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SUMMARY

Many components in conventional and nuclear power plant, chemical
plant and aero engines may be subjected to severe loading conditions,
i.e. loads which cause reverse plasticity ani/or incremental growth
(Ratchetting). If operating temperatures are high, creep strains may
also be significant and may exacerbate the ratchetting process. Also
the residual stress fields associated with the cycling of load in the
plastic region for a material will influence the accumulation of
strain during the dwell periods between cycles when steady loading is
sustained.

Some analytical solutions for the cyclic behaviour of simple
components and loadings are available, however very little information
on the effects of stress concentrations and complex loadiné conditions
on ratchetting is published. A better understanding of the mechanisms
of ratchetting for complex components and loadings'is essential in order
to identify characteristic behaviours which can be used to aid the
design process for components in potential ratchetting situations.

A range of component geometries, uniform sections and stress
concentrations, and loading conditions have been analysed by the finite
element method to investigate ratchetting mechanisms and to obtain
ratchet and dwell period strain data. The effects of stress concentrations,
material behaviour models, loading conditions and stress redistribution
due to creep on ratchetting mechanisms and strain accumulations are
described. Dwell period creep effects are bounded by the 'no creep'’
(zero dwell period) conditiocn. on the one hand and by complete redistribu-
tion between cycles at the other extreme.

The results of the analyses have been successfully used to ‘extend

existing approximate design rules for simple components to these more
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complex components and loadings. It has been shown that reasonable
estimates (in some cases exact solutions) can be obtained from either
a limited finite element analysié or by using approximate methods of
solution. |

Comparisons between experimental ratchetting data for two components
made from a lead alloy material and equivalent finite element predictions
are presented. Simple material behaviour models are used and the
results highlight both the benefits and shortfalls of these models.
Improvements to modelling techniques for more accurate predictions are
suggested although it 1s shown that, in certain circumstances, more

realistic material behaviour modelling is unwarranted.
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NOTATION
A constant
A,B,C,D, positions on 'hole-in-plate' component (Figure 6.1)

positions on circular plate component (Figure 6.21)

c collapse region on Burgreen diagram (Figure 2.11)

CP specific heat

D outside diameter

Di’ D2 ratchetting regions on Burgreen diagram (Figure 2.11)
E Young's Modulus

elastic region on Bree diagram (Figure 2.10)

elastic region on Burgreen diagram (Figure 2.11)

td

plastic modulus

P

K curvature

L length

M moment

P apprlied load

Q activation energy

R Boltzmann's constant
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Ry R, ratchetting regions on Bree diagram (Figure 2.10)

Si’ 52 shakedown regions on Bree diagram (Figure 2.10)
shakedown regions on Burgreen diagram (Figure 2.11)

T temperature

v efficiency index used by Cousseran et al (equation 2.12)

b beam width

d beam depth

inside diameter
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(), fi( ) functions

h surface heat transfer coefficient
k thermal conductivity
m time index in creep law
n stress index in creep law
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S seconds
t time
thickness
Xy ¥y2 co-ordinates
M time function (equation 4.2)
r1R time function for complete redistribution
Ag increment of strain
AqQ secondary stress range used by Cousseran et al (equation 2.11)
AT temperature difference
i diameter
X coefficient of thermal expansion
d ratchet strain used by Bree (equations 2.7 & 2.8)
E strain
A Poisson's ratio
P density
c stress

primary stress

c mean stress

Gb axial stress used by Bree (equations 2.7 & 2.8)
E? deviatoric stress

T shear stress

Other symbols are described where used.
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Subscripts

A axial
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ICL International Computers Limited
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UTs ultimate tensile strength

YRI yield range increment used by Jhansale (section 2.1.1.3)

conc concentrated



CHAPTER ONE

INTRODUCTION

Many components in conventional and nuclear power plant,
chemical plant and aero engines may be subjected to severe
loading conditions, i.e. loads which cause reverse plasticity
and/or incremental growth (Ratchetting). If operating temperatures
are high, creep strain may also be signifiicant. Ratchetting can
lead to eventual failure of a component and has been identified as
a potential problem in, for example, the design of Fast Breeder
Reactor fuel element claading (1, 2) where cladding failure and
a possible release of gaseous fission products could have serious

consequences.

Ratchetting is a build-up of inelastic strains and is one of
the possible outcomes when engineering components are subjected to
the combined effect of steady load, generally mechanical, and
cyclic thermal or mechanical loading.

The onset of ratchetting depends on the relative magnitudes of the
steady and variable loads. Creep straining, particularly in the
dwell periods between successive thermal/mechanical cycles, may in
addition to increasing the inelastic strains, exacerbate the ratchetting
process. Also the modification of residual stress fields during
transient loads will affect the subsequent steady load creep
behaviour which can be significantly different to the creep

behaviour of components subjected to steady load alone.

The safe design of such components should, in the first

instance, be based on the avoidance of ratchetting. However, a



through-life accumulation of inelastic strains would be acceptable

if within specified limits (eg.3). The latter option requires that

the strains are estimated at the design stage. For simple components
and loadings, design procedures exist which allow strain accumulations
to be relatively easily calculated (eg. 1, 2, 4,'5). Also the effects
of stress redistribution due to creep on ratchetting behaviour and

the accumulation of creep strains during the dwell periods can be
estimated (eg.1, 6, 7, 8, 9). For components which contain stress
concentration regions, it has been shown (eg. 10, 11) that ratchet
strains in the stress concentration can be significantly larger than
those in the uniform regions of the same component and also ratchetting
can occur under less severe loading conditions. Cyclic behaviour with
more complicated component geometries and/or loading conditions must
be quantified and at the present time, simple design procedures for
calculating 'ratchetting boundaries' and accumulated strains for
complex components and loadings are nct available. The finite element
method provides a powerful technique for predicting component behaviour.
However the accuracy of the prediction depends, to a large extent, on
the accuracy with which the material behaviour for the variable load

and temperature conditions is represented.

The main objectives of this project are:-

1. to identify the parameters which influence ratchetting
behaviour and quantify the effects of varying these
parameters.

2. to study the ratchetting mechanisms of a number of
simple and more complex compenents with a variety of

loadings and to quantify the effects of

(1) stress concentrations on ratchet strains



(ii) stress redistribution due to creep on

ratchetting behaviour, and

(£ii ) residual stress fields resulting from cyclic
loads,on the subsequent steady load creep

behaviour.

3. to assess and improve the analytical techniques for
predicting ratchetting behaviour, in particular to
suggest simple design procedures for complex ratchetting

and creep problems.

4, to compare analytical predictions of ratchetting behaviour

with experimental results in order to identify

(i) the limitations of simple material models and
(ii) the important material behaviour characteristics
which must be included to obtain accurate predictions

of component behaviour.

Five components, some of which have both a uniform section
(equivalent to a 'simple' component) and stress concentrations,
subjected to a variety of steady and cyclic loads have been

analysed. The components and their loadings are described below.

1. A flanged tube (thick tube with flange), having a uniform
section and a stress concentration, subjected to steady
axial mechanical loading and cyclic through-thickness

axisymmetric temperature variation.

2. A stepped beam, having a uniform section and stress
concentration, subjected to steady axial loading and

cyclic bending.



——

3. A plate with a single hole, subjected to in-plane steady

mechanical loading and cyclic heating and cooling of the

hole surface.

by, A clamped circular plate subjected to transverse pressure

loading and cyclic through-thickness temperature variation.

5 A shouldered tube (thin tube with shoulder) having 'a uniform
section and stress concentration, subjected to steady
axial mechanical loading and cyclic through-thickness

axisymmetric temperature variation.

The ratchetting and creep behaviour of the components is

examined and compared in order té identify simple, but conservative,
design techniques for predicting the behaviour of real engineering
components with similar geometries, loadings and material behaviour,
particularly in regions of stress concentration. The flanged tube
and stepped beam components have also been the subject of experi-
mental investigations by Yahiaoui (12) in a parallel project and
comparisons between the expérimental results and analytical
solutions are made. Also, the uniform regions of these two compo-
nents have been studied in greater detail and the variation in
ratchetting and creep behaviour with loading and material behaviour

is examined.

The effects of creep on cyclic behaviour are bounded by the
'no-creep' case, where the effects of dwell period are ignored
and the 'complete redistribution' case where complete redistribution
to the steady load stationary state stress distribution is allowed
between successive cycles of load. Generally, solutions for these
two extreme cases only have been obtained. Where possible, the
results have been normalised to be more generally applicable for

a range of engineering materials.

E FOV ‘P\'o‘:c:( AQ&'W\'L‘GN\) SR fQ(L\'QJ\LQ, éé .



Extensive use of the finité element method has been made.
This has required significant development of existing finite
‘element programs in order to perform elastic-plastic-creep
analyses with complex loading conditions and material models.
The finite element approach to non-linear problems and the
present program capabilities, including details of the modifi-

cations, are discussged in Appendix 1.

A review of the literature, with particular emphasis on material
behaviour models, existing prediction techniques and analytical
and experimental results, is given in Chapter 2.

Chapter 3 describes the selection process for the components,
particularly the flanged tube and stepped beam which were
designed especially for the combined experimental and analytical
projects and for which considerable preliminary work was carried
out. The results for each component are presented and discussed
in Chapters 4 - 6 and compared in Chapter T. An overall discussicn
is given in Chapter 8 where the implications of the work are consid-

ered. Cecnclusions arising from the work are given in Chapter 9.



CHAPTER TWO

LITERATURE SURVEY

In predicting elastic-plastic-creep behaviour of components
particularly under conditions of cyclic loading, the accuracy of pre-
diction depends on the accuracy with which the true material behaviour
is modelled. Section 2.1 describes some of the more common material
models which are currently available, together with an assessment of
their application to engineering materials. Section 2.2 gives a
review of the literature reiéting to the behaviour of components under
conditions of ratchetting and creep including approximate methods of

solution. A general summary of the findings is given in Section 2.3.

2.1 Material Behaviour Models

2.1.1 Elastic-plastic behaviour

The elastic-plastic behaviour of materials under monotonic loading
conditions is well documented (e.g. 13,14) and this section concentrates
on a description of some of the more common models and their ability
to describe the various phenomena associated with load reversal and
cyclic loading.

e.g. reverse plasticity - regions within a component may suffer both

tensile and compressive plastic deformation during a cycle of
load. This can ultimately lead to failure due to fatigue.

cyclic hardening and softening - under strain controlled cyclic

loading there may be an initial transitory stage while the stress
range 1s changing, prior to a stable loop being established. A
material may cyclically harden (increase in stress range) or
soften (reduction in stress range) during this stage.

material ratchetting - the cyclic hardening and softening effects

observed with strain controlled loading can lead to material



ratchetting under certain loading conditions. For example, in
Figure 2.1 for a strain controlled cycle of range 6; there is

a cyclic stress relaxation, er , and hence for a stress controlled
cycle an increment of plastic strain, Jiip, is accumulated in
returning to the original stress. This material ratchetting
results from the cyclic material behaviour and is in addition to

the loading dependent structural ratchetting.

Uniaxial elastic-plastic behaviour is, in general, dependent on
loading history since excursions into the plastic regime cause changes
in the instantaneous yield stress and plastic modulus.

The modelling of multiaxial elastic and plastic behaviour using a
yield criterion to define the limit of elasticity under any combination
of stresses and a flow rule to determine the components of plastic strain
after yielding is discussed in many references (e.g. 13). It is usually
assumed that the von Mises effective stress and yield criterion and
Prandtl-Reuss flow rules can be used to describe the behaviour of
metals under multiaxial stress conditions. These models are used by the
finite element program discussed in Appendix I. The von Mises yield
criterion is assumed for describing multiaxial behaviour in this
Chapter. The von Mises (or distortion energy) theory assumes that
yielding will occur when the distortion energy reaches the distortion
energy on yielding in simple tension or when

3645, » 207
J 71 y

~

where (Sij is the deviatoric stress, or in terms of the stress

components when

- 2 -5 )2 2 2 2 2
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The Prandtl-Reuss flow rules are developed from the theory of

Plastic potential relating plastic strain increments to the stresses

dEPjo(lﬂ_O_') where F( &) is a function of all the stresses.
6 °

If this function is the yield function then the plastic flow is
determined by an 'assoclated flow rule'. The Prandtl-Reuss flow
rules are associated flow rules based on the von Mises yield function

and give

~

P =
dEij an o’ij

where d\ 1is a non-negative constant.



2.1.1.1 Simple Models

Figure 2.2 shows the variation of strain with stress for
reversed loading for two of the simple models for a linear harden-
ing material.

In the isotropic hardening model (13) the hardening produced
in tension results in an equal hardening in compression (and vice
versa) and is represented by the path ABCDE with compressive yield

occurring when

=..o"
= y

In the X plane of principal stresses, for multiaxial states of
stress, the initial yield surface is a circle centred on the origin
of stress which expands uniformly with no change in origin as yield-
ing occurs, as shown in Figure 2.3(a). For a multilinear represent-
ation of the uniaxial stress-strain relationship, the discontinuities
are concentric circles. As loading increases the 'initial' yield
surface expands to combine with the second surface. Further increases
in loading cause expansion of the 'new' yleld surface. There is

no contraction when the loading is reversed.,

The kinematic hardening model (15,16) assumes that the elastic
stress range remains unchanged and a tensile hardening effect is
offset by an equivalent softening of the material in compression.

For kinematic hardening reversed loading is represented by path

ABCFG in Figure 2.2 and compressive yielding occurs when
{
= -20—0
o] ny v
Kinematic hardening requires a bilinear representation of the stress-

strain curve, an elastic line and a single line model of the plastic

behaviour. In a multiaxial stress field, the yield surface remains
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a circle of diameter 2c:'y which translates in space as yielding
occurs, see Figure 2.3(b).

In the absence of hardening, the isotropic and kinematic
hardening models are identical, with a fixed yleld stress and
neither expansion nor translation of the yield surface. This is

the elastic-perfectly-plastic model.

2.1.1.2 Assessment of the 'simple' models

The isotropic hardening model responses with uniaxial cyclic
strain and stress control with a non-zero mean are shown in
Figures 2.4(a) and (b) respectively. The hardening of the material
eventually results in a 'shakedown' to purely elastic cycling for
both strain and stress controlled loading. The model can describe
cyclic hardening under strain controlled conditions. The kinematic
hardening model results in a steady cyclic stress/strain locp after
the firsﬁ complete cycle for both strain and stress control as shown
in Figure 2.5(a) and (b). The elastic-perfectly-plastic model also
reaches a stable loop under strain controlled testing (stress con-
trolled testing is not applicable because of collapse).

None of the three simple models can represent material ratchetting,
however thelr constitutive equations can be readily incorporated into

finite element programs.

2.1.1.3 More complex models

One of the earliest descriptions of a model for material
behaviour under conditions of reversed and cyclic loading was
suggested by Masing (17) who proposed a relationship between the
monotonic stress-strain curve and the reversed loading curve.
Masing's hypothesis is that the cyclic loading curves are geometrically

similar to the monotonic curve, but scaled up by a factor of 2 and a
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stable loop is reached after one cycle far both stress and strain
control loading. Masing used an assembly of elastic-perfectly-plastic
elements connected in parallel. Each element has a different yield
stress and undergoes the same deformation., Under monotonic loading
conditions, the result.is a series of linear segments of reducing
positive slope and the reversed loading curve is the same as the
monotonic stress-strain curve scaled by a factor of 2 as shown in
Figure 2.6. The model can be described as having a non-linear
kinematic form.

The work hardening model of Mroz (18) uses a field of work-
hardening moduli. The monotonic stress-strain curve is represented
by a2 number of linear approximations. In stress space the discon-
tinuities between the linear approximations are represented by a
series of concentric circles which, for initially isotropic material,
are centred on the origin. Loading in excess of the initial yield
(first surface) produces a rigid body translation of that surface.
The presence of a further yield surface upon increasing the load
means that these two surfaces will translate together once contact
is made between them. For the uniaxial loading case, shown in
Figure 2.7 the elastic range (denoted by the first circle) is
constant during unloading and twice the initial yield stress. The
region between first and second surfaces has doubled and the model
corresponds to the Masing hypothesis with the cyclic loading curve
being twice the original monotonic curve.

For multiaxial loading, Mroz assumes that the surfaces cannot
intersect and that once initial contact between surfaces is made
the direction of straining changes with the inner surface sliding
around the contact surface until the normals coincide. In a further

paper Mroz (19) explains qualitatively how expansion and contraction
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of the surfaces during plastic deformation, together with trans-
lation can be used to model transitory effects such as cyclic
hardening and softening.

The 'overlay method' suggested by Zienkiewicz et al (20) is
based on the Masing concept of parallel elements and is specifically
designed for implementation into finite element programs without the
need for complex constitutive relationships. A structure is made
up of a number of overlayed sub-elements which can exhibit different
material behaviours. The corresponding nodes of each sub-element
coincide and identical strains are imposed on each of the sub-
elements. In this way, complex material behaviours can be represented
by simple but different material models attributed to each sub-
element. For example a combination of elastic only and elastic-
perfectly plastic sub-elements can be used to describe the kinematic
hardening in a similar way to that shown in Figure 2.6 for the
Masing model.

Goodman and Goodall (21) review some experimental tests on
stainless steel at varying temperatures with particular interest
being shown in type 316 stainless steel which is a candidate
material for Fast Breeder Reactor components. Fixed strain range
controlled cyclic tests on virgin material revealed a cyclic
hardening effect for many cycles before a stable loop was achieved.
However another fixed strain range cyclic test on a specimen with
a previous loading history of controlled ratchetting resulted in a
cyclic softening or 'memory decay' mechanism. Goodman and Goodall
conclude that material behaviour depends on loading history as well
as the operating temperature. They also emphasise the inability of

the simple hardening models to adequately predict cyclic behaviour
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(e.g. material ratchetting). They propose a 'saturation stress'
model which incorporates both cyclic hardening and softening and
will predict material ratchetting under conditions of stress
cycling with a non-zero mean stress. The model assumes a constant
vield range of twice the original virgin yield stress but the shape
of the plastic curve depends on the instantaneous yield siress and
a saturation stress parameter. This model appears to successfully
represent the experimental observations of the stainless steel
behaviour. However the equations developed by Goodman and Goodall
refer only to uniaxial states of stress and the multiaxial general-
isation is not considered.

Jhansale (22) examines experimental observations on a range of
steels and aluminium which highlight the limitations of the simple
hardening models. By considering the stable cyclic loops for these
materials he concludes that the loops are identical in shape if a
proportion of their elastic range is removed. He proposes a Yield
Range Increment (YRI) parameter to normalise cyclic stress-strain
behaviour with respect to the doubled monotonic loading curve
postulation of Masing. For 'Masing materials', which achieve steady
state conditions after the first cycle for both stress ard strain
controlled cycling, there is no change in the elastic range and the
YRI is zero and independent of hysteresis loop size. For 'non-
Masing materials’, which display a transitory period, for a number
of cycles, prior to achieving the steady state, the YRI is related
to the size of the hysteresis loop. Increases and reductions in the
YRI can be used to model cyclic hardening ard softening respectively.

The Jhansale model can therefore be used to model material ratchetting.
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2.1.1.4 Assessment of the more complex models

The Goodman and Goodall and Jhansale models are of particular
interest since they can predict material ratchetting which is
apparent in many engineering materials and also in the lead alloy
used by Yahiaoui (12). The Goodman and Goodall and Jhansale models
differ in the way hardening and softening effects are produced.

The Jhansale model assumes similarity of the cyclic curves and the
hardening/softening effects are related to changes in the elastic
range only. The Goodman and Goodall model has a constant elastic range
with hardening/softening effects resulting from changes in the shape
of the plastic region of the cyclic stress-strain curves.

Both models have been developed to describe the cyclic behaviour
of actual engineering materials. Before choosing the more appropriate
model for a particular material, it would be necessary to carry out
experimental tests to see which model described the material behaviour
more accurately. For example, superimposing experimental results
for strain controlled testing at different strain ranges would
highlight changes in elastic range (Jhansale) or shape of the
plastic region (Goodman and Goodall).

A further factor in selecting a material model is the ease with
which it can be used. In particular, if the finite element technique
is being used, the capability of adapting the model for the computer

program must be considered.

2.1.2 Creep behaviour

Above a temperature of about 0.3 of the absolute melting temp-
erature, metals display the time dependent phenomenon of creep when

under stress. Creep behaviour, including recovery and relaxation,
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is described by many authors (e.g. 9), and this section concentrates

on the modelling of creep behaviour.

2.1.2.1 Creep under constant load

The uniaxial creep test is widely used to obtain creep data for
materials. A uniaxial specimen is allowed to creep under constant
load and temperature. Typical creep curves for the lead alloy used
by Yahiaoui (12) at room temperature are given in Figure 2.8, This shows
the regions of primary & secondary creep. The primary stage marks a
reduction in strain rate to a nominally constant value over the
secondary stage. An apparent increase in strain rate in the
tertiary stage is partially due to the now significant reduction in
cross-sectional area. In addition, there is a true tertiary stage
with increase in creep strain rate for constant stress. This is
caused by the formation of microcracks at the grain boundaries.

In order to obtain analytical solutions for complex structural
behaviour it is necessary to determine a suitable creep law or
model to represent the uniaxial material data, the most general

being:-
E° = (o, t, 1) (2.1)

It is generally assumed tlat the effects of stress, time and

temperature are separable.
c _

(In the present work where comparison is made between experimental
observations (12) and finite element predictions, the isothermal
conditions during the dwell periods (i.e. when creep occurs) has
‘simplified the material behaviour modelling considerably.) Penny

and Marriott (9) give a review of the creep laws currently available.
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The most commonly used creep law is the simple Norton-Bailey Power
law (9) which combines the function of stress due to Norton with

the time function proposed by Bailey.

i.e. E° = a0t " (2.2)

where Al’ n1 and m1 are material constants.
The suitability of the Power Law to represent the creep

behaviour of the lead alloy material used in the experimental

part of the current project is diséussed by Yahiaoui (12); the

and m, on the

results show a slight dependence of the constants ny 1

level of stress.

The sinh law is an alternative form of the stress function and
when combined with the Bailey time function gives

E° = 4, sinn [fl] "2 (2.3)
2

The value of m in both the Norton-Balley and sinh laws can be
adjusted to model either the primary (m < 1), secondary (m = 1)
or tertiary (m > 1) stages of creep. With a careful choice of
constants, primary and a limited region of secondary creep can be
approximately modelled.

Dorn (9) suggests that a combined function of time and temperature
can be used and suggests a creep law in the form

£° = £(0), ty0te U (2.4)

The complexity of the creep law is significantly increased if

tertiary stage creep is to be included. Very few models are available

and ane of the most commonly quoted is that due to Graham and Walles (9),

n
8c= i Cio'cxitbi (2.5)
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where Ci’ c(i and ﬁ 4 are constants.
It is claimed that the first four terms of the series are suf-

ficient to describe the three stages of creep.

X4 1 [='¢
ie. £ = ¢,0 43+ 0,0 °

|

X (>4
t + (c3c5 34 C,0 4)1:3 (2.6)
ec - Eprimary + £secondary " Etertia.ry

Obvious difficulties are encountered due to the number of constants
(8 in the above expression) which have to be determined from experi-

mental data.

The Kachanov brittle rupture theory (9), which provides an explanation

for tertiary creep, assumes that there is a reduction in the effective
cross sectional area of a tensile specimen as the material accumulates
damage and hence an increase in the effective stress. The effective
stress is related to the initial stress by a continuity parameter,(P ’
which reduces from unity at t = 0 to zero when rupture occurs.

2.1.2.2 Creep under varying load

Although the constant load uniaxial creep data provides a basis
for obtaining material creep laws, in practice the phenomenon of
Stress relaxation combined with possible changes in loading requires
a model for predicting creep behaviour with varying stress.

Two models are commonly used:-

(a) Time hardening

It 1s assumed that the creep strain rate depends on the
current stress level and the elapsed time, as shown in Figure 2.9,
(b) Strain hardening

It is assumed that the creep strain rate depends on current

stress level and total creep strain, also shown in Figure 2.9.

Other more complex theories are available and are discussed by
Penny and Marriott (9). It is gererally agreed (e.g. 9, 23) that

the strain hardening model is the more realistic of the simple

theories.
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2.1.2.3 Multiaxial effects

There is a requirement to model complex multiaxial behaviour
using simple and more readily available uniaxial test data. The
equivalent stress/equivalent strain method and associated flow rules

for multiaxial creep are as described for plastiecity in Section 2.1.1.

2.1.3 Plasticity-creep interactions

Fessler, Hyde and Webster (25) reported a number of tests
showing the effects of plastic pre-strain on subsequent creep
behaviour. Specimens were initially plastically pre-strained then
allowed to creep at constant stress levels less than that required
to induce the initial pre-strain. The resulting creep curves were
compared with the virgin creep curve for the same constant stress
level, The results generally indicate a large reduction in creep
Strain rates in the presence of plastic pre-strain and for a
particular test, a period of reverse creep occurred prior to forward
creep being re-established. However at high stress levels, there
was a marked increase in the creep strain rate compared with the
virgin curve. The authors also report on a test where creep,
following initial plastic pre-strain, was interrupted by a further
addition of plastic pre-strain which caused a small amount of reverse
creep prior to forward creep. The specimen was then loaded incrementally
up to failure and, when compared with the stress-strain behaviour for

virgin material, showed an increase in the UTS.

2.2 Component Behaviour

2.2.1 Elastic-plastic behaviour

This section gives a review of the literature on the cyclic
behaviour of components. Because of its straightforward nature,

elastic-plastic behaviour under steady loading is not discussed.
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The phenomenon of ratchetting was first investigated by
Parkes (26, 27, 28, 29) who, in a series of publications, discusses
the ratchetting behaviour of aircraft wings using a two bar structure
model with elastic-perfectly-plastic material behaviour. The loading
consists of cyclic thermal loads in addition to the normal wing
loadings. One bar is kept at constant temperature while the other
has a cyclic temperature range. The papers consider different aspects
of the behaviour including the effects of a temperature dependent
yield stress, the relative sizes of the bars and the effects of heat
conduction in the bars.

Miller (4) uses a three bar assembly with both elastic-perfectly-
plastic and linear hardening to develop relationships for the ratchet
growfh of such a model where the outer bars are subjected to cyclic
thermal loading while the inner bar is kept at constant temperature,
and all three bars experience a sustained mechanical load. The
analysis shows that an elastic-perfectly-plastic material assumption
results in a constant ratchet strain per cycle, whereas the hardening
characteristics of the material result in decreasing increments of
Plastic strain for successive cycles and must ultimately result in
purely elastic cycling once 'shakedown' 1is complete. Miller
extends the analysis to a problem of ratchetting in a thin pressure
vessel where constant internal pressure and cyclic heat fluxes com-
bine to give cyclic elastic-plastic behaviour. He suggests design
criteria for the avoidance of ratchetting (i.e. a shakedown formula)
together with formulae for the prediction of ratchetting behaviour.

Probably the most important work in this field is that of Bree
(1,2) in predicting the behaviour of a fuel can in a Fast Reactor
due to the combined effects of internal pressure (due to the release

of gaseous fission products during the decay process) and intermittent



- 20 -

high heat fluxes during start-up and shut down, particularly in
emergency situations. The can is modelled by a slab of material
experiencing uniaxial stress due to pressure combined with a through-
thickness temperature gradient which is time-dependent. Bree applies
a rigorous analysis to the simple uniaxial model in order to investi-
gate the modes of behaviour with an elastic-perfectly-plastic
material assumption.

The 'Bree diagram' reproduced in Figure 2.10-‘ defines the

elastic, shakedown, cyclic plasticity and ratchetting regimes which

o
depend on the normalised axial stress ?;2 and normalised thermal
¥

c g (o]
stress —x . The line — (1- =2 ) = 1 divides the shake-
a o} (o]
y y y
down and ratchetting regimes into S1 and 82 and R1 and R2 respectively

where the suffix 1 denotes tensile yielding only and suffix 2
~ indicates combinations of mechanical and thermal stress which result
in both tensile and compressive yielding.

In the R1 region, an increment of ratchet strain,cy y is given

by
J=EE—3(12( /G (2.7)
% - ch-op g,) .
and for the R2 region
20
- t ,0 c
d= — (65—6:) (2.8)

Bree also investigated the effect of changes in yield stress
between start-up and shut down due to the differences in temperature.
The analysis assumes a greater yleld stress on shut down (CJY'),

because of the reduced temperature, compared with the start up yield
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Stress (c:y). Bree also considered a linear hardening material

and equations for ratchet strain per cycle are given which are cycle
dependent. The results show that ratchet strains are less than those
for an elastic-perfectly-plastic material model.

Burgreen (5, 36} 31) also uses the two-bar assembly to investigate
the regimes of cyclic behaviour due to combined axial load and cyclic
thermal gradients for an elastic-perfectly-plastic material assumption,
He carries out a similar analysis for a multi-bar assembly. Burgreen's
analysis of a rectangular beam subjected to an axial load and cyclic
bending moment is of particular relevance to this thesis. He uses
an elastic-perfectly-plastic material model to investigate the cyclic
behaviour of the component and the 'Burgreen diagram' reproduced in
figure 2. 11shows the cyclic regimes which depend on the axial load
normalised with respect to the limit load (g; ) and the moment
normalised with respect to the yield- moment (%;). A particularly
interesting feature of the diagram is the narrow band of ratchetting
behaviour bounded by shakedown and collapse regimes, which highlights
the large changes in ratchet strain associated with relatively small
changes in steady and/or cyclic loads. The implication of this
effect will be discussed in a later section when: the finite element
analysis of the stepped‘béém component is discussed.

Hyde (32) has analysed the ratchetting behaviour of a circular
Plate (d/t = 21) with radially moveable, direction fixed edges sub-
Jected to steady membrane loads, steady transverse pressure loading
and cyclic through-thickness thermal loads. An elastic-perfectly-
Plastic material model is used. With zero steady transverse pressure,

Hyde obtains results that are similar to those from Bree's (1) analysis,
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When an additional steady transverse pressure is applied Hyde's
results, which are limited to 3 cycles, show a reduction in ratchet
strain between second and third cycles unlike the Bree model; the
implication being that ratchetting will eventually stop.

Goodman and Goodall (21) have analysed a simply supported
circular plate (d/t = 40) subjected to steady transverse pressure
together with the application and removal of a linear radial tempera-
ture gradient with a uniform through thickness temperature. Kinematic
hardening and elastic-perfectly-plastic material models were used
and, in both cases, the increments of central deflection were
reducing after 22 cycles, although at slow rate for the elastic-
perfectly-plastic material model.

The use of the two and three bar structures to demonstrate the
regimes of cyclic behaviour is common and other references include
Gill (33), Ruiz (34) and Megahed (35). In particular, Megahed con-
siders a two bar structure where the bérs have different lengths
and cross-sectional areas in order to simulate a stress concentration.
He considers elastic-perfectly-plastic material behaviour together
with isotropic and kinematic hardening materials. The most important
conclusion in terms of this reseaxrch concernsthe effect of the
simulated stress concentration. Megahed concludes that the presence
of a stress concentration will considerably increase the ratchet
strains,

Sagar and Payne (36) performed an analysis of the incremental
collapse of a 'thick' cylinder under steady mechanical loading
(axial tension and torsion) combined with cyclic thermal loading.

Finally, Edmunds and Beer (37) considered a number of situations

which can result in incremental collapse and are particularly relevant
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to the design of pressure vessels., The ratchetting and shakedown
behaviour is studied by a simple slab model of a pressure vessel
with constant follow-up stress and superimposed strain cycling

(in the conjugate direction) and constant follow-up stress combined
with cyclic bending strain for an elastic-perfectly plastic material

model.

2.2.2 Elastic-plastic-creep behaviour

2.2.2.1 Steady load

Components subjected to steady loading may, depending on
temperature, experience the effects of creep. In regions of uniform
stress creep strain rates are also uniform with a subsequent uniform
elongation of the component in the direction of the applied loads,
However for more complex component geometries having non-uniform
stress filelds and for residual stress fields, creep strain rates are
position dependent and in order to maintain equilibrium of stresses
with the external loads and compatibility of strains throughout
the structure, creep strains in regions of stress concentration will
result in an overall reduction in stress; the opposite effect bteing
experienced in regions of 'below average' stress. This interchange
between elastic and creep strains is termed 'stress redistribution
due to creep' and will eventually result in a new equilibrium stress
field being established, known as the Stationary State Stress
Distribution. The component is said to have experienced complete
redistribution of stresses, and the transient creep behaviour is
followed by steady state deformation at the Stationary State Stress.
Marriott (8) has suggested an approximate method for quantifying transient
creep by the superposition of a fractiqn of the elastic deformation on

the steady state creep behaviour. The redistribution time is a
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Parameter used to characterise the time taken for the Stationary
State Stress Distribution to be reached. It is general to specify
a redistribution time based on stresses reaching a defined fraction
of the Stationary State values. Calladine (38) uses the parameter
tio' the time for the maximum stress in a structure to be within
10% of its stationary state value, and proposes a formula

Y0 T 21-12 o (O ) (2.9)

where t*( o‘) denotes the time taken for the creep strain to be
equal to the elastic strain when maintained at constant stress o,
G*ma.x is the maximum stationary state stress,
and n 1is the stress index in the creep law.

Bill and Mackenzie (39) propose a similar formula based on

mean stress (G)
to = B t#(T) (2.10)

where K is a constant.

Kraus (23) discusses the redistribution of stresses due to creep
and points out that closed form analytical solutions cannot in
general be obtained. Although numerical methods, particularly
the finite element method, are available, the high expense of running
necessarily large computer programs highlights the advantages of
approximate methods of solution.

The reference stress method was first investigated by Soderberg
(40) in 1941 and has been actively developed in recent years. The
reference stress is a parameter which can be used to predict
stationary creep behaviour of a component and is relatively insensi-

tive to the stress index, n, in the creep law. The advantage of
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the Reference Stress Method is that stationary creep deformation

can be predicted from uniaxial data at a single value of stress.
Kraus (23) presents a detailed review of the development of the
reference stress technique together with examples of the application
of the method to engineering components. Hyde (41) presents a
Similar review together with an insight into the determination of
reference stresses by experiment.

As an alternative to the Reference Stress Method, techniques
have been developed for bounding the deformation in situations of
elastic-creep and elastic-plastic-creep deformation. For elastic-
creep behaviour Leckie and Martin (42) present bounds on creep deform-
ation based on the principle of virtual work which has been extended
by Leckie and Ponter (43) to include the effect of additional
Plastic strains. They found that effects of inherent plastic
strains in elastic-creep behavicur was small so long as the selected

stress fields have values of the ratio stress to yileld stress which

are less than at all points in the structure. (Where n is

n
n+1
the stress index in the creep equation.)

2.2.,2.2 Cyclic loading

The effects of creep on cyclic elastic-plastlic behaviour is
Particularly important during the dwell periods between the cycles
of load. In general, the duration of the transient is significantly
shorter than the period between successive cycles. (e.g. for the
nuclear fuel can problem analysed by Bree, severe cyclic thermal
loads are experienced during the rapid start-up and shut down
procedures and these are separated by long periods of full power
operation). Creep during the dwell periods will cause a redistribution
of the residual stresses which will affect the ratchet strains

during the subsequent cycles.
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2.2.2.2,1 Effect of creep on the shakedown limits

Creep during the dwell periods between cycles will, under
sustained steady loading, cause a partial or complete redistribution
of stress towards the stationary state stress distribution
associated with the steady load. This in turn will modify the
shakedown limits for the component and Ponter (44) obtains an
analytical modified shakedown limit in the presence of creep which
is H—%—T— times the shakedown limit for ratchetting without creep
and concludes that effects of plastic straining can be ignored below
this modified limit. Leckie (45) states that if Bree's (1) shake-
down limit far the nuclear reactor fuel can is reduced by the
H—%—T factor then the contributions of plastic strains to the total
accumulated strains are relatively insignificant.

