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Abstract 
In this thesis, novel Case-Based Reasoning (CBR) methods were developed to 

be included in CBRDP (Case-Based Reasoning Dose Planner) -an adaptive 

decision support system for radiotherapy dose planning. CBR is an artificial 

intelligence methodology which solves new problems by retrieving solutions to 

previously solved similar problems stored in a case base. The focus of this 

research is on dose planning for prostate cancer patients. The records of 

patients successfully treated in the Nottingham University Hospitals NHS 

Trust, City Hospital Campus, UK, were stored in a case base and were 

exploited using case-based reasoning for future decision making. After each 

successful run of the system, a group based Simulated Annealing (SA) 

algorithm automatically searches for an optimal/near optimal combination of 

feature weights to be used in the future retrieval process of CBR. 

A number of research issues associated with the prostate cancer dose planning 

problem and the use of CBR are addressed including: (a) trade-off between the 

benefit of delivering a higher dose of radiation to cancer cells and the risk to 

damage surrounding organs, (b) deciding when and how much to violate the 

limitations of dose limits imposed to surrounding organs, (c) fusion of 

knowledge and experience gained over time in treating patients similar to the 

new one, (d) incorporation of the 5 years Progression Free Probability and 

success rate in the decision making process and (e) hybridisation of CBR with 

a novel group based simulated annealing algorithm to update 

knowledge/experience gained in treating patients over time. 

The efficiency of the proposed system was validated using real data sets 

collected from the Nottingham University Hospitals. Experiments based on a 

leave-one-out strategy demonstrated that for most of the patients, the dose 

plans generated by our approach are coherent with the dose plans prescribed by 

an experienced oncologist or even better. This system may play a vital role to 

assist the oncologist in making a better decision in less time; it incorporates the 

success rate of previously treated similar patients in the dose planning for a 

new patient and it can also be used in teaching and training processes. In 

addition, the developed method is generic in nature and can be used to solve 

similar non-linear real world complex problems. 
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CHAPTER 1 

Introduction 
In this thesis, novel case-based reasoning approaches to radiotherapy dose 

planning problems are presented. The problem of dose planning for prostate 

cancer at the Nottingham University Hospitals NHS, City Hospital Campus, 

UK are investigated. The proposed case-based reasoning framework is generic 

in nature and can be used to solve similar complex non-linear real world 

problems. In this chapter, research background, motivation, research objectives 

and layout of the thesis are described. 

1.1 Background 

Cancer is a class of disease, caused by abnormal and uncontrolled proliferation 

of cells. It can spread to other parts of the body either directly or through the 

blood or the lymph. Lymph is a clear fluid that travels through the lymphatic 

system and one of its functions is to carry cells that defend the body against 

both infectious diseases and foreign materials. Cancer is an environmental 

disease with 90-95% of its cases attributed to environmental factors and 5-10% 

due to genetics [1]. The common environmental factors related to cancer deaths 

are: tobacco (25-30%), diet and obesity (30-35%), infections (15-20%), 

radiation (10%), stress and lack of physical activity (5-10%) [1]. There are 

more than 100 different types of cancers. It is generally named after the organ 

or the type ofthe cell in which it started. For example, cancer that begins in the 

prostate (a small gland of the male reproductive system) is called prostate 

cancer. 
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In a survey, it was found that 12.7 million new cases of cancer are diagnosed 

around the world every year and this number is expected to increase to 26 

million by 2030 [2]. The UK has one of the highest cancer rates (22nd 
), about 

267 in 100,000 people in this country are diagnosed with cancer each year. One 

in four (27%) of all deaths in the UK are caused by cancer. There were 156.723 

cancer deaths in the UK in the year 2008 [3]. The four most common cancers 

in the UK are breast cancer, colon cancer. prostate cancer and lung cancer. 

Prostate cancer is the most common form of cancer among the male 

population. In 2008, there were 37,051 new cases of prostate cancer diagnosed 

in the UK, which is around 101 men every day or one man every 15 minutes 

[4]. 

1.2 Motivation 

Radiotherapy planning is a complex and time consuming process. In the earlier 

days, oncologists used to spend a large amount of time to generate a treatment 

plan using their past experience. A poorly constructed treatment plan may have 

an overdose to the normal cells and/or a under dose to the cancer cells. The 

planning process has drawn considerable attention from both practitioners and 

academics over the past few decades and led to the development of several 

software systems such as Helax-TMS, eMS Xio and Oncentra MasterPlan. 

Most of the existing software systems are generic in their nature. However, 

different hospitals usually follow different ways of treatment while respecting 

the recommended guidelines of the UK standard. For example, in the 

Nottingham University Hospital oncologists usually use a fixed number of 

beams (i.e. four beams) in prostate cancer treatment. The radiotherapy problem 
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can be described as an optimisation problem. However, due to the large size of 

the search space of the problem it is difficult to achieve approximate global 

optimality using existing software. The main goal of all the developed 

optimisation methods is to attain a uniform tumoricidal dose and to minimise 

the side effects ofthe treatment. However, success rate of the treatment is often 

overlooked. It is very difficult to develop a mathematical model which would 

judge the success rate of the plan before the treatment. This can be predicted to 

some extent from the past experience of the oncologist. 

Researchers investigated different knowledge based methods such as rule­

based reasoning, case-based reasoning or hierarchical organisation of 

knowledge to capture the expertise and experience of oncologists in treating 

previous patients. They tried to mimic the way an oncologist plans the 

treatment. However, the developed knowledge-based methods are generally 

static in nature. In real life, oncologists cautiously learn from their past 

experience. 

The lack of academic and industrial research in provision of adaptive methods 

for the radiotherapy planning problem which learn over time has inspired this 

PhD research. Radiotherapy dose planning process followed in the Nottingham 

University Hospital was investigated and various mode ling issues were 

identified. In particular, the following issues were addressed: 

-How to make a trade-off between the benefits of delivering a higher dose of 

radiation and the risk to surrounding organs. 

-How to incorporate the experience of an oncologist to decide when and how 

much to violate limitations on the dose limits. 
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-How to fuse knowledge and experience in treating patients similar to new 

ones. 

-How to include the 5 years Progression Free Probability and the success rate 

in the decision making process. 

-How to update knowledge/ experience in treating patients over time. 

1.3 Research Objectives 

In this thesis, CBRDP (Case-Based Reasoning Dose Planner), an adaptive 

decision support system, was developed for radiotherapy dose planning 

problems. During its development the radiotherapy dose planning problem, as 

well as the methods which currently exist to solve them, were thoroughly 

investigated. The thesis aims to address the following research objectives: 

(a) To investigate the complex radiotherapy dose planning problems, in 

particular focusing on the problem of determining the most appropriate 

dose plan for prostate cancer in the two stage treatment process. 

(b) To explore the use of various existing methods in addressing the 

radiotherapy planning problems. 

(c) To investigate the non-linear nature of the radiotherapy dose planning 

problem and to explore current 'state-of-the-art' case-based reasoning 

methods to resolve them. 

(d) To model a complex radiotherapy dose planning problem followed in 

the Nottingham University Hospital, UK and to explore the relevance 

of this model to other problems in the literature. 

(e) To study and investigate the oncologists' decision making process for 

radiotherapy dose planning. This will also include the trade-off between 
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(f) To develop an adaptive novel case-based reasoning method for 

radiotherapy dose planning problems which can also be used to solve a 

wide variety of similar non-linear optimisation problems. 

In addition to the aforementioned objectives, the development of the CBRDP 

also addresses these additional objectives: 

(a) To investigate the issues related to the dose planning problems and its 

representation and generalisation so that it can be applied to a wide 

range of similar future problems. 

(b) To develop a novel method for case retrieval and adaptation to imitate 

the decision making process of the human expert. 

(c) To integrate the CBR system with a meta-heuristic search method to 

develop an adaptive decision support system. 

1.4 Layout of the Thesis 

This thesis is organised into seven chapters including this introduction chapter. 

The entire thesis is divided into three parts as shown in Figure 1.1. In part I, 

'state-of-the-art' case-based reasoning and radiotherapy planning problems are 

described. In part 11, a Dempster-Shafer rule based CBR, a knowledge-light 

adaptation and an adaptive knowledge-light adaptation in CBR for 

radiotherapy planning are described. In part Ill, conclusions and future research 

work are described. Contribution of each chapter is highlighted in grey colour. 

The outline of the content of each chapter in this thesis is summarised below: 
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Chapter 1 

Background and 
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Figure 1.1 Structure of the thesis 
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Chapter 2 'Case-Based Reasoning ': In this chapter, an overview of case-based 

reasoning is given. The steps of the CBR system are described along with the 

key areas of the research, This chapter also discusses the literature related to 

the application of case-based reasoning to real world problems, particularly in 

healthcare, 

Chapter 3 'Radiotherapy Planning Problem ': A brief overview of the 

radiotherapy planning process is presented in this chapter, A comprehensive 

review of the 'state-of-art' radiotherapy planning problems is also presented, 

The existing literature is classified based on two criteria: types of problems 

addressed and the methods used to solve them. 

Chapter 4 'A Novel Case-Based Reasoning Approach to the Radiotherapy 

Planning Problem ': The radiotherapy dose planning problem to prostate cancer 

discussed in this chapter is presented as an optimisation problem. A novel 

Dempster-Shafer case-based reasoning approach is developed to capture the 

expertise and experience of the oncologist in the dose planning process. An 

attempt has been made to incorporate the success rate of the treatment in the 

dose planning process along with the side effects of the treatment. For each 

new patient, four cases most similar to the new case are retrieved and 

combined using a modified Dempster-Shafer rule. In the fusion process, cases 

having a better success rate are given more importance than cases having a 

worse success rate. Also, the proposed CBR method is enriched with a 

Simulated Annealing based feature weights learning mechanism. 
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Chapter 5 'A Knowledge-Light Adaptation in Case-Based Reasoning for 

Radiotherapy Planning: In this chapter, firstly, the non-linear nature of the 

dose planning problem is discussed. Thereafter, a knowledge-light adaptation 

in case-based reasoning method is proposed to make a trade-off between the 

benefit and risk of the treatment. For each new patient. a case having a similar 

difference vector and gradient is retrieved as the new case and the dose limits 

of different volume percentages of the rectum, which surrounds the prostate, 

are calculated. Thereafter, based on calculated dose limits, the doses in phases I 

and 11 of the treatment are determined. The retrieval process is enriched by 

incorporating the 5 years Progression Free Probability and the success rate of 

the treatment in the similarity measure. 

Chapter 6 'An Adaptive Knowledge-Light adaptation in case-based reasoning 

for Radiotherapy Planning ': In this chapter, a novel group based trade-off 

method is proposed to ease the decision making process of the oncologist. The 

novel trade-off method makes a compromise between the benefit of the 

radiation and retrieves the case most similar to the new case, Firstly, cases are 

divided into different groups and trade-off is made by relaxing the constraints. 

Thereafter, knowledge-light adaptation is used to calculate the dose in phases I 

and 11 of the treatment. After each run of the system the feature weights are 

updated automatically using a group based Simulated Annealing approach. 

Chapter 7 'Conclusions and Future Research Work': In this chapter, both a 

conclusion and a discussion about the effectiveness of the developed methods 

are presented. Firstly, an analysis of how the research objectives mentioned in 
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the introduction chapter were achieved is given. Secondly. some suggestions 

are given for continuation of the work presented in this thesis. 

1.5 Dissemination of Results 

The research described in this thesis has been disseminated through 

conferences, seminars and research publications in both medical and artificial 

intelligence fields. Below is a list of all the publications and the 

conferences/seminars which have been attended: 

1.5.1 Journal Papers 

[5] S. Petrovic. N. Mishra and S. Sundar. A novel case based reasoning 

approach to radiotherapy planning. Expert Systems with Applications, 38 (9), 

10759-10769, 2011. 

This paper introduces a modified Dempster-Shafer rule which is used in the 

fusion of multiple cases retrieved in the retrieval process. The weights 

corresponding to each features used in the retrieval process are updated using a 

Simulated Annealing based weight leaning mechanism. 

[6] N. Mishra, S. Petrovic, and S. Sundar. A Self-Adaptive Case-Based 

Reasoning System for Dose Planning in Prostate Cancer Radiotherapy, 

Accepted for publication in Medical Physics Journal. 

In this paper, a novel trade-off method is addressed to make a compromise 

between the risk and the benefit of the radiation and to retrieve the case most 

similar to the new case. A group based Simulated Annealing approach to 

determine the importance (weights) of different clinical parameters used in the 

retrieval process is introduced. 
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1.5.2 Conference Papers 

[7] A. Cox, N. Mishra, I. Sayers, S. Petrovic and S. Sundar, A decision aid for 

radiotherapy dose selection in prostate cancer based on non-linear Case Based 

Reasoning, UK Radiation Oncology Conference, Manchester, UK , 11 th - 13th 

April,2011 

In this paper, the 5 years Progression Free Probability and success rate of the 

treatment in dose planning process is incorporated. 

[8] N. Mishra, S. Petrovic and S. Sundar, A knowledge-light nonlinear case­

based reasoning approach to radiotherapy planning, in Proceedings of the 21st 

International Conference on Tools with Art(ficial Intelligence (ICT AI), Newark 

Liberty International Airport Marriott Newark (NYC Metropolitan Area), New 

Jersey, USA, 2-5 November, 2009, pp. 776-783. 

This paper introduces a knowledge-light adaptation in case-based reasoning to 

detennine the dose limits of different volume percentages of the rectum. 

[9] N. Mishra, S. Petrovic and S. Sundar, A non-linear case based reasoning 

approach to radiotherapy dose planning, in Proceedings of the 35th annual 

Operational Research Applied to Health Services (ORAHS) Leuven, Belgium, 

12-17 July, 2009,24,2009 

A case-based reasoning approach which takes into consideration the trade-off 

between risk and benefit of the proposed radiation is proposed in this paper. 
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[10] N. Mishra, S. Petrovic and S. Sundar, A Novel Case Based Reasoning 

Approach to Radiotherapy Planning, in Proceedings of the 18th Triennial 

Conference of the International Federation of Operational Research Societies 

(IFORS'08), Sandton, South Africa. 13-1 8 Ju~v. 2008. 66,2008. 

This article introduces a modified Dempster-Shafer rule based CBR approach 

to radiotherapy dose planning problems. 

1.5.3 Book Chapters 

[11] N. Mishra, S. Petrovic and S. Sundar, Self-adaptive case based reasoning 

for dose planning in radiotherapy, in the book of the 36th annual Operational 

Research Applied to Health Services (ORAHS), 18-23 July, 2010,28-46,2010. 

In this article a group based Simulated Annealing approach is proposed to 

determine the weights corresponding to each feature used in the retrieval 

process. 

1.5.4 Seminars and workshops 

"A novel cased-based reasoning approach to radiotherapy treatment planning" 

presented at the workshop on LANeS Healthcare Modelling PhD Symposium, 

Cardiff University, 18th
_ 20th January, 2009. 

"A non-linear case-based reasoning approach to radiotherapy dose planning" 

presented at the Automated Scheduling, Optimization and Planning Research 
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Group, School of Computer Science, University of Nottingham, 16th October, 

2009. 

"A case-based reasoning approach to dose planning in Radiotherapy" presented 

at the Automated Scheduling, Optimization and Planning Research Group, 

School of Computer Science, University of Nottingham, 3rd July, 2008. 

"A novel case-based reasoning approach to radiotherapy planning" presented at 

the workshop on Radiotherapy Planning and Scheduling, Coventry University, 

27th February, 2008. 
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CHAPTER 2 

Case-Based Reasoning (CBR) 

2.1 Introduction 

Case-Based Reasoning is a knowledge based reasoning paradigm in which new 

problems are solved using the solutions of similar problems that have 

previously been resolved [12-13]. It is influenced by a cognitive model of 

human problem solving techniques. In the cognitive model, humans learn from 

their day-to-day experiences and store the empirical knowledge in the form of 

episodic memory. New problems are compared with the past experience based 

on psychological knowledge [14-15]. Thereafter, the most similar past 

experience is recalled and reused with small modifications according to the 

requirements of new problems. 

2.2 What is Case-Based Reasoning? 

In case-based reasoning, previously solved problems and their solutions are 

stored as cases in a data base known as a case base. For each new problem, 

cases similar to the new case are retrieved from the case base. I f the new 

problem is the same as the extracted case, the solution of the new case is 

directly copied from it; otherwise it is revised using domain knowledge, so that 

the retrieved solution becomes relevant in the context of the new problem. 

Finally, if information gained from the new problem is useful for future 

reasoning then it is stored in the case base for future use. The aforementioned 
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steps make up the basic framework of a vast variety of different CBR 

approaches and are described in this chapter. 

Case-based reasoning has a number of advantages as well as disadvantages 

over other problem solving techniques. The main advantages and 

disadvantages can be summarized as follows: 

The main advantages of the CBR system are: 

i. Case-based reasoning is easy to understand. During reasoning it cites 

actual cases solved in the past. Citing actual cases makes the 

explanation easier. 

ii. Case-based reasoning helps to produce a solution to a new problem 

quickly by avoiding unnecessary time to derive the solution from 

scratch. 

Ill. It can capture ill-defined problems without a complete understanding of 

the complex system and can predict the solution for new problems, 

based on what has been worked in the past. 

IV. Case-based reasoning increases competency over time. It helps the 

reasoner to avoid mistakes by remembering mistakes that have occurred 

in the similar scenarios. 

v. Cases in the case base help the reasoner to focus on the important parts 

of a problem by pointing out important features of a problem. 

VI. It can handle unexpected or missing inputs by assessing their similarity 

to stored cases or by reusing relevant cases. 

VB. It is self-adaptive in nature. New knowledge in the form of new cases, 

faced in real operation, can be incorporated into the case base. 

24 



The main disadvantages of case-based reasoning are: 

1. Case-based reasoning relies only on previously solved cases without 

validation in the new situations [12]. 

ii. Maintenance of the case base is a tedious task. Sometimes it is hard 

to design and develop a good quality case base. 

Ill. Knowledge acquisition (reasoning) is a problem when dealing with 

domains where cases are either unavailable or are only available in 

limited amounts. 

IV. Sometimes it is hard to implement a CBR system in a dynamic 

problem domain. 

v. In case-based reasoning, explanations of the solution are not always 

straightforward as in rule-based systems. Sometimes it is difficult to 

give explanations for all of the reasoning steps. 

2.3 Methodology and Research Issues in CBR 

In the literature, a large number of models have been suggested to address real 

world problems. The detailed description of the basic principle of case-based 

reasoning and its history could be found in the work of Kolonder (1993) [12]. 

This subject field is vast and in this chapter the author will attempt to focus on 

those models and research issues that are relevant only to the application of 

case-based reasoning in radiotherapy dose planning. 

2.3.1 Case-Based Reasoning Framework 

Based on their execution process, case-based reasoning systems can be divided 

into two categories: problem-solving CBR and interpretive CBR [12]. In the 
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problem solving CBR, the solution of the new problem is proposed based on 

the most similar retrieved case(s). It is generally used where solutions cannot 

be determined in advance, such as radiotherapy dose planning problems, 

whereas in interpretive CBR, the case base is used to justify the prescribed 

solution. 

The overall framework of a CBR approach comprises four activities: Retrieve, 

Reuse, Revise and Retain [15]. In the retrieve stage, a case (or cases) which is 

(or are) most similar to the new case is (are) retrieved. In the reuse stage, the 

retrieved case is used to generate a solution for the new case. However, 

sometimes a solution generated by the reuse stage is incomplete or not fit for 

the new case. In this situation, the solution generated in the reuse step has to be 

revised to better fit the new problem and that is referred to as the revise stage. 

It compensates the differences between a retrieved case and a new case. 

Finally, in the retain stage, if the new solution is useful for future problem 

solving then it is stored in the case base for future use. 

2.3.2. Case Representations 

The performance of a CBR system, especially in a complex problem domain, 

depends heavily on case representation. In knowledge based reasoning, the 

decision is usually based on: problem features and how they are linked. 

However, in CBR, the decision is based on the problem features only [12]. 

A case usually consists of two major parts: problem parameters which describe 

the conditions under which similar case(s) should be retrieved and the solution 

to the problem. Each case describes knowledge relevant to a particular problem 
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instance. Cases can be classified according to their characteristics into three 

categories: abstract/ concrete. partial/ complete and related/ isolated [16]. 

Abstract/ Concrete: cases correspond to generalized or concentrated 

infonnation. 

Partial/Complete: is generally used where knowledge is inconsistent or suffers 

from stochastic interference. A case in the case base is divided into different 

sub-units and each sub-unit consists of different knowledge. 

Related/Isolated: cases in the case base may be linked to each other in the fonn 

of a hierarchy or relationship network or are independent from each another. 

The structure of the case affects the retrieval and revise steps of case-based 

reasoning. The accuracy and search time of the CBR system usually increases 

as the number of problem parameters increases. Cases nonnally contain all the 

necessary infonnation so that the system perfonnance is not degraded by the 

presence of erroneous, incomplete, or irrelevant infonnation. ]t is argued by the 

researchers that the search time can be minimized by a good choice of case 

representation. A good case representation must be Predictive. Abstract. 

Concrete. and Useful [12, 17, 18]. 

Predictive: Cases should contain all the infonnation that was taken into 

account in the decision (solution) making process. 

Abstract: stored infonnation should be generic and applicable to all possible 

future problems. 

Concrete: the problem parameters should not be too abstract. A case cannot be 

recognized as being similar to the cases in the case base without extensive 

inference. 

Useful: stored infonnation must be relevant to the problem being solved. 

27 



Cases are usually represented as vectors of attribute value pairs. These 

attributes may have different measurement units with different scales. They can 

be numeric, symbolic, boolean, or object-based. The complexity of the 

structure increases as the complexity of the problem domain increases. Also, 

sometimes information! knowledge collected from decision makers is 

imprecise. To manage the above difficulties in this thesis, a fuzzy membership 

function based representation method is used. 

