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Corrections

The following errors were discovered after the binding of the printed edition.

The corrections are incorporated into the text of the online version only.

p.29. the acceptance ratio is simplified to
T×λ∗×σ(g(l ′))

M+1 should read: the accep-

tance ratio is simplified to
T×λ∗×σ(−g(l ′))

M+1

p.30. the acceptance ratio is simplified to M
T×λ∗×σ(g(l))

should read: the accep-

tance ratio is simplified to M
T×λ∗×σ(−g(l))

p.31.

×
∏

K
k=1 σ(g(sk))∏

M
m=1 σ(−g(s̃m))× σ(g(l ′))

σ(g(l))
× π(g′

M+K |{sk}K
k=1, {s̃m}M′

m=1, θ)

∏
K
k=1 σ(g(sk))∏

M
m=1 σ(−g(s̃m))× π(gM+K|{sk}K

k=1, {s̃m}M
m=1, θ)

should read:

×
∏

K
k=1 σ(g(sk))∏

M
m=1 σ(−g(s̃m))× σ(−g(l ′))

σ(−g(l))
× π(g′

M+K |{sk}K
k=1, {s̃m}M′

m=1, θ)

∏
K
k=1 σ(g(sk))∏

M
m=1 σ(−g(s̃m))× π(gM+K|{sk}K

k=1, {s̃m}M
m=1, θ)

the acceptance ratio is simplified to
σ(g(l ′))
σ(g(l))

should read: the acceptance ratio is

simplified to
σ(−g(l ′))
σ(−g(l))

p.38.

π(γ|τ , I, I1, h(t)) ∝ Γ

(
νγ + K, λγ +

∫ T

I1

γYsds

)

should read:

π(γ|τ , I, I1, h(t)) ∝ Γ

(
νγ + K, λγ +

∫ T

I1

Ysds

)

p.39.

∝
K

∏
j=2

σ(g(Ij−))×
K

∏
i=1

Yτi− exp

{
−
∫ T

I1

Ysds

}
× π(gM+K|M, I, { Ĩs}M

s=1, θ)



should read:

∝
K

∏
j=2

σ(g(Ij−))×
K

∏
i=1

Yτi− exp

{
−
∫ T

I1

γYsds

}
× π(gM+K |M, I, { Ĩs}M

s=1, θ)

=
1

K−1 × 1
T−I1

× π(g(Ij−)|Ij, g′
M+K, I′, { Ĩs}M

s=1, T, θ)

1
K−1 × 1

T−I1
× π(g(I ′

j−)|I ′j , gM+K, I, { Ĩs}M
s=1, T, θ)

×
∏

K
j=2 σ(−g(I ′j−))

∏
K
j=2 σ(−g(Ij−))

×
∏

K
i=1 Y′

τi−
exp{−

∫ T
I1

Y′
sds} × π(g′

M+K |I′, { Ĩs}M
s=1, θ)

∏
K
i=1 Yτi− exp{−

∫ T
I1

Ysds} × π(gM+K |I, { Ĩs}M
s=1, θ)

.

should read:

=
1

K−1 × 1
T−I1

× π(g(Ij−)|Ij, g′
M+K, I′, { Ĩs}M

s=1, T, θ)

1
K−1 × 1

T−I1
× π(g(I ′

j−)|I ′j , gM+K, I, { Ĩs}M
s=1, T, θ)

×
∏

K
j=2 σ(g(I ′j−))

∏
K
j=2 σ(g(Ij−))

×
∏

K
i=1 Y′

τi−
exp{−

∫ T
I1

γY′
sds} × π(g′

M+K|I′, { Ĩs}M
s=1, θ)

∏
K
i=1 Yτi− exp{−

∫ T
I1

γYsds} × π(gM+K |I, { Ĩs}M
s=1, θ)

.

p.40. the acceptance ratio is simplified to

σ(−g(I ′j−))

σ(−g(Ij−))
×

∏
K
i=1 Y′

τi−
exp{−

∫ T
I1

Y′
sds}

∏
K
i=1 Yτi− exp{−

∫ T
I1

Ysds}
.

should read: the acceptance ratio is simplified to

σ(g(I ′j−))

σ(g(Ij−))
×

∏
K
i=1 Y′

τi−
exp{−

∫ T
I1

γY′
sds}

∏
K
i=1 Yτi− exp{−

∫ T
I1

γYsds}
.

p.41.
(T − I1)× h∗ × σ(g( Ĩ ′s−))

M + 1
,

and
M

(T − I1)× β∗ × σ(g( Ĩs−))
.

should read:
(T − I1)× h∗ × σ(−g( Ĩ ′s−))

M + 1
,

and
M

(T − I1)× β∗ × σ(−g( Ĩs−))
.



The Metropolis-Hastings acceptance ratio is
σ(g( Ĩ ′

s−))

σ(g( Ĩs−))
should read: The Metropolis-

Hastings acceptance ratio is
σ(−g( Ĩ ′

s−))

σ(−g( Ĩs−))

p.62. we have

π(γ|τ , I, I1, β(t)) ∝ Γ

(
νγ + K, λγ +

∫ T

I1

γYsds

)
.

should read: we have

π(γ|τ , I, I1, β(t)) ∝ Γ

(
νγ + K, λγ +

∫ T

I1

Ysds

)
.

p.64.

π(I, gK |τ , M, { Ĩs}M
s=1, gM, β̃∗, γ, T, θ)

∝
K

∏
j=2

XIj−YIj−

K

∏
j=2

σ(g(Ij−)) exp{−
∫ T

I1

XsYsds}

×
K

∏
i=1

Yτi− exp{−
∫ T

I1

Ysds} × π(gM+K |M, I, { Ĩs}M
s=1, θ).

should read:

π(I, gK |τ , M, { Ĩs}M
s=1, gM, β̃∗, γ, T, θ)

∝
K

∏
j=2

XIj−YIj−

K

∏
j=2

σ(g(Ij−)) exp{−
∫ T

I1

β̃∗XsYsds}

×
K

∏
i=1

Yτi− exp{−
∫ T

I1

γYsds} × π(gM+K |M, I, { Ĩs}M
s=1, θ).

p.65.

×
∏

K
j=2 X′

Ij−
Y′

Ij−
× ∏

K
j=2 σ(−g(I ′j )) exp{−

∫ T
I1

X′
sY

′
sds}

∏
K
j=2 XIj−YIj− ∏

K
j=2 σ(−g(Ij)) exp{−

∫ T
I1

XsYsds}

×
∏

K
i=1 Y′

τi−
exp{−

∫ T
I1

Y′
sds} × π(g′

M+K|{I ′j}K
j=2, { Ĩs}M

s=1, θ)

∏
K
i=1 Yτi− exp{−

∫ T
I1

Ysds} × π(gM+K |I, { Ĩs}M
s=1, θ)

.

should read:

×
∏

K
j=2 X′

Ij−
Y′

Ij−
× ∏

K
j=2 σ(g(I ′j )) exp{−

∫ T
I1

β̃∗X′
sY

′
sds}

∏
K
j=2 XIj−YIj− ∏

K
j=2 σ(g(Ij)) exp{−

∫ T
I1

β̃∗XsYsds}

×
∏

K
i=1 Y′

τi−
exp{−

∫ T
I1

γY′
sds} × π(g′

M+K |{I ′j}K
j=2, { Ĩs}M

s=1, θ)

∏
K
i=1 Yτi− exp{−

∫ T
I1

γYsds} × π(gM+K |I, { Ĩs}M
s=1, θ)

.



the acceptance ratio is simplified to

∏
K
j=2 X′

Ij−
Y′

Ij−
× σ(−g(I ′j )) exp{−

∫ T
I1

X′
sY

′
sds}

∏
K
j=2 XIj−YIj− σ(−g(Ij)) exp{−

∫ T
I1

XsYsds}
×

∏
K
i=1 Y′

τi−
exp{−

∫ T
I1

Y′
sds}

∏
K
i=1 Yτi− exp{−

∫ T
I1

Ysds}
.

should read: the acceptance ratio is simplified to

∏
K
j=2 X′

Ij−
Y′

Ij−
× σ(g(I ′j )) exp{−

∫ T
I1

β̃∗X′
sY

′
sds}

∏
K
j=2 XIj−YIj− σ(g(Ij)) exp{−

∫ T
I1

β̃∗XsYsds}
×

∏
K
i=1 Y′

τi−
exp{−

∫ T
I1

γY′
sds}

∏
K
i=1 Yτi− exp{−

∫ T
I1

γYsds}
.

p.66. The acceptance ratio is

q(M′→M)

q(M→M′)
× π(M′, { Ĩs}M′

m=1, g′
M|I, gK, θ, β̃∗)

π(M, { Ĩs}M
s=1, gM|I, gK, θ, β̃∗)

=
1
2 × 1

M′
1
2 × 1

T−I1
× π(g( Ĩ ′

s− )| Ĩ ′s, gM+K, I, { Ĩs}M
s=1, θ)

×
(β̃∗)M′

∏
M′
s=1 X Ĩs−

YĨs−
∏

M′
m=1 σ(−g( Ĩs−))× π(g′

M+K |I, { Ĩs}M′
m=1, θ)

(β̃∗)M ∏
M
s=1 X Ĩs−

YĨs−
∏

M
m=1 σ(−g( Ĩs−))× π(gM+K|I, { Ĩs}M

s=1, θ)
.

should read: The acceptance ratio is

q(M′→M)

q(M→M′)
× π(M′, { Ĩs}M′

s=1, g′
M|I, gK, θ, β̃∗)

π(M, { Ĩs}M
s=1, gM|I, gK, θ, β̃∗)

=
1
2 × 1

M′
1
2 × 1

T−I1
× π(g( Ĩ ′

s− )| Ĩ ′s, gM+K, I, { Ĩs}M
s=1, θ)

×
(β̃∗)M′

∏
M′
s=1 X Ĩs−

YĨs−
∏

M′
s=1 σ(−g( Ĩs−))× π(g′

M+K |I, { Ĩs}M′
s=1, θ)

(β̃∗)M ∏
M
s=1 X Ĩs−

YĨs−
∏

M
s=1 σ(−g( Ĩs− ))× π(gM+K |I, { Ĩs}M

s=1, θ)
.

p.67.

π(g′
M+K |I, { Ĩs}M′

m=1, θ)

= π(gM+K |I, { Ĩs}M
s=1, θ)× π(g( Ĩ ′s− )| Ĩ ′s, gM+K, I, { Ĩs}M

s=1, θ),

the acceptance ratio is simplified to
(T−I1)×β̃∗×σ(g( Ĩ ′

s−))×X Ĩ′
s−

YĨ′
s−

M+1 should read:

π(g′
M+K |I, { Ĩs}M′

s=1, θ)

= π(gM+K |I, { Ĩs}M
s=1, θ)× π(g( Ĩ ′s− )| Ĩ ′s, gM+K, I, { Ĩs}M

s=1, θ),

the acceptance ratio is simplified to
(T−I1)×β̃∗×σ(−g( Ĩ ′

s−))×X Ĩ′
s−

YĨ′
s−

M+1



q(M′→M) =
1

2
× 1

T − I1
× π(g( Ĩs−)| Ĩs, g′

M+K, I, { Ĩs}M′
m=1, θ).

should read:

q(M′→M) =
1

2
× 1

T − I1
× π(g( Ĩs− )| Ĩs, g′

M+K, I, { Ĩs}M′
s=1, θ).

The acceptance ratio is

q(M′→M)

q(M→M′)
× π(M′, { Ĩs}M′

m=1, g′
M|I, { Ĩs}M

s=1, gK, θ, β̃∗)

π(M, { Ĩs}M
s=1, gM|I, { Ĩs}M′

s=1, gK, θ, β̃∗)

=
1
2 × 1

T−I1
× π(g( Ĩs− )| Ĩs, g′

M+K, I, { Ĩs}M′
m=1, θ)

1
2 × 1

M

×
(β̃∗)M′

∏
M′
s=1 X Ĩs−

YĨs−
∏

M′
m=1 σ(−g( Ĩs−))× π(g′

M+K |I, { Ĩs}M′
m=1, θ)

(β̃∗)M ∏
M
s=1 X Ĩs−

YĨs−
∏

M
m=1 σ(−g( Ĩs−))× π(gM+K|I, { Ĩs}M

s=1, θ)
.

should read: The acceptance ratio is

q(M′→M)

q(M→M′)
× π(M′, { Ĩs}M′

s=1, g′
M|I, { Ĩs}M

s=1, gK, θ, β̃∗)

π(M, { Ĩs}M
s=1, gM|I, { Ĩs}M′

s=1, gK, θ, β̃∗)

=
1
2 × 1

T−I1
× π(g( Ĩs− )| Ĩs, g′

M+K, I, { Ĩs}M′
s=1, θ)

1
2 × 1

M

×
(β̃∗)M′

∏
M′
s=1 X Ĩs−

YĨs−
∏

M′
s=1 σ(−g( Ĩs−))× π(g′

M+K |I, { Ĩs}M′
s=1, θ)

(β̃∗)M ∏
M
s=1 X Ĩs−

YĨs−
∏

M
s=1 σ(−g( Ĩs− ))× π(gM+K |I, { Ĩs}M

s=1, θ)
.

= π(g′
M+K |I, { Ĩs}M′

m=1, θ)× π(g( Ĩs− )| Ĩs, g′
M+K, I, { Ĩs}M′

m=1, θ),

the acceptance ratio is simplified to M
(T−I1)×β̃∗×σ(g( Ĩs−))×X Ĩ

s−
YĨ

s−
should read:

= π(g′
M+K |I, { Ĩs}M′

s=1, θ)× π(g( Ĩs− )| Ĩs, g′
M+K, I, { Ĩs}M′

s=1, θ),

the acceptance ratio is simplified to M
(T−I1)×β̃∗×σ(−g( Ĩs−))×X Ĩ

s−
YĨ

s−

p.68.

×
∏

M−1
s=1 X Ĩs−

YĨs−
×

X Ĩ′
s−

YĨ′
s−

X Ĩ
s−

YĨ
s−

∏
M
m=1 σ(−g( Ĩs))× σ(g( Ĩ ′s))

σ(g( Ĩs))
× π(g′

M+K |I, { Ĩs}M′
s=1, θ)

∏
M−1
s=1 X Ĩs−

YĨs−
∏

M
m=1 σ(−g( Ĩs))× π(gM+K |I, { Ĩs}M

s=1, θ)
.



should read:

×
∏

M−1
s=1 X Ĩs−

YĨs−
×

X Ĩ′
s−

YĨ′
s−

X Ĩ
s−

YĨ
s−

∏
M
s=1 σ(−g( Ĩs))× σ(−g( Ĩ ′s))

σ(−g( Ĩs))
× π(g′

M+K |I, { Ĩs}M′
s=1, θ)

∏
M−1
s=1 X Ĩs−

YĨs−
∏

M
s=1 σ(−g( Ĩs))× π(gM+K |I, { Ĩs}M

s=1, θ)
.

the acceptance ratio is simplified to
X Ĩ′

s−
YĨ′

s−
×σ(g( Ĩ ′

s−))

X Ĩ
s−

YĨ
s−

×σ(g( Ĩs−))
should read: the accep-

tance ratio is simplified to
X Ĩ′

s−
YĨ′

s−
×σ(−g( Ĩ ′

s−))

X Ĩ
s−

YĨ
s−

×σ(−g( Ĩs−))

p.89.

π(γ|β̃ββ(t), τττ, I
˜
) ∝ Γ

(
νγ +

k

∑
i=1

ni, λγ +
k

∑
i=1

∫ T

Ii1

γYi(s)ds

)
.

should read:

π(γ|β̃ββ(t), τττ, I
˜
) ∝ Γ

(
νγ +

k

∑
i=1

ni, λγ +
k

∑
i=1

∫ T

Ii1

Yi(s)ds

)
.



Abstract

Modelling of infectious diseases is a topic of great importance. Despite the

enormous attention given to the development of methods for efficient parame-

ter estimation, there has been relatively little activity in the area of nonparamet-

ric inference for epidemics. In this thesis, we develop new methodology which

enables nonparametric estimation of the parameters which govern transmis-

sion within a Bayesian framework. Many standard modelling and data analy-

sis methods use underlying assumptions (e.g. concerning the rate at which new

cases of disease will occur) which are rarely challenged or tested in practice. we

relax these assumptions and analyse data from disease outbreaks in a Bayesian

nonparametric framework.

We first apply our Bayesian nonparametric methods to small-scale epidemics.

In a standard SIR model, the overall force of infection is assumed to have a

parametric form. We relax this assumption and treat it as a function which only

depends on time. Then we place a Gaussian process prior on it and infer it

using data-augmented Markov Chain Monte Carlo (MCMC) algorithms. Our

methods are illustrated by applications to simulated data as well as Smallpox

data. We also investigate the infection rate in the SIR model using our methods.

More precisely, we assume the infection rate is time-varying and place a Gaus-

sian process prior on it. Results are obtained using data augmentation methods

and standard MCMC algorithms. We illustrate our methods using simulated

data and respiratory disease data. We find our methods work fairly well for the

stochastic SIR model.

We also investigate large-scaled epidemics in a Bayesian nonparametric frame-

work. For large epidemics in large populations, we usually observe surveil-

lance data which typically provide number of new infection cases occurring

during observation periods. We infer the infection rate for each observation pe-

i



riod by placing Gaussian process priors on them. Our methods are illustrated

by the real data, i.e. a time series of incidence of measles in London (1948-1957).

ii
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CHAPTER 1

Introduction

1.1 Motivation

Understanding the spread of communicable infectious diseases is of great im-

portance in order to prevent major future outbreaks and therefore it remains

high on the global scientific agenda. Mathematical and statistical modelling has

become a valuable tool and has been widely used in the analysis of infectious

disease dynamics. It is of interest to make statistical inference for the parame-

ters of stochastic epidemic models given observed data. This is not a standard

problem due to the fact that, in general, the underlying transmission process

is partially observed (e.g. infection times are not observed). To date, almost

all of the literature concerning statistical inference for epidemic models adopts

an approach based on a parametric framework, in which a model is a family of

distributions that can be described using a finite number of parameters. O’Neill

& Roberts (1999) and Gibson & Renshaw (1998) present the first Bayesian ap-

proach using Markov Chain Monte Carlo (MCMC) methods for the so-called

SIR (susceptible-infective-removed) stochastic epidemic model, given tempo-

ral data on case diagnosis times, in which infection times are not observed

and are treated as unknown model parameters. O’Neill & Becker (2001) ex-

tend the techniques and develop an MCMC algorithm for performing Bayesian

inference for a non-Markovian SIR model where the infectious period follows

a Gamma distribution. O’Neill et al. (2000) develop MCMC algorithms to anal-

yse both temporal and final size data from household outbreaks. Numerous

other papers have utilised MCMC algorithms to analyse infectious disease data,
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including Neal & Roberts, (2005), Lekone & Finkenstädt, (2006), Cauchemez

& Ferguson (2008), Jewell et al., (2009) and McKinley et al., (2009). In gen-

eral terms, inference for stochastic epidemic models has benefited considerably

from the use of MCMC methods.

Despite the enormous attention given to the development of methods for effi-

cient parameter estimation, there has been relatively little activity in the area of

nonparametric inference for epidemics. Becker & Yip (1989) and Becker (1989)

consider nonparametric estimation of the infection rate in an SIR model, specif-

ically allowing the infection rate to depend on time. They applied martingale

approaches to temporal epidemic data where the initial state and final state of

the epidemic are assumed to be known. Chen et al. (2008) use classical nonpara-

metric methods to estimate the infection rate of an epidemic model over time.

They use local polynomial methods and martingale estimating equations to de-

velop a closed-form estimator of the intensity function and its derivatives for

multiplicative counting process models. They also apply the proposed estima-

tors to analyse the infection rate of the 2003 SARS epidemic in Beijing, China.

Cauchemez & Ferguson (2008) point out that the martingale approaches pro-

vided simple but efficient ways to estimate key quantities and approximate

confidence regions for the parameters. However, it would be difficult when

more complex situations are considered such as (i) the initial state of the epi-

demic is unknown, (ii) observed data are further aggregated temporally, and

(iii) under-reporting, seasonality in transmission rates are what one must ac-

count for. Therefore, martingale approaches appear limited in terms of their

range of epidemic applications. Lau & Yip (2008) adopt a nonparametric kernel

estimator to reconstruct the infection process given that the removal process

is observed. Hence, they estimate the basic reproduction number, R0, with an

unknown initial number of susceptibles and the methods are illustrated by an

application to data from a smallpox epidemic. However, the person-to-person

infection rate was assumed constant, which implied that the method may not

be suitable if the infection rate varies throughout the epidemic.

Recently, Dureau et al. (2013) developed stochastic extensions to the determin-

istic SEIR epidemic model and assigned integrated Brownian motion for the

time-varying effective contact rate (where an SEIR model, a variant of the stan-

dard SIR model, is characterised by four states: susceptible (S), exposed (E),
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infected (I), removed (R) and it is assumed that there exists a latent period

between time of infection and time of infectiousness during which individu-

als are in the ’exposed’ state). Under a Bayesian framework, they adopted a

particle Markov Chain Monte Carlo algorithm to implement inference (Pers-

ing, 2014). The performance of the proposed computational methods was val-

idated on simulated data and applied to the 2009 A/H1N1 pandemic in Eng-

land. However, the approach they used is not fully nonparametric as the time-

varying infection rate is assumed to be governed by a diffusion process and is

estimated with a parametric approach.

The motivation behind this thesis is to develop new methodology which en-

ables nonparametric estimation of the parameters which govern transmission

within a Bayesian framework. In the following sections we recall some key

concepts that will be relevant.

1.2 Bayesian inference

In this section, we will review the fundamentals of Bayesian theory. For de-

tailed discussions of the theory see Bernardo & Smith (1994).

1.2.1 Bayes’ theorem

In a Bayesian framework, parameters are viewed as having probability distri-

butions rather than fixed values, as is the case in Frequentist inference (Moyé,

2008). Bayesian inference is based around Bayes’ theorem, which, for observed

data X and model parameters θθθ, is

π(θθθ|X) = π(X|θθθ)π(θθθ)

π(X)
∝ π(X|θθθ)π(θθθ), (1.1)

where π(X) = ∑θθθ π(X|θθθ)π(θθθ) for the discrete case and the sum is all over pos-

sible values of θθθ or π(X) =
∫

θθθ π(X|θθθ)π(θθθ) in the case of continuous θθθ. In Bayes’

theorem (1.1), π(θθθ|X) is the posterior density of θθθ, π(X|θθθ) is the likelihood of X,

and π(θθθ) is the prior density of θθθ.

In order to infer θθθ, we need to determine the posterior distribution, π(θθθ|X),
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which is the combination of the likelihood, π(X|θθθ), and the prior, π(θθθ). In

Bayesian inference, it is essential to specify prior distributions for model pa-

rameters, θθθ, as poorly chosen prior distributions can significantly affect the

posterior estimates. We may choose certain prior distributions to reflect the

existing knowledge about the parameters in question. Whereas, uninformative

prior distributions may be chosen due to lack of existing evidence for parameter

values, or a desire to derive estimates based solely on the observed data.

We aim to evaluate the posterior distribution of parameters, θθθ. However, the

integral, π(X) =
∫

θθθ π(X|θθθ)π(θθθ), is often intractable (Gilks et al., 1996). With the

development of computer technology towards the end of last century, Markov

Chain Monte Carlo (MCMC) methods are widely used to tackle this problems.

1.2.2 Markov Chain Monte Carlo

MCMC methods are used to draw samples θθθ while exploring the state space X

using a Markov chain mechanism. This mechanism is constructed so that the

samples θθθ mimic samples drawn from the target distribution π(θθθ|X). We use

MCMC methods when we cannot draw samples from π(θθθ|X) directly, but can

evaluate π(θθθ|X) up to a normalising constant (Andrieu et al., 2003).

In this section we will review some well studied MCMC algorithms. Detailed

discussions about the theory and applications can be found in Gilks et al. (1996),

Tanner (1996) and Robert & Casella (1999). MCMC had its origins in the 1950s

(Metropolis et al., 1953) and was then generalised by Hastings (Hastings, 1970)

to yield the so-called Metropolis-Hastings algorithm.

1.2.2.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm manages to generate samples from a pos-

terior density, π(θθθ|X), in a way which does not require the computation of its

normalisation constant. In each iteration t, the next state θθθ(t+1) is chosen as fol-

lows. First, a candidate point, θθθ′, is sampled from a proposal density, q(·|θθθ(t)).
Then θθθ′ is accepted with probability φ(θθθ(t), θθθ′) where
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φ(θθθ(t), θθθ′) = min

(
1,

π(θθθ ′|X)q(θθθ(t)|θθθ′)
π(θθθ(t)|X)q(θθθ ′|θθθ(t))

)
.

The next state becomes θθθ(t+1) = θθθ′ if the candidate point is accepted, otherwise

θθθ(t+1) = θθθ(t) which implies that the chain does not move. The algorithm is

implemented as follows:

Algorithm The Metropolis Hastings Algorithm

1. Initialise θθθ(0)

2. Set t = 0

3. Repeat the following steps:

Sample θθθ′ ∝ q(·|θθθ(t))
Sample U ∝ U(0, 1)

If U ≤ φ(θθθ(t), θθθ′)

set θθθ(t+1) = θθθ′

Else

set θθθ(t+1) = θθθ(t)

t = t + 1

1.2.2.2 Gibbs sampler

The parameters of the vector, θθθ, in the Metropolis-Hastings algorithm can be

updated simultaneously, or repeated for individual elements, or groups of el-

ements. The Gibbs sampler, introduced by Geman & Geman (1984), is a spe-

cial case of the Metropolis-Hastings algorithm where the proposed candidate

is always accepted (Casella & George, 1992, Gelfand & Smith, 1990). Let θθθ =

(θ1, θ2, · · · , θn) be the current parameter vector consisting of n parameters. Let

θθθ−i = (θ1, θ2, · · · , θi−1, θi+1, · · · , θn) be the vector, θθθ, with θi removed, where

i = 1, 2, · · · , n. In each iteration of the Gibbs sampler, each θi of θθθ is drawn

conditional on the value of all the others. The functions πi(θi|θθθ−i, X) are called

the full conditional distributions of π(θθθ|X). Therefore, for the Gibbs sampler, in

each iteration t, we sample from the full conditional distributions, πi(θi|θθθ−i, X).

Each of the parameters, θi, is conditional on the latest values of the elements of

θθθ.

The algorithm is implemented as follows:
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Algorithm Gibbs Sampler

1. Initialise θθθ(0)

2. Set t = 0

3. Repeat the following steps:

Draw θ
(t+1)
1 from π(θ1|θ(t)2 , θ

(t)
3 , · · · , θ

(t)
n )

Draw θ
(t+1)
2 from π(θ2|θ(t+1)

1 , θ
(t)
3 , · · · , θ

(t)
n )

Draw θ
(t+1)
3 from π(θ3|θ(t+1)

1 , θ
(t+1)
2 , θ

(t)
4 , · · · , θ

(t)
n )

·
·
·
Draw θ

(t+1)
n from π(θn|θ(t+1)

1 , θ
(t+1)
2 , · · · , θ

(t+1)
n−1 )

t = t + 1

1.2.2.3 Burn-in

The term burn-in is referred to as the practice of discarding the early iterations

of MCMC diminish the effect of the initial distribution (Gelman et al., 2004).

The length of the burn-in usually depends on the initial values and how fast the

MCMC chain converges to the desired distribution. We can determine burn-in

from MCMC trace plots (Gilks et al., 1996).

1.2.2.4 Thinning

It is fairly common practice to “thin” the Markov chain when computer storage

is a problem or if one wishes to reduce autocorrelation. We can keep only every

kth simulation draw from each sequence and discard the rest of them. This

practice is often termed thinning. we can set k to some value high enough that

successive draws of parameter θθθ are approximately independent (Gilks et al.,

1996).

1.2.2.5 Proposal distributions and convergence

In the Metropolis-Hastings algorithm, the choice of proposal density q(·) is of

great importance and affects the rate at which the Markov chain converges to

the desired distribution, as well as the rate at which the distribution is explored.
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We commonly propose samples from a Gaussian distribution. This proposal

distribution is a Normal distribution at the current parameter value and the

only thing that needs to be specified is the variance σ2. If σ2 is too small, the

proposal is likely to be very close to the current value. Then the acceptance rate

is likely to be high but the Markov chain will take longer to converge to the

desired distribution. Conversely, if σ2 is too large, the proposal will be rejected

almost every time as the acceptance rate is likely to be low. Therefore, it is

implied that a careful choice of σ2 is important for efficient sampling although

the Metropolis-Hastings algorithm will converge for any proposal distribution.