2.,2.2.2.,2 Analytical and experimental studies of ratchetting in

the presence of creep

Bree (1) considered the effect of complete redistribution
during the dwell periods, using an elastic-perfectly-plastic model,
where the residual stresses redistribute to that associated with
the steady load; thus each cycle is identical to the first with an
equal increment of ratchet strain. In his second paper, Bree (2)
looks at the effects of partial redistribution. In both cases the
shakedown regimes disappear with continued ratchetting occurring in
all but the elastic region of the Bree diagram.

Anderson (46) carried out controlled curvature tests on bars
of Type 304H stainless steel with creep occurring during the dwell
periods at constant axial load in order to simulate the Bree thin
tube problem, and thus verify Bree's conciusions on the interaction
between dwell period creep and ratchetting behaviour. Cyclic thermal

strains are simulated by bending the bars around two mandrels of



opposite curvature. He investigated load combinations on the
ratchetting boundary and in the shakedown region of the original
Bree Diagram (i.e. without creep). The results confirm Bree's
conclusions that the effect of creep during the dwell periods is
to move the ratchetting boundary for a partlcular cyclic load towards
lower steady load levels since ratchetting was apparent for all
load combinations.

Research into ratchetting with creep has been previously
undertaken at the University of Nottingham by Hyde et al (10, 11).
An axisymmetric shouldered tube comporent made of a lead alloy

(1.1% sb, 0.11% As) having both a uniform region (shank) and a

stress concentration (fillet) has been subjected to constant axial mech-

anical load and cyclic through thickness thermal loading with creep
during the dwell periods. The ratchetting behaviour in the shank
and fillet is discussed and, comparisons between experimental
results and finite element predictions of shank ratchet strains
are made., The general observations are listed below.
1. The mechanical and thermal stress concentration factors in
the fillet depress the ratchetting boundary.
2, For mean shank stresses below O.94c>’y ratchet strains
accumulated in the fillet were significantly larger than
those in the shank and increased with increasing steady load.
3. For mean shank stresses above O.9U'6'y shank and fillet ratchet
strains were of similar magnitude, relatively independent of
mechanical load and significantly larger than those below
Oﬁbdy. .
b, Finite element predictions using an isotropic hardening model
and experimental results for shank ratchet strains were in

reasonably good agreement.
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5. A conservative estimate of ratchetting behaviour using the
finite element technique can be made by assuming complete
redistribution of stresses.

6. A plasticity-creep interaction model is required if accurate

predictions of dwell period creep strains are required.

Inoue and Tanaka (47) compare analytical solutions for the
ratchetting behaviour of a thin-walled tubular specimen (sTB-35
low carbon steel) subjected to constant tensile stress super-
imposed on cyclic torsional strains at elevated temperature.
with experimental results. Ratchetting behaviour is investigated
in terms of the translation and expansion of the yield surface
and they conclude from both sets of results that the size and
origin of the yleld surface changes during an initial stage of
reducing ratchet strains per cycle. A stationary state is
eventually reached where the yield surface remains unchanged and
ratchet strains per cycle tend towards a constant value.

Corum et al (48) report on ratchetting tests performed on
Pipes made from type 304 stainless steel. Cyclic thermal loading,
induced by changes in the temperature of liquid sodium flowing
through the bore, was superimposed on steady internal pressure.
Dwell periods of 160 hours at steady internal pressure were allowed
between successive thermal shocks and the ratchet strain reduced
until ratchetting finally ceased.

Similar tests are reported by Yamamoto et al {9 ) with dwell
Perlods of between 24 and 48 hours. In thils case, the ratchet
Strains initially reduced but eventually reached a constant non-

zero value,
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Cousseran et al (50) have carried out ratchetting tests on
thin tubes subjected to axial loading and strain controlled cyclic
torsion. Type 304 and 316 stainless steel specimens were tested at
room temperature and at 300°C. Initially, the material character-
istics of the two steels were obtained at the test temperatures. The
components were then subjected to creep ratchetting tests. The
results of these tests are compared with experimental test data from
other sources on an 'efficiency diagram' (see Figure 2.12) where
secondary stress ratio, SR, is a function of the primary stress, O ,

and the secondary stress range, & Q.

aN

1.8, SR = Y

(2.11)

and the efficiency index, V, is the ratio of primary stress to a

notional effective stress, cyeff,

(o}
(yeff

(2.12)

The effective stress is defined as an equivalent primary stress
which, over the same test duration, would produce the same inelastic
strain as the combined primary and secondary stress for the ratchetting
test. The effective stress is obtained from the material character-
istics.

From Figure 2.12 it is seen that all the results appear to fall
into a narrow band and a bound for the avoidance of ratchetting,
based on the Bree (1) ratchetting boundary is suggested which is
very conservative. Design limits on strain can be used in conjunction
with the efficiency diagram to obtain acceptable levels of primary
and secondary stress. It is suggested that less conservative estimates
of allowable stress levels could be obtained if more experimental

data were available.
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2.2.2.2.3 Approximate Solutions

Ainsworth (7) * presents a bounding technique for predicting
creep ratchetting behaviour. From the principle of virtual work
he obtains an upper bound for elastic-plastic-creep strains based
on computations for elastic-plastic cycling in the absence of
creep with an additional steady load in the direction of the
required displacement. Consequently a detailed elastic-plastic-
creep analysis can be avoided. Ainsworth obtained deformation
bounds for a beam subjected to constant axial load and cyclic
curvature and a pressurised tube subjected to repeated thermal
shocks, which compare favourably with analytical solutions and
experimental results respectively.

0'Donnell and Porowski (6) obtained a bound on creep strain
for the Bree thin tube problem in the shakedown and reverse
Plasticity regions. The existence of a permanent elastic core
for cyclic behaviour in these regions (which is also true in the
Presence of creep) is used to obtain an upper bound on creep
Strains using the maximum value of elastic core stress during a
cycle. They show that elastic core stresses are a maximum after
each start-up and uniform across the elastic core and hence
any point in the core can be considered representative of creep
across the whole section. The bound therefore only requires know-
ledge of the maximum elastic core stress and the uniaxial creep
behaviour of the material at that stress and relevant operating
temperature.

Leckie (45) presents a detailed review of bounding techniques
for cyclic loading at elevated temperature. Theories for ratchetting

and shakedown, with and without the effects of creep, are discussed.
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2.3 Summary . .

2.3.1 Models for material behaviour

The choice of model for a particular material requires
detailed information of the true cyclic behaviour if accurate
predictions of component behaviour are to be obtained. In
particular, the material ratchetting phenomenon of 316 Stainless
Steel and the lead alloy used by Yahiaoui (12) can only be
represented by models like Jhansale (22) and Goodman and Goodall
(21). The Mroz (18,19) model describes cyclic material
behaviour in a qualitative way. It has the disadvantage that it
uses a linear approximation to the true stress-strain behaviour
and cannot model the smooth transition between elastic and
Plastic regimes.

For the modelling of uniaxial creep data, the Norton-Bailey
power law (9) is commonly used and requires a 'straight forward'
determination of the material constants. This creep law has been
adopted for the lead alloy model material used in both this

combined project (12) and the previous project (10, 11, 25)

2.3.2 Cyclic behaviour of components

The references cited present analytical and experimental
studies of component cyclic behaviour including the effects of
creep, generally for simple geometries. Redistribution of stresses
due to creep during the dwell periods is known to reduce the non-
ratchetting regime and have an adverse effect on the accumulation
of ratchet strains. The effects of creep during dwell periods on
Subsequent ratchetting behaviour is bounded by the 'no creep'
condition and the case where complete redistribution of stresses
to the steady state stress distribution occurs during each dwell

Period, There is only a limited amount of reported research on



the influence of stress concentrations on elastic-plastic or

elastic-plastic-creep behaviour,
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Figure 2.1 An example of Material Ratchetting.
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a) Isotropic hardening

0y

b) Kinematic hardening

Figure 2.3 Multiaxial representations of the Isotropic and Kinematic
hardening models (see Figure 2.1 for notation)
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Figure 2.4 Response of the Isotropic hardening model with uniaxial
cyclic strain and stress controlled loading
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Figure 2.10 The Bree diagram (1)

E - elastic cycling

P - reverse plasticity
81 and S2 - shakedown
R1 and R2 - ratchetting
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CHAPTER THREE

COMPONENT SELECTION

3.1 Introduction

Five components subjected to the combined effects of steady
and cyclic loading, both with and without the effects of creep
were selected forrthe ratchetting behaviour study. They were
chosen to provide a wide range of configurations and loadings
which are representative of realistic engineering problems, and
also to enable generalisations about the effects of geometry,
loading and material behaviour to be made. The components,
loadings and relevent figures are listed in Table 3.1. Detailed

descriptions of the loadings are given in Chapters U4-6.

Three of the five components (flanged tube, stepped beam and
shouldered tube) have both a uniforﬁ section (the shank) and
stress concentrations in order that direct comparisons between
the behaviour in uniform sections and stress concentrations can
be made. The flanged tube and stepped beam components have been
specifically developed for the combined experimental (12) and
analytical projects. The final choice of these two components
resulted from a pfeliminary investigation into suitable components
taking into account both experimental and analytical requirements (51).
The background to the subsequent choice of flanged tube and stepped
beam components is given in section 3.2. 7 ‘Details of the
experimental work is reported by Yahiaoui (12). The 'hole-in-plate'
and circular plate components appeared in the initial list of
possible candidates for the combined experimental and analytical

project but were rejected in favour of the flanged tube and

stepped beam, mainly on the grounds of experimental difficulty
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(see section 3.2). The 'hole-in-plate' component is a 'classical'
stress concentration problem which is closely related to the
'tube-plate' situation. The circular plate differs significantly
from .the other components in so far as the steady load induces
tensile, compressive and shear stresses on ratchetting sections;
in the other components the steady load stress on the ratchetting
sections is deminantly tensile. The ratchetting behaviour of this
component, in the absence of creep effects, has been studied by
Goodman and Goodall (212”aﬂa-Hyde (32).. The shouldered tube,

a thin tube with'uniform shank and stress concentration, was
‘developed for a previous project (25,52,53,54) . The finite
element mesh and temperature files (used to apply the thermal
loading cycles - see Appendix I) for this component, and fcr the

circular plate, were already available.

3.2 Background to the Selection of Two Components for the Joint

Experimental and Analytical Project

In the initial stages of the project a considerable number
of components were suggested as suitable for ratchetting tests.
These are listed in Table 3.2 and they fall into two major loading

categories:-

1. Constant mechanical loading with cyclic mechanical
loading

2. Constant mechanical loading with cyclic thermal
loading.

An early decision that at least one component of each loading
type should be analysed in detail was made. The final choice of

components depended largely on the following factors:-
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(a) ease of manufacture and tésting;

(b) ability to design a suitable loading rig for the
purely mechanically loaded component;

(c) the existence of a rig previously used for shouldered
tube tests (54);

(d) plane stress, plane strain or axisymmetric designs
should be adopted to minimise computing costs and so
that existing finite element programs could be used; and

(e ) the results should have some practical relevance and
ﬁhe‘éémp§nents have Both a uniform section and a

stress concentration.

It was important that an early decision was made on the
choice of components, since the design, manufacture and testing
of rig(s) would take a significant portion of the available time
(12). A new rig for the purely mechanically loaded component was
essential and the choice of component was made the highest priority
(section 3.2.1). If the existing shouldered tube rig was to be used
for the mechanically/thermally loaded component then more time for
a decision on a suitable component was available. Before deciding
to modify the existing rig, otheralternativecomponents were briefly

considered (section 3.2.2).

3.2.1 Choice of component with constant mechanical loading and

cyclic mechanical loading

Within the constraints described above, particularly those
relating to the experimental work in the joint project, it was
considered that the most suitable candidate was a uniform thickness

stepped beam with uniform rectangular cross-section in the shank



and stress concentration in the fillet. Tﬁe loading.would be
cyclic in-plane bending superimposed on steady axial load.
Analytical solutions in the shank are available for load controlled
bending (5) and with strain controlled bending, the problem is
analogous to the Bree model (1, 2). Factors considered in

reaching the final shape of component were:-

a) the nature and size of the stress raiser;
b) the length of the shank required to ensure a
uniform stress region; and
¢) the experimental limitation on overall lengtﬁj
including the clamping arrangement.
The final choice of component, the stepped beam, is shown in
Figure 3.2. It has a shank depth of 25mm and a fillet radius of
7.5mm. This configuration results in phctoelastically determined stress
concentration factors in tension and pure bending of 1.66 and 1.38

respectively (55).

3.2.2 Choice of component with constant mechanical loading and

cyclic thermal loading

The three most likely candidates were considered to be:-

a) a 'hole-in-plate' component with radial heating of
the hole surface;
b) an axisymmetric component with induction heating; and

¢) an axisymmetric component with fluid heating.

Options a) and b) would require the design and manufacture
of a new rig whereas the existing rig (54) could be modified for

option ¢).



3.2.2.1 'Hole-in-plate' component

Preliminary finite element calculations were performed with
the lead alloy material data to determine a suitable transient
thermal load and to estimate the likely power requirement. It
was found that a ramp change in hole surface temperature of

¢ in 10 seconds produced levels of thermal stress likely

60
to cause ratchetting when combined with the stress distribution
due to steady mechanical loading. However the power requirement
would be in the range 90-140W. It was considered that this level
of heating over the ~10mm thickness would be very difficult to
achieve. A further disadvantage would be that the distribution

of heat flux around the hole surface would vary as incremental
growth caused changed in the shape of the hole and this would
make finite element podelling of the transient difficult. The

'hole-in-plate' option was subsequently dropped in favour of an

axisymmetric component.

3.2.2.2 Axisymmetric component with induction heating

Although induction heating results in rapid changes in
temperature (and hence high thermal stresses) the high cost of a
suitable power supply unit (~1}KW) was found to be a major drawback.
Also it was anticipated that the strain gauge performance might be
impaired by the effects of electro-magnetic induction. The
induction heating option was dropped in favour of the fluid

heating technique already developed for the shouldered tube (54).

3.2.2.3 Axisymmetric component with fluid heating

The component chosen for detailed analysis is the flanged

tube shown in Figure 3.1. It is a thick cylinder (D/d = 2) with

a flange; a uniform sectionin the shank and a stress concentration



- 50 -

in the fillet. Based on previous experience with strain gauging
for the shouldered tube component, where water flcwed along the
outside surface as well as through the bore, it was decided to
apply thermal loading by water flowing through the bore only.
The outside surfaces would be open to the atmosphere and effect-
ively insulated. The final dimensions of the component were
based on:-
a) the size limitations of the existing rig (54)
(i.e. overall length ~200mm);
b) a length: bore machining limitation of 10:1;
c) adequate strain gauging in the fillet region
using a band of 5 E.R.S. gauges;
d) a small flange diameter to facilitate casting;
e) a suitable length of shank to ensure uniform
stress conditions under steady axial and thermal
loading; and
f) a suitable loading arrangement with no influence

on stress distributions in the shank and fillet.

Conditions e) and f) were investigated using a finite
element model of the component and full details of the analysis

are given elsewhere (51).
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Table 3.1 Components and loadings
Component Steady Loading Cyclic Loading ;;ﬁggi
Flanged tube Axial tension Through thickness 3.1
axisymmetric temperature
variation
Stepped beam Axial tension In-plane bending 3.2
'Hole-in-plate' Tension Heating and cooling of 3.3
hole surface
———
Circular plate Transverse pressure Through thickness 3.4
temperature variation
—
Shouldered tube Axial tension Through thickness 3.5

axisymmetric temperature

variation




Table 3.2

- -

Components considered for joint experimental and analytical pro ject

LOADING
TYPE
Steady Varying
1. Plane stress/strain
al] Rectangular bar tension bending [load controlled]
b] " " " thermal
c] Bree's problem " bending [curvature controlled]
d] Stepped beam " bending [load controlled]
e] Perforated strip, 1 hole " bending
f] L " L " thermal
g] i " row of holes " bending
h] Perforated sheet, 1 hole tension in tension in y-direction
x-direction

31 " " array of holes " " i "
k] " fr LU " " thermal
2. Axisymmetric
a] Plain drum head pressure thermal
b] " " " " conc. load
c] Axially bossed drum head " " "
d] \j i " i " thermal
e] Drum head with axial nozzle " "
f] " " " " " " conc. load
g] Circular plate tension bending
h] o " " thermal
J] " " " pressure
k] Shouldered tube " thermal
1] Flanged tube " "
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CHAPTER FOUR

FLANGED TUBE

4.1 Introduction

The development of the flanged tube component (Figure 3.1) has
been discussed in Section 3.2.2. The behaviour of the flanged tube
under conditions of

(1) steady mechanical axial load; and

(ii) transient thermal loading
is discussed here.

When the two modes of loading are combined (i.e., steady
mechanical axial load and cyclic variation in thermal loading) the
component may display the phenomenon of ratchetting with creep in
the dwell periods between thermal shocks affecting the ratchetting
behaviour.

As a preliminary to the study of the whole component, a detailed
study of the shank region is presented. This gilves an insight into
the component's behaviour using a simple finite element model and
hence efficient use of computing time. Also it enables a wilde
range of loads and different material behaviour models to be
examined. In addition to a description of the component behaviour,

comparisons with the experimental results of Yahiaoui (12) are made.

4,2 Shank Analysis

4.2,1 Finite element model -

A four element through thickness axlsymmetric model of a 10 mm
length of shank is used with constraints of constant axial displace-
ment on one face and zero axlal displacements on the other, using

the axisymmetric 8-noded isoparametric elements.
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4.2.2 Data
Basic material data is for the lead alloy used by Yahiaoui (12)

with a Norton-Bailey Power law to define uniaxial creep behaviour
EC = Ao_ntm

and no interaction between creep and plastic strains. The data is

summarised in Table 4.1. The elastic-perfectly-plastic, isotropic

hardening and kinematic hardening models are used to define the material

behaviour. Appendix I lists the 'standard' data used in the analysis.

4.,2.,3 Thermal loading cycle

A thermal loading for the shank (and hence whole component) was
determined from the experimental results of Yahiaoui (12).
A thermal shock consists of:-
(1) step increase in bore fluid temperature of 53.5°C,
(11) a transitory period of 20 seconds for conditions to
stabilise with the bore fluid maintained at the
increased temperature and all other surfaces assumed
to be insulated,
(111) step reduction in bore fluid temperature of 53.5°C,
(iv) as (ii) with bore fluid maintained at the original

temperature.

The finite element predictions of through thickness temperature
difference during the transient are compared with the experimental
results in Figure 4.1. There is reasonable agreement between the
results. The most severe conditions occur during the transient
at t = 0.5 secs.. ’

The incremental approach used in finite element plasticity

calculations requires that thermal (and mechanical) loads are applied



incrementally and nodal temperature distributions at successive
‘time increments up to 20 seconds for both halves of the thermal
cycle were computed and stored on temperatﬁre files. To ensure

that the most severe transient conditions were included, a small
time increment of 0.1 seconds was used. This resulted in an
unacceptable numbter of increments for each half cycle (i.e. 200).

By considering the temperature/time distributions, these temperature
files were edited down to an acceptable number of increments (i.e. 15)
without affecting the severity of the transient. The times chosen
were t = 0.1 to 1.1 s (in 0.1s steps), 2.1, 3.1, 4.1 and 20s. The
temperature distributions during the first half of a thermal cycle
are shown in Figure 4.2 which confirms that steady state conditions
are effectively attained within 20s and also shows the non-linear
characteristic through tge thickness.

The resulting variations in elastic stresses (axial and hoop)
are shown in Figure 4.3 up to and including the most severe con-
dition (t = 0.5s). From then on the stresses reduce to zero.

The increase in bore fluid temperature produces a compressive
axlal and hoop stress in the region of the bore and a tensile stress
region towards the outside,

The equivalent linear temperature difference A T for the
incremental temperature distributions have been obtained by the
approach suggested by Yamamoto et al (49).

+d/2
1., (AT)equiva.lent linear i% ] T(y) .y dy
-d/z
and a maximum value of 34.900 occurs when t = 0.5s. This yields

a maximum normalised thermal stress of 0.97 using the Bree

da = \Na\\ V\r\\dkn,ss " A)Q‘QQ, awua\f'\cw\
9 = v Fam e <k Ho wad  n dbove qund&.qﬁ\_
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equation (1)

i.e. Ot _ E«AT

(o3 2 1=
¥ ( \)cy

The maximum equivalent thermal stress range for a complete cycle,

which includes both heating and cooling, is therefore 1.94.

4.2.4 Cyclic thermal loading with constant axial load

The behaviour of the shank with constant axial mechanical load
and intermittent thermal shocks ((i) to (iv) in Section 4.2.3)
is discussed in this section. The creep ratchetting behaviour is
bounded by the 'no creep' condition (zero dwell period between
shocks) and 'complete redistribution' (in this case the resulting
stress distribution, after creep, is a uniform axial tensile stress).
Elastic-perfectly-plastic and linear hardening models are considered;
the numerical values of ratchet strain quoted are generally incre-

ments in the axial strain.

4,2.4.1 'No creep' condition

4.2.4,1.1 Elastic-perfectly-plastic material model

Ratchetting Mechanism

The axial and hoop stress distributions due to initial loading,
at the most severe conditions during the first and second halves
of the first thermal shock and at the end of the first thermal
shock are shown in Figure 4.4 for an axial load of 0.7 of the limit
load. For the first half of the shock there is no further plastic
straining after + = 0.6s and at the end of the half cycle the accumulated
componeﬁts of plastic strains are also shown in Figure 4.4, During
the second half of the cycle ylelding is again evident for the

first 0.6 seconds and at the end of the first cycle plastic strains
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have been accumulated over approximately 2/3rds of the section,
with the residual stress distribution being significantly different
from that due to initial loading. The ratchet strain for the first
cycle is 0.107 EW” A steady cyclic state is established after the
first cycle. The axial and hoop stress distributions during the
second and subsequent cycles are shown in Figure 4.5. The whole
section experiences some plastic straining during the complete
cycle. Again plastic straining is only evident during the first
0.6 seconds of each half cycle. Also the residual stress distributions
at the end of the cycle in Figure 4.5 are practically identical to
those after the first cycle in Figure 4.4. This ratchetting
mechanism 1s different from that of the 'Bree' tube for which a
region around the mid thickness position remains at the yield
stress throughout a complete cycle. The ratchetting process is
continuous with the second and subsequent cycles contributing an
equal amount to the accumulation of ratchet strain (0.06 Ey_for
each cycle).

The accumulation of ratchet strains during the first ten

cycles is shown in Figure 4.6 where the normalised accumulation cf

ratchet strain at the end of the jth cycle is given by
b J r
€/¢ = %, (aET /€, 4t

and AE] is the ratchet strain for the 1*8 orele.,

Effect of mean load on ratchetting behaviour

The discussion of the previous section has shown that the
ratchetting behaviour of the flanged tube shank (with an elastic-
perfectly-plastic material model) can be defined by two parameters;

the first cycle ratchet strain and the constant ratchet strain in
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subsequent cycles. The variation of these parameters with mean

load is given in Table 4.2 (together with the equivalent results for
complete redistribution which will te discussed later) and shown
graphically in Figure 4.7. The ratchetting boundaxry appears to be
at %%:ﬁﬁ 0.68 below which the first cycle ratchet strains are
relatively small; above the ratchetting boundary both the first
cycle and steady state ratchet strains increase very rapidly with
increasing load. At mean loads above ~ 0.72 PL steady state
ratchet strains are greater than in the first cycle.

4,2.4.1.2 Linear hardening models

For a bilinear representation of the monotonic stress-strain
curve, a range of values for the ratio of plastic modulus to
elastic modulus, gB, has been considered which is intended to cover
both the lead alloy (12) at around ambient temperature and 316 stain-
less steel at temperatures in the range 500-650°C (3). The range
of values for ;2 is 0.01, 0.05 and 0.1. Both 1sotropic and linear
kinematic hardening models were investigated; for all the load cases
considered there was no significant difference in the results for
the two models and hence the description 'linear hardening' is
used. Detailed inspection of the finite element results showed
that the two models gave very similar results because there was
no significant reverse yielding for the thermal loading case
investigated.

Ratchetting Mechanism

The mechanism of ratchetting with a linear hardening model
is similar to that for the elastic-perfectly-plastic material model
with the obvious exception that ratchetting is no longer a continu-

ous process since shakedown will eventually occur when the increase



in yleld stress is such that transient stresses are purely elastic.
By comparison with the behaviour with an elastic-perfectly-plastic
material model in Figures 4.4 and 4.5, the change in yleld stress
will result in cycle dependent residual stress distributions with

a monotonic reduction in ratchet strain per cycle after the first
non-representative cycle, as shown in Figure 4.8 for a mean

load of 0.9 of the 1limit load (based on initial yield*). The
results for an elastic-perfectly-plastic material model, taken from

Table 4.2, are included. The magnitude of the ratchet strains and

E
number of cycles to shakedown increase with decreasing ER and are
E
bounded by the continuous ratchetting for EE = 0 and the purely

B
elastic model (ER = 1) for which there is no ratchetting.

Effects of mean load and EP/E on ratchetting behaviour

For hardening materials, the definition of ratchetting behaviour
is more complex since ratchet strains vary from cycle to cycle.
Figures 4.9 to 4.12 show the variation of normalised accumulated
ratchet strains with mean load and EE after the 1st, 2nd, 5th

and 10th cycles respectively. Figure 4.13 shows the total accumulated
B

ratchet strains for ER = 0.05 and 0.1 together with an indication

of the number of cycles to shakedown. The equivalent results for
E
ER = 0.01 were not obtalned because very many cycles would be

required before ratchetting stops (as is apparent from Figure 4.8).
Figure 4.13 shows that for mean loads below ~ 0.6 of the limit load,

for which there is no ratchetting after the first cycle, there is

E
no difference in the first cycle ratchet strain for EE = 0,05 and
0.1 whereas foz‘%}- > 0.6 the hardening of the material has a |
L

significant effect on the accumulated ratchet strain and cycles to

shakedown.

* For consistency with the elastic-perfectly-plastic results, a.
limit load, based on the initial yield stress, is used throughout this
document .
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An alternative method for presenting the data, including
the elastic-perfectly-plastic results is used in Figure 4.14. This
plot enables the accumulated ratchet strain in 10 cycles to be
estimated for a given material hardening and axial load.

The variation of normalised ratchet strains in the second cycle
with mean load for various values of gﬁ is shown in Figure 4.15.
The ratchetting boundary for a given thermal loading is defined
as the mean load below which there is no incremental growth after
the first cycle. Figure 4.15 indicates a ratchetting boundary

P

at = 0.67 which is relatively insensitive to the degree of

L E
material hardening for the range 0 £ EE < 0.1,

4.,2.4.2 Complete Redistribution

4.,2.4.2.1 Elastic-perfectly-plastic material model

Ratchetting Mechanism

The axial and hoop stress distributions due to initial loading
and during the first and second halves of the first thermal cycle
are identical to those for the 'no creep' condition shown in Figure 4.4
for %— = 0.7. However, between the end of the first thermal
cycleLand the beginning of the second thermal cycle, the stresses
are allowed to completely redistribute to the statlonary state stress
distribution which is the same as the initial uniform stress dis-
tribution due to the mechanical loading. For the finite element
computations, complete redistribution is assumed once the through
thickness axial stress variation is within 1% of the mean stress.
With an assumption of zero interaction between plastic and creep
strains, the second and subsequent cycles will be identical to the

first cycle with an equal increment of ratchet strain for each

cycle. The accumulation of ratchet strains during the first ten
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cycles for %— = 0,7 is compared with the equivalent 'no creep'’
results in F?gure 4,6, For this particular mean load, the
'complete redistribution' assumption provides the upper bound on
ratchetting behaviour. The identical behaviour for all cycles
under 'complete redistribution' leads to two important observations:-
1. for continued ratchetting it is not necessary for the
whole section to suffer plastic deformation during a
cycle (see Figure 4.4) as is the case under 'no creep'
conditions;
2. if the first cycle produces any plastic deformation
then the ratchetting process is continuous.
The second observation implies a shift in the ratchetting boundary
to the elastic/plastic boundary. Ratchetting can only be avoided
if the combination of mean axial load and cyclic thermal load
leads to purely elastic behaviour.

Effect of mean load on ratchetting behaviour

The 'no creep' and 'complete redistribution' first cycle
and steady state ratchet strains, for a range of axial loads
0 to 0.9 PL are given in Table 4.2. As explained above, steady
state 'complete redistribution' values are practically* the same as
the first cycle 'no creep' values which:.are compared with the
steady state 'no creep' values in Figure 4.7. It may be seen from
Figure 4.7 that for values of %}- < 0.72 the creep in the dwell
reriods increases the steady stgte ratchet strain but above this
value of gi’ the creep reduces the ratchet strains. This is
because the complicated transient thermal loading conditions
result in a residual stress distribution at the end of a thermal
cycle which, for %i > 0.72, is more favourable to ratchetting
and leads to a larger ratchet strain in the subsequent cycle than

* within computational accuracy.
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would be obtained with a uniform stress distribution resulting
from complete stress redistribution. The residual equivalent
stress distributions at the end of the first thermal cycle for
various mean loads are shown in Figure 4.16; these do not provide
any obvious explanation of the differences in behaviour for axial

loads above and below EI;— = 0.72.
L

Creep during the dwell periods

The normalised strains which accumulate during the dwell
periods (Ed) for the first 3 complete cycles for a mean load of
0.7 PL are shown in Figure 4.17; the strains are plotted against

time function [

vhere I =g g 714 4.2
nom

LA, n and m are constants in the creep law, dnom is the mean
stress and t is the time ]

The results are asymptotic to straight lines which all have the
gradient of the 'virgin' creep curve at a constant stress equal

to the mean stress. The exact gradient of these stralght lines

is therefore 2 .

L
E’d
iz 'virgin' creep at O___ in time t [(A o “tM/¢ ]
2 _ gl P nom nom y
ar - n-1 .m
AE Qom  ©
- Snom _ P 5.3

Aid/ Ey is the normalised increment of strain associated with
stress redistribution and is equal for each dwell period since
residual stress distributions at the start of each dwell period

are the same, The variation in A'E.d/iy with mean load is
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given in Table 4.3 and Figure 4.18. The values given are averages
over 10 dwell periods. There éppears to be very little variation
in the increment with mean load and the absolute values are also
very small. It should be noted that accurate predictions for

AEd/ £ v are difficult both because of the small magnitude and
because the predictions depend on an accurate determination of the
steady state strain rate, (ﬁd/ Ey)/dr‘ , using a least squares
fitting technique.

The variation in redistribution time with mean load is discussed

in Section 4.2.4.2.2.

L,2.4.,2.2 Linear hardening models

Ratchetting Mechanism

The mechanism is similar to that with an elastic-perfectly-
plastic material as the stress redistributes to the ini}ial uniform
stress distribution during each dwell period. However, the increase
in }ield stress during a thermal shock results in a monotonic
reduction in the ratchet strains produced by each successive
thermal shock, including the first shock, with shakedown eventually
occurring, as shown in Figure 4.19 for a mean load of 0.9 PL' The
equivalent results for an elastic-perfectly-plastic material model
are also included in the figure. From a comparison with the 'no
creep' results in Figure 4.8, it may be seen that the 'no creep'
condition leads to a greater accumulation of ratchet strain in the
first ten cycles than the 'complete redistribution' condition for
this particular mean load, particularly for low values of %ﬁ "
Although shakedown will eventually occur for a hardening material
at all loading combinations, there can bte a significant accumulation

of ratchet strains.
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Effects of mean load and Ep/E on ratchetting behaviour

The variation of normalised accumulated ratchet strains with
mean load after the 1st, 2nd, 5th and 10th cycles are compared
with the results for 'no creep' in Figures 4.9 to 4.12. At high
mean loads the 'no creep' condition leads to a greater accumulation
of ratchet strains, whereas the 'complete redistribution' condition
provides the upper bound on ratchetting behaviour for smaller mean

loads. The 'cross-over' value of %— may be seen to depend on both
L

the number of cycles and on the hardening parameter, EP/E.
Considering the accumulation in 10 cycles, Figure 4.12, the cross-
over value of %— increases from~ 0.71 to ~ 0.90 for a change
of gn' from 0.0? to 0.1.

The varlation of normalised accumulated ratchet strains in

E
10 cycles with mean load and =2 may be seen in Figure 4.20. By

E
comparison with the equivalent plot for the 'no creep' condition
(Fig. 4.14) 1t may be seen that if the combination of mean load
and 2? results in an accumulation of more than twice the yield
strain in 10 cycles then the 'no creep’ condition is more severe,
whereas i1f the accumulation of ratchet strains in 10 cycles is less
than the yield strain, the complete redistribution case is more
severe,
E

The total accumulated ratchet strains for EF = 0.05 and 0.1
are compared with the equivalent results for 'no creep' in Figure
L4.13. It is apparent that there is very little difference in total
accumulated ratchet strains for the 'no creep' and 'complete
redistribution' conditions. For small mean loads 'complete
redistribution' leads to a significant increase in the number of

cycles to achieve shakedown, but with only a small increase in the

accumulation of ratchet strains. At higher mean loads, stress
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redistribution has little effect on the total accumulation of
ratchet strains or the number of cycles to shakedown.

Creep during the dwell periods

The normalised accumulated dwell period strain after the ist,
5th and 10th dwell periods for the range of gR values (including
elastic-perfectly-plastic) is shown in Figure 4.21 for a mean load
of 0.9 of the limit load. It may be seen that the behaviour is
practically independent of the degree of material hardening. The
variation in time function for complete redistribution,qu, with
mean load and hardening assumption, including the elastic-perfectly-
pPlastic results, is presented in Figure 4.22. As stated earlier,
redistribution was assumed to be complete when the through thick-
ness variations in stress were less than 1% of the mean stress.
There is little variation in the time function for complete redis-

E
tribution with %— and EE' For %— = 0.3 the creep strain rates are
L L

comparatively small and redistribution times are very large. It is
considered reasonable to assume that the time function is independent

of mean load and the degree of material hardening.

4.3 Analysis of the Whole Component

4.3.1 Finite element model

The 50 element, axisymmetric mesh used to model the flanged tube
component is shown in Figure 4.23. Emphasis has been placed on adequate
modelling of the fillet region while restricting the number of elements
to 50. The right hand end of the mesh (flange centre plane) is con-
strained to have zero displacements in the axial direction. Axial
loading is applied to the left hand end which has a constant axial dis-
pPlacement constraint. Axisymmetric, 8-noded, isoparametric elements
are used. The justification for using this mesh is discussed in Appendix
II. When surface stress or strain results are quoted, data has been

obtained for the Gauss points nearest to the surface, shown in Figure 4.23
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4.3.2 Data

The lead data given in Table 4.1 is used. An elastic-perfectly-
plastic material assumption is used for investigating the ratchet-
ting tehaviour of the component. Where comparisons between finite
element predictions and the experimental results of Yahiaoui (12)
are made, more realistic multilinear representations of the lead
alloy uniaxial stress-strain data, shown in Figure 4.24, are used.
There is a significant difference in the stress-strain behaviour of
the lead alloy at the extremes of the operating temperature range
(1.e. 20°C and 76°C) and the bands of experimental data for both
extremes are modelled. For these comparisons a Norton-Bailey Power
Law for creep, with constants for the lead alloy obtained by

Yahiaoui (12), is used,

1.e. £°=28.67 x 10'58 0'7'36 £9+375 (0 in N/mz, t in houxrs) L.y

with a strain hardening assumption.

