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ABSTRACT

The study of rock mass behaviour is a broad subject in the rock me-
chanics field which still needs more research and investigation, espe-
cially for geotechnical issues associated with dam construction. Since it
is difficult to study rock mass behaviour at a large scale in the labora-
tory, the numerical modelling technique is an alternative method which
can be used efficiently in this field. In this thesis two codes have been
selected for this purpose. The first code was a continuum code FLAC
(Fast Lagrangian Analysis of Continua), which was used to study the
effect of a weak rock joint on the stability of a concrete gravity dam as
well as to model the gravity dam with its foundation as a continuum.
The second code was the Distinct Element Method (DEM) software
package UDEC (Universal Distinct Element Code), which was used to
study the fully jointed rock mass behaviour under the gravity dam.
The equivalent strength and deformability parameters of jointed rock
masses were also studied using UDEC. Furthermore, the cause of
strain hardening behaviour in jointed rock samples was studied using

UDEC and experimental methods.

Based on UDEC models, it was concluded that only the low dip angle of
the joints on downstream side, dipping upstream had a significant ef-
fect on the evaluated deformation of the dam. This was confirmed by
using FLAC to model a single weak joint (using interfaces), which may
exist in the upstream or downstream direction, on the stability of the
dam. Furthermore, to obtain a better understanding of the rock mass
behaviour, the equivalent strength parameters as well as the defor-
mation modulus of a rock mass were determined using UDEC. A novel
FISH (imbedded language in UDEC) function was developed for this
purpose. A range of numerical simulations of uniaxial compressive
strength (UCS) and triaxial tests were conducted on the numerical

rock mass samples for these purposes. To validate this, the defor-
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mation modulus of the rock mass predicted by an analytical equation,
quoted from literature, was compared with the numerical results that
were given by UDEC. It was found that UDEC can efficiently be used to
determine the strength and deformability parameters of rock masses
and that at certain specific joint configurations, the rock mass behav-

iour was similar to granular material.

In addition, it was concluded, for the first time, that the non-uniform
distribution of axial loading on the jointed rock sample was the main
cause of strain hardening especially for a joint that has a dip angle of
60 degree. To overcome this problem, a new loading configuration was
developed for applying a uniform distribution of axial stress on the
jointed rock samples in order to reduce the effect of platen-rock inter-
action on the axial stress-strain relationship, using UDEC and laborato-

ry tests.

Finally, the study of rock mass strength and deformability parameters
of Surgawshan dam'’s foundation in Iraq were determined using UDEC
and the results were compared with rock classification systems: RMR
and GSI. According to the UDEC results all methods give a similar
evaluation of friction angle; however, GSI overestimates the cohesion.
The UDEC and GSI gave reasonable estimations of deformation modu-
lus, whereas RMR overestimated it. Generally, for rapid estimation of
deformability and strength parameters, especially for weak sedimen-
tary rock, the deformation modulus can be predicted from the GSI sys-

tem, whereas the strength parameters can be estimated using RMR.
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Chapter 1 Introduction

1.1 Introduction

Since the dawn of civilization, complex human communities have been
dependent on sophisticated physical infrastructure and engineering to
meet their basic needs. Industrialisation and urbanisation since the
18™ century have intensified the demands of human societies for
large-scale civil engineering. One of the most ancient engineering
forms that continue to be fundamentally important to human life is the
dam. The main purpose of building dams is to ensure a reliable water
supply for drinking and irrigation. In the modern age the function of
dams has been expanded to include hydropower and flood

management.