A general rule is to choose σ2 in a way such that the acceptance rate for each

proposal is 0.234 (Roberts et al., 1997).

It is important to ensure the MCMC algorithm has converged to the desired

distribution. A simple test is to run several independent MCMC chains with

different initial points, in order to ensure they appear to sample from the same

distribution after a burn-in period. Gelman & Rubin (1992) and Geweke (1992)

proposed more formal methods to test if the chain converges.

1.3 Epidemic modelling

Modelling of infectious diseases is a topic of enormous importance and many

governments now routinely use modelling as a way of helping to formulate

public health policy, e.g. how best to prepare for a possible influenza pan-

demic; how best to design a programme of vaccination; how best to react to

an emerging disease like SARS, etc (Tildesley & Ryan, 2012, Balatif, 2014). In

general, mathematical and statistical modelling is playing a fundamental role

in the fight against the spread of disease.

1.3.1 Stochastic SIR model

We now describe the most well studied stochastic model for the transmission of

infectious diseases (Bailey, 1975, Chapter 6, Andersson & Britton, 2000, Chap-

ter 2). Consider a closed, homogeneous and homogeneously mixing popula-

tion of individuals subdivided at any time t≥0 into three states: susceptible,

infective and removed. Let Xt, Yt and Zt denote respectively the number of
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individuals who are susceptible, infective, and removed at time t, and let N

and a denote the initial number of susceptible and infective individuals respec-

tively. We assume that there are no removed individual initially. An individual

makes contacts with each of the N susceptibles at times given by the points of

a homogeneous Poisson process with rate β. The infectious periods of different

individuals are assumed to be independent and identically distributed accord-

ing to the distribution of a random variable which can have any arbitrary but

specified distribution. Susceptible individuals become infective immediately

after they contact an infective. In other words, at time t, new infections occur

according to an inhomogeneous Poisson process with rate βXtYt. In epidemics,

we refer to the rate, βXtYt, as the overall force of infection. It is assumed that

there is no latent period (infected but not infectious) for the newly infected in-

dividual. The infectious individual is removed from the infection process once

its infectious period ends. A removed individual can be dead, or recovered and

immune to further infections and then would not play any further part in the

epidemic. The epidemic will die out as soon as there are no infective individu-

als present in the population.

Epidemic models like this are often called SIR epidemic models. The Marko-

vian case where the infectious period follows an exponential distribution is the-

so-called general stochastic epidemic (GSE). Lloyd (2001) pointed out that this as-

sumption is equivalent to assuming that it is constant for the chance of recovery

within a given time interval, regardless of the time since infection and it is un-

realistic epidemiologically as the chance of recovery in a given time interval is

initially small but increases over time, corresponding to the infectious period

distribution. In this thesis, we always assume that the SIR model is Markovian

for simplicity and comparison with other methods. However, our methods can

also be applied to general infectious period distributions.

The epidemic can be defined according to the following transition probabilities,

where the first two transitions correspond respectively to an infection and a

removal:

P[Xt+δt = Xt − 1, Yt+δt = Yt + 1|Ht] = βXtYtδt + o(δt),

P[Xt+δt = Xt, Yt+δt = Yt − 1|Ht] = γYtδt + o(δt),

8
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P[Xt+δt = Xt, Yt+δt = Yt|Ht] = 1 − βXtYtδt − γYtδt + o(δt),

where β, a constant, is referred to as the infection rate, γ, a constant, is referred

to as the removal rate and Ht is the sigma-algebra generated by the history of

the process up to time t, i.e. Ht = σ{(Xu, Yu) : 0 ≤ s ≤ t}, with H0 = σ{(X0 =

N, Y0 = a) : 0 ≤ s ≤ t} specifying the initial conditions.

1.3.2 Bayesian inference for the SIR model from partially ob-

served data

As mentioned in Section 1.1, O’Neill & Roberts (1999) present the first Bayesian

approach using MCMC methods for the SIR model given the removal times.

We now give a brief description of the algorithms they developed for sampling

the infection rate, β, removal rate, γ and other parameters from the desired

posterior distribution. We assume that the epidemic is known to have ceased,

i.e. the number of infection times equals to the number of removal times. We

first give a list of notation that we use:

Xt and Yt: the number of susceptibles and infectives respectively in the popu-

lation at time t ≥ 0

τ = (τ1 = 0, τ2, · · · , τn): the observed (ordered) removal times where τ1 ≤
τ2 ≤ · · · ≤ τn

I1: the first infection time

I = (I2, I3, · · · , In): the unobserved (ordered) infection times excluding the first

infection time during (I1, T], where T ≥ τn and I2 ≤ I3 ≤ · · · ≤ In.

Suppose that, a priori, Gamma distributions with shape and rate parameters,

νβ and λβ and νγ and λγ are put on β and γ respectively. Specifically, the prior

densities of β and γ are given by

g(x; νβ, λβ) =
xνβ−1 exp(−xλβ)

λ
−νβ

β Γ(νβ)
for x ≥ 0 and νβ, λβ > 0,

g(x; νγ, λγ) =
xνγ−1 exp(−xλγ)

λ
−νγ
γ Γ(νγ)

for x ≥ 0 and νγ, λγ > 0.

We also suppose that I1 has prior density given by δexp(δy)I(y ≤ 0), where

δ > 0, and where I(·) is the indicator function. Conditionally on τ , I, β and γ,

9
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the density of I1 is as follows:

π(y|τ , I, β, γ) = Λ exp{−Λ(I2 − y)}, y ∈ (−∞, I2),

where Λ = δ + γ + β ∗ N. According to O’Neill & Roberts (1999), the MCMC

algorithm is implemented as follow:

Algorithm MCMC algorithm

1. Initialise β0, γ0, I0
1 and I0

2. Sample β by using a Gibbs step and drawing from

π(β|τ , I, I1, γ) ≡ Γ
(

n − 1 + νβ, λβ +
∫ T

I1
XtYtdt

)

3. Sample γ by using a Gibbs step and drawing from

π(γ|τ , I, I1, β) ≡ Γ
(

n + νγ, λγ +
∫ T

I1
Ytdt

)

4. Sample I1 by using a Gibbs step and drawing from

π(I1|τ , I, β, γ) ≡ Exp(βN + γ + δ)

5. Move an infection time by using a Metropolis-Hastings algorithm with ac-

ceptance probability: min
(

1,
π(I−s+t|τ ,I1,β,γ)

π(I|τ ,I1,β,γ)

)

6. repeat step 2-5

More precisely for step 5, we choose one of the existing infection times, s, uni-

formly at random and then obtain a replacement infection time, t, by sampling

uniformly on (I1, T).

It is shown that MCMC methods are used to carry out Bayesian inference for

the stochastic SIR models given partially observed data. The approach is not

only robust but very flexible and can be extended to more complex models. We

will take advantage of this approach throughout the whole thesis.

1.4 Bayesian nonparametric model

Nonparametric models are increasingly used in preference to parametric mod-

els, due to the latter’s lack of sufficient flexibility to represent a wide variety

of data. Nonparametric models constitute an approach to model selection and

adaptation, where the sizes of models are allowed to grow with data size (Or-

banz & Teh, 2010). This is as opposed to parametric models which use a fixed

number of parameters. Bayesian nonparametric methods provide a Bayesian
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framework for model selection and adaptation using nonparametric models. A

Bayesian formulation of nonparametric problems is nontrivial, since a Bayesian

model defines prior and posterior distributions on a single fixed parameter

space, but the dimension of the parameter space in a nonparametric approach

should change with sample size. The Bayesian nonparametric solution to this

problem is to use an infinite-dimensional parameter space, and to invoke only

a finite subset of the available parameters on any given finite data set. This

subset generally grows with the data set. In the context of Bayesian nonpara-

metric models, “infinite-dimensional” can therefore be interpreted as “of finite

but unbounded dimension”. More precisely, a Bayesian nonparametric model

is a model that (i) constitutes a Bayesian model on an infinite-dimensional pa-

rameter space and (ii) can be evaluated on a finite sample in a manner that uses

only a finite subset of the available parameters to explain the sample. There-

fore, the Bayesian nonparametric model has an infinite number of dimensions

a priori. The word “nonparametric” is misleading. It is not that there are no pa-

rameters, it is in fact that there are an infinite number of parameters. One of the

most popular tools for Bayesian nonparametric modelling of probability distri-

butions is the Dirichlet process (DP) (Ferguson, 1973). However, the Dirichlet

process is not suitable for modelling continuous random variables that require

probability density functions since samples from the Dirichlet process are dis-

crete with probability one. To tackle this problem, the Dirichlet process is of-

ten used to add a countably-infinite number of parameters into a continuous

model. One of the most popular examples is the infinite mixture of paramet-

ric distributions (Escobar & West, 1995, Rasmussen, 2000, Gershman & Blei,

2011). Other approaches for using a Dirichlet process to construct a prior that

assigns mass to continuous densities include kernel convolution (Lo, 1984) and

the Dirichlet diffusion tree (Neal, 2001, 2003). For more discussion of topics

related to Bayesian nonparametric models, see Walker et al. (1999) or Ghosh

& Romamoorthi (2003). Another popular and well studied tool for specify-

ing prior beliefs about probability densities is the Gaussian process (O’Hagan,

1978). We will use the Gaussian process as a main tool throughout the whole

thesis.

Bayesian nonparametric inference, first developed in the statistics community,

has become more attractive after the development of computational methods,
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such as MCMC. It has led to the development of a variety of models and appli-

cations of these models in disciplines such as computer vision, computational

biology, cognitive science, signal processing, etc. However, there is little lit-

erature concerning Bayesian nonparametric estimation for epidemics, which

further motivates our work.

1.5 Gaussian process

1.5.1 Introduction

Given some observations of a dependent variable at certain values of the inde-

pendent variable, x, one might want to find the best estimate of the dependent

variable at a new value, x′. We may expect the relationship between the ob-

servations and the variable x, denoted by f (x), to be linear, quadratic, cubic,

or even non-polynomial. Then we can use the principles of model selection to

choose among the various possibilities. Rather than assuming f (x) relates to

some specific models, e.g. f (x) = ax + b, a Gaussian process can represent

f (x) rigorously and precisely by letting the data describe the story for them-

selves (Ebden, 2008). In other words, a Gaussian process provides an approach

to give a prior density to every possible function, where higher density values

are given to functions that we consider to be more likely.

1.5.2 Definition

We now give the definition of a Gaussian process below (Rasmussen & Williams,

2006):

Definition. A Gaussian process (GP) is a collection of random variables, any finite

number of which have a joint Gaussian distribution.

In other words, a GP can be considered as a probability distribution over a

(possibly infinite) number of elements of a set X , such that the distribution

over any finite subset of them is a multi-variate Gaussian. The set X is chosen

based on what sort of elements the Gaussian process should support, but the

range is always the real line. Denote by µ(·) and K(·, ·) respectively the mean

12
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function and the positive semidefinite covariance function of the GP, denoted

by f (x), where x = (x1, x2, · · · , xn). For n ∈ N and any finite set of inputs

x1, x2, · · · , xn:

f (x) ∼ N(µ(x), K(·, ·)),

where f (x) = ( f (x1), f (x2), · · · , f (xn)), µ(x) = (µ(x1), µ(x2), · · · , µ(xn)) and

K(·, ·) =




K(x1, x2) K(x1, x3) · · · K(x1, xn)

K(x2, x1) K(x2, x2) · · · K(x2, xn)
...

...
. . .

...

K(xn, x1) K(xn, x2) · · · K(xn, xn)




.

Therefore, a GP specifies a distribution over functions and is completely speci-

fied by its mean and covariance function. More precisely, the Gaussian process

provides a nonparametric distribution over functions of the form g : X → R,

where R refers to the extended real numbers. In this thesis, we will investi-

gate the epidemic models with the Gaussian process in time space. Therefore,

it can be assumed that the domain X is the 1-dimensional time spaceR. Adams

(2009) points out that from the function-space view, the main idea of the Gaus-

sian process is that if we condition on a finite set of input values in the domain

X with size N, denoted {xn ∈ X}N
n=1, we obtain a joint Gaussian distribu-

tion over the corresponding output values in the range RN. The dimensions of

this Gaussian distribution can be considered as corresponding to the outputs

{ f (xn)}N
n=1 of a random function f (x). The N-dimensional Gaussian distribu-

tion is specified by an N- dimensional mean vector µN and an N × N covariance

matrix KN, where [µN]n = m(xn) and [KN]n,n′ = K(xn, xn′).

1.5.3 Covariance function

In this thesis, we will take the mean function to be zero, i.e. m(x) = 0, ∀x ∈ X .

Hence, to specify a Gaussian process, we only need to choose an appropriate

covariance function which determines what kind of functions we can sample

from the Gaussian process. The choice of an appropriate covariance function

for a Gaussian process largely depends on the problem under consideration

and sometimes, it can be difficult to choose one. We will place Gaussian pro-

cess priors on the key quantities of interest (e.g. infection rate, in epidemics)
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with different well-studied covariance functions and compare the results. For

detailed discussions of covariance function selection see, Paciorek (2003) and

Kronberger & Kommenda (2013). Below is a list of the covariance functions we

will use (Rasmussen & Williams, 2006)

Squared exponential:

K(xi, xj) = α2 exp

(
−
(xi − xj)

2

2θ2

)
, (1.2)

Exponential:

K(xi, xj) = α2 exp

(
−
|xi − xj|

θ

)
, (1.3)

Matérn (ν = 3
2 ):

K(xi, xj) = α2

(
1 +

√
3|xi − xj|

θ

)
exp

(
−
√

3|xi − xj|
θ

)
, (1.4)

Periodic:

K(xi , xj) = α2 exp

(
−2 sin2(

xi−xj

2 )

θ2

)
. (1.5)

Here α and θ refer to the hyperparameters which respectively control the ver-

tical scale and horizontal length-scale of the Gaussian process. More precisely,

the larger α is, the larger vertical range the function will reach and the larger θ

is, the more slowly varying the function generated will be. Figure 1.1 (a), (b)

and (c) show samples drawn from the Gaussian process priors with the squared

exponential covariance function with different hyperparameters settings. The

increase in the horizontal length-scale from (a) to (b) produces more slowly fluc-

tuating functions and the increase in the vertical scale from (a) to (c) produces

functions that have larger deviation from zero. Figure 1.2 (a) and (b) show sam-

ples drawn from the Gaussian process priors with the exponential and Matérn

covariance function respectively with same hyperparameter settings, i.e. α = 1

and θ = 1. Note that, the functions in Figure 1.1 (a) are also sampled with the

same hyperparameter settings. One can see that the functions in Figure 1.2 (a)

are more rough than the ones in Figure 1.2 (b) and the functions in Figure 1.1

(a) are the smoothest among the three figures. The squared exponential and

exponential covariance functions both belong to the Matérn class of covariance

functions shown below (Stein, 1999, Rasmussen & Williams, 2006):
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K(xi , xj) = α2 21−ν

Γ(ν)

(√
2ν|xi − xj|

θ

)ν

Kν

(√
2ν|xi − xj|

θ

)
, (1.6)

where ν is a positive parameter and Kν is a modified Bessel function (Abramowitz

& Stegun, 1965, Section, 9.6). As ν → ∞, we obtain the smoothest covari-

ance function in the class, the squared exponential covariance function (1.2).

By setting ν = 1/2, we obtain the exponential covariance function (1.3) which

generates a very rough process. Figure 1.2 (c) shows samples drawn from the

Gaussian process priors with the periodic covariance function and the periodic

properties of the covariance function in Figure 1.2 (c) can clearly be seen.
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(a) Squared exponential covariance

function with α = 1 and θ = 1:

exp

(
− (x−x′)2
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(b) Squared exponential covariance

function with α = 1 and θ = 3:

exp
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− (x−x′)2

2(3)2

)

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

5

x

f(
x)

(c) Squared exponential covariance function with α = 3 and θ = 1:
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)

Figure 1.1: Samples drawn from Gaussian process priors. The figure shows

two functions (solid and dotted) drawn from each of three Gaus-

sian process priors with the squared exponential covariance func-

tion. The sample functions are obtained using a discretization of

the x-axis of 60 equally spaced points. The corresponding covari-

ance function is given below each plot.
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(a) Exponential covariance function

with α = 1 and θ = 1:
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(b) Matérn (ν = 3
2) covariance function

with α = 1 and θ = 1(
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√
3|x−x′|
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(c) Periodic covariance function with α = 1 and θ = 3. Period is 3:

exp
(
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Figure 1.2: Samples drawn from Gaussian process priors. The figure shows

two functions (solid and dotted) drawn from each of six Gaus-

sian process priors with different covariance functions. The func-

tions are obtained using a discretization of the x-axis of 60 and 100

equally spaced points for plots (a) and (b) and plot (f) respectively.

The corresponding covariance function is given below each plot.

1.5.4 Gaussian process prediction

In this section, we describe how one could draw samples from the Gaussian

process prior as well as predict function values at new points given observa-

tions.
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Given a set of inputs x1, x2, · · · , xn, we can draw samples f (x1), f (x2), · · · , f (xn)

from the Gaussian process prior distribution: f ∼ N(0, K(·, ·)), where f =

{ f (xn)}N
n=1. For example, Figure 1.3 shows 5 samples drawn from the GP prior

distribution.
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Prior

Figure 1.3: 5 random samples are generated from the GP with the same covari-

ance function, the squared exponential covariance function, where

the hyperparameters α = 1 and θ = 1. The samples are obtained

using a discretization of the x-axis of 60 equally spaced points.

We are not only interested in drawing samples from the prior, but also we want

to incorporate the knowledge that the new Gaussian inputs provide about the

function. Given a set of observed data D = {xn, f (xn)|n = 1, 2, · · · , N} =

{X, f}, at N∗ new points X∗, the predictive distribution of f∗ has the posterior

density, π(f∗|X∗, X, f). According to the GP prior distribution, the joint distri-

bution of f and f∗ is:
[

f

f∗

]
∼ N

(
0,

[
K(X, X) K(X, X∗)

K(X∗, X) K(X∗ , X∗)

])
,

where K(X, X∗) denotes the N × N∗ matrix of the covariances calculated at all

pairs of X and X∗, and similarly for the other entries K(X, X), K(X∗, X) and

K(X∗, X∗).

Then, conditioned on the GP prior distribution on the observations, the GP

posterior density π(f∗|X∗, X, f) can be obtained from the following expression:

f∗|X∗, X, f ∼ N
(

K(X∗ , X)K(X, X)−1f, K(X∗, X∗)− K(X∗, X)K(X, X)−1K(X, X∗)
)

.
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The derivation of the mean and covariance function is in Rasmussen and Williams

(2006), section A.2. Note that conditional distribution uses standard results on

multi-variate Normal distributions. Figure 1.4 shows 5 samples drawn from

the GP posterior distribution.
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Posterior (3 observations)

(−1.15,0)

(0.15,−1)

(1.15,0)

Figure 1.4: Given three observations (-1.15,0), (0.15,-1), (1.15,0), 5 random sam-

ples are generated from the Gaussian process with the same covari-

ance function, the squared exponential covariance function, where

the hyperparameters α = 1 and θ = 1. The samples are obtained

using a discretization of the x-axis of 60 equally spaced points.

Figure 1.3 and Figure 1.4 show that given the observations, the function adjusts

itself to pass through the given points and the posterior uncertainty would re-

duce close to the observations.

1.6 Overview

In this chapter, we presented some background information about parametric

and nonparametric inference for stochastic epidemic models. We also gave the

fundamentals of Bayesian inference and MCMC methods. We then discussed

Bayesian nonaprametric models and gave a description of Gaussian processes

that we will use in the following chapters.

The rest of this thesis develops Bayesian nonparametric methods for the SIR
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epidemic models in small populations and large populations respectively.

In Chapter 2, we explore the behaviour of the overall force of infection in a

Bayesian nonparametric framework. We draw inference for the overall force

of infection without making specific assumptions on its parametric functional

form and place a Gaussian process prior on the overall force of infection. Our

methods are illustrated with simulated datasets as well as the real outbreak

data. We also compare our findings with results obtained from other parametric

methods.

In Chapter 3, we develop Bayesian nonparametric methods for the infection

rate in small-scale epidemics. We relax the usual assumption that the infection

rate is constant throughout the whole epidemic and treat it as a function which

only depends on time. We place a Gaussian process prior on the infection rate

and apply the methods to simulated datasets and real outbreak data. Finally,

we compare our results with ones obtained from other parametric methods.

In Chapter 4, we apply our methods to large-scale epidemics. Epidemic time-

series data are used which consist of number of observed infection cases each

day or weeks, etc. For large epidemics in large populations, there is no op-

tion but to approximate the epidemic model since the number of infectives is

usually so large that it is not possible to augment the data with the times of

infection/removal of each case. We adapt an approximation method due to

Cauchemez & Ferguson (2008) to develop a Bayesian nonparametric method of

inference for epidemics in large populations. We place a Gaussian process prior

on the infection rates for each observation period and estimate them on the log

scale. Our methods are illustrated with a simulated dataset and real outbreak

data. Finally, we compare the results with ones obtained from Cauchemez &

Ferguson.

In Chapter 5, we review the thesis and any model limitations.
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Bayesian nonparametric estimation

for the overall force of infection in

small-scale epidemics

2.1 Introduction

It has been widely recognised that mathematical and statistical modelling has

become a valuable tool in the analysis of infectious disease dynamics by sup-

porting the development of control strategies, informing policy-making at the

highest levels, and in general playing a fundamental role in the fight against

the spread of disease. However, many standard modelling and data analysis

methods use underlying assumptions (e.g. concerning the rate at which new

cases of disease will occur) which are rarely challenged or tested in practice.

Our aim is to relax these assumptions by using ideas from Bayesian Nonpara-

metric Statistics. This allows us to analyse data from disease outbreaks without

making underlying assumptions which may not be appropriate, and in turn it

means that the conclusions taken from the analysis are more reliable.

There has been considerable research activity devoted to the development of

Bayesian nonparametric methods. Particularly, the methods have been fre-

quently applied in survival analysis. Nieto-Barajas & Walker (2004) investigate

a new class of nonparametric priors for modelling a cumulative distribution

function and hence model an unknown survival function in a Bayesian non-

parametric framework. Kottas (2006) develops a computational method to ob-
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tain the posterior distribution of general functionals of a Dirichlet process mix-

ture and model the survival distribution via a flexible Dirichlet process mixture,

with a Weibull kernel. Lorio et al. (2009) develop a Dependent Dirichlet Process

model for survival analysis data without conducting survival curve estimates

to satisfy the ubiquitous proportional hazards assumption.

Recently, Palacios & Minin (2013) extended advances in Gaussian process-based

nonparametric inference for Poisson processes (Adams et al., (2009)) and devel-

oped a method for estimating population size dynamics under the coalescent

in a Bayesian nonparametric framework.

However, to the best of our knowledge, there is no literature concerning Bayesian

nonparametric estimation for epidemics.

In the SIR model, during its infectious period, an individual makes contacts

with each of the N susceptibles at times given by the points of a homogeneous

Poisson process with rate β, a constant value. This implies that at time t, infec-

tion times are generated by an inhomogeneous Poisson process with rate βXtYt,

where Xt and Yt denote respectively the number of susceptibles and infectives

at time t. Such a rate is usually termed the overall force of infection in epidemic

modelling.

In this chapter, we will address the question of estimating the overall force of

infection in a Bayesian nonparametric framework given either complete obser-

vation of an epidemic (i.e. both infection and removal times) or partial obser-

vation, with just removals observed. Specifically, we relax the assumption of

the overall force of infection being of the form, βXtYt, and treat it as a function

which only depends on time, denoted by h(t). Inferring h(t) is equivalent to in-

ferring a function in a Bayesian framework, i.e. a prior is needed. As discussed

in Chapter 1, Section 1.5.2, Gaussian processes are used to describe a distribu-

tion over functions, we will take advantage of this and place Gaussian process

priors on h(t).

We will first introduce Bayesian nonparametric methods for inhomogeneous

Poisson processes introduced by Adams et al. (2009) in the first half of Section

2.2. In the second half of Section 2.2, we will adapt the methods from Adams et

al. to simulated Poisson datasets by using a Gaussian process to place a prior on

the inhomogeneous Poisson process intensity. We will then develop methods
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for the epidemic model estimation problem in section 3 and illustrate them as

applied to both artificial and real data. We will also carry out sensitivity analysis

by placing different Gaussian process priors on the overall force of infection of

an epidemic in Section 2.4. Finally, we finish with conclusions in Section 2.5.

2.2 Estimation for inhomogeneous Poisson process

2.2.1 Introduction

The Poisson process is one of the most widely studied and used models for

point data in time and space. The inhomogeneous Poisson process, a variant of

the Poisson process, allows the intensity to vary across its domain, e.g. time. In

inference problems, the functional form for the variation is usually unknown

in advance. In this setting, another stochastic process like a Gaussian process

(Rathbun & Cressie, 1994, Møller et al., 1998), Dirichlet process (Kottas & Sansó,

2007), etc. is usually introduced to describe nonparametrically the variation in

the Poisson intensity function. This construction is called a Cox process (Cox,

1955). A stochastic process is called a Gaussian Cox process if the intensity

function is a transformation of a random realization of a Gaussian process. By

placing a Gaussian process prior distribution on the intensity function, it is not

necessary to have a preconceived idea of the particular functional form. Un-

fortunately, however, for likelihood inference, we will have a problem when

integrating an infinite-dimensional random function. The problem will be dis-

cussed in detail in Section 2.2.4.1.

2.2.2 Sigmoidal Gaussian Cox process model

We aim to use a Gaussian process prior for the inhomogeneous Poisson pro-

cess intensity which is positive all the time. However, the output space for the

Gaussian process is the real line. Therefore, we need a transformation. Adams

et al. (2009) modified the Gaussian Cox process model in order to carry out

fully nonparametric Bayesian inference via MCMC. The model is called a Sig-

moidal Gaussian Cox Process (SGCP) since a sigmoid function is introduced to

transform random function values into a random intensity function λ(t) via the
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relationship

λ(t) = λ∗σ(g(t)), (2.1)

where λ∗ is an upper bound on λ(t), σ(·) is the logistic function, σ(z) = (1 +

e−z)−1, and g(·) is a random function which has a Gaussian process prior.

Given a mean function m(·) and a positive definite covariance function K(·)
parameterised by hyperparameters, α and θ, the function values g(t) can be

drawn from a multivariate Gaussian distribution.

2.2.3 Generating exact Poisson data

Lewis & Shedler (1979) present an algorithm for generating an inhomogeneous

Poisson process with intensity, λ(t), via thinning of a homogeneous Poisson

process. The main idea is to consider a realisation of points from a homoge-

neous Poisson process with intensity, λ, and accept or reject each point with

acceptance probability, λ(t)/λ, where λ(t) ≤ λ. Then the collection of accepted

points constructs a realisation of the inhomogeneous Poisson process with in-

tensity, λ(t).

We now describe the algorithm in detail for generating exact data from a time-

inhomogeneous Poisson process with intensity given by (2.1) via a thinning

method (Lewis & Shedler 1979, Adams et al. 2009). The “exact” means samples

generated are not biased, for instance, by the initial state of a Markov chain.

1. We simulate a set of event times {ŝj}J
j=1 from a homogeneous Poisson pro-

cess with rate λ∗ within a time region [0, T]. To achieve this, we sample J, the

number of events by drawing it from a Poisson distribution with parameter

λ∗T. Then we distribute the J events {ŝj}J
j=1 uniformly into [0, T] (Pasupathy,

2011).

2. We consider these events {ŝj}J
j=1 as input points for a Gaussian process and

draw samples {g(ŝj)}J
j=1 at the locations {ŝj}J

j=1. Specifically, we sample from

the distribution, π({g(ŝj)}J
j=1)|{ŝj}J

j=1, θ), where θ denotes the hyperparameter

in the covariance function.

3. We generate J uniform random variates on (0, 1), denoted by {rj}J
j=1 and

only accept the events for which rj < σ(g(ŝj)). Then the accepted events form

the exact Poisson data which are drawn from an inhomogeneous Poisson pro-
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cess with an intensity function λ.

Note that λ is the result of applying (2.1) to a random function g drawn from a

Gaussian process. The algorithm is also applicable if the intensity λ is known.