For a similar lead alloy, it has been shown that the von Mises
yield criterion and Prandtl-Reuss flow rules are the most suitable of the
common flow theories (41) and these theories have teen used for this

analysis.

4.3.3 Axial loading

4,3.3.1 Elastic stresses

The elastic stress distributions due to axial load along the
shank outside surface and around the fillet are given in Figure 4.25
and along the bore surface are given in Figure 4.26, The values
at the Gauss point; nearest to these surfaces are plotted; the
normal and shear stresses should be zero at the surface. For both
surfaces the meridional stress is dominant and the higheét stresses

occur at the first Gauss point into the fillet. Extrapolating
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fillet Gauss point stresses to the surface gives an elastic
mechanical stress concentration factor of 1.53. Figure 4.27 shows
the 'exaggerated' deformed shape for a mean axial load of 0.7 PL'
The displacement scale is much greater than the dimension scale,

hence the term 'exaggerated' deformed shape.

4.3.3.2 Elastic-plastic behaviour

The growth of the plastic zones with increasing axial load up
to collapse for an elastic-perfectly-plastic material is shown in
Figure 4.28. Yielding initiates in the fillet and this plastic
zone grows in towards the shank. Yielding in the shank is not
evident until very high loads are applied and the fully collapsed
component still retains a large elastic region in the shank
adjacent to the fillet., It would appear that the shank length is
insuffiéient for fully uniform conditions to be reached. However the
maximum stress variation of 1% is considered to be reasonabie. The
finite element predictions for elastic-plastic meridional strain dis-
tributions along the outside surface (based on the idealisation of stress

strain behaviour - Curve A in Figure 4.24) are compared with the experi-

mental results of Yahiaoui (12) in Figure 4.29. Although there is
2
g
difference at high mean loads (%— = 1,10) when plastic strains are large.

L
Other points of note from Figure 4.29 are:-

good agreement at low mean load (= = 0.72), there is a significant

1. the finite element predictions indicate a shift in the
point of maximum strain in the stress concentration with
increasing load,

2. both finite element predictions and experimental results.
show the rate of increase of shank strain to be greater

than those in the fillet so that for %— = 1.10, shank
L

strains exceed the peak values in the stress concentration,
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4.3.3.3 Elastic-creep behaviour at constant axial load

The effects of creep on the meridional stress distribution
along the outside and bore surfaces are shown in Figures 4.30 and
4.31 respectively. Creep has no effect on shank stress, whereas

in the fillet region'there is a considerable redistribution of
stress and reduction in peak stress (Figures 4.30 and 4.31). Along

the bore surface the transition between shank and flange stress is
accentuated by creep and there is a reduction in the meridional

stress in the region of the flange.

4.3.4 Thermal loading cycle

The thermal loading applied to the whole component is
nominally identical to that used by Yahiaoui (12) in his experimental
testing of the same component, and has been discussed in Section
4.2.3 for the analysis of the shank. The temperature files were
created and edited in the same way as for those used in the shank
analysis. The elastic thermal stresses during the first half of
a thermal shock were computed in order to obtain a value for the
thermal stress concentration factor in the fillet. Figure 4,32
shows the time variation of elastically calculated meridional
thermal stresses along the shank outside surface and at the most
severe point in the fillet., The thermal stress to yield stress
ratios at Gauss points nearest to the surface in the shank and
fillet are 0.5 and 0.83 respectively. Extrapolation of these peak
conditions to the shank and fillet surfaces gilves a thermal stress
concentration factor of 1.81 in the fillet. Also peak fillet
thermal stress occurs approximately 0.3 seconds after the peak

has been reached in the shank.
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4.3,5 Cyclic thermal loading with constant axial load

4,3.,5.1 'No creep' condition

4.3.5.1.1 Elastic-perfectly-plastic material model

Ratchetting Mechanism

The regions of plastic growth during the first and second
halves of the first thermal shock for g— = 0.7 are shown in
Figure 4.33. The first thermal shock pgoduces an increment of
ratchet strain in the shank and the maximum ratchet strain occurs
at the 'peak fillet' position. There is an 'elastic core' throughout
the component. After a few cycles a steady cyclic state is reached
where each shock produces an equal amount of ratchet strain,
both in the shank and at the 'peak fillet' position. The regions of
additional plastic straining during the 10th thermal shock (i.e.
steady cyclic state) are shown in Figure 4.34. Whereas the whole
shank section suffers plastic deformation during the shock, the
major portion of the flange remains elastic and there is a
relatively small plastic zone adjacent to the bore. In the fillet
region, strains are accumulated at a more rapid rate as can be
seen in Figure 4.35, which shows the distribution of 10th shock
meridional ratchet strains along the outside of the shank and around
the fillet. Figure 4.36 shows the 'exaggerated deformed shape'
at the end of this shock and the incremental deformation due to
the 11th shock.

The largest strains occur in the fillet and the shank region
ad jacent to the fillet and result in considerable thinning of the
section as well as axial strain. A small region of reverse plas-
ticity is apparent from Figure 4.34 in the region of the bore surface.
Reversed plasticity is defined by a change in the direction of plastic

Straining as illustrated in Figure 4.37 where components of plastic
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strain are plotted in the 7™ plane for point A in the reverse
plasticity region (see Figure 4.34). The fourth thermal shock is
shown in detail; there i1s an overall reduction in equivalent plastic
strain during the first half of the thermal shock and an increase
during the second half. Furthermore the directions of plastic
straining during the first and second halves of the cycle are
virtually opposite.

The accumulation of shank and peak fillet meridional ratchet
strains during the first ten cycles for this mean load are shown
in Figure 4.38. A steady cyclic state is reached in the fillet
after ~ 6 cycles ard from then on peak ratchet strain per cycle
is constant, and greater than in the shank where the steady cyclic
state is reached after the first cycle as discussed in Section
L.2.4.1.1,

Effect of mean load on ratchetting behaviour

Figure 4.39 shows the accumulation of shank and peak fillet
meridional ratchet strains for a mean load of 0.5 of the limit load
under which condition the steady state ratchet strains are zero in
both the shank and fillet. The results for this loading condition,
together with those for - 0.7, are summarised in Table 4.4,

P
L
4.,3,5,1.2 Comparison between experimental results and finite

element predictions

Yahiaoui (12) has carried out experimental tests on flanged
tube components with a range of axial loads and dwell periods between
thermal shocks. In this section the results of 3 'rapid cycling'
tests (1.e. ~ 15 minutes between shocks for steady state thermal
conditions to be achieved) with negligible creep are compared with
finite element predictions assuming a 'no creep' condition and

using the material models given in Figure 4.24. Comparison between
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the experimental results for tests with a significant dwell periocd
and equivalent finite element predictions including creep are
discussed in Section 4.3.5.3. The modelling of the thermal shocks
has already been discussed in Sections 4.2.3 and 4.3.4.

The material models are based on uniaxial stress-strain data
fof the lead alloy at temperatures which are the extremes of the
rig operating range, i.e. 20°C for the initial steady state
condition prior to a thermal shock and 76°C at the intermediate
steady state condition during the shock. This data is seen to fall
into 2 discrete bands and the material is softer and resembles an
elastic-perfectly-plastic material at the higher temperature.

Elastic-perfectly-plastic, isotropic and kinematic hardening
models of the stress-strain data are used in the finite element
computations. For the elastic-perfectly-plastic model a yield
stress of 21.5 MN/m2 is assumed based on the 0.2% proof stress of
the material at 20°C and is seen to also be a reasonable model
for the 76°C data (curve C, Figure 4.24), The isotropic and
kinematic hardening models of the lower temperature data are curves
A and B respectively in Figure 4.24, By definition, the kinematic
hardening model is bilinear and is a reasonable model up to
~0.6% strain. The isotropic hardening model uses a three straight
line representation of the data with a reduction in plastic modulus
at 0.6% strain and is a reasonable 'fit' up to ~ 1.5% strain.

For the higher temperature data, curve D 1s used for both
isotropic and kinematic hardening models and is a reasonable fit
up to ~ 1.0% strain.

Finite element predictions of total strain and ratchet strain
(in the shank and at the 'peak fillet' positions) and meridional

Strain distributions for g— = 0.5, 0.7 and 0.8 are compared with
L
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the experimental results in Figures 4.40 to 4.44,

The results are tabulated in Table 4.5. In Figures 4.40,
4,42 and 4.44 the two sets of experimental data are for diamet-
rically opposed strain gauges, whereas average experimental resultis
are given in Table 4.5 and Figures 4.41 and 4.43.

In all cases, the predictions with isotropic and kinematic
hardening models of the same temperature data are very similar,
as can be seen from Table 4.5. The predictions in Figures 4.40 to
L.,4y are for the two extreme temperature kinematic hardening models.
Inspection of the output indicated that there is no reverse plasticity
with the kinematic hardening models and since stralns are always
less than 0.6% (i.e. the breakpoint between curve A for isotropic
hardening and curve B for kinematic hardening) small discrepancies
in the predictions are due to differences in the programming of the
two models. Detailed comparisons of the experimental results and
finite element predictions are given below. The implications of these
results, in terms of modelling technique, are discussed in Chapter
8.
EZEL = 0.5 (Figures 4.40 and 4.41)

The finite element predictions of ratchet strain are zero
after a few cycles whereas the experimental results tend to a
non-zero (albeit small) steady state value. Total strains are
underestimated in all cases. In particular the first cycle ratchet
strains, which dominate the total strains, are significantly
underpredicted. Also the predictions with all models are very
similar. From the strain distributions in Figure 4.41 it is seen
that the ratio of peak fillet to mid shank total strains is approxi-
mately 2 after the 1st and 3rd shocks from both the experimental results

and finite element predictions. After the 10th shock the experimental
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value of the ratio has reduced to ~ 1.7. From the finite element
predictions, generally the distribution 'peaks' are at the first
Gauss point into the fillet and the changes in strain in the fillet
region are less severe than is apparent from the experimental

results.

E[PL = 0,7 (Figures 4.42 and 4.43)

By comparing the experimental shank initial strain (0.075 -
0.11% in Figure 4.42) with the expected value from the uniaxial
data (0.065% from Figure 4.24) it would appear that the tube
material has a lower yield than the uniaxial data. Again the
finite element predictions of ratchet strain and hence total strain
are less than the experimental data. In the shank, the large first
cycle experimental ratchet strain (1281 &€ from Table 4.5) is
grossly underpredicted by the finite element models (98 - 202 mE
from Table 4.5) and the increase in ratchet strain between first
and second cycles which is predicted by the hardening models is
not apparent in the experimental results. The ratchet strain pre-
dictions at the 'peak fillet' position are generally closer to the
experimental data than in the shank. The ratchet strain predictions
with the hardening models must eventually reduce to zero, whereas
the experimental ratchet strains appear to be tending towards a
constant value which is almost an order of magnitude greater than
the steady state ratchet strain predictions with the elastic-
Perfectly-plastic material model. For the experimental results
in Pigure 4.42 it can be seen that shank and peak fillet ratchet
strains are very similar after ~ 4 cycles and this phenomenon is
also predicted by the high plastic modulus kinematic hardening

model (i.e. curve B). From the strain distributions in Figure 4.43
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the 'peak fillet' strain prediction is again at the first Gauss

point into the fillet and experimental strain distributions are

more severe than the predicted results. The finite element

results fall to predict the large reduction in shank ratchet strains
adjacent to the fillet., The ratio peak fillet to mid shank total
strain is overpredicted and, whereas the hardening models correctly
predict a reduction in this ratio with successive cycles, the
opposite effect is apparent with the elastic-perfectly-plastic model.
EZEL = 0.8 (Figure 4.44)

The comparisons in Figure 4.44 are for the shank only since
it was found that the fillet strain gauge readings were inaccurate
due to unbonding of the gauges from the surface of the specimen,
Differences between experimental results and the predictions are
dominated by the large underprediction of the first cycle ratchet
strain. The ratchet strain predictions with the kinematic hardening
model using Curve D in Figure 4.24 are reasonably accurate for the
2nd to 4th cycles analysed. The experimental steady state ratchet
strain of ~ 0.05% is well predicted by the elastic-perfectly-

plastic model,

4.3.5.2 Complete Redistribution (Elastic-perfectly-plastic

material model)

Ratchetting Mechanism

The regions of plastic straining during the first and second

halves of the first thermal shock for %— = Q.7 are the same as
L

for the 'no creep' case shown in Figure 4.33.
Figure 4.45 illustrates a steady state cycle
for the whole component, with a mean load of 0.7 PL’ by showing the

regions of additional plastic straining
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during the 10th thermal shock, and may be compared with Figure

4.34 for the 'no creep' condition. Yielding commences

in the bore region and is accompanied by a plastié zone initiating
from the fillet which spreads into the shank during the first

half of the cycle. There is no further ylelding in the fillet
during the second half of the thermal shock, where a plastic zone
initiating in the bore spreads radially outwards before contracting
to zero. A local region of reverse plasticity (see Section 4.3.5.1.1)
is apparent in the bore. By comparison of Figures 4.34 and 4.45,
the second half of the thermal shock has a similar effect for both
'no creep' and 'complete redistribution' cases, whereas the plastic
zone growth during the first half of the thermal shock varies
significantly between the two cases, The initial non-uniform
residual strain field for 'no creep' case (for example see Figure
L.,16) peaks around the mid-radi;s and 'compressive' yielding in

the bore is accompanied by a 'tensile' yield zone in the 'core' and
there is no initial yielding in the fillet. The initlal stationary state
stress distribution for 'complete redistribution' is less severe,
Particularly in the shank, and the yield zone initiates in the
fillet in preference to the 'core'. There is a marked similarity
between the overall region of plastic growth for the 'no creep'

and 'complete redistribution' conditions.

The distribution of 10th shock meridional ratchet strains
along the outside surface is shown in Figure 4.35. The peak fillet
ratchet strains are larger than those in the shank and 'complete
redistribution' leads to larger shank and fillet ratchet strains
than are accumulated under 'no creep' conditions (Figure 4.38).

Figure L4 .46 shows the 'exaggerated' deformed shape at the end
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of the 10th dwell period and the incremental deformation during
the 11th shock and dwell pericd.

Although there is a definite section thinning during the
thermal shock (Figure 4.46(b)) the displacements are dominated by
the dwell period behaviour and after 10 cycles there is little
evidence of thinning in the total deformation (Figure 4.46(a)).
Figures 4.36(b) and 4.46(b) give a direct comparison of ratchet
deformation, allowing for the difference in displacement scales.

The accumulation of shank and peak fillet meridional ratchet
strains during the first ten cycles for this mean load are shown
in Figure 4.38. The constant ratchet strain per cycle in the
shank has already been discussed. In the fillet, the ratchet
strains in the second and subsequent cycles are the same and less
than the first cycle ratchet strain because the stationary state stress-
distribution, after creep, at the start of the second and subsequent
cycles is less favourable to ratchetting than the initial distri-
bution due to axial loading at the start of the first cycle.
Complete redistribution leads to greater accumulations of ratchet
strains in the shank and fillet than for the 'no creep' condition,

Since both shank and fillet ratchet strains are constant after
the first cycle, the ratchet strain distribution shown in Figure

4.35 is the steady state behaviour.

Effect of mean load on ratchetting behaviour

Figure 4.39 shows the accumulation of shank and peak fillet
ratchet strains for a mean load of 0.5 PL and again peak fillet
steady state rétchet strains are apparent after the first cycle.
For 'no creep', this combination of steady mechanical and cyclic
thermal loading results in shakedown both in the shank and at

the peak fillet position, however the ratchetting process is
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continuous if complete redistribution occurs during the dwell periods.
For the peak fillet position, if any plastic growth occurs during

the second cycle then the ratchetting process is continuous. The

results for this loading combination, together with %— = 0.7, are
L

summarised in Table 4.4,

Creep during the dwell periods

The strains which accumulate during the first dwell period
in the shank and the 'peak ratchet strain' position, E.d, are shown
in Figure 4.47 for a mean load of 0.7 of the limit load. The
behaviour in the fillet is similar to that for the shank already
discussed in Section 4.2.4.2.1; that is the accumulation of dwell
period strain is asymptotic to a straight line and with an increment
of normalised strain, (Aed/ey)fillet’ associated with the
redistribution of stress. In the second and subsequent dwell
periods, the strains are asymptotic to lines of the same gradient
as for the first cycle with an equal increment of strain due to
redistribution which is less than that for the first cycle. The
peak fillet results together with the equivalent shank results from
Table 4.3, for this mean load and %— = 0.5 are given in Table 4.6.
The gradient of the asymptotic lineI,J a( Ed/Ey)/&r', is further
normalised with respect to the mean load, %; .

For all cases, the increment of strain due to redistribution

is relatively small (<0.250 x yield strain), and the
d

e ¢ )/ar
P/P

normalised gradient, , 1s independent of mean load.

L

4.3,5.3 Partial redistribution - comparison with experimental results

In addition to the comparisons between the experimental results
for 'rapid cycling' and the finite element predictions assuming a

'no creep' condition discussed in Section 4.3.5.1.2, the results
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of 2 tests with significant dwell periods between thermal shocks
are compared with finite element predictions which include the
effects of creep between shocks. The lead alloy material models
described in Section 4.3.5.1.2 and shown in Figure 4,24 have been
used together with the lead alloy material creep law from Table
b.1,

Figures 4.48 to 4.51 compare the experimental results and
finite element predictions of total strain, ratchet strain and
accumulated dwell period strain (in the shank and at the 'peak
fillet' position) and meridional strain distributions for %— il
with 24 hour and 120 hour dwell periods between thermal shogks.
The results are tabulated in Table 4.7. The two sets of experimental
total, ratchet and dwell period strains are for diametrically opposed
strain gauges. Experimental strain distributions and the experi-
mental data in Table 4.7 are average strain gauge results. The
finite element predictions in Figures 4.48 to 4.51 are for the
elastic-perfectly-plastic and two kinematic hardening models.
Table 4.7 shows that the differences in predicted strains for the
respective kinematic and isotropic hardening models are relatively
small (see Section 4.3.5.1.2).

EZEL = 0.7, 24 hour dwell period (Figures 4.48 and 4.49)

The predictions of total accumulated strains are in good
agreement with the experimental results in the shank and at the
'peak fillet' positions; similarly the strain distributions.

In particular, over the 8-10 cycles analysed, the predictions with
curve D are in excellent agreement with the experimental data. For
all models the dwell period strains are over-predicted, particularly

during the first few (A 3) dwell periocds. In the shank this is
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counterbalanced to a degree by the underprediction of ratchet
strains., Ratchet strain predictions at the 'peak [illet' position
are generally more accurate than in the shank. In the shank and
at the 'peak fillet' position the experimental ratchet and dwell
period strains approach a steady value after approximately 8-12
cycles. -

E/PL = 0.7, 120 .hour dwell period (Figures 4.50 and 4.51)

Again, the finite element predictions of total strain are in
good agreement with the experimental data, particularly for the
kinematic (and isotropic) hardening model based on Curve D in
"Figure 4.24. Both the experimental values and finite element
predictions of ratchet strain in the shank and at the 'peak fillet'
position are very similar to those with the 24 hour dwell period
between cycles (see Table 4.7) which implies an approach to
'complete redistribution' conditions between cycles.

In the shank the accuracy of the total strain predictions
results from a balance of the underprediction of ratchet strains
with the overprediction of dwell period strains. At the 'peak
fillet' position the ratchet and dwell period strain predictions
are in good agreement with the experimental data. Overall, the
finite element predictions of dwell period strain accumulation are
more accurate than the predictions with a 24 hour dwell period.

The finite element predictions of first cycle ratchet strain
Wwith zero and 120 hour initial dwell periods are compared with the
average experimental results in Table 4.8. In the shank the initial
120 hour dwell period computation has no effect on the ratchet strain
Predictions as would be expected with a zero plasticity creep

interaction model. However there is a marked reduction in the
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equivalent experimental values. At the peak fillet position,
the differences between finite element predictions with zero and
120 hour dwell periods is due to the stress redistribution during
the initial dwell. The equivalent experimental 'peak fillet'
results show a larger reduction due to the effect of the initial
dwell period.

The results given in Table 4.8 are used in the discussion of

plasticity-creep interaction modelling in Chapter 8.
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Parameter Value Units
' 9 2
Young's Modulus 23.2 x 10 N/m
Yield stress+ 21.5 x 10° N/m2
Coefficient of expansion 28.84 x 10-6 og-1
Poisson's Ratio 0.44 -
Thermal conductivity 35.1 W/mK
Surface heat transfer 3 >
coefficient 25.1 x 10 W/m“K
Specific heat/unit volume 1.43 x 106 J/m3K
A 8.67 x 10790 -
Creep
Law n 7.3 -
Constants
m 0.375 -

* 0.2% proof stress

Table 4.1 Flanged tube material data
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Normalised ratchet strain per cycle

'No creep' 'Complete redistribution'’
%; 1st cycle Steady state 1st cycle Steady state
0 0 0 0 0
0.3 0.034 0 0.034 0.034
0.5 0.048 0 0.048 0.0uL
0.6 0.067 0 0.067 0.065
0.7 0.107 0.060 0.107 0.109
0.75 0.193 0.232 0.193 0.194
0.8 0.310 0.481 0.310 0.310
0.9 0.883 1.356 0.883 0.894

Table 4.2 Flanged tube shank ratchetting behaviour,

Elastic-perfectly-plastic material.




- 88 -

P ags
PL Ey
0.3 0.129
0.5 0.110
0.6 0.137
0.7 0.132
0«75 0.163
0.9 0.144

Table 4.3 Flanged Tube Shank - Variation of Af.d/ 3 "
with mean load for an elastic-perfectly-plastic

material assumption.

Normalised ratchet strain per cycle

'No creep' 'Complete redistribution’

Position | 1st cycle | Steady state 1st cycle | Steady state

Shank 0.048 0 0.048 0.044
Fillet 0.361 0 0.361 0.275
Shank 0.107 0.060 0.107 0.109
Fillet 0.852 0.128 0.852 0.608

Table 4.4 Flanged Tube Ratchetting behaviour with an
Elastic-Perfectly-Plastic material model.
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Total Strain (ue) Ratchet Strain (ue) Pl p?:i?d strain
P/PL Dwell period Cycle
(hrs) Number Average Elastic- Isotropic | Kinematic Isotropic | Kinematic Average Elastic- Isotroplc | Kinematic Isotropic | Kinematic Average Finite
Experimental perfectly-plastic hardening | hardening hardening | hardening Experimental perfectly~-plastic | hardening hardening | hardening | hardening Experimental| Element
Curve C Curve A Curve B Curve D Curve D Curvg c Curve A Curve B Curve D Curve D

Init. 430 466 466 466 466 466 - - - - - - - -

1 750 517 504 521 525 529 320 hy 38 55 59 63 0 0

2 950 519 516 530 532 534 210 9 12 9 7 5 -10 0

3 1069 528 520 532 533 536 130 9 u 2 1 2 -11 0

4 1151 535 520 532 533 541 97 T 0 0 0 5 -15 0

0.5 0 5 1217 535 520 532 536 541 90 0 0 0 3 0 -25 0

6 1273 535 520 532 535 541 77 qQ 0 0 -1 0 21 0

7 1327 535 520 532 535 541 T2 (1] 0 0 0 ] -18 0

8 1381 535 520 532 535 541 68 0 0 0 0 0 -14 0

9 1423 535 520 532 535 541 61 0 0 0 0 0 -19 0

10 1464 535 520 532 535 541 61 0 0 0 0 0 =20 0

Init. 934 653 652 652 652 652 - - - - - - - -

1 2215 751 840 8ul 854 855 1281 98 187 192 201 202 0 0

2 3099 803 1082 1092 1154 1149 773 52 242 2u8 300 294 " 0

3 3756 861 1270 1284 1432 1418 603 58 188 192 278 265 54 0

4 4328 921 1421 1440 1688 1664 536 60 151 156 256 246 36 0

0.7 0 5 4834 973 1542 1565 1925 1889 487 52 121 125 231 225 19 0

6 5285 1033 1641 1672 2143 2097 423 60 99 107 218 208 28 0

7 5697 1089 1724 1760 2350 2290 401 56 83 88 207 193 n 0

8 6086 1142 1798 1838 2540 2470 376 53 TH 78 190 180 13 0

9 6453 1193 1857 1904 2721 2637 355 51 59 66 181 167 12 0

10 6806 1245 1907 1958 - - 344 52 50 54 - - 9 0

Init. 1032 44 T4 T44 T46 - 5 5 - - - -

1 2996 1029 1233 1237 1260 1965 285 489 498 514 2 0

2 4164 1495 1886 1873 2060 1032 466 653 636 800 136 0

3 5451 1955 2375 2345 2779 846 460 489 472 719 150 0

4 6257 2409 2639 2715 3432 721 ysy 264 370 653 85 0

0.8 0 5 7056 2860 3056 3007 748 451 U7 292 51 0
6 TT54 3307 3304 3241 633 uu7 2u8 234 65 0.

7 8398 3754 3504 3426 597 uy7 200 185 u7 0

8 8998 4203 3669 3582 554 L9 165 156 46 0

9 9571 4649 3808 3710 537 446 139 128 32 0

10 10125 5090 3878 - 520 hu1 70 - 34 0

Table 4.5(a) Flanged Tube.

Comparisons between experimen
element predictions assuming '‘no creep' conditions.

tal 'rapid cycling' results and finite

Shank resultcs.




Ratchet Strain (pe)

Dwell period strain

Total Strain (ue) fire 3
P/P Dwell period Cycle
ke (hrs) Number Average Elastic- Isotropic | Kinematic | Isotropic | Kinematic Average Elastic- Isotropic | Kinematic | Isotropic | Kinematic Average Finite
Experimental | perfectly-plastic | hardening | hardening | hardening hardening | Experimental perfectly-plastic | hardening | hardening | hardening | hardening | Experimental | Element
Curve C Curve A Curve B Curve D Curve D Curve C Curve A Curve B Curve D Curve D
Init. 693 552 552 552 l 552 552 - - - - - - - -
1 1490 887 926 923 | 1006 1006 797 335 374 3N 454 454 0 0
2 1784 943 999 981 | 1095 1089 298 56 73 58 89 83 -4 0
3 1936 968 1051 997 ] 1116 1110 161 25 52 16 21 21 -9 0
4 2040 969 1070 1000 | 1129 1116 115 1 19 3 13 6 -1 0
0.5 0 5 2122 969 1075 1000 | 1150 1138 106 0 5 0 21 22 =24 0
6 2195 969 1075 1000 | 1148 1139 92 0 0 0 -2 1 -19 0
7 2258 969 1075 1000 1148 1139 83 0 0 0 v 0 -20 0
8 2317 969 1075 1000 1148 1139 80 0 0 0 0 0 -22 0
9 2373 969 1075 1000 | 1148 1139 70 0 0 0 0 0 -14 0
10 2416 969 1075 1000 | 1148 1139 64 0 0 0 0 0 _21 0
Init. 1265 773 773 773 773 773 - - - - - - - -
1 2767 1563 1681 1677 1810 1812 1502 790 908 904 1037 1039 0 0
2 3822 1898 2154 2138 2490 2476 1002 335 473 461 680 664 53 0
3 4517 2129 2429 2403 2981 2949 687 231 275 265 491 473 8 0
Y 5080 2299 2609 2577 | 3369 3311 558 170 180 174 388 362 5 0
0.7 0 5 5578 2uh7 2751 2710 | 3723 3643 500 148 ILY: 133 354 332 -2 0
6 6007 2575 2858 2812 | 4ou3 3938 437 128 107 102 320 295 - B 0
T 6399 2695 2947 2896 1 4319 4189 401 120 89 8l 276 261 -9 0
8 6763 2814 3020 2961 | 4587 4425 372 19 3 5 268 236 -8 0
9 7096 2932 3080 3008 , 4837 4641 347 118 60 47 250 216 -14 0
10 7420 3048 3132 3051 ‘ - - 329 116 52 43 - - -5 0

Table 4.5(b) Flanged Tube.

Comparisons between experimental 'rapid cycling' results ard-.finite

element predictions assuming 'no creep' conditions.

Peak fillet results.




- G -

d
d
p aeYe,) | aeYe yar AL/E,
1st cycle | Steady state

Shank 0.527 1.054 0.110 0.110
0.5

Peak Fillet 0.350 0.701 0250 0.176

Shank 0.742 1.060 0.132 0.132
0.7

Peak Fillet 0.521 0.743 0.150 0.088

Table 4.6 Flanged Tube.

Dwell period behaviour.




Ratchet Strain (ue)

Dwell Period Strain (ue)

Total Strain (ue)
P/P Dwell period Cycle
(hrs) Number Average Elastic- Isotropic Kinematic | Isotropic Kinematic Average Elastic- Isotropic | Kinematic | Isotropic Kine
Experimental | perfectly-plastic hardening | hardening |hardening | hardening Experimental |perfectly-plastic | hardening hardening hardening hard:izz; Ex:::izggtal perffi:;;icz ti Isotropic | Kinematio | Isobrobe | Kinematie
Curve C Curve A Curve B Curve D Curve D Curve C Curve A Curve D Curve D Curve O Curve 2 aeese n::ﬂ::izs h%ﬁgzzigs hz;dezigg hz:denigg
rv rve
Init. 987 773 773 773 \ 773 - - - - - -

1 2346 1680 1809 1812 4 1937 1135 695 824 827 952 166 e - - -

2 3039 2260 2484 2u52 2791 649 470 559 524 131 37 é1e 212 212 211

3 3511 2659 2903 2843 3401 4y 332 358 325 534 42 "o 16 116 123
4 3941 2966 3222 3140 3922 408 256 276 249 468 18 4 61 66 76
0.7 24 5 4261 3243 3473 3371 1370 402 235 217 193 4ou 25 o 43 48 53
6 4718 3496 3670 3550 4747 345 216 168 147 339 13 3 34 38 Ly
7 4992 3716 3842 3707 5102 268 188 148 130 321 12 3; 29 32 38
8 5268 3933 3991 3834 5424 274 188 128 104 292 7 2 24 21 34
9 5538 4145 - - 5704 273 186 - - 252 4 22 21 23 30
10 5790 4334 - - 5976 256 165 - - 246 y 24 N - 28
- - 26

Init. 944 773 773 773 713 773 - - - - - - _

1 2321 1788 1923 1924 2043 2043 1012 674 809 810 929 929 364 :; - - - _

2 3086 2482 2688 2659 3008 2998 623 526 581 549 770 760 142 :‘6; 34 341 34 341
3 3620 2987 3194 3137 3718 3691 435 402 1409 373 598 577 99 0 184 186 195 65
4 4057 3390 3558 3485 4330 4283 354 322 290 269 529 505 83 5 4 105 12 116
0.7 120 5 4473 3759 3854 3766 4867 4798 372 309 2u6 212 463 #43 44 6’ T4 79 83 87
6 4830 4092 4102 3998 5326 5232 307 280 205 182 395 366 50 N 50 69 74 12
7 5133 4380 4303 4188 5754 5639 267 240 164 147 372 346 36 33 43 50 64 68
8 5409 4668 4485 4353 6150 6011 254 244 151 127 354 316 21 48 37 43 56 61
9 5703 4540 4642 4499 - - 265 232 129 113 - - 29 o 31 38 42 56

10 5943 - - - - - 218 - - - - - 25 4o 28 33 - -

Table 4.7(b) Flanged Tube.

Comparisons
for cycling with 24 hour a

between 2xperime
nd 120 hour dwell periods.

ntal results and finite element predictions

Peak fillet results.




Ratchet Strain (ue)

Dwell Period Strain (ue)

Total Strain (ue)
P/P Dwell period Cycle
(hrs) Number Average Elastic- Isotropic Kinematic | Isotropic Kinematic Average Elastic- Isotropic | Kinematic | Isotropic Kine
Experimental | perfectly-plastic hardening | hardening |hardening | hardening Experimental |perfectly-plastic | hardening hardening hardening hard:izz; Ex:::izggtal perffi:;;icz ti Isotropic | Kinematio | Isobrobe | Kinematie
Curve C Curve A Curve B Curve D Curve D Curve C Curve A Curve D Curve D Curve O Curve 2 aeese n::ﬂ::izs h%ﬁgzzigs hz;dezigg hz:denigg
rv rve
Init. 987 773 773 773 \ 773 - - - - - -

1 2346 1680 1809 1812 4 1937 1135 695 824 827 952 166 e - - -

2 3039 2260 2484 2u52 2791 649 470 559 524 131 37 é1e 212 212 211

3 3511 2659 2903 2843 3401 4y 332 358 325 534 42 "o 16 116 123
4 3941 2966 3222 3140 3922 408 256 276 249 468 18 4 61 66 76
0.7 24 5 4261 3243 3473 3371 1370 402 235 217 193 4ou 25 o 43 48 53
6 4718 3496 3670 3550 4747 345 216 168 147 339 13 3 34 38 Ly
7 4992 3716 3842 3707 5102 268 188 148 130 321 12 3; 29 32 38
8 5268 3933 3991 3834 5424 274 188 128 104 292 7 2 24 21 34
9 5538 4145 - - 5704 273 186 - - 252 4 22 21 23 30
10 5790 4334 - - 5976 256 165 - - 246 y 24 N - 28
- - 26

Init. 944 773 773 773 713 773 - - - - - - _

1 2321 1788 1923 1924 2043 2043 1012 674 809 810 929 929 364 :; - - - _

2 3086 2482 2688 2659 3008 2998 623 526 581 549 770 760 142 :‘6; 34 341 34 341
3 3620 2987 3194 3137 3718 3691 435 402 1409 373 598 577 99 0 184 186 195 65
4 4057 3390 3558 3485 4330 4283 354 322 290 269 529 505 83 5 4 105 12 116
0.7 120 5 4473 3759 3854 3766 4867 4798 372 309 2u6 212 463 #43 44 6’ T4 79 83 87
6 4830 4092 4102 3998 5326 5232 307 280 205 182 395 366 50 N 50 69 74 12
7 5133 4380 4303 4188 5754 5639 267 240 164 147 372 346 36 33 43 50 64 68
8 5409 4668 4485 4353 6150 6011 254 244 151 127 354 316 21 48 37 43 56 61
9 5703 4540 4642 4499 - - 265 232 129 113 - - 29 o 31 38 42 56

10 5943 - - - - - 218 - - - - - 25 4o 28 33 - -

Table 4.7(b) Flanged Tube.

Comparisons
for cycling with 24 hour a

between 2xperime
nd 120 hour dwell periods.

ntal results and finite element predictions

Peak fillet results.