Since it is impossible to build a dam on a homogeneous foundation, it
is built on the rock masses, so there is possibility of sliding failure
along one of the discontinuity in the rock mass or sliding along the
rock-foundation interface. According to Douglas (2002), dams built on
jointed rock mass foundation are susceptible to fail due to sliding.
Examples of geological conditions in which sliding may be possible are
shown in Figure 1.1; therefore the study of every aspect related with
geology of foundation would contribute to design a dam perfectly in

terms of safety and economy.
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Although usually characterised by sophisticated and skilled engineering
from their inception, there are cases of dams failing throughout
history, often with catastrophic results such as Malpasset dam in
France (Wittke and Leonards, 1987). There has thus been a great
amount of research into the causes of such incidents, in order to
improve dam technology and to build dams safely and economically.
Numerous techniques have been applied to study the stability of dams,
such as limit equilibrium method, physical modelling, photoelastic
technique and numerical methods. The latter were the most popular
and powerful among researchers because of their capability to capture
the failures accurately and economically. Many numerical methods
have been developed to analyse different types of structures, such as
the finite elements method (FEM), the boundary elements method
(BEM), the discrete element method (DEM) and the finite difference

method (FDM).

Generally, most incidents have occurred due to events in dam
foundations such as sliding, tensile cracks and piping (Boyer, 2006;
Douglas, 2002). However, due to their complex structure and locale,
there are many issues that must be considered regarding the stability
of concrete dams, such as the rock mass behaviour under dams and
the effect of a weak joint in the foundation on dam stability (Figure
1.2), which might be in the upstream or in downstream direction of

the dam. This weak joint can be developed according to the geological
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conditions in the foundations of dams (Figure 1.1). These issues are
explored in this research using conceptual gravity dams. Also, it was
found that the information on how to assess the strength of the dam’s
foundation or rock masses was limited. Figure 1.3 shows the typical
loads included in a 2D stability analysis of a gravity concrete dam and
the common terminology that has been used in the study. Gravity
dams depend upon their weight for stability against sliding and

overturning (Novak et al., 2007).

This research is based on the numerical modelling technique to study
the effect of a joint configuration of a rock mass in the rock foundation
of a gravity dam on its stability using continuum and discontinuum
models, as well as the effect of a weak single joint on the dam'’s
stability using continuum model. Dynamic seismic loading from
earthquakes or explosives are not considered; the stress analysis is

essentially static in its nature.
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Figure 1.1 Geological conditions promoting failure of founda-
tion of dams (Wyllie, 2003)

When high hydrostatic pressures
develop in joints or zones filled with
- v silt or fine sand, piping can occur.

This action can lead to dam settlement,
a loss of sliding resistance, and
subsequent dam failure.

Seepage
Entry P Piping
AV

Joint or Zone Filled
with Silt or Fine Sand
Open Joints

Figure 1.2 Weak layer under Gravity Dam(USBR, 1988)
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Figure 1.3 Cross section of a typical gravity dam with jointed
rock mass foundation

1.2 Aims

The aims of this project are twofold. The first is the application of the
numerical modelling method to analyse the stability of a concrete
gravity dam resting on a rock mass containing joints using a
continuum model (using FLAC?®) and a discontinuum model (using
UDEC?®) in a plane strain state. The second aim is to predict the
equivalent strength and deformability parameters of rock masses as
well as the cause of strain hardening behaviour in jointed rock samples

using UDEC.
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1.3 Objectives

The objectives of this study can be summarized into the following

points:

1. To simulate numerically a concrete gravity dam and its

foundation using the two numerical codes.

2. Verification of modelling by comparing results with classical
methods to determine stress distribution using combined

triangular and rectangular strip loadings on an elastic medium.

3. To find the effect of a joint interbedded with rock foundation on
the stability of the concrete gravity dam and to find the most
dangerous location of that joint in the upstream or downstream

directions.
4. To study the effect of a joint dip angle on dam stability.

5. To compare between continuum and discontinuum modelling of
rock mass foundation under gravity dam.
6. To find the equivalent strength and deformability parameters of

a rock mass using the discontinuum model.

7. To investigate the cause of strain-hardening in a jointed rock

sample with a joint that dips at around 60 degrees.
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1.4 Limitations of Study

In every research especially humerical modeling there should be some
limitations. In this study the main limitation was using 2D
simplification of 3D model. The simple Mohr-Coulomb criterion with
linear elastic-perfectly plastic also was used for both intact and jointed
rock masses. It should be mentioned that these assumption would not
affect the overall goal of the study. However, 3D modeling could be
the topic of a future study. Furthermore, a nonlinear model such as
the Barton-Bandis could be used for the joints and the Hoek-Brown
nonlinear failure envelope could be used for intact rock in a future

study.