Given a particular intensity function λ, when simulating data, the probability

of accepting the events is λ(ŝj)/λ∗ instead of σ(g(ŝj)). Examples can be found

in Adams et al. (2009). Figure 2.1 shows the procedure for generating exact

Poisson data via a thinning method.

2.2.4 Inference

We now investigate the posterior distribution of λ given a set of observed data,

denoted by {sk}K
k=1, using the SGCP model as the prior. Here, sk is assumed to

be a time within a region [0, T].

2.2.4.1 Doubly intractable problem

In terms of Bayes’ Theorem, the posterior density for λ given the data {sk}K
k=1

is

π(λ|{sk}K
k=1) = π(g|λ∗ , {sk}K

k=1)

=
GP(g) exp{−

∫ T
0 λ∗σ(g(s))ds}∏kλ∗σ(g(sk))∫

GP(g) exp{−
∫ T

0 λ∗σ(g(s))ds}∏kλ∗σ(g(sk))dg
, (2.2)

where g denotes the infinite-dimensional object corresponding to g(t) and GP
denotes a Gaussian process prior on g. It is notable that (2.2) is intractable due

to the presence of an intractable integral over [0, T] in the numerator and an in-

tractable integral over possible values of g in the denominator. Particularly, the

value of the integral over g is a function of the parameters, g, the variables being

sampled. Such problem makes the posterior (2.2) doubly intractable (Murray,

2007). Therefore, performing MCMC inference directly via the posterior den-

sity for λ is an intractable problem.
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Figure 2.1: Procedure for generating exact Poisson data via a thinning method.

A Poisson time series, {ŝj}J
j=1 (+ and ∗ marks), is generated from

a homogeneous Poisson process with rate, λ∗. At each point of the

time series, a sample, g(ŝj), is drawn from the Gaussian process.

Then the function value is transformed through the sigmoid func-

tion so that it is in form of λ∗σ(g(ŝj)) (◦ marks) and is positive and

bounded above by λ∗. Variates, {λ∗rj}J
j=1 (× marks), are drawn

uniformly on (0, λ) in the vertical coordinate. If the variates are

greater than the transformed function values, the corresponding

events are discarded (+ marks). The remaining events, {sj}J
j=1 (∗

marks), are the exact Poisson events generated from the inhomoge-

neous Poisson process corresponding to the random function, λ(s).
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2.2.5 Data augmentation

To solve the problem above, Adams et al. (2009) adopt a data-augmentation

approach to make the Markov chain tractable, as follows. Specifically, con-

sider augmenting the observed data with the following variables: the number

of thinned events, M, the locations of thinned events, {s̃m}M
m=1, the function

values at the observed data, gK = (g(s1), g(s2), · · · , g(sK)) and the function

values at the thinned events, gM = (g(s̃1), g(s̃2), · · · , g(s̃M)). We can sample

the above parameters from the joint distribution with density

π({sk}K
k=1, M, {s̃m}M

m=1, gM+K|λ∗, T, θ)

= (λ∗)M+K exp{−λ∗T}
K

∏
k=1

σ(g(sk))
M

∏
m=1

σ(−g(s̃m))× π(gM+K|{sk}K
k=1, {s̃m}M

m=1, θ),

(2.3)

where gM+K denotes a vector concatenating gM and gK. More specifically, we

can sample λ∗, M, {s̃m}M
m=1, gM+K as well as θ respectively from the full condi-

tional distributions (2.4), (2.5), (2.6), (2.7) and (2.8). We have that

π(λ∗|M, T, {sk}K
k=1) ∝ (λ∗)K+M−1 exp{−λ∗T} × π(λ∗), (2.4)

π(M, {s̃m}M
m=1, gM|λ∗, gK, {sk}K

k=1, θ, T)

∝ (λ∗)M
M

∏
m=1

σ(−g(s̃m))× π(gM+K |{sk}K
k=1, {s̃m}M

m=1, θ), (2.5)

π({s̃m}M
m=1, gM|λ∗, gK, {sk}K

k=1, M, θ, T)

∝
M

∏
m=1

σ(−g(s̃m))× π(gM+K |{sk}K
k=1, {s̃m}M

m=1, θ), (2.6)

π(gM+K |M, {sk}K
k=1, {s̃m}M

m=1, θ)

∝
K

∏
k=1

σ(g(sk))
M

∏
m=1

σ(−g(s̃m))× π(gM+K |{sk}K
k=1, {s̃m}M

m=1, θ), (2.7)
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π(θ|M, gM+K , {sk}K
k=1, {s̃m}M

m=1)

∝ π(gM+K |{sk}K
k=1, {s̃m}M

m=1, θ)× π(θ). (2.8)

2.2.6 MCMC sampling

We here describe in detail a procedure of updating parameters via an MCMC

algorithm for inference of the inhomogeneous Poisson process intensity. The

algorithm for updating the upper bound parameter, λ∗, the number of thinned

events, M, and the locations of thinned events, {s̃m}M
m=1, is the same in Adams

et al. (2009). However, the algorithm for updating function values, gM+K, and

the hyperparameters, α and θ, is different. Adams et al. adopted Hamiltonian

Monte Carlo methods for inference of the function values and the hyperpa-

rameters and obtained good mixing of the Markov chain. We used a standard

MCMC algorithm which is much easier to implement.

1. Updating the upper bound parameter, λ∗

We use a Gibbs step to update λ∗. As the locations of the observed data and

the thinned events are drawn from a homogeneous Poisson process on time

region [0, T] with rate λ∗, the mean of λ∗ is K+M
T , where K is the number of ob-

served data and M is the number of thinned events. According to (2.4), with the

gamma prior Γ(αλ, βλ) put on λ∗, we can sample λ∗ from the full conditional

distribution, Γ(αλ + K + M, βλ + T).

2. Updating the number of thinned events, M

We use a Metropolis-Hastings step to sample from the full conditional dis-

tribution of the number of thinned events, see (2.5). We choose an insertion

move or a deletion move each with probability 1
2 . For the insertion move, we

propose a new location l′ which is uniformly sampled from [0, T] and then

draw a corresponding function value g(l′) from the conditioned multivariate

Gaussian distribution at l′. Specifically, we sample g(l′) from the distribution

given by π(g(l′)|l′, gM+K, {sk}K
k=1, {s̃m}M

m=1, θ), where K(l′, S)K(S, S)−1gM+K

and K(l′, l′)− K(l′, S)K(S, S)−1K(S, l′) are the mean and variance of the distri-

bution, where S = (s1, s2, · · · , sK, s̃′1, s̃′2, · · · , s̃′M) denotes locations of observed

data and thinned events. The new value can be seen as a prediction of the Gaus-
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sian process. For the deletion move, a thinned event l, is uniformly selected and

removed from the current M events. We note that the set of {s̃m}M
m=1 and gM

are updated correspondingly when updating the number of thinned events, M.

Below is the derivation of the probability of acceptance for the insertion and

deletion move.

• Insertion move:

The forward and backward densities are:

q(M→M′) =
1

2
× 1

T
× π(g(l′)|l′, gM+K, {sk}K

k=1, {s̃m}M
m=1, θ),

q(M′→M) =
1

2
× 1

M′ .

The acceptance ratio is

q(M′→M)

q(M→M′)
× π(M′, {s̃m}M′

m=1, g′
M+K|{sk}K

k=1, θ, λ∗)

π(M, {s̃m}M
m=1, gM+K|{sk}K

k=1, θ, λ∗)

=
1
2 × 1

M′
1
2 × 1

T × π(g(l′)|l′, gM+K, {sk}K
k=1, {s̃m}M

m=1, θ)

× (λ∗)M′+K ∏
K
k=1 σ(g(sk))∏

M′
m=1 σ(−g(s̃m))× π(g′

M+K |{sk}K
k=1, {s̃m}M′

m=1, θ)

(λ∗)M+K ∏
K
k=1 σ(g(sk))∏

M
m=1 σ(−g(s̃m))× π(gM+K |{sk}K

k=1, {s̃m}M
m=1, θ)

.

As M′ = M + 1 and

π(g′
M+K |{sk}K

k=1, {s̃m}M′
m=1, θ)

= π(gM+K |{sk}K
k=1, {s̃m}M

m=1, θ)× π(g(l′)|l′, gM+K, {sk}K
k=1, {s̃m}M

m=1, θ),

the acceptance ratio is simplified to
T×λ∗×σ(−g(l ′))

M+1 .

If the move is accepted, the proposal l′ and the corresponding function value

g(l′) will be added to the set of {s̃m}M
m=1 and gM respectively.

• Deletion Move:

The forward and backward densities are:

q(M→M′) =
1

2
× 1

M
,
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q(M′→M) =
1

2
× 1

T
× π(g(l)|l, g′

M+K , {sk}K
k=1, {s̃m}M′

m=1, θ).

The acceptance ratio is

q(M′→M)

q(M→M′)
× π(M′, {s̃m}M′

m=1, g′
M+K|{sk}K

k=1, {s̃m}M
m=1, gM+K, θ, λ∗)

π(M, {s̃m}M
m=1, gM+K|{sk}K

k=1, θ, λ∗)

=
1
2 × 1

T × π(g(l)|l, g′
M+K , {sk}K

k=1, {s̃m}M′
m=1, θ)

1
2 × 1

M

× (λ∗)M′+K ∏
K
k=1 σ(g(sk))∏

M′
m=1 σ(−g(s̃m))× π(g′

M+K |{sk}K
k=1, {s̃m}M′

m=1, θ)

(λ∗)M+K ∏
K
k=1 σ(g(sk))∏

M
m=1 σ(−g(s̃m))× π(gM+K |{sk}K

k=1, {s̃m}M
m=1, θ)

.

As M′ = M − 1 and

π(gM+K|{sk}K
k=1, {s̃m}M

m=1, θ)

= π(g′
M+K |{sk}K

k=1, {s̃m}M′
m=1, θ)× π(g(l)|l, g′

M+K , {sk}K
k=1, {s̃m}M′

m=1, θ),

the acceptance ratio is simplified to M
T×λ∗×σ(−g(l))

.

If the move is accepted, the chosen thinned event l and the corresponding func-

tion value g(l) will be discarded from the set of {s̃m}M
m=1 and gM respectively.

3. Updating locations of thinned events, {s̃m}M
m=1

We use a Metropolis-Hastings step to sample from the full conditional distri-

bution, (2.6). We first uniformly draw a new location l′ from [0, T] and then

draw a new function value g(l′) from the Gaussian process, conditioned on

the current gM+K. Specifically, we sample g(l′) from the conditional distribu-

tion, π(g(l′)|l′, gM+K, {sk}K
k=1, {s̃m}M

m=1, θ), and the mean and variance of this

distribution are K(l′, S)K(S, S)−1gM+K and K(l′, l′)− K(l′, S)K(S, S)−1K(S, l′)

respectively. Then one of the existing thinned events is selected uniformly at

random and replaced by the proposed new values. The forward and backward

densities for this move are:

q(l→l′) =
1

M
× 1

T
× π(g(l′)|l′, gM+K, {sk}K

k=1, {s̃m}M
m=1, θ),

q(l′→l) =
1

M′ ×
1

T
× π(g(l)|l, g′

M+K , {sk}K
k=1, {s̃m}M′

m=1, θ).

30



CHAPTER 2: BAYESIAN NONPARAMETRIC ESTIMATION FOR THE

OVERALL FORCE OF INFECTION IN SMALL-SCALE EPIDEMICS

The acceptance ratio is

q(l′→l)

q(l→l′)
× π({s̃m}M′

m=1, g′
M+K|{sk}K

k=1, {s̃m}M
m=1, gM+K, θ)

π({s̃m}M
m=1, gM+K|{sk}K

k=1, θ)

=
1

M′ × 1
T × π(g(l)|l, g′

M+K , {sk}K
k=1, {s̃m}M′

m=1, θ)
1
M × 1

T × π(g(l′)|l′, gM+K, {sk}K
k=1, {s̃m}M

m=1, θ)

×
∏

K
k=1 σ(g(sk))∏

M
m=1 σ(−g(s̃m))× σ(−g(l ′))

σ(−g(l))
× π(g′

M+K |{sk}K
k=1, {s̃m}M′

m=1, θ)

∏
K
k=1 σ(g(sk))∏

M
m=1 σ(−g(s̃m))× π(gM+K|{sk}K

k=1, {s̃m}M
m=1, θ)

.

As M′ = M and

π(g′
M+K |{sk}K

k=1, {s̃m}M′
m=1, θ)× π(g(l)|l, g′

M+K , {sk}K
k=1, {s̃m}M′

m=1, θ)

= π(gM+K |{sk}K
k=1, {s̃m}M

m=1, θ)× π(g(l′)|l′, gM+K, {sk}K
k=1, {s̃m}M

m=1, θ),

the acceptance ratio is simplified to
σ(−g(l ′))
σ(−g(l))

.

If the move is accepted, the old value l and g(l) will be replaced by the pro-

posal l′ and the corresponding value g(l′), respectively.

4. Updating function values, gM+K

Given the observed data {sk}K
k=1, the thinned events {s̃m}M

m=1 and the current

hyperparameter θ, we wish to sample from the distribution on the function

values gM+K, see (2.7). We propose new function values g′
M+K by a proposal

of the form g′
M+K = δgM+K +

√
1 − δ2hM+K, where hM+K is drawn from the

Gaussian process at {sk}K
k=1 and {s̃m}M

m=1 and δ is in [0, 1). Specifically, we sam-

ple hM+K from the distribution π(hM+K|{sk}K
k=1, {s̃m}M

m=1, θ). This mechanism

is an underrelaxed MCMC method discussed by Adams et al.(2009). Such a

method is used to keep the contribution of the current function values on some

level δ when making proposals. One needs to choose a large δ (which is near

one) to obtain a good acceptance ratio when the number of the parameters is

large. If we obtain the candidate function values g′
M+K by simply drawing sam-

ples from the Gaussian process, we may have a very low acceptance ratio of the

proposal as the Gaussian process typically defines a narrow mass (Adams et al.,

2009) and it will become worse with increase of the number of the parameters.
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To calculate the acceptance probability, first note that

π(gM+K |M, {sk}K
k=1, {s̃m}M

m=1, θ, λ∗, T)

∝
K

∏
k=1

σ(g(sk))
M

∏
m=1

σ(−g(s̃m))× π(gM+K |{sk}K
k=1, {s̃m}M

m=1, θ).

We shall abbreviate π(gM+K |M, {sk}K
k=1, {s̃m}M

m=1, θ, λ∗, T) by π(gM+K) and

π(g′
M+K |M, {sk}K

k=1, {s̃m}M
m=1, θ, λ∗, T) by π(g′

M+K). Then the acceptance ratio

is

π(g′
M+K)

π(gM+K)
× q(g′

M+K→gM+K)

q(gM+K→g′
M+K)

=
∏

K
k=1 σ(g′(sk))∏

M
m=1 σ(−g′(s̃m))× π(g′

M+K |{sk}K
k=1, {s̃m}M

m=1, θ)

∏
K
k=1 σ(g(sk))∏

M
m=1 σ(−g(s̃m))× π(gM+K |{sk}K

k=1, {s̃m}M
m=1, θ)

× π(gM+K |{sk}K
k=1, {s̃m}M

m=1, θ)

π(g′
M+K |{sk}K

k=1, {s̃m}M
m=1, θ)

=
∏

K
k=1 σ(g′(sk))∏

M
m=1 σ(−g′(s̃m))

∏
K
k=1 σ(g(sk))∏

M
m=1 σ(−g(s̃m))

.

Acceptance ratios generally simplify as we propose from the GP conditional

density which appears in the likelihood so that cancellation occurs.

5. Updating the hyperparameter, θ

As we set the hyperparameter α to a certain value for our case, we only need

to sample from the posterior distribution on the hyperparameter θ in the co-

variance function. The full conditional distribution is given in (2.8). We assign

an exponential prior on θ, i.e. θ∼Exp(λθ). Then we propose a new θ′ from

a normal distribution with mean, the current value of θ and variance, σ2. Let

Σθ denotes the covariance matrix with the hyperparameter θ. The Metropolis-

Hastings acceptance ratio for this proposal is

π(θ′|M, gM+K, {sk}K
k=1, {s̃m}M

m=1, λ∗, T)

π(θ|M, gM+K , {sk}K
k=1, {s̃m}M

m=1, λ∗, T)
× q(θ′→θ)

q(θ→θ′)

=
π(gM+K |{sk}K

k=1, {s̃m}M
m=1, θ′)× π(θ′)

π(gM+K |{sk}K
k=1, {s̃m}M

m=1, θ)× π(θ)
× exp(−(θ′ − θ)2/2σ2)

exp(−(θ − θ′)2/2σ2)

=
π(gM+K |{sk}K

k=1, {s̃m}M
m=1, θ′)× λθ exp(−λθθ′)

π(gM+K |{sk}K
k=1, {s̃m}M

m=1, θ)× λθ exp(−λθθ)

=
|Σθ′ |−

1
2 × exp(−gM+K

TΣθ′
−1gM+K/2 − λθθ′)

|Σθ |−
1
2 × exp(−gM+K

TΣθ
−1gM+K/2 − λθθ)

.
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2.2.7 Simulated Poisson data study

We first apply our methods to simulated Poisson datasets generated from an

inhomogeneous Poisson process with random intensity λ(t). We choose the

squared exponential covariance function for the Gaussian process prior and fix

the hyperparameter, α, to the truth, α = 1, i.e. we only update the hyperpa-

rameter, θ, in the covariance function. We have applied the methods to several

different data sets. We here choose 3 of our results to show that our approach

works fairly well. Figures 2.2 (a), 2.3 (a) and 2.4 (a) give the posterior mean of

λ(t) for different data sets. It is notable that the true λ(t) values in 2.2 (a) and 2.3

(a) are generated from the transformed Gaussian process with the same param-

eter setting. However, they are different due to the random Gaussian process.

For the computer implementation of the algorithm, the run times of 30000 it-

erations were around 3 hours and 1.2 hours for the first 2 results and the last

one respectively. The MCMC trace plot of the hyperparameter θ is shown in

Figures 2.2 (b), 2.3 (b) and 2.4 (b). We also apply our methods to simulated

Poisson datasets generated from a constant intensity function λ(t) = b, where

b is a constant. Such Poisson data are homogeneous as there are no rejections

during the procedure of generating the inhomogeneous Poisson data from the

initial homogeneous Poisson data. We shall expect that the estimated intensity

is quite flat. Figure 2.5 and 2.6 show posterior means of the estimated intensity

λ(t) with 95% credible intervals. The “ | ” marks give locations of the Poisson

events. From the results obtained, we can see that our methods work fairly

well. Specifically, the estimated intensities appear to recover the truth and are

covered by the 95% credible intervals.
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Figure 2.2: Plot (a) shows posterior mean of the inhomogeneous Poisson pro-

cess intensity λ(t) at each Poisson point compared with the true

λ(t) generated from a transformed Gaussian process (see (2.1))

given by λ∗ = 60, T = 7 and a zero mean and a value of hyper-

parameter, θ = 1.5, for the Gaussian process. The Poisson data are

shown by “ | ” marks. The 95% credible intervals are shown as

well. Plot (b) shows the MCMC trace plot of the hyperparameter θ

compared with the true θ (dotted line) for the first Poisson data set.
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Figure 2.3: Plot (a) shows posterior mean of the inhomogeneous Poisson pro-

cess intensity λ(t) at each Poisson point compared with the true

λ(t) generated from a transformed Gaussian process given by

λ∗ = 60, T = 7 and a zero mean and a value of hyperparameter,

θ = 1.5, for the Gaussian process. The Poisson data are shown by

“ | ” marks. The 95% credible intervals are shown as well. Plot 2.3

(b) shows the MCMC trace plot of the hyperparameter θ compared

with the true θ (dotted line) for the second Poisson data set.
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Figure 2.4: Plot (a) shows posterior mean of the inhomogeneous Poisson pro-

cess intensity λ(t) at each Poisson point compared with the true

λ(t) generated from a transformed Gaussian process given by λ∗ =

40, T = 5 and a zero mean and a value of hyperparameter, θ = 1.5,

for the Gaussian process. The Poisson data are shown by “ | ”

marks. The 95% credible intervals are shown as well. Plot 2.4 (b)

shows the MCMC trace plot the hyperparameter θ compared with

the true θ (dotted line) for the third Poisson data set.
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Figure 2.5: Posterior mean of the inhomogeneous Poisson process intensity

λ(t) at each Poisson point compared with the truth λ(t) = 10 (dot-

ted line). The Poisson data (“ | ” marks) are generated from the

intensity λ(t) = 10 within a time region [0, 10].
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Figure 2.6: Posterior mean of the inhomogeneous Poisson process intensity

λ(t) at each Poisson point compared with the truth λ(t) = 10 (dot-

ted line). The Poisson data, different from the one in Figure 2.5, (“

| ” marks) are generated with the same parameter setting, i.e. from

the intensity λ(t) = 10 within a time region [0, 10].

2.3 Estimation for epidemic models

For real life epidemics, data concerning the process of infection are seldom

available, i.e. only removal times are observed. We have discussed Bayesian

inference for the SIR model in Chapter 1 by assuming infections occur accord-

ing to an inhomogeneous Poisson process with rate βXtYt, at time t, where Xt

and Yt refer to the number of susceptibles and infectives respectively at time t.

Recall that βXtYt is termed the overall force of infection in epidemic modelling.

We now investigate the overall force of infection of the SIR model nonparamet-

rically in a Bayesian framework. We relax the assumption of the overall force

of infection being βXtYt and treat it as a function which only depends on time,

denoted by h(t). Then the epidemic can be described according to the following

transition probabilities:

P[Xt+δt = Xt − 1, Yt+δt = Xt + 1|Ht] = h(t)δt + o(δt),

P[Xt+δt = Xt, Yt+δt = Yt − 1|Ht] = γYtδt + o(δt),

P[Xt+δt = Xt, Yt+δt = Yt|Ht] = 1 − h(t)δt − γYtδt + o(δt).
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Let the observed (ordered) successive removal times be τ = (τ1 = 0, τ2, · · · , τK),

these being the times of all the removals during [0, T] where τ1 ≤ τ2 ≤ · · · ≤
τK and T > 0. Let I1 be the unobserved time of the first infection and let

I = (I2, I3, · · · , IK) denote the remaining unobserved successive infection times

during [I1, T], where I1 ≤ I2 ≤ · · · ≤ IK. As we assume the epidemic is known

to have ceased, the number of infection times and removal times are equal. If

the initial infective does not manage to infect any other susceptible by the first

removal time, τ1, the epidemic is ceased. Therefore, in order to obtain epi-

demics with n ≤ 2, the following constrains are imposed: Ii < Ii+1 < τi, for

i = 2, 3, · · · , K − 1. Conditionally on the overall force of infection, h(t), the re-

moval rate, γ, and the first infection time, I1, we can write the density of (τ , I)

as

π(τ , I|h(t), γ, I1)

=
K

∏
j=2

h(Ij−) exp

{
−
∫ T

I1

h(s)ds

}
×

K

∏
i=1

γYτi− exp

{
−
∫ T

I1

γYsds

}
. (2.9)

We now place a Gaussian process prior on h(t) via the SGCP model, i.e.

h(t) = h∗σ(g(t)),

where h∗ refers to an upper bound on h(t), σ(·) refers to the logistic function,

σ(z) = (1 + e−z)−1 and g(·) refers to a random function which has a Gaus-

sian process prior with mean function 0 and covariance function with hyper-

parameter, θ, and we assume the hyperparameter, α, is fixed to 2 for this case.

According to Bayes’ Theorem, we write the posterior distribution over h(t) as

π(h|τ , I, I1, T, γ) = π(g|h∗, τ , I, I1, T, γ)

=
GP(g)∏

K
j=2 h∗σ(g(Ij−)) exp{−

∫ T
I1

h∗σ(g(s))ds}∏
K
i=1 γYτi− exp{−

∫ T
I1

γYsds}
∫
GP(g)∏

K
j=2 h∗σ(g(Ij−)) exp{−

∫ T
I1

h∗σ(g(s))ds}∏
K
i=1 γYτi− exp{−

∫ T
I1

γYsds}dg
,

(2.10)

where h and g denote the infinite-dimensional objects corresponding to h(t)

and g(t). We now have a similar problem, i.e. doubly-intractable, as we had

for the case discussed in Section 2.2. To tackle this, we augment the posterior

distribution shown in (2.10) considering the overall force of infection, h(t), as
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an inhomogeneous Poisson process intensity. More precisely, we consider aug-

menting the observed data with the following variables: the number of thinned

events, M, the locations of thinned events, { Ĩs}M
s=1, the function values at the

infection times, gK = (g(I2−), g(I3−), · · · , g(IK−)) and the function values at

the thinned events, gM = (g( Ĩ1−), g( Ĩ2−), · · · , g( ĨM−)). We then can sample the

parameters as well as the additional latent variables from the joint distribution

below.

π(τ , I, M, { Ĩs}M
s=1, gM+K|h∗, γ, I1, T, θ)

∝ (h∗)K+M−1 exp(−h∗(T − I1))
K

∏
j=2

σ(g(Ij−))
M

∏
s=1

σ(−g( Ĩs−))

×
K

∏
i=1

γYτi− exp

{
−
∫ T

I1

γYsds

}
× π(gM+K|M, I, { Ĩs}M

s=1, θ), (2.11)

where gM+K denotes a vector concatenating of gM and gK. It is notable that we

only have K − 1 elements in the vector gK since we do not model the function

value at the first infection time.

2.3.1 MCMC algorithms

1. Sampling γ

Considering (2.11), we have the full conditional density of γ

π(γ|τ , I, I1, h(t)) ∝
K

∏
i=1

γYτi− exp

{
−
∫ T

I1

γYsds

}
π(γ), (2.12)

where π(γ) denotes a prior on γ. According to the algorithms developed by

O’Neill & Roberts (1999), we use a Gibbs step to sample from the distribution

(2.12). With a conjugate gamma prior (νγ, λγ) put on γ, we have

π(γ|τ , I, I1, h(t)) ∝ Γ

(
νγ + K, λγ +

∫ T

I1

Ysds

)
.

2. Sampling I1

We use a Gibbs step to sample from the desired distribution. Suppose that

I1 has prior density given by η exp(ηy)I(y < 0), where η > 0, and I(·) is the

indicator function. Following from (2.11) and the fact that I1 < I2, conditionally
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on τ , I, h(t) and γ, the density of I1 is as follows:

π(y|τ , I, h(t), γ) = Λ exp{−Λ(I2 − y)}, y ∈ (−∞, I2),

where Λ = η + γ + h(I2−) ∗ N.

3. Sampling I

Considering (2.11), we write the full conditional density of I

π(I, gK |τ , M, { Ĩs}M
s=1, gM, h∗, γ, I1, T, θ)

∝
K

∏
j=2

σ(g(Ij−))×
K

∏
i=1

Yτi− exp

{
−
∫ T

I1

γYsds

}
× π(gM+K |M, I, { Ĩs}M

s=1, θ).

(2.13)

According to the method presented by O’Neill & Roberts (1999), we sample

from the distribution (2.13) using a Metropolis-Hastings algorithm. We first

uniformly draw a new location I ′j from [I1, T] and then draw a new function

value g(I ′j−) from the Gaussian distribution, conditioned on the current gM+K.

Specifically, the distribution is π(g(I ′j−)|I ′j , gM+K, I, { Ĩs}M
s=1, θ), with the mean

and variance K(I ′j , X)K(X, X)−1gM+K and K(I ′j , I ′j)−K(I ′j , X)K(X, X)−1(X, I ′j ) re-

spectively, where X = (I2, I3, · · · , IK, Ĩ1, Ĩ2, · · · , ĨM) denotes locations of infec-

tion times and thinned events. Then one of the existing infection times, Ij, is

selected uniformly at random and replaced by the proposed new values. We

shall write I′ to denote the set of infection times I with the selected Ij excluded

and with the proposed I ′j included, i.e. I′ = I − {Ij}+ {I ′j}. The forward and

backward densities are:

q(Ij→I ′j) =
1

K − 1
× 1

T − I1
× π(g(I ′j−)|I ′j , gM+K, I, { Ĩs}M

s=1, θ),

q(I ′j→Ij) =
1

K − 1
× 1

T − I1
× π(g(Ij−)|Ij, g′

M+K, I′, { Ĩs}M
s=1, θ).