2.3.3 Retrieval 

When a new problem arrives, a case based system first looks for a good case 

(or cases) in the case base [12]. A good case is the case most similar to the new 

problem and has the potential to make relevant predictions about the new 

problem. The retrieval process generally uses a similarity measure to rank the 

cases in the case base; often the highest ranked case is retrieved for further 

calculation. The success of a CBR system depends primarily on the similarity 

measure calculation. With an efficient similarity measure, we can obtain a 

good ordered list of similar cases. In the literature, many approaches such as 

Nearest Neighbour (NN), k Nearest Neighbour (k-NN), and Induction 

Algorithms based similarity measures have been developed. The choice 

depends heavily on the nature ofthe problem. 

The Nearest Neighbour (NN) similarity measure is generally used for problems 

that can be characterized by feature vectors. Cases are represented as points in 

the feature space. One of the most common nearest neighbour distances used in 

the NN method is: 
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n 

D(cpcR ) = Lsim(f/ ,j,/) (1.1 ) 
;=1 

where, 

n = number of problem features in each case 

sim = distance function 

f/ = value of feature i in the input case c, 

f/ = value of feature i in the retrieved case eR 

The similarity is often calculated using the Euclidian distance between the 

points. 

The NN methods can be extended by assigning weights to the problem 

features. Weights assigned to the problem features in the similarity measure 

represent their relative importance. 

n 

D(c/,cR ) = Lw;simU;' ,//) (1.2) 
;=1 

where, Wj is the weight of feature i. 

Sometimes, for a large data base it is very expensive to compare sequentially 

each and every case in the case base. Zhang et al. [19] proposed an indexing 

based NN method and restricted the search to a subset of the case base. 

However, this approach raises several problems. It usually does not give good 

results in constraint satisfaction problems that typically have a wide range of 

related constraints. In order to overcome the above limitation, Bomer [20] 

proposed a structural similarity measure approach to assess the similarity 

between cases. Firstly, cases are represented by graphs, where problem features 

are represented by nodes and relations between them are denoted by edges. 
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Thereafter, similarity between the graphs is calculated and the most similar 

cases were retrieved. 

For complex systems such as medical diagnosis, sometimes a single retrieved 

case is not sufficient to predict the solution of a new case. Wettschereck et al. 

[21] proposed the k Nearest Neighbour (k-NN) method, retrieved a set of 

nearest cases and used a voting system to determine which case will be passed 

on to the next steps. 

Some CBR systems use induction algorithms such as ID family [22] and AQ 

family [23] for case retrieval. In the induction algorithm, cases in the case base 

are ranked using the decision tree method. The induction algorithm based 

retrieval process is faster but it needs to be adjusted when new cases are added 

to the case base and furthermore it is usually not suitable in dynamic domains. 

Aarnodat and Plaza [25] divided the case retrieval process into two categories: 

syntactical and semantical. In the syntactical method, the similarity measure is 

usually calculated based on the superficial knowledge of the system and is 

generally used in domains where explicit knowledge is difficult to elicit; 

whereas the retrieval process based on the semantic method employs deep and 

complex knowledge to compare feature values including their relative weights. 

In the literature, usually a case most similar to the new case is retrieved for 

future decision making processes. However, sometimes the extraction of one 

similar case may lose important information contained in other similar cases 

[24]. Further, if the case base contains opinions of more than one decision 

maker, there may be a chance that different decision makers have different 

opinions about a solution for a similar situation. Moreover, the existing 

retrieval mechanisms extract a case taking into account the similarity measure. 
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In real life, decision makers sometimes make a trade-off between the different 

decision making parameters. Keeping the above criteria in mind, in this thesis a 

novel group based trade-off method is proposed in Chapter 6. In Chapter 3, 

four cases similar to the new case are retrieved and combined using a modified 

a Dempster-Shafer rule. 

2.3.4 Adaptation 

In case-based reasoning, old solutions are used as an inspiration for new 

problems. However, a new problem is rarely the same as the retrieved most 

similar case and its solution needs to be adapted to fit the new problem. 

Adaptation usually takes into account the prominent differences between a new 

case and the retrieved most similar case. It is the most difficult part of the CBR 

system. It is generally performed in two steps: figuring out what needs to be 

adapted and carrying out the adaptation. 

In the simple problem domain where the difference between the past and the 

current problem is unimportant, adaptation focuses only on the parts of the 

solutions that can be reused for the new problem. In the complex domain, 

adaptation focuses not only on the parts of the solutions that can be reused for 

the new problem, but also on how the difference between the past and the 

current problems will affect this reuse [26]. 

In general, there are two types of adaptation [12]: 

Structural adaptation: adaptation rules are applied directly to the retrieved 

similar cases. 
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Derivational adaptation: in this method, all the algorithms, methods and rules 

used in the past are stored in the memory along with the solution. The stored 

information is further explored in the context of the new problem. 

For a complex problem, a CBR system may need both types of adaptation. 

Usually structural adaptation rules work well to adapt a poorly understood 

problem and derivational adaptation is applicable to problems that are well 

understood [12]. 

Watson and Marir [27] classified adaptation techniques in a more detailed way 

as follows: 

Null Adaptation: A retrieved most similar solution is reused without any 

modification. It is useful for problems involving complex reasoning but having 

simple solutions [28]. 

Parameter Adjustment: is a structural adaptation technique where differences 

between the feature vectors of past and current problems are used to modify the 

retrieved the most similar solution [29]. 

Critic-Based adaptation: rules are generated to identify the problem features 

which are not compatible with the new problem or violate some domain 

constraints. Rules are generally elicited from the domain expert or learnt by 

using expert knowledge [30]. 

Reinstantiation: is used to instantiate features of an old solution with new 

features that must be present in the new solution because they are mentioned in 

the problem description [31]. 

Derivational Rep/ay: is the process of implementing the previously derived 

methods or rules to generate the solution in the new problem instance [32]. 
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Model-Guided Repair: is the process of using a casual model of the problem 

domain to guide the adaptation by repairing elements of the old solutions 

which are infeasible in the current problem [33]. 

Case Based Substitution: uses other cases to suggest appropriate adaptations to 

the current problem [34-36]. 

Adaptation is an important step of case-based reasoning and usually requires a 

lot of domain knowledge. In this thesis knowledge-light adaptation is proposed 

for the case-based reasoning system. 

2.3.5 Maintenance 

The success of a CBR also depends on the technologies used in the reasoning 

process and its maintenance. A good CBR system must be maintained 

intelligently, systematically and automatically. In the literature, most of the 

work in CBR maintenance refers to maintenance of the cases in the case base. 

However, retrieval and adaptation are important steps of the CBR system and 

must be taken into consideration while carrying out the maintenance. 

Smyth [37] has divided CBR maintenance into two categories: efficiency 

directed maintenance and competence directed maintenance. The efficiency 

directed maintenance focuses on the minimisation of computational costs 

associated with retrieval, adaptation and storage of cases in the case base. The 

computational cost depends on the size of the case base. Addition of new case 

or new knowledge in the case base not only increases the success rate of the 

CBR system but also increases its computational cost. A number of methods 

have been developed to determine the saturation point [38-40]. It is the point 

where the addition of more knowledge into the knowledge base increases the 
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computational cost of the system only. The competence directed maintenance 

focuses on the reasoning outcomes and on the quality of the cases in the case 

base. In experiments, it has been found that the size of the case base does not 

provide accurate information about the distribution of cases in the case base in 

terms of features values [41]. The outcome and quality of the CBR system 

depends on the size, density and distribution of the cases in the case base. The 

density and distribution of the cases in the case base can be determined by a 

similarity measure. Some of the cases in the dense region may be redundant 

and have less influence on the reasoning process compared with those in spare 

regions [42]. If cases in the dense region have a large number of different 

solutions, outcomes of the CBR system will be inconsistent. 

2.4 Case-Based Reasoning for Healtbcare Systems 

In recent years, CBR has emerged as a most vibrant and rapidly growing area 

for problem solving in the health domain. The earliest research in this area was 

focused on the modelling of medical expertise, particularly for diagnosis, 

treatment planning and follow up care. However, over the last decade it has 

been successfully implemented for all health sciences applications including 

nursing, human biology, genetics, proteomics and phylogenetics as shown in 

Table 2.1. There are over 250 research articles published in this area which 

focus on the CBR method. It has been observed that one third of the research 

articles were published in the last three to four years. This area is expected to 

grow continuously as healthcare research is growing. 
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Table 2.1 CBR in Medicine 
Problem System name Application domain References 
addressed 
Diagnosis SHRINK Psychiatry [43] 
and decision CASEY Heart failure [44] 
support MEDIC Dyspnoes [45] 
systems BOLERO Pneumonia [46] 

FLORENCE Health care planning [47] 
MNAOMIA Psychiatry [78] 
SCINA Detection of coronary [48] 

heart disease [49] 
CARE-PARTNER Stem cell transplantation [50] 
AUGUSTE Alzheimer's disorders [51 ] 
ExpressionCBR Cancer diagnosis [52] 
Fungi-PAD Object recognition [53] 
KASIMIR Oncology [54] 
Type-I diabetes Breast cancer [55] 
Dermatology Diabetes treatment [56] 
Bronchiolitis Dermatology treatment [57] 
SISAIH Bronchiolitis [58] 
RHENE Fraud detection in [59] 

healthcare 

Classification PROTOS Audiological disorders [60] 
systems MACRAD Image analysis [61 ] 

IMAGECREEK Image analysis [62] 
CTS Image analysis [63] 
PHYLSYST Phylogenetic classification [64] 
GeneCBR Cancer classification [65] 
Hep2-PAD Image classification [66-67] 
ADHD Neuropsychiatric [68] 

Planning ALEXIA Hypertension [69] 
systems ROENTGEN Radiation therapy [70] 

CAMP Daily menu planning [71-72] 
T-IDDM Diabetes treatment [73] 
SIDSTOU Tourette syndrome [74] 
Dempster-Shafer rule Prostate cancer [75] 
based CBR 

Tutoring ICONS Antibiotics therapy for [76] 
systems intensive care 

CADI Cardiac auscultation [77] 
diagnosis and instruction 
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Kolodner and Kolodner [43] proposed SHRINK, a case based system for 

psychiatric diagnosis and treatment. In the developed system, past solved 

psychiatric cases were stored in the case base and demonstrated how they could 

be used in teaching clinical reasoning. Later, Bichindaritz [78] extended the 

SHRINK idea and proposed MAHAOMIA, a CBR system for diagnosing and 

treating psychiatric eating disorders. In the developed system, an electronic 

data base was created to store the past patients' records such as: medical 

history of the patients, environment, symptoms, diseases, prescribed tests and 

treatments procedures. For each new patient or new disease episode, the system 

retrieved and displayed the most similar patients or disease episodes, degree of 

similarities and differences in relation to the current case and prescribed past 

successful treatments. Based on the extracted case it also recommended a 

diagnosis and treatment process for a new patient. 

Bareiss et al. [79] built a CBR medical diagnosis software, PROTOS, to 

diagnose audiological or hearing disorders. The main task of the developed 

software was to classify a new patient into one of the 15 predefined categories 

based on 58 distinct diagnosis features. Koton [45] developed CASEY, case 

based medical diagnosis software to diagnose cardiac patients by comparing 

them with earlier cardiac patients stored in the case base. The similarity 

measure designed by him was based on both quantitative features (like heart 

rate) and qualitative features (like high or low arterial pressure or the presence 

or absence of a particular disease). Diagnosis of a new patient was presented by 

a graph showing the causality among the measures and states of the patient. It 

also demonstrated the comparison between the retrieved past most similar 

cases and the present case. 
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In real life, generally it takes up to two days in a laboratory to analyze the 

bacteria responsible for bacterial infections in a hospital Intensive Care Unit 

(lCU). In order to diagnose the problems quickly, Koton [44] and Heindl et al. 

[80] developed a case-based reasoning system ICONS. In the case base they 

stored all details of past ICU patients, who received antibiotic therapy. When a 

new infection arises, ICONS retrieved the most similar cases from the case 

base based on the following information: location of infection, way in which 

the infection was acquired, and condition of the patient. Based on the retrieved 

similar or prototypical case, it predicted the root cause of the problem and 

potential solution. 

Petot et al. [71] developed CAMP, a CBR system for nutrition planning. The 

main objective of the system was to plan daily menus to meet individual 

nutrition requirements. They stored the list of all available repositories in the 

case base. Thereafter, integrated case-based reasoning and rule based reasoning 

methods were used to meet the multiple design constraints of the recipe. 

Beddoe et al. [81] developed CABAROST for nurse rostering problems. The 

cases in the case base represent previous examples of constraint violations in 

schedules and the repair methods used in the past. The similarity between the 

constraint violations of the new problem and the cases in the case base was 

calculated based on the cases' structural and feature information. Firstly, they 

retrieved the cases identical to the current problem in terms of structural and 

feature information. Thereafter, a memetic algorithm was used to search for 

optimal sequences of repairs suggested by the retrieved cases. 

Berger [70] proposed a CBR system to generate a radiotherapy treatment plan 

for a new patient using the past case (patient) that best matched the geometrical 
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similarity and the treatment constraints but no results were reported about the 

effectiveness ofthe developed system. 

Song et al. [75] proposed a Dempster-Shafer rule based CBR approach for 

prostate cancer dose planning problems. In the developed CBR system, they 

retrieved four cases which were most similar to a new case and combined them 

using the Dempster-Shafer rule to suggest a dose for the treatment. However, if 

the dose limits imposed to the rectum are violated, then simple adaptation rules 

are used to rectify that. With this approach, the dose limits for different volume 

percentages of the rectum were assumed to be fixed. 

Schlaefer and Dieterich [82] proposed a CBR approach to determine the beam 

configuration in robotic radiosurgery for prostate cancer. The role of case 

based reasoning was to propose a range of parameter values that determined 

the beam configuration based on previous treatments. These ranges of 

parameter values were passed to the optimisation technique to determine the 

beam configuration for a new treatment efficiently. 

2.5 Conclusion 

This chapter has described the general framework of case-based reasoning 

approaches. The key issues of the case-based reasoning approach namely case 

representation, retrieval adaptation and case based maintenance, have each 

been described in detail. 

The application of CBR systems to a wider variety of healthcare problems was 

divided into four categories [228]: diagnosis problems, classification problems, 

planning problems and tutoring problems. A detailed description of developed 

decision support systems and their application domain has been given. The use 
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of a CBR system for the problem of radiotherapy dose planning is virtually 

unexplored. Two approaches, that of Berger [70] and Song et al. [75], have 

been cited in the literature. The authors drew positive conclusions about the 

success of the CBR system for dose planning problems but provided little 

insight into the applicability of this approach. 

This thesis therefore attempts to apply many of the lessons learnt from the 

application of CBR approach to healthcare, law, management and finance 

related problems to dose planning in prostate cancer. 
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CHAPTER 3 

The Radiotherapy Planning Problem 

3.1 Introduction 

Cancer is characterised by the abnonnal and uncontrolled growth of cells. It is 

generally diagnosed by Computerized Tomography (CT) scans, Magnetic 

Resonance Imaging (MRI), nuclear medicine scans, biopsy and histopathology 

reports. A CT scan is a computerized (axial) tomography scan which uses a 

series of X-rays to create detailed images of the inside of the body. However, it 

cannot distinguish between nonnal and pathological cells. It can only be 

distinguished by the MRI. Sometimes, to judge the possible involvement of 

metastatic growth, nuclear medicine scans are prescribed by the oncologist. 

The aforementioned tests are diagnostic procedures and do not give conclusive 

evidence of malignant cancer. Biopsy and histopathology report are good ways 

to confinn this. Depending on the type, size, stage and location of the cancer, 

Chemotherapy, Honnonal Therapy, Surgery and Radiotherapy are usually used 

to treat the cancer. In chemotherapy, cancer is treated with drugs called 

antineoplastic drugs. In honnonal therapy, a special type ofhonnone is used to 

kill the cancer cells. The honnone is a special type of chemical released by one 

tissue to influence the physiology of another tissue. In surgery, cancer cells are 

physically removed. Radiotherapy uses X-rays or Gamma rays to kill the 

cancer cells. It is often used to treat all stages of the cancer, or in cases where 

surgery fails. 
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X-rays or Gamma rays used in radiotherapy treatment kill not only the cancer 

cells but also damage the cells through which they traverse. The cells do not 

die immediately, but after weeks or even months. Sometimes cells are 

reproduced before being eliminated from the organ. The rate of recovery of 

normal tissues is higher in comparison with cancer cells The radiation is 

generally delivered in a number of fractions (usually 1.8 to 2 Gy per day, five 

days in a week) over a period of one or several weeks. It allows normal tissues 

to regenerate during the treatment. In the early days of radiotherapy, X-rays 

were used. However, due to a lack of sufficient penetration they are generally 

used for skin cancer and other superficial lesions and avoided in the case of 

deep seated tumours such as prostate cancer. The introduction of megavoltage 

X-ray machines facilitate sufficient penetration to deal with seated tumours. 

Radiotherapy treatment can be divided into three categories, namely external 

beam radiotherapy, brachytherapy or sealed source radiotherapy and systemic 

radioisotope therapy or unsealed source radiotherapy. The division is made 

based on the position of radiation sources used in the treatment. In external 

radiotherapy, radiation is delivered from a source located outside the body. In 

brachytherapy, sealed radioactive material is placed precisely in the area of the 

treatment. In the systemic radioisotope therapy, radioisotopes are placed inside 

the body by infusion or oral ingestion. Further, the external beam radiotherapy 

can be divided into three categories, namely conventional external beam 

radiotherapy, 3-Dimensional Conformal Radiotherapy (3DCRT) and Intensity­

Modulated Radiotherapy Treatment (lMRT). In the conventional external beam 

radiotherapy, rays are delivered via a two-dimensional beam using linear 

accelerator machines. Firstly, a treatment plan is designed and calibrated using 
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a simulator. The simulator is a special type of calibrated diagnostic X-ray 

machine. Thereafter, prescribed radiation is delivered to the patient from 

different directions using a single beam. This technique is very simple and 

reliable. However, it is not applicable to the high-dose treatments that prostate 

cancer requires. The sensitivity of the surrounding organs limits the prescribed 

dose to such an extent that tumour control may not be easily achievable. The 

above-mentioned intricacy of conventional external beam radiotherapy can be 

overcome in the 3-Dimensional Conformal Radiotherapy, where mUltiple 

radiation beams are shaped to fit the profile of the target from the beam's eye 

view. It helps medical physicists to reduce the toxicity of the surrounding 

organs while allowing a higher dose of radiation to the cancer cells. Intensity­

Modulated Radiotherapy (IMRT) is the next generation of 3DCRT, which 

enables a precise conformal radiation dose distribution to the cancer cells by 

controlling the intensity of radiation within a given area. In IMRT, multi-leaf 

collimators are used to modulate the beam, by uncovering specific parts of the 

beam and blocking the remaining parts. It can modulate and shape the beam in 

such a way that the prescribed dose can be delivered even in the concave target 

volumes whilst sparing the other healthy tissues near the cancer cells. The 

levels of this step function provide medical physicists different degrees of 

freedom to achieve the prescribed dose distributions in the body. 

The treatment plans are generally designed by three groups of specialists: 

oncologists, medical physicists and computer scientists/operational researchers. 

Oncologists are doctors who outline the tumour volume and the organs at risk. 

Medical physicists model the deposition of radiation in the volume outlined by 

the oncologist. Operational researchers and computer scientists have an 
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important role in the treatment planning usmg optimisation and artificial 

intelligence techniques to help medical physicists and oncologists to achieve 

the desired goal. 

A treatment plan can be generated by forward planning or by inverse planning. 

In forward planning, the medical physicist enters all treatment parameters such 

as the beam intensity, number of beams and direction of beams into the 

planning software and the dose distribution is calculated. If the dose 

distribution is unacceptable, the task is repeated until a desired dose 

distribution is achieved. This process is based on a trial-and-error process and 

there is no guarantee that the best possible dose distribution will be found. 

Hence, this process is not suitable for complicated anatomical situations. In 

inverse planning, the medical physicists know how much energy is to be 

deposited to tissues and they want to know the optimal/near-optimal 

combination of treatment parameters. IMRT is an inverse planning process 

which enables the oncologist to have better control of the radiation, i.e. limit 

the amount of radiation to be received by cancer cells and normal organs and 

determine the optimal combination of other planning parameters that adhere to 

the prescribed bounds. 

3.2 Issues of Radiotherapy Planning Problems and 

Classification of Problems 

The main goal of the planning process is to kill all the cancer cells without 

impairing the remaining body, particularly the organs lying close to the tumour 

cells. The treatment process includes imaging, treatment planning, plan 

confirmation and treatment. In imaging, the patient is scanned using a eT scan, 

nuclear scans or MRI scans. Thereafter, the oncologist outlines the tumour 
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volume, the Planning Target Volume (PTV) and Organs at Risk (OARs) on 

these images. PTV is an extension of the tumour volume containing tumours 

cells and the surrounding area to which the cancer has spread. Once the tumour 

volume is identified, the medical physicist and oncologist work together and 

produce a treatment plan. The treatment plan specifies the prescribed total 

amount of radiation dose, number, size and shape of radiation beams, number 

of wedges and the configuration and beam intensity profile for each beam. The 

suggested plan is reviewed and confirmed by viewing the Dose Volume 

Histogram (DVH). DVH presents the simulated radiation distribution within a 

volume of interest which would result from a proposed radiation treatment 

plan. The final prescribed plan is passed to the treatment department. The 

suggested radiation is delivered by a linear accelerator with a multi-leaf 

collimator equipped in the head of the treatment unit as shown in Figure 3.1. 

Beams of radiation are generated by a linear accelerator. Once beams are 

formed they travel through the gantry. The gantry of the linear accelerator can 

be rotated around the patient to deliver the radiation from different angles. The 

head of the gantry contains multiple metal leaves which can shape the radiation 

beam by blocking portions of the beam as shown in Figure 3.2. Shaping the 

beam helps to reduce the levels of radiation to the sensitive regions, while 

delivering a higher dose of radiation to the tumorous regions. 
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Figure 3.1 A linear accelerator [83] 

Figure 3.2 A close-up view of multi-leaf collimator [83] 

Many problems in the area of radiotherapy planning can be solved by using 

operational research techniques. A detailed summary of the radiotherapy 

planning problems as reported in the literature is given in Table 3.1. 
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Table 3.1 Issues of the radiotherapy planning problem raised in the 
literature 

Problem addressed I ssues covered References 
Beams configuration Determination of optimal number [84-107] 

of beams, angle between the beams 
and their weights. 

