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SUMMARY 

Many components in conventional and nuclear power plant, chemical 

plant and aero engines may be subjected to severe loading conditions, 

i.e. loads which cause reverse plasticity and/or incremental growth 

(Ratchetting). If operating temperatures are high, creep strains may 

also be significant and may exacerbate the ratchetting process. Also 

the residual stress fields associated with the cycling of load in the 

plastic region for a material will influence the accumulation of 

strain during the dwell periods between cycles when steady loading is 

sustained. 

Some analytical solutions for the cyclic behaviour of simple 

components and loadings are available, however very little information 

on the effects of stress concentrations and complex loading conditions 

on ratchetting is published. A better understanding of the mechanisms 

of ratchetting for complex components and loadings is essential in order 

to identify characteristic behaviours which can be used to aid the 

design process for components in potential ratchetting situations. 

A range of component geometries, uniform sections and stress 

concentrations, and loading conditions have been analysed by the finite 

element method to investigate ratchetting mechanisms and to obtain 

ratchet and dwell period strain data. The effects of stress concentrations, 

material behaviour models, loading conditions and stress redistribution 

due to creep on ratchetting mechanisms and strain accumulations are 

described. Dwell period creep effects are bounded by the 'no creep' 

(zero dwell period) condition. on the one hand and by complete redistribu­

tion between cycles at the other extreme. 

The results of the analyses have been successfully used to 'extend 

existing approximate design rules for simple components to these more 
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complex components and loadings. It has been shown that reasonable 

estimates (in some cases exact solutions) can be obtained from either 

a limited finite element analysis or by using approximate methods of 

solution. 

Comparisons between experimental ratchetting data for two components 

made from a lead alloy material and eqUivalent finite element predictions 

are presented. Simple material behaviour models are used and the 

results highlight both the benefits and shortfalls of these models. 

Improvements to modelling techniques for more accurate predictions are 

suggested although i~ is shown that, in certain circumstances, more 

realistic material behaviour modelling is unwarranted. 
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CHAPTER ONE 

1. INTRODUCTION 

[~ny components in conventional and nuclear power plant, 

chemical plant and aero engines may be subjected to severe 

loading conditions, i.e. loads which cause reverse plasticity 

and/or incremental growth (Ratchetting). If operating temperatures 

are high, creep strain may also be significant. Ratchetting can 

lead to eventual failure of a component and has been identified as 

a potential problem in, for example, the design of Fast Breeder 

Reactor fuel element cladding (1, 2) where cladding failure and 

a possible release of gaseous fission products could have serious 

consequences. 

Ratchetting is a build-up of inelastic strains and is one of 

the possible outcomes when engineering components are subjected to 

the combined effect of steady load, generally mechanical, and 

cyclic thermal or mechanical loading. 

The onset of ratchetting depends on the relative rnagnitudes of the 

steady and variable loads. Creep straining, particularly in the 

dwell periods between successive thermal/mechanical cycles, may in 

addition to increasing the inelastic strains, exacerbate the ratchetting 

process. Also the modification of residual stress fields during 

transient l oads will affect the subsequent steady load creep 

behaviour which can be significantly different to the creep 

behaviour of components subjected to steady load alone. 

The safe design of such components should, in the first 

instance, be based on the avoidance of ratchetting. However, a 
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through-life accumulation of inelastic strains would be acceptable 

if within specified limits (eg.3). The latter option requires that 

the strains are estimated at the design stage. For simple components 

and loadings, design procedures exist which allow strain accumulations 

to be relatively easily calculated (eg.l, 2, 4, 5). Also the effects 

of stress redistribution due to creep on ratchetting behaviour and 

the accumulation of creep strains during the dwell periods can be 

estimated (eg. 1, 6, 7, 8, 9). For components which contain stress 

concentration regions, it has been shown (eg.l0, 11) that ratchet 

strains in the stress concentration can be significantly larger than 

those in the uniform regions of the same component and also ratchetting 

can occur under less severe loading conditions. Cyclic behaviour 'Ni th 

more complicated component geometries and/or loading conditions must 

be quantified and at the present time, simple design procedures for 

calculating 'ratchetting boundaries' and accumulated strains for 

complex components and loadings are not available. The finite element 

method provides a powerful technique for predicting component behaviour. 

However the accuracy of the prediction depends, to a large extent, on 

the accuracy with which the material behaviour for the variable load 

and temperature conditions is represented. 

The m?in objectives of thi.s project are:-

1. to identify the parameters which influence ratchetting 

behaviour and quantify the effects of varying these 

parameters. 

2. to study the ratchetting mechanisms of a number of 

Simple and more complex components with a variety of 

loadings and to quantify the effects of 

(i) stress concentrations on ratchet strains 
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(ii) stress redistribution due to creep on 

ratchetting behaviour, and 

(lii) residual stress fields resulting from cyclic 

loads,on the subsequent steady load creep 

behaviour. 

3. to assess and improve the analytical techniques for 

predicting ratchetting behaviour, in particular to 

suggest simple design procedures for complex ratchetting 

and creep problems. 

4. to compare analytical predictions of ratchetting behaviour 

with experimental results in order to identify 

(i) the limitations of simple material models and 

(ii) the important material behaviour characteristics 

which must be included to obtain accurate predictions 

of component behaviour. 

Five components, some of which have both a uniform section 

(equivalent to a 'simple' component) and stress concentrations, 

subjected to a variety of steady and cyclic loads have been 

analysed. The components and their loadings are described below. 

1. A flanged tube (thick tube with flange), having a uniform 

sect f on and a stress concentration, subjected to steady 

axial mechanical loading and cyclic through-thickness 

axisymmetric temperature variation. 

2. A stepped beam, having a uniform section and stress 

concentration, subjected to steady axial loading and 

cyclic bending. 
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"3. A plate with a single hole, subjected to in-plane steady 

mechanical loading and cyclic heating and cooling of the 

hole surface. 

4. A clamped circular plate subjected to transverse pressure 

loading and cyclic through-thickness temperature variation. 

5. A shouldered tube (thin -tube with s houlder ) having 'a uniform 
" - " 

section and stress concentration; subjected to steady 

axial mechanical loading and cyclic through-thickness 

axisymmetric temperature variation. 

The ratchetting and creep behaviour of the components is 

examined and compared in order to identify simple, but conservative, 

design techniques for predicting the behaviour of real engineering 

components with similar geometries, loadings and material behaviour, 

particularly in regions of stress concentration. The flanged tube 

and stepped beam components have also been the subject of experi-

mental investigations by Yahiaoui (12) in a parallel project and 

comparisons between the experimental results and analytical 

solutions are made. Also, the uniform regions of these two compo-

nents have been studied in greater detail and the variation in 

ratchetting and creep behaviour with loading and material behaviour 

is examined. 

The effects of creep on cyclic behaviour are bounded by the 

'no-creep' case, where the effects of dwell period are ignored 

and the 'complete redistribut{on' case where complete redistribution 

to the steady load stationary~state stress distribution is allowed 

between successive cycles of load. Generally, solutions for these 

two extreme cases only have been obtained. Where possible, the 

results have been normalised to be more generally applicable for 

a range of engineering materials. 
-----------------------------------------------------------------------------------
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Extensive use of the finite element method has been made. 

This has required significant development of existing finite 

~lement programs in order to perform elastic-pI as tic-creep 

analyses with complex loading conditions and material models. 

The finite element approach to non-linear problems and the 

present program capabilities, including details of the modifi­

cations, are discussed in Appendix 1. 

A review of the literature, with particular emphasis on material 

behaviour models, existing prediction techniques and analytical 

and experimental results, is given in Chapter 2. 

Chapter J describes the selection process for the components, 

particularly the flanged tube and stepped beam which were 

designed especially for the combined experimental and analytical 

projects and for which considerable preliminary work was carried 

out. The results for each component are presented and discussed 

in Chapters 4 - 6 and compared in Chapter 7. An overall discussion 

is given in Chapter 8 where the implications of the work are consid­

ered. Conclusions arising from the work are given in Chapter 9. 
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CHAPTER TWO 

2. LITERATURE SURVEY 

In predicting elastic-plastic-creep behaviour of components 

particularly under conditions of cyclic loading, the accuracy of pre­

diction depends on the accuracy with which the true material behaviour 

is modelled. Section 2.1 describes some of the more common material 

models which are currently available, together with an assessment of 

their application to engineering materials. Section 2.2 gives a 

review of the literature relating to the behaviour of components under 

conditions of ratchetting and creep including approximate methms of 

solution. A general summary of the findings is given in Section 2.3. 

2.1 Material Behaviour Models 

2.1.1 Elastic-plastic behaviour 

The elastic-plastic behaviour of materials under monotonic loading 

conditions is well documented (e.g. 13,14) and this section concentrates 

on a description of some of the more common models and their ability 

to describe the various phenomena associated with load reversal and 

cyclic loading. 

e.g. reverse plasticity - regions within a component may suffer both 

tensile and compressive plastic deformation during a cycle of 

load. This can ultimately lead to failure due to fatigue. 

cyclic hardening and softening - under strain controlled cyclic 

loading there may be an initial transitory stage while the stress 

range is changing, prior to a stable loop being established. A 

material may cyclically harden (increase in stress range) or 

soften (reduction in stress range) during this stage. 

material ratchetting - the cyclic hardening and softening effects 

observed with strain controlled loading can lead to material 
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ratchetting under certain loading conditions. For example, in 

Figure 2.1 for a strain controlled cycle of range E: there is 

a cyclic stress relaxation, cro- , and hence for a stress controlled 

cycle an increment of plastic strain, JiEP, is accumulated in 

returning to the original stress. This material ratchetting 

results from the cyclic material behaviour and is in addition to 

the loading dependent structural ratchetting. 

