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ABSTRACT 

In the brewing industry it is standard practice to propagate a pure yeast culture and 

inoculate (pitch) it into the fermentation vessel. Once fermentation is complete, yeast is 

recovered and reused in subsequent fermentations (known as serial repitching) until a 

decline in performance occurs or the required number of successive fermentations has 

been conducted. Propagation is currently required to initiate the entire process again, 

which requires additional equipment, energy, water inputs and time. It has long been 

proposed that Active Dried Yeast (ADY) offers an alternative method of yeast supply. 

Adoption of this innovation by the brewing industry has been low because of perceived 

issues with the fermentation performance of ADY, the availability of strains and hygiene 

concerns. 

In the current study the fermentation performance of ADY has been assessed with respect 

to viability, genomic stability, membrane integrity, yeast growth, attenuation, uptake of 

wort nutrients and aspects of flavour development. ADY requires rehydration before use 

and it has been demonstrated that viability is impaired in these slurries, though the extent 

of viability loss was dependent on strain and rehydration conditions. The source of cell 

death is unclear. Mitochondrial and genomic DNA integrity was assessed using a variety of 

techniques and shown to be unaffected by dehydration and rehydration. In contrast 

membrane integrity was affected. Changes in membrane fluidity, sterol content and fitness 

to perform could be detected in ADY. Performance of ADY in fermentation was also 

impaired. A lag in cell growth, attenuation and sugar and amino acid uptake were noted. 

Diacetyl formation occurred more rapidly and end fermentation diacetyllevels were higher 

for ADY. These differences were not maintained during serial repitching. It is proposed that 

ADY could be utilised to replace freshly propagated yeast, but direct addition to fermenters 

would require an improvement of performance during the first fermentation. 
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CHAPTER 1: INTRODUCTION 

The production of beer has been prevalent for over 8,000 years (Bamforth, 1998) and it 

forms an important part of the culture in many parts of the World. The beer market is a 

considerable one, which has led to the development of large brewing companies shifting 

production away from smaller regional producers. Work at these large breweries in 

standardising and optimising the brewing process has increased our understanding of the 

science underpinning brewing, which, in turn, has influenced several other aspects of 

science. Despite the library of work that has previously been reported, there is still much 

that is not known about the brewing process. This thesis will begin to address the 

intricacies of one relatively new technology in brewing, Active Dried Yeast (ADY), 

commonly referred to as simply dried yeast. To understand where ADY fits into the brewing 

process a brief introduction to the process is outlined here, with particular emphasis on the 

role of yeast. The brewing process, however, is a complex one and has been widely 

reviewed (Briggs et 01., 1981; Boulton and Quain, 2001; Briggs et 01., 2004; Bamforth, 2006), 

which the reader should consult for a more in-depth description of the process. 

1.1 THE BREWING PROCESS 

Beer consists of four main ingredients, water, barley (other grains can be used including, 

but not limited to, rice, wheat, rye and oats), hops and yeast, to which additional adjuncts 

may be added if desired. These four ingredients undergo several stages of development to 

produce the final beer, which can be separated into malting (Section 1.1.1), wort 

production (Section 1.1.2), fermentation (Section 1.1.3), maturation (Section 1.1.4) and 

packaging (Section 1.1.S). 

1.1.1 Malting 

Barley undergoes significant processing before it is ultimately transformed into beer. The 

first step in this processing is the liberation of sugars from the starch based stores found in 
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the seed. Malting is the term given to this process, during which the maltster initiates, and 

subsequently halts, germination in the barley. Malting commences with a process termed 

steeping, during which the barley is hydrated to a water content which is often between 

42-48 % (Briggs, 1998). This process initiates germination of the grains, leading to the 

preliminary stages of the development of a barley embryo. During its development 

enzymes are produced which first digest the walls of aleurone cells, the endosperm and 

proteins, resulting in a much softer grain which is more easily milled (Greffeuille et 01., 

2006). Amylases integral for the hydrolysis of starch in the mashing process (Section 1.1.2), 

are also generated at this time. Whilst germination is a requirement of malting, the process 

must be stopped to prevent the conversion of the liberated sugars into a substantial shoot 

and rootlets (Cole et 01., 1998). Cessation of germination is brought about by heating and 

drying the grains with the use of hot air, a process termed kilning. The longer and hotter 

this process the darker the malt, but also the fewer enzymes which remain functioning for 

the subsequent mashing (Briggs, 1998). Variations in the kilning regime can produce a 

myriad of malts (Inns et 01., 2007), providing the potential for a vast array of types of beer. 

The type, or indeed types, of malt used in a beer have a determining effect on the final 

flavour and appearance of the beer. These malts, however, must first be processed to 

extract sugars, proteins and other compounds into a liquid form, a process which produces 

a sweet fermentable substrate known as wort (Section 1.1.2). 

1.1.2 Wort production 

The sugars, nitrogen, vitamins and other nutrients which will later be utilised during 

fermentation (Section 1.1.3) are enclosed within the barley grain structure of the malted 

barley (malt) and must be freed before they can be utilised to produce beer. To achieve 

this, the malt is milled to produce smaller particles, termed grist. This grist is then 

combined with water, referred to amongst brewers as liquor, to create a mixture called 

mash. The mash is held at a set temperature, often 65°C, which promotes the dissolving of 
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sugars and encourages enzymatic conversion of residual starches into soluble 

carbohydrate. Temperature optimisation of this process is important as increases may 

result in time savings, however, reduced enzyme activity may result in less fermentable 

wort (Muller, 1991). The liquid containing the dissolved substances from the malt is termed 

wort and is collected, often strained through spent grain (un-dissolved component of the 

malt) to maximise the uptake of soluble substances (Briggs et 01.,2004). 

Wort is transferred to a vessel called a kettle or copper, the latter name being a reference 

to the material which the vessel was traditionally made from. It is at this point when the 

wort is boiled. Until this point wort production is vulnerable to infection from a number of 

microorganisms, and boiling is an important sterilisation step which kills any contaminants. 

This is the last sterilisation step prior to packaging, thus hygiene is of critical importance 

from this pOint onwards. Boiling also adjusts the overall composition of the wort, notably 

by precipitating proteins, which subsequently form trub (protein agglomerates). The 

flavour of the final beer is developed with the removal of unwanted aromatic volatile 

compounds and the addition of hops. Hops, the third of the four essential ingredients to be 

added, have an important impact on the final flavour and aroma of the beer. The effect 

that they have is altered depending on when the hops are added during the boil, or indeed 

if they are added after, which is a process referred to as dry hopping (Briggs et 01., 2004; 

Bamforth, 2006). Hops are also thought to display antimicrobial activity (Sakamoto and 

Konings, 2003) as well as playing a role in the stabilisation of foam (Kunimune and 

Shellhammer, 2008). Adjuncts, ingredients in addition to the four major components listed 

earlier, such as caramels or syrups, may be added, and are dissolved during the boil. The 

trub and hops are removed either by filtration or in a whirlpool tank and the wort is cooled 

in preparation for fermentation (Briggs et 01.,2004; Bamforth, 2006). 
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1.1.3 Fermentation 

The key player in fermentation is yeast which, as it is the focus of this thesis, is discussed in 

greater detail in Section O. Fermentation begins when yeast is inoculated or "pitched" into 

the wort. This is done in fermentation vessels which were traditionally varied in design, but 

are currently typically cylindroconical in shape (Boulton and Quain, 2001). The temperature 

in these vessels is maintained at a specified value depending on the yeast being used. 

Fermentations performed using ale strains typically occur between 15-20°C, whilst those 

performed using lager yeast most commonly take place at between 7-15°C and, as a 

consequence, normally take longer to complete (Briggs et 01., 2004). Oxygen is only 

provided while the vessels are initially filled with wort; and is important for ergosterol 

production (Jahnke and Klein, 1983), a requirement for yeast division (Rodriguez and Parks, 

1983), in addition to other sterols and unsaturated fatty acids which are required for cell 

membrane structure (Parks and Casey, 1995). In the first few days of fermentation the 

yeast population undergoes growth whilst metabolising the wort. Key to this is the uptake 

of sugars and nitrogenous substances, and the production of ethanol. Ethanol is produced 

via the fermentative pathway as the aerobic respiratory pathway, which yields a greater 

amount of energy, is repressed during fermentation. Initially this repression is due to the 

Crabtree effect, whereby the high concentration of glucose represses aerobic respiration 

(Crabtree, 1929; Swanson and Clifton, 1948; De Deken, 1966). Traditionally there was very 

little microbiological control over the inoculation of fermentations and ethanol production 

is thought to have reduced competition to the yeast from other microorganisms 

(Verstrepen et 01., 2004). As oxygen and cellular levels of sterols are diminished, yeast 

division is halted, although growth may still occur, before yeast cells are separated from 

the medium by a naturally occurring phenomena termed flocculation. Yeast cells aggregate 

in flocs which sink to the bottom or float to the top of the medium, depending on the yeast 

type. This flocculation must occur in a timely manner. Premature flocculation leads to 
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undesired fermentation characteristics such as residual sugar content and lowered ethanol 

concentration (van Nierop et 01., 2006), whilst delayed or weak flocculation may lead to 

problems with yeast harvesting and filtration (van der Aar, 1995). Once flocculated, the 

majority of the yeast is removed or "cropped" from the vessel and can be recycled in 

subsequent fermentations. Fermentation is the focus of Chapters 6 and 7 and is therefore 

discussed in greater detail later. 

1.1.4 Maturation 

Once the initial/primary fermentation is complete the product is termed 'green beer' and 

normally undergoes a stand or maturation period. Diacetyl, a compound which is formed 

during the fermentation, can adversely affect the flavour; a stand is required to allow levels 

of this compound to lower due to the actions of remaining viable yeast cells. Many 

methods have been developed in an effort to decrease the time this process takes, for 

example the addition of the enzyme a-acetolactate decarboxylase (Hannemann, 2002). 

Green beer can undergo other forms of maturation. This can be simply a period of ageing 

or it can be a process step whereby the beer undergoes a secondary fermentation. 

Regardless of the method, this maturation plays an important role in developing the 

flavour and appearance of the beer (Boulton and Quain, 2001; Briggs et 01., 2004). Once 

maturation is complete the beer is often pasteurised or filtered. These steps are performed 

to increase the stability of the final beer, removing residual yeast and contaminant 

microorganisms. Carbon-dioxide levels are adjusted before the beer is packaged. 

1.1.S Packaging 

Once production is complete, the beer must be transferred from the large capacity storage 

tanks to the consumer in a way that will maximise their enjoyment of the product. The 

form in which it does this depends on the type of beer, and perhaps more importantly 

where the point of sale is. Sales in public houses or bars (termed on-trade sales) tend to 
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favour the use of kegs or casks and the dispense of beer on draught. These are not suitable 

for off-trade sales (such as supermarkets) where the consumer purchases beer to be taken 

away and consumed at a later date. These types of sales favour smaller containers such as 

aluminium cans or glass bottles. Events where there are large numbers of people often 

makes the use of glass bottles unsafe, but the speed of dispense of this style of beer is still 

appealing. For these situations plastic bottles made from polyethylene terephthalate (PET) 

are becoming increasingly popular. This type of packaging does suffer from oxygen ingress 

(Muller, 2007), which may be one reason why consumer acceptance is still relatively low 

(Folz and Hofmann, 2010). Although the majority of beer sold is pasteurised or sterile 

filtered, certain beer styles require the inoculation of yeast into the final packaging to 

conduct what is termed secondary fermentation or bottle conditioning (Boulton and Quain, 

2001). 

1.2 YEAST 

As already alluded to, many people consider yeast to be the key factor in the production of 

beer. It is also the focus of this thesis and therefore deserves a thorough review. Before 

considering its role in brewing, its position in the wider scientific community will be 

addressed. 

The yeast Saccharomyces cerevisiae has been, and indeed still is, the focus of intense 

scientific research in part due to its status as a model organism (Drubin, 1989; Botstein et 

01., 1997; Zeyl, 2000; Oliver, 2001; Game, 2002; De Freitas et 01., 2003; lagali et 01., 2003; 

Morgan et 01., 2009). It is renowned as an organism that is easily grown and manipulated 

within the laboratory environment. Being a eukaryote it provides a model system for other 

eukaryotic cells which are more problematic to work with, such as the human cell. This has 

led to S. cerevisiae being at the forefront of scientific innovation, most notably when it was 

the first eukaryotic organism for which the entire genome was sequenced (Goffeau et 01., 
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1996). Research is also stimulated by the reliance of industries, such as baking, wine, 

brewing and, more recently, bioethanol, on s. cerevisioe and other yeasts. This has led to a 

huge body of research covering all aspects of the organism and its life cycle. 

In the laboratory the most commonly worked with yeast is S. cerevisioe, the strain S288C 

perhaps being the most well known. Laboratory strains of s. cerevisioe are typically haploid 

or diploid, referring to a single or double compliment of DNA respectively. The haploid 

compliment of DNA consists of 16 chromosomes ranging from 230 Kb (chromosome I) to 

1,532 Kb (chromosome IV) (Goffeau et 01., 1996). Haploids can be one of two mating types 

named a and a. When two haploids of opposite mating types are in close proximity they 

cause each other to arrest in the G1 phase of the cell cycle. Each grows a protuberance 

towards the mating partner forming a characteristic "schmoo", eventually resulting in a 

diploid cell (a/a) (Dickinson, 2004). Diploid cells can undergo mitosis and proliferate, as do 

the haploid cells. Although haploid cells are only capable of mitosis and vegetative growth, 

in the presence of a poorly-utilized carbon source such as acetate, and usually in the 

absence of a nitrogen source, diploid strains will switch to meiosis which leads to the 

formation of spores. The result of sporulation is an ascus containing four ascospores, which 

if returned to amenable nutrient conditions will generate new cells and commence 

proliferation as haploids, each with a mixture of genetic material from the original haploid 

cells. When haploid cells have a deficiency in nutrients, normal cell cycling is stopped and 

the cell becomes arrested in stationary phase. Although non-dividing in stationary phase, 

the yeasts remain viable and will resume proliferation once returned to complete glucose 

medium (Rose and Harrison, 1989). This life cycle has been well characterised and 

contributes to the factors which make the organism so favoured in scientific study. 
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1.3 YEAST IN BREWING 

The focus of this thesis, however, is brewing yeast, which differs from laboratory yeast 

(Section 1.2) in several ways. Unlike haploid or diploid yeast strains, brewing yeast are 

typically defined as polyploid. This is due to chromosomes being present in differing 

numbers, producing a ploidy which cannot be described as one or two times normal 

compliment. Indeed, yeast may contain mUltiple copies of a single chromosome which may 

not necessarily contain identical sequences or even be the same size. Meiosis and 

subsequent sporulation are uncommon, as is mating between cells. Theoretically this 

should lead to increased genetic stability of a population, as asexual budding accounts for 

cell multiplication within a culture. Genetic variation has, however, been observed in the 

form of changes in chromosome length (Sato et 01., 1994), as well as altered cellular 

function (Bell et 01., 1997; Sato et 01.,2001). 

All brewing yeasts are not the same, with two main types utilised in brewing. These are 

commonly referred to as lager and ale yeast named after the type of beer they are used to 

produce. They can also be referred to as top (ale) or bottom (lager) fermenting yeast 

depending on where in the fermenter the yeast types traditionally aggregated after 

flocculation (Boulton and Quain, 2001; Verstrepen et 01., 2003). Ale yeasts typically belong 

to the species S. cerevisiae whilst lager yeasts are designated S. pastarianus. The genetic 

background of lager yeast is perhaps the more complex of the two, as they were derived 

from a hybridisation event(s) between s. cerevisiae and S. boyan us strains (Tamai et 01., 

1998; Rainieri et 01., 2006; Dunn and Sherlock, 2008; Nakao et 01., 2009) or a similar strain 

called s. eubayanus (Libkind et 01., 2011). Interestingly the mitochondrial DNA of lager 

yeast originates solely from S. bayanus, thought to be driven by the use of these yeasts at 

low temperatures (Rainieri et al., 2008). Indeed the optimal growth temperatures for lager 

yeast is lower than that of ale yeast) (Guidici et al., 1998) and is the basis for one of the 

classical methods used to differentiate the two, with lager strains unable to grow at 34°C. 
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However, with the advent of molecular techniques, such as PCR analysis (Legras and Karst, 

2003), karyotyping (Casey, 1996) and restriction fragment length polymorph isms (Schofield 

et al., 1995; Wightman et 01., 1996), traditional methods of differentiation are less widely 

used. Indeed as techniques probing the genotype of S. pastorianus have developed it has 

become clear that at least two distinct hybridisation events have occurred (Uti et 01., 2005; 

Dunn and Sherlock, 2008). This has led to sub-grouping of S. pastorianus into groups which 

correlate with yeast predominantly used in the production of Saaz and Frohberg type 

beers, respectively (Dunn and Sherlock, 2008). These two yeast types display considerable 

genetic variation, particularly with respect to ploidy which is lower in Saaz yeast than 

Frohberg. In Frohberg yeast there are twofold to threefold more S. cerevisiae DNA 

sequences than S. bayanus, whereas Saaz yeast generally contains similar or greater 

quantities of S. boyan us DNA sequence than S. cerevisiae (Dunn and Sherlock, 2008). 

There are a variety of brewing yeasts in use demonstrating distinct fermentation 

characteristics, reflecting the spectrum of beers which they are used to create. Indeed, 

yeast has been referred to as the main character in beer brewing (Lodolo et 01., 2008). 

However, in many fermentations it may not be the only character, with traditional 

fermentations particularly prone to infection by non-Saccharomyces yeast and bacteria. 

Work by Hansen (1883) resulted in the isolation of pure cultures of the brewing yeast, 

which he called Saccharomyces car/sbergenesis (this nomenclature has been the subject of 

much change in recent years). This development led to the growth of pure yeast cultures 

for the inoculation of fermentations, significantly reducing infection. Although certain types 

of beer, most notably Lambic style beers, are still fermented using mixed cultures of yeast 

and bacteria (Martens et 01., 1991), it is now standard practice in the majority of breweries 

to inoculate using a pure culture of yeast. In larger breweries this pure culture is typically 

generated using a dedicated propagation plant, of which there are several types, reviewed 

by Andersen (1994). Conditions in these propagators are engineered to ensure rapid 
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growth, using higher oxygen concentrations and temperatures than would typically be used 

for fermentation. The end product is checked for purity and to ensure it is the correct strain 

for the fermentation (Haikara et 01., 1990). Propagation is not required for every 

fermentation as yeast can be cropped and re-pitched, but in reality this is only done 

between 5-20 times (Boulton and Quain, 2001; Briggs et 01., 2004). Propagation is likely to 

be the mode of yeast supply for most large breweries. Smaller breweries, however, often 

buy in their yeast from other breweries or a specialist yeast suppliers. This supply can be 

unreliable and relatively expensive. One mode of yeast supply which is gaining in 

popularity, particularly among craft brewers, is active dried yeast. 

1.3.1 Use of active dried yeast 

Active Dried Yeast (ADY) products consist of cells with a dry weight of 93-95 % (Bayrock and 

Ingledew, 1997a). They are typically packaged under nitrogen or a vacuum and are granular 

in appearance (Figure 1.1). ADY yeast cells are not metabolically active, but exist in a 

dormant state. The addition of water rehydrates the cells prompting them to regain their 

metabolic function, after which they regain functionalities similar to those of non

dehydrated cells. 

Much of the ADY that is produced globally is utilised by the baking industry. Here the 

emphasis is on producing cells capable of quickly metabolising the sugars contained within 

the dough. Microbiological and viability control of the yeast is not the primary concern as 

the temperatures achieved during baking will kill any microorganism within the product. 

Along with the baking industry, the wine industry has also adopted the technology of ADY 

with some gusto. Previously wine fermentations were inoculated using the microbiological 

species found on the surfaces of grapes. This can lead to inconsistent fermentation, as the 

inoculating culture invariably differs between fermentations. As the advent of propagation 

systems did for the brewing industry, the use of ADY allows wine makers to inoculate with 
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a pure culture of yeast. It is not only the food industry which utilises ADY; the production of 

bioethanol has created a market for large quantities of yeast which ADY could fulfil. Here 

the emphasis is on high ethanol yield as well as reducing costs. 

There is considerable potential for the use of ADY in the brewing industry, perhaps the 

most appealing being the replacement of onsite propagation for the production of pitching 

yeast (Gosselin and Fels, 1998; van den Berg and Van Landschoot, 2003; Powell and 

Fischborn, 2010). However, in addition to use for direct pitching, ADY can be used as a 

starter culture for the propagation process, leading to a reduction in total propagation time 

(Debourg and Van Nedervelde, 1999; Reckelbus et 01., 2000), or for bottle conditioning 

(Van Zandycke et 01., 2009). However, adoption of ADY technology by the brewing industry 

in general has been slower than that of others. Some sections of the industry, such as the 

craft brewing sector, have taken to the technology more readily than others, in particular 

the larger scale breweries. An explanation for this may be found in their differing methods 

of yeast supply. Craft breweries often lack the facilities to propagate their own yeast, thus 

rely on purchasing it from elsewhere. ADY therefore offers a reliable source of a pure yeast 

culture. larger scale breweries tend to have dedicated propagation plants, which are 

viewed as a reliable method of yeast supply, thus the reasons to change practice must be 

compelling. 

ADY can be stored at 4°C for up-to two years and can be rehydrated and ready to pitch in 

approximately an hour (Tobias Fischborn, personal communication), comparing favourably 

to conventional propagation methods which can take weeks. The rapidity of ADY allows 

yeast supply to better match the requirements of the brewery as it is sometimes not 

known when a new batch of yeast will be required. ADY may also allow larger breweries to 

centralise yeast supply (van den Berg and Van landschoot, 2003), potentially making brand 

beers more consistent between breweries. Furthermore, ADY provides added flexibility 
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with the ability to brew on-demand and vary the yeast strain in use (of particular use to 

craft brewers working on a small scale). There is also a potential cost saving, with dedicated 

propagation plants being unnecessary, replaced by relatively simple rehydration vessels. 

This is more relevant for newly built breweries, as propagation plants are not yet in place. If 

ADY eventually supersedes onsite propagation it is likely that monetary savings will be the 

driving factor. 

Whilst convenience and fiscal benefits are attractive to a brewer, their first concern is 

maintaining a consistent product; ADY must therefore show equivalency to propagated 

yeast before brewers' will initiate the significant change to their protocols required. 

Previously, ADY has been thought to pose a contamination risk to the fermentation, due to 

the susceptibility of the drying process to infection by non-target organisms. However, 

procedural improvements have led to products which are comparable in terms of purity to 

propagated yeast (Quain, 2006). In addition, the absence of hops in the propagation 

medium used for ADY may result in increased sensitivity of contaminants during 

fermentation, leading to rapid death of any bacterial cells present (van den Berg and Van 

landschoot, 2003). 

Aroma profiles in beer produced from fermentations with ADY are comparable to those 

when propagated yeast is used (De Rouck et 01., 2007). Studies have also shown that 

fermentation characteristics of dried yeast show similarity to those of the wet equivalent 

(Debourg and Van Nedervelde, 1999; De Rouck et 01., 2007). However, a key concern when 

considering the use of ADY is the lower viability of populations compared to its stock 

counterparts, between 20-40 % less (lager strains tend to have a lower viability than that of 

ale strains, although the reasons for this are unclear). If viability is accurately assessed 

before pitching, the pitching rate can be adjusted accordingly to accommodate this factor 

without adversely effecting fermentation (Debourg and Van Nedervelde, 1999). 
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Significantly, a study by Finn and Stewart (2002) into the flocculation of dried brewer's 

yeast during fermentation found it to be abnormal when compared to wet yeast 

equivalent. The same authors also reported the presence of haze and less stable foam. The 

greater haze was surmised to be due to the presence of dead cells in suspension, which 

were also suggested to be responsible for reduced foam stability due the release of 

proteinase A. The pitching of dead cells has been associated with several of the issues 

encountered when using dried yeast; it is therefore clear that to make ADY a feasible 

alternative to propagated yeast, the low viability of its populations needs to be addressed . 

The causes of cell death in ADY are unclear, however, the potential for cellular damage 

during its production is significant (Sections 1.3.2 and 1.3.3). 

Figure 1.1. ADY in its dehydrated form. In each instance the size bar represents 1 cm. 

1.3.2 Production of ADY 

The production of ADY first requires the generation of substantial yeast biomass (Section 

1.3.2.1), the early stages of which have some parallels with the propagation regimes used 

in brewing. The yeast population then undergoes several steps which reduce the water 

content (extra and intra cellular), culminating in fluidised bed drying (Section 1.3.2.2) to 

produce cells with a dry weight of 93-95 % (Bayrock and Ingledew, 1997a). 
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1.3.2.1 Propagation 

The main purpose of propagation is to generate biomass, but there is also some 

consideration given to preparing yeast for the rigors of the drying process. Strains are first 

grown in the laboratory from frozen (-196°C) stocks to provide an inoculant (approximately 

25 I) for the larger propagation vessels (Figure 1.2). Typically propagation is completed 

using a molasses based medium (Powell and Fischborn, In press); a by-product of beet and 

cane sugar production. The addition of a nitrogen source (often ammonium sulphate or 

ammonia) and other trace substances, such as vitamins, salts and metals, are required to 

make this nutrient lacking medium a suitable substrate for yeast (Quain, 2006). The 

medium is also adjusted to pH of 4.5-5 using sulphuric acid. Propagation then occurs in two 

distinct steps, a batch propagation, followed by a fed-batch propagation (Figure 1.2) 

(Quain, 2006; Van Zandycke et al., 2009; Powell and Fischborn, In press). The key difference 

between these two systems, apart from the scale, is the way the medium is introduced. 

The batch propagation (50-80 hi) is similar to that of a brewery in that the entire medium is 

introduced at the beginning. Although oxygen is also introduced, the high levels of glucose 

result in a scenario termed the 'Crabtree effect', whereby glucose is degraded mainly via 

the fermentation pathway due to repression of the respiratory system, (Crabtree, 1929; 

Swanson and Clifton, 1948; De Deken, 1966). The fermentation of glucose to ethanol 

(C2HsOH) and carbon-dioxide produces less ATP (two ATP molecules) than the respiration 

of glucose to water and carbon-dioxide (a potential 38 ATP molecules). Batch propagation 

lasts approximately 24 hours and the yeast is then transferred to a fed-batch propagation 

vessel. During fed-batch propagation (400-700 hi) the crabtree effect is avoided by 

gradually introducing the sugar medium, maintaining low levels (0.1 %) of available sugar 

(Quain, 2006; Powell and Fischborn, In press). This means that the metabolism of the yeast 

is mainly aerobic respiration, which is a more efficient method to create ATP, thus more 

efficient for cell growth. The key purpose of the propagation regime is to produce a large 
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amount of yeast efficiently, particular with regard to the financial cost. Given that the 

yeast is destined for drying, there are certain steps taken during the propagation to 

prepare the yeast cells for the subsequent stresses which will be encountered during 

dehydration and the subsequent rehydration . Towards the end of propagation, nutrient 

feeding is stopped to arrest cell division, and yeast is conditioned with a mild heat shock to 

encourage the accumulation of protectants such as trehalose (Ertugay et 01., 1997; 

Jorgensen et 01., 2002; Powell and Fischborn, In press). 

Laboratory 
propagation 

E Molasses J--... 

Batch 
propagation 

Fed-batch 
propagation 

Centrifuge 

Figure 1.2 The propagation steps typically used for the production of ADY. Laboratory propagation 

is followed by batch and then fed-batch propagations, before yeast is concentrated using a 

centrifuge. Adapted from Van Zandycke et a!. (2009). 

1.3.2.2 Drying 

The first stage of the drying process is the removal of propagation broth, achieved through 

centrifugation and washing of the cells, resulting in a yeast concentrate of approximately 

20 % dry weight. A preliminary water removal stage based on vacuum filtration is used to 

convert yeast cream to a cake (approximately 30-32 % dry weight), which is then extruded 

into noodle-like structures of approximately 0.2 mm in diameter. The remaining water is 
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then removed using a fluidised bed drier (Figure 1.4). In the fluidised bed drier 

dehumidified air is blown in from beneath a fluidised bed membrane. Extruded yeast 

enters from above the membrane and forms a fluid bed on its surface, resulting in the 

uniform drying of cell aggregates. This ensures a high level of contact between air and 

yeast, maintaining the product at a desired temperature (35-37"C) and promoting efficient 

drying (Powell and Fischborn, In press). Drying is continued until the dry weight of the yeast 

culture is approximately 93-95 % dry weight (8ayrock and Ingledew, 1997a; Powell and 

Fischborn, In press), at which point it is packaged under vacuum or nitrogen gas. 

Rotational 
vacuum 

filter 

Extruder 

Fluldlsed bed 
... drier 

\ 

Packaging ... 
Figure 1.3. The drying steps typically used for the production of ADY. Adapted from Van Zandycke 

et 01. (2009). A rotational vacuum filter produces a yeast cake of approximately 20 % dry weight, 

which is then extruded into noodle like shapes of approximately 30-32 % dry weight. Finally yeast 

is dried to approximately 93-95 % dry weight using a fluidised bed drier. 
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Figure 1.4. Fluidised bed dried adapted from Powell and Fischborn (In press). Dehumidified air is 

heated and blown in from beneath a fluidised bed membrane. Extruded yeast enters from above 

the membrane and forms a fluid bed on its surface, resulting in the uniform drying of cell 

aggregates. 

1.3.3 Stresses associated with dehydration and rehydration 

Water is essential for life, yet many organisms can survive anhydrobiosis, when the 

availability of water is reduced. This is because cells enter a dormant metabolic state, with 

cellular functions resuming once water has returned. Although the drying of yeast as a 

method of preservation is common, it is not a perfect technology and losses in viability (cell 

death) are expected. The precise cause, or causes, of this cell death are unknown, but are 

likely to be attributable to the plethora of stresses encountered during the production of 

ADY. During dehydration the loss of water is an obvious and significant stress, with some 

studies identifying it as the key factor responsible for a decrease in viability (Bayrock and 

17 



Ingledew, 1997b). There are, however, numerous other stresses which have been 

suggested to accompany the dehydration and rehydration of yeast cells. 

Indicators as to what these stresses might be can be found in transcriptional studies, 

several of which have followed the expression of stress related genes throughout the 

production of ADY. Perez-Torrado et al. (2005) recorded the expression of genes during the 

propagation of 5. cerevisiae used for wine making. They noted that in addition to the 

general stress pathway, the osmotic and oxidative stress responses were strongly induced. 

Singh et al. (2005) analysed the transcriptional response of 5. cerevisiae during laboratory 

desiccation and rehydration. They recorded an increase in the expression of genes involved 

in fatty acid catabolism, gluconeogenesis, and the glyoxylate cycle, during drying, which 

remained at an elevated level when the cells were rehydrated (Singh et 01., 2005). 

Rossignol et al. (2006) also investigated the genomic response of 5. cerevisiae (a wine 

strain) during rehydration. They found that the general stress response genes were 

repressed during rehydration, whilst acid stress specific genes were induced, which it was 

suggested was a response to the accumulation of organic acid (Rossignol et 01., 2006). 

Indeed rehydration appears to be more of a recovery period with genes associated with 

protein synthesis being induced. Although these studies are not a direct representation of 

the industrial propagation and drying of brewing yeast, they are a useful indicator as to the 

types of stresses that yeast cells are subjected to during propagation, dehydration and 

rehydration. 

1.3.3.1 Osmotic stress 

Osmotic stress is clearly an important factor when considering the potential stresses of 

dehydration and rehydration. However, osmotic stress first occurs prior to drying during 

the propagation of yeast, due to the high concentration of sugars present in the growth 

medium during batch growth (Perez-Torrado et 01., 2005). Osmotic stress can manifest 
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itself in several forms encompassing the movement of water and the loss of water's 

structural properties. Constituting a large proportion of the cell, the movement of water 

can have significant damaging effects. Efflux and influx of water across the membrane 

during dehydration and rehydration respectively can result in damage, whilst the loss of 

water from the membrane structure itself can also cause damage (Laroche and Gervais, 

2003). Cell shrinkage, without plasmolysis, is thought to result in rupture of the cell 

membrane in times of osmotic stress (Morris et al., 1986). Cell shrinkage also leads to 

cytoplasmic crowding, which may promote potentially damaging molecular interactions 

within the cell (Berner and Gervais, 1994; Vindelov and Arneborg, 2002). Other cell 

components also require water molecules to maintain their structure with water loss 

producing conformational changes in proteins, potentially resulting in the permanent loss 

of function (Hoekstra et 01., 2001; Fran~a et al., 2007) and the dehydration of DNA 

molecules can result in the loss of supercoiling structure (Shirkey et al., 2003). 

There are, however, mechanisms within yeast cells which facilitate a degree of resistance 

to osmotic stress. The yeast cell membrane contains protein channels, referred to as 

aquaporins, which under certain circumstances can facilitate the osmotically driven efflux 

of water (Tanghe et al., 2002), reducing potential membrane damage. In addition, yeast 

cells may adjust their cellular composition to reflect their changing surrounding 

environment. Under osmotic stress the High Osmolarity Glycerol (HOG) Mitogen-Activated 

Protein kinase (MAP kinase) pathway is activated (Brewster et al., 1993). This name is in 

reference to the observation that yeast, when subjected to osmotic stress, accumulate the 

osmolyte glycerol (Reed et 01., 1987) due to the induction of GPDl and GPP2 which encode 

enzymes involved in its synthesis (Rep et al., 1999). Glycerol is accumulated in an attempt 

to counterbalance external osmotic pressure (Reed et al., 1987). Cells under osmotic stress 

may also accumulate the disaccharide trehalose (Eleutherio et al., 1997), which is thought 

to exhibit various protecting functions (discussed in Section 1.3.4). 
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In addition to compositional changes, osmotic stress can cause cells to exhibit transient 

structural modifications including thickening of the cell wall (Morris et 01., 1986), 

reorganisation of the actin cytoskeleton (Chowdhury et 01., 1992) and changes to 

membrane fluidity (Laroche et 01., 2005). Indeed changes with respect to the cell 

membrane are thought to be vital to the cell's osmotic response due to the presence of the 

transmembrane protein Sln1. Slnl is an osmosensor histidine kinase, which monitors 

changes in turgor pressures (Reiser et 01., 2003) and is responsible for the activation of 

HOG MAP kinase pathway (Posas et 01., 1996). 

1.3.3.2 Oxidative stress 

Although osmotic stress clearly has a significant impact during dehydration and 

rehydration, it is by no means the only stress which yeast are subject to. Oxidative stress, 

due to the production of reactive oxygen species (ROS), is perhaps the most significant of 

these other stresses. Indeed, Shima et 01. (2008) have identified, through genome-wide 

screening (using deletion mutants), correlations between air-drying sensitivity and 

oxidative stress sensitivity suggesting significant relatedness between the mechanisms or 

targets of the two stresses. 

ROS are not only produced during ADY production; they are generated by mitochondria 

during normal aerobic metabolism (Trancikova et 01., 2004). Indeed, the method of biomass 

production (fed-batch propagation discussed in Section 1.3.2.1) is the first major source of 

ROS in the production of ADY. The process is specifically engineered to maintain maximum 

aerobic respiration throughout the process (Perez-Torrado et 01., 2005). Upon dehydration 

yeast cells can show more than a 10-fold increase in intracellular oxidation, assessed using 

the fluorescent probe 2',7'-dichlorofluorescein. The origins of the ROS that appear during 

dehydration are unclear (Pereira et 01., 2003), but the targets of oxidative damage are 

identifiable. Lipids, a key constituent of the plasma membrane, are known to suffer 
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peroxidation during dehydration (Fran~a et al., 2005; Herdeiro et al., 2006; Garre et al., 

2010). Although other cell components are also susceptible to ROS damage, DNA (leroy et 

al., 2001) and proteins (Herdeiro et al., 2006) for example, it is the damage to the plasma 

membrane an organelle, known to be integral to survival during osmotic stress (Simonin et 

al., 2007a), which is perhaps the most significant. The oxidative stresses encountered 

during ADY production are in addition to the potential oxidative stress which yeast may 

encounter during fermentation, particular in the initial stages (Higgins et al., 2003). The 

accumulative effect of these stresses is not known. 

As with osmotic stress, the yeast cell has a selection of protective, or damage limiting, 

responses which are elicited by oxidative stress. Glutathione (GSH) functions as one of 

these responses, acting as a ROS scavenger reacting to produce its oxidised form (GSSG) 

(Grant, 2001). Indeed Espindola et al. (2003) identified glutathione as playing a significant 

role in the maintenance of intracellular redox balance during dehydration. Thioredoxin 

serves a similar scavenging function as GSH and has also been suggested to improve 

dehydration tolerance (Perez-Torrado et 01., 2009). In addition to protection from osmotic 

damage, the accumulation of trehalose may also protect from oxidative damage (Pereira et 

01., 2003; Herdeiro et al., 2006). The yeast oxidative response also encompasses the activity 

of several enzymes. One such enzyme, the cytoplasmic catalase (Cttl), catalyses the 

breakdown of hydrogen peroxide to oxygen and water (Fran~a et al., 2005). Through the 

analysis of mutants lacking this enzyme it has been shown that its actions improve 

dehydration tolerance in laboratory strains (Fran~a et al., 2005). 