1.5 Thesis outline

The thesis consists of nine chapters (Figure 1.4), as described below:

Chapter One introduces the background of the research area and
justifies this research. It also presents the research aim and

objectives. An overview of the thesis is given in this chapter.

Chapter Two is the general literature review. This presents historical
dam failures, previous work on dam stability, and the available rock
classification system that can be used to analyse the rock mass

behaviour for the foundation of dams.

Chapter Three describes the research methodology. In this chapter

the numerical methodology using two numerical continuum and

7
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discontinuum codes is described as well as the experimental

methodology adopted.

Chapter Four details a conceptual model designed as a theoretical
model. The theoretical model was assumed to be a gravity concrete
dam, for simplicity. Results are compared between a continuum model
(FLAC) and a discontinuum model (UDEC) and the codes are evaluated
to determine which gives the most realistic prediction compared to the
conventional stress distribution at the contact between the dam and

the foundation.

Chapter Five presents and analyses the effect of a weak joint in the

dam’s foundation on its stability using a continuum model (FLAC).

Chapter Six describes a rock mass study by UDEC and presents a
validation of the numerical model by comparing the deformation
modulus for a blocky rock mass predicted by UDEC with analytical
predictions. Also, the equivalent mechanical properties predicted by
UDEC are presented. The equivalent properties are used in a case
study analysis considering the behaviour of a rock mass under a
concrete gravity dam as a continuum using the finite difference
software FLAC, and results are compared with those obtained using

UDEC.

Chapter Seven presents the reliability of the numerical modelling by

comparing the experimental axial stress-axial strain of small-scale
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intact and jointed sandstone rock samples which were collected from

Birchover Quarry in the UK with a discontinuum model using UDEC.

Chapter Eight presents the equivalent rock mass properties of a real
dam foundation in Irag by UDEC. The samples from the foundation of
the real dam were collected and the equivalent properties of the rock
mass were determined using UDEC. The results were compared with
the two popular rock mass classification systems, RMR and GSI. Also,

the new loading configuration is presented in this chapter.

Chapter Nine presents the main conclusions and recommendations

for future work.

Chapter 1
Introduction
v
Chapter 2
General Review of
Literature

O

Chapter 3
Methodology
(FLAC and UDEC)

___________________________________ L) .

Chapter 4 Chapter 5 Chapter 6 i

The conceptual model A weak rock foundation Prediction of rock mass
(Continuum and joint under gravity dam strength by UDEC
Discontinuum) 1

Stage 1

Chapter7 Chapter 8

reliability of numerical the Surgwashan dam
modelling foundation

1
1
o~ i
N Laboratory tests and Rock mass characteristics of ||
e 1
0 i
1
]

Conclusions and
recommendations

Figure 1.4 Layout of chapters of the research
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Chapter 2 General Review of Literature

2.1 Introduction

A rock mass generally can be defined as an assemblage of intact rock
blocks connected by discontinuities (Figure 2.1) that make the rock
mass to behave like anisotropic materials under loading. One of the
main aims of rock mechanics is to understand the interaction of intact
rock blocks with their inherited discontinuities and to be able to predict
how they will behave in response to loads acting on them, which in
turn depends on their material properties (de Vallejo and Ferrer,

2011).

In the field of rock mechanics the term ‘discontinuities’ is used to rep-
resent all planes of weakness along which the intact rock coherence is
interrupted. In recent publications this term is usually replaced by the
term ‘fracture’ (Wittke, 2014). ‘Discontinuities’ classification can be
based on the magnitude of shear displacement along the discontinui-
ties. The term ‘joints’ is used for discontinuities if the past shear dis-
placement along discontinuities is zero. Discontinuities, on which larger
shear displacement have taken place are called ‘faults’ (Wittke, 2014).
Figure 1.1 shows typical discontinuities of a jointed limestone rock. In
this study the term ‘joints’ is usually used for describing all discontinui-

ties.
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The study of rock masses behaviour under dams is one of the most
challenging issues in the rock mechanics field since the size of a repre-
sentative model is too large for laboratory study. Attempts to model
rock mass behaviour under a gravity dam in the laboratory are seldom
undertaken due to the high cost, the difficulty of dealing with large
models in the laboratory, the difficulty of coupling flow of water with

stresses under gravity dams, and the time required.

