [122] 

for FE prediction of the mechanical properties of a NCF laminate. The local stiffness 

and strength of each layer were calculated with Chamis‘ formulae (2.6) – (2.11), 

(2.17) – (2.20) [17] which depend on the local volume fibre fraction. The local 

stiffness of the laminate was calculated using Classical Laminate Theory and then 

used within an FE model which incorporated a simple damage model by Blackketer 

[62]. The predicted Young‘s modulus was within 15% of the experimental value and 
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its CoV was about 1–1.5% while the experimental value of the CoV was 4.8%. The 

predicted strength had a CoV of about 2.5% compared to a CoV of 3% for the 

experimental value. The mean value of strength and the CoV of the mechanical 

properties were found to decrease with increasing waviness.  Same explanation on 

lower CoV as given in Section 2.3.2.1 can be applied here.  

Skordos and Sutcliffe [77] used a Fourier transform and correlation analysis on an 

optical image of a textile prepreg to estimate the length of a unit cell and variation of 

yarns orientation. It was found that the variation of the unit cell length is negligible 

but standard deviations of in-plane variations of warp and weft yarn orientations 

were about 0.36° and 0.95° respectively. The measured distributions of yarn 

orientations were found to be close to normal distributions. The strong correlation 

between adjacent yarns made it possible to assume that the yarn paths can be 

described by a stationary Gaussian and Markovian random field [123]. The 

parameters of the Ornstein-Uhlenbeck random 2D process [123] were estimated 

using the experimental data. The generated random field was used to create a 

stochastic model of a textile prepreg for use within forming simulations. It was found 

that under a uniform force applied to blank-holder average wrinkling is equal to that 

of ideal reinforcement but with a CoV of about 10%. Stochastic simulations 

performed with an optimised non-uniform blank-holder force yielded higher average 

wrinkling when compared to a simulation carried out on an ideal prepreg, with a 

CoV of almost 15%. 

The Markov Chain approach was used by Blacklock et al [124] to generate yarn 

paths for a 3D woven textile using experimental data obtained using μ-CT. The 

proposed algorithm, in conjunction with WiseTex, the method of inclusions and a 

Monte Carlo approach was applied by Vanaershot et al [125] to predict the Young‘s 

moduli of a twill weave textile composite. It was found that the average predicted 

Young‘s modulus of a single random unit cell was lower than that of a model without 

variability and the CoV of the elastic properties was less than 1%. However, data for 

these studies were extracted from single unit cells i.e. the macro-scale statistics were 

neglected. In reality, the variation of yarn path may extend beyond the unit cell and 

mechanical properties usually exhibit some sort of size effect which requires a larger 

model of larger size to be investigated. 
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Abdiwi et al [126] performed manual analysis of woven textiles and observed a 

significant long range variation of yarn path. The measured distributions of angle 

between warp and weft yarns were used for generation of a textile model using a 

genetic algorithm. The proposed algorithm suggested that the macro-scale variation 

of a textile induced by manufacturing processes can be modelled by an additional 

terms of sine waves similar to approach proposed by Endruweit [121]. 

Edgren and Asp [127] investigated the effect of the out-of-plane yarn waviness on 

the stiffness of a NCF cross-ply laminate. A constant waviness expressed by a sine 

wave was assumed in the laminate and an analytical solution was found using 

Timoshenko beam theory. A knock-down factor depending on waviness, length of 

wave and amplitude was derived. The results of analytical and FE models for a 

laminate with out-of-plane waviness were in agreement with experimental results 

and predicted results were closer to experimental data than predicted using equation 

(2.45) proposed by Cox and Dadkhah [27]. 

Under compressive load, straight yarns in woven composites may show behaviour 

similar to microbuckling observed in UD composites [128]. However, yarn waviness 

may cause an analogous phenomenon at the mesoscale, namely mesobuckling. 

Drapier and Wisnom [129] studied sensitivity of the compressive strength of an NCF 

composite in the presence of out-of-plane yarn misalignments. 2D FE analysis 

showed that the misalignments reduce the compressive strength by factor of 4 and 

cause buckling. 

 

2.3.2.3 Shift of layers and nesting 

A textile composite typically consists of textile layers stacked with an arbitrary shift 

relative to each other. This shift is often accompanied by interpenetration of layers, 

known as nesting, caused by compaction i.e. increase of fibre volume fraction as 

described by Lomov et al [130]. Obviously, layer shift and nesting have effects on 

the mechanical properties of composites as shown e.g. by Ivanov et al [44] and 

Prodromou et al [131], respectively. However, it should be noted that in real 

composites layer shift is often accompanied by nesting. Experimental studies of 
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permeability conducted by Hoes et al [132] claimed that nesting and layer shift are 

the main sources of permeability variation. On the other, recent research by 

Endruweit et al [133] showed that a structural variability introduced by handling of 

specimens can be of the same level of importance. 

Monte Carlo simulations on a textile composite with variability in crimp angle was 

performed by Whiteside and Pinho [134]. Two idealised configurations of the layer 

shift were considered: ideal periodic with no shift, and so-called out-of-phase with 

shift of half of the unit cell. It was shown that the experimental distribution of the 

compressive strength lies between the predicted distributions of the compressive 

strength of the two laminate configurations considered. 

Woo and Suh [135] analysed the effect of layer shift on the elastic properties of a 

plain weave composite. Monte Carlo analysis showed that the variation of the 

Young‘s modulus decreases with increase in the number of layers in the laminate and 

the distributions of the Young‘s modulus tend to be symmetrical (and probably close 

to normal). The CoV of Young‘s modulus was found to decrease from 4.5% to 1.8% 

with increase in number of layers from 2 to 32. The main drawback of the technique 

used is the increase of computational cost with increase in number of layers due to 

the large number of permutations of layers. 

 

2.3.2.4 Yarn properties 

The variability of strength of UD composites or strength of yarns inherited from the 

variability of fibre strength at the micro-scale level affects the strength of textiles and 

textile composites. A Weibull distribution for the yarn strength was employed by 

Nikalantan et al [136] to model the effect of non-uniform yarn strength on impact 

properties of a dry textile. Monte Carlo analysis showed that the mean value of 

strength is not sufficient to describe behaviour of the fabric because, in the stochastic 

simulation, the fabric can stay intact or experience rupture under the same impact 

velocity. 

Ismar et al [137] modelled a plain woven composite with variability of the yarn 

strength using an FE analysis in conjunction with a Monte Carlo method. The 
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strength of every FE element was assumed to be dependent on its length according to 

a Weibull distribution and did not depend on the strengths of neighbouring elements. 

This approach showed that broadening of the yarn strength distribution significantly 

decreases the tensile strength of woven composite. However, this study does not 

report variation of final strength for a given strength distribution. 

 

2.4 Conclusions 

The multi-scale approach provides a reliable and well-developed methodology for 

predicting elastic and non-elastic behaviour of FRCs. A number of analytical models 

make it possible to estimate elastic properties with good accuracy but often cannot 

describe interactions between yarns in textile composites correctly [26]. In contrast, 

numerical modelling allows a complex geometry to be used. The potential of a textile 

pre-processor will be used in this thesis by employment of the TexGen pre-processor. 

However, usage of a complex geometry is complicated by a mesh generation 

problem. Recent developments in X-FEM seem to offer an opportunity to avoid this 

problem but its implementation in commercial software is still limited. The domain 

superposition method has some unresolved problems on continuity of stress on the 

yarns/matrix surface. The voxel mesh technique provides a straightforward approach, 

recognising its advantages (automatic, good element quality) and shortcomings (non-

conformal, small element size required). This technique will be used throughout this 

work. Feasibility of the technique will be shown in Chapter 4. 

The range of available damage models provides a choice from a simple 

phenomenological model to a complex CDM model based on fracture mechanics. 

Use of the complex CDM models is restricted by availability of additional 

experimental parameters or the requirement for inverse modelling. Therefore, a 

simple phenomenological model will be utilised in this thesis and validated against 

experimental data from Chapter 3. 

The idealisation assumptions regarding structure at the micro- and meso-scales seem 

to be reasonable and efficient for predicting effective properties but fail to predict the 

scatter in properties and in some cases the repeatability of manufacturing processes. 
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In this chapter two broad types of variability were reviewed: structural variabilities 

and variability of constituents. Most of published variability studies attempted to 

collect statistics of one type of variability and then combine it with a stochastic 

method in direct numerical simulations. A similar methodology will be applied in 

this work: direct observations of variabilities will be performed in Chapter 3 and 

numerical stochastic simulations will be employed in Chapters 5 and 6. 

The micro-scale variability of single fibre strength was shown to affect composite 

strength at both meso- and macro-scales. However, none of the reviewed works 

attempted to analyse this variability at all scales in application to textile composites. 

A study of this matter will be presented in Chapter 5.  

Variability of yarn paths has received attention from many researchers but its effect 

on strength of textile composites was not analysed systematically. Out of the many 

approaches the most rigorous were those based on continuous variation of yarn paths 

expressed in terms of Markov chains or a Gaussian random field. An approach based 

on a Gaussian random field will be employed in Chapter 6 for textile composites. 

 



 

46 

 

 

CHAPTER 3  
 

 

EXPERIMENTAL STUDY OF VARIABILITIES IN TEXTILE 

COMPOSITES 

 

Variabilities indentified in Chapter 2 are inevitable in textile laminates and have 

certain effects on their mechanical properties. Two types of structural variabilities, 

namely the variability of yarn paths within a layer and layer shift/nesting between 

layers, and the variability of a key mechanical property, fibre strength, were chosen 

for the study as discussed in Chapter 2. The goal of the present chapter is to 

characterise the chosen variabilities in order to provide enough information to create 

numerical models and for their validation.  

Due to the fact that the variabilities interact with each other it is hard to distinguish 

their effects during a mechanical test. Therefore, an attempt has been made to 

characterise variabilities experimentally a priori when possible and estimate their 

effects on mechanical properties. The experimental programme included 

characterisation of a dry textile and laminates using approaches similar to those 

described in Chapter 2. The mechanical testing was based on the framework which 

was proven to be robust and useful for testing of textile composites. Finally, fibre 

strength variability was assessed using the standard technique of single fibre testing 

and following Weibull analysis. 

 

3.1 Experimental characterisation of reinforcement 

structural variability 

The geometric structure of a reinforcement can be acquired by several techniques, for 

example, optical imaging of its surface or examination of its internal structure with 

μ-CT or microscopy. The first technique allows a surface image of a large
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 reinforcement to be acquired instantly and then used for measurements of yarn width 

and in-plane yarn path. However, this technique cannot characterise the internal 

geometry, i.e. yarn thickness, twist and out-of-plane position. These parameters can 

be acquired with high precision using μ-CT or microscopy instead of macro-scale 

techniques. Both micro- and macro- acquisition techniques were used and compared 

with each other in this study. Macro-images of textile reinforcement were studied in 

two configurations: dry textiles and laminates. The μ-CT technique was employed to 

characterise the internal structure of laminates.  

 

3.1.1 Specimen manufacturing
1
 

A twill weave textile manufactured by Carr Reinforcements (style 38391) with an 

overall areal density of 660 g/m
2 

was used for the current experimental studies. The 

textile consisted of 12K Grafil 34-700 carbon fibre yarns woven together with a 

density of 4.2 picks/ends per cm. It was used to manufacture two types of 6-layer 

laminates using different layer stacking procedures and the vacuum assisted RTM 

process [138]. Three panels (Panel #1, Panel #2, and Panel #3) were manufactured 

following the conventional procedure: layers were cut from a roll of the textile and 

put together in a steel tool cavity of 4 mm depth, then the tool was closed and 

injected at a temperature of 40°C with resin to achieve a fibre volume fraction of 

55%. Gurit Prime 20LV epoxy with Prime 20 Slow Hardener mixed in ratio 100:26 

by weight was used as a resin system and the moulding was cured at a temperature of 

65°C after injection. This resulted in random stacking (with random layer shifts and 

nesting) of layers in the laminates.  

Laminates of the second type were manufactured imposing control on shift between 

layers. Metal pins inserted in a wooden board were used to position the layers 

relative to each other. Each layer was placed manually in exactly the same position 

as the previous one (no nesting, no layer shift). The layers were bound together using 

NeoXil binder and applying heat using a soldering iron, which bound layers in order 

to prevent layer shift during further manufacturing operations. Two panels of the 

                                                 

1
 The manufacturing of samples and mechanical testing were performed in close collaboration with 

MSc student Guan Lu 
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second type were manufactured (Panel #4, Panel #5) using the same RTM process 

parameters as for Panels #1 - #3. 

 

3.1.2 Micro-CT analysis 

Three samples with size of 14x14mm were cut from panels #1, #3 and #5. The μ-CT 

scanning of samples was performed using a Phoenix Nanotom CT System with 

energy of 60 keV, current of 180 μA and a resolution of 15µm.
2
 Examples of the 

specimen cross-sections are presented in Figure 3.1. The scans showed that the 

nesting between layers in the specimen from Panel #5 was not uniform in the through 

thickness direction as was intended during manufacturing. Five out six layers were 

well aligned with no significant layer shift, while one of the outer layers was shifted 

by approximately 0.4 of a unit cell length. This was a result of error in the lay-up or 

was caused by the manufacturing process (closing tool or resin infusion could shift 

the layer mechanically). Microscopy of Panel #4 showed that two layers out of the 

six are not aligned with the other layers probably due to the same reasons. 

 

Figure 3.1 μ-CT images of manufactured composites with highlighted yarns: Panel #3 (left), and 

Panel #5 (right) 

The following parameters were manually measured from μ-CT images for every 

warp and weft yarn in every layer with a spacing of 0.9 mm (every 60 pixels) along 

the yarn: width, thickness, position of the yarn‘s centre and the orientation of its 

cross-section. In total, 15 measurements were taken for every yarn, and their 

geometry described by the array of points (x',y',z') was reconstructed in the global 

coordinate system Ox'y'z' defined as shown in Figure 3.2. 

Alternatively, a yarn can be described in a local coordinate system linked to this 

yarn. In a laminate every textile layer can be independently shifted and rotated 

                                                 

2 The author would like to thank Dr Craig Sturrock from the School of Biosciences, University of 

Nottingham for scanning the provided samples 
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(rotation is assumed about the z-axis only). Additionally, every yarn in the layer is 

shifted relative to the layer‘s origin. Therefore, a point in a local coordinate system 

Oxyz for a yarn can be defined as a combination of the aforementioned 

transformations (shifts and rotation): 

  
 
 
 
   

            
           

   
  

  
  

  

   

     
     

     
  (3.1) 

where   is rotation angle for the layer and          are spacings between yarns in 

plane and layer thickness, p, q, r are integer numbers, and a, b, c are shifts relative to 

Ox'y'z'. Spacings were estimated through analysis of the actual textile structure. It 

should be noted that spacing derived from textile nominal properties, such as the 

value of picks/ends per cm and the nominal layer thickness, can be different from 

measured.  

 

Figure 3.2  Coordinate system for micro-CT geometry 

A further transformation can be applied in order to exploit repetitions in geometry of 

the textile reinforcement. The periodicity of textile reinforcement allows the yarn 

path to be expressed through a combination of a systematic and a stochastic 

component (as described for example by Blacklock et al [124]) 

  
 
 
 
    

 
 
 
    

  
  
  

  (3.2) 

where          are deviations from the average path          , which is defined as 

average of all the paths          in laminate (with appropriate shifts): 

   
 
 
 
    

 

 
  

 
 
 
 

 

   
(3.3) 
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Systematic and stochastic waviness in the z direction (out-of-plane) were calculated 

using equation (3.3). The systematic waviness    , shown in Figure 3.3(a), is 

observed in every warp and weft yarn due to weaving and is called the average yarn 

path in this work. For Panel #5, the standard deviation of    from the average path 

was 22μm and its measured distribution is shown in Figure 3.3(b). 

 
a)                                                                b) 

Figure 3.3 a) Out-of-plane yarn paths in Panel #5; b) Deviation from average out-of-plane path 

The deviation of the average in-plane yarn path from a straight line for Panel #5 was 

within 40μm, while the standard deviation of individual yarn paths from the average 

path was 25μm. The in-plane paths and distribution of deviation    from average 

path are shown in Figure 3.4(a) and Figure 3.4(b), respectively.  

 

a)                                                                b) 
Figure 3.4 a) In-plane yarn paths in Panel #5; b) Deviation of yarn from average in-plane yarn path for 

all the yarns in Panel #5 
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Average values of measured yarn width and height for Panel #5 were 2.495mm and 

0.35mm with standard deviations of 68μm and 20μm, respectively. Variations of 

width and height along the yarn path are shown in Figure 3.5(a) and Figure 3.5(b). 

 

a)                                                            b) 

Figure 3.5 a) Width of yarns in Panel #5; b) Height of yarns in Panel #5 

The laminates with random stacking were analysed using the same methodology. No 

significant differences in structure of reinforcement were found compared to the 

structure of a specimen with regular stacking. The average out-of-plane path of 

several yarns (from different layers) in Panel #1 is shown in Figure 3.6. 

 

Figure 3.6 Out-of-plane yarn paths in Panel #1 

A summary of measurements from all the specimens is given in Table 3.1. 
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Table 3.1 Summary of measurements from μ-CT scans 

Panel 

Deviation from 

in-plane average 

path, mm 

Deviation from 

out-of-plane 

average path, mm 

Width, 

mm 

Height, 

mm 
R

an
d
o
m

 

la
y
er

 s
h
if

t 

Panel #1 0.034 0.020 
2.572 

(0.085) 

0.342 

(0.023) 

Panel #3 0.027 0.017 
2.516 

(0.106) 

0.364 

(0.029) 

N
o
 l

ay
er

 

sh
if

t 

Panel #5 0.025 0.022 
2.491 

(0.068) 

0.352 

(0.024) 

The shift of every layer relative to the previous layer was measured along with its 

orientation in Panels #1 and #3. Cumulative distributions of shifts in Ox and Oy 

directions are shown in Figure 3.7(a). Actual shifts in two dimensional space are 

shown in Figure 3.7(b). Cumulative distribution of orientation is shown in Figure 

3.8. However, the number of data points is insufficient to draw any conclusions 

about the statistics (type of distribution, standard deviation etc).  

 

a)                                                            b) 

Figure 3.7 a) Cumulative distributions of shifts; b) Layer shifts 
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Figure 3.8 Cumulative distribution of layers orientation 

Intra-yarn fibre volume fraction for both types of specimens was estimated by 

calculating ratio of area of 12K filaments to measured area of individual yarns. For 

the inner layers the fibre volume fraction within one yarn was found to be variable 

from about 65% up to 75% with an average fibre volume fraction of 68%. Yarns‘ 

cross-sections tend to have an elliptical or lenticular shape. 

 

3.1.3 Macro-image analysis 

Images of the textile surface consist of visible segments of yarns which have 

different intensity in warp and weft directions due to different reflective properties of 

yarns in these two directions as shown in Figure 3.9.  

 

Figure 3.9 Image of textile surface 

Image analysis of the textile surfaces was performed using a MATLAB program, the 

algorithm of which is shown in Figure 3.10. The warp and weft yarns were separated 
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using a simple thresholding filter and then analysed consequently. A watershed 

segmentation algorithm [139] was used to find the first approximation of centres of 

yarn segments. The information about centres was transferred to a subroutine which 

operated with subimages of yarn segments cropped from the overall image. A 

gradient edge detection filter [139] was applied to each subimage and then edges of 

the yarn segment were then approximated with a rectangle of dimensions 2a2b 

using a Lamé curve representation [140]: 

   
 

 
 

 

 
   

 

 
 

 

 
    (3.4) 

The parameters of the fitted rectangles were then stored as local yarn dimensions, 

positions and orientations. 

The described algorithm was applied to three samples of dry textiles and four 

samples of laminates (Panels #2 – #5) with a size of 270210mm each, scanned on a 

flatbed scanner with resolution of 1200dpi (1 pixel is 0.02mm). Direct comparison of 

yarn width measured with μ-CT to automatically measured width, which were 

2.495±0.068mm and 2.520±0.056mm respectively, was favourable for the presented 

algorithm. The presented algorithm is similar to that proposed by Skordos and 

Sutcliffe [77] but does not require knowledge about a length of unit cell and can be 

applied to textiles with large variations which can skew the textile pattern. The 

automatic algorithm is preferable to a manual technique such as those described by 

Abdiwi et al [126]. 

Analysed textiles were reconstructed using information about detected yarn segments 

(centre point and dimensions) yielding paths for every warp and weft yarn. 

Following the same approach as above (Section 3.1.2), yarn paths can be described 

in local coordinate systems. Obviously, surface images only provide information 

about in-plane yarn path, therefore the out-of-plane z-component can be omitted 

from the yarn path description. For example, by assuming that the warp yarns are 

parallel to Ox' (layer orientation is neglected here), equation (3.1) reduces to 

                 (3.5) 

where   is variation,    is the spacing between yarns and q is an integer.  



CHAPTER 3: EXPERIMENTAL STUDY OF VARIABILITIES IN TEXTILE COMPOSITES 

55 

 

Figure 3.10 The yarn detection algorithm 

In the case of constant spacing between yarns, the study of yarn paths reduces to the 

study of the yarns‘ variation    about an average path        over the whole domain 

as given by equation (3.6): 

                 (3.6) 

An example of several yarn paths within a dry textile is shown in Figure 3.11a. It can 

be seen that yarn paths possess strong systematic in-plane variation which is caused 
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by tight weaving of the textile. A distortion of one yarn causes similar distortions of 

adjacent yarns. The amplitude of variation      in individual yarns can be up to 

1.0 mm (40% of yarn width). Following the approach presented above, yarn paths 

were described in local coordinate systems Oxy following the transformation given 

by equation (3.5) and then separated into systematic and stochastic terms given by 

equation (3.6). The result of these transformations, the systematic yarn path variation 

<y>, is shown in Figure 3.11b along with individual yarn paths y. It can be seen that 

the average yarn path <y> has no ―quick‖ oscillations compared to individual yarn 

paths.  

 
a) 

 
b) 

Figure 3.11 a) Detected yarn paths for dry textile; b) Average yarn path <y> and individual yarns y 

The distribution of stochastic variation    from the mean path <y> extracted with 

the present algorithm is shown in Figure 3.12. The Kolmogorov-Smirnov goodness-

of-fit test [141], applied to the empirical distribution, failed to reject the normality 

hypothesis with a significance level of 0.05. The standard deviations of the fitted 
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Gaussian distributions for analysed samples were found to be between 0.08 mm and 

0.1 mm. Distributions of    for the analysed samples can be found in Appendix A. 

 

Figure 3.12. Experimental and fitted distributions of deviation    from mean weft yarn path in 

Textile #1 

The outer surfaces of the composite Panels #2 – #5 were scanned and processed via 

the same approach. The general findings are very similar to those for dry textiles. 

Yarn paths in laminates possessed variations lower than in the dry textiles and had 

amplitude of up to 0.7 as shown in Figure 3.13. The lower amplitude in the 

composites may be caused by the manufacturing process where layers of textile were 

laid down and then intentionally aligned with edges of the tool hence reducing large 

variations. 