1.3.3.3 Additional contributory stresses 

Although two key stresses have been highlighted, osmotic (Section 1.3.3.1) and oxidative 

(Section 1.3.3.2), there other stresses present during ADY production. Although they may 
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be considered of little significance on their own, these stresses may combine to cause 

significant damage and should not be ignored. 

Like all organisms, yeasts have optimum temperatures for metabolic activity at which they 

exhibit maximal growth. s. cerevisiae has a growth optimum of approximately 31°C, whilst 

the lager yeast S. pastorianus has a lower optimum of approximately 27°C (Guidici et al., 

1998). Above these optimal temperatures yeast cell components may become damaged. 

Yeast are subject to heat stress during the drying phase, where a temperature of 

approximately 3S-3rC is reached (Powell and Fischborn, In press). This is considerably 

lower than some other drying techniques, such as spray drying which can impart a 

temperature in excess of 100°C (luna-Solano et al., 2000), but is still likely to have an 

impact on the yeast cells. like many organisms, yeast generate protective proteins in 

response to heat shock (lindquist and Craig, 1988). The heat shock response in yeast is 

intimately associated with the osmotic stress response, with the HSP12 gene being 

activated by HOG MAP kinase pathway (Varela et al., 1995). 

Additional stress may also be derived from the presence of damaged cells that leach 

cellular compounds during rehydration. Weak organic acids can leak from damaged cells, 

eliCiting induction of the weak acid stress regulon during rehydration (Rossignol et al., 

2006). There are, however, benefits associated with leaching/leaking, as some products can 

be beneficial to cells, such as amino acids and nucleotides which are made freely available 

to cells (Rossignol et al., 2006). It is therefore possible that improvements to aspects of 

damage brought about to cells during rehydration may not be wholly beneficial, as the 

decreased non-Viable cell concentration may be detrimental. 

During propagation, cells undergo intentional nutrient limitation (Section 1.3.2.1) to 

encourage the accumulation of protectants. This starvation, although common in 

laboratory and industrial cultures, may also contribute to the overall stress of the yeast. 
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Indeed entry into stationary phase due to nutrient limitation requires significant changes to 

the biochemistry of the cell such as the accumulation of storage carbohydrates, most 

notably glycogen (Rothmand-Denes and Cabib, 1970) and trehalose (Jorgensen et 01., 

2002), alteration of the cell wall structure (de Nobel et 01., 1990) and changes in membrane 

structure (Takeo et 01., 1976). 

1.3.4 Process steps to optimise ADV viability 

The potential stresses which may damage yeast during ADV production, and a description 

of some of the methods by which yeast may resist damage has been described above. 

Some of these inherent protective responses have been exploited in the propagation of 

ADY to increase cellular stress resistance. 

Stationary phase cells cope better during osmotic stress than exponential phase cells 

(Hounsa et 01., 1998), therefore towards the end of propagation nutrient supply is 

restricted, forcing the cells to cease dividing and enter stationary phase. This nutrient 

limitation is also accompanied by a mild heat shock (Ertugay et 01., 1997; Jorgensen et 01., 

2002). This acts to stimulate a molecular response which results in the accumulation of 

protectants which can provide resistance to subsequent heat or other stress (Piper, 1993; LI 

et 01., 2009). The major protectant accumulated is trehalose, a disaccharide which can be 

found in industrially produced ADY at around 10 % of its dry weight (Van Dijck et 01., 1995). 

Trehalose is of importance as it may help protect cells from osmotic, oxidative and heat 

stress which are all encountered during the drying process. However, whether levels of this 

sugar increase cell survival during dehydration, and its mechanism are still unclear. 

Alexandre et 01. (1998) demonstrated that there was a lack of correlation between the 

accumulation of cellular trehalose and viability maintenance under induced stresses. In 

contrast, Ratnakumar and Tunnacliffe (2006) showed that a high intracellular trehalose 

concentration can improve stress tolerance, but is neither necessary nor sufficient for 
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survival in desiccation. These authors further postulated that trehalose's main function in 

desiccation involved minimising protein inactivation by acting as a chemical chaperone. 

Hounsa et 01. (1998) concluded that trehalose did have an important protective function for 

the survival of yeast under severe osmotic stress which would occur during rehydration. 

As well as confusion over the extent of protection which trehalose provides during 

dehydration, there is also debate about the mode in which it may provide protection. The 

transition temperature of the amorphous phase of trehalose is relatively high and makes 

trehalose more stable than other cell components, thus providing a stabilising presence in 

the cell. The formation of a stable and highly viscous glass may hold biomolecules in a form 

which allows them to return to their native structure and thereby be fully functional 

following rehydration (Fran~a et 01., 2007). Trehalose may have more specific interactions 

with some cellular components, such as proteins and lipids. Trehalose and other sugars, 

such as sucrose, have been shown to preserve structure and function of proteins when 

water is removed (Singer and Lindquist, 1998). It also suppresses the aggregation of 

denatured proteins, maintaining them in a partially-folded state from which they can be 

reactivated by molecular chaperones (Singer and Lindquist, 1998; Hoekstra et 01., 2001). In 

vitro, trehalose has been demonstrated to significantly reduce the oxidation of fatty acids, 

another key cell component (Oku et 01., 2003). Furthermore, it has been demonstrated that 

the presence of trehalose lowers the phase transition temperature of dry to liquid crystal 

phase and thus makes it possible to avoid a transition during rehydration (Leslie et 01., 

1994) a key point of damage in osmotically stressed yeast (Laroche et 01.,2005; Simonin et 

01., 2007a). It is suggested that this is achieved by the disaccharide directly replacing water 

molecules in the structure of the lipid membrane. Trehalose shows a direct interaction with 

the phospholipid headgroups during drying, reducing the van der Waals interactions among 

the hydrocarbon chains (Patist and Zoerb, 2005). Hydrogen bonding between sugars and 

the polar headgroups of the lipids contribute to preserving the integrity of biological 
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structures. As water is removed or lost, the interactions that occur between the sugars and 

polar headgroups act as replacement, maintaining the membrane fluid interface (Crowe et 

01., 1998; Patist and Zoerb, 2005). It is not clear as to the precise role trehalose plays in 

industrial strains, where the sugar is often present in much higher concentrations than 

those commonly investigated in the laboratory. 

There should also be a word of caution as although trehalose may protect against stresses, 

it may also be detrimental to normal metabolism. In keeping with its role of maintaining 

chemical stability, trehalose inhibits the reactivation of denatured proteins, once the stress 

has been removed. Thus, the continued presence of trehalose interferes with refolding 

(Singer and Lindquist, 1998; Herdeiro et 01., 2006) and directly inhibits enzyme action 

(Sam pedro et 01., 2002; Sebollela et 01., 2004). This may be detrimental to brewing yeast 

pitched into fermentation medium where the population is required to be highly 

metabolically active, thus it is likely to be advantageous if the sugar is able to be rapidly 

removed from cells. 

1.4 AIMS AND OBJECTIVES 

Despite the extensive innovation which has occurred within the brewing industry, 

improvements to the processes involved are still actively sought. Yeast supply is one area 

which has potential for further optimisation. Replacing the propagation of the inoculating 

yeast culture with ADY provides potential savings in time and money. Although ADY use has 

been prevalent in the baking and wine industries the specific requirements for pitching 

quality brewing yeast may limit the technology's adoption. The plethora of stresses 

involved in ADY production pose a significant threat to yeast integrity and in particular its 

viability. Therefore, before ADY is likely to be adopted as the industrial standard the extent 

of damage caused by drying the yeast and the effect this has on its fermentation 

performance needs to be demonstrated. This thesis will first assess the extent of cell death 
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when three brewing yeast are dehydrated and rehydrated, determining the extent of the 

problem. Cellular components which are both key to cell function and potential sources of 

stress damage will then be probed to determine if damage has occurred. Finally, ADY will 

be utilised in a fermentation to determine its suitability for the process, comparing its 

profiles to a propagated yeast culture. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 YEAST STRAINS AND STORAGE 

LALl lager yeast, LAL2 ale yeast and LAL4 ale yeast were provided by Lallemand Inc. 

(Montreal, Canada) as ADY and in non-dry form. ADY was stored at 4°C. Non-dried (control) 

laboratory-grown yeast was stored on YPD slants at 4°C. YPD was produced by dissolving 

Yeast extract (1 %), Peptone (2 %) and D-Glucose (2 %) in RO (reverse osmosis) water. If 

required the medium was solidified using agar (1 .2 %) (all media supplied by Fisher 

Scientific, UK). Stock cultures of each strain were cryogenically maintained in cryovials 

(Nalgene Nunc International, UK). A loop full of yeast grown on YPD agar was re-suspended 

in lml YPD containing 20 % (v/v) glycerol (Sigma, UK) as a cryoprotectant to maintain cell 

viability. The yeast were stored at -80°C. 

Table 2.1. Batch numbers of ADY used throughout the project 

Strain Batch Number Source Expiry Date 

NOT SUPPLIED Lallemand Inc. Canada. 03-2008 

22801120 Lallemand Inc. Canada. 04-2009 

LALl 22810611090300v Lallemand Inc. Canada 10-2009 

22809S01180627v Lallemand Inc. Canada 11-2009 

22810611290627v Lallemand Inc. Canada 10-2010 

10804280377711v Lallemand Inc. Canada. 04-2009 

LAL2 

1087117102 Lallemand Inc. Canada. 06-2011 

22901891277711v Lallemand Inc. Canada. 12-2009 

LAL4 

2290011019v Lallemand Inc. Canada. 02-2011 
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Table 2.2. The name, source, genotype and reference of the yeast strains used throughout the project. 

Strain Source Genotype Notes References 

LALl Lallemand Inc. Montreal, Canada Not analysed Lager strain (Jenkins et 01., 2010) 

LAL2 Lallemand Inc. Montreal, Canada Not analysed Ale strain (Jenkins et 01., 2010) 

LAL4 Lallemand Inc. Montreal, Canada Not analysed Ale strain (Jenkins et 01., 2010) 

Professor Stephen Oliver, University of 
. S288C MATa: gal2;mal Haploid lab stra in (Goffeau et 01., 1996) 
, Cambridge, UK 
, 

YOOOOO European Saccharomyces cerevisioe Synonym: BY4741 (Thakur and Chakrabarti, 
archive for functional analysis MATa; his3~ 1; leu2~0; met15~0; ura3~0 , 

Haploid lab strain 2010) 
(EUROSCARF) 

BY4741; Mat a; his3~1; leu2~0; met15~0; Non-functioning 
Y02667 EUROSCARF (Schuller et 01., 2004) 

ura3~0; YLR056w::kanMX4 YLR056w / ERG3 

BY4741; Mat a; his3~1; leu2~0; met15~0; Non-functioning 
Y00788 EUROSCARF (Schuller et 01., 2004) 

ura3~0; YMR202w::kanMX4 YMR202w/ERG2 

---
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2.2 PREPARATION AND REHYDRATION OF ADY 

ADY was prepared, using the manufacturers' standard protocol, by propagation on 

molasses based media and dried using a fluidized bed drier (Van Zandycke et 01., 2009; 

Powell and Fischborn, 2010). ADY was provided by Lallemand Inc (Montreal, Canada) in 

sealed packets under vacuum (LAL1) or nitrogen (LAL2 and LAL4) and stored at 4°C prior to 

use. Rehydration was performed based on the manufacturer's guidelines (figure 2.1); 1 g 

dried yeast was sprinkled onto 10 ml attemperated tap water in a 30 ml universal tube 

unless stated. ADY was incubated at the desired rehydration temperature for 15 min, 

mixed gently to separate any clumps and incubated for a further 45 min. 

10ml 
autoclaved tap 
water 

Ig of Yeast 
Sprinkled on 
the water 

r------,surface. 

A 

Incubate Statically 
for 15mins at 
assigned 
temperature 

Gently suspend 
~st completely 

B 

Sample pOints: 

-(1-15mins further 
incubation 

-C2- 30mins 

-C3- 45mins 

-C4- 60mins 

Figure 2.1. Rehydration procedure for ADY based on the instruction provided by the manufacturer. 

A, B, and Cl-4 represent the points at which samples were removed for viability analyses. 

2.3 CELL DENSITY DETERMINATION AND ESTIMATION OF VIABILITY IN ADY 

POPULATIONS 

For estimation of viability in ADY, yeast was rehydrated prior to analysis as described in 

section 2.2. Samples for viability testing were recovered in triplicate before rehydration 
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(Sample Point A), after initial mixing (Sample Point B) and subsequently at 15 min intervals 

(Sample Points C1-C4) (Figure 2.1). 

Cell suspensions were diluted with water (purified using reverse osmosis) to the required 

density (approximately 1 x 107 cells/ml). Cell density was measured using an Improved 

Neubauer counting chamber (Weber Scientific International Ltd, UK) and standard light 

microscope (BH-2, Olympus, U.S.A.) at a magnification of x400. At least 200 cells were 

counted to calculate cell density (Equation 2.1). 

The number of live cells in each population was estimated by microscopy using brightfield 

(Section 2.3.1 methylene blue) and fluorescent stains (Sections 2.3.2 Mg-ANS and 2.3.3 

Oxonol). In addition, a direct evaluation of the replicative capacity of cells was determined 

by slide culture (2.3.4). Irrespective of the method employed, triplicate samples were 

assessed and a minimum of 100 cells per sample were enumerated. The number of live 

(viable) cells is expressed as a percentage of the total population (Equation 2.2). 

Equation 2.1. The calculation of cell density In yeast cultures using the values obtained from a 

counting chamber. 

cells * dilution factor 
--:------:-....;....-- = cells/ml 
volume of chamber 

Equation 2.2. Viability assessment of yeast cell populations expressed as a percentage. 

(total cells) - (dead cells) 
I II * 100 = % viability tota ce s 

2.3.1 Methylene blue viability assessment 

Methylene blue (Sigma-Aldrich, UK) was dissolved in sodium citrate solution (2 % W/V) to a 

final concentration of 0.01 % (Pierce, 1970). Yeast cells were enumerated using a 

haemocytometer and diluted to a concentration of approximately Id07 cells/ml. Yeast 

suspension (0.5 ml) was mixed with methylene blue solution (0.5 ml) and after a static 
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incubation of 5 min at room temperature examined microscopically (Olympus BH-2 

microscope at x400 magnification). Non-viable cells were stained blue and viable cells 

remained unstained. 

2.3.2 MgANS viability assessment 

MgANS (8-Anilino-l-naphthalene-sulfonic acid hemi-magnesium salt hydrate) staining was 

performed according to the method of McCaig et 01. (1990). 0.3 g MgANS (Sigma-Aldrich, 

U.K.) was dissolved in 2 ml of absolute ethanol (Fisher Scientific, U.K.) and diluted in 98 ml 

of sterile water producing a final concentration of 0.3 % (w/v). This was used as a stock 

concentration and stored at 4·C in a light protected container. Yeast cells were enumerated 

using a haemocytometer and diluted to a concentration of approximately lxl07 cells/ml. 

Yeast suspension (0.5 ml) was mixed with MgANS solution (0.5 ml) and incubated statically 

in a dark environment for 5 min at room temperature. Cells were examined using a 

fluorescence microscope (Optiphot-2, 100 W mercury lamp light source and a triple pass 

filter set for DAPI-FITC-TRITC, Nikon, Japan). Non-viable cells appeared green and viable 

cells remained un-stained (McCaig, 1990). Fluorescent images were taken using a leica 

(Germany) DM5000 B microscope with l5 filter cube (excitation BP 480/40 nm, dichromatic 

mirror 505 nm, and suppression filter BP 527/30 nm). 

2.3.3 Oxonol viability assessment 

Oxonol (bis-(l,3-dibutylbarbituric acid) trimethine oxonol (Dibac4(3))) viability assessment 

was determined following the, method of Lloyd and Dinsdale (2000). 1 mg oxonol dye 

(Invitrogen ltd., U.K.) was dissolved in 1 ml absolute ethanol and stored at -20·C in a dark 

environment. 10 III of the stock solution was diluted in 1 ml water to produce a working 

solution of 10 Ilg/ml. 1 x 107 cells/ml yeast suspension (0.9 ml) was mixed with 100 III of 

working solution of oxonol and incubated in a dark environment at room temperature for 5 

min. Cells were examined using a fluorescence microscope (Optiphot-2, 100 W mercury 
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lamp light source and a triple pass filter set for DAPI-FITC-TRITC, x400 magnification). Non

viable cells appeared green and viable cells remained unstained (Lloyd and Dinsdale, 2000). 

2.3.4 Slide culture viability assessment 

The slide culture technique used to assess viability was adapted from the American Society 

of Brewing Chemists Methods of Analysis (Russell et 01., 1984). In this instance YPD agar 

was used in preference to MYGP (malt extract, yeast extract, glucose and peptone) media. 

Using a pipette, 1 ml molten YPD agar was dispersed evenly over a 3 x 1 inch slide, 

previously sterilized by flaming. Once agar had solidified, 10 III yeast cell suspension (lxl06 

cells/ml) were pipetted onto the surface and a cover slip placed on top. Slides were 

incubated at 25°C for approximately 18 hr. Cells were examined using a light microscope 

and individuals giving rise to microcolonies were deemed viable, while single cells were 

scored as non-viable. 

2.3.5 Statistical analysis of the factors determining viability estimation 

The statistical significance of temperature and method of assessment on viability 

estimation was determined using multi-factorial ANOVA based on a nested experimental 

design using Minitab (Version 16, Minitab Inc., U.S.A.). The experiment was balanced, with 

triplicate estimates of viability for each combination of variable (temperature of 

rehydration and method of assessment). In each instance the null hypothesis was that no 

significant difference existed between data sets. If the P value generated by the test was 

less than 0.05 then the null hypothesis of no significant difference was rejected. 
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2.4 BUDDING INDEX 

The percentage of cells exhibiting a bud, termed budding index, was also calculated 
(Equation 2.3). 

Equation 2.3. Calculation to determine the budding Index of cell populations. 

cells exhibiting a bud 
-----~-- = budding index 
total number of cells 

2.5 ANALYSIS OF YEAST GENETIC STABILITY 

2.5.1 Quantification of DNA 

DNA content of extractions was quantified using a ND-IOOO spectrophotometer (NanoDrop 

Technologies Inc., U.S.A.). 1.5 III sample was pipetted onto the pedestal of the instrument 

and the measurement taken. Calculations were performed automatically, using ND-lOOO 

software (Version 3.1.0, NanoDrop Technologies Inc., U.S.A.) and a value provided for the 

quantity of DNA based on the absorbance at 260 nm (Gallagher and Desjardins, 2006). 

2.5.2 Assessment of genomic DNA 

2.5.2.1 Pulsed Field Gel Electrophoresis (PFGE) 

Yeast DNA, from whole cell populations, was embedded in agarose using the CHEF yeast 

genomic DNA plug kit (Bio-Rad Laboratories, U.S.A.). YPD grown and rehydrated dried yeast 

cells were washed and resuspended in cold 50 mM ethylenediaminetetraacetic acid 

(EDTA), pH 8 (Sigma-Aldrich, U.K.). The cells in suspension were enumerated and 1.8x 108 

cells were harvested by centrifugation at 1,500 g and 4°C for 5 min. The cells were then 

resuspended in 150 III cell suspension medium (Bio-Rad Laboratories, U.S.A.) and 

equilibrated to 50°C. 2 % CleanCut agarose solution (Bio-Rad Laboratories, U.S.A.) was 

heated using a microwave until liquefied and then equilibrated to 50°C. 9 III Iyticase 

solution was added to the cell suspension immediately prior to the addition of 150 III 

agarose solution. The suspension was mixed by gentle pipetting and approximately 100 III 

transferred to a plug mould. Agarose was allowed to solidify at 4°C for 30 min before the 
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plugs were pushed into a 15 ml conical centrifuge tube. 750 ~I Iyticase buffer and 25.5 ~I 

Iyticase solution (Bio-Rad laboratories, U.S.A.) were pi petted over the plugs. The plugs, 

suspended in Iyticase solution, were then incubated at 3rc and 120 rpm for 2 hr. lyticase 

solution was then removed by gentle pouring. The plugs were rinsed in water, before the 

addition of 750 ~I proteinase buffer and 30 ~I proteinase K stock (Bio-Rad Laboratories, 

U.S.A.). The plugs and proteinase K solution were incubated statically at 50°C overnight. 

Proteinase K solution was then removed and the plugs washed in 1 ml washing buffer (Bio

Rad laboratories, U.S.A.) for 1 hr at 120 rpm. This washing step was repeated and the plugs 

then stored at 4°C until use. Approximately 2 mm of each plug was used for chromosome 

separation. Yeast chromosomes were separated through a 1 % agarose gel (1 x TAE buffer) 

using a CHEF II Pulsed Field Gel Electrophoresis system (Bio-Rad Laboratories Ltd., U.K.) 

with a 60 sec switch time for 15 hr and 90 sec switch time for 9 hr. A yeast chromosome 

PFG marker was used for fragment length reference (New England BioLabs, U.S.A.). Gels 

were stained using 0.5 ~g/ml ethidium bromide TAE solution (Sigma-Aldrich, U.K.) and 

visualised using a gel imaging system (Gel Doc, Bio-Rad laboratories, U.S.A.). 

2.5.2.2 Delta Primer pair 12/21 polymerase chain reaction (PCR) 

Rehydrated AOY samples and control laboratory yeast populations were inoculated onto 

YPO plates and incubated at 25°C for 48 hr. DNA was extracted from five individual colonies 

of each sample according to the method described by Powell and Oiacetis (2007). sOTE 

buffer containing 7.44 gIL EOTA (Sigma-Aldrich, U.K.), 6.06 gIL TRIS (Sigma-Aldrich, U.K.), 

adjusted to pH 7.5 with HCl (Fisher Scientific, U.K.) and sterilised by autoclaving at 12rC 

and 103 kPa for 15 min. 10 % SOS (Sigma-Aldrich, U.K.) solution was also produced and 

sterilised by filtration through a 0.45 ~M pore size filter (Millipore, U.S.A.). 50TE-SOS buffer 

was produced by mixing 200 ml of sOTE buffer with 20 ml 10 % SOS solution. A colony was 

transferred to 660 ~L sOTE-SOS buffer. Suspended cells were vortexed and incubated at 

65°C for 10 min to lyse the cells. Subsequently 340 ~l of SM potassium acetate (Sigma-
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Aldrich, U.K.) was added and samples were maintained at 4°e for approximately 15 min and 

occasionally inverted, until proteins were precipitated. Proteins were removed by 

centrifugation for 10 min at 13,000 rpm and 600 III of supernatant was transferred into a 

fresh tube with 600 III isopropanol. Samples were maintained at room temperature for 10 

min to precipitate DNA. DNA was isolated by centrifugation at 10,000 rpm for 10 min and 

the aqueous phase disposed of. DNA pellets were washed in 100 III of 95 % cold (-20°e) 

ethanol before being air-dried and resuspended in 80 III TE buffer (Powell and Diacetis, 

2007). DNA was quantified (Section 2.5.1), diluted to 250 ng/Ill and stored at -20
o
e until 

required. 

The primer pair delta12 (5'-TCAACAATGGAATCCCAAC-3') and delta21 (5'

CATCTIAACACCGTATATGA-3') (legras and Karst, 2003) were obtained from Eurofins MWG 

Operon (Germany). Reactions, using Phusion High-fidelity DNA polymerase (New England 

Biolabs, U.S.A) (Table 2.3), were amplified using a TC-512 thermal cycler (Techne, U.K.) ( 

Table 2.4). PCR products were resolved on a 1 % agarose gel (Sigma-Aldrich, U.K.) at 100 

mV. 
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Table 2.3. PCR mixture content for delta primer pair 12/21 analysis of genomic DNA of individual 

yeast colonies. 

Volume (1l1)/20 12 Reaction master Final 
Component 

III reaction mix volume (Ill) Concentration 

H2O 11.5 138 N/A 

5 x Phusion HF Buffer (New 
4 48 1X 

England Biolabs, U.S.A) 

2mM dNTPs (New England 
2 24 200 IlM 

Biolabs, U.S.A) 

Delta 12 primer (Eurofins 
0.4 4.8 11lM 

MWG Operon, Germany) 

Delta 21 primer (Eurofins 
0.4 4.8 11lM 

MWG Operon, Germany) 

DNA 250 ng/IlL 1.5 N/A 18.75 ng/ill 

Phusion DNA Polymerase 
0.2 

(NEB) 
2.4 0.02 U/ill 

Table 2.4. Program for delta primer pair 12/21 PCR analysis. 

Cycle Step Temp °C Time Cycles 

Initial denaturation 98 30 seconds xl 

Denaturation 98 10 seconds 

Annealing 48 30 seconds 
x35 

Extension 72 90 seconds 

Final extension 72 10 minutes xl 

2.5.3 Assessment of mitochondrial DNA 

2.5.3.1 Analysis of mtDNA by restriction fragment length polymorphism (RFLP) 

DNA was extracted from whole cell populations based on the mitochondrial extraction 

method of Defontaine et 01. (1991) as modified by Nguyen et 01. (2000). Approximately 0.5 

g (wet weight) of yeast cells were washed with 4 ml of cold (4°C) 50 mM EDTA (Fisher 
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Scientific, U.K.) and pelleted by centrifugation (1,000 RCF for 5 min). Cells were then 

resuspended in 5 ml of buffer A (1.2 M sorbitol and 50 mM EDTA, both from Fisher 

Scientific, U.K.) and 100 ~I of j3-mercaptoethanol (Sigma-Aldrich, U.S.A.), prior to incubation 

at 3rc for 10 min. Cells were pelleted by centrifugation (1,000 RCF for 5 min) and 

resuspended in 5 ml buffer B (0.5 M sorbitol, 10 mM EDTA and 50 mM tris-HCL, all Fisher 

Scientific, U.K.) with approximately 10,000 units of Iyticase enzyme (Sigma-Aldrich, U.S.A.), 

prior to incubation at 37°C and 120 rpm for 1 hr. Cell suspensions were then sonicated 

using a Soniprep 150 plus (MSE, U.K.) at 19 KHz for 30 sec .Cells were pelleted by 

centrifugation (1,000 RCF for 5 min) and the supernatant retained. The supernatant, 

containing the isolated mitochondria, was then centrifuged (16,000 RCF at 4°C for 10 min) 

and the supernatant discarded. The mitochondria were then suspended in 0.5 ml buffer B. 

10 units of DNAase were added and the solution was incubated at room temperature for 

10 min. The suspension was washed with buffer B to remove the DNAase and any residual 

genomic DNA. Mitochondria were again pelleted by centrifugation (16,000 RCF at 4°C for 

10 min) and the supernatant discarded. The pellet was resuspended in 0.6 ml lysis buffer 

(100 mM NaCI, 10 mM EDTA, 50 mM Tris-HCI, 4 mM Sodium lauroyl sarcosinate, all from 

Fisher Scientific, U.K.) to which 0.5 ml phenol-chloroform (Sigma-Aldrich, U.S.A) was added, 

and mixed by pipetting. The suspension was centrifuged (16,000 RCF at 4°C for 5 min) and 

the supernatant retained, to which 0.6 ml chloroform was added. The suspension was 

centrifuged (16,000 RCF at 4°C for 5 min) and the aqueous phase retained. 25 ~I of 5 M 

NaCI and 1 volume of Isopropyl-alcohol were added to the solution and incubated at room 

temperature for 30 min. The precipitated DNA was then pelleted (16,000 RCF at 4°C for 30 

min) and subsequently washed with 0.6 ml of 75 % ethanol, before finally being 

resuspended in 30 ~I RO water. DNA was quantified using a NanoDrop ND-1000 

spectrophotometer and the concentration was adjusted to 500 ng/~L. mtDNA was cut 

using the enzyme Hin/l (New England Biolabs, U.S.A) with the appropriate buffer (supplied 
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with the enzyme). 1.5 III of buffer was added to a 12 III aliquot of DNA before addition of 

1.5 III enzyme. Digests were incubated at 37"C for 30 min and profiles separated using a 1 

% (w/v) agarose gel at 70 mY. 

2.5.3.2 Relative quantification of ACTI and COX2 using Real-Time PCR analysis 

Quantitative Real-Time PCR (qPCR) analysis was used to assess the relative abundance of 

nuclear DNA and mtDNA. An entire genome extraction, adapted from lee et 01. (lee et 01., 

1985), was performed using whole cell populations of rehydrated ADY and control cultures. 

Cells were harvested by centrifugation (1,000 RCF for 5 min) and re-suspended in 5 ml of 

washing buffer (1 M Sorbitol (Sigma-Aldrich, U.S.A.), 50 mM KH2P04 (Fisher Scientific U.K.)}. 

The cells were again harvested and then weighed. Two volumes of washing buffer were 

used to re-suspend the cells, assuming that 1 g wet weight was equivalent to 1 ml volume. 

0.5 ml cell suspension was transferred to a 1.5 ml polypropylene micro-centrifuge tube. 0.5 

ml washing buffer and 4 III 6-mercaptoethanol (Sigma-Aldrich, U.S.A.) were also added to 

the tube which was mixed and incubated for 10 min at room temperature weakening the 

cell wall. 200 U of Iyticase enzyme (Isolated from Arthrobacter luteu5, Sigma-Aldrich, U.S.A.) 

solution were added, mixed well and left for 45 min at room temperature to digest the 

yeast cell wall and form spheroplasts. The suspension was centrifuged for 1 min at 16,000 

RCF and the supernatant resuspended in 1 ml 50 mM EDTA pH 8.5 (Sigma-Aldrich, U.S.A.), a 

chelating agent which binds to DNAse cofactors thus protecting DNA. Cells were lysed by 

the addition of 40 III SDS solution (10 % w/v) and heating at 65·C for 30 min. The 

preparation was cooled on ice and 200 III high-salt solution (3 M Potassium acetate and 2 

M glacial acetic acid (Fisher Scientific U.K.)) added, prior to a further 15 min incubation on 

ice. The lysate was then centrifuged (16,000 RCF for 30 min) removing cell debris, 

precipitated proteins and SDS, which reacts with the potassium acetate to form an 

insoluble product. DNA was precipitated when 0.8 ml supernatant was removed to which 

0.6 ml iso-propanol (Sigma-Aldrich, U.S.A.) was added and incubated for 5 min at room 
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temperature. The precipitate was centrifuged (2 min 16,000 RCF) and washed in 0.5 ml 70 

% ethanol. The ethanol was removed and the pellet was dissolved in 200 III of water. RNA 

was removed by the addition of 5 III 10 mg/ml RNAse and incubation for 60 min at 37·C. 

DNA was then purified using a phenol-chloroform extraction, removing any residual 

prtoeins. 0.5 ml mixture of Phenol - chloroform - isoamyl alcohol (25:24:1) (Sigma-Aldrich, 

U.S.A.), added to 200 III of DNA with 100 III of water in phase lock gel microfuge tubes 

(Helena Bioscience, U.K.). Tubes were centrifuged (16,000 RCF for 5 min) and the aqueous 

phase removed and pippetted into a fresh tube with 250 III chloroform (Sigma-Aldrich, 

U.S.A.) alone. Tubes were again centrifuged (16,000 RCF for 5 min) and the aqueous phase 

removed to a fresh tube. 20 III of 3 M sodium acetate was added followed by 660 III 100 % 

ethanol. This neutralised the charge of the phosphate backbone of DNA, making the 

molecules less soluble, thus the DNA could be harvested by centrifugation (16,000 RCF for 

5 min). The DNA pellet that was collected was then washed with 70 % ethanol to remove 

any residual salt and resuspended in water. DNA was quantified (2.5.1) and adjusted to 10 

ng/llL. 

Reactions were then prepared following the manufacturers recommendations using the 

StepOne™ Real-Time PCR System software (Applied Biosystems) (Table 2.5). The relative 

amounts of COX2 were compared using an ACT1 control sample as the endogenous 

control; thus control samples were assigned a relative quantification of one for COX2, and 

the value for dried samples was determined relative to this value. Primers were produced 

for the nuclear marker ACT1 (s' CGCTCCTCGTGCTGTm 3' and 5' 

TIGACCCATACCGACCATGA 3') based on previously published sequences (Taylor et 0/., 

2005) and the mtDNA marker COX2 (5' GTAACAGCTGCAGATGTIATICA 3' and 5' 

CCATAGAAAACACmCTCTTIG 3') designed based on mtDNA sequence data (Rainieri et 0/., 

2008). 
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The efficiencies of the primers were determined by running real time PCR on serial 

dilutions of the sample DNA (10,5,1,0.25,0.10,0.05 and 0.01 ng/1l1 were run in triplicate). 

Mean Ct values were plotted against the LOG 10 of the concentration of DNA, the straight 

line equation calculated (Equation 2.4) which was used to calculate the subsequent 

efficiency values (Equation 2.5) (Rebrikov and Trofimov, 2006). 

Equation 2.4. Formula used to describe linear graphs generated using Microsoft Excel. (0 

represents the gradient of the line, b the intercept, y the mean Ct value and x LOG10 of the 

concentration of DNA) 

y=ax+b 

Equation 2.S. Efficiency calculation for real-time PCR primers (a represents the gradient of the 

linear graph) (Rebrikov and Trofimov, 2006). 

Table 2.5. Real-Time PCR reaction mix (*adjusted for calculation of primer efficiencies). 

SINGLE REACTION SINGLE REACTION 
COMPONENT CONCENTRATION 

AMOUNT (10 ~I) CONCENTRATION 

MASTER MIX (APPLIED 
2X 5 III 1X 

BIOSYSTEMS) 

FORWARD PRIMER 6.25 pmol/1l1 0.2 III 125 nM 

REVERSE PRIMER 6.25 pmol/1l1 0.2 III 125 nM 

SAMPLE DNA 10 ng/Ill* 1111 1 ng/Ill* 

H2O N/A 3.6 III N/A 

2.5.3.3 Triphenyltetrazolium chloride (TIC) overlay 

The Triphenyltetrazolium chloride (nC) overlay technique of Ogur et 01. (1957), as 

described in the ASBC methods of analysis (ASBC, 1992a), was used to assess the level of 

respiratory deficient (petite) cells in each population. YPD plates (20 for each sample) were 

inoculated with rehydrated ADY and non-dried control cultures of yeast for each strain at a 

concentration of approximately 50 viable cells per plate (assessed using citrate methylene 
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blue staining, 2.3.1), thus approximately 1000 cells per sample were assayed in total. 

Plates were incubated for three days at 25°C. Batches of solution A were prepared by 

combining 1.26 g sodium phosphate (NaH2P04, Fisher Scientific, U.K.) and 3 g agar, 

dissolved in water and made up to 100 ml. Batches of solution B were prepared by 

dissolving 0.2g 2,3,5- triphenyltetrazolium chloride (Sigma-Aldrich, U.K.) in 100 ml water. 

Both solutions were autoclaved separately and combined in equal amounts to produce TTC 

agar. The YPD plates were then overlaid with TTC agar and left at room temperature for a 

further 4 hr, before the percentage of petites was scored. Red colonies were deemed 

respiratory competent and white colonies were designated as petite mutants. 

2.5.3.4 Induction of respiratory deficient cells 

A protocol based on the previous methods described by Rickwood (1991) and Schneider

Berlin et 01. (2005) was used to induce petite formation using the mutagen ethidium 

bromide. Yeast cultures derived from dried populations were prepared as described in 

section 2.2. Non-dried populations were grown using YPD at 25°C and 120 rpm. Cells were 

washed with water and the viability estimated using the citrate methylene blue staining 

technique (Pierce, 1970) (section 2.3.1). 2x106 viable cells per ml were inoculated into 

triplicate flasks containing 25 ml YPD medium and 100 ~M ethidium bromide (Sigma

Aldrich, U.S.A.). Flasks were protected from light using aluminium foil and incubated at 

25'C at 120 rpm for 5 hr. Samples were removed at 0 hr and 5 hr for viability assessment 

(methylene blue) (Section 2.3.1) and petite enumeration (Section 2.5.3). Respiratory 

deficient cells were also generated during growth on starvation media (1 % yeast extract, 2 

% peptone and O.lM phosphate buffer (Sigma-Aldrich, U.S.A.)) for 15 hr, with samples 

taken at 0 hr and 15 hr. All samples were examined for petites using the TTC overlay 

technique previously outlined. 
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2.6 MEMBRANE FUNCTION ANALYSIS 

2.6.1 Selection and verification of yeast mutants displaying defective membrane 

function 

Candidate genes, for various membrane fitness phenotypes, were identified through 

searches of the Saccharomyces Genome Database (SGD) and deletion mutants procured 

from Euroscarf (Frankfurt, Germany). Deletion mutants obtained from EUROSCARF had the 

gene of interest interrupted with kanMX module, containing a gene conferring kanamycin 

resistance in Escherichia coli and G418 disulphate salt resistance in S. cerevisiae (Jimenez 

and Davies, 1980). Deletion mutants were grown in 100 ml YPD with the addition of 400 III 

(50 mg/ml) G418 disulphate salt (Sigma-Aldrich, U.S.A.) for a final concentration of 200 

mg/I (Wach et al., 1994). G418 resistance was confirmed by growth of the yeast on YPD 

plates in which G418 was present for 48 hr at 2S·C. 