In this study the rock mass behaviour under gravity dam was investi-
gated taking into account different aspects. The first aspect was mod-
elling the rock mass behaviour under gravity dam using both continu-
um and discontinuum models. The second aspect was simulating a
large triaxial test of a jointed rock mass using UDEC so as to study
rock mass behaviour under loading direction as well as to predict the
equivalent strength and deformability parameters of the rock mass.
Thirdly, the reliability of numerical modelling of a jointed rock mass
was studied by comparing the results of an experimental work on
small scale jointed rock samples with UDEC and finally, the equivalent
strength and deformability parameters of a real rock mass was pre-
dicted using UDEC and rock mass classification systems. In the follow-
ing sections the general literature review that relates with these as-

pects is provided.
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Figure 2.1 Rock mass. Blocks of limestone separated by discon-
tinuities (Kurdistan of Iraq)

2.2 Conventional Design Method

Current dam design methods typically rely heavily on the conventional
limit equilibrium analysis method. Generally, a concrete gravity dam is
constructed in three stages: preparation of foundation, construction of
the dam’s body, and filling of the reservoir with water. After the
reservoir has been filled, the water induces a lateral pressure on the
upstream face of the dam that should be resisted by the shear
strength of the rock in the foundation along the joint or weak layer to

inhibit sliding failure (Wyllie, 1999).
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The basic stability requirements for a gravity dam for all conditions of

loading are (Varshney, 1982):

1 that it be safe against overturning at any horizontal plane within
the structure, at the base, or at a plane below the base;

2 that it be safe against sliding on any horizontal or near-
horizontal plane within the structure, at the base, or in any rock
in the foundation; and

3 that the allowable unit stresses in the concrete or in the

foundation material is not exceeded.

2.2.1 Overturning safety factor

The factor of safety against overturning is the first criterion used for
the stability analysis of gravity dams. This method was developed
during the last century, and was the only requirement to guarantee
that the resultant forces due to reservoir and dam body should fall in
the middle third of the dam base (Nicholson, 1983). This requirement

is still in use for assessing overturning stability.

The stability of dams against overturning (F,) can be computed as a
ratio of resistant moment (¥M,) to disturbing moment (3M,) about the
toe of the dam. This ratio is known as the factor of safety against
overturning, and its value must be greater than one (Equation 2.1).
The overturning stability is calculated by applying all the vertical forces
(XN) and lateral forces for each loading condition to the dam, then

summing moments (3XM) caused by the consequent forces about the
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downstream toe. The resultant location along the base is shown in
Equation 2.2. The vertical stress distribution can be calculated using
Equations 2.3 and 2.4. The resultant locations should be within the

middle third of the dam base, as shown in Figure 2.2 (USACE, 1995).

_ XMr
F, = i) 2.1
Resultant force (R)=§—A1: 2.2

Heel

=l

min

=l

max

Figure 2.2 Location of resultant force within the middle third of
base (e=L/6) (USACE, 1995)

FminZZ_N(l_E) 2.3
FmaxZZ_N(l‘i'E) 2.4
2.2.2 Sliding stability assessment

The assessment of a dam’s stability is a challenging task in

engineering, rendered more complex where the dam structure is built
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on blocky, weak-jointed rock, because the plane of failure is not clearly
defined. The only stability criterion to assess the stability of dams was
that the resultant forces due to the reservoir and dam body must be
within the middle third of the dam’s base. At the end of the 19"
century it was noticed that dam failures often occurred by sliding along
the dam foundation contact or along a weak layer within the dam’s
foundation. Also, it was discovered that the uplift pressure has an
important effect on the stability. As a result, stability analyses that
accounted for these factors began to emerge. Subsequently, different
methods have been developed to assess dams’ stability against sliding,
specifically the sliding factor, shear friction factor and limit equilibrium

methods.