Uniaxial elastic-plastic behaviour is, in general, dependent on 

loading history since excursions into the plastic regime cause changes 

in the instantaneous yield stress and plastic modulus. 

The modelling of multiaxial elastic and plastic behaviour using a 

yield criterion to define the limit of elasticity under any combination 

of stresses and a flow rule to determine the components of plastic strain 

after yielding is discussed in many references (e.g. 13). It is usually 

assumed that the von Mises effective stress and yield criterion and 

Prandtl-Reuss flow rules can be used to describe the behaviour of 

metals under multiaxial stress conditions. These models are used by the 

finite element program discussed in Appendix I. The von Mises yield 

criterion is assumed for describing multiaxial behaviour in this 

Chapter. The von Mises (or distortion energy) theory assumes that 

yielding will occur when . the distortion energy reaches the distortion 

energy on yielding. in simple tension or when 

"-
where O'ij is the deviatoric stress, or in terms of the stress 

components when 
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The Prandtl-Reuss flow rules are developed from the theory of 

plastic potential relating plastic strain increments to the stresses 

d t p . 0.. ~:.( er) where F( 0--) is a function of all the stresses. 
iJ 60" ij 

If this function is the yield function then the plastic flow is 

determined by an 'associated flow rule'. The Prandtl-Reuss flow 

rules are associated flow rules based on the von Mises yield function 

and give 

where d~ is a non-negative constant. 
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2.1.1.1 Simple Models 

Figure 2.2 shows the variation of strain with stress for 

reversed loading for two of the simple models for a linear harden-

ing material. 

In the isotropic hardening model (13) the hardening produced 

in tension results in an equal hardening in compression (and vice 

versa) and is represented by the path ABCDE with compressive yield 

occurring when 

(5= -6 I 
Y 

In the ~ plane of principal stresses, for multiaxial states of 

stress, the initial yield surface is a circle centred on the origin 

of stress which expands uniformly with no change in origin as yield­

ing occurs, as shown in Figure 2. 3( a). For a mul tilinear represent-

ation of the uniaxial stress-strain relationship, the discontinuities 

are concentric circles~ As loading increases the 'initial' yield 

surface expands to combine with the second surface. Further increases 

in loading cause expansion of the 'new' yield surface. There is 

no contraction when the loading is reversed. 

The kinematic hardening model (15,16) assumes that the elastic 

stress range remains unchanged and a tensile hardening effect is 

offset by an equivalent softening of the material in compression. 

For kinematic hardening reversed loading is represented by path 

ABCFG in Figure 2.2 and compressive yielding occurs when 

, . 
($= (f -20-. 

Y Y 

Kinematic hardening requires a bilinear representation of the stress-

strain curve, an elastic line and a single line model of the plastic 

behaviour. In a multiaxial stress field, the yield surface remains 
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a circle of diameter 2cr which translates in space as yielding y 

occurs, see Figure 2.J(b). 

In the absence of hardening, the isotropic and kinematic 

hardening models are identical, with a fixed yield stress and 

neither expansion nor translation of the yield surface. This is 

the elastic-perfectly-plastic model. 

2.1.1.2 Assessment of the 'simple' models 

The isotropic hardening model responses with uniaxial cyclic 

strain and stress control with a non-zero mean are shown in 

Figures 2.4(a) and (b) respectively. The hardening of the material 

eventually results in a 'shakedown' to purely elastic cycling for 

both strain and stress controlled loading. The model can describe 

cyclic hardening under strain controlled conditions. The kinematic 

hardening model results in a steady cyclic stress/strain loop after 

the first complete cycle for both strain and stress control as shown 

in Figure 2 S(a) and (b). The elastic-perfectly- plastic model also 

reaches a stable loop under strain controlled testing (stress con-

trolled testing is not applicable becauseaf collapse). 

None of the three simple models can represent material ratchetting, 

however their constitutive equations can be readily incorporated into 

fini te element programs. 

2.1.1.3 More complex models 

One of the earliest descriptions of a model for material 

behaviour under condi lions of reversed and cyclic loading was 

suggested by Masing (17) who proposed ~ relationship between the 

monotonic stress-strain curve and the reversed loading curve. 

Masing's hypothesis is that the cyclic loading curves are geometrically 

similar to the monotonic curve, but scaled up by a factor of 2 and a 
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stable loop is reached after one cycle far both stress and strain 

control loading. Masing used an assembly of elastic-perfectly-plastic 

elements connected in parallel. Each element has a different yield 

stress and undergoes the same deformation. Under monotonic loading 

condi tions, the resul t , is a series of linear segments of reducing 

positive slope and the reversed loading curve is the same as the 

monotonic stress-strain curve scaled by a factor of 2 as shown in 

Figure 2.6. The model can be described as having a non-linear 

kinematic form. 

The work hardening model of Mroz (18) uses a field of work­

hardening moduli. The monotonic stress-strain curve is represented 

by a number of linear approximations. In stress space the discon­

tinuities between the linear approximations are represented by a 

series of concentric circles which, for initially isotropic material, 

are centred on the origin. Loading in excess of the initial yield 

(first surface) produces a rigid body translation of that surface. 

The presence of a further yield surface upon increasing the load 

means that these two surfaces will translate together once contaqt 

is made between them. For the uniaxial loading case, shown in 

Figure 2.7 the elastic range (denoted by the first circle) is 

constant during unloading and twice the initial yield stress. The 

region between first and second surfaces has doubled and the model 

corresponds to the Masing hy]?othesis with the cyclic loading curve 

being twice the original monotonic curve. 

For multiaxial loading, Mroz assumes that the surfaces cannot 

intersect and that once initial contact between surfaces is made 

the direction of straining changes with the inner surface sliding 

around the con tact surface until the normals coincide. In a further 

paper Mroz (19) explains qualitatively how expansion and contraction 
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of the surfaces during plastic deformation, together with trans­

lation can be used to model transitory effects such as cyclic 

hardening and softening. 

The 'overlay method' suggested by Zienkiewicz et al (20) is 

based on the Masing concept of parallel elements and is specifically 

designed for implementation into finite element programs without the 

need for complex constitutive relationships. A structure is made 

up of a number of overlayed sub-elements which can exhibit different 

material behaviours. The corresponding nodes of each sub-element 

coincide and identical strains are imposed on each of the sub­

elements. In this way, complex material behaviours can be represented 

by simple but different material models attributed to each sub­

element. For example a combination of elastic only and elastic­

perfectly plastic sub-elements can be used to describe the kinematic 

hardening in a similar way to that shown in Figure 2.6 for the 

Masing model. 

Goodman and Goodall (21) review some experimental tests on 

stainless steel at varying temperatures with particular interest 

being shown in type 316 stainless steel which is a candidate 

material for Fast Breeder Reactor components. Fixed strain range 

controlled cyclic tests on virgin material revealed a cyclic 

hardening effect for many cycles before a stable loop was achieved. 

However another fixed strain range cyclic test on a specimen with 

a previous loading history of controlled ratchetting resulted in a 

cyclic softening or 'memory decay' mechanism. Goodman and Goodall 

conclude that material behaviour depends on loading history as well 

as the operating temperature. They also emphasise the inability of 

the simple hardening models to adequately predict cyclic behaviour 
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(e.g. material ratchetting). They propose a 'saturation stress' 

model which incorporates both cyclic hardening and softening and 

will predict material ratchetting under conditions of stress 

cycling with a non-zero mean stress. The model assumes a constant 

yield range of twice the original virgin yield stress but the shape 

of the plastic curve depends on the instantaneous yield stress and 

a sa tura tion stress pa.rameter. This model appears to successfully 

represent the experimental observations of the stainless steel 

behaviour. However the equa t1. ons developed by Goodman and Goodall 

refer only to uniaxial states of stress and the multiaxial general­

isation is not considered. 

Jhansale (22) examines experimental observations on a range of 

steels and aluminium which highlight the limitations of the simple 

hardening models. By considering the stable cyclic loops for these 

materials he concludes that the loops are identical in shape if a 

proportion of their elas tic range is removed. He proposes a Yield 

Range Increment (YRI) parameter to normalise cyclic stress-strain 

behaviour with respect to the doubled monotonic loading curve 

postulation of Masing. For 'Masing materials', which achieve steady 

state conditions after the first cycle for both stress and strain 

controlled cycling, there is no change in the elastic range and the 

YRI is zero and independent of hysteresis loop size. For 'non-

Masing materials · , which display a transitory period, for a number 

of cycles, prior to achieving the steady state, the YRI is related 

to the size of the hysteresis loop. Increases and reductions in the 

YRI can be used to model cyclic hardening aLd softening respectively. 

The Jhansale model can therefore be used to model material ratchetting. 
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2.1.1.4 Assessment of the more complex models 

The Goodman and Goodall and Jhansale models are of particular 

interest since they can predict material ratchetting which is 

apparent in many engineering materials and also in the lead alloy 

used by Yahiaoui (12). The Goodman and Goodall and Jhansale models 

differ in the way hardening and softening effects are produced. 

The Jhansale model assumes similarity of the cyclic curves and the 

hardening/softening effects are related to changes in the elastic 

range only. The Goodman and Goodall model has a constant elastic range 

with hardening/softening effects resulting from changes in the shape 

of the plastic region of the cyclic stress-strain curves. 