We abbreviate π(I, gK |{τi}K
i=1, M, { Ĩs}M

s=1, gM, β∗, γ, I1, T, θ) by π(I, gK). Then
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the acceptance ratio is

q(I ′j→Ij)

q(Ij→I ′j)
×

π({I ′j}K
j=2, g′

K)

π({Ij}K
j=2, gK)

=
1

K−1 × 1
T−I1

× π(g(Ij−)|Ij, g′
M+K, I′, { Ĩs}M

s=1, T, θ)

1
K−1 × 1

T−I1
× π(g(I ′

j−)|I ′j , gM+K, I, { Ĩs}M
s=1, T, θ)

×
∏

K
j=2 σ(g(I ′j−))

∏
K
j=2 σ(g(Ij−))

×
∏

K
i=1 Y′

τi−
exp{−

∫ T
I1

γY′
sds} × π(g′

M+K|I′, { Ĩs}M
s=1, θ)

∏
K
i=1 Yτi− exp{−

∫ T
I1

γYsds} × π(gM+K |I, { Ĩs}M
s=1, θ)

.

As

π(g′
M+K|I′, { Ĩs}M

s=1, θ)× π(g(Ij−)|Ij, g′
M+K, I′, { Ĩs}M

s=1, θ)

= π(gM+K |I, { Ĩs}M
s=1, θ)× π(g(I ′j−)|I ′j , gM+K, I, { Ĩs}M

s=1, θ),

the acceptance ratio is simplified to

σ(g(I ′j−))

σ(g(Ij−))
×

∏
K
i=1 Y′

τi−
exp{−

∫ T
I1

γY′
sds}

∏
K
i=1 Yτi− exp{−

∫ T
I1

γYsds}
.

4. Sampling h∗

According to (2.11), we have the full conditional density of h∗

π(h∗|M, I1, T, I) ∝ (h∗)K+M−1 exp{−h∗(T − I1)}π(h∗),

where π(h∗) is a prior on h∗. We use a Gibbs step to sample h∗. With a

conditionally-conjugate gamma prior Γ(νh, λh) put on h∗, we can sample from

the full conditional distribution, Γ(νh + K + M − 1, λh + T − I1).

5. Sampling M

Similar to the algorithm discussed in Section 2.2.5, we use a Metropolis-Hastings

step to sample from the full conditional distribution of the number of thinned

events below

π(M, { Ĩs}M
s=1, gM|h∗, gK, I, θ, I1, T)

∝ (h∗)M
M

∏
s=1

σ(−g( Ĩs−))× π(gM+K|I, { Ĩs}M
s=1, θ).

There are insertion move and deletion move each with probability 1
2 . For the

insertion move, we propose a new location Ĩ ′s which is uniformly sampled from
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[I1, T] and then draw a corresponding function value g( Ĩ ′s−) from the condi-

tioned multivariate Gaussian distribution at Ĩ ′s. Specifically, the distribution is

π(g( Ĩ ′s− )| Ĩ ′s, gM+K, {Ij}K
j=2, { Ĩs}M

s=1, θ), and the mean and variance of this dis-

tribution are K( Ĩ ′s, X)K(X, X)−1gM+K and K( Ĩ ′s, Ĩ ′s) − K( Ĩ ′s, X)K(X, X)−1K(X, Ĩ ′s)

respectively. The new value can be seen as a prediction of Gaussian process.

For the deletion move, a thinned event Ĩs, is uniformly selected and removed

from the current M events. The Metropolis-Hastings acceptance ratio for the

insertion and deletion move is respectively:

(T − I1)× h∗ × σ(−g( Ĩ ′s−))
M + 1

,

and
M

(T − I1)× β∗ × σ(−g( Ĩs−))
.

The derivation of the acceptance ratio for both moves is similar to the case dis-

cussed in Section 2.2.5 and will not be given here.

6. Sampling { Ĩs}M
s=1

We use a Metropolis-Hastings step to perform sampling from the full condi-

tional distribution of { Ĩs}M
s=1 below.

π({ Ĩs}M
s=1, gM|h∗, gK, I, M, θ, I1, T)

∝
M

∏
s=1

σ(−g( Ĩs−))× π(gM+K|I, { Ĩs}M
s=1, θ).

We first uniformly draw a new location Ĩ ′s from [I1, T]. Conditioned on the

current gM+K, we then draw a new function value g( Ĩ ′s−) from the multivariate

Gaussian distribution, given by π(g( Ĩ ′s−)| Ĩ ′s, gM+K, I, { Ĩs}M
s=1, θ), with the mean

and variance K( Ĩ ′s, X)K(X, X)−1gM+K and K( Ĩ ′s, Ĩ ′s) − K( Ĩ ′s, X)K(X, X)−1K(X, Ĩ ′s)

respectively. Then one of the existing thinned events is selected uniformly at

random and replaced by the proposed new values. The Metropolis-Hastings

acceptance ratio is
σ(−g( Ĩ ′

s−))

σ(−g( Ĩs−))
.

7. Sampling gM+K

Given the infection times, I, the locations of thinned events, { Ĩs}M
s=1, and the

current hyperparameter, θ, we wish to sample from the full conditional distri-

41



CHAPTER 2: BAYESIAN NONPARAMETRIC ESTIMATION FOR THE

OVERALL FORCE OF INFECTION IN SMALL-SCALE EPIDEMICS

bution of function values, gM+K, below.

π(gM+K |M, I, { Ĩs}M
s=1, θ)

∝
K

∏
j=2

σ(g(Ij−))
M

∏
s=1

σ(−g( Ĩs−))× π(gM+K |I, { Ĩs}M
s=1, θ).

We use a Metropolis-Hastings step to sample gM+K. By using the underrelaxed

MCMC method discussed in Section 2.2.5, we propose new function values

g′
M+K by a proposal of the form g′

M+K = δgM+K +
√

1 − δ2hM+K, where hM+K

is drawn from the Gaussian process at I and { Ĩs}M
s=1 and δ is in [0, 1). Specif-

ically, we sample hM+K from the distribution π(hM+K |I, { Ĩs}M
s=1, θ). The new

function values are accepted with probability

min

(
1,

∏
K
j=2 σ(g′(Ij−))∏

M
s=1 σ(−g′( Ĩs−))

∏
K
j=2 σ(g(Ij−))∏

M
s=1 σ(−g( Ĩs−))

)
.

8. Sampling θ

As we fix the hyperparameter α for our case, we only need to sample from the

full conditional distribution of the hyperparameter, θ, given below.

π(θ|M, gM+K , I, { Ĩs}M
s=1) ∝ π(gM+K|I, { Ĩs}M

s=1, θ)× π(θ),

where π(θ) is a prior on θ. We assign an exponential prior on θ, i.e. θ∼Exp(λθ).

Then we propose a new θ′ from a normal distribution with mean, the current

value of θ and variance, σ2. The Metropolis-Hastings acceptance ratio for this

proposal is

=
|Σθ′ |−

1
2 × exp(−gM+K

TΣθ′
−1gM+K/2 − λθθ′)

|Σθ |−
1
2 × exp(−gM+K

TΣθ
−1gM+K/2 − λθθ)

.

For the MCMC algorithms discussed above, the standard deviations of the pro-

posals were tuned to obtain an acceptance rate of 20-30%.

2.3.2 Simulated complete data

We now simulate a general stochastic epidemic with parameters infection rate,

removal rate (in the SIR model, removals occur at rate γXt, where γ is removal

rate), initial number of susceptibles and initial number of infective individuals.
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We first assume that we obtain a set of infection times. Then we can derive

the duration of the process, V, i.e. V = last removal time - first infection time.

We shall use these data to consider a scenario that the epidemic is known to be

completed, i.e. infection times are known. We choose the squared exponential

covariance function for the Gaussian process prior and the hyperparameter α is

fixed to 2 in order to obtain efficient mixing of the MCMC algorithms and the

topic of the choice of α was not explored. The prior of the hyperparameter, θ,

was set to be Exp(0.1). We also used Gamma distribution with mean 104 and

variance 108 providing conjugate priors for the upper bound, h(t). We applied

our approach to 3 different simulated epidemic datasets which are generated

from the SIR model with 3 different parameter settings. Table 2.1 gives infec-

tion rates, removal rates, initial number of susceptibles and initial number of

infectives for generating the data. Figures 2.7, 2.8 and 2.9 show the posterior

means of force of infection at each infection time for SE-Data 1, SE-Data 2 and

SE-Data 3 respectively. From the figures, we can see that the model fits SE-Data

1 not as well as SE-Data 2 and SE-Data 3, i.e. for SE-Data 1, the estimated inten-

sity struggles to capture the feature of the data βXtYt in the middle period of the

epidemic. One explanation is that there is a total of 87 infections within a time

region [0, 11.6] for the first data set whereas there are 130 and 189 infections

within time regions [0, 8.1] and [0, 10.3] respectively for the second and third

data sets. One might think there will be a relationship between the size of the

population and the covariance structure of the Gaussian process, i.e. weaker

correlation in small populations. For the computer implementation of the algo-

rithm, the run times of 200000 iterations were around 4.5 hours, 10 hours and

13 hours respectively.

Table 2.1: Infection rates, β, removal rates, γ, initial number of susceptibles,

N, and initial number of infectives, a, for 3 of the data sets. Such

parameter settings are used to generate 3 different epidemic process

from the SIR model, i.e. 3 simulated epidemic data set named as

SE-Data 1, SE-Data 2 and SE-Data 3.

β γ N a

parameter setting 1 0.025 1 100 1

parameter setting 2 0.015 1 150 1

parameter setting 3 0.015 1 200 1
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Figure 2.7: Posterior mean of the overall force of infection h(t) (solid line) at

each infection time compared with the original data βXtYt (dotted

line) generated from the general stochastic epidemic with param-

eters infection rate β = 0.025, removal rate γ = 1, initial number

of susceptibles N = 100 and initial number of infective individuals

a = 1. The 95% credible intervals are shown as well. There is a

total of 87 infections during the whole epidemic and all the infec-

tion times are assumed to be known. The “ | ” marks in the plot

represent the observed data, i.e. the infection times. The squared

exponential covariance function is used for the Gaussian process

prior and the hyperparameter of the covariance function, α, is set

to 2.
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Figure 2.8: Posterior mean of the overall force of infection h(t) (solid line) at

each infection time compared with the original data βXtYt (dotted

line) generated from the general stochastic epidemic with param-

eters infection rate β = 0.015, removal rate γ = 1, initial number

of susceptibles N = 150 and initial number of infective individuals

a = 1. The 95% credible intervals are shown as well. There is a

total of 130 infections during the whole epidemic and all the infec-

tion times are assumed to be known. The “ | ” marks in the plot

represent the observed data, i.e. the infection times. The squared

exponential covariance function is used for the Gaussian process
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Figure 2.9: Posterior mean of the overall force of infection h(t) (solid line) at

each infection time compared with the original data βXtYt (dotted

line) generated from the general stochastic epidemic with param-

eters infection rate β = 0.015, removal rate γ = 1, initial number

of susceptibles N = 200 and initial number of infective individuals

a = 1. The 95% credible intervals are shown as well. There is a

total of 189 infections during the whole epidemic and all the infec-

tion times are assumed to be known. The “ | ” marks in the plot

represent the observed data, i.e. the infection times. The squared

exponential covariance function is used for the Gaussian process

prior and the hyperparameter of the covariance function, α, is set

to 2.

2.3.3 Simulated partial data

We now assume the epidemic data are partially observed, i.e. only removal

times are known. Based on the results given in Section 2.3.2 where complete

data are assumed to be observed, we apply our methods to SE-Data 2 and SE-

Data 3 to perform inference for the overall force of infection, h(t). We first

assume the removal rate, γ, is known and then we relax this assumption and

use the Gibbs step method (discussed in Chapter 1, Section 1.2.2.2) to perform

inference for γ. We used Gamma distribution with mean 104 and variance 108

providing conjugate priors for the removal rate, γ. In Figure 2.10, we show

the estimation results for SE-Data 2 under different assumptions. For the case

where we only observe incomplete data, we plot the posterior mean of h(t) at

each estimated infection times. Figure 2.10 (b) is under the assumption that we
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observe removal times and the removal rate is also known and Figure 2.10 (c)

is under the assumption that we only observe removal times. For comparison,

we give the estimation results (shown in Figure 2.10 (a)) where we observe

complete data. Compared to the case where we observe the complete data,

the estimated intensities in Figure 2.10 (b) and (c) recover the truth but with

larger uncertainties. The estimated intensities appear to struggle to recover

the truth between the time interval, [2.5, 3], but covered by the 95% credible

intervals. The larger uncertainties in the case where only removal times are

observed can be considered as a consequence of having the inferred infection

times. Between Figure 2.10 (b) and (c), we find that the estimated intensity in

(c) has much larger uncertainty than in (b) where the removal rate is known,

although it appears to roughly capture the feature of the data, βXtYt, at each

infection time. One explanation could be that the estimation of the removal

rate makes the uncertainty even larger. Figure 2.11 shows MCMC trace plot

of the hyperparameter, θ, the overall force of infection at time t = 1.52 and

t = 2.03 respectively. In Figure 2.12, we have the estimation results for SE-Data

3 under the same assumption settings as for SE-Data 2 and the results recover

the truth with different uncertainties.
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Figure 2.10: Dataset SE-Data 2 recovered by placing the Gaussian process

prior. Three plots show posterior mean of the overall force of

infection h(t) (solid line) at each infection time compared with

the original data βXtYt (dotted line) generated from the general

stochastic epidemic with parameters β = 0.015, γ = 1, N = 150

and a = 1. Plot (a) corresponds to the case where complete data

are observed. Plot (b) corresponds to the case where removal

times are known as well as the removal rate. Plot (c) corresponds

to the case where only removal times are known. The 95% cred-

ible intervals are shown for each of the plot. The “ | ” marks in

each plot represent the observed data, i.e. the infection times for

plot (a) and the removal times for plot (b) and (c). There is a total

of 130 infections during the whole epidemic. The squared expo-

nential covariance function is used for the Gaussian process prior

and the hyperparameter of the covariance function, α, is set to 2.
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Figure 2.11: Dataset SE-Data 2 recovered by placing the Gaussian process prior

where only removal times are known. Plot (a) shows MCMC trace

plot of the hyperparameter, θ. Plot (b) and (c) show MCMC trace

plot of the overall force of infection at time t = 1.52 and t = 2.03

respectively. The squared exponential covariance function is used

for the Gaussian process prior and the hyperparameter of the co-

variance function, α, is set to 2.

2.3.4 Smallpox data

We now apply our methods to real life data, Smallpox data obtained from Bai-

ley (1975, p.125). There is a total of 30 cases in a community of 120 individuals

at risk. The data are summarised by the 29 time intervals between the detec-

tion of cases. O’Neill & Roberts (1999), Eichner & Dietz (2003) and Becker & Yip

(1989) have analysed the data and Becker & Yip used a martingale approach un-
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Figure 2.12: Dataset SE-Data 3 recovered by placing the Gaussian process

prior. Three plots show posterior mean of the overall force of

infection h(t) (solid line) at each infection time compared with

the original data βXtYt (dotted line) generated from the general

stochastic epidemic with parameters β = 0.015, γ = 1, N = 200

and a = 1. Plot (a) corresponds to the case where infection times

are known. Plot (b) corresponds to the case where removal times

are known as well as the removal rate. Plot (c) corresponds to the

case where only removal times are known. The 95% credible in-

tervals are shown for each of the plot. The “ | ” marks in each

plot represent the observed data, i.e. the infection times for plot

(a) and the removal times for plot (b) and (c). There is a total of

189 infections during the whole epidemic. The squared exponen-

tial covariance function is used for the Gaussian process prior and

the hyperparameter of the covariance function, α, is set to 2.
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der a nonparametric framework where infection times are assumed to be fixed.

However, no one has applied Bayesian nonparametric methods to the Small-

pox data. We assume only removal times are known. All the infection times for

each individual and the removal rate are inferred by the MCMC methods. We

then apply our methods to the data and place a Gaussian process prior using

the squared exponential covariance function on the overall force of infection,

h(t), at each infection time. Figure 2.15 gives the estimated intensity with 95%

credible intervals. In Figure 2.15, we show densities of 4 key quantities of in-

terest including the removal rate, γ, the hyperparameter, θ, the upper bound

of the intensity, h∗, and the number of thinned events, M. Table 2.2 gives sta-

tistical summaries for these parameters. O’Neill & Roberts (1999) estimated

the infection rate, β, and the removal rate, γ in a Bayesian framework under

the assumption that only removal times are observed and β is constant. They

obtained posterior summaries as follows: (1) β: mean 0.0009, standard devia-

tion 0.00019; (2) γ: mean 0.098, standard deviation 0.021. From Table 2.2, we

find that for the removal rate, the mean values are similar, and the standard

deviations a little larger. In order to compare the estimates of β, we estimate

β̂(t) = h(t)
XtYt

using our Bayesian nonparametric methods. Figure 2.15 shows the

posterior mean of the infection rate, β̂(t). Compared to the estimates of β from

O’Neill & Roberts, we find a larger mean of the infection rates at each infection

time and the estimated functions are not smooth. The latter presumably is due

to that the estimator β̂(t) is constructed by smooth functions divided by very

rough functions which give rough functions. Specifically, h is expected to be

a smooth function as we place a Gaussian process prior on it, even if a rough

covariance function is used. Whereas, XtYt is a very rough function. Therefore,

β̂ is not a function as smooth as a constant.

From Table 2.2 and Figure 2.13 and 2.15, we conclude that the variability shows

that the standard SIR model, with infection rate constant over time, is not ap-

propriate for the data.
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Figure 2.13: Posterior mean of force of infection h(t) (solid line) at each esti-

mated infection time. The 95% credible intervals are shown as

well. There is a total of 30 infections during the whole epidemic

and all the infection times and the removal rate are assumed to

be unknown. Only removal times are known. The “ | ” marks in

the plot represent the observed data, i.e. the removal times. The

squared exponential covariance function is used for the Gaussian

process prior and the hyperparameter of the covariance function,

α, is set to 2.
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Figure 2.14: Densities of removal rate, γ, hyperparameter, θ, upper bound h∗

and number of thinned events, M, for the Smallpox data analysis.
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Figure 2.15: Posterior mean of the infection rate, β̂(t) at each estimated infec-

tion time for the Smallpox data. The 95% credible intervals are

shown as well. There is a total of 30 infections during the whole

epidemic and all the infection times and the removal rate are as-

sumed to be unknown. Only removal times are known. The “ |

” marks in the plot represent the observed data, i.e. the removal

times. The squared exponential covariance function is used for the

Gaussian process prior and the hyperparameter of the covariance

function, α, is set to 2.

Table 2.2: Mean and standard deviation of the removal rate, γ, the hyperpa-

rameter, θ, the upper bound h∗ and the number of thinned events,

M.

γ θ h∗ M

mean (std) 0.10 (0.03) 20.90 (11.04) 0.77 (0.31) 35.80 (25.23)

2.4 Sensitivity to the Gaussian process prior for the

SIR epidemic model

In this section, we are concerned with investigation of how different covariance

functions for the Gaussian process prior affect the performance of the inference

of h(t). We choose 3 different covariance functions, i.e. squared exponential co-

variance function, exponential covariance function and Matérn class covariance

function with ν set to 3/2. As discussed in Chapter 1, the squared exponential
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covariance function (ν → ∞) and exponential covariance (ν = 1/2) can be con-

sidered as two special cases in the Matérn class covariance functions and the

bigger the value of ν is the smoother the Gaussian process will be.

We now apply our methods to SE-Data 2 using the covariance functions dis-

cussed above for the Gaussian process prior and perform inference for the over-

all force of infection, h(t), by assuming we observe the complete data. Figure

2.16 shows the estimated intensities using squared exponential covariance func-

tion, exponential covariance function and Matérn class covariance function for

the Gaussian process prior respectively for SE-Data 2. Compared to the esti-

mated intensity in Figure 2.16 (a) where the squared exponential covariance

function is used, the estimated intensity in Figure 2.16 (b) is quite rough and

behaves less smoothly than the one in (a). Compared to the estimated inten-

sity in Figure 2.16 (b), the one in Figure 2.16 (c) behaves much more smoothly.

In terms of smoothness, the plots in (a) and (c) are similar. From all of the 3

different estimated intensities, we can conclude that they all recover the truth

although they seem not able to capture the dramatic changes in the data, for

instance, the change at around time point 1.5 and the bimodal feature in time

interval [2, 3]. It is notable that the posterior means naturally look smoother

than any posterior sample from the Gaussian process. Figure 2.17 (a), (b) and

(c) show posterior samples of the overall force of infection on the actual process

in the simulation.

We also evaluate our methods for the three different Gaussian process priors for

the Smallpox. Figure 2.18 (a), (b) and (c) show the recovered trajectories for the

squared exponential covariance function, exponential covariance function and

Matérn class covariance function respectively. The plot (a) is much smoother

than (b) and (c). We find that different Gaussian process priors produce esti-

mates with different level of smoothness. Apart from this, they do not make

much difference.
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Figure 2.16: Dataset SE-Data 2 recovered by placing three different Gaussian

process priors. Three plots show posterior mean of the overall

force of infection h(t) (solid line) at each infection time compared

with the original data βXtYt (dotted line) generated from the gen-

eral stochastic epidemic with parameters infection rate β = 0.015,

removal rate γ = 1, initial number of susceptibles N = 200 and

initial number of infective individuals a = 1. Plot (a) corresponds

to the squared exponential covariance function see, (1.2). Plot (b)

corresponds to the exponential covariance function see, (1.3). Plot

(c) corresponds to the Matérn covariance function with ν set to

3/2 see, (1.4). The 95% credible intervals are shown for each of

the plot. The “ | ” marks in each plot represent the observed data,

i.e. the infection times. There is a total of 130 infections during

the whole epidemic and all the infection times are assumed to be

known. The hyperparameter of the three covariance functions, α,

is set to 2.
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Figure 2.17: Dataset SE-Data 2 recovered by placing three different Gaussian

process priors. Three plots show posterior samples of the overall

force of infection h(t) (solid line) at each infection time. Plot (a)

corresponds to the squared exponential covariance function see,

(1.2). Plot (b) corresponds to the exponential covariance function

see, (1.3). Plot (c) corresponds to the Matérn covariance function

with ν set to 3/2 see, (1.4). The hyperparameter of the three co-

variance functions, α, is set to 2.
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Figure 2.18: Smallpox recovered by placing three different Gaussian process

priors. Plot (a) corresponds to the squared exponential covari-

ance function see, (1.2). Plot (b) corresponds to the exponential

covariance function see, (1.3). Plot (c) corresponds to the Matérn

covariance function with ν set to 3/2 see, (1.4). The 95% credible

intervals are shown for each of the plot. The “ | ” marks in each

plot represent the observed data, i.e. the removal times. There

is a total of 30 infections during the whole epidemic and only re-

moval times are known. The hyperparameter of the three covari-

ance functions, α, is set to 2.

2.5 Conclusion

This Chapter firstly described Bayesian nonparametric methods for inhomoge-

neous Poisson processes introduced by Adams et al. (2009). Then we adapted
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the methods and applied our methods to the epidemic data including the sim-

ulated data generated from the SIR epidemic model as well as the real out-

break data, the Smallpox data. We found that our methods work fairly well

for epidemic models in small populations from the simulated epidemic data al-

though some dramatic changes within a small time period in the data may not

be captured since the Gaussian process prior generally produces smooth esti-

mate. For the Smallpox data, we compared our results with the ones obtained

from O’Neill & Roberts (1999). We have similar mean and a slightly larger stan-

dard deviation in terms of the estimate of the removal rate. In order to com-

pare the estimate of the infection rate, we introduced an estimator, β̂(t) = h(t)
XtYt

.

We found that the posterior mean of β̂(t) is larger than O’Neill & Roberts’ es-

timate at each estimated infection time although the estimated infection rate

from O’Neill & Roberts is fully covered in our 95% credible intervals. The large

uncertainty of the estimated infection rate and the large standard deviation of

the estimated parameters such as the estimated removal rate etc. indicate that

the standard SIR model is not appropriate for the data. Finally, we explored the

effects of placing a Gaussian process prior with different covariance functions

on the overall force of infection, h(t) at each infection time.

We have successfully developed Bayesian nonparametric methods for the over-

all force of infection in small-scale epidemics where we assume the overall force

of infection has the form, h(t) which does not consider the information of the

number of susceptible and infectives. In the standard SIR model, the overall

force of infection is often assumed to be of the form βXtYt. Simulated data

are generated based on such parametric assumptions. In the near future, one

could further investigate our methods with simulated data which are generated

with a modified overall force of infection, e.g. which has a form, βXtYt
υ, where

υ > 0.
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CHAPTER 3

Bayesian nonparametric estimation

for the infection rate in small-scale

epidemics

3.1 Introduction

In Chapter 2, we investigated the behaviour of the overall force of infection in

the SIR epidemic model by assuming it is of the form h(t), i.e. the overall force

of infection is assumed to be a function of time without any particular form

on it. We adopted a Bayesian framework to estimate h(t) and therefore we

placed a Gaussian process prior on it. The promising estimation results give

us motivation to further explore the behaviour of the overall force of infection

using Bayesian nonparametric methods.

It is known that in the SIR model, during its infectious period, an individual

makes contacts with each of the N susceptibles at times given by the points of

a homogeneous Poisson process with rate β, a constant value. Although the

assumption that the infection rate, β, is constant over time is a common one

in epidemic modelling, this is not always realistic (Fang et al., 2004). Specifi-

cally, β could vary over time as a result of factors such as behaviour change in

response to the epidemic, the introduction of control or mitigation measures,

greater public awareness of the epidemic, and so on. From a modelling per-

spective, one could also introduce a time-dependent infection rate as a proxy

for population homogeneity. For instance the idea that individuals who avoid
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infection by a given time t may be less likely to become infected thereafter,

could be modelled by letting β = β̃(t) be decreasing over time. There has been

many studies on estimating time-dependent infection rate of various infectious

diseases where epidemic models are fitted using parametric functions for β̃(t)

see, (Becker, 1989, p.137, Pollicott et al., 2009, Pollicott et al., 2012, Smirnova &

Tuncer, 2014). However, no literature is concerned with the estimation of the

infection rate in a Bayesian nonparametric work which further motivates us.

Previously, we used h(t) to represent the overall force of infection and ignored

the number of susceptibles and infectives in the population. In this Chapter,

we will address the question of estimating β = β̃(t) in a Bayesian nonpara-

metric framework and we will consider both the case of complete observations

(i.e. both infection and removal times) and partial observations (i.e. just re-

movals observed). In other words, the overall force of infection will have a

form, β̃(t)XtYt. We will also introduce extended multi-group SIR models and

estimate key quantities of interest such as infection rate of the epidemic for the

models from multi-group epidemic data via Bayesian nonparametric methods

and then illustrate our methods with simulated and real life data. Compared

to the multi-group model, the single group SIR model is in fact an extreme case

that there is only one type of susceptible in the whole population. The datasets

SE-Data 1, SE-Data 2, SE-Data 3 and the Smallpox data we studied in Chapter

2 are all single group data. In Section 3.2, we will apply our methods to sin-

gle group epidemic data. We will then investigate effect of different Gaussian

process priors placed on the infection rate in Section 3.3. In Section 3.4, we will

describe the multi-group SIR model and apply our methods to the multi-group

data. In Section 3.5, we will compare the approaches discussed in Chapter 2

and Chapter 3. Finally, we will give conclusions in Section 3.6.

3.2 Estimation for epidemic models from single group

data

In this section, we apply our Bayesian nonparametric methods to single group

epidemic data and place a Gaussian process prior on the infection rate, β̃(t). In

terms of the observed data, we again perform inference from the complete data
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first (i.e. infection and removal times) and then from the partially observed data

(i.e. only removal times). We assume that the initial number of susceptibles, N,

and the initial number of infectives, a, are available. Before we discuss the

inference, let us first define the model where the infection rate is assumed to be

a function of time, i.e. β̃(t). According to Chapter 1, Section 1.3.1, The epidemic

can be described according to the following transition probabilities:

P[Xt+δt = Xt − 1, Yt+δt = Xt + 1|Ht] = β̃(t)XtYtδt + o(δt),

P[Xt+δt = Xt, Yt+δt = Yt − 1|Ht] = γYtδt + o(δt),

P[Xt+δt = Xt, Yt+δt = Yt|Ht] = 1 − β̃(t)XtYtδt − γYtδt + o(δt).