The deletion was also confirmed by PCR analysis. Primers were designed, with the 

assistance of Vector NTI (Invitrogen Ltd, U.K.), to amplify regions flanking the gene of 

interest (DNA sequence obtained from Saccharomyces Genome Database 

http://www.yeastgenome.org/). The expected fragment size was calculated based on the 

position of the primers and the size of the kanMX4 insert (1634 bp). DNA extracted from 

cells, according to the method described by Powell and Diacetis (2007) and outlined 

previously (Section 2.5.2.2), was quantified and diluted to 250 ng/llL. Amplification 

reactions were performed with Phusion High-fidelity DNA polymerase (New England 

Biolabs, U.S.A.) (Table 2.7) and using a TC-S12 thermal cycler (Techne, U.K.) (Table 2.8). peR 

products from the mutant and wild type (YOOOOO) cells were resolved on a 1 % (w/v) 

agarose gel at 100 mV for 1.5 hr. Once the deletions were confirmed aliquots were stored 

at -80·C and working slopes stored at 4·C, with addition of G418 disulphate salt to the 

media. When cultures were grown for subsequent analysis, there was no addition of G418 

disulphate salt. 
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Table 2.6. The primer sequence and expected amplification fragment size for confirmation of 

mutants 

Annealing Amplification 

Strain Forward Primer Reverse Primer temperature fragment size 

(0C) (bp) 

V02667 gcattatttcggtcgtttag gcactaacgtgaggtgtaca 56 2116 

VOOOOO gcattatttcggtcgtttag gcactaacgtgaggtgtaca 56 1580 

V00788 gccactagcagtctgctatg cttatacgcatacaccgctt 65 1203 

VOOOOO gccactagcagtctgctatg cttatacgcatacaccgctt 65 669 

Table 2.7. peR mixture content for confirmation of EUROSCARF strain inserts. 

Volume {J,d)/20 Master Mix Final 
Component 

J.l1 reaction Volume (J.lI) Concentration 

H2O 10.5 63 N/A 

5 x Phusion HF Buffer (New 
4 24 1x 

England Biolabs, U.S.A.) 

MgCI2 (New England Biolabs, 
0.5 3 1.25 mM 

U.S.A.) 

2mM dNTPs (New England 
2 

Biolabs, U.S.A.) 
12 200 IlM each 

Primer A (Eurofins MWG 
0.4 

Operon, Germany) 
2.4 0.5 IlM 

Primer B (Eurofins MWG 
0.4 2.4 0.51lM 

Operon, Germany) 

DNA 250 ng/Ill 2 N/A 25 ng/Ill 

Phusion DNA Polymerase (New 
0.2 1.2 0.02 U/Ill 

England Biolabs, U.S.A.) 
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Table 2.8. PCR cycle for confirmation of EUROSCARF strains. The annealing temperature was 

dependent on the primer and these specified in Table 2.6. 

Cycle Step Temp °C Time Cycles 

Initial denaturation 98 30 sec xl 

Denaturation 98 10 sec 

Annealing Primer dependent 30 sec 
x35 

Extension 72 60 sec 

Final extension 72 10 min xl 

2.6.2 Assessment of membrane fluidity using the stains DPH and TMA-DPH 

ADY cultures were rehydrated at 30°C as outlined previously (Figure 2.1). Control cells were 

grown in 100 ml YPD for 48 hours at 25°C and 120 rpm, contained within a 250 ml conical 

flask. Cell suspensions were centrifuged (1,500 RCF for 5 min) and washed twice in 

phosphate buffered saline (PBS, pH 7.4, Oxoid, U.K.), before dilution in PBS to 

approximately 1 x 107 cells/ml. Stock solutions of 1,6-diphenyl-1,3,5-hexatriene (DPH) 

(Invitrogen Ltd, U.K.) and N, N, N-Tri methyl-4-( 6-phenyl-1,3,5-hexatrie n-1-

yl)phenylammonium p-toluenesulfonate (TMA-DPH) (Invitrogen Ltd, U.K.) were dissolved in 

dimethyl sulfoxide (DMSO, Sigma-Aldrich, U.S.A.) to 200 ~M and 500 ~M respectively. 10 

~L stock solution were added to 990 ~I cell suspension (final concentrations of 2 and 5 ~M 

(Kaur and Bachhawat, 1999)) and incubated at room temperature for 1 hour before 

analysis using a flow cytometer. DPH and TMA-DPH stained cells were analysed separately. 

The cytometer used for this analysis was the Beckman-Coulter Altra (U.S.A.) with a laser 

providing violet excitation (407nM), the excitation maxima of the dyes being approximately 

360 nm. The filters of were arranged as shown in Figure 2.1. A 420 nm short pass filter was 

used to isolate scattered light, with both forward scatter and side scatter recorded . A UV 

block and 450/65 nm BP filter used to isolate the emission fluorescence of the respective 

dyes (maxima ::430 nm). After filtering, the emission fluorescence was split using a 50/50 
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splitter. Half the emission was filtered by a horizontally polarised filter and half by a 

vertically polarised filter and signals intensity recorded . Beads were used to calibrate the 

stream alignment. 100,000 events were recorded. Flow cytometry standard (FCS) data files 

were analyzed using WEASEL v2.5 (The Walter and Eliza Hall Institute of Medical Research, 

Australia). Staining was visualised using an Axiovert 135 TV (Carl Zeiss International, 

Germany) microscope. Magnification was 1000 times the actual size, excitation wavelength 

358 nm and emission wavelength 461 nm. 

PMT4 (Photomultiplier tubes) 

Vertical I 
Polarisation Filte'-r-----' 

50/50 Splitter 

Horizontal 
Polarisation Filter 

450/65nm Ban 
Pass Filter 

UV Block 

PMT 

I 420 Short Pass 
L...-___ --' Filter 

5% Mirror 
Light Path 

(Vert ically polarised 
ligh t) 

Coulter Altra Flow Cytometer 

Figure 2.2. The filter set-up of the flow cytometer used to assess DPH and TMA-DPH staining of 

yeast cells. 

2.6.3 Determination of the sterol content of LALl by Organo Balance (Germany) 

Control cells were grown following a laboratory propagation regime using YPD medium 

(Section 2.7.1). Fed-batch yeast cells were grown by Lallemand Inc. (Montreal, Canada) 

following the propagation regime utilised in the production of dried yeast (Section 0). Fed-

batch yeast was subsequently dried, by Lallemand Inc., using a fluidised-bed drier 

producing dried yeast samples. Cell samples were then dispatched to an Organo Balance, 

Germany, for sterol content determination. The following is the method utilised by Organo 

Balance to determine the concentration of sterols in the cell samples described. 
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Stigmasterol was added to each sample for use as an internal standard. Sterols were 

saponified using methanolic potassium hydroxide and extracted using n-hexane. Samples 

were evaporated and the residues dissolved in chloroform. Sterols were then derivatised 

with N-Methyl-N-trimethylsilyltrifluoro-acetate before being separated using gas-

chromatography (HP-5MS column, Agilent, U.S.A.) and detected using mass spectrometry 

(6890N-597SB, Agilent, U.S.A.). Sterols were quantified using external standards of 

ergosterol, cholesterol and squalene. Sterols, which are labelled "unknown" could not be 

identified. 

2.6.4 Assessment of the yeast cells' ability to assimilate a substrate based on the 

acidification of the surrounding medium 

Acidification power was assessed using the method of Kara et al (1988) as adapted in 

Siddique and Smart (2000). Stock cells were grown aerobically in 100 ml YPD medium at 

120 rpm and 25·C within a 250 ml conical flask, and ADY was rehydrated using the standard 

procedure (Section 2.1). Cells were then harvested by centrifugation (16,000 g for 5 min) 

and washed three times with RO H20 before dilution to a concentration of 1 x 109 viable 

cells/ml (viability determined using methylene blue stain). 19 ml sterile deionised water 

was dispensed into a universal bottle and continuously stirred. A pH probe was used to 

measure the pH of the water before the addition of 1 ml yeast slurry and the subsequent 

recording of the pH at minute intervals, indicating the spontaneous proton efflux of the 

yeast. At 10 min 5 ml 20.2 % (w/v) filter sterilised (0.45 11M pore size filter (Millipore, 

U.S.A.)) glucose solution was added and the proton efflux monitored for a further 10 min. 

The water acidification power test (WAP) was performed using the same method, with the 

substitution of Sml of water for the Sml of glucose solution. The water acidification power, 

glucose acidification power and glucose induced acidification were then calculated as in 

Table 2.9. 
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Table 2.9. The calculations performed for the measurement of proton efflux from yeast cell 

populations. 

Arbitrary Term Calculation 

Water pH - pH20 (pH after 20 minutes) after 
Passive Acidification Power (WAP) 

the addition of water 

Water pH - pH20 after addition of glucose as 
Substrate Induced Acidification Power (GAP) 

a substrate 

Glucose Induced Acidification Power (GIPE) GAP - WAP 

2.6.5 The inhibitory effects of membrane stresses assessed using Phenotypic 

Microarray (PM) technology 

Phenotype microarrays were conducted using the OmniLog system (Biolog Inc., U.S.A.). The 

Omnilog system is commonly used to identify microorganisms based on cell activity in 10 

96-well plates containing various nutrients or inhibitory substances. However, this system 

can be adapted to allow bespoke plates to be designed by the user. Cells are inoculated 

into the wells and the respiratory activity is recorded via the reduction of a tetrazolium dye 

(colourless) to formazan (purple) . In this study we used PM technology to investigate the 

effect of sodium dodecyl sulphate (SOS) and ethanol on cell growth. For the technology to 

work reaction wells need to contain a buffer called IFY-O and a dye which were both 

supplied by the manufacturer (Biolog Inc., U.S.A.). To mimic fermentations, wort was 

included as the substrate for yeast cells. As these were bespoke plates a degree of 

optimisation was required to maximise the signal recorded from the dye by the recording 

instrument (Omnilog, Biolog Inc., U.S.A.), therefore various concentrations of IFY-O, wort, 

dye and cell concentrations were tested based on the manufacturers recommendations for 

their premade PM plates. LALl and YOOOOO were initially tested using 80 ~I of various 

wort:IFY-O ratios (100 % wort, 75:25,50:50 and 25:75) as well as 20 ~I of differing dye and 

cell concentrations (2x, lx and 0.5x the recommended concentrations ). Based on this 

preliminary work, cells were then tested for their susceptibility to ethanol {Fisher Scientific, 
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U.K.) and sodium dodecyl sulphate (SOS) (Sigma-Aldrich, U.S.A.). A master mix was 

produced and alliquoted ensuring that wells were filled with 20 ~I wort, 50 ~IIFY-O, 2.7 ~I 

dye mix 0, 4.2 ~I cell suspension (0.62 transmittance) and 3.2 ~I H20. 20 ~I of various 

ethanol solutions (filter sterilised, 0.45 ~M pore size, Millipore, U.S.A.) were then added to 

produce a range of ethanol concentrations from 3 % to 14 %. Separate plates were 

produced in which 20 ~I of various SDS solutions (filter sterilised, 0.45 ~M pore size, 

Millipore, U.S.A.) were added to produce a range of SOS concentrations from 100 ~gJml to 

2000 ~g/ml. LAL1, LAL2 and LAL4 (both AOY and control YPO grown cultures), YOOOOO and 

the two mutants Y02667 and Y00788 were tested for growth in both the inhibitors. Plates 

were then incubated in an Omnilog instrument (Biolog Inc., U.S.A.) at 25°C for 72 hours. 

Colorimetric readings were taken every 15 minutes by the Omnilog. Individual Biolog data 

files were analysed using Omnilog file management/kinetic plot (version OL_PMJM/KIN 

1.20.02). Files were compared using parametric analysis (version OL]M_PAR 1.20.02) or 

Excel (Microsoft, U.S.A.). 

2.7 MINIATURE SCALE FERMENTATIONS 

2.7.1 Control yeast propagation 

10 ml YPD media was inoculated with a loop of yeast stock from a YPO agar slope and 

incubated for 48 hr at 25°C and 120 rpm. It was then sequentially transferred to 100 ml YPO 

(48 hr) and 1000 ml YPO (72 hr). After cultivation in this fashion, the yeast slurry was 

centrifuged at 1,500 RCF for 5 min and the resulting yeast concentrate resuspended 50:50 

with spent YPO media. The number of viable cells per ml was established using methylene 

blue staining (Section 2.3.1) and fermentation media (brewery produced wort) inoculated 

at 1.5 x 107 viable cells per ml. 
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2.7.2 Fed-batch yeast propagation 

Fed-batch propagation was completed in the research laboratories of lallemand ltd. 

(Montreal, Canada) according to the protocol detailed below and provided by Tobias 

Fischborn. 

Working slopes were used to inoculate 20 ml of 10 % (w/v) malt extract medium (Sigma

Aldrich, U.S.A.). These were incubated at 30°C for 48 hr. This 20 ml inoculum was then 

used to inoculate II of batch medium; consisting of 170 g of pure molasses (50:50 mixture 

of cane and beet), 2.5 g of Mono Ammonium Phosphate(MAP) (Sigma-Aldrich, U.S.A.), 10 g 

of Fermaid ,(lallemand Inc., Canada), 10 mg Pyridoxine (Sigma-Aldrich, U.S.A.) and was 

made up to lKg with hot tap water. The MAP, pyridoxine, and Fermaid were prepared and 

sterilized separately and added aseptically at the time of yeast inoculation. To initiate the 

fed-batch propagation, the 1L batch grown yeast was added aseptically to 5 l of sterilised 

tap water. 1.16 ml 85 % phosphoric acid (A&C Chemical, Canada), 13.3 mg calcium 

pantothenate (Sigma-Aldrich, U.S.A.), 10.5 mg thiamine (Sigma-Aldrich, U.S.A.), 167 Ilg 

biotin (Sigma-Aldrich, U.S.A.) and 1.67 mg pyridoxine (Sigma-Aldrich, U.S.A.) were added at 

the start of the propagation. The fed-batch propagation was supplied with a 50 % (w/v) 

molasses solution and 5 % (w/v) ammonia solution (Sigma-Aldrich, U.S.A.), as determined 

throughout the propagation. The propagation was completed in a 15 l capacity vessel and 

was incubated at 28°C and the pH maintained at 5.5 by use of an acid balance (2M 

sulphuric acid (Sigma-Aldrich, U.S.A.)). Air was supplied to the propagation at an initial rate 

of 10 I/min. 

At the end of the propagation there was a maturation period, prior to harvesting, cooling, 

and separation. This maturation involved elevating the temperature of the propagation 

from 28°C to 3rC for 2 hours. At the same time ammonia feeding had ceased and the 

molasses feeding was reduced to zero. The yeast was then separated and stored cold (4°C), 
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prior to transportation in a chilled contained (approximately 4°C). The yeast was used 

within 48 hours of production. 

2.7.3 Dried yeast rehydration 

Dried yeast rehydration was scaled up from the previous protocol (Section 2.2), although 

the ratio of water to yeast (10:1) remains the same. A 500 ml capacity Duran bottle was 

filled with 200 ml tap water and autodaved (121"C and 103 kPa for 15 min). This was then 

allowed to attemperate to 25°C in an incubator. 20 g freshly opened ADY was sprinkled 

onto the water surface and left for 15 min. A magnetic stirrer was then used to fully 

suspend the ADY, at which point it was left static for a further 45 min. Attemperation is 

recommended by the manufacturer for temperature shifts between rehydration and 

fermentation of greater than lO°C. As these fermentations were at 15°C no attemperation 

was required. The number of viable cells per ml was established using methylene blue 

staining. Two pitching rates were used. The first, recommended Lallemand Inc. (Montreal, 

Canada), was 2 g ADY per L medium (=1.8 x 107 cells per ml). The second was inoculated at 

1.5 x 107 viable cells per ml. 
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Table 2.10. The growth parameters and pitching rate of yeast used during miniature scale 

fermentation experiments 

VPD Grown- ADV pitched ADV pitched Fed-batch 

Control on viable cell on cell mass Produced 

number 

Preparation Molasses Molasses Molasses 

based media based media based medium 
YPD grown 

and dried using and dried using (Section 0) 
(Section 2.7.1) 

a fluidized bed a fluidized bed 

drier drier 

Temperature of 25°C 25°C 25°C 28/32°C 

re hyd ration/growth 

Pitching Rate 1.5 x 107 1.5 X 107 1.8 X 107 1.5 X 107 

cells/ml 

2.7.4 Wort 

Industrially produced hopped wort (1.060 s.g.) was collected from the hot paraflow system 

located in Molson Coors Brewery (Burton-on-Trent, U.K.). Wort was subsequently sterilised 

(121·C and 103 kPa for 15 min). 

2.7.5 Miniature fermenter set-up 

Miniature fermentation vessels (FVs) were set-up based on the method described by Quain 

et 01. (1985). 100 ml aliquots of brewery produced wort (1.060 s.g.) were transferred to 

150 ml sterile Wheaton glass serum bottles (Sigma-Aldrich, U.K.). A foam stopper was 

placed in the neck, and the FVs were incubated at 15°C to attemeperate to fermentation 

temperature. Magnetic stirrers (approximately 120 rpm) were used to agitate the wort 

allowing aeration over a period of 24 hours. Yeast was pitched (according to the pitching 

rates outline in Table 2.10) and the fermentation vessels were sealed with a rubber septum 

and a metal crimp. A hypodermic needle was then inserted through the septum. A Bunsen 
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valve, attached to the needle, allowed the exit of gas from the vessel (Figure 2.3). 

Fermentations were performed at 15°C and lasted for 6 days monitored by measuring the 

weight lost by the vessels. 

Bu nsen Valve 

Rubber septum 
and meta l crimp 

Headspace 

M agnetic stirrer 

Figure 2.3. Miniature fermentation vessel schematic 

2.7.6 Sampling 

Fermentation vessels were opened, the entire contents decanted into two 50 ml centrifuge 

tubes and centrifuged at 1,500 RCF for 5 min. As a consequence triplicate mini 

fermentations were required for each time point assessed. Wort/beer samples from the 

mini fermentations were then decanted into another centrifuge tube and frozen (-20°C) 

until analysis. Yeast cells were resuspended in 50 ml sterilised RO water and 3 ml added to 

7 ml of 100 % ethanol (Burke et 01., 2000). Cells were stored at 4°C of frozen at -20·C, as 

necessary until required for analysis. 

2.8 5 L SCALE FERMENTATIONS 

2.8.1 Control yeast propagation 

10 ml YPD media was inoculated with a loop full of yeast stock from a YPD agar slope and 

incubated for 48 hr at 25·C and 120 rpm, before being transferred to 200 ml YPD (48 hr). 
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This culture was then used to inoculate 2 L of YPD contained within a propagation vessel 

(Figure 2.4). The propagation vessel consisted of a reaction vessel (Fisher Scientific, UK) 

with a magnetic stirrer (Figure 2.4). Oxygen, filtered through a hepa-vent 0.1 ~m pore size 

(Whatman, U.K.)' entered through a glass sinter sparger and exited through a heap-vent 

(direction of gas flow illustrated by arrows on Figure 2.4). Propagation temperature was 

maintained at 25°C using a flow heater (Grant, U.K.) which heated a water bath containing 

the propagation vessel. After 72 hours growth, the yeast slurry was then centrifuged at 

1,500 RCF for 5 min. The resulting yeast concentrate was resuspended 50:50 with spent 

YPD media. The number of viable cells per ml was established using methylene blue 

staining and fermentation media inoculated at 1.5 x 107 viable cells per ml. 

Gas flow Air Filter 
) 

1 ~ 
Exit gas 

Glass sin ter sparger 

Magnet ic st irrer 

Figure 2.4. Propagation vessel. Reaction vessel with air, filtered through a HEPA filter, entering the 

vessel via a glass sinter sparger (the direction of gas flow through the vessel is indicated the bold 

arrows). Propagation medium was agitated using a magnetic stirrer. 
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2.8.2 Dried yeast rehydration 

The rehydration parameters were the same as outlined previously in Section 2.7.3, with the 

exception of the quantity of dried yeast (40 g) and water (400 ml) which were both scaled 

up as more yeast was required. As stated previously no attemperation was required 

(Section 2.7.3). The number of viable cells per ml was established using methylene blue 

staining and fermentation media inoculated at 1.5 x 107 viable cells per ml. 

2.8.3 5 I scale fermentation parameters 

Triplicate 5 I fermentations were completed in 15 I capacity (3 - 10 L working volume) 

Techfors-S Bioreactors (Infors HT, Switzerland) (Figure 2.5). pH probes (Mettler-Toledo, 

U.K.) were calibrated at pH 7 and pH 4 and inserted into an ingold port in each FV. A 

dissolved oxygen sensor (DO probe) (TruDO, Finesse, Switzerland) was also inserted into an 

Ingold port and calibrated in-situ after sterilisation. 5 L water was dispensed into the 

fermentation vessels (FVs) and sterilisation was achieved by direct injection of steam into 

the double jacket surrounding the FV, maintaining a temperature of 121 DC for 15 min. 

Vessels were then allowed to cool down to ambient temperature. A 0 % calibration of the 

DO probe was performed by flushing nitrogen gas through the water contained within the 

vessel until oxygen had been completely replaced, and allowing the sensor's reading to 

stabilise. Air was then passed through the medium until saturation to allow 100 % 

calibration. The air/oxygen/nitrogen mix entered the vessel through the NOVASIP-steam in 

place (Pall, U.K.) inlet filter and sinter sparger. Gas exited first through a condenser, to 

ensure there was no loss of media, and then through an exit filter (NOVASIP). Whilst 

maintaining a small positive air pressure within the vessel, the sterilisation water was 

removed through the bottom sampling pOint. 

Brewery wort (5 I) was transferred to the laboratory aseptically via a sterilised 19 I capacity 

cornelius vessel (The Cornelius Co., U.S.A). The Cornelius vessel was pressurised using 
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nitrogen filtered through a hepa-vent 0.1 11M pore size (Whatman, U.K.) and the wort was 

dispensed into the fermentation vessel through a sampling port in the top plate of the 

fermentation vessel. Antifoam A (15 % v/v) aqueous emulsion of silicon polymer, Sigma

Aldrich, UK) was autoclaved (121°C and 103 kPa for 15 min) in 5 ml batches and 5 ml was 

pi petted into the fermentation vessel immediately prior to the addition of wort. Wort was 

agitated throughout oxygenation and fermentation at 200 rpm. The temperature of the FVs 

was maintained at 15°C using a chiller unit (Fl1703, Julabo, Germany) to circulate 

temperature controlled water through jackets surrounding each vessel. Once vessels were 

at the required temperature, a 40 % 02 and 60 % N2 gas mix was passed through the sinter 

sparger for approximately 1 hour (until DO sensor reading stabilised) to allow oxygenation 

of the wort to 180 % (::::18 ppm). Yeast was inoculated at 1.5 x 107 cells per ml. 

Temperature, pH, 002 and stirring values were all recorded using Iris NT (version 

5.02.709.0997, Infors, Bottmingen, Switzerland). 
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Figure 2.5. Schematic of Infors bloreactor. 1: Viewing panel. 2: Air inlet, through HEPA filter. 3: Air 

outlet, first through a condenser and then HEPA filter. 4:Three Ingold ports, one utilized for a pH 

probe and another for a DO sensor. 5: Sampling port, 8 mm manual valve with tri-clamp 

connector. 6: Rotor. 7: Temperature probe. 

2.8.4 Sampling from fermentation vessels 

Samples (50 ml) were removed through an 8 mm manual valve sample port with tri -clamp 

connector (Figure 2.5) (sterilised with 70 % methylated spirits) every 8 hours (every four at 

the beginning of fermentation). Collected samples were centrifuged at 1,500 RCF for 5 min 

and the wort/beer supernatant was decanted into three 15 ml centrifuge tubes and frozen 
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(-20G C) until analysis. Yeast cell fractions were resuspended in SO ml sterilised RO water and 

3 ml of this suspension pipetted into 7 ml of 100 % ethanol. Cells were stored at 4GC until 

analysisJor DNA content. 

2.8.5 The cropping, storage and subsequent repitching of yeast Into a new 

fermentation 

After six days of fermentation, beer was harvested from the fermentation vessel directly 

into a storage vessel, the set-up of which is illustrated in Figure 2.6. The storage vessel was 

flushed with nitrogen (HEPA filtered), before and during sample collection, to minimise 

yeast exposure to oxygen. The storage vessel was maintained at 4GC for 48 hr, during which 

time the yeast accumulated at the bottom of the vessel. The majority of the separated beer 

was decanted from the storage vessel (whilst under a flow of nitrogen), leaving a volume, 

similar to the volume of yeast, remaining. The yeast was then resuspended in the spent 

wort, using a magnetic stirrer, to create a yeast slurry. Dead cells within the population 

were stained via methylene blue staining (Section 2.3.1) and total and viable cell counts 

performed using a haemocytometer (Section 2.2). 
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Figure 2.6. Yeast storage vessel. The small arrows indicate gas flow into and out of the vessel. The 

large arrow indicates the port through which the sample entered the vessel, which was sealed 

immediately after vessel was filled. 

2.9 ANALYSIS OF FERMENTATION SAMPLES 

2.9.1 Estimation of the DNA content of individual cells 

The DNA content of yeast cells was estimated using propidium iodide staining and flow 

cytometry analysis based on the method of Burke et 01. (2000). Yeast samples were 

resuspended in 50 ml sterilised RO water and 3 ml of this suspension was added to 7 ml of 

100 % (v/v) ethanol, producing a final concentration of 70 % ethanol. Cell suspensions were 

stored at 4°C until required at which time 1.5 ml aliquots were placed into a micro-

centrifuge tube. Cells were isolated by centrifugation (1,500 RCF for 5 min) and 

resuspended in 1 ml tris-buffer {SO mM tris/HCL pH 7.5} . This was repeated before cells 

were placed in a sonicating water bath to separate flocs (sonicated for 3 x 10 sec). Cell 

populations were observed under a light microscope {Olympus BH-2} to ensure complete 

cell separation. If cells remained joined, sonication was repeated using the same protocol. 
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Populations comprising discrete cells were collected by centrifugation (1,500 g for 5 min) 

and the Tris buffer decanted from the tube. 10 ml of lOx RNase stock solution was 

prepared by dissolving 100 mg of RNase (Sigma-Aldrich, U.K.) in 333 III of 3 M NaOAc (pH 

5) (Sigma-Aldrich, U.K.) and 9.7 ml H20, which was subsequently boiled for 30 min to 

ensure removal of any residual DNAse. The lOx stock was then diluted with Tris buffer to 

produce a lx working solution. Cells were resuspended in 1 ml lx RNase solution and 

incubated at 37°C for 1 hr before storage at 4°C overnight. Cells were centrifuged (1,500 

RCF for 5 min) and the subsequent cell pellet resuspended in 1 ml pepsin solution (50 mg 

pepsin (Sigma-Aldrich, U.K.), 9.45 ml H20 and 550111 1 M HCI (Fisher Scientific, UK)) and 

incubated for 5 min at room temperature. Cells were then spun down (centrifuged at 1,500 

RCF for 5 min) and resuspended in 1 ml staining buffer. Staining buffer was made by 

dissolving 50 mg Propidium iodide (Sigma-Aldrich, U.K.), 21.8 g tris (Sigma-Aldrich, U.K.), 

10.52 g NaCI (Fisher Scientific, UK) and 14.26 g MgCI2 (Fisher Scientific, UK) in 800 ml water. 

The pH was adjusted to 7.5 and the buffer was made up to 1 L with H20. The staining buffer 

and cells were incubated at room temperature for 1 hour and stored on ice. 

Samples were analysed using a Coulter FC 500 flow cytometer with argon laser (488 nm) 

and FL3 filter (675/30 nm) (Beckman Coulter, U.S.A.). Fluorescence (FL3 channel), forward 

scatter and side scatter signals were recorded for 100,000 events. Flow cytometry standard 

(FCS) data files were analyzed using WEASEL v2.5 (The Walter and Eliza Hall Institute of 

Medical Research, Australia). A scatter plot of forward scatter versus FL3 was used as the 

basis for the creation of a gate to exclude cell debris (low intensity signal) and cell 

aggregates (high intensity signal) from the desired data (Massodi et 01., 2010). A histogram 

of FL3 signal intensity (Figure 2.7), using the gated events, was then used to create regions 

deSignated "lxDNA" (=110 signal strength) and "2xDNA" (=220). The peak reflect method 

was used to estimate the percentage of cells with lxDNA and 2xDNA (Givan, 1992). DNA 

59 



content was estimated for the triplicate fermentation sa mples and the standard deviation 

shown. 
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Figure 2.7. Schematic of Fl3 histogram and peak reflect method of estimating the DNA content of 

cells. Dotted lines represent the relative location of peaks expected for lxONA and 2xONA. The 

total number of cells in each group was estimated by multiplying the number of events in the grey 

regions (reflecting the peak) by two. 

2.9.2 Analysis of alcohol content and specific gravity in wort and beer samples 

Beer or wort samples previously obtained from fermentation (Sections 2.7.6 and 2.8.4) 

were thawed, vortexed and centrifuged at 1,500 ReF for 5 min to remove cell debris and 

trub. Samples were then analysed with an Alcolyzer-Plus : beer system, which incorporated 

a DMA 4500 density meter (Anton Paar Ltd., Hertford, U.K.), for combined alcohol content 

and specific gravity measurement. Alcohol by volume (ABV) measurements were 

completed, using the Alcolyzer, based on near infrared (NIR) absorption in the 1150 to 

1200 nm wavelength range. The density meter measured specific gravity using an 

oScillating U-tube. Prior to each set of readings, distilled water was used as a control 
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measurement to ensure the instrument was performing within the manufacturer's 

specified range and that no calibration was required. 

2.9.3 Analysis of free amino nitrogen (FAN) in wort and beer samples 

FAN was measured based on the ASBC methods of analysis protocol (ASBC, 1992a). A 

glycine standard stock solution was made by dissolving 107.2 mg glycine (Sigma-Aldrich, 

U.K.) in 100 ml water, which was then diluted 1:100 with water. This produced a standard 

containing 2 mg amino nitrogen/L as every 1 mg of glycine contains 0.186 mg of nitrogen. 

Wort or beer samples were diluted 1:100 with water (100 III in 10 ml) and 2 ml of this 

solution used for the subsequent analysis. Ninyhydrin colour reagent was produced by 10 g 

sodium phosphate dibasic dodecahyrate (Sigma-Aldrich, U.K.), 6 g potassium phosphate 

monobasic (Sigma-Aldrich, U.K.), 0.5 g ninhydrin (Sigma-Aldrich, U.K.) and 0.3 g fructose 

(Fisher ScientifiC, UK) in 100 ml water. 1 ml of ninhydrin colour reagent was added to each 

2 ml sample in capped test tubes. Tubes were heated for 16 minutes in a boiling water 

bath, increasing the rate of formation of Rhuemann's purple from ninhydrin and the amine 

group of amino acids (Rhuemann, 1910). Reactions were then cooled for 20 minutes in a 

20°C water bath. 5 ml of a dilution solution (2 g KI03 (Sigma-Aldrich, U.K.) dissolved in 600 

ml water, added to 400 ml 96 % ethanol (Fisher Scientific, UK)) was added to each sample, 

mixed thoroughly and the absorbance at 570 nm recorded and compared to that of a water 

blank. For each set of samples triplicates of glycine standards and blanks were produced. 

FAN was then calculated using Equation 2.6 (ASBC, 1992a). 

Equation 2.6. Calculation of free amino nitrogen (FAN) In samples of wort and beer as outlined In 

the ASSC methods of analysis (ASSC, 1992a). The calculation Is based on the absorbance of a 

standard solution of known FAN. 

FAN m / L = net abSTobance of te~t solution .200 
9 net absorbance of glYCine standard 
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2.9.4 Estimation of amino acid content in beer and wort samples 

Amino acids were isolated from samples and derivatized using the EZ:faast amino acid kit 

(Phenomenex, U.K.). Using the amino acid concentrates supplied with the analysis kit 

(Phenomenex, U.K.), standard solutions of the targeted amino acids were made at SO, 100 

and 200 nmol/ml. 20 ~I of each standard, beer or wort sample were combined with 100 ~I 

of internal standard norvaline (20 nmol, Phenomenex, U.K.). This solution was mixed and 

passed through the EZ:faast solid phase extraction absorbent (contained within a pipette 

tip), which was subsequently washed with 200 ~I propanol (Phenomenex, U.K.). A solution 

of propanol and sodium hydroxide (200 ~I, Phenomenex, U.K.) was then used to remove 

the absorbent, and the amino acids retained on it, from the pipette tip. 50 ~I chloroform 

(Phenomenex, U.K.) and 100 ~I iso-octane (Phenomenex, U.K.) were sequentially added to 

the solution to derivatize, chemically modify, the amino acids. Derivatization of amino acids 

was required to produce a compound more suited to GC analysis than amino acids 

themselves. The amino acids were recovered in the upper organic layer using a Pasteur 

pipette, dried and the sample redissolved in 100 ~I Iso-octane:chloroform (80:20 v/v, 

Phenomenex, U.K.). Samples were transferred into a GC vial insert, which was placed inside 

a vial and capped all provided in the analysis kit (Phenomenex, U.K.). Prior to analysis using 

Gas Chromatography - Mass Spectrometry (GC-MS), samples were stored at -20·C and 

assigned a random running order. A random running order was used to ensure any 

systematic variation within the analysis apparatus which may occur, with respect to length 

of time it was operated or the number of samples that had been processed, were not 

biased towards particular time points. 

For GC-MS analysis, 1 ~I of the sample was injected in splitless mode (split close for 10 sec) 

using an AS3000 auto-sampler (Thermo Fisher Scientific, U.K.). The injector of the trace GC 

ultra gas chromatograph (Thermo Fisher Scientific, U.K.) was maintained at 2S0·C, with an 

initial oven temperature of 90·C which was increased to 320·C at 20·C/min {transfer line 
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from the oven to mass spectrometer, 300D C). Helium (55 kPa) was used as the carrier gas to 

elute the amino acids from the ZB-AM column (10 m x 0.25 mm internal diameter, 0.1 11m 

film thickness, Phenomenex, U.K.). Preliminary runs were performed in full ion mode, 

allowing selection of appropriate ions and windows of detection (outlined in Table 2.11). 

The DSQ II mass spectrometer (Thermo Fisher Scientific, U.K.) was then operated in 

selected ion mode (outlined in Table 2.11). The ratio of the amino acid to the internal 

standard was used to normalise individual samples. The concentrations of amino acids in 

standard solutions (known concentrations of amino acids) were shown to have linear 

relationships with the peak areas on the chromatograph. The multiplication factor of this 

linear rj:!lationship, which varied depending on the amino acid, was then used to calculate 

the unknown amino acid concentrations of samples. 
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Table 2.11. The amino acids detected during GeMS analysis of wort and beer samples. The 

retention time in the column of each amino acid is indicated as well as the ion used for its 

detection and quantification. The windows of detection and the ions detected during these 

windows are also outlined. 

Amino acid Abbreviation Retention Ion for Ion detected Window of 

time quantification in selective ion detection 

(min) mode (SIM) (min) 

Alanine ALA 2.15 130 101, 114, 130, 0.00-2.42 

Sarcosine SAR 2.27 130 
144, 158 

Glycine GLY 2.35 144 

Abscisic acid ABA 2.53 144 116, 130, 144, 2.42-3.00 

158, 172 
Valine VAL 2.70 158 

~- ~-AIB 2.81 116 

aminoisobutyric 

acid 

Norvaline NOR (IS) 2.91 158 116, 130, 156, 3.00-3.35 

172 
Leucine LEU 3.06 172 

allo-Isoleucine AILE 3.10 130 

Isoleucine ILE 3.15 172 

Threonine THR 3.49 101 101, 144, 146, 3.35-3.74 

Serine SER 3.55 146 
156,180,243 

Proline PRO 3.66 156 

Asparagine ASN 3.83 155 116,130,155 3.74-4.23 

Aspartic acid ASP 4.74 130 101, 116, 130, 4.23-5.51 

Methionine MET 4.78 101 
146,172,244 

4- 4HYP 4.99 172 

Hydroxyproline 
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Table 2.11 continued. The amino acids detected during GeMS analysis of wort and beer samples. 

The retention time in the column of each amino acid is indicated as well as the ion used for its 

detection and quantification. The windows of detection and the ions detected during these 

windows are also outlined. 

Amino acid Abbreviation Retention Ion for Ion detected Window 

time quantification in selective ion detection 

(min) mode (SIM) (min) 

Glutamic Acid GLU 5.32 172 101, 116, 130, 4.23-5.51 

Phenylalanine PHE 5.34 146 
146,172,244 

a-Aminoadipic AAA 5.80 184 84, 101, 114, 5.51-7.15 

acid 156,184,244 

Glutamine GLN 6.31 84 

Ornithine ORN 6.98 156 

Lysine LYS 7.40 116 116, 155, 172, 7.15-7.93 

Histidine HIS 7.69 180 
170,180 

Tyrosine TYR 8.14 116 107, 130,206, 7.93-9.00 

Tryptophan TRP 8.58 130 
244 

Cystine C-C 9.74 248 146,155,248 9.00-11.00 

2.9.5 Internal amino acid content of yeast cells 

Control yeast (cultivated on YPD medium), Fed-batch yeast and ADY samples of LALl were 

assayed for their relative amounts of amino acid. The extraction of amino acids was based 

on the method of Martinez-Force and Benitez (Martinez-Force and Benitez, 1995). Cells 

were harvested by centrifugation, resuspended in 5 ml water and washed 5 times with 

distilled water. The suspension was placed in a boiling water bath for 15 minutes to lyse 

cells, centrifuged and the pellet discarded. The supernatant was filtered through a 0.45 11m 

pore size filter (Millipore, U.S.A.) and stored at -20·C until required for analysis. 100 111 of 
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this supernatant was analysed for amino acid concentration using the EZ:faast analysis kit 

(Phenomenex, U.K.) as described previously (Section 2.9.4). 