2.2.2.1 Sliding factor

The sliding factor (F,) can be calculated by dividing the sum of the
horizontal forces due to reservoir load (H) by the sum of the vertical
forces (N), as illustrated in Equation 2.5 (Jansen, 1988). The value of

F¢ should be smaller than 0.75 for usual loading condition.

__2H
Fs = 5o 2.5

where, YN=sum of normal forces, YU=sum of uplift forces, @=angle of

internal friction, YH=sum of horizontal forces.

This method calculates a mobilized coefficient of friction, which should

be smaller than the allowable coefficient of friction. This method was
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used until the 1930s to assess the sliding stability of gravity dam.

Figure 2.3 shows the assumed horizontal sliding plane with parameters

used for calculating Fs.

/—> Dam

1" ZN
T T

Foundation

i cL+ (3N)tan®  Discontinuity

Figure 2.3 A sliding plane in the dam’s foundation (Underwood
and Dixon, 1977)

2.2.2.2 The shear friction factor

The shear friction factor was introduced by Henny (1933, cited in
Nicholson (1983)) based on the Coulomb equation. Henny’s basic

equation for calculating the factor of safety was:

=
I
Tln

2.6

In which @ was the factor of safety of shear; S the total shear strength
resistance along the sliding plane; P the water pressure acting parallel

to sliding plane.
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The total resistance shear strength, S, was defined by the following

equation:
S=8+k(W-U0) 2.7

In which S; was the total shear strength at zero normal stress; k was
the factor of shear strength increase; W was the weight of the
structure above an assumed sliding plane; and U is uplift force under

sliding plane.
An updated version of Equation 2.7 can be written thus:
Shear resistance force (S)=cA + 3N — YU)tan® 2.8

Where ¢ is cohesion of the sliding plane, A is the contact area of the
sliding plane, N is the summation of normal forces, YU is the
summation of uplift forces and @ is the angle of friction of sliding

plane.

Now shear friction factor (Fgrz) can be defined as the ratio between
total resistance to shear (S) and sliding to the horizontal load (3 H), as

shown in Equation 2.9:

cA+(XN-YU)tand+Py

S 2.9

Fsp =
Where P, is the maximum passive resistance force of the rock wedge
at toe in the downstream direction.

The Corps of Engineers in the USA expanded the shear friction factor

of safety to include sloped sliding planes and embedment toe
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resistance. The expanded factor of safety for sliding plane dipping

upstream (Figure 2.4) at an angle a can be as in Equation 2.10:

CAg |
F. __ cosag(1—-tan agtang) ' ZNtan(®+a5)+PP 2 10
SF — YH f

where A = Lg + 1 for plane strain condition.

w
Dam Passive
g wedge
2H o
s P
SN .
Heel Toe L %
[T [T
Assumed

sliding plane Foundation

Figure 2.4 Forces acting on a hypothetical dam with inclined
sliding planes according to the shear friction method
(Nicholson, 1983)

If the sliding plane is dipping downstream, the shear friction factor can

be written as:

cAg . _
FSF _ cosas(1+tan astaanZ N tan(9-as)+Pp 511

>H

where A = Lg + 1 for plane strain condition.

The equation for P, can be calculated as:
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cAp

P cos ap(1-tan aptang)

+ X N tan(® + a;) 2.12

where A, = Lp * 1 for plane strain condition

2.2.2.3 Limit equilibrium method

The shear friction concept was replaced by limit equilibrium method in
a Department of the Army Engineering Technical Letter (ETL) 1110-2-
256 (Department of the Army office, Chief of Engineer 1981) (U.S.
Army Corps of Engineers, 1981). However, the shear friction factor is

still in use by other agencies.

Based on the limit equilibrium, the stability of a concrete gravity dam
along the rock foundation interfaces between the rock foundation and
the dam or along a weak joint in the foundation rock mass can be
calculated by dividing the resistance shear strength by the driving
shear stress along the surface plane as presented in Equation 2.13.