3.2.1 Inference

We now describe a Bayesian nonparametric method to infer the infection rate,

β̃(t), given the observed data which consist of a set of removal times. The un-

observed infection times are treated as unknown parameters of the model. We

assume the epidemic is known to have ceased. Therefore, the number of infec-

tions equals to the number of removals. We denote by {Ij}K
j=1 and {τi}K

i=1 the

ordered infection and removal times of the epidemic respectively. Condition-

ally on the infection rate, β̃(t), the removal rate, γ, and the first infection time,

I1, we have the density of (τ = {τi}K
i=1, I = {Ij}K

j=2) to be

π(τ , I|β̃(t), γ, I1)

=
K

∏
j=2

β̃(Ij−)XIj−YIj− exp

{
−
∫ T

I1

β̃(s)XsYsds

}
×

K

∏
i=1

γYτi− exp

{
−
∫ T

I1

γYsds

}
,

(3.1)

where Ij− gives the left limit, so for example XIj− = lims⇈Ij−
(Xs).

We now sample the removal rate, γ, from the desired posterior distribution.

According to the algorithms developed by O’Neill & Roberts (1999), we use a

Gibbs step to sample from the distribution π(γ|τ , I, I1, β̃(t)). With a gamma

prior (νγ, λγ) put on γ, we have

π(γ|τ , I, I1, β(t)) ∝ Γ

(
νγ + K, λγ +

∫ T

I1

Ysds

)
.
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We can also use a Gibbs step to sample I1 from the distribution with an Expo-

nential prior, i.e. I1 has prior density given by η exp(ηy)I(y < 0), where η > 0,

and I(·) is the indicator function.

π(y|τ , I, β̃(t), γ) = Λ exp{−Λ(I2 − y)}, y ∈ (−∞, I2),

where Λ = η + γ + β̃(I2−) ∗ N.

We now define an algorithm to sample β̃(t) from a tractable posterior distribu-

tion.

We use the SGCP model to describe the infection rate, β̃(t). Specifically, let

β̃(t) = β̃∗σ(g(t)),

β̃∗ : an upper bound on β̃(t),

σ(·) : the logistic function, σ(z) = (1 + e−z)−1,

g(·) : a random function which has a Gaussian process prior.

For random infinite-dimensional β̃(t) such as the SGCP model, the integral
∫ T

I1
β̃(s)XsYsds is not tractable. According to Bayes’ Theorem, we write the pos-

terior distribution over β̃(t) using the SGCP model as a prior:

π(β̃ββ|τ , I, I1, γ) = π(g|β̃∗, τ , I, I1, γ)

=
GP(g)∏

K
j=2 β̃∗σ(g(Ij− ))XIj−YIj− e

−
∫ T

I1
β̃∗σ(g(s))XsYsds × ∏

K
i=1 γYτi− e

−
∫ T

I1
γYsds

∫
GP(g)∏

K
j=2 β̃∗σ(g(Ij− ))XIj−YIj− e

−
∫ T

I1
β̃∗σ(g(s))XsYsds × ∏

K
i=1 γYτi− e

−
∫ T

I1
γYsds

dg

,

(3.2)

where g denotes the infinite-dimensional object corresponding to g(t). The inte-

gral over [I1, T] in the numerator and the integral over g in the denominator are

both intractable. In particular, the value of the integral over g in fact depends

on g and is no longer a constant. In other words, standard MCMC methods are

unable to tackle this problem.

We now augment the posterior distribution (3.2) considering the infection rate,

β̃(t), as an inhomogeneous Poisson process intensity. Specifically, consider-
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ing augmenting the observed data with the following variables: the number of

thinned events, M, the locations of thinned events, { Ĩs}M
s=1, the function values

at the infection times, gK = (g(I2−), g(I3−), · · · , g(IK−)) and the function val-

ues at the thinned events, gM = (g( Ĩ1−), g( Ĩ2−), · · · , g( ĨM−)), we can sample

the above from the joint distribution below.

π(τ , I, M, { Ĩs}M
s=1, gM+K|β̃∗, γ, T, θ)

∝
K

∏
j=2

β̃∗XIj−YIj−

K

∏
j=2

σ(g(Ij−))
M

∏
s=1

β̃∗X Ĩs−
YĨs−

M

∏
s=1

σ(−g( Ĩs−)) exp{−
∫ T

I1

β̃∗XsYsds}

×
K

∏
i=1

γYτi− exp{−
∫ T

I1

γYsds} × π(gM+K|M, I, { Ĩs}M
s=1, θ),

where gM+K denotes a vector consisting of gM and gK. As the first infection

time, I1, is not modelled in the SIR epidemic model, we have in fact K − 1

function values at the infection times.

3.2.1.1 MCMC algorithms

1. Sampling I

We now impute the rest of the infection times, I, using a Metropolis-Hastings

algorithm and sample from the distribution below:

π(I, gK |τ , M, { Ĩs}M
s=1, gM, β̃∗, γ, T, θ)

∝
K

∏
j=2

XIj−YIj−

K

∏
j=2

σ(g(Ij−)) exp{−
∫ T

I1

β̃∗XsYsds}

×
K

∏
i=1

Yτi− exp{−
∫ T

I1

γYsds} × π(gM+K |M, I, { Ĩs}M
s=1, θ).

We first uniformly draw a new location I ′j from [I1, T] and then draw a new

function value g(I ′j−) from the distribution, π(g(I ′j−)|I ′j , gM+K, X, { Ĩs}M
s=1, θ), and

K(I ′j , X)K(X, X)−1gM+K and K(I ′j , I ′j)−K(I ′j , X)K(X, I)−1(X, I ′j) are the mean and
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variance of the distribution respectively, where X = (I2, I3, · · · , IK, Ĩ1, Ĩ2, · · · , ĨM)

denotes locations of infection times and thinned events. Then one of the exist-

ing infection times is selected uniformly at random and replaced by the pro-

posed new values. The forward and backward densities are:

q(Ij→I ′j) =
1

K − 1
× 1

T − I1
× π(g(I ′j−)|I ′j , gM+K, I, { Ĩs}M

s=1, θ),

q(I ′j→Ij) =
1

K − 1
× 1

T − I1
× π(g(Ij−)|Ij, g′

M+K, {I ′j}K
j=2, { Ĩs}M

s=1, θ).

We abbreviate π(I, gK |τ , M, { Ĩs}M
s=1, gM, β̃∗, γ, T, θ) by π(I, gK). Then the ac-

ceptance ratio is

q(I ′j→Ij)

q(Ij→I ′j)
×

π({I ′j}K
j=2, g′

K)

π({Ij}K
j=2, gK)

=

1
K−1 × 1

T−I1
× π(g(Ij−)|Ij, g′

M+K, {I ′j}K
j=2, { Ĩs}M

s=1, T, θ)

1
K−1 × 1

T−I1
× π(g(I ′

j− )|I ′j , gM+K, I, { Ĩs}M
s=1, T, θ)

×
∏

K
j=2 X′

Ij−
Y′

Ij−
× ∏

K
j=2 σ(g(I ′j )) exp{−

∫ T
I1

β̃∗X′
sY

′
sds}

∏
K
j=2 XIj−YIj− ∏

K
j=2 σ(g(Ij)) exp{−

∫ T
I1

β̃∗XsYsds}

×
∏

K
i=1 Y′

τi−
exp{−

∫ T
I1

γY′
sds} × π(g′

M+K |{I ′j}K
j=2, { Ĩs}M

s=1, θ)

∏
K
i=1 Yτi− exp{−

∫ T
I1

γYsds} × π(gM+K |I, { Ĩs}M
s=1, θ)

.

As

π(g′
M+K|{I ′j}K

j=2, { Ĩs}M
s=1, θ)× π(g(Ij−)|Ij, g′

M+K, {I ′j}K
j=2, { Ĩs}M

s=1, θ)

= π(gM+K |I, { Ĩs}M
s=1, θ)× π(g(I ′j−)|I ′j , gM+K, I, { Ĩs}M

s=1, θ),

the acceptance ratio is simplified to

∏
K
j=2 X′

Ij−
Y′

Ij−
× σ(g(I ′j )) exp{−

∫ T
I1

β̃∗X′
sY

′
sds}

∏
K
j=2 XIj−YIj− σ(g(Ij)) exp{−

∫ T
I1

β̃∗XsYsds}
×

∏
K
i=1 Y′

τi−
exp{−

∫ T
I1

γY′
sds}

∏
K
i=1 Yτi− exp{−

∫ T
I1

γYsds}
.

We now sample β̃∗, M, { Ĩs}M
s=1, gM+K and the hyperparameter, θ, respectively

from their conditional posterior distributions.

2. Sampling β̃∗

According to the full conditional density for β̃∗

π(β̃∗|M, T, {Ij}K
j=1) ∝ (β̃∗)K+M−1 exp{−

∫ T

I1

β̃∗XsYsds}π(β̃∗),
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where π(β̃∗) is a prior on β̃∗. With a conditionally-conjugate gamma prior,

Γ(νβ̃, λβ̃), put on β̃∗, we use a Gibbs step to update β̃∗. We can sample from the

full conditional distribution, Γ(νβ̃ + K + M − 1, λβ̃ +
∫ T

I1
XsYsds).

3. Sampling M

We use a Metropolis-Hastings step to sample from the full conditional distribu-

tion of the number of thinned events below

π(M, { Ĩs}M
s=1, gM|β̃∗, gK, I, θ, T, I1)

∝ (β̃∗)M
M

∏
s=1

X Ĩs−
YĨs−

M

∏
s=1

σ(−g( Ĩs−))× π(gM+K |I, { Ĩs}M
s=1, θ).

First, select either an insertion move or a deletion move, each with probabil-

ity 1
2 . For the insertion move, we propose a new location Ĩ ′s which is uniformly

sampled from [I1, T] and then draw a corresponding function value g( Ĩ ′s−) from

the conditioned multivariate Gaussian distribution at Ĩ ′s. Specifically, the dis-

tribution is π(g( Ĩ ′s− )| Ĩ ′s, gM+K, I, { Ĩs}M
s=1, θ), and the mean and variance of this

distribution are K( Ĩ ′s, X)K(X, X)−1gM+K and K( Ĩ ′s, Ĩ ′s)−K( Ĩ ′s , I)K(I, X)−1K(X, Ĩ ′s)

respectively. The new value can be seen as a prediction of the Gaussian process.

For the deletion move, a thinned event Ĩs, is uniformly selected and removed

from the current M events. Below is the derivation of the probability of accep-

tance for the insertion and deletion move.

• Insertion move:

The forward and backward densities are:

q(M→M′) =
1

2
× 1

T − I1
× π(g( Ĩ ′s− )| Ĩ ′s, gM+K, I, { Ĩs}M

s=1, θ),

q(M′→M) =
1

2
× 1

M′ .

The acceptance ratio is

q(M′→M)

q(M→M′)
× π(M′, { Ĩs}M′

s=1, g′
M|I, gK, θ, β̃∗)

π(M, { Ĩs}M
s=1, gM|I, gK, θ, β̃∗)

=
1
2 × 1

M′
1
2 × 1

T−I1
× π(g( Ĩ ′

s− )| Ĩ ′s, gM+K, I, { Ĩs}M
s=1, θ)

×
(β̃∗)M′

∏
M′
s=1 X Ĩs−

YĨs−
∏

M′
s=1 σ(−g( Ĩs−))× π(g′

M+K |I, { Ĩs}M′
s=1, θ)

(β̃∗)M ∏
M
s=1 X Ĩs−

YĨs−
∏

M
s=1 σ(−g( Ĩs− ))× π(gM+K |I, { Ĩs}M

s=1, θ)
.
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As M′ = M + 1 and

π(g′
M+K |I, { Ĩs}M′

s=1, θ)

= π(gM+K |I, { Ĩs}M
s=1, θ)× π(g( Ĩ ′s− )| Ĩ ′s, gM+K, I, { Ĩs}M

s=1, θ),

the acceptance ratio is simplified to
(T−I1)×β̃∗×σ(−g( Ĩ ′

s−))×X Ĩ′
s−

YĨ′
s−

M+1 .

• Deletion Move:

The forward and backward densities are:

q(M→M′) =
1

2
× 1

M
,

q(M′→M) =
1

2
× 1

T − I1
× π(g( Ĩs− )| Ĩs, g′

M+K, I, { Ĩs}M′
s=1, θ).

The acceptance ratio is

q(M′→M)

q(M→M′)
× π(M′, { Ĩs}M′

s=1, g′
M|I, { Ĩs}M

s=1, gK, θ, β̃∗)

π(M, { Ĩs}M
s=1, gM|I, { Ĩs}M′

s=1, gK, θ, β̃∗)

=
1
2 × 1

T−I1
× π(g( Ĩs− )| Ĩs, g′

M+K, I, { Ĩs}M′
s=1, θ)

1
2 × 1

M

×
(β̃∗)M′

∏
M′
s=1 X Ĩs−

YĨs−
∏

M′
s=1 σ(−g( Ĩs−))× π(g′

M+K |I, { Ĩs}M′
s=1, θ)

(β̃∗)M ∏
M
s=1 X Ĩs−

YĨs−
∏

M
s=1 σ(−g( Ĩs− ))× π(gM+K |I, { Ĩs}M

s=1, θ)
.

As M′ = M − 1 and

π(gM+K |I, { Ĩs}M
s=1, θ)

= π(g′
M+K |I, { Ĩs}M′

s=1, θ)× π(g( Ĩs− )| Ĩs, g′
M+K, I, { Ĩs}M′

s=1, θ),

the acceptance ratio is simplified to M
(T−I1)×β̃∗×σ(−g( Ĩs−))×X Ĩ

s−
YĨ

s−
.

4. Sampling { Ĩs}M
s=1

We use a Metropolis-Hastings step to perform sampling from the full condi-

tional distribution of locations of the thinned events below.

π({ Ĩs}M
s=1, gM|β̃∗, gK, I, M, θ, T, I1)

∝
M

∏
s=1

X Ĩs−
YĨs−

M

∏
s=1

σ(−g( Ĩs−))× π(gM+K|I, { Ĩs}M
s=1, θ).
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We first uniformly draw a new location Ĩ ′s from [I1, T] and then draw a new

function value g( Ĩ ′s−) from the Gaussian distribution, conditioned on the cur-

rent gM+K. More precisely, the distribution is π(g( Ĩ ′s−)| Ĩ ′s, gM+K, I, { Ĩs}M
s=1, θ),

and the mean and variance of the distribution are K( Ĩ ′s, X)K(X, X)−1gM+K and

K( Ĩ ′s, Ĩ ′s) − K( Ĩ ′s, I)K(X, X)−1K(X, Ĩ ′s) respectively. One of the existing thinned

events is then selected uniformly at random and replaced by the proposed new

values. The forward and backward densities are:

q( Ĩs→ Ĩ ′s) =
1

M
× 1

T − I1
× π(g( Ĩ ′s− )| Ĩ ′s, gM+K, I, { Ĩs}M

s=1, θ),

q( Ĩ ′s→ Ĩs) =
1

M′ ×
1

T − I1
× π(g( Ĩs−)| Ĩs, g′

M+K, I, { Ĩs}M′
s=1, θ).

The acceptance ratio is

q( Ĩ ′s→ Ĩs)

q( Ĩs→ Ĩ ′s)
× π({ Ĩs}M′

s=1, g′
M|I, { Ĩs}M

s=1, gK, θ)

π({ Ĩs}M
s=1, gM|I, { Ĩs}M′

s=1, gK, θ)

=
1

M′ × 1
T−I1

× π(g( Ĩs− )| Ĩs, g′
M+K, I, { Ĩs}M′

s=1, θ)

1
M × 1

T−I1
× π(g( Ĩ ′

s− )| Ĩ ′s, gM+K, I, { Ĩs}M
s=1, θ)

×
∏

M−1
s=1 X Ĩs−

YĨs−
×

X Ĩ′
s−

YĨ′
s−

X Ĩ
s−

YĨ
s−

∏
M
s=1 σ(−g( Ĩs))× σ(−g( Ĩ ′s))

σ(−g( Ĩs))
× π(g′

M+K |I, { Ĩs}M′
s=1, θ)

∏
M−1
s=1 X Ĩs−

YĨs−
∏

M
s=1 σ(−g( Ĩs))× π(gM+K|I, { Ĩs}M

s=1, θ)
.

As M′ = M and

π(g′
M+K |I, { Ĩs}M′

s=1, θ)× π(g( Ĩs− )| Ĩs, g′
M+K, I, { Ĩs}M′

s=1, θ)

= π(gM+K |I, { Ĩs}M
s=1, θ)× π(g( Ĩ ′s− )| Ĩ ′s, gM+K, I, { Ĩs}M

s=1, θ),

the acceptance ratio is simplified to
X Ĩ′

s−
YĨ′

s−
×σ(−g( Ĩ ′

s−))

X Ĩ
s−

YĨ
s−

×σ(−g( Ĩs−))
.

5. Sampling gM+K

Given the infection times I, the locations of thinned events { Ĩs}M
s=1 and the cur-

rent hyperparameter θ, we wish to sample from the full conditional distribution

of function values, gM+K, below.

π(gM+K |M, I, { Ĩs}M
s=1, θ)

∝
K

∏
j=2

σ(g(Ij−))
M

∏
s=1

σ(−g( Ĩs−))× π(gM+K |I, { Ĩs}M
s=1, θ).
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By using the underrelaxed MCMC method discussed in Chapter 2, Section

2.2.5, we propose new function values g′
M+K by a proposal of the form g′

M+K =

δgM+K +
√

1 − δ2hM+K, where hM+K is drawn from the Gaussian process at I

and { Ĩs}M
s=1 and δ is in [0, 1).

We shall abbreviate

π(gM+K |M, I, { Ĩs}M
s=1, θ)

by π(gM+K) and

π(g′
M+K |M, I, { Ĩs}M

s=1, θ)

by π(g′
M+K). Then the acceptance ratio is

π(g′
M+K)

π(gM+K)
× q(g′

M+K→gM+K)

q(gM+K→g′
M+K)

=
∏

K
j=2 σ(g′(Ij−))∏

M
s=1 σ(−g′( Ĩs−))× π(g′

M+K|I, { Ĩs}M
s=1, θ)

∏
K
j=2 σ(g(Ij−))∏

M
s=1 σ(−g( Ĩs−))× π(gM+K |I, { Ĩs}M

s=1, θ)

× π(gM+K |I, { Ĩs}M
s=1, θ)

π(g′
M+K |I, { Ĩs}M

s=1, θ)

=
∏

K
j=2 σ(g′(Ij−))∏

M
s=1 σ(−g′( Ĩs−))

∏
K
j=2 σ(g(Ij−))∏

M
s=1 σ(−g( Ĩs−))

.

6. Sampling θ

As we fix the hyperparameter α to 1 for our case, we only need to sample from

the full conditional distribution of the hyperparameter θ shown below.

π(θ|M, gM+K , I, { Ĩs}M
s=1)

∝ π(gM+K |I, { Ĩs}M
s=1, θ)× π(θ)

We assign an exponential prior on θ, i.e. θ∼Exp(λθ). Then we propose a new θ′

from a normal distribution with mean, the current value of θ and variance, σ2.
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The Metropolis-Hastings acceptance ratio for this proposal is

π(θ′|M, gM+K, I, { Ĩs}M
s=1)

π(θ|M, gM+K , I, { Ĩs}M
s=1)

× q(θ′→θ)

q(θ→θ′)

=
π(gM+K |I, { Ĩs}M

s=1, θ′)× π(θ′)

π(gM+K|I, { Ĩs}M
s=1, θ)× π(θ)

× exp(−(θ′ − θ)2/2σ2)

exp(−(θ − θ′)2/2σ2)

=
π(gM+K |I, { Ĩs}M

s=1, θ′)× λθ exp(−λθθ′)

π(gM+K|I, { Ĩs}M
s=1, θ)× λθ exp(−λθθ)

=
|Σθ′ |−

1
2 × exp(−gM+K

TΣθ′
−1gM+K/2 − λθθ′)

|Σθ |−
1
2 × exp(−gM+K

TΣθ
−1gM+K/2 − λθθ)

.

For the MCMC algorithms discussed above, the standard deviations of the pro-

posals were tuned to obtain an acceptance rate of 20-30%.

3.2.2 Simulated complete single group data

3.2.2.1 Constant infection rate

We first apply our methods to SE-Data 1, SE-Data 2 and SE-Data 3 which we

simulated in Chapter 2 and assume that a set of infection times are available.

We choose the squared exponential covariance function for the Gaussian pro-

cess prior and assume that the hyperparameter, α, is fixed to 1. It is known that

datasets SE-Data 1, SE-Data 2 and SE-Data 3 are all generated with a constant

infection rate. We shall expect that the posterior means of β̃(t) are fairly flat.

Figure 3.1, 3.2 and 3.3 show the posterior means of infection rate at each in-

fection time for SE-Data 1, SE-Data 2 and SE-Data 3 respectively. As expected,

the estimated infection rates, β̃(t), at each infection time are close to the truth

and appear to be quite smooth and flat. It is notable that in Figure 3.2, the 95%

credible intervals become wider from time point 4. One explanation could be

that we have far fewer observations between [4, 7] than the one between [2, 4].

The same reason also applies to the estimate in Figure 3.3.
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Figure 3.1: Posterior mean of the infection rate β̃(t) (solid line) at each infection

time for SE-Data 1. The 95% credible intervals are shown as well.

True infection rate (dotted line), β = 0.025. There is a total of 87

infections during the whole epidemic and all the infection times

are assumed to be known. The “ | ” marks in the plot represent

the observed data, i.e. the infection times. The squared exponential

covariance function is used for the Gaussian process prior and the

hyperparameter of the covariance function, α, is fixed to 1.
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Figure 3.2: Posterior mean of the infection rate β̃(t) (solid line) at each infection

time for SE-Data 2. The 95% credible intervals are shown as well.

True infection rate (dotted line), β = 0.015. There is a total of 130

infections during the whole epidemic and all the infection times

are assumed to be known. The “ | ” marks in the plot represent

the observed data, i.e. the infection times. The squared exponential

covariance function is used for the Gaussian process prior and the

hyperparameter of the covariance function, α, is fixed to 1.
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Figure 3.3: Posterior mean of the infection rate β̃(t) (solid line) at each infection

time for SE-Data 3. The 95% credible intervals are shown as well.

True infection rate (dotted line), β = 0.015. There is a total of 189

infections during the whole epidemic and all the infection times

are assumed to be known. The “ | ” marks in the plot represent

the observed data, i.e. the infection times. The squared exponential

covariance function is used for the Gaussian process prior and the

hyperparameter of the covariance function, α, is fixed to 1.

3.2.2.2 Infection rate varies throughout the epidemic

We now simulate a new epidemic data set (SE-Data 4) from the SIR model as-

suming that the infection rate varies throughout the whole epidemic. Table

3.1 gives infection rate, removal rate, initial number of susceptibles and initial

number of infectives for generating the data. We then apply our methods to SE-

Data 4 and assume that a set of infection times. We again choose the squared

exponential covariance function for the Gaussian process prior and the hyper-

parameter, α, is fixed to 1. Figure 3.4 shows the posterior mean of the infection

rate at each infection time for SE-Data 4. From Figure 3.4, we see the estimated

infection rate recovers the truth fairly well which implies that our methods ap-

pear to be working reasonably well not only for the case where the simulated

data are generated with a constant infection rate, but also for the case where

the simulated data are generated with varying infection rate throughout the
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epidemic.

Table 3.1: Infection rate, β̃(t), removal rate, γ, initial number of susceptibles,

N, and initial number of infectives, a, for the new data set. The

parameter setting is used to generate an epidemic process from the

SIR model, i.e. the simulated epidemic data set named as SE-Data 4.

β̃(t) γ N a

parameter setting exp(−t/10)/150 0.7 300 1

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8
x 10

−3

t

β̃
(t

)

Figure 3.4: Posterior mean of the infection rate β̃(t) (solid line) at each infection

time compared with true infection rate (dotted line). The 95% cred-

ible intervals are shown as well. There is a total of 222 infections

during the whole epidemic and all the infection times are assumed

to be known. The “ | ” marks in the plot represent the observed

data, i.e. the infection times. The squared exponential covariance

function is used for the Gaussian process prior and the hyperpa-

rameter of the covariance function, α, is fixed to 1.
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3.2.3 Simulated partially observed single group data

3.2.3.1 Constant infection rate

We now assume we only observe removal times, i.e. we do not know infection

times and removal rate of the epidemic. We first apply our methods to SE-Data

1, SE-Data 2 and SE-Data 3 which are generated with a constant infection rate.

The squared exponential covariance function for the Gaussian process prior is

adopted and the hyperparameter α is fixed to 1. Figure 3.5, 3.6 and 3.8 show

the estimation results for SE-Data 1, SE-Data 2 and SE-Data 3 under different

assumptions, i.e. complete data observed and only removal times observed.

Each Figure gives the posterior mean of the infection rate. Density of the re-

moval rate is also given in Figure 3.5 (c), 3.6 (c) and 3.8 (c) for the case where

data are partially observed. From Figure 3.5 (b), 3.6 (b) and 3.8 (b), we can see

that the estimated results of β̃(t) recover the truth fairly well and it turns out

that there is little difference between the case where the complete data are ob-

served (shown in Figure 3.5 (a), 3.6 (a) and 3.8 (a)) and the case where we only

observe incomplete data. From the density plots, we have good estimations of

γ for all of the three dataset and it also appears that we have the least deviation

from the posterior mean of the removal rate, γ for SE-Data 3. One explanation

could be that there are larger numbers of people infected in SE-Data 3 than the

other two data sets which leads to more accurate estimation of the removal rate.

However, this is just one dataset only so it could be just due to chance. Figure

3.7 shows MCMC trace plot of the hyperparameter, θ, the infection rate at time

t = 2.42 and t = 3.42 respectively for SE-Data 2.

3.2.3.2 Infection rate varies throughout the epidemic

We now apply our methods to SE-Data 4 which are generated with varying

infection rate throughout the whole epidemic. We also assume we only observe

removal times. The squared exponential covariance function for the Gaussian

process prior is adopted and the hyperparameter, α, is fixed to 1. Figure 3.9

shows the posterior mean of the infection rate, β̃(t), and density of the removal

rate, γ. Compared to the results for the completed epidemic case shown in

Figure 3.9 (a), the estimation shown in Figure 3.9 (b) is not as good. However,
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Figure 3.5: Posterior mean of the infection rate β̃(t) (solid line) at each esti-

mated infection time for SE-Data 1 (plot (a) and plot(b)). True in-

fection rate (dotted line), β = 0.025 and true removal rate, γ = 1.

The 95% credible intervals are shown in (a) and (b). Plot (a) is the

case where complete data are observed. Plot (b) is the case where

only removal times are observed. The “ | ” marks in each plot

represent the observed data, i.e. the infection times in (a) and re-

moval times in (b). Plot (c) shows density of the removal rate for

the second case. There is a total of 87 infections during the whole

epidemic. The squared exponential covariance function is used for

the Gaussian process prior and the hyperparameter of the covari-

ance function, α, is fixed to 1.
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Figure 3.6: Posterior mean of the infection rate β̃(t) (solid line) at each esti-

mated infection time for SE-Data 2 (plot (a) and plot(b)). True in-

fection rate (dotted line), β = 0.015 and true removal rate, γ = 1.

The 95% credible intervals are shown in (a) and (b). Plot (a) is the

case where complete data are observed. Plot (b) is the case where

only removal times are observed. The “ | ” marks in each plot rep-

resent the observed data, i.e. the infection times in (a) and removal

times in (b). Plot (c) shows density of the removal rate for the sec-

ond case. There is a total of 130 infections during the whole epi-

demic. The squared exponential covariance function is used for the

Gaussian process prior and the hyperparameter of the covariance

function, α, is fixed to 1.
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Figure 3.7: Dataset SE-Data 2 recovered by placing the Gaussian process prior

where only removal times are known. Plot (a) shows MCMC trace

plot of the hyperparameter, θ. Plot (b) and (c) show MCMC trace

plot of the infection rate at time t = 2.42 and t = 3.42 respectively.

The squared exponential covariance function is used for the Gaus-

sian process prior and the hyperparameter of the covariance func-

tion, α, is fixed to 1.
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Figure 3.8: Posterior mean of the infection rate β̃(t) (solid line) at each esti-

mated infection time for SE-Data 3 (plot (a) and plot(b)). True in-

fection rate (dotted line), β = 0.015 and true removal rate, γ = 1.