 

Figure 3.13 Average yarn paths for laminates 
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A statistical description of textile variability should also include information about 

the mutual influence of yarns in the textile. Adjacent yarns in the studied textile 

samples tend to have a similar variation and this similarity can be described by 

correlation. Correlation between the j-th and (j+k)-th yarns, each of them i nodes in 

length, is defined as Pearson‘s correlation [141]: 

      
   

   
  

      
   

     
   

 
 

 
   

     
     

 
 

 
   

 (3.7) 

Mutual influence of deviations within the yarns can be defined as autocorrelation, i.e. 

correlation of a yarn with itself. In this case correlation length can be defined as 

Pearson‘s correlation between pairs of points spaced at distance of k points:  

       
   

   
    

      
   

     
   

 
 

   
   

       
   

 
 

   
   

 (3.8) 

The correlation of adjacent yarns between each other and autocorellation are shown 

in Figure 3.14. It can be seen that the correlation is high between all analysed yarns 

(correlation value of 1.0 shows perfect match of yarns and value of 0.0 shows that 

paths are not correlated) which means that adjacent yarn paths are very similar to 

each other. Autocorrelation shows that the yarn path is not dependent on itself after 

3-4 unit cells, i.e. yarn paths do not exhibit periodicity. Yarns in the laminates 

exhibited similar correlation and autocorrelation as yarns in the textiles. 

 

Figure 3.14 Correlation and autocorrelation for dry textiles 
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The presented experimental multi-scale framework for measurements of yarn path 

variability is able to provide enough data for defining numerical models at two 

scales. At the meso-scale, where no significant variations were found, a unit cell 

model of the composite will be defined in Chapter 4 using the measured geometrical 

parameters. Data measured at the macro-scale will be used for creating a model of a 

textile composite with variability in Chapter 6. 

 

3.2 Mechanical testing of composites
3
  

Specimens from each panel (see Section 3.1.1 for description) were tested in tension 

in the warp direction according to the ISO 527 standard (equivalent to ASTM D638) 

using an Instron 5985 machine with 250kN load cell at a test speed of 2mm/min. The 

specimens were tabbed with aluminium tabs using epoxy adhesive to prevent early 

damage in the jaws. A DANTEC Q400 DIC system was used to monitor 

displacements (and therefore strains) in the outer layer of the composites. Surfaces of 

interest of specimens were painted white and black speckle pattern was applied as 

required for DIC measurements. The DIC measurements were processed with default 

settings (facet and grid size both set to 17 pixels) using the ISTRA 4D software. 

Strain fields were averaged over all the specimen area in order to obtain applied 

average macro-strain values. A Physical Acoustics Corporation AE system was used 

to obtain additional information about damage progression in the specimens. The AE 

system had settings as follows: 0 dB gain and 45 dB threshold for signals. A 

summary of macro-scale results (elastic properties and strengths) is given in Table 

3.2. Typical stress-strain curves for all the types of specimens are shown in Figure 

3.15. Detailed results of mechanical experiments are given in Appendix B. 

  

                                                 

3
 Part of these results have been presented in the MSc thesis of Guan Lu ―Improving results from 

experimental mechanics techniques‖, Faculty of Engineering, University of Nottingham, 2012 
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Table 3.2 Experimental results, values in parenthesis are standard deviations 

  # of 

tested 

samples 

Young‘s 

modulus, GPa 

Poisson‘s 

ratio 

Strength, 

MPa 

Ultimate 

strain, % 

R
an

d
o
m

 l
ay

er
 

sh
if

t 
Panel 

#1 
6 

55.74 

(1.38) 

0.069 

(0.007) 

571.0 

(20.5) 

1.11 

(0.10) 

Panel 

#2 
6 

55.36 

(2.13) 

0.082 

(0.016) 

484.6 

(31.0) 

1.37 

(0.26) 

Panel 

#3 
12 

55.96 

(1.65) 

0.054 

(0.008) 

582.2 

(17.6) 

1.35 

(0.24) 

N
o
 l

ay
er

 

sh
if

t 

Panel 

#4 
9 

54.89 

(1.02) 

0.073 

(0.012) 

595.9 

(25.5) 

1.38 

(0.13) 

Panel 

#5 
8 

53.26 

(1.23) 

0.129 

(0.007) 

644.6 

(74.8) 

1.46 

(0.27) 

 

Figure 3.15 Typical stress-strain curves for tested specimens (N denotes number of the specimen in 

the batch) 

The general observations are that the final failure strength of the composites with 

randomly nested layers is lower than the final strength of the composites with no 

layer shift. However, the Young‘s modulus of composites showed the opposite trend 

with the lower Young‘s modulus relating to the composite with no nesting between 

layers. The latter observation is in good agreement with numerical predictions of 

Woo and Suh [135] and experimental studies of Ito and Chou [142].  

The reason for this effect becomes apparent when a laminate is viewed as a series of 

sections of laminae connected in parallel. For a laminate with no nesting or layer 

shift this results in a series of stacks of straight and inclined tows as shown in Figure 
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3.16. The crimped regions obviously have low stiffness because of the mismatch 

between fibre and loading directions. Hence, the laminate consists of regions with 

low and high stiffness (non-crimped regions). By contrast, a laminate with arbitrary 

layer shift has mixture of crimped and straight tows in a cross-section. The resulting 

modulus of the stack is higher than the modulus of a stack of crimped tows only. 

This easy scheme leads to the conclusion that a laminate with regular stacking should 

have lower stiffness than a laminate with arbitrary stacking of the layers. 

 

Figure 3.16 The high and low strain regions in a regular and randomly stacked laminate 

This discussion can be supported with DIC observations. Longitudinal components 

of strain tensor under tensile loading, shown in Figure 3.17, exhibit a highly regular 

pattern in the case of the laminate with no layer shift. The strain pattern clearly 

corresponds to the weaving pattern of the textile reinforcement. The regions with 

high and low strains corresponding to regions over the transverse and longitudinal 

yarns, respectively, are clearly visible for the specimen with no nesting. In the 

specimen with random nesting, this regularity is much less pronounced and is created 

by a mixture of shifted patterns from several adjacent layers. An interesting 

observation is related to the imperfect stacking sequence in Panels #4 and #5 (see 

Section 3.1.2). The regularity of strain patterns on the outer surfaces of these panels 

implies that the strain field at the outer surface is not influenced by imperfect 

stacking. Other components of strain tensor are shown in Appendix C. 

It was observed that the strength of a randomly stacked composite was generally 

lower than that of a composite with no shift between layers. A possible explanation is 

similar to the earlier discussion on the Young‘s modulus of the laminates with 

different stacking and aided by DIC measurements shown in Figure 3.17 which 

depicts three steps of progressive tensile loading in two types of composites. It can 
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be seen that the cracks, which correspond to high strain regions, in the regular 

laminate are quite densely located at the intermediate strain and take over the major 

part of the transverse yarn regions at high strain. By contrast, the cracks are sparse in 

the laminates with random layer shift even at the high strain. It can be speculated that 

the sparsely located cracks lead to critical stress concentrations while the large 

number of cracks diffuse stress concentrations. Additionally, it can be thought that 

the transverse cracks in the randomly stacked laminate can go through more than one 

layer, while this is prevented by arrangement of the longitudinal yarns in the 

regularly stacked laminate. 

Acoustic emission monitoring of the damage progression allows linking the acoustic 

events (damage events) and cumulative acoustic energy with the shape of the stress-

strain curve and the strain field. Following the methodology proposed by Lomov et 

al [73] strain thresholds were be extracted from a cumulative acoustic energy curve. 

The first threshold ε1 is related to the appearance of the first micro-cracks diffused in 

the specimen. The second threshold ε2 is related to the development of meso-cracks 

and sometimes significant deviations from linear behaviour. Thresholds can be found 

by fitting a piecewise function consisting of three lines to the graph of cumulative 

acoustic energy versus strain. The first kink and second kink will correspond to 

thresholds ε1 and ε2, respectively. For the tested specimens these thresholds were 

determined and are presented in Table 3.3. Examples of cumulative acoustic energy 

curves are presented in Figure 3.18.  

Table 3.3 Strain thresholds 

 
 ε1, % ε2, % 

Ultimate 

strain, % 

R
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er
 

sh
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Panel #1 
0.27 

(0.022) 

0.76 

(0.03) 

1.1 

(0.10) 

Panel #2 
0.28 

(0.003) 

0.62 

(0.06) 

1.37 

(0.26) 

Panel #3 
0.29 

(0.07) 

0.71 

(0.066) 
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Figure 3.17 Longitudinal component of strain fields in specimens with no layer shift (left) and two 

instances of random layer shift (right) at average applied strains 0.4%, 0.8% and 1.0% (loading in 

vertical direction) 
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It can be seen that ε1 for the laminate with regular stacking is higher than that for the 

laminate with random stacking of layers which means that micro-damage starts later. 

However, this difference does not result in any difference of stress-strain curves. 

Both samples exhibited nearly linear behaviour almost up to strain level ε2 which 

was followed by non-linear behaviour accompanied by an increase of cumulative 

acoustic energy. Cumulative acoustic energy in the random shifted laminate grew 

rapidly after strain level ε2 while that growth was steady in the case of the laminate 

with regular stacking. The latter resulted in a distinctive kink in the stress-strain 

curve and a higher value of failure strain.  

 

 

Figure 3.18 Stress-strain curve and cumulative acoustic energy for specimens Panel #3 N13 and 

Panel #5 N14 

Interestingly, most of the samples of randomly stacked composites underwent 

delamination prior to failure. The delaminated layers did not fail at the same strain 

level and the samples tended to keep their integrity to some extent. Regularly stacked 

composites usually did not show significant delamination and most of the layers 

usually failed close to the same position in each layer. All the cases of delamination 
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in regularly stacked composites were observed between layers where regularity was 

violated (see Section 2.1.2 and Figure 3.1 for example). Examples of failed 

specimens are shown in Figure 3.19. At the same time, published studies showed that 

the burst of acoustic energy after strain level ε2 can be caused by progressive 

delamination [143]. However, further investigations are required in order to explain 

the difference between results of acoustic emission in these two cases. 

 

 

 

a) 

 

 

 

b) 

Figure 3.19 Photographs of broken specimens: a) Specimen from Panel #3, top and side view; b) 

Specimen from Panel #5, top and side view 

In summary, the mechanical testing of the composite revealed significant differences 

in mechanical performance of composites with different layer stacking arrangements. 

It was found that composites with regular stacking are generally stronger but less 

stiff. A possible explanation of these findings was suggested using the data provided 

with auxiliary techniques of AE and DIC. The results obtained in this section will be 

used for validation of a numerical model in Chapter 4. 

 

Delaminations Failures of layers 

Delamination Failure of 5 layers at 

one place 
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3.3 Mechanical testing of single filaments 

The variability of mechanical properties of constituents is one of the obvious sources 

of variability in composites. The variability of single fibre strength can be up to 20% 

and can exhibit size effects [97]. These features are usually described by the Weibull 

distribution which defines the probability P of a fibre with length L failing under 

applied stress   as follows [144, 145]: 

                              (3.9) 

where L0 is the reference gauge length, σ0 is the Weibull scale,  is the Weibull shape 

parameter and   is an additional scaling parameter. 

The strength of single Grafil 34-700 carbon fibres taken out of the textile was 

measured according to ISO 11566 using a Diastron testing machine with a 2.5N load 

cell in conjunction with a laser diffraction system (LDS) for fibre diameter 

measurements. At least 20 single fibres were tested at each of the three gauge lengths 

of 4, 12 and 20 mm. The Weibull plots of the measured distributions are presented in 

Figure 3.20 along with straight lines fitted using linear regression. Relatively good fit 

(R
2
 > 0.96) supports an assumption that fibre strength distribution at all the gauge 

lengths can be approximated with Weibull distributions. Parameters of these 

distributions are listed in Table 3.4. 

  

Figure 3.20 Weibull plots for single fibre strength at three different gauge lengths 
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Table 3.4 Results of single fibre testing 

Length, mm Average 

strength, 

MPa 

Standard 

deviation, 

MPa 

Strength 

CoV, % 

Weibull 

scale   , 

MPa 

Weibull 

shape   

4 4264 910 21.3 4652 4.85 

12 3742 484 12.9 3958 8.37 

20 3447 650 18.9 3717 5.85 

Manufacturer‘s 

data 
4830 – – – – 

The presented results highlight a significant variability of single fibre strength for 

which the CoV can be up to 21%. The average fibre strength exhibits a strong size 

effect: strength decreases by 20% when the gauge length is increased by a factor of 

5. Despite close approximation of experimental results with the Weibull 

distributions, inconsistency of the Weibull shape parameter was observed (i.e. the 

slopes of the lines on Figure 3.20 are not the same).  

Following the concept of the size effect for fibre strength it can be assumed that a 

Weibull scale parameter   at a gauge length   can be found using the scale parameter 

   and shape parameter  at the reference gauge length   : 

      
  

   

 
  

 (3.10) 

Linear regression allows the fitting of data from Table 3.4 to a line with coefficient 

 / as shown in Figure 3.21. This yielded a value of the overall Weibull shape 

parameter of 7.11 which is again not consistent with values of the shape parameter 

relating to individual gauge lengths.  

 

Figure 3.21 Linear regression of Weibull scale    over the gauge length 

8.2 

8.3 

8.4 

8.5 

1 1.5 2 2.5 3 3.5 

ln
(σ

0
) 

ln(L) 



CHAPTER 3: EXPERIMENTAL STUDY OF VARIABILITIES IN TEXTILE COMPOSITES 

68 

 

It has been decided that the shape parameter at the gauge length of 12mm can be 

discarded from the analysis due to the high value not natural for carbon fibres of this 

type [106, 144, 146]. Averaging the shape parameters for the other two gauge lengths 

results in the scale parameter =5.35 and  =0.75 being close to parameters of other 

carbon fibre with similar strength and modulus (such as AS4) [146]. 

In brief, the single fibre testing provided results for the basic Weibull model of the 

fibre strength. This model will be utilised in Chapter 5 for the multi-scale modelling 

of the textile composite with fibre strength variability. 

 

3.4 Conclusions 

The performed experiments were aimed at exploring three chosen variabilities: yarn 

path, layer shift/nesting and fibre strength variability. Measurements were carried out 

using some of the tecnhiques reviewed in Chapter 2. The obtained data will be used 

in the following chapters as the basis for numerical modelling of textile composites. 

In summary, μ-CT analysis and automatic image analysis of the specimen surfaces 

made it possible to analyse the geometry statistics of the textile reinforcement. It was 

found with μ-CT that the internal geometry of the textile composites exhibited meso-

scale variability with a magnitude of the same order as the resolution of the scans. 

Therefore, these data cannot be used for a reliable variability description, though the 

μ-CT analysis provides data for modelling and validation of the reinforcement 

geometry at a scale of one unit cell. However, the fact that there is no measureable 

variability at the scale of one unit cell does not mean that there is no variability at a 

higher scale. It is also possible that a μ-CT analysis with a higher resolution would 

reveal some significant variations in the textile structure. 

Macro-scale images of the surfaces of the textile reinforcements were analysed with 

an automatic image processing algorithm which had a precision comparable with the 

precision of the μ-CT scans. The analysis highlighted the presence of significant in-

plane waviness in yarns of textile reinforcement which extends beyond the length of 

a repeating textile pattern. Yarn path properties, such as systematic and stochastic 

variations, were determined. The Kolmogorov-Smirnov normality test failed to reject 
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the normality hypothesis when it was applied to distributions of the yarn path 

variation from the average yarn path. Correlation analysis showed that the yarn paths 

are strongly correlated with each other in the transverse direction which is explained 

by tight weaving of the textile. No periodicity was found within yarn paths. 

The effects of regular and random stacking of textile layers on stiffness and strength 

of the composites was studied with uniaxial mechanical testing aided with DIC and 

AE. It was found that the randomly stacked laminates are stiffer than the regularly 

stacked laminates but generally not as strong as the latter. However, the small 

difference between values of Young‘s moduli and the small number of conducted 

experiments mean that no statistically significant conclusions can be drawn about the 

absolute difference. 

Non-linear behaviour at the meso- and macro-scale observed with DIC was found to 

be different for regularly and randomly stacked composites. A possible explanation 

was provided in Section 3.2. Interesting observations were made with AE which 

revealed a difference in the damage accumulation process in the two types of 

laminate. Strongly non-linear behaviour followed soon after a critical level of strain 

ε2 in both types of composites. Published research suggested that the burst of 

acoustic energy after this threshold can correspond to the onset of delamination 

[143]. Different observed delamination behaviour of two types of specimens lends 

weight to this suggestion. 

Variability of single fibre strength was assessed through single fibre tensile testing. 

The CoV of fibre strength was found to be up to 21% and exhibit strong length 

dependence. Data were fitted using linear regression analysis to Weibull distributions 

at each gauge length and to a single Weibull distribution valid for all the gauge 

lengths using a chosen gauge length as a reference point. 
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CHAPTER 4  
 

 

UNIT CELL MODELLING OF TEXTILE COMPOSITES 

 

Multi-scale modelling, reviewed in Chapter 2, proved to be an effective technique for 

predicting physical properties of textile composites, and particularly mechanical 

properties. It has been noted that reliable prediction requires a realistic geometry to 

be used because simplified geometric models are not capable of capturing non-linear 

mechanical behaviour. Creating a realistic geometry of textile reinforced composites 

is still fraught with many difficulties. However, the inherent periodicity of weaving 

patterns of textile reinforcements makes it possible to simplify this task by 

constructing a periodic unit cell. The constructed unit cell of a textile composite is 

assumed to be an RVE of the entire composite and hence possesses the same 

properties as the entire composite i.e. elastic properties and non-linear failure 

behaviour. A wide range of successful examples of this approach were reviewed in 

Chapter 2. The present chapter introduces the multi-scale unit cell approach along 

with the damage modelling framework and numerical routines used in this thesis. It 

focuses on meso-scale modelling while assuming that yarns in a textile composite are 

homogeneous and transversely isotropic. The chapter presents a validation of the 

voxel meshing technique against conformal meshing and a comparative study of BCs 

for unit cells. Results of numerical modelling (FE analysis) of various 2D and 3D 

composites are compared with experimental results from Chapter 3. 

 

4.1 Generation of unit cell model 

The first step in unit cell generation is the choice of its size and shape. There are a 

number of ways to define a period of periodic composite but the conventional 

method is to choose a unit cell which has the form of a parallelepiped with sides
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parallel to yarn directions and having a size of the repetitive textile pattern. The 

definition implies periodicity of the local elastic properties C, stresses   and 

strains  : 

             (4.1) 

             (4.2) 

             (4.3) 

A textile composite consists of yarns and matrix, and so does the unit cell of the 

composite. Yarns in the reinforcement are assumed to be homogeneous, to have the 

properties of the impregnated fibre bundle and to be transversely isotropic. The 

matrix is usually assumed to occupy all the volume of the unit cell not occupied by 

the reinforcement. Therefore, the reconstruction of the reinforcement geometry (yarn 

paths, yarn interlacement, yarn shape etc) is the main challenge in creating the 

geometry of a unit cell. The approaches for yarn path description were described in 

Chapter 2 and include piece-wise description [28], use of sine waves [33], splines 

[34], use of the minimum energy approach [31] or direct numerical simulations of 

fibre preform compaction using the digital chain element method [37]. Unit cells of 

various textile reinforcements described in this chapter were created using two of the 

listed approaches: spline modelling of yarns using TexGen software, and compaction 

simulations using the digital chain element method. The first method provides a fast 

modelling approach which proved to be adequate for 2D textile composites while the 

second method is computationally demanding as it relies on rigorous mechanical 

simulations but offer the potential to produce an accurate model for an arbitrary 

textile. The TexGen software [13, 34], employed in this thesis, defines a yarn path as 

a cubic spline interpolation between node points belonging to the yarn. The initial 

positions of the node points are defined by textile specifications (pattern and yarn 

spacing) and yarns dimensions (width and thickness). Any possible yarns 

interpenetrations are adjusted automatically by rotations and distortions of the initial 

yarn cross-section. The digital chain element method is based on the representation 

of dry fibre bundles as assemblies of 30-90 beams representing fibres which are 

interwoven in a loose textile preform with a certain pattern. The preform is then 
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compacted by two rigid planes until targeted fibre volume fraction is achieved. The 

numerical simulations include pseudo-plasticity of the fibre bundles and multiple 

intra- and inter-bundle contacts. 

 

4.1.1 Unit cells of 2D textile composites 

Unit cells of two 2D textile composites were constructed using the TexGen software. 

As can be seen from the description given above, the parameters required for unit 

cell definition are the following: width and height of warp/weft yarns, warp/weft 

spacing, thickness of layer of textile composite, overall fibre volume fraction. A 

plain weave (coded as PW) [142] and a twill weave (coded as TW, see Chapter 3 for 

details) reinforced composites were chosen for the case studies. The parameters of 

the textile reinforcements and the composites are listed in Table 4.1. 

Some of the samples of both composites were manufactured in a special manner to 

eliminate shift between layers (also called simple stacking or no nesting 

configuration) i.e. to have quasi-periodic structures through thickness.  The TW 

composite was also manufactured in a conventional manner with random layer 

stacking. Details of the manufacturing process for the TW can be found in Chapter 3. 

Textile geometries were generated with TexGen software using the Python script 

listed in Appendix D using nominal parameters of the textile structure. The initial 

shape of yarn cross-sections was chosen to be lenticular with width and height equal 

to those measured. Local interpenetrations of the yarns were corrected with an 

automatic algorithm within the TexGen software which accommodates these 

interpenetrations by local rotations and changes of cross-sections [147].  

  



CHAPTER 4: UNIT CELL MODELLING OF TEXTILE COMPOSITES 

73 

 

Table 4.1 Parameters of 2D composites 

 TW PW [142] 

Fabric style Twill weave Plain weave 

Fibre volume fraction, % 55 42 

Thickness, mm 4.0 4.99 

Number of layers 6 8 

Warp/weft spacing, mm 2.5 3.14 

Warp/weft width, mm 2.5 2.97 

Warp/weft yarns 
12K Grafil 34-

700 carbon fibre 

12K AS4 carbon 

fibre 

Matrix 

Epoxy resin 

(Gurit Prime 

20LV) 

Vinyl ester (Dow 

DERAKANE  

411-C-50) 

The resulting models are shown in Figure 4.1. It is worth noting that the generated 

models of both composites had the correct overall fibre volume fractions and local 

yarn volume fractions (within yarns) not exceeding the physical limit for square 

packing of fibres (~78%) and close to the experimental values (~65-75%) obtained 

from μ-CT scans as described in Chapter 3. 

      

Figure 4.1 Unit cell models of TW (left) and PW (right) composites 

Experimental studies of the geometry from Chapter 3 make it possible to estimate the 

precision of the generated model for the TW composite by comparing it against data 

obtained from the µ-CT scan. The comparison of the predicted out-of-plane yarn 

path in the model with the averaged experimental yarn path is shown in Figure 4.2. 