Both models have been developed to describe the cyclic behaviour 

of actual engineering materials. Before choosing the more appropriate 

model for a particular material, it would be necessary to carry out 

experimental tests to see which model described the material behaviour 

more accurately. For example, superimposing experimental results 

for strain controlled testing at different strain ranges would 

highlight changes in elastic range (Jhansale) or shape of the 

plastic region (Goodman and Goodall). 

A further factor in selecting a material model is the ease with 

which it can be used. In particular, if the finite element technique 

is being used, the capability of adapting the model for the computer 

program must be considered. 

2.1.2 Creep behaviour 

Above a temperature of about 0.3 of the absolute melting temp­

erature, metals display the time dependent phenomenon of creep when 

under stress. Creep behaviour, including recovery and relaxation, 
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is described by many authors (e.g. 9), and this section concentrates 

on the modelling of creep behaviour. 

2.1.2.1 Creep under constant load 

The uniax1al creep test is widely used to obtain creep data for 

materials. A uniax1al specimen is allowed to creep under constant 

load and temperature. Typical creep curves for the lead alloy used 

by Yahiaoui (12) at room temperature are given in Figure 2.8. This shows 

the regions of primary & secondary creep. The primary stage marks a 

reduction in strain rate to a nominally constant value over the 

secondary stage. An apparent increase in strain rate in the 

tertiary stage is partially' due to the now significant reduction 1.'1 

cross-sectional area. In addition, there is a true tertiary stage 

with increase in creep strain rate for constant stress. This is 

caused by the formation of microcracks at the grain boundaries. 

In order to obtain analytical solutions for complex structural 

behaviour it is necessary to determine a suitable creep law or 

model to represent the uniax1al material data, the most general 

being:-

EC = f(a', t, T) (2.1) 

It is generally assumed that the effects of stress, time and 

temperature are separable. 

(In the present work where comparison is made between experimental 

observations (12) and finite element predictions, the isothermal 

conditions during the dwell periods (i.e. when creep occurs) has 

simplified the material behaviour modelling considerably.) Penny 

and Marriott (9) give a review of the creep laws currently available. 
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The most commonly used creep law is the simple Norton-Bailey Power 

law (9) which combines the function of stress due to Norton with 

the time function proposed by Bailey. 

i.e. (2.2) 

where A
1

, n
1 

and m
1 

are material constants. 

The sui tabili ty of the Power Law to represent the creep 

behaviour of the lead alloy material used in the experimental 

part of the current project is discussed by Yahiaoui (12); the 

resul ts show a slight dependence of the constants n1 and m
1 

on the 

level of stress. 

The sinh law is an alternative form of the stress function and 

when combined with the Bailey time function gives 

(2.3) 

The value of m in both the Norton-Bailey and sinh laws can be 

adjusted to model either the primary Cm < 1), secondary (m = 1) 

or tertiary (m > 1) stages of creep. With a careful choice of 

constants, primary and a limited region of secondary creep can be 

approximately modelled. 

Dorn (9) suggests that a combined function of time and temperature 

can be used and suggests a creep law in the form 

e c = (2.4) 

The complexity of the creep law is significantly increased if 

tertiary stage creep is to be included. Very few models are available 

and ane of the most commonly quoted is that due to Graham and Walles (9), 

n 

(2.5) 
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where Ci ' C(i and ~ i are constants. 

It is claimed that the first four terms of the series are suf-

ficient to describe the three stages of creep. 

0<1 1 0(2 0<3 0(4 3 
C 0' t3" + C

2
0 t + (c cr + C (J )t 

1 3 4 
(2.6) 

e c = £ primary + £ secondary + £ tertiary 

Obvious difficulties are encountered due to the number of constants 

(8 in the above expression) which have to be determined from experi-

mental data. 

The Kachanov brittle rupture theory (9), which provides an expla:1ation 

for tertiary creep, assumes that there is a reduction in the effective 

cross sectional area of a tensile specimen as the material accumulates 

damage and hence an increase in the effective stress. The effective 

stress is r~lated to the initial stress by a continuity parameter, ~ , 

which reduces from unity at t = 0 to zero when rupture occurs. 

2.1.2.2 Creep under varying load 

Although the constant load uniaxial creep data provides a basis 

for obtaining material creep laws, in practice the phenomenon of 

stress relaxation combined with possible changes in loading requires 

a model for predicting creep behaviour with varying stress. 

Two models are commonly used:-

(a) Time hardening 

It is assumed that the creep strain rate depends on the 

current stress level and the elapsed time, as shown in Figure 2.9. 

(b) Strain hardening 

It is assumed that the creep strain rate depends on current 

stress level and total creep strain, also shown in Figure 2.9. 

Other more complex theories are available and are discussed by 

Penny and Marriott (9). It is ger.erally agreed (e.g. 9, 23) that 

the strain hardening model is the more realistic of the simple 

theories. 
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2.1.2.3 Multiaxial effects 

There is a requirement to model complex multiaxial behaviour 

using simple and more readily available uniaxial test data. The 

equivalent stress/equivalent strain method and associated flow rules 

for multiaxial creep are as described for plasticity in Section 2.1.1. 

2.1.3 Plasticity-creep interactions 

Fessler, Hyde and Webster (25) reported a number of tests 

showing the effects of plastic pre-strain on subsequent creep 

behaviour. Specimens were initially plastically pre-strained then 

allowed to creep at constant stress levels less than that required 

to induce the initial pre-strain. The resulting creep curves were 

compared with the virgin creep curve for the same constant stress 

level. The Iesults generally indicate a large reduction in creep 

strain rates in the presence of plastic pre-strain and for a 

particular test, a period of reverse creep occurred prior ~o forward 

creep being re-established. However at high stress levels, there 

was a marked increase in the creep strain rate compared with the 

virgin curve. The authors also report on a test where creep, 

following initial plastic pre-strain, was interrupted by a further 

addition of plastic pre-strain which caused a small amount of reverse 

creep prior to forward creep. The specimen was then loaded incrementally 

up to failure and, when compared with the stress-strain behaviour for 

virgin material, showed an increase in the UTS. 

2.2 Component Behaviour 

2.2.1 Elastic-plastic behaviour 

This section gives a review of the literature on the cyclic 

behaviour of components. Because of its straightforward nature, 

elastic-plastic behaviour under steady loading is not discussed. 
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The phenomenon of ratchetting was first investigated by 

Parkes (26, 27, 28, 29) who, in a series of publications, discusses 

the ratchetting behaviour of aircraft wings using a two bar structure 

model with elastic-perfectly-plastic material behaviour. The loading 

consists of cyclic thermal loads in addition to the normal wing 

loadings. One bar is kept at constant temperature while the other 

has a cyclic temperature range. The papers consider different aspects 

of the behaviour including the effects of a temperature dependent 

yield stress, the relative sizes of the bars and the effects of heat 

conduction in the bars. 

Miller (4) uses a three bar assembly with both elastic-perfectly­

plastic and linear hardening to develop relationships for the ratchet 

growth of such a model where the outer bars are subjected to cyclic 

thermal loading while the inner bar is kept at constant temperature, 

and all three bars experience a sustained mechanical load. The 

analysis shows that an elastic-perfectly-plastic material assumption 

results in a constant ratchet strain per cycle, whereas the hardening 

characteristics of the material result in decreasing increments of 

plastic strain for successive cycles and must ultimately result in 

purely elastic cycling once 'shakedown' is complete. Miller 

extends the analysis to a problem of ratchetting in a thin pressure 

vessel where constant internal pressure and cyclic heat fluxes com­

bine to give cyclic elastic-plastic behaviour. He suggests design 

Criteria for the avoida~ce of ratchetting (i.e. a shakedown formula) 

together with formulae for the prediction of ratchetting behaviour. 

Probably the most important work in this field is that of Bree 

(1,2) in predicting the behaviour of a fuel can in a Fast Reactor 

due to the combined effects of interr~ pressure (due to the release 

of gaseous fission products during the decay process) and intermittent 
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high heat fluxes during start-up and shut down, particularly in 

emergency situations. The can is modelled by a slab of material 

experiencing uniaxial stress due to pressure combined with a through 

thickness tem:t:e ra ture gradient which is time-dependent. Bree applies 

a rigorous analysis to the simple uniaxial model in order to investi-

gate the modes of behaviour with an elastic-perfectly-plastic 

material assumption. 

The 'Bree diagram' reproduced in Figure 2. 10 ' defines the 

elastic, shakedown, cyclic plasticity and ratchetting regimes which 

depend on the normalised axial stress ~ 
ay 

and normalised thermal 

The line (j t (1 - ~ ) = 1 
cry cry 

stress divides the shake-

down and ratchetting regimes into S1 and S2 and R1 and R2 respectively 

where the suffix 1 denotes tensile yielding only and suffix 2 

indicates combinations of mechanical and thermal stress which result 

in both tensile and compressive yielding. 

In the R1 region, an increment of ratchet strain, er , is given 

by 

er = 
2 () t 

E 

and for the R2 region 

20-t 
E 

(E..E _ Ei ) 
rjy O"t 

(2.8) 

Bree also investigated the effect of changes in yield stress 

between start-up and shut down due to the differences in temperature. 

The analysis assumes a greater yield stress on shut down (cry'), 

because of the reduced temperature, compared with the start up yield 
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stress (er). · Bree _ al~o .considered a linear hardening material 
y 

and equations for ratchet strain per cycle are given which are cycle 

dependent. The results show that ratchet strains are less than those 

for an elastic-perfectly-plastic material model. 