2,9,6 Analysis of the sugar content of wort and beer by high performance liquid 

chromatography (HPLC) 

Standard stock solutions of sugars were made in 10 ml volumes to the concentrations 

outlined in Table 2.12. Stock solutions were mixed to produce 'standard 1', which was 

sequentially diluted (5 ml: 5 ml) to produce Standards 2, 3 and 4 (Table 2.12). For each 

analysiS subsequently described, water was used as a blank reference. For the analysiS of 

unknown samples, wort or beer was compared to a standard solution by pipetting Iml of 

each sample into a 1.5 ml microfuge tube with 100 III of internal standard (Melizitose 100 

mg/ml). The mixture was then passed through a solid phase extraction cartridge (strata-X 

33 Ilm Polymeric Reversed Phase 30mg/lml cartridge Phenomenex, U.K.), previously 

conditioned by passing 1 ml methanol through the sorbent bed and equilibrated with 1 ml 

of water. After this cleanup procedure the samples were aliquoted into glass vials in 

preparation for HPlC analysiS. 

Samples were arranged in a random running order and placed in the automatic sampler. A 

random running order was used to ensure any systematic variation within the analysis 

apparatus which may occur, with respect to length of time it was operated or the number 

of samples that had been processed, were not biased towards particular time points. 

5 III of sample was injected onto an amino column (250 mm x 4.6 mm internal diameter, 

Spherisorb NH2 with 5 Ilm particle size, Waters Corporation, U.K.). The sugars were eluted 

using an 80 % acetonitrile 20 % water mix (which was sonicated to degass the liquid prior 

to use) at a flow rate 0.7 ml/min. Detection of sugars was performed using a Wyatt 

Refractive Index Detector (Wyatt Technology Corporation, U.S.A.). Chromatograms were 

analysed using the AZUR chromatography data system (Datalys, France). The elution order 

66 



of the sugars was the same as previously described (Buckee and long, 1982), and the 

retention times are outlined in Table 2.13. Peaks were manually assigned, subtracting the 

baseline signal from the peak height. The ratios of standard to the internal standard (IS, 

melizitose) were then plotted against the known concentration in the sample, to check for 

linearity of detection and determine the quantifying factor for unknown samples (which 

was the gradient of the graph as the response was linear) . The ratio of target compound to 

IS (melizitose) peak areas was then used to calculate the quantity of the unknown sugar in 

the sample (Equation 2.7). 

Table 2.12. The composition of standard sugar solutions used during the quantification of the 

sugar content of wort and beer samples by HPlC 

Standard Amount 

Stock Concentr- in 10ml Standard Standard Standard 
Sugar 

Standard 

solution ation Standard 1 (mg/ml) 2 (mg/ml) 3 (mg/ml) 4 (mg/ml) 

(mg/ml) 1 (ml) 

Sucrose 300 X 10 1 30 15 7.5 3.75 

Fructose 100 X 10 1 10 5 2.5 1.25 

Glucose 300 X 10 1 30 15 7.5 3.75 

Maltose 300 X2 5 150 75 37.5 18.75 

Maltotriose 300 X 10 1 30 15 7.5 3.75 

Glycerol 60 X 10 1 6 3 1.5 0.75 
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Equation 2.7. Calculation to quantify the amount of sugar in an unknown sample of wort or beer 

based on a gradient value calculated from the standard sugar solutions 

Target compound peak area 
I I d d k * Gradient = Target compound in sample (mg/mL) 
nterna stan ar pea area 

Table 2.13. Retention time of the sugars in the amino column used for their separation during 

HPLC analyses. 

Sugar Expected Retention 

Time (min) 

Glycerol 1.63 

Fructose 2.42 

Glucose 2.95 

Sucrose 3.97 

Maltose 4.77 

Melizitose (IS) 6.92 

Maltotriose 9.37 

2.9.7 Assessment of the vicinal diketone content (VDK) of wort and beer samples 

Diacetyl (Sigma-Aldrich, UK) and 2,3-pentanedione (Sigma-Aldrich, UK) standards of 20, 10, 

5, 1,0.5,0.25,0.125 and 0 ppm were prepared in 5 % (v/v) ethanol (Fisher Scientific, UK). A 

250 ppm stock solution of the internal standard l,2-dichloropropane (Sigma-Aldrich, UK) 

was prepared in absolute ethanol, which was subsequently diluted 1:50 with water to 

produce a working solution. In a 22 ml headspace flask (Fisher Scientific, UK) 5ml of wort, 

beer or standard solution was combined with 100111 of internal standard working solution 

and 3.5 g of ammonium sulphate (Sigma-Aldrich, UK). The mixture was agitated and the vial 

sealed using an aluminium crimp seal with pre-fitted septum (Fisher Scientific, UK). The 
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vials and contents were heated for 30 minutes at 70DC, using a GC oven (Thermo-Fisher 

Scientific, U.K.), and allowed to cool to room temperature. 

The samples were equilibrated for 5 minutes at 4SDC with agitation (500 rpm), before 1 ml 

of headspace was sampled using the combiPAL autosampler (CTC Analytics, Switzerland) in 

automated head space syringe mode with a the syringe temperature at 60°C. The injector 

of the gas chromatograph (Trace GC Ultra, Thermo Fisher ScientifiC, U.K.) was maintained 

at 12S·C, whilst the initial oven temperature was 40·C. The oven remained at 40·C for 2 

min and was subsequently increased to 130·C at a rate of 10·C per minute. Helium (1 

ml/min constant flow) was used as the carrier gas to elute the diacetyl and 1,2-

dichloropropane from the ZB-Wax column (Phenomenex, U.K.) which was 30 m in length, 

had an internal diameter of 0.25 mm and 1 ~m film thickness. 

The DSQ I mass spectrometer (Thermo-Fisher Scientific, U.K.) was operated in selected ion 

mode (see Table 2.14 for ions detected) with a dwell time of 0.45 sec. The chromatograms 

produced from the mass spectrometer were recorded and analysed using Xcalibur software 

(Thermo-Fisher Scientific, UK). The peaks were manually assigned, subtracting the baseline 

signal from the peak height. The standard values were then plotted against the known 

concentration in the sample to check for linearity of detection and to determine the 

quantifying factor (gradient of the graph). The ratio of target compound to the internal 

standard (1,2- dichloropropane) peak area was then used to calculate the quantity of the 

target sugar in the sample. 
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Table 2.14. The compounds detected during head-space analysis used to assess the unknown VDK 

content of wort and beer samples. 

Approximate retention time 
Compound Ion detected 

(min) 

Ethanol 6.11 43 

Diacetyl 6.93 86 

1,2- dichloropropane (IS) 8.23 63 

2,3-pentanedione 8.37 43 

Equation 2.S. The calculation for unknown VDK content of beer and wort samples using 

chromatographs generated during headspace analysis 

Target compound peak area 
l d d k * Gradient = Target compound in sample (ppm/mL) 

Interna stan ar pea area 

2.10 STATISTICS 

Although some specific statistical analysis has already been described, some techniques are 

common throughout the study. These are described here and it has been indicated in the 

results sections when they have been used. 

Calculation of means and standard deviations of triplicate samples were completed using 

Excel (Microsoft, U.S.A.). Analyses of statistical differences between samples were 

completed using Minitab (Version 16, Minitab Inc., U.S.A.). In each instance the null 

hypothesis was that no significant difference existed between data sets. One-way analysis 

of variance (ANOVA) was performed using Minitab. If the P value generated by the test was 

less than 0.05 then the null hypothesis of no significant difference was rejected. Whilst 

ANOVA can indicate an overall significant difference between data sets, further analysis is 

required to assess where the difference or differences exist. Using Minitab pair-wise 

comparison of means was completed using the Tukey a posterior test. When statistical 

analysis has been completed, the test used has been indicated in the results section. 
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CHAPTER 3: REHYDRATION OF ACTIVE DRY BREWING YEAST AND ITS EFFECT ON 

CElL VIABILITY 

Data from this Chapter has been used in the preparation of a manuscript entitled 

Rehydration 0/ active dry brewing yeast and its effect on cell viability, which has been 

accepted for publication in the Journal of the Institute of Brewing and Distilling. 

3.1 INTRODUCTION 

A common observation concerning the condition of active dried yeast (ADY) is that the 

viability is poor (between 60-80 %) in comparison to that exhibited by propagated yeast 

(approaching 100 %). The low viability can be compensated for by the application of a 

higher pitching rate, and it has been demonstrated that viability will subsequently recover 

during fermentations and serial repitching to more favourable levels (Powell and Fischborn, 

2010). Over pitching using a population with poor viability does, however, increase the 

number of dead cells in the fermentation. The presence of dead cells has been suggested 

to result in abnormal flocculation, haze formation and less stable foam structure, 

characteristics which have been observed during fermentations utilising dried yeasts (Finn 

and Stewart, 2002). Therefore, improvements to this parameter are important in order to 

increase the chances of this technology being widely adopted by the brewing industry. 

Although there are stresses involved in the propagation of ADY (discussed in Chapter 1), 

these are not thought to result in cell death. However, the effects of drying and subsequent 

rehydration on cell populations are believed to be responsible for the loss in viability. It is 

therefore proposed that optimisation of both processes may lead to increased cell viability. 

The process by which cells are dried can influence the viability of a yeast culture 

dramatically. Fluidised bed drying is the most common means of producing ADY for direct 

use in industrial fermentations, although other forms of drying such as freeze-drying and 

spray drying also exist. Freeze-drying consists of the removal of water by sublimination of a 
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frozen culture under vacuum (Kawamura et 01., 1995). Viability of yeast preserved in this 

manner is sometimes as low as 0.1 % (Lodato et 01., 1999) and consequently this method is 

not suitable for yeast storage. Spray-drying utilises a stream of hot air to rapidly dry 

droplets of a slurry solution, producing a powder (Morgan et 01., 2006). Whilst industrial 

scale spray-drying is common for some bacterial species (Millqvist-Fureby et 01., 2000; 

Corcoran et 01., 2004), it is not widely used for yeast as it also produces low viability 

cultures (Elizondo and Labuza, 1974). Drying using a fluidised bed system (Bayrock and 

Ingledew, 1997a; Grabowski et 01., 1997) is less stressful to yeast cells than both freeze and 

spray drying and is furthermore capable of producing large quantities of biomass. 

Whilst the mode of dehydration can influence the capacity of a yeast cell to recover from 

desiccation, the process of rehydration is equally significant. Rehydration of the yeast is the 

domain of the brewer, instead of the ADY manufacturer, therefore optimisation and 

communication of the mechanism of rehydration is important for the success of the 

technology. Previous studies have investigated the effect of temperature (Simonin et 01., 

2008), media composition and rehydration protocols (Attfield et 01., 2000; Soubeyrand et 

01., 2006; Vaudano et 01., 2009) on the recovery of ADY. However, these studies have 

focused on the analysis of wine and baking yeast strains, which are typically more tolerant 

to the stresses imposed by dehydration and rehydration than brewing yeast (Tobias 

Fischborn, personal communication). Optimisation of the rehydration procedure for 

brewing yeast strains has only been the subject of limited investigation (Gosselin and Fels, 

1998; Fischborn et 01., 2004). In this study the effect of rehydration time and temperature 

on the viability of yeast cultures after rehydration was assessed, as well as methods to 

estimate live cells in rehydrated ADY cultures. 
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3.2 RESULTS 

Optimisation of the rehydration procedure and accurate measurement of cell viability 

ensures the pitching yeast is of maximal viability, reducing any deleterious effect that high 

concentrations of dead cells may have on fermentation. Three industrially produced ADY 

strains were rehydrated at various temperatures and assessed using four different methods 

of viability assessment. The data generated were used to assess the effect of rehydration 

time (Sections 3.2.1 and 3.3.1) and temperature (Section 0) on yeast viability, as well as the 

most appropriate method of assessing viability in ADY (Section 3.2.3 and 0). 

3.2.1 The effect of rehydration time on estimated cell viability 

Typical protocol requires yeast to be rehydrated for up to an hour before utilisation. 

Because of operational constraints this practice is often not adhered to when ADY is 

employed on an industrial scale. To determine the effect of rehydration time on the 

viability of the subsequent culture, rehydration was conducted according to the protocol 

outlined in Chapter 2. Samples for viability testing were recovered in triplicate before 

rehydration (Sample Point A), after initial mixing (Sample Point B) and subsequently at 15 

min intervals (Sample Points C1-C4). The viability of each culture was assessed using slide 

culture, bright field and fluorescent stains. 

Analysis of samples at time point A revealed that although some variation in viability was 

observed according to the method employed, viability was exclusively lower (25-50 %, 40-

55 % and 20-55 % for strains LAL1, LAL2 and LAL4 respectively) than at subsequent sample 

points for each of the strains analysed (Figures 3.1-3.6). At sample pOint C4, when 

rehydration was deemed to be complete, the viability was observed to range from 

approximately 65-75 % for strain LALl (Figures 3.1-3.2) to 75-85 % for strains LAl2 and 

LAl4. 
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3.2.2 The effect of rehydration temperature on cell viability 

Laroche and Gervais (2003) suggested that survival during rehydration is determined by the 

osmotic pressure, the temperature of the yeast cell and surrounding medium. These 

factors are key in determining the state of the membrane, with rehydration across an 

unstable membrane a significant cause of cell death. Phase transitions, the source of 

instability, may be avoided depending on the temperature of rehydration. In order to 

determine the effect of rehydration temperature on cell viability, each yeast strain was 

rehydrated at both 25°e and 30o e. 

The final viabilities of ADY cultures (Table 3.1) were analysed using a multi-factorial ANOVA 

to determine the significance of the temperature of rehydration and method of assessment 

on the viability estimation of each strain. Analysis was made based on a nested design, in 

which assessment type was nested within temperature of rehydration. 

For the lager strain LALl it can be seen that cell survival was dependent on the 

temperature (statistically significant at P<O.05) of rehydration, with a greater viability at 

time point e4 (complete rehydration) when 25°e was applied compared to rehydration at 

300 e (Figures 3.1 and 3.2). Although some variation was observed according to the method 

by which viability was estimated, at 25°e a viability of approximately 73 % could be 

achieved compared to that of 67 % at 300 e (Table 3.1). This pattern of results was not 

observed for the other strains analysed, with the ale strain LAL4 exhibiting a higher viability 

when rehydrated at 300 e (approximately 80 %) than at 25°e (approximately 72 %) although 

this was not statistically significant. Interestingly, the viability of ale strain LAL2 did not 

appear to be as temperature dependent, with similar viabilities observed at both 25°e and 

300 e (approximately 75 % and 78 % respectively). 
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3.2.3 Methods for assessing ADY Viability 

Analysis of samples at time point A revealed that a large variation in viability was obtained 

when different methods were applied (Figures 3.1-3.6). This variation may reflect the 

period of most change within the yeast celis, and population as a whole, which displays 

greater variation with respect to viability assessment. At sample point C4, when 

rehydration was deemed to be complete, the discrepancies between the percentage 

viability when different assessment techniques were applied was considerably reduced. 

Irrespective of the means by which the viability of the yeast slurry was determined no 

specific trends were observed and no individual technique gave consistently high or low 

estimates. 
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Figure 3.1 Viability during rehydration of LALl at 2S·C. Mean viabilities of ADY populations 

(triplicate samples with standard error shown). Yeast were assessed immediate ly after removal 

from the package (Sample Point A), after 15 min settled on the surface of water (Sample Point B) 

and at 15 min intervals after being fu lly suspended in the water (Sample Points C1-4). 
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Figure 3.2 Viability during rehydration of LALl at 30°C. Mean viabilities of ADY populations 

(triplicate samples with standard error shown). Yeast were assessed immediately after removal 

from the package (Sample Point A), after 15 min settled on the surface of water (Sample Point 8) 

and at 15 min intervals after being fully suspended in the water (Sample Points Cl-4). 
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Figure 3.3 Viability during rehydration of LAL2 at 25°C. Mean viabilities of ADY populations 

(triplicate samples with standard error shown). Yeast were assessed immediately after removal 

from the package (Sample Point A), after 15 min settled on the surface of water (Sample Point 8) 

and at 15 min intervals after being fully suspended in the water (Sample Points Cl-4). 

76 



100 

90 

80 

70 

60 

50 

'fI. 40 
.~ 
;,g 30 
"' :> 20 

10 

0 

A B 1 C2 3 4 
Sample Point 

• Slide Culture • Methylene Blue • MgAN 

Figure 3.4 Viability during rehydration of LAL2 at 30·(. Mean viabilities of ADV populations 

(triplicate samples with standard error shown). Yeast were assessed immediately after removal 

from the package (Sample Point A), after 15 min settled on the surface of water (Sample Point B) 

and at 15 min intervals after being fully suspended in the water (Sample Points Cl-4). 
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Figure 3.5 Viability during rehydration of LAl4 at 25·C. Mean viabilities of ADY populations 

(triplicate samples with standard error shown). Yeast were assessed immediately after removal 

from the package (Sample Point A), after 15 min settled on the surface of water (Sample Point B) 

and at 15 min intervals after being fully suspended in the water (Sample Points Cl-4). 
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Figure 3.6 Viability during rehydration of LAL4 at 30°e. Mean viabilities of ADY populations 

(triplicate samples with standard error shown). Yeast were assessed immediately after removal 

from the package (Sample Point A), after 15 min settled on the surface of water (Sample Point B) 

and at 15 min intervals after being fully suspended in the water (Sample Points Cl-4). 

Table 3.1. Mean viabilities of yeast strains at the fina l sampling point (C4) of rehydration. 

Temperature and method of viability assessment are indicated, as are the standard error of the 

triplicate samples (±). 

Method of Viability 
LALl LAL2 LAL4 

Assesment 

.... Slide Cu lture 73.7±3.9 80.8±l.7 73 .S±6.9 
ro 

-0 Methylene Blue 67.0±6.l 68.2±O.7 79.4±O.s C1I u .... 
ro 0 
'- Ln 

-0 N MgANS 78.5±S.l 74.3±3.2 72.0±S.7 >-..c 
C1I 

Oxonol 71.8±4.4 79.3±3.2 62.S±4.8 a:: 

.... Slide Culture 66.1±4.4 78.9±S.4 8S.2±4.2 
ro 

-0 
Methylene Blue 68.0±S.6 84.7±O.9 82.6±2.7 C1I u ..... 

ro 0 
'- 0 

-0 M MgANS 66.1±2.2 72.2±1.6 79.4±6.1 >-
..c 

C1I 
Oxonol 66.8±4.2 77.2±2.2 74.4±O.7 a:: 
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3.3 DISCUSSION 

The viabilities of industrial ADY cultures are believed to be dependent on multiple factors 

including the strain employed (luna-Solano et al., 2000), the method of drying (Grabowski 

et al., 1997; Lodato et al., 1999), the temperature of drying (Luna-Solano et al., 2000), the 

temperature of rehydration (Poirier et al., 1999; Laroche and Gervais, 2003), and the 

rehydration media (Rodriguez-Porrata et al., 2008). In order to determine the effect of 

rehydration conditions on brewing yeast cells, the impact of rehydration time and 

temperature on the viabilities of three industrially manufactured dried brewing yeast 

strains were determined. 

3.3.1 The effect of rehydration time on estimated cell viability 

At sample point A each viability test indicated significantly lower viabilities compared to 

later time points. This suggests that the use of viability tests to assess ADY quality before 

rehydration has been completed may provide unreliable data and a more accurate 

estimation of cell viability can only be obtained once a culture has been fully rehydrated. 

However, it is also important to consider that the lower apparent viability at Sample Point 

A may indicate that there are differences in the physiological and metabolic state of yeast 

populations at this stage of the process. Viability analysis by means of slide culture, as well 

as the different staining methods, demonstrated an increase in the estimated number of 

live cells throughout rehydration (Figures 3.1-3.6). Consequently, although it is evident 

that cells are able to recover their capacity to replicate when fully rehydrated, these data 

suggest that yeast cells at an early stage of rehydration may not be able to respond to the 

change in environmental conditions required for viability assessment, perhaps reflecting 

the fragile condition of the membrane at this point. This hypothesis is supported by 

previous data indicating that direct pitching of yeast into wort can be detrimental and that 

pre-incubation is important to ensure fermentation performance (Tobias Fischborn and 

Chris Powell, personal communication). While our data indicates that a shorter incubation 
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period than previously suggested by the manufacturer (20-60 min) may be possible for the 

strains analysed here, it is noted that the current measure of yeast condition (viability) 

does not guarantee fermentation performance (Kobayashi et 01., 2007). Although viability 

did not appear to change significantly during the latter stages of rehydration, it is possible 

that this period is required to remove products of the dehydration stress response, such as 

trehalose which can cause inhibition of yeast metabolic pathways (Gancedo and Flores, 

2004; Sebollela et 01., 2004) (Chapter 1.). Consequently, although the precise benefits of 

allowing yeast to slowly acclimatise to the environment have not been directly assessed 

here, it is suggested that this period may playa significant role in determining how ADY 

performs in industrial scale fermentations. 

Furthermore, while the data presented here indicates that ADY populations in their dry 

form and during the initial stages of rehydration may demonstrate different physiological 

properties to fully rehydrated or wet yeast slurries, it is suggested that they should not 

immediately be considered to be non-viable, as the apparent viability increases during 

rehydration. Whilst drying results in cells in a dormant state which have non-viable 

characteristics, viable characteristics can be recovered during rehydration. This highlights 

the difficulties in assessing viability as an absolute phenotype. Practically, this is of 

significance given that an accurate assessment of the viable state of yeast cultures is 

important to ensure that the correct pitching rate is achieved. It is proposed that 

measurements of ADY viability should be treated with caution if taken at an early point 

during the rehydration process and that a more accurate estimation can only be achieved 

once the yeast has been fully rehydrated. 
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3.3.2 The effect of rehydration temperature on cell viability 

The temperature of rehydration is believed to be particularly important in avoiding 

structural damage as a result of phase transition events (characterised by a loss of fluidity) 

within the plasma membrane (Simonin et 01., 2008). As the availability of water is reduced 

the temperature at which a fluid membrane exists is increased, meaning a phase transition 

during rehydration is likely to occur (Figure 3.7). Such events may be avoided by 

rehydration at a temperature above the phase transition temperature of the cell 

membrane(Poirier et 01., 1999), which may lead to improved viability in certain yeast 

strains. However, thermal tolerance in yeast is also known to be strain dependent and 

determined by factors such as the presence of protectants (De Virgilio et 01., 1993) and 

synthesis of heat shock proteins (Trott and Morano, 2003). Therefore the benefit of 

increased rehydration temperatures in terms of membrane stability may be reduced in 

some yeast strains due to poor heat resistance. lager yeast are known to have an optimum 

growth temperature which is considerably lower than those of ale yeast, the former being 

unable to grow at temperatures of above 34°C (Walsh and Martin, 1977). This suggests 

that the optimum temperatures for not only yeast function, but also rehydration, may be 

lower for lager strains than for ale yeast. This hypothesis is supported by our observation 

that higher viabilities were obtained for LAl1 (lager strain) at 25°C, while strains LAl2 and 

LAl4 (ale strains) were able to be rehydrated with good results at the higher temperature 

of 30·C. As a consequence, it is proposed that the rehydration temperatures selected for 

ADY should be aligned with the optimum functional temperature of each yeast strain and 

that deviation from these temperatures may adversely affect viability, a key factor in 

achieving a successful fermentation. Furthermore, it is anticipated that correct preparation 

of ADY may prevent excessive cell death (some cell death must be anticipated when using 

ADY) and that as a result the abnormal characteristics reported to be associated with using 

yeast in this form may be alleviated. 
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Availability of water 

Figure 3.7. The relationship between the availability of water and temperature on the state of the 

cell membrane. The membrane can exhibit gel or liquid properties and is largely determined by 

the temperature and water availability, although several other factors can playa role. The point at 

which a change in phase occurs is termed a phase transition and is an important consideration 

when rehydration is occurring. 

3.3.3 Methods for assessing ADY Viability 

The basic criterion for a yeast cell to be considered viable is that it has the ability to 

reproduce. Although techniques based on cultivation are able to directly assess the 

capacity of cells to divide, such methods are typically time consuming. Methods based on 

cell staining are frequently adopted within industry as a means of estimating brewing yeast 

viability. Staining protocols are typically used to provide an indication of viability based on 

either membrane exclusion, the staining of cellular compounds, or by the ability of cells to 

convert or degrade the stain during cellular metabolism. Consequently, although such 

stains do not directly determine the capacity of cells to divide, they assess specific aspects 

of the cell which are critical to function and as such may be used as a measure of brewing 

yeast viability (Van Zandycke et 01., 2003b). 

Despite its widespread use within the brewing industry for viability assessment, methylene 

blue is known to be inaccurate for the assessment of cultures with a viability of less than 90 

% (Jones, 1987; O'Connor-Cox et 01., 1997; Smart et 01., 1999) and may not represent the 

most appropriate test for use with ADY, while other stains such as Oxonol and MgANS may 
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be more suitable. Oxonol is a potentiometric fluorescent stain which is excluded from 

viable yeast, but enters cells when the trans-membrane potential is lost (lloyd and 

Dinsdale, 2000). On entry, the dye binds to intracellular lipids and proteins, and fluoresces 

indicating that the cell is non-viable (Epps et 01., 1994). 8-Anilino-1-naphthalenesulfonic 

acid hemimagnesium salt hydrate (MgANS) is excluded from viable cells by the cell 

membrane, but can enter dead cells where it binds to cytoplasmic proteins, forming a 

highly fluorescent complex (McCaig, 1990). With the differing modes of action for each of 

these methods it was anticipated that the results obtained may provide a more accurate 

reflection of the viable state of ADY cells. Analysis of samples at time point A revealed that 

a large variation in viability was obtained when different methods were applied. As 

suggested previously, this indicates that the use of viability tests to assess ADY quality 

before rehydration has been completed yields unreliable data, and a more accurate 

estimation of cell viability can be obtained once a culture has been fully rehydrated. 

However, even at later time points, such as C4, no individual technique gave consistently 

high or low estimates. Consequently no single viability technique can be recommended for 

analysis of rehydrated ADY cultures. This was perhaps surprising given that the mode of 

action of each of the methods employed differed, however the current data suggests that 

standard viability techniques employed in breweries are adequate for analysis of ADY as 

long as the yeast population is completely rehydrated, as discussed earlier. 

3.4 CONCLUSIONS 

ADY cultures have been reported to exhibit lower cell viabilities than wet yeast populations 

of the same strain, leading to altered fermentation performance. Consequently it is 

important to ensure that ADY viability is maximised prior to inoculating a fermentation 

vessel. It is clear from this study that the method of rehydration may playa particularly 

important role in maintaining population health and yeast slurry viability. Specifically, 

incomplete rehydration, or rehydration at a sub-optimal temperature is likely to result in 
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impaired viability. While the current study has focused on the rehydration of yeast under 

laboratory conditions, these results may indicate that directly pitching ADY into wort 

(particularly cooler, lager type worts) could potentially result in viability loss and negatively 

influence fermentation performance. Furthermore, it is suggested that the optimum 

temperature of rehydration should be determined for each individual ADY strain and that 

these guidelines should be applied in the brewery in order to help ensure yeast viability 

and final product quality. 
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CHAPTER 4: IMPACT OF DEHYDRATION AND REHYDRATION ON BREWING 

YEAST DNA INTEGRITY 

Data from this Chapter formed the basis of a paper entitled Dried Yeast: Impact of 

Dehydration and Rehydration on Brewing Yeast DNA Integrity, which has been published in 

the Journal of the American Society of Brewing Chemists (2010 Volume 68 Number 3 pages 

132-138). 

4.1 INTRODUCTION 

The reduced viability exhibited when yeast cells are dehydrated and subsequently 

rehydrated, as demonstrated in Chapter 3, has been widely reported (Finn and Stewart, 

2002; Fischborn et 01., 2004; Cyr et 01., 2007). However, reports regarding the damage 

thought to result in cell death have mainly focussed on the plasma membrane (Attfield et 

01.,2000; Simonin et 01., 2007b), whilst other cellular damage which might be caused by the 

dehydration and subsequent rehydration of yeast has largely been ignored. Extensive DNA 

damage has been linked to yeast cell death in laboratory strains (Del Carratore et 01., 2002) 

and is one possible alternative for the cause of cell death seen in ADY. 

Before investigating the effect of drying and rehydration on ADY DNA, it was necessary to 

consider how brewing yeast genome instability might be assessed. The nucleus houses the 

majority of DNA contained within the brewing yeast cell, accounting for between 80 and 85 

% of the total DNA (Hammond, 2003). This DNA is stored on 16 distinct chromosomes each 

of which, in brewing yeast, may be present in multiple but not necessarily identical copies . 

. Weihenstephan 34/70, a common lager brewing yeast strain, contains 36 chromosomes 

with a total size of approximately 26.1 Mb (Nakao et 01., 2009). The nucleus, however, is 

not the only location of DNA within the cell; mitochondria contain DNA between 70 Kb 

(Nakao et 01.,2009) and 85 Kb (Foury et 01., 1998) in size (depending on the strain), typically 

present in 10-40 copies (Hammond, 2003). It is well documented that the brewing yeast 
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genome is prone to instability resulting in modifications in ploidy, chromosome length, 

chromosomal rearrangements and mitochondrial DNA integrity (Pedersen, 1994; Sato et 

01., 1994; Chi and Arneborg, 1999; Sato et 01., 2001; Gibson et 01., 2008; James et 01., 2008). 

From an evolutionary perspective, genome instability as a consequence of stresses 

encountered during fermentation, provides the means for the adaptation of strains to 

industrial environments (James et 01., 2008). This is because genetic damage often 

manifests itself as phenotypic changes exhibited by the yeast (Bidard et 01., 1995; Bell et 01., 

1997), although this is not always the case with a degree of robustness intrinsic to the cell 

(Wagner, 2000). This robustness is due to duplication, or redundancy, found within the 

genome (Goffeau et 01., 1996), but also compensatory actions of unrelated genes (Wagner, 

2000). Nevertheless, if genetic damage occurs during ADY production and utilisation, even 

without an immediate phenotypic effect, this damage may manifest itself during its first 

use or when repitched. Although such variability may occasionally prove beneficial, it is 

generally accepted that genetic instability can cause process problems during fermentation 

including changes in flocculation capacity (Bidard et 01., 1995) and maltotriose utilization 

(Bell et 01., 1997). 

The plethora of stresses which yeast are exposed to during dehydration and rehydration 

were discussed in Chapter 1 and some of these stresses are of particular relevance when 

considering the potential for damage to DNA. Water plays a fundamental role in the 

structure of DNA (Watson and Crick, 1953b), stabilising the double helix (Tao and Lindsay, 

1989), therefore osmotic stress and dehydration of a cell could have a detrimental effect. In 

vitro, the desiccation of DNA in bacteria leads to a loss of supercoiling, aggregation and loss 

of resolution during agarose gel electrophoresis (Shirkey et 01., 2003). Although an 

equivalent study has not been performed with yeast, analysis of bacterial DNA has 

indicated that the structure can readily refold into an active conformation on rehydration, 

preventing permanent damage from occurring (Fran~a et 01., 2007). Therefore, the majority 
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of DNA damage that may occur is likely to be attributable to stresses associated with the 

loss of water, production of ADY, and rehydration, rather than dehydration itself. A 

decrease in cellular volume accompanies dehydration and the subsequent cytoplasmic 

crowding increases the chance of molecular interactions, some of which may also result in 

DNA damage (Fran~a et 01., 2007). Perhaps of greater Significance are the high levels of 

reactive oxygen species (ROS) detected in yeast cells after dehydration, which can display 

more than a 10-fold increase (Pereira et 01., 2003). Oxidative stress has been shown to 

induce chromosomal damage in yeast in the form of strand breaks (Ramotar et 01., 1991). 

Due to the production of reactive oxygen species (ROS) within the mitochondria, mtDNA 

has been reported to exhibit a particularly high occurrence of DNA damage (O'Rourke et 

01., 2002; Doudican et 01., 2005). Indeed, in certain eukaryotic cells it has been shown that 

reactive oxygen species damage mitochondrial DNA more than nuclear DNA (Yakes and 

VanHouten, 1997), with oxidative stress commonly causing mitochondrial damage in 

brewing yeast, manifesting in the form of respiratory mutants (Gibson et 01., 2008). 

Another potential source of DNA damage in ADY is heat stress. Although the heat stress 

experienced by ADY during production could be considered to be mild (approximately 

35°C), heat shock can result in major structural changes to the nucleolus (Liu et 01., 1996), 

whilst it may also lead to the formation of further ROS (Bruskov et 01., 2002). 

Given that DNA is known to be sensitive to stresses associated with desiccation, and that 

genetic stability is an important characteristic of brewing yeast, this investigation aims to 

assess the genetic integrity of commercial ADY products. 
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4.2 RESULTS 

The potential for DNA damage to ADY products is clear (discussed in Section 4.1), however, 

the size of the yeast genome means any potential damage may be difficult to identify. Since 

the early work of scientists analyzing the structure of DNA (Watson and Crick, 1953a) there 

have been many developments in the techniques designed to probe its sequence within 

organisms. Many of these techniques are directly applicable to yeast due to its status as a 

model organism (Drubin, 1989; Botstein et 01., 1997; Zeyl, 2000; Oliver, 2001; Game, 2002; 

De Freitas et 01., 2003; Lagali et 01., 2003; Morgan et 01., 2009). These techniques range 

from measuring the entire DNA content of individual cells in a population (Givan et 01., 

1988; Haase and Reed, 2002) to sequencing the entire genome of isolates (Goffeau et 01., 

1996; Nakao et 01., 2009). The former is useful for analysis of the yeast cell cycle, but is less 

likely to detect DNA damage which may occur during ADY preparation. Sequencing, 

however, represents a costly and time consuming endeavour, despite recent advances 

(Shendure and Ji, 2008). However, there are several targeted techniques which allow the 

probing of specific areas of genome with known increased susceptibility to damage. 

Identifying these "hotspots" in nuclear DNA can be achieved using PFGE-CHEF analysis and 

PCR using primers targeting inter-delta sequences. Restriction fragment length polymorph isms 

(Piskur et 01., 1998), mitochondrial copy number (Stuart et 01., 2006) and the presence of 

respiratory mutants (Goldring et 01.,1970) can be similarly used to assess mtDNA stability. 

4.2.1 Nuclear DNA Stability 

Large scale chromosomal rearrangements were assessed by comparing the karyotypes 

derived from dried and control (laboratory grown, non-dried) brewing yeast using PFGE

CHEF analysis. It was observed that for each sample, an identical fingerprint was produced 

in terms of the size and number of chromosomes obtained (Figure 4.1), indicating that 

major structural damage did not occur during dehydration and rehydration of ADY. 

88 



Whilst large-scale chromosomal rearrangements were not observed to occur in the ADY 

strains investigated here, it should be noted that karyotyping does not permit more minor 

changes to the DNA to be detected. Therefore, an investigation into sequence changes in 

the DNA was conducted using peR analysis with primers designed to amplify inter-delta 

sequences (Legras and Karst, 2003). Inter-delta sequences are long terminal repeats (LTRs) 

that flank retrotransposons Tyl and Ty2 but can be found elsewhere in the genome of 

yeast. Transposons can be a major source of genetic change due to Ty-driven translocation 

(Rachidi et 0/., 1999). Analysis of inter-delta regions has previously been used for yeast 

strain differentiation and identification (Ness et 0/., 1993; de Barros Lopes et 0/., 1996; 

Legras and Karst, 2003), and can be applied to detect genetic variants. The application of 

this analysis to LAL1, LAL2 and LAL4 strains yielded strain dependent reproducible and 

unique profiles for each strain. To determine the impact of dehydration and rehydration on 

these profiles, ADY and control populations of each strain were cultivated on solid medium 

and 5 representative colonies in each case were recovered for analysis. No variation in the 

profiles obtained for ADY and control populations of LAL1 (Figure 4.2), LAL2 (Figure 4.3) 

and LAL4 (Figure 4.4) could be detected indicating that Ty element movement had not 

occurred. 
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Figure 4.1. Karytotyplng. M: Chromosomes Isolated from Saccharomyces cerevisiae strain VPH80; 

1 and 2:LAL1 Control; 3 and 4: LALl Dried; 5 and 6: LAL2 Control; 7 and 8: LAL2 Dried; 9 and 10: 

LAL4 Control; 11 and 12: LAL4 Dried. 
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Figure 4.2. Lager yeast LALl. Analysis of inter-delta regions by PCR fingerprinting. M: 2-Log DNA 

Ladder, Lanes 1-5: LALl Control (colony Isolates); Lanes 6-10: LALl Dried (colony Isolates), B: 

Blank. 