This ratio has been defined as a factor of safety against sliding:

T cA+(CN-YU)tan®

where 17 is the available maximum shear strength, 7 is the applied
shear stress, c=cohesion, A=contact area between the dam and the
foundation, Y N=summation of normal forces, } U=summation of uplift
forces, @=Angle of internal friction, and } H=summation of shear

forces.
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According to Nicholson (1983), the basic assumptions required to
develop the stability equations for the limit equilibrium method are as

follows:

1. The factor of safety is defined according to Equation 2.13.

2. Impending failure occurs according to the requirements imposed by
perfectly-plastic failure theory.

3. The maximum shear strength that can be mobilized is adequately

defined by the Mohr-Coulomb failure criteria.

4. Failure modes can be represented by two-dimensional, kinematically

possible planes.

5. The factor of safety computed from the stability equations is the

average factor of safety for the total potential failure surface.
6. The vertical forces between wedges are assumed to be negligible.
7. The structural wedge must be defined by one wedge.

The limit equilibrium factor can also be used for calculating the safety
factor against sliding of dipped sliding planes. For sliding plane dipping

upstream the following equation can be used:

CAs+(ZV cos ag+ZH sin ag) tan
Fip === ( > Jtany 2.14

XH cos ag—2XV sin ag

When a sliding plane is dipping downstream the factor can be

calculated by:
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CAs+(ZV cos ag—XH sin ag) tan
FLE - 5 5 5 4 2.15

YH cos ag+2V sin ag

Snell and Knight (1991) used a generalized theoretical model to study
the influence of faults dipping upstream within ranges from 0-25
degrees of dip under two types of dams: rockfill and a typical concrete
gravity dam. They used the limit equilibrium method to calculate the
factor of safety against sliding along the stratum or weak layer. They
showed that the possibility of failure due to sliding along these strata

should not be ignored.

2.3 Equivalent Mechanical Parameters.

For the safe and economical design of dams constructed on jointed
rock, a reliable estimation of the strength and deformation properties
of the foundation rock is required. In recent years, the use of humeri-
cal modelling tools, such as the continuum-based Finite Element (FE)
and Finite Difference (FD) methods, and the discontinuum Discrete El-
ement Method (DEM), have become increasingly popular for the analy-

sis and design of dams.

For these models, the required deformation modulus of the rock mass
is generally based on rock mass classification systems which were de-
veloped mainly for tunnelling and mining purposes. These include the
Rock Quality Designation (RQD) (Deere and Deere, 1989), the Rock
Mass Rating (RMR) (Bieniawski and Orr, 1976) the Tunnelling Quality

Index (Q) (Barton et al., 1974), the Geological Strength Index (GSI)
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(Hoek, 1994), or from empirical equations which were developed
based on Uniaxial Compressive Strength (UCS) tests (Ramamurthy
and Arora, 1992; Ramamurthy et al., 1993; Zhang and Einstein,
2004). These researchers developed empirical equations to find the
deformation modulus and unconfined strength of a rock mass. Howev-
er, for cohesionless jointed rock, at specific joint orientations, the rock
mass behaves like a granular material and, therefore, an unconfined
test of rock masses may not be a good choice. Many researchers have
attempted to compute the unconfined compressive strength based on
empirical equations mentioned above such as Edelbro et al. (2007)
and Zhang (2010). Also some researchers have used the Hoek cell to
study jointed rock behaviour under varying confining pressures, such
as Asef and Reddish (2002). However the Hoek cell may not give rea-
sonable results for jointed rock samples especially when the failure
mode is slippage along joints since the Hoek cell was designed to
study intact rock sample behaviour under compression. This will be

shown in chapter 7.