Burgreen (5, 30~ 31) also uses the two-bar assembly to investigate 

the regimes of cyclic behaviour due to combined axial load and cyclic 

thermal gradients for an elastic-perfectly-plastic material assumption. 

He carries out a similar analysis for a multi-bar assembly. Burgreen' s 

analysis of a rectangular beam subjected to an axial load and cyclic 

bending moment is of particular relevance to this thesis. He uses 

an elastic-perfectly-plastic material model to investigate the cyclic 

behaviour of the component and the 'Burgreen diagram' reproduced in 

figure 2. l1shows the cyclic regimes which depend on the axial load 

normalised with respect to the limit load (~ ) and the moment 
. L M 

normalised with respect to the yield - moment (~). A particularly 
:J 

interesting feature of the diagram is the narrow band of ratchetting 

behaviour bounded by shakedown and collapse regimes, which highlights 

the large changes in :ratchet strain associated with relatively small 

changes in steady and/or cyclic loads. The implication of this 

effect will be discussed in a later section when:the finite element 

analysis of the stepped .beam compone~t is discussed. 

Hyde (32) has- analysed the ratchetting behaviour of a circular 

plate (d/t = 21) with radially moveable, direction fixed edges sub-

jected to steady membrane loads, steady t~~sverse pressure loading 

and cyclic through-thickness thermal loads. An elastic-perfectly­

plastic material model is used. With zero steady transverse pressure, 

Hyde obtains results that are similar to those from Bree's (1) analysis. 
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When an additional steady transverse pressure is applied Hyde's 

results, which are limited to 3 cycles, show a reduction in ratchet 

strain between second and third cycles unlike the Bree model; the 

implication being that ratchetting will eventually stop. 

Goodman and Goodall (21) have analysed a simply supported 

circular plate (d/t = 40) subjected to steady transverse pressure 

together with the application and removal of a linear radial tempera­

ture gradient with a uniform through thickness temperature • Kinematic 

hardening and elastic-perfectly-plastic material models were used 

and, in both cases, the increments of central deflection were 

reducing after 22 cycles, although at slow rate for the elastic­

perfectly-plastic material model. 

The use of the two and three bar structures ·t-o demonstrate the 

regimes of cyclic behaviour is common and other references include 

Gill (33), Ruiz (34) and Megahed (35). In particular, Megahed con­

siders a two bar structure where the bars have different lengths 

and cross-sectional areas in order to simulate a stress concentration. 

He considers elastic-perfectly-plastic material behaviour together 

wi th isotropic and kinematic hardening materials. The most important 

conclusion in terms of this research concerns the effect of the 

simulated stress concentration. Megahed concludes that the presence 

of a stress concentration will considerably increase the ratchet 

strains . 

Sagar and Payne (36') performed an analysis of the incremental 

collapse of a 'thick' cylinder under steady mechanical loading 

(axial tension and torsion) combined with cyclic thermal loading. 

Finally, E~~unds and Beer (37) considered a number of situations 

which can result in incremental collapse and are particularly releva.'1t 
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to the design of pressure vessels. The ratchetting and shakedown 

behaviour is studied by a simple slab model of a pressure vessel 

with constant follow-up stress and superimposed strain cycling 

(in the conjugate direction) and constant follow-up stress combined 

with cyclic bending strain for an elastic-perfectly plastic material 

model. 

2.2.2 Elastic-plastic-creep behaviour 

2.2.2.1 Steady load 

Components subjected to steady loading may, depending on 

temperature, experience the effects of creep. In regions of uniform 

stress creep strain rates are also uniform with a subsequent uniform 

elongation of the component in the direction of the applied loads. 

However for more complex component geometries having non-uniform 

stress fields and for residual stress fields, creep strain rates are 

position dependent and in order to maintain equilibIium of stresses 

with the external loads and compatibility of strains throughout 

the structure, creep strains in regions of stress concentration will 

result in an overall reduction in stress; the opposite effect being 

experienced in regions of 'below average' stress. This interchange 

between elastic and creep strains is termed 'stress redistribution 

due to creep' and will eventually result in a new equilibrium stress 

field being established, known as the Stationary State Stress 

~istribution. The component is said to have experienced complete 

redistribution of stresses, ~~d the transient creep behaviour is 

followed by steady state deformation at the Stationary State Stress. 

Marriott (8) has suggested an approximate method for quantifying transient 

creep by the superposition of a fraction of the elastic deformation on 

the steady state creep behaviour. The redistribution time is a 



- 24 -

parameter used to characterise the time taken for the Stationary 

State Stress Distribution to be reached. It is general to specify 

a redistribution time based on stresses reaching a defined fraction 

of the Stationary State values. Calladine (38) uses the parameter 

t 10 , the time for the maximum stress in a structure to be within 

10% of its stationary state value, and proposes a formula 

t = U t* ((j* ) 
10 n max 

where t*( er) denotes the time taken for the creep strain to be 

equal to the elastic strain when maintained at constant stress a, 

C! * is the maximum stationary state stress, ma.x 

and n is the stress index in the creep law. 

Bill and Mackenzie (39) propose a similar formula based on 

mean stress (er) 

= (2.10 ) 

where ~ is a cons tan t. 

Kraus (23) discusses the redistribution of stresses due to creep 

and points out that closed form analytical solutions cannot in 

general be obtained. Al though numerical methods, particularly 

the finite element method, are available, the high expense of running 

necessarily large computer programs highlights the advantages of 

approximate meth~s of solution. 

The reference stress method was first investigated by Soderberg 

(40) in 1941 and has been actively developed in recent years. The 

reference stress is a parameter which can be used to predict 

stationary creep behaviour of a component and is relatively insensi-

tive to the stress index, n, in tea creep law. The advantage of 
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the Reference stress Method is that stationary creep deformation 

can be predicted from uniaxial data at a single value of stress. 

Kraus (23) presents a detailed review of the development of the 

reference stress technique together with examples of the application 

of the method to engineering components. Hyde (41) presents a 

similar review together with an insight into the determination of 

reference stresses by experiment. 

As an alternative to the Reference Stress Method, techniques 

have been developed for bounding the deformation in situations of 

elastic-creep and elastic-plastic-creep deformation. For elastic­

creep behaviour Leckie and Martin (42) present bounds on creep deform­

ation based on the principle of virtual work which has been extended 

by Leckie and Ponter (43) fo include the effect of additional 

plastic strains. They found that effects of inherent plastic 

strains in elastic-creep behaviour was small so long as the selected 

stress fields have values of the ratio stress to yield stress which 

are less than n ~ 1 at all points in the structure. (Where n is 

the stress index in the creep equation.) 

2.2.2.2 Cyclic loading 

The effects of creep on cyclic elastic-plastic behaviour is 

particularly important during the dwell periods between the cycles 

of load. In general, the duration of the transient is significantly 

shorter than the period between successive cycles. (e.g. for the 

nuclear fuel can problem analysed by Bree, severe cyclic thermal 

loads are experienced during the rapid start-up and shut down 

procedures and th2se are separated by long periods of full power 

operation). Creep during the dwell periods will cause a redistribution 

of the residual stresses which will affect the ratchet strains 

during the subsequent cycles. 
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2.2.2.2.1 Effect of creep on the shakedown limits 

Creep during the dwell periods between cycles will, under 

sustained steady loading, cause a partial or complete redistribution 

of stress towards the stationary state stress distribution 

associated with the steady load. This in turn will modify the 

shakedown limits for the component and Ponter (44) obtains an 

analytical modified shakedown limit in the presence of creep which 

n is n + 1 times the shakedown limit for ratchetting without creep 

and concludes that effects of plastic straining can be ignored below 

this modified limit. Leckie (45) states that if Bree's (1) shake-

down limit far the nuclear reactor fuel can is reduced by the 

n factor then the contributions of plastic strains to the total 
n + 1 

accumulated strains are relatively insignificant. 

2.2.2.2.2 Analytical and experimental studies of ratchetting in 

the presence of creep 

Bree (1) considered the effect of complete redistribution 

during the dwell periods, using an elastic-perfectly-plastic model, 

where the residual stresses redistribute to that associated with 

the steady load; thus each cycle is identical to the first with an 

equal increment of ratchet strain. In his second paper, Bree (2) 

looks at the effects of partial redistribution. In both cases the 

shakedown regimes disappear with continued ratchetting occurring in 

all but the elastic region of the Bree diagram. 

Anderson (46) "carried out controlled curvature tests on bars 

of Type J04H stainless steel with creep occurring during the dwell 

periods at constant axial load in order to simulate the Bree thin 

tube problem, and thus verify Bree's conclusions on the interaction 

between dwell period creep ~~d ratchetting behaviour. Cyclic thermal 

strains are simulated by bending the bars around two mandrels of 
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opposite curvature. He investigated load combinations on the 

ratchetting boundary and in the shakedown region of the original 

Bree Diagram (i.e. without creep). The results confirm Bree's 

conclusions that the effect of creep during the dwell periods is 

to move the ratchetting boundary for a particular cyclic load . tow~~s 

lower steady load levels since ratchettL~g was apparent for all 

load combinations. 

Research into ratchetting with creep has been previously 

undertaken at the University of Nottingham by Hyde et al (10, 11). 