= Olp =

First cycle ratchet strain
(%)
Dwell
Period
(Hrs) Average Finite
Experimental Element*
0 0013 0.01 = 0.02
Shank
120 0.05 0.01 - 0.02
Peak 0 0.15 0.08 - 0.10
Fillet 120 0.10 0.07 - 0.09

* 1range of values for the 5 material models

Table 4.8 Flanged Tube. Comparison between finite
element predictions and experimental results.
Effect of initial dwell period on 1st cycle

ratchet strains.
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Figure 4.1 Flanged tube shank. Comparison between
experimental and predicted values of through
thickness temperature difference during the
first half of a thermal shock
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Figure 4.2 Flanged tube shank. Through-thickness temperature distributions
during the first half of a thermal shock
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Flanged tube shank (elastic-perfectly-plastic, c't/o'y = 1.94,

P/PL = 0.7, 'no creep' conditions). Stress distributions due to

initial loading and during the first thermal shock together with
accumulated plastic strain distributions at the end of the first
nalf and at the end of the first thermal shock.
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Figure 4.5 Flanged tube shank (elastic-perfectly-plastic, o/0y = 1.94,
P/P, = 0.7, 'no creep' conditions). Stress distributions
during the second and subsequent thermal shocks
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Figure 4.6 Flanged tube shank (elastic-perfectly-plastic, 0 /0 y = 1.94,
P/Pp, = 0.7). Accumulation of normalised ratchet strain during
the first 10 cycles.
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Flanged tube shank (elastic-perfectly-plastic, O +/CG ., = 1.94,
'no creep' conditions). Variation of normalised Iirs¥ cycle
and steady state ratchet strains with mean load.
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Figure 4.8 Flanged tube shank (Linear hardening, Ct/CGy = 1.94, B/P. = 0.9,

'no creep' conditions). Accumulation of normalised ratc.Iiet
strain during the first 10 cycles.
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Figure 4.9 Flanged tube shank (Linear hardening, /0y = 1.94).

Accumulation of normalised ratchet strain in the first
cycle,
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Flgure 4.10 Flanged tube shank (Linear hardening, Tt/Cy = 1.94).
Accumulation of normalised ratchet strain in the first
2 cycles
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Figure 4,11 Flanged tube shank (Linear hardening, O't/O’y = 1.94),

Accumulation of normalised ratchet strain in" the first 5 cycles.
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Figure 4.12 Flanged tube shank (Linear hardening, o /O y = 1.94). Accumulation of normalised ratchet
strain in the first 10 cycles.
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Figure 4.13 Flanged tube shank (Linear hardening, o /0y = 1.94).

Normalised total accumulated ratchet strains.



- 108 -

P NORMALISED ACCUMULATED RATCHET STRAIN IN 10 CYCLES

r -
£1O/€y-1

0.08

0.06

0.04 -

0.02-

0.5 0.6 0.7
P
~PL

Figure 4.14 Flanged tube shank (elastic-perfectly-plastic and
linear hardening, c’t/c'y = 1.94, 'no creep' conditions).
Normalised accumulated ratchet strain in 10 cycles.



- 109 -

>
s
oy
w
q
1'24 —
12 <
20 v -E_p..: 0
E
0.8 A _%;L = 0-01
o EE_= 0-05
08 o E .
e Ep.
—P_= 01
: E
= x ALL VALUES OF Ep
0'2 ~
* ' I * : —
0 0-2 04 06
_P_
PL

Figure 4.15 Flanged tube shank (elastic-perfectly-plastic and lirear
hardening, O /0y = 1.94, 'no creep' conditions).
Normalised ratchet strain in the 2nd cycle.
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Figure 4.16 Flanged tube shank (elastic-perfectly-plastic, Cft/ny.= 1.94).

Distribution of residual equivalent stress at the end of the first thermal
shock for a number of mean loads.
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Figure 4.17 Flanged tube shank (elastic-perfectly-plastic, 6 ¢/0y = 1.94, P/Py = 0.7, complete redistribution).
Accumulation of normalised strain during the first 3 dwell periods.
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Flgure 4.18 Flanged tube shank (elastic-perfectly-plastic, O /0. = 1.94,
complete redistribution). Variation in the normalise

increment of dwell period strain due to stress redistribution
with mean load.
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Figure 4.19 Flanged tube shank (Linear hardening, 0 /0, = 1.94,
P/Pr, = 0.9, complete redistribution). Accumulation of
normalised ratchet strain during the first 10 cycles.
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Figure 4.20 Flanged tube shank (elastic-perfectly-plastic and linear
hardening, 6+/0 y = 1.94, complete redistribution).
Normalised accumulated ratchet strain in 10 cycles.
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Flanged tube shank (elastic-perfectly-plastic and linear
hardening, o4/0 = 1.94, P/Pp, = 0.9, complete redistribution).
Normalised accumulated dwell period strain after the 1st, 5th
and 10th dwell periods.
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Figure 4.22 Flanged tube shank (elastic-perfectly-plastic and linear
hardening, Ot/0y = 1.94, complete redistribution).
Variation in time function for complete redistribution
with mean load and Ep/E.
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Figure 4.23 Flanged tube. Finite element mesh showing the positions of
the Gauss points nearest to the outside and bore surfaces.
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Figure 4.24 Modelling of lead alloy uniaxial stress-strain behaviour

at 20°C and 76°C.
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Figure 4.25 Flanged tube. Elastic stress distributions along the shank thside ‘surface' and around
the fillet due to an axial load. (see Figure 4.23).
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Figure 4.26 Flanged tube. Elastic stress distributions along the bore ‘'surface' due to an axial load.
— 04— (see Figure 4.23).
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Figure 4.27 Flanged tube. 'Exaggerated' deformed shape for a mean load of 0.7 of the 1limit load.
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Figure 4.28 Flanged tube (elastic-perfectly-plastic).

load up to collapse.

Growth of plastic zone with increasing axial
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Figure 4.29 Flanged tube.

Comparison between experimental results and finite element predictions
(using curve A, Figure 4.24) of elastic-plastic meridional strain distributions along the
outside ‘'surface' (see Figure 4.23).
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Figure 4.30 Flanged tube. Redistribution of meridional stress along theé outside
creep at sustained mean load, based on results for P/Pj = 0.5. (see Figure h.23)
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Figure 4.31 Flanged tube. Redistribution of meridional stress along the bore ‘surface' due to creep

at sustained mean load based on results for P/PL = 0.5. (see Figure 4.23)
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CHAPTER FIVE

STEPPED BEAM

5.1 Introduction

The development of the stepped beam component (Figure 3.2) has
been discussed in Section 3.2.1. This component has a uniform
section (shank) and a stress concentration due to the fillet
radius at the change of section. The componeﬁt behaviour under
conditions of

i) steady mechanical axial load; and

ii1) pure bending
is discussed here. Ratchetting may occur when the two lcading
conditions are combined (i.e. steady mechanical axial load and
cyclic bending) and creep in the dwell periods between successive
cycles of bending will affect the behaviour. This chapter descritbes
a detailed study of the shank behaviour in addition to the analysis
of the whole component. Analysis of the whole component includes
comparison with the experimental results of Yahiaoui (12). Section
5.4 investigates the validity of Ainsworth's (7) bounding technique

for the stepped beam shank.

5.2 Shank Analysis

5.2.1 Finite element model

A three element model of a 10 mm length of shank is used
together with three 'rigid' elements through which the loading is
applied (see Figure 5.1). The purpose of the 'rigid' elements is to
ensure that the section AB remains plane during deformation. Axial
loading and bending is applied to the rigid elements with the con-
straint that the nodal displacements in the 'X' direction along AB

are identical to the corresponding nodal displacements along the
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left handedge of the rigid elements. The nodes on the left hand
edge of the shank model are constrained to have zero displacement
in the 'X' direction. Nodes 4 and 33 are constrained to have the
same displacement in the 'y' direction and node 15 is fixed. The six

elements are two-dimensional plane-stress 8-noded isoparametric elements.

5.2.2 Data

The material data is the same as for the analysis of the
flanged tube shank described in Section 4.2.2 and given in Table

b.1.

5.2.3 Bending cycle

A complete bending cycle consists of:-
i) application of a 'hogging' moment, M
ii) reversal of load to give an equal 'sagging' moment, -M
iii1) the removal of the moment.
The most severe conditions occur at the intermediate steady states
of full positive and negative moment when the elastically calculated
axial stress varies linearly through the section from 6M/td2 to

-6M/bd?,

5.2.4 Cyclic bending with constant axial load

The creep ratchetting behaviour is bounded by the 'no-creep'
condition (zero dwell period between cycles) and 'complete-
redistribution' (where creep returns the residual stress distribution
after each cycle to the stationary state stress distribution).
Elastic-perfectly-plastic, isotropic hardening and kinematic
hardening models are considered. Ratchet strains quoted are in

the axial direction and at the top and bottom surfaces which are
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identified as the first tensile and first compressive surfaces.
The first tensile (FT) surface is defined as the surface which
experiences a tensile stress for the first application of moment
during the first cycle., The first compressive (FC) surface is
the opposite surface which would have a compressive stress for
the first application of moment during the first cycle with zero

mean load.

5.2.4.1 'No creep' condition

5.2.4.1,1 Elastic-perfectly-plastic material model

Ratchetting mechanism

The axial stress distributions due to initial loading and
during the first mechanical cycle are shown in Figure 5.2 for
P/P, = 0.6k and M/My = 0.8 (where P is the limit load in simple
tension and My is the pure moment required to cause initial yielding
on the top and bottom surfaces). This first cycle produces a
linearly varying increment of ratchet strain across the section
with a maximum at the first tensile surface. A steady cyclic
state is established after the first cycle with the cyclic variation
in stress distribution being identical to that shown in Figure 5.2
An equal amount of ratchet strain is produced in the second
and subsequent cycles which is constant across the section and
less than the mean centreline value for the first cycle. The
accumulation of surface ratchet strains, E:r (defined in equation
L4.1), in the first ten cycles is shown in Figure 5.3. The initially
straight beam experiences an increment of curvature and centreline
growth during the first cycle. For the second and subsequent cycles
there are no further incremental changes in curvature. The variation

in curvature during the flrst three cycles 1s shown in Figure 5.4
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where K/Ky is the normalised curvature and K& is the curvature

at first yield in the absence of mean load

ie. K = ZEy/d.

Yy

This demonstrates the analogy between the stepped beam shank
behaviour and that for Bree's (1,2) uniaxial model of a thin tube
as the problem is equivalent to one of curvature control between
a maximum for the first application of moment in a cycle and Zero
for the reversed moment. An analytical solution for the stepped
beam shank is therefore available based on Bree's (1) analysis
and has been used to obtain steady state ratchet strains.

For the 'no creep' ratchetting case, the whole section yields
during the cycle and Figure 5.2 shows a 'plastic core' (i.e. a
region in the centre of the beam which yields during both halves
of the cycle) to be present. The 'plastic-core' is an essential
feature of this ratchetting mechanism and the ratchet strain is
related to the size of the 'plastic core'. The ratchetting boundary
is defined by the combination of steady and cyclic load for which
the plastic region just extends from the first tensile surface to
the centreline during the first half of the first cycle (and hence
from the first compressive surface to the centreline for the
second half of the first cycle). The presence of an 'elastic core'
(i.e. a region in the centre of the beam that is always elastic)
means that shakedown will always occur after the first cycle,

Effects of mean load and eyclic bending load on ratchetting behaviour

Burgreen (5) has studied the cyclic behaviour of this component
and the 'Burgreen diagram' shown in Figure 2.11 is equivalent to
the 'Bree diagram' for a thin tube. The narrow band between shake-

down and collapse (i.e. ratchetting regime) implies that ratchet
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strains are very sensitive to small changes in applied load. The
ratchetting behaviour of the stepped beam shank with an elastic-
perfectly-plastic material model can be completely defined by
three parameters:-

1. the first cycle first tensile surface ratchet strain

2., the first cycle first compressive surface ratchet strain

3. the steady state ratchet strain which is the same for

both surfaces.

Figure 5.5 shows the variations in these ratchet strains with
mean load and cyclic bending load. The analytical solution (1)
was used to obtain steady state ratchet strains and finite element
solutions provided the first cycle behaviour. Figure 5.5 illustrates
the strong dependence of the ratchet strains on mean load.

5.2.4.1.2 Linear hardening models

A bilinear representation of the monotonic stress-strain curve
was used with ratios of plastic to elastic modulus of 0.01, 0.05,
0.1. Isotropic and kinematic hardening models have been considered.

Ratchetting mechanism

The axial stress distributions due to initial loading and
during the first cycle for P/PL = 0.8, M/My = 1,5 for isotropic
hardening with EP/E = 0,05 are shown in Figure 5.6 together with
an indication of the extent of the yield zone at the extremities
of the cycle. A 'plastlc core' is evident and there is a linearly
varying increment of ratchet strain across the section at the end of
the cycle, with a maximum at the first tensile surface. Unlike the
elastic-perfectly-plastic case, the material has hardened and the
'instantaneous' yield stress varies in relation to accumulated strain

across the section. The second cycle variation in axial stress
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istribution is shown in Figure 5.7. The exact shape of the stress
distributions cannot be obtained from the Gauss point values and
the distributions are only approximate. The size of the 'plastic
core' has reduced due to material hardening and there is a similar
reduction in the ratchet strain. The size of 'plastic core'
reduces with each successive cycle until the 'plastic core' dis-
appears and ratchet strains are zero., Similarly the ratchet
stralns reduce monotonically to zero. The accumulation of surface
ratchet strains during the first 10 cycles for these loading con-
ditions and hardening assumptions are shown in Figure 5.8. The
accumulated first tensile surface ratchet strain is dominated by
the large first cycle increment which hardens the material sig-
nificantly so that further ratchet strains are small and shakedown*
occurs in ~ 6 cycles. The first compressive surface accumulated
ratchet straln is always less than the first tensile surface and
material hardening occurs at a slower rate with shakedown occurring
in ~ 8 cycles. The residual curvature always has the same sign and
is a maximum at the end of the first cycle. The residual curvature
subsequently reduces to reach a steady state value when the compon-
ent has completely 'shaken-down' in ~ 8 cycles.

The first cycle stress distributions for kinematic hardening

with the same loading and plastic modulus are shown in Figure 5.9.
The first application of moment produces an identical stress distri-
bution to that for isotropic hardening (Fig. 5.6). However the
'constant yield range' associated with kinematic hardening results
in a modification of thg stress distribution during the second half

of the first cycle as can be seen from figure 5.9. The approximate

* shakedcwn is defined as the point at which ratchet strains are
zero. However under certain conditions of load and kinematic
hardening cyclic plasticity may be evident. '



stress distributions during the second cycle are shown in Figure
5.10. The axial stress/strain variations during the first cycle
with isotropic and kinematic hardening assumptions are shown in
Figures 5.11 and 5.12 for Gauss points nearest to the first tensile
and first compressive surfaces respectively. For the first tensile
surface, the kinematic hardening assumption results in more com-
pressive yielding during the second half of the cycle and for the
first compressive surface the kinematic hardening assumption leads
to more tensile yielding during the second half of the cycle; the
net result being a reversal in residual curvature at the end of the
cycle, The accumulation of surface ratchet strains during the
first 10 cycles is shown in Figure 5.13. The residual curvature
always has the same sign which is opposite to the results with
isotropic hardening. The overall growth, in terms of centreline
strain, is greater than with an isotropic hardening model (compaxe
Figure 5.13 for kinematic hardening with Figure 5.8 for isotropic
hardening).

For this particular loading and plastic modulus, a reasonable
estimate for maximum accumulated strain, for both hardening models,
could be based cn a finite element calculation for a single cycle,
in which case the maximum ratchet strain across the section is the
same for the two hardening models, although the behaviour is very
different.

Effects of mean load, bending load, hardening assumption

and Ep/E on ratchetting behaviour

Finite element computations were performed for 10 cycles with a
range of mean loads from P/PL =0 to 0.8 and 3 bending loads;

M/My = 1.0, 1.5 and 2.0. The cyclic ratchetting behaviour of the
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stepped beam shank for the range of mean loads, cyclic bending
loads, hardening assumptions and EP/E values 1is presented in the
form of carpet plots, in Figures 5.14 to 5.19. These plots show

the variation of accumulated surface ratchet strains with mean

and cyclic load for the combinations of hardening assumption

and EP/E values given in Table 5.1.

The figures show the accumulation of surface ratchet strains after
the 1st and 10th cycles. Also the accumulations after the 2nd and
5th cycles are given where there is a significant difference between
1st and 10th cycle values. For EP/E = 0.05 and 0.1 (Figs. 5.16 -
5.19) shakedown always occurs in less than 10 cycles. The number

of cycles to shakedown is given for the extremities of mean load;
intermediate mean loads result in shakedown in a number of cycles
between those quoted. The number of cycles to shakedown is different
for the two surfaces and depends on the hardening assumption. For
EP/E = 0.01 shakedown had not occurred in 10 cycles except for low
mean loads. In view of the convergence problems associated with
high mean and cyclic loads (i.e. requiring the moments to be applied
in a large number of small increments) it was not practical to coentinue
the computation beyond 10 cycles to the shakedown or steady cyclic
state.

Except for the cases below, the residual curvature is always
positive for isotropic hardening and negative for kinematic hardening
(positive curvature being defined as the curvature at the end of
the first application of moment during the first cycle),

(1) for EP/E = 0.05 and 0.1 and M/My = 1,0, there is no difference
in the results for both hardening models and residual curva-
tures are positive (i.e. no reverse plasticity with kinematic

hardening)
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(11) for EP/E =0.1, M;/My = 1.5, isotropic hardening and zero mean
load the curvature at the end of the first cycle is negative

(1i1) for EP/E = 0,01, M/My = 1.5 and isotropic hardening, residual
curvature is negative for P/PL'<~“‘0-5

(iv) for EP/E = 0.01, M/‘My = 1.0 and kinematic hardening, the sign
of the residual curvature is both mean load and cycle number

dependent.

There is a marked similarity in ratchetting behaviour between
the first tensile surface with an isotropic hardening model and the
first compressive surface with a kinematic hardening model.
Accumulated ratchet strains increase with increases in both mean
and cyclic loads and are dominated by the first cycle. The kinematic
hardening model results in larger accumulated ratchet strains on the
first compressive surface compared with the first tensile surface with
isotropic hardening.

There is also a similarity in ratchetting behaviour between the
first tensile surface with a kinematic hardening assumption and the

first compressive surface with an isotropic hardening assumption for

EP/E values of 0.05 and 0.1. Ratchet strains increase with mean
load but are a maximum for a ﬁending load somewhere between 1.0 and
2.0 of the yield moment, and shakedown is more rapid for the first
compressive surface with an isotropic hardening assumption.
Finally, the results can be used to identify combinations of
loading and material behaviour which would result in unacceptably

high accumulations of strain,
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5.2.4.2 Complete redistribution

5.2.4.2.1 Elastic-perfectly-plastic material model

Ratchetting mechanism

The axial stress distributions due to initial loading and during
the first bending cycle for P/PL = 0.64 and M/My = 0.8 are identical
to those shown in Figure 5.2. However between the end of the first
bending cycle and the start of the second bending cycle, the stresses
are allowed to completely redistribute to the stationary state stress
distritution which is the same as the initial stress distribution.
Redistribution is judged to be complete when the variation in axial
stress is within 1% of the mean stress. With an assumption of zero
interaction between plastic and creep strains, the second and sub-
sequent cycles will be identical to the first cycle with both surfaces
experiencing an amount of ratchet strain equal to the first cycle
value, The accumulation of ratchet strains during the first ten
cycles is compared with the equivalent 'no creep' behaviour in
Figure 5.3. Each cycle produces an equal increment of centreline
growth and curvature. For these particular loading conditions the
'complete redistribution' assumption gives an upper bound on ratchet-
ting behaviour for both the maximum (first tensile surface) and the
centreline accumulation of ratchet strain., The general observations
for the flanged tube shank discussed in Section 4.2.4.2.1 are also
applicable here, i.e.:-

1. plastic growth across the whole section during a cycle

is not necessary for continued ratchetting under 'complete
redistribution' conditions (i.e. a 'plastic core' is not

essential); and
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2. any plastic straining during the first cycle will lead to
continued ratchetting thus causing a shift in the ratchet-

ting boundary to the elastic/plastic boundary:-
P M
— + — =
P M L.

The variation in curvature during the first three cycles is
shown in Figure 5.4, There is a relatively 'small' increase in
curvature during each dwell period and the cyclic variations in
curvature for each cycle are identical (within the bounds of
computational accuracy).

Effects of mean load and cyclic bending load on ratchetting behaviour

With complete redistribution between each cycle the ratchet
strainé on every cycle are ldentical and are the same as those for
the 1st cycle without creep. This has been indicated in Fiéﬁre 5%9
where the variations of the surface ratchet strains with mean load,
for various values of the cyclic moment are plotted. It may be seen
from Figure 5.5 that, for 'complete redistribution', the maximum
steady state ratchet strains occur on the first tensile surface and
are larger than those for the 'no creep' case, hence the 'complete
redistribution' case provides an upper bound on maximum accumulated
ratchet strains. The significant difference between the 'no creep'

and 'complete redistribution' cases is that in the 'no creep' case

there is no change in the residual curvature after the first cycle;

in the 'complete redistribution' case, the ratchetting mechanism
produces changes in curvature as well as changes in the mean strain.
From Figure 5.5 it appears that for low values of M/My and high values
of P/Py the 'complete redistribution' case may not provide an upper
bound for the mean ratchet strain and hence accumulated mean ratchet
strain, although it does provide an upper bound for the maximum

ratchet strain.
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Creep during the dwell periods

The surface strains which accumulate during the first dwell
period for P/PL = 0.7 and M/My = 0.7 are shown in Figure 5.20 plectted
against time function, r\ (defined by equation 4.2). As for the
shank of the flanged tube, discussed in Section 4.2.4.2.1, the
results are asymptotic to the 'virgin' creep curve at the same mean
load and offset by an amount of strain due to stress redistribution,
Aﬁd/ E’y’ which is greater for the first tensile surface but is
relatively small for both surfaces. The variation of Af.d/ E’y
at the surfaces with mean load and bending moment is shown in Figure
5.21. In all cases the increment of strain due to stress redistri-
bution is small and although there appears to be some inconsistency
in the results for M/My = 1.2 it must be remembered that the scatter
is 'probably' within the computational accuracy of the program.

The results for M/My = 0.8 are not included because it was found
that sufficient time had not been allowed for redistribution to be
complete. The general trend is for Af,d/ Ey to be larger on the
first tensile surface and to be more sensitive to changes in mean

load when compared with the first compressive surface.

5.2.4,2.2 Linear hardening models

Ratchetting mechanism

The stress distribution due to initial loading and during the
first cycle for P/P, = 0.8, M/My = 1.5 and EP/E = 0.05 are the same
as those for the 'no creep' condition in Figures 5.6 and 5.9 for
isotropic hardening and kinematic hardening respectively. Between
the end of the first and the start of the second bending cycles
'complete redistribution' returns the residual stress distrib;tion
to the steady state uniform stress distribution due to initial
loading. However the material has hardened and the next bernding
cycle produces less ratchet strain than the first at both surfaces

for isotropic and kinematic hardening.
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For isotropic hardening, the surface ratchet strains accumulated
in 10 cycles are compared with the results for 'no creep' in Figure
5.8. There is an overall increase in the accumulation of surface
ratchet strains compared with the 'no creep' behaviour but the
ratchetting must eventually cease when the material has hardened
sufficiently for cycling to be within the elastic range.

The accumulated surface ratchet strains in 10 cycles for
kinematic hardening are compared with the 'no creep' results in
Figure 5.13. Again, there is an increase in the ratchet strains
which must reduce to zero when the material has fully hardened.

Effects of mean load, bending load, hardening assumption and EDZQ

on ratchetting behaviour

Finite element computations were performed for 10 cycles with
a range of mean loads of P/PL = 0.2 to 0.8 and 3 bending loads;

M/My = 1.0, 1.5 and 2.0. The variation in the cyclic behaviour of
the stepped beam shank with mean load, bending moment, hardening
assumption and EP/E is given in Figures 5.22 to 5.26. Carpet plots
are used to show the variation of accumulated ratchet strain with
mean and cyclic loads for the combinations of hardening assumption
and E P/E given in Table 5.2.

Results for EP/E = 0.01 with kinematic hardening were not
obtained because of the large amount of computation involved., The
10th cycle ratchet strains (values in parenthesis) for the extremities
of mean load (i.e. P/PL = 0.2 and 0.8) are given to indicate the
cases where significantly more than 10 cycles are required to reach
shakedown. For the 'complete redistribution' case shakedown is
related to purely elastic cycling with no cyclic plasticity region.
For intermediate values of load the 10th cycle ratchet strains fall
within the extreme values quoted. The residual curvatures are
similar in direction to the 'no creep' case being generally positive

for isotropic hardening and negative for kinematic hardening. The
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main exception to this behaviour is for M/My = 1.0 and EP/E = 0.05
and 0.1 where there is no reverse plasticity for kinematic hardening
and the results for isotropic hardening and kinematic hardening are

therefore the same. In most cases, the accumulation of first tensile

and first compressive surface ratchet strains under 'complete
redistribution’' conditions is equal or greater than for the ‘no
creep'case in Figures 5.14 to 5.19. The opposite effect is apparent
on the first compressive surface for EP/E = 0.01 and M/My = 1.0.

For EP/E = 0.05 and 0.1, the effects of 'complete redistribution'’

on ratchet strains reduce with increasing bending load and for

M/My = 2.0 the results for 'nmo creep' and 'complete redistribution'
are very similar. For the first tensile surface with isotropic
hardening and the first compressive surface with kinematic hardening
the accumulation of strain, particularly for large bending loads,

is dominated by the ratchet strain in the first cycle,

For E p/E = 0.05 and 0.1 the 10th cycle ratchet strains are
generally small (less than, and in most cases, very much less than,
0.23). However for EP/E = 0.01 which is approaching an elastic-
perfectly plastic model, 10th cycle ratchet strains up to the yield
strain could be expected although the loading conditions would
probably be unacceptable in view of the large first cycle ratchet
strains of up to 50 times the yield strain.

Creep during the dwell periods

The dwell period behaviour with an elastic-perfectly-plastic
material assumption has been discussed in Section 5.2.4.2.1. The
dwell period behaviour for hardening materials is similar to that
shown in Figure 5.20 with an asymptotically approached constant
creep strain rate which is the same as for virgin material at the
same load and an increment of strain due to stress redistribution,
Aid/ E‘y‘ However the hardening of P results in a

reduction in the amount of stress redistribution for each successive



- 165 -

dwell period as shown in Figure 5.27 for P/PL = 0.8, M/My = 1,5,
EP/E = 0.05 and an isotropic hardening'aésumpiion. Differences

between first tensile and first compressive surface dwell period
behaviour are seen to be insignificant after 10 cycles and the
increment of dwell period strain due to stress redistribution is
relatively small after a few cycles. The variation in £&E:d/fiy
for the first dwell period with bending load for the extremes of
mean load (P/PL = 0.2 and 0.8) for EP/E = 0,05 are shown in Figure
5.28. The 1st cycle redistribution strains are relatively insensi-
tive to the plastic modulus and values for the other plastic moduli
are within 0.1 Ey of those in Figure 5.28.

The variation in time function for complete redistribution,
r1R’ is shown in Figure 5.29., For a particular mean load, a range
of F“R values is given which indicates the variation with bending
load and plastic modulus. In general the variation with bending
load and plastic modulus is small and the redistribution time
function is practically independent of mean load. From the
definition of time function (equation 4.2) and Figure 5.29 it
can be seen that the redistribution time depends mainly on the mean
load. The large range for P/PL = 0.2, where redistribution times
are large and dwell period strains small, is inconsistent with
the results for higher mean loads and possibly relates to the

accuracy criterion of the creep computation.

5.3 Analysis of the Whole Component

5.3.1 Finite element model

The 46 element mesh used to model a half section of the stepped
beam i1s shown in Figure 5.30. Axial and bending loads are applied
to 3 additional 'rigid' elements to maintain the 'plane-sections-

remain-plane' criterion discussed in Section 5.2.1. The left hand



- 166 -

end of the beam is clamped. Two-dimensional, plane stress, 8-noded,
isoparametric elements are used throughout. The justification for using
this mesh is discussed in Appendix II. When surface stress or strain
distributions are quoted, data has been obtained for the Gauss points

nearest to the surface shown in Figure 5.30.

5.3.2 Data

The material data is generally the same as for the shank and
discussed in Section 5.2.2. Elastic-perfectly-plastic, isotropic
hardening, kinematic and non-linear kinematic hardening models are
used to investigate the 'no creep' ratchetting behaviour of the
component, including a comparison with the experimental results of
Yahiaoui (12) for which the multilinear representations of the lead
alloy uniaxial stress-strain and cyclic behaviour, shown in Figure
4,24, are used. The 'overlay method' (20) is used to model non-
linear kin;matic hardening using two sub-layers of elements for the
shank and is based on Curve A in Figure 4.24. The overlay model
is shown in Figure 5.31 and the individual element data is given
in Table 5.3.

For the 'complete redistribution' case, an elastic-perfectly
plastic material model is used. A time index of unity is assumed
for the Norton Bailey creep law (other creep law constants from
Table 4.1) together with an assumption of zero interaction between

plastic and creep strains.

5.3.3 Axial loading

5.3.3.1 Elastic stresses

The elastic surface meridional stress distribution due to an
axial load is shown in Figure 5.32, from which a mechanical stress
concentration factor due to axial loading of 1.8 is predicted

(compared with 1.66 from photoelastic results (55)). Figure 5.33
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shows the 'exaggerated' deformed shape for a mean load of 0.7 PL'
There is an overall thinning of the component but no obvious

necking in the region of the stress concentration.

5.3.3.2 Elastic-plastic behaviour

The development of the plastic zone with increasing axial load
up to collapse is shown in Figure 5.34, for an elastic-perfectly-
plastic material assumption. The zone initiates in the fillet and
moves into the shank with increasing load. At collapse, virtually

the whole of the shank has yielded.

5.3.3.3 Creep at sustained mean load

The stationary state meridional stress distribution is compared
with the meridional stress distribution due to an initial loading
of P/PL = 0.7 in Figure 5.35. The values plotted are for the
Gauss points nearest to the surface. There is a shift in the
position of peak stress towards the shank and a drastic reduction

in the magnitude of the peak stress in the fillet.

5.3.4 Application of bending moment

5.3.4.1 Elastic stresses

The elastic surface meridional stress distribution due to
bending is shown in Figure 5.36, from which a stress concentration
factor in bending of 1.46 is predicted (compared with 1.38 from

photoelastic results (55)).

5.3.4.2 Elastic-plastic behaviour

The development of the plastic zone with increasing moment
towards collapse is shown in Figure 5.37, for an elastic-perfectly-
plastic material assumption. The zone initiates in the fillet and
spreads into the shank as load increases. Although yielding in the shank
commences for M/My = 1, this is not predicted for M/My = 1.11 since the

Gauss points nearest to the surface do not yield until M/My = 1.13.
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Results for moments greater than 1.4 My (0.93 of the collapse moment)
could not be obtained because of convergence problems with the finite
element program. However it is clear that, at collapse, the plastic

zone will have reached the centreline of the beam and the majority of

the shank will have yielded.

5.3.5 Cyclic bending with sustained mean load

5.3.5.1 'No creep' condition

5.3.5.1.1 Elastic-perfectly-plastic material model

Ratchetting mechanism

The regions of yielding during the first and second cycles for
P/PL = 0.7 and M/My = 0.7 are shown in Figure 5.38.

At the first tensile and first compressive surface 'peak fillet'
positions the ratchetting behaviour is 'similar' to that for the
shank already discussed in Section 5.2.4.1.1. The first cycle
produces increments of surface 'peak fillet' ratchet strain, the
first tensile surface experiencing a larger increment of ratchet
strain. A steady state condition is reached after the first cycle
where first tensile and first compressive surface 'peak fillet'
ratchet strains are equal, and less than those in the first cycle.
From Figure 5.38 it is seen that the reduction in fillet ratchet
strains between the first and subsequent cycles 1s associated with
a reduction in the yield zone in the fillet region. There are no
further changes in residual 'curvature' of the component. The
accumulation of surface ratchet strains in the shank and at the
'peak fillet' positions during the first 10 cycles are shown in
Figure 5.39. The distribution of steady state meridional ratchet
strains, which is the same for both surfaces, is shown in Figure

5.40, from which it is clear that 'peak fillet' ratchet strains
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occur very close to the shank/fillet intersection and are less than
those in the shank.

Effects of mean load and bending load on ratchetting behaviour

The accumulations of first tensile and first compressive
surface shank and 'peak fillet' meridional ratchet strains in 10
cycles for P/PL = 0.5 and M/My = 1.05 are shown in Figure 5.41.
Again steady state conditions exist after the first cycle and 'peak
fillet' meridional ratchet strains are less than those in the shank.
The results for this loading and P/PL = 0.7, M/My = 0.7 are summarised

in Table 5.4, The results are discussed in Chapter 7.

5.3.5.1.2 Linear hardening models

The accumulations of first tensile and first compressive surface
shank and 'peak fillet' meridional ratchet strains in 10 cycles for
P/PL = 0.54 and M/My = 1.30 are shown in Figure 5.42 for 'no creep'
conditions. The results are for the isotropic and kinematic
hardening models of the lead alloy stress-strain behaviour shown
in Figure 4.24 and are normalised with respect to the relevant
yield stress (1.e. G = 19.8 MN/n%). Both models predict shake-
down in under 10 cycles for the shank and 'peak fillet' positions
with the possible exception of the first compressive surface in the
shank with isotropic hardening for which the results indicate shake-
down in ~~ 15 cycles. The reversal of residual curvature between
isotropic and kinematic hardening models already identified for
the shank 1s also apparent in the fillet region, although the term
'curvature' is not strictly applicable to the fillet since strain
distributions through the thickness are not linear. In the fillet
it is more reasonable to compare surface strains, i.e. accumulated
ratchet strains at the 'peak fillet' position are always greater

on the first tensile surface for isotropic hardening and on the
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first compressive surface for kinematic hardening.

With the exception of the first cycle for the first tensile
surface, the isotropic hardening model always predicts a greater
accumulation of ratchet strains at the 'peak fillet' position com-
pared with the shank, whereas the kinematic hardening model predicts
greater accumulations in the shank. The same is true for ratchet
strains prior to shakedown. An upper bound on total accumulated strains
in the component can be obtained by considering the first compressive
surface in the shank with kinematic hardening.

The accumulation of ratchet strains at the shank surface with
kinematic hardening are compared with the equivalent results with
a non-linear kinematic hardening model in Figure 5.43. The results
for the two models deviate during the 3rd cycle which indicates
that strains during this cycle exceed the breakpoint value between
Curves A and B in Figure 4.24 (i.e. the normalised equivalent of
0.6 strain from Figure 4.24). For the 3rd and subsequent cycles
prior to shakedown, the non-linear kinematic hardening model
predicts ratchet strains which are larger than for kinematic harden-
ing. However, 10th cycle ratchet strains with a non-linear kinematic
hardening model are small and shakedown has almost occurred, whereas
for kinematic hardening, the results indicate shakedown in ~ 8
cycles.,

5.3.5.1.3 Comparison between experimental results and finite

element predictions

This section discusses the comparison tetween experimental test
data (12) and finite element predictions for a typical loading con-

dition.
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i.e. =— = 0.5, ﬁM; = 1.2 (Nominal)
L ¥

where PL* and My* are based on a 0.2% proof stress for the lead
alloy of 21.5 MN/mZ. The experimental moments were applied

'rapidly' ( ~~ 6 mins per cycle) and a 'no creep' condition has

been assumed for the finite element predictions.