The model gives a close approximation for the yarn path of the real structure with the 

maximum difference of amplitudes of 17% and maximum difference in slope of 

yarns (angle between straight line and yarn path at intersection point) of 8%. The 

difference in amplitudes stems from the difference of the compared structures. The 
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yarns in the unit cell were forced to be within the unit cell while the yarns in a real 

composite have no bounds and can penetrate adjacent layers to some extent. 

 

Figure 4.2 Measured and predicted out-of-plane waviness for the TW textile composite 

In addition to the information about yarn path the µ-CT scans provided information 

about relative shift of layers which made it possible to reproduce layer shift in the 

laminate precisely in the multi-layer unit cell model. Each layer of the model was 

generated separately as described above and then combined with the other layers 

using data about the shift, assuming there is no additional interaction between layers 

e.g. nesting. 

The created realistic geometry models can be used for prediction of mechanical 

properties such as stiffness that strongly depends on the geometrical parameters of a 

unit cell as shown e.g. by Whitcomb and Tang [33]. However, both of generated 

models assume a strict separation of layers in a laminate, which, as pointed out 

above, is not the case in real structures which often exhibit nesting.  

 

4.1.2 Unit cells of 3D textile composites 

Additional validation of the unit cell approach was performed on two 3D woven 

composites. Models of two composites with orthogonal 3D woven reinforcements 

were prepared in TexGen software using parameters given in Table 4.2. The first 

reinforcement was woven in such a manner that the binder yarn followed the plain 
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weave style, going first under one top weft yarn and then under one bottom weft yarn 

(coded as 3DCompA
4
). The second reinforcement was woven in ―satin weave‖ style 

with the binder going over five top weft yarns and then under one bottom weft yarn 

(coded as 3DCompB
5
). Geometries of the reinforcements are shown in Figure 4.3 

together with their unit cells defined in a conventional manner and using the simplest 

translational symmetry. 

Table 4.2 Parameters of 3D textile composites 

 3DCompA 3DCompB 

Fabric style 
Orthogonal plain 

weave 

Orthogonal satin 

weave 

Fibre volume fraction, % 55.0 52.5/58.0 

Composite thickness, mm 5.0 5.97/5.3 

Number of weft layers 7 9 

Number of warp layer 6 8 

Warp / weft yarns 
Torayca T300 

12K / 6K × 2 

HTS5631 

24K 

Binder yarn 
Torayca T300 

1K 

HTA5131 

12K 

Warp spacing, mm 2.21 4.96 

Warp width, mm 1.88 4.0 

Weft spacing, mm 2.37 5.56 

Weft width, mm 2.09 4.4 

Binder spacing, mm 2.21 4.96 

Binder width, mm 0.34 0.56 

Matrix Prime 20LV MVR444 

                                                 

4
 Work on 3DCompA has been done in collaboration with Dr X. Zeng, Dr L. Brown and Dr A. 

Endruweit. The outcome of the work was published as the journal article ―Geometrical modelling of 

3D woven reinforcements for polymer composites: prediction of fabric permeability and composite 

mechanical properties‖, Composites Part A, Vol. 65, 150-160, Jan. 2014 

5
 Work on 3DCompB has been done in collaboration with Steve D. Green and Prof S. Hallett. Results 

of the work were published as the journal article ―Mechanical modelling of 3D woven composites 

considering realistic unit cell geometry‖, Composite Structures, Vol. 118, p.284-293, Dec. 2014 
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Figure 4.3 Patterns of 3D woven reinforcements: 3DCompA (left), 3DCompB (right)  

It is worth noting that the unit cells of the 3D composites defined in Figure 4.3 are of 

a significantly larger size when compared to the unit cells of the 2D textile 

composites considered in the previous section due to many layers in the 

reinforcement that cannot be considered separately. The unit cell of 3DCompA is 

about 15 times larger (in volume) than the unit cell of PW composite and the unit cell 

of 3DCompB which is defined by a large weaving pattern that is about 5 times larger 

than the unit cell of 3DCompA. However, the size of the unit cells can be reduced by 

the use of rotational or reflectional symmetries [42, 148, 149]. In the first place, the 

unit cells can be reduced by the use of a staggered pattern which enables reduction of 

the unit cell size in two and five times for 3DCompA and 3DCompB, respectively. 

Then each of the unit cells can be reduced by factor of 8 using three reflectional 

symmetries about three central orthogonal planes. The process of the unit cells 

reduction is shown in Figure 4.4 for the case of 3DCompA. The reduction process 

for the 3DCompB is not shown here but is absolutely identical. 
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The unit cell 
Half of the unit cell 

(staggered pattern) 

Eighth part of 

the unit cell 

Sixteenth part of 

the unit cell 

    

Figure 4.4 Reduction of the unit cell of 3DTexCompA 

In a similar manner to 2D reinforcements, construction of a unit cell of 3D 

reinforcement in TexGen requires definition of pattern and dimensions. However, 

analysis of µ-CT scans of 3D textile composites shows significant local variations of 

yarn cross-sections when compared to 2D textile composites. The main difference 

was found to be in the binder yarns and the top layer of the weft yarns. The binder 

yarn cross-section was squeezed at the top surface during compaction which caused 

the top weft yarns to have crimp and change of cross-section at the intersection. For 

modelling purposes, manual adjustment of the yarn architecture in order to replicate 

the real geometry is not desirable. Therefore, a novel procedure of geometry 

refinement was implemented in the TexGen software to capture effects of local yarn 

compaction and distortion
6
. This was achieved by identifying common rules of 

geometry refinement using data acquired with µ-CT of 3DCompA [150]. The 

programmed automatic procedure made it possible to create a geometrical model that 

closely replicates the real reinforcement as shown in Figure 4.5. However, the 

                                                 

6
 The work has been done by Dr Louise Brown, Polymer Composite Group, University of 

Nottingham, who carried out all the programming of TexGen software. 
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geometry of the same reinforcement but at a higher level of compaction had more 

discrepancies (shape of top weft yarns, binder yarn path) when compared to µ-CT of 

a real specimen. For this reason, only a model with an intermediate level of 

compaction was used (see Table 4.2). 

 

Figure 4.5 Cross-section of 3DCompA acquired by µ-CT and its TexGen model  

A model of the reinforcement of 3DCompB was prepared using the same refinement 

algorithm in TexGen as for the 3DCompA. It was found that the TexGen model is far 

too idealised when compared to the real structure which yarn paths were heavily 

distorted by the weaving process (probably by tension in binder yarns). The 

maximum achievable overall fibre volume fraction (without exceeding the physical 

limits of the fibre volume fraction within the yarns) was lower than that in the real 

composite (52% compacted to 58.5%). The binder yarns were squeezed at the top 

and bottom surfaces of the model whilst µ-CT scans showed that the binder yarns at 

the surface was only slightly wider than in between the layers due to quite significant 

crimp introduced to the top weft yarns. Generally, deviation of yarn paths and cross-

sections from the nominal design cannot be predicted by a generic geometric pre-

processor for this kind of geometry.  

The alternative approach for geometry prediction, the digital chain element method, 

based on mechanical simulations of fibre preform compaction, was employed for 

generation of a more realistic geometry of the reinforcement of 3DCompB
7
 [37]. The 

                                                 

7
 This part of work has been done in close collaboration with Steve D. Green (University of Bristol), 

who prepared the realistic models and provided the experimental data (µ-CT scans and the results of 

the mechanical experiments).  
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model consisted of bundles of 61 1D beams, which represented dry fibre bundles, 

interwoven with each other forming the designed weave pattern of the reinforcement. 

The bundles had no contact with each other before any load was applied. A thermal 

load was applied to bring the bundles in contact and then the models was compacted. 

Multiple contact problems between beams within bundles, as well as, between 

bundles, were solved during the simulation of preform compaction between two rigid 

parallel plates. More details on the digital chain element method are given in 

Appendix E. The resulting reinforcement configurations, shown in Figure 4.6 and 

Figure 4.7, were found to be close enough to be considered realistic and will be 

called ―realistic models‖ throughout the chapter. The simulated unit cells and μ-CT 

scan are shown in Figure 4.7. It can be seen that in-plane yarn path and yarn crimp 

are represented well by the simulated digital chain element model. 

Two realistic models of 3DCompB of different fibre volume fraction were produced. 

The moderate compaction model (fibre volume fraction of 52%) was prepared for 

comparison with the idealised TexGen model of the same level of compaction to 

estimate the effect of the geometry. A high compaction model (fibre volume fraction 

of 58.5%) was prepared in order to allow a direct comparison with experimental data 

for the real composite of the same fibre volume fraction. 

 

Figure 4.6 An example of yarn path variations in 3DCompB 
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Figure 4.7 a) Idealised model of 3DCompB; b) µ-CT of 3DCompB; c) Realistic model of 3DCompB 

The models can be compared quantitatively in terms of their average overall 

waviness which can be defined as an average angle between a tangent vector at a 

chosen yarn section and a vector which coincides with a nominal direction of the 

yarn. Overall average waviness values for the realistic models and the real 

composites are shown in Figure 4.8, noting that yarn waviness in the idealised model 

is negligibly small and is not given. The figure shows that average yarn waviness in 

realistic models is always under-predicted for both warp and weft yarns. Moreover, 

the trend of increasing waviness of the weft yarn with increase of compaction (fibre 

volume fraction) is not well captured by the model.  

 

Figure 4.8 Overall average yarn waviness for different levels of reinforcement compaction 
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4.2 Boundary conditions 

Periodicity of a composite‘s geometry dictates periodicity of the solution of an 

elastic problem. Therefore, boundary conditions (BCs) should ensure the periodicity 

of strains and stresses. Different types of boundary conditions were introduced in 

Chapter 2 and include Dirichlet, Neumann and periodic BCs. None of these except 

periodic BCs can ensure periodicity of both strain and stress fields.  

Dirichlet BCs impose displacement constraints on all the boundaries of a unit cell. 

They can be written in terms of zero and non-zero displacements applied to 

boundaries. For example, in case of a 2D unit cell with dimensions   ,    shown in 

Figure 2.1, the first loading case (strain      applied in the x-direction) is defined as: 

 
                

             
(4.4) 

The second loading case of tension in the y-direction requires: 

 
                

             
(4.5) 

The third loading case of shear in the xy-plane requires: 

 
                

             
(4.6) 

It should be noted here that Dirichlet BCs are equivalent to periodic BCs in the case 

when a unit cell possesses symmetries about all three central planes.  

 

Figure 4.9 Dirichlet BCs in application to a 2D unit cell 
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It was proven that this type of boundary conditions makes the unit cell stiffer by 

virtually introducing boundaries with infinite bending stiffness [15]. Similarly, 

Neumann boundary conditions for tractions on the corresponding surfaces make the 

unit cell less stiff by relaxing continuity at its edges. However, it is possible to apply 

these two types of BC in the case of non-periodic geometry (and this will be 

investigated further in Chapter 6). 

The simplest definition of periodic BCs is derived from translational symmetry 

conditions stating that displacements in corresponding points A and B (see Figure 2.3 

in Chapter 2) are related through the applied strain and dimensions of the unit cell 

[32]:  

             (4.7) 

where    and    are displacements in corresponding points,     is the average 

applied strain and   is the vector of periodicity.  

A correct application of the equation (4.7) for six cases of loading was published e.g. 

by Whitcomb et al [32] and Li [148] and can be found in Appendix F. However, in 

the case of a reduced unit cell (i.e. when internal symmetries are used) these BCs 

should be amended accordingly. The case of a unit cell arranged in a staggered 

pattern as it was considered above for the example of two instances of 3D woven 

composites was studied by Li [149] and De Carvalho et al [42] who independently 

derived periodic BCs for this kind of geometry. The latter derivation also presents a 

general algorithm for derivation of periodic BCs for a unit cell reduced by use of any 

kind of internal symmetries. Periodic BCs for unit cells shown in Figure 4.4 are 

listed in Appendix F. 

Other possible BCs are a mixture of periodic BCs applied in the direction which is 

assumed to be periodic and Dirichlet/Neumann BC applied in other directions. This 

type of BCs can be applied in case when through thickness periodicity of a textile 

composite unit cell can be assumed. 
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4.3 Damage model 

Major approaches for damage modelling were reviewed in Chapter 2. Modelling 

damage in composite materials using a CDM approach with continuous degradation 

of element properties was identified as one of the useful strategies. Alternative 

approaches such as X-FEM are still challenging to apply to modelling of damage in 

heterogeneous structures. Out of many available CDM approaches, the 

phenomenological CDM approach was chosen for damage modelling of UD and 

textile composites [18]. As was mentioned in Chapter 2, this approach parameterises 

stiffness degradation with two phenomenological constants while other approaches 

require experimental determination of material constants such as energy release rate 

or fracture toughness. The accuracy of the CDM model for the case of 2D textile 

composite under tensile loading was shown by Ruijter [18]. 

The chosen approach assumes linear material behaviour until damage initiation and 

gradual degradation of elastic properties after damage has occurred. It is assumed 

that only five failure modes can occur in the bundle: under longitudinal 

tension/compression, transverse tension/compression and transverse shear. Damage 

initiates when one of the damage variables Di defined by equations (4.8) – (4.10) 

exceeds 1.0. Stress tensor components σ
ij
 are calculated in local coordinates where 

direction ―1‖ is the longitudinal fibre direction, and ―2‖ and ―3‖ are orthogonal 

transverse directions. Directions ―2‖ and ―3‖ are assumed to be equivalent due to the 

transverse isotropy of an impregnated bundle.  

        
   

   
  

    

   
   (4.8) 

    
    

     
 

   
  (4.9) 

        
          

   
   

          

   
      (4.10) 
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where σ
2
 and σ

3 
are principal stresses in the plane orthogonal to the fibre direction, 

   
  are strengths of the impregnated bundle (yarn) where indices i, j = 1,2 correspond 

to directions and index m = t, c stands for tensile and compressive strength. 

After damage initiation, the Young‘s and shear moduli E
i
, G

ij
 of the damaged yarn 

are described by equations (4.11) – (4.13):  

     
  

                         

       
             

     (4.11) 

         
                                (4.12) 

            
                                (4.13) 

where P(Di) is a damage factor function and is defined as 

       
 

              
      (4.14) 

where    is a damage variable defined by equations (4.8) – (4.10),    and    are 

phenomenological constants. 

From equation (4.11) it can be seen that damage initiation in the longitudinal 

direction causes catastrophic failure. Damage in the transverse direction is assumed 

to propagate gradually in a similar manner to Puck‘s theory [63]. Poisson‘s ratios 

remain unchanged. The ratio c
2
/c

1
 determines the value of damage variable Di when 

properties are fully degraded and the appropriate elastic modulus becomes 

insignificantly low. Constants in equation (4.14) determined by Ruijter [18] as c
1
=8.0 

and c
2
=13.0 were found to give close agreement with experimentally measured 

stress-strain curves for a plain weave composite under tensile load. A particular case 

of the constants c
1
 and c

2
 being equal to zero leads to an abrupt degradation scheme 

similar to [50, 62]. 

The matrix material is assumed to be elastic prior to failure. Failure onset in the case 

of prevailing tensile behaviour is described by the modified von Mises criterion 
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suggested by Raghava [55] which takes into account hydrostatic pressure. The matrix 

damage varaiable    is then defined as 

 

   
     

    

          

 
 

     

        
         

         
   

(4.15) 

where   ,   ,    are principal stresses and   ,    are the compressive and tensile 

strength of matrix, respectively. In case of    being equal to    the criterion is 

equivalent to von Mises criterion. 

Degradation of the matrix‘s Young‘s modulus was assumed to be described by the 

damage factor function as in equation (4.14) using damage variable    as input and 

the same parameters c
1 

and c
2 as for the yarns. 

The minimum allowed values of moduli in equation (4.11) – (4.13) are equal to their 

initial values divided by 1000. These artificial values are used to prevent numerical 

difficulties related to zero values of stiffness. This approach was implemented in a 

UMAT user-defined material subroutine called by Abaqus/Standard™ for which a 

listing can be found in Appendix G. 

 

4.4 Voxel meshing technique 

As was discussed in Chapter 2, the generation of a FE model of a unit cell of textile 

composite is complicated by the complex structure of resin pockets between the 

yarns. Small gaps or yarn contacts often result in non-acceptable mesh degeneration 

[48]. This problem is often solved by constructing a unit cell in an artificial manner 

e.g. by eliminating contact between the yarns by introducing an artificial gap 

between them [19] or by defining a contact area between the yarns in a manner that 

will not lead to degenerated elements in nearby regions [33]. Another strategy to 

resolve this problem is to use a voxel meshing technique [47]. 
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A voxel mesh consists of rectangular cuboidal elements (C3D8 elements were used 

for all the models
8
), and the element attributes are defined by those present at the 

voxel centroid. The quality of the voxel mesh is known a priori and the mesh can be 

generated for any geometry without any artificial changes in textile geometry. On the 

other hand, voxel mesh creates an artificial interface between yarn and matrix. Either 

the voxel meshing can be refined locally [32], or a smoothing algorithm can be used 

to improve the interface surface [33]. Most significantly, the resolution (number of 

elements) of a voxel mesh, which is required to be high in order to achieve a good 

quality representation of the textile geometry, is limited by computational costs. 

In order to prove the validity of voxel mesh technique a comparison between the 

voxel and conformal meshes for a plain weave textile under tensile load was 

performed. An artificial gap was introduced into a model of PW composite 

2DCompA, the parameters of which are listed in Table 4.1. The gap reduced overall 

fibre volume fraction to 85% of the original value but enabled direct comparison 

between results obtained on tetrahedral and voxel meshes. The tetrahedral meshes 

were generated using TetGen [151] implemented in TexGen. The algorithm employs 

Delaunay triangulation of the domain constrained by the condition that element faces 

conform with internal and external boundaries. Elastic properties and strength of the 

yarns were calculated using Chamis equation (2.6) – (2.11) and (2.17) – (2.19) and 

given in Table 4.7. Time step was chosen to be 510
-3

 of maximum applied strain. 

Periodic BCs were applied in all directions. Damage model parameters were set as 

c
1
=8.0 and c

2
=13.0. The results of simulations were compared in terms of modulus 

and initial transverse damage strain as shown in Figure 4.10. It can be seen that the 

chosen properties converge faster on the tetrahedral conformal mesh when compared 

to a voxel mesh technique. The latter requires at least twice as many nodes for the 

converged results (260K nodes is 757545 voxels). Differences between both 

modulus and failure initiation strain predicted with the voxel and conformal meshes 

were found to be less than 5%. The non-linear behaviour for the converged meshes 

of both types is shown in Figure 4.11. The strength of the composite predicted with 

the voxel mesh approach was found about 5% lower than the strength predicted with 

                                                 

8 Solid elements with reduced integration (i.e. C3D8R) can be used as well but this may lead to an 

―hourglass effect‖ in case of large deformations (e.g. in damaged elements) 
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a conformal mesh. This difference can be attributed to stress concentrations in the 

voxel mesh induced by jagged interfaces between yarns and matrix.  

 

Figure 4.10 Voxel and conformal mesh convergence for stiffness and initial failure strain 

 

Figure 4.11 Stress-strain curves for converged voxel and conformal meshes 

The comparison shows that, for the considered textile composite a voxel mesh can be 

used instead of a conformal mesh at the cost of computational time. The accurate 

prediction of the mechanical properties of textile geometries requires at least of 40 

voxels in the through thickness direction of the unit cell model. The voxel mesh 

technique will be used for all later cases unless stated otherwise. 
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4.5 Numerical results 

4.5.1 Comparison of boundary conditions 

The BCs described in Section 4.2 impose different stress-strain states on a unit cell 

and none of them replicate the exact state during mechanical testing but an 

approximation can be made. Several sets of BCs were applied to the unit cell model 

of 2DCompB in order to compare their effect on the Young‘s modulus. The cases 

were as follows: periodic in all three directions, Dirichlet in all three directions, and 

mixed BCs, e.g. Dirichlet in in-plane direction and periodic in through thickness 

direction. Additionally, several cases of BCs were tested on a multi-layer model of 

the same composite in order to estimate the effects of a free outer surface and a finite 

number of layers. For the multi-layer model the following BCs were imposed: 

periodic in-plane directions only, Dirichlet in in-plane directions only. Mechanical 

properties of the yarns calculated with Chamis micromechanical equations (2.6) – 

(2.11) and (2.17) – (2.19) are given in Table 4.3. Mesh size of a single-layer model 

was 12012040 voxels. Time step was chosen to be 510
-3

 of maximum applied 

strain. The results of this study are shown in Figure 4.12.  

 

Figure 4.12 Effect of BCs on the predicted Young‘s modulus for TW 
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factor of 2 and 5. The strongest size dependence of the Young‘a modulus was 

exhibited by models with Dirichlet BCs applied. The Young‘s modulus was 

overestimated by 10% at the size of one unit cell and 5% at the model size of 55 

unit cells. At the size of one unit cell Dirichlet BCs gave an overestimation of 10% 

compared to periodic BCs and 5% when the largest model size was used. The main 

reason of the overestimation was a restriction of through thickness displacements 

which are quite significant for other BCs. Mixed BCs gave an initial difference of 

less than 1% when compared to results of periodic BCs with a reduction to a 

negligible 0.2%.  

The study conducted on the Young‘s modulus obtained with various BCs highlighted 

some differences between BCs. Periodic and mixed BCs provide results close to each 

other for both single layer and multi-layer models. The difference between Young‘s 

moduli of single and multi-layer models with periodic BCs applied was 3.6%, and 

the results predicted with multi-layer model were closer to experimental values (see 

Chapter 3 for description of experiments and Section 4.5.2.1 for more comparison). 

At the same time, it was found that Dirichlet BCs are less appropriate for simulations 

on a single layer unit cell due to the strong size dependence. The results predicted 

using a multi-layer model with Dirichlet BCs applied in both in-plane directions was 

found to have only a slight size dependence. It can be concluded that periodic BCs 

are the most suitable when geometrical periodicity can be assumed. In absence of the 

in-plane periodicity Dirichlet BCs can be considered with free surface of periodic 

BCs depending on the model. These cases of BCs will be used throughout this work. 

 

4.5.2 Results of modelling of 2D textiles 

4.5.2.1 Results for the TW model 

Several models of the TW composite were prepared for comparison with the results 

of mechanical experiments described in Chapter 3. A single-layer unit cell and a 

multi-layer unit cell with no layer shift were compared against the laminates with no 

layer shift. Two multi-layer models were created to reproduce layer shifts as 

measured from μ-CT scans of specimens from Panels #1 and #3 (see Chapter 3). All 
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the prepared models of the TW composite were meshed with 12012040 voxels. 

The mesh size was chosen to be the same as the mesh size in the converged model in 

Section 4.4. Periodic BCs were applied in the in-plane directions for the multi-layer 

models and in all directions for the single layer model. Time step was chosen to be 

510
-3

 of maximum applied strain. The properties of the homogenised yarns were 

derived from properties of the constituents which are listed in Table 4.3 using the 

Chamis formulae (2.6) – (2.11), (2.17) – (2.20). Damage model parameters were set 

as c
1
=8.0 and c

2
=24.0. 