An axisymmetric shouldered tube component made of a lead alloy 

(1.1% Sb, 0.11% As) having both a uniform region (shank) and a 

stress concentration (fillet) has been subjected to constant axial mech-

anical load and cyclic through thickness thermal loading with creep 

during the dwell periods. The ra tchetting behaviour in the shank 

and fillet is discussed and, comparisons between experimental 

results and finite element predictions of shank ratchet strains 

are made. The general 0 hserva tions are lis ted below. 

1. The mechanical and thermal stress concentration factors in 

the fillet depress the ratchetting boundary. 

2. For mean shank s tresses below 0.94 0" ratchet strains 
y 

accumulated in the fillet were significantly larger than 

those in the shank and increased with increasing steady load. 

3. For mean shank stresses above 0.94 CS Y shank and fillet ratchet 

strains were of similar magnitude, relatively independent of 

mechanical load and Significantly larger than those below 

0.940" . y 

4. Finite element predictions using an isotropic hardening model 

and experimental results for shank ratchet strains were in 

reasonably good agreement. 
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5. A conservative estimate of ratchetting behaviour using the 

finite element technique can be made Or assuming complete 

redistribution of stresses. 

6. A plasticity-creep interaction model is required if accurate 

predictions of dwell period creep strains are required. 

Inoue and Tanaka. (47) compare analytical solutions for the 

ratchetting behaviour of a thin-walled tubular specimen (STB-35 

low carbon steel) subjected to constant tensile stress super­

imposed on cyclic torsional strains at elevated temperature . 

with experimental results. Ratchetting behaviour is investigated 

in terms of the translation and expansion of the yield surface 

and they conclude from both sets of results that the size and 

origin of the yield surface changes during an initial stage of 

reducing ratchet strains per cycle. A .-stationary state is 

eventually reached where the yield surface remains unchanged and 

ratchet strains per cycle tend towards a constant value. 

Corum et al (48) report on ratchetting tests performed on 

pipes made from type 304 stainless steel. Cyclic thermal loading, 

induced by changes in the temperature of liquid sodium flowing 

through the bore, was superimposed on steady internal pressure. 

Dwell periods of 160 hours at steady internal pressure were allowed 

between successive thermal shocks and the ratchet strain reduced 

until ratchetting finally ceased. 

Similar tests are reported Or Yarnamoto et al e+9 ) with dwell 

periods of between 24 and 48 hours. In this case, the ratchet 

strains initially reduced but eventually reached a constant non­

zero value. 
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Cousseran et al (50) have carried out ratchetting tests on 

thin tubes subjected to axial loading and strain controlled cyclic 

torsion. Type 304 and 316 stainless steel specimens were tested at 

o room temperature and at 300 C. Ini tially, the m.a terial character-

istics of the two steels were obtained at the test temperatures. The 

components were then subjected to creep ratchetting tests. The 

results of these tests are compared with experimental test data from 

other sources on an 'efficiency diagram' (see Figure 2.12) where 

secondary stress rati.o, SR, is a function of the primary stress, C1 , 

and the secondary stress range, !::::.. Q. 

i.e. SR = AQ (2.11) 
(J + o..Q 

and the efficiency index, V, is the ratio of primary stress to a 

notional effective stress, er eff' 

V = (2.12) 

The effective stress is defined as an equivalent primary stress 

which, over the same test duration, would produce the same inelastic 

strain as the combined primary and secondary stress for the ratchetting 

test. The effective stress is obtained from the material character-

is tics • 

From Figure 2.12 it is seen that all the results appear to fall 

into a narrow band ~d a bound for the avoidance of ratchetting, 

based on the Bree (1) ratchetting boundary is suggested which is 

ver,y conservative. Design limits on strain can be used in conjunction 

with the efficiency ~iagram to obtain acceptable levels of primary 

and secondary stress. It is suggested that less conservative estimates 

of allowable stress levels could be obtained if more experimental 

data were available. 



- 30 -

2.2.2.2.3 Approximate Solutions 

Ainsworth (7) '\ presents a bounding technique for predicting 

creep ra tchetting oohaviour. From the principle of virtual work 

he obtains an upper bound for elastic-plastic-creep strains based 

on computations for elastic-plastic cycling in the absence of 

creep with an additional steady load in the direction of the 

required displacement. Consequently a detailed elastic-plastic­

creep analysis can be avoided. Ainsworth 0 btained deformation 

bounds for a beam subjected to constant axial load and cyclic 

curvature and a pressurised tube subjected to repeated thermal 

shocks, which compare favourably with analytical solutions and 

experimental results respectively. 

O'Donnell and Porowski (6) obtained a bound on creep strain 

for the Bree thin tube problem in the shakedown and reverse 

plasticity regions. The existence of a permanent elastic core 

for cyclic behaviour in these regions (which is also true in the 

presence of creep) is used to obtain an upper bound on creep 

strains using the maximum value of elastic core stress during a 

cycle. They show tha. t elas tic core s tresses are a maximum after 

each start-up and uniform across the elastic core and hence 

any point in the core can be considered representative of creep 

across the whole section. The bound therefore only requires know­

ledge of the maximum elastic core stress and the uniaxial creep 

behaviour of the material at that stress and relevant opera. ting 

temperature . 

Leckie (45) presents a detailed review of bounding techniques 

for cyclic loading at elevated temperature. Theories for ratchetting 

and Shakedown, with and without the effects of creep, are discussed. 
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2.3 Summary. 

2.J.l Models for material behaviour 

The choice of model for a particular material requi-~s 

detailed information of the true cyclic behaviour if accurate 

predictions of component behaviour are to be obtained. In 

particular, the material ratchetting phenomenon of 316 Stainless 

Steel and the lead alloy used by Yahiaoui (12) can only be 

represented by models like Jhansale (22) and Goodman and Goodall 

(21). The Mroz (18,19) model describes cyclic material 

behaviour in a qualitative way. It has the disadvantage that it 

uses a linear approximation to the true stress-strain behaviour 

and cannot model the smooth transition between elastic and 

plastic regimes. 

For the modelling of uniaxial creep data, the Norton-Bailey 

power law (9) is commonly used and requires a 'straight forward' 

determination of the material constants. This creep law has been 

adopted for the lead alloy model material used in both this 

combined project (12) and the previous project (10, 11, 25) 

2.3.2 Cyclic behaviour of components 

The references cited present analytical and experimental 

stUdies of component cyclic behaviour including the effects of 

creep, generally for si~ple geometries. Redistribution of stresses 

due to creep during the dwell periods is known to reduce the non-

ratchetting regime and have an adverse effect on the accumulation 

of ratchet strains. The effects of creep during dwell periods on 

Subsequent ratchetting behaviour is bounded by the 'no creep' 

condition and the case where complete redistribution of stresses 

to the steady state stress distribution occurs during each dwell 

period. There is only a limited amount of reported research on 
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the influence of stress concentrations on elastic-plastic or 

elastic-plastic-creep behaviour. 
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Figure 2.1 An example of Material Ratchetting. 
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a) initial isotropic conditions 

Figure 2.7 The Mroz model (18). 

E 

b) conditions after uniaxial loading 
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Regions: E - elastic 
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CHAPTER THREE 

3. COMPONENT SELECTION 

3.1 Introduction 

Five components subjected to the combined effects of steady 

and cyclic loading, both with and without the effects of creep 

were selected for the ratchetting behaviour study. They were 

chosen to provide a wide range of configurations and loadings 

which are representative of realistic engineering problems, and 

also to enable gener.alisations about the effects of geometry, 

loading and material behaviour to be made. The components, 

loaddngs and relevent figures are listed in Table 3.1. Detailed 

descriptions of the loadings are given in Chapters 4-6. 

Three of the five components (flanged tube, stepped beam and 

shouldered tube) have both a uniform section (the shank) and 

stress concentrations in order that direct comparisons between 

the behaviour in uniform sections and stress concentrations can 

be made. The flanged tube and stepped beam components have been 

specifically developed for the combined experimental (12) and 

analytical projects. The final choice of these two components 

resulted from a preliminary investigation into suitable components 

taking into account both experimental and analytical requirements (51). 

The background to the subsequent choice of flanged tube and stepped 

beam components is given in section 3.2. Details of the 

experimental work is reported by Yahiaoui (12). The 'hole-in-plate' 

and circular plate components appeared in the initial li~b of 

possible candidates for the combined experimental and analytical 

project but were rejected in favour of the flanged tube and 

stepped beam, mainly on the grounds of experimental difficulty 
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(see section 3.2). The 'hole-in-plate' component is a 'classical' 

stress concentration problem which is closely related to the 

'tube-plate' situation. The circular plate differs significantly 

from the other components in so far as the steady load induces 

tensile, compressive and shear stresses on ratchetting sections; 

in the other components the steady load stress on the ratchetting 

sections is dominantly tensile. The ratchetting behaviour of this 

component, in the absence of creep effects, has been studied - by 

Goodman and Goodall (21 Land Hyde (32). , The shouldered tube, 

a thin tube w:hth:'. uniform shank and stress concentration, was 

developed for a previous project (25,52,53,54). The finite 

element mesh and temperature files (used to apply the thermal 

loading cycles - see Appendix I) for this component, and fer the 

circular plate, were already available. 

3.2 Background to the Selection of Two Components for the Joint 

Experimental and Analytical Project 

In the initial stages of the project a considerable number 

of components were suggested as suitable for ratchetting tests. 

These are listed in Table 3.2 and they fall into two major loading 

categories:-

1. Constant mechanical loading with cyclic mechanical 

loading 

2. Constant mechanical loading with cyclic thermal 

loading. 