90 



3000bp 

1500bp 

1000bp 

500bp 

M 2 3 4 5 6 7 8 9 10 B M 

Figure 4.3. Ale yeast LAL2. Analysis of inter-delta regions by PCR fingerprinting. M: 2-Log DNA 

Ladder, Lanes 1-5: LAL2 Control (colony isolates); Lanes 6-10 LAL2 Dried (colony isolates), B: Blank. 
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Figure 4.4. Ale yeast LAL4. Analysis of inter-delta regions by PCR fingerprinting. M: 2-Log DNA 

Ladder, Lanes 1-5: LAL4 Control (colony isolates); Lanes 6-10: LAL4 Dried (colony isolates), B: 

Blank. 
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4.2.2 Mitochondrial DNA Stability 

Although mitochondrial DNA accounts for a lower percentage of total DNA than nuclear 

DNA, the DNA is more susceptible to damage (Yakes and VanHouten, 1997) with the petite 

mutant commonly occurring during fermentation and storage (Morrison and Suggett, 1983; 

Good, 1993; Jenkins et 01., 2009). Therefore several aspects of mitochondrial DNA were 

probed including DNA sequence conformity (Section 4.2.2.1), copy number (Section 

4.2.2.2) and relative resistance to mutagen challenge (Section 4.2.2.3). 

4.2.2.1 Mitochondrial DNA sequence conformity 

Analysis of restriction sites within mtDNA can be used to detect variation within the 

mitochondrial genome as these sites can be transposed or deleted when mutations or 

sequence changes occur. Consequently, the size and number of DNA fragments spliced 

during RFLP has been shown to differ in petite cells when compared to respiratory 

competent individuals (Castrejon et 01., 2002). Analysis of mtDNA using the restriction 

enzyme Hinjl indicated that the RFLP profiles obtained from ADY and non-dried control 

yeast were comparable (Figure 4.5). To assess the relative concentration of petites for ADY 

and control non-dried cultures, TIC overlay plates were inoculated and enumerated. Petite 

frequency was negligible in all samples assessed (less than 1 %). It is therefore proposed 

that no significant mtDNA sequence changes had occurred during the production of ADY. 
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Figure 4.5. RFLP analysis of mtDNA digested with Hinfl. M: 2-Log DNA Ladder, 1 and 2: LAL1 

Control; 3 and 4: LAL1 Dried; 5 and 6: LAL2 Control; 7 and 8: LAL2 Dried; 9 and 10: LAL4 Control; 11 

and 12: LAL4 Dried 

4.2.2.2 Mitochondrial DNA copy number assessment 

Mitochondrial DNA damage can remain hidden due to the number of mitochondria and/or 

mitochondrial DNA copy number present in a ce ll. Given that ADY production incorporates 

desiccation stress, and that mitochondrial copy number is known to vary according to the 

physiological condition of cells (Visser et 01., 1995; Sia et 01. , 2003), the effect of drying on 

mtDNA copy number was assessed. To this end, the relative proportions of mtDNA were 

assessed using two housekeeping genes, Acrl (located on chromosome IV), and COX2 

(located in the mitochondria) were examined. By comparing these genes by qPCR it was 

possible to assess the relative quantity of mitochondria with complete COX2 genes 

between ADY and non-dried control samples. The relative quantification (RQ) value of the 

non-dried control sample was assigned to be a value of one, and the ADY sample was 

calculated in relation to this. Strains LAL1 and LAL2 were observed to exhibit a higher RQ 

value (higher number of mtDNA copies) in ADY than in control samples, however strain 

LAL4 exhibited a higher RQ value in the control sample (Figure 4.6). Analysis of the 

variation within the samples suggested that the differences observed were not significant. 
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Consequently, these data provide further evidence to suggest that DNA damage does not 

occur during ADY production and utilization. 
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Figure 4.6. Relative quantification of COX2 with reference to ACT!. Minimum and maximum 

Relative Quantification (RQ) values indicated. 

4.2.2.3 Relative resistance to mutagen challenge 

To support the hypothesis that mtDNA copy number and sequence was not affected by 

dehydration and rehydration, the propensity of ADY and control cultures to form petites 

was assessed. Petite formation is not solely a function of mtDNA integrity but can also be 

influenced by chromosomal DNA integrity. Indeed GSHl which is a gene located on 

chromosomal DNA is required to maintain the non-petite phenotype and damage to this 

gene will lead to petite formation (Kistler et 01., 1990). The propensity of ADY and control 

samples to form petite mutants was assessed using the mutagen ethidium bromide. It can 

be seen that mutagenesis using ethidium bromide yielded more petites in non-dried 

cultures than in rehydrated ADY cultures irrespective of the strain examined (Table 4.1). 

Starved LAL1 and LAL2 yeast also exhibited a higher petite frequency (13.1 % and 11.3 %) 
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than corresponding ADY populations (0.0 % and 0.4 %) following exposure to ethidium 

bromide. This trend was also apparent for LAL4 albeit to a lesser extent, with control yeast 

exhibiting 1.4 % petites compared to 0.1 % for ADY (Table 4.1) . 

Table 4.1. Percentage of petites present after incubation with 100 j.1M ethidium bromide 

Sample Media Control ADY 

(± standard error) (± standard error) 

LALl YPD 15.5 ± 2.9 0.2 ± 0.3 

LAL2 YPD 9.5 ± 1.5 0.0 ± 0.0 

LAL4 YPD 30.3 ± 3.8 l.S±2.17 

LAL1 Starvation 13.1 ± 0.6 0.0 ± 0.0 

LAL2 Starvation 11.3 ± 0.8 0.4 ± 0.2 

LAL4 Starvation 1.4 ± 0.3 0.1 ± 0.1 

4.3 DISCUSSION 

It is well documented that the brewing yeast genome is prone to instability resulting in 

modifications in ploidy, chromosome length, chromosomal rearrangements and 

mitochondrial DNA integrity (Pedersen, 1994; Sato et 01., 1994; Chi and Arneborg, 1999; 

Sato et 01.,2001; Gibson et 01., 2008; James et 0/., 2008). From an evolutionary perspective, 

genome instability as a consequence of stresses encountered during fermentation provides 

the means for the adaptation of strains to industrial environments (James et 01., 2008). 

Although such variability may occasionally prove beneficial, it is generally accepted that 

instability causes process problems during fermentation. Based on the premise that yeast 

genetic instability is not typically beneficial to the brewer, the purpose of this investigation 

was to assess the impact of dehydration and rehydration on the genome integrity of ale 

and lager ADY. 

Previous reports have demonstrated that freeze dried yeast cells can exhibit chromosomal 

breaks (Lopes et 01., 1999). However, on a commercial scale ADY is typically produced 
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using fluidised bed drying, a technique which differs significantly from other methods of 

drying. By karyotyping and analysing of inter-delta regions of the genome, it was 

demonstrated that when ADY produced using fluidised bed drying was rehydrated its 

genetic profiles were comparable to control yeast. This data suggests that the fluidised bed 

drying process is less stressful to DNA than freeze drying. In support of this hypothesis, the 

latter technique (comprising the removal of water by sublimination from a frozen culture 

under vacuum (Kawamura et 0/., 1995}), often results in a viability as low as 0.1 % (Lodato 

et 0/., 1999), whereas for fluidized bed dried cultures the typical viabilities fall within the 

range of around 60-80 % (Gosselin and Fels, 1998; Finn and Stewart, 2002; van den Berg 

and Van Landschoot, 2003). These results are in keeping with a previous study which found 

the genetic profile of a dried lager yeast to be comparable to that of control yeast and 

maintain this through a series of five fermentations (Powell and Fischborn, 2010). This 

study, in combination with the work highlighted here incorporating ale strains, indicates 

that genetic damage to nuclear DNA does not occur as a result of fluidised bed drying. 

Yeast mitochondrial DNA is known to be particularly susceptible to damage, resulting in the 

formation of petite mutants (Goldring et 0/., 1970; Nagley and Linnane, 1970; Jenkins et 0/., 

2009). Typically brewing yeast populations contain around one percent petites (Silhankova 

et 0/., 1970). Finn and Stewart demonstrated that petite occurrence for ADY was 

comparable to that typically observed in brewing cropped yeast (Finn and Stewart, 2002). 

In contrast, freeze dried yeast cultures typically comprise high levels of petites (Russell and 

Stewart, 1981). Several stresses have been linked to the formation of petites during 

brewing yeast fermentation and yeast handling and some of these are also associated with 

the fluidized bed ADY production process, such as oxidative stress (O'Rourke et 0/., 2002; 

Doudican et 0/.,2005) and starvation (Wallis et 0/., 1972; Wallis and Whittaker, 1974). 
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To investigate the impact of fluidized bed dehydration and rehydration on yeast propensity 

to form petites, mtDNA was assessed for gross damage leading to the formation of 

respiratory deficient mutants, mtDNA copy number, sequence rearrangements and 

resistance to mutagen challenge. Petite frequency was negligible in all samples assessed 

(less than 1 %). The formation of a petite requires the damage (or total deletion) of all 

copies (typically between 20 to 50 within a single cell) of mitochondrial genome within the 

cell (Wimasalena, Nicholls and Smart, unpublished data). The absence of petites therefore 

does not necessarily equate to the absence of mtDNA damage within the cell. Therefore 

damage affecting some but not all of the mtDNA may be termed 'sub-petite' damage. 

Although methods for analyzing sub-petite damage have not previously been established, it 

is proposed that this phenotype may be detected by analysis of mtDNA sequence 

conformity, mtDNA copy number assessment, and the relative resistance to a mtDNA 

mutagen. 

The data presented here suggests that the potential for mtDNA damage was reduced in 

ADY when compared to non-dried yeast. While the precise rationale for this difference 

between cultures has yet to be determined, Schneider-Berlin et 01. (2005) demonstrated 

that petite induction through exposure to ethidium bromide was slower in non-dividing 

cells than in dividing individuals. Cells within an ADY population are typically in a non

dividing state (data not shown), whereas those present in laboratory grown control 

populations are often more asynchronous with respect to the cell cycle, with some budding 

cells evident. To test the hypothesis that the differences observed between ADY and 

control yeast sensitivity to ethidium bromide challenge were related to cell population 

synchronicity, starvation was used to synchronise control populations. Similar trends were 

recorded, suggesting that cell division does not fully account for the differences observed. 
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Therefore, the relative resistance of ADY to ethidium bromide challenge remains 

unexplained. A variety of factors may contribute to the phenotype observed including the 

protective effect of previously induced stress responses during production. Osmotic, 

oxidative, thermal and starvation stresses are all present during the production of ADY 

{Perez-Torrado et 01., 2005}. Whilst each stress elicits its own response, they often share 

common features which have been termed the general environmental stress response 

(Ruis and Schuller, 1995). Under this response, exposure to one stress factor can provide 

protection against other stresses, termed cross protection {lewis et 01., 1995; Park et 01., 

1997}. Currently the mode of action for the mutagenic effect of ethidium bromide on yeast 

mitochondria is unclear (Schneider-Berlin et 01., 2005), although the plasma membrane has 

been implicated in the capacity to restrict its assimilation into the cell (Brunner et 01., 1982; 

Coote et 01., 1994). It is proposed that ADY and control yeast populations may therefore 

differ with respect to their capacity to assimilate the mutagen, although the mechanism by 

which ethidium bromide uptake occurs remains the subject offurther investigation. 

4.4 CONCLUSIONS 

Analysis of colonies and populations derived from ADY yeast prepared by fluidized bed 

drying indicated that no evidence for chromosomal and mtDNA genome damage could be 

found. In addition, the tolerance to ethidium bromide mutagen challenge appeared to 

differ, with ADY populations demonstrating a reduced sensitivity to petite formation when 

compared to control populations. The reasons for this difference are not known. It is 

recognized that due to the nature of molecular based techniques, which require analysis of 

populations or a selection of representative isolates derived from the population, DNA 

damage occurring at an extremely low rate may not be detected. However, at the basic 

genetic level there is no evidence to suggest that ADY prepared using fluidized bed drying 

should exhibit impaired fermentation performance as a result of DNA damage during 

drying. 
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CHAPTER 5: PROPERTIES OF THE PLASMA MEMBRANE SUBSEQUENT TO YEAST 

REHYDRATION 

5.1 INTRODUCTION 

The cell envelope comprises the cell wall, plasma membrane and periplasmic space. 

The cell wall is porous and molecules smaller than 600 Oa are able to readily 

permeate its structure {Scherrer et 01., 1974}. In contract the plasma membrane 

does not promote the free movement of molecules and this structure acts as a 

selective barrier to the cell. 

5.1.1 The composition and structure of the plasma membrane 

The basic structure of the plasma membrane consists of a phospholipid bilayer with 

interspersed protein structures {Figure 5.1}. 
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Figure 5.1. Schematic of the structure of the yeast plasma membrane. The bulk of the structure 

consists of phospholipids arranged in a bilayer. Transport proteins span the entire width of the 

bilayer, whilst others may penetrate only partially. In viable cells a transmembrane potential is 

maintained with a negative potential inside the cell. 

Of the phospholipids present, the majority are phospholtidyylinositol, phosphotidyserine, 

phosphotidycholine and phosphotidylethanolamine (Blagovic et 01.,2005). The interactions 
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between these phospholipids and the structure they form are key to the organelle's 

function. Singer and Nicholson (1972) proposed the fluid mosaic model to describe the 

freedom of movement demonstrated by the phospholipid bilayer, although membranes are 

often described as exhibiting a liquid-crystal state (Leslie et 01., 1995; Laroche and Gervais, 

2003; Simonin et 01., 2008). This description reflects the frequent movement within each 

layer, but the limited movement between the two layers which constitute the bilayer. 

Water plays a key role in maintaining this basic structure by surrounding the phospholipids 

and creating the hydrophilic and hydrophobic regions required to maintain the bilayer 

structure (Chapman, 1994). Water also separates phosphate head groups on the outer and 

inner surface of the lipid bilayer and therefore assists in maintaining an ordered and fluid 

membrane (Chapman, 1994). Due to its role within the membrane, it is likely that the loss 

of water could be important in relation to dried yeast, as alterations in fluidity have been 

suggested to promote mortality under osmotic stress (Simonin et 01., 2007b). 

Membrane fluidity is not solely controlled by water, and lipids (such as sterols) found 

within the membrane can also determine relative movement within the bilayer (Alexandre 

et 01., 1996). Sterols are formed during aerobic growth (Sections 5.1.2 and 5.2.6) or can be 

taken-up under anaerobic conditions due to the action of hypoxic gene families (Bourot 

and Karst, 1995; Alimardani et 01., 2004) and it has been suggested that sterols are a key 

determining factor in the rigidity of the membrane (van der Rest et 01., 1995). In contrast, 

the incorporation of unsaturated fatty acids (UFA) can help maintain a fluid membrane, a 

regulation sometimes required in response to stress, for example osmotic (Rodriguez

Vargas et 01., 2007). Fluidity is maintained due to the lower melting point of UFA compared 

to saturated fatty acids (Rodriguez-Vargas et 01., 2007). 

Although the individual components of the membrane contribute to fluidity, this property 

is not uniform throughout (Karnovsky et 01., 1982), with the presence of "lipid rafts" 
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throughout the structure (Bagnat et 01., 2000). These rafts are characterised by areas of 

distinct and differing lipid content, resulting in modified fluidities, which are presumably 

important for certain cellular functions (Bagnat et 01., 2000). These compositional and 

fluidity changes are important for membrane function, indeed certain membrane bound 

enzymes can become inactivated when lipids are removed (Dufour and Goffeau, 1980). 

5.1.2 Ergosterol biosynthesis and accumulation in S. cerevislae 

Ergosterol, a key component of the plasma membrane, has several roles in yeast. Its 

presence is required in relatively small amounts to enable growth, and this has been 

termed its "sparking" function (Rodriguez and Parks, 1983; Lorenz et 01., 1989). Ergosterol 

also has an important structural role in the plasma membrane (discussed in Section 5.1.1.) 

and like other sterols plays a key role in maintaining membrane fluidity (Lees et 01., 1979; 

Lees et 01., 1989) and membrane permeability (Bard et 01., 1978; Kleinhans et 01., 1979). 

Sterols can be synthesised in yeast cells from acetyl-CoA formed during the glycolysis of 

carbon substrates. The condensation of acetyl-CoA and acetoacetyl-CoA forms ~-hydroxy

J3-methyl glutaryl coenzyme A (HMG CoA) (Rudney, 1957). HMG CoA is then converted to 

mevalonic acid (Ferguson et 01., 1986), a precursor in the mevalonate pathway, which can 

ultimately lead to the biosynthesis of squalene. In the presence of oxygen squalene can be 

converted to ergosterol via the pathway outlined in Figure 5.2. Many of the sterols 

generated at the beginning of fermentation, when catabolite derepression occurs, are 

esterified and stored (Quain and Haslam, 1979). During the anaerobic conditions of 

fermentation sterol esters are hydrolysed to free esters and utilised within the cell .As 

anaerobic conditions persists (Quain and Haslam, 1979), squalene accumulates in the cell 

(Blagovic et 01., 2005) due to the requirement of oxygen for its conversion to 2,3 

oxidosqualene in the ergosterol pathway (Jahnke and Klein, 1983). The genes ERG9 

(encodes the enzyme squalene synthase), ERGl (squalene epoxidase) and ERG7 (lanosterol 
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synthase) are required to produce the first sterol in the pathway (lanosterol) and are thus 

viewed as essential for aerobic viability to ensure some sterol synthesis in yeast (Lees et 01., 

1995). ERGll and ERG24 are also essential for cell growth, but genes encoding later steps 

such as ERG2 and ERG3 are not essential (Lees et 01.,1995). 

Squalene 

1 ERGl 

2,3-0xidosq ualene 

1 ERG7 

lanosterol 

1 ERGll 

4,4-Dimethyl-ch lora-a:R:::trienol 

14-Dimethyllanosterol 

1 ERG25 

4-Methyl fmo'tero, 

Zymosterol 

1 ERG6 

Fecosterol 

1 ERG2 

Episterol 1 ERG3 

Ergosta-S,7,24(28)-trienol 

1 ERGS 

Ergosta-S,7,22,24(28)-tetraenol 

1 ERG4 
Ergosterol 

Figure S.2. The late steps of the ergosterol synthesis pathway adapted from Palermo et al. (1997). 

The genes responsible for the various steps are indicated next to the relevant arrows. 
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5.1.3 The changes in the plasma membrane due to the dehydration and subsequent 

rehydration of yeast cells. 

During dehydration it has been proposed that water molecules are removed from the 

membrane and the phospholipid head groups are forced together. The resultant increase in 

packing density of the phospholipid head groups, has been purported to lead to an increase 

in van der waals interactions among hydrocarbon chains (Laroche and Gervais, 2003; 

Franl;a et 01., 2007). As a consequence the membrane undergoes a phase transition, 

entering a gel phase. In contrast rehydration has been proposed to reverse this process, 

returning the membrane to a liquid-crystalline state (Laroche et 01., 2001; Laroche et 01., 

2005). It has been suggested that biological membranes which contain a heterogeneous 

mixture of lipids, could result in gel and liquid-crystalline phases co-existing (Laroche and 

Gervais, 2003). This in turn could lead to packing defects at boundaries between the 

differing domains, potentially resulting in cytoplasmic leakage and cell death (Laroche and 

Gervais, 2003). Retention of yeast cell viability for rehydrated ADY appears to depend on 

the temperature at which rehydration occurs. It has been proposed that this may relate to 

the rate at which water permeates the plasma membrane during phase transition (Laroche 

and Gervais, 2003). Plasmolysis, which is defined as the cell membrane shrinking, but not 

detaching, from the cell wall can also occur during dehydration and rehydration leading to 

membrane rupture. If the cell shrinks, due to loss of water, the membrane can have a 

tendency to fuse in areas, and therefore become leaky (Hoekstra et 01., 2001; Guyot et 01., 

2006). 

Trehalose enriched membranes appear to tolerate a wider range of phase transition 

temperatures (Leslie et 01., 1994) and it has been proposed that trehalose stabilises the 

membrane during transition. This is one reason why trehalose accumulation during the 

production of dried brewing yeast is encouraged (Powell and Fischborn, In press). 
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In this Chapter an investigation into the impact of dehydration and rehydration, at optimal 

and sub-optimal temperatures, on the fluidity of the plasma membrane was conducted. 

5.2 RESULTS 

5.2.1 Selection and verification of yeast mutants displaying altered fluidity 

characteristics 

In order to investigate the impact of dehydration and rehydration on membrane fluidity, 

control strains with demonstrable fluidity differences were required to confirm that 

analytical approaches used were functioning correctly. Candidate genes, the deletion of 

which has been proposed to altered membrane fluidity, were identified through a series of 

searches in the Saccharomyces Genome Database (www.yeastgenome.org) and associated 

publications (Sharma, 2006; Abe and Hiraki, 2009). ERG2 (YMR202w) and ERG3 (YlR056w) 

two genes found in the synthetic pathway for ergosterol (Figure 5.2), were deemed 

suitable for investigation. ERG2 encodes a non-essential C-8 sterol isomerise (Ashman et 

al., 1991) and its deletion causes the accumulation of ergosta-5,8,22-trienol, fecosterol and 

ergosta-8-enol (Munn et al., 1999). ERG3 encodes a non-essential C-5 sterol desaturase 

(Arthington et al., 1991) the deletion of which causes the accumulation of Ergosta-7-enol, 

Ergosta-7,22-dienol, Fecosterol and Episterol (Heese-Peck et al., 2002). Despite these key 

differences in phenotype it should be noted that variations in the quantities of each sterol 

accumulated sterols accumulated, instead of the normal ergosterol, had been noted to 

differ with respect to strain and growth conditions (Munn et al., 1999). Previous studies 

using mutant S. cerevisiae strains containing non-functioning erg genes demonstrated 

differences in fluidity (Sharma, 2006; Abe and Hiraki, 2009) a property of significance when 

considering dried yeast mortality. 

Mutant yeast strains with these candidate genes deleted were procured from EUROSCARF 

(Frankfurt, Germany). Deletion mutants from this source have the entire gene of interest 
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deleted and a kannamycin resistance cassette (KanMX4) inserted. This insertion, which 

produces resistance to the antibiotic G418 in S. cerevisiae, was confirmed with the 

inoculation of the yeast onto YPD agar containing the antibiotic and observation of growth. 

Figure 5.3 demonstrates the growth of both the wild type (YOOOOO/BY4741) and the mutant 

(Y02667) strains on YPD alone and the growth of just the mutant strain when inoculated on 

YPD and G418. The effect of insertion of the KanMX4 cassette into the mutant Y00788 is 

shown in Figure 5.4. However, this figure simply demonstrates the presence of the 

insertion and not the specific location, which was verified using peR analysis. The 

ERG3/YLR056w open reading frame is 1098 bp in length. Primers were used to amplify a 

1580 bp region of the genome in the wild type strain and a 2116 bp region in the mutant 

strain. The DNA amplicons produced (Section 2.7.1) were identified to be ofthe anticipated 

sizes, verifying the deletion of the gene and insertion of the kanMX4 cassette (1634 bp in 

length) (Figure 5.5). 

The ERG2/yMR202w open reading frame is 669 bp in length. Primers were used to amplify 

a 1203 bp region of the genome in the wild type strain and a 2134 bp region of the mutant 

strain (Y00788) to verify the deletion of the target gene and insertion of the cassette 

(Figure 5.6). 
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V02667 

VOOOOO 

Figure 5.3. Confirmation of G418 resistance in EUROSCARF strains. Picture A shows growth of 

VOOOOO and V02667 on VPD plates, whilst B shows growth of V02667 and the lack of growth of the 

wild type VOOOOO on VPD plates containing G418. 

VOOOOO 

Figure 5.4. Confirmation of G418 resistance in EUROSCARF strains. Picture A shows growth of 

VOOOOO and V00788 on VPD plates, whilst B shows growth of V00788 and the lack of growth of the 

wild type VOOOOO on VPD plates containing G418. 
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Figure 5.5.Confirmation of the deletion in the EUROSCARF strain Y02667 using PCR analysis with 

primers designed to flank the gene of interest. M: 1kb ladder (New England Biolabs), Lanes 1 and 

2: Wild Type (VOOOO) amplicons 1580 bp in length, indicating the presence of ERG3. Lanes 3 and 4: 

V02667 amplicons 2116 bp in length, indicating the deletion of ERG3 and insertion of kanMX4 

cassette. B:Blank 
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Figure 5.6.Confirmation of the deletion in the EUROSCARF strain Y00788 using PCR analysis with 

primers designed to flank the gene of interest. M: 1kb ladder (New England Biolabs), Lanes 1 and 

2: Wild Type (VOOOO) amplicons 1203 bp in length, indicating the presence of ERG2. Lanes 3 and 4: 

Y00788 amplicons 2134 bp in length, indicating the deletion of ERG2 and insertion of kanMX4 

cassette. B: Blank. 
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5.2.2 Assessment of plasma membrane fluidity using de polarisation of the fluorescent 

stains DPH and TMA-DPH 

The fluidity (or rigidity) of a membrane is determined by many factors (Section 5.1) and 

therefore the measurement of this property using compositional differences alone can 

prove difficult. Fluidity assessment has therefore tended to focus on the use of dyes which 

easily penetrate the cell wall, bind to the membrane and elicit emission spectra which are 

dependent on the structure to which the dye has localised. For the dye merocyanine 540, 

localisation in a membrane is determined by the density of lipids (McEvoy et 01., 1988). The 

emission spectra of the dye laurdan is determined by the state of the plasma membrane 

(Yu et 01., 1996). Stains such as 1,6-Diphenyl-1,3,S-hexatriene (DPH) (Laroche et 01., 2001; 

Rodriguez-Vargas et 01., 2002; Simonin et 01., 2007b; Simonin et 01., 2008) and its analogue 

N,N,N-Trimethyl-4-(6-phenyl-1,3,5-hexatrien-1-yl)phenylammonium p-toluenesulfonate 

(TMA-DPH) (Sharma, 2006; Abe and Hiraki, 2009) have anisotropic properties which have 

been used to indicate fluidity based on the dye's movement within the membrane. 

In the current study, DPH and TMA-DPH were selected for use. Although they are similar 

dyes with respect to their fluorescence emission, they differ in terms of their localisation 

within the membrane. The hydrophobic stain DPH is thought to localise near the lipid tails, 

therefore it indicates the fluidity of the inner membrane (Kaiser and London, 1998; 

Repakova, 2004; Sharma, 2006). In contrast, TMA-DPH carries a positive charge which 

ensures it remains at the water lipid interphase, thus it reflects the outer membrane 

fluidity (Prendergast et 01., 1981). DPH has been observed to also aggregate in the 

cytoplasm of yeast exhibiting non-functioning ergosterol biosynthetic genes, rather than 

local ising in the plasma membrane (Abe and Hiraki, 2009). The reasons for this change in 

localisation and indeed the target of the actual staining are unknown (Abe and Hiraki, 

2009). To investigate the specificity of each stain, the cellular localisation of DPH (Figure 

5.7) and TMA-DPH (Figure 5.8) were observed microscopically. It can be seen that DPH 
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becomes localised to intracellular components (unknown) and not the plasma membrane, 

whilst TMA-DPH appears to be confined to the plasma membrane alone. As a consequence, 

DPH was disregarded for use in the current study and TMA-DPH was selected for further 

analysis. Upon localising in a membrane TMA-DPH becomes strongly fluorescent. The rod 

shaped fluorophore becomes orientated parallel to the lipid chains of biological 

membranes. The absorption and emission oscillators both lie along the long axis of the 

fluorophore and thus only rotations perpendicular to the long axis will result in 

depolarisation (Lakowicz and Prendergast, 1978b). There is a significant change in 

anisotropy exhibited during the phase transition from gel to liquid-crystal (Lentz et 01., 

1976). 

The majority of studies on lipid bilayers (Lakowicz and Prendergast, 1978a; Prendergast et 

01., 1981) or intact cell membranes (Laroche et 01., 2001; Sharma, 2006; Abe and Hiraki, 

2009) tend to utilise spectrofluorimeters to assess the fluorescence anisotropy 

(directionally dependent fluorescence intensity) of dyes such as DPH. This requires the 

measurement of the whole population of cells, and as a consequence will not indicate the 

occurrence of any potential sub-populations within the sample. It has previously been 

suggested that sub-populations of dead yeast cells may demonstrate a pronounced 

difference in the fluidity of their membrane when compared to viable cells (Learmonth and 

Gratton, 2002). As non-viable cells represent a significant proportion of cells in dried yeast 

cultures it is clear that a method which would enable the detection of these cells would be 

advantageous. Arndt-Jovin et 01. (1976) demonstrated that DPH anisotropy measurements 

of cell populations are similar whether measured statically (spectrofluorimeter) or 

dynamically (flow system). In the current study flow cytometry was selected for analysis to 

enable each cell, and therefore heterogeneity within the sample, to be evaluated 

separately. The polarisation property of the dye is normally derived using Equation 5.1. 

However, the limitations of the flow cytometry method used in the current study 
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necessitated a ratio of vertically polarised light to horizontally polarised light to be 

recorded. Although this does not provide absolute values, it does allow comparison 

between the samples examined here. An increase in the ratio, as with an increase in the 

polarisation value, indicates a more rigid structure. 

Equation 5.1 Calculation for fluorescence polarisation value P, With 'II and /J.. as the fluorescence 

intensity parallel and perpendicular to the incident laser light polarisation. 

p 111-1 1. 

1 " +1 1. 

Figure 5.7.Yeast cells stained using the fluorescent dye DPH (using the same protocol as used for 

fluidity assessment) and viewed at a magnification of xlOOO. The stain is not localised to the 

plasma membrane, but instead appears to have concentrated in internal organelles. 
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Figure 5.8. Yeast cells stained using the fluorescent dye TMA-DPH (using the same protocol as 

used for fluidity assessment and viewed at a magnification of dOOO. The stain appears to be 

localised to the plasma membrane, with no obvious staining of internal organelles evident, 

suggesting it is suitable for specific probing of the plasma membrane. 

5.2.3 Verification of the fluidity assessment protocol using mutants exhibiting 

membrane differences 

To ensure the dye (TMA-DPH) and instrument (flow cytometer) were capable of 

determining fluidity differences, control samples were required to test the differentiation 

capacity of the method. To address this, mutants with impaired fluidity were deemed an 

appropriate means of achieving controls where differences were more likely to be 

consistently expressed. Disruption of ergosterol synthesis promotes a reduction in the 

rigidity of the membrane which has been previously detected by reduced polarisation in 

the presence of TMA-DPH (Sharma, 2006; Abe and Hiraki, 2009). It has been suggested 

that these differences may be due to a lack of packing of the lipid acyl chains, whilst the 

ratio of sterols to phospholipids may also be altered in ergosterol mutants (Abe and Hiraki, 

2009) . Two yeast strains with disruptions in the ergosterol pathway (Section 5.2.1), were 

used to ascertain the validity of the fluidity detection system. 

Cells were grown at 25°C and stained with TMA-DPH for 1 hour prior to analysis as 

described in Section 2.7.2. The fluorescence was measured in two planes with the use of 

polarising filters; the ratio of these intensities provided an indication as to the degree of 
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fluorescence anisotropy exhibited by the bound dye. The ratio values recorded for the 

ergosterol mutants were lower than that for the wild type, suggesting they have a more 

fluid (less rigid) membrane (Table 5.1). This is in agreement with previous work (Sharma, 

2006; Abe and Hiraki, 2009). 

Table 5.1. The ratio of horizontally to vertically polarised light emitted from single yeast cells 

stained with TMA·DPH. Yeast strains containing single deletions in the ergosterol synthesis 

pathway were compared to the wild type stain. * Indicates that these values were significantly 

different to the values for the control (wild type) strain (significance determined using an analysis 

of variance) 

Ratio of vertical to horizontal polarised 
EUROSCARF 

Deleted gene light (mean of three replicates of 100,000 
strain number 

events ±S.D.) 

VOOOOO Wild type 0.3335 ±0.0020 

V02667 erg3 0.3128 ±0.0019* 

V00788 erg2 0.3079 ±0.0055* 

5.2.4 The identification of sub·populations contained within rehydrated dried yeast 

cultures 

The cultures analysed in Table 5.1 were homogeneous in terms of their viability and 

therefore directly comparable. The primary concern with applying the same assay to ADY 

and the corresponding control sample was that heterogeneity would exist within each 

population. Indeed one particular source of heterogeneity concerns cell death and its 

influence on fluidity (Learmonth and Gratton, 2002). ADY populations exhibit a lower 

viability than control populations, laboratory grown cells, and could therefore be expected 

to exhibit differences in fluidity as a function of viability. Whilst this topic is interesting, the 

objective of the analysis was simply to consider differences in fluidity in live cells. To 
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circumvent the issue of heterogeneity a gating process was used. Gating permits grouping 

of populations which exhibit significant differences and can be used to exclude or include 

these populations from future processing (Givan, 1992). The scatter of light by cells is often 

used to distinguish between different cell types (Olson et al., 1989; Deere et al., 1998; 

Givan, 2004) and also viability (Givan, 1992). There are two types of scattered light which 

are commonly recorded by flow cytometer instruments. Forward scatter is a measure of 

the spread of light which passes directly through cells and can be used as an indication of 

the size of a cell, with larger cells scattering the light to a greater extent (Givan, 1992). It 

can also be used as an indication of cell viability as non viable cells often scatter less light. 

In non-viable cells the plasma membrane may become leaky allowing the carrier fluid, 

which the cells are suspended in, to diffuse into the cell resulting in a refractive index inside 

the cell similar to that outside and reducing the degree of scattering (Shapiro, 2003). Side 

scatter is a measure of the amount of light scattered at 900 to the direction of the incident 

light. This can give an indication to the degree of cell granularity, which may be reduced in 

apoptotic cell death as organelles are broken down. In this study, side scatter (PMTl Lin) 

and forward scatter (FS Lin) were plotted against each other in an attempt to identify non

viable and viable cells. 

Initial gates (Region A) were performed to remove cells (events) which had either 

horizontally or vertically polarised light intensities beyond the limit of detection. Such 

events equated to up to 10 % of the sample. A second gate (Region B) was performed using 

dot plots of scattered light (forward and side scatter), isolating the main body of events, 

excluding larger events (possibly containing two cells) or smaller events (cell debris). 

The analysis of control samples of each of the three strains (LAL1, LAL2 and LAL4) yielded 

similar scatter profiles. The dot plot generated (from forward and side scattered light) 

shows a single group for each population (Figures 5.9-5.11). However, within each 
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population there was a relatively large degree of variation with respect to forward scatter, 

indeed this variation was greater in control populations than in rehydrated yeast 

populations. One reason for this may be differences in cell size. Cell size is thought to vary 

with the replicative age of laboratory yeast cells (Hartwell and Unger, 1977), a trait also 

noted in brewing yeast (Barker and Smart, 1996). 

Dried yeast (rehydrated at 30°C) showed less variation, with respect to forward scatter, 

compared to control yeast (Figures 5.12-5.14), suggesting that the population contained a 

greater number of small cells. For two of the strains (LAL1 and LAL2) variation in side 

scatter showed an increase which, combined with variation in forward scatter, indicates 

the presence of sub-populations (Figures 5.12 and 5.13). However, the proximity of the 

groups and the lack of a definite separation makes the gates created (indicated in Figures 

5.12 and 5.13) subjective. The relative proportions seen in the two sub-populations are 

similar to those which might be predicted if they contained viable and non-viable cells, but 

there is some variation to the viability as determined by methylene blue staining. When 

yeast was rehydrated at 15°C there was a reduction in viability, as might be expected. 

Analysis of the dot plots generated based on scattered light (Figures 5.15 and 5.16) 

indicated sub-populations which could be defined, although some overlap was observed. 

Again, the proportions of events contained within each gate are similar to those which 

might be expected from viable and non-viable populations. 

Whilst LAL4 control yeast demonstrated similar population trends to those observed with 

the previous control samples (Figure 5.11), the rehydrated yeast responded differently with 

respect to scattered light. When LAL4 dried yeast was rehydrated at both 30°C (Figure 5.14) 

and 15°C (Figure 5.17) there was a lack of identifiable sub-populations. This result was 

interesting because these cultures exhibited viabilities of 75 % and 71 % respectively. In this 
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instance, f luid ity measurements were therefore calculated for both the overall populat ion 

and the identified sub-populations for LALl and LAL2 (Section 5.2 .3) . 

. ', :';=." .::::." ': ! ',I 
:. " .. . . ' 

o 200 400 eoo 8 00 1k 
P M T 1 Lin 

Figure 5.9. Analysis of forward and side scatter in LAl1 control yeast. Samples were illuminated 

using a flow cytometer and the subsequent side scatter (PMTl lin) was plotted against the 

forward scatter (FS lin) using WEASEL analysis software. The coloured regions indicate the density 

of events, purple where density is greatest, then green and yellow, with red signifying a single 

event. The polygon labelled "Region 001 b" is a user defined region, based on perceived grouping 

of cells. This is one example of triplicate sample runs and dot plots which were similar in 

appearance. 
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Figure 5.10. Analysis of forward and side scatter in LAL2 control yeast. Samples were illuminated 

using a flow cytometer and the subsequent side scatter (PMTl lin) was plotted against the 

forward scatter (FS lin) using WEASEL analysis software. The coloured regions indicate the density 

of events, purple where density is greatest, then green and yellow, with red signifying a single 

event. The polygon labelled "Region 001 b" is a user defined region, based on perceived grouping 

of cells. This is one example of triplicate sample runs and dot plots which were similar in 

appearance. 
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Figure 5.11. Analysis of forward and side scatter in LAL4 control yeast cells. Samples were 

illuminated using a flow cytometer and the subsequent side scatter (PMTl Lin) was plotted 

against the forward scatter (FS Lin) using WEASEL analysis software. The coloured regions indicate 

the density of events, purple where density is greatest, then green and yellow, with red signifying 

a single event. The polygon labelled "Region 001 b" is a user defined region, based on perceived 

grouping of cells. This is one example of triplicate sample runs and dot plots which were similar in 

appearance. 
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Figure S.12. Analysis of forward and side scatter in LAll dried yeast cells (rehydrated at 30°C). 