Table 4.3 Material properties of constituents and homogenised yarns for the TW model 

 
E11, 

GPa 

E22=E33, 

GPa 

G12 = 

G13, GPa 

G23, 

GPa 

ν12 = 

ν13 
ν23 

S11,  

MPa 

S22, 

MPa 

S12, 

MPa 

Epoxy 

Prime 20 

LV [152] 

3.5 3.5 1.29 1.29 0.35 0.35 
73*/ 

146** 
- - 

Grafil 34-

700 carbon 

fibre [153] 

234 15 13 6 0.2 0.25 4830 - - 

Yarns  

(Vf = 0.72) 
169.3 9.5 5.1 2.75 0.24 0.37 3498 30 42 

* Tension; ** Compression 

Results of the non-linear analysis on the single-layer and the multi-layer models with 

no layer shift are shown in Figure 4.13 along with the experimental results for the 

appropriate TW composite. An overall comparison is given in Table 4.4. It can be 

seen that all macro-scale parameters such as Young‘s modulus and the tensile 

strength are predicted within 8% of those experimental values. 

 

Figure 4.13 Experimental and predicted stress-strain curves for TW composite 
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Table 4.4 Results of FE modelling for the TW composite (standard deviation in brackets) 

 
Young‘s 

modulus, GPa 

Diff. to 

exper., % 

Strength,  

MPa 

Diff. to 

exper., % 

Experiment 
54.1

*
 

(1.23
*
) 

- 
618.8

*
 

(47.2
*
) 

 

Single-layer 

model 
58.1 +7.4% 610 -1.5% 

Multi-layer 

model, no layer 

shift 

54.5 +0.8% 623 +0.7% 

      * An average value for panels  #4 and #5 

The results of the numerical simulations are in a good qualitative and quantitative 

agreement with the results of the experiments on the textile composite with no layer 

shift. The Young‘s modulus predicted with the multi-layer model is slightly lower 

due to the finite number of the layers in the model. Similarly, the non-linear response 

predicted with the multi-layer model was slightly different from that predicted with 

the single layer model due to the periodic BCs. Comparison of the stress-strain states 

and the damage states at different strain levels is shown in Figure 4.14. It can be seen 

that the inner layers of the laminate have similar stress distribution in the yarns as the 

single layer model. This is explained by effect of the periodic BCs applied to the 

single-layer model and the exact alignment of the layers in the multi-layer model. 

The peak stresses in the outer layer are about 10% higher than those in the inner 

layers. These results correspond to earlier reported comparisons of the single layer 

and multi-layer models [43] (see Figure 2.6 in Chapter 2 and the corresponding 

discussion).  
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Single Inner Outer  

Longitudinal yarns,    , Pa  

   
 

Transverse yarns,    , Pa  

   

 

Figure 4.14 Stress distributions in the single layer and the multi-layer models at strain of 0.1% 

Both models predicted stress-strain curves having a ―kink‖ (or ―knee‖) which occurs 

at a strain of about 1.1%. The kink formation for the case of the laminate with no 

layer shift is explained by the damage progression in perfectly aligned layers. The 

sequence of the transverse damage states is shown in Figure 4.15. It can be seen that 

continuous and vertically oriented transverse damage zones occurred in the 

transverse yarns prior the kink. It can also be seen that there is a clear 

correspondence between the damage patterns in the transverse yarns of the single 

layer model and those in the inner layers of the multi-layer model, which is the 

implication of the matching stress distributions in these models. Damage in both the 

inner and outer layers of the multi-layer model have very similar patterns but the 

damage is slightly more severe in the outer layer. This results in greater deviation of 

the stress-strain curve from linear behaviour when compared to the single layer 
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model. The transverse damage in the yarns is followed by shear damage through the 

yarns and subsequent damage in the matrix which allows yarn straightening and 

results in the kink in the stress-strain curve. 

Single layer model 
Multi-layer model 

Inner layer Outer layer 

    = 0.9% 

   

    = 1.1% 

   
    = 1.2% 

   

Figure 4.15 Transverse tensile damage in transverse yarns for the single layer and multi-layer models 
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Results of the non-linear simulations for the models with the arbitrary layer shift 

(using the values measured with μ-CT) are shown in Figure 4.16. The Young‘s 

modulus and tensile strength are listed in Table 4.5. The predicted Young‘s moduli 

are lower than the modulus of the models with no layer shift. The predicted stress-

strain curves exhibit bi-linear behaviour with a kink at s strain of approximately 

0.6%. In contrast, most of the tested specimens behaved linearly up to higher strains 

and the modulus reduction was not as severe as predicted. Strength for two models 

was predicted approximately 11% and 7% higher than the average experimental 

strength of Panels #1 and #3. 

 

 

Figure 4.16 Stress-strain curves for the models with arbitrary layer shift: Panel #1 (top); Panel #3 

(bottom) 

 

0 

100 

200 

300 

400 

500 

600 

700 

0 0.5 1 1.5 

S
tr

es
s,

 M
P

a 

Strain, % 

Experiment 

FE prediction 

0 

100 

200 

300 

400 

500 

600 

700 

0 0.5 1 1.5 

S
tr

es
s,

 M
P

a 

Strain, % 

Experiment (Panel #3 N5) 
FE prediction 



CHAPTER 4: UNIT CELL MODELLING OF TEXTILE COMPOSITES 

95 

 

Table 4.5 Results for laminates with arbitrary shift (standard deviation in parentheses) 

 
 

Young‘s 

modulus, GPa 

Diff. to 

exper., % 

Strength,  

MPa 

Diff. to 

exper., % 
P

an
el

 #
1

 
Experiment 

55.7 

(1.38) 
- 

571.0 

(20.5) 
- 

Multi-layer model 55.1 -1.1% 632 +10.6% 

P
an

el
 #

3
 

Experiment 
55.96 

(1.65) 
- 

582.2  

(17.6) 
- 

Multi-layer model 54.7 -2.3% 621 +6.7% 

Stress distributions vary quite significantly from layer to layer depending on the 

relative layer shift. The difference in peak values of longitudinal stresses in the 

different layers can be up to 10% of the highest stress. The same applies to transverse 

stresses. Examples of the stress distributions are shown in Figure 4.17. 

Layer 4 Layer 5 Layer 6  

Longitudinal stresses in longitudinal yarns, Pa  

   

 

Transverse stresses in transverse yarns, Pa  

  
 

 

Figure 4.17 Stress distributions in several layers of composite with shifts equal to those measured 

from panel #3 
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Damage states of the transverse yarns of the composite with layer shifts 

corresponding to Panel #3 are shown in Figure 4.18. The damage modelling showed 

that transverse damage started in several layers almost simultaneously. In general, 

the damage patterns were different but some layers exhibited damage patterns very 

similar to that in the composite with regular layer alignment. Transverse damage in 

all the layers was mainly oriented transverse to the load i.e. ―crack-like‖. However, 

development of the transverse damage was always interrupted by fibre failure which 

happened earlier than in the model with regular layer stacking. 

A further validation can be made using the DIC measurements of the strain fields 

described in Chapter 3. Figure 4.19 illustrates the predicted and experimental 

longitudinal strain fields in the outer layers of the composites with no layer shift at a 

strain of 0.4% which is still in the linear region. It can be seen that the strain pattern 

is well predicted. However, the peak values are predicted to be about 40% higher 

than measured values. Additional comparisons were made for the strains along a line 

perpendicular to the loading direction. The predicted and experimental strains along 

this line are shown in Figure 4.20. It can be seen that the peak values at certain nodes 

are about 40% higher than the experimental values. However, it should be taken into 

account that the measured data had resolution much lower than data from the FE 

analysis. The curve of predicted strains was smoothed using local regression with 

weighted linear least squares (‗lowess‘ algoritm in MatLab). The smoothed curve of 

strains along the chosen line has slightly better agreement with experimental data.  
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Layer 4 

   
Layer 5 

   
Layer 6 

   

Figure 4.18 Transverse damage states in the model of panel #3 
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Panel #5 N5 

(no layer shift) 

Panel #3 N12 Panel #1 N5  

 (random layer shift) 

Measured  

   

1.0% 

 
0.0% 

FE 

   

Figure 4.19 Measured and predicted longitudinal strain fields for different samples at average applied 

strain     = 0.4% 

  

Figure 4.20 Comparison of measured and predicted longitudinal strains along a chosen line A-A‘ at 

average applied strain     = 0.3% 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0 5 10 15 20 25 

S
tr

ai
n
, 
%

 

Position, mm 

FE predicted 

Experiment 

FE smoothed 



CHAPTER 4: UNIT CELL MODELLING OF TEXTILE COMPOSITES 

99 

 

Unfortunately, acoustic energy measured with the AE technique cannot be compared 

directly to the model because the CDM model used for the simulations does not 

allow fracture energy quantification. However, damage initiation strain estimated 

with AE can be compared with that numerically predicted. The comparison for all 

the cases is given in Table 4.6. 

Table 4.6 Comparison of strain thresholds    for the damage initiation 

 Experimental FE 

No shift (Panel #4) 0.48% 0.32% 

Panel #1 0.27% 0.24% 

Panel #3 0.29% 0.24% 

It can be seen that damage initiation was predicted at equal strain for models of 

Panels #1 and #3, attributed to transverse damage of transverse yarns in both cases. 

These predicted values are quite close to the value measured with AE, suggesting 

that stress-strain state is captured relatively accurately and the assumed properties of 

the yarns are close to the real values. However, the predicted damage initiation strain 

for a composite with no shift is significantly lower than the experimental value. This 

can be related to a high filtering threshold during the AE acquisition which was used 

to filter out low energy events.  

The modelling cases described above show that the unit cell modelling of the textile 

composites with various layer shifts give results which are in agreement with results 

of the experiments in terms of a number of parameters such as Young‘s modulus, 

tensile strength and strains values on the outer surface. It was found that both single 

and multi-layer models of the composite with no layer shift yield very similar results. 

The former model gives slightly higher Young‘s modulus and lower strength when 

compared to experimental results. The results predicted with the models with 

arbitrary random shift over-predicted the tensile strength significantly. Damage 

patterns in every model were found to be quite similar exhibiting prolonged 

transverse zones of damage which might be directly attributed to cracks. In general, 

the unit cell modelling framework was found more than acceptable for modelling 

damage in multi-layer textile composites. 
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4.5.2.2 Results for the PW model 

The model of the PW textile composite prepared with TexGen was meshed using the 

voxel mesh technique. The properties of the homogenised yarns listed in Table 4.7, 

were derived from the constituents‘ properties using Chamis formulae (2.6) – (2.11), 

(2.17) – (2.20). Periodic BCs were applied in all three directions. The mesh size was 

chosen in line with convergence studies conducted in Section 4.4 i.e. 757545 

voxels. The non-linear behaviour under tensile loading was predicted numerically 

using the CDM model described above with parameters c
1
and c

2
 set to 8.0 and 13.0. 

Time step was chosen to be 510
-3

 of maximum applied strain. Comparison of the 

prediction for the PW model with experimental data [142] is shown in Figure 4.21. 

Table 4.7 Material properties of constituents and homogenised yarns for PW model [142] 

 
E11, 

GPa 

E22 = 

E33, GPa 

G12 = 

G13, GPa 

G23, 

GPa 

ν12 = 

ν13 
ν23 

S11,  

MPa 

S22, 

MPa 

S12, 

MPa 

Vinyl ester 3.45 3.45 1.28 1.28 0.35 0.35 
76*/ 

76** 
- - 

Carbon 

fibre AS4 
221 16.6 16.6 6 0.26 0.30 3930 - - 

Yarns  

(Vf = 0.63) 
140.5 10.6 7.9 3.11 0.285 0.349 2497 31.6 36 

* Tension; ** Compression 

 

Figure 4.21 Experimental and predicted stress-strain curves for the PW composite 
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Table 4.8 Results of FE modelling for 2D textile composites 

Composite 

model 

Young‘s modulus, GPa Strength, MPa 

FE 
Exp 

[142] 
Diff., % FE 

Exp 

[142] 
Diff., % 

PW 41.4 
40.5 

(2.12) 
2.2 530 

480 

(7.3) 
11.3 

The Young‘s modulus was predicted to within 2% of the experimental value with 

strength predicted to be 11% higher than average experimental strength. Stresses in 

the longitudinal and transverse yarns and matrix are shown in Figure 4.22. The 

overall response was captured with good precision including prediction of a kink in 

the stress-strain curve. Initial deviation from linear behaviour can be noticed already 

at a strain of 0.4-0.5%. According to the simulations it is the result of transverse 

damage in the transverse yarns. This is illustrated in Figure 4.23 which demonstrates 

extended vertical zones of damage near the edges of the yarns. This might 

correspond to cracks in the yarns reported in the original source of the experimental 

studies on the PW composite [142]. The transverse damage becomes more severe 

with increase of applied strain and is then accompanied with shear damage from a 

strain level of about 0.75%. The shear damage in the transverse yarns at different 

loading is shown in Figure 4.24. The kink in the stress-strain curve at a strain of 

approximately 1.0% is explained by propagation of transverse damage in the 

transverse yarns followed by matrix damage and subsequent straightening of the 

yarns, which results in the mentioned kink. The damage state prior to final failure is 

characterised by transverse tensile failure throughout the entire volume of transverse 

yarns.  
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Figure 4.22 Longitudinal and transveral stresses in yarns longitudinal (top left) and transverse (top 

right) to loading directions, Mises stresses in matrix (bottom). Stresses are given in Pa, average 

applied strain is 0.25% 
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Figure 4.23 Transverse damage states in yarns transverse to the loading direction at average applied 

strains of 0.5%, 0.75% and 1.5% (left to right). Red color corresponds to fully damaged material 

 

Figure 4.24 Shear damage in yarns transverse to the loading direction at average applied strains of 

0.75%, 1.0% and 1.5% (left to right). Red color corresponds to fully damaged material 

The first failure of longitudinal yarns occurs close to the position of the largest out-

of-plane waviness, as shown in Figure 4.25. The final strength value was over-

predicted by 11%. On the other hand, it was shown in Section 4.4 that the voxel 

mesh technique under-predicted the value of final strength compared to the 

conformal mesh. This makes it more difficult to interpret the difference between 

experimental data and FE model of the PW composite. The main parameter which 
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governs the final strength is the tensile strength of fibres. Therefore, it can be 

speculated that the actual strength of the carbon fibre is not that used for the analysis. 

 

Figure 4.25 Damage state of longitudinal yarns at average applied strain of 1.81% (after the damage 

initiation)  

The properties of the PW composite were predicted using the single layer unit cell 

model. The model was able to predict both the elastic properties and non-linear 

behaviour within 11.5% from the experimental values. The phenomenon of the kink 

in the stress-strain curve was captured and explained using the sequence of the 

damage states. It was found to be the result of significant transverse damage in the 

transverse yarns followed by matrix damage. This phenomenon has also been 

observed in the TW composite as well. 

 

4.5.3 3D textiles 

4.5.3.1 3DCompA 

The preparation of geometry for 3DCompA described in Section 4.1.2 yielded a 

model which agrees closely in shape with the real architecture
9
. The TexGen model 

was meshed using the voxel mesh approach, and periodic BCs were applied in in-

                                                 

9
 Study of mechanical performance was conducted in collaboration with Dr Xuesen Zeng and Dr 

Andreas Endruweit who prepared the model and carried out the experimental programme. 
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plane directions and free surface BCs on top and bottom of the unit cell. The quasi-

static non-linear analysis was performed on the model using CDM model described 

in Section 4.3 using Abaqus/Standard (implicit solution) with maximum allowed 

time step of 2.510
-3
.  The constituents‘ properties are listed in Table 4.9. The 

optimal voxel mesh with discretisation of 1005050 (warp  weft  thickness) was 

chosen after mesh convergence studies. Damage parameters c
1
and c

2
 were set to 8.0 

and 13.0, respectively. Numerical results were in relatively good agreement with 

experimental data for both warp and weft directions as shown in Figure 4.26 with 

overall results listed in Table 4.10. 

Table 4.9 Material properties of constituents and homogenised yarns 

 
E11, 

GPa 

E22 = 

E33, GPa 

G12 = 

G13, GPa 

G23, 

GPa 

ν12 = 

ν13 
ν23 

S11,  

MPa 

S22, 

MPa 

S12, 

MPa 

Prime 20 

LV epoxy 

resin [152] 

3.5 3.5 1.29 1.29 0.35 0.35 
73*/ 

73** 
- - 

Toray T300 

carbon fibre  

230 

[154] 
15 13 6 0.24 0.24 3450 - - 

Yarns 

(Vf = 66%) 
152.6 8.15 3.02 2.90 0.300 0.345 2289 73 47 

* Tension; **Compression 

 

Table 4.10 Results of tensile experiments and FE predictions for 3D textile (standard deviation in 

parentheses) 

 
Weft Warp 

Experimental FE Experimental FE 

Young‘s modulus, GPa 
58.08 

(2.52) 
58.97 

60.16 

(2.33) 
65.61 

Failure strain, % 
1.17 

(0.07) 
1.26 

1.32 

(0.075) 
1.31 

Failure stress, MPa 
710.2 

(21.01) 
632 

791 

(38.19) 
833.27 
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Figure 4.26 Comparison of stress-strain curves for tension in weft (top) and warp (bottom) directions 

The predicted Young‘s moduli and final failure strength were within 10% of the 

experimental values. The predicted stress-strain curve for loading in the warp 

direction is approximately linear up to a strain value of about 1.1% and then has a 

slight deviation which also occurs in experimental stress-strain curves. At the same 

time, the predicted stress-strain curve in the weft direction exhibits behaviour which 

is not observed in experimental results. Analysis of the predicted damage states 

suggests that it is caused by fibre failure of the top weft yarns in the location where 

they have crimp introduced by binder yarns. Together with periodic BCs, which 

imply periodicity of the damage, this results in an immediate and severe drop in 
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stiffness which leads to an abrupt decrease in stress. By contrast, fibre failure in the 

real composite is inherently not periodic and hence is not simultaneous but 

successive. Therefore, no sudden changes in stress can be seen. 

The premature failure of the weft yarns in the outer layers predicted by the model has 

an interesting effect on the final strengths of 3DCompA, specifically on the ratio 

between strengths in weft and warp directions. Since the 3D composite was expected 

to have low crimp of all the yarns, it was expected that the strength of 3DCompA in 

the two principal directions would be close to the strength of a UD cross-ply 

laminate with number of layers (and fibre volume fraction) in two directions 

corresponding to the number of warp and weft yarns in the 3D composite. The ratio 

of strengths for the UD with 7 and 6 layers in weft and warp directions is expected to 

be 1.03. However, it turned out that the predicted ratio of strengths is 0.76 which is 

close to the ratio of fibre volume fractions of 5 and 6 layers in weft and warp 

directions (equal to 0.74). This means that the two outer weft layers contribute little 

to the overall strength due to the crimp introduced by binder yarns. The ratio of 

experimental strengths, 0.90, falls between these two values. A possible reason for 

the discrepancy between the ratios is the effect of periodic BCs which introduce 

periodicity of the damage as discussed above. 

Failed tensile specimens were investigated using Scanning Electron Microscopy 

(SEM) for better understanding of the failure mechanism. It was observed that, for 

in-plane loading in the warp or weft direction, the fracture surfaces were always 

located in planes containing binder yarns travelling through the reinforcement 

thickness, indicating that damage was initiated around the binders. This agrees well 

with the predicted damage scenario which starts with the damage of yarns in the 

binder plane as shown in Figure 4.27 and Figure 4.28.  
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Figure 4.27 SEM images of fracture surfaces of 3DCompA under tensile load in warp direction (left), 

predicted damage state of 3DCompA under tensile load in warp direction (right) 

    

Figure 4.28 SEM images of fracture surfaces of 3DCompA under tensile load in weft direction (left), 

predicted damage state of 3DCompA under tensile load in weft direction (right) 

In brief, the unit cell framework together with the CDM damage model proved to be 

capable of predicting the overall response of 3DCompA (the Young‘s modulus and 

strength) and finer details such as the correct fracture location. The relatively simple 

geometry of the yarn cross-sections and absence of significant crimp made it possible 

to create the voxel mesh which can capture most of the features. Analysis of the 

results showed that small geometrical variations like crimp induced by binder yarns 

can decrease the strength of the composite. Therefore, an improved geometry 

description is highly desirable for reliable predictions of non-linear behaviour. 

 

B 
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4.5.3.2 3DCompB 

A study of the properties of 3DCompB was conducted on idealised and realistic 

models created using TexGen software and the digital chain element method, 

respectively. The idealised model created with TexGen had a fibre volume fraction 

of 52%, which was the maximum fibre volume fraction achievable without having a 

significant unrealistic distortion of cross-section of binder yarns at the place where it 

goes over the top of weft yarns. Two prepared realistic models had volume fractions 

of 52% (moderate compaction) and 58.5% (high compaction) in order to compare 

them directly to the idealised model and the experimental data, respectively. All the 

models were discretised using the voxel technique, and periodic BCs for a reduced 

unit cell were applied. Non-linear analysis was performed with use of the damage 

model described in Section 4.3 with parameters ratio c2/c1 set to 4.0 (c1=8.0, c2=32.0) 

as it was found to give better results. The constituents‘ properties and the resulting 

properties of homogenised yarns are listed in Table 4.11. Time step was chosen to be 

10
-2

 of maximum applied strain. Results of mesh convergence studies are listed in 

Table 4.12. It can be seen that neither the Young‘s modulus nor the strength 

converge. However, a further increase of number of elements is not feasible due to 

high computational demands, so an intermediate mesh size (210x75x50 voxels) was 

chosen for modelling. Results of the non-linear analysis are shown in Figure 4.29. 

The overall results are listed in Table 4.13. 

Table 4.11 Material properties of constituents and homogenised yarns 

 
E11, 

GPa 

E22, 

GPa 

v12 = 

v13 
v23 

G12 =G13, 

GPa 

G23, 

GPa 

S11, 

MPa 

S22, 
MPa 

S12, 

MPa 

HTS5631*/

HTA5131** 

carbon fibre 

[155]  

238 

13 

[156, 

157] 

0.20 

[158] 

0.25 

[158] 

13 

[159, 

160] 

6 

[158] 

4620
*/ 

3825
**

 
- - 

Epoxy resin 

MVR444 

[161] 

3.1 3.1 0.35 0.35 1.2 1.2 
77.6

***
/ 

145
****

 
77.6 61.5 

Yarn 

Vf = 0.7 
167 8.1 0.24 0.37 4.5 3.0 

3234
*
/ 

2678
**

 
36.4 53.8 

*Warp/weft yarns ; ** Binder yarns; *** Tension; **** Compression 
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Table 4.12 Mesh convergence studies for 3DCompB (realistic model, fibre volume fraction 58.5%) 

 

 

 

 

Figure 4.29 Predicted and experimental stress-strain curves for 3DCompB for warp (top) and weft 

(bottom) directions 

The results of the simulations on the idealised model were normalised by linear 
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58.5%, to allow a direct comparison with the experiments. The values of the 

normalised Young‘s moduli in the warp and weft directions were about 15% higher 

than experimental values. The predicted response of the idealised unit cell model is 

almost linear with a slight decrease in the modulus for both loading directions, which 

results in strength values which are approximately 31.5% and 47% higher than 

experimental strength in the warp and weft directions, respectively. It is clear that the 

idealised model is not suitable for the predictions of properties of a complex 3D 

composite with significant deviations in yarn paths. 