An early decision that at least one component of each loading 

type should be analysed in detail was made. The final choice of 

components depended largely on the following factors:-
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(a) ease of manufacture and testing; 

(b) ability to design a suitable loading rig for the 

pur.ely mechanically loaded component; 

(c) the existence of a rig previously used for shouldered 

(d ) 

(e ) 

tube te"sts (54 ) ; 

plane stress, plane strain or axisymmetric designs 

should be adopted to minimise computing costs and so 

that existing finite element programs could be used; 

the results should have some practical relevance and 

the components have both a uniform section and a 

stress concentration. 

It was important that an early decision was made on the 

choice of components, since the design, manufacture and testing 

and 

of rig(s) would take a significant portion of the available time 

(12). A new rig for the purely mechanically loaded component was 

essential and the choice of component was made the highest priority 

(section 3.2.1). If the existing shouldered tube rig was to be used 

for the mechanically/thermally loaded component then more time for 

a decision on a suitable component was available. Before deciding 

to modify the existing rig , other alternative components were briefly 

considered (section 3.2.2). 

3.2.1 Choice of component with constant mechanical loading and 

cyclic mechanical loading 

Within the constraints described above, particularly those 

relating to the experimental work in the Joint project, it was 

considered that the most suitable candidate was a uniform thickness 

stepped beam with uniform rectangular cross-section in the shank 
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and stress concentration in the fillet. The loading would be 

cyclic in-plane bending superimposed on steady axial load. 

Analytical solutions in the shank are available for load controlled 

bending (5) and with strain controlled bending, the problem is 

analogous to the Bree model (1, 2). Factors considered in 

reaching the final shape of component were:-

a) the nature and size of the stress raiser; 

b) the length of the shank required to ensure a 

uniform stress region; and 

c) the experimental limitation on overall length_; 

including the clamping arrangement. 

The final choice of component, the stepped beam, is shown in 

Figure 3.2. It has a shank depth of 25mm and a fillet radius of 

7.5mm. This configuration results in phctoelastically determined stress 

concentration factors in tension and pure bending of 1.66 and 1.38 

respectively (55). 

3.2.2 Choice of component with constant mechanical loading and 

cyclic thermal loading 

The three most likely candidates were considered to be:-

a) a 'hole-in-plate' component with radial heating of 

the hole surface; 

b) an axisymmetric component with induction heating; and 

c) an axisymmetric component with fluid heating. 

Options a) and b) would require the design and manufacture 

of a new rig whereas the existing rig (54) could be modified for 

option c). 
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3.2.2.1 'Hole-in-plate' component 

Preliminary finite element calculations were performed with 

the lead alloy material data to determine a suitable transient 

thermal load and to estimate the likely power requirement. It 

was found that a ramp change in hole surface temperature of 

600 Cin 10 seconds produced levels of thermal stress likely 

to cause ratchetting when combined with the stress distribution 

due to steady mechanical loading. However the power requirement 

would be in the range 90-140W. It was considered that this level 

of heating over the -10mm thickness would be very difficult to 

achieve. A further disadvantage would be that the distribution 

of heat flux around the hole surface would vary as incremental 

growth caused changed in the shape of the hole and this would 

make finite element ~odelling of the transient difficult. The 

'hole-in-plate' option was subsequently dropped in favour of an 

axisymmetric component. 

3.2.2.2 Axisymmetric component with induction heating 

Although induction heating results in rapid changes in 

temperature (and hence high thermal stresses) the high cost of a 

suitable power supply unit (-1iKW) was found to be a major drawback. 

Also it was anticipated that the strain gauge performance might be 

impaired by the effects of electro-magnetic induction. The 

induction heating option was dropped in favour of the fluid 

heating technique already developed for the shouldered tube (54). 

3.2.2.3 Axisymmetric component with fluid heating 

The component chosen for detailed analysis is the flanged 

tube shown in Figure 3.1. It is a thick cylinder (Old = 2) with 

a flange; a uniform section in the shank and a stress concentration 
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in the fillet. Based on previous experience with strain gauging 

for the shouldered tube component, where water flowed along the 

outside surface as well as through the bore, it was decided to 

apply thermal loading by water flowing through the bore only. 

The outside surfaces would be open to the atmosphere and effect­

ively insulated. The final dimensions of the component were 

based on:-

a) the size limitations of the existing rig (54) 

(i.e. overall length -200mm); 

b) a ~ength: bore machining limitation of 10:1; 

c) adequate strain gauging in the fillet region 

using a band of 5 E.R.S. gauges; 

d) a small flange diameter to facilitate casting; 

e) a suitable length of shank to ensure uniform 

stress conditions under steady axial and thermal 

loading; and 

f) a suitable loading arrangement with no influence 

on stress distributions in the shank and fillet. 

Conditions e) and f) were investigated using a finite 

element model of the component and full details of the analysis 

are given elsewhere (51). 
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Table 3.1 Components and loadings 

Component Steady Loading Cyclic Loading Figure 
Number 

Flanged tube Axial tension Through thickness 3. 1 

axisymmetric temperature 

variation 

Stepped beam Axial tension In-plane bending 3.2 

-
'Hole-in-plate' Tension Heating and cooling of 3.3 

hole surface 
1-

·Circular plate Transverse pressure Through thickness 3.4 

1-
temperature variation 

Shouldered tube Axial tension Through thickness 3.5 
axisymmetric temperature 

variation -



- 52 -

Table 3.2 Components considered for joint experimental and analytical project 

LOADING 
TYPE 

Steady Varying 

1. Plane stress/strain 

a] Rectangular bar tension bending [load controlled] 

b] " " " thermal 

c] Bree's problem " bending [curvature controlled] 

d] Stepped beam " bending [load controlled] 

e] Perforated strip, 1 hole " bending 

f] " " " " " thermal 

g] " " row of holes " bending 

h] Perforated sheet, 1 hole tension in tension in y-d i rection 
x-direction 

j] " " array of holes " " " " 
k] " " " " " " thermal 

2. Axisymmetric 

a] Pla i n drum head pressure thermal 

b] " " " " conc. load 

c] Axially bossed drum head " " " 
d] " " " " " thermal 

e] Drum head with axial nozzle " " 
f] " " " " " " cone. load 

g] Circular plate tension bending 

h] " " " thermal 

j] " " " pressure 

k] Shouldered t ube . " thermal 

1] Flanged tube " " 
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CHAPTER FOUR 

4. FLANGED TUBE 

4.1 Introduction 

The development of the flanged tube component (Figure 3.1) has 

been discussed in Section 3.2.2. The behaviour of the flanged tube 

under conditions of 

( i) steady mechanical axial load; and 

(ii) transient thermal loading 

is discussed here. 

When the two modes of loading are combined (i.e. steady 

mechanical axial load and cyclic variation in thermal loading) the 

component may display the phenomenon of ratchetting with creep in 

the dwell periods between thermal shocks affecting the ratchetting 

behaviour. 

As a preliminary to the study of the whole component, a detailed 

study of the shank region is presented. This gives an insight into 

the component's behaviour using a simple finite element model and 

hence efficient use of computing time. Also it enables a wide 

range of loads and different material behaviour models to be 

examined. In addition to a description of the component behaviour, 

comparisons with the experimental results of Yahiaoui (12) are made. 

4.2 Shank Analysis 

4.2.1 Finite element model 

A four element through thickness axisymmetric model of a 10 mm 

length of shank is used with constraints of constant axial displace­

ment on one face and zero axial displacements on the other. using 

the axisymmetric 8-noded isoparametric elements. 
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4.2.2 Data 

Basic material data is for the lead alloy used by Yahiaoui (12) 

with a Norton-Bailey Power law to define uniaxial creep behaviour 

and no interaction between creep and plastic strains. The data is 

summarised in Table 4.1. The elastic-perfectly-plastic, isotropic 

hardening and kinematic hardening models are used to define the material 

behaviour. Appendix I lists the I standard' data used in the analysis. 

4.2.3 Thermal loading cycle 

A thermal loading for the shank (and hence whole component) was 

determined from the experimental results of Yahiaoui (12). 

A thermal shock consists ofl-

(i) step increase in bore fluid temperature of 53.5°C, 

(ii) a transitory period of 20 seconds for conditions to 

stabilise with the bore fluid maintained at the 

increased temperature and all other surfaces assumed 

to be insulated, 

(iii) step reduction in bore fluid temperature of 53.5°C, 

(iv) as (ii) with bore fluid maintained at the original 

temperature. 

The finite element predictions of through thickness temperature 

difference during the transient are compared with the experimental 

resul ts in Figure 4.1. There is reasonable agreement between the 

results. The most severe conditions occur during the transient 

at t ~ 0 • .5 secs •• 

The incremental approach used in finite element plasticity 

calculations requires that thermal (and mechanical) loads are applied 
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incrementally and nodal temperature distributions at successive 

time increments up to 20 seconds for both halves of the thermal 

cycle were computed and stored on temperature files. To ensure 

that the most severe transient conditions were included, a small 

time increment of 0.1 seconds was used. This resulted in an 

unacceptable number of increments for each half cycle (i.e. 200). 

By considering the temperature/time distributions, these temperature 

files were edited down to an acceptable number of increments (i.e. 15) 

without affecting the severity of the transient. The times chosen 

were t = 0.1 to 1.1 s (in O.ls steps), 2.1, 3.1, 4.1 and 20s. The 

temperature distributions during the first half of a thermal cycle 

are shown in Figure 4.2 which confirms that steady state conditions 

are effectively attained within 20s and also shows the non-linear 

characteristic through t~e thickness. 