Samples were illuminated using a flow cytometer and the subsequent side scatter (PMT1 Lin) was 

plotted against the forward scatter (FS Lin) using WEASEL analysis software. The coloured regions 

indicate the density of events, purple where density is greatest, then green and yellow, with red 

signifying a single event. The polygon labelled " Region 001 b" is a user defined region, based on 

perceived grouping of cells. This is one example of triplicate sample runs and dot plots which were 

similar in appearance. 
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Figure S.13. Analysis of forward and side scatter in LAL2 dried yeast cells (rehydrated at 30°C). 

Samples were illuminated using a flow cytometer and the subsequent side scatter (PMTl Lin) was 

plotted against the forward scatter (FS Lin) using WEASEL analysis software. The coloured regions 

indicate the density of events, purple where density is greatest, then green and yellow, with red 

signifying a single event. The polygon labelled "Region 001 b" is a user defined region, based on 

perceived grouping of cells. This is one example of triplicate sample runs and dot plots which were 

similar in appearance. 
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Figure 5.14. Analysis of forward and side scatter in LAl4 dried yeast cells (rehydrated at 30·C). 

Samples were illuminated using a flow cytometer and the subsequent side scatter (PMTl lin) was 

plotted against the forward scatter (FS lin) using WEASEl analysis software. The coloured regions 

indicate the density of events, purple where density is greatest, then green and yellow, with red 

signifying a single event. The polygon labelled " Region 001 bIt is a user defined region, based on 

perceived grouping of cells. This is one example of triplicate sample runs and dot plots which were 

similar in appearance. 
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Figure 5.15. Analysis of forward and side scatter in LALl dried yeast cells (rehydrated at ls·C}. 

Samples were illuminated using a flow cytometer and the subsequent side scatter (PMTllin) was 

plotted against the forward scatter (FS lin) using WEASEL analysis software. The coloured regions 

indicate the density of events, purple where density is greatest, then green and yellow, with red 

signifying a single event. The polygon labelled " Region 001 b" is a user defined region, based on 

perceived grouping of cells. This is one example of triplicate sample runs and dot plots which were 

similar in appearance. 
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Figure S.16. Analysis of forward and side scatter in LAL2 dried yeast cells (rehydrated at IS·C). 

Samples were illuminated using a flow cytometer and the subsequent side scatter (PMTl Lin) was 

plotted against the forward scatter (FS Lin) using WEASEL analysis software. The coloured regions 

indicate the density of events, purple where density is greatest, then green and yellow, with red 

signifying a single event. The polygon labelled "Region 001 bIt is a user defined region, based on 

perceived grouping of cells. This is one example of triplicate sample runs and dot plots which were 

similar in appearance. 
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Figure S.17. Analysis of forward and side scatter in LAl4 dried yeast cells (rehydrated at 1S°C). 

Samples were illuminated using a flow cytometer and the subsequent side scatter (PMTllin) was 

plotted against the forward scatter (FS lin) using WEASEl analysis software. The coloured regions 

indicate the density of events, purple where density is greatest, then green and yellow, with red 

signifying a single event. The polygon labelled " Region 001 b" is a user defined region, based on 

perceived grouping of cells. This is one example of triplicate sample runs and dot plots which were 

similar in appearance. 
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S.2.S Assessment of the relative fluidity of control and rehydrated dried yeast 

Fluidity was assessed using the ratio of vertically polarised light to horizontally polarised 

light. An increase in the ratio indicates a more rigid property (less fluid membrane). 

Comparisons were made between yeast that had not been previously dehydrated, dried 

yeast rehydrated at 30°C and dried yeast rehydrated at 15°C for three strains (LAL1, LAL2 

and LAL4). The selection of rehydration temperatures was based on conditions that have 

previously been considered to maintain high viabilities (30°C) and challenge yeast during 

rehydration leading to low viabilities (15°C). The lager yeast strain LALl demonstrated the 

lowest viabilities following rehydration irrespective of temperatures applied during the 

rehydration process (Table 5.2). Furthermore it was noted that for LALl reducing the 

temperature of rehydration had the greatest impact on viability. It was observed that the 

rigidity of the membrane was greater in the rehydrated culture than that of control cells. 

The rigidity was also greater when cells were rehydrated at 15°C compared to 30°C. The 

relative rigidity of the sub-populations (identified in Section 5.2.4) showed little difference 

compared to control cells when cells were rehydrated at 30°C, but a difference was 

apparent in cells rehydrated at 15°C (Figure 5.18). The sub-population (B) which it is 

suggested consisted of non-viable cells, exhibited a greater rigidity compared to viable cells 

(suggested to be sub-population A), which would be in agreement with the previous work 

of Learmonth and Gratton (2002). The lack of an apparent difference when cells were 

rehydrated at 30°C may have been due to the less distinct sub-populations obscuring the 

results. The membrane rigidity exhibited by LAL2 dried viable yeast (sub-population A) 

when rehydrated at 30°C was lower than that of the control yeast (Figure 5.19). Rigidity 

was also greater in cells rehydrated at 15°C compared to those rehydrated at 30°C. The 

increased rigidity exhibited by cells thought to be non-viable was more apparent for strain 

LAL2 than that observed for LAL1. As no SUb-populations were identified in LAL4, 

assessment of rigidity was based on the entire population (Figure 5.20). Whilst rigidity was 
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higher in cells rehydrated at 30°C, and greater still in cells rehydrated at 15°C, this may 

simply have been a reflection of the greater number of non-viable cells contained in each 

sample. 
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Table 5.2. The ratio of horizontally polarised light to vertically polarised light emitted from single yeast cells (LAL1) stained with TMA-DPH. YPD grown control samples 

were compared to ADY rehydrated at 300 e and 15°C. Gate reference is in relation to the regions creating using dot plots of forward and side scatter of light. 

Percentage of the total Ratio of vertical to horizontal 
Viability determined by 

polarised light (mean of three Sample Gate Reference population contained 
methylene blue staining 

replicates of 100,000 events ±S.D.) within the gate 

LAl1 Control 100% Whole Population 91 % 0.3438 ±0.0033 

LAl1 ADY Whole Population 90% 0.3536 ±0.0027 

Rehydrated at 67% Sub-Population A 59% 0.3534 ±0.0018 

30°C Sub-population B 17% 0.3548 ±0.0052 

LAl1 ADY Whole Population 93% 0.3651 ±0.0006 

Rehydrated at 54% Sub-Population A 41 % 0.3606 ±0.0014 

15°C Sub-Population B 43 % 0.3689 ±0.0010 
"---
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Table 5.3 The ratio of horizontally polarised light to vertically polarised light emitted from single yeast cells (LAL2) stained with TMA-DPH. YPD grown control samples 

were compared to ADY rehydrated at 300
( and 15°(. Gate reference is in relation to the regions creating using dot plots of forward and side scatter of light. 

Percentage of the total Ratio of vertical to horizontal 
Viability determined by 

Sample Gate Reference population contained polarised light (mean of three 
methylene blue staining 

replicates of 100,000 events ±S.D.) ! within the gate 

LAL2 Control 100% Whole Population 94% 0.3433 ±0.0034 

LAL2 ADY Whole Population 90% 0.3382 ±0.0025 

Rehydrated at 81% Sub-Population A 67% 0.3357 ±0.0029 

30°C Sub-Population B 18% 0.3471 ±0.0025 

LAL2 ADY Whole Population 91 % 0.3464 ±0.0006 

Rehydrated at 77% Sub-Population A 61 % 0.3426 ±0.0010 

15°C Sub-Population B 25% 0.3548 ±0.0014 
--- --
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Table 5.4 The ratio of horizontally polarised light to vertically polarised light emitted from single yeast cells (LAl4) stained with TMA-DPH. YPD grown control samples 

were compared to ADY rehydrated at 30·C and 1S·C. Gate reference is in relation to the regions creating using dot plots of forward and side scatter of light. 

Viability 
Percentage of the total Ratio of vertical to horizontal 

determined by 
Sample Gate Reference population contained within polarised light (mean of three 

methylene blue 
the gate replicates of 100,000 events ±S.D.) 

staining 

LAL4 Control 100% Whole Population 93% 0.3458 ±O.0015 

LAL4 ADY Rehydrated at 
75% Whole Population 93% 0.3482 ±O.0010 

30°C 

LAL4 ADY Rehydrated at 
71 % Whole Population 95% 0.3517 ±O.0020 

15°C 
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5.2.6 The effect of growth parameters and drying on the subsequent sterol content in 

yeast cells 

The concentrations of sterols in three samples of the yeast strain lAll were determined by 

Organo-Balance (Germany) (Figure 5.21). Control yeast was grown in 100 ml YPO medium 

and incubated in a baffled Erlenmeyer flask (capacity 250 ml) resulting in the constant 

aeration of the yeast, whilst fed-batch produced yeast were propagated following the 

growth regime utilised in the production of dried yeast, also with constant aeration. Sterols 

were measured as an overall concentration within the cell and not designated to particular 

cellular compartments. Ergosterol is the final compound created during sterol biosynthesis 

(Figure 5.2) and as such it is normally the sterol present in the highest concentrations 

within yeast cells, which was the case in all samples here (Figure 5.21). Differences were 

apparent in the levels of intermediate compounds, which were lower in control yeast 

compared to fed-batch and dried yeast. The effect of drying on sterol concentration, 

assessed by comparing fed-batch and dried yeast, appeared to have little effect, although 
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fecosterol was significantly reduced. It should be noted that the sterol present in the 

second highest concentration could not be identified (Unknown 1). 
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Figure S.21. The levels of sterols identified in whole cell populations of three samples of the yeast LALI. Control cells were grown following a laboratory propagation 

regime using YPD medium. Fed-batch yeast cells were grown by Lallemand Inc. (Montreal, canada) following the propagation regime utilised in the production of dried 

yeast. A proportion of the fed-batch yeast was subsequently dried using a fluidised-bed drier producing dried yeast samples. Cells were sent to Organo-Balance 

(Germany) for the determination of their respective sterol contents. Sterols were extracted, prior to separation and identification using GC-MS. Unknowns were 

thought to be sterols, but could not be identified using GC-MS. 
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5.2.7 The affect of membrane perturbing agents on cell function 

When yeast cells are exposed to ethanol the plasma membrane becomes more fluid {Jones 

and Greenfield, 1987}. Other chemicals, such as sodium dodecyl sulphate {50S}, are also 

known to have similar fluidising effects. The ability of cells to maintain redox potential 

when subjected to the membrane fluidising effects of ethanol and sodium dodecyl sulphate 

(SOS) was assessed using the Omnilog Phenotypic Microarray system (Biolog Inc., U.S.A.) 

{Bochner et 01., 2001; Homann et 01., 2005; Borglin et 01., 2009; Zhang and Biswas, 2009}. In 

this system, cells which are able to function correctly create a flow of electrons from the 

carbon source provided (glucose) to NAOH, which ultimately reduces a tetrazolium based 

dye producing a measurable colour change (Bochner et 01., 2001). The final total colour 

response {measured using Biolog Units} of the dye reflects the redox potential. For each 

analysis, array plates were inoculated with a known concentration of viable cells, previously 

determined by methylene blue staining, to mitigate the effect of cell death on the assay. 

As previously, mutants defective in ergosterol biosynthesis (Section 5.2.1) were used to 

gauge the effect of fluidising agents on cells with known membrane differences. It should 

be noted that some erg mutants have been shown to display a lag in growth, although this 

does not necessarily lead to growth rate differences during exponential phase {Palermo et 

01., 1997}. Whilst others have reported comparable growth between sterol mutants and 

wild type {Sharma, 2006}. 

Analysis of the redox potential of sterol mutants {Section 5.2.1} and their wild type strain 

was performed when cells were subjected to stress from ethanol and 50S respectively. 

In this study the wild type strain appeared to have a higher redox potential than the 

mutants, but this difference was not significant (significance determined using an analysis 

of variance at P<0.05). When grown in the presence of ethanol the redox potential of the 

wild type was higher than that of the mutants even when the lowest concentration of 
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ethanol (3 %) was applied (Figure 5.22). This suggests that the wild type cells retained 

viability in the ethanol environment while mutant strains could not. It is likely that the 

rigidity of the plasma membrane, influenced by ergosterol, enabled wild type cells to 

counteract the fluidising effect of ethanol. A similar effect was also observed when 0.04 % 

50S was applied (Figure 5.23). 

When the test strains (LALl, LAL2 and LAL4) were analysed LALl control yeast 

demonstrated a higher redox potential than dried yeast in the presence of ethanol, with 

the difference magnified with increasing ethanol concentrations (Figure 5.24). Both the 

control and dried cultures of LAL2 demonstrated similar responses to ethanol stress. LAL4 

dried yeast demonstrated a lower redox potential than control yeast, however, the 

difference was not as great as that demonstrated by LALl. In response to the fluid ising 

effects of 50S, control and rehydrated yeast demonstrated similar responses in LAL2 and 

LAL4 strains respectively (Figure 5.25). In contrast LALl control yeast again demonstrated a 

higher response than its dried equivalent (Figure 5.25). 

It is important to note that this analysis of stress response was conducted under aerobic 

conditions. Although it is recognised that brewing fermentations are conducted 

anaerobically, the preliminary stages are aerobic. Consequently, as the environment which 

AOY first encounters both during rehydration and at inoculation into wort is aerobic in 

nature, this particular environment was modelled here. 
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Figure 5.22. The redox potential of yeast cells when challenged with ethanol. The redox potential 

was assessed using the total colour response (Biolog units) generated by the reduction of a 

tetrazolium dye after three days incubation. The standard deviation of three replicates is 

indicated. 
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Figure 5.23. The redox potentia l of yeast cells when challenged with 50S. The redox potential was 

assessed using the total colour response (Biolog units) generated by the reduction of a tetrazolium 

dye after three days incubation. The standard deviation of three replicates is indicated. 
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S.2.8 The affect of drying and rehydration on yeast populations' proton efflux In 

response to a glucose substrate 

Glucose induced proton efflux (GIPE) was calculated using the pH change observed when 

yeast cells are suspended in water and also glucose solution. Once suspended in water, 

yeast populations normally cause a reduction in the pH of the surrounding medium due to 

proton efflux. This reduction can be measured with respect to time, producing a value 

termed the water acidification power or WAP. This type of proton efflux is thought to 

represent the utilisation of reserve carbohydrates contained within the cell (Opekarova and 

Sigler, 1982). When glucose is added, the proton efflux is increased and can be measured 

to indicate the glucose acidification power or GAP. The difference between these values 

(the GIPE value) provides an indication of H+-ATPase enzyme activity due to the uptake of 

glucose and also represents a determination of plasma membrane functionality. Its value, 

however, is dependent on both the leakiness of the membrane and activity of the enzyme 

H+-ATPase (Van Zandycke et 01., 2003a). 

Comparisons were made between the GIPE values exhibited by control and rehydrated 

dried yeast for the three strains LAL1, LAL2 and LAL4 (Figure 5.26). There was no significant 

difference between the control and dried yeast samples for the strains LAL1 and LAL2. 

However, when LAL4 ADY was assessed, GIPE appears to be impaired. Interestingly, 

analysis of the spontaneous proton efflux of LAL1 (WAP) indicated that dried yeast 

displayed a reduced proton efflux as indicated by the higher pH. This was not evident from 

the GIPE value as the subsequent glucose induced proton efflux was not significantly 

different. Comparisons of the WAP values for LAL2 showed that the dried and control yeast 

populations were comparable until the addition of water (10 min). At this point the dried 

yeast sample maintained a lower pH whereas the control yeast yielded a slight increase. 

The difference between the populations was mirrored when glucose was added for the 
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assessment of glucose acidification power (GAP). This resulted in two GIPE values which 

were not significantly different (assessed using Student's T-Test), despite the underlying 

differences of the values used in their calculations. LAL4 was the only strain to exhibit 

significantly different GIPE values between control and dried yeast populations. This 

difference arose due to a small change in WAP by the control yeast compared to a much 

greater WAP for the dried yeast population. The final pH value achieved by both yeast 

cultures upon the addition of glucose was comparable. 
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Figure 5.26. The Glucose induced proton efflux (GIPE) of control grown yeast and rehydrated dried 

yeast for the three strains LAll, lAl2 and LAl4. The standard deviations of triplicate experiments 

are indicated. 
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Figure 5.28. The change in pH, due to proton efflux, exhibited when LAL2 yeast cells are suspended 

in water. At 10 min water (WAP) or glucose solution (GAP) was added. The changes in the pH 

values were then used to calculate GIPE. The standard deviations of triplicate experiments are 

indicated. 
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Figure 5.29. The change in pH, due to proton efflux, exhibited when LAL4 yeast cells are suspended 

in water. At 10 min water (WAP) or glucose solution (GAP) was added. The changes in the pH 

values were then used to calculate GIPE. The standard deviations of triplicate experiments are 

indicated. 

5.3 DISCUSSION 

The plasma membrane is not only a key organelle in terms of cell survival; a fully 

functioning cell membrane is also integral to successful fermentation. When yeast cells are 

dried the plasma membrane is thought to undergo a phase transition from the Iiquid-

crystal structure (discussed in Section 5.1.1) to a gel like structure (van Steveninck and 

Ledeboer, 1974). Cell death during rehydration has been linked to the movement of water 

across a membrane in phase transition (Laroche and Gervais, 2003). Another alternative or 

contributory factor with regard to cell death is the time-dependent leakage of cellular 

components across a modified membrane in transition (Simonin et 01., 2007b). Morris et al. 

(1986) demonstrated that during osmotic stress cell death could occur due to the shrinkage 

of the cell occurring without complete plasmolysis (separation of the plasma membrane 

and cell wall), which led to membrane rupture. Although agreement on the mechanism of 

necrosis has not been reached, what is clear is the plasma membrane is significantly 
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perturbed during dehydration and rehydration. It is therefore pertinent to assess the 

membrane properties of cells which have been dehydrated and rehydrated to ensure that 

they are fit-for-purpose in subsequent fermentations. 

5.3.1 The fluidity of the plasma membrane 

The structure of membranes is commonly considered to be in a fluid state, in which 

phospholipids are relatively unhindered with respect to their sideways movement (Section 

5.1.1). Osmotic stress, similar to that encountered during ADY production, can cause 

membranes to undergo a phase transition from fluid to gel (Laroche et 01., 2001). Although 

fluidity changes may be permanent when osmotic or heat stress is significant enough to 

cause death (Learmonth and Gratton, 2002), when death does not occur, changes are often 

transient (Simonin et 01., 2007a). Therefore, although changes in fluidity are likely to occur 

during dehydration and rehydration, the impact to subsequent fermentation performance 

may be minimal if the changes are transient. 

The stresses encountered by yeast during dehydration and rehydration are significant 

enough to cause the death of a substantial proportion of the population, which it is 

suggested have a more rigid membrane (Section 5.2.5). This is supported by the 

observation that when cells are rehydrated at a reduced temperature (15°C) they exhibit a 

more rigid membrane than when cells are rehydrated at higher temperatures. 

When rehydrated yeast was compared to control yeast the variations in membrane rigidity 

appeared to be strain specific. The lager yeast LAL1 exhibited a greater rigidity in 

rehydrated cells (at 30°C) compared to control yeast, whilst the ale yeast LAL2 exhibited a 

greater fluidity than its respective control yeast. For each of these strains two populations 

were immediately apparent with respect to fluidity potentially representing viable and non

viable cells. Interestingly LAL4 did not exhibit two populations and the reasons for this are 

not known. 
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5.3.2 The potential sources of the fluidity variations 

The fluidity of a membrane is influenced by many environmental and cellular factors. In the 

case of dried yeast the important environmental factors to consider are temperature 

variations (Simonin et 01., 2008) and the loss of water (Laroche et 01., 2001). Environmental 

factors may elicit adaptive cellular changes which alter the membrane fluidity (Arne borg et 

01., 1995). Cellular factors which determine fluidity include trace elements, for example 

iron, copper or zinc (Garcia et 01., 2005), trehalose (Rudolph et 01., 1986), UFA (Rodriguez

Vargas et 01., 2007) and sterols (Abe and Hiraki, 2009). 

Ergosterol, the predominant sterol in yeast, is found in high concentrations in the plasma 

membrane (Zinser et 01., 1993) and is thought to provide an important structural function. 

Work with model membranes demonstrated that ergosterol enhances rigidity in liquid 

membranes, but enhances fluidity in gel membranes (Arora et 01., 2004). The former 

observation appears to occur when the ergosterol biosynthetic pathway is disrupted 

(Section 5.2.3; Abe and Hiraki 2009). When relative concentrations of sterols were 

determined in control and dried yeast samples of LALl, no significant difference in the 

levels of ergosterol could be determined, suggesting that this component was not 

responsible for the membrane fluidity differences observed with this strain. Differences in 

the concentrations of intermediate sterols in the ergosterol biosynthetic pathway were 

apparent, however these metabolites are normally located in other organelles (Zinser et 

01., 1993) and it is therefore unlikely that they are responsible for the fluidity variation 

detected. 

Sterols associate with other lipids to form structures termed lipid rafts (Bagnat et 01., 2000). 

These rafts have differing fluidity to other regions of the membrane and serve key 

functions, such as protein localisation (Bagnat et 01.,2000). The association of these rafts in 

dried yeast has not been investigated here, but could potentially playa role in the fluidity 
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variations observed. Furthermore the composition of non-sterol lipids associated with rafts 

was not determined and it is proposed that they could also influence membrane fluidity. 

5.3.3 The Impact of drying on the ability of yeast cells to resist stress 

Whilst the cause of differences in fluidity are open to debate, a more immediate practical 

question is whether or not these differences have an impact on the function of the 

membrane and the cell. A key function of the plasma membrane is to act as a barrier to 

stress, therefore the ability of ADY to resist stresses targeted at the plasma membrane was 

assessed. 

It was hypothesised that the fluidising effect of ethanol and 50S would have more of a 

detrimental effect on fluid membranes compared to membranes exhibiting more rigid 

properties. However, LALl dried yeast, which exhibited a more rigid membrane phenotype 

than the control yeast, appeared to be more sensitive to these fluidising stresses (Section 

5.2.7). Ethanol stress causes fluidisation to the membrane, which on its own is not normally 

lethal, but leads to membrane disruption (Piper, 1995). This disruption manifests itself in 

cell volume decreases and roughening of the cell surface (Canetta et 01., 2006). Dried yeast 

is known to exhibit a rough, almost wrinkled appearance (Finn and Stewart, 2002). This 

suggests that the membrane, located directly inside the cell wall, may be perturbed prior to 

any additional stress. As might be expected, cell volume also decreases when a cell is 

exposed to dehydration stresses (Simonin et 01., 2007b). The combined effect of these 

stresses may have a synergistic effect on the cell's volume and structure which is 

detrimental its fitness. Therefore, although the premise of this work was to target stresses 

to differences in fluidity, the fluidity of a structure may in fact be of secondary importance 

to resisting ethanol stress. 

LAL2 and LAL4 did not demonstrate a reduction in redox potential to the extent of LAL1. 

This was not unexpected, as it has already been shown that LAL1, a lager yeast, suffers 
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greater losses in viability when dried suggesting a lower inherent stress resistance (Chapter 

3). 

5.3.4 The impact of drying on the proton efflux of the membrane bound H+-ATPase 

The acidification power test is a measure of a yeast population's capacity to acidify its 

surrounding medium (Opekarova and Sigler, 1982; Kara et 01., 1988; Siddique and Smart, 

2000). The acidification of the surrounding medium by yeast cells during the uptake of a 

substrate, such as glucose, is in part due to the action of the integral membrane enzyme 

H+-ATPase. The plasma membrane H+-ATPase found in Saccharomyces cerevisiae (Serrano, 

1978) functions as a hydrogen ion pump (Serrano, 1984) which produces a proton gradient 

across the membrane responsible for the active transport of nutrients via H+ symport 

(Serrano et 01., 1986). The addition of glucose causes the activation of H+-ATPase 

(Campetelli et 01., 2005) and proton efflux (Serrano, 1983). The resultant change in pH of 

the surrounding medium can be easily measured. The protocol used in this study followed 

the pH of a yeast suspension with the addition of water (WAP) and then the addition of 

glucose (GAP), the difference between these values producing the glucose induced proton 

efflux (GIPE). However, the proton efflux may be contributed to by cellular leakage through 

a permeable membrane and, in cases of severe membrane damage, leakage of organic 

acids. It is the WAP or spontaneous acidification power which has provided the greatest 

differences between dried and control cells. 

The spontaneous proton efflux demonstrated by LAL4 when dried and rehydrated was 

greater than that demonstrated by the control yeast. This initial large decrease in pH 

without substrate addition has been noted previously (Sigler et 01., 2006), although no 

reason was suggested. Dried yeast is thought to contain high concentrations of trehalose 

(Powell and Fischborn, In press), with accumulation encouraged by mild heat stress 

(Attfield, 1987; Hottiger et 01., 1987) at the end of propagation immediately prior to the 
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drying process. It functions to protect the cell from some of the stresses associated with 

dehydration and rehydration (Gadd et 01.,1987; Sharma, 1997; Hounsa et 01., 1998; Cerrutti 

et 01., 2000). However, trehalose could be detrimental to cell upon resumption of normal 

metabolic activity (Sebollela et 01., 2004). As a consequence, after rehydration large 

amounts of trehalose are likely to be converted to glucose. It is proposed that high WAP 

values are indicative of trehalose catabolism. This hypothesis would suggest that high WAP 

values exhibited by LAL4 (dried sample) indirectly reflects trehalose catabolism. In contrast 

LAL2 which demonstrated comparable WAP profiles for dried and control yeast would 

exhibit negligible trehalose catabolism. 

LAll however, showed a reduced WAP when the cells were dried and rehydrated 

compared to the control but this strain is also known to exhibit the lowest viability post 

rehydration. In this scenario, the reduced WAP may reflect a reduced activity of W-ATPase 

enzyme, or perhaps an increase in ion leakage through the membrane. One potential cause 

of this could be heat shock protein 30 (Hsp30). Hsp30 is a stress induced inhibitor of H+· 

ATPase (Piper et 01., 1997). Glucose limitation, heat shock and severe osmostress can all 

induce Hsp30 (Piper et 01., 1997) and are all present in ADY production (Chapter 1). The 

inhibition of H+-ATPase activity is thought to act as an energy conservation mechanism 

(Piper et 01., 1997), as the action of the enzyme results in high ATP use and it is possible 

that it has been induced in LALl. 

5.4 CONCLUSIONS 

Fluctuations in the fluidity of the plasma membrane have previously been highlighted as 

potential sources of cell death. However, little comment has been made regarding the 

fluidity of the membrane subsequent to rehydration and prior to utilisation in 

fermentation. In this chapter the fluidity of yeast after rehydration was compared to 

control yeast intended to represent propagated yeast. Whilst strain specific differences 
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have been highlighted, the cause of altered fluidity and, indeed, consequences remain 

unclear. Differences in the functionality of rehydrated yeast cells with regard to stress 

resistance are apparent, but these have not been linked to the property of membrane 

fluidity. There are also distinct differences between the strains with LAL1, the only lager 

strain investigated, appearing less fit-for-purpose than the two ale strains LAL2 and LAL4 

following dehydration and rehydration. This suggests that the impact of dehydration and 

rehydration on membrane integrity may be strain dependent. 
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CHAPTER 6: FERMENTATIONS USING DRIED YEAST 

6.1 INTRODUCTION 

Several studies have considered the suitability of replacing propagated yeast with dried 

yeast as the method of yeast supply for fermentation (Gosselin and Fels, 1998; Finn and 

Stewart, 2002; van den Berg and Van landschoot, 2003; Cyr et al., 2007; Powell and 

Fischborn, 2010). Gosselin and Fels (1998) conducted fermentations at 1 hi and 300 hi with 

a dried lager yeast. Comparisons with control yeast of the same strain (propagated or 

cropped) were made for attenuation rates, but no other fermentation properties were 

analyzed. Surprisingly the authors concluded that the beer produced was similar to that 

normally produced at the brewery, for which a different yeast strain was also utilised. Finn 

and Stewart (2002) conducted laboratory scale investigations in conical flasks (500 ml) and 

1.5 I static fermentations using EBC tall tubes. These fermentations used two strains of 

lager yeast and two strains of ale yeast. Crucially they provided comparisons to propagated 

yeast of the same stra.in. Van den Berg and Van landschoot (2003) compared the use of 

four dried ale yeasts in pilot plant brews varying between 0.6 and 1.2 hi to previous 

fermentations using these yeasts in a non-dry form. Cyr et al (2007) conducted 3 hi scale 

fermentations using two dried lager yeast and propagated samples of the same strain. 

Powell and Fischborn (2010) completed fermentations using dried and propagated lager 

yeast in 8.5 I squat shaped cylindroconical vessels. 

The literature concerning the impact of dried yeast on fermentation performance is not 

comprehensive and indeed in some cases contradictory. For example, fermentation rate, 

which is a measure of how quickly a yeast population assimilates sugars present in wort has 

been examined. Van den Berg and Van landschoot (2003) demonstrated that fermentation 

rates and uptake of sugars by dried yeast cultures were comparable to freshly propagated 

yeast, although they did encounter some hung fermentations in which the uptake of 
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maltose and maltotriose were impaired. Others have reported a greater lag in fermentation 

initiation exhibited by dried, in comparison to control, yeast (Powell and Fischborn, 2010), 

which may also result in a slower overall rate of fermentation and specific growth rate 

observed by others (Cyr et 01., 2007). A delay of approximately 24 hrs in the uptake of 

leucine, valine and isoleucine during dried yeast fermentations was also observed (Cyr et 

01., 2007) indicating an extended lag phase. Furthermore, a higher concentration of diacetyl 

was observed during and at the end of dried yeast fermentation when compared to control 

fermentations. In contrast, 2,3-pentanedione was present at reduced levels during dried 

yeast fermentations (Cyr et 01., 2007) when compared to the control. High levels of diacetyl 

are a concern for the brewer since this component is considered an undesirable flavour in 

most beer styles, but especially lager, due to its more subtle flavour profile. 

Concentrations of the flavour active compounds dimethyl sulfide (OMS) and higher alcohols 

have been shown to be comparable for propagated and dried yeast fermentations (Powell 

and Fischborn, 2010), but ester formation, most notably ethyl acetate and isoamyl acetate 

increased during dried yeast fermentations when compared to the control. Differences in 

the growth of the yeast have also been noted (Powell and Fischborn, 2010). Lager dried 

yeast has been associated with altered flocculation, increased beer haze and reduced foam 

(Finn and Stewart, 2002). In the latter study it was suggested that dead yeast in suspension 

contributed to the occurrence of haze and release of proteinase A which in turn adversely 

affected foam stability. Interestingly these modifications in fermentation performance 

appeared to occur for lager and not ale dried yeast fermentations, although this may have 

been a function of the impaired viability of the former when compared to the latter (Finn 

and Stewart, 2002). In a separate study no significant difference in the ability of dried and 

propagated yeast to form aggregates could be determined (Powell and Fischborn, 2010). 

Contradictions in the literature with regard to the impact of the use of dried yeast on 

fermentation performance necessitated a further study in this area. To address this, the 
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lager strain, LAL1, was assessed for fermentation performance attributes using small scale 

fermentations. Laboratory propagated yeast termed "control" and dried yeast were 

directly compared with respect to attenuation rate, yeast cell viability and cell growth. 

Throughout the fermentations the assimilation of amino acids and the uptake of fructose, 

sucrose, maltose, maltotriose and glucose were monitored. The production and 

subsequent uptake of the key flavour volatile diacetyl was also determined. 

6.2 RESULTS 

Fermentations were completed to compare the performance of YPD propagated yeast, fed

batch propagated yeast and dried yeast which were handled as described in the materials 

and methods (Section 1.8). YPD propagated yeast was used with the aim of modelling the 

yeast propagation which commonly occurs in breweries, whereby yeast is grown in 

increasing batch sizes. Although this would normally be completed in wort, YPD was used 

as it is suggested that growth on this medium yields a more reproducible yeast culture. 

Fermentations using this yeast were compared to fermentations using rehydrated dried 

yeast, handled as if it were being deployed in a brewery. Dried yeast and typical brewing 

yeast slurries are propagated very differently with the former derived from a combination 

of batch and fed batch propagation, while the latter is produced using a single batch 

propagation system. In addition to differences in propagation process, the media used to 

grow both types of yeast also differs. To eliminate pre-growth as a variable, an additional 

control, comprising fed batch yeast grown in a manner designed to mimic that used during 

dried yeast propagation, was also employed (Sections 2.8.1-2.8.3). The assignment of an 

entire fermentation vessel for each sample point (destructive sampling) enabled samples to 

be removed from an undisturbed system. Samples were removed at 0, 4, 20, 25, 34, SO, 70, 

94, 120 and 144 hours for analysis. The population dynamics were followed using viable cell 

counts and budding indices (Section 6.2.1), whilst the metabolic activity of the yeast was 

followed using the change in specific gravity (Section 6.2.2), sugar utilisation (Section 6.2.3), 
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amino acid utilisation (Section 6.2.4), and diacetyl formation and assimilation (Section 

6.2.6). 

6.2.1 Variations in the size and viability of the yeast cell populations during 

fermentation 

Two techniques were used to follow yeast population dynamics during fermentation: 

viability (Section 2.4) and budding index (Section 2.4). These are markers of yeast 

physiological state which can be used when studying yeast during fermentations (Gibson et 

01., 2010; Powell and Fischborn, 2010; Miller et 01., In Press). Initially fermentations were 

pitched at 1.S x 107 yeast cells/ml, with the exception of one of the dried yeast 

fermentations, for which a pitching regime based on the directions of the dried yeast 

manufacturer was employed, using a measure of cell mass, which resulted in a pitching rate 

of 1.8 x 107 cells/ml. 

Budding (Figure 6.3) was initiated by the first sampling point (4 hrs) in both the control and 

fed-batch yeast fermentations, but not in the two dried yeast fermentations. Budding in 

the dried yeast population was minimal at time zero and the first sampling point (4 hrs), 

before rapidly increasing to 88 % at 20 hrs. In contrast, control yeast exhibited a budding 

index of 30 % at pitching and this increased at 4 hrs reaching a peak value of 58 % by 25 

hrs. After this, a steady decline to less than 10 % by 50 hrs was observed. By 20 hrs 

incubation all four populations of yeast exhibited maximal or near maximal budding 

indices. 

Budding normally results in the increase of viable cells in the population. This was the case 

for the control and fed-batch yeast populations, but not the two dried yeast populations. 

This may be partially explained by the observation that many of the yeast cells which were 

budding, or the buds themselves, were stained blue by methylene blue indicating they 

were non-viable. Indeed the viability of the dried yeast populations remained between 50-
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60 % throughout the fermentations (Figure 6.2). As a consequence a significantly lower cell 

density was observed in dried yeast fermentations (pitched using cell mass 3.4 x 107 

cells/ml) compared to that of control yeast (1.0 x 108 cells/ml), with fed-batch yeast 

significantly higher again (1.3 x 108 cells/ml) (significance determined using an analysis of 

variance, P:s;0.05 and Tukey-Kramer's pair wise comparisons) (Figure 6.1). Although the 

viable cell concentrations in the four fermentations demonstrated little or no increase after 

50 hr, dried yeast fermentations continued to demonstrate a high budding index. 
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Figure 6.1. The mean number of viable cells present in fermentations at 0, 4, 20, 25, 34, SO, 70, 94, 

120 and 144 hr assessed using methylene blue staining. The standard deviation of triplicate 

samples is displayed. 
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Figure G.2.The percentage of cells deemed viable using methylene blue staining. Samples were 

removed at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr. The mean and standard deviation of 

triplicate samples are displayed. 
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Figure G.3. The percentage of cells exhibiting a bud, termed the budding index. Non-viable cells 

(identified using methylene blue staining) were excluded from the analysis. Samples were 

removed at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr. The mean and standard deviation of 

triplicate samples are displayed. 
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6.2.2 Time taken to reach final attenuation 

Attenuation can be defined as the decrease in specific gravity of wort during fermentation 

(Boulton and Quain, 2001). The time taken to reach final attenuation is one of the key 

attributes that determines the length of fermentation. The rate of attenuation is typically 

determined using gravity profiles, which permit fermentation consistency to be assessed 

(Boulton and Quain, 2001). Specific gravity profiles were determined for control, fed batch 

propagated and dried yeast fermentations (Figure 6.4). The time taken to reach maximum 

rates of change in specific gravity is termed the lag phase and this appeared to be 

conserved independent of the nature of yeast applied. However, the rate of attenuation for 

dried yeast was slower than that of the control yeast (Figure 6.4). 

The change in specific gravity would be expected to produce a sigmoidal curve when 

plotted against time exhibiting a central linear section. Linear attenuation profiles were 

apparent in all fermentations between 20 and 34 hrs, therefore three sampling points (20, 

25, 34 hrs) were used to determine the maximal rate of change in specific gravity. Both 

dried yeast fermentations exhibited rates of change in specific gravity of -9 x 10.4 per hr, 

whilst the control and fed-batch yeast fermentations showed higher rates of -15 x 10.4 and 

-17 xlO·4
, respectively, per hr. These rate differences resulted in dried yeast fermentations 

exhibiting a significantly higher gravity when compared to the control and fed-batch yeast 

fermentations at time points 34 hrs and 50 hrs (significance assessed using an analysis of 

variance, PSO.OS) (Figure 6.4). 