Beams weight and Determination of optimal number [108-112] 
wedges configuration of wedges and their configuration. 
Outline of the Determination of planning target [ 113-128] 
treatment volume and volume, organs at risk and margin, 
movement of organs study of the movement of organs 

during a treatment and 
determination of the exact location 
of organs 

Comparison of Comparative study of different [129-137] 
treatment methods types of radiotherapy treatments. 
Dose planning Determination of an optimal dose [75,138-

plan for different stages of a 152] 
treatment. 

3.2.1 Beams Configuration 

The determination of beams configuration is an important step of the 

radiotherapy planning process. It might be possible to kill all the cancer cells 

with a single beam of radiation. However, the use of a single beam can damage 

the normal cells of the critical organs. It is always necessary to select the 

optimal/near-optimal number of beams and their orientation (angle between the 

beams) so that the prescribed dose can be delivered to the targeted cancer cells, 

while sparing the nearby organs. In traditional radiotherapy, a limited number 

of beams is used and fixed manually by the medical physicists based on their 

past experience. IMRT uses multiple beams, which increases the complexity of 

the treatment plan. Hence, the determination of the optimal beams 

configuration is a difficult and tedious task. A significant body of research to 

determine the optimal values of beams configuration has been described in the 

literature. Pugachev and Xing [86] suggested a Simulated Annealing (SA) 
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approach to determine beam orientation in lMRT planning. Firstly, the quality 

of each single beam of unit intensity in the absence of other beams is calculated 

and stored in beam's-eye-view metrics (BEVD). Thereafter, a SA algorithm 

was employed to search an optimal set of beam orientations, taking into 

account the BEVD scores of different incident beam directions. During the 

calculation of the quality of each possible beam orientation, they did not 

consider any interaction between the beams. Li et at. [84] suggested a Particle 

Swarm optimisation algorithm to determine the beam orientation while taking 

into account the interaction between the beams in lMRT planning for prostate 

and head-and-neck cancer. Mohan et al. [153] proposed a fast Simulated 

Annealing algorithm to determine the number of beams in lMRT for prostrate 

cancer. The aforementioned approaches optimise the number of beams and 

their orientation separately but they are related to each other. As the input of 

one problem is the output of another problem, the solution of one problem 

affects the solution of the other. In order to overcome the above intricacy, 

Schreibmann et at. [87] proposed a hybrid multi-objective evolutionary 

algorithm to determine the optimal number of beams and their orientations 

simultaneously. 

3.2.2 Wedge Configuration 

Wedges are wedge shaped blocks of metal that are used to make the dose more 

uniform over the planning target volume. They can replace missing tissues (e.g. 

air in the path of beam) or lower the dose received by tissues, which are in the 

path of two overlapping beams. The selection of the optimal number of wedges 

and their angles is a time consuming job and is usually determined by trial-and­

error methods. The main objective behind this research is to find out the 
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optimal number of wedges and their configuration in a minimum amount of 

computational time. Jonathan et al. [154] proposed a Simulated Annealing 

based approach to find a better combination of the beam weights and the 

wedge filters in a minimum amount of computational time. In this approach, a 

dose based objective function was formulated for the 3D radiotherapy 

treatment planning process. To make the approach more realistic, Konard and 

Tabbert [155] investigated and developed a fast radiotherapy planning 

algorithm which determines the global optimal combination of wedges, leaf 

positions and the intensities of radiation simultaneously. 

3.2.3 Movement of Organs and Outline of the Treatment Volume 

Initially, the planning target volume (PTV) is outlined and thereafter decisions 

are taken on its margins, to take into account the three-dimensional (3D) intra­

fractional motion of organs and tumours during the treatment. The margin 

depends on the organs near the tumour, the treatment process and information 

about the location of the tumour given in the image guided system. Pankis et aJ. 

[156] have performed an experiment to measure the effects of active breathing 

control on the internal margin within the Planning Target Volume (PTV). In 

the proposed approach a relationship between active breathing control and the 

internal margin was established by sequential studies of lung cancer patients 

suitable for radical radiotherapy treatment. Further, Jin et aJ. [157] investigated 

the selection of beam margins in the lung-cancer stereotactic body 

radiotherapy. They used a Monte Carlo simulation method for systematic and 

quantitative study of the beam margins for the lung cancer patient. However, 

sometime an oncologist is interested in knowing the exact location of the 
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tumour so that a high daily dose can be delivered effectively to the cancer cells. 

Timmerman et at. [158] studied the exact location of tumour, especially the 

tumour that moves with respiration. In the proposed approach, sophisticated 

image guidance and related treatment delivery technologies were developed to 

examine the tumour movement. However, the above approach requires a 

frequent change in the treatment setup. Li et at. [159] proposed a new lung 

IMRT planning algorithm to shape the dose distribution while taking into 

account the movement of the tumour over the breathing cycle. 

3.2.4 Comparison of Treatment Methods 

A radiotherapy treatment can be planned using different methods. Each 

treatment has its own pros and cons. Treatment methods vary from case to 

case. In the literature, a large amount of research has been carried out in 

comparison with different planning methods for different types of cancers. 

Underwood et at. [160] investigated the dosimetric advantages of inverse and 

forward planning in the intensity-modulated radiotherapy process of 

conventional 3D conformal radiotherapy (3D-CRT). Further, Varrkamp et at. 

[161] performed experiments to conduct a comparative study on the forward 

and inverse planning process of IMR T planning for prostate and pelvic nodes 

patients. The research has further been extended by Wu et at. [162] to compare 

the performance of forward and inverse planning in the 3DCRT and IMRT 

planning process. 
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3.2.5 The Dose Planning Problem 

Determination of the radiation dose is an important step of the radiotherapy 

planning process. The medical physicist first defines the different planning 

parameters which include the number of beams to be used, the angle between 

beams, the number of wedges, the wedge angles and then generates a 

Distribution Volume Histogram (DVH). Thereafter, the oncologist prescribes 

the radiation dose so that the tumour cells can be killed without impairing the 

healthy organs, particularly the organs lying close to the tumour cells. The 

healthy organs close by should preferably not be impaired at all by the 

treatment. The oncologist usually looks for a compromise while distributing 

the inevitable dose among the organs. Romeijin et al. [163] proposed a linear 

programming approach to the radiotherapy dose planning problem. The main 

constraints of the developed model were hard bounds on the dose limits on the 

normal and cancer cells, namely a minimal prescribed dose to be irradiated to 

the cancer cells and a maximum tolerance dose to be irradiated to the normal 

cells. However, defining the dose limits of organs at risk a priori is not an easy 

task. Usually, the oncologist makes a trade-off between the risks and the 

benefits of radiation by varying (based on their past experience) the dose limits 

of organs at risk. Aubry et al. [149] proposed a modified Simulated Annealing 

algorithm to resolve a radiotherapy dose planning problem. First, a Pareto set 

of all non-dominated solutions was generated (using modified SA algorithm) 

and ranked by each objective. Thereafter, a Microsoft Excel graphical user 

interface was developed to help the decision maker to select an appropriate 

solution. The above approach can generate a good approximation of the Pareto 

front, but the selection of the best treatment plan is a challenging task. Meyer et 
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al. [147] used an influence diagram based on the Bayesian network to select the 

most appropriate solution from the set of non-dominated solutions of the Pareto 

front for prostate cancer. 

3.3 Existing Approaches 

The methodologies used for radiotherapy planning problems can be classified 

into two categories: optimisation methods and knowledge based methods as 

shown in Table 3.2. The optimisation methods explore a vast variety of 

approaches such as heuristics, meta heuristics, linear and non-linear 

programming, etc., while knowledge based methods include case-based 

reasoning, rule-based reasoning, hierarchical organization of knowledge, etc. 

In experiments, it was found that the integral dose received by a cell is a linear 

function of the amount of energy transmitted along the sub-beams. Olafsson 

and Wright [164] proposed Linear Programming (LP) and Wang et al. [165] 

proposed a Mixed Integer Linear Programming (MILP) formulation of the 

radiotherapy beam configuration problem. However, these methods can 

generate one treatment plan at a time and this force the planners to launch a 

succession of experiments if they need multiple plans or if comparison are 

desired. To overcome the above, Hamacher et al. [166], Hamacher and Kufer 

[167] and Kufer et al. [168] proposed a multicriteria linear programming 

approach and generated Pareto optimal solutions. Each solution represents a 

treatment plan that is optimised with respect to the dose constraints of OARs. 

Thereafter, for each new patient, the oncologist can choose the most 

appropriate plan from set of Pareto optimal solutions. However, sometimes the 

radiation bounces off the cells and scatters into an area where it was not 
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intended and makes the problem non-linear. Cotrutz et al. [141] and Lahanas et 

al. [169] proposed a multi-objective non-linear programming approach to 

model the scattering effect of the radiation. The abovementioned linear or non­

linear approaches need parameters to be fixed before the optimisation. 

Defining the parameters a priori is not an easy task since their value varies 

from case to case. Holder [170] proposed a novel linear model where 

constraints are flexible and which allowed the physician's desire to float during 

the optimisation process. The radiotherapy planning is itself a complex 

problem and the search space is very large. Hence, the aforementioned 

mathematical optimisation model required a large computational time. To 

reduce the computational time, the use of different meta-heuristics has been 

widely studied in the radiotherapy planning literature including Simulated 

Annealing, Genetic Algorithm and Particle Swarm optimisation, etc. A 

summary of the application of different meta-heuristics to the radiotherapy 

planning problem is given in Table 3.2. However, the main goal of all the 

developed optimisation methods is to attain a uniform tumoricidal dose and to 

minimise the side effects of the treatment. It is very hard to develop a 

mathematical model which would judge the success rate and side effects of the 

treatment plan before the treatment. It can only be predicted by the oncologists 

to some extent based on their past experiences. 
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Table 3.2 Methodologies developed in the literature to solve different aspect 
f d' hI' bl o ra lot erapy p, annmg pro ems 

Methodologies Problem addressed References 
Optimisation methods 

Linear and Non-linear Beam configuration fI73-177] 
Programming Dose Planning [ 178-179] 

Beam weight and wedge [180-181 ] 
configuration 

Quadratic programming Beam weight and wedge [183-184] 
configuration 

Simulated Annealing Beam configuration [185-187] 
Dose Planning [188-1901 
Beam weight and wedge [ 191-194] 
configuration 

Genetic Algorithm Beam configuration [195-198] 
Dose Planning [199] 
Beam weight and wedge [200-201] 
configuration 

Ant colony optimisation Beam configuration f841 
Particle swarm Beam configuration [202] 
optimisation 

Knowledge based methods 
Rule based system Dose planning f70,203-204] 
Case-based reasoning Dose planning [75,171] 

Beam configuration {172-205] 

Knowledge based methods do not use mathematical algorithms, but determine 

the plan parameters on the basic of past experiences. They normally employ 

artificial intelligence methods such as rule-based reasoning, case-based 

reasoning or a hierarchical organization of the knowledge. Some knowledge 

based systems use rules to solve a new problem. These rules are designed by 

the decision makers based on their clinical knowledge. Lieber and Bresson 

[171] proposed two types of knowledge based decision support systems for 

breast cancer: a rule based reasoning system and a CBR system. In the first 

approach, decision rules were represented as a hierarchy of classes and for a 

new case appropriate rule was selected by nearest neighbour pattern 

classification technique. In the second approach, decision rules were stored in a 
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case base. For each new case, an appropriate rule was retrieved from the case 

base. If the retrieved rule was not suitable for the new case, knowledge (rules) 

were reformulated to generate a new rule. Berger [70] and Song et al. [75] 

proposed CBR based reasoning approach for radiotherapy planning problems. 

The detailed description of their approaches is given in section 2.4. 

Jagannathan et al. [172] suggested a fuzzy case-based reasoning approach to 

beam configuration problems for head and neck cancer. 

Optimisation methods and knowledge based methods have both merits and 

demerits. To explore the amalgamated features of both methods, Schlaefer and 

Dieterich [205] proposed a novel case-based reasoning approach to determine 

the beam configuration in robotic radiosurgery for prostate cancer. The role of 

case-based reasoning was to propose a range of parameter values that 

determines the beam configuration based on previous treatments. These ranges 

of parameters were passed to the linear optimisation technique to efficiently 

determine the beam configuration for a new treatment. 

3.4 Conclusion 

This chapter has described different aspects of radiotherapy planning problems 

and the existing methods developed over the last 20 years. The literature 

review was divided into two parts: characteristics of the radiotherapy planning 

problems and developed methodologies. 

The issues that were investigated in radiotherapy planning include dose 

planning, beams configuration, configuration of wedges, movement of organs, 

outlining of target volume and comparison of different treatment methods. To 

solve these problems both optimisation and knowledge based methods have 

been developed. However, the formulations of these problems have not taken 
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into account the success rate of the treatment and other real world constraints. 

Usually, based on the past experience, the oncologist or medical physicist 

modifies the plan generated by different methods, to make it more suitable for 

the treatment. 

This thesis attempts to address the dose planning problem for prostate cancer 

while taking into account the experience gained in treating previous patients 

and the success rate of the treatment. The formulated dose planning problem 

and the developed decision support system are described in detail in the 

following chapters. 
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CHAPTER 4 

A Novel Case-Based Reasoning Approach to 

Radiotherapy Planning 

4.1 Introduction 

Prostate cancer dose planning is a complex problem. Usually oncologists spend 

a large amount oftime to determine the optimal combination of doses in phases 

I and 11 of the treatment. Using planning software, medical physicists first 

generate the optimall near-optimal combination of different planning 

parameters such as the number of beams to be used, the angle between beams, 

the number of wedges, the wedge angles, and a Distribution Volume 

Histogram (DVH) is then generated. Based on past experience, the oncologist 

then makes a trade-off between the risk and the benefit of the radiation, i.e. 

delivering a high dose to the cancer cells while minimizing the side effects of 

the treatment, and then prescribes a dose plan. The main goal of the existing 

software is to attain a uniform tumoricidal dose and to minimize the side 

effects of the treatment. However, existing software overlook the success rate 

of treatment. It is very difficult to develop a mathematical model which would 

judge the success rate of the plan before the treatment. However, this can be 

predicted to some extent from past experiences. For prostate cancer, the 

success rate of the treatment is determined by the Prostate Specific Antigen 

(PSA) value, measured two years after the treatment. The lower the value of 

PSA, the better the long-term prospects of the patient remaining disease free. 

Also, clinical parameters used in the dose planning process are not equally 
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important. It is generally fixed by the system with the input from the 

oncologists based on their past experience. 

In this chapter, a novel case-based reasoning approach is proposed to capture 

the expertise and experience of an oncologist encountered while treating 

pervious patients. In normal case-based reasoning a decision is generally made 

based on the retrieved case, most similar to the new case. This practice may 

lead to loss of important information contained in the other similar case. 

Oncologists usually combine two or more similar decisions while prescribing a 

dose plan to a new patient. Furthermore, sometimes the retrieved most similar 

case has a higher similarity value but lower success rate compared with the 

second most similar case in the case base. In this chapter, a modified 

Dempster-Shafer rule is used to make a trade-off between the similarity and the 

success rate of the treatment. Four most similar cases are retrieved from the 

case base and then fused to generate a combined decision. Furthermore, in 

order to mimic the continuous learning characteristic of oncologists, the 

weights corresponding to each feature used in the retrieval process are updated 

automatically using a Simulated Annealing algorithm. 

4. 2 Prostate Cancer Dose Planning 

The main aim of the prostate cancer treatment is to determine the optimal dose 

to be delivered while making a trade-off between the benefit and risk of the 

proposed radiation. It is beneficial to deliver a high enough dose to fight the 

cancer cells, while the risk refers to the side effects of the treatment. Prostate 

cancer is generally treated in two phases as shown in Figure 4.1. In phase I, 

both the prostate and the healthy surrounding tissues having microscopic (tiny) 

cancer cells are treated; while in phase II only the prostate is exposed to 
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radiation. The dose delivery in phases I and 11 of the treatment in the 

Nottingham City Hospital is usually an even number in the range of 46-64 Gy 

and 16-24 Gy, respectively. The total prescribed dose is in the range of 70-76 

Gy and the dose is delivered in fractions, each fraction being 2 Gy usually. 

Wedge 
~ , , 

~ MicroSCOPi: cancer 

Bladder 

..... . 
...... . 

. ...... 

Phase I of treatment 
Phase 11 of treatment 

Figure 4.1 Prostate cancer dose planning 
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Examination Cl CT scan! Cl Outline planning 
of patient MRI scan target volume 

D 
Review of \=J Dose in I and \=J Dose Volume 

the dose plan II phase Histogram 

Phase I: Prostate and part of the healthy organs near to the prostate 
(bladder and rectum) having microscopic cancer are treated. 

Phase 11: Only prostate cancer is treated. 

Figure 4.2 Prostate cancer dose planning process 

In the Nottingham City Hospital, radiotherapy process is performed in several 

steps as shown in Figure 4.2. A patient is first examined by the oncologist and 

subsequently appropriate tests such as PSA, Biopsy, a Computed Tomography 

(CT) scan or Magnetic Resonance Imaging (MRI) are carried out (by the 

pathologist) and a patient note is prepared. Thereafter, the patient note is 

passed on to the planning department. In the planning department, the cancer 

volume and the organs at risk are outlined by the oncologist so that the region 

that contains the cancer and microscopic cancer can be distinguished from 

other healthy organs near to the prostate. Afterward, the oncologist defines the 

following planning parameters: the number of beams, the angle between 

beams, the number of wedges and the wedge angles and generates a 

Distribution Volume Histogram (OVH) for phases I and phase 11 of the 

treatment. DVH is a simulated radiation distribution within a volume of interest 

of a patient which would result from a proposed radiation treatment plan. It is 
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related to the potential risk to the rectum. These parameters describe the degree 

of radiation received by different volume percentages of the rectum. For 

example, let us assume the DVH states that 66% of the rectum will receive 

50% of radiation. This means that if the dose prescribed by the oncologist in 

phase I of the treatment is 60 Gy, then the amount of radiation received by 66% 

of the rectum will be 30 Gy. The next task is to decide the dose in phases I and 

11 of the treatment so that the tumour cells can be killed without impairing the 

remaining healthy body, particularly the organs close to the tumour cells i.e. 

the rectum and the bladder. The healthy organs lying close by should 

preferably not be impaired at all by the treatment. However, the oncologist 

usually looks for a compromise of distributing the inevitable dose among the 

organs. The rectum is a more sensitive organ compared to the bladder and is 

the primary concern of oncologists while deciding the dose plan. The 

maximum dose limit for different volume percentages of the rectum, 

recommended by the UK standard, is shown in Table 4.1, and it has to be 

respected by oncologists when prescribing a dose plan. Ideally, the dose 

received by the different volume percentage of the rectum should be within the 

constraints as shown in Table 4.1. However, in some cases, this condition may 

be sacrificed to some extent so that an adequate dose can be imparted to the 

cancer cells. Oncologists generally use following five features: Clinical Stage, 

Gleason Score, Prostate Specific Antigen (PSA) value, and DVH in phases I 

and 1I of treatment to generate a good plan for each patient. The meaning of 

these parameters is given in the glossary in Appendix A. 
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Table 4.1 Total dose limits for the rectum 

Rectum Volume Total dose limits (Gy) 
66% 45 
50% 55 
25% 65 
10% 70 

4.3 Solution Methodology 

In the developed CBR system for dose planning the cases which are similar to 

the new case are retrieved using a fuzzy similarity measure. A modified 

Dempster-Shafer rule is applied to fuse the information from the retrieved 

cases and generate a solution as shown in Figure 4.3. A detailed description of 

the proposed methodology is given in the remaining part of this section. 

Case Base New Patient 

000 D 
888 q Retrieval 

888 
888 Similarity 

Measure 

Weight Learning 
Mechanism 

D 
Modified 

Dempster Shafer 

Adaptation 

D 
Treatment Plan 
for New Patient 

Figure 4.3 Architecture of the proposed CBR system 
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4.3.1 Representation of a Case 

The five features described in the previous section related to the stage of the 

cancer (Clinical Stage(l = 1), Gleason score(l = 2), PSA(l = 3» and geometry 

of the prostate (DVH in phase I (l = 4), and phase 11 (l = 5) of 66%,50%,25% 

and 10% of rectum volume) are generally used to retrieve the most similar 

cases from the case base. These features are given in different measurement 

units, which have different scales. The stage of the cancer is of an ordinal type 

and can be divided in seven different categories {Tla, Tlb, TIc, T2a, T2b, 

T3a, T3b}, the value of the Gleason Score is an integer number from [I, I 0] 

interval, while PSA and DVH are real numbers from [1, 40] and [0,1] 

respectively. In order to use features of different data types and measurement 

units together in the similarity measure, we need to normalise them. However, 

it would not be easy to define a preferably linear mapping in the [0, I] interval. 

Instead, we define fuzzy sets low, medium and high for each feature. They are 

normalised fuzzy sets whose membership functions take a value from the [0, I] 

interval. In addition, fuzzy sets enable expression of the preference of the 

oncologist. An example of the membership functions of fuzzy sets low, 

medium and high Gleason score is given in Figure 4.4. The parameters of these 

membership functions were set in collaboration with the oncologist in the 

Nottingham City Hospital. 
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Gleason Score 

Figure 4.4 Membership function of fuzzy sets low, medium and high Gleason 

score. 

Each attribute I (Gleason score (l = 2), PSA (l = 3) ) of case c p is represented 

by a triplet ( v pi! ' V pl2 , V p13)' where v plm' m = 1,2,3 are membership degrees of 

attribute I in the corresponding fuzzy sets low (m = I ), medium (m = 2) and 

high (m = 3). 