The direct in-situ measurement of the mechanical properties of rock
mass is very expensive and time consuming (Zhang, 2005; Zhang and
Einstein, 2004). Attempts to characterise large-scale rock mass prop-
erties in the laboratory are seldom undertaken due to the high cost,
the difficulty of dealing with large samples in the laboratory, and the

time required (Hoek, 1983). The maximum size of tested samples
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quoted in the literature is 60cm x 60cm x 130cm (Reik and Zacas,
1978). Other physical models developed to simulate rock mass in the
laboratory have been smaller: [e.g. 30cm x 12.5 cm x 8.6cm
(Kulatilake et al., 2001a) and 15cm x 15cm x 8cm (Singh and Singh,
2008b)]. These physical models might not represent reality accurately
since the block sizes have an effect on the rock matrix stiffness and
strength (Bhasin and Hgeg, 1998; Edelbro et al., 2007). The mechani-
cal properties of intact rock and discontinuities can be determined in
the laboratory by triaxial and direct shear methods. However, the in-
situ interaction between intact rock blocks with discontinuities is very
complex and it is generally not adequate to simply use un-modified la-
boratory-based measurements of rock properties within models which

try to capture the global rock mass behaviour.

Numerical modelling provides a method that can help understand how
laboratory-based measurements of rock properties relate to full-scale
predictions of rock mass behaviour. Recently, Noorian Bidgoli et al.
(2013) used UDEC to predict the strength parameter of a rock mass
model. However, they did not validate their finding with an analytical
solution and they did not fully discuss the post failure behaviour.
Noorian Bidgoli and Jing (2014a) extended the study of (Noorian
Bidgoli et al., 2013) by changing the direction of loading on a rock

mass so as to study the anisotropy of strength. Again, they did not
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validate their findings and they did not discuss the post failure behav-

iour with modes of failures.

Up to the present time, numerical modelling is the best method to
study the rock mass behaviour. But, it should be mentioned that the
input to the numerical modelling is very important and element of rock
mass testing (UCS, triaxial, direct shear) provides this input. Incorrect
element testing can lead to misleading numerical modelling results as

will be presented in this study.

2.4 Available Rock Mass Classification System

The rock mass is made up of intact rock blocks with various geological
discontinuities among them, and so the mechanical properties of both
intact substance and the discontinuities must be taken into account in
any rock classification system. Rock classification systems are used in
order to predict the equivalent strength and deformability parameters

of rock masses.

There are many rock mass classification systems developed mainly for
tunnelling and mining purposes. These include the Rock Quality
Designation index (RQD) (Deere and Deere, 1989), the Rock Mass
Rating (RMR) (Bieniawski and Orr, 1976), the Tunnelling Quality Index
(Q) (Barton et al., 1974) and the Geological Strength Index (GSI)
(Hoek, 1994; Hoek and Brown, 1997; Hoek et al., 1995; Marinos and

Hoek, 2001). The only classification system that gives information for
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gravity dams is RMR by Bieniawski and Orr (1976), which was later
modified by Romana et al. (2003) for assessing the safety of old dams.
However, there is still scope for developing a more efficient rock

classification system for dam design.

2.4.1 Rock Quality Designation (RQD)

In 1964 Deere (Deere and Deere, 1989) introduced the RQD as an
index for assessing the quality of borehole rock core. This index can be
defined as the ratio (in percent) between sums of solid pieces of core

of 100mm or longer to the total length of the core run.

Sum of cores =2100mm
RQD= - *100% 2.16
total drill run

Table 2.1 shows the relationship between RQD and engineering quality

of rock mass. Figure 2.5 shows the procedure for calculating RQD

This index is one of the simplest methods that has extensively been
used by geologists for core logging, however, it is not sufficient on its
own to provide an adequate description of rock (Bieniawski and Orr,

1976).

Table 2.1 Correlation between RQD and rock quality (Deere and
Deere, 1989)

RQD (%) Rock quality
<25 Very poor
25-50 Poor
50-75 Fair
75-90 Good
90-100 Excellent
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Figure 2.5 Computation of rock quality designation (RQD)
(Deere and Deere, 1989)

2.4.2 Rock Mass Rating (RMR)

RMR was initially developed by Bieniawski (1973) when he was
working at the South African Council of Scientific and Industrial
Research (CSIR) on his experience in shallow tunnels in sedimentary
rocks (Kaiser et al., 1986). Over the years this classification has been
modified: in 1974, the classification parameters were reduced from
eight to six; in 1975, the ratings were adjusted; in 1976 the

assessment of stability of dam was added to the system according to
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