Although demonstrating similar initial lag phases, and almost double the rate of decrease in 

specific gravity in the linear phase of attenuation, the control yeast and fed-batch yeast 

reached attenuation at the same time point as the dried yeast. This was due to a shorter 

linear phase and a more gradual rate change towards the end of the sigmoid curve shown 

by the control and fed-batch yeast. 
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Importantly, there was no significant difference (significance assessed using an analysis of 

variance, P!>0.05) between the final specific gravities. The final sample for dried (pitched 

using cell density) was taken at 120 hrs, as sample point 144 hrs was not included for this 

fermentation, but attenuation was deemed to have been reached prior to this. 
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Figure 6.4. The change in specific gravity exhibited by fermentations. Samples were taken at 0, 4, 

20, 25, 34, SO, 70, 94, 120 and 144 hr and yeast removed through centrifugation. The standard 

deviation of triplicate samples is displayed. 

6.2.3 The assimilation of individual sugars during fermentation 

Sugars are the most abundant dissolved matter in wort, and as such, playa significant 

determining role in specific gravity. Wort contains the fermentable sugars sucrose, 

fructose, glucose, maltose and maltotriose, as well as non-fermentable sugars such as 

maltotetraose and maltopentose (Ingledew, 1975). The concentration of individual sugars 

in samples taken during fermentations was determined, to indicate the rate at which they 

were being assimilated. 
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Sucrose was depleted from all fermentations by the first sample point (4 hr) (Data not 

shown). Contro l and fed-batch yeast fermentations showed similarities with respect to 

their sugar utilization profiles. The two dried yeast fermentations were slower to 

completely assimilate the suga rs present in the medium. Comparison of ind ividual sugar 

uptake profiles suggests that a lag in sugar uti lisation was exhibited by dried yeast, an 

observation which does not appear to correspond to specific gravity decline. Dried yeast 

was slower to complete the uptake of glucose (Figure 6.5), fructose (Figure 6.6), maltose 

(Figure 6.7) and maltotriose (Figure 6.8) during fermentation when compared to control 

and fed batch yeast. 
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Figure 6.S. Concentration of glucose in fermentat ion samples, assessed using HPLC analysis. 

Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed through 

centrifugat ion. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.6. Concentration of fructose in fermentation samples, assessed using HPlC analysis. 

Samples were taken at 0, 4, 20, 25, 34, SO, 70, 94, 120 and 144 hr and yeast removed through 

centrifugation. The mean and standard deviation of triplicate samples are disp layed. 
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Figure 6.7. Concentration of maltose in fermentation samples, assessed using HPLC analysis. 

Samples were taken at 0, 4, 20, 25, 34, SO, 70, 94, 120 and 144 hr and yeast removed through 

centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.S.Concentration of maltotriose in fermentation samples, assessed using HPLC ana lysis. 

Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed through 

centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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6.2.4 Amino acid uptake 

The availability and utilisation of nitrogenous compounds (Casey et 01., 1984) is a key factor 

in determining fermentation progression. The nitrogenous content of wort comprises 

proteins, polypeptides, amino acids and nucleotides in varying amounts (Ingledew, 1975). A 

wide array of amino acids are present in wort, proline and asparagine in the highest 

concentrations, while threonine, serine, glutamate, glycine, alanine, valine methionine, 

isoleucine, leucine, tyrosine, phenylalanine, aminobutyric acid, lysine, histidine and 

arginine are commonly present in lower concentrations (Fumi et 01., 2009; Gibson et 01., 

2009). Jones and Pierce (1964) noted that the uptake of amino acids from wort was 

conducted in a strict order (Table 6.1), though this assumption has been recently 

challenged (Gibson et 01., 2009). According to Jones and Pierce (1964) group A amino acids 

are assimilated immediately, group B more slowly, whilst group C are only assimilated once 

groups A and B are depleted. Group 0, consisting only of the imino acid proline, is normally 

considered to remain un-utilised. 

In this study the concentrations of the majority of physiologically important amino acids 

were determined in various samples of fermentation broth, with the caveat that arginine 

could not be detected using the protocol adopted. 

Class A amino acids were mostly removed from the medium in the control fermentation 

prior to the 34 hr sampling point (Figures 7.9-7.15), with several amino acids (threonine, 

serine, lysine and asparagine) removed by 25 hr. Whilst the fed-batch yeast fermentation 

demonstrated a similar profile to the control, the two dried yeast fermentations showed a 

lag in the completion of uptake in excess of 24 hr. Glutamine, a member of the class A 

amino acids (those assimilated first) is poorly assimilated in the control yeast fermentation 

(Figure 6.12), with 92 % remaining (Table 6.1). The two dried yeast fermentations in fact 

show an increase in the amount of glutamine, finishing with 178 % and 211 % of the 
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original wort content. These high percentages are partly explained by the relatively low 

amounts initially present in the wort. 

Class B amino acids (Figures 7.16-7.20), thought to be assimilated more slowly than Class A 

amino acids, were depleted from the medium during control fermentations by 34 hr. One 

class B amino acid, methionine, was assimilated by 25 hr, a profile more akin to class A 

amino acids. Again, fed-batch profiles were comparable to the control fermentations, 

whereas dried yeast demonstrated lags of around 36 hr. 

Class C amino acids (Figures 7.21-7.25), thought to assimilated after class A and B amino 

acids are nearing depletion, were assimilated during the control fermentation by 34 hr. 

Surprisingly, the onset of assimilation was evident at 20 hr, when class A and B amino acids 

were still present. Similar lags, of approximately 34 hr, were again apparent in dried yeast 

fermentations, however the pattern of utilisation was similar to that observed for control 

yeast. Glycine (Figure 6.22), like glutamine, is also initially present in wort in relatively low 

concentrations, and remains at a relatively high concentration during control and dried 

yeast fermentations. In contrast, this was not observed during fed-batch propagated yeast 

fermentations. 

Proline, the only member of group 0, is present in the highest concentration in wort, 

although its assimilation is usually limited or absent in fermentation. However, in the fed

batch and control fermentations described here it appears there was some limited 

assimilation of the amino acid (Figure 6.26). 

In addition to the lag demonstrated in the assimilation of amino acids, there was also a high 

percentage of several amino acids (valine, alanine, phenylalanine, tyrosine and tryptophan) 

which remained in the two fermentations completed using dried yeast. This was in contrast 

to the fermentations performed using control and fed-batch yeast in which they were 
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almost completely assimilated. This more complete assimilation supports the observations 

of Gibson et 01. (2009). A previous study (Cyr et 01., 2007) investigating the use of dried 

yeast identified a similar lag in the uptake of the amino acids valine and isoleucine as those 

described in the current study. However, the high residual levels of some amino acids have 

not previously been reported and may be of concern to brewers. 
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Figure 6.9. The concentration of asparagine in fermentation samples assessed using GeMS 

analysis. Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed 

through centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.10. The concentration of aspartic acid in fermentation samples assessed using GCMS 

analysis. Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed 

through centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.11. The concentration of glutamic acid in fermentation samples assessed using GCMS 

analysis. Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed 

through centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.12. The concentration of glutamine in fermentation samples assessed using GCMS 

analysis. Samples were taken at 0, 4, 20, 25, 34, SO, 70, 94, 120 and 144 hr and yeast removed 

through centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.13. The concentration of lysine in fermentation samples assessed using GeMS analysis. 

Samples were taken at 0, 4, 20, 25, 34, SO, 70, 94, 120 and 144 hr and yeast removed through 

centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.14. The concentration of serine in fermentation samples assessed using GCMS analysis. 

Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed through 

centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.15. The concentration of threonine in fermentation samples assessed using GCMS 

analysis. Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed 

through centrifugation. The mean and standard deviation of triplicate samples are displayed. 

163 



Class B 

1.8 ] 

1.6 

1.4 
-' -- 1.2 
'0 
E 

1 E 

• 0.8 c 
:g 

0.6 .. x 
0.4 

0.2 

0 

0 20 40 60 80 100 120 140 160 

J 
Tim. (hours) 

~Control -.-Fed-batch 

- Dried (pitched using cell density) ~Dried (pitched using cell mass) 

Figure 6.16. The concentration of histidine in fermentation samples assessed using GCMS analysis. 

Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed through 

centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.17. The concentration of isoleucine in fermentation samples assessed using GCMS 

analysis. Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed 

through centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.18. The concentration of leucine in fermentation samples assessed using GCMS analysis. 

Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed through 

centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.19. The concentration of methionine in fermentation samples assessed using GeMS 

analysis. Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed 

through centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.20. The concentration of valine in fermentation samples assessed using GCMS analysis. 

Samples were taken at 0, 4, 20, 25, 34, SO, 70, 94, 120 and 144 hr and yeast removed through 

centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.21. The concentration of alanine in fermentation samples assessed using GCMS analysis. 

Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed through 

centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.22. The concentration of glycine in fermentation samples assessed using GCMS analysis. 

Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed through 

centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.23. The concentration of phenylalanine in fermentation samples assessed using GeMS 

analysis. Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed 

through centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.24. The concentration of tyrosine in fermentation samples assessed using GCMS analysis. 

Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed through 

centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.25. The concentration of tryptophan in fermentation samples assessed using GCMS 

analysis. Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed 

through centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Figure 6.26. The concentration of proline in fermentation samples assessed using GeMS analysis. 

Samples were taken at 0, 4, 20, 25, 34, 50, 70, 94, 120 and 144 hr and yeast removed through 

centrifugation. The mean and standard deviation of triplicate samples are displayed. 
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Table 6.1. The percentage of the original concentration of amino acids remaining at the end of 

fermentation, assessed using GeMS analysis. The mean percentage and standard deviation of 

triplicate fermentations are shown. 

Original wort content remaining at the end of fermentation (%) 

Amino Acid Dried (cell Dried (cell 
Control Fed-batch 

density) mass) 

Asparagine 1±O% 1±1 % 3±1% 3±O% 

Aspartic acid 3±1 % 1±0% 6±1 % 7±0% 

Glutamic acid 3±1 % S±l % 11±3% l2±2 % 

« 
VI Glutamine 92±30 % 6S±32 % 27S±2S % 3l1±62 % 
VI 
ro 
0 

Lysine O±O % O±O% ltO% ltO% 

Serine 1±1% O±O% 2±1% 3±1% 

Threonine 1±O% 1±0% 1±0% 20% 

Histidine 0±1 % O±O% G±2 % 4 1 % 

Isoleucine 2±0% 2±0 % S±1 % 6 0 % 

cc 
VI Leucine 1±0% 1±0% 4±1 % 5 0 % 
VI 
ro 
0 

Methionine 2±1 % Hi % 5±1% 7±1% 

Valine 2±0% 2±1 % 2HS% 20 3% 

Alanine 6±1 % 4±1% 3S±3% 37 3% 

Glycine 23±2 % Hi % 6H3% 67t4% 

u 
VI Phenyla lanine 1±0% 1±0% l6t4% 13t2 % 
VI 
ro 
0 

Tyrosine OtO% 1±0% 34t4% 29t6% 

Tryptophan 1±0% 1±0% 37±7% 30±6% 

0 
Proline VI SS±7% 63±11 % 102t13 % 109tS % 

VI 
ro 
0 
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6.2.5 Intracellular amino acid content 

The initial assimilation of amino acids is a selective process, which it is likely is influenced by 

the existing concentrations of amino acids within the yeast cell. These will vary depending 

on the previous conditions of the yeast (Martinez-Force and Benitez, 1995). Potential 

differences were probed by assessing the relative proportions of amino acids detected in 

whole cell extractions, from YPD, fed-batch and dried yeast cells. The data from these 

analyses are shown in Figure 6.27. Laboratory (YPD media) and fed-batch (molasses based 

media) grown yeast were compared to investigate the affect of growth medium and regime 

on the amino acid cell content. Glutamic acid is present in the highest concentration in 

laboratory (YPD) grown cells, accounting for almost half (47 %) of all amino acids, 

compared to 29 % in fed-batch (molasses based media). In contrast the next most 

abundant amino acid, alanine, is present at only a third of the amount found in fed-batch 

grown cells. The affect of drying was assessed by comparisons between fed-batch grown 

cells and rehydrated dried yeast cells. Significant differences (significance assessed using an 

analysis of variance P:50.05) were found between the concentrations of glycine, lysine, 

valine (proportions lower in dried cells), aspartic acid and methionine in control and dried 

yeast fermentations with the latter exhibiting higher levels. There were no significant 

differences in the other amino acid concentrations between control and dried yeast 

fermentations. 
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Figure 6.27. The proportion of individual amino acids in the total amino acid content extracted from whole cell populations. Cells were boiled to extract amino acids, 

which were subsequently detected and identified using GCMS analysis. Displayed, left to right, based on the relative abundance within YPD grown cells. The standard 

deviation of triplicate samples is displayed. 
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6.2.6 The potential concentration of the flavour active compound diacetyl during 

fermentation 

Whilst nitrogen is integral for yeast growth (Casey et 01., 1984; Manginot et 01., 1998), the 

effects of its metabolism by yeast are key to the final beer's organoleptic properties and 

are of greater concern for most brewers (Inoue and Kashihara, 1995). The role of valine and 

isoleucine in the formation of flavour active compounds vicinal diketones (VDK), such as 

diacetyl and 2,3-pentanedione, has long been recognised (Nakatani et 01., 1984a). Diacetyl 

is a VDK which has particular significance in brewing due to its low flavour threshold In 

beer, 0.15 ppm (Meilgaard, 1975). Diacetyl, with its characteristic butterscotch flavour, is 

considered an off-flavour in lager type beers. 

Conversion of the precursor of diacetyl, a-acetolactate, is spontaneous and adequate 

analysis of this component therefore requires the application of heat to ensure all 

precursor is converted to diacetyl before quantification (Haukeli and Lie, 1978; Boulton and 

Quain, 2001). Samples were recovered from the fermentations and heated to ensure all 

precursor was converted, before the final diacetyllevels were quantified using the methods 

outlined in section 2.10.8. 

After six days fermentation the level of diacetyl observed was significantly higher 

(significance assessed using an analysis of variance PSO.05) where dried yeast had been 

used and, crucially, exceeded the 0.15 ppm flavour threshold. The diacetyl concentration at 

144 hrs for the fermentations using fed-batch yeast (0.129 ppm) and control yeast (0.17 

ppm) were significantly lower (significance assessed using an analysis of variance PSO.OS) 

than the dried yeast (0.33). There were no samples taken at 144 hrs for dried yeast pitched 

using cell density. During dried yeast fermentations diacetyl appeared to accumulate within 

a few hours of pitching, rapidly increasing until 34 hrs at which point the concentrations 

peaked. In the control fermentation the onset of diacetyl formation was later than that 

observed for dried yeast (Figure 6.28). The diacetyl peaks for dried yeast fermentations 
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were higher (9.66 ppm pitched using cell mass and 6.67 ppm pitched using cell density) 

when compared to fermentations completed using fed-batch produced yeast (4.27 ppm) 

and control yeast (2.40ppm) (Figure 6.28) . 
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Figure 6.28. The presence of diacetyl in fermentation samples taken at 0, 4, 20, 25, 34, SO, 70, 94, 

120 and 144 hr. Volatiles were isolated using headspace sampling and subsequently separated and 

identified using GeMS. The mean and standard deviation of triplicate samples are displayed. 
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6.3 DISCUSSION 

Brewers aspire to consistent fermentation profiles even though batch to batch variation in 

wort composition and differences in pitching yeast physiological state can occur. Typically 

only a limited number of parameters are routinely monitored during fermentation and 

these include: downshift in gravity and temperature. In this study we have recorded some 

key indicators which are followed during industrial scale fermentation, but have also 

analysed the metabolic and physiological responses of the yeast to address the hypothesis 

asserted by other authors that dried yeast fermentations differ from control fermentations 

(Finn and Stewart, 2002; Cyr et 01., 2007). 

6.3.1 The affect of drying on yeast cells' subsequent performance during fermentation 

Fermentation profiles derived from control, fed batch propagated and dried yeast were 

compared in small scale to assess the occurrence of major differences in performance. The 

aspects of dried yeast fermentation studied demonstrated marked differences to the 

control fermentation. 

Dried yeast exhibited an impaired growth profile when compared to that observed for 

control and fed batch yeast. Furthermore dried yeast exhibited reduced viability during 

fermentation. An increase in pitching rate resulted in a small increase in the final crop 

yield, but even with this adjustment final cell numbers were lower than those observed at 

the end of control fermentations. It should be noted that although a reduced cell number 

would suggest reduced cell growth, cell growth can still occur without cell division. 

Reduced cell growth may create problems should the cropped yeast be required for serial 

repitching, a subject which will be discussed in more detail in Chapter 7. The reasons for 

these differences in cell viability and yield are unknown, but it seems likely that they are 

related to other differences noted during dried yeast fermentations. 

175 



Dried yeast cells exhibited a delay in sugar and amino acid uptake either causing, or 

occurring as a consequence of, poor growth. A lag in nutrient uptake can delay the onset of 

replication by effectively stalling cell division (Casey et 01., 1984; Manginot et 01., 1998), 

however dried yeast exhibiting a reduced viability would also be expected to exhibit a 

reduced sugar uptake rate until cell divisions had occurred and biomass levels were 

restored. The observed delay may also reflect a requirement for dried yeast to rehydrate 

and possibly repair damage caused by the dehydration / rehydration process before 

initiating efficient fermentation. 

In addition to the lag in the uptake of amino acids, it was noted that some amino acids 

were not fully assimilated. One possible reason for this may lie in the cellular reserves of 

amino acids, which can affect the ability of cells to assimilate amino acids (Woodward and 

Cirillo, 1977). Differences in cell growth and division profiles have been demonstrated to 

lead to altered intracellular amino acid profiles (Martinez-Force and Benitez, 1995). 

Interestingly the control and fed batch yeast utilised in this study were pre-grown using 

differing methods but failed to exhibit differences in amino acid uptake. This suggests that 

in this instance pre-growth conditions do not affect amino acid uptake. 

The majority of the amino acids that were not fully utilised by the dried yeast are classified 

as class C amino acids and, as such, would not be expected to be utilised until later In the 

fermentation (Jones and Pierce, 1964). Indeed it has been suggested by these authors that 

Class C amino acid uptake is repressed by Class A amino acids (although the data shown In 

Section 6.2.4 may challenge this assumption) and a delay in the utilisation of Class A amino 

acids could delay Class C amino acid uptake. The relatively low viability exhibited by the 

dried yeast population during fermentation could also be a cause of the apparent stall In 

the uptake of these amino acids. 
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A difference noted which may potentially impact the final product is the apparent early 

onset of diacetyl formation and high peak and residual levels of this flavour active 

compound during dried yeast fermentation. levels of the flavour active compound were 

above the flavour threshold (0.15 ppm) after six days of fermentation. When the number of 

dried yeast cells was increased, a corresponding increase in the maximum concentration of 

diacetyl was also observed. This is an important observation, since it suggests that 

compensation of low viability by over pitching dried yeast may not benefit the brewer. The 

addition of a maturation period, perhaps at an elevated temperature, may result in the 

reduction of diacetyl to acceptable levels. Indeed, it is not uncommon when using 

propagated yeast for fermentation times to be extended because of such issues. However, 

for brewers, this is undesirable as it would result in lengthier fermentation times and 

higher costs, mitigating some of the potential benefits proposed for ADY. 

Diacetyl is formed during fermentation as a consequence of normal yeast metabolism and 

is a by-product of the valine anabolic pathway (Figure 6.29). pyruvate, originating from 

glycolysis, is converted to a-acetolactate, then two further intermediates before finally 

producing valine. However, if a-acetolactate is leaked from the cell it undergoes an 

oxidative decarboxylation forming diacetyl. The majority of diacetyl does not persist in 

beer, instead it is taken up by yeast and converted to acetoin, and subsequently 2,3-

butanediol. This vicinal diketone does persist in beer, but has a much higher taste threshold 

and therefore is unlikely to impact on the final flavour. Whilst most steps are under 

enzymatic control, the decarboxylation of a-acetolactate is not, and is thought to be the 

rate limiting step in most fermentations (Boulton and Quain, 2001). The action of this 

pathway during fermentation typically results in a peak of diacetyl formation, which is then 

reduced to levels below the flavour threshold towards the end of fermentation. 
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One rationale to explain the higher levels of diacetyl in beer produced using dried yeast is 

that ADY populations may exhibit elevated production of a-acetolactate, which 

subsequently forms diacetyl. The enzyme responsible for the conversion of pyruvate to a

acetolactate is acetohydroxy acid synthase. As this is an anabolic pathway for valine, 

acetohydroxy synthase is inhibited by the presence of this amino acid, and is also inhibited 

by the presence of alanine, threonine and glutamate (Barton and Slaughter, 1992). In the 

current study the same batch of wort was used for all fermentations thereby eliminating 

wort amino acid composition as a cause. When yeast is pitched into wort it contains an 

intracellular pool of amino acids. To assess whether this differed between the pitching 

yeast investigated in this study, the relative abundance of the internal amino acids was 

determined. Although differences were apparent between dried and control yeast, possibly 

reflecting their differing growth parameters, fed batch and dried yeast were similar. 

Despite this, fed batch yeast demonstrated a diacetyl profile similar to control yeast; it may 

therefore be asserted that the intracellular pool of amino acids is not the cause of the 

differences in diacetyl formation observed. 

Early production of diacetyl during fermentations using dried yeast has been noted 

previously (Cyr et al., 2007). It was suggested that this was due to an impaired ability to 

assimilate amino acids, leading to synthesis of valine and therefore diacetyl (Cyr et al., 

2007). Delayed uptake of amino acids was noted in the fermentations described in the 

current study, including valine. Diacetyl production began almost immediately peaking at 

approximately 40 hrs, closely matching the time at which valine assimilation began. With 

the assimilation of valine causing the suppression of diacetyl formation (Nakatani et al., 

1984b), this may explain the profiles obtained. 

Yeast growth and VDK production have been strongly linked (Nakatani et al., 1984a) 

primarily because both are strongly influenced by amino acid uptake and synthesis. It has 
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been suggested that increased yeast growth may lead to production of more precursors for 

diacetyl formation, due to increased amino acid synthesis (Lekkas et 01., 2007). There was, 

however, less yeast growth in dried yeast fermentations (Section 6.2.1), which produced 

higher levels of diacetyl in the medium. This suggests that whilst amino acid synthesis may 

be involved in the abnormal diacetyl profile, it is by no means the only factor to consider. 

Another potential cause of the aberrant diacetyl profile observed is that dried yeast cells 

have an increased leakage of a-acetolactate or a reduced rate of assimilation for diacetyl. 

This would result in the accumulation of diacetyl in the fermentation medium, giving the 

appearance of more diacetyl in total because of the requirement to accelerate diacetyl 

formation during the assay. Whilst the non-enzymatic decarboxylation is often considered 

the rate limiting step in vicinal diketone pathways (Boulton and Quain, 2001), it is clear that 

the fermentations using dried yeast described here are not what could be considered 

normal. Boulton et 01. (2001) have described an assay for yeast vitality based on the 

assimilation of diacetyl, which they suggest is reliant on a competent membrane. As 

discussed in Chapter 5, the competence of the dried yeast membrane is questionable. 

Leakage of cellular components has also been noted in dried yeast (Rapoport et 01., 1997; 

Attfield et 01., 2000). Indeed, during the dried yeast fermentations high residual 

concentrations of amino acids were demonstrated to be present. These higher 

concentrations are suggested to be due to cellular leakage from the high percentage of 

non-viable cells present in dried yeast cultures. In addition, viable cells generating a

acetolactate, but exhibiting a leaky membrane may also increase the extracellular pool of 

the compound. 

Given that a perception exists of dried yeast being prone to brewery contaminants, it 

would be remiss not to mention their possible contribution to diacetyl. The metabolism of 

contaminate lactic acid bacteria, particularly Pediococcus species can produce diacetyl 

179 



during fermentation (McCaig and Weaver, 1983). Pediococcus contamination can lead to 

elevated levels of diacetyl at the end of fermentation, due to production by the bacteria 

and also the reduced uptake by yeast associated with the contamination (McCaig and 

Weaver, 1983). Often, in cases of contamination, fermentations do not fully attenuate 

(McCaig and Weaver, 1983). As this was not the case and there was no other evidence for 

contaminant microorganisms, it is suggest that the elevated levels of diacetyl were not due 

to Pediococcus contamination. 

L 
a-acetolactate ________ ~ a-acetolactate 

L Diacetyl 
2,3-Dihydroxyl-isovalerate L L 

a-Keto-isovalerate 
Acteoin Diacetyl C02 + 2H 

L 
Valine 

2,3-Butanediol 

Figure 6.29. Valine anabolic pathway, which results in the production of dlacetyl during 

fermentation. Adapted from Boulton and Quain (2001) and Barton and Slaughter (1992). The 

contents of the grey oval represent reactions occurring within yeast cells. 

6.4 CONCLUSIONS 

In this chapter significant differences between dried and control yeast fermentations have 

been demonstrated. Fermentations pitched using dried yeast take longer to reach final 

attenuation and may require a longer diacetyl stand than conventional propagated yeast. 

These problems may be associated with the yeast population dynamics which do appear to 

be different. The fact that these differences are not present in fed batch yeast would 

indicate that the differences are due to the effects of dehydration and rehydration, rather 

than variations in growth parameters. 
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No sensory analysis was completed on the products of these fermentations as the beer 

produced was not further processed, however, it is unlikely that a beer with an altered 

amino acid content and diacetyl levels would be accepted as comparable to regular 

product. The reduced growth and low viability is problematic when considering the use of 

dried yeast for the repitching of a subsequent fermentation. The question of whether these 

issues persist in subsequent fermentations is a pertinent one and will be addressed in 

Chapter 7. 
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CHAPTER 7: THE FERMENTATION CAPACITY OF DRIED YEAST WHEN IT IS 

SERIALLY REPITCH ED 

7.1 INTRODUCTION 

Towards the end of fermentation yeast cells aggregate in a process termed flocculation. 

Once floes (cell aggregates) are formed they separate from the beer, ale yeast rising to the 

surface and lager yeast sinking to the bottom providing the vessel type permits. This 

separation is important to remove the yeast from the final beer, but it also allows the yeast 

to be collected. This collected, or cropped, yeast can then be used to pitch further 

fermentations in a practice termed serial repitching. Freshly propagated yeast utilised for 

fermentation performs differently to yeast that has been used for a previous fermentation 

(Miller, 2010). In some instances yeast only begins to perform towards its optimal level 

after a few serial repitchings have been completed. However, in many breweries repitching 

does not occur indefinitely and the yeast is periodically replaced with freshly propagated 

yeast. Although historically continuous repitching was problematic primarily due to 

contamination, it can also impact on the fermentation performance of yeast. It is accepted 

that there is often a general decline in yeast quality as the number of fermentations 

(termed generation number) increases, particularly when lager strains are used. This 

decline may begin to manifest itself in a loss in viability (Smart and Whisker, 1996; Jenkins 

et 01., 2003), altered flocculation (Smart and Whisker, 1996; Sato et 01., 2001), genetic 

damage (Sato et 01., 2001) and membrane damage (Jenkins et 01., 2003). This damage can 

take many generations to appear and repitched yeast is expected to perform adequately 

for several fermentations, although the precise number is often strain specific. 

As discussed in Section 6.1.1 there have been several reports on the direct use of dried 

yeast in fermentation (Gosselin and Fels, 1998; Fels, 1999; Finn and Stewart, 2002; Cyr et 

01., 2007), but there are only a limited number of reports concerning the suitability of dried 
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yeast for repitching into multiple fermentations (Reckelbus et 01., 2000; Powell and 

Fischborn, 2010). Powell and Fischborn (2010) compared dried yeast fermentations to 

freshly propagated yeast over five successive fermentations. When first utilised, dried yeast 

was found to exhibit a greater lag and altered rate of attenuation when compared to 

control yeast. The final beer from these fermentations showed similar alcohol contents, 

specific gravities and pH. Despite the observation that dried yeast exhibited lower viability 

when compared to that of the control yeast at pitching (64 % and 98 %, respectively), by 

the end of fermentation the viability of the two yeast batches were comparable (97 % and 

96 %). After repitching, both fermentations demonstrated a shorter lag phase than 

observed in the corresponding initial fermentations and although dried yeast may have 

demonstrated a slightly longer lag phase than control yeast of the same generation 

number, after several fermentations the two populations demonstrated similar profiles. 

Powell and Fischborn (2010) also examined the concentration of several flavour 

compounds in the final beer produced from the first and fifth generation control and dried 

yeast fermentations. Taste tests suggested no impact on final product flavour. Furthermore 

serially repitching dried yeast did not lead to the accumulation of genetiC variants. Analysis 

of the flocculation potential of the yeast, a commonly altered phenotype during serial 

repitching (Sato et 01., 2001), demonstrated that in this instance dried yeast exhibited 

comparable flocculation to that observed for the control yeast throughout the 

fermentations. 

Reckelbus et 01. (2000) described serial repitching trials of dried yeast completed at two 

breweries operating with 60 hL and 400 hL capacities. Differences were noted in the 

change in specific gravity over time; dried yeast demonstrating a lag with regard to this 

parameter. It was suggested that this may be due to pitching rate differences, as the dried 

product was pitched according to its weight and not the number of cells. This difference 

was considered to be diminished when yeast was repitched. Beers produced using dried 
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yeast in the first instance and after repitching were considered to be acceptable with 

regard to their final taste profiles as assessed by tasters, although specific flavour 

compound concentrations were not assessed (Reckelbus et 01., 2000). 

Whilst these studies (Reckelbus et 01., 2000; Powell and Fischborn, 2010) suggest that dried 

yeast is suitable for serial repitching, the initial fermentations did not display (or were not 

assessed for) some of the aberrant characteristics observed in other studies, including the 

potential to flocculate, haze formation (Finn and Stewart, 2002), lags in amino acid uptake 

and altered vicinal diketone formation (Cyr et 01., 2007). In Chapter 6 of the current study, 

fermentations using LAl1 dried yeast were shown to display lags in attenuation, sugar and 

amino acid assimilation as well as altered yeast growth. In this Chapter, the question of 

whether these particular traits continue when the yeast is utilised for a subsequent 

fermentation is addressed. 

Fermentations were conducted in bioreactors (5 l capacity) to assess similarities and 

differences between laboratory propagated yeast termed "control" and dried yeast. Yeast 

from this first fermentation was then collected and stored at 4°C before being repitched 

into a second fermentation. Fermentations were compared with respect to time to 

attenuation, yeast cell viability and budding indices. At time points throughout the 

fermentations the assimilation of amino acids, and the uptake of fructose, sucrose, 

maltose, maltotriose and glucose were monitored. The production and subsequent uptake 

of the key flavour volatile diacetyl was also followed. 

7.2 RESULTS 

Fermentations were conducted in mechanically agitated bioreactors (S l). The primary 

reason for this increase in scale from the miniature fermentations (100 ml wort volume) 

described in Chapter 6 was to ensure a sufficient crop yield and recovery for subsequent 

repitching. Control yeast was propagated using YPD medium in an aerated batch system 
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(Section 2.9.1), whilst dried yeast was rehydrated using tap water (Section 2.9.2) (Figure 

7.1). After the completion of one fermentation yeast was recovered and stored under beer 

at 4°C for two days prior to repitching (Figure 7.2). All fermentations were pitched at 1.5 x 

107 viable cells per ml. 

The use of the bioreactors permitted greater control of oxygenation but the exact oxygen 

content of the wort at pitching was not measured. The bioreactors enabled pure oxygen to 

be passed through the wort to achieve a dissolved oxygen content of approximately 18 

ppm. 

D ) ) 

10 ml YPD media was 200 ml YPD media was 
inoculated and inoculated and 

incubated for 48 hr at incubated for 48 hr at 
25·C and 120 rpm 25·C and 120 rpm 

= 
21 YPD media was 

inoculated and incubated 
for 72 hr at 25·C 

= 
40 g Dried yeast was 
rehydrated In 400 ml 
25·C tap water for a 

total of 60 min 

'VI ast pitch d Into 
f rm ntat lon 

Figure 7.1. Schematic of the yeast preparation prior to pitching into fermentations. Propagated 

yeast was grown aerobically for a total of 7 days. Dried yeast was rehydrated for 60 min 

immediately prior to pitching. 
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Figure 7.2. Schematic of the fermentation cycle employed. 5 I oxygenated wort were pitched at 1.5 
7 

x 10 cells per ml and fermented for 6 days. Yeast were recovered and stored for two days prior to 

repitching. 

7.2.1 Variations in the size, viability and progression through the cell cycle of the yeast 

population during fermentation 

In Chapter 6 significant differences were demonstrated in the crop cell yield and viability of 

dried yeast populations during fermentations when compared to control yeast 

fermentations. Budding indices and the number of viable cells were monitored during 

repitched fermentations to determine the robustness of the previous observation. 

The initial (Gl) control fermentation (CG1) demonstrated a rapid proliferation of cells 

which appeared to cease at approximately 60 hr, producing a final viable cell concentration 

of 1.5 x 108 viable cells/ml (Figure 7.3). The second (G2) control fermentation (CG2) 

followed a similar initial increase, yielding 1.4 x 108 viable cells per ml which was not 

significantly different to the G1 control fermentation (significance assessed using an 

analysis of variance P~0.05). These profiles are in stark contrast to those observed during 

fermentations completed with dried yeast. Initial dried yeast fermentation (Dried G1) 

demonstrated impaired growth, yielding a viable cell concentration of 3.3 x 107 cells/ml. 
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The growth was slower but also persisted for longer during fermentation ceasing at 80 hr 

(Figure 7.3). There was a reduction in the number of viable cells (40 hr), which appeared to 

be caused by cell death with the percent viability decreasing rapidly from 70 % to 39 % 

(Figure 7.4). When fermentations are repitched there is normally an excess of yeast 

product from the preceding fermentation. Indeed, this was the case for control yeast 

fermentations, but not for the dried G1 fermentation necessitating a high rate of cropped 

yeast recovery to ensure sufficient biomass was available for the next fermentation. The 

dried G2 fermentation yielded significantly more biomass (9.4 x 107 cells per ml) than its Gl 

counterpart (significance assessed using an analysis of variance PSO.OS) indicating that 

phenotype recovery occurred following serial repitching. However, crop yield was still 

lower than that achieved during control fermentations. 

The high residual budding index observed at the end of dried Gl fermentation (Figure 7.5) 

may indicate that cell growth persisted throughout fermentation. However, the lack of 

increase in cell number would suggest this is not the case leading to the hypothesis that 

cytokinesis was impaired for dried yeast populations. To investigate this hypothesis, DNA 

content of cell populations during fermentation was assessed (Section 2.10.1) and 

compared to the budding index of the cell populations. The synthesis of DNA is commonly 

used as an indicator to the stage of the cell cycle (Burke et 01., 2000; Raithatha and Stuart, 

2009), and has been used to assess propagation of brewing yeast (Novak et 01., 2007) as 

well as fermentation (Muller et 01., 1997; Miller et 01., In Press). Actively dividing cells 

exhibit a doubling in their DNA content prior to cell budding. 

Histograms were generated based on the intensity of fluorescence from each cell when 

stained with the DNA binding compound propidium iodide (Table 7.1). Initially only one 

peak was evident (Representing 1 x DNA or Gl), as cells progressed through the 

fermentations a second peak emerged (representing 2 x DNA or G2). Using the peak reflect 
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method (Givan, 1992) the number of cells containing twice the normal compliment of DNA 

were estimated and this value was plotted against time (Figure 7.6). This provided an 

indication of the proportion of cells in G2 and thus the progression of mitosis. The 

individual histogram plots (Table 7.1) indicate that the initial Control fermentation (CGl) 

displayed a significant number of cells which had duplicated their DNA by 4 hr. The peak in 

DNA synthesis mirrored the peak in budding, indicating that cell division had ceased by 

approximately 60 hr. When dried yeast was analysed the histograms were heavily 

influenced by non-viable yeast which could not be identified. The peak of the percentage of 

cells replicating was always less than 40 % (Figure 7.6) and, as budding indices peaked 

around 90 % (Figure 7.5), this would suggest that many of the non-viable cells contained 

the normal compliment of DNA. There was also an indication that there were two major 

periods of DNA synthesis, at 24 and 80 hr, which was not apparent from the budding index 

data alone. 

In all fermentations a portion of the population of cells appeared not to complete 

cytokinesis exhibiting twice the normal compliment of DNA. However, Dried Gl 

fermentations exhibited a greater proportion of cells with this phenotype than control Gl 

fermentations, 20 % and 8 % respectively. 

188 



200,000,000 

180,000,000 

E 
160,000,000 

~ 140,000,000 
Q. .. 