4.3.2 Retrieval Process 

Only patients with similar clinical stage are relevant to the generation of the 

dose plan for a new patient. The case base is therefore first filtered based on the 

clinical stage of the cases. According to the stage of the cancer, the clinical 

stage can be sorted in the following order: {Tla, Tlb, TIc, T2a, T2b, T3a, 

T3b}. The retrieval process first selects the cases whose value of the clinical 

stage is either the same as in the new case or the same as the adjacent element 

in the ordered list. Thereafter, four most similar cases are retrieved from the 

filtered case base using the nearest neighbour similarity measure. 

63 



Given two cases c p and C q' the distance between them, d I (c p , C q) which 

takes into consideration the fuzzy membership values of Gleason score (I = 2) 

and PSA (I = 3) is calculated using the formula: 

(4.1) 

where, w, is the weight of attribute I and it is determined by using the 

Simulated Annealing method as described in section 4.4. 

The distance between two cases C p and C q' which takes into consideration 

numerical values of the DVH, for phases I and II is d 2 (C p' cq ), is defined as: 

(4.2) 

where, U pik and Uqik are the dose values received in phase I (l = 4), phase 

II(l = 5)), by 66% (k = 1),50% (k = 2),25% (k = 3) and 10% (k = 4) of the 

rectum volume in cases C p and C q' respectively, and w, is the weight in phase 

lof the treatment and it is determined by using the Simulated Annealing 

method as described in section 4.4. 

The similarity between cases C p and C q denoted by s( C p ,C q) is defined as: 

(4.3) 
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Thereafter, a modified Dempster-Shafer rule is applied to fuse the information 

from the retrieved cases and generate a unique dose plan. 

4.3.3 A Novel Fusion Technique Based on the Dempster-Shafer rule 

Usually, CBR systems retrieve only a single most similar case from the case 

base. However, this practice may lead to the loss of important information 

contained in other similar cases. Also, if the case base contains cases 

recommended by more than one oncologist, the suggested doses of radiation 

for similar patients may be different. Consequently, in this chapter, more than 

one similar case is retrieved from the case base and they are fused to generate a 

combined decision. Different fusion techniques such as the Dempster-Shafer 

rule [206-209] are reported in the literature for combining information obtained 

from different independent sources. We employ a modified Dempster-Shafer 

rule. 

The Dempster-Shafer rule is based on the mathematical theory of evidence. 

The theory of evidence assigns a basic probability m: 2 x ~ [0,1] (X is the 

universal set) to the elements of the power set 2x (contains all hypotheses). 

Basic probability is the probability that supports a particular hypothesis on the 

basis of all available evidences. For example, if meA) is the basic probability 

of hypothesis A, then meA) represents the probability that hypothesis A is 

true. The basic probability has two characteristics. 

m(0) = 0 

Lm(A)=1 
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The Dempster rule of combination aggregates basic probabilities based on 

independent evidences. The belief function, mu (C), supported by two 

independent events m1 and m2 , is calculated using formula (4.4): 

(4.4) 

where, ml (A) and m1 (B) are the basic probabilities of hypothesis A and B, 

respectively. Belief function, mu (C), represents the degree of belief that 

supports hypothesis C. The combined belief function sums the products of the 

all basic probabilities of hypothesis which supports hypothesis C, while the 

denominator takes into consideration the conflict between them. 

In the context of fusion of cases, the basic probability, denoted by m] (Cl)' 

takes into consideration all relevant and available evidence that supports the 

selection of a particular case Cl • We define the basic probability as a similarity 

measure, s(cnew'c l ). between case Cl and the new case cnt'\\" The necessary 

condition of applying the Dempster-Shafer rule is that the information to be 

fused should be obtained from independent sources. This condition is satisfied 

because in our case base, cases are independent. The outcome of the fusion 

process of cases Cl and c2 is either case Cl or case c2 , or combination of cases 

Cl and c2 (i.e. CI,2)' In the fusion of cases Cl and c2 ' the power set (contains 

all possible outcome of the fusion) is 2x = {CI ,C2 ,C1,J. The Dempster-Shafer 

rule combines two independent cases and calculates the agreement between 

them. The belief function, denoted by mu (C), (C being cl' C 2 or C I.2) takes 
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into consideration all sets of cases and the intersection of these cases IS 

considered as decision C. It is calculated using the modified fusion rule: 

L wAm) (A) w Bm 2 (B) 
m) ., (C) = ---:;A:.:...n:.:;.B==C:=-______ _ 

,- 1- LW Am) (A) wBm 2 (B) 
(4.5) 

AnB =0 

where, W A and W B are weights assigned to hypotheses A and B, 

respectively. In the fusion of cases Cl and C2 , weights W A and W B are defined 

to be the success rates of dose plans proposed in Cl and c2 ' respectively. The 

original Dempster-Shafer rule does not assign weights to decisions during the 

fusion process. In order to give cases a different importance in the fusion 

process, we assign weights to cases corresponding to their success rates, i.e. the 

PSA value, which is stored in the case base, measured 2 years after the 

treatment. During the fusion process, decisions having better success rates are 

given more importance than decisions having worse success rates. In order to 

have normalised weights, the PSA values are mapped into a [0, I] interval as 

presented in Figure 4.5. The mapping is defined in consultation with the 

oncologist. The smaller the PSA value, the higher the weight assigned to the 

corresponding case. 
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Figure 4.5 Mapping of PSA values to corresponding weiglJts 

The architecture of the proposed fusion technique is shown in Figure 4.6. As 

mentioned above, the outcome of the Dempster-Shafer rule (fusion of cases Cl 

and c2 ) is either case cl' c2 or combination of cases Cl and c2 . If the outcome 

of the fusion process is a combination of two dose plans then the suggested 

dose plan will be the average of the recommended doses in these two plans. 
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Step 1 
Fusion of cases 

Cl and c2 

Step 2 
Fusion of cases 

C3 and C4 

Step 3 
Fusion between outcome of 

Step 1 and Step 2 

Figure 4.6 Architecture of the proposed fusion technique 

An application of the Dempster-Shafer rule to radiotherapy dose planning 

problem is illustrated in Table 4.2 and Figure 4.7. In this example, Cl' C2' c3 

and C4 are the most similar four cases to Cnew which are retrieved from the case 

base (using formula (4.3», and are arranged in a decreasing order of their 

similarity to C new' The value of similarity measures 

by the cases are shown in the table. The order in which cases are fused is 

important and can affect the outcome of the fusion process. Hence, in this 

thesis, the fusion is performed in the following order. In the first step, two most 
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similar cases Cl and cz , are fused. In the second step. the second pair of cases 

c3 and c4 ' are fused. Finally, in the last step, the fusion is performed between 

the outcomes of step one and step two as shown in Figure 4.7. The fusion of 

the first pair of cases, Cl and cz' is shown in Table 4.3. Belief probability is 

calculated using expression (4.5). The belief probability of Cl' ml,2 (Cl)' is 

larger than both the belief probability of C2 ' ml•2 (c 2 ), and the belief 

probability of the combination of Cl and c2 ' ml,2 (CI•2 ). Hence, the outcome of 

the fusion process is case Cl' Thereafter, the fusion of the second pair of cases 

c3 and c4 is performed. The outcome of the second fusion process is a 

combination of cases c3 and C 4' because the values of the belief probability of 

C3 ' mu (c3 ) and C4 , ml•2 (c4 ), are equal, as shown in Table 4.4. Hence, in 

order to break the tie, the outcome of the fusion is considered as a combination 

of c3 and C4 ' which leads to a new dose plan denoted by Cd ( as shown in 

Table 4.5). The Dempster-Shafer rule is applied again to fuse Cl and Cd' as 

shown in Table 4.5. The final outcome is a dose plan with 62 Gy and 10 Gy of 

radiation in phases I and 11 of the treatment, respectively. 
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Four cases most similar to new case 

(C~,ru.8;8;"Of8Ym'M=1 

S(Cntw'Ct ) = 0.920; Dose plan: 48 Gy+24 Gy 

s(cntw 'c2 ) =0.913; Dose plan: 50Gy+24 Gy 

s(cntw 'c3 ) = 0.904; Dose plan: 60Gy+l 0 Gy 

s(cntw ,c4 )= 0.899; Dose plan: 64Gy+l0 Gy 

Step 1 Step 2 
Fusion of cases Cl and C2 : Fusion of cases Cl and c2 : 

Outcome of the fusion is Cl 

(Table 4.2 and 4.3) 

Step 3 

Outcome of the fusion is 
combination of C3 and 

c3 denoted by Cd' 

(Table 4.2 and 4.4) 

Fusion of cases Cl and Cd: 

Outcome of the fusion iscd 

(Table 4.2 and 4.5) 
Final dose plan: 62 Gy+ 1 OGY 

Figure 4.7 Flow chart of fusion of four cases 
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Table 4.2 Example of a fusion of four cases 

Fusion of cases Cl and c2 

S(Cnew'CI ) = 0.920 
Final PSA=0.92 
we l =0.71 
Dose plan: 
48 Gy+24 Gy 

mu (c))= 0.075 

~.2(C2)= 0.072 

mu (Cl ,c2)= 0.006 

S(Cnew 'C2) =0.913 
Final PSA=0.85I 
we2=0.75 
Dose plan: 
50Gy+24 Gy 

Outcome of the fusion isc). 

s(cnell"c) = 0.920 
Final PSA=0.92 
we) =0.71 
Dose plan: 48 Gy+24 Gy 

Fusion of cases cJ and c4 

C~ 

S(Cne ... ,C3 ) = 0.904 
Final PSA=0.5 
we3 =0.94 

Dose plan: 
60Gy+l0 Gy 

mu (Cl) =0.1089 

mu (c4 )=0.1 089 

mu (c3.c4 )=0.011 

S(C new ,C4 )= 0.899 

Final PSA=0.3 
we4 =1.00 
Dose plan: 
64Gy+10 Gy 

·Outcome of the fusion is a 
combination of c3 and CJ denoted 

bycd • 

s(cnew.cd) =(0.904+0.899)/2=0.9015 
Final PSA=(0.5+0.3)/2=0.4 
wed =1.00 

Dose plan: {«60+64)/2=62 Gy), 
«(10+10)/2=10 Gy) 
Dose plan: 62Gy+ 1 OGy 

mu (cl )= 0.13378 

ml •2(cd )=0.14995 

~.2(Cl'Cd)= 0.01401 

Final dose plan: 62 Gy+ 10 Gy 

Where, we; = final PSA value of case C; 

·Ifthe outcome of the fusion process is a combination of two dose plans then the 
suggested dose plan will be the average of the recommended doses in these two 
plans. 
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Table 4.3 Fusion of cases Cl and C2 

m2 (c2 ) = s(cnew 'c2 ) 

= 0.913 
m2 we2 = 0.75 

~ (Cl) = S(Cne\\,' Cl) 

=0.92 
wel = 0.71 

welml (Cl )we2m2 (c2) 
=0.4472 

ml (Cl' c2 ) = ml (CI.2) = 
I-s(cnew 'CI ) = 0.08 

wel + we, 
wel •2 = 2· 

=0.73 

=0.0399 

m2 (c2 ,cl )= m2 (cl.2) 

= I-s(cnew 'c2 ) 

wel ml (Cl )wel.2 m 2 (CI•2 ) wel.2ml (CI.2 }wel.2m2 (CI,2) 

=0.087 

wel +we2 wel2 = . 2 

=0.73 

= 0.041484 

The outcome of the fusion process is Cl' 

=0.0037 
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Table 4.4 Fusion of cases c, and C4 

m2 (c4 ) = s{cnew ,c4 ) 

=0.899 
m2 we4 = 1.00 

m2 (C4,C3) = m2 (C3,4) 
= 1- s{cnew ' c4 ) = 0.101 

we, +we4 we34 = . 
. 2 

=0.97 

m\ (C3) = s{cnew , C3) 
= 0.90448 
we, = 0.904 

we3mj (c3 )we4m2 (c4 ) 

=0.764338 

we3mj (c3 )we3.4m2 (C3.4 ) 

= 0.08329 

we3.4mj (C,.4 )we4m2 ((4) 

=0.08329 

we3,4m\ (c3,4 )we3,4m2 (C3,4) 
=0.00908 

The outcome of the fusion process is a combination of c3 and c4 • 
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Table 4.5 Fusion of Cl andcd 

m2(cd )= s(cnew'cd ) 

=0.9015 
wed = 1.00 

m2 (Cd ,Cl) = m2(cl•d ) 

= l-s(cnew'Cd ) 

=0.0985 

wel + wed 
wei.d = 2 

= 0.855 

ml (c.) = S(Cnew • Cl) 

=0.92 
wel = 0.71 

welml(cl )wedm2(cd) 

=0.5889 

= 0.05501 

where, Cd =outcome of a combination of C3 and C 4 • 

ml(cl,cd)= ml (C I.d) 

= l-s(cn ..... ,CJ= 0.08 

_ wel + wed -0855 
we1.d - 2 -. 

wel.dml (C I.d }wedm2 (Cd) 

=0.06166 

=0.00576 

wed = combined weight of C 3 andc4 ; S(Cne", ,Cd )= combined similarity of C3 andc4 • 

The outcome of the fusion process is Cd. 
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4.3.4 Repair/ Adaptation Mechanism 

The aim of the Dempster-Shafer rule is to generate a unique dose plan such that 

the dose received by different volume percentages of the rectum is within the 

recommended dose limits. Although the dose plans used in the Dempster­

Shafer rule are feasible plans, sometimes the final dose plan generated by 

Dempster-Shafer rule is not suitable for the new patient, i.e. it exceeds some of 

the total dose limits set for the rectum. For example, cases Cl and c2 having 

dose plan (46 Gy and 24 Gy) and (50 Gy+20 Gy), respectively, are used in the 

fusion as shown in Table 4.6. If the outcome of the fusion process is a 

combination of cases Cl and c2 • the dose plan prescribed by the Dempster-

Shafer rule is 48 Gy and 22 Gy in phases I and 11, respectively. The doses 

received by 66% of the rectum in cases Cl and C 2 are 38.02 Gy and 36.1 Gy, 

respectively, while the dose received by 66 % of the rectum in the new case is 

46.72 Gy, which is more than the recommended dose limit 45 Gy. If the dose 

plan suggested by the Dempster-Shafer rule is not fit for the new patient, a 

repair mechanism is applied to generate a feasible plan. The repair mechanism 

was designed using the criteria suggested by the oncologist. The proposed 

repair mechanism is carried out through the following steps: 

Step 1: Decrease the dose of phase 11 by 2 Gy. I f the dose plan is feasible go to 

step 7 else go to step 2. 

Step 2: Increase the dose of phase II by 2 Gy and decrease the dose of phase I 

by 2 Gy . If the dose plan is feasible go to step 7 else go to step 3. 

Step 3: Decrease the dose of phase 11 by 4 Gy and increase the dose of phase I 

by 2 Gy. If the dose plan is feasible go to step 7 else go to step 4. 
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Step 4: Increase the dose of phase 11 by 2 Gy and decrease the dose of phase I 

by 2 Gy. If the dose plan is feasible go to step 7 else go to step 5. 

Step 5: Increase the current dose of phase 11 by 2 Gy and decrease the current 

dose of phase I by 2 Gy. If the dose plan is feasible go to step 7 else go 

to step 6. 

Step 6: Consult the oncologist for a better dose plan. 

Step 7: Recommend the dose plan suggested by the proposed repaIr 

mechanism. 

The oncologist has to decide to store the new case in the case base or not for 

future use. 

Table 4.6 An example of calculation of dose limit after the fusion 

Case DVH value of 66 % of Dose Plan 
the rectum 

Phase I Phase II Phase I Phase II 

Cl 0.55 0.53 46Gy 24Gy 

c2 
0.53 0.48 50 Gy 20Gy 

cn ... · 
0.68 0.64 (46+50)/2=48 (24+20)/2=22 

Gy Gv 
Dose plan prescribed by the Dempster-Shafer rule: 48 Gy + 22 Gy 

Dose received by 66% of the rectum for case Cl : 

0.55 x 46+0.53 x 24= 38.02 Gy 

Dose received by 66% of the rectum for case Cl: 

0.53 x 50+0.48 x 20= 36.1 Gy 

Dose received by 66% of the rectum for case C ntK. : 

0.68 x 48+0.64 x 22=46.72 Gy 
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The main aim of the oncologist is to maximise the total dose, but also to 

respect the total dose limits of the organs at risk. Dose plan having a higher 

dose in phase I of the treatment is considered to be better than the dose plan 

having a smaller dose. For example, dose plan 52 Gy +20 Gy is a better dose 

plan compared to the dose plan 50 Gy+22 Gy. Further, the amount of dose in 

each phase of the treatment must be an even integer number. That is why the 

repair mechanism tries first to decrease the dose in phase 11 by 2 Gy. However, 

if the new dose plan still violates some dose constraints given in Table 4.1 then 

the dose given in phase I of the treatment is decreased by 2 Gy. Also, in order 

to respect the decision of the oncologist, the dose corresponding to each phase 

of the treatment decreases by up to 4 Gy maximum. If the new dose plan 

generated after decreasing 4 Gy of radiation in each phase of the treatment is 

still an infeasible solution, a further decrease would modify the proposed 

decision too much. So, in that case, the oncologist is consulted to generate a 

better dose plan. 

To demonstrate the proposed adaptation mechanism in a lucid way, an 

illustrative example is constructed and shown in Figure 4.8. In this example, 

the final outcome of the Dempster-Shafer rule is a dose plan having 62 Gy and 

10 Gy of radiation in phases I and II of the treatment, respectively. This is not a 

feasible dose plan because the dose received by 10% of the rectum is 56.2 Gy 

which is larger than the prescribed maximum dose limit (55 Gy). Hence, in 

order to generate a feasible dose plan, the repair mechanism is performed. The 

dose corresponding to phase 11 of the treatment is decreased by 2 Gy, which 

leads to the new feasible dose plan 62 Gy and 8 Gy. 
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Dose plan suggested by the Dempster-Shafer rule 
(62Gy+ 1 OGy} 

D 
The dose received by 10% of the rectum is 56.02 Gy 

(maximum dose limit =55 Gy) 

D 
Proposed ~ Feasible ~ Modification 
dose plan dose plan 

D-D 
Modification of dose plan: 

New dose plan: 62Gy +8 Gy 
Dose received by 10% of the rectum is: 54.26 Gy 

(feasible dose plan) 

Figure 4.8 A demonstration of the repair mechanism 

4.4 A Simulated Annealing Based Dynamic Feature Weight 

Learning Mechanism 

The weights of different clinical parameters in dose planning are highly 

subjective, and are generally fixed by the system with input from the 

oncologists based on their past experience. However, manual selection of the 

weights is a difficult task and can cause unwanted bias in the retrieval process. 

In the literature a significant body of research has been carried out to 

investigate the weight setting in the k-NN method including Neural Network 

Approaches [212-213], Reinforcement Learning [214], a Genetic Algorithm 

[215], a Domain Knowledge from Experts [12], a Machine Learning Technique 
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[81], a Hybrid Genetic algorithm [217], a Data Compression and a Local 

Metrics [218], and a Decision Tree [219], etc. In this chapter, we investigate an 

automated weighting method based on a Simulated Annealing approach. After 

each run of the CBR system, the Simulated Annealing algorithm searches for 

such a combination of weights for which the difference between the doses 

suggested by the system and the doses recommended by the extracted similar 

cases are minimal. 

Simulated Annealing (SA) is a stochastic search optimisation technique 

proposed by Kirkpatrick et al. [220]. In Simulated Annealing, solutions are 

iteratively generated by a random displacement of bits from feasible solutions. 

In order to avoid local optima, this process accepts not only those solutions 

which improve the objective function, but also the ones which do not, by using 

a transition probability. The transition probability depends on the change in the 

objective function value between the current and a new solution and the 

annealing temperature [221]. 

The main features of Simulated Annealing that affect its performance are: the 

definition of the neighbourhood of a solution, the annealing schedule and the 

transition probability. In this chapter, real encoding of solutions is used in 

which each bit represents the value of the corresponding feature weight. In 

each iteration, a solution from the neighbourhood of the current solution is 

generated by randomly choosing a bit in the string (i.e. a weight) and replacing 

it by a random number from [0.1,1] interval. The lower and upper limits of 

weights are designed following the guidance given by the oncologist. The 

weights are then normalised (each bit divided by the sum of all bits in the 

string), so that their sum is equal to 1. An annealing schedule controls the 
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initial temperature, the final temperature and the rate of cooling. The cooling 

schedule that is used is shown in formula (4.6). 

T = 1'0 
r (l + In r) 

(4.6) 

where, To is the initial temperature, ~ is the temperature after r iterations and 

r is the allowed number of iterations. The proposed cooling schedule is 

initiated with a high temperature. This results in a high probability of 

acceptance of worse solutions and thus enables the exploration of a wide search 

space. However, as the search progresses and the temperature declines towards 

the end, it is less likely to move towards a worse neighbour solution. 

The transition probability helps the algorithm to escape from local optima. For 

a candidate neighbour solution, which is inferior compared to the current 

solution, the transition probability, TP. is calculated by using formula (4.7): 

where, 

-11[ 

TP=e T 

!if = If(soleand) - f(soleurr)1 

f(solcand )=objective function value of the candidate solution solcand. 

f(solcurr)= objective function value of the current solution soleurr. 

(4.7) 

The developed weights learning mechanism uses the leave-one-out strategy, 

namely, cases are taken out from the case base one by one. For each of them, 

similar cases are retrieved and the difference between the doses in these cases 
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is calculated in both phases I and 11. The question arises as to how many cases 

one should retrieve from the case base in this learning process. We can set a 

threshold value and retrieve the cases with a similarity measure higher than that 

value or the retrieval process can retrieve a fixed number of cases. However, 

the determination of the threshold value is very difficult because it can be any 

real number from [0,1] and therefore we opt for the later option. The sum of 

the differences obtained for all retrieved cases presents the quality of a 

solution. Therefore, the objective function defined in Simulated Annealing, 

which has to be minimised, is: 

N S 

f(so/} = f(wl' W 2 '· .. , wJ= LL ID; -D~m si + ID;' -D;:m si (4.8) 
n=1 s=1 

where, 

sol = (wl , W2 , ... , WL ) is the list of weights w" 1 = 1,2, ... , L associated with L 

features which are used in the similarity measure, (Le. the distance given 

in formula (1) and (2)), L =6, 

D~ , D~' are the doses for phases I and II respectively prescribed by case C n 

taken out from the case base. 