The realistic model at the low level of compaction (fibre volume fraction equal to 

52.0%) performed much better than the idealised model. The normalised Young‘s 

moduli and the strength were found to be within 5% of the experimental values. The 

predicted stress-strain curve was very close to the experiment for loading in the weft 

direction and overpredicted the final part of the curve for loading in the warp 

direction. 

Surprisingly, the realistic model at the high level of compaction (fibre volume 

fraction equal to 58%, as for tested specimens) predicted the Young‘s moduli lower 

than the normalised results of the moderately compacted realistic model. The 

Young‘s moduli in the warp and weft directions were respectively 11% and 2% 

lower than experimental values while the strengths were 21% and 15% lower. The 

non-linear response was predicted to be within 2% from experimental stress-strain 

for loading in the weft direction below strain of 0.8%, meanwhile the predicted curve 

was significantly lower for loading in the warp direction. 

Table 4.13 Comparison of numerical prediction and experimental results for 3DCompB 

 Ideal 

(52.0%) * 

Realistic 

(52.0%) * 

Realistic 

(58.5%) 

Experiment 

(58.5%) 

E, 

GPa 

ST, 

MPa 

E, 

GPa 

ST, 

MPa 

E, 

GPa 

ST, 

MPa 

E, 

GPa 

ST, 

MPa 

Warp 
64.7 

(72.8) 

820 

(922) 

56.5 

(64.3) 

615 

(669) 
56.7 551 

63.9 

(0.73) 

701 

(34.5) 

Weft 
63.1 

(71.0) 

818 

(920) 

54.6 

(61.7) 

530 

(596) 
59.7 533 

60.8 

(0.7) 

625 

(40.9) 

Ratio 1.03 1.0 1.04 1.16 0.95 1.03 1.05 1.12 

*Raw data is shown alongside normalised values in parentheses for models of 52.0% fibre volume 

fraction 
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The results can also be compared with each other by comparing the ratio of the 

properties in the warp and weft directions. Interestingly, the normalised properties 

for the moderately compacted model were the closest to the experimental properties 

both in terms of the absolute values and their ratios. At the same time, the highly 

compacted model, which was intended to be closer to the real geometry, yielded low 

strengths and moduli. It is noteworthy that the relation between the values of the 

Young‘s moduli was opposite to the experimental values i.e. the predicted modulus 

in the warp direction was lower than that in the weft direction, while the 

experimental values are other way round, i.e. the warp modulus is higher than the 

weft. This peculiarity is likely to be explained by the values of waviness in the warp 

and weft directions for the model and the real sample. As illustrated in Figure 4.8, in 

the real sample the waviness in the warp direction is lower than the waviness in the 

weft direction at all studied levels of compaction, and both values increase gradually 

with compaction level. In contrast, the waviness in the realistic models significantly 

increases in the warp direction only while the waviness in the weft direction does not 

change significantly. At a certain level of compaction the waviness in the warp 

direction starts to prevail over the waviness in the other direction. The significant 

underprediction of the strength values can probably be attributed to stress 

concentrations introduced by the jagged edges of yarns created by the voxel mesh. 

This effect becomes more pronounced at the higher level of waviness when larger 

deviations should be captured. The level of mesh refinement is clearly not high 

enough as was shown in the convergence studies. It should be noted that the mesh 

refinement was not as fine as for the 2D textile composites. The number of voxels 

through thickness of one layer of the latter was the same as the number of voxels 

through thickness for the entire 3DCompB. 

 

4.6 Conclusions 

The mechanical properties of various textile composites were determined 

numerically in this chapter. The usage of idealised periodic geometries made it 

possible to represent entire composites as single periodic unit cells. The TexGen 

geometry pre-processor was used for generating virtual models of 2D and 3D textile 
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reinforcements. It was shown to be accurate for simple reinforcements such as plain 

and twill weaves or tight orthogonal 3D woven structures. However, TexGen was not 

able to generate a realistic geometry of a satin-type orthogonal 3D weave. Realistic 

models of this 3D weave with local distortions of the geometry were created using 

the digital chain element method. 

The voxel mesh technique used for generation of FE models from CAD models of 

textile composites was shown to give adequate prediction of the stress-strain state 

when compared with a tetrahedral mesh for the case of a composite reinforced with a 

plain weave textile. The comparison of meshing techniques seems to be impossible 

for the case of two 3D composites, considered in this thesis, but the predicted elastic 

properties were relatively close to the experimental values. From strength predictions 

for ―satin weave‖ style 3D composite it was found that the voxel approach was not 

suitable for discretisation of structures where many edges are not aligned with the 

principal directions of the voxel mesh. On the other hand, the voxel meshing 

technique seems to be the only available method for automated generation of a mesh 

with acceptable quality of elements. This feature will be used in Chapter 6 where a 

large number of models will be generated.  

The chosen phenomenological damage model was found to be adequate in the case 

of simple loading and a relatively simple geometry such as for 2D textiles. However, 

it gives more conservative results for the complex geometries. The two-parameter 

degradation scheme used in the model is a simple method to describe damage 

propagation in FRCs but the parameter cannot be estimated using physical 

parameters of the materials. Therefore, the parameter should be chosen to give the 

best fit to experimental data. It should be noted that delamination was neglected from 

the damage model while it was observed in both types of TW composite. 

The results of modelling were found to be in good agreement for the case of 2D 

textile composites for the studied cases. The model correctly predicted the kink in the 

stress-strain curve of a laminate with no layer shift and damage initiation strains. The 

difference between experimental Young‘s moduli and strengths and the predicted 

values was no greater than 11%. 
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Results of mechanical simulations of two models of composites with 3D 

reinforcement were compared with experimental data. The elastic properties were 

predicted with reasonable accuracy. The tensile strength was found to be very 

dependent on variations of yarn paths. The voxel meshing approach was found 

infeasible for modelling of a large unit cell due to high computational costs.  

One effect was completely neglected from the modelling presented in this chapter. 

Since all the models were assumed to have periodic geometry periodic BCs were 

applied in all the directions in one layer models of PW and TW and in in-plane 

directions for other models. This, however, excludes any possible edge effect which 

can appear in coupon tests of composite materials. The effect might be not severe in 

the loading direction due to the large number of unit cell in this direction (standard 

length of a coupon specimen is 250 mm) but it might have an impact on transverse 

BCs since the width of a specimen is usually 25 mm. An additional source of 

differences between the predicted and experimental properties can be absence of 

variabilities in the models. The effect of two such variabilities is explored in the 

following chapters. 

In summary, the unit cell framework along with the CDM model was found to be 

appropriate for modelling of 2D textile composites when the converged level of 

mesh refinement is chosen. The framework presented in this chapter will be the basis 

for stochastic modelling in Chapters 5 and 6. Following the concept of Monte Carlo 

simulations the model will be parameterised in order to assign random variability at 

every single realisation. In Chapter 5 studies of fibre strength variability will be 

performed using the idealised unit cells in which geometry will remain unchanged. In 

Chapter 6 a TW composite with variability in yarn paths will be studied. Its 

mechanical behaviour will be compared with results presented in this chapter in 

order to show the effect of yarn path variability. The voxel meshing technique will be 

one of the key steps in the modelling of a large number of textile structures which 

cannot be meshed using other conventional techniques. 
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CHAPTER 5  
 

 

VARIABILITY OF FIBRE MECHANICAL PROPERTIES 

 

The previous chapter focused on the deterministic analysis of textile composites and 

the validation of the predicted mechanical behaviour with available experimental 

data. However, in the light of the studies reviewed in Chapter 2 and experimental 

data from Chapter 3, it becomes necessary to estimate the effect of the identified 

variabilities on the properties of textile composites. One of the identified variabilities 

is variation of single fibre strength, which originates mainly from the structure at the 

fibre surface and non-uniformity of fibre diameter. Experiments show that the 

strength of individual carbon fibres coming from the same tow can vary by up to 

20% from its mean value [96]. Additionally, fibres exhibit a size effect e.g. for some 

carbon fibres the strength can decrease by more than 10% when length is increased 

by 10 times [96]. The strength variability at the micro-scale results in variability at 

the meso-scale. Particularly, fibre bundles (both dry and impregnated) possess a size 

effect of dual nature. Apart from being dependent on the length, bundle strength is 

also dependent on the number of fibres in the bundle. 

Chapter 2 reviewed some well-established theoretical models for the strength of fibre 

bundles [100-102, 106, 144, 145, 162, 163]. These models enable scaling of micro-

scale properties of the fibres up to the scale of the bundles. However, these have 

never been applied to modelling of textile composites. This chapter combines two 

theoretical approaches for modelling the fibre bundles with the unit cell models 

established in Chapter 4 in order to explore the effect of fibre strength variability on 

the strength of 2D textile composites at the meso- and macro-scales. 
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5.1 Single fibre strength models 

The most common way to measure fibre strength variability is tensile testing of a 

large number of single fibres at several gauge lengths. Distribution of the measured 

strength at a certain length is often found to follow a simple Weibull distribution. In 

this case a cumulative probability for a fibre to fail under load   is [144, 145] 

                     (5.1) 

where    is the Weibull scale and   is the Weibull modulus.  

However, the Weibull distribution (5.1) is not suitable for approximation of 

experimental fibre strength distributions at several lengths due to the size effect. 

Therefore, a scaling parameter should be introduced [144, 145]: 

                           (5.2) 

where    is a reference length. 

Still further, the equation above may be found to exaggerate the size effect for some 

fibres, and an additional parameter   (0 <     1) can be introduced for better 

approximation of experimental data as proposed by Watson and Smith [96]: 

                           (5.3) 

Curtin [100] proposed that distribution (5.3) may reflect the combined effects of 

variability within the fibre and between individual fibres. It was proposed that the 

cumulative failure probability of an individual fibre is given as  

 
                    

   
  

  (5.4) 

where ’ =  / α is a Weibull shape parameter and the Weibull scale parameter   
  

has a cumulative distribution    
 

    
            

         (5.5) 
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where m is a Weibull shape parameter and     is a scale parameter. Curtin showed 

that equations (5.4) and (5.5) (also called Weibull of Weibulls (WoW) model) give a 

strength distribution close to that from equation (5.3) i.e. sets of parametrs (      ) 

and (        ) are interchangeable. A more general distribution (5.3) is mainly used 

in this chapter. The formalism of equations (5.4) and (5.5) is used when an 

appropriate set of data is available. 

 

5.2 Fibre bundle strength models 

5.2.1 Equal Load Sharing (ELS) model 

A pioneering study on the tensile strength of fibre bundles was performed by Daniels 

[101] who studied the strength of dry fibre bundles with clamped ends. The model 

assumed that all fibres in the dry bundle are parallel to the direction of the applied 

load, have no waviness and no friction between them. The key idea was that after a 

single fibre break the load is equally shared between the remaining fibres. These 

assumptions make it possible to find the strength of the bundle by considering the 

process of progressive failure of N fibres. For simplicity and with no loss of 

generality, it can be assumed that single fibres have strengths   
  which are ordered in 

ascending order. In this notation, breakage of i-th fibre occurs at applied stress    

expressed as: 

    
       

 
  

  (5.6) 

The process of the progressive failure of the bundle can be illustrated schematically 

by the stress-strain curve shown in Figure 5.1. The maximum stress is followed by 

catastrophic failure of the bundle due to the inability of the remaining fibres to carry 

the applied load.  
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Figure 5.1 Progressive failure of a fibre bundle 

The distribution of the bundle strength can be obtained by direct Monte Carlo 

simulations using equation (5.4) to calculate a series of stresses    and finding its 

maximum. However, direct calculations can be time consuming for bundles of large 

size. Therefore, an asymptotic approximation for the strength of large bundles 

derived by Daniels [101] can be helpful. The strength of the fibre bundles was found 

to be close to a Gaussian distribution with mean and standard deviation equal to 

              (5.7) 

                              (5.8) 

where                 is the Weibull scale at length   which is the length of a 

fibre bundle. 

This approximation was later refined for small fibre bundles with correction terms 

given as [145]: 

                            
   

  (5.9) 

                                 
   

 (5.10) 

The equations (5.6) – (5.10) are given for the calculation of strength of a dry fibre 

bundle. In order to apply them to the strength of a bundle impregnated with a resin, 
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the mean strength and standard deviation should be calculated according to the rule 

of mixtures: 

                              (5.11) 

                (5.12) 

where Vf  is the fibre volume fraction in the bundle,                   is stress in 

matrix at the fibre bundle failure strain and    is the stiffness of the impregnated 

bundle. 

The drawback of the ELS scheme is obvious – the model does not include fibre-

matrix interaction, which is responsible for load transfer between neighbouring fibres 

and along the length of the bundle. Stress redistribution in the matrix along the length 

allows a failed fibre to still carry some load away from the fibre break. A model 

which considers this mechanism is introduced in the next section. 

  

5.2.2 GLS model 

A Kelly-Tyson model [164] was proposed for the description of stress profiles near 

the end of a fibre or a fibre break. It assumes that a broken fibre does not carry any 

load only at the section where it is broken and still carries the full load far from the 

break due to frictional slip and the load transferred through the matrix. It is also 

assumed that the fibres are more brittle than the matrix. The fibre stress is assumed to 

build up linearly from the break to the far field stress   across a sliding length 

           . This gives a triangular unloading profile around a break and a jump 

in shear stresses in the matrix as shown in Figure 5.2. The stress in the fibre at a 

section at distance   from the break is equal to      . 

The Global Load Sharing (GLS) model [144] of fibre bundle strength assumed that 

the load between all fibres in a cross-section is equally distributed except the load 

carried by a broken fibre is reduced near the break according to the aforementioned 

model.  Load carried by intact fibres near a cross-section with a broken fibre is equal 

to            , where  N is number of remaining fibres. 
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Figure 5.2 Longitudinal stresses in a fibre and shear stresses in the matrix around it 

Since the further derivations depend on the size of the slip zone it will be useful to 

introduce stress and scale normalising constants. One of the possible (but not unique) 

choices is as follows [144]: 

       
   

    
 

       

 (5.13) 

       
    

   
 

       

 (5.14) 

where the constants are as described earlier. It is important to note that      is the 

slip length at applied stress   . Parameter    should be used instead of   for fibres 

which have parameter    . 

An interesting effect occurs due to the assumed stress profile around the fibre break. 

The load near the break is always lower than the applied load and therefore the 

probability of another fibre breakage under applied load   within this zone is 

different from the original distribution. The lower probability of a new break in the 

exclusion zone is often called the stress shielding effect. Omitting the exact 

derivation, the probability of the new fibre failure within this zone is given by [144]: 

                     (5.15) 

It can be seen that this new distribution is wider that the original one, with the 

Weibull shape of     rather than  . 
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An exact calculation of the maximum stress a large fibre bundle can sustain is 

impossible with the GLS theory but several asymptotic approximations were derived 

from it [144]. Hui et al [102] generalised the GLS theory by describing the fibre 

strength as a continuous Gaussian process along the fibre length. It was shown that 

the strength distribution asymptotically tends to a normal distribution with mean 

   and standard deviation    equal to: 

 

            
  

    
 

   

 
     

        
 
  

    
 

    

  

       
  

    
 

   

   
 

      
 
  

    
 

   

   

(5.16) 

    
  

  
 

     

 
 

      

 
 (5.17) 

where                    
      ,       

                   
   

 and    
  is 

the characteristic stress given as 

    
    

      

      
 

          

           (5.18) 

Accordingly, the characteristic length is defined as 

    
    

      

      
 

          

           (5.19) 

For a small bundle correction terms can be applied. 

                     
  (5.20) 

                                    (5.21) 

Finally, the strength of the composite with fibre volume fraction    is defined as: 

                              (5.22) 
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                (5.23) 

where                   is the stress in the matrix at the fibre bundle failure 

strain and    is the stiffness of the impregnated bundle. 

The covariance   of strength values at planes separated by length   for the 

considered Gaussian process was derived as: 

                                    (5.24) 

It turns out that for most cases of numerical calculations, this covariance is small and 

therefore the Gaussian process can be assumed not to be correlated along the length 

of fibre. 

It was shown by Phoenix [144] that a direct comparison between the ELS and GLS 

models is possible when the normalising constants are chosen by equating the crack 

opening displacements after a fibre break. It was shown that once this has been done 

the difference between the two approaches will be less than 3% in mean value (with 

the GLS model predicting higher strength). Equations for the GLS theory in this 

section have already been given in such a form that direct comparison with the ELS 

theory is possible.  

 

5.2.3 Variability of the Young’s modulus 

Apart from the fibre strength variability, variability of the fibres‘ Young‘s modulus is 

also observed during single fibre testing. Experimental studies propose that the 

variation stems from variation in orientation of crystallites of which carbon fibres 

consist [165]. Longitudinal stiffness of a fibre bundle with variation in the Young‘s 

modulus can be calculated by the rule of mixtures and a simple averaging for all of 

the fibres: 

    
  

 
   

 

 

   

          (5.25) 
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where    is the fibre volume fraction,   
  are the Young‘s moduli of individual fibres, 

  is number of fibres in the bundle and    is the Young‘s modulus of the matrix. 

In the absence of experimental data, variation of the Young‘s modulus can be 

assumed to follow a normal distribution characterised by a mean value from the 

manufacturer‘s data sheet and a CoV of 5-10%. It can be seen from equation (5.25) 

that the standard deviation of a bundle‘s Young‘s modulus is    times lower than 

standard deviation of fibres.  

 

5.3 Validation of fibre bundle model 

5.3.1 Implementation in a FE model 

The ELS and GLS models in their original form are not suitable for strength 

predictions of any type of FRC except for UD composites due to the absence of an 

analytical model of textile composites which can account for non-linear behaviour. 

However, the micromechanical models can be used as an input for a FE model. Here, 

it is proposed that in a FE model of a composite each single finite element can be 

viewed as a fibre bundle with    fibres and of length L, the strength of which can be 

computed with the ELS or GLS model. The scheme of the proposed approach is 

shown in Figure 5.3. Being based on simple micromechanical models this approach 

effectively implements an LLS model when applied to a UD composite due to the 

redistribution of load between failed elements during the FE procedure. The 

proposed model is similar to the classical chain of bundles model by Harlow and 

Phoenix [162, 163] and the spring model by Okabe and Takeda [106] but uses the FE 

method in order to calculate stress distributions between the failed elements and is 

extended to a 3D domain. It should be noted that the element‘s parameters    and L 

are size dependent, i.e. they change when the mesh is changed. 
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Figure 5.3 Scheme of the coupling micromechanical bundle models and a FE model of a composite 

This approach can be directly incorporated in the numerical framework, which was 

used for modelling of textile composites in Chapter 4, by seeding elements‘ 

properties with random values of bundle strength according to a chosen model. 

Coupled with the Monte Carlo method, the approach can be used for prediction of 

statistical properties of composites with fibre strength variability. However, firstly it 

has to be validated on simple cases such as UD composites. The purpose of the 

validation is to ensure that the strength of a composite converges with mesh 

refinement and the model predicts the strength distribution close to the experimental 

distribution. In addition, the approach should be validated on two types of models: a 

model with relatively small number of fibres e.g. model of single tow (3K – 24K 

fibres) and the full-sized UD composite sample. 

 

5.3.2 Validation against experimental results 

The ELS and GLS models were employed for modelling of a 12K fibre bundle 

impregnated with resin [166] and a UD composite with large number of fibres [100]. 

The first bundle size corresponds to the size of a typical yarn in a textile composite 

and hence is of particular interest for this study. Specimen geometries were created 

in Abaqus/CAE using the geometrical parameters given in Table 5.1 i.e. a tensile 

specimen of a rectangular cross-section with gauge length of 152mm and a tensile 
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specimen of a circular cross-section with gauge length of 20mm. Exact dimensions 

and fibre volume fraction within the specimens are also given in Table 5.1. Both 

models were discretised using the voxel mesh technique to ensure that all the 

elements have equal volume and hence equal number of fibres and equal length of 

fibres. Validation of the voxel mesh against conformal mesh was not performed since 

the geometry of the models was simple, whilst validation for a textile composite was 

performed in Chapter 4. Displacement BCs were applied at both ends to simulate 

unidirectional tensile tests while other boundaries were free. Models had non-

damageable zones at both of the ends to prevent earlier failure near the place of 

application of these BCs. 

Monte Carlo simulations were performed using the described models with three 

implementations of the aforementioned micromechanical bundle strength models to 

determine the longitudinal strength of elements: exact numerical implementation of 

the ELS model with use of equation (5.6) as described in Section 5.2.1, 

approximation of the ELS model by a normal distribution and approximation of the 

GLS model by a normal distribution. Parameters of the micromechanical models are 

given in Table 5.2. Other elastic and strength properties of the fibre bundle were 

calculated using Chamis formulae (2.6) – (2.11), (2.17) – (2.19) [17] for stiffness and 

strength as used in the previous chapter. The damage model presented in Chapter 4 

was employed for the current analysis using parameters c1=8.0, c2=13.0. Time step 

was set to a constant value of 5×10
-3

 of maximum applied strain. 

Table 5.1 Bundle specifications 

 

Overall 

length, 

mm 

Dimensions, 

mm 
Vf 

Number 

of 

fibres 

Matrix properties 

Em, 

GPa 
νm 

  , 

MPa 

Full size UD 

composite 

AS4/Epoxy [100] 

152 12.51.8  0.59 3.3510
5
 2.7 0.35 69.0 

12K tow 

T700/Epoxy 

[166] 

20 1mm 0.7 1210
3
 3.5 0.35 73.0 
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Table 5.2 Fibre properties 

 
   , 

MPa 

  , 

mm 
 m α 

  
 
, 

GPa 

  
 
, 

GPa 
   

 
    

 
 

AS4 [100] 4275.0 12.5 6.4 8.0 0.6 234 16.6 0.26 0.30 

T700 [166, 

167] 
5470.0 20.0 5.60 7.0 0.6 220 15.0 0.26 0.30 

Mesh convergence studies in the form of Monte Carlo simulations with 30 random 

realisations for each case were performed for these two composites with both ELS 

and GLS models used for calculation of the longitudinal strength of elements. It was 

shown that with the mesh refinement the final strengths of the composites converge 

to certain values as shown in Figure 5.4. The standard deviations of the strengths 

mildly increase with initial mesh refinements but then converge to values given in 

Table 5.3. The simulations showed that the GLS model predicts higher strength 

values and lower CoV when compared to the ELS model on the equivalent mesh. It 

was found that the difference between the predicted and experimental strength is no 

higher than 7% in all the cases. 

 

Figure 5.4 Mesh convergence of 12K T700 bundle (red dashed lines denote experimental standard 

deviation) 

It is also important to compare the predicted strength distributions with available 

experimental data. Figure 5.5 shows a Weibull plot of experimental and predicted 

strength for the mesh with    = 11 and L = 0.025 mm. It can be seen that the slope of 

the distributions (i.e. the Weibull shape) is predicted very close to the experimental 
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distributions, giving less than 3% difference for both the ELS and GLS models. 