120,000,000 • .!I 
E 

100,000,000 :l 
C .. 80,000,000 u 

• :il 60,000,000 
" ;; 

40,000,000 

20,000,000 

0 f---....---.,-----r-----,-

0 20 40 60 80 100 120 140 160 

Time (hours) 

--Control Gl -r-Control G2 - Dried Gl -+- Dried G2 

Figure 7.3. The number of viable cells present in fermentations, assessed using methylene blue 

staining. The standard deviation of triplicate samples is displayed. Samples were taken every 8 hr 

(every four hr at the beginning of fermentation). 
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Figure 7.4. The percentage of viable cells present in fermentations, assessed using methylene blue 

staining. The standard deviation of triplicate samples is displayed. Samples were taken every 8 hr 

(every four at the beginning of fermentation). 
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Figure 7.5. Percentage of cells exhibiting a bud present in fermentations. The standard deviat ion 

of triplicate samples is displayed. Samples were taken every 8 hr (every four at the beginning of 

fermentation). Cells were deemed to be budding if there was evidence of a bud or ce ll still 

attached to the mother cell. 
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Figure 7.6 The percentage of the cell population deemed to contain two copies of DNA. The 

standard deviation of triplicate samples is displayed. Samples were taken at 0, 4, 8, 16, 24, 32, 40, 

48, 56, 64, 72, 96, 120 and 144 hr. DNA content of each cell was estimated using propidium iodide 

staining and flow cytometry analysis. The percentage of cells with two times the amount of DNA 

was estimated using the peak reflect method. 
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Table 7.1. Example of histograms (one included from a triplicate of samples) showing the light (675/30 nm) intensity when fixed yeast cells were stained with 

propidium iodide and illuminated with light (488 nm) generated by an argon laser. Single events, representing one yeast cell, were recorded using a flow cytometer. 

Events with low scatter were deemed cell debris and excluded from the analysis. 

Yeast o hours 4 hours 8 hours 16 hours 24 hours 

--, 

Control G1 

! - --J -!-'-~--=--.- -!- =- -=- .,-

~ 

Control G2 

- --~ - . --;---:---:l 

Dried G1 

Dried G2 
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Table 7.1 (continued) Example of histograms (one included from a triplicate of samples) showing the light (675/30 nm) intensity when fixed yeast cells were stained 

with propidium iodide and illuminated with light (488 nm) generated by an argon laser. Single events, representing one yeast cell, were recorded using a flow 

cytometer. Events with low scatter were deemed cell debris and excluded from the analysis. 

Yeast I 32 hours 40 hours 48 hours 56 hours 64 hours 

Control G1 

-:-- -=---=--- . 

Control G2 

--- ~ ~ ="'! :-

Dried G1 

... --. - .;: .~.--~-~ 

Dried G2 

---- -----
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Table 7.1 (continued) Example of histograms (one included from a triplicate of samples) showing the light (675/30 nm) intensity when fixed yeast cells were stained 

with propidium iodide and illuminated with light (488 nm) generated by an argon laser. Single events, representing one yeast cell, were recorded using a flow 

cytometer. Events with low scatter were deemed cell debris and excluded from the analysis. 
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7.2.2 Time taken to reach final attenuation and the production of ethanol 

Attenuation can be defined as the decrease in specific gravity of wort during fermentation 

(Boulton and Quain, 2001). It is intimately related to the concentration of sugars and the 

production of ethanol. The time taken to reach the final attenuation and ethanol production 

are two important determining factors that contribute to the length of fermentation and as 

such are commonly monitored by brewers. 

As early as 8 hours, the specific gravity of the dried (G1) fermentation was significantly higher 

than the other fermentations (significance determined using an analysis of variance P:SO.OS) 

(Figure 7.7). Repitched yeast (Dried G2 and Control G2) reached final attenuation by 56 hr 

and were therefore faster than their corresponding G1 fermentations. The propagated 

control (Control G1) yeast reached final attenuation by 64 hr and the rehydrated dried yeast 

(Dried G1) reached final attenuation by 88 hr. The final specific gravity (approximately 1.008) 

reached during the fermentations (taken at 144 hr) showed no significant differences 

(significance determined using an analysis of variance P:SO.OS). 

Analysis of ethanol concentrations in samples also highlighted differences with respect to the 

rate of ethanol production. Dried Gl fermentation exhibited a slower rate when compared to 

that observed for Dried G2. However, with control yeast ethanol production rates were not 

generation dependent. Whilst the rate of ethanol production may be of concern with respect 

to the residence time in fermenter, of greater concern for the brewer are the final 

concentrations of ethanol. The initial dried yeast fermentation (Dried Gl) finished 

fermentation with 6 % ethanol, but when repitched the yeast produced a significantly higher 

ethanol concentration of 6.6 % (significance determined using an analysis of variance 

P:SO.OS). Neither of these concentrations were significantly different to either of the control 

fermentations (6.3 % and 6.2 %). 
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Figure 7.7. Change in specific gravity during fermentation. Standard deviation of triplicate samples 

shown. Samples were taken every 8 hr (every four at the beginning of fermentation) and yeast 

removed through centrifugation. 
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Figure 7.8. Change in ethanol concentration during fermentation. Standard deviation of triplicate 

samples shown. Samples were taken every 8 hr (every four at the beginning of fermentation) and 

yeast removed through centrifugation. 
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7.2.3 The assimilation of individual sugars during fermentation 

Wort contains the fermentable sugars sucrose, fructose, glucose, maltose and 

maltotriose, as well as non-fermentable sugars such as maltotetraose and 

maltopentose (Ingledew, 1975). Here the concentration of the fermentable sugars at 

specific sampling points was determined to indicate the rate at which they were 

being assimilated. 

During the four fermentations the sugars sucrose (Data not shown as the sugar was 

hydrolysed prior to the first sampling point at 4 hr), glucose (Figure 7.9), fructose 

(Figure 7.10), maltose (Figure 7.11) and maltotriose (Figure 7.12) were all fully 

assimilated, although the sampling point at which the residual concentration of each 

sugar in wort was reduced to zero varied. Dried G2 yeast was the most rapid at fully 

utilising all sugars, and was markedly faster than dried G1 yeast. The control yeast 

fermentations were slower than dried G2 yeast with respect to the time sugar 

concentrations reached zero, although they showed similarities to each other, 

particularly the profiles of the more abundant sugars maltose (Figure 7.11) and 

maltotriose (Figure 7.12). These observations suggest that although dried yeast is 

initially impaired with respect to the assimilation of sugars during its first use, in 

subsequent fermentations the yeast will perform comparably to control yeast. 
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Figure 7.9. The presence of glucose in fermentation samples (assessed using HPLC analysis). 

Standard error of triplicate samples shown. Samples were taken every 8 hr (every four at 

the beginning of fermentation) and yeast removed through centrifugation. As glucose was 

absent in all fermentations after 40 hr, only early data points are shown. 
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Figure 7.10. The presence of fructose in fermentation samples (assessed using HPLC 

analysis). Standard error of triplicate samples shown. Samples were taken every 8 hr (every 

four at the beginning of fermentation) and yeast removed through centrifugation. As 

fructose was absent in all fermentations after 40 hr, only early data points are shown. 
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Figure 7.1l.The presence of maltose in fermentation samples (assessed using HPLC 

analysis). Standard error of triplicate samples shown. Samples were taken every 8 hr (every 

four at the beginning of fermentation) and yeast removed through centrifugation. As 

maltose was absent in all fermentations after 96 hr, only data points up-to this time are 

shown. 
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Figure 7.12. The presence of maltotriose in fermentation samples (assessed using HPLC 

analysis). Standard error of triplicate samples shown. Samples were taken every 8 hr (every 

four at the beginning of fermentation) and yeast removed through centrifugation. As 

maltotriose was absent in all fermentations after 80 hr, only data points up-to this time are 

shown. 
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7.2.4 Assimilation of nitrogen during fermentation 

Free amino nitrogen (FAN) provides a convenient measure of the available nitrogen, 

amino acids (excluding proline), ammonia, and to some extent, a-amino nitrogen in 

peptides and proteins, which the yeast may utilise during fermentation (ASBC, 

1992b). The amount of FAN (Section 2.10.4) in fermentation broth was measured 

throughout the fermentations (Figure 7.13). Whilst the presence of FAN is a useful 

measurement for the progression of fermentation, it encompasses complex 

networks of nitrogen utilisation which merit individual consideration. Indeed, amino 

acids and small peptides form the bulk of usable nitrogenous sources (O'Connor-Cox 

1989). In this study the concentrations of the majority of physiologically important 

amino acids (arginine could not be detected using the protocol chosen) were 

determined. 

Comparisons of the FAN assimilation (Figure 7.13) show that the fermentation 

conducted by rehydrated dried yeast (dried Gl) exhibited a significantly higher FAN 

content (compared to control G1, control G2 and dried G2) between hours 24 and 

64. The final FAN content of the four fermentations was not significantly different 

(significance determined using an analysis of variance P~0.05). The four 

fermentations resulted in the assimilation of the majority of amino acids (Table 7.2), 

although proline, an imino acid not normally utilised in fermentation, and glutamine 

were still present in high concentrations at the end of the fermentation. Perhaps of 

more importance are the differences observed between miniature scale 

fermentations (Chapter 6) and the 5 L fermentations described here. Final amino 

acid concentrations in miniature scale dried yeast fermentations were considerably 

higher for valine (21 %), alanine (35 %), phenylalanine (16 %), tyrosine (34 %) and 

tryptophan (37 %) compared to the final levels in 5 L fermentations using the same 

dried yeast «8 %). The uptake kinetics of each amino acid demonstrate that the 
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initial pitching of dried yeast (Dried Gl) was consistently slower than for the other 

three fermentations (Dried G2, Control Gl and Control G2) which show similar 

profiles to each other. 
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Figure 7.13. Free amino nitrogen assessed using the ninhydrin method. Samples were taken 

every 8 hr (every four at the beginning of fermentation) and yeast removed through 

centrifugation. The standard deviations of triplicate samples are shown. 
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Figure 7.14. Concentration of asparagine in samples taken throughout fermentations 

assessed using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32, 40, 48, 56, 72, 

80, 96, 120 and 144 hr. The standard deviation of triplicate samples is displayed. As the 

concentration of asparagines was minimal in later time points, only early time points are 

shown. 
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Figure 7.15. Concentration of aspartic acid in samples taken throughout fermentations, 

assessed using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32, 40, 48, 56, 72, 

80, 96, 120 and 144 hr. The standard deviation of triplicate samples is displayed. As the 

concentration of aspartic acid was minimal in later time points, only early time points are 

shown. 
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Figure 7.16. Concentration of glutamic acid in samples taken throughout fermentations, 

assessed using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32, 40, 48, 56, 72, 

80, 96, 120 and 144 hr. The standard deviation of triplicate samples is displayed. As the 

concentration of glutamic acid was minimal in later time points, on ly early time points are 

shown. 
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Figure 7.17. Concentration of glutamine in samples taken throughout fermentations, 

assessed using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32, 40, 48, 56, 72, 

80, 96, 120 and 144 hr. The standard deviation of triplicate samples is displayed. 
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Figure 7.18. Concentration of lysine in samples taken throughout fermentations, assessed 

using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32,40, 4S, 56, 72, SO, 96, 120 

and 144 hr. The standard deviation of triplicate samples is displayed. As the concentration 

of lysine was minimal in later time points, only early time points are shown. 
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Figure 7.19. Concentration of serine in samples taken throughout fermentations, assessed 

using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32, 40, 48, 56, 72, SO, 96, 120 

and 144 hr. The standard deviation of triplicate samples is displayed. As the concentration 

of serine was minimal in later time points, only early time points are shown. 
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Figure 7.20. Concentration of threonine in samples taken throughout fermentations, 

assessed using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32, 40, 48, 56, 72, 

80, 96, 120 and 144 hr. The standard deviation of triplicate samples is displayed. As the 

concentration of threonine was minimal in later time points, only early time points are 

shown. 
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Figure 7.21. Concentration of histidine in samples taken throughout fermentations, 

assessed using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32, 40, 48, 56, 72, 

80, 96, 120 and 144 hr. The standard deviation of triplicate samples is displayed. As the 

concentration of histidine was minimal in later time points, only early time points are 

shown. 
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Figure 7.22. Concentration of isoleucine in samples taken throughout fermentations, 

assessed using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32, 40, 48, 56, 72, 

80, 96, 120 and 144 hr. The standard deviation of triplicate samples is displayed. As the 

concentration of isoleucine was minimal in later time points, only early time points are 

shown. 
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Figure 7.23. Concentration of leucine in samples taken throughout fermentations, assessed 

using GCMS analysis. Samples were taken at 0, 4, 8, 16,20,24,32,40,48,56, 72, 80, 96, 120 

and 144 hr. The standard deviation of triplicate samples is displayed. As the concentration 

of leucine was minimal in later time points, only early time points are shown. 
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Figure 7.24. Concentration of methionine in samples taken throughout fermentations, 

assessed using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32, 40, 48, 56, 72, 

80, 96, 120 and 144 hr. The standard deviation of triplicate samples is displayed. As the 

concentration of methionine was minimal in later time points, only early time points are 

shown. 
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Figure 7.25. Concentration of valine in samples taken throughout fermentations, assessed 

using GeMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32,40, 48, 56, 72, 80, 96, 120 

and 144 hr. The standard deviation of triplicate samples is displayed. As the concentration 

of methionine was minimal in later time points, only early time points are shown. 
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Figure 7.26. Concentration of alanine in samples taken throughout fermentations, assessed 

using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32,40, 48, 56, 72, 80, 96, 120 

and 144 hr. The standard deviation of triplicate samples is displayed. 
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Figure 7.27. Concentration of glycine in samples taken throughout fermentations, assessed 

using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32, 40, 48, 56, 72, 80, 96, 120 

and 144 hr. The standard deviation oftriplicate samples is displayed. 
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Figure 7.28. Concentration of phenylalanine in samples taken throughout fermentations, 

assessed using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32, 40, 48, 56, 72, 

80,96, 120 and 144 hr. The standard deviation of triplicate samples is displayed. 
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Figure 7.29. Concentration of tyrosine in samples taken throughout fermentations, 

assessed using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32, 40, 48, 56, 72, 

80,96, 120 and 144 hr. The standard deviation of triplicate samples is displayed. 
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Figure 7.30. Concentration of tryptophan in samples taken throughout fermentations, 

assessed using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32, 40, 48, 56, 72, 

80,96, 120 and 144 hr. The standard deviation of triplicate samples is displayed. 
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Figure 7.31. Concentration of tyrosine in samples taken throughout fermentations, 

assessed using GCMS analysis. Samples were taken at 0, 4, 8, 16, 20, 24, 32, 40, 48, 56, 72, 

80,96, 120 and 144 hr. The standard deviation of triplicate samples is displayed. 
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Table 7.2. The percentage of the original concentration of amino acids remaining at the end 

of fermentation (144 hr), assessed using GeMS ana lysis. The mean percentage and standard 

deviation of triplicate fermentations are shown. 

Amino Acid Original fermentation content of amino acid remaining at 

the end of the fermentation (%) 

Control G1 Control G2 Dried G1 Dried G2 

Asparagine 1±O% 1±O% 2±1 % 2±1 % 

Aspartic acid 1±O% O±O % 3±1 % 2±1 % 

Glutamic acid 1±1 % 1±1 % S±2 % 4±1 % 

~ 
III Glutamine 82±S% 19±5 % 66±23 % 81±70 % 
III 
ra 

U 
Lysine 1±1% 1±O% 1±O% H O% 

Serine O±O% O±O% O±O% O±O% 

Threonine O±O% O±O% O±O% O±O% 

Histidine O±O% O±O% 1±O% 1±O% 

Isoleucine O±O% O±O% 2±O% 2±O% 

co 
III Leucine O±O% 
III 

O±O% 2±O% 1±O% 
ra 

U 
Methionine 1±O% O±O% 3±1% 2±O% 

Valine O±O% O±O% 2±1 % 2±1 % 

Alanine 1±O% HI % S±2% 8±3% 

Glycine 1±O% 1±O% 3±2% HI % 

u 
III Phenylalanine O±O% O±O% 1±1 % 1±1 % 
III 
ra 
iJ 

Tyrosine O±O% O±O% 2±2 % 1±1 % 

Tryptophan O±O% O±O% 2±2% HI % 

Proline 62±24 % 60±14 % 94±14 % 79±9 % 
£:) 
III 
III 
ra 

U 
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7.2.5 The "potential" concentration of the flavour active compounds diacetyl and 

2,3 pentanedione during fermentation 

The differences in nitrogen metabolism exhibited by dried yeast in this study 

(Chapter 6), and others (Cyr et 01., 2007) have been associated with abnormal 

profiles of flavour active compounds, such as vicinal diketones (VDKs). In addition to 

the determination of diacteyl concentration (Figure 7.32), the presence of 2,3-

pentanedione was also monitored (Figure 7.33). These vicinal diketones exhibit low 

flavour thresholds in beer, 0.15 ppm and 0.9 ppm respectively (Meilgaard, 1975). 

Dried G1 yeast displayed differing profiles of both diacetyl and 2,3-pentanedione 

compared to fermentations conducted either with control or repitched control or 

dried yeast. The fermentation profile obtained when using dried yeast (Dried G1) 

showed consistently high levels of diacetyl (Figure 7.32). It demonstrated a peak that 

was more than four times that of the control fermentation and, crucially, finished on 

the 6th day of fermentation with a diacetyl value of 0.49 ppm, which is greater than 

the compound's flavour threshold (0.15 ppm). This observation supports those 

presented in Chapter 6 and in a previous study conducted by other researchers (Cyr 

et 01., 2007). When repitched, dried yeast displayed a comparable diacetyl profile to 

that of control fermentations, indicating that poor performance was not maintained. 

Unlike diacetyl, levels of 2,3-pentanedione at the end of the 6 days of fermentation 

were below the flavour threshold in all dried and control fermentations (Table 7.3), 

with dried yeast exhibiting a significantly lower level than that obtained during 

fermentations with control yeast (significance assessed using an analysis of variance 

PSO.05). Interestingly the peak of this flavour compound occurred later in dried yeast 

G1 fermentation, an observation not previously reported and potentially linked to 

delayed completion of amino acid assimilation. 
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Figure 7.32. The presence of diacetyl in fermentation samples taken every 8 hr (every four 

at the beginning of fermentation). Volatiles were isolated using headspace sampling and 

subsequently separated and identified using GCMS. Standard deviation of triplicate 

samples shown. 
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Figure 7.33. The presence of 2,3 Pentanedione in fermentation samples taken every 8 hr 

(every four at the beginning of fermentation). Volatiles were isolated using headspace 

sampling and subsequently separated and identified using GCMS. Standard deviation of 

triplicate samples shown. 
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Table 7.3. The peak and final concentrations of the vicinal diketones diacetyl and 2,3 

pentanedione. The concentrations were measured by sampling the headspace of 

fermentation samples, and the volatiles were isolated and identified using GeMS analysis. 

Control Control Dried Gl Dried G2 

Gl G2 

Peak (hr) 48 48 32 48 

Peak (ppm) 2.43±0.2S 2.36±0.13 10.8±1.32 1.68±0.36 

Diacetyl Final 0.14±0.08 0.12±O.12 0.49±0.18 0.14±0.03 

concentration 

(ppm) 

Peak (hr) 48 48 88 48 

Peak (ppm) 1.3S±0.16 1.3S±0.13 1.62±0.36 1.2S±0.12 
2,3 

Final 0.36±0.02 0.S4±0.11 0.07±0.04 0.49±0.13 
Pentanedione 

concentration 

(ppm) 

7.3 DISCUSSION 

When dried yeast is initially utilised for fermentation, it is common for aspects of the 

fermentation to be different to those the brewer may normally expect (Finn and 

Stewart, 2002; Cyr et 01., 2007). Indeed, in Chapter 6 it was shown that 

fermentations using dried yeast were slower with respect to the assimilation of 

sugars and amino acids, and produced abnormal profiles of the flavour active 

compound diacetyl. In addition, the population dynamics were altered, with less 

growth and more cell death resulting in fewer viable cells at the end of fermentation . 

These abnormalities may have ramifications for the use of this yeast in further 

fermentations. The reuse of yeast populations in subsequent fermentations, a 

practice termed repitching, is common in breweries and therefore assessment of 

performance of dried yeast during serial repitching is important to the brewer. 
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7.3.1 Changes in cell yield and viability when dried yeast Is repitched 

When fermentations are repitched there is normally an excess of yeast product from 

the preceding fermentation. Indeed this was the case for control yeast which 

provided a final concentration of 1.5 x 108 viable cells/ml, whereas dried yeast 

produced only 3.3 x 107 cel/s/ml. This meant that a high rate of recovery of yeast 

cells was required to ensure sufficient yeast for the next fermentation. 

During industrial fermentations the majority of lager yeast would be expected to 

form aggregates which then accumulate in the bottom of the fermentation vessel, 

these are not all routinely recovered. The concentration of trub is often greatest at 

the bottom, thus this section is often avoided when selecting yeast for repitching 

(Boulton and Quain, 2001). Warm cropping may also be applied, in which case only a 

portion of yeast for repitching is recovered prior to the diacetyl stand which requires 

some yeast to remain in the fermenter (Powell et 01., 2004). With the limited cell 

growth demonstrated by dried yeast during its first use, and depending on the choice 

of cropping regime, sufficient recovery of yeast may not be possible in industrial 

brewery conditions potentially making dried yeast unsuitable for repitching. 

It is important to note that these results may not be typical for dried yeast. In a 

separate study, by Powell and Fischborn (2010), it was suggested that although dried 

yeast may initially begin with a low percentage viability, this can be recovered by the 

end of the first fermentation and remain high (>90 %) in subsequent fermentations, 

providing sufficient yeast for repitching (Powel/ and Fischborn, 2010). Whilst Finn 

and Stewart (2002) demonstrated similar profiles between dried and control yeast 

regarding the number of cells in suspension, indicating comparable growth. The 

difference in population dynamics demonstrated in this study, compared to previous 

ones, may be an indication that the yeast was damaged, possibly due to inadequate 

214 



storage conditions or oxygen ingress. Differences may also reflect variations in strain, 

batch or fermentation conditions. Indeed, the change in fermentation parameters 

from the miniature scale fermentation system (Chapter 6) to 5 l fermentations in 

bioreactors described here resulted in an increase in cell growth from 2.6 x 107 

cells/ml (miniature scale) to 3.3 x 107 cells/ml (5 L) despite the same batch of dried 

yeast being utilised (significance determined using an analysis of variance). This 

increased growth may result in the complete utilisation of amino acids seen in the 

first use of dried yeast in 5 l fermentations (Section 7.2.4), compared to the high 

residual concentrations observed in miniature scale fermentations (Chapter 6). 

The main purpose of using 5 L bioreactors was to enable collection of yeast after 

fermentation was complete to allow subsequent repitching. Scaling up the 

fermentations from 100 ml volume to 5 L resulted in the adjustment of several other 

parameters, perhaps most relevant to these current findings was oxygenation of the 

wort. Miniature scale fermentations were agitated in the presence of air for 24 hr, 

although the exact level of oxygenation was not measured. The bioreactors were 

oxygenated to approximately 18 ppm, to replicate typical brewery regimes. This 

potential disparity in oxygen levels in the two scales of fermentations deployed 

within the thesis may explain the differences in cell cycle and nitrogen utilisation 

observed. 

Oxygen is required for the synthesis of sterols and other unsaturated fatty acids 

(David and Kirsop, 1973), which are integral for membrane composition (discussed in 

chapter 5). After this synthesis early in fermentation, there is no new addition of 

sterols to the yeast population. When budding occurs, sterols are split between the 

new cells reducing the sterol concentration each time. As sterol concentration 

becomes limited, cell growth is reduce or stalled (Straver et 01., 1993). Differences in 
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sterol content of yeast prior to pitching have been discussed earlier, but differences 

in the preliminary stages of fermentation were not probed. The higher concentration 

of oxygen in the 5 L fermentations may have resulted in more sterol synthesis in the 

yeast and, consequently, higher cell growth which was seen in both control and dried 

yeast compared to miniature scale fermentations (Sections 6.2.1 and 7.2.1). Despite 

increased oxygen alleviating some of the growth issues observed with dried yeast, 

the issue of poorer growth persisted and the fundamental cause is unknown. 

As well as reduced growth, there was also a high level of cell death in the dried yeast 

fermentations. This cell death may be related to the increased residual budding 

index, potentially caused by the lack of cell separation during mitosis. Although the 

cause of this is unclear, some cell death was observed in budding cells. The cell cycle, 

the term given to the series of budding events of S. cerevisioe, is highly regulated 

with the expression of approximately 800 genes varied during its progression 

(Spellman et 01., 1998). START (Hartwell et 01., 1970; Hartwell, 1974) is the point 

during the cell cycle at which the yeast cell is committed to completing mitosis (cell 

division). START is only initiated once a cell has completed its previous cell-cycle 

(Hartwell, 1974), attained a certain size (Hartwell and Unger, 1977; Johnston et 01., 

1977) and if there are sufficient nutrients available (Hartwell, 1974). Once START has 

been initiated, division must be completed regardless of any change in 

environmental conditions which may occur (Wheales, 1987). If the conditions 

required for START are not met, then no division occurs; instead the cells enter a 

stationary phase, referred to as GO (Werner-Washburne et 01., 1996). Given the 

mUltiple checkpoints or safeguards which are in place within the cell cycle it would 

seem that the death caused is necrotic and therefore could be attributed to 

substantial and rapid cell damage. Although it is not clear what causes this cell 
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damage, it is clear that the dried yeast, or at least a proportion of the population, 

was more susceptible to fermentation stress than the control yeast. 

7.3.2 Persistence of undesired fermentation traits when dried yeast Is reused 

Fermentation performance is a function of generation number, although the extent 

of the impact is strain dependent (Jenkins et 01., 2003; Powell and Diacetis, 2007). 

The repitching of dried yeast which has already performed poorly in its first 

fermentation raises the question of whether the yeast has irreparable damage or 

could recover a more typical fermentation performance. 

Not all the traits which were exhibited during the initial use of dried yeast previously 

(Chapter 6) were repeated in the initial dried yeast fermentation described here. The 

incomplete uptake of some amino acids, which was observed during mini

fermentations (Section 6.2.4), was not observed in larger scale fermentations. It is 

likely that this is due to the increased growth discussed in Section (Section 7.3.1). 

Despite this observation, G1 dried yeast fermentations did exhibit a lag in 

attenuation, assimilation of FAN, amino acids, sugars and the production of ethanol. 

Furthermore, G1 dried yeast fermentations exhibited higher diacetyl levels, and an 

altered profile of 2,3-pentanedione formation. The reasons for these observations 

are unclear (discussed in Chapter 6), although serial repitching minimises these 

phenotypes with G2 dried yeast fermentations exhibited profiles which were 

comparable with control yeast G2 fermentations. This is despite the lower number of 

viable cells found at the end of the G2 dried yeast fermentation. 

Whilst brewing yeast is often referred to as if it is a homogenous cell population, it is 

in fact distinctly heterogeneous (Porro et 01., 1997; Minois et 01., 2009). These 

varying phenotypes within the population can determine the extent of a cell's 

resistance to certain stresses (Summer et 01., 2003). It is possible that the stresses 
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involved in drying, rehydration and fermentation acted as a selective force 

(substantial cell death was recorded). The subsequent yeast population may be 

better equipped to cope with fermentation. 

7.4 CONCLUSIONS 

It is suggested that, despite potentially problematic initial Gl fermentations, dried 

yeast recovers to yield comparable G2 fermentations. The key issue for brewers then 

will be that G1 fermentations may be impaired and crop yields from Gl may be 

insufficient for serial repitching. There are obvious benefits to the use of dried yeast 

and as the associated problems appear to be transient, and limited to G1 

fermentations, the potential of ADY is clear. One possible route to its deployment 

would be to use dried yeast as an inoculum to pitch propagation vessels in the 

brewery. Employing dried yeast as an inoculating culture for propagation vessels 

rather than for direct pitching has been investigated previously (Reckelbus et 01., 

2000) and would still provide a substantial saving in time over propagation. 

Alternatively, the beer produced during the first use of dried yeast could be blended 

with other batches to generate a more acceptable product, a common practice in 

some breweries. It is also important to note that this study has investigated a single 

batch of dried lager yeast and for the fermentation analyses only one strain has been 

assessed. The differences in the literature regarding dried yeast utilisation for 

fermentation may represent differences in protocol of rehydration and fermentation 

or indeed differences relating to strain. 
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CHAPTER 8: CONCLUSION AND FUTURE WORK 

In the brewing industry it is standard practice to propagate a pure yeast culture and 

inoculate (pitch) it into the fermentation vessel. Yeast is then recovered from 

fermentation, once it is complete, and reused in subsequent fermentations (known 

as serial repitching) until a decline in performance occurs or the required number of 

successive fermentations has been conducted. Propagation is currently required to 

initiate the entire process again. However propagation takes time, and therefore 

must be scheduled, and requires resources in the form of additional equipment, 

energy and water inputs. It has long been proposed that Active Dried Yeast (ADY) 

offers an alternative method of yeast supply with the possibility of pitching into 

fermentation after a short rehydration period, obviating the requirement for 

brewery onsite propagation. Adoption of this innovation by the brewing industry has 

been low because of perceived issues with the fermentation performance of ADY, 

hygiene and strain availability. Reported studies into the use of dried yeast for 

brewing (Finn and Stewart, 2002; Cyr et al., 2007; Powell and Fischborn, 2010) 

acknowledge that ADY fermentations differ from control fermentations. However, 

these observations centred in most cases on different attributes that comprise key 

fermentation performance indicators. The aim of this thesis was to address this 

issue by investigating a series of fermentation key performance indicators to 

establish why ADY performed in a different manner to control yeast. Key 

performance indicators including viability (Chapter 3), genomic stability (Chapter 4), 

membrane integrity (Chapter 5), yeast growth, attenuation, uptake of wort nutrients 

and aspects of flavour development (Chapters 6 and 7) were assessed. 

ADY requires rehydration before use and it has been demonstrated that viability is 

impaired in these slurries (Finn and Stewart, 2002; van den Berg and Van 

Landschoot, 2003; Powell and Fischborn, 2010). In the current study, the extent of 
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viability loss in one lager strain (LAl1) and two ale strains (LAL2 and LAL4) of 

industrially prepared ADY was investigated during rehydration. Viability was 

dependent on the duration and temperature of rehydration. The extent of loss of 

viability was strain dependent. This observation demonstrates that significant 

damage occurs during the industrial production and utilisation of the yeast, but the 

mechanism and extent of this damage is unclear. The findings presented in Chapter 3 

supported earlier reports indicating that rehydration temperature of ADY can affect 

the percent viability of a culture (Gosselin and Fels, 1998). It was proposed that loss 

in viability could occur as a result of genetic instability or membrane damage 

(Chapter 3). To test this hypothesis mitochondrial and genomic DNA integrity 

(Chapter 4) and changes in membrane fluidity, sterol content and membrane 

functional integrity (Chapter 5) were assessed. Using a combination of analyses the 

genomic and mitochondrial (mt) DNA was shown to be comparable to that extracted 

from control yeast. However, the tolerance of mtDNA to ethidium bromide mutagen 

challenge appeared to differ, with ADY populations demonstrating a reduced 

sensitivity to petite formation when compared to control populations. The reasons 

for this difference are not known, although the plasma membrane has been 

implicated in the capacity to restrict ethidium bromide assimilation into the cell 

(Brunner et 01., 1982; Coote et 01., 1994) and therefore one possible cause of the 

differences observed could be membrane integrity. The plasma membrane is a 

component subject to damage when yeast are submitted to osmotic stress (Simonin 

et 01., 2007b). 

An analysis of plasma membrane fluidity, sterol content and integrity was conducted 

(Chapter 5) and it was observed that plasma membranes, and in particular fluidity, 

are affected by dehydration and rehydration although the extent of these differences 

were strain dependent. Although the exact causes and mechanisms by which these 
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changes occur are unclear it is suggested that the non-viable cells in AOY populations 

may exhibit altered fluidity, contributing to the overall differences observed. This 

poses the question whether these AOY non-viable yeast cells exhibit changes in 

fluidity as a consequence of cell death alone or in part because of the impact that 

dehydration and/or rehydration has on the membrane. 

LALl, the only lager strain investigated, emerged from the viability and membrane 

assessments as potentially less fit-for-purpose than the two ale strains LAL2 and 

LAL4. It exhibited a reduced viability and was more susceptible to ethanol and SOS 

stress. Whilst not studied within the current investigation, it is proposed that 

tolerance of the membrane to the combination of fermentation stresses that are 

considered particularly challenging to membrane integrity, such as ethanol and 

osmotic stresses might be reduced in certain AOY populations. It is further proposed 

that this should be the focus of further investigations. 

Whilst the stress response of the plasma membrane was not directly assessed during 

fermentation, key yeast performance indicators were followed, which indicated ADY 

was impaired. A lag in cell division, attenuation and sugar and amino acid uptake 

were noted. Overall cell division was also reduced (compared to control yeast) and 

the viability of the yeast culture remained low. Residual amino acids pools at the end 

of fermentation were observed under certain fermentation conditions. Diacetyl 

formation occurred more rapidly and end fermentation diacetyl levels were higher 

for ADY. These differences in performance between ADY and control strains did not 

appear to be due to differences in yeast pre-growth conditions compared to typical 

propagation regimes. 

Aspects of ADY performance were dependent on the fermentation assay applied. In 

larger scale fermentations the end fermentation amino acid pool was depleted. This 
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may have been a result of increased growth, although this was still impaired 

compared to control fermentations. Although the first fermentation (G1J conducted 

by ADY appeared to differ from control fermentations this different phenotype was 

not maintained during serial repitching. Indeed most aspects of ADY fermentation 

performance matched the control during the second fermentation (G2), despite 

viable cell yield remaining impaired compared to control yeast. This may indicate the 

remaining viable cells from the ADY populations were performing more efficiently in 

fermentation. It is proposed that ADY could be utilised to replace freshly propagated 

yeast, but direct addition to fermenters may require an improvement of 

performance during the first fermentation or the adjustment of fermentation 

parameters to accommodate the intricacies of the yeast. 

8.1 FUTURE WORK 

This thesis has focused on the dynamics of the yeast cell during rehydration and 

fermentation, as this is one of the key aspects which have made some brewers 

reluctant to utilise the technology. Another, the level of contamination in the 

product, has not been directly assessed here. While the presence of bacteria or wild 

yeast may impact on the fermentation data presented, fermentation characteristics 

directly associated with the presence of bacteria (such as off flavours), or with wild 

yeast (such as super-attenuation), were not observed. Furthermore, ADY product 

specifications suggest that levels of contamination compare favourably with 

propagated yeast (Quain, 2006), whilst the absence of hops in the propagation 

medium may result in increased sensitivity during fermentation, leading to rapid 

death of any bacterial cells present (van den Berg and Van landschoot, 2003). 

Consequently it is unlikely that microbial contamination issues influenced the data 

presented here. Despite this, further studies into the precise levels of contamination 

in ADY, persistence through fermentations and effect on the quality of beer 
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produced may provide an interesting insight into the fermentation performance of 

dried yeast strains and provide greater reassurance regarding this issue for brewers. 

During the current study, only a few ADY strains were assessed and only one lager 

strain was included, the only strain assessed during fermentation. It therefore cannot 

be concluded that the data presented in this thesis would be representative of all 

ADY strains. Indeed differences between the three strains have been highlighted 

throughout this thesis, whilst differences between batches of ADY were also noted. It 

is proposed that this work be replicated in other lager and ale ADY strains to 

establish which changes in phenotype are strain specific and which are more generic. 

It could be argued that it might be feasible to select strains for ADY production that 

would inherently tolerate dehydration and rehydration, or more rapidly recover to 

exhibit more typical fermentation performance attributes. Indeed work is already 

being conducted identifying sub groups of S. pastorianus (Saaz and Frohberg) which 

demonstrate greater stress resistance (Layfield et al., 2011; Powell, Personal 

communication). Should the membrane be identified as the key site of cellular 

damage during dehydration or rehydration, strains should be sought which are 

known to be particularly sturdy with regard to this component. The identification of 

strains more suited to drying may mean that some established brewing, strains 

selected on the basis of their suitability to early fermentation and yeast handling 

procedures employed by the industry, are not suited to ADY processing. 

In conjunction with this search for different strains, production specifications should 

be altered to ready the yeast for the rigors of drying. Steps are already taken to 

increase the stress resistance of yeast by encouraging the accumulation of the 

protectant trehalose and key membrane component ergosterol. Cell are also dried 

when they are in stationary phase as they exhibit greater stress resistance at this 
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point, but it is likely that greater protection could be achieved. Optimisation of trace 

elements in the growth process, for example iron, copper and zinc may further 

protect the plasma membrane as they playa role in maintaining fluidity (Garcia et 

01., 2005). It has also been shown that wine yeast rehydrated in the presence of 

sterols have an improved fermentation capacity (Soubeyrand et 01., 2005), this could 

be tria lied with regard to brewing yeast. 

An attempt should also be made to identify the yeast cells within populations which 

are prone to cell death. Heterogeneity with respect to cell age, size and generational 

differences may also reflect sub-populations unable to tolerate certain conditions. 

For ADY this could be manifested in cell death or indeed a reduced rate of 

progression through the cell cycle or capacity to exhibit typical fermentation 

performance. Knowledge of these groups may enable further production changes to 

limit cell death. 

8.2 FINAL REMARKS 

The potential for ADY in the brewing industry is clear, however, the work completed 

in this thesis suggests that it is not yet ready for deployment as a replacement of 

brewery propagation yeast. Immediate use may require acceptance of varying traits 

or use of a different yeast strain. However, in the long term, strain and production 

optimisation may alleviate the issues raised in this thesis permitting proprietary 

strains to be utilised as ADY. 
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