D;im s,D::m s are the doses for phases I and 11, respectively, prescribed by the 

similar case Cs retrieved from the case base using the list of weights 

(Wl' w2 , ... , wJ in the similarity measure. 

S is the number of cases similar to case cn retrieved from the case base. 

N is the number of cases in the case base. 
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4.5 Experimental Results 

In order to demonstrate the effectiveness and robustness of the proposed 

methodology, we use the collected anonymised patient records obtained from 

Nottingham City Hospital. The software system was coded in Visual C++ and 

run on an Intel PC with Pentium IV CPU at 1.86 GHz. 

At the present stage of the research, we have 71 different cases in our case 

base. The leave-one-out strategy is used to evaluate the performance of the 

system, flow chart given in Figure 4.9. Each one of the 71 cases is taken out 

from the case base and treated as a new case. Dose plan for the new case is 

calculated using the proposed methodology and compared with the dose plan 

suggested by the oncologists. The evaluation of the proposed plans is made by 

using criteria defined by the oncologist; namely if there is incongruity between 

the two plans (dose plan generated by the proposed method and dose plan 

prescribed by the oncologist), the decision which is better is made using the 

following two criteria: 

(a) If the total sum of doses in phases I and II of the plans are different and the 

dose received by the different volume percentages of the rectum are within the 

limits in both plans or violated up to the same extent, then the quality of the 

plan is judged based on the 5 years Progression Free Probability value. The 

higher the dose, the higher the 5 years Progression Free Probability. The plan 

with a higher value of the 5 years Progression Free Probability is considered to 

be better. The 5 years Progression Free Probability is the probability of 

remaining disease free after 5 years of the treatment. 
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N= number of cases in the case base: 
Success =0: 
n=1 

C n is taken out from the case base and 

treated as a new case. The dose plan is 
calculated using the proposed methodology 

Add case cn in case base; 

n=n+} 

Success 
Success rate (%) = x 100 

N 

Yes 

Figure 4.9 Flow chart of the leave-one-out strategy 
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(b) If the total sum of doses in phases I and 11 of the plans is the same and the 

dose received by different volume percentages of the rectum is (or doses are) 

within the limits in both plans or violated up to the same extent, then the 

quality of the plan is judged based on the dose in phase I of the treatment. The 

plan having a higher amount of dose in phase I is better. For example, a dose 

plan 54 Gy and 20 Gy in phase I and phase H, respectively, is a better than a 

dose plan 50 Gy and 24 Gy. 

If the proposed dose plan violates the limits imposed on the rectum differently 

compared to the originally stored dose plan, then it is not considered to be a 

better plan. 

First experiments are carried out to determine the appropriate number of cases 

to be retrieved and fused by using Dempster-Shafer rule. Using the described 

leave-one-out strategy it is found that the success rate of the proposed 

algorithm increases continuously up to four cases and thereafter it becomes 

constant as shown in Figure 4.10. 

100 
___ I • • • 'of- 80 

/ • .= 
v 60 
~ ... 
fIl 40 fIl 
V 
U u 
:3 20 rJ) 

0 
2 3 4 5 5 6 

Number of cases retrieved 

Figure 4.10 Success rate of the CBR system with different numbers of 

retrieved cases 
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Parameter setting is a time-consuming task which is crucial for any Simulated 

Annealing application. The parameters for Simulated Annealing are the 

maximum number of iterations (r), the initial temperature (7;). the initial 

solution and stopping condition. Stopping condition describes the situation 

when solution is frozen i.e. the value has not changed for several iterations. It 

could be defined in different ways. For instance, a simple stopping condition 

can be a limited number of iterations or a limit set on the temperature [229]. 

In this thesis, the first condition is selected; Simulated Annealing will be 

stopped when there is no significant improvement during the last several 

iterations. Following the general guidelines available in the literature and 

combining them in the preliminary experiments, we have obtained the 

following configuration for Simulated Annealing: maximum number of 

iterations r = 50 (in experiments, it was found that there was no significant 

improvement after the 50th iteration, as shown in Figure 4.11), initial 

temperature To = 300 and the initial solution includes equal weights to each 

feature. 

Using the leave-one-out strategy it is found that the success rate of the CBR 

system with the Simulated Annealing weight learning mechanism, 85.91 %, 

outperforms the CBR system with fixed equal weights, which is 83.09%. More 

precisely, the CBR system with the learning mechanism proposed in 52 out of 

71 cases the same dose plan as suggested by the oncologist while in 9 cases, it 

was even better. In the rest of the 10 cases, dose plans suggested by the 

proposed method are different compared to the originally stored dose plan. 

Further experiments are performed to investigate how many cases should be 

retrieved during the weight learning process (formula (4.8». Note that in the 
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weight learning process the fusion process is not employed, and therefore we 

do not employ the Dempster-Shafer rule. Instead here the retrieved cases are 

used to define the weights of the features. In the experiments, it is also found 

that the success rate of the simulated annealing system which retrieves only 

one similar case (formula (4.8) S =1), 84.50 %, outperforms the approach in 

which four most similar cases (formula (4.8) S =4) are retrieved, which is 

85.91 %. The final combination of weights (weight vector) obtained by the 

Simulated Annealing learning mechanism is given in Table 4.7. 

Table 4.7 Weights obtained by the Simulated Annealing based weight 
learning mechanism 

Clinical parameters Weight obtained by Simulated 
Annealing 

Gleason Score 0.27 

PSA 0.10 

DVH phase I 0.31 

DVH phase II 0.32 

The convergence trend of the Simulated Annealing based weight learning 

mechanism (with (S=I» is shown in Figure 4.11. It is observed that Simulated 

Annealing converges towards a better combination of weights in 50 iterations. 
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Figure 4.11 Convergence trend of the Simulated Annealing based weight 

learning mechanism 

4.6 Conclusion 

In this chapter, a novel case-based reasonmg approach is proposed to 

radiotherapy dose planning for prostate cancer. Research carried out in 

radiotherapy dose planning usually focuses on the trade-otT between the risk 

and the benefit of the radiation and overlooks the success rate of treatments 

("make the patient well" criterion). In this chapter, an attempt has been made to 

incorporate the success rate of a treatment and trade-otT between the risk and 

the benefit of radiation, simultaneously. The proposed CBR system is also 

enriched by a Simulated Annealing feature weights learning mechanism and a 

data fusion concept based on Dempster-Shafer rule. 

For each new patient, four cases most similar to a new case are retrieved and 

combined using the modified Dempster-Shafer rule to suggest a dose for the 

treatment. In the standard Dempster-Shafer rule, cases are given equal 
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importance. In the modified Dempster-Shafer rule, weights are assigned to the 

cases according to their success rates. For prostate cancer the success rate of 

the treatment is determined by the Prostate Specific Antigen (PSA) value, 

measured two years after the treatment. During the fusion process cases having 

better success rates are given more importance than cases having worse success 

rates. In order to mimic the continuous learning process of oncologists. the 

weights corresponding to each feature used in the retrieval process are updated 

automatically each time after a treatment plan is generated for a new patient 

using the Simulated Annealing feature weight learning mechanism. Finally, if 

information gained from the new case is useful then it is stored in the case base 

for future use. 

The developed algorithm was applied on data sets obtained from the 

Nottingham City Hospital. Computational experiments reveal the effectiveness 

of the proposed methodology. The algorithm not only captures the expertise 

and experience of the oncologist but also generates better solutions. Adaptation 

is an important step of CBR system and usually requires detailed knowledge of 

the problem domain. A Knowledge-Light adaptation is proposed in the next 

chapter. 
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CHAPTER 5 

A Knowledge-Light Adaptation in Case-Based 

Reasoning for Radiotherapy Planning 

5.1 Introduction 

Radiotherapy dose planning is the process of determining the amount of dose 

to be delivered in the treatment. The main goal of the oncologist is to make a 

trade-off between the risk and the benefit of radiation i.e. to deliver a high 

tumoricidal dose to the cancerous region and low enough radiation to the 

surrounding healthy tissues so that they can maintain their functionality. In 

Chapter 4, a CBR system to determine the dose in phases I and Il of the 

treatment is described. In the developed CBR system, four cases most similar 

to a new case are retrieved and combined using the Dempster-Shafer rule to 

suggest a dose for the treatment. If the dose limits imposed to the rectum are 

violated, then simple adaptation rules are used to rectifY that. In that approach. 

the dose limits on different volume percentages of the rectum were assumed to 

be fixed. However, in the real world, in order to fight cancer cells better. the 

oncologist makes a trade-off between the risk and benefit of radiation and 

looks beyond the prescribed dose limits. 

Adaptation of retrieved solution is a difficult process and it needs 

comprehensive knowledge of the problem domain and the task. Simple 

adaptation rule (as described in Chapter 4) works correctly in linear problem 

domains only i.e. for problems that can be represented by linear models. 
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Complexity of adaptation process increases with the complexity of problem 

domain. Highly complex non-linear problems require the addition of explicit 

adaptation knowledge. The effect of different planning parameters on the dose 

limits with different volume percentages of the rectum is not uniform; therefore 

it is considered to be a non-linear problem. 

In addition, in Chapter 4, if there was an incongruity between the dose plans 

suggested by the CBR system and that prescribed by the oncologist, then the 

quality of a plan was judged by using the 5 years Progression Free Probability. 

which refers to the probability that a patient will not have cancer cells 5 years 

after the treatment (the patient is considered to be cured). However, in real life. 

the oncologist usually also takes into account the 5 years Progression Free 

Probability while making the trade-off between the benefit and risk of 

prescribed radiation. To address these issues, in this chapter a knowledge-light 

nonlinear case-based reasoning approach will be described. 

Table 5.1 An example of the nonlinear nature of the 
radiotherapy planning problem 

First pair of cases 

Gleason Dose in Dose in 
PSA 

score phase I phase II 

7 11.8 46 24 

8 11.9 60 10 

Second pair of cases 

6 9.7 46 24 

7 9.8 46 24 
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5.2 Non-Linearity of the Dose Planning Problem 

As mentioned in Chapter 4, oncologists generally use the following parameters 

to recommend the dose, to be delivered to the patient: clinical parameters, Dose 

Volume Histogram (DVH) and success rate of the treatment. The influence of 

each dose planning parameter on the solution is not linear throughout its range 

of values. For example, in Table 5.1, two cases are shown with Gleason Score 

and PSA values which correspond to real world patients. It can be seen that an 

increase of the Gleason Score by 1 from 7 to 8 and the Prostate Specific 

Antigen (PSA) by 0.1 from 11.8 to 11.9 affects the recommended dose 

differently than the same increase of the Gleason Score from 6 to 7 and the 

PSA from 9.7 to 9.8. Also, the rate of change ofa solution is not uniform with 

the change in input parameters. For example, an increase in Gleason Score 

from 6 to 7 does not necessarily impact the dose in the same ratio as its 

increase from 6 to 8 as shown in Table 5.2. Furthermore, there may be 

interaction between different clinical parameters. For example, an effect of 

change in the Gleason Score may vary depending on the change in PSA. 

Table 5.2 An example of the non-uniform gradient nature of the 
radiotherapy planning problem 

First pair of cases 
Gleason 

PSA 
Dose in Dose in 

score phase 1 phase 1I 
6 11.8 46 24 
7 11.8 46 24 

Second pair of cases 
6 11.8 46 24 
8 11.8 60 10 
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5.3 Knowledge-Light Adaptation in Case-Based Reasoning 

In order to solve a new problem, a case most similar to the new case is 

retrieved from the case-base. If the new case is exactly the same as the 

extracted case, the proposed solution is directly copied from the similar case; 

otherwise it is adapted to match the requirements of the new case. Adaptation 

of a retrieved solution is a difficult task which takes into account the 

differences between the retrieved case and the new case and applies domain 

knowledge or rules to suggest a solution for the new case. The complexity of 

the adaptation process increases with the complexity of the problem domain. In 

recent years, an intensive research has been carried out to develop different 

types of adaptation methods. 

Hanney and Keane [222] proposed a domain knowledge based adaptation 

method for house price problems. They first calculated the feature differences 

that exist between the cases in the case base. Thereafter, they examined how 

these dissimilarities are related to the differences in the case solutions. Based 

on this analysis they generated C-rules and F-rules. C-rules are the basic 

adaptation rules that associate the change in the case feature values with 

solution changes. For each C-rule, F rules were generated. F-rules calculate the 

frequency of groups of feature value differences. There may be a chance that 

two pair of cases having the same feature differences may have more than one 

consequent change in the solution. In this case, rules associated with the same 

feature difference were considered to be duplicates. To reduce the number of 

rules retrieved, a threshold value was set and the only rules with similarity 

value higher than the threshold value were retrieved for the adaptation process. 
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Craw et al. [223] created adaptation rules by considering feature difference 

vectors of the cases in the case base. They used a 'leave-one-out strategy' to 

generate the adaptation rules. Each one of the cases was taken out from the 

case base and treated as a new case. The case most similar to the new case was 

extracted. If there was incongruity between the solutions suggested by the 

extracted most similar case and the prescribed solution of the target case, then 

an adaptation rule was generated and arranged in the form of a decision tree. 

The top node of the decision tree represents the difference between the 

parameter values and the leaf nodes predict the adaptation rule. For each new 

case, a difference vector between the parameters of the new case and the most 

similar case was calculated and a suitable rule was selected for adaptation. 

The positive aspects of the case difference based adaptation methods are that it 

utilises adaptation knowledge easily generated from the case base and is easily 

understood. However, it suffers from one major drawback: it will only work 

correctly in linear domains, i.e. domains that can be represented by a linear 

model. To resolve the problem caused by non-linearity within the problem 

domain, Jarmulak et al. [224] proposed a learning adaptation knowledge 

method. The method was based on the assumption of local linearity around the 

query and limited the search to this region of the domain space only. However, 

the restriction imposed to the search space does not take into account the 

individual characteristics of difference in the given domain. To overcome the 

difficulty caused by the above assumption, McDonnell and Cunningham [225] 

proposed three knowledge-light methods of adaptation: adaptation in which 

cases difference and gradients are considered separately; adaptation method 

where cases difference and gradients are combined and form a scalar; and case 
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difference based adaptation which is an adaptation method in which cases 

difference and gradients are considered as a vector. Here, the gradient is 

defined as the rate of change of the output with respect to the input parameters. 

The first method is a basic method which is based on local linear regression 

and the other three approaches are extensions of it. The method, in which cases 

difference and gradients are considered as a vector, was assessed to be the best 

general-purpose method and it works well in most problem domains. In this 

chapter, we explore two of the proposed methods in our radiotherapy planning 

problem: the basic adaptation method which is based on local linear regression 

and one of its extensions, the adaptation method, which combines case 

differences and gradients in a vector. In the next sub-sections, first we will 

describe the different components of knowledge-light adaptation approach i.e. 

similarity measure, case difference vector and gradient vector; thereafter we 

will investigate the basic steps of adaptation. 

5.3.1 Similarity Measure 

In Chapter 4, the similarity between cases c p and cq is measured in two steps. 

First, the distances between the fuzzy membership values of Clinical 

Stage(/=l), Gleason Score (/=2) and PSA (/=3) of cases cp and cq in the 

corresponding fuzzy sets is calculated using formula (4. t). Second. the 

distance, d2 (c
P
'cq ), between two cases cp and cq takes into consideration 

DVH of the rectum in phases I and II of the treatment is calculated using 

formula (4.2). Finally, the overall similarity s(c ,c ) between cases c and C 
p q p q 

is calculated using formula (4.3). 

95 



As mentioned in the introduction section. in dose planning the oncologists 

takes into account not only the previously treated patients but also the 5 years 

Progression Free Probability of the proposed dose plans. It gives the 

probability for a patient to remain disease free after 5 years of treatment. It is 

calculated by using the values of the Clinical Stage. PSA. Gleason Score and 

the prescribed total dose. Higher the value of the 5 years Progression Free 

Probability, the lower the chance ofreoccurrence of the cancer. In this chapter, 

similarity measure and the 5 years Progression Free Probability are combined 

as follows: 

(5.1 ) 

where, pf is the 5 years Progression Free Probability of case C • 
q q 

The overall trade-off function which takes into account the similarity measure, 

the 5 years Progression Free Probability and the success rate of the treatment 

between cases cp and cq is defined as: 

(5.2) 

where, sr q is the normalized value of the success rate of the treatment of case 

Cq measured 2 years after the treatment (explained in Section 4.3.3. 

Figure 4.3). 
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5.3.2 Cases Difference Vector 

The case difference vector which takes into account the fuzzy membership 

values of feature I, Clinical Stage (I = 1), Gleason Score (I = 2) and PSA 

(5.3) 

where, v plm and vq1m are membership degrees of feature I in the fuzzy sets 

low (m = 1), medium (m:::; 2) and high (m = 3) in cases cp and cq , 

respectively. 

The case difference vector between cases cp and cq , fl.1k(Cp'Cq ), which takes 

into consideration DVH of phase I (l = 4) and phase II (I = 5) of 66% (k = I) , 

50% (k = 2),25% (k = 3) and 10% (k = 4) of the rectum volume is calculated 

using the following formula: 

(5.4) 

where, and k = 1,2,3,4 are DVH values of 

66%, 50%, 25%, and 10% of the rectum volume In cases C p and cq , 

respectively. 

Hence, difference vector of cases cp and cq is defined using formula (5.3) and 

(5.4» as: 

97 



This vector consists of II elements. 

5.3.3 Adaptation Method Based on Local Linear Regression 

This case-based reasoning approach operates under the premise that similar 

cases also have similar solutions. The case base is searched for such a pair of 

cases which have similar difference between their feature values as that of the 

new case and the retrieved case similar to the new case. The case difference 

vector of the retrieved pair of cases is then used to set the dose limits for 

different volume percentages of rectum in the new case. 

The steps of the local linear regression approach are given below: 

Step 1: A case cnewsim' most similar to Cne\!' with respect to the similarity 

measure given in formula (4.3) is retrieved from the case base. The cases 

difference vector ~(cn"w,cn.wsim) is calculated using formula (5.5). 

Step 2: List all possible pairs of cases Cl and c2 ' where Cl and c2 are any two 

cases in the case base excluding cnewsim and calculate the difference between 

their features ~(CI,C2) using formula (5.5) . Note that the order of cases in the 

pair is important, i.e. the pair Cl' C2 is different from the pair C2 ' Cl' 

Step 3: Calculate similarity between vectors (~(CpC2) and ~(Cnell'sim,Cnew»' 

siml , using formula (4.3), where~(cpc2) and .!\(cnewsim,cnew) are differences 

between the parameters of cases Cl and c 2 ' and cnewsim and ene\\" respectively, 

and are calculated using formula (5.5); Select such a pair of cases Cl and c2 

from the list generated in Step 2 so that siml is maximum. 
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Step 4: The dose limits to be set in the new case cnew are calculated based on 

the differences in the dose limits of cases Cl and c2 as shown in formula (5.6). 

(5.6) 

where, d k 
'

d. k' d " d
e2 

• , .. , k = 1,2,3,4 are dose limits of new . neWSlm. . Cl'" A 

66%, 50%, 25%, and \0% of the rectum volume in cases Cnew,Cnewsim' Cl and 

C2 , respectively. 

For example, the calculated dose limits of 66%, 50%, 25% and 10% of the 

rectum volume of a new case using formula (5.6), are 45.7 Gy , 54.1 Gy,65.7 

Gy and 72.7 Gy, respectively, as shown in Table 5.3. However, the calculated 

dose limit of 50% of the rectum is smaller than the prescribed maximum dose 

limit (55 Gy). If the calculated dose limit of any percentage of the rectum 

volume is smaller than the prescribed maximum limit given in Table 4.1, it is 

modified and set to the prescribed corresponding maximum dose limit. Hence, 

the final suggested dose limits of the new case are 45.7 Gy , 55 Gy, 65.7 Gy, 

72.7 Gy, as shown in Table 5.3. 

Step 5: The recommended doses for phase I (D~ new) and phase 11 (D~I new) 

of the treatment are calculated by solving the linear inequalities shown in 

formula (5.7). 

where, 

DP1 new XUnewlk +DPII new xUnewllk:S; d newk ' } 

24:S; DP1 :s; 64 

8:S; DPII :s; 24 

DP1 new and DPII new must be even numbers 

Unewlk' U newll k , k = 1,2,3,4 

(5.7) 

are DVH values of 

66%, 50%, 25% and \0% of the rectum volume in case cnew in phases I and 
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II of the treatment, respectively. This ensures that the dose limits suggested in 

step 4 are satisfied. 

Finally, if the new problem is useful for future reasoning then it is stored in the 

case base for future use. 

Table 5.3 An example ofthe calculation of dose limits dnfw, I; , 

k = 1,2,3,4 

Case 66% 50% 25% 10% 

csimnew 45.0 55.3 65.8 72.3 

Cl 45.5 56.3 65.4 70.9 

C2 46.2 55.1 65.3 71.3 

dnew, I =45.0-(45.5-46.2)=45.7 Gy 

dnew, 2 =55.3-(55.3-55.1)=54.1 Gy 

dnew, 3 =65.8-(65.4-65.3)=65.7 Gy 

dne1l'.k =72.3-(70.9-71.3)=72.7 Gy 

Suggested dose limit of66 % ofrectum= 45.7 Gy 
Suggested dose limit of 50 % ofrectum= 55.0 Gy 
Suggested dose limit of25 % ofrectum= 65.7 Gy 
Suggested dose limit of 10 % ofrectum= 72.7 Gy 

S.3.4 Adaptation Method Which Combines Cases Difference and 

Gradients in a Vector 

Radiotherapy dose planning is a non-linear problem. As explained in Section 

5.2, the influence of the dose planning parameters is not uniform on the output. 