The 95% credible intervals are shown in (a) and (b). Plot (a) is the

case where complete data are observed. Plot (b) is the case where

only removal times are observed. The “ | ” marks in each plot rep-

resent the observed data, i.e. the infection times in (a) and removal

times in (b). Plot (c) shows density of the removal rate for the sec-

ond case. There is a total of 189 infections during the whole epi-

demic. The squared exponential covariance function is used for the

Gaussian process prior and the hyperparameter of the covariance

function, α, is fixed to 1.
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the truth totally lies within the 95% credible intervals. The density plot shows

we have fairly good estimation of γ.
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Figure 3.9: Posterior mean of the infection rate β̃(t) (solid line) at each esti-

mated infection time for SE-Data 4 (plot (a) and plot (b)). True re-

moval rate, γ = 0.7. The 95% credible intervals are shown in (a)

and (b). Plot (a) is the case where complete data are observed. Plot

(b) is the case where only removal times are observed. The “ | ”

marks in each plot represent the observed data, i.e. the infection

times in (a) and removal times in (b). Plot (c) shows density of the

removal rate for the second case. There is a total of 222 infections

during the whole epidemic. The squared exponential covariance

function is used for the Gaussian process prior and the hyperpa-

rameter of the covariance function, α, is fixed to 1.
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3.2.4 Smallpox data

We now apply our methods to real life data, namely Smallpox data as described

in Chapter 2, Section 2.3.4. We assume only removal times are known. All the

infection times for each individual and the removal rate are inferred by the

MCMC methods. We then apply our methods to the data and place a Gaus-

sian process prior using the squared exponential covariance function on the

infection rate, β̃(t). The hyperparameter, α, is fixed to 1. Figure 3.10 (a) shows

the posterior mean of the infection rate. For comparison, we give two estima-

tion results of the infection rate from Becker (1989), p.137, shown in Figure 3.10

(b). The author assumed the infection rate is decreasing over time, hence an

exponential function was used to model the infection rate. Although our re-

sults show some differences that the infection rate keeps increasing for nearly

30 days from the beginning of the epidemic, the decreasing part of our results is

similar to Becker’s results. Figure 3.11 shows the density of the removal rate, γ,

the hyperparameter, θ, the upper bound, β̃∗ and the number of thinned events,

M respectively. For the estimation of γ, our results appear to be close to the

ones obtained by O’Neill & Roberts (1999).
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Figure 3.10: Smallpox data recovered by placing the Gaussian process prior.

The plot (a) shows posterior mean of the infection rate, β̃(t), at

each estimated infection time using our Bayesian nonparametric

methods where the squared exponential covariance function is

adopted. The “ | ” marks in the plot represent the observed data,

i.e. the removal times. The plot (b), obtained from Becker (1989),

p.137, shows two estimation results of the infection rate for small-

pox data from Becker’s methods. The infection rate is assumed to

be a decreasing function of time in the two models.

81



CHAPTER 3: BAYESIAN NONPARAMETRIC ESTIMATION FOR THE

INFECTION RATE IN SMALL-SCALE EPIDEMICS

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

2

4

6

8

10

12

14

16

γ

D
en

si
ty

(a)

0 20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

0.06

θ

D
en

si
ty

(b)

0 0.002 0.004 0.006 0.008 0.01 0.012
0

100

200

300

400

500

600

β̃∗

D
en

si
ty

(c)

−50 0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

M

D
en

si
ty

(d)

Figure 3.11: Smallpox data recovered by placing the Gaussian process prior

on β̃(t). Four plots show densities of the removal rate, γ, the hy-

perparameter, θ, the upper bound β̃∗ and the number of thinned

events, M respectively. The squared exponential covariance func-

tion for the Gaussian process prior is adopted.

3.3 Sensitivity to the Gaussian process prior for the

SIR epidemic model

Similar to Section 2.4, we investigate the effect of the choice of covariance func-

tion on the inferences in this section. We choose 3 different covariance func-

tions, i.e. squared exponential covariance function, exponential covariance func-

tion and Matérn class covariance function with ν set to 3/2.
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We now apply our methods to SE-Data 2 and perform inference for the infection

rate, β̃(t), by assuming we observe the complete data. Figure 3.12 shows the es-

timated intensities using squared exponential covariance function, exponential

covariance function and Matérn class covariance function for the Gaussian pro-

cess prior respectively for SE-Data 2. Compared to the estimated intensity in

Figure 3.12 (a) where the squared exponential covariance function is used, the

estimated intensity in Figure 3.12 (b) is quite rough and has larger uncertainty.

One explanation could be that a rough covariance function is chosen for the

Gaussian process prior which is expected to produce a rough process. The esti-

mated intensity in Figure 3.12 (c), has similar mean and uncertainty to the one

in (a). In terms of smoothness, the plots in (a) and (c) are similar.

We also evaluate our methods for the three different Gaussian process priors

for the Smallpox. Figure 3.13 shows the recovered trajectories for the squared

exponential covariance function, exponential covariance function and Matérn

class covariance function respectively. The plot (a) is slightly smoother than (b)

and (c) and the results in (b) are very similar to the ones in (c). In general, we

find that inferences are insensitive to the choice of Gaussian process priors for

the Smallpox data.
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Figure 3.12: Dataset SE-Data 2 recovered by placing three different Gaussian

process priors. Three plots show posterior mean of the infection

rate, β̃(t) (solid line) at each infection time compared with the true

β (dotted line). The data are generated from the general stochastic

epidemic with parameters infection rate β = 0.015, removal rate

γ = 1, initial number of susceptibles N = 150 and initial number

of infective individuals a = 1. Plot (a) corresponds to the squared

exponential covariance function see, (1.2). Plot (b) corresponds to

the exponential covariance function see, (1.3). Plot (c) corresponds

to the Matérn covariance function with ν set to 3/2 see, (1.4). The

95% credible intervals are shown for each of the plot. The “ | ”

marks in each plot represent the observed data, i.e. the infection

times. There is a total of 130 infections during the whole epidemic

and all the infection times are assumed to be known. The hyper-

parameter of the three covariance functions, α, is set to 1.
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Figure 3.13: Smallpox recovered by placing three different Gaussian process

priors. Three plots show posterior mean of the infection rate, β̃(t)

(solid line) at each estimated infection time. Plot (a) corresponds

to the squared exponential covariance function see, (1.2). Plot (b)

corresponds to the exponential covariance function see, (1.3). Plot

(c) corresponds to the Matérn covariance function with ν set to

3/2 see, (1.4). The 95% credible intervals are shown for each of

the plot. The “ | ” marks in each plot represent the observed data,

i.e. the removal times. There is a total of 30 infections during the

whole epidemic and only removal times are known. The hyper-

parameter of the three covariance functions, α, is set to 1.
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3.4 Estimation for epidemic models from multi-group

epidemic data

In Section 3.2, we demonstrated that our Bayesian nonparametric methods ap-

pear to be working fairly well for epidemic models from single group epidemic

data which motivated us to investigate more complex cases with our methods.

For example, the population can be no longer homogeneous, but partitioned

into groups according to level of susceptibility. Hayakawa et al. (2003) devel-

oped Bayesian methods for SIR epidemic models with several kinds of suscep-

tibles. In this Section, we will first introduce the multi-group model discussed

in Hayakawa et al. (2003) and then apply our Bayesian nonparametric methods

to multi-group epidemic data (simulated data and real life data).

3.4.1 Multi-group epidemic model

We now describe the extended multi-group SIR model discussed in Hayakawa

et al. (2003). Consider a population consisting initially of k groups of suscep-

tibles, where the groups are labelled 1, · · · , k, and group i contains Ni suscep-

tibles, i = 1, · · · , k. An epidemic is initiated in the population by one of the

susceptibles becoming infected and this infection is assumed to occur via some

process external to the population. For t ≥ 0 and i = 1, · · · , k, denote by Xi(t)

and Yi(t) the numbers of susceptibles and infectives, respectively, in group i

at time t. Let Y(t) = ∑
k
i=1 Yi(t) denote the total number of infectives in the

population at time t. The epidemic is then defined according to the following

transition probabilities, the transitions themselves corresponding respectively

to an infection and a removal:

P ((Xi(t + δt), Y(t + δt)) = (x − 1, y + 1)| (Xi(t), Y(t)) = (x, y)) = βixyδt + o(δt),

P ((Xi(t + δt), Y(t + δt)) = (x, y − 1)| (Xi(t), Y(t)) = (x, y)) = γyδt + o(δt),

all other transitions having probability o(δt). A removed individual does not

take part in the epidemic any longer. The epidemic ceases if there are no more

infectives left in the population. The assumptions imply that each susceptible
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of type i is affected equally by any infectives irrespective of the infective’s type,

and that the durations of the infectious periods are independent and identically

distributed Exponential random variables with rate γ.

Under the assumption that the infection rate for each group is no longer a con-

stant but a function of time the transition probabilities now become:

P ((Xi(t + δt), Y(t + δt)) = (x − 1, y + 1)| (Xi(t), Y(t)) = (x, y)) = β̃i(t)xyδt + o(δt),

P ((Xi(t + δt), Y(t + δt)) = (x, y − 1)| (Xi(t), Y(t)) = (x, y)) = γyδt + o(δt).

3.4.2 Inference

We first give a list of notation that we use.

τττi = (τi1, τi1, · · · , τini
): the vector of ordered removal times of type i

Ii = (Ii1, Ii1, · · · , Iimi
): the vector of ordered infection times of type i

I=(I1, I2, · · · , Ik)

τττ=(τττ1, τττ2, · · · , τττk)

β̃ββ(t)=(β̃1(t), β̃2(t), · · · , β̃k(t))

N=(N1, N2, · · · , Nk)

Ii1: the time of the first infection in group i

Imin = min(I11, I21, · · · , Ik1): the time of the first infection in the total popula-

tion

imin: type i for which Ii1 = Imin

ni: the observed total number of removals of type i

mi: the unobserved total number of infections of type i

N = ∑
k
i=1 Ni: the initial number of susceptibles in the total population

I
˜
: {I \ Imin}

As our interest focuses on the infection rate in each group, it is assumed that

we know the initial number of susceptibles in each group, N, and the type of
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the time of the first infection in the total population, imin. According to the

augmentation methods in Hayakawa et al. (2003), we can write the joint distri-

bution over the infection rate in each group, β̃ββ(t), the removal rate, γ, the time

of the first infection in the total population. Imin by Bayes’ Theorem below.

π(β̃ββ(t), γ, Imin|I˜
, τττ) ∝ π(I

˜
, τττ|β̃ββ(t), γ, Imin)π(β̃ββ(t), γ, Imin),

where

π(I
˜
, τττ|β̃ββ(t), γ, Imin)

=

(
k

∏
i=1

(
ni

∏
j=1

γYi(τij−)

)(
mi

∏
l=2

β̃i(Iil−)Xi(Iil−)Yi(Iil−)

))(
k

∏
i=1,i 6=imin

β̃i(Ii1−)Xi(Ii1−)Yi(Ii1−)

)

× exp

(
−

k

∑
i=1

(∫ T

Imin

β̃i(s)Xi(s)Yi(s)ds +
∫ T

Ii1

γYi(s)ds

))
, (3.3)

and π(β̃ββ(t), γ, Imin) denotes the prior density of β̃ββ(t), γ and Imin.

Considering the removal part in (3.3), we can write the full conditional distri-

bution of γ below.

π(γ|β̃ββ(t), τττ, I
˜
) ∝

(
k

∏
i=1

(
ni

∏
j=1

γYi(τij−)

))
× exp

(
−

k

∑
i=1

(∫ T

Ii1

γYi(s)ds

))
.

According to the algorithms described in Hayakawa et al. (2003), with a gamma

prior (νγ, λγ) put on γ, we can sample from the distribution below.

π(γ|β̃ββ(t), τττ, I
˜
) ∝ Γ

(
νγ +

k

∑
i=1

ni, λγ +
k

∑
i=1

∫ T

Ii1

Yi(s)ds

)
.

As we know imin, we use the similar method discussed in Section 3.2.1 to update

Imin. By using a Gibbs sampling approach, with a non-informative exponential

prior put on, we can sample from the distribution if the first infection time is in

group i

π(y|τττi, I
˜
, β̃i, γ) = Λ exp{−Λ(I2 − y)}, y ∈ (−∞, I2),

where I2 = min(Ii2, {Ij1}k
j=1,j 6=i) and Λ = γ + β̃(I2−) ∗ N.

It now only remains to find a way of sampling β̃ββ(t) and I
˜
. The main problem

here is to make the infection part in (3.3) tractable. Similar to the methods used
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for the single group case, we use the SGCP model to describe the infection rate

for group i, β̃i(t).

β̃i(t) = β̃∗
i σ(g(t)),

where β̃∗
i : an upper bound on β̃i(t).

To tackle the intractable problem, we again augment the posterior distribution

like we did for the single group case. For group i and if Ii1 = Imin, the addi-

tional latent variables are: the number of thinned events, Mi, the locations of

thinned events, Ĩi = ( Ĩi1, Ĩi2, · · · , ĨiMi
), the function values at the infection times,

gmi
= (g(Ii2−), g(Ii3−), · · · , g(Iimi

−)) and the function values at the locations of

thinned events, gMi
= (g( Ĩi2−), g( Ĩi3−), · · · , g( ĨiMi

−)). If Ii1 6= Imin, we need

to consider the first infection time, Ii1, in group i. Therefore, g(Ii1−) should be

added to gmi
. We can now write the augmented likelihood we require below.

π(I
˜
, τττ, {Mi, Ĩi, gMi+mi

}k
i=1|{β̃∗

i }k
i=1, γ, Imin, T, θi)

=

(
k

∏
i=1

(
ni

∏
j=1

γYi(τij−)

)(
mi

∏
l=2

β̃∗
i Xi(Iil−)Yi(Iil−)σ(g(Iil−))

))

×
(

k

∏
i=1

(
Mi

∏
s=1

β̃∗
i Xi( Ĩis−)Yi( Ĩis−)σ(−g( Ĩis−))

))

×
(

k

∏
i=1,i 6=imin

β̃∗
i Xi(Ii1−)Yi(Ii1−)σ(g(Ii1−))

)

× exp

(
−

k

∑
i=1

(∫ T

Imin

β̃∗
i Xi(s)Y(s)ds +

∫ T

Ii1

γYi(s)ds

))

×
(

k

∏
i=1

π(gMi+mi
|Mi, {Iil}mi

l=1+δi
, { Ĩis}Mi

s=1, θi)

)
, (3.4)

where δi = 1 if i = imin and 0 otherwise. Considering (3.4), we can now write

the full conditional density of each parameter. For group i, we have

π(β̃∗
i |Mi, T, I

˜
, Imin) ∝ β̃∗

i
mi−δi+Mi × exp

(
−
∫ T

Imin

β̃∗
i Xi(s)Y(s)ds

)
,
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π(Mi , Ĩi, gMi
|β̃∗

i , gmi
, {Iil}mi

l=1+δi
, θi, T, Imin)

∝ (β̃∗
i )

Mi

Mi

∏
s=1

Xi( Ĩis−)Yi( Ĩis−)σ(−g( Ĩis−))× π(gMi+mi
|{Iil}mi

l=1+δi
, { Ĩis}Mi

s=1, θi),

π(Ĩi , gMi
|β̃∗

i , gmi
, {Iil}mi

l=1+δi
, Mi, θi, T, Imin)

∝

Mi

∏
s=1

Xi( Ĩis−)Yi( Ĩis−)σ(−g( Ĩis−))× π(gMi+mi
|{Iil}mi

l=1+δi
, { Ĩis}Mi

s=1, θi),

π(gMi+mi
|Mi, {Iil}mi

l=1+δi
, { Ĩis}Mi

s=1, θi)

∝

mi

∏
l=1+δi

σ(g(Iil−))
Mi

∏
s=1

σ(−g( Ĩis−))× π(gMi+mi
|{Iil}mi

l=1+δi
, { Ĩis}Mi

s=1, θi).

π(θi|Mi, gMi+mi
, {Iil}mi

l=1+δi
, { Ĩis}Mi

s=1)

∝ π(gMi+mi
|{Iil}mi

l=1+δi
, { Ĩis}Mi

s=1, θi))× π(θi)

The algorithm of sampling the parameters above for each group is similar to

the single group case in Section 3.2.1 and will not be discussed here.

3.4.3 Simulated partially observed multi-group data

We now simulate a set of multi-group data with a parameter setting given in

Table 3.2. The total population of 254 is partitioned into three groups. The

groups’ initial population size are reported as N1 = 25, N2 = 36 and N3 =

192. The total number of cases in each of the three groups are 10, 12 and 30

respectively. We assume that only removal times of each group are observed.

We apply our methods to the data and place the Gaussian process prior on β̃1,

β̃2 and β̃3 respectively. The prior distributions for the Gaussian process in each

group are assumed to be independent. The squared exponential covariance

function is used for the Gaussian process prior and the hyperparameter of the

covariance function, α, is fixed to 1. Figure 3.14 (a), (b) and Figure 3.15 (a) show
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estimation results for the infection rate of each group. Compared to the truth,

the posterior means of the infection rate of all three groups are smooth and flat

and all close to the true values. In addition, the true values are all lie in the

95% credible intervals which although show large uncertainties. Figure 3.15 (b)

shows the density of the estimated removal rate which implies that we have a

good estimation for the removal rate.

Table 3.2: Infection rate, β, removal rate, γ, initial number of susceptibles, N,

and initial number of infectives, a, for the new 3-group data set. The

parameter setting is used to generate an epidemic process from the

multi-group SIR model, i.e. the simulated epidemic data set named

as SE-Data 5.

β N a γ

group 1 0.005 25 0

0.5group 2 0.005 36 0

group 3 0.002 192 1
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Figure 3.14: (a), posterior mean of the infection rate β̃1(t) (solid line) at each

estimated infection time for SE-Data 5. True infection rate, β1 =

0.005. The 95% credible intervals are shown as well. (b), poste-

rior mean of the infection rate β̃2(t) (solid line) at each estimated

infection time for SE-Data 5. True infection rate, β2 = 0.005. The

95% credible intervals are shown as well. Only removal times of

each group are known. The “ | ” marks in each plot represent the

observed data, i.e. the removal times. The squared exponential

covariance function is used for the Gaussian process prior and the

hyperparameter, α, is fixed to 1.
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3.4.4 Respiratory disease multi-group data

We also apply our methods to the real multi-group data discussed in Becker

& Hopper (1983) and Hayakawa et al. (2003). The dataset corresponds to re-

moval times of individuals with a respiratory disease which occurred between

October and November of 1967 on the island of Tristan da Cunha in the South

Atlantic. The total population of the island of 255 was partitioned into three

groups by age: infants, children and adults. As there was one unidentified case,

we suppose N = 254. The groups’ initial number of susceptibles are N1 = 25,

N2 = 36 and N3 = 192. It is notable that we assume the initial number of

susceptibles for adults group is 192 instead of 193 given in (Hayakawa et al.,

2003) since it is assumed that the group type for the first infection time in the

total population is known, i.e. we know that ainfants=0, achildren=0 and aadults=1,

where ai represents the initial number of infectives in group i. The total number

of cases in each group was 9, 6 and 25 respectively. We apply our methods to the

data and place the Gaussian process prior on β̃infants=0, β̃children=0 and β̃adults=1

respectively. Figure 3.16 (a), (b) and Figure 3.17 (a) show the estimation re-

sults for the infection rate of each group. Table 3.3 gives estimation results of

the infection rate and removal rate from Hayakawa et al. (2003) for the real

multi-group data, i.e. mean and standard deviation of the infection rate and

removal rate are given in Table 3.3. For the groups of infants and children, the

results are fairly close to the ones given in Hayakawa et al. (2003). However,

the result for the adults group starts from 0.001 and then keeps increasing until

nearly 0.0015. One explanation could be that there is significantly more infor-

mation given from the adults group, i.e. total population of 192 and 25 cases

from adults group compared to total population of 25 and 9 cases from infants

group and total population of 36 and 6 cases, the Gaussian process prior put on

the infection rate may capture features that causes an increasing change on the

infection rate from the observed data and tell a different story on the infection

rate of the epidemic in the adults group. Figure 3.17 (b) gives the density of

the removal rate which implies that we have a good estimation for the removal

rate.
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Figure 3.15: (a), posterior mean of the infection rate β̃3(t) (solid line) at each es-

timated infection time for SE-Data 5. True infection rate, β = 0.002

and true removal rate, γ = 0.5. The 95% credible intervals are

shown as well. (b), density of the removal rate. Only removal

times of each group are known. The “ | ” marks in the plot repre-

sent the observed data, i.e. the removal times. The squared expo-

nential covariance function is used for the Gaussian process prior

and the hyperparameter of the covariance function, α, is fixed to

1.
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Figure 3.16: (a), posterior mean of the infection rate β̃infants(t) (solid line) at

each estimated infection time for the respiratory disease data

(Hayakawa et al., 2003). The 95% credible intervals are shown

as well. (b), posterior mean of the infection rate β̃children(t) (solid

line) at each estimated infection time for the respiratory disease

data. The 95% credible intervals are shown as well. Only removal

times of each group are known. The “ | ” marks in each plot repre-

sent the observed data, i.e. the removal times. The squared expo-

nential covariance function is used for the Gaussian process prior

and the hyperparameter of the covariance function, α, is fixed to

1.
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Figure 3.17: (a), posterior mean of the infection rate β̃adults(t) (solid line) at

each estimated infection time for the respiratory disease data

(Hayakawa et al., 2003). The 95% credible intervals are shown

as well. (b), density of the removal rate. Only removal times in

each group are known. The “ | ” marks in the plot represent the

observed data, i.e. the removal times. The squared exponential

covariance function is used for the Gaussian process prior and the

hyperparameter of the covariance function, α, is fixed to 1.
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Table 3.3: Mean and standard deviation of the infection rate in each group for

the real multi-group data (Hayakawa et al., 2003). The results are

obtained from Hayakawa et al. (2003) where the initial number of

susceptibles in each group is assumed to be known.

β1 β2 β3 γ

mean 0.00451 0.00181 0.00131 0.371

sd 0.00176 0.000824 0.000377 0.0952

3.5 Comparison with h(t) approach

In this section we compare the approaches discussed in this chapter and in

Chapter 2. Recall that in Chapter 2, it is assumed that the overall force of in-

fection is of the form, h(t). Conversely in this chapter, we assume it is of the

form, β̃(t)XtYt. In Chapter 2, Section, 2.3.4, we introduced an estimator of the

infection rate which is β̂(t) = h(t)
XtYt

. We now compare estimates of β̂(t) with

β̃(t) using the simulated datasets SE-Data 2 and SE-Data 3 as well as the real

outbreak data, the Smallpox data. We assume only removal times are observed.

Figure 3.18 (a) and (b) show posterior mean of β̂(t) and β̃(t) respectively for the

dataset SE-Data 2. From Figure 3.18, the result in plot (a) struggles to recover

the truth, although most part of the truth is covered in the 95% credible inter-

vals. Compared to the estimate of β̃(t) in plot (a), the estimate of β̂(t) is much

more rough. The reason could be that the function, β̂, is expected to produce a

very rough process as discussed in Chapter 2, Section 2.3.4. Figure 3.19, for an-

other dataset SE-Data 3, also illustrates this point. Figure 3.20 shows posterior

mean of β̂(t) and β̃(t) respectively for the Smallpox data. From Figure 3.20, we

find that the estimate of β̂(t) at each infection time is over 0.001, whereas the

estimate of β̃(t) is around 0.001 all the time. Compared to the results in O’Neill

& Roberts (1999), (i.e. the mean of β is 0.0009 and the standard deviation is

0.00019), we conclude that our approached discussed in Chapter 3 is a better

way to estimate the infection rate for the SIR epidemic model.
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Figure 3.18: Dataset SE-Data 2 recovered by placing the Gaussian process prior

with different Bayesian nonparametric methods. Two plots show

posterior mean of the infection rate, β̂(t) and β̃(t) (solid line) at

each infection time respectively. The original data βXtYt (dotted

line) are generated from the general stochastic epidemic with pa-

rameters infection rate β = 0.015, removal rate γ = 1, initial num-

ber of susceptibles N = 150 and initial number of infective indi-

viduals a = 1. Only removal times are observed for both cases.

Plot (a) corresponds to the case where the approach discussed in

Chapter 2 is used. Plot (b) corresponds to the case where the ap-

proach discussed in Chapter 3 is used. The 95% credible intervals

are shown for each of the plot. The “ | ” marks in each plot repre-

sent the observed data, i.e. the removal times. The squared expo-

nential covariance function is used for the Gaussian process prior

and the hyperparameter of the covariance function, α, is set to 2

and 1 for β̂(t) and β̃(t) respectively.
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Figure 3.19: Dataset SE-Data 3 recovered by placing the Gaussian process prior

with different Bayesian nonparametric methods. Two plots show

posterior mean of the infection rate, β̂(t) and β̃(t) (solid line) at

each infection time respectively. The original data βXtYt (dotted

line) are generated from the general stochastic epidemic with pa-

rameters infection rate β = 0.015, removal rate γ = 1, initial num-

ber of susceptibles N = 200 and initial number of infective indi-

viduals a = 1. Only removal times are observed for both cases.

Plot (a) corresponds to the case where the approach discussed in

Chapter 2 is used. Plot (b) corresponds to the case where the ap-

proach discussed in Chapter 3 is used. The 95% credible intervals

are shown for each of the plot. The “ | ” marks in each plot repre-

sent the observed data, i.e. the removal times. The squared expo-

nential covariance function is used for the Gaussian process prior

and the hyperparameter of the covariance function, α, is set to 2

and 1 for β̂(t) and β̃(t) respectively.
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Figure 3.20: Smallpox data recovered by placing the Gaussian process prior

with different Bayesian nonparametric methods. Two plots show

posterior mean of the infection rate, β̂(t) and β̃(t) (solid line) at

each infection time respectively. Only removal times are observed

for both cases. Plot (a) corresponds to the case where the approach

discussed in Chapter 2 is used. Plot (b) corresponds to the case

where the approach discussed in Chapter 3 is used. The 95% cred-

ible intervals are shown for each of the plot. The “ | ” marks in

each plot represent the observed data, i.e. the removal times. The

squared exponential covariance function is used for the Gaussian

process prior and the hyperparameter of the covariance function,

α, is set to 2 and 1 for β̂(t) and β̃(t) respectively.

3.6 Conclusion

In this Chapter, we investigated the behaviour of the overall force of infection in

the SIR epidemic model by assuming it has the form β̃(t)XtYt, i.e. the infection

rate is assumed to be a function of time. We developed a Bayesian nonpara-

metric method for estimating such SIR epidemic model and obtained reason-

ably well estimation results from analysing the single group data including the

simulated and the real life data. We also investigated the effect of different

Gaussian process priors placed on β̃(t) for the simulated and the real life data.

We found that they do not make much difference apart from smoothness. We

also described an extended SIR epidemic model with several kinds of suscep-

tibles. We applied our methods to the simulated and real life multi-group data
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and good estimation results indicated that our methods work fairly well for the

multi-group model as well. Finally, we compared the approach with the one

developed in Chapter 2 where we assume the overall force of infection is of the

form, h(t), which does not depend on the number of susceptibles and infectives

but time. Specifically, we compared the estimate of the infection rate in two dif-

ferent Bayesian nonparametric methods, i.e. β̂(t) and β̃(t). We showed that the

approach which considering the information of the number of susceptibles and

infectives is a better way to estimate the infection rate, although it took longer

to run the MCMC algorithms due to the extra computation of the number of

susceptibles and infectives.

The approaches developed in Chapter 2 and Chapter 3 both have a limitation,

i.e. the computational complexity. It is known that Gaussian processes have

heavy computational demands, i.e. O(n3) time complexity for n input points.

As both our approaches are concerned with Gaussian process priors which in-

volve heavy matrix computation, e.g. inverse of the matrix, computation times

would become prohibitive when dealing with large datasets, for example, the

number of cases exceeds a thousand. An approximation of the model may be

considered to tackle this problem.

We have successfully applied Bayesian nonparametric methods to estimate the

standard SIR model in small populations where we assume the infectious pe-

riod follows an exponential distribution. A natural extension of the methods

is the relax of the assumption of the infectious period. Specifically, one could

apply our methods for the SIR model with non-exponential infectious period in

the small-scale epidemics. Another extension could be that one may estimate

the SEIR model using our methods where a latent period is considered.
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CHAPTER 4

Bayesian nonparametric estimation

for epidemic models in large

populations from time-series data

4.1 Introduction

In previous chapters, we have developed methods for Bayesian nonparametric

inference which involve data augmentation MCMC methods. Although such

methods are powerful, they struggle to perform adequately as the dimension-

ality increases, i.e. as the number of unknown infection times becomes large.