The resulting variations in elastic stresses (axial and hoop) 

are shown in Figure 4.3 up to and including the most severe con­

dition (t = 0.5s). From then on the stresses reduce to zero. 

The increase in bore fluid temperature produces a compressive 

axial and hoop stress in the region of the bore and a tensile stress 

region towards the outside. 

The eqUivalent linear temperature difference 6T for the 

incremental temperature distributions have been obtained by the 

approach suggested by Yamamoto et al (49). 

+d/2 

( "T) = 12 J T() d ~ i 1 t li 2 Y .y~ Y equ va en near d 
_d/2 

i.e. 

and a maximum value of 34.9°C occurs when t = 0.5s. This yields 

a maximum normalised thermal stress of 0.97 using the Bree 

-------------------------------------------------------------------------
cl -

j 
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~\~\-~ ~~ ~ ~ \-ok ~cJJ..... v.,.., U.~()\I~ ~\).c&'CM.... 



equation (1) 

i.e. 2(1--\)'1 
Y 

- 61 -

The maximum equivalent thermal stress range for a complete cycle, 

which includes both heating and cooling, is therefore 1.94. 

4.2.4 Cyclic thermal loading with constant axial load 

The behaviour of the shank with constant axial mechanical load 

and intermittent thermal shocks ((i) to (iv) in Section 4.2.3) 

is discussed in this section. The creep ratchetting behaviour is 

bounded qy the 'no creep' condition (zero dwell period between 

shocks) and 'complete redistribution' (in this case the resulting 

stress distribution, after creep, is a uniform axial tensile stress). 

Elastic-perfectly-plastic and linear hardening models are considered; 

the numerical values of ratchet strain quoted are generally incre-

ments in the axial strain. 

4.2.4.1 'No creep' condition 

4.2.4.1.1 Elastic-perfectly-plastic material model 

Ratchetting Mechanism 

The axial and hoop stress distributions due to initial loading, 

at the most severe conditions during the first and second halves 

of the first thermal shock and at the end of the first thermal 

shock are shown in Figui:e 4.4 for an axial load of 0.7 of the limit 

load. For the first half of the shock there is no further plastic 

straining after t = 0.6s and at the end of the half cycle the accumulated 

components of plastic strains are also shown in Figure 4.4. During 

the second half of the cycle yielding is again evident for the 

first 0.6 seconds and at the end of the first ' cycle plastic strains 
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have been accumulated over approximately 2/3rds of the section, 

with the residual stress distribution being significantly different 

from that due to initial loading. The ratchet strain for the first 

cycle is 0.107 ~ • A steady cyclic state is established after the 
y 

first cycle. The axial and hoop stress distributions during the 

second and subsequent cycles are shown in Figure 4.5. The whole 

section experiences some plastic straining during the complete 

cycle. Again plastic straining is only evident during the first 

0.6 seconds of each half cycle. Also the residual stress distributions 

at the end of the cycle in Figure 4.5 are practically identical to 

those after the first cycle in Figure 4.4. This ratchetting 

mechanism is different from that of the 'Bree' tube for which a 

region around the mid thickness position remains at the yield 

stress throughout a complete cycle. The ratchetting process is 

continuous with the second and subsequent cycles contributing an 

equal amount to the accumulation of ratchet strain (0.06 E for 
y 

each cycle). 

The accumulation of ratchet strains during the first ten 

cycles is shown in Figure 4.6 where the normalised accumulation of 

ratchet strain at the end of the jth cycle is given by 

and ~£ ~ is the ratchet strain for the i th cycle. 

Effect of mean load on ratchetting behaviour 

4.1 

The discussion of the previous section has shown that the 

ratchetting behaviour of the flanged tube shank (with an elastic­

perfectly-plastic material model) can be defined by two parameters; 

the first cycle ratchet strain and the constant ratchet strain in 
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subsequent cycles. The variation of these parameters with mean 

load is given in Table 4.2 (together with the equivalent results for 

complete redistribution which will be discussed later) and shown 

graphically in Figure 4.7. The ratchetting boundary appears to be 

at ~ ~ 0.68 below which the first cycle ratchet strains are 
L 

relatively small; above the ratchetting boundary both the first 

cycle and steady state ratchet strains increase very rapidly with 

increasing load. At mean loads above .- 0.72 PL steady state 

ratchet strains are greater than in the first cycle. 

4.2.4.1.2 Linear hardening models 

For a bilinear representation of the monotonic stress-strain 

curve, a range of values for the ratio of plastic modulus to 
E 

elastic modulus, ~, has been considered which is intended to cover 

both the lead alloy (12) at around ambient temperature and 316 stain­

less steel at temperatures in the range 500-650oc (3). The range 
E 

of values for ~ is 0.01, 0.05 and 0.1. Both isotropic and linear 

kinematic hardening models were investigated; for all the load cases 

considered there was no significant difference in the results for 

the two models and hence the description 'linear hardening' is 

used. Detailed inspection of the finite element results showed 

that the two models gave very similar results because there was 

no significant reverse yielding for the thermal loading case 

investigated. 

Ratchetting Mechanism 

The mechanism of ratchetting with a linear hardening model 

is similar to that for the elastic-perfectly-plastic material model 

with the obvious exception that ratchetting is no longer a continu-

ous process since shakedown will eventually occur when the increase 
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in yield stress is such that transient stresses are purely elastic. 

By comparison with the behaviour with an elastic-perfectly-plastic 

material model in Figures 4.4 and 4.5, the change in yield stress 

will result in cycle dependent residual stress distributions with 

a monotonic reduction in ratchet strain per cycle after the first 

non-representative cycle, as shown in Figure 4.8 for a mean 

load of 0.9 of the limit load (based on initial yield*). The 

results for an elastic-perfectly-plastic material model, taken from 

Table 4.2, are included. The magnitude of the ratchet strains and 
E 

number of cycles to shakedown increase with decreasing Ef and are 
E 

bounded qy the continuous ratchetting for Ef = 0 and the purely 
E 

elastic model (~ = 1) for which there is no ratchetting. 

Effects of mean load and EP/E on ratchetting behaviour 

For hardening materials, the definition of ratchetting behaviour 

is more complex since ratchet strains vary from cycle to cycle. 

Figures 4.9 to 4.12 show the variation of normalised accumulated 
E 

ratchet strains with mean load and ~ after the 1st, 2nd, 5th 

and 10th cycles respectively. Figure 4.13 shows the total accumulated 
E 

ratchet strains for ~ = 0.05 and 0.1 together with an indication 

of the number of cycles to shakedown. The eqUivalent results for 
E t = 0.01 were not obtained because very many cycles would be 

required before ratchetting stops (as is apparent from Figure 4.8). 

Figure 4.13 shows that for mean loads below - 0 .6 of the limit load, 

for which there is no ratchetting after the first cycle, there is 
E 

no difference in the first cycle ratchet strain for Ef = 0.05 and 

0.1 whereas for ~ > 0.6 the hardening of the material has a 
L 

significant effect on the accumulated ratchet strain and cycles to 

shakedown. 

* For consistency with the elastic-perfectly-plastic results, a. 
limit load, based on the initial yield stress, is used throughout this 
document. 
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An alternative method for presenting the data, including 

the elastic-perfectly-plastic results is used in Figure 4.14. This 

plot enables the accumulated ratchet strain in 10 cycles to be 

estimated for a given material hardening and axial load. 

The variation of normalised ratchet strains in the second cycle 
E 

with mean load for various values of ~ is shown in Figure 4.15. 

The ratchetting boundary for a given thermal loading is defined 

as the mean load below which there is no incremental growth after 

the first cycle. Figure 4.1.5 indicates a ratchetting boundary 
p 

at p ~ 
L 

0.67 which is relatively insensitive to 
E 

the degree of 

material hardening for the range 0" ~ (0.1. 

4.2.4.2 Complete Redistribution 

4.2.4.2.1 Elastic-perfectly-plastic material model 

Ratchetting Mechanism 

The axial and hoop stress distributions due to initial loading 

and during the first and second halves of the first thermal cycle 

are identical to those for the 'no creep 'condition shown in Figure 4.4 

for~ = 0.7. However, between the end of the first thermal 
L 

cycle and the beginning of the second thermal cycle, the stresses 

are allowed to completely redistribute to the stationary state stress 

distribution which is the same as the initial uniform stress dis-

tr1bution due to the mechanical loading. For the finite element 

computations, complete redistribution is assumed once the through 

thickness axial stress variation is within 1% of the mean stress. 

With an assumption of zero interaction between plastic and creep 

strains, the second and subsequent cycles will be identical to the 

first cycle with an equal increment of ratchet strain for each 

cycle. The accumulation of ratchet strains during the first ten 
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P cycles for p- = 0.7 is compared with the equivalent 'no creep' 
L 

resul ts in Figure 4.6. For this particular mean load, the 

'complete redistribution' assumption provides the upper bound on 

ratchetting behaviour. The identical behaviour for all cycles 

under 'complete redistribution' leads to two important observations:-

1. for continued ratchetting it is not necessary for the 

whole section to suffer plastic deformation during a 

cycle (see Figure 4.4) as is the case under 'no creep' 

conditions; 

2. if the first cycle produces any plastic deformation 

then the ratchetting process is continuous. 

The second observation implies a shift in the ratchetting boundary 

to the elastic/plastic boundary. Ratchetting can only be avoided 

if the combination of mean axial load and cyclic thermal load 

leads to purely elastic behaviour. 