In this section, an adaptation method, which takes into account case difference 

vector and gradients of the cases in the case base, is used (an extension to the 

previous described adaptation method based on local linear regression). It 

searches for a case in the case base that has the same gradient as the new case. 

The gradient is defined as the rate of change of output with respect to a 

problem feature. The gradient of a simple mathematical function 
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ay ay ay 
g(/)="1 = (-,-, ... ,-) oat 002 oaL 

(5.8) 

where, f is the mathematical relationship among features a), a2 • a., , ... , a Land 

Y is the value of function f. 

In the radiotherapy planning problem, features of interest are clinical stage, 

Gleason Score, PSA, and DVH values, but function I that will relate them to 

the dose limits set for different percentages of the rectum volume is not known. 

Hence, it is difficult to calculate the gradient. However, if we assume some 

degree of local linearity in the problem domain, it can be calculated as follows: 

The gradient of case c p' g pi (c p)' which takes into consideration Clinical 

Stage (l = 1), Gleason Score (l = 2) , and PSA Cl = 3) can be expressed as: 

{ 

3 4 (d . -d ..)} L L P" psrm" 

m-I k-\ V -v 
(c ) = - - plm psimlm I = 1 2 3 

gpl p 12 " , (5.9) 

where, d pk' d psimk' k=1,2,3,4 are dose I~mits of 66%(k = I), 50%(k = 2), 

25% (k = 3) and 1O%(k = 4) of the rectum volume in cases cp and cpsim' 

respectively, 

V plm ' V psimlm , m = 1,2,3 are membership degrees of feature I in the 

corresponding fuzzy sets low (m = 1), medium (m = 2) and high (m = 3) of 

cases C p and C psim ,respectively. 
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The gradient of case c p ,g plk (c p)' which takes into consideration DVH of 

phase (/ = 4) and phase 11 (I = 5)of 

66%(k = 1), 50%(k = 2), 25% (k = 3) and 10%(k = 4) of rectum is calculated 

using formula (5.10). 

I ) _ d pk - d psimk 
gplk \Cp -

U plk - U psimlk 

(5.10) 

where, d pk' d psimk are dose limits of 66%(k = I), 50%(k = 2), 

25% (k = 3) and 10% (k = 4) of the rectum volume in cases c p and C psim' 

respectively. 

U plk ' upsimlk are DVH values of phase I (/=4) and phase II (/=5) of the 

treatment of 66%(k = 1), 50%(k = 2), 25%(k = 3) and lO%(k = 4) of the 

rectum volume in cases C p and C psim respectively. 

Hence, the gradient vector of case c pis: 

(5.11 ) 

For example, the gradient of case Cl which takes into consideration the DVH 

value of phase I of the treatment is shown in Table 5.4. 
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Table 5.4 An example of the calculation of the gradient in phase I of the 

treatment 

DVH value in phase I of treatment Dose Plan 

Case 66% 50% 25% 10% Phase I Phase 

II 

Cl 0.55 0.70 0.99 0.92 46 24 

Clsim 0.64 0.88 0.90 1.00 54 16 

Gradient of66% of the rectum of case Cl is: (46-54)/(0.55-0.64) = 88.88 

Gradient of50% of the rectum of case Cl is: (46-54)/(0.70-0.88) = 44.44 

Gradient of 25% of the rectum of case Cl is: (46-54)/(0.99-90) = -88.88 

Gradient of 10% of the rectum of case Cl is: (46-54)1(0.92-1.00) = 100 

The steps of the method which combines the cases difference and the gradient 

in a vector are given below and illustrated in Figure 5.1. 

Step 1: Case Cnewsim' the most similar to the new case, c new ' is retrieved from the 

case base, using formula (4.3). The cases difference vector ll(cn~w,cnewsim) is 

calculated using formula (5.5). 

Step 2: List all possible pairs of cases Cl and c2 ' where Cl and c2 are any two 

cases in the case base excluding cnewsim and calculate the difference between 

their features ll(CI,C2 ) using formula (5.5) . Note that the order of cases in the 

pair is important, i.e. the pair Cl' C2 is different from the pair c 2 ' Cl. 

Step 3: Calculate similarity between vectors (ll( Cl' c 2 ) and ll( C nelVsim' C new) ), 

siml , using formula (4.3), wherell(cl'c2 ) and ll(cnewsim,cnew) are differences 
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between the parameters of cases Cl and c z ' and cnell'sim and Cnel1" respectively, 

and are calculated using formula (5.5); 

Calculate similarity between vectors g(cnews;m) and g(Cz) , simz' where 

g(cnewsim) and g(cz) are gradients of cases cnewsim and c z ' respectively, and are 

calculated using formula (5.11). 

Select such a pair of cases Cl and c2 from the list generated in Step 2 so that 

the sum of similarities siml and sim2 is maximum. Note that the order of cases 

is important, i.e. the pair Cl' C2 is different from the pair C2 ' Cl' 

Step 4: A trade-off between the benefit and risk i.e. the extent of violation of 

the maximum prescribed dose limits, shown in Table 4.1, of the rectum for new 

case c new is calculated using cases Cl ' c2 and cnewsim so that the difference in 

the dose limits of the extracted cases Cl and c2 is the same as of the cnelVsim and 

Cnew (formula (5.6». If the calculated dose limits of any percentage of the 

rectum are smaller than the prescribed maximum dose limit given in Table 4.1, 

it will be modified and set to the prescribed corresponding maximum dose limit 

as explained in step 4 of section 5.3.3. 

Step 5: Calculate the dose for phase I (D~ new) and phase II (DPII new ) of the 

treatment as explained in step 5 of the method based on local linear regression 

in section 5.3.3. 

Finally, the new case IS stored in the case base if it is useful for future 

reasoning. 

104 



Case Base 

D 

Retrieval 
(Trade-oft) 

-D-
C"ewsim 

-D-
• Calculate difference between the features of 

Cnewsim and Cne", : ~(Cnewsim,cne\l') 
(formula (5.5)) 

• Calculate gradient of cnewsim: g(Cnewsim) 

(formula (5.11)) 

D 
• Calculate difference 

between the features of q 
objective = minimise (sim l + sim2 ) 

sim l : Similarity between ~(CI,C2) 

and ~(c newsim . C new) 

Cl and c2 : A(cl'c2 ) 

(formula (5.5)) 
• Calculate gradient of Cl: 

g(cl ) (formula (5.11)) 

(formula (4.3)) 
sim2 : Similarity between g(cnewsim) 

and g(cl ) 

(formula (4.3)) 

Calculate dose limits of different % of the rectum (formula (5.6)) 

D 
Calculate doses for phases I and 11 of the treatment (formula (5.7)) 

Figure 5.1 Flow chart of the adaptation method which combines differences 
case and the gradient in a vector 
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5.4 An Illustrative Example 

To illustrate the execution process of the developed CBR system, a simple 

example is considered in this section. Table 5.5 presents a real patient record 

collected from the Nottingham City Hospital (some pieces of information are 

omitted because they do not play any role in the reasoning). The input data are: 

stage of the cancer, clinical stage, PSA value and DVH value in phases I and 11 

of the treatment. A trade-off between the similarity measure, the 5 years 

Progression Free Probability and success rate of the treatment is made (formula 

(5.2)) and the case cnewsim the most similar to the new patient Cnel1' is retrieved. 

The feature values of the retrieved similar case are given in Table 5.6 and the 

case difference L\(cnew,cnewsim) and gradient g(cnewsim) vectors are calculated 

using formula (5.5) and (5.11), respectively. Thereafter, two cases cland c2 

presented in Table 5.7 and Table 5.8, respectively, are retrieved from the case 

base such that the sum of the similarity between the vectors L\(cl'c2) and 

Ll(Cnew,Cnewsim) and g(cnewsim) and g(cl ) is minimum. A trade-off between 

benefit and risk is made and the dose limits for different volume percentages of 

the rectum are calculated based on the difference in dose limits of the selected 

cases cnewsim' Cl and c 2 • The calculated dose limits for different volume 

percentages of the rectum are shown in Table 5.9. The calculated dose limit of 

10% of the rectum is 69.44 Gy which is smaller than the prescribed maximum 

dose limits which is 70 Gy. The modified dose limits of 66%, 50%, 25% and 

10% of the rectum are 49.98 Gy, 55.06 Gy, 68.12 Gy, 70.00 Gy respectively. 

Subsequently, the doses for phases I and 11 of the treatment are calculated using 

formula (5.7). The calculated doses for phases I and II of the treatment are 46 

Gy and 24 Gy, respectively. 
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Table 5.5. Case cnell' 

Clinical stage 
Gleason 

PSA 
score 

TIc 8 16.0 
DVH ofphase I 

66% 50% 125% 10% 
69 88 1 98 100 

DVH of phase Il 
66% 50%125% 10% 

51 60 1 96 100 

Table 5.6. Case cnewsim 

Clinical stage 
Gleason 

PSA 
score 

T2b 9 25.7 
DVH of phase I 

66% 50% 25% 10% 
68 90 98 99 

DVH of phase 11 
66% 50% 25% 10% 

51 53 95 98 
(Dose Plan: 54Gy+16Gv) Dose limits of the rectum (Gy) 

66% 50% 25% 10% 
45.00 57.08 68.12 70.00 

Table 5.7. Case Cl 

Clinical stage Gleason score PSA 
TIc 7 17.3 

DVH of phase I 
66% 1 50% 25% 10% 
81 1 95 101 103 

DVH of phase 11 
66% 1 50% 25% 10% 
53 I 62 98 102 

(Dose Plan: 46Gy+24Gy) Dose limits of the rectum (Gy) 
66% 1 50% 25% 10% 
45.00 1 58.58 69.98 71.86 
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Table 5.8. Case C2 

Clinical stage Gleason score PSA 
T2a 6 18.2 

DVH of phase I 
66% 50% 25% 10% 

81 96 101 101 
DVH of phase 11 

66% 50% 25% 10% 
53 60 98 99 

(Dose Plan: 46G +24Gy) Dose limits of the rectum (Gy) 
66% 50% 25% 10% 
49.98 58.56 69.98 70.20 

Table 5.9. Calculation of dose limits dnew•k ' k = 1, 2, 3, 4 

Case 66% 50% 25% 10% 

csimnew 45.00 57.08 68.12 70.00 

Cl 45.00 58.58 69.98 71.86 

c 2 49.98 58.56 69.98 70.20 

dnew J=45.00-(45.00-49.98)=49.98 Gy 

d n<'w.2 =57.08-(58.58-58.56)=55.06 Gy 

d n<'w.3 =68.12-(69.98-69.98)=68.12 Gy 

d n<'w.4 =70.00-(71.86-70.20)=68.34 Gy 

Suggested dose limit of66 % of the rectum= 49.98 Gy 
Suggested dose limit of 50 % ofthe rectum= 55.06 Gy 
Suggested dose limit of25 % of the rectum= 68.12 Gy 
Suggested dose limit of 10 % of the rectum= 70.00 Gy 

5.5 Experimental Results 

To evaluate the performance of the developed CBR system and to compare it 

with the previously developed CBR systems (Chapter 4) extensive experiments 

were performed on the anonymised patient records collected (71 cases) in the 
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Nottingham City Hospital as mentioned in Chapter 4. 

The leave-one-out strategy is used to evaluate the performance of the system as 

described in Chapter 4. The dose plan is calculated using the proposed 

methodology and compared with the dose plan suggested by the oncologists. 

The evaluation of the proposed plans is made by using criteria defined by the 

oncologist as described in Chapter 4. 

The proposed algorithm is firstly compared with our previous approach 

(described in chapter 4) which does not take into consideration the success rate 

and the 5 years Progression Free Probability in the similarity measure. The 

comparative results are shown in Table 5.10. The new CBR system clearly 

outperforms the previous approach, namely its success rate is higher and it 

generates better plans (compared to the plan suggested by the oncologist) for a 

larger number of patients. Also it is compared with the local regression based 

case-based reasoning approach. The developed knowledge-light adaptation 

method which combines cases difference and gradients achieves the best 

results and will be used in the further experiments. The success rate of the 

system is 88.73 %; in 40 cases the dose plans suggested by the proposed 

methodology is the same as that of the oncologist, while in 23 cases it is even 

better. More precisely, in 8 among 23 cases it generates a dose plan having 

better the 5 years Progression Free Probability while still not violating the 

imposed dose limits of the rectum or violating up to the same extent as that of 

the plan prescribed by the oncologist. In the rest of the 8 cases, dose plans 

suggested by the proposed method are different compared to the originally 

stored dose plan. 

109 



Table 5.10 Results of the proposed methodology compared with the other 

methods 

Methodology CBR system based CBR based on CBR 

on Dempster-Shafer local regression* combines 

rule (chapter 4) cases 

difference and 

gradients in a 

vector* 

Success rate 81.69 80.28 88.73 

(%) 

Number of 6 16 23 

cases having 

better dose 

plan 

*Takes mto account the 5 years ProgressIOn Free Probability and success 

rate of the treatment in the trade-off 

In order to investigate the importance of the 5 years Progression Free 

Probability and success rates in the dose planning process, additional 

experiments were performed. Using knowledge-light adaptation in case-based 

reasoning approach which does not take into account these two features in the 

retrieval process the success rate is 85.91 %. If the 5 years Progression free 

probability and the success rate of the treatment are used in the retrieval 

process, the success rate is higher; it is 85.91 % and 87.32 % respectively. The 

results are shown in Table 5.11. We can conclude that the success rate and the 

5 years Progression Free Probability are important decision making parameters. 

As expected, the 5 years Progression Free Probability based retrieval process 
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helps to generate dose plans having better 5 years Progression Probability. The 

success rate based trade-off function assists the retrieval process to increase the 

success rate of the treatment by increasing the dose in phase I of the treatment, 

while the combination of both decision making parameters explores the past 

experience of the oncologist in a better way and generates plans having a better 

5 years Progression Free Probability and a better success rate. 

Table 5.11 Comparative results of different types of trade-off functions 

Similarity Similarity + Similarity + Similarity +5 
5 years Success rate years 

Retrieval Progression of the Progression 
Free treatments Free 

Probability Probability + 
Success rate 

of the 
treatments 

Success rate (%) 85.91 85.91 87.32 88.73 

Number of cases 
having same dose 38 38 39 40 
plan as that of 
oncologist 
Number of cases 
having same 
amount of total 16 15 16 15 
dose but higher 
amount of dose in 
phase I of the 
treatment 
Number of cases 
having better 5 7 8 7 8 
years Progression 
Free Probability 

5.6 Conclusion 

This chapter has described a method to determine the dose limits of different 

volume percentages of the rectum and consequently the dose in phases I and 11 

of the treatment. This is a non-linear problem. The influence of planning 

] 1 ] 



parameters on the solution is not unifonn through their range of values. A 

Knowledge-Light Adaptation in Case-Based Reasoning is proposed to retrieve 

the case which is the most appropriate for treating a new prostate cancer 

patient. 

For each new case, a case in the case base that has a similar case difference 

vector and gradient as the new case is retrieved and dose limits for different 

volume percentages of the rectum are calculated. Thereafter, dose for phases I 

and II of treatment is prescribed. A trade-off between risk and benefit is made 

during the dose planning process. Success rate of the treatment measured 2 

after years the treatment and the 5 years Progress Free Probability are taken 

into consideration, to overcome the drawback of optimisation methods (such as 

Genetic Algorithm, Simulated Annealing, Linear Programming, etc.) which 

cannot utilize this information. 

The efficiency of the proposed methodology is validated using real data sets 

collected from the Nottingham University Hospitals. NHS, City Hospital 

Campus, UK. It is clear from the results shown in this chapter that the proposed 

Knowledge-Light adaptation in CBR not only increases the success rate of the 

CBR but also generates a better plan in larger number of cases compared with 

the methodology proposed in the previous chapter. In this chapter, in the 

retrieval process, equal weights were assigned to all the problem features and it 

is not always true. A novel group based Simulated Annealing feature weight 

learning mechanism is proposed in the next chapter. 
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CHAPTER 6 

An Adaptive Knowledge-Light adaptation in 

case-based reasoning for Radiotherapy Planning 

6.1 Introduction 

In the knowledge-light adaptation in case-based reasoning, described in the 

previous chapter, equal weights were assigned to all features used in the 

retrieval process. However, equal weight assignment is not always appropriate 

in the real world prostate cancer dose planning problem. In Chapter 4, we 

proposed a Simulated Annealing based weight learning mechanism for the 

Dempster-Shafer rule based CBR system. The main aim of the SA algorithm 

was to minimize the sum of the differences obtained from all retrieved cases 

using the leave-one-out strategy. However, after analyzing the data, it is found 

that cases having different clinical parameters (case features) may have the 

same dose plan. Also, in the dose planning process, the oncologist makes a 

trade-off between the risk and the benefit of the radiation, i.e. the task is to 

deliver a high dose to the cancer cells and minimize the side effects of the 

treatment. In Chapter 5, a simple mathematical relationship (formula (5.2)), 

namely the product of similarity, the 5 years Progression Free Probability and 

the success rate of the treatment were used to make a balance between the risk 

and the benefit of the radiation. In this chapter, a novel trade-off mechanism 

and a group based Simulated Annealing feature weight learning algorithm will 

be described. 
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6.2 A Novel Trade-off Method for the Retrieval Process 

Trade-off refers to a situation that involves compromising one objective in 

return for gaining other conflicting objectives. A decision is made with full 

comprehension of both the disadvantages and the advantages of all the 

objectives of a particular choice. The trade-off methods existing in the 

literature can be divided into three groups, namely a-priori, a-posteriori and 

interactive methods. In the a-priori methods the decision makers express their 

preference before the search starts. However, it is very difficult for a decision 

maker to quantify accurately the preference beforehand. In the a-posteriori 

methods, the search engine first generates a Pareto front i.e. set of non­

dominated solutions. Thereafter, the decision maker selects the best solution. 

The drawback of this method is that it is very time consuming and 

computationally costly. In the interactive method, the decision maker 

continuously interacts with the search engine and drives the search with hislher 

preference towards the most preferred solution. 

Multi-objective optimisation methods have been already applied to the 

radiotherapy planning problem. Lahanas et al. [169] proposed NSGA-II, a 

modified genetic multi-objective optimisation algorithm, to generate a Pareto 

front i.e. a set of non-dominated solutions (plans). Thereafter, the oncologists 

make a trade-off and select a treatment plan based on their past experience. The 

multi-objective optimisation method can generate a good approximation of the 

Pareto front, but the problem is to decide which treatment plan is the most 

appropriate for the patient. 

Meyer et al. [147] used the influence diagram based on the 8ayesian network 

which presented a probabilistic relation between the clinical input data and the 
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quality of the plan to select the most appropriate solution from the set of non­

dominated solutions of the Pareto front for prostate cancer. The proposed 

approach generates different possible solutions by varying the weights of the 

planning target volume and organ-at-risk using Simulated Annealing (SA). 

Thereafter, solutions were ranked based upon the physicians' subjective 

judgements. This method was time consuming and also computationally costly. 

Aubry et al. [138] proposed a modified Simulated Annealing algorithm to 

solve the radiotherapy dose planning problem. First, a Pareto set of all non­

dominated solutions was generated and solutions were ranked by each 

objective. Thereafter, a Microsoft Excel graphical user interface was developed 

to help the decision maker to select an appropriate solution. However, as the 

number of real world constraints and/or objectives increases it becomes more 

difficult to understand their effects on the stochastic search, such as Simulated 

Annealing. 

Singh and Dhillon [226] proposed a Fuzzy based Surrogate worth trade-off 

method for thermal power dispatch problems. Non-inferior solutions were 

generated by using the E -constraint method. Equality and inequality 

constraints are clubbed with the objective function using Lagrangian 

mUltipliers and a penalty method respectively. A set of all non-dominated 

solutions was generated using Newton-Raphson. Thereafter, a Surrogate worth 

trade-off method is applied to identify the best solution from the set of non­

dominated solutions. 

Boman et al. [227] proposed a non-linear interactive multi-objective 

optimisation method for the radiotherapy dose planning problem. The decision 

maker divides the conflicting objectives in five different classes, namely, 
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functions whose values should be improved, functions whose values should be 

improved up to a desired aspiration level, function whose values are 

satisfactory, functions whose values can be impaired up to a given bound and 

functions whose values change freely. As the search proceeds based on the 

decision makers' preference, the search engine selects a solution from the 

solutions generated so far as a starting point for a new classification and 

generates a satisfactory solution. 

6.2.1 Group Based Trade-off Method 

In this research, we proposed a group based trade-off mechanism, which 

divides cases into different groups based on the similarity between the new 

case and the cases in the case base, the 5 years Progression Free Probability 

and the success rate of the treatment measured two years after the treatment. 

The trade-off gives the highest priority to the similarity between a case from 

the case base and the new case, then to the 5 years Progression Free Probability 

and finally to the success rate of the treatment. For each trade-off parameter a 

range of values is defined. Here, we define four ranges of values for each 

parameter as shown in Figure 6.1. The ranges are set empirically. Each case in 

the case base is assigned a triplet c(s, p, sr), where s. p. sr denote the ordinal 

numbers of the range to which the values of the three trade-off parameters of 

the case belong. 

It means that (s, p,sr) E {(l,I,I), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), ... ( 4,4,4)}. To 

achieve the trade-off, the retrieval process searches first for the cases in the 

case base with triplet (1,1,1), then with triplets 

(1,1,2), (1,2,1),(1,2,2),(2,1,1), (2,1,2), ... (4,4,4) till a case is found. If more than 
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one case is selected from the case base, the conflict can be resolved using the 

following formula: 

(6.1 ) 

where, 

pi is the 5 years Progression Free Probability of case cq • 
q 

sr q is the normalized value of the success rate of the treatment of case cq 

measured 2 years after the treatment (explained in section 4.3.3, Figure 4.3). 