It was found that the curvature of the beam had an effect on
the applied moments because of an additional moment due to the
eccentricity of the axial load. This additional moment has been
quantified for the shank and found to be significant (12). Table
5.5 compares the nominal shank moments with the actual moments
which vary during the first 5 cycles before reaching an approximate
steady state of ¥1.061 My*' Finite element predictions with these
actual moments are compared with the experimental shank results.

Actual moments in the fillet have also been quantified and
found to be up to 5% greater than shank values (12). In view of
the strong dependence of strain on bending load it was considered
unrea listic to use the shank moments in Table 5.5 for an analysis
of the whole component and comparison between experimental results
and finite element predictions are made for the shank region only.

In addition to comparisons based on actual moments, experimental
shank strains at the emd of each quarter cycle are used to determine
curvatures and finite element predictions in the shank based on
curvature controlled loading have been obtained.

Actual moments

Finite element predictions of total strains and ratchet strains
in the shank for P/PL* = 0.5 and the steady state bending load

of M/My* = 1.061 with an elastic-perfectly-plastic model (Curve C,
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Figure 4.24) are compared with the experimental results in Figure
5.44, The model correctly predicts the 'sign' of the residual
curvature except for the first cycle but cannot predict the
increase in this parameter with cycle number. The model over-
predicts the accumulation of strains because the steady state
ratchet strain prediction of 0.074% per cycle is larger (and after
a few cycles very much larger) than the experimental ratchet
strains.

Comparison between the experimental results and finite element
predictions of total strain and ratchet strain, using the actual
moments from Table 5.5, with isotropic and kinematic hardening
models are shown in Figures 5.45 and 5.46 respectively for the
first 10 cycles. With both isotropic and kinematic hardening models,
the first compressive surface total strains are greater than those
for the first tensile surface, which is not the case from the
experimental results. Also, both models predict shakedown in
~~ 10 cycles., The reduction in first compressive surface strain
during the 2nd to 4th cycles with kinematic hardening is an
unexpected result. The experimental and predicted variations in
total surface strain during the first two cycles are compared in
Figure 5.47. The finite element predictions for the first tensile
surface are always lower than the experimental results. The
opposite effect occurs on the first compressive surface.

Curvature control

Finite element predictions based on curvature controlled loading
for isotropic and kinematic hardening models are compared with the
experimental results in Figures 5.48 and 5.49 respectively.

The 'incremental application of load' approach used in the

finite element program made obtaining these results a slow and
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tedious task and the predictions are therefore restricted to a

few cycles. Obviously, both models will correctly predict the
relative magnitudes of the surface strains but absolute values are
over-predicted. However, the predictions, particularly with a
kinematic hardening model, are in generally good agreement with

the experimental results over the 6 cycles analysed. Since neither
model can be used to predict material ratchetting, shakedown

must eventually occur.

5.3.5.2 Complete redistribution (Elastic-perfectly-plastic

material model)

Ratchetting mechanism

The regions of yilelding during the first and second cycles
for P/PL = 0.7 and M/My = 0,7 are shown in Figure 5.50. There is
a reduction in the yleld zone in the fillet region btetween the first
and second cycles. The component ratchet strains produced in the
first cycle are identical to those for the 'no creep' condition.
However between the end of the first cycle and the start of the
second cycle, the residual stresses are allowed to completely
redistribute to the stationary state stress distribution (shown
in Figure 5.35). The behaviour of the shank under 'complete
redistribution' conditions has been discussed in Section 5.2.4.2.1.
At the 'peak fillet' positions, a steady state condition is reached
after the first cycle and first tensile surface meridional ratchet
strains are greater than those for the first compressive surface.
The whole component experiences an increment of 'curvature'
and overall growth for each cycle. The accumulations of surface
ratchet strains in the shank and at the 'peak fillet' positions

during the first 10 cycles are compared with those for the 'no creep'
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condition in Figure 5.39. The distributions of first tensile and
first compressive surface steady state meridional ratchet strains
are compared with the 'no creep' case in Figure 5.40. For the
'complete redistribution' case the 'peak fillet' ratchet strains
are greater than those in the shank, whereas for 'no creep' the
converse occurs.,

Effects of mean load and bending load on ratchetting behaviour

The accumulations of shank and 'peak fillet' meridional ratchet
strains in 10 cycles for P/PL = 0.5 and M/My = 1.05 are compared
with the 'no creep' case in Figure 5.41. The first cycle and
steady state ratchet strains in the shank and fillet for this
loading and P/PL = 0.7, M/My = 0.7 are given in Table 5.4, The
results are discussed in Chapter 7.

Creep during the dwell periods

The strains which accumulate during the first dwell period
in the shank and at the 'peak fillet' positions, E,d, are shown
in Figure 5.51 for P/PL = 0.7 and M/My = 0.7. The results are
asymptotic to straight lines with an increment of normalised strain,
A&Zd/ E’y’ due to redistribution of stresses. AEd/Cy is positive
in the shank and at the 'peak fillet' position on the first tensile
surface. For the 'peak fillet' position on the first compressive
surface, Aﬁd/Ey is negative, There is some scatter in the
results for the 'peak fillet' positions and a least squares fit
was applied to the relevant data. The results in Figure 5.51 are
a truncated version of the first dwell period behaviour which
explains why the 'peak fillet' least squares fit may not appear to
be accurate for the data points given. For the shank identical
results are obtained for each dwell period since the initial stress

distribution is the same as the stationary state stress distributicn.
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In the fillet, steady state dwell period behaviour occurs after the
first dwell period since the stationary state stress distribution
is not the same as that due to axial load. The first and steady
state dwell period constant strain rates, d( Ed/f,y)/dr‘, are
identical but the amount of strain due to redistribution is
constant after the first dwell period. The dwell period behaviour
for this loading together with P/PL = 0.5, M/My = 1.05 is summarised
in Table 5.6. The fillet results for P/PL = 0.5, M/My = 1.05
indicate that redistribution might not be complete. For all cases,
the increment of strain due to redistribution,[&ﬁ@/fly, is small.
The normalised gradient, (d(fid/éiy)/dfﬂ)/(P/PL), is independent

of mean load. These results are discussed further in Chapter 7.

5.4 Application of Ainsworth's Bounding Technigue to the shank

Ainsworth's (7) bounding technique is used to obtain an upper
bound on shank total centreline strain under 'complete redistribution'
conditions with mean stress, O , using the finite element results
for a 'no creep' computation with the same bending loads and a
higher mean stress, O* (results taken from the analysis of the
shank discussed in Section 5.2). Ainsworth suggests an optimum

value for this higher mean load

o* = 0 (1+ %) where n is the stress index in
the creep law.
The through thickness axial stress distribution at the end of each
cycle, from the 'no creep' computations at mean stress T*, is
used to predict centreline strain during the dwell period for the
equivalent 'complete redistribution' condition at mean stress T .

Upper bounds for two loading situations have been obtained:-
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(1) P = 074 % =1.0, 22 = 0.05, Isotropic hardening, dwell

L y
period = 60 hrs,
B
(11) 113— = 0.4, ﬁ— = 2.0, =2 = 0,05, Isotropic hardening, dwell
L y
period = 2000 hrs,

using the predictions for 'no creep' computations with the same
bending load, plastic modulus, hardening assumption but with the

following mean loads:-

P* _ P 1 -
(1) §-0.8 {§(1+n) 0.796}
(11) %=o.5 {l;-i(uﬁ) - 0.455)]

which are, as shown, reasonably clqse to Ainsworth's suggested
optimum values.

The derived upper bounds for cases (1) and (ii) are compared
with the finite element predictions in Figures 5.52 and 5.53
respectively.

In both cases, the upper bound is grossly in excess of the
finite element results due to the over-prediction of dwell period
strains. Creep strains across the section, based on the residual
stress at each Gauss point are used in a volume integral of the
creep dissipation function in order to obtain an upper bound on
the centreline dwell period strains. Due to the 'peaky' form of
the residual stress distribution and high value of the stress index
(7.3), the volume integral is dominated by the creep strain values
for the central Gauss points where the peak stresses occur. It
should be noted that theée particular results have no practical
application because of the exceptionally large accumulations of

strain (up to 240%) which are far in excess of design limitations.
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I Figure Number
i
E
Isotropic Hardening Kinematic Hardening
0.01 5.14 5.15
0.05 5.16 5417
0.1 5.18 5+19

Table 5.1 Shank Study, 'no creep' conditions. Key to Figure numbers

B Figure Number
.,
E
Isotropic Hardening Kinematic Hardening
0.01 5.22 o
0.05 5.23 5.24
0.1 5«25 5.26

Table 5.2 Shank study, complete redistribution. Key to figure numbers.



Hardening E ny EP1 EP2
(/%) | (m/n®) | (av/n®) | (a/nd)
Material 1 Kinematic 44 .90 38.32 0.4 -
Material 2 Kinematic 1.50 8.86 0.4 | -
Composite Material Non-linear Kinematic 23.20 19.80 0.949 0.4
Table 5.3 Stepped Beam Shank.

Element data used in 'overlay' model for
non-linear kinematic hardening

(see Figure 5.31)
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Normalised Ratchet

Strain per cycle

P M 'No-creep' 'Complete redistribution'
N I Position
L y ist cycle Steady State ist cycle Steady State
FT surface 2.175 0.555 2.175 2.204
Shank
FC surface -0.010 0.555 -0.010 -0.031
0.5 1.05
FT surface 3.293 0.322 3.293 2.417
Fillet
FC surface 1:573 0.322 1:573 1.040
FT surface 2.611 1.500 2.611 2,613
Shank
FC surface 1.175 1.500 1.175 1.182
0.7 0.7
FT surface 3.973 1.025 3.973 2.902
Fillet
FC surface 1.335 1.025 1.335 1.347
Table 5.4 Stepped Beam Ratchetting Behaviour with an Elastic-perfectly

Plastic Material Model

- 641 -
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Actual M/My*

Cycle Nominal M/M_*
J in the shank

M +1.2 +1.003

0 0 +0.066

1 1.2 1,114
0 0 -0.034

M +1.2 +1.034

0 0 +0.041

€ 1.2 -1.032
0 0 -0.020

M 1.2 +1.057

0 0 +0.017
E -1.2 -1.060
0 0 -0.026

M +1.2 +1.073

0 0 +0.007
by 1.2 -1.063
0 0 -0.017

M 1.2 +1.057

0 0 +0.007

5-10 y 1.2 -1.066
0 0 -0.004

Table 5.5 Effect of eccentricity on applied

moments




—i;— %— Position -_f,—ld( id/t: ) & Eijs Y)/dr‘ AE d/ 2 y
L y L
1st cycle Steady State
FT surface 0.502 1.004 0.302 0.302
Shank
FC surface 0.500 1.000 0.218 0.218
0.5 1.05
FT surface 0.479 0.959% 0.159 0.154
Fillet
FC surface 0.410 0.819*% 0.217 0.209
FT surface 0.700 1.000 0.237 0.237
Shank
FC surface 0.699 0.998 0.079 0.079
0.7 0.7
FT surface 0.704 1.005 0.077 0.116
Fillet
FC surface 0.718 1.026 -0.040 -0.041

¥ redistribution possibly not completé

Table 5.6 Stepped Bean.

Dwell Period Behaviour.
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3 RIGID ELEMENTS

Figure 5.1 Stepped beam shank.
'rigid' elements (dimensions in mm).

Finite element mesh including

\ A \
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14 o) 32 2] 21
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Oy
M — g——— B — B ~—A——a— 15l M
a’ \
) o

-0 2 0] 0 O\\ © — Initial loading
7 \
e 0.5 \
7 A

A4 \
/ Y
/ ‘
End of 1st cycle \\
L \
I i
_d .9
2 2
A -0.5+
-1.04

Figure 5.2 Stepped beam shank (elastic-perfectly-plastic, M/M = 0.8,

P/PL = 0.64, 'no creep' conditions). Axial stress’distributions
due to initial loading and during the first cycle.
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Figure 5.3 Stepped beam shank (elastic-perfectly-plastic, M/M_ = 0.8,
P/P, = 0.64). Accumulation of normalised ratchet Ytrain
dur%ng the first 10 cycles.
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Figure 5.4 Stepped beam shank (elastic-perfectly-plastic, M/M_ = 0.8,

p/pPr, = 0.8).

Variation in normalised curvature dufing the

first 3 cycles.
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Figure 5.5  Stepped beam shank (elastic-perfectly-plastic).

Variation in

normalised ratchet strain for the first and subsequent cycles

with mean load and bending load.



- 187 -

st
sty & /1 +M -
\ B °
y
v\, I
I ;
v— 7T &7 | |
vd !
N \
1.0+ |
/ 7
- o o} o t— o — Initial lecading
a \
/’ :
/ 0.5+ !
S A \
a” ’ \
/, ‘
l o
¢ ' .d
- ‘ ?_
2 ,07 2
End of 15t cycle
-0.5+
a/ T
e
~1.54
VA

N\

N
b{?<:<t{:<j R};}Q}Q}:?\t\:§t\:\:>cbc\:5:§<§\:<i;3 Extent of yielding at +M

7/7//;///’1//;//17,/;f///j @ Extent of yielding at -M

Figure 5.6 Stepped beam shank (Isotropic hardening, E,/E = 0.05, M/My = 1.5,

P/PL = 0.8, 'no creep' conditions). Axial stress distributions
due to initial loading and during the first cycle.
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yielding at +M

",/C>C;j>£/;>j;i>C>;/j2£)/J/ Approx. extent of yielding at -M

Figure 5.7 Stepped beam shank (Isotropic hardening, Ep/E = 0.05, ¥/Iy = 1.5.?72_
= 0.3, 'no creep' conditions). Axial stress distributions during
the 2nd cycle.
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Figure 5.8 Stepped beam shank (Isotropic hardening, Ep/E = 0.05, Wiy = 1.5,
F/ P, = 0.8). Accumulation of normalised ratchet strain during
the first 10 cycles.
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Figure 5.9 Stepped beam shank (Kinematic hardening, EP/E = 0.05, M/My = 1.5,

P/P;, = 0.8, 'no creep' conditions).

Axial stress distributions

due to initial loading and during the first cycle.
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conditions). Axial strﬂss/stralq var1at;o~ at the Gauss point
nearest to the first compressive surface during the first cycle.



- 194 -

FIRST
COMPRESSIVE
SURFACE
16+ ‘COMPLETE
- —a REDISTRIBUTION’
“’,D"”
o FIRST
6 /,m’/ COMPRESSIVE
B SURFACE
@4v G—g—G—v—F—7"'NO CREEP’
g/
FIRST TENSILE
1 SURFACE
‘COMPLETE
__o——o——o—ﬂoREDBTMBUﬂON'
o/g::a R— B Amp—0 FIRST TENSILE
SURFACE
104 ‘NO CREEP
@ 8-
c .
)
6_
L -
2..
I Lj ] [ R
0 2 L 5 8 10

Cycle Nurnber

Figure 5.13 Stepped beam shank (Kinematic hardening, E p/E = 0.05, WMy = 1.5,
P/PL = 0.8). Accumulation of normalised *atchet strain durlrg
the first 10 cycles.
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after first cycle

—— after 2 cycles

shank (Isotropic hardening, Ep/E = 0.01, 'no creep'
Accumulation of normalised ratchet strain in 10 cycles.
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Figure 5.15 Stepped beam shank (Kinematic hardening,

E./E = 0.01, 'no creep' conditions).
Accumulation of normalised ratchet strain in

10 cycles - see Figure 5.14 for notation.
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Figure 5.16 Stepped beam shank (Isotropic hardening, Ep/E = 0.05, 'no creep' conditions).
Accumulation of normalised ratchet strain in 10 cycles.
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Figure 5.17 Stepped beam shank (Kinematic hardening, E/E = 0.05,
Accumulation of normalised ratchet strain

‘no creep' conditjons).
n 10 cycles - see Figure 5.1

for notation.
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£/E = 0.1, 'no creep' conditions).
n 10 cycles - see Figure 5.16 for notation.
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Figure 5.18 Stepped beam shank (Isotropic hardening, E
Accumulation of normalised ratchet strain
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Figure 5.19 Stepped beam shank (Kinematic hardening, Ep/E = 0.1, 'no creep' conditions).
Accumulation of normalised ratchet strain in 10 cycles - see Figure 5.16 for notation.
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Figure 5.20 Stepped beam shank (elastic-perfectly-plastic, N/M = 0.7
P/PL = 0.7, complete redistribution). Accumulatlors of
normalised strain during the first dwell period.
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Figure 5.21 Stepped beam shank (elastic-perfectly-plastic, complete
redistribution). Variation in increment of normalised
strain due to stress redistribution with mean and
bending loads.
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Figure 5.23 Stepped beam shank (Isotropic hardening, Ep/E = 0.05, complete redistribution).
Accumulation of normalised ratchet strain in 10 cycles - see Figure 5.22
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for notation .
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Figure 5.24 Stepped beam shank (Kinematic hardening, Ep/E =
les - see Figure 5.22 for notation.

Accumulation of normalised ratchet strain in 10 cyc
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Figure 5.25 Stepped beam shank (Isotropic hardening, E,/E = 0.1, complete redistribution).
n 10 cycles - see Figure 5.22 for notation.

Accumulation of normalised ratchet strain
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Figure 5.26 Stepped beam shank (Kinematic hardening, E,/E = 0.1, complete redistribution).
Accumulation of normalised ratchet strain in 10 cycles - see Figure 5.22 for notation.
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Figure 5.27 Stepped beam shank (Isotropic hardening, EP/E = 0.05,

M/Hy = 1.5, P/PL = 0.6, complete redistribution). 7ariation
in increment of normalised strain due to stress redistribution
for the first 10 dwell periods.
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Figure 5.28 Stepped beam shank (Ep/E = 0.05, complete redistribution).
Variation in increment of normalised strain due to stress
redistribution during the first dwell period with mean and
bending loads. :
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Figure 5.29 Stepped beam shank. 7Variation in time function for complete
redistrioution with mean load, btending load and EP/E
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Figure 5.30 Stepped beam.

Finite element mesh including 'rigid' elements showing the positions of

the Gauss points nearest to the outside surface.
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Figure 5.31 Stepped beam shank. Overlay model for non-linear kinematic
hardening (see Table 5.3).
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'no creep' conditions). Regions of yielding during the Tirst
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CHAPTER SIX

'"HOLE-IN-PLATE', CIRCULAR PLATE AND SHOULDERED TUBE COMPONENTS

6.1 Introduction

In this chapter, the analysis of the 'hole-in-plate', circular
plate and shouldered tube components is described. Each component
ratchets when subjected to steady mechanical and cyclic thermal
loading. The effects of the steady mechanical and thermal loads
are initially studied independently prior to the analysis of
ratchetting. The effect of creep during dwell periods is bounded
by consideration of the 'no creep' and 'complete redistribution'
cases.

An elastic-perfectly-plastic material model is used throughout
and the material data is glven in Table 6.1. Appendix I lists the

'standard’' input data used in the finite element analyses.

6.2 'Hole-in-plate' Component

6.2.1 Finite element model

The 27 element mesh used to model a quarter section of the
'hole-in-plate' component (see Figure 3.3) is shown in Figure 6.1.
The axes of symmetry AB and CD are constrained to have no dis-
placement in the global X and Y directions respectively and a
mechanical load is applied to the right hand end of the mesh in
the global X direction. Two-dimensional, plane stress, 8 noded isopara-
metric elements are used and the justification of this mesh is discussed

in Appendix II. The Gauss points nearest to AB are also shown in

Figure 6.1.

6.2.2 lMechanical loading

6.2.2.1 Elastic stresses

The elastic normal stress distribution across the section of

maximum stress variation, AB, due to the mechanical locading is shown
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in Figure 6.2 from which a maximum mechanical stress concentration
factor of 2.43 is obtained .at point A. The 'exaggerated' deformed
shape for a mean lcad of 0.7 of the limit load is shown in Figure
6.3. The comparatively large deformation of the element nearest

to point A is clear.

6.2.2.2 Elastic-plastic behaviour

The growth of the plastic zone in the component when subjected
to increasing mechanical load up to collapse is shown in Figure
6.4, The plastic zone grows from the point of peak stress, A,
and at collapse there is‘a band of yielded material with part

of section AB remaining elastic.

6.2.2.3 Creep at sustained mean load

The effects of creep on the normal stress distribution along
AB is shown in Figure 6.5, for Gauss points nearest to the axis
of symmetry. The fully redistributed stress distribution is
approximately linear and the reduced stress concentration factor

is approximately 1.21.

6.2.3 Thermal loading cycle

The component is initially under isothermal conditions and
is insulated except for the surface of the hole. A thermal shock
consists of:-

(1) a ramp increase in the temperature of the hole surface
of 60°C in 2 seconds;
(1i) a dwell period of 1000 seconds for conditions to stabilise
at the increased temperature;
(1ii) a ramp reduction in the temperature of the hole surface of

60°C in 2 seconds; and
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(iv) a further dwell period of 1000 seconds for the original
isothermal conditions to be re-established.
The most severe stress conditions occur during the transient.
The temperature response at points A, B, C, D and the variation
in through thickness temperature difference across AB and CD are
shown in Figure 6.6 for the first half of the transient (i.e.
(1) and (ii)). The temperature files used to apply the thermal
shocks were edited to an acceptable number of increments without
affecting the severity of the transient. The times chosen and
the temperature distributions along AB and CD during the first
half of the thermal shock are given in Figure 6.7. The thermal
stress conditions are more severe along AB than CD and Figure 6.8
shows the time variation in elastically calculated thermal stress
normal to AB at the Gauss point nearest to A for the first 15
seconds of the first half of a thermal shock. This stress is
negative and peaks at approximately 2.7 seconds after the start
of the ramp change in temperature.

Equivalent linear temperature differences were obtained from the
non-linear temperature distributions across AB, shown in Figure 6.7,
by the approach suggested by Yamamoto et al (49) and a maximum
value of 51.?00 was obtained., Using this value in the equation

for maximum thermal stress, O, = ExAT/2, gives a maximum

£
normalised thermal stress range, cf/(yy = 1.37, for the complete

cycle,

6.2.4. Cyclic thermal loading with sustained mean load

6.2.4.1 'No creep' condition

Ratchetting mechanism

The plastic zones due to an initial mechanical load of 0.7
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of the limit load, at the end of the first half thermal cycle and
at the end of the first complete thermal cycle are shown in Figure
6.9. The first thermal cycle generates an increment of plastic
strain across part of the section AB and the maximum ratchet strain
is at point A in the direction tangential to the hole.

After the first cycle a cyclic steady state is reached and
the development and translation of the zones of additional plastic
growth during a steady state thermal cycle are shown in Figure 6.10.
The residual stress distributions across AB at the end of a steady
state cycle are given in Figure 6.11. There is a peak value at an
intermediate position between A and B. During the first half of
a steady state thermal shock yielding initiates from this position
(see Figure 6.10) and moves outwards to B. During the second half
of the thermal shock, yilelding initiates at A and moves outwards
towards the centre of the section (Figure 6.10). The total regions
of additional plastic growth during a steady state thermal cycle
are given in Figure 6.12. The whole section experiences an incre-
ment of plastic strain. Since the steady state plastic zones are
narrower near the hole (i.e. near A) than they are on the outside
surface (i.e. near B), larger ratchet strains would be expected
to occur near the hole. This is shown to be the case in Figure 6.13(a),
which shows the distribution of steady state ratchet strains across
AB in the direction normal to AB. The steady state ratchet strain
at A is less than the first cycle value. Figure 6.13(b) shows the dis-
tribution of steady state raichet strain along the outside surface and
shows the peak value to be away from B but still significantly less than
the ratchet strain at A.

The 'exaggerated' nodal displacements at the end of the 8th
shock and the incremental 'exaggerated' nodal displacements due to
the 9th shock are shown in Figure 6.14. There is a reduction in the

section AB and an ovalisation of the hole which has a general
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increase in diameter.
The accumulation of ratchet strains at point A during the
first 10 cycles is shown in Figure 6.15.

Effect of mean load on ratchetting behaviour

The accumulation of peak ratchet strains (at point A) for a
mean load of 0.5 of the 1limit load during the first 10 cycles is
shown in Figure 6.16. In this case the steady state condition is
achieved in approximately 5 cycles and the steady state ratchet
strains are very small ((Af,r/f,y)ss= 0.015). A summary of the
results for P/PL = 0.5 and 0.7 is given in Table 6.2 and the results

are discussed in Chapter 7.

6.2.4.2 Complete redistributicn

Ratchetting mechanism

The plastic zones due to an initial mechanical load of 0.7
of the limit load, at the end of the first half thermal cycle and
at the end of the first thermal cycle are identical to those for
the 'no creep' case shown in Figure 6.9. Between the end of the
first thermal cycle and the start of the second thermal cycle the
stresses redistribute to the stationary state stress distribution
which for the section AB is given in Figure 6.11. The variation of
stress normal to AB, at A and B and at the point of peak residual
stress, during the first dwell period is given in Figure 6.17.
The stationary state stress distribution (Fig. 6.11) does not have
a central peak value. Steady cyclic state conditions exist after
the first cycle amd the regions of additional plastic strain during
a steady state cycle are shown in Figure 6.18. During the first
half of the cycle, yielding is restricted to regions around A and

B. The second half of the cycle is very similar to that for the
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'no creep' case shown in Figure 6.10, where yielding initiates from
the bore and extends over approximately one half of the section
during the half cycle. The distribution of steady state ratchet
strain in the direction of applied load across the section AB is
compared with the 'no creep' case in Figure 6.13(a). The distribution
is non-linear with a large increase in ratchet strains in the region
close to A where the peak ratchet strain occurs. A relatively flat
steady state distribution of ratchet strain along the outside surface
is shown in Figure 6.13(b). Steady state ratchet strains at A are less
than the first cycle and the accumulation of peak ratchet strains during
the first 10 cycles is shown in Figure 6.15.

The 'exaggerated' displacements after 8 cycles, during the
9th thermal shock and during the 9th dwell period are shown in
Figure 6.19. The reduction in section AB and ovality of the hole
of the 'no creep' case is ggain apparent under 'complete redistri-
bution' conditions but ﬁhere is an overall reduction in hole
diameter at A which results from the dwell period tehaviour.

Effects of mean load on ratchetting behaviour

The accumulation of peak ratchet strains (at point A) for a
mean load of 0.5 of the limit load during the first 10 cycles is
compared with the 'no creep' case in Figure 6.16. With 'no
creep' the ratchet strains are very small but with 'complete
redistribution' resulting from creep, the component ratchets with a
large accumulation of inelastic strain. A summary of the results for
P/PL = 0.5 and 0.7 is given in Table 6.2 and the results are
discussed in Chapter 7.

Creep during the dwell periods

The tangential strain which accumulates during the first dwell

pericd at point A for a mean lcad of 0.7 PL is shown in Figure 6.20.
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The steady state behaviour which occurs during the second and
subsequent dwell periods is similar to that for the first dwell
period. The normalised steady state strain rates and increments
of normalised strain due to stress redistribution, Aad/ﬁy, for
this load and B/P; = 0.5 are given in Table 6.3. For both loads
the increments of strain are negative because the stress at A
increases during the redistribution. The dwell period results

are discussed in Chapter 7.

6.3 Circular Plate Component

6.3.1 Finite element model

The 40 element, axisymmetric mesh used to model the circular
plate component (see Figure 3.4) was previously used by Hyde (32)
and is shown in Figure 6.21. The edge of the plate is constrained
to have the same radial displacement at each node and the steady load
consists of a transverse pressure applied to the top face. Axisymmetric
8-noded isoparametric elements are used. When stress and strain dis-
tributions are quoted, the results are for Gauss points nearest to

faces (0.11 mm) or edges (0.44 mm).

6.3.2 Transverse pressure loading

6.3.2.1 Elastic stresses

The radial variation in elastic stress along the top (pressurised)
and bottom faces is shown in Figure 6.22 for a transverse pressure
load of 0.7 of the collapse load. The collapse load is based on
the theory of Hopkins and Wang (56) for a circular plate with a

'built-in' edge and a uniformly distributed transverse load,



- 242 -

where Pc is the collapse load and Mco is the collapse moment

ol 1
for a beam of unit thickness and depth equal to the thickness of
the circular plate. For the circular plate configuration used a
collapse pressure of 4.25 x 10° N/m2 is obtained.

The results plotted in Figure 6.22 are for the Gauss points
nearest to the surfaces. The clamping arrangement and effects of
pressure on the top surface at the edge result in slightly lower
radial and hoop stresses on the bottom face compared with the top

pressurised face. The 'exaggerated' deformed shape for the same

loading is shown in Figure 6.23,

6.3.2.2 Elastic-plastic behaviour

The elastic-plastic behaviour of the component when subjected
to increasing transverse pressure load up to collapse is shown in
Figure 6.24. Yielding initiates at the four 'corners' of the mesh
and at collapse plastic hinges at the edge and centre of the plate
are evident. The results also give an indication of the accuracy
of the Hopkins and Wang ( 54) theory; in the finite element analysis
collapse occurs at a pressure of 1,05 of the Hopkins and Wang

collapse pressure.

6.3.2.3 Creep at sustained mean load

The effect of creep on the hoop and radial stress distributions
on the centre line (AB in Figure 6.21) is shown in Figure 6.25 for
a transverse pressure of 0.474 of the collapse pressure. There is
no difference between hoop and radial stress components. The
initially linear variation redistributes to a highly non-linear
form with large stress gradients in the region of the 'neutral

plane. Creep has a similar effect on the hoop and radial
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stress distributions at the edge (CD in Figure 6.21) as shown in

Figures 6.26 and 6.27 respectively.

6.3.3 Thermal loading cycle

The component is initially under isothermal conditions and
the edge is insulated. A thermal shock consists of:-
(1) the application of a 40°C through thickness temperature
gradient. This is obtained by reducing the temperature of
the pressurised face by 40°C in 2 seconds at a constant rate
with the temperature of the unpressurised face held constant;
(ii) a period of time for the temperature gradient to stabilise;
(iii) an equivalent ramp increase in the temperature of the
pressurised face; and
(iv) a further period of time for the initial isothermal conditions

to be re-established.

The worst thermal conditions occur when the maximum temperature
difference exists and using the Bree (1) equation for thermal
stress, the maximum normalised thermal stress range, f;— , is
1.41 which was confirmed by the finite element elastic aialysis.
The temperature files used to apply the thermal shocks were

those developed by Hyde (32 ) for his analysis of the component .,

6.3.4 Cyclic thermal loading with sustained transverse pressure

6.3.4.1 'No creep' condition

Ratchetting mechanism

The first thermal cycle produces ratchet strains which vary
throughout the component. The largest value of tensile ratchet
strain occurs at the bottom edge of the plate (position D in

Figure 6.21) in the transverse direction. There is an equal
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compressive ratchet strain at the same point in the radial direction.
At the centre of the plate the maximum tensile ratchet strain occurs
at point A in the transverse direction with an equal compressive
ratchet strain at point B in the same direction. Ratchet strains
quoted are tensile and for points A (centre) and D (edge) in the
transverse direction. The accumulation of ratchet strains at the
edge and centre of the plate during the first 10 cycles and the
individual ratchet strains for a pressure of 0.7 of the collapse
pressure are shown in Figure 6.28. Steady state conditions are not
reached and ratchet strains continue to reduce during the 10 cycles
analysed. Larger accumulations of ratchet strain occur at the

edge. The regions of additional plastic straining for the two halves
of the 2nd thermal shock and during the 10th thermal shock are shown
in Figures 6.29 and 6.30 respectively. Plastic straining is apparent
at the edge and centre of the plate (during the first and second
halves of the shock respectively). The reduction in ratchet strain
between the 2nd and 10th shocks corresponds to a reduction in

the yleld zone at the edge whereas there is no apparent reduction

in the yield zone at the centre. Unlike the other components,
ratchetting occurs in the absence of a 'plastic core'. The
'exaggerated' displacements at the end of the 10th thermal shock

and during the 11th thermal shock are shown in Figure 6.31.

Effect of transverse pressure on ratchetting behaviour

The accumulation of edge and centre ratchet strains during the
first 10 cycles and the individual ratchet strains for a pressure of
0.295 and 0.4 of the collapse pressure are shown in Figure 6.32 and
for 0.474 of the collapse pressure in Figure 6.33. 1In all cases,
shakedown occurs in less than 5 cycles. The results are summarised

in Table 6.4 and are discussed in Chapter 7.
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6.3.4.2 Complete redistribution

Ratchetting mechanism

The ratchet strains produced by the first thermal shock are
identical to those for the 'no creep' condition. Between the end
of the first thermal shock and the start of the second shock the
residual stress field is allowed to completely redistribute to a
stationary state stress distribution which is the same as the
stress field developed by creep from the initial stress distribution
with the applied pressure only, (see Figures 6.25 to 6.27). Unlike
the 'no creep' case a steady cyclic state is reached after the
first cycle where second and subsequent thermal shocks produce
the same increment of ratchet strain which is less than the first
cycle value. The regions of additional plastic straining during
a steady state cycle are shown in Figure 6.34 for a pressure of
0.7 of the collapse pressure. Plastic straining is again apparent
at the edge during the first half of the shock and at the centre
during the second half of the shock and a 'plastic hinge' at the
edge 1s evident when the 40°C linear temperature gradient is
fully established. The accumulation of ratchet strains at the
edge and centre of the plate during the first 10 cycles and the
individual ratchet strains for a pressure of 0.7 of the collapse
pressure are compared with those for the 'no creep' condition in
Figure 6.28. The 'exaggerated' nodal displacements at the end
of 10 cycles, during the 11th shock and during the 11th dwell
period are shown in Figure 6.35 for the same loading,

Effect of transverse pressure on ratchetting behaviour

The accumulation of edge and centre ratchet strains during the

first 10 cycles and the individual ratchet strains for a pressure



- 246 -

of 0.295 and 0.4 of the collapse pressure are compared with the
'no creep' behaviour in Figure 6.32 and for 0.474 of the collapse
pressure in Figure 6.33. The results are summarised in Table 6.4
and are discussed in Chapter 7.

Creep during the dwell periods

The strains which accumulate during the first dwell period
at the point of maximum tensile ratchet strain (i.e. point D in
Figure 6.21) in the transverse direction for a pressure of 0.7 of
the collapse pressure are shown in Figure 6.36. The behaviour is
similar to that for the components already discussed and steady
state conditions occur during the second and subsequent dwell
periods. The normalised steady state strain rates and increments
of normalised strain due to stress redistribution at point D for
pressures of 0.295, 0.4, 0.474 and 0.7 of the collapse pressure

are given in Table 6.5. These results are discussed in Chapter 7.

6.4 Shouldered Tube Component

6.4.,1 Finite element model

The 50 element, axisymmetric mesh used to model the shouldered
tube component (see Figure 3.5) was previously used by Hyde et al
(10, 11) and is shown in Figure 6.37. The left hand end of the
mesh (shank face) is constrained to have zero displacements in
the axial direction. Axial loading is applied to the right hand
end which is constrained to have constant displacement in the axial

direction. Axisymmetric 8-noded isoparametric elements are used.
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6.4.2 Axial mechanical loading

6.4,2,1 Elastic stresses

The elastic stress distributions along the outside surface

and bore due to an axial load are shown in Figures 6.38 and 6.39.
The meridional stress is dominant and peak conditions occur in the
fillet. The results are for the Gauss points nearest to the
surface. At the surface, a mechanical stress concentration factor
of 1.59 has previously been obtained (10). The 'exaggerated'
deformed shape for a mean load of 0.7 of the limit load is shown
in Figure 6.40., There is a localised necking close to the shank/

fillet transition.