Nevertheless, the Weibull scale is 5% lower and 4% higher for the ELS and GLS 

models when compared to experimental data. The higher Weibull scale predicted 

with the GLS is explained by the shielding effect in the micromechanical model 

which is created by exclusion zones around a fibre break as discussed in 

Section 5.2.2.  

 

Figure 5.5 Weibull plot of 12K fibre bundle 

Table 5.3 Results of the simulations for the UD composites. Standard deviation is in parentheses. 

 
Vf, 

% 

Length, 

mm 

Experimental 

strength,  

MPa 

Predicted strength, MPa Rule of 

Mixtures, 

MPa* ELS 
ELS 

approx. 
GLS 

AS4/Epoxy 59 152 1890 
1958 

(7) 

1957 

(8) 

2005 

(15) 
2337 

T700/Epoxy 70 20 
3409 

(202) 

3189 

(55) 

3189 

(53) 

3358 

(49) 
3452 

* Rule of mixtures defined by equation (2.17) was applied using the manufacturer‘s data 

[168], [169] for nominal fibre strength  

Variability of the Young‘s modulus was also implemented into the FE model of the 

aforementioned UD composites to assess its effect on their final strength. The CoV 

of 10% for a single fibre modulus was chosen deliberately, and the longitudinal 

Young‘s moduli of the finite elements were calculated using equation (5.25). The 

studies were performed on the same meshes as above using the ELS model only. It 

was found that the variability of the Young‘s modulus decreases the final strength of 

UD composites and increases their standard deviation by small amounts. This change 
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can be explained by a probability of combination of a high Young‘s modulus and 

low local bundle strength in one element which would result in earlier failure when 

compared to an element with variable strength only. However, as mentioned in 

Section 5.2.3, the ELS or the GLS models cannot be applied to fibres with variability 

in Young‘s modulus correctly due to their inherent assumptions (equal load in all 

fibres). 

It was shown that the proposed framework, which is a combination of 

micromechanical models, FE analysis and Monte Carlo simulation, was able to 

predict the distribution of tensile strength of UD composites of various lengths and 

with various numbers of fibres. The numerical simulations yielded tensile strengths 

within 7% of experimental values. This allows the models to be used for modelling 

of the textile composites. 

 

5.4 Fibre strength variability in 2D textile composites 

The model proposed and validated in the previous section was designed for 

implementation in the framework of unit cell modelling presented in Chapter 4. A 

stochastic model for strength of an element of an FE model enables numerical 

prediction of the strength distribution of the 2D textile composites which were 

studied in Chapter 4. Following the notation of Chapter 4 models of the textile 

composites will be noted as PW (plain weave) and TW (twill weave). 

The damage model presented and validated in Chapter 4 was employed in this 

section with no changes except for the model for the longitudinal strength. Each 

element was assigned a value of longitudinal strength using one of the fibre bundle 

models (ELS or GLS). Other bundle properties were defined using the Chamis 

formulae (2.6) – (2.11), (2.18) – (2.19), as in the deterministic analyses. Monte Carlo 

simulations were performed on the same unit cell models of textile composites which 

were used in Chapter 4 as both of them already have a level of mesh refinement 

which is sufficient for convergence of bundle strength models. Parameters of the 

damage model and the time step were kept identical to those in Chapter 4. 
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5.4.1 Results for the PW model 

Monte Carlo simulations were carried out using the FE model of the PW as described 

above. Periodic BCs were applied both in in-plane and through-thickness directions. 

Each element of the voxel mesh consisted of 26 fibres with a length of 0.31   

(0.083mm), which is sufficient for the converged results judging from the mesh 

refinement studies in Section 5.3.2. The model with both fibre bundle models was 

run 30 times each using fibre strength parameters for AS4 fibres from Table 5.2. 

Representative results of the simulations of non-linear behaviour of the composite 

with variability are shown in Figure 5.6 along with results for the composite with no 

variability obtained in Chapter 4. There is obviously no difference between the 

results predicted with the two types of the micromechanical bundle models and the 

deterministic analysis for strain below the first fibre failure strain (first longitudinal 

element failure). Minor deviations from the deterministic analysis can be seen close 

to final failure when the composite with variability might fail earlier (more probable 

event) or later (less probable event). The differences between the results predicted 

with the ELS and GLS models are a consequence of the differences between the 

schemes, which was shown for the case of UD composites. The mean value of the 

PW textile composite strength predicted with use of the ELS model was 1.7% lower 

than that predicted with the GLS model as listed in Table 5.4. Surprisingly, the 

strength predicted with the GLS model was 2.6% higher than the value predicted 

with the deterministic model. Values of the standard deviations are very similar in 

both absolute and relative values. It was found that the CoVs of the strength are 1.2% 

for both the ELS and GLS models which very close to the experimental value of 

1.5%. 

Table 5.4 Results of the simulations for the PW model 

 Experimental No variability With variability 

ELS GLS 

Strength, MPa 480 530 521 544 

Std. Deviation, MPa 7.3 – 6.0 6.5 

CoV, % 1.5 – 1.2 1.2 
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Figure 5.6 Stress-strain curves of the PW model with and without variability 

The distribution of final strengths predicted with the ELS model is shown in Figure 

5.7. The distribution was fitted with a Weibull distribution with a scale parameter of 

523.8MPa and shape parameter of 110.4. The fitted Weibull distribution will be used 

later for macro-scale analysis of effects of fibre strength variability. Parameters of 

the Weibull distribution fitted to the GLS predictions are given in Table 5.7. 

 

Figure 5.7 Histogram of the final strengths predicted with the ELS model (30 realisations) and the 

fitted Weibull distribution 

Additional studies have been performed on the effect of the input parameters on the 

final strength of the textile composite. The standard deviation of the fibre bundle 
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strength was increased by factor of two (Distribution 2) and three (Distribution 3). 

Analysis of models with the modified distribution was performed in the same way as 

for the models with original distribution. It was found that an increase of fibre bundle 

strength variation decreases overall strength of the textile composite by 5.6% and 

15.7% for model with Distributions 2 and 3 were used, respectively. However, the 

CoV was found to be affected less that the final strength and was found to be about 

0.8% for both cases. A comparison of typical stress-strain curves is given in Figure 

5.8.  

 

Figure 5.8 Effect of fibre bundle strength distribution on stress-strain curves 

Interestingly, the change of the fibre bundle strength distribution changes the site of 

fibre failure initiation. For the original distribution, fibre failure always started near 

the place of the failure in the deterministic case which is close to the place where 

yarn has the maximum crimp. This is caused by an unequal stress distribution in the 

yarn where there are stress concentrations in the aforementioned cites and lower 

stresses in the rest of the material. For broad distributions (Distributions 2 and 3), 

fibre damage initiation could happen in any place within the yarn since the broad 

distribution allows very weak elements to fall in part of the yarn subjected to a lower 

stress. This caused a reduction of the final strength and a change of stress-strain 

curves. The stress-strain curve predicted with Distribution 3 visibly deviates from the 

original stress-strain curve at strain of approximately 1.3% due to earlier fibre break. 
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5.4.2 Results for the TW model 

The single layer unit cell model of the TW composite constructed and described in 

the previous chapter was used for the study of the fibre strength effect. Each element 

in the voxel mesh of the unit cell had 37 fibres of 0.31   (0.084mm) length, which is 

consistent with convergence studies conducted in Section 5.3.2. Periodic BCs were 

applied to the unit cell. The longitudinal strength was calculated with the ELS and 

GLS models as described above using parameters from Table 5.5. Parameters of the 

fibre strength distributions were estimated experimentally in Chapter 3. 

Table 5.5 Fibre properties (Chapter 3, Section 3.3) 

 
   , 

MPa 

  , 

Mm 
 m α 

  
 
, 

GPa 

  
 
, 

GPa 
   

 
    

 
 

Grafil 34-700 4652 4.0 5.35 8.1 0.75 
234 

[153] 

15 

[157] 
0.2 0.25 

Monte Carlo simulations with 30 realisations for each model yielded results similar 

to those in the previous section. It was found that the mean strength predicted with 

the ELS model was lower than that predicted by the deterministic model by 1.5%. 

The GLS model yielded a mean strength 2% higher than the strength of the unit cell 

with no variability. Both models predicted CoV of strength similar to each other as 

shown in Table 5.6. Typical stress-strain curves of the unit cell with variability and 

that for the deterministic model are shown in Figure 5.9. 

 

Figure 5.9 Stress-strain curves of the TW model with and without variability 
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Table 5.6 Results of the simulations for the TW model 

 Experimental 

(regular stacking) 

No variability With variability 

ELS GLS 

Strength, MPa 618.8* 610 601 623 

Std. Deviation, MPa 47.2 – 5.6 5.8 

CoV, % 7.6% – 0.93% 1.12% 

* Average for Panels #4 and #5 

The predicted standard deviation was lower than the experimental standard deviation 

for the composite with regular stacking. However, it should be noted that for 

composites tested in Chapter 3 the scatter of CoV of strength between different 

panels with different layer shift was from 3% to 11.6%. 

The distribution of the final strengths for the ELS model is shown in Figure 5.10. 

Similar to the PW model they were approximated with the Weibull distributions with 

parameters given in Table 5.7. 

 

Figure 5.10 Histogram of the final strengths predicted with the ELS model (30 realisations) and the 

fitted Weibull distribution 

5.4.3 Transition between meso- and macro-scales 

The results presented above were evaluated at the meso-scale including variability of 

micro-scale parameters. Extension of the current model to the macro-scale by 

increasing the number of unit cells in the model seems not to be feasible due to 

computational time especially when Monte Carlo simulations are required. 
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Therefore, it was assumed that a composite can be considered as a chain of single-

layer unit cells. This neglects any interaction between damage zones in the unit cells 

and brings the model to a simple weakest link approach which states that the 

probability of failure of a chain of links,       , each having failure probability      , 

is equal to: 

                           (5.26) 

where n is the number of links in the chain. 

The distribution of failure probabilities of individual links was obtained in the 

previous section by means of Monte Carlo approach. The fitted Weibull distributions 

with parameters given in Table 5.7 were used as the distributions of link strengths. 

The resulting cumulative distributions       were substituted numerically into 

equation (5.26) and a cumulative distribution        was obtained. Resulting 

strengths at various lengths are shown in Figure 5.11.  

Table 5.7 Parameters of link strength distribution 

 Link‘s 

length, mm 

Weibull 

scale, MPa 

Weibull 

shape 

PW model (ELS) 
6.27 

523.8 110.4 

PW model (GLS) 547.1 105 

TW model (ELS) 
10.0 

610.2 101 

TW model (GLS) 618.9 115 

 

Figure 5.11 The final strength of the chain of PW unit cells 
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The weakest link approach predicted the strength of the full-length PW composite to 

be 4.5% and 1% lower (for ELS and GLS models, respectively) than the strength of a 

single unit cell. The weakest-link model predicted slightly lower reductions for the 

TW model, 3.3% and 1% lower than the strength of a single unit cell with no 

variability. The standard deviation of the composites‘ strength decreases by the same 

factor as the strength. Results are shown in Table 5.8.  

Table 5.8 Results of weakest link model predictions 

 
PW TW 

ELS GLS ELS GLS 

Single unit cell 
521 

(6.0) 

544 

(6.5) 

601 

(5.6) 

623 

(5.8) 

Chain of 150 mm 

length 

507.6 

(5.8) 

528.4 

(6.3) 

584.5 

(5.4) 

606.5 

(5.6) 

Experiment 
480 

(7) 

618.8* 

(47.2) 
* Average for Panels #4 and #5 

 

5.5 Conclusions 

The effect of single fibre strength variability on the strength of textile composites 

was modelled at the meso- and macro-scales. The Monte Carlo simulations at the 

meso-scale employed two analytical models for prediction of the micro-bundle 

strength. The stochastic approach was validated against published experimental data 

for a 12K impregnated bundle and a full-sized UD composite. The difference 

between the predictions and experiments was found to be less than 7% for all cases 

of UD composites. The stochastic non-linear modelling of textile composites 

combined the proposed stochastic approach with the unit cell framework described in 

Chapter 4. The Monte Carlo simulations predicted a minor change in the final mean 

strength of the textile composites when compared to the strength of composites with 

no variability. The fibre strength variability resulted in variability of textile 

composite strength with a CoV of less than 1.5%. The distributions of the textile 

strengths were found to be asymmetric and close to a Weibull distribution. The 

meso-scale strength distributions were scaled up to the macro-scale using a 1D 
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weakest link model. It was found that the strength of the full-sized composite was up 

to 4.5% lower than the strength of a single unit cell.  

The present chapter partly resolves a question that arose in Chapter 4 about the 

accuracy of fibre strength data and their effect on the final strength of composites. It 

was shown that fibre strength properties indeed have an effect on the final strength of 

textile composites, especially when the predictions are extended to the macro-scale. 

More importantly, the present approach allows prediction of strength variability 

which is of a similar order of magnitude to experimental values of variability 

although the predicted CoV is still lower than the experimental value. It can be 

argued that the model does not include all possible sources of variability hence the 

lower predicted strength CoV. 

Essentially, this chapter has presented a framework which consecutively propagates 

distributions from a lower hierarchical scale to a higher one i.e. the distribution of 

fibre strength into the bundle strength distribution and then into the unit cell strength 

distribution. Each of the steps can be viewed as a function of a probability 

distribution returning a transformed probability distribution. A common feature of all 

the transformations is contraction of the distribution at each stage which is a 

reflection of the increasing number of fibres in the structure.  

It should be noted that the presented results were based on certain assumptions. 

Some of these might explain the discrepancies between numerical results and 

experimental data. First of all, the predicted standard deviation of the 12K bundle 

was 4 times lower than the experimental value. This difference can be an effect of 

the modelling assumptions such as the absence of stress concentration in the jaws  of 

testing machine, perfectly aligned straight fibres, regular fibre arrangement in the 

bundle and the simplified model for load redistribution. The last two were recently 

investigated by means of numerical analysis by Swolfs et al [89] and Mishnaevsky 

and Bronsted [107]. It was shown that stress concentrations in a bundle with random 

packing can be up to 70% higher than those in a bundle with a regular fibre 

arrangement. However, the effect of this phenomenon on the final strength is still 

unclear. An additional source of discrepancies is the micromechanical data for the 

fibres (AS4 and T700) which were taken from various published sources and 
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compared to macro-scale results for the composites (both UD composites and the 

PW composite) from other published data. This casts some doubt on consistency of 

fibre properties and fibre treatments which can result in discrepancies at the meso-

scale for the present framework.  

The macro-scale model based on the weakest link approach was a considerable 

simplification as it neglected the interaction between adjacent unit cells. However, 

this does not affect the stress-strain state of a single unit cell before initiation of fibre 

failure which happens at high strains. It can be speculated that in a full model there 

will be competition between redistribution of damage between the unit cells (which 

increases the strength) and the increasing number of unit cells involved in the 

variability scheme (which decreases the strength).  

This chapter still relied on an idealised unit cell representation of a textile geometry. 

The next chapter will relax this assumption and explore effects of textile geometric 

variability on mechanical properties of unit cells. 
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CHAPTER 6  
 

 

VARIABILITY OF YARN PATHS 

 

Three sources of variability were identified in Chapter 1 and reviewed in Chapter 2: 

single fibre strength, yarn paths and layer shift. The effect of single fibre strength 

variability on strength of textile composites was studied in the previous chapter. The 

last two variabilities were characterised experimentally in Chapter 3. Yarn paths of 

several twill weave textile samples were measured and statistical descriptors were 

given. In addition, the effect of layer shift on mechanical behaviour was assessed. 

The present chapter will employ the experimental data for yarn path variability to 

create a statistically representative model of the textile reinforcement. The statistical 

model will be combined with an analytical model and the numerical framework 

introduced in Chapter 4 in order to estimate the effect of yarn path variability on 

mechanical properties.  

The approach based on using a Gaussian random field for yarn path variability 

modelling reviewed in Chapter 2 was employed in the present chapter. Experimental 

data from Chapter 3 will be used to estimate parameters of the model. Monte Carlo 

simulations will be used to predict variability of the Young‘s modulus and strength 

of the composites. Size effects and effects of layer shift will also be analysed. 

 

6.1 Statistical model of textile  

6.1.1 General concept 

The geometry of the TW composite was analysed at the meso- and macro-scales in 

Chapter 3. It was found that the maximum deviation of an average in-plane yarn path 

from a straight line was less than 40 µm and the standard deviation of individual
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paths from the average was 25 µm. In contrast, the macro-scale variability of yarn 

paths was found to have standard deviation up to 0.1 mm from an average yarn path 

with variation of up to 0.7 mm in composite panels. The contrast between the scales 

allows variability at different scales to be treated separately. Moreover, it can be 

assumed that yarn path variability at the meso-scale can be neglected due to its lower 

amplitude. This leads to an assumption of a yarn path being straight between two 

points within a unit cell length i.e. there is no variation between two macro-scale 

measurements. The same discussion can be applied to other meso-scale geometrical 

parameters of the textile: yarn width and thickness.  

Furthermore, Chapter 3 identified distinguishable average paths in all the analysed 

textiles. It can be speculated that the average path is not exactly random because it 

clearly depends on unpredictable manufacturing factors such as cutting, handling and 

shearing of the textile. However, it can be assumed that locally the average yarn path 

has no ―fast‖ oscillations i.e. is changing slowly. This makes it possible to assume 

that in the span of several unit cell lengths the average yarn path is responsible only 

for an additional rotation of the entire textile as shown in Figure 6.1. Therefore, it is 

possible to reduce the problem to problem of finding local deviations independently 

from an arbitrary average path. 

 

Figure 6.1 Textile composite component, average yarn path (red) and a region of interest (black box) 

The above assumptions and simplifications allow a variability model to be created 

from the idealised model introduced in Chapter 4. Since a TexGen model is 

constructed by defining spatial coordinates of nodes on yarn paths it becomes easy to 

introduce variability in the idealised model by disturbing the nodes in a certain 

directions. The main problem here is to develop a statistical model for deviations 

from the idealised state. A model of the yarn paths deviations will be introduced in 

the next section of this chapter. 
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6.1.2 Gaussian random field model 

Statistical description of the twill weave textile obtained in Chapter 3 showed that the 

maximum deviation of the yarn paths from a nominal design was approximately 

0.7 mm. Additionally, it was shown that the deviation from the average yarn path 

tends to be normally distributed with standard deviations for different samples of up 

to 0.1 mm. It was also shown that adjacent yarns are highly correlated which was 

explained by tight weaving of the textile where a deviation of a yarn causes similar 

deviations in neighbouring yarns. The correlation length in the transverse direction 

was found to be larger than the size of the studied textile. The autocorrelation of the 

yarns was found to decay much faster and vanish at length of 100 mm. The presence 

of the spatial correlations implies that deviations of yarn paths in neighbouring 

section are not independent and hence a model which can capture this feature is 

required.  

Chapter 2 identified several existing approaches to model yarn path variability: 

description as a series of sine waves with random frequencies [121], description as 

Markov chains [124] and as a Gaussian random field [77]. The first, whilst useful 

and simple, was not developed to fit the frequency and amplitude domains to existing 

data and relied on the identification of minimal and maximal frequencies and 

amplitudes. Other approaches were based on a similar theoretical basis but differed 

in realisations: the Markov chain approach was not constrained by the form of the 

transition matrix while the Gaussian field approach is based on a priori definition of 

the correlation matrix. In this chapter the Gaussian random field approach is 

employed for modelling of deviations of yarn paths due to its simple and robust 

realisation for statistical studies. 

The random field theory is based on the theory of random processes [123]. In 

general, a random process is a collection of random variables 

    
    

    
     distributed in a certain domain    and ordered in the ―time‖-domain 

             . A random process can also be viewed as a state of a physical system 

(e.g. temperature at a point) which changes with time. In this sense, a random field 

                                                  is a natural extension of random process 

theory where a time variable is a position in space                          
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            . The condition of variables being ordered still holds for a random 

field. Following the introduced notation, a Gaussian random field is a field where 

random variables          
 follow a Gaussian distribution.  

A textile structure dictates the choice of space domain        . In fact, the domain 

has already been implicitly introduced in Chapter 3 during the experimental studies. 

For each of the yarn directions the x-axis was chosen to coincide with the nominal 

yarn direction and the other axis was chosen to be orthogonal to it in the plane of the 

textile. For the random field the  - coordinate was chosen to be discrete in the same 

way that the data from real textiles were measured i.e. with a regular spacing of 10.0 

mm. The y-coordinate was chosen to coincide with nominal yarn position and hence 

have a spacing of 2.5 mm as shown in Figure 6.2. The choice of the space domain 

was equivalent for both yarn directions. It can be noted that data points on 

neighbouring yarns have an offset of -2.5 mm relative to each other. The measured 

data         were transformed into a rectangular grid       by an affine 

transformation: 

  
 
        

  
  

  
  

  (6.1) 

where     = –2.5 mm is the offset coefficient. 

 

Figure 6.2 Coordinates of space domain of the Gaussian random field 

Since variables in a random field are strictly ordered in a space domain, it becomes 

necessary to describe their spatial correlations (if there are any). It was assumed that 
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there is no correlation between warp and weft yarns. It was assumed that the 

Gaussian field is the Ornstein-Uhlenbeck (OU) sheet [123] as defined by Skordos 

and Sutcliffe [77]. The covariance matrix of the OU sheet is: 

                                (6.2) 

where   is the standard deviation, and    and    are the inverse correlation lengths. 

The parameters of the correlation matrix can be approximated using the maximum 

log-likelihood estimator as described by Ying [170]. Three samples of data obtained 

in Chapter 3 were used for the parameter estimation. Depending on the size of the 

used data set it was found that the parameters stabilise with an increase of the data 

set (including additional data points into analysis). The minimal textile size required 

to estimate the parameters is approximately 5050 yarns in each direction i.e. about 

1212 unit cells.  The dependence of the parameters on the size of the used textile is 

given in Figure 6.3 – Figure 6.5. Average values of the parameters at length of 50 

yarns (125 mm) are =0.2 mm, 1=0.09 cm
-1

, 2=0.01 cm
-1

. 

 

Figure 6.3 Estimated value of   when different sizes of sample are used 
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Figure 6.4 Estimated values    when different sizes of sample are used 

 

Figure 6.5 Estimated values    when different sizes of sample are used 

The generation of the Gaussian random field with given covariance matrix   was 

achieved by calculating the Cholesky decomposition of the covariance matrix and 

then multiplying it by a random vector of normally distributed numbers. 

       (6.3) 

      (6.4) 

The matrix of the Gaussian field is then reshaped into a matrix accordingly to the 

chosen size of the textile and       coordinates are transformed back to         
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which the define textile geometry as shown in Figure 6.2. A listing of the MatLab 

code can be found in Appendix H. Samples of generated yarn paths are shown in 

Figure 6.6. Generated Gaussian field are employed for creating models of textile 

reinforcements. 