Following the illustration given in Figure 6.1, let us suppose that a case base 

consists of 20 cases. Based on the similarity between the new case and the 

cases in the case base, the 5 years Progression Free Probability and the success 

rate of the treatment, the cases are divided into four different groups. A triplet 

id is assigned to each case in the case base as shown in Table 6.1. Thereafter, 

the case base is searched, but there is no case in the case base with triplet (1,1,1) 

then the case base is searched for triplet (1,1,2) and case CJO is selected. 

Table 6.1 Illustration of the triplet id of the cases in the case base 

Case Triplet id Case Triplet id Case Triplet id Case Triplet id 

Cl {2,2,1} c6 {2,2,3 } cII {3,2,2} CI6 {2,4,4} 

c2 {4,3,1 } C7 { 1 ,2,1 } CI2 {4,1,1 } C17 {3, 1,3} 

c3 {4,3,4 } Cs {3,2,3} CD {4,4,4} cIS {4,3,4 } 

c4 {3,3,4} c9 {1,4,2} CI4 {4,3,4} CI9 {4,4,4} 

Cs {3,1,3} CJO {1,1,2 } cIS {2,2,2} c20 {1,1,3 } 
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1.00 ranp'e 1 0.95 ranlZe 2 0.90 ranlZe 3 0.85 ranlze 4 

Similarity ranges 

5 years Progression Free Probability 

0.00 range 1 0.20 ranlZe 2 0.40 ranlZe 3 0.60 ranlZe 4 

Success rate ranges 

Figure 6.1 Illustration of range of values set for trade-off parameters 

Once the case most similar to the new case is retrieved from the case base by 

using the trade-off mechanism, the CBR system finds two cases from the case 

base which have similar differences between their features values as the new 

case and the retrieved one, as explained in Chapter 5. These two cases and the 

gradient of one of them are used to set the dose limits for the rectum volumes 

in the new case. The architecture of the knowledge-light adaptation in case-

based reasoning which uses the proposed trade-off in the retrieved process is 

shown in Figure 6.2. Based on the calculated dose limits, the dose in phases I 

and 11 of the treatment is determined. 
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Figure 6.2 Architecture of the proposed knowledge-light adaptation in CBR 

6.3 Group Based Simulated Annealing Feature Weight 

Learning Mechanism 

Weights assigned to the features in the similarity measure represent their 

relative importance. In Chapter 4, we used simple Simulated Annealing (SA) to 

determine the weights of features. A leave-one-out strategy is used i.e. cases 

are taken out from the case base one-by-one and treated as a target case each. 

For each target case, the most similar case from the case base is retrieved and 

the differences in the doses between the target and retrieved case in both 

phases I and II are calculated. The sum of the differences obtained form all 

retrieved cases presents the objective function of Simulated Annealing. 

However, after analyzing the data it is found that cases having different clinical 

parameters (case features) may have the same dose plan. The main aim of the 
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retrieval process is to search for a case which recommends an appropriate dose 

plan for a new case. In the proposed approach, an attempt is made to push the 

new case toward the group of cases having the appropriate dose plan for a new 

case. In order to facilitate this, the cases in the case base are divided into 

different groups based on their dose plans. Each group holds the cases that 

have the same dose plan. The centre of a group is defined as a hypothetical 

case whose values of features are equal to the average values of the features of 

all the cases in the group. The execution process of the Group based Simulated 

Annealing is same as that of simple SA algorithm. The main difference is the 

organization ofthe case base. 

n = 1,2,3, ... , N, is composed of L features where Xn, is the value of feature I 

a
r 

= {bp b2 ,b3 , ••• ,bL }, r = 1,2,3 ... ,R, is the centre of group rand b, is the value 

of feature I in ar . Suppose further that group gr consists of S cases. Then b, 

is calculated using formula (6.2). 

S 

LXii 
b - ;=1 I - J 2 3 L ,---, -" , ... , (6.2) 

s 

where, Xii is the value of feature I of case i in group gr. 

In this chapter again, the learning mechanism uses a leave-one-out strategy. 

Namely, cases are taken out from the case base one-by-one, and their distances 

from the centre of each group are calculated. The closest group with its dose 
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plan is retrieved. Thereafter, the difference between the doses in phases I and 11 

of the retrieved group and the taken out case is calculated. The sum of the 

differences obtained from all cases, using the leave-one-out strategy, presents 

the quality of a solution (solutions here are the weights assigned to features in 

the similarity measure). The objective function defined which has to be 

minimised is: 

(6.3) 

where, 

sol = (wl' w2 , ••. , wL ) is list of weights w" 1= 1,2, ... ,L associated with L 

features which are used in the similarity measure. 

N is the number of cases in the case base. 

D~ , D~I are doses for phase I and 11, respectively, prescribed by case C n taken 

out from the case base. 

D~mi'D:{mj are doses for phases I and H, respectively, of the group closest to 

case cn using the list of weights (wl' w2 , ... , wL ) in the similarity measure. 

6.4 Experimental Results 

Extensive experiments have been carried out on the anonymised patient records 

collected in the Nottingham City Hospital to evaluate the performance of the 

developed CBR system. There are 71 cases in the case base. A leave-one-out 

cross-validation strategy is used to evaluate the performance of the system 

whereby a case is removed from the case-base and treated as a new case. The 
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dose plan is calculated and compared with the dose plan stored originally in the 

case. The evaluation of the proposed plans is made by using criteria defined by 

the oncologist as explained in Chapter 4. 

In this chapter, the proposed CBR system was compared with the previously 

developed knowledge-light adaptation in CBR system (Chapter 5): 

(a) With fixed weights of features in the similarity measure and a simple 

retrieval process which uses formula (6.1). 

(b) With a group based SA weights learning mechanism and a simple 

retrieval process described in Chapter 5. 

(c) With fixed weights and proposed trade-off in the retrieval process. 

(d) With a simple SA weights learning mechanism and proposed trade-otT 

in the retrieval process. 

Following the general guidelines available in the literature and combining them 

in the preliminary experiments, the following configuration is used to run the 

Simulated Annealing (SA) algorithm: initial temperature To = 300, initial 

solution assigns equal weights to each feature and termination condition is 34 

iterations (set empirically). In experiments, it was found that there was no 

significant improvement in the solution after the 34th iteration, as shown in 

Figure 6.3. 
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Table 6.2 Comparison of the proposed methodology and our earlier CBR 
approaches 

Methodology Simple Simple Simple knowledge- knowledge- knowledge-
CBR CBR+ CBR+ light light light adaptation 

trade-off proposed adaptation adaptation in CBR 
using trade-off In CBR In CBR + proposed 
formula method + trade-off trade-off 
(5.2) (Section using mechanism 

6.2.1) formula (5.2) (Section 6.2.1) 

Fixed Weights 
Success rate (%) 73.32 76.05 78.87 85.91 88.73 91.54 
Number of cases having 42 43 44 38 40 40 
same dose plan as that of the 
oncologist 

Number of cases having 10 10 12 23 23 25 
better dose plan 

Number of cases having: 1 2 3 7 8 9 
(a) Better 5 years Progression 

Free Probability 
(b) Same amount of total 9 8 9 16 15 16 
dose but higher amount of 

dose in phase I of the 

treatment 

Simple SA weights learning mechanism 
Success rate (%) 77.46 78.87 81.69 88.79 90.14 92.95 
Number of cases having 42 44 45 40 40 39 
same dose plan as that of the 
oncologist 

Number of cases having 13 12 13 23 24 27 
better dose plan 
Number of cases having: 2 3 3 7 9 10 
(a) Better 5 years Progress 
Free Probability 

(b)Same amount of total 11 9 10 16 15 17 
dose but higher amount of 

dose in phase I of the 

treatment 

Group based SA weights learning mechanism 
Success rate (%) 80.28 83.09 84.50 90.14 92.95 94.36 
Number of cases having 44 45 45 39 40 39 
same dose plan as that of the 
oncologist 

Number of cases having 14 12 15 24 26 28 
better dose plan 
Number of cases having: 2 2 3 8 10 11 
(a) Better 5 years Progress 

Free Probability 

(b)Same amount of total 12 10 12 16 16 17 
dose but higher amount of 

dose in phase I of the 

treatment 
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Figure 6.3 Convergence trend of the group based and simple SA weight 

learning algorithm. 

The comparative results are shown in Table 6.2. From the table it can be 

concluded that the performance of knowledge-light adaptation in case-based 

reasoning is better than simple case-based reasoning system. The success rate 

of the knowledge-light adaptation in case-based reasoning approach, 88.73%, 

outperforms the success rate of the simple case-based reasoning approach, 

which is 73.32%. 

We also compared the performance of the initial SA (described in Chapter 4) 

with the new one. Experiments show that the group based SA algorithm 

converges towards a better combination of weights more quickly than the 

simple SA weight learning algorithm. The convergence trends of both 

algorithms are shown in Figure 6.3. 

Experiments also demonstrate that the performance of the group based SA 

weights learning mechanism is better than the simple SA based one. The 

success rate of the group based SA knowledge-light adaptation in case-based 

reasoning algorithm, 94.36%, outperforms the simple SA based knowledge-

light adaptation in case-based reasoning a lgorithm which success rate is 
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92.95%. The proposed group based SA algorithm also helps both CBR systems 

in generating a better dose plan (i.e. better 5 years Progression Free 

Probability) in a higher number of cases compared to the simple SA algorithm. 

The final vector of weights obtained by the group based SA weight learning 

mechanism corresponding to features Clinical Stage, Gleason Score, PSA. 

DVH phase I and DVH phase II are 0.10, 0.12, 0.10, 0.33, 0.35, respectively. 

We also investigated the stability of the weights suggested by both SA 

approaches. Both group based SA and simple SA were run 20 times using the 

same case-base. The ranges of weights of all features are shown in Figure 6.4. 

It can be noticed that the performance of the group based SA is more consistent 

than the simple SA weights learning mechanism, in the sense that the ranges of 

the obtained values are smaller, the only exception being DVH of phase I. 

Further experiments are performed to investigate the impact of the number of 

cases in the case base on the performance of the system. In addition, the 

experiments are performed to investigate the benefit of the group weight 

learning mechanism. In the experiments two approaches of weights 

determination are used. The first approach refers to fixed weights. Weights are 

calculated based on 71 cases in the case base and weights will remain constant 

in all the experiments. The second approach uses a group based weight 

learning mechanism and the weight vector changes every time a new case is 

introduced. Each time a certain number of cases are removed randomly from 

the case base and the weights corresponding to each feature are updated using 

the group based SA mechanism. To avoid any bias, the experiments have been 

repeated 50 times with the same number of cases in the case base. For example, 

6 cases are removed randomly 50 times and experiments have been performed 
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with the reaming 65 cases in the case base (row 6 in Table 6.3). The results of 

the experiments are shown in Table 6.3. From the table it can be concluded that 

the group based SA weights learning mechanism outperforms the fixed weights 

CBR system. The average success rate increases as the number of cases in the 

case base increases. 

GrouD SA -y.. Minimum weight 0 A veraue weight 
Simple SA Maximum weight 

.,. 

ff 0.3 9~ 
-f... 

Weight 
0.2 

0.15 -d If d 0. \0 
-f... -f... 

0.05 

Clinical Gleason PSA DVH DVH 
stage Score Phase I Phase 1\ 

Features 

Figure 6.4 Convergence accuracy of group based SA and Simple SA 
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Table 6.3 Effect of cases in the case base 
Number of cases in Average success rate A verage success rate 

the case base (%) (%) 
(Fixed weights) (group based SA 

weights learning 
mechanism) 

40 86.46 89.47 
45 88.69 90.21 
50 90.73 91.78 
55 92.45 93.12 
60 93.44 94.12 
65 94.14 94.28 
71 94.36 94.36 

6.5 Conclusion 

In this chapter a novel trade-off retrieval and group based Simulated Annealing 

feature weight learning mechanism are proposed to capture the experience and 

expertise of the oncologist treating pervious patients. The novel trade-off 

method makes a compromise between the risk and the benefit of the radiation 

and retrieves the case most similar to the new case. In the retrieval process first 

the similarity value, followed by the 5 years Progression Free Probability and 

then the success rate of the treatment are taken into account. A knowledge-light 

adaptation in case-based reasoning is performed and dose limits of different 

volume percentages of the rectum are calculated. Based on these, the doses in 

phases I and 11 of the treatment are prescribed. 

In order to mimic the continuous learning mechanism of the oncologist, the 

group based Simulated Annealing weight learning mechanism is proposed. 

Cases are divided into different groups based on their dose plans. Thereafter, 

Simulated Annealing is performed to determine the weights of different clinical 

parameters used in the retrieval process. In the proposed weight learning 
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mechanism, an attempt is made to push the new case towards the group having 

the same dose plan as that of the new case, by updating the weights of the 

clinical parameters to be used in the similarity measure. 

The results obtained using real-world data from Nottingham City Hospital, and 

evaluation of the generated plans suggested by the oncologists support the 

application of the new trade-off approach and group based features weights 

learning mechanism. The proposed approach not only increases the success 

rate of the system but also generates better plans in a higher number of cases. 
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CHAPTER 7 

Conclusions and Future Research Work 

The radiotherapy dose planning problem is a complex and ill-defined problem. 

The oncologist generally uses planning software to generate treatment plans for 

new patients. The existing software needs a large amount of knowledge to 

validate the generated solution. However, often the generated solution fails to 

meet the operational requirements of the oncologist, for example to decide 

when and how much to violate the limitations of dose limits imposed to 

surrounding organs. Also, due to the large size of the search space of the 

problem, it is difficult to cover all the treatment constraints in such models. 

Usually, the oncologist spends a large amount of time to select a better solution 

or to modify the solution generated by the software to meet the operational 

requirements. 

In the dose planning process of prostate cancer treatment the oncologist makes 

a trade-off between the benefit of radiation, i.e. delivering a high enough dose 

to fight the cancer cells and the risk that refers to the side effects of the 

treatment. Usually, after looking at the clinical data, the oncologist looks for a 

compromise between fighting the prostate cancer cells with high enough 

radiation and irradiating an inevitable dose to the organs at risk (i.e. the 

rectum). Thereafter, they decide the extent to which the dose limits of different 

volume percentages of the rectum can be violated. There is no fixed rule; a 

decision is generally based on the past experience and is also very subjective. 

In addition, there may be a chance that for a particular patient different 
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oncologist may have different decisions. Therefore, it is useful to take them all 

into consideration while treating a new patient. Further, the influence 

(importance) of different clinical parameters on the dose planning is not fixed. 

It is at the discretion of the oncologist to consider them differently in the 

decision making process based on their past experience. The effect of a higher 

weight to a problem feature may alter the decision. It is very difficult for an 

operational research practitioner to translate the oncologist's experience 

(implicit knowledge) into a mathematical model and to implement different 

Operational Research (OR) methodologies. 

Keeping the aforementioned difficulties in mind in this thesis, a CBRDP 

system is developed to represent the oncologists' knowledge using a novel 

case-based reasoning approach. The patients successfully treated in the 

Nottingham City Hospital were stored in a case base that was exploited using 

case-based reasoning for the future decision making process. Each case in the 

case base contains the following information: the problem parameters and the 

prescribed plan. A case-based reasoning method used in the CBRDP system 

when hybridised with meta-heuristic approaches becomes adaptive. After each 

run of the system or when a new case retained, the group based Simulated 

Annealing (SA) algorithm searches for an optimal! near optimal combination 

of features weights. Finally, if information gained from the new problem is 

useful for future reasoning then it is stored in the case base for future use. In 

this way the system learns throughout its exploitation and updates its 

knowledge. 

In experiments on the real data sets collected from the Nottingham City 

Hospital, it was observed that the developed CBRDP system successfully 
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imitates the decision making process of the oncologist. In most of the cases, the 

dose plans suggested by the proposed method were coherent with the dose 

plans prescribed by an experienced oncologist or even better. The oncology 

staff (both the oncologist and medical physicist) were impressed by the 

developed prototype of the CBRDP system. It is currently under evaluation in 

the Nottingham City Hospital. The manual of the software prototype is given in 

Appendix B. This system may play a vital role to assist the oncologist in 

making a better decision in smaller computational time; it can help in the 

prediction of the success rate before the treatment and it can also be used in 

teaching and training processes. 

7.1 Contribution 

The contribution of this thesis can be divided into two parts: contribution to 

radiotherapy planning, and contribution to the field of CBR. 

The main contributions of the thesis are: 

(a) This thesis provides a comprehensive literature review on radiotherapy 

planning and case-based reasoning. The literature discusses the key 

problem features, constraints and issues in radiotherapy planning 

problems. It also investigates the basic model of simple case-based 

reasoning and knowledge-light adaptation in case-based reasoning 

approaches to be used to solve the complex radiotherapy planning 

problem in the healthcare domain. 

(b) The applicability of the CBR approach to radiotherapy dose planning 

problems was investigated. In the dose planning for prostate cancer 

treatment, the dose limits of different volume percentages of the rectum 

131 



are generally determined by the oncologists based on their past 

experience. In order to fight cancer cells better, the oncologist makes a 

trade-off between the risk and benefit of radiation and looks beyond the 

prescribed dose limits. Decision making knowledge is imprecise and it 

is hard to generate a precise mathematical model or 'IF-THEN' rules. 

In this thesis, the nature of oncologist's decision making process for 

prostate cancer dose planning has been studied. The CBR approach was 

investigated to overcome the difficulties in a traditional decision 

making process. The dose limit of different volume percentages of the 

rectum were calculated using a CBR approach; thereafter, the dose for 

phases I and 11 ofthe treatment are determined. 

(c) In the literature, the radiotherapy dose planning problem is addressed as 

a linear optimisation problem. However, in our study it was found that 

it generally does not exhibit global linearity. The influence of each 

feature on the solution is not linear throughout its range of values. In 

this thesis, firstly, the non-linear nature of the radiotherapy dose 

planning was demonstrated. Thereafter, a novel knowledge-light 

adaptation in case-based reasoning approach was developed to capture 

the experience and the expertise of the oncologist in treating past 

patients. 

(d) In this thesis, the 5 years Progression Free Probability has been taken 

into consideration in dose planning, which was neglected so far in the 

literature. 

(e) The main aim of the oncologist is to prescribe a treatment plan having a 

better success rate. It is very difficult to develop a mathematical model 
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which would judge the success rate of the plan before the treatment. 

This can be predicted to some extent from the past experience of the 

oncologist. For prostate cancer, the success rate of the treatment is 

determined by the Prostate Specific Antigen (PSA) value, measured 

two years after the treatment. It is very difficult for the oncologist to 

recall the success rate of all the past treated plans. In this thesis, the 

success rates of the patients treated in the past were taken into 

consideration in the dose planning process. The success rate of all the 

past treated patients was stored in the case base along with other 

decision making parameters. Cases having better success rates are given 

more importance than others. In the experiments (based on a leave-one­

out strategy), it was found that the incorporation of the success rate and 

the 5 years Progression Free Probability in the retrieval process 

increases the effectiveness of the CBR system, namely it helps in 

generating better dose plan (i.e. better 5 years Progression Free 

Probability) in a higher number of cases compared to the oncologists 

plans. 

(t) A case representation is an important step of the CBR system 

development. In this thesis, knowledge stored in the case base was 

general enough and can be used to solve a wide range of dose planning 

problems for prostate cancer. The problem features used in this research 

were given in different measurement units, which have different scales. 

The stage of the cancer was ordinal type, the Gleason Score was an 

integer number and the PSA and DVH were real numbers. In order to 

use features of different data types, measurement units and scale 
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together, in this thesis, a fuzzy membership based similarity measure 

was proposed. 

(g) Usually, case-based reasoning systems retrieve only one most similar 

case from the case base. However, this practice may lead to the loss of 

important information contained in other similar cases. In this thesis, 

four cases most similar to the new case were retrieved and combined 

using a modified Dempster-Shafer rule. Usually in the literature, the 

Dempster-Shafer rule gives equal importance to all pieces of evidence. 

In order to give cases different importance (based on their quality) a 

weight was assigned to each case in the case base corresponding to its 

success rate. In the fusion of cases, cases having better success rates 

were given more importance than cases having worse success rates. 

(h) An adaptation is an important step of a CBR approach. Although the 

dose plans used in the modified Dempster-Shafer rule were feasible 

plans, sometimes the final dose plan generated by the Dempster-Shafer 

rule was not fit for a new patient i.e. it exceeds some of the total dose 

limits set for rectum volumes. If the dose plan suggested by the 

Dempster-Shafer rule was not fit for the new patient, a repair 

mechanism was applied to generate a feasible plan. The proposed 

adaptation mechanism was designed following the guidance given by 

the oncologist. It includes the knowledge/experience of the oncologist. 

(i) Usually, in the dose planning process the oncologist makes a trade-off 

among the similarity measure (between previously treated patients and 

a new one), success rate and 5 years Progression Free Probability of the 

treatment. In this thesis, a new group based trade-off mechanism was 
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developed to mimic the decision making process of the oncologist. The 

trade-off gives the highest priority to the similarity, then to the 5 years 

Progression Free Probability and finally to the success rate of the 

treatment. Constraints were relaxed till a case was found. 

G) In the initial work on CBR for radiotherapy planning. equal weights 

were assigned to all clinical features used in the retrieval process. 

However, in real life the oncologist usually assigns different weights 

based on his past experience. In this thesis, weights were assigned 

dynamically to different parameters according to their importance using 

group based SA approach. After analysing the data it was found that 

cases having different clinical parameters (case features) may have the 

same dose plan. In the group based SA algorithm, cases in the case base 

were divided into different groups based on their dose plans. Each 

group holds the cases that have the same dose plan. Each time after a 

successful use of the CBRDP, the system, weights were updated 

automatically using a group based Simulated Annealing algorithm. In 

experiments it was found that the performance of the group based SA is 

better and more efficient in terms of CPU time than the simple SA 

algorithm. 

7.2 Limitations 

The developed CBRDP system is considerably different from the 

approaches existing in the literature. The developed software has been 

successfully tested on the data sets obtained from the Nottingham City 

Hospital. It was evident that the developed novel CBR approach was 
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capable in solving complex real-world dose planning problems for prostate 

cancer. Although the proposed system has many advantages and makes 

both theoretical and practical contributions, like any other research it also 

has certain limitations, some of them are discussed here: 

(a) In CBRDP, a decision is based on five clinical parameters: Clinical 

Stage, Gleason Score, Prostate Specific Antigen (PSA). DVH value in 

phases I and II of 66%, 50%, 25%, and 10% of the rectum volume. 