6.4.2.2 Elastic-plastic behaviour

The elastic-plastic behaviour of the component subjected to
increasing axial load up to collapse is shown in Figure 6.41,
Yielding initiates in the fillet and the yielded zone is very
localised even at high load (P/PL = 0.9). At collapse a significant

region of the shank remains elastic.

6.4.2.3 Creep at sustained mean load

The stationary state meridional stress distributions for the
Gauss points nearest to the outside surface and bore are compared with
the initial stress distributions in Figures 6.42 and 6.43 respectively.
There is a significant reduction in the stress concentration factor in
the fillet but the stationary state and initial stress distributions

along the bore surface are very similar.

6.4.3 Thermal loading cycle

Initial isothermal conditions are maintained by fluid flowing
through the bore and along the outside surface. The temperature

of the bore fluid flow remains constant. A thermal shock consists of:-
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(1) a ramp reduction in the temperature of the fluid flowing
along the outside surface of 56°C in 2 seconds;
(ii) a period of I*2 seconds for the temperature gradient to be
fully established;
(iii) a ramp increase in the temperature of the fluid flowing
along the outside surface of 5600 in 2 seconds; and
(iv) a further period of |2 seconds for the initial isothermal
conditions to be re-established.
For this thermal load the most severe thermal conditions occur
when the maximum temperature difference exists (i.e. (ii)) and an
almost linear through thickness variation in temperature is
established in the shank.
Results are obtained for two maximum normalised thermal stress
ranges, 1.42 and 2.83, based on the Bree (1) equation for thermal

stress.

Gt _ EXAT

Sy 2(1 -~ )cry

The temperature files used to applied the thermal shocks were those

obtained by Hyde et al (10, 11).

6.4.4 Cyclic thermal loading with sustained axial load

6.4.4.1 'No creep' condition

Ratchetting mechanism

The stress distributions in the shank due to initial loading,
at the end of the first half of the first thermal cycle and at the
end of the first complete thermal cycle for P/PL = 0.5 and
0}/’0&. = 2.83 are shown in Figure 6.44. There is an increment

of ratchet strain in the first cycle and a steady cyclic state is
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established after the first complete cycle. Maximum ratchet strains
occur in the axial direction and are constant with radius. Steady
state ratchetting will occur in the shank when there is a central
region which experiences plasticity during both halves of the
thermal cycle.

At the 'peaﬁ fillet' position, where the largest ratchet
Strains are accumulated, a steady cyclic state is also reached
after the first cycle. The distribution of steady state, meridional
ratchet strain along the outside surface of the component is shown
in Figure 6.45 for P/PL = 0.5 and CXU/CSY = 2,83. The accumulations
of ratchet strain in the shank and at the 'peak fillet' position
during the first 10 cycles for this loading are shown in Figure
6.46,

The ratchetting mechanism in the fillet for P/PL = 0,7 and
GE/ffy = 1,42 is discussed below. The regions of additional
Plastic straining for a steady state cycle are shown in Figure
6.47 and the accumulation of ratchet strain in the shank and at
the 'peak fillet' position during the first 10 cycles are shown
in Figure 6.48. During the first half of the thermal shock,
¥ielding initiates in the shank and fillet and the yield zone is
fully developed by increment 11. The zone of plastic straining
Contracts as the steady state thermal gradient is established.
During the second half of the thermal shock there is no further
Plastic straining in the shank but a plastic zone spreading from
the bore in the region of the fillet is sufficiently large to
Produce a band of plastic growth through the section close to
the fillet which in turn ensures an increment of plastic strain

aCross the section. In the shank a substantial (approx. 2/3 rds) part
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remains elastic during the complete cycle and, in the absence of a
'plastic-core', ratchetting would not be expected after the first
cycle. This is shown to be the case in Figure 6.48 where steady
state ratchet strains in the shank are zero and there is no
further accumulation of ratchet strains after the first cycle.

In the fillet, from Figure 6.48, it would appear that the steady
cyclic state is established after approximately 6 cycles. The
'exaggerated' deformed shapes after the 10th cycle and during the
11th cycle are shown in Figure 6.49. The absence of shank
ratchetting is apparent from Figure 6.49(b). There is a reduction
in cross-sectional area in the region of the fillet.

Effects of mean load and thermal load on ratchetting behaviour

The accumulations of shank and 'peak fillet' ratchet strains
during the first 10 cycles for P/PL = 0.5 and Cfﬂ/ny = 1.42
are shown in Figure 6.50. Steady state ratchet strains are zero
in the shank and very small in the fillet. The results for this
load combination, P/PL = 0.7, CT%/CT§ = 1.42 and P/PL = 0.5,
O'V/CT; = 2.83 are summarised in Table 6.6, These results are

discussed in Chapter 7.

6.4.4.2 Complete redistribution

Ratchetting mechanism

The ratchet strains in the shank and at the 'peak fillet'
positions produced by the first thermal shock are identical to
those for the 'no creep' condition. Between the end of the first
thermal shock and the start of the second thermal shock the

stresses completely redistribute to the statlonary state stress
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distributions shown in Figures 6.42 and 6.43. In the shank the
ratchet strains in the second and subsequent cycles are the same
and are equal to the first cycle ratchet strains. At the 'peak
fillet' position a steady cyclic state is reached after the first
cycle and ratchet strains produced in the second and subsequent
cycles are the same but differ from the first cycle value because
the stationary state stress distribution (which is the initial
condition for the second and subsequent cycles) is different to
the initial stress distribution due to axial loading. The ratchet
strains accumulated in the shank and at the 'peak fillet' position
during the first 10 cycles for P/PL = 0.5 and crt/ o’y = 2.83 are
compared with the 'no creep' case in Figure 6.46. The steady
state ratchet strains and hence the accumulation of ratchet strains
are greater for the 'complete redistribution' condition.

The regions of additional plastic straining during a steady
state thermal cycle for P/PL = 0.7 and d't/ o‘y = 1.42 are shown in
Figure 6.51. The accumulation of ratchet strains in the shank
and at the 'peak fillet' positions for this loading are compared with
the 'no creep' case in Figure 6.48, 1In the shank, the 'plastic-
core' requirement for continued ratchetting is not applicable if
creep occurs; all cycles are identical and any plastic straining
during the first cycle will be repeated in each subsequent cycle.
In the fillet, a band of ylelded material is evident, as for the
'no creep' case, but not essential for ratchetting to continue.
The 'exaggerated' deformed shapes after the 10th cycle, during the
11th shock and during the 11th dwell period for P/PL =0.7,
0}//65,= 1.42 are shown in Figure 6.52. The radial displacements

are zero in the rigid shoulder but inward radial displacements
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occur in the shank., There is a reduction in cross sectlion close to
the fillet during the thermal shock.

Figure 6.52 shows that there is a greater reduction in bore
diameter in the shank compared with the shoulder during the thermal
cycle and the dwell period.

Effects of mean load and thermal load on ratchetting behaviour

The accumulation of ratchet strains for P/PL = 0.5 and
CYt/(Yy = 1.42 are shown in Figure 6.50. The results for the
various load combinations are summarised in Table 6.6 and are
discussed in Chapter 7.

Creep during the dwell periods

The strains which accumulate in the shank and at the peak
ratchetting position in the fillet during the first two cyéles
for P/PL = 0.5 and (3'1_1/6'y = 2,83 are shown in Figure 6.53., The
results are asymptotic to straight lines; the gradient of the
straight line is the same for the first and second (and hence
subsequent) cycles. There is a greater accumulation of dwell
period strains in the shank compared with the fillet. The steady
state strain rates and increments of strain due to stress
redistribution for this loading, P/PL = 08, CS',G/G‘y = 1.42 and
P/PL = 0.7, Cft/lfy = 1.42 are given in Table 6.7 and discussed

in Chapter 7.



Parameter

Hole-in-plate

Circular Plate

Shouldered Tube

Young's Modulus
Yield Stress

Coefficient of
expansion

Poisson's Ratio
Thermal Conductivity
Surface heat

Transfer coefficient

Specific heat/
unit volume

A
Creep Law
constants n

m

(GN/n°)

(1/n%)

(%™

(W/mK)

(kW/mzK)

(J/m3K)

23.2

15.0

1.71 x 10—5
0.44
35.1

1.43 x 106

8.67 x 10”58

7.3

1.0

23.1
15.0

2.57 % 10'5
0.44
35.1

1.43 x 10
8.67 x 10°2°
73

1.0

23.2
13.8 & 6.9

2.88 x 1072
0.4k

35.1

26.4 bore
32.0 outside shank & fillet
15.7 outside shoulder

1.43 x 106

8.67 x 10—58

7.3

1.0

Table 6.1 Material data for 'hole-in-plate', circular plate and shouldered tube components

m ELR =
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Normalised Ratchet Strain per Cycle
g— 'No creep' 'Complete redistribution'
L
1st cycle Steady State ist cycle Steady State
0.5 1.902 0.015 1.902 1.071
0.7 3.312 1.737 3.312 2.441

Table 6.2 Ratchetting behaviour of

'hole in plate' component

e | WEVEY | «EVE )P AEYE,
By ar B/Py

1st cycle Steady State
0.5 1.534 3.069 -0.183 -0.144
0.7 2.169 3.099 -0.371 -0.481

Table 6.3 Dwell period behaviour of 'hole in plate' component
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Normalised ratchet strain per cycle
'No creep' 'Complete Redistribution'
EFL—- Position | 1st cycle | Steady State 1st cycle | Steady State
col
Centre 0.240 0 0.240 0.183
0.295 )
Edge 1.503 0 1.503 1.225
Centre 0.408 0 0.408 0.290
0.4
Edge 2.871 0 2.871 2.356
Centre 0.744 0 0.744 0.372
0.47% | mage 3.924 0 3.924 3.293
Centre 2.994 0.560% 2.994 1.886
0.7
Edge 7712 1.078% 7.712 7+270
* 10th cycle values.
Table 6.4 Ratchetting behaviour of circular plate
d d d
WEY/E,) | (EYE )/ar nEY/E
= Position y
Peol 2 P/pcol
1st cycle | Steady State
0.295 D 0.474 1.607 0.093 -0.024
0.4 D 0.643 1.607 0.091 -0.078
0.474 D 0.769 1.623 0.077 -0.044
0.7 D 1075 1.536 -0.156 -0.212

Table 6.5 Dwell period behaviour of circular plate




’ Normalised Ratchet Strain per Cycle
(o}
=t %— Position 'No creep' ‘Complete Redistribution'
Gy [nom L
1st cycle Steady State 1st cycle Steady State
Shank 0.109 0 0.109 0.108
1.42 0.5
Peak Fillet 1.648 0.012 1.648 1.518
Shank 0.235 0 0.235 0.239
1.42 0.7
Peak Fillet 2.304 0.082 2.304 2.127
Shank 0.685 0.187 0.685 0.686
2.83 0.5
Peak Fillet 3.701 1.558 3.701 3.748
Table 6.6 Ratchetting behaviour of shouldered tube
d d
o a(e"/e ) a(E"/€ )/ar" d
—% g—- Position ——Xd = /P S At /E'y
Oy |NoM I L
1st cycle Steady State
Shank 0.495 0.990 0.207 0.207
1.42 0.5
Peak Fillet 0.259 0.518 0.425 0.400
Shank 0.704 1.006 0.262 0.262
1.42 0.7
Peak Fillet 0.372 0.531 0.541 0.518
Shank 0.504 1.008 0.740 0.740
2.83 0.5
! Peak Fillet 0.269 0.538 0.817 0.841
i

Table 6.7 Duell period behaviour of shouldered tube

_9g2-
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Finite element mesh showing the positions of

'Hole-in-plate'.
the Gauss points nearest to the AB and CL axes.
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Figure 6.2 'Hole-in-plate'. Elastic normal stress distribution
along AB due to mechanical loading.
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‘Exaggerated' deformed shape for a mean load of 0.7 of the

Figure 6.3 ‘'Hole-in-plate'.
limit load.
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Figure 6.5 'Hole-in-plate'. Redistribution of normal stress 'alon
AB' due to creep at sustained mean load. (see Figure 6. 1%



Figure 6.6(a) 'Hole-in-plate'. Temperature response across AB due to a ramp increase in bore
surface temperature of 60°C in 2 secs.
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'Hole-in-plate’' Temperature response across CD due to a ramp increase in bore surface

temperature of 60°C in 2 secs.

Figure 6.6(b)
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Figure 6.7(a) 'Hole-in-plate'. Temperature distribution along AB during a
ramp increase in bore surface temperature of 60°C in 2 secs.
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initial loading

V/ first half of cycle

\\ second half of cycle

'Hole-in-plate' (elastic-perfectly-plastic, Ot/0y = 1.37,
P/P;, = 0.7, 'no creep' conditions). Regions of plastic

Figure 6.9
straining due to initial loading and during the first thermal

shock.
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Figure 6.11 'Hole-in-plate' (elastic-perfectly-plastic, O't/o'
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Second half of cycle

% First half of oycle
N
N

Figure 6.12 'Hole-in-plate' (elastic-perfectly-plastic, O ¢/0y = 1.37,
P/Pr, = 0.7, 'mo creep' conditions). Regions of plastic
straining during a steady state thermal cycle.
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Flgure 6.13(a) 'Hole-in-plate' (elastic-perfectly-plastic, o4/, =1.37,
P/PL = 0.7). Distribution of normalised steady state ratchet

strains ‘across AB' in the direction normal to AB (see Figure
6'1).
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Figure 6.13(b) 'Hole-in-plate' (elastic-perfectly-plastic, 01/57 =
 1.37, P/PL = 0.7). Distribution of normalised stegdy
state ratchet strains along the outside 'surface'.
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a) end of the 8th shock
Mesh Scale e i
10mm
Displacement Scale «—»
SOpm
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'b) resulting from the 9th shock
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20pm

Figure 6.14 'Hole-in-plate' (elastic-perfectly-plastic, ct/o'y = 1.37,
P/PL = 0.7, 'no creep' conditions). 'Exaggerated' nodal
displacements.
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Figure 6.16 'Hole-in-plate' (elastic-perfectly-plastic, O /Ty = 1.37,
P/PL = 0.5). Accumulation of maximum normalised ratchet
strains during the first 10 cycles.
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Figure 6,15 'Hole-in-plate!’ ela.sti perfectly-plastic O4/0y = 1.37, P/P; = 0.7,
complete redistr bution . Regions of additional pla.stic straining
during a steady state ther'na.l cycle,



a) end of the 8th cycle
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Figure 6.19 'Hole-in-plate’ (elastic-perfectly-plastic, o‘t/O'y = 1.37,

P/PL = 0.7, complete redistribution).
displacements,

'Exaggerated' nodal
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transverse pressure loading of 0.7 of the collapse pressure.
(see Section 6.3.1)
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Figure 6.25 Circular plate. Redistribution of normalised
hoop and radial stress ‘along AB due to steady
load creep for p/p.oy; = 0.474. (see Section
6.3.1)
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and individual maximum normalised ratchet strains at the edge and centre for the first



a) First half of shock :
\‘414\/4/
///

b) Second half of shock

7T S T I
S ST T T Ty

t/Cr = 1.41, p/pPco1l = 0.7, 'no creep'

29 Circular Plate (elastic-perfectly-plastic,
Regions of additional plastic stlalnlng for the two halves of the 2nd

conditions).
thermal shock.

Figure ¢

- 88¢ -



..289_

| ' 1st half of cycle (cooling)

0-1.2 s -ELASTIC
A —_
1.2-1.4 s <ZZ
B
L A
th-1.bs 7
gz
2.0-2.2 s

7

2nd half of cycle (heating)

0-1.4 s -ELASTIC

YA 77 =
L e,

1.4—1n6 S

> . 210"'2.2 S
%

QL7 2200 T e

p/Peol = 0.7, 'no creep' conditions).

| Figure 6.30 Circular plate (elastic-perfectly-plastic,C4/G

R msmmemms

= 1-“’1'

Regions o¥ additional

plastic straining during the 10th thermal shock.




- 290 -

a) end of the 10th shock
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b) resulting from the 11th shock
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Figure 6.31 Circular plate (elastic-perfectly-plastic, C/0, = 1.41,

P/Pcol = 047, 'no creep' conditions). ’Exaggeratedy nodal
displacements.
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Figure 6.34 Circular plate (elastic-perfectly-plastic, CTt/CFy = 1.41,
! P/Pco1l = 0.7, complete redistribution). Regions of
additional plastic straining during a steady state cycle.
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a) end of the 10th cycle
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b) resulting from the 11th shock
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Figure 6.35 Circular plate (elastic-perfectly-plastic, G 4+/C . = 1.41,
?/Pcol = 0.7, complete redistribution). 'Exaggerated'nodal
displacements.
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Figure 6.36 Circular plate (elastic-perfectly-plastic, O /0, = 1.41,

P/Pcol = 0.7, complete redistribution). Accumulation of
normalised strain in the transverse direction at point D
during the first dwell period.
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Figure 6.47 Shouldered tube (elastic-perfectly-rlastic, O't/o'y = 1,42,
B/P;, = 0.7, 'no creep' conditions). Reglons of additional
plastic straining during a steady state cycle.
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Figure 6.48 Snouldered tube (elastic-perfectly-plastic, G-UWS),= 1.42,

P/P1, = 0.7).

Accumulations of normalised ratchet strain
during the first 10 cycles.
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a) end of the 10th shock
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Filgure 6.49 Shouldered tube (elastic-perfectly-plastic, O t/o’y = 1.42,
P/PL = 0.7, 'no creep’ conditions). 'Exaggerated' nodal

displacements.



164

Fad

- 309 -

PEAK FlLLET—COM.PLETE REDISTRIBUTION
a
/G/
/
/
/
/
/
/
Q]
AKA—A—A‘ O\ e N\ e/ e N [N /N PEAK FILLET -NO CREEP
P SHANK-COMPLETE
g o—0—0— REDISTRIBUTION
| o= e 22 SHANK -NO  CREEP
Y
2 L [+) 8 10 12

Cycle Number

Figure 6.50 Shouldered tube (elastic-perfectly-plastic, CTt/<5 = 1.42,

P/P;, = 0.5). Accumulations of normalised ratchet Strain
during the first 10 cycles.
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Flgure 6.51 Shouldered tube (elastic-perfectly-plastic, O¢/Cy = 1.42,
P/PL = 0.7, complete redistribution). Regions of additional
plastic strairing during a steady state cycle.
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Flgure 6.52 Shouldered tube (elastic-perfectly-plastic, GJGy = 1.42,
}?/PL = 0.7, complete redistribution), 'Exaggerated’ nodal
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CHAPTER SEVEN

7. A CORRELATION OF THE RATCHETTING AND DWELL PERIOD BEHAVIOUR

OF THE COMPONENTS

7.1 Introduction

The analysis of the 5 components has been described in Chapters
4-6. This Chapter presents a synopsis of the results. Section 7.2
compares in detail the behaviour of all 5 components when elastic-
perfectly-plastic and zero plasticity/creep interaction models are
assumed. This comparison is extended for the flanged tube ard
stepped beam results with material hardening and zero plasticity/
creep interaction models in Section 7.3. The ratchetting mechanism,
ratchet strains and dwell period strains are correlated and the
implications for design are discussed in Chapter 8.

Characteristic ratchetting and dwell period behaviours are
identified which will be used in Chapter 8 to recommend design
Procedures based on both limited finite element 'exact' solutions
and approximate methods of solution. Ratchet strains for both
the 'no creep' and 'complete redistribution' conditions are considered.

Finally, the effects of 'partial redistribution' of stresses

during the dwell periods between cycles are assessed in Section 7.4,

7.2 Elastic-Perfectly-Plastic Material Model (All 5 Components)

7.2.1 Mechanical and thermal loading conditions

The mechanical and thermal loading conditions used in the
analysis of the five components are summarised in Table 7.1, together

with the thermal and mechanical stress concentration factors in

reglons of peak stress. Thermal conditions are defined by the
2 ., ;

Fourier number, ktc/f:CPLc » the Biot number, hL/k, and the

nominal elastic thermal stress, 6$/<5y. The characteristic time,
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tc, is taken as the duration of the ramp temperature change (i.e.

zero for a step change) and the characteristic length, Lc’ is the

bore diameter for the flanged tube and shouldered tube, the hole
diameter for the 'hole-in-plate' component and the thickness for
the circular plate. For the 'hole-in-plate' component and circular
plate, where changes in metal surface temperature are used to
define the transient, the surface heat transfer coefficient and
hence the Biot number are taken as infinity. For componenté with
cyclic thermal loading, nominal elastic thermal stresses are based
on the Bree (1) equation, using an equivalent linear temperature
distribution (4S) for the flanged tube and 'hole-in-plate' compon-
ents, as discussed in chapters 4-6. For the stepped beam, the
analogy between the shank and the Bree thin tube is used to obtain
an 'equivalent' nominal thermal stress based on cyclic changes in
curvature. The 'equivalent' thermal stress concentration factor
in the fillet is taken as the stress concentration factor due to

pure bending.

7.2.2 Ratchetting mechanisms

The ratchetting mechanisms of the components can be classified

into 4 categories:-

(1) first cycle mechanism (all components);

(11) steady state, 'no creep' mechanism (all components except

circular plate);

(11i) continuous transient, 'no creep' mechanism (circular plate); and

(iv) steady state, complete redistribution mechanism (all components).
The behaviour of the shanks and regions of stress concentration

are generally similar.



- 315 -

7.2.2,1 First cycle mechanism

During the first cycle there will be an increment of growth
at any point in the structure that experiences yielding. For com-
ponents with uniform sections and stress concentrations the plastic
zone initiates in the fillet and for 'low' loadings yielding in the

fillet may not be accompanied by yilelding in the shank.

7.2.2.2 Steady state, 'no creep' mechanism

For the uniform sections of the tubes and beam, steady state
non zero ratchet strains are accumulated when the whole section
suffers plastic deformation at some point during the cycle. The
stress distributions at the start and end of the cycle are
identical and the increment of plastic strain is constant
across the section. For the stepped beam shank the development of
the plastic zone during a cycle is similar to tha; of the 'Bree'
beam (1). During the first half of the cycle, a plastic zone,
initiating from a surface, spreads inwards towards the neutral
axis and may te accompanied by a 'smaller' zone initiating from
the other surface. During the second half of the cycle the plastic
zone initiates from the opposite surface and the maximum depths
of yielded material 1s the same as during the first half of the
cycle. For ratchetting the 'major' plastic zone must cross the
neutral axis during both halves of the cycle. A 'plastic core’
(i.e. a region around the neutral axis which yields during both
halves of the cycle) is an essential feature of ratchetting. Other
mechanisms have been observed, for example in the case of the flanged

tube shank, a plastic zone initiates from within the section and
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spreads outwards during the first half of the cycle. During the
second half of the cycle, the plastic zone initiates at the bore
surface and spreads radially outwards. Again there is a requirement
for a 'plastic core'.

In the fillet regions of the tubes and beam and the scction AB
for the 'hole in plate' component steady-state ratchetting
may, depending on loading conditions, be accompanied by
an initial transient effect. The existence of a 'plastic core'
is also essential for steady state 'no creep' ratchetting and,
again, the cyclic development of the plastic zones varies with com-
ponents and loadings. For the tubes and beams the plastic zone
initiates in the fillet and spreads into the shank and ratchet
strains vary across the section. 'Peak fillet' ratchet strains axe
in the meridional direction. There is a 'necking' of the component
across the section during a cycle when compared with the shank.

For the 'hole-in-plate' component, incremental plastic strains
are accumulated across the whole of section AB during a cycle.
The ratchet strains are a maximum at the hole surface (A) and
produce an elongation of the hole in the direction of steady

mechanical load.

7.2.2.,3 Transient, 'no creep' mechanism

For the circular plate, ratchet strains reduce monotonically
(in all but the highest load case to zero) and a steady state
ratchetting condition does not exist. An increment of ratchet strain
is produced by the development of plastic zones from the edge and
centre of the plate during the first and second halves of the
cycle respectively. The reduction in ratchet strain per cycle is
associated with a reduction in the plastic zone between successive

Cycles which is apparent at the edge but not significant at the centre.



- 317 -

The presence of an 'elastic core' at all times during a cycle is
a possible indication that shakedown will eventually occur as

suggested by Townley et al (S7) for pressure vessels.

7.2.2.4 Steady state, 'complete redistribution' mechanism

In all cases, ratchetting will occur if any plastic strains
are produced during a steady state cycle. For the uniform sections
of the tubes and beam, the ratchetting mechanism is identical to
that for the first cycle, discussed in Section 7.3.1, since the
initial stress distribution due to steady mechanical load is
the same as the statlonary state stress distribution. For the
fillet regions of the tubes and beam, the 'hole in plate' component
and the circular plate,steady state ratchetting occcurs for the
second and subsequent cycles if there is any plastic straining
during the second cycle. For all components, with the possitle
exception of the circular plate, there is no requirement of a
'plastic core' for steady state ratchetting. For the circular plate,
Figure 6.34 indicates a definite 'plastic hinge' at the edge although
this 'plastic hinge' 1is not considered to be essential for continued

ratchetting.

7.2.3 Ratchet strains

A summary of the ratchet strains obtained for the five compon-
ents 1s given in Tables 7.2 and 7.3 for the 'no creep' and 'complete
redistribution' conditions. The characteristic behaviour is found
to fall into 3 categories:-

A - equal ratchet strains for all cycles;

B - equal ratchet strains for the second and subsequent cycles; and

C(n) - steady state ratchet strains per cycle after n cycles.
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7.2.3.1 Qualitative assessment

7.2.3.1.1 'No creep' cordition

With the exception of the circular plate, a constant ratchet
strain per cycle occurs after a small number of cycles (in many
cases only one).

Uniform shank regions

In the shank regions of the tubes and beam a steady state
situation is achieved after the first cycle (i.e. type B). The
ratchet strains produced in the second and subsequent cycles are
equal, in some cases zero, and less than the first cycle values
(if maximum surface or centreline ratchet strains are considered
for the stepped beam shank). Under these conditions, the initial
uniform stress distribution due to steady mechanical load is 'more
favourable' for ratchetting than the non-uniform residual stress
distribution at the end of each cycle. The detailed studies of
the flanged tube and stepped beam shanks have identified particular
loadings for which 'more favourable' residual stress fields may
or do exist, as follows:-

(1) for the flanged tube shank with high mean load (P/PL > 0.75)

- see Table 4.2
(1i) for the stepped beam shank, Figure 5.5 indicates that steady

state centreline ratchet strains may be greater than the first

cycle ratchet strain for high mean loads and low bending locads,
which are outside the range of loadings considered.

Regions of stress concentration

With the exception of the circular plate, steady cyclic state
conditions are achieved after a few cycles (up to 6, i.e. type C)

although for extreme loading conditions the steady cyclic state is
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reached after the first cycle (i.e. type B).

For the circular plate, ratchet strains reduce monotonically
with cycle number and, in all but the highest mean load case
(P/PL = 0.7), have reduced to zero in under 4 cycles. For the
highest mean load peak ratchet strains are still reducing after
10 cycles. This monotonic reduction in ratchet strains is con-
sistent with the results of Hyde (32) and Goodman and Goodall (21).

Comparison between shank and fillet

For the two axisymmetric, thermally loaded tubes the first cycle
and steady state peak fillet ratchet strains are greater than the
corresponding shank values. Furthermore the shouldered tube results
for O, o of - 1.42 show that the onset of ratchetting in the fillet
occurs at reduced mean load compared with the shank.

For the mechanically cycled stepped beam, first cycle peak
fillet ratchet strains are also greater than the corresponding
shank values. However, the steady state peak fillet ratchet strains
are less than the shank values. Since the tensile meridional strains
in the fillet of the stepped beam are accompanied by compressive
strains in the other two directions, the reduction in these compressive
strains due to the constraints of the increased section will also
contribute to a reduction in the tensile meridional strains.
Alternatively, for the axisymmetric components, the hcop strains are
tensile and due to Polsson's ratio effect reduce the overall tensile
meridional strains. Hence a reduction in hoop strains due to the flange
or shoulder constraint can have an adverse effect on the meridional
strains.

7.2.3.1.2 'Complete redistribution'

A steady cyclic state, with constant ratchet strain per cycle,
occurs in the first one or two cycles for uniform sections and

stress ~oncentration regions respectively.
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Uniform shank regions

Each cycle produces an equal amount of ratchet strain (i.e.
type A) since the initial stress distribution due to steady mean
load is identical to the stationary state stress distribution.

Any plastic strains produced in the first cycle will also be
accumulated during each subsequent cycle, The implication is a
shift in the shakedown and ratchetting boundary to the 'elastic
limit' line (i.e. below which, cycling is purely elastic).

For the 'complete redistribution' case to be an upper bound
on ratchet strains, the second cycle 'no creep' ratchet strain
(i.e. the steady state value since the characteristic is type B)
must not be greater than the first cycle ratchet strain. This
is the case for all uniform sections in Tables 7.2 and 7.3 (if
maximum surface or centreline ratchet strains are being considered
for the stepped beam) and is generally so in all but the high mean
load shank results (see Section 7.2.3.1.1 - Uniform shank regions).

Regions of stress concentration

For all components, including the circular plate, a steady
cyclic state exists after the first cycle since the stationaxy
state stress distribution is established after each cycle (i.e.
Type B). Steady state ratchet strains are greater than the equiva-
lent 'no creep' results and hence the 'complete redistribution'
case 1s the upper bound. The results imply a reduction in the
size of the shakedown region. Although continued ratchetting was
found for all cases, it is conceivable that particular loadings
could result in 'small' first cycle ratchet strains followed by
shakedown. In this case the ratchetting boundary would not
correspond to the elastic limit line and the shakedown region would

be somewhat larger than the elastic region.
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Comparison between shank and fillet

For all cases, including the stepped beam, peak fillet ratchet

strains are greater than the equivalent shank values.

7.2.3.2 Quantitative correlation

7.2.3.2.1 Bree's analysis

'No creep' condition

The results for the five components and the elastic-perfectly-
plastic results from the flanged tube shank study in Table 4.2 have
been correlated on the basis of Bree's (1) analysis by plotting the
results, using equivalent load values on a 'Bree' diagram in Figure
7.1 using the notation in Table 7.4, The full curves are the
ratchetting boundary and lines of constant ratchet strain per cycle
for the Bree problem. The points are plotted at the equivalent loading
conditions for the various components and the numerical value
" adjacent to each 'blacked in' symbol is the steady state ratchet
strain. Open symbols indicate a zero steady state ratchet strain
(i.e. shakedown). The equivalent loads for the components are
obtained as follows. In all cases the steady mechanical load,
P/PL' is taken as the nominal value (in the case of the 'peak
fillet' regions of the stepped beam, flanged and shouldered tubes
the nominal shank value is used). For the ﬁniform regions of the
flanged tube and shouldered tube, the elastic thermal stress range,
Gt/cfy, is based on an 'equivalent' linear temperature distribution;
the intermediate steady state temperature distribution through the
shank of the shouldered tube is reasonably linear whereas the
approach of Yamamoto et al (49) has been used to 'linearise' the
most severe non-linear temperature distribution through the flanged

tube shank. For the uniform region of the stepped beam the
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'equivalent' elastic thermal stress range 1s based on cyclic changes
in curvature using the analogy between the stepped beam shank and
the Bree beam., For the fillet regions of the beam and tubes an
estimate of the elastic thermal stress range is obtained by multi-
Plying the shank value by the thermal stress concentration factor
('equivalent' thermal stress concentration factor for the stepped
beam). This method of estimating the thermal stress in fillet
regions is considered to be pessimistic since the high stress
reglons caused by geometric discontinuities are usually very
localised whereas the cyclic thermal load factor for ratchetting is
associated with the distribution through the whole section, as
illustrated by the Yamamoto equivalent thermal stress approach.

The peak temperature distribution through the circular plate
is linear and the elastic thermal stress range can be obtained
directly from Bree's equation. The nominal elastic thermal stress
range for the 'hole-in-plate' component is the equivalent linear
value for the most severe temperature distribution during the
transient. A thermal stress concentration factor due to geometry
effects is not readily quantified for this problem. However for
the tubes it is seen from Table 7.1 that the thermal stress concen-
tration factor is greater than the mechanical stress concentration
factor and, on this assumption, an elastic thermal stress range for
the 'hole-in-plate' component has been obtained by multiplying the
nominal value by the mechanical stress concentraticn factor. Using
these methods of determining the equivalent steady and cyclic loads,
the steady state ratchetting results are presented in Figure 7.1.
It can be seen that, for all of the cases examined, the ratchetting

boundary and lines of constant ratchet strain per cycle from Bree's
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analysis are conservative, Therefore the use of 'equivalent' linear
temperature distributions and thermal stress concentration factors,
which can both be determined relatively easily, appears to offer

a simple method of conservatively dealing with transient thermal
loading and complex geometries for 'no creep' conditions.

'Complete redistribution'

The equivalent loading conditions for all components are
identical to those described for the 'no creep' case. This is
obviously true for cyclic thermal loading and figure 5.4 shows the
same to be true for the stepped beam shank which experiences the
same cyclic curvature range for both the 'no creep' and 'complete
redistribution’' cases. For the 'complete redistribution' case
Bree suggests the elastic limit line as the 'new' ratchetting
boundary with the disappearance of the shakedown region and this has
been verified in the previous discussions in the studies of the
flanged tube and stepped beam shanks. Alternatively, Leckie (45)
suggests that: 'the effects of plasticity are likely to be small
provided the load is less than n/(n + 1) of the shakedown load'.

The steady state ratchet strain results for the components for the
'complete redistribution' case are compared with the Bree boundary
and the n/(n + 1) boundary in Figure 7.2. For the stepped bean,
the maximum surface ratchet strains are quoted.

In all cases the Bree boundary is conservative as expected
since it allows for no plastic growth during a cycle. With the
exception of the circular plate results, the n/(n + 1) boundary is
also conservative; the steady state ratchet strain for the shouldered
tube shank with P/PL = 0.5 (the only other point within this boundary)
is small. The n/(n + 1) boundary approach is not a satisfactory

design criterion for the circular plate which has already been
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shown to have a significantly different cyclic behaviour to the
othef comporients., With the exception of the ci;cular plate, it

is suggested that the 'no creep' ratchetting boundary also provides
a reasonable design criterion for the 'complete redistribution'
ratchetting behaviour of the components using the simple methods

of estimating steady and cyclic loads. Furthermore for the flanged
tube, 'hole in plate' and shouldered tube the lines of constant
ratchet strain for the 'no creep' case in Figure 7.1:are either
conservative or very similar to the results obtained for the

'complete redistribution' case.

7.2.3.2.2 Cousseran analysis

The 'efficiency diagram' (Figure 2.12) suggested by Cousseran
et al (50) and the proposed method for limiting accumulated
inelastic strains are discussed in Section 2.2.2.2.2. To obtain the
efficiency index, V, and the secondary stress ratio, SR, suggested
by Cousseran et al in order to compare the correlated results on
the 'efficiency diagram' the following data is required:

(1) the primary stress;

(11) the secondary stress;
(1i1) the accumulated inelastic strain; and

(iv) the test (computation) duration.
The primary and secondary stress have been obtained in the same
way as the steady mechanical load and elastic thermal stress range
parameters respectively used for the correlation of the component
results on the basis of Bree's analysis discussed in the previous
section. For regions of stress concentration no account is taken
of the mechanical stress concentration factor in the definition

of primary stress and the secondary stress is obtained by multiplying
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the nominal value (based on a linear or 'equivalent' linear temper-
ature distribution) by the thermal stress concentration factor.