In this chapter, we adapt an approximation method due to Cauchemez & Fer-

guson (2008) to produce a Bayesian nonparametric method of inference for epi-

demics in large populations. Specifically, this chapter is concerned with meth-

ods to parameterise epidemic models from time-series data, e.g. number of

observed cases each day or week, etc.

In practice, an epidemic process is only partially observed, and observations

are often aggregated in time. Surveillance data typically provide counts of new

infection cases occurring during observation periods of length T on a local or

national basis and in some situations, the number of new infection cases is likely

to be under-reported. We refer to such data as epidemic time-series data.

Standard MCMC uses data augmentation to tackle the missing data problem.

However, for large epidemics in large populations, the number of infectives is

normally so large that it is infeasible to augment the data with the times of in-
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fection/removal of each case. In other words, if the infection times for each

individual are all imputed and considered as additional parameters as well as

the number of susceptibles and infectives at each infection time, it will take an

unacceptably long time for the MCMC algorithm to converge with current com-

puting techniques. Therefore, tractable approximations of the epidemic model,

such as the SIR model, need to be adopted. Cauchemez & Ferguson (2008) pro-

posed statistical methods in a Bayesian framework to estimate the continuous-

time SIR model from time-series data, when large populations are considered.

We first introduce the methods designed by Cauchemez & Ferguson (2008) and

then apply our methods, Bayesian nonparametrics, to estimate key quantities

of the SIR model, infection rates, from time-series data.

In this chapter, we will first introduce a method to approximate the SIR model

when dealing with large-scale epidemics in Section 4.2 and then we will de-

scribe a method for inference using an MCMC algorithm in Section 4.3. The two

sections together are a brief explanation of Cauchemez & Ferguson’s method

(2008). We will then describe a simulation study using Cauchemez & Fergu-

son’s method in Section 4.4. In Section 4.5, we will describe our method using

a Bayesian nonparametric framework and apply the method to simulated data.

We will also explore the method further under different assumptions and pa-

rameter settings in this section. Finally, we apply Cauchemez & Ferguson’s

method and our method to the real data, i.e. a time series of incidence of

measles in London (1948-1957) and compare the results of estimation using the

two methods.

4.2 Approximation to the SIR epidemic model

4.2.1 Introduction

As described in the previous chapter, the SIR epidemic model is a continuous-

time Markovian model which describes the spread of an infectious disease in

a population. Below is a mathematical definition of the model with the addi-

tion of births into the susceptible population considered in terms of Markovian

transition rates:
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P(dSt = 1|Ht) = ν(t)dt + o(dt),

P(dSt = −1, dIt = 1|Ht) = βSt Itdt + o(dt),

P(dIt = −1, dRt = 1|Ht) = γItdt + o(dt),

where ν(t) is the birth rate and Ht is the σ-algebra generated by the history

{Su, Iu, Ru; 0 ≤ u ≤ t}. In the equations, the mortality due to disease is as-

sumed to be neglected and the number of individuals who leave the susceptible

population due to death or immigration is assumed to be neglected as well.

In reality, the epidemic process for infectious diseases like measles is partially

observed. Consider data consisting of the number of new infections, {Uk}K
k=0,

and the number of births, {Bk}K
k=0, during periods of length T labelled k =

0, 1, 2, · · · , K, where T could be a number of weeks or months. We consider Uk

as the number of times in interval [kT, (k + 1)T] when It increases by +1. The

relationship among Uk, IkT, I(k+1)T and R̃k is given by

Uk = I(k+1)T − IkT + R̃k,

where R̃k is number of removals during the (k+ 1)th period, and IkT and I(k+1)T

are respectively the number of infectives at the beginning of the (k + 1)th and

(k + 2)th period. As R̃k is always non-negative, then there is a constraint that

Uk ≥ I(k+1)T − IkT. Figures 4.1 and 4.2 show two possible trajectories for the

number of infectives It with five new infections occurring during the (k + 1)th

period, i.e. Uk = 5. It is shown that, although the same number of new in-

fections is observed in Figures 4.1 and 4.2, the infection and removal processes

between the two cases are very different. As a result of stochastic fluctuations,

important differences could be observed between trajectories, even if the infec-

tion rate and removal rate were the same.
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Figure 4.1: An example of the trajectory of the number of infectives It with

Uk = 5, where Uk is the number of new infections occurring during

the (k + 1)th period from kT to (k + 1)T and IkT = 3, I(k+1)T = 3.
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Figure 4.2: An example of the trajectory for the number of infectives It with

Uk = 5, where Uk is the number of new infections occurring during

the (k + 1)th period from kT to (k + 1)T and IkT = 3, I(k+1)T = 5.

Suppose we observe IkT and SkT, the number of infectives and susceptibles at

the beginning of each observation period (these are considered as parameters of

the inference framework since they are unknown in practice). Then, the main

issue for inference is to determine the joint probability P(I(k+1)T , Uk|IkT , SkT)

which also can be expressed as

P(I(k+1)T , Uk|IkT, SkT) = P(I(k+1)T |IkT , SkT)P(Uk|I(k+1)T, IkT, SkT)

(Cauchemez & Ferguson 2008). Without loss of generality, since the epidemic
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process is time-homogeneous, we only look at the first observation period, i.e.

set k = 0. Therefore, the equation above can be written as

P(IT , U0|I0, S0) = P(IT |I0, S0)P(U0|IT, I0, S0). (4.1)

The probability of IT given I0, S0 and the probability of U0 given IT, I0, S0 in (4.1)

are intractable in a large population, hence we use an approximation to tackle

this problem. Specifically, the Cox-Ingersoll-Ross diffusion process is adopted

to work out the aforementioned probabilities.

4.2.2 The Cox-Ingersoll-Ross diffusion process

The Cox-Ingersoll-Ross process, a diffusion process, is commonly used in fi-

nancial markets to model interest rates (Cox et al. 1985). Here, we use this

diffusion process to approximate the Markovian SIR process under the follow-

ing assumptions:

(i) Changes in the number of susceptibles St within an observation period can

be neglected and so St ≈ S̄0, ∀t ∈ [0, T]. This assumption is reasonable if St is

sufficiently large.

(ii) The infection rate is constant during an observation period and so β(t) ≈
β0, ∀t ∈ [0, T], where β(t) is infection rate at time t which depends on time.

The estimation of S̄0 is given in appendix C in Cauchemez & Ferguson (2008).

Under assumptions (i) and (ii), {It : 0 ≤ t ≤ T} can be considered as a birth and

death process over time [0, T], with birth rate β0S̄0 It and death rate γIt. Assum-

ing It is continuous, we then have a stochastic differential equation, namely

dIt = r0 Itdt + σ0

√
ItdWt, (4.2)

where r0 = β0S̄0 − γ, σ2
0 = β0S̄0 + γ and Wt is Brownian motion. The equation

(4.2) represents the Cox-Ingersoll-Ross diffusion process and fortunately, the

exact solution of (4.2) is available and has a non-central χ2 distribution with

zero degrees of freedom (Cox et al. 1985, siegel 1979). Given I0 and S0, the

probability density function of It is

c0(u0/(c0 It))
0.5 exp(−(u0 + c0 It))I1(

√
2u0c0It),

where

c0 = 2r0/[(exp(r0T)− 1)σ2],
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u0 = c0 exp(r0T)I0

and I1 is the modified Bessel function of the first kind. The derivation of the

p.d.f. of It is described below. As I0 > 0, the first part of (4.1) is

P(IT|I0, S0) = 2c0 f2u0
(2c0 IT)

and f (·) is defined below.

Siegel (1979) stated that (2c0 IT|I0, S0) follows a non-central χ2 distribution with

zero degrees of freedom and with non-centrality parameter 2u0. The non-central

χ2 distribution with zero degrees of freedom has a mass at 0, which corresponds

to the probability of extinction of the outbreak. Suppose X ∼ χ2
0(λ) where λ

is the non-centrality parameter, then we have P(X = 0) = exp(−λ/2). The

positive part of the distribution has a density fλ if X ∼ χ2
0(λ) and 0 ≤ a < b,

then

P(a < X < b) =
∫ b

a
fλ(x)dx,

fλ(x) = 0.5(λ/x)0.5 exp(−0.5(λ + x))I1(
√

λx).

Note that, I1(
√

λx) may become extremely large when λ is large which can

cause a numerical problem. In the application discussed later, the value of

I1(
√

λx) may reach 10308 which is beyond the range of double precision num-

ber storage in C++. Therefore, a Normal distribution with the same mean, λ,

and same variance, 4λ, i.e. N(λ, 4λ) can be used to approximate the non-central

χ2 distribution when λ is large. Rather than using the method above mentioned

in Cauchemez & Ferguson (2008), we adopt a different method which approxi-

mates the modified Bessel function, and hence approximates the non-central χ2

distribution. Abramowitz & Stegun (1970 p.377) developed asymptotic expan-

sions for large arguments for the modified Bessel function and the method is

adopted for our case to approximate I1(
√

λx). Specifically,

Iν(y) ∼
ey

√
2πy

{1 − 4ν2 − 1

8y
+

(4ν2 − 1)(4ν2 − 9)

2!(8y)2

− (4ν2 − 1)(4ν2 − 9)(4ν2 − 25)

3!(8y)3
+ · · · } for (| arg y| < 1/2π),

where ν = 1 and y =
√
(λx) for our case.
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In order to evaluate the second part of (4.1), the probability of U0 given IT,

I0 and S0, Cauchemez & Ferguson (2008) adopted a negative Binomial distri-

bution to approximate the variable U0|IT, I0, S0. In fact, the number of new

infection cases, U0, occurring in [0, T] is Poisson distributed with mean E0 =

β0S̄0

∫ T
0 Itdt. If we approximate E0|IT, I0, S0 using a Gamma distribution, then

a negative Binomial distribution is constructed. In other words, a negative Bi-

nomial can be considered as a Poisson distribution with mean, say λ, where λ

is itself a random variable, distributed as a Gamma distribution. Formally, the

probability mass function of the negative Binomial distribution, f (k; r, p), can

be derived through the method discussed above as follows:

f (k; r, p) =
∫ ∞

0
fPoisson(λ)(k) · f

Gamma
(

r,
p

1−p

)(λ) dλ

=
∫ ∞

0

λk

k!
e−λ · λr−1 e−λ(1−p)/p

( p
1−p

)r
Γ(r)

dλ

=
(1 − p)r p−r

k! Γ(r)

∫ ∞

0
λr+k−1e−λ/p dλ

=
(1 − p)r p−r

k! Γ(r)
pr+k Γ(r + k)

=
Γ(r + k)

k! Γ(r)
(1 − p)r pk for k = 0, 1, 2, · · ·

where r represents the number of failures and p represents the probability of

success in a sequence of independent Bernoulli trials.

Supposing that the Gamma distribution used to approximate E0|IT, I0, S0 has

mean M0 and variance V0, the approximation for the distribution P(U0|IT, I0, S0)

is

P(U0|IT, I0, S0) =
∫ ∞

0
P(U0|E0)P(E0|IT, I0, S0) dE0,

which follows the negative Binomial distribution with mean M0 and variance

M0 +V0. To determine the mean M0 and the variance V0 of E0|IT, I0, S0, a linear

model suggested by Cauchemez & Ferguson (2008) is used to derive M0 and V0

with the Laplace transform method shown below:

E0 = x0 + y0 IT + ǫ0,

where ǫ0 is the error. If we denote by x̃0 and ỹ0 the values which minimise

E[(E0 − x0 − y0 IT)
2] and ν̃0 the variance of E0 − x̃0 − ỹ0 IT, the mean M0 and
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the variance V0 can be approximated by x̃0 + ỹ0 IT and ν̃0 respectively. Detailed

analysis of the Laplace transform and the estimated x̃0, ỹ0 and ν̃0 are given

below (Cauchemez & Ferguson, 2008).

The Laplace transform of (IT,
∫ T

0 Itdt)|I0, S0 is

F(m, n) = E

{
exp

(
−xIT − y

∫ T

0
Itdt

)
|I0, S0

}

= exp(−Y(m, n)I0),

where ξ(y) =
√

r2
0 + 2yσ2

0 ,

Y(m, n) =
m(ξ(n) − r0 + eξ(n)T(ξ(n) + r0)) + 2n(eξ(n)T − 1)

(xσ2
0 + ξ(n) − r0)(eξ(n)T − 1) + 2ξ(n)

.

Define (ṽ, w̃) the scalars that minimise the function

L(v, w) = E

[(∫ T

0
Itdt − v − wIT

)2

|I0, S0

]
.

The solution can be obtained analytically by setting ∂L
∂v (ṽ, w̃) = 0 and ∂L

∂w(ṽ, w̃) =

0, i.e.

w̃ =
cov(IT,

∫ T
0 Itdt|I0, S0)

var(IT|I0, S0)
=

∂2F/∂m∂n

∂2F/∂2m

∣∣∣∣∣
(0,0)

=
1

r0
− T

er0T − 1
,

ṽ = E(
∫ T

0
Itdt|I0, S0)− w̃E(IT |I0, S0)

= −∂F

∂n

∣∣∣∣∣
(0,0)

+ w̃
∂F

∂m

∣∣∣∣∣
(0,0)

=
I0(e

r0T − 1)

r0
− w̃I0er0T.

Denoting AT =
∫

0 TItdt− ṽ− w̃IT, the residual, the Laplace transform of (IT, AT)|I0, S0

is

G(m, n) = E{exp(−mIT − nAT)|I0, S0}

= E

{
exp

(
−mIT − n

(∫ T

0
Itdt − ṽ − w̃IT

)
|I0, S0

)}

= F(m − nw̃, n)exp(mṽ).

The mean and variance of the residual are 0 and z̃, where

z̃ =
∂2G

∂2n
=

I0σ2
0 (1 + e2r0T − er0T(2 + r2

0T2))

r3
0(e

r0T − 1)
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Then scalars {x̃0, ỹ0, ṽ0} can be obtained from {ṽ, w̃, z̃} and the definition of E0

ỹ0 = β0S̄0(1/r0 − T/(er0T − 1)),

x̃0 = β0S̄0 I0(e
r0T − 1)/r0 − I0er0Tỹ0,

ṽ0 = (β0S̄0)
2 I0σ2

0 (1 + e2r0T − er0T(2 + r2
0T2))

r3(er0T − 1)
.

4.3 Inference

We consider the situation that observations are only the time series {U∗
k }K

k=0,

{Bk}K
k=0, where {U∗

k } is the number of reported cases, {Bk} is the number of

births and K is the number of observation periods and the removal rate, γ is as-

sumed to be known. Then the data can be augmented with {Uk}K
k=0, {IkT}K+1

k=0

and {S0} considered as parameters. Note that given S0 and {Uk, Bk}K−1
k=0 , {SkT}K

k=1

can be calculated deterministically via the relationship

SkT = S0 +
k−1

∑
i=0

(Bi − Ui).

Assume {U∗
k } follows a Binomial distribution

U∗
k |Uk ∼ Bin(Uk, ρ),

where ρ is the proportion of the reported cases. Note that, the proportion, ρ,

is a constant value throughout the whole epidemic, i.e. the proportion of the

reported cases in each observation period is the same. Finkenstädt & Gren-

fell (2000) adopted local regressions, leading to the estimation of a sequence of

reporting rates {ρk}K
k=0 in order to tackle a problem caused by changes in the

structure of the population (through changes in birth rates). However, we do

not explore this topic as the structure of the population is not modelled explic-

itly in our case. Denote by βk the infection rate for the (k + 1)th observation

period. The joint distribution of the observations, augmented data and param-

eters is as follows.

π(I(K+1)T, {IkT, Uk}K
k=0, S0, ρ, {βk}K

k=0|{U∗
k , Bk}K

k=0)

=
K

∏
k=0

{P(U∗
k |Uk, ρ)P(I(K+1)T, Uk|IkT, S0, {Ui, Bi}k−1

i=0 , {βk})}

× P(S0, I0|ρ, {βk}K
k=0)π(ρ, {βk}K

k=0). (4.3)
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The last term in the formulation (4.3) is the prior density for the parameters

ρ and {βk}K
k=0. The posterior distribution of augmented data and parameters

then can be written down easily and explored by MCMC sampling, as demon-

strated in the following section.

4.3.1 MCMC sampling

We now describe an MCMC algorithm for sampling the reporting rate, ρ, the

infection rates, {βk}K
k=0, the total number of new infections, {Uk}K

k=0, the initial

number of susceptibles, S0, and the number of infectives, {IkT}K+1
k=0 . We use

the same method for sampling all the parameters as described in Cauchemez &

Ferguson (2008) except sampling the reporting rate, ρ.

4.3.1.1 Sampling the reporting rate

As the reporting rate, ρ only depends on U∗
k and Uk, considering the joint dis-

tribution above, the full conditional density for ρ is

π(ρ|{U∗
k , Uk}K

k=0) ∝
K

∏
k=0

P(U∗
k |Uk, ρ)× π(ρ).

Based on the posterior distribution of ρ, we could assume the prior of the re-

porting rate follows a Beta distribution, e.g. Beta(1, 1), in which case the pos-

terior distribution of the reporting rate hence follows a Beta distribution too,

i.e. Beta(1 + ∑
K
k=0(U

∗
k ), 1 + ∑

K
k=0(Uk − U∗

k )). We then use a Gibbs step to up-

date the reporting rate, as opposed to using a Metropolis-Hastings algorithm

and updating ρ by a random walk on the real line, as adopted by Cauchemez

& Ferguson (2008).

4.3.1.2 Sampling the infection rates

We adopt a reparametrisation technique to reduce correlation between the in-

fection rates and the initial number of susceptibles, S0, by assuming β∗
k = S0βk.

Therefore, we update {β∗
k}K

k=0 instead of {βk}K
k=0. We assign a prior distribu-

tion U[0, 10000] on β∗
k . The Jacobian term must be calculated when the posterior

distribution is computed as the transformed parameter is updated. In particu-

lar, we assume β∗
k = S0βk and S∗

0 = S0 and transform from β, S0 to β∗, S∗
0 , then
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we have

πβ∗,S∗
0
(β∗, S∗

0) = πβ,S0
(β∗/S∗

0 , S0)
∣∣∣ ∂(β,S0)

∂(β∗,S∗
0)

∣∣∣ ,

where the Jacobian term

∣∣∣ ∂(β,S0)
∂(β∗,S∗

0)

∣∣∣ =

∣∣∣∣∣∣

∂β
∂β∗

∂S0
∂β∗

∂β
∂S∗

0

∂S0
∂S∗

0

∣∣∣∣∣∣
.

Therefore, the Jacobian term for this case is 1/S0. Considering the joint distri-

bution, the full conditional density for βk is

π(βk|{I(k)T , I(k+1)T, S0, {Ui, Bi}k−1
i=0 })

∝ P(I(k+1)T , Uk|I(k)T , S0, {Ui, Bi}k−1
i=0 , β∗

k)× π(β∗
k).

We use a Metropolis-Hastings step to sample from the transformed infection

rates, {β∗
k}K

k=0. We iterate over each of the K + 1 transformed infection rates for

each observation period and propose a candidate value by a random walk on

the real line.

4.3.1.3 Sampling the total number of new infections

We obtain a full conditional density for Uk by considering the joint distribution

in the formulation (4.3), yielding

P(Uk|I(K+1)T, S0, {IiT, Ui, Bi, βi}K
i=k+1)

∝ P(U∗
k |ρ, Uk)P(Uk |I(k+1)T, IkT, S0, {Ui, Bi}k−1

i=0 , βk)

×
K

∏
i=k+1

P(I(i+1)T, Ui|IiT, S0, {Uj, Bj}i−1
j=0, βi).

Following the method used by Cauchemez & Ferguson (2008), we update the

total number of new infections, {U∗
k }K

k=0, using an independence sampler (Brooks

1998). As discussed in Section 4.2.2, Uk|U∗
k is assumed to follow the negative

Binomial distribution, so we propose a new candidate Ũk as follows: Ũk =

U∗
k + Xk, where Xk is drawn from the negative Binomial distribution (U∗

k +

a, ((ρ + b)/(1 + a))) with fixed a = b = 10−5.
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4.3.1.4 Sampling the initial number of susceptibles

We assign a prior distribution U[0, 107] on S0. We then have a full conditional

density for S0 by considering the joint distribution in the formulation (4.3), giv-

ing

P(S0|I(K+1)T, {IkT, Uk, Bk, βk}K
k=1)

∝
K

∏
k=1

P(I(k+1)T , Uk|IkT, S0, {Ui, Bi}k−1
i=0 , βk)× P(S0).

As we adopt the reparametrisation technique and assume β∗
k = S0βk, accord-

ing to the equation of the Jacobian term given in Section 4.3.1.2, we need to

add log(S0/S′
0) for this case, to the acceptance ratio on the log scale, where S′

0

is the proposed initial number of susceptibles. We also wish to sample from

the posterior distribution on the initial number of susceptibles, S0 and we use

a Metropolis-Hastings step to perform this sampling and update S0 with a ran-

dom walk proposed on the real line.

4.3.1.5 Sampling the number of infectives

We put a prior distribution U[0, 107] on I0 which is the same as for S0. We then

derive the full conditional density for IkT by considering the joint distribution

in the formulation (4.3), yielding

P(IkT |I(k−1)T, I(k+1)T, S0, {Ui, Bi}k−1
i=0 , βk, βk−1)

∝P(I(k+1)T , Uk|IkT, S0, {Ui, Bi}k−1
i=0 , βk)

× P(IkT , Uk−1|I(k−1)T , S0, {Ui, Bi}k−2
i=0 , βk−1)× P(I0).

We update the number of infectives, {IkT}K+1
k=0 , with a random walk proposed

on the log scale, e.g. I ′0 = elog I0+Z, where Z ∝ N(0, σ2). Supposing that the

probability density function of Z is ϕ, then we have

πI ′0
(I ′0) = ϕ

(
log(I ′0/I0)

) ∣∣∣dI ′0
dZ

∣∣∣
−1

.

As I ′0(Z) = I0eZ, the Jacobian term
∣∣∣dI ′0

dZ

∣∣∣
−1

= 1/(I0eZ) = 1/I ′0. Therefore,

log(I ′kT/IkT) needs to be added to the acceptance ratio on the log scale.

For the MCMC algorithms discussed above, the standard deviations of the pro-

posals were tuned to obtain an acceptance rate of 20-30%.
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4.4 Simulation study using Cauchemez & Ferguson’s

method

The epidemic process is simulated for 10 years from the true SIR model with a

parameter setting below:

• initial number of susceptibles: S0 = 160, 000,

• initial number of infectives: I0 = 900,

• birth rate: 2152 births per two weeks which is the average birth rate in

London between 1944 and 1964,

• reporting rate: ρ = 45%,

• mean infectious period: 1/γ = 14,

• infection rates: {βk}25
k=0, shown in Table 4.1, are set under level of 10−7

with a similar shape in simulation study section in Cauchemez & Fergu-

son’s paper (2008).

Table 4.1: Infection rates for each observation period under level of 10−7.

β0 β1 β2 β3 β4 β5 β6 β7 β8

5.5 4.4 5.5 5.6 5.1 4.9 5.0 4.6 3.9

β9 β10 β11 β12 β13 β14 β15 β16 β17

4.0 4.4 4.6 4.1 3.9 3.7 3.2 2.6 2.9

β18 β19 β20 β21 β22 β23 β24 β25

3.7 5.5 5.6 5.1 4.6 5.0 5.1 4.6

We consider the situation where observed data are collected every two weeks,

and where infection rates vary every two weeks with a period of 1 year, i.e. the

infection rates are seasonal (1 calendar year per season) and mathematically,

βk = βk+(T2/T1)∗p, for p = 0, 1, 2, ..., 9, where T1(= 2) represents length of the

observation period in weeks, T2(= 52) shows there are 52 weeks a season and

p gives season number, e.g. it is the second season if p = 1. Therefore, for this

case, we have 26 infection rates to estimate.
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By using the existing method proposed by Cauchemez & Ferguson (2008), esti-

mation results are shown in Figures 4.3, 4.4, 4.5 and 4.6. We can see, from Figure

4.6, the MCMC chain converges to the truth rapidly and from Figures 4.3, 4.4,

4.5, the reasonable estimation results indicate that we successfully reproduced

Cauchemez & Ferguson’s method for the 10 years simulation data generated

from the SIR model.
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Figure 4.3: 10 years simulation data analysed by Cauchemez & Ferguson’s

method. Posterior mean (solid line) and true value (dashed line)

of the infection rates over 1 year for the SIR epidemic simulated

with mean infectious period, 1/γ = 14 days. The infection rates

vary every two weeks with a period of 1 year.
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Figure 4.4: 10 years simulation data analysed by Cauchemez & Ferguson’s

method. Posterior mean (solid line) and true value (dot) of the

number of infectives over 10 years for the SIR epidemic simulated

with mean infectious period, 1/γ = 14 days.

115



CHAPTER 4: BAYESIAN NONPARAMETRIC ESTIMATION FOR EPIDEMIC

MODELS IN LARGE POPULATIONS FROM TIME-SERIES DATA

0 50 100 150 200 250
0

2000

4000

6000

8000

10000

12000

14000

bi−weeks

U k

Figure 4.5: 10 years simulation data analysed by Cauchemez & Ferguson’s

method. Posterior mean (solid line) and true value (dot) of the to-

tal number of new infections over 10 years for the SIR epidemic

simulated with mean infectious period, 1/γ = 14 days.

4.5 Bayesian nonparametric estimation on infection

rates

We now estimate infection rates, {βk}K
k=0, under a Bayesian nonparametric

framework. For the convenience, we shall abbreviate Cauchemez & Ferguson’s

method by the CF method and our Bayesian nonparametric method by the BNP

method. The key difference between the CF method and the BNP method is that

in CF method, the infection rate for the (k+ 1)th , βk, is estimated independently,

i.e. the model does not impose any constraints on βk−1, βk, βk+1 despite the fact

that, in reality, they should be related. But our method, the BNP method, does

enable us to add such constraints. In the previous chapter, we analysed small-

scale epidemics under the Bayesian nonparametric framework by considering

the epidemic process as an inhomogeneous Poisson process. Function values

for the Gaussian process can be drawn from a multivariate Gaussian distri-

bution corresponding to the Gaussian inputs, i.e. the infection times for each

individual. However, in the present problem, it is infeasible to place a Gaussian

process prior on the infection rates corresponding to the infection times for each

individual in the population since if the infection times for each individual are

all augmented, the covariance matrix will be extremely large and the computa-

tion of the matrix inverse will take too long. Fortunately, with the help of the
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Figure 4.6: Convergence of the MCMC algorithm for the SIR epidemic sim-

ulated with mean infectious period, 1/γ = 14 days under

Cauchemez & Ferguson’s method. The plots show MCMC trace

of the reporting rate, ρ, the initial number of susceptibles, S0, the

infection rate for the first observation period, β0, the infection rate

for the 11th observation period, β10, the initial number of infectives,

I0 and the total number of new infections for the first observation

period.
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method that approximates the SIR model for large-scale epidemics, we are able

to place a Gaussian prior on the infection rates corresponding to some times

points of each observation period, e.g. the middle time points of each obser-

vation period can be chosen as Gaussian process inputs. Then we can perform

inference for the infection rates by implementing the MCMC algorithm. Note

that the number of the Gaussian process inputs is fixed. For the CF method,

the seasonal infection rates are assumed independent from each other and are

given independent uniform prior distributions and updated separately. For the

BNP method, however, we put a Gaussian process prior on the joint distribu-

tion of all infection rates. Hence, the infection rates depend on each other and

are updated together simultaneously.

4.5.1 Seasonal assumption on infection rates

We again put a seasonal assumption on the infection rates as for the CF method,

i.e. βk = βk+26p. The reparametrisation technique is used again to reduce cor-

relation between the infection rates and the initial number of susceptibles, S0

by assuming β∗
k = S0βk. We denote the middle time points of each observation

period within a season, i.e. the Gaussian process inputs, by {sj}J
j=1 and denote

the transformed infection rates, by {β∗
k}K

k=0, within a season, the Gaussian pro-

cess function values, by gJ , where J is 26 and K is 25 in this case. We also denote

by respectively α and θ the hyperparameters in the covariance function of the

Gaussian process. We now place a Gaussian process prior with a squared expo-

nential covariance function on the transformed infection rates, {β∗
k}K

k=0, within

a season, where the squared exponential covariance function is

K(x, x′) = α2 exp

(
− 1

2θ2
(x − x′)2

)
.