 

Figure 6.6 Samples of generated weft yarns 

 

6.2 Effect on stiffness 

6.2.1 Numerical model 

Stochastic models of the TW composite were prepared for Monte Carlo simulations 

according to the procedures described above. The size of the model is not limited by 

a unit cell and can be arbitrary but for the convenience it was kept proportional to the 

size of the unit cell and were chosen to be 11, 22 and 55 of the unit cell size. An 
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from Chapter 4. The TexGen model was then disturbed according to a random 

Gaussian field generated with an OU sheet using =0.2 mm, 1=0.09 cm
-1

, 2=0.01 

cm
-1

. Any possible interpenetrations were automatically corrected using a built-in 

TexGen correction algorithm. Three multi-layer models were created in addition to 

the single layer models: no layer shift, layer shift as in Panel #1 and layer shift as in 

Panel #3 (see Chapter 3). Each layer in the multi-layer models was generated 

independently from the other layers.  

In Chapter 4, properties of the idealised textile composites were obtained with use 

periodic BCs. The structure of the composites considered in this chapter is inherently 

not periodic and hence periodic BCs are no longer applicable. Studies of the effect of 

BCs on the stiffness of composites performed in Chapter 4 (see Figure 4.12) showed 

that a combination of Dirichlet BCs in the in-plane directions and periodic BCs in the 

through thickness direction (mixed BCs) results in less than 5% deviation from the 

results predicted with periodic BCs. In addition, mixed BCs showed very little size 

effect. Therefore, in the absence of other suitable choices, mixed BCs were used for 

numerical modelling of the composites with yarn path variability. The generated 

models of the TW composite with variability were meshed by a voxel meshing 

technique. It was ensured that the element size is 3 times less than the standard 

deviation of yarn variability in order to capture the yarn path variation well enough. 

It resulted in mesh size of 11 unit cell model being equal to 30030030. The 

elastic properties of the yarns were calculated using the Chamis formulae (2.6) – 

(2.11) using parameters given in Chapter 4 (Table 4.3). It should be noted here that 

model generated in TexGen assign local fibre orientation to every voxel in the mesh 

parallel to the tangent vector in the corresponding point of yarn path. This means that 

not only geometry varies but also the subsequent changes in material orientations are 

automatically adjusted as well. 

A minimum of 30 realisations in total were analysed for each of the model sizes. 

Distributions of the Young‘s moduli of single layer composites predicted with the 

numerical simulations are shown in Figure 6.7. Numerically obtained distributions 

were approximated with right truncated normal distributions. The right truncation 

was adopted due to the assumption that the Young‘s modulus cannot exceed some 

physical limit. However, the normality hypothesis was rejected by the Kolmogorov-
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Smirnov test [141]. It should be noted that the applied BCs on their own introduce a 

size effect and hence direct comparison of data from different RVEs is not possible. 

In order to facilitate a comparison the data were normalised to the Young‘s modulus 

of the idealised smallest RVE (11 unit cells) predicted with mixed BCs. 

 

 

Figure 6.7 Young‘s modulus distribution for 11 RVE (top); Normalised distributions of Young‘s 

moduli for different sized RVEs (bottom) 

Comparison of the Young‘s modulus distributions for models of various sizes shows 

that an increase in the model size decreases the standard deviation and the average 

modulus. This size effect is shown in Figure 6.8. It can be seen that both Young‘s 

modulus and standard deviation reduce with increase of the model size. This 

reduction in the Young‘s modulus is related to an increasing chance of having severe 

variations which results in a larger portion of fibres not being aligned with the load 
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direction. Reduction of the standard deviation is explained by an increasing chance 

of having similar random fields within larger domains which results in similar 

mechanical properties of domains. It can be assumed that the Young‘s modulus and 

standard deviation will converge with increase of the domain size. However, the cost 

of numerical modelling makes analysis of larger models infeasible. 

 

Figure 6.8 Size effect on the Young‘s modulus and its standard deviation 

The Young‘s moduli of multi-layer models were predicted using the same routine as 

for single layer models. Due to computational costs only 10 realisations were run for 

each case. It was found that multi-layer models with yarn path variability have a 

lower standard deviation of moduli when compared to the single layer models. The 

size effect in the multi-layer models had the same trends as for single layer models 

but was less pronounced as shown in Figure 6.9. The reason that yarn path variability 

has smaller effect in multi-layer composites is the independence of yarn path 

variation in the layers which results in more similarity between different realisations 

of the models. On the other hand, due to the low number of stochastic realisations no 

statistically significant conclusions can be made about the absolute difference 

between single layer and multi-layer models. Overall results of simulations and 

comparison with experiments and values predicted with use of idealised models are 

given in Table 6.1. 
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Figure 6.9 Size effect for Young‘s modulus of multi-layer models 

Table 6.1 Elastic properties of composites with yarn path variability 

 

Young‘s modulus, GPa 

Exp. 
Simulations, 

ideal. model 

Simulations, 

variab. model** 

Single layer 
54.1 

(1.23) 

58.1* 

57.9** 

57.56 

(0.54) 

Regular stacking 
54.5* 

54.2** 

55.85 

(0.47) 

Random stacking 

1 

55.7 

(1.38) 

55.1* 

54.8** 

54.58 

(0.36) 

Random stacking 

2 

55.96 

(1.65) 

54.7* 

54.3** 

54.10 

(0.35) 

* Periodic BCs 

** Mixed BCs (11 RVE) 

 

 

6.2.2 Analytical model 

Numerical Monte Carlo simulations for FE models can become costly when large 

models are used. This section describes a simple analytical model which can be used 

for fast estimations of properties of the composite generated with the model proposed 

in Section 6.1. 
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An analytical model based on that presented by Rudd et al [118] was combined with 

Classical Laminate Theory (CLT) to account for interaction of yarns in two 

orthogonal directions. The key idea of the current modelling approach is to transform 

local stiffness tensors according to a simulated Gaussian field and combine them 

using a parallel-series analogy.  

The starting point is a representation of a textile composite as a series of domains and 

each of them represented as a laminate consisting of two layers as shown in Figure 

6.10. Layers represent homogenised warp and weft yarns and matrix accordingly. 

Each laminate is described by a pair of angles which are orientations of the layers. In 

an idealised textile, all blocks are characterised by (0º, 90º) orientations and hence by 

two compliance tensors: 

      

 

 
 
 
 
 

 

  
   

 
   

   

  
   

 

 
   

   

  
   

 

  
   

 

  
 

   
   

 

 
 
 
 
 

 (6.5) 

where index i denotes the layer,   
   

 and   
   

 are the Young‘s moduli of layers in the 

direction parallel to fibre (direction 1) and transverse (direction 2) direction, 

respectively,    
   

 is the Poisson‘s ratio and    
   

 is the shear modulus. The moduli of 

the layer are obtained using the Chamis micromechanical formulae with fibre volume 

fraction corresponding to the fibre volume fraction of yarns in one direction and then 

modified using Cox‘s approach (equation (2.45)) [27] to take into account yarn crimp 

by assuming yarns to be described as a sine wave in the out-of-plane direction. 

 

Figure 6.10 Scheme of a simplified analytical model 
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The yarn path variability can be viewed as local variations in yarns‘ orientations 

which can be easily derived from a Gaussian field generated as described above. 

Compliance of a rotated layer can be calculated from the original compliance tensor 

by multiplication of the tensor by a rotation matrix pre- and post: 

              (6.6) 

where T is the matrix of rotation by an angle   about an axis perpendicular to the 1-2 

plane: 

 

   

                    

                     

                              

  (6.7) 

The stiffness of the laminate can be calculated according to CLT assuming that the 

layers have equal thickness. The stiffness of series of laminates can be calculated by 

adding up their compliances. In general, this algorithm can be considered as a 

combination of parallel and series connections.  

The described algorithm was coded in MatLab in a form suitable for Monte Carlo 

simulations where two Gaussian random fields (representing warp and weft yarns) 

were stochastic variables. The model predicted the Young‘s modulus of an idealised 

composite of 61.74 GPa which is 7.5% and 14% higher than the experimental and 

numerically predicted values (see Chapter 3 and 4). The model over-predicted the 

Young‘s modulus due to the assumptions imposed on the yarn paths and yarns 

interaction. 

Monte Carlo simulations were aimed at finding variations of the Young‘s modulus 

within a composite as well as variation between different composites. The variation 

of stiffness within a composite can be illustrated by a map of local stiffness as shown 

in Figure 6.11. It can be seen that the stiffness map has bands of low stiffness whose 

appearance become obvious when the stiffness map is viewed together with yarns‘ 

orientations map which represents misalignment of longitudinal yarns. The bands of 

lower stiffness correspond to bands of large misorientations (deviations). The latter 

bands are caused by high correlation between the adjacent yarns as discussed earlier 
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i.e. a deviation in a yarn causes a similar deviation in the adjacent yarns due to tight 

weaving and hence results in a band of large misalignments.  

 

 

Figure 6.11 Map of local Young‘s modulus in horizontal direction in a composite (top); Map of local 

horizontal yarn orientations, 4 yarns in a unit cell (bottom) 

The Young‘s modulus distributions were approximated with a reverse lognormal 

distribution is given by probability density function             where t is the 

Young‘s modulus of an ideal composite and   is the conventional lognormal 

distribution given as: 

           
 

     
     

          

   
      (6.8) 
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The distributions shift to the left and become narrower and more symmetric with 

increase of RVE size as shown in Figure 6.12. This reflects the decrease of the mean 

and standard deviation of the distributions. This size effect is shown in Figure 6.13. 

The explanation of the size effect given in Section 6.2.1 is the same for the FE 

model. 

 

 

Figure 6.12 Typical distribution of the Young‘s modulus of 22 RVE within a realisation of 

composite (top); Typical probability density functions of the Young‘s modulus of different RVEs 

(bottom) 

The difference in distribution shapes predicted with FE models (Figure 6.7) and with 

the analytical model (Figure 6.12) proves that the analytical model is not really 

suitable for prediction of absolute values of Young‘s modulus.  
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Figure 6.13 Size effect on the Young‘s modulus and standard deviation (average over 10
4
 realisations) 

Obviously, the distribution of the Young‘s modulus within a composite depends on a 

particular realisation. In this regard, the distribution of mean Young‘s moduli from 

different composites and its standard deviation is shown in Figure 6.14 and Figure 

6.15. It was found that distributions of the mean Young‘s moduli closely follow a 

normal distribution while standard deviations are distributed following a lognormal 

distribution. 

 

Figure 6.14 Distribution of the average Young‘s moduli of different realisations and fitted normal 

distribution (22 RVE) 
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Figure 6.15 Distribution of the standard deviations of the Young‘s modulus and fitted log-normal 

distribution (22 RVE) 

It can be noted that the size effect has similar trends in both models: both average 

modulus and standard deviation reduce. However, the modulus reduction predicted 

with FE modelling is more severe. The largest difference between the models can be 

seen in the predicted distributions. Distributions predicted with FE models are more 

symmetric when compared to those predicted with analytical model. The difference 

between models is related to the geometry of the TexGen models which undergo a 

refinement procedure i.e. smoothing of the yarn paths and transformation of yarn 

cross-sections.  

Effects of the parameters of function (6.2) on the stiffness of the composite generated 

with Gaussian field were studied with the analytical model and Monte Carlo 

simulations. The results of the parametric study are shown in Figure 6.16 – Figure 

6.18. It was found that the standard deviation parameter  has a major effect on the 

Young‘s modulus and its standard deviation. The effect of parameter  is quite 

obvious: larger deviation lead to larger misalignments (angle   in equation (6.7)) and 

hence to greater stiffness reduction (equation (6.6)). In addition, larger deviations 

result in a higher chance of two domains of the same size being dissimilar and having 

different properties which results in a higher standard deviation. Parameter γ1 which 

governs waviness of the yarn path (higher γ1 mean lower wavelength) was found to 

have a pronounced effect on both Young‘s modulus and its standard deviation. 
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Lower wavelength results in higher misalignment (angle  ) and hence a reduction of 

the Young‘s modulus. Furthermore, a Gaussian field with lower wavelength yields 

domains which are dissimilar and hence results in a lower standard deviation of the 

Young‘s modulus. Parameter γ2 which shows the correlation between adjacent yarns 

(higher γ2 means similarity between a lower number of adjacent yarns) has a 

negligible effect on the Young‘s modulus. The parameter does not affect the 

waviness of longitudinal yarns and hence does not affect the Young‘s modulus.  

 

Figure 6.16 Effect of parameters γ1 and γ2 on average Young‘s modulus 

 

Figure 6.17 Effect of parameters γ1 and γ2 on average standard deviation of Young‘s modulus 
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Figure 6.18 Effect of parameter  on average Young‘s modulus and its standard deviation 

The proposed analytical model provides a rapid prediction of the elastic properties 

and hence is beneficial for Monte Carlo parametric studies. It was shown that 

parameters    and    have negligible effect on composites stiffness when compared 

to the effect of parameter . However, the analytical model oversimplifies the 

interaction between the layers and over-predicts the stiffness even for the idealised 

composite. Furthermore, no strength predictions can be performed. 
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6.3 Effect on the composite strength 

Numerical models which were set up in Section 6.2.1 were employed for non-linear 

analysis of composites with variability. Only 11 unit cell models were used for non-

linear analysis due to the high computational time for larger models. The mesh size 

was kept the same i.e. 30030030 voxels per 11 single layer unit cell. Multi-layer 

models had a mesh size of 300300180 voxels. Elastic and strength properties of 

the models were calculated with the Chamis formulae and can be found in Chapter 4, 

Table 4.3. The loading step was chosen to be constant and equal to 510
-3

 of final 

loading strain. Mixed BCs (Dirichlet BCs in the in-plane direction and periodic BCs 

in through thickness direction) were applied to single layer models. Dirichlet BCs in 

the in-plane direction were applied to multi-layer models with free surface BCs 

applied though thickness. Monte Carlo simulations with a minimum of 30 

realisations were performed on single layer models and 10 realisations on each of the 

multi-layer models. 

Results of the Monte Carlo simulations for the single layer model are shown in 

Figure 6.19 –Figure 6.22. It can be seen that there is significant reduction of the final 

strength for all the considered cases. The highest strength reduction of 15% was 

found for the case of a single layer model which is related to the assumed periodicity 

of yarn path variation and hence periodicity of damage. In other cases the strength 

reduction was between 13.3% and 14%. CoV of the predicted final strength was 

found to be around 2.9-3.5% for the presented models. The highest variation was 

found for the case of the single layer model. Generally, multi-layer models with layer 

shift were more affected by yarn path variability in terms of strength reduction. 

Results of all the simulation and comparison with experimental data and strengths 

predicted with idealised unit cell models (see Chapter 4) are given in Table 6.2. 
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Figure 6.19 Comparison of stress-strain curves for single layer model 

 

 

Figure 6.20 Comparison of stress-strain curves for multi-layer model with regular stacking 
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Figure 6.21 Comparison of stress-strain curves for multi-layer model with stacking as in Panel #1 

 

Figure 6.22 Comparison of stress-strain curves for multi-layer model with stacking as in Panel #3 
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Table 6.2 Results of stochastic simulations  

 

Final strength, MPa 

Exp. 
Simul. 

(ideal.) 

Simul. 

(variab.) 

Single layer 
618.8* 

(47.2*) 

610 
514 

(18.1) 

Regular stacking 623 
536 

(17.7) 

Random stacking 1 

(Panel #1) 

571.0 

(20.5) 
632 

542 

(15.9) 

Random stacking 2 

(Panel #3) 

582.2 

(17.6) 
621 

538 

(18.5) 

* Average for Panels #4 and #5 

It can be concluded that yarn path variability has a major effect on strength of the 

selected textile composite under tensile loading. The main reason for the strength 

reduction is stress redistributions caused by misorientations of yarn paths away from 

the loading direction. In an idealised composite, straight longitudinal fibres carry the 

applied load. By contrast, in-plane yarn path waviness increases the probability of a 

misaligned longitudinal yarn failing in transverse or shear mode and thus reducing 

the maximum load the composite can carry. 

It can be seen that yarn path variability introduces a CoV in strength of 

approximately 3.5%. The CoV is very similar for all the considered models so no 

conclusions can be made on the effect of layer shift. The difference in the mean 

strength values can stem from various factors: absence of some failure mechanisms 

in the damage model (e.g. delamination), unrealistic stress concentrations introduced 

by the voxel mesh and applied BCs. An additional difference can arise from an 

assumption of constant layer shift for all the specimens from a selected panel while 

in reality layers can ―drift‖ increasing or decreasing layer shift in different cross-

sections of laminates. 
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6.4 Conclusions 

A statistical model for yarn path variation was constructed using the experimental 

data obtained at two scales described in Chapter 3. According to the observations 

meso-scale variations were assumed to be negligibly small when compared to macro-

scale variations. This allowed a geometrical model of reinforcement with variability 

to be constructed consistently by creating an idealised meso-scale model and then 

imposing macro-scale variations on it. The Gaussian random field method [123], in 

particular the OU sheet [77], was utilised for description of yarn path deviations. 

Parameters of the model were estimated using the experimental data obtained in 

Chapter 3. The main flaw of the employed method is the absence of the smoothness 

in yarn paths generated with the OU sheet while yarn paths in a real textile are 

smooth (four times continuously differentiable). In the presented realisation non-

smoothness of yarn paths was corrected by smoothness of yarn edges generated by 

TexGen using splines. The use of a correlation function which could provide a 

smooth random fields is limited by numerical and theoretical difficulties, particularly 

due to the small variation between data points and the absence of a developed theory 

for more complex correlation functions.  

Monte Carlo simulations were performed with single and multi-layer FE models of a 

twill weave composite. It was found that textile composites with yarn path variability 

have lower predicted average Young‘s modulus than composites with no variability. 

The reduction was found to be up to 0.6% and 0.53% for single and multi-layer 

models respectively, depending on the size of the RVE. It is important to note that 

increase of the RVE size led to further reduction of the Young‘s modulus and a 

decrease in the standard deviation. Distributions of Young‘s moduli were best 

approximated with right truncated normal distributions. It is believed that the 

experimental distribution of Young‘s moduli will also be close to a normal 

distribution due to the central limit theorem which postulates that the sum of a large 

number of independent variabilities will tend to be normal. The question is still 

whether the distribution will be truncated on the right due to the physical 

impossibility of having a very stiff laminate. 
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A simplistic analytical model was employed in order to allow rapid parametric 

studies which are impossible with numerical models due to high computational costs. 

Comparison with the numerical model showed that the analytical model is capable to 

predict trends in Young‘s moduli and its standard deviation. Distributions of the 

Young‘s moduli were well approximated with reversed lognormal distributions. The 

distribution shape was not in agreement with the numerically predicted distribution. 

This limits application of the analytical model only to parametric studies and 

capturing trends of the size effect. A parametric study showed that the scaling 

parameter  of the OU sheet correlation function has the greatest effect on variability 

of the Young‘s modulus. It was found that the parameter γ1, which corresponds to 

yarn wavelength, has a major effect on the standard deviation of the Young‘s 

modulus but has minimal effect on average modulus. This implies that textile 

composites with yarns having short wavelength will have higher CoV of Young‘s 

modulus. On the other hand, the minimum waviness of yarns in a textile is limited by 

physical behaviour i.e. short wavelength of large amplitude seems to be 

unreasonable. Parameter γ2, which represents similarity of adjacent yarns, was found 

to have little effect on the properties of the textile composite. The effect of this 

parameter should be more pronounced in less tightly woven textiles where adjacent 

yarns do not deviate together and hence can be uncorrelated. It is believed that in 

such a textile composite the CoV of Young‘s moduli will decrease. 

Non-linear analyses of numerical models of textile composites proved that yarn path 

variability has a significant effect on the predicted final strength. It was shown that 

strength predicted with a model of the composite with variability is up to 15% lower 

than the strength predicted with an idealistic model. Predicted CoV was around 2.9-

3.5% with the highest value corresponding to the single layer model. From these 

studies it can be concluded that a variability study should utilise multi-layer models 

in order to predict accurate stress-strain curves.  

It should be noted that the voxel meshing technique used here exhibited its 

limitations. Whilst the required mesh density for analysis can be achieved for a 

particular model, it is infeasible to conduct Monte Carlo simulations using it due to 

excessive computational costs. 

 



 

163 

 

 

 

CHAPTER 7  
 

 

DISCUSSION AND CONCLUSIONS 

 

This chapter summarises the essential points of discussion from this thesis, draws 

major conclusions and contains suggestion for possible future work. The aim of the 

work was to investigate the effects of selected variabilities on textile composite 

mechanical properties. The work can be divided into three main stages: experimental 

work on characterisation of variabilities, setup of a generic model for an idealised 

geometry, and development and implementation of stochastic modelling exploiting 

the idealised model as a starting point.  

The experimental studies in Chapter 3 fulfilled two goals: provided a set of 

mechanical experiments for validation of mechanical models in Chapter 4 and 

provided data for which variability models were established in Chapters 5 and 6. The 

unit cell modelling framework was described in Chapter 4 and compared with 

experimental data. The methodology of Chapter 4 was employed in variability 

modelling providing a reliable numerical procedure. Chapters 5 and 6 were devoted 

to predictions of effects of fibre strength and yarn path variability. 

 

7.1 Discussion 

The work was focused on three selected sources of variability: single fibre strength, 

yarn paths and layer shift.  All of these variabilities were studied experimentally in 

Chapter 3. Yarn path variability was measured at meso- and macro-scales in 

Section 3.1. The main outcome of the study was an understanding about the 

feasibility of scale separation for modelling purposes. The effect of variability of
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layer shift was measured using an artificial manufacturing procedure and mechanical 

tensile tests. A strong difference was found between laminates with no layer shift and 

random layer shift in terms of non-linear mechanical behaviour. The former 

exhibited a distinctive kink in their stress-strain curves at strain of approximately 0.8-

1.0%. The mechanical experiments were conducted with the aid of DIC and AE 

acquisition techniques which served as additional validation tools for the mechanical 

modelling performed in Chapter 4.  

A meso-scale unit cell modelling framework was set up in Chapter 4 for prediction 

of mechanical properties. Key to accurate predictions was validated geometries of 

unit cells of selected textile composites. Idealised periodic unit cell geometries were 

constructed with TexGen. The geometries of two reinforcements were validated 

against real geometric data acquired with µ-CT. Nevertheless, the predicted 

geometry of one of the 3D woven composites was far too idealised when compared 

to the real reinforcement. Therefore, a digital chain element approach was employed 

for construction of the unit cell. It can be speculated that the deviations of the 

reinforcement‘s geometry from the nominal design are too large and hence the 

manufacturing process was not well-designed and the reinforcement is not of 

significant interest for industrial usage. 

The voxel meshing technique was validated against a conventional conformal mesh. 

It was found that the voxel mesh gives acceptable results when a high mesh density 

is used. Typically two times more elements were needed for voxel mesh compared to 

a conformal mesh. The main advantages of the voxel mesh are automatisation of the 

meshing process and the absence of distorted elements. The disadvantages are 

discussed below. 

Modelling of non-linear behaviour of textile composites was performed using a 

phenomenological CDM model. Despite being essentially a two-parameter model the 

chosen CDM model was able to predict the behaviour of both selected 2D textile 

composites quite well. The final strength was predicted within 11% of experimental 

values and the Young‘s moduli were predicted within 3%. A kink in stress-strain 

curves observed experimentally in Chapter 3 in laminates with no layer shift (regular 

stacking) was predicted numerically. It was shown numerically that the configuration 
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of layers in the laminate drastically affects the shape of the stress-strain curve. 