An 'equivalent' secondary stress and thermal stress concentration
factor is used for the beams and, in the absence of a thermal
stress concentration factor for the 'hole in plate' component,

the mechanical stress concentration factor is used. The secondary

stress ratio is therefore,

0+
(o}

SR = 5;
332 vk oy SCF,,
L O'y

h

where the thermal stress concentration factor, SCFth’ is unity for
the uniform regions of the tubes and beam and for the circular
plate.

The efficiency index, V, is obtained by dividing the primary
stress by an effective stress, O .. (see Section 2.2.2.2.2), In a

normalised form
) P/PL

T deff; o-y
The normalised effective stress, O ff/ o g is based on the
normalised accumulated inelastic strain (ratchet plus dwell period
strain) and the duration of the test and is obtained from the
normalised isochronous stress-strain curves. An example of the
normalised isochronous stress-strain curves for the material data
used in the analysis of the flanged tube 1s shown in Figure 7.3,
These curves' have been constructed by adding the normalised creep
strain for a time duration, t, and steady stress, G-eff' (based
on the assumed creep law) to the normalised elastic strain associated

with Geff' The t = 0 curve is the normalised elastic-perfectly
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plastic material stress/strain model used for all the components.
For the correlation of the component results on the basis of the
'efficiency diagram', the accumulated inelastic strain in 10 cycles
has been used to obtain the effective stress.

A method of determining effective stress is explained with
the aid of Figure 7.4. For a given test duration, t', the effective
stress corresponding to an accumulation of inelastic strain, E:ine,
is obtained from a line drawn parallel to the elastic line.

It will be shown that, for an elastic-perfectly-plastic
material assumption, the effective stress can be obtained analytically
for both the 'no creep' and 'complete redistribution' conditions.

'No creep' condition

The test duration is taken as zero since there are no dwell

periods between cycles and hence for any accumulation of inelastic

strain the normalised effective stress is always unity. The el L

normalised effective stress 1s therefore independent of the number

of cycles being computed. The results for the components are given
in Table 7.5 and correlated on the basis of the 'efficiency diagram'
in Figure 7.5 which also includes the relevant results from the
flanged tube shank study taken from Table 4.2. The notation is the
same as that for the Bree correlation. For all cases where the steady
state ratchet stralns are non-zero, the results fall within the

cloud of data points presented by Cousseran et al (see Figure 2.12).
This is not necessarily the case when shakedown occurs. The simi-
larity between this correlation of the results and the representation
of the results on a Bree diagram is clear since the points which

are inside the shakedown boundary in Figure 7.1 are also within the

equivalent Bree line in Figure 7.5.
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For a given efficiency index it is possible to define a lower
and mean value for the secondary stress ratio using either the
equivalent Bree line or a mean line through the cloud of data. The
efficiency indices in Table 7.5 for the components have been used
to determine lower and mean value estimates for the thermal stress
range which are compared with the assumed thermal stress range in
Table 7.6. For the 'no creep' case this method shows no dis-
tinction between shank and peak fillet estimates of thermal stress
range also the estimates vary with mean load. The discrepancies
between the estimated and assumed thermal stress ranges reflect
the positions of the data points in Figure 7.5 compared with the

equivalent Bree line and the cloud of data points in Figure 2.12.

'Complete redistribution'

The test duration is taken as 10 x the dwell period since
the accumulation of inelastic strains in 10 cycles is being used
for the correlation. For the elastic-perfectly-plastic material
assumption used, the method of evaluating effective stress from
the isochronous curves proposed by Cousseran et al can be reduced
to an analytical solution based on normalised inelastic strain,
6;n%/€yJ and test duration, t. The inelastic strain is identical
to the creep strain that would be accumulated in a uniaxial test
at the effective stress for the same time duration. For the creep

law used in the analysis

ine _ n
@ = AQt

and hence
5 no_ aine

ZFF At
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Therefore the normalised effective stress is given by:-

L

O’eff _ Eine/C ,

0y AEc'yn“1 %

The results for the components are given in Table 7.5 and correlated
on the 'efficiency diagram' in Figure 7.6. The results fall within
a band which is similar to the cloud of data in Figure 2.12
although some of the results, typically those for the stress
concentrations, appear to be above that cloud. This is a possible
indication of pessimism in evaluating peak thermal stress using

a thermal stress concentration factor since a reduction in thermal
stress would reduce the secondary stress ratio for these data
points. For this 'pessimistic' thermal stress, the effective
stress and, hence, accumulated inelastic strain estimate using a
'mean' line through the cloud of data is higher than the value
predicted by the finite element method. The estimated lower

and mean values of thermal stress range, cbtained by the method
described in the previous section, are compared with the assumed
values in Table 7.6. The estimated values are generally low and
vary with mean load. The estimates are low because the actual

data points in Figure 7.6 are generally above a mean line through

the cloud of data.
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7.2.4 Dwell period strains

The dwell period behaviour for all components and loadings is
found to be similar. When dwell period strains are plotted against
time function, the response shows two distinct stages:-

(1) an initial non-linear behaviour while stress redistribution
occurs; and
(ii) a steady state condition, once stress redistribution is
complete, where additional dwell period strains are due to

creep alone and linearly related to time function.

The dwell period behaviour can be characterised by three parameters:
(1) the normalised increments of strain due to stress redistribution
during the first dwell period, (Af,d/ﬁy)i;
(ii) the normalised increments of strain due to stress redistribution
during the second and subsequent dwell periods,
(AE°/E)
(111i) the steady state strain rate, d( Ed/ﬁy)/df‘, which is the

steady state’ #d
same for each dwell period.

A summary of these parameters for all the components and loadings

considered is given in Tables 7.2 and 7.3.

For regions of uniform stress, the stress distribution at the
end of each cycle is identical and the increments of strain due to
stress redistribution during each dwell period are the same. In
regions of stress concentration, the stress distribution at the end
of the second and subsequent cycles is the same and different to
the first cycle and equal increments of strain due to stress
redistribution are accumulated during each dwell period after the

first.
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7.2.4.1 Steady state strain rates

In uniform regions it has been shown in Section 4.2.4.2.1
that the steady state strain rate is equal to the normalised mean
load, P/PL and hence the normalised steady state strain rates,
(a(E9/ € )/aT)/p/Py, are unity.

In the fillet regions of the tubes and beams and the peak
ratchetting position of the 'hole in plate' component and circular
plate the normalised steady state strain rates are independent of
steady and cyclic loads. For the tubes and beam, the normalised
steady state strain rates at the 'peak fillet' position are the
same as (beam) or less than (tubes) the equivalent shank values.

For the stepped beam with P/PL = 0.5 and M/My = ¥1.05, the difference
between first tensile surface and first compressive surface normalised
steady state strain rates in the fillet is a possible indication

that redistribution was not complete particularly since these

values differ from those for P/PL = 0.7 and M/My = £0.7. The
normalised steady state strain rates can often be determined using

the simple reference stress approach or the 0'Donnell and Porowskil
method (6),

7.2.4,2 Normalised increments of strain due to stress redistribution

From Table 7.2, the normalised increments of strain due to
stress redistribution are seen to be small (less than, and in most
cases very much less than, 0.84) and in some cases negative. Also
the first and steady state dwell period values are either identical
(uniform sections) or very similar (non-uniform stress distribution
where the maximum difference occurs in the circular plate and is

0.169).
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7.3 Material Hardening Model (Flanged Tube and Stepped Beam)

The presence of material work hardening has a significant effect
on component ratchetting and creep behaviour when compared with
observations in the previous sections for an elastic-perfectly-
plastic material model. This section reviews the results for the
flanged tube and stepped beam with a material hardening model and
compares the behaviour with that already described for an elastic-

perfectly-plastic material model,

7.3.1 Ratchetting mechanisms

A steady state ratchetting condition is not reached due to
the increase in yield stress. 3 categories of behaviour are noted.
(1) first cycle mechanism (as described in Section 7.2.2.1);
(i1) continuous transient, 'no creep' mechanism; and

(11i) continuous transient, complete redistribution mechanism.

7.3.1.1 Transient 'no creep' mechanism

The 'plastic core' requirement for ratchetting in both uniform
regions and stress concentrations described in Section 7.2.2.2 is
applicable. The development of the plastic zones in the flanged
tube and stepped beam is very similar to that described in Section
7.2.2.2; however due to hardening the size of the 'plastic core'
reduces between successive cycles and ratchetting stops when the
'plastic core' disappears. For isotropic hardening further cycling
is within the elastic range. For kinematic hardening either elastic
range cycling or a stable cyclic loop is reached, depending on

loading corditions.

7.3.1.2 Transient complete redistribution mechanism

Although the stationary state stress distribution is achieved

after each cycle, the increase in yield stress is comparable to a
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reduction in the severity of the subsequent cycle and there is a
reduction in ratchet strain. A 'plastic core' is not essential for
an increment of ratchet strain to be accumulated in a cycle,
Isotropic and kinematic hardening models predict the same

'shakedown' behaviour to those discussed in Section 7.3.1.1.

7.3.2 Ratchet and dwell period strains

The predictions of ratchet and dwell period strains accumulated
in the shanks of the flanged tube and stepped beam with work
hardening material models have been described in detail in Sections
4.2 and 5.2 respectively. Some results for the stress concentration
regions of the flanged tube (Sections 4.3.5.1.2 and 4.3.5.3) and
stepped beam (Section 5.3.5.1.2) are also given. In this section,
the accumulated inelastic strain results are compared on the
'efficiency diagram' (50).

For the flanged tube shank and peak fillet results, the secondaxry
stress ratio, SR, is obtained by the method described in Section
7.2.3.2.2, The equivalent thermal stress range obtained for the
stepped beam with an elastic-perfectly-plastic material model and
described in Section 7.2.3.2.1 i1s based on a change in curvature
during a cycle which does not vary with cycle number. This condition
does not apply when the material hardens as can be seen for the
example in Figure 7.7. The cyclic curvature range reduces and only
achieves a constant value when ratchetting ceases. For this reason

the stepped beam results are not included.

7.3.2.1 'No creep' condition

Figure 7.8 shows an example of the normalised isochronous
stress-strain curves for a hardening material. For the 'no creep'’

condition (t = 0 curve) the normalised effective stress, Cfeff/CYy,
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for a normalised accumulated inelastic strain, Eine/ﬁy, is given

by:-

Geff ) aine/gy
o (B/E, - 1)

& 14
y

The flanged tube results are given on the 'efficiency diagram' in
Figure 7.9. In most cases, the results fall within the cloud of
data points presented by Cousseran et al (see Figure 2.12), the

exception being the low mechanical load results from the flanged

tube shank study (i.e. V = 0.3) where shakedown occurs in one or two

cycles.,

7.3.2.2 Ratchetting with creep

From Figure 7.8 it can be seen that two possible expressions

for O’e ff/ o} " can be used depending on the accumulated inelastic

strain:-
L, (1)1 £ £ 4o BB gine o Lo PP
te y ! eff
= E’:Lne/a 1/n
sl O/e:E‘f - : y
y ARG Bl
y

or (i1) 1f Ee > Ac'yntm, £S5 MOt

- S

(Ueff—o/‘ )(E/EP - 1)
E

n
ine - n-1,n( O eff
and € /Ey AEO’y 4 (——Gyj

which can be solved iteratively for O/eff/O’y.
The results are given on the 'efficiency diagram' in Figure 7.10.

Since the accumulated inelastic strain results from the flanged

O eff ><E
+ 1) =-1
(== 9(5

)
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tube shank survey with complete redistribution (using a high

stress index) are dominated by the dwell period strains, which are
in turn dominated by the steady state strain rate components, the
normalised effective stress is slightly larger than the mean load,
P/PL’ and the efficiency index is almost unity. The results do

not fall within the Cousseran cloud of data points. Alternatively,
the results for the flanged tube with 24 and 120 hour dwell periods,
previously discussed in Section 4.3.5.3, compare well with the

cloud of data points in Figure 2.12.

7.4 Effects of Partial Redistribution on Ratchet and Dwell

Period Strains

The discussion in the previous sections has been based on the
results for the 'no creep' and 'complete redistribution' cases.
The results for the 'complete redistribution' case are independent
of time index. This section gives a brief summary of the likely
behaviour of the components when stress redistribution between
cycles is only partial and when a realistic time index is used.
The relevant flanged tube results from Section 4,3,5.3 are referenced.
For uniform regions of the tubes and beams, the residual stress
field at the end of each cycle is modified during the dwell period
but does not return to the constant stress field associated with
the mean lcad. After a finite number of dwell periocds, greater than
one, a steady state residual stress field condition will be reached
and from then on both ratchet strains and dwell period strains will be
the same for each subsequent cycle and dwell period. This is indicated
for the flanged tube from Figures 4.4€ and 4.50.

For the 'peak fillet' positions of the tubes and beam and

for the 'hole in plate' and circular plate components, the
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residual stress field at the end of each cycle is modified during

the dwell period but does not return to the stationary state stress
distribution. Again a steady state condition of constant ratchet
and dwell period strains is reached after a finite number of cycles
and can be seen for the flanged tube component in Figure 4.48.

The ratchet and creep strains under conditions of partial redistribu-
tion are bounded by the 'no creep' and 'complete redistribution'
cases. The proximity of the results to the bounds depends on the

degree of redistribution (i.e. the length of the dwell period).



Table 7.1: Thermal and Mechanical Loading Conditions (Elastic-perfectly-plastic)
Co t Fo Ri Jl Nominal elastic Thermal stress Mechanical stress
RPN > PL thermal stress concentration factor concentration factor
(kt /pC_L°) (hL/k) + 0 '
C P y
Flanged Tube 0 12.87 0.5, 0.7 1.94 1.81 1.53 .
%
: o
0.5 2.58 1.46 1.80 !
Stepped Beam e ki
- applicable | applicable
0.7 2.51 1.46 1.80
Hole in Plate 0.08 ® 0.5, 0.7 1.37 - 2.43
ircul: - 0.295, 04 not not
Circular Plate 12.27 0.47h & 0.7 1.1 applicable applicable
15.80 (Bore)
Shouldered Tube 0.11 19.15 (outside 0.8 &7 1.42 145 1.5¢
shank &
fillet)
9.39 (outside 0.5 2.83 1.96 1.59
shoulder)




Table 7.2 Summary of Flanged Tube, ’Role-in—Platef Circular Plate and Shouldered Tube results (Elastic-perfectly-plastic)

- LEE -

Normalised Ratchet Strain per Cycle (A:r/cy)
atedre ysar aclse
No creep Complete redistribution y y
P aedze,) P
Component P Position 1st cycle Steady state Characteristic Steady state Characteristic y P ist cycle Steady state
L behaviour i behaviour dar L
shank 0.048 1] B 0.044 A 0.527 1.054 0.110 0.110
Flanged 0.5
peak fillet 0.361 ] c(4) 0.275 B 0.350 0.701 0.250 0.176
Tube shank 0.107 0.060 B 0.109 A 0.742 1.060 0.132 0.132
0.7
peak fillet 0.852 0.128 c(6) 0.608 B 0.521 0.743 0.150 0.088
Hole-in 0.5 peak 1.902 0.015 C(5) 1.071 B 1.534 3.069 -0.183 -0.144
plate 0.7 peak 3.312 1.737 B 2.44 B 2.169 3.099 -0.371 -0.481
0.295 outside edge 1.503 0 B 1.225 B 0.474 1.607 0.093 T -0.024 .
Cirsular 0.4 outside edge | 2.871 0 B 2.356 B 0.643 1.607 0.091 -0.078
Plate 0.47% | outside edge 3.924 0 c@3) 3.293 B 0.769 1.623 - 0.077 -0.044
0.7 outside edge T.712 1.078%* c(10)** 7.270 B 1.075 1.536 -0.156 -0.212
shank 0.109 0 B 0.108 A 0.495 0.990 0.207 0.207
Shouldered @5
peak fillet 1.648 0.012 C(4) 1.518 B 0.259 0.518 0.425 0.400
Tube
Ut shank 0.235 0 8 0.239 A 0.704 1.006 0.262 0.262
(a—y— = 1.42) 0.7
peuk fillet 2.304 0.082 Cc(5) 2.127 B 0.372 0.531 0.541 0.518
Shouldered shank 09.685 0.187 B 0.685 A 0.504 1.008 0.740 0.740
Tube
s 0.5
(== = 2.83) 1 peak rillet 3.701 1.558 B 3.748 B 0.269 0.538 0.817 0.841
y

®* Values quoted ure 10th cycle ratchet striins. After 10 cycles the ratchet strain per cycle wias still reducing.




Table 7.3 Summary of Stepped Beam Results (Elastic-perfectly-plastic)

Normalised Ratchet Strain per Cycle
d
Co i
o " No creep mplete redistribution d(edlsy) d(ed/eyMiF Ae /ey
S = Position 1st cycle Steady state Characteristic Steady state Characteristic
q‘ My behaviour e — dar P/PL 13t cycle Steady spate
FT 2.175 0.555 B 2.204 A 0.502 1.004 0.302 0.302
shank {
FC -0.010 0.555 B -0.031 A 0.500 1.000 0.218 0.218
0.5 | %1.05 ‘
FT 3.293 0.322 B 2.17 B 0.479 0.959*% 0.159 0.154
fillet {
FC 1.573 0.322 B 1.040 B 0.410 0.819* 0.217 0.209
FT 2.611 1.500 B 2.613 A 0.700 1.000 0.237 0.237
shank {
FC 1.175 1.500 B 1.182 A 0.699 0.998 0.079 0.079
0.7 | 2o.7 '
FT 3.913 1.025 B 2.902 B 0.704 1.005 0.077 0.116
fillet { ;
FC 1.335 1.025 B 1.347 B 0.718 1.026 -0.040 -0.0M1

FT - first tensile surface

* pedistribution possibly not complete

FC - firsat compressive surface

- g€ -
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Symbol
Component
Shakedown | Ratchetting

shank @) &
Flanged tube

peak fillet a n

shank X
Stepped team

peak fillet - <
'Hole-in-plate’ [ | 2
Cirdula:r plate O &

shank v v
Shouldered tube

peak fillet AN A

Table 7.4 Notation used in Figures 7.1, 7.2, 7.5 and 7.6.




Table 7.5 Evaluation of parameters for Cousseran diagram(elastlc-perfectly—plastlc)
o 0 . s
Component EE' i;— Position (SCF);h SR No Creep Complete Redistribution
y L cR/c in Duration Serr v zxn%ey in | puration| Zerf v

10 cycles (hrs) ay 10 cycles (hrs) Gy
Shank - 0.795 0.048 1. 0.5 29.806 5,000 | 0.581| 0.861
Used Peak fillet 1.81 0.875 0.450 1. 0.5 23.196 5,000 | 0.561| 0.891

Flanged tube 1.94
Shank - 0.735% 0.647 0 1. 0.7 15.632 200 0.826 0.847
0-T | peak rillet | 1.81 0.834 2.592 0 1. 0.7 16.539 200 | o0.833] 0.840
Shank - 0.838 T.170*% 0 1. 5 30.485* 10,000 0.723 0.692
2581 05 | poak rillet | 1.46 0.883 6.191¢ 0 1. 0. 317410 10,000 | 0.727 | 0.688
Stepped beam
Shank - 0.782 16.111* 1. 0.7 91.625% 10,000 0.84 0.832
2501 0T | peak rillet | 1.46 0.840 | 13.198% 1. 0.7 95.155% 10,000 | 0.845 [ 0.828
0.5 Peak 2.43 0.869 2.250 0 1.0 0.5 43.913 20,000 0.691 0.724
Hele dn.plate’s T3l| 59 Peak 2.43 0.826 | 18.945 0 1.0 | 0.7 119.328 5,000 | 0.958 | 0.731
0.295 Outside edge - 0.827 1.503 0 1.0 0.295 31.188 900,000 0.392| 0.753
0.4 Outside edge - 0.779 2.8T 0 1. 0.4 66.802 150,000 0.556 0.719
Circular plate| 1.%1 0.474 | Outside edge - 0.748 4.084 0 1. 0.474 63.492 50,000 | 0.642 | 0.738
0.7 Outside edge - 0.668 21.335 0 1.0 0.7 169.531 10,000 0.915 0.765
Shank - 0.740 0.109 0 1.0 0.5 19.337 50,000 | 0.585| 0.855
0-5 1 peak rillet | 1.96 0.848 1.820 1.0 0.5 21.795 50,000 | 0.615| 0.813
1.42

Shank - 0.670 0.23% 1.0 0.7 27.993 6,000 0.823 0.851
Shouldered tube O-T 1 Peak rillet | 1.96 0.799 | 3.455 0 1.0 | 0.7 39.235 6,000 | 0.862| 0.812
Shank - 0.850 2.368 1.0 0.5 17.585 500,000 0.767 0.652
2.83] 0.5 Peak fillet 1.96 0.917 17.723 1.0 5 28.445 500,000 | 0.819] 0.611

- Max surface values

- 0¢7€ -
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Estimated O't/O'y
. . ;
P_ —-t No creep Complete

Component PL Position ny used Redistyd bution
Lower | Mean Lower Mean

0.5 Shank 1.94 2.00 3.07 0.32 0.69

Flanged Peak Fillet 3.51 2.00 3.07 0.24 0.59
Tubs o.p | snank 1.9 |1.17 | 2.10 | 0.8 | 1.00
Peak Fillet 3.51 1.17 2.10 0.53 1.05

0.5 Shank 2.58 2.00 3.07 0.80 1.50

Stepped Peak Fillet 3.77 2.00 | 3.07 0.79 1.46
Bean B Shank 2.58 1.17 | 2.10 | 0.56 | 1.09
Peak Fillet 3.77 117 2.10 0.53 1.07

'Hole"in' 0 05 Peak 3 033 2 000 3 -07 0 -75 1 129
plate 0.7 | peak 4.58 1.17 | 2.10 | 1.05 | 1.82
0.295 Outside Edge 1.41 3.18 5.07 0.38 1.00

Circular 0.4 Outside Edge 1.41 2.46 L.04 0.62 1.08
Plate 0.474 Outside Edge 1.41 2.05 3.32 0.65 1.16
0.7 Outside Edge 1.41 1.17 2.10 0.86 1.56

0.5 Shank 1.42 2.00 3.07 0.33 0.70

Peak Fillet 2.78 2.00 3.07 0.44 0.85

Shouldered 0.7 Shank 1.42 1.17 2.10 0.47 0.98
Tube Peak Fillet 2.78 1.17 2.10 0.62 1.19
0.5 Shank 2.83 2.00 3.07 1.02 1.77

Peak Fillet 5.55 2.00 3.07 1.22 2.06

Table 7.6 Comparison between assumed thermal stresses and estimated
thermal stresses from the Cousseran diagram.
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All 5 components (elastic-perfectly-plastic, 'no creep'
corditions). Correlation of steady state ratchetting
behaviour on a Bree diagram (see Section 7.4.2.1 and

Table 7.4 for notation).
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Figure 7.4 An example of the method used to determine the
'effective stress' in a Cousseran analysis.
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Figure 7.7 Stepped beam shank (Kinematic hardening, EP/E = 0.05,
M/My =1.0, P/PL = 0.8, 'no creep' corditions). Variation
in normalised cyclic curvature range during the first 10
cycles,
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Figure 7.9 Flanged tube (material hardening, 'no creep' conditions).
Correlation of the ratchetting behaviour on an Efficiency
Diagram.
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b) Whole component analysis results (24 and 120 hour dwell
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Figure 7,10 Flanged tube (material hardening, ratchetting with creep).
Correlation of the ratchetting behaviour on an Efficiency
Diagram.
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CHAPTER EIGHT

DISCUSSION

§;j Intrcduction

.

Potential problems of ratchetting with creep can be idsntified
in components in conventional and nuclear power plant, chemical
plant and aero engines. The design of components which are likely
to experience severe loading conditions should include an assessment

of the likelyhood and effects of ratchetting.

Four main assessment techniques are:-

1. Experimental tests on actual compcnents with loadings and
temperatures typical of 'in service' conditions.

2, Model testing.

3. Finite element predictions.

b4, Approximate analytical solutions.

A major disadvantage of.experimental tests under 'in service'
conditions is the high cost of rig manufacture for generally high
cperating temperatures and the difficulty in measuring deformations
under experimental test conditions. Also long 'in service' timescales
may inhibit the amount of useful information that can be obtained

in an experimental test of limited duration.

Model materials such as lead and copper have bzen used tc
investigate the ratchetting and creep behaviour of components.
These materials have relatively low melting temperatures and creep
at temperatures which can be achieved experimentally at reascnzble
cost and at which measurements cf deformation can be obtained
with relative ease. Although, in scme cases, the results from
model testing may be used directly to predict the behaviour of

actual engineering ccmponents, a more important aspect of mecdel
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testing, and directly related to this work, is the interaction
between model tests and analytical prediction techniques. If
model material behaviour can be accurately predicted using analy-
tical methods then the same analytical methods can be used to
predict the behaviour of actual components which may have different
geometries but have similar material characteristics tc *the model
material and similar loading conditions. Within the Department

of Mechanical Engineering at this University, a lead alloy has

been used extensively as a model material. The latest experimental
tests have been carried out by Yahiaoui (12) who discusses the

usefullness of the lead alloy as a model material.

The finite element method and apprcximate analytical solutions for
predicting component behaviour form the basis of the investigations in
this research. Valuable insights into the ratchetting and creep behavicur
of components (particularly in regions of stress concentration where

relevant research is very limited) have been obtained.

The finite element method has been used:-

s to investigate the mechanisms of ratchetting;

24 to study in detail the effects of loading, material
behaviour assumptions and stress redistribution on the
ratchetting and dwell period behaviour of simple components;

o to identify the characteristic ratchetting and dwell periocd
behaviour of a number of complex compcnents and loadings in
order to suggest simplified design procedures based on
a) limited finite element computations,

b) approximate analytical techniques,
¢) a combinaticn of finite element solutions and

approximate techniques.
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4, tc examine the accuracy to which the results of experi-
mental tests can be predicted by finite element solutions
using simplified material models and to identify the short-
falls of the models in order to suggest improvements in

the modelling techniques.

The results of the detailed studies of the flanged tube and
stepped beam shanks are discussed in section 8.2. The results
of the comparative study of five components with significantly
differing geometries and loadings have been discussed in Chapter T.
The implications of these results in terms of simplified design

procedures are discussed in section 8.3.

The results and implications of the comparisons between
experimental model testing (12) and finite element predictions are

discussed in section 8.4.

8.2 Detailed Studies of the Flanged Tube and Stepped Beam Shanks

A major disadvantage of the finite element method for predicting
the behaviour of complex components subjected to severe loadings,
particularly where plasticity and creep effects are to be investi-
gated, is the high cost of obtaining the necessary results. Not
only are the 'runtime' andcore storage requirements of the non-linear
program large but also the manhours required to develop an
adequate mesh, generate the data and investigate suitable material
models. A considerable amount of useful data on the effects of
loading conditions, material models and stress redistribution during
dwell periods on cyclic behaviour can be obtainsd from simple models
of the uniform regions within a component where a limited number of

elements and simplified constraints can be used. The data preparation



- 355 -

and 'runtimes' for these simple models is relatively small. For
example, finite element computations for the flanged tube with
identical loading conditions and material assumption were performed

for 9 cycles and the 'runtimes' were

shank model - 239 secs

whole component model - 5400 secs

The main disadvantage of the simple mcdels is their inability
to represent regions of stress concentration (which are often the

most critical regions of the component).

The results for the uniform shanks of the flanged tube and
stepped beam can be used in two ways. Firstly the normalised form
of the results make them of direct relevance to components with
the same geometry made from any material with the same behaviour
characteristics. Secondly, since the components differ signifi-
cantly in geometry and loading conditions, similar 'trends' in
behaviour, which have been identified, may be applicable for a

range of components and loadings.

There are two significant differences between the two components:-
1. The total axial strain of the flanged tube shank does not

vary radially; the behaviour of this component can

be defined by a single parameter, i.e. the maximum ratchet

or dwell periocd strain. The stepped beam shank experiences

changes in curvature as well as axial strain and the strain

varies with through-thickness position, Two parameters are

required to define the behaviour; maximum surface ratchet and

dwell period strains are used in preference to centreline

strain and curvature since they provide a direct measure of



the maximum strains in the component. However, some
interesting behaviour can be more easily explained in
terms of curvature.

25 The cyclic lcading is load controlled for the beam but is
strain controlled for the tube. As a result the limit load
for the beam depends on both the steady axial load and the
cyclic bending load but the limit load ©of the tube depends only
on the steady load (i.e. the thermal load alone cannot cause

collapse).

Usually the 'complete redistribution' case is the upper
bound on incremental and accumulated ratchet strains although
some cases have been identified for which the 'no creep' case
provides the upper bound (i.e. high mean loads). Obviously the
'complete redistribution' case will always be the upper bound for
total accumulated strains. The elastic-perfectly-plastic material
model results in a cyclic steady state with equal ratchet strains
after the first cycle for the 'no creep' case and for each cycle
fer the 'complete redistributicn' case. The presentation of the
data for the steady cyclic state behaviour with an elastic-perfectly-
plastic material model is simple because the ratchet strains and
dwell period strains are independent of cycle number. The ratchet
strains predicted by the isctropic and kinematic hardening models
will eventually reduce to zero. For the flanged tube shank a
single magnitude of cyclic thermal lcad has been considered and in
all the cases investigated there is no reverse plasticity with the kine-
matic hardening model; hence the results for isotropic and kinematic
hardening are ideally the same- small differences in the results are
due sclely to variaticns in the programming technique for the two

hardening models. ror the stepped beam shank a range of cyclic
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bending loads have been used and differences between the predictions

with isotropic and kinematic hardening models are apparent.

Normalised ratchet strains per cycle and accumulated ratchet
strains increase with mean load and decrease with increasing
plastic modulus. However, it should be noted that for realistic
material modelling, the yield stress used for an elastic-perfectly-
plastic material model is likely to be higher than that for an
equivalent hardening mcdel (see Figure 4.24); in this case,
predictions of accumulated ratchet strain with the hardening model
may initially be greater than with an elastic-perfectly-plastic
model. From the results of the stepped beam shank survey the maximum
surface ratchet strains also increase with cyclic load. For high
mean loads the 'no creep' case may provide the upper bound cn total
accumulated ratchet strains. For the beam shank this generalisation
relates to centreline ratchet strains, but the maximum surface
accumulated ratchet strains in the beam are always greater for the
‘complete redistribution' case. For the 'no creep' case with an
elastic-perfectly-plastic material model an analytical soluticn for
steady state ratchet strains in the stepped beam shank is available.
Alternatively cyclic change in curvature, which can be obtained from
the analytical solution,is analogous to the thermal stress parameter
used by Bree and can be used in the Bree equaticns to obtain ratchet
strains. The narrow ratchetting band between shakedcwn and collapse
regimes means that ratchet strains are very sensitive to small
changes in steady and cyclic loads. The sensitivity of ratchet

strains to load (for both elastic-perfectly-plastic and hardening

material models) is of particular importance when comparisons betwesn
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finite predictions and experimental results are made (see section

8.4).

The effects of hardening model and dwell periods on the
incremental changes in curvature of the stepped beam shank 1is
an interesting feature of the results. With an elastic-perfectly-
plastic material model the residual curvature at the end of each
cycle is the same for the 'no creep' case. For the 'complete
redistribution' case there are equal increments of centreline
ratchet strain and curvature for each cycle and only small changes
in curvature during the dwell periods. For a non-zero plastic
modulus the curvature response depends on the cyclic bending load.
For the lowest cyclic bending load (i.e. M/My = 1.0) the results
for isotropic and kinematic hardening models are the same. The
residual curvature is a maximum at the end of the first cycle and
reduces towards a steady state value during the second and subse-
quent cycles for both the 'nc creep' and 'complete redistribution'
cases. For higher cyclic bending loads, the residual curvatures
for each cycle are 'positive' for isotropic hardening and 'negative'
for kinematic hardening for both the 'no creep' and 'complete redist-
ribution' cases. Again changes in curvature during the dwell periods
are small. The 'reversal' of residual curvature may provide a simple
means of choosing between isotropic and kinematic hardening models
for a finite element analysis based on the observed curvatures during
a simple experimental test.

For hardening material models, the differences between the
loading conditions for the two components has a significant effect
on the accumulation of ratchet strains. The severe lcading condi-

tions for the stepped beam shank results in an accumulation of
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ratchet strains which is dominated by the first cycle for both
'no creep' and 'complete redistribution' cases. The flanged tube
shank loadings are less severe and total accumulated ratchet
strains cannot be reasonably predicted from the results for a

single cycle of load.

For the 'complete redistribution' case the value of the time
function for redistribution is found to be virtually independent
of mean and cyclic loads and the degree of hardening. The incre-
ments of dwell period strain due to stress redistribution are
small in comparison to the total dwell period strains. For an
elastic-perfectly-plastic material assumption this increment is
the same for each dwell period and for hardening materials, the
increment of strain due to stress redistribution is a maximum for

the first dwell and reduces during the second and subsequent dwell pericds

8.3 Comparative Study of Components - Implications on Design

The finite element method is a very powerful, but also very
expensive, prediction technique for components subjected to ratchetting
and creep. The results of the comparison of component behaviour,
discussed in Chapter 7, provide information on how computaticns can
be kept to a minimum and yet give exact or reasonable estimates of
accumulated strain. Also, the results of the finite element analyses
are used to test the validity of approximate methods for obtaining

estimates of total strain.

The comparison of the results for the five components of
differing geometries and loading conditions assumes an elastic-
perfectly-plastic model with no interaction between plastic and

creep strains. The elastic-perfectly-plastic material assumption is
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used extensively to model the behaviour of engineering materials

in preference to hardening assumptions and, except for the 'no. creep'
case for the circular plate, the characteristic steady cyclic state
condition limits the number of cycles required for an exact

solution. The results for the five components have been normalised

so that they can be applied to other similarly shaped components

which are made from materials with the same form of material behaviour

and have similar loadings.

The effects of creep during the dwell periods on ratchet
strains and the effects of the residual stress fields at the end
of a cycle on the dwell period behaviour have been bounded by the
'no creep' and 'ccmplete redistribution' cases. In practice, if
dwell periods are nct of sufficient duration for stress redistri-
bution to be complete then the actual accumulation of strain will
be between the two bounds. The 'complete redistribution' case
always provides the upper bound on accumulated strain and in all
but the high mean lcad cases (which would not generally occur in

such components) provides the upper bound on accumulated ratchet strain.

8.3.1 'No creep' case - ratchet and total accumulated strairs

Finite element solutions

For the uniform regions of the tubes and beam the steady cyclic
state, with constant ratchet strain per cycle, occurs after the
first cycle. Exact soluticns for total accumulated strains are
obtained from finite element predictions for two cycles cnly and
an approximate solution based on one cycle only is unjustified in
terms of the 'time saving'. However it is noted that, except for
the high load cases for the flanged tube and stepped beam, the
steady state ratchet strains are less than the first cycle ratchet

strain.
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At the 'peak fillet' positions for the tubes and beam and
at the position of maximum strain for the 'hole-in-plate' component,
the steady cyclic state isreached in a few (up to six) cycles.
Furthermecre for the shouldered tube with higher c¢yclic thermal
load QJtAJy = 2.83), the steady cyclic state is reached after the
first cycle, compared with four cycles for ot/oy = 1.42 and the
same steady load. In all cases considered the steady state ratchet
strain is less than the first cycle ratchet strain. In view of
the likely 'in-service' conditions of low-medium steady loading and
high cyclic loading it is suggested that exact solutions can be
obtained from finite element solutions for two cycles. For lower
cyclic loads it has been shown that steady state ratchet strains
are smaller, but of the same order of magnitude, as the second
cycle ratchet strains and in this case conservative estimates o{
accumulated strain can be obtained from a twoc cycle finite element

analysis.