However, sometimes the oncologist takes into account some other 

clinical features such as the volume of organs involved and the fitness 

of the patient in the decision making process, etc. Due to the 

unavailability of these data, this thesis does not take into account these 

clinical features. 

(b) During the experiments, it was observed that in most of the cases, the 

dose plans generated by this system were coherent or better than the 

dose plans suggested by an experienced oncologist. However, in some 

cases, the dose plan was neither coherent nor better. No standardised 

method exists in the literature to review the quality of the plan. In the 

future, some methods need to be investigated to compare the quality of 

the plans generated by different methods. 

(c) The content of the case-base, as in all CBR systems, affects the 

effectiveness of the system. The literature on case-base maintenance is 

still scarce. More research should be done to ensure the quality, 

consistency and coverage of the case base. 
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7.3 Applicability to other Domains 

The basic principles used in the CBROP system are generic in nature and 

can be used to solve similar non-linear real world complex problems. To 

facilitate the implementation ofthe developed system to other domains, the 

following key issues need to be addressed: 

(a) Problem parameters and constraints: The problem parameters, which 

the decision maker generally takes into account in the decision making 

process need to be defined along with their scales and measurement 

units. The importance (weights) of different features could be 

determined by the group based SA weights learning mechanism 

proposed in Chapter 6. This algorithm is generic and would not need to 

be tailored to new problems; it could be used exactly as it is described 

in the thesis. 

(b) Retrieval operation: In case-based reasoning, a new problem is solved 

by retrieving the most similar case from the case base. The success of 

the CBR system depends heavily on the retrieval mechanism. If the 

problem feature used in the retrieval process has different measurement 

units and scales, the fuzzy nearest neighborhood similarity measure 

described in Chapter 4 could be used. Decision makers can also build a 

trade-off between different factors, using the group based trade-off 

method described in Chapter 6. Furthermore, if they want to fuse more 

than one retrieved decision to generate a combined decision, the 

modified Dempster-Shafer rule based fusion method described in 

Chapter 4 can be used without any modification. 
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(c) Adaptation operation: In a CBR approach, a case retrieved from the 

case-base is usually adapted in the context of the new problem. 

Adaptation rules usually give guidelines on how to employ the 

difference between the new case and the retrieved most similar case in a 

sensible way to tailor the solution for the new problem. In Chapter 5, an 

adaptation method for the non-linear problem is suggested which could 

be used in the future. 

7.4 Future Research Work 

This thesis describes a novel CBR approach to radiotherapy planning for 

prostate cancer. Computational experiments revealed the effectiveness of the 

proposed methodology. This research has an adequate scope for further 

extension. Some suggestions and promising research directions related to 

radiotherapy dose planning problems and CBR methods are described. 

In future research work, some more features could be incorporated in the 

decision making process such as the volume of organs involved, the age and 

the fitness of the patient, the movement of the organs, and additional 

parameters which may indicate the success of the treatment, etc. It is 

investigated that the addition of the aforementioned parameters will make the 

retrieval process more accurate. 

In addition, more cases having different treatment plans should be added to the 

case base. The performance of the proposed method on the larger case base (for 

example on a case-base of thousands of cases) needs to be assessed. Different 

statistical tests could be performed to analyse the relationship between the 

clinical parameters and their effect on the dose plan. Further, the observed 
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analysis can be employed in the adaptation of weights, to search for a better 

combination of feature weights in minimum computational time, by restricting 

the search space. 

One of the most promising directions for future research is the combination of 

case-based reasoning and meta-heuristic methods. The search space of the 

radiotherapy planning problem is huge (here by planning is meant the 

determination of parameter values of a radiotherapy plan, such as the number 

of beams, and the angle between them, etc.). Meta-heuristic optimisation 

methods usually take a large amount of time to generate an optimal I near 

optimal plan. Also, sometimes they do not meet the treatment requirements of 

oncologists. In the future, we can use the domain knowledge of the oncologist 

stored in the case base to restrict the search space and can generate a better 

clinically acceptable plan. 
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Biological Therapy 

Biopsy 

Chemotherapy 

Clinical Stage 

CT orCT scan 

Dose Volume 
Histogram CDVH) 

Follow-up 

Gleason score 

Gray (GY) 

Helax-THM 

Linacs 

APPENDIX A 

Medical Dictionary 

Therapy that uses the body's own immune system 
to attack cancer cells. Biological therapy is 
sometimes called immunotherapy, biotherapy or 
biological response therapy. 

Removal of a small portion of tissue to see 
whether it is cancerous. 

Therapy that uses drugs to damage cancer cells 
and make it difficult for them to grow in number. 

A labelling indicating the extent of the cancer. 
The clinical stage of prostate cancer depends on 
the size of cancer and the extent ofthe spread. 

Computed tomography or computed axial 
tomography. In CT scan two-dimensional 
computer images can be reconstructed to produce 
three-dimensional images by some modern CT 
scanners. 

Dose volume histogram, simulated radiation 
distribution within a volume (different volume 
% ) of interest of a patient which would result 
from a proposed radiation treatment plan. 
An appointment with your doctor after treatment 
to check the status of your cancer and overall 
health. 

A system grading prostate cancer. The score is 
the sum of primary and secondary Gleason 
scores, used to help evaluate the prognosis of 
men with prostate cancer, Values: within the 
range [1, 10] 
Patients are prescribed radiotherapy in numbers 
of Gray (GY) units. The number of units in 
determined by the amount of time the accelerator 
beam is switched on. 

Specialist radiotherapy planning software. 

Linear accelerator used for delivering of· 

140 



Lymph Node 
Involvement (LNI) 

Malignant 

Metastasis 

Magnetic Resonance 
Imaging (MRI) 

Organs At Risk (OAR) 

Oncentra 

Oncologist 

Pathologist 

Planning 

Prostate Nomogram 

Prostate Specific 
Antigen (PSA) Test 

Planning Treatment 
Volume (PTV) 

Reconstructive Surgery 

Recurrence 

radiation. 

Lymph node involvement, used to indicate the 
spread of cancer. Values: within the range [0.1] 

Indicates that cancer cells are present and may be 
able to spread to other parts of the body. 

The spread of cancer from one area of the body to 
another. For example, breast cancer may spread 
to the lymph nodes and lung cancer may spread 
to the brain. 

Magnetic resonance imaging, used to produce the 
picture of prostate gland. 

OAR are structures that neighbour the target 
volume. 

Radiotherapy information management software. 

A physician who specializes in cancer. 

A doctor who identifies diseases (such as cancer) 
by studying cells under a microscope. 

Decision on dose and angle and intensity of 
beams etc. 

A computerised device to help patients and their 
physicians decides among the major treatment 
choices for early stage prostate cancer. Available 
for other sites. 

A test that measures the amount of a substance 
created by the prostate gland in the blood. An 
elevated amount could be the result of infection, 
prostate cancer or an enlarged prostate; Values: 
within the range [1, 40] 

The planning treatment volume was defined as 
the gross tumor volume with no margin. 

Operation preformed to repair skin and muscles 
after surgery to treat cancer has been performed. 
Often used to reconstruct a breast after a 
mastectomy. 

The development of cancerous cells in the same 
area or another area of the body after cancer 
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Side Effects 
Therapy 

Simulation 

Stages of Cancer 

Surgery 

Tumor 

Verification 
5 yr PFP: 

of 
treatment. 
Problems caused by the damage of healthy cells 
along with cancerous cells during treatment. 
Some common side effects of cancer therapy 
include being tired, feeling sick to your stomach 
(nausea), throwing up, hair loss and mouth sores. 
Generally there are seven types of side effects (in 
case of prostate cancer) which a patient may have 
during or after the treatment. Side effect related 
to the rectum, Side effect related to the 
bladder/urethra, Side effect related to sexual 
dysfunction, Side effect related to small intestine/ 
colon, Side effect related to skin/subcutaneous 
tissue, Side effect related to mature bone 
(excluding mandible). 

Localisation of treatment fields usmg a CT 
scanner or simulator. 
The progression of cancer from mild to severe. 
Usually indicates whether it has spread to deeper 
tissues or other parts of the body. One method 
used by doctors to stage different types of cancer 
is the TNM classification system. In this system, 
doctors determine the presence and size of the 
tumor (T), how many (if any) lymph nodes are 
involved (N) and whether or not the cancer has 
metastasized (M). A number (usually 0-4) is 
assigned to each of the three categories to 
indicate its severity. The 1997 clinical stage 
include: Tla,T] b,T] c,T2a,T2b,T3a,T3b 

A procedure that removes repairs or allows for 
the further study of a specific body part. 

An abnormal mass of tissue that can be benign or 
malignant. 
Verify a planning using simulator. 
5 years progression free probability shows the 
probability that the cancer will not appear again 
in 5 years time, depends on: clinical stage, 
Gleason score, PSA value, and total amount of 
does prescribed by the oncologist. 
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APPENDIXB 

CBRDP Software Reference Manual 
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Software overview 

Case-Based Reasoning System for Dose Planning (CBRDP) is an adaptive 
radiotherapy dose planning software that helps to decide the dose in Phases I 
and 11 of the treatment for prostate cancer. In dose planning process, the 
oncologist has to makes a trade-off between the risk and benefit of the 
radiation i.e. the task is to deliver the high dose to the cancer cells and 
minimize the side effects of the treatment using Case-Based Reasoning (CBR) 
method. CBR is an artificial intelligence technique which memorises 
previously gained knowledge and experience, and utilises it in solving new 
problems. In dose planning process, CBRDP also takes into account 5 years 
Progress Free Probability and success rate measured after 2 years of the 
treatment. The cases having better 5 years Progress Free Probability and 
success rate of treatment are given more importance than having worse 5 years 
Progress Free Probability and worse success rates. In order to mimic the 
continuous learning characteristic of oncologists, the weights corresponding to 
each feature used in the retrieval process are updated automatically each time 
after generating a treatment plan for a new patient. Finally, if information 
gained from the new problem is useful for future reasoning then it is stored in 
the case base for future use. 

System Requirements 

CBRD runs under Windows XP, Windows Server 2003 and Windows Vista. 
The program automatically adapts itself to the operating system on which it 
runs, eliminating the need for manual settings. 

NOTICE You must have Administrative access to install CBRDP software. 
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Dose calculation procedure 

1. Click the "Radio Therapy" button to open the software. 
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2. Click "File" and "Open Case Base" to select the case base. 

Open Case Base 
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3. Select a case base from the list and click "OK". 

List of Case-Base 
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4. Click the "Functions" button and select "New Patient" button to enter 
the data of the new patient. 

0""",..1 ..... 
\) MlM",,",w,", .... 

M;~-n 

~""-. ij"" __ 

Functions New Patient 
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5. Please enter Patient Reference No, Clinical Stage. MRI , Gleason Score, 

DVH of phase I and DVH of phase 11 values in the appropriate boxes. 

B,rl ' V Peoo._. j 
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6iX iD SOX, iD 15:.: r lr., iD 16Y, iD SO:: , iD 21X: r:.llr.1 ~ 
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6. Click the "Retrieval" button to retrieve the cases similar to the new patient. 

Retrieval 

- Resllll -·---·---------- ---

~",I""'De9' .. '09'91 
Reierenal: p..,e24~ 
Oinlc:alStageTl t 
OVH"' pIIe" 1 61%'0,51 
OVH Icr pIIesd 61%'0,51 

s",,1...,.Degio.D,8n8 
Relo""",F\IJ!i/2l13 
OinicaISae~e Tlc 
OVH"'pIIe .. ,' 61%0.1' 
CM-tlor pheS8 1t: " %051 

Smil...,. De9f .. 0 8696 
Aelerer.ceRll'nl78 
a;mcol90g. Tl c 
OVH"'pIIe" t 61"'0,51 
CNH tor phase U: "%'0.47 

, s""I...,.De9'"O,866D 
Reie"""A05(2Sl) 
Din.,; 909' TIb 
OVH"' pIIe" t 61%0,51 
OVH Ill! pllese t 61%'0,\1 

Oose(l) <6JIO llo.o~~.ltOO 
MPJT2 GI.Mon SCMI' 1 PSA. 710 

50%0,1< 251:0 95 111'1.09. 
50% 051 251: ° !11 10'.1099 

Dose(!) 46 00 1lot.~~2UXl 
MRlTl c GIQ Mon SCOI1l: b PSAll eo 

50!\O69 25% IJXI lDKI02 
\0%0,5< 25%~,!III 111', 100 

Ilose(l) 06,00 000.(19 WXI 
MPJ:TZ GI81!SOn .COrl: 7 PSA 12 00 

SO~1I.69 ~5~t09' I Ir.~0 99 
50110,\0 25" ,017 10'1,0 98 

Dose(l) 0600 Iloto~Q lUll 
!.Rn GI,,,,,",,,,,,, 1 PSA 13.00 

so~·a55 2S,", '091 10',",098 
SDXo,l) 25%:081 10'1,,098 
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7. Click the "DSCBR" button to calculate the dose in Phases I and II uSll1g 
Dempster-Shafer rule based Case-Based reasoning method. 

DSCBR 
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8. Click the "NCBR" button to calculate the dose plan using knowledge-light 
adaptation in case-based reasoning method. 
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9. Click the " Retention" button and enter the values of 5yr PFP and Success 
Rate (SR) in the appropriate boxes and click OK to save the new case in the 
case base. 

SYrPFP OK Success Rate (SR) 
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10. Click the "Cancel" button if you don ' t want to save the new case In the 
case base. 
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Cancel 
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11. Click the "Cancel" button to close the software. 
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Procedure to see existing patient record 

1. Click the "Patient Data" button to see the existing patient record in the 

data base. 

Patient Data 

Nottrogllam aty Hospital Is opened: 
Qlse Re!. CIilIcaI Stage MRI Gle. score PSA 66X(~ 50"'~ 15X(I) 10XrQ 
NB2U01 T1e 11 7. 7.1 0.55 D.6. 0.95 0.98 
NB07236 11. T2 7. 20.1 0.67 0.87 0.98 0.'I'l 
Hsom1 11. n 7. 19. 0.8 0.96 1. 1.01 0.49 
N9403S6 T1 e T3 6. 9.7 D.76 0.92 1.01 1.04 0.53 0.: 
NB096'1'l T1e T1 7. 13.4 0.55 0.1 0.96 0.'I'l 0.5 
HB10769 T1e n 6. 6.8 0.79 0.94 1. 1. 0.56 
N800808 T1e T2 6. 14.1 0.7 0.B9 0.99 1.01 0.49 
HA1J8li T1e T2 7. 8.7 0.6. 0.88 0.99 1.01 0.52 
NA2'll78 T3a T3 B. lIB 0.56 0.71 0.9B 1. 0.54 
RO~67 T1e TI C 7. 11.9 0.5 0.6 0.94 0.'I'l 0 .• 7 
NB09II26 Tic T3 7. 10.3 0.7 0.97 1.05 1.04 0.47 
R04I0717 Ti c TI 7. 17J 0.81 0.95 1.01 1.03 0.53 
NB1B788 T1 e TJa 7. 6.B 0.5 0.6 0.9. 0.'I'l 0.4B 
S.58031 Tic 11 8. lB.7 0.& 0.97 1. 1. 0.51 
RO~6 11 8. 16. 0.88 0.98 1. 0.51 
R05I2373 Tic 6. 11 .8 0.69 1. 1.02 0.51 
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2. Enter case reference number and click the "Show Case" button. 

Input case reference Show Case 
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3. Click the "Cancel" to close patient data window. 

Cancel 
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Procedure to delete stored patient 
record from the case base 

1. Open the NottinghamCaseBase.txt file 

NottinghamCaseBase 

• ~ Go 

a ;~=~J 
It ~1 
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2. Select the case and press delete button of the keyboard. 

Case 

1-1- 0.91 1:01 4& 24 1:9- . 
NB09&99 ne n 0.11 O. ID 0.9& 0.99 0.10 0.11 O.l l 0.78 46 24 0.1 
NB207&9 ne Tl 6 0.79 0.94 1.00 1.00 0.16 0.62 0.91 0.99 10 19.8 0.8 
,N800008 ne T2 6 .1 0.70 0.89 0.99 1. 01 0.49 0.1l 0.90 1.00 46 24 O.ll 
'NAl lSl6 n e T2 7 .7 O. &4 0.88 0.99 1.01 0.11 0.1 4 0.81 0.99 46 24 3.0 
NA29118 TJa TJ 8 11.8 0.16 0.7J 0.98 1. 00 0.54 0.54 0.17 0.99 60 10 2.1 
R04n61 ne nc I 11.9 0.5 0.6 0.94 0.99 0.47 0.49 0.69 0.98 45 14 1.8 
NB09825 ne TJ 7 10.) 0.7 0.97 1.05 1.04 0.47 0.49 0.69 0.96 46 24 0.1 
R04/0717 ne TI 7 17.3 0.81 0.95 1.01 1.03 0.53 0.62 0.98 1. 02 46 14 
NBl878S TIc TJa 7 6.8 0.5 0.6 0.94 0.99 0. 48 0. 49 0.61 0.9\ 14 18 0.1 
5418031 ne T2 8 18.7 0.8& 0.97 1 1 0.11 0.12 0.87 1 46 24 O. J 
R04/l2& TJe T2 8 16 0.69 0.88 0.98 1 0.11 0.6 0.96 1 45 24 1.0 
ROlnJll TIc TIc 6 11.8 0.14 0.69 1 1. 02 0.11 0.14 0.9 1 46 2' 
NB05878 ne T2 7 21 0.4 0.6 0.98 1 O.ll 0.1l 0.93 1 46 24 0. 4 
N~184 1 6 Tlb TJ 7 9.8 0.78 0.82 0.93 1.02 0.11 0.67 0.81 0.98 46 24 1.8 
RO)/2781 Tlb Tlb 8 4.1 0.81 0.97 1.02 1.04 0.2 0.11 0.19 0.98 46 24 
NB21138 Tlb T2 I 20.7 0.12 0.61 0.92 0.99 0.11 0.14 0.79 0.97 &0 10 0.1 
NB08922 Tlb Tl 9 9.1 0.14 0. 66 0.94 0.98 0.1 0.11 0.69 0.95 64 8 0.1 
ROI/2SlJ TJb T2 I 13 0. 12 0.15 0.91 0.98 0.52 0.53 0.81 0.98 46 14 
ROI/2342 na TI 7 0.93 0.8 0.86 1. 01 1.03 0.72 0.74 0.81 1 46 14 
N820309 Tla T2 6 18. 2 0.81 0.96 1.01 1.01 0.53 0.6 0.98 0.99 46 24 3.3 
R04/1169 T2b T2 9 17 .2 D.7 0.9 0.98 I 0.49 0.11 0. 77 0.98 10 20 
R04/1298 T2b T2 9 7.1 0.51 0.61 0.87 0.98 0.2l 0.31 0.57 0.96 60 12 
R04/1114 Tla T2 8 38 0.64 0.81 0.97 0.99 0.1& 0.63 0.93 0.99 \4 18 
R04/17Jl ne 7 9 0.76 0.89 0.96 0.99 0.68 0.11 0.79 0.84 46 24 
NAI0807 T2b Tl )4 0.1) 0.76 0.99 1.01 0.03 0.11 0.46 0.53 54 16 0.7 
NB52)92 Tla Tl 24 D.16 0.5\ D.9& D.99 0.14 0.15 0.75 0.98 64 8 3.2 
R04/09!l Tla 9 16.9 0. 51 0.7J 0.97 0.99 0.11 0.52 0.&5 0.92 10 22 
RD4/2113 T2a 7 11.9 0.75 0.96 I 1. 01 0.11 0.11 0.71 0.9' 4& I' 
N680419 T2b T2 9 0. 73 0.91 I 1.02 O. SI 0.1 4 0.78 0.98 10 20 0.8 
NAl9790 T2a T2 8. I 0.66 0.91 0.99 1.01 0.14 0.11 0.19 0.86 46 24 1.9 
R04/1378 TIc I 12 O. SI 0.69 0.97 0.99 0.'1 O. I 0.87 0.98 46 24 
ROI/0l49 T2b 7 28.2 0.63 0.81 0.98 0.99 O. \J 0.67 0.96 0.98 46 16 
ROI/14l1 Tlb 9 21.7 0.68 0.9 0.98 0.99 0.11 0.13 O. 9~ 0.98 14 16 
NB1 2078 TIc T2 23 0.7 0.89 0.98 0.99 0. 49 0.11 0.79 0.97 46 24 0.34 
ROI/1281 TIc 6 4.7 0.14 0.81 0.98 0.99 0.34 0. 49 0.91 0.99 46 26 
t~975418 Tla Tl 10.7 0.17 0. 77 0.97 1 0. 47 0.48 0.19 0.88 14 16 1.9 
N201668 TJa T3 6.8 0.1 0.13 0.99 1 0.31 0.11 0.11 0.94 41 26 0.8 
ROS/n60 Tla 8 10. 9 0. 48 0. 52 0.91 0.98 0.47 0.49 0.7J 0.92 60 l' 
ROI/2ll1 T2b 7 9.7 0. 49 0. 53 0.92 0.99 0.1 0.1 0.84 0.97 46 24 
ROI/2607 T2a 6 19.1 0.84 0.91 1 1. 01 O. \J 0.6 0.9 0.99 46 24 
NB20769 TIc n 6.8 0.79 0.94 1 1 0.16 0.62 0.91 0.99 10 19.B 0.6 
NB146B4 TIc Tl 24 0.9 0.98 1 1. 01 0.39 0.1 0.69 0.91 4& 24 1.8 
NB11119 T2a Tl 8.21 0.11 0.67 0.97 I .49 0.11 0.8 0.98 10 20 0.4 
N889m Tla 43.6 0.82 0.96 1. 01 1.02 .38 0.13 0.58 0.99 20 1.0 
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