Additional experimental data such as damage initiation thresholds (obtained with AE 

in Chapter 3) and strain fields at different stages of loading (obtained with DIC in 

Chapter 3) were used to validate the CDM model. 

Modulus and strength of one of the 3D woven composites were predicted within 10% 

of experimental values. The location of damage initiation matched experimental 

observation from the fracture surfaces of real specimens. For the other 3D composite 

the idealised model overpredicted strength and modulus significantly. In addition, the 

model constructed with the digital chain element method predicted strength 21% 

lower than the experimental value. It should be noted that mesh density was much 

lower than that in 2D textile composites and hence results potentially can be 

improved by increasing the mesh density.  

A multi-scale framework for modelling the effect of single fibre strength variability 

was proposed in Chapter 5. The absence of a systematic approach linking all length 

scales was highlighted in Chapter 2. The developed framework allowed the 

micromechanical fibre properties to be linked with the macro-scale strength of the 

composite through a series of analytical and numerical models. The analytical 

models were used for transition between micro- and meso-scales. The concept was 

first validated against experimental data for two UD composites. It was shown that 

the strength distribution can be predicted within 5% of experimental values. At the 

meso-scale, textile composites were analysed with the framework established in 

Chapter 4. A CoV of approximately 1% was predicted for textile composite strength. 

Transition between the meso- and macro-scales was achieved with a simplistic 

―weakest-link‖ model which neglects the interaction of ―links‖. It was shown that 

strength can reduce by approximately 3% at 150 mm length due to the size effect. 

Discrepancies between the predicted and experimental values can stem from the 

assumptions made in micromechanical models: regular fibre packing, perfectly 

straight fibre and linear behaviour of fibre bundles (no fibre stiffening, no modulus 

reduction after single fibre failure). However, the principle of the framework would 

not change if the micromechanical model is changed. 
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Finally, yarn path variability was implemented in numerical and analytical models of 

a textile composite. Experimental data obtained in Chapter 3 were used to estimate 

parameters of the variability model based on a Gaussian random field. The random 

field model translated into a TexGen model was used for FE analysis using the 

framework from Chapter 4. The numerical model predicted a size effect: decrease of 

the Young‘s modulus and its CoV with increase of the size of the model. The same 

trends were predicted with the analytical model. However, the distributions of 

Young‘s moduli predicted with the models were inherently different. The 

distributions predicted with the numerical model tend to be normal while analytically 

predicted distributions were closer to reverse log-normal distributions. Nevertheless, 

the analytical model can be used for preliminary estimation of the effect of 

variability. Parametric studies with the analytical model showed that the amplitude of 

yarn path variation is the main cause of Young‘s modulus reduction and its variation 

which is quite a trivial statement. Decrease of wavelength of yarns was found to have 

a mild effect on the reduction of average Young‘s modulus and the increase of its 

standard deviation. However, the wavelength in a real textile should have a certain 

minimum below which macro-scale variation cannot exist while meso-scale 

variations are negligible. In this sense the largest values of parameter γ1 

(corresponding to short wavelength) are not representative for a real textile. 

The strength of the textile composite was severely reduced by yarn path variability. It 

was also shown that it results in a CoV of approximately 3.5%. However, full scale 

Monte Carlo simulation has not been performed due to high computational costs and 

so this study is at present inconclusive. 

During the conducted research several issues have been identified. The first relates to 

the advantages and limitations of the voxel meshing approach. First of all, it was 

shown that the approach is suitable for predictions of non-linear behaviours of 

composite but requires a high mesh density for accurate predictions. However, for 

the case of a 3D composite it was found that the required mesh density is infeasible 

for the associated large unit cells due to computational costs. This limitation also 

posed a problem in strength analysis of composites with yarn path variability by the 

Monte Carlo method. It was also practically impossible to conduct non-linear 

analysis of large RVEs.  
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Since effects of three selected variabilities were analysed, it becomes important to 

decide which of the variabilities has the greatest effect and what their combined 

effect is. It can be concluded here that fibre strength variability has the lowest effect 

on strength of textile composites under static tensile loading. The introduced size 

effect and variation of strength is within several percent of the idealised values. 

However, this source of variability might become more pronounced under fatigue 

loading when single fibre breaks can accumulate even at low cycles.  

The effect of layer shift was estimated both numerically and experimentally. It was 

shown that composites with no layer shift have lower modulus. The experimental 

observation of a higher strength for composites with no layer shift was not shown by 

numerical models but the difference in stress-strain curves was captured. However, 

the stochastic effects of layer shift were not fully explored. Yarn path variability was 

shown to cause a large reduction in strength and be a source of strength variation 

with a CoV of approximately 3.5%. It is thought that a combination of layer shift 

variability and yarn path variability could even out this effect.  

 

7.2 Conclusions 

Experimental studies were conducted in order to characterise variabilities and their 

effects. 

 At the meso-scale, geometric parameters of the textile reinforcement have a 

standard deviation comparable with the resolution of µ-CT scans (15 µm) 

 At the macro-scale, variations of yarn paths of the textile reinforcement from 

an average yarn path have a standard deviation of approximately 0.1 mm 

 Composites with regular stacking (no layer shift) are stronger (on average) 

than composites with random layer shift 

 Composites with regular stacking have a distinguishable kink in their stress-

strain curve while behaviour of composites with random layer shift is closer 

to linear 

 Composites with regular stacking tend to be more resistant to delamination 
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Numerical studies on idealised geometries showed that: 

 The voxel meshing technique can be used instead of conformal meshing 

when the required mesh density is achieved 

 Two-parameter CDM model can predict non-linear behaviour of 2D textile 

composites under tensile loading within 10% of experimental results 

 Layer shift in 2D textile laminates has a strong effect on predicted shape of 

the stress-strain curve 

Conducted studies of selected sources of variability showed that: 

 At the meso-scale, fibre strength variability changes the strength of textile 

composites by up to 2.6% depending on the micromechanical model 

 At the macro-scale, strength reduction caused by fibre strength variability and 

the size effect can be up to 4.5% for a full-length tensile specimen 

 Fibre strength variability introduces CoV of final strength of approximately 

0.9% – 1.2% 

 Yarn path variability reduces average Young‘s modulus 

 Young‘s modulus of textile composites with yarn path variability and its 

variation decrease with increase of the RVE size 

 Yarn path variability severely reduces the strength of textile composites 

 

7.3 Recommendations for future work 

The unit cell framework based on a textile pre-processor as proposed in Chapter 4 is 

thought to be a strong basis for any further variability studies. However, a number of 

improvements can be made pursuing higher fidelity of the damage model and 

meshing approach. All FE models in this work relied on the voxel meshing technique 

and its limitations and advantages were discussed earlier. The possible ways to 

overcome the limitations are: local mesh refinement which will allow mesh 

improvement at minimum computational costs or the employment of the X-FEM 

method for representation of the yarn boundaries. The X-FEM methodology can also 

be applied to damage modelling since it has become available in Abaqus and is 

improved in every release of this software. Experimental studies in Chapter 3 showed 

differences in delamination patterns between laminates with different layer shift and 
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hence implementation of this mechanism in a damage model should be explored 

towards more realistic mechanical predictions. 

Various improvements can be made to the fibre strength variability model by 

refining the micromechanical bundle strength models and the macro-scale model. 

The issues to be addressed at the micro-scale are: modelling bundles with random 

fibre arrangements, non-linear behaviour related to progressive failure of fibres and 

effects of waviness of fibres at the micro-scale. An obvious step forward at the 

macro-scale would be conduct FE modelling using strength distributions obtained at 

the meso-scale. 

Analysis of yarn path variability may be improved by analysing more samples. It can 

be interesting to analyse variability not only within one roll of a textile as it was done 

in this study but also variability between rolls of textile. This study might be of 

practical use for textile manufacturers since it can highlight any systematic variations 

in textile production. 

The Gaussian random field approach is definitely of interest for further studies. 

Possible improvements are introduction of cross-correlation between warp and weft 

yarns and adoption of other correlation functions if necessary. Finally, a macro-scale 

framework for modelling the effect of structural variability can be developed in the 

spirit of Chapter 5. 

Since layer shift was shown to have a strong effect on the shape of the stress-strain 

curve of textile composites, it becomes necessary to perform systematic studies 

including Monte Carlo simulations in order to estimate the effect of layer shift on 

variability of non-linear behaviour.   

The present work investigated effects of only three selected variabilities while more 

sources were mentioned in Chapter 2. Most of these can be regarded as variabilities 

introduced by the manufacturing process and hence can be controlled to some extent. 

Several of these variabilities can be addressed in the future. Randomness of ply 

orientation can have an effect on mechanical behaviour similar to the effect of layer 

shift. Variability of local thickness of the composite created by the consolidation 

process (e.g. vacuum bagging) can create variability of local fibre volume fraction 
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which is one of the most important parameters in mechanical analysis. The latter can 

be extended to a general problem of variability of local fibre volume fraction within 

textile composites e.g. variability of fibre volume fraction within a yarn cross-

section. 
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Appendix A. Distributions of deviations from average 

yarn path 

Textile 1. Weft/warp 

 

Textile 2. Weft/Warp 

 

  

-0.4 -0.2 0 0.2 0.4
0

2

4

6

8

Deviation y, mm

P
ro

b
a
b

il
it

y
 d

e
n

si
ty

 f
u

n
c
ti

o
n

-0.4 -0.2 0 0.2 0.4
0

2

4

6

8

Deviation y, mm

C
o

u
n

t

-0.4 -0.2 0 0.2 0.4
0

2

4

6

8

Deviation y, mm

P
ro

b
a
b

il
it

y
 d

e
n

si
ty

 f
u

n
c
ti

o
n

-0.4 -0.2 0 0.2 0.4
0

2

4

6

8

Deviation y, mm

P
ro

b
a
b

il
it

y
 d

e
n

si
ty

 f
u

n
c
ti

o
n

-0.4 -0.2 0 0.2 0.4
0

2

4

6

8

10

12

Deviation y, mm

P
ro

b
a
b

il
it

y
 d

e
n

si
ty

 f
u

n
c
ti

o
n



 

184 

 

Textile 3 Weft/Warp 

 

Table A. Standard deviations, mm 

 Weft Warp 

Textile 1 0.082 0.096 

Textile 2 0.097 0.047* 

Textile 3 0.083 0.082 

* Normality hypothesis was rejected 
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Appendix B. Results of mechanical testing 

Panel #1 

Specimen Young‘s 

modulus, GPa 

Strength, 

MPa 

Ultimate 

strain, % 

1 56.04 552 1.23 

2 56.89 554 1.21 

3 56.18 592 1.04 

4 57.34 594 - 

5 55.38 582 1.04 

6 54.05 552 1.01 
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Panel #2 

Specimen Young‘s 

modulus, GPa 

Strength, 

MPa 

Ultimate 

strain, % 

1 - 470 - 

2 - 501 - 

3 - 428 - 

4 - 502 - 

5 56.87 511 1.42 

6 53.74 495 1.5 
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Panel #3 

Specimen Young‘s 

modulus, GPa 

Strength, 

MPa 

Ultimate 

strain, % 

1 - 582 - 

2 - 576 - 

3 53.77 577 1.08 

4 54.11 552 1.03 

5 55.99 583 1.43 

6 55.38 568 1.19 

7 53.94 573 1.11 

8 57.36 591 1.55 

9 56.05 621 1.64 

10 56.99 570 - 

12 58.49 595 1.64 

13 57.49 598 1.47 
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Panel #4 

Specimen Young‘s 

modulus, GPa 

Strength, 

MPa 

Ultimate 

strain, % 

1 53.99 614 1.42 

2 52.89 559 1.34 

3 55.89 557 1.16 

4 55.90 604 1.55 

5 55.53 613 1.24 

6 54.99 594 1.49 

7 54.96 616 1.35 

8 54.91 627 1.47 
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Panel #5 

Specimen Young‘s 

modulus, GPa 

Strength, 

MPa 

Ultimate 

strain, % 

1 54.22 627 1.40 

2 53.34 556 1.29 

3 52.12 528 0.92 

4 54.20 644 1.45 

5 52.84 719 1.59 

6 51.11 727 1.80 

7 53.39 640 1.71 

8 54.87 716 1.51 
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Appendix C. Strains measured with DIC 

Panel #5 Specimen N5 (no layer shift) Longitudinal strain 
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Panel #5 Specimen N5 Transverse strain 
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Panel #5 Specimen N5 In-plane shear strain 
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Panel #3 Specimen N12 Longitudinal strain 
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Panel #3 Specimen N12 Transverse strain 
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 Panel #3 Specimen N12 Shear strain  
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Panel #1 Specimen N5 Longitudinal strain 
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Panel #1 Specimen N5 Transverse strain 
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Panel #1 Specimen N5 Shear strain 
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Appendix D. Python script for generation of 2D 

textile composite 

def make_textile(t_par): 

 length= t_par['length'] 

 height = 2*t_par['height'] 

 rot = t_par['rotate'] 

 style = t_par['weavestyle'] 

 if style == 'plain':  

  weave_pattern = [[0, 0], [1,1]] 

 elif style == '5satin': 

  weave_pattern = [ [ 0 , 0 ] , [ 1 , 2 ] , [ 2 , 4 ] , [ 3 , 1 ] , [ 4 , 3 ] ] 

 else: 

  sys.exit('no valid weave style specified') 

 tex = CTextileWeave2D(2, 2, length * 0.5, height) 

 for i in weave_pattern: 

  tex.SwapPosition(i[0], i[1]) ; 

 tex.SetYarnWidths(length *.5 - t_par['hgap']) ; 

 tex.SetYarnHeights(height *.5 - t_par['vgap']) ; 

 fdist = CFibreDistribution1DQuad(t_par['vf_dropoff'] ) 

 yarns = tex.GetYarns() 

 addyarns = [ ] 

 y_size = len(yarns) 

 z_offset = 0 

 # Iterate over the number of added layers 

 for i in range(t_par['numlayer'] - 1) : 

  # compute how f a r to t r a n s l a t e the yarns 

  z_offset += height * t_par['rel_z_offset'] 

  trans = XYZ(t_par['x_gamma'][i +1] * 0* length , t_par['y_gamma'][ i +1] * 

length , z_offset ) ; 

  tex2 = CTextileWeave2D( tex ) 

  tex2.Rotate(WXYZ(rot[ i +1] *PI , 0 , 0 ) ) 

  addyarns.append( tex2.GetYarns ( ) ) 

  if i == t_par['numlayer'] - 2 : 

   tex2.FlattenYarns(t_par['flat_value'] , 1 ) ; 

 # flatten the bottom l a y e r 

 if t_par['numlayer'] == 1: 

  tex.FlattenYarns(t_par['flat_value'] , 0 ) 

 else : 

  tex.FlattenYarns(t_par['flat_value' ] ,1) 

  

 trans = XYZ( t_par['x_gamma'][0] * length, t_par['y_gamma'][0] * length, 0 ) ; 

 tex.Rotate(WXYZ(rot[0] * PI , 0 , 0 ) ) 

 for i in addyarns : 

  for j in range(len(i)) : 

   yarns.append(i[j]) 

 

 nyarns = [ ] 

 for yarn in yarns : 

  yarn.AssignFibreDistribution(fdist) 

  yarn.SetFibreArea(t_par['fibre_area' ] / 1e6) 

  yarn.SetResolution(t_par['section_resolution' ] ) 
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  nyarns.append(yarn) 

 tex.DeleteYarns ( ) 

 for i in nyarns : 

  tex.AddYarn( i ) 

 zflat = (t_par['height']/4- t_par['flat_value' ] ) -0.5* t_par['vgap'] 

 print (height-t_par['thickness'])/2.0 

 tex.Translate(XYZ(0 ,0,-(height-t_par['thickness'])/2.0 ) ) 

 bot = XYZ( 0 , 0 , 0 ) 

 top = XYZ( length * t_par['domainsize' ][ 0 ] , length * t_par['domainsize'][ 1 ] , 

t_par['thickness'] * (1+(t_par['numlayer'] -1)* t_par['rel_z_offset']) - zflat ) 

 domain=CDomainPlanes(bot, top) 

 tex.AssignDomain(domain) 

 

 return tex 
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Appendix E. Digital Chain Element Method10 

The digital element method was designed for simulations of textile processes and 

predicting geometry of textile reinforcements. The initial idea was to represent a yarn 

as a chain of short pin-connected 1D rods and then model their interaction [35]. The 

method evolved to the multi-chain element method where a yarn is represented by an 

assembly of chains which can have frictional contact interaction between each other 

[36]. The method was able to predict the shape of the yarns considering only about 

19-69 chains per yarn. Larger numbers of chains per yarn proved to have no effect on 

yarn shape but increased computational cost. The present implementation [37] of the 

concept employs beam elements without pin connections between the elements 

instead of pin-connected rods. This modification of yarn representation results in 

yarns having significantly higher flexural stiffness and hence requires fictitious 

elastic-plastic properties to be introduced in order to simulate the behaviour of 

flexible yarns. The chains of beams are assembled into yarns which are interwoven 

together to form the textile. 

Many implementations of the digital element method attempted to model textile 

structures of a large size (several unit cell in every direction). However, this 

approach is not feasible for 3D woven textiles since the number of layers in a single 

unit cell is already quite large. Therefore, the unit cell of the textile reinforcement 

was reduced by exploiting the staggered pattern observed in the geometry as 

discussed in Chapter 4. However, a single reduced unit cell representation of the 

entire textile misses the lateral contact between the yarns at the edges of the unit cell 

and the yarns outside of the unit cell. This problem was resolved by extending the 

unit cell by one warp yarn in each direction. A set of boundary conditions was 

imposed on the original unit cell boundaries and on those extended as shown in 

Figure E.1. 

                                                 

10 The description of the method is based on work of Steve D. Green who provided the models which 

were used in Chapter 4 (S.D. Green, A.C. Long, B.S.F. El Said, S.R. Hallett ―Numerical modelling of 

3D woven preform deformations‖, Composite Structures (108), 2014 
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Figure E.1. Periodic BCs on the original unit cell (left); Periodic BCs on extended weft yarns 

(middle); Periodic BCs on extended warp yarns (right). 

The overall workflow is shown in Figure E.2. The starting point of the modelling is 

creation of an idealised geometry in TexGen which is used to specify the initial 

geometry of a LS-DYNA beam element model with no initial contact between the 

yarns. The loose model is then compacted by applying a temperature drop of 9.5 ºC 

to binder yarns until the desired thickness of 7 mm is achieved. This was followed by 

an additional increase of temperature by 1 ºC in order to relax the yarns. At this step 

two rigid plates were held in position to preserve the model thickness of 7 mm. 

Finally, the model was compacted by rigid plates until a final model thickness of 

5.3 mm was achieved.  

 

Figure E.2. Workflow of the digital chain element modelling 

The important model parameters were found by trial and error until a satisfactory 

match between the simulated and real geometry was obtained. These parameters are: 
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 Number of chains per yarn: 61. This number was found to be sufficient to 

represent the yarn shape well enough. Higher number of chains per yarn may 

be required for describing yarns with higher aspect ratios (width over 

thickness). 

 Initial yarn cross-section was chosen to be circular as the initial shape does 

not affect results of the overall modelling scheme but can be a useful 

generalisation. However, a flattened initial yarn cross-section can give a 

reduction in the analysis time. 

 Young‘s modulus E = 20 GPa. The modulus of chains was found to have 

negligible effect on the results. 

 Friction coefficient μ = 0.35 was chosen giving adequate results. It was found 

that low friction results in large spreading of yarn cross-sections and high 

friction results in low yarn spreading. 

 Yield strength ζy = 40 MPa (binder), 10MPa (in-plane). The values were 

found to give acceptable results. Lower values resulted in higher waviness. 

 Material density ρ = 0.05 tonne/mm
3
. The value was chosen to reduce 

dynamic effects but still have short analysis time. 

  



 

204 

 

Appendix F. Periodic Boundary Conditions 

In general periodic BCs define the relationship between displacements, u, of two 

corresponding points A and    on boundaries of a periodic domain  

              (F.1) 

where     is average applied strain and   is the vector of periodicity. 

Periodic BCs (F.1) can be implemented straightforwardly in Abaqus/Standard by 

using the ―*EQUATION‖ keyword (e.g. see Li [21, 148]). For the case of a 

rectangular unit cell shown in Figure F.1 periodic BCs are: 

                     (F.2) 

                (F.3) 

                      (F.4) 

                     (F.5) 

 

Figure F.1. Scheme of a 2D unit cell 

However, the BCs for a reduced unit cell require certain transformations. A general 

equation for the transformed BCs was derived by De Carvalho et al [42] and can be 

written as 

                   

    (F.6) 
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where T is a rotation matrix between domains E and    shown in Figure F.2,   

    is 

the position-vector of domain    relative to E and =1 is the load reversal factor 

which is used to ensure equivalence between the strain and stress fields in domains E 

and   . 

 

Figure F.2. Two equivalent domains (adopted from [42]) 

In case of internal symmetries the domain can be reduced. This also requires 

transformation of periodic BCs (F.3) into a new set of BCs (which will remain 

periodic). The first case considered here is periodic BCs for a so-called staggered 

pattern (see Chapter 4). In this case each reduced unit cell is translated parallel to one 

of the two principal directions not by the full length of the unit cell but only by part 

of it. The second case is a further reduction of the reduced unit cell by exploiting two 

mirror symmetries along and across the binder yarn. The third case exploits the 

mirror symmetry in the through thickness direction. The process is shown in 

Figure F.3. 
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The unit cell 
Half of the unit cell 

(staggered pattern) 

Eighth part of 

the unit cell 

Sixteenth part of 

the unit cell 

    

Figure F.3. Reduction of the unit cell of 3DTexCompA (see Chapter 4 for details) 

       

Figure F.4. Corresponding points of the 1/2
nd

 unit cell (left); Corresponding points of the 1/8
th

 unit cell 

(right) 

For the staggered pattern, which is shown in Figure F.3 and corresponding points 

shown in Figure F.4, BCs are: 

                    (F.7) 

            (F.8) 
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          (F.9) 

 

                     (F.10) 

            (F.11) 

          (F.12) 

 

            (F.13) 

          (F.14) 

          (F.15) 

Fo the 1/16
th

 unit cell, which is shown in Figure F.3 and corresponding points shown 

in Figure F.4 (points D and    are the points on the middle through thickness 

surface), BCs are: 

 for tension loading case: 

      (F.16) 

       (F.17) 

 
   

   

 
 

(F.18) 

 

 
       

   

 
      

(F.19) 

 
           

    

 
 

(F.20) 

 

 
       

   

 
 

(F.21) 

          (F.22) 

          (F.23) 

 

 for shear loading case 

      (F.24) 

      (F.25) 

       (F.26) 
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       (F.27) 

 

 
       

   

 
      

(F.28) 

 
           

    

 
 

(F.29) 

 

 
   

    

 
 

(F.30) 

      (F.31) 

 

          (F.32) 

 
       

    

 
 

(F.33) 

          (F.34) 

 

 