For the circular plate, the ratchet strains (in all but the
high steady load case) reduce monotonically to zero. Eor the
high steady load case the ratchet strains were still reducing after
ten cycles. This difference in behaviour can possibly be explained
by the way in which the stress distributions due to steady and
cyclic loading interact. The steady pressure loading and cyclic
through thickness temperature gradients imposed on the circular
plate produce similar stress distributions, i.e. compressive
on the top (pressurised)surface and tensile on the other surface.
The other four components investigated have dissimilar stress
distributions due to steady and cyclic loading and require a

'plastic-core' for continued ratchetting. For the circular plate,
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a 'plastic-core' concept is not applicable since collapse would
cccur beforehand. An exact solution for the accumulated strain
in a circular plate type ccmponent requires a complete analysis
to shakedown which, for the cyclic load considered and for low-
medium steady loading, is very rapid. A conservative estimate
of accumulated strain could be based cn finite element computations
for two cycles. However, the degree of pessimism might be unreal-

istically high if a larger number of cycles were being considered.

Approximate methods of solution

The Bree diagram (1) including lines of constant ratchet
strain per cycle can be used to cbtain conservative estimates of
steady state ratchet strains for all of the components which exper-
ience cyclic thermal loading, based on the definitions of equivalent
steady and cyclic lcads given in Chapter 7 which can be obtained
from a relatively simple elastic thermal analysis. For the stepped
beam shank exact values of ratchet strain can be obtained using an
equivalent cyclic thermal load based on changes in curvature. For
the tubes and beam the estimates for the shanks are better than for
the 'peak fillet' positions which draws attention to the pessimism
of the definition of cyclic load based on the thermal stress concen-
tration factor. It was seen that, with the exception of the circular
plate, the first cycle ratchet strains are 'reasonably'predicted
by the lines of constant ratchet strain per cycle on the Bree
diagram (e.g. the maximum surface strain in the beam shank is under-
estimated by approximately 1.5 sy)in which case a 'reasonable'
estimate of accumulated strains can be made. Aiso the ratchetting
boundary on the Bree diagram is found to be conservative for all the

cases considered.
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When the results for the components are correlated on the 'efficiency
diagram' suggested by Couserran et al (50) they generally fall within
the cloud of data points in figure 2.12; the exceptions being the ccmbin-
ations of primary and secondary stress which results in shakedown. Hoyever
the 'efficiency diagram' cannot be used to estimate accumulated strains
for the 'no creep' case with an elastic-perfectly-plastic material since
for non-zero steady state ratchet strains the ratio of effective stress tc
yield stress is unity and the Couserran methcd would estimate accumulated

strains which are either zero or indeterminate.

8.3.2 'Complete redistribution' case

8.3.2.1 Ratchet strains

Finite element solutions

For the uniform regions of the tubes and beam, each cycle produces
an equal amount of ratchet strain and the exact solution for accumulated
ratchet strain requires only 1 cycle to be computed. For non-uniform stress
regions, including the circular plate, constant ratchet strains per cycle
exist for the second and subsequent cycles and are very similar in magnitude
to the first cycle ratchet strain. An exact prediction for accumulated
ratchet strain is obtained from a finite element analysis for 2 cycles
of load and a good, but not necessarily conservative, approximation can be
based on the results for a single cycle.

Approximate methcds of solution

With the exception of the circular plate, the
lines of constant ratchet strain per cycle on the Bree diagram for a 'no
creep' condition can be used to obtain an estimate (up to = 0.5 Ey
per cycle underestimate) of the steady state ratchet strain for the complete
redistribution conditicn. The difference between the circular plate and
the other componentshas already been discussed and the non-conformity is not

unexpected. The lcad controlled, rather than strain controlled, character-
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istic of the stepped beam shank is suggested as a possible explanation

for the high first cycle (and hence steady state) ratchet strains.

The n/(n + 1) ratchetting boundary suggested by Leckie (45) appears
to be satisfactory for all of the components except the circular plate
and provides a more acceptable design criteria than the very restrictive
'elastic line' ratchetting boundary suggested by Bree (1). In fact, with
the exception of the circular plate, the 'complete redistribution' case

ratchet strains for loadings within the 'no creep' boundary were relatively

small (<£0.108 sy).

8.3.2.2 Dwell period strains

Finite element solutions

For the uniform regions of the tubes and beam, the dwell period
behaviour between each cycle is identical and the exact solution can be
obtained from the results for a single dwell period. In regions of stress
concentration the second and subsequent dwell periods produce identical
results and the exact solution can be obtained after only 2 dwell period
computations. A good approximation of accumulated dwell period strains
can be obtained from the predictions for the first dwell period since
there is only a slight difference in the increment of dwell period strain
due to redistribution between the first and second (steady state) dwell
periods. The normalised steady state creep rates, (d(ed/ey)/dF)/(P/PL),
are independent of load, P/PL, and can be cbtained from a single steady
load finite element creep soluticn at any value of mean load.

Approximate methods of sclution

The normalised increment of dwell period strain due to stress
redistribution,Aed/ey, is small; less than and in most cases much less than
0.84. The strains accumulated duringlong dwell periods are therefore
dominated by the contributicn from the steady state creep rates and in

cases of negative Aed/ey, dwell period strains based on the steady state
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creep rates are conservative. The reference stress approach can often be
used to determine normalised creep rates and therefore offers a simple
method of estimating dwell period strains. Alternatively the 0'Donnell
and Porowski method (6) may be suitable in order to obtain a bound on
creep strain,

8.3.2.3 Total accumulated strains

Finite element solutions

From the preceding discussion of ratchet strains and dwell period strains
it is clear that the exact solution for total accumulated strains can be
obtained from finite element solutions for 2 cycles and dwell periods.
Reasonable estimates of accumulated strain require only one cycle and
dwell period to be computed.

Approximate methods of solution

A combination of approximate ratchet strains, based on a single cycle
finite element solution or the Bree diagram, and estimated dwell period
strains, using the Reference Stress Method or d'Donnell and Porowski,
can be used to estimate accumulated strains. Alternatively, since the
correlation of the results for 'complete redistribution' on the 'efficiency
diagram' gives data points which generally lie within or slightly atove
the cloud of data presented by Cousseran et al (50), a reascnable approxi-
mation of accumulated strains can often be obtained from the efficiency
diagram, for example using a mean line through the cloud of data.

The Ainsworth (7) upper bound approach has been used for the stepped
beam shank with a hardening material assumption and in both of the cases
considered the bound is extremely conservative. This unnecessarily large
overestimate is shown to result from the high stress index of the lead
material in which case it is anticipated that a similar degree of over-
estimation would be apparent withan elastic-perfectly-plastic material
assumption. A major criticism of the Ainsworth approach is that it requires

a full'finite element analysis for an equivalent 'no creep' case together

with some detailed processing of the output data. The additional computation
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during the dwell periods for an exact solution may not have a signifi-
cant effect on the overall cost (in terms of runtime and processing

time) of obtaining a solution. Also the Ainsworth bound is based on

a 'no-creep' solution at a higher mean load than the exact solution and
must therefore require more iterations for the solution. A failing of the
method is that it cannot be used to obtain strains in stress concentration
regions.

8.3.3 Notes on failure

For both the 'no-creep' and 'complete redistribution' cases for
the flénged tube and shouldered tube and for the 'complete redistribution'
case for the stepped beam, the accumulation of strain is greater at the 'peak
fillet' position than in the shank. Using a failure criterion based on
total accumulated strain, the component life is limited by the accumulation
of strain in the fillet, whereas for a uniaxial test, component failure in

the shank is likely.

Fatigue failures may occur for combinations of steady and cyclic
load which result in reverse plasticity. This aspect of failure has not
been investigated but it is suggested that the 'position' of such a fatigue .?
failure is not intuitively obvious since both steady and cyclic stresses

are increased by a stress raiser.

8.4 Comparisons Between Experimental Results and Finite Element Predictions

The comparisons of finite elemzant predictions with the experimental
results for the flanged tube for 5 loading cases, have different degrees
of success depending on mean load, position in the component and dwell
pericd. In the shank, the predictions c¢f accumulated ratchet strain are
low ccmpared with the experimental results. 1In particular the first cycle
ratchet strain is grossly underpredicted although the predictions improve
with increasing load. It is suggested that a possible reason for the under-
estimate, particularly for the first cycle, is the inaccurate modelling

cf the 'knee' of the stress-strain curve which is mcst noticeable for the
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elastic-perfectly-plastic model and is reflected in the predicticns
with this model. At high mean load the effects of inaccurate 'knee'
modelling would be less pronounced and this is confirmed by the
predictions. Also the predictions of 'peak fillet' ratchet strains,
where stress levels are obviously higher, are significantly improved.
Furthermore the finite element predictions of ratchet strain for the
24 hour and 120 hour dwell period tests are in good agreement with
the experimental results over the range of cycles considered. The
tendancy of the experimental shank and peak fillet ratchet strains to
a steady state non-zero value, associated with material ratchetting,
cannot ultimately be predicted by the hardening models. The elastic-
perfectly-plastic material model will predict a steady cyclic state
condition and reasonable estimates of steady state ratchet strain are
obtained in the shank for P/PL = 0.8 'mo-creep' and in the fillet for

P/PL = 0.7 with 24 hour and 120 hour dwell periods. The amount of

material ratchetting is directly related to the degree of reverse
plasticity and hence to the loading conditions. Since finite element
predictions with isotropic and kinematic hardening models are nominally
the same (i.e. no reverse plasticity with kinematic hardening) and
considering the relatively low thermal loading it is suggested that
material ratchetting is limited and the absence of a material ratchetting
model is not a serious restriction on the ability to obtain reascnable
predictions for the flanged tube. Over the range of cycles considered,
the hardening model of the 76°C lead alloy stress strain data (Curve D
Figure 4.24) provides the best estimates of ratchet strain accumulation.
For the tests with 24 hour and 120 hour dwell periods between thermal
shocks (i.e. P/PL = 0.7) the predictions of individual dwell period

strains and hence accumulated dwell period strains are generally higher
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than the experimental results, with the exception of the 'peak fillet'
predictions with 120 hour dwell period which are within the wide band

of experimental data. Dwell period strain predictions reduce with
reducing ratchet strain in the same way as the experimental results but
the degree of overestimation is seen to increase with increasing inelastic
strain. The greatest dwell period strains are predicted by the model
which predicts the highest ratchet strains (i.e. Curve D Figure 4.24).
Fessler, Hyde and Webster (25) have shown that, for a similar lead alloy,
plastic pre-strain generally has a diminishing effect on creep strain
compared with virgin creep data although at high stress levels the

opposite effect was noted.

From the experimental results in Table 4.8 it would appear that
the accumulated initial dwell period strains cause a reduction in the
first cycle ratchet strain in the shank. The same effect may also occur
in the fillet but the argument is qualitative since stress redistribution

will contribute towards the reduction.

The following three improvements to modelling technique are suggested
togethef with a qualitative assessment of their effect on predictions:-

A. more accurate modelling of the knee of the uniaxial stress

strain curve;

B. a material ratchetting mcdelling; and

C. a plasticity-creep interaction model
For the 'no-creep' predictions, A and B would results in higher accumulated
ratchet strain predictions in the shank as required. At the 'peak fillet'
position a material ratchettingmodel would again improve the predictions;
the effects of more accurate knee modelling on 'peak fillet' ratchet
strains are uncertain. For the finite element predictions with significant

dwell periods the effects of A and B on ratchet strains are similar to
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those for the 'no creep' condition. However an indirect effect of

A and B is an anticipated increase in the dwell period strains. In
contrast, it is suggested that a more realistic plasticity-creep
interaction model could reduce the predictions of both ratchet and

dwell period strains. In this case, the overall effect of the three
suggested improvements is uncertain and in order to maintain good
agreement between experimental and finite element results, the effects

of A and B would need to be, to a large extent, counterbalanced by

that of C. It must be pointed out, however, that although material
ratchetting and plasticity-creep interaction are not modelled, the overall
predictions of total strain using simple models generally compare favourably
with the experimental results especially considering the spread of the

experimental uniaxial data, particularly for creep, obtained by Yahiaoui

(12).

From the comparisons between experimental and predicted strain
distributions it would appear that the position of peak strain is not
accurately predicted. A possible explanation is that machining inaccur-

acies in the mould used to produce the components results in a truncation

of the fillet radius by -6° at the shank/fillet interface (12). This
would cause both a shift in the apparent position of peak strain and an

increase in the stress concentration factor in the fillet.

The agreement between the experimental results for the 'load
controlled' stepped beam and finite element predictions using load
control is poor. The effect of the eccentricity of the axial load on
the applied moments was not fully appreciated in the early stages of the
project when a list of possible candidate components and loadings was'
drawn up.and the two components chosen for detailed analysis. Having

later quantified the effect of eccentricity, the actual moments were found
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to be significantly different to the nominal values (for example, see
table 5.5) and moments in the fillet were ~5% greater than the shank
values. In view of the large changes in strain associated with relatively
small changes in load, finite element predictions based on nominal moments,
which had already been obtained, were not cons}dered to be relevant for

the comparison (e.g. compare shank predictions from figure 5.42, where

P & B, ars based on Uy - 19.8 MN/m° rather than 0.2% proof stress, with
predictions in figures 5.45 and 5.46). Also comparisons were restricted to
the shank. The finite element predictions of ratchet strain with isotropic
and kinematic hardening models are significantly lower than the experimental
results and predict shakedown in ~10 cycles. A material ratchetting model
would improve the predictions but the degree of improvement is unquantified
at this time. In contrast, the elastic-perfectly-plastic model using
steady state moments overpredicts the accumulation of ratchet strain and
in particular the steady state ratchet strain. Finite element predictions
based on curvature control are more accurate than those based on load
control, in particular those with a kinematic hardening model. Both load
and strain control problems arise in practice and the problems of prédic—

tion in each case have to be considered.

8.5 SUGGESTIO:S FOR FURTHER WORK

Although good agreement between experimental results and finite
element predictions for the flanged tube has been achieved with simple
models of material behaviour, it is suggested that the implementation
of both material ratchetting and plasticity-creep interaction models.
into the finite element program should be pursued. Material ratchetting
has been shown to be significant from the experimental results for the
high cyclic loading conditions of the stepped beam. Experimental data

suggests that the cyclic behaviour of the lead alloy could be more
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accurately predicted by a Goodman and Goodall model. Yahiaoui (12)
reports on tests which have already been performed on the lead alloy
to determine suitable constants for the Goodman and Goodall equations

and to investigate the interaction between plastic and creep strains.
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CHAPTER NINE

SUMMARY OF CONCLUSIOX:

The finite element method has proved to be a very powerful, albeit
expensive, technique for predicting the ratchetting and creep
behaviour of components.

The detailed parameter survey of the flanged tube and stepped

beam shanks has provided a valuable insight into the effects of
loading conditions, material hardening and stress redistribution

due to creep during the dwell periods between cycles of load on
ratchetting and dwell period behaviour. These 'simplistic' models
have highlighted effects that would not necessarily be recognised

by 'whole component' analyses which, because of cost and time
limitations, must be restricted in terms of the variation in the
relevant parameters being investigated.

The flanged tube shank is a strain controlled cycling problem and
ratchet strains are constant across the section. The uniform

beam is load controlled and there may be variations in ratchet strain
across the section and hence incremental growth in the direction of
applied load may be accompanied by incremental changes in curvature.
For both models ratchet strains increase with mean load and are
inversely related to the degree of the material hardening. For

the uniform beam, the maximum surface ratchet strain also increases
with cyclic bending load. Ratchet strains on the opposite surface
are at a maximum for an intermediate cyclic berding locad.

The elastic-perfectly-plastic material model predicts a ratchetting
process which, above the shakedown limit, is continuous for both
the plane tube and beam shank models with a constant ratchet strain
per cycle. With material hardening, both isotropic and kinematic

hardening models must ultimately predict shakedown to elastic
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cycling or cyclic plasticity. When cyclic loads are relatively
small (i.e. flanged tube) and no reverse yielding occurs the
predictions from isotropic and kinematic hardening models are the
same. For the higher cyclic loading conditions in the beam shank
and particularly for a high plastic modulus, material hardening
during the first cycle results in an accumulation of ratchet strain
which is dominated by the first cycle.

The effects of stress redistribution due to creep in the dwell
periods between cycles of load are bounded by the 'no creep' (rapid
cycling) and complete redistribution (slow cycling) cases analysed.
The complete redistribution case provides the upper bound on accumu-
lated strain and in general on accumulated ratchet strain although
situations have been identified where the 'no creep' case will
predict the greater ratchet strains; typically for high mean load
and relatively low cyclic load combinations which would not be
expected in practise.

The accumulation of straln during the dwell periods is characterised
by an initial transient stage due to stress redistribution super-
imposed on a steady state strain rate. The increments of strain due

to redistribution are small compared with the total accumulation of

dwell period strain. The steady state strain rates and redistribution

times are directly related to steady load and are independent of
cyclic load and hardening assumption.

The mechanisms of ratchetting have been investigated by considering
5 components with significantly different geometries and loading

corditions using an elastic-perfectly-plastic material model and a

zero plasticity-creep interaction rule for the 'no creep' and complete

redistribution cases. U4 of the 5 components have very similar
ratchetting mechanisms; the 'no creep' mechanism for the circular

plate bteing the exception to the general rule. The similarity in
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behaviour of these 4 components can be explained in the way that

the stress distributions due to steady and cyclic loading interact.
For fhe 'no creep' case in uniform sections and regions of stress
concentration a 'plastic core' (i.e. a portion of the ratchetting
section which experiences plastic growth during both halves of a
cycle) is required for ratchetting to be continuous. The 'plastic
core' is not evident for the circular plate which will eventually
shakedown under 'no creep' conditions. From the survey of the
flanged tube and stepped beam shanks it has been shown that the
monotonic reduction in ratchet strain due to material hardening is
associated with a reduction in the size of the 'plastic core' and
ratchetting ceases when the 'plastic core' disappears.

The 'plastic core' requirement is not essential for continued
ratchetting with an elastic-perfectly-plastic material model and
complete redistribution conditions. 1In plane regions, ratchetting
is continuous for load combinations which produce any plastic strain
during the first cycle. In regions of stress concentration, continued
ratchetting was predicted for all components and loading conditions
including the circular plate, although a small shakedown region
would be expected.

For the range of components and loadings considered both shakedown
and ratchetting conditions have been identified. With the elastic-
perfectly-plastic material model, the accumulations of ratchet strains
can be characterised by 3 categories which cover both the 'no creep'
and complete redistribution conditions. In all of the cases con-
sidered ratchet strains are enhanced oy complete redistribution in
the dwell periods also ratchetting is evident under complete
redistribution conditions for loadings which result in shakedown

for the equivalent 'no creep' conditions.



12.

13.

14,

= 375 =

For the two axisymmetric tube components having uniform sections
and stress concentrations, the accumulations of meridional ratchet
strain at the 'peak fillet' positions are greater than in the
shank for all loadings and dwell period assumptions. Ratchetting
at the 'peak fillet' position can occur for loadings that result
in shakedown in the shank. For the 'plane stress' stepped beam,
'no creep' meridional ratchet strains in the fillet are less than
in the shank due to the effects of the increased section on strains
in the other two directions.

The increments of dwell period strain due to stress redistribution
are always small and in some cases negative and the accumulated
dwell period strain is dominated by the steady state component.
The steady state strain rates in the fillet regions of the tubes
are significantly less than in the shank and are directly propor-
tional to mean load. For the stepped beam, steady state strain
rates in the shank and fillet are similar and directly proportional
to mean load.

With the exception of the 'no creep' case for the circular plate
an elastic-perfectly-plastic material model will predict a cyclic
steady state both in the plane sections and at points of high
stress and this limits the number of computed cycles that are
required for an exact solution. Similarly, exact steady state
strain rates during the dwell periods for a range of mean loads
can be obtained from a single load creep solution. Guidelines for
the necessary computations for exact and approximate solutions are
given and in general only two complete cycles, including dwell

periods, have to be computed.
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For the 'no creep' condition with an elastic-perfectly-plastic
material model, the Bree ratchetting boundary and lines of con-
stant ratchet strain per cycle are conservative for all of the
components (uniform sections and stress concentrations) and loadings
considered, with the exception of the circular plate, using simple
definitions of the steady and equivalent cyclic loads. In regions
of stress concentration, equivalent cyclic loads are related to
'nominal' values by the thermal or equivalent thermal stress con-
centration factor which is shown to be a pessimistic assumption.
With complete redistribution between cycles of load, the n/n +1
boundary suggested by Leckie is satisfactory for all of the com-
ponents and loadings except the circular plate and is far less
restrictive than the elastic limit line boundary suggested by Bree.
Furthermore the Bree ratchetting boundary for the 'no creep' con-
dition provides a reasonable guideline for the 4 components.

The non-conformity of the circular plate component has been high-
lighted throughout the analysis. The approximate methods suggested
are restricted to components subjected to loading conditions which
are similar to Bree's thin tube. The ability to incorporate the
effects of stress concentrations into approximate design calculations
based on the Bree diagram is a significant feature of the results.
The correlation of the finite element results on the 'efficiency
diagram' of Cousseran et al supports the theory that the accumu-
lation of inelastic strain depends on the loading conditions and can

be separated from the effects of material behaviour and test

duration. The finite element results using the lead alloy material data
generally correlate well with the cloud of data presented by Cousseran

et al for a range of stainless steels.
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The upper bound approach suggested by Ainsworth has proved to be

an extremely conservative method of bounding strain accumulations

in a situation of ratchetting with creep. The analysis is restricted
to two examples for the stepped beam shank but suggests similar
conclusions for the other components since the pessimism is

associated with the high value of stress index in the creep law.

The overall saving, in terms of computing costs and manhours, is

also questionable. The approach cannot be used for SCF's.

The accumulation of strain during long dwell periods can be reasonably
estimated from the steady state strain rate since the increment of
strain due to stress redistribution is small compared with the

total accumulation. For plane regions the steady state strain

rate 1s equal to the creep strain rate associated with the mean
stress. In regions of stress concentration steady state strain

rates for a range of mean loads can be obtained from a single

steady load creep finlte element solution or alternatively the
Reference Stress Method or 0'Donnell and Porowski bound can often be used.
The comparison between experimental results and finite element pre-
dictions for the flanged tube has shown that generally good agree-
ment can be obtained using simple models of material behaviour.

This agreement is partially attributed to the relatively low magnitude
of the cyclic thermal load under which conditions material ratchet-
ting is limited.

A qualitative assessment of the likely effects of improved

modelling techniques, including material ratchetting and plasticity-
creep interaction models, confirms the anticipated improvement in
predictions. However the implementatlon of improved models into
existing finite element programs may not necessarily be cost

effective, particularly in view of the flanged tube results. It
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is also suggested that more accurate modelling of the uniaxial
stress-strain curve is necessary for improved predictions in regions
of 'nominal' stress. A non-linear kinematic hardening model may,
therefore, be necessary and the overlay method can be used for

such a model without the need for detailed program modification.

For high cyclic loads a material ratchetting model is required

as shown by the comparison of results for the stepped beam shank,
which also highlights the problems of modelling a load controlled
cycling situation. Care must be taken to ensure that any inter-
action between steady and cyclic loads is accounted for in the

definition of the problem to be solved.
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APPENDIX I

THE NON-LINEAR FINITE EIEMENT PROGRAM

AI.1 Introduction

Prior to 1979, the document giving details of the non-linear
finite element creep and plasticity facilities within the Department
of Mechanical Engineering was a manual written by Dwivedi (58). The
manual also gives detalils of programming, job control and data input
for programs run on the University's ICL 1900 series computer in
operation at that time. The routines necessary for plasticity and
creep computations were stored in a number of separate files and
different combinations of these files were used depending on the
type of analysis,

i.e. a) mechanical and/or thermal plasticity only

b) creep only

c) plasticity and creep.
This resulted in unnecessary duplication of routines and the
author's first action was to develop an 'all-embracing set of
routines in a single file which combined all the existing facilities,
some of which were only available with certain types of problem
(e.g. a restart facility).

The facilities available in 1579 have been enhanced by
modifications and the major modifications are described briefly
in this Appendix. Full detalls of present program capabilities
including data input and job control for running programs on the
now fully operational ICL 2900 series computer (which replaced the
1900 in 1981-82) are given in a new manual (59), which also includes
a flow chart for the program. This Appendix includes details of the
'standard' parameters (e.g. accuracy criteria) which have been used in

the analyses.
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Table Al.1 compares the present capabilities with those

described by Dwivedi (58) .

AT .2 Methods of Solution

Methods of solution for non-linear finite element analyses vary
in complexity and are described in many references (e.g. 60, 61, 62).
Dawson (63) describes the technique used for mechanical and thermal
plasticity by the routines in this program. In brief, mechanical
and thermal loads are applied incrementally up to thelr required
values, and elastic-plastic solutions are obtained by the method
of successive elastic solutions where the elastic stiffness matrix
is used throughout. (For thermal loading, the final temperature
distritution is reached incrementally using nodal temperature
distributions stored in a file; having been obtained from a previous
transient thermal analysis.) For each increment, solutions are
obtained using a 'reverse gradient' iteration technique developed
by Dawson (63). The von Mises yield criterion and Prandtl-Reuss
flow rules are used to determine the increments of plastic strain
and an elastic re-solution is used for stresses. Convergence is
based on the equivalent stress at each Gauss point being within a
specified tolerance using the equivalent strain and uniaxial stress-
strain curve.

A time marching procedure is used for creep computations which
is described by Dwivedi (58). For each time step, the equivalent
creep strain increment is obtained by assuming a constant stress.
The von Mises effective stress and Prandtl-Reuss flow rules are used
to detérmine the components of incremental creep strain and the
elastic re-solution process provides the stresses. Initially the

time step is small in order to limit the change 1in stress to an
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acceptable level. If the change in stress violates a specified
criterion, the time step is halved and the creep strains re-
calculated. If the criterion is met, the total creep strains are
up-dated, the time step is doubled and the process is repeated

until the final time is reached.

AI.3 Modifications to the Program

Modifications fall into 3 categories:-
1. consolidating existing facilities;
2. specific improvements for detailed component analysis; and

3. general improvements in the facilities.

Restart facility

The restart facility enables the user to divide a large
computational problem into a number of more manageable units. On
completing a series of plasticity and/or creep computations,
information relating to the final conditions of the structure can
be stored on a file and used to restart the problem, i.e. used as
the initial conditions for a further series of computations.

Furthermore, restart information can be stored at any stage
so that in the event of a job failure (hardware break, lack of
convergence or maximum time 1limit) the program can be restarted

from the last successfully completed computation.

Two independent loading cases

This modification is included for the analysis of the stepped
beam component subject to a constant axial 1load and cyclic bending
load although it permits analysis of any component subject to two
independently varying load cases. A load case is defined as a

series of nodal loads which remain in the same proportion during a
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loading or unloading operation.

More than one period of creep

The single period of creep facility available prior to 1979
has been extended to allow computation of periods of creep inter-

spaced with mechanical/thermal plasticity.

Element dependent properties

The plastic and creep properties can be varied within the
elements of a structure which facilitates analysis of composite
material structures and provides a basis for the 'overlay method'
(20) to be used. (see Section 5.3.2). In addition, the user can
specify the 'plastic' elements; the remainder will be assumed to be

elastic during the computation.

Change in creep convergence criterion

A change in stress criterion based on the maximum stress in
the structure is preferred to the previous criterion which compared
change in stress at a Gauss point with the absolute value of stress
at that point. Experience has shown that unnecessary computational
time has been devoted to meeting the previous criterion at a point
in the structure where stress levels are orders of magnitude below

the mean stress since

Ac
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Graph plotting facility

The graph plotting facilities, until now only available in
conjunction with standard finite element calculations (6é4) have
been extended so that stress and strain distributions (spacial or

increment/time dependent) resulting from plastic and creep loadings
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can be automatically plotted.

Obtaining the plots 1s a two-stage process, the creep and
plasticity program being modified to allow the necessary information
to be stored on a file.

The second stage, a simple FORTRAN program, extracts and
manipulates the data into the required form for submission to

the graph plotting routines.

General improvements to output

The output has been generally improved in four areas:-

1. omission of unwanted output;

2. removal of constant values (e.g. Gauss point co-ordinates)
from the incremental output and replaced by a single
listing of these parameters;

3. more detailed output - item 2. has allowed more 'space'’

in the incremental output for other useful data to be

printed;

4, clearer headings.

AI.4 Additional data used in the analyses

In addition to the finite element mesh and material data described
in the text, it is necessary to specify values for the parameters which
control the incremental and time marching procedures. This data is
given in Table AI.2. For thermal plasticity, the incremental tempera-
ture distributions are described in the relevant sections. For the
stepped beam, the bending loads were generally applied in 10 equal
increments although in some cases (i.e. high mean load, high bending

load and low EP/E) it was necessary to use 30 increments.
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Program Capabilities prior to

1979 (Ref. 58)

Existing Program Capabilities

(Ref. 59)

1. Mechanical and/or thermal
plasticity only
Any combination of mechanical
@« Creep only plasticity, thermal plasticity
3. Mechanical and/or thermal and creep computations.
plasticity interspaced with one
period of creep
4, Thermal loading and unloading . Thermal loading and unloading
5. Restart facility available i Restart facility generally
with plasticity program only i available
(i.e. 1.)
6. One loading case for One or two independent loading
mechanical plasticity cases
7. Material hardening assumptions Elastic-Perfectly-plastic
Elastic-Perfectly-plastic Isotropic Hardening
Isotropic Hardening Kinematic Hardening
Kinematic Hardening Non-linear Kinematic Haidening
(via overlay method)
8. Material Creep behaviour . Power law, Sinh law
Power law, Sinh law | Strain and time hardening
Strain and time hardening
9. - Element dependent plastic and
creep material data
10. = Graph plotting

Table Al.1
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Description | Variable name (59) Value
| |

Starting time interval | |
for time marching SCA 1.0
creep computation
Max. number of iterations MAXITN 30
Convergence accuracy
for plasticity computation TOL1 0.005
Iteration Modulus YMOD 2 x Young's Mod.
Tolerance for creep
computation TOL 0.05

Table A1.2 Additional data used in the analysis
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APPENDIX II

JUSTIFICATION OF THE FINITE ELEMENT MESHES

AIT.1 Introduction

In designing finite element meshes it 1s necessary to balance
accuracy and cost and this Appendix presents a Jjustification for the
finite element meshes of the flanged tube, stepped beam and 'hole in
plate' components. The circular plate and shouldered tube component
meshes have been inherited from previous projects and their justifi-
cation is described elsewhere (see Chapter 6). Where necessary,
reference is made to results already given in this document. Some

results from a previous report (51) are reproduced.

AII.2 Flanged Tube

ATT.2.1 Shank model

The acceptability of a four element through thickness shank model
is confirmed by the small discontinuities in the axial stress distri-
butions for the adopted shank length (2 = 40 mm) in Figures AII.1 and

AIT.2 for mechanical and thermal loading respectively. These results are

reproduced from an earlier document (51)., A 2 x 2 Gauss array has
been used in line with Dawson's (63) recommendations. The outermost
Gauss points are 0.48 mm from their respective surfaces, compared

with a 9 mm tube thickness (see Section AII.3.1).

AIT.2.2 Whole component model

The 50 element mesh given in Figure 4.23 is a modified version
of an earlier mesh which had been used to determine suitable dimen-
sions for the final component (51). The original mesh is reproduced
in Figure AII.3. Preliminary finite element computations with this

mesh indicated a maximum discontinuity in stress at the shank/fillet
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interface of ~ 25%. The mesh was subsequently modified in this
region (compare Figure 4.23 with Figure AII.3) and the discontinuity

reduced to ~ 15%, which was considered to be acceptable.

AII.3 Stepped Beam

AIT.3.1 Shank model

An investigation was undertaken to determine a suitable finite
element mesh for the shank. A 10 mm length of shank (25 mm deep by
10 mm thick) was modelled in several different ways by varying both
the number of through thickness elements and the number of Gauss
integration points per element. An axial load and bending moment
was applied via an equal number of 'rigid' elements, in order to
maintain a 'plane-sections-remain-plane' criterion (see Section 5.2:1)
and the resulting elastic-plastic stress distributions for an
elastic-perfectly-plastic material model are compared with the
exact solution in Figure AII.4.

Although the results for a coarse mesh (2 elements and 2 by 2
Gauss array) are not significantly different from those for the more
refined meshes, this configuration should be avoided because of the
relatively large distance from the outer surfaces to the first Gauss
point. Errors will occur when the plastic zone has not reached the
outer Gauss point in which case the program will incorrectly predict
an elastic sclution.

A final choice of 3 elements with a 2 by 2 Gauss integration
array was based on the following considerations:-

1. the required accuracy of the results;

2. the proximity of the outer Gauss points to the shank

surfaces (1.8 mm);

3. the recommendation of a 2 by 2 Gauss array given by Dawson
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(63) in his initial development of the elastic-plastic
program; and

the compatibility between the shank model and the shank
region of the whole component model and hence a 'reasonable'

limit on the number of elements in the shank.

AII.3.2 Whole component model

The finite element mesh used is shown in Figure 5.30. The

elastic stress distributions along the shank surface and around the

fillet were computed for tension and pure bending and the results are

given in Figures 5.32 and 5.36 respectively. Discontinuities in

stress of up to 20% are apparent in the fillet region and, although

large, were consldered acceptable based on the following arguments:-

1.

Gauss point values predicted by the elastic-plastic-creep
program should be of acceptable accuracy;

similar discontinuities were present and had been accepted
for an axisymmetric tube component of a previous project
(65); and

good agreement between predicted stress concentration

factors and those from photoelastic techniques had been

obtained. i.e.

Stress Concentration Factor
Finite Element Photoelastic (55)
Tension 1.80 1.66
Bending 1.46 1.38

It is seen from Figures 5.32 and 5.36 that the chosen length
of shank is sufficient to ensure uniform stress conditions

in the mid-shank region.
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AIT.4 'Hole-in-plate'

The elastic stress distribution along the axis of symmetry
with highest stress gradients (AB) due to axial load is shown in
Figure 6.2 for the 27 element mesh in Figure 6.1. The 5 elements
through the section AB result in acceptable levels of discontinuities
in stress at element boundaries (£ 8%). A 2 x 2 Gauss array, giving
10 Gauss points across section AB, has been used. The extreme Gauss
points are within 1 mm of A and B, compared with 25 mm across the

section AB.
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Figure AII.1 Axisymmetric component with fluid heating. Radlal variation
in axial stress in the shank due to an axial pressure cf
100 N/m? as a function of shank length 'z'. (from reference 51)
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Figure AII.4
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Stepped beam shank (elastic-perfectly-plastic, P/P;, = 0.48,
}MMy = 0.72). Comparison tetween exact solution and finite
element predictions of axial stress distribution (from
reference 51).