The GP prior can be written as π(gJ |{sj}J
j=1, α, θ). As we put a prior on all the

infection rates throughout the whole season, we have the posterior density of

{βk}K
k=0 as

π({βk}K
k=0|I(k+1+26×9)T{IkT, Uk, Bk}K+26×9

k=0 , S0)

∝
9

∏
p=0

K

∏
k=0

P(I(k+1+26p)T , Uk+26p|I(k+26p)T , S0, {Ui, Bi}k−1+26p
i=0 , β∗

k)

× π(gJ |{sj}J
j=1, α, θ). (4.4)
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The value of p is chosen from 0 to 9 in the formulation (4.4) since 10 years of

time series data are assumed to be observed.

4.5.1.1 Sampling the function values

Given the GP inputs {sj}J
j=1 and the current hyperparameters α and θ, we wish

to sample from the distribution on the function values gJ . We propose new

function values g′
J by a proposal of the form g′

J = δgJ +
√

1 − δ2hJ , where hJ is

drawn from the Gaussian process at {sj}J
j=1 and δ is in [0, 1). We set δ to 0.99

for our case to obtain a good acceptance ratio. We define

L =
9

∏
p=0

K

∏
k=0

P(I(k+1+26p)T , Uk+26p|I(k+26p)T , S0, {Ui, Bi}k−1+26p
i=0 , β∗

k)

and

L′ =
9

∏
p=0

K

∏
k=0

P(I(k+1+26p)T , Uk+26p|I(k+26p)T , S0, {Ui, Bi}k−1+26p
i=0 , β′∗

k ),

then we derive the Metropolis-Hastings ratio below

π(g′
J )

π(gJ )
×

q(g′
J→gJ)

q(gJ→g′
J)

=
L′ × π(g′

J |{sj}J
j=1, α, θ)

L × π(gJ |{sj}J
j=1, α, θ)

×
π(gJ |{sj}J

j=1, α, θ)

π(g′
J |{sj}J

j=1, α, θ)

=
L′

L
.

4.5.1.2 Sampling the hyperparameters

We assign prior distributions U[0, 107] on the hyperparameters α and θ. We then

have respectively the full conditional densities of α and θ, π(α|gJ , {sj}J
j=1, θ)

and π(θ|gJ , {sj}J
j=1, α). Given the GP function values, we use a Metropolis-

Hastings step and update α and θ by random walks on the real line. Denote by

Σα,θ the Gaussian process covariance matrix with current value of hyperparam-

eters α and θ. The Metropolis-Hastings ratios for α and θ are

|Σα,θ′ |−
1
2 × exp(−gJ

TΣα,θ′
−1gJ/2)

|Σα,θ |−
1
2 × exp(−gJ

TΣα,θ
−1gJ/2)

,
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and

|Σα′ ,θ|−
1
2 × exp(−gJ

TΣα′,θ
−1gJ/2)

|Σα,θ |−
1
2 × exp(−gJ

TΣα,θ
−1gJ/2)

.

4.5.1.3 Results

To compare with the CF method, we apply the BNP method to the same data

simulated in Section 4.4. Estimation results for the BNP method are shown in

Figures 4.7, 4.8, 4.9 and 4.10. Compared to the CF method, the BNP method

also provides reasonable estimations of infection rates of the epidemic as well

as all the other parameters which motivates us to explore the method more.
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Figure 4.7: Posterior mean (solid line) and true value (dashed line) of the in-

fection rates over 1 year for the SIR epidemic simulated with mean

infectious period 1/γ = 14 days under the BNP method. The in-

fection rates vary every two weeks with a period of 1 year.

4.5.2 Seasonal assumption on infection rates relaxed

We now relax the seasonal assumption on infection rates. In other words, we

no longer assume that βk = βk+26p. Thus the number of the infection rates in-

creases to 260 from 26 given 10 years data, i.e. the infection rates are represented

as {βk}259
k=0 for this case. Under this assumption, we applied the CF method to

the data generated in Section 4.4 but the MCMC chain failed to converge to the

true values which implied that the method is no longer working if the seasonal
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Figure 4.8: Posterior mean (solid line) and true value (dot) of the number of

infectives over 10 years for the SIR epidemic simulated with mean

infectious period 1/γ = 14 days under the BNP method.
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Figure 4.9: Posterior mean (solid line) and true value (dot) of the total number

of new infections over 10 years for the SIR epidemic simulated with

mean infectious period 1/γ = 14 days under the BNP method.
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Figure 4.10: Convergence of the MCMC algorithm for the SIR epidemic simu-

lated with mean infectious period, 1/γ = 14 days under the BNP

method. The plots show MCMC trace of the reporting rate, ρ, the

initial number of susceptibles, S0, the infection rate for the first

observation period, β0, the infection rate for the 11th observation

period, β10, the initial number of infectives, I0, the total number of

new infections for the first observation period and the hyperpa-

rameters α and θ.
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assumption is relaxed. For instance, the estimated reporting rate converged to

1. We then applied the BNP method used in Section 4.5.1 and placed a Gaussian

process prior with the squared exponential covariance function on the infection

rate throughout the whole epidemic. The posterior density of {βk}259
k=0 is given

by

π({βk}259
k=0|I(k+1)T{IkT , Uk, Bk}259

k=0, S0)

∝
259

∏
k=0

P(I(k+1)T , Uk|IkT , S0, {Ui, Bi}k−1
i=0 , β∗

k)

× π(gJ |{sj}J
j=1, α, θ),

where J is equal to 260 in this case which is different from what it is in Section

4.5.1. The MCMC chain again failed to converge to the true values. The failure

of the convergence indicates that methods which do not capture the seasonal

feature on infection rates lead to bad estimations of key quantities of interest.

We now take advantage of the Gaussian process and place a Gaussian process

prior with a different covariance function to address what we need, specifically

a periodic covariance function. Mathematically, our periodic covariance func-

tion is defined as follows:

K(x, x′) = α2 exp

(
−1 − cos(2π|x−x′|

ω )

θ

)
,

where ω is the length of a single season in the time series and θ is assumed to

be positive. Chandola & Vatsavai (2011) pointed out that for periodic time se-

ries, the observables at time t are strongly correlated with observables at t− 1 as

well as with the observables at time t−ω. Such periodic dependency cannot be

modelled using the squared exponential covariance function for any value of θ.

As it is assumed that there are 7 days a week, 52 weeks a year and the infection

rates keep a similar pattern for each year, we set 364(days) to ω for our case.

Figure 4.11 and 4.12 show the posterior mean of all of the infection rates and

the posterior mean of the number of infectives throughout the whole epidemic

compared with the truth and Figure 4.13 gives convergence of the MCMC al-

gorithm for the SIR epidemic under BNP method using a periodic covariance

function for the Gaussian process. We can see the MCMC chain converges to

the truth rapidly from Figure 4.13 and Figure 4.11 and 4.12 give reasonable es-

timations of the infection rates and the number of infectives which implies that
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Figure 4.11: Posterior mean (solid line) and true value (dashed line) of the in-

fection rates over 10 years for the SIR epidemic simulated with

mean infectious period, 1/γ = 14 days under BNP method using

a periodic covariance function for the Gaussian process.

our BNP method using a periodic covariance function for the Gaussian process

works under the assumption that the seasonal assumption on infection rates is

relaxed.

4.5.3 Different parameter settings for the Gaussian process

4.5.3.1 Strong prior on hyperparameters for Gaussian processes

As our BNP methods provided similar estimation results to the CF method,

we are encouraged to see how the Gaussian process behaves with different hy-

perparameter settings. In order to explore how it affects the estimation of the

infection rates within a season if a strong prior is put on the hyperparameter,

θ, in the Gaussian process covariance function, we study the same observed

data simulated in Section 4.4. We compare the results between the one ob-

tained in Section 4.5.1 and the one where we put strong prior distribution with

a bigger mean value on θ. We assume the infection rates are seasonal with a

period of 1 year and a squared exponential covariance function is used for the

Gaussian process. From the MCMC trace of θ obtained in Section 4.5.1, the pos-

terior mean of θ is around 24. As θ controls the characteristic length-scale of

the process and the bigger θ is which implies that the more slowly varying the
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Figure 4.12: Posterior mean (solid line) and true value (dot) of the number of

infectives over 10 years for the SIR epidemic simulated with mean

infectious period, 1/γ = 14 days under BNP method using a pe-

riodic covariance function for the Gaussian process.

function generated will be, we expect a much smoother curve of the estimated

mean infection rates in a season. We put two priors, Γ(50, 1) and Γ(100, 1), on θ

respectively. Figure 4.14 and 4.15 give the estimation results and show the effect

of strong priors used on the hyperparameter, θ. As expected, the pattern of the

infection rates is smoothed and the one is much smoother when the Γ(100, 1)

prior is put on θ.

4.5.3.2 Different covariance functions for Gaussian processes

For the BNP method, we also use other covariance functions for the Gaussian

processes to compare with the squared exponential covariance function under

the seasonal assumption on the infection rates, i.e. we place Gaussian pro-

cess prior with different covariance functions on the transformed infection rates

within a season. The covariance functions we use here are as follows:

K(x, x′) = α2 exp

(
−
( |x − x′|

θ

)r)
, for θ > 0 and 0 < r < 2.

Such covariance functions are so-called the r-exponential covariance function

(Rasmussen & Williams 2006). Actually, the squared exponential covariance

function also belongs to the r-exponential family of the covariance functions

when r is set to 2 and it is the smoothest one among the whole family. We set r
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Figure 4.13: Convergence of the MCMC algorithm for the SIR epidemic sim-

ulated with mean infectious period, 1/γ = 14 days under BNP

method. The plots show MCMC trace of the reporting rate, ρ, the

initial number of susceptibles, S0, the infection rate for the first

observation period, β0, the infection rate for the 11th observation

period, β10, the initial number of infectives, I0 and the hyperpa-

rameters in the Gaussian process covariance function α and θ.
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Figure 4.14: Posterior mean (solid line) and true value (dashed line) of the

infection rates over 1 year for the SIR epidemic simulated with

mean infectious period, 1/γ = 14 days under BNP method using

a squared exponential function for the Gaussian process. A strong

prior, Γ(50, 1) is put on the haperparameter, θ.
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Figure 4.15: Posterior mean (solid line) and true value (dashed line) of the

infection rates over 1 year for the SIR epidemic simulated with

mean infectious period, 1/γ = 14 days under BNP method using

a squared exponential covariance function for the Gaussian pro-

cess. A strong prior, Γ(100, 1) is put on the haperparameter, θ.
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to 1 and analysed the same SIR epidemic simulated in Section 4.4 using the BNP

method with the different covariance function for the Gaussian process. Figure

4.16 shows posterior mean values of the infection rates within a season using

two different covariance functions with r = 1 and r = 2. We can not see much

difference of the estimation results for both covariance functions although the

function values generated from the exponential covariance functions are sup-

posed to be less smooth. One explanation could be that there is only 26 obser-

vation periods per season, hence we have only 26 Gaussian process inputs as

we chose the middle time points of each observation period within a season as

the inputs, so functions could not be generated quite differently with different

covariance functions unless a strong prior is put on the hyperparameters in the

covariance function which significantly changes the model.
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Figure 4.16: 10 years simulation data analysed by the BNP method with dif-

ferent covariance functions. Posterior mean (solid line for r = 1

and dashed line r = 2) of the infection rates over 1 year for the SIR

epidemic simulated with mean infectious period, 1/γ = 14 days.

The infection rates vary every two weeks with a period of 1 year.

4.6 Measles epidemics in london (1948-1957)

We also analysed real life time series data, namely measles in London between

1948 and 1957 (http://www.zoo.cam.ac.uk/zoostaff/grenfell/measles.htm).

Measles is caused by a highly infective single-stranded RNA virus belonging

to the morbillivirus group and is mostly specialised on its human hosts. On
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infection, the virus passes through a latent period of around 6 to 9 days, fol-

lowed by a 6 to 7 days infective period. Therefore, the characteristic time scale

of the transmission dynamics is around 14 days (Bjørnstad et al. 2002, Gren-

fell et al. 2002). Based on the information above, we assume the infection pe-

riod is known, i.e. 1/γ = 14. The measles data were collected bi-weekly and

are under-reported as the reporting is not complete during the period and the

number of births is, on average, 2152 bi-weekly in London between 1948 and

1957. We do not consider changes in the structure of the population that modify

transmission parameters themselves, see Cauchemez & Ferguson (2008).

Given the observed data described above, we now apply the CF method and

BNP method to the 10 years measles data and estimate the reporting rate, initial

number of susceptibles, total number of the cases for each observation period,

number of infectives at the beginning of each observation period and the infec-

tion rates for each observation period within a season, namely, a year. For the

BNP method, we use a squared exponential covariance function for the Gaus-

sian process and placed a Gaussian process prior on the infection rates within

a season, i.e. the infection rates are assumed to be seasonal. We also use the

periodic covariance functions for the Gaussian process and placed a Gaussian

process prior on all of the infection rates throughout the whole epidemic, i.e. the

seasonal assumption is relaxed. Figures 4.17, 4.18, 4.19, 4.20, 4.21 and 4.22 show

estimation results of the parameters. The Figure 4.21 shows that the results of

the posterior mean of ρ for the CF method and the BNP method assuming the

infection rates are seasonal are quite close. The Figure 4.22 also gives similar

results for the initial number of susceptibles, S0 for both methods discussed

above. However, for the BNP method without assuming the infection rates are

seasonal, the posterior mean of ρ and S0 is smaller and bigger respectively com-

pared to the results of the methods assuming the infection rates are seasonal.

One explanation is that methods assuming the infection rates are seasonal or

not may give different estimates for the reporting rate and the initial number of

susceptibles.

Table 4.2 gives posterior mean, 95% CI and standard deviation for the param-

eters ρ, S0, I0, β0 and β10. From the results, we found that under the seasonal

assumption on the infection rates, the BNP method provided similar estimation

for each parameter compared with the CF method. When such assumption is
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Figure 4.17: Posterior mean of the infection rates over 1 year for the CF method

(dashed line) and BNP method (solid line) using the squared ex-

ponential covariance function for the Gaussian process for the 10

years measles data.

relaxed, the BNP method using appropriate covariance function for the Gaus-

sian process successfully estimated the infection rates throughout the whole

epidemic as well as all of the other parameters.

4.7 Conclusion

We firstly applied the CF method to an SIR epidemic simulated with a simi-

lar parameter setting used in Cauchemez and Ferguson’s paper (2008) and re-

produced reasonable estimation results. Then we applied our BNP method to

the same simulated data under the same assumption on the infection rates, i.e.

βk = βk+26p. We also relaxed such seasonal assumption on the infection rates

and successfully estimated the infection rates throughout the whole epidemic

under the BNP method using a periodic covariance function for the Gaussian

process for the same simulated data. Under the seasonal assumption, strong

priors on the hyperparameters in the covariance function and different covari-

ance functions were conducted to explore the effect of the estimation of the

infection rates as well as other parameters. At the end of the chapter, our meth-

ods were illustrated using the real life data, measles in London between 1948

and 1957 and the estimation results were compared with the one obtained using

the CF method.
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Table 4.2: Posterior mean, 95% CI, standard deviation for the reporting rate, ρ, the initial number of susceptibles S0 and infectives I0

and infection rates. CF, BNP1 and BNP2 represent respectively the CF method, the BNP method using the squared expo-

nential covariance function for the Gaussian process assuming the infection rates are seasonal and the BNP method using

the periodic covariance function for the Gaussian process without assuming the infection rates are seasonal. Measles in

London 1948-1957.

CF BNP1 BNP2

ρ (%) 50.87 [50.69, 51.05] (0.11) 50.71 [50.56, 50.87] (0.10) 50.26 [50.09, 50.44] (0.11)

S_0 (×103) 164 [160, 168] (2.6) 161 [158, 164] (2.1) 185 [180, 190] (3.0)

I_0 603 [551, 659] (33.3) 605 [550, 661] (33.7) 602 [547, 658] (33.9)

β_0 (×10−7) 5.99 [5.81, 6.17] (0.11) 6.08 [5.92, 6.24] (0.10) 5.31 [5.15, 5.47] (0.10)

β_10 (×10−7) 4.91 [4.74, 5.06] (0.10) 5.02 [4.88, 5.17] (0.09) 4.18 [4.05,4.32] (0.08)
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Figure 4.18: Posterior mean of the infection rates over 10 years for the CF

method (dashed line) and BNP method (solid line) using the peri-

odic covariance function for the Gaussian process for the 10 years

measles data.
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Figure 4.19: Posterior mean of the number of infectives over 10 years for the

CF method (dot) and BNP method using the squared exponential

covariance function for the Gaussian process (solid line) for the 10

years measles data.
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Figure 4.20: Posterior mean of the number of infectives over 10 years for the

CF method (dot) and BNP method using the periodic covariance

function for the Gaussian process (solid line) for the 10 years

measles data.
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Figure 4.21: The figure shows the density plots of the reporting rate, ρ, for the

CF method (dashed line), BNP method using the squared expo-

nential covariance function for the Gaussian process (dotted line)

and BNP method using the periodic covariance function for the

Gaussian process (solid line) for the 10 years measles data.
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Figure 4.22: The figure shows the density plots of the initial number of suscep-

tibles, S0, for the CF method (dashed line), BNP method using the

squared exponential covariance function for the Gaussian process

(dotted line) and BNP method using the periodic covariance func-

tion for the Gaussian process (solid line) for the 10 years measles

data.

In this chapter, we successfully applied BNP methods to the CF model, and the

BNP methods enabled us to (i) put a Gaussian process prior on the infection

rate as a function of time, as opposite to assuming independent βk values; (ii)

relax assumption of identical infection rates over the whole epidemic period.
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Conclusions

In this thesis we successfully developed nonparametric methods for the es-

timation of the overall force of infection and the infection rate in small-scale

epidemics in a Bayesian framework. We also investigated the large-scale epi-

demics and developed Bayesian nonparametric methods for the estimation of

the infection rate from epidemic times-series data.

The data we used to apply our methodology were simulated data generated

from the SIR epidemic model and the real outbreak data.

In Chapter 2, we firstly introduced a Gaussian process-based Bayesian non-

parametric inference for the estimation of the inhomogeneous Poisson process

intensity which was presented by Adams et al. (2009). We then adapted the

work of Adams et al. to the epidemics and developed our Bayesian nonpara-

metric methods for the stochastic SIR models. We explored the overall force of

infection of the epidemic process and assumed that it has the form, h(t), which

is a function of time without considering any information of the number of sus-

ceptibles and infectives. We inferred h(t) by placing Gaussian process priors on

it. Standard MCMC methods were used to sample the overall force of infection

as well as other parameters of interest from the desired posterior distributions.

We applied our methods to several simulated datasets, i.e. SE-Data 1, SE-Data 2

and SE-Data 3. Our methods work fairly well although some dramatic changes

within a small time period in the data were not captured due to the fact that

Gaussian process priors generally produce smooth estimates. We also analysed

the Smallpox data obtained from Bailey (1975, p.125) and compared results with

ones obtained from O’Neill & Roberts (1999). It turned out that the posterior
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mean of the infection rate is larger than O’Neill & Roberts’ estimate at each

estimated infection time although the estimated infection rate from O’Neill &

Roberts is fully covered in our 95% credible intervals. In terms of the estimate of

the removal rate, we have similar results with ones from O’Neill & Roberts. At

the end of the chapter, we carried out analysis of the effect of different Gaussian

process priors by using different covariance functions and we found that differ-

ent Gaussian process priors produce different processes from level of smooth-

ness point of view, otherwise they do not make much differences. In this chap-

ter, we assumed that the hyperparameter, α, of any covariance functions is fixed

to 2 in order to obtain efficient mixing of the MCMC algorithms and we did not

explore the topic of the choice of α.

In Chapter 3, we further investigated our Bayesian nonparametric methods for

the SIR model in small-scale epidemics. We assumed that the overall force of

infection is of the form, β̃(t)XtYt. In other words, the infection rate is assumed

to be a function of time, and the information of the number of susceptibles and

infectives is considered for the overall force of infection. We placed a Gaussian

process prior on β̃(t) and treated it as an inhomogeneous Poisson process inten-

sity. We applied our methods to simulated datasets SE-Data 2, SE-Data 3 where

the data were generated with a constant infection rate. We also simulated data

which were generated with infection rates varying during the epidemics and

analysed the dataset SE-Data 4 with our methods. We found that our methods

successfully recovered the truth. The estimates of the infection rate in the case

where we only observe incomplete data have larger uncertainty than the case

where complete data are observed. It is possibly because the estimation of the

removal rate results the extra uncertainty. We also illustrated our methods with

the Smallpox data. In this chapter, we introduced an extended multi-group SIR

model discussed in Hayakawa et al. (2003). In the multi-group SIR model, the

population is no longer homogeneous, but partitioned into groups according

to level of susceptibility. Hayakawa et al. (2003) developed Bayesian meth-

ods for SIR epidemic models with several kinds of susceptible. We applied

our Bayesian nonparametric methods to multi-group epidemic data (simulated

data and real life data) and then compare the results with ones obtained from

Hayakawa et al. It turned out that our methods also worked well for the multi-

group SIR model. Finally, we compared the approach with the one developed
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in Chapter 2. Specifically, we compared the estimate of the infection rate in two

different Bayesian nonparametric methods, i.e. β̂(t) and β̃(t). We found that

the approach discussed in Chapter 3, which considering the information of the

number of susceptibles and infectives, is a better way to estimate the infection

rate.

In Chapter 4, we adapted an approximation method due to Cauchemez & Fer-

guson (2008) to produce a Bayesian nonparametric method of inference for

epidemics in large populations. We firstly applied a method developed by

Cauchemez and Ferguson (2008) to an SIR epidemic and reproduced reason-

able estimation results. Then we applied our Bayesian nonparametric meth-

ods to the same simulated dataset under the same assumption on the infection

rates. We also investigated the case where we relaxed seasonal assumptions on

the infection rates and successfully estimated the infection rates throughout the

whole epidemic using our methods with a periodic covariance function for the

Gaussian process prior for the same simulated data. At the end of the chapter,

our methods were illustrated using the real life data, measles in London be-

tween 1948 and 1957 and we compared our results with the ones obtained us-

ing the Cauchemez and Ferguson’s method. In general, we developed Bayesian

nonparameteric methods enabled us to (i) put a Gaussian process prior on the

infection rate as a function of time, as opposite to assuming independent val-

ues; (ii) relax assumption of identical infection rates over the whole epidemic

period.

In the thesis, we performed inference for Gaussian process using standard MCMC

algorithms. One might want to use Hamiltonian Monte Carlo (Duane et al.,

1987) or slice sampling (Murray et al., 2010) to improve mixing and conver-

gence speed. However, all the methods mentioned above may have compu-

tational difficulties for large data sets. It is notable that given n input points,

Gaussian processes are very computationally demanding, i.e. O(n3) time com-

plexity. Fortunately, enormous attention has been given to the development

of efficient approaches to Gaussian process models. Snelson (2007) developed

sparse approximation techniques to reduce the complexity to O(nm2), where m

is a user chosen number much smaller than n. Csató & Opper (2001) developed

an approach for a sparse representation for Gaussian process models in order

to gain a computational advantage when using large data sets. For more dis-
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cussion of topics related to sparse approximations, see Csató (2002), Keerthi &

Chu (2008) or Seeger (2003).

Overall, this thesis provides new methodology which enables nonparametic es-

timation of parameters governing transmissions under a Bayesian framework.

We have successfully developed Bayesian nonparametric methods for the es-

timation of the stochastic SIR models in small-scale and large-scale epidemics

respectively. To our knowledge, there are not any other studies in the liter-

ature that considered nonparametric methods under a Bayesian framework.

In general, taking a nonparamatric approach not only offers greater potential

flexibility than parameterised models but also provides one a tool to assess the

goodness of fit of parametric epidemic models, and hence to quantify the extent

to which the underlying model assumptions are in line with observed data.

Epidemics are assumed to be complete throughtout the whole thesis. However,

our methods are also appropriate to ongoing disease outbreaks analysis. In ad-

dition, condition on the current function values, one can obtain new time series

that are drawn from the predictive distribution using our methods. Therefore,

in practice, epidemiologists can use our methods to answer questions about an

ongoing disease outbreak. Using available information and observed data, they

can make predictions about how fast an epidemic will move, how it is likely to

spread, and how many people will be involved. This information can be used

in an attempt to contain the epidemic and to stay one step ahead of it. The

Bayesian nonparameteric models can be constantly adjusted as new data rolls

in.

The Bayesian nonparameteric methods have potential limitations and disad-

vantages. Siegel & Castellan (1988) argued that nonparametric methods may

lack power as compared with more parametric approaches, especially if the

sample size is small or if the assumptions for the corresponding parametric

method hold. Hoff (2013) pointed out that for most Bayesian nonparametric ap-

proaches in practice, the prior does not represent actual prior beliefs, making it

hard to interpret the corresponding posterior distributions as posterior beliefs.

Standard Bayesian nonparametric priors include hyperparameters that directly

control things that we are unlikely to have prior information about and only in-

directly control things we might have information about (like means, variances

and correlations). Therefore, it is not easy to imagine that such a prior repre-
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sents actual prior information. He also commented that a posterior distribution

does not provide an honest assessment of uncertainty. Another limitation of the

nonparametric approaches is that appropriate computer software packages for

the approaches can be limited.
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Bjørnstad, O. N., Finkenstädt, B. and Grenfell, B. T. (2002). Dynamics of measles

epidemics: estimating scaling of transmission rates using a time series SIR

model. Ecological Monographs, 72(2), 169-184.

Brooks, S. P. (1998). Markov chain monte carlo method and its application.

Journal of the Royal Statistical Society Series D, 47(1), 69-100.

Casella, G. and George, E. I. (1992). Explaining the Gibbs sampler. American

Statistician, 46(3), 167-174.

Cauchemez, S. and Ferguson, N. M. (2008). Likelihood-based estimation of

continuous-time epidemic models from time-serires data: application to measles

transmission in London. Journal of the Royal Society Interface 2008, 5(25), 885-897.

Chandola, V. and Vatsavai, R. R. (2011). A Gaussian process based online change

detection algorithm for monitoring periodic time series, proceedings of SIAM

international conference on data mining, SDM 2011.

Chen, F., Huggins, R. M., Yip, P.S. and Lam, K. F. (2008). Nonparametric estima-

tion of multiplicative counting process intensity functions with an application

to the Beijing SARS epidemic. Communications in Statistics: Theory and Methods,

37, 294-306.

Cox, D. R. (1955). Some statistical methods connected with series of events.

Journal of the Royal Statistical Society Series B, 17, 129-164.

Cox, J. C., Ingersoll, J. E. and Ross, S. A. (1985). A theory of the term structure

of interest rates. Econometrica, 53, 385-408.

Csató L. (2002). Gaussian Processes - Iterative Sparse Approximations. PhD

thesis, Neural Computing Research Group, Aston University.

Csató L. and Opper, M. (2001).Sparse representation for Gaussian process mod-

141



REFERENCES

els. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural

Information Processing Systems 13, Cambridge, MA. The MIT Press.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid

Monte Carlo. Physics Letters B, 195, 216-222.

Dureau, J., Kalogeropoulos, K. and Baguelin, M. (2013). Capturing the time-

varying drivers of an epidemic via stochastic dynamical systems. Biostatistics,

14(3), 541-555.

Ebden, M. (2008). Gaussian processes for regression: a quick introduction. [on-

line] Available: http://www.robots.ox.ac.uk/∼mebden/reports/GPtutorial.pdf

Eichner, M. and Dietz, K. (2003). Transmission potential of smallpox: estimates

based on detailed data from an outbreak. American Journal of Epidemiology, 158,

110-117.

Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference

using mixtures. Journal of the American Statistical Association, 90(430), 577-588.

Fang, C.T., Hsu, H. M., Twu, S. J., Chen, M. Y., Hwang, J. S., Wang, J. D., Chuang,

C. Y., and the Division of AIDS and STD, Center fo Disease Control, Department

of Health, Executive Yuan. (2004). Decreased HIV transmission after a policy of

providing free access to highly active antiretroviral therapy in Taiwan. Journal

of Infectious Diseases, 190(5), 879-885.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems.

The Annals of Statistics, 1(2), 209-230.
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