Effect of mean load on ratchetting behaviour 

The 'no creep' and 'complete redistribution' first cycle 

and steady state ratchet strains, for a range of axial loads 

o to 0.9 PL are given in Table 4.2. As explained above, steady 

state 'complete redistribution' values are practically* the same as 

the first cycle 'no creep' values which:· are compared with the 

steady state 'no creep' values in Figure 4.7. It may be seen from 

Figure 4.7 that for values of ~ < 0.72 the creep in the dwell 
L 

periods increases the steady state ratchet strain but above this 

P value of p , the creep reduces the ratchet strains. This is 
L 

because the complicated transient thermal loading conditions 

result in a residual stress distribution at the end of a thermal 

P cycle which, for p > 0.72, is more favourable to ratchetting 
L 

and leads to a larger ratchet strain in the subsequent cycle than 

* within computational accuracy. 

( 



- 67 -

would be obtained with a uniform stress distribution resulting 

from complete s tress redistribution. The residual equivalent 

stress distributions at the end of the first thermal cycle for 

various mean loads are shown in Figure 4.16; these do not provide 

any obvious explanation of the differences in behaviour for axial 

loads above and below ~ = 0.72. 
L 

Creep during the dwell periods 

The normalised strains which accumulate during the dwell 

periods ( e d) for the first 3 complete cycles for a mean load of 

0.7 PL are shown in Figure 4.17; the strains are plotted against 

time function r 

where r = AE t1 n-1 t m 
nom 

LA, n and m are constants in the creep law, 

stress and t is the time J 

4.2 

cs is the mean nom 

The results are aSymptotic to straight lines which all have the 

gradient of the 'virgin' creep curve at a constant stress equal 

to the mean stress, The exact gradient of these straight lines 

is therefore ~ . 
L 

= 

= 

'virgin' creep at a' in time t nom 
AE a n-l t m 

nom 

(J' nom 'P = er y PL 
4.3 

A. t. d/ t y is the normalised increment of strain associated with 

stress redistribution and is equal for each dwell period since 

residual stress distributions at the start of each dwell period 

are the same. The variation in ~ t. d/ E wi th mean load is 
y 
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given in Table 4.3 and Figure 4.18. The values given are averages 

over 10 dwell periods. There appears to be very little variation 

in the increment with mean load and the absolute values are also 

very small. It should be noted that accurate predictions for 

l:::. €. dj E y are difficult both because of the small magnitude and 

because the predictions depend on an accurate determination of the 

steady state strain rate, (E. dj E. )jd r, using a least squares y 

fitting technique. 

The variation in redistribution time with mean load is discussed 

in Section 4.2.4.2.2. 

4.2.4.2.2 Linear liardening models 

Ratchetting Mechanism 

The mechanism is similar to that with an elastic-perfectly-

plastic material as the stress redistributes to the ini(ial uniform 

stress distribution during each dwell period. However, the increase 

in yield stress during a thermal shock results in a monotonic 

reduction in the ratchet strains produced by each successive 

thermal shock, including the first shock, with shakedown eventually 

occurring, as shown in Figure 4.19 for a mean load of 0.9 PLo The 

equivalent results for an elastic-perfectly-plastic material model 

are also included in the figure. From a comparison with the 'no 

creep' results in Figure 4.8, it may be seen that the 'no creep' 

condition leads to a greater accumulation of ratchet strain in the 

firs·t,. ten cycles than the 'complete redistribution' condition for 

this particular mean load, particularly for low values of ~ . 
E 

Although shakedown will eventually occur for a hardening material 

at all loading combinations, there can be a significant accumulation 

of ratchet strains. 
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Effects of mean load and EplE on rat~hetting beh~iour 

The variation of normalised accumulated ratchet strains with 

mean load after the 1st, 2nd, 5th and 10th cycles are compared 

with the results for 'no creep' in Figures 4.9 to 4.12. At high 

mean loads the 'no creep' condition leads to a greater accumulation 

of ratchet strains, whereas the 'complete redistribution' condition 

provides the upper bound on ratchetting behaviour for smaller mean 

loads. The 'cross-over' value of ~ may be seen to depend on both 
L 

the number of cycles and on the hardening parameter, EP/E. 

Considering the accumulation in 10 cycles, Figure 4.12, the cross­

over value of ~ increases from"" 0.71 to f"'J 0.90 for a change 
E L 

Of~. from 0.01 to 0.1. 

The variation of normalised accumulated ratchet strains in 
E 

10 cycles with mean load and f may be seen in Figure 4.20. By 

comparison with the equivalent plot for the 'no creep' condition 

(Fig. 4.14) it may be seen that if the combination of mean load 
E 

and 1f results in an accumulation of more than twice the yield 

strain in 10 cycles then the 'no creep' condition is more severe, 

whereas if the accumulation of ratchet strains in 10 cycles is less 

than the yield strain, the complete redistribution case is more 

severe. 
E 

The total accumulated ratchet strains for -£ = 0.05 and 0.1 
E 

are compared with the equivalent results for 'no creep' in Figure 

4.13. It is apparent that there is very little difference in total 

accumulated ratchet strains for the 'no creep' and 'complete 

redistribution' conditions. For small mean loads 'complete 

redistribution' leads to a significant increase in the number of 

cycles to achieve shakedown, but with only a small increase in the 

accumulation of ratchet strains. At higher mean loads, stress 
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redistribution has little effect on the total accumulation of 

ratchet strains or the number of cycles to shakedown. 

Creep during the dwell periods 

The normalised accumulated dwell period strain after the 1st, 
E 

5th and 10th dwell periods for the range of ~ values (including 

elastic-perfectly-plastic) is shown in Figure 4.21 for a mean load 

of 0.9 of the limit load. It may be seen that the behaviour is 

practically independent of the degree of material hardening. The 

variation in time function for complete redistribution,r R' with 

mean load and hardening assumption, including the elastic-perfectly-

plastic results, is presented in Figure 4.22. As stated earlier, 

redistribution was assumed to be complete when the through thick-

ness variations in stress were less than 1% of the mean stress. 

There is little variation 
p E 

tribution with p- and ~. 
L 

in the time function for complete redis­

p 
For p- = 0.3 the creep strain rates are 

L 
comparatively small and redistribution times are very large. It is 

considered reasonable to assume that the time function is independent 

of m~an load and the degree of material hardening. 

4.3 Analysis of the Whole Component 

4.3.1 Finite eleme nt model 

The 50 element, axisymmetric mesh used to model the flanged tube 

component is shown in Figure 4.23. Emphasis has been placed on adequate 

modelling of the fillet region while restricting t he number of elements 

to 50. The right hand end of the mesh (flange centre plane) is con-

strained to have zero displacements i n the axial direction. Axial 

loading is applied to the left hand end which has a constant axial dis-

placement constraint. AXisymmetric, 8-noded, isoparametric elements 

are used. The justification for using this mesh is discussed in Appendix 

rI. When surface stress or strain results are quoted, data has been 

obtained for the Gauss points nearest to the surface, shown in Figure 4.23 
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4.3.2 Data 

The lead data given in Table 4.1 is used. An elastic-perfectly­

plastic material assumption is used for investigating the ratchet­

ting behaviour of the component. Where comparisons between finite 

element predictions and the experimental results of Yahiaoui (12) 

are made, more realistic multilinear representations of the lead 

alloy uniaxial stress-strain data, shown in Figure 4.24, are used. 

There is a significant difference in the stress-strain behaviour of 

the lead alloy at the extremes of the operating temperature range 

(i.e. 20 0 C and 76°C) and the bands of experimental data for both 

extremes are modelled. For these comparisons a Norton-Bailey Power 

Law for creep, with constants for the lead alloy obtained by 

Yahiaoui (12), is used, 

Le. EC = 8.67 x 10-58 (57.36 to.375 ((J in N/m2, t in hours) 4.4 

with a strain hardening assumption. 

For a similar lead alloy, it has been shown that the von Mises 

yield criterion and Prandtl-Reuss flow rules are the most suitable of the 

coremon flow theories (41) and these theories have been used for this 

analysis. 

4.3.3 Axial loading 

4.3.3.1 Elastic stresses 

The elastic stress distributions due to axial load along the 

shank outside surface and around the fillet are given in Figure 4.25 

and along the bore surface are given in Figure 4.26. The values 

at the Gauss points nearest to these surfaces are plotted; the 

normal and shear stresses should be zero at the surface. For both 

surfaces the meridional stress is dominant and the highest stresses 

occur at the first Gauss point into the fillet. Extrapolating 
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fillet Gauss point stresses to the surface gives an elastic 

mechanical stress concentration factor of 1.53. Figure 4.27 shows 

the 'exaggerated' deformed shape for a mean axial load of 0.7 PLO 

The displacement scale is much greater th~~ the dimension scale, 

hence the term 'exaggerated' deformed shape. 

4.3.3.2 Elastic-plastic behaviour 

The growth of the plastic zones with increasing axial load up 

to collapse for an elastic-perfectly-plastic material is shown in 

Figure 4.28. Yielding initiates in the fillet and this plastic 

zone grows in towards the shank. Yielding in the shank is not 

evident until very high loads are applied and the fully collapsed 

component still retains a large elastic region in the shank 

adjacent to the fillet. It would appear that the shank length is 

insufficient for fully uniform conditions to be reached. However the 

maximum stress variation of 1% is considered to be reasonable. The 

finite element predictions for elastic-plastic meridional strain dis-

tributions along the outside surface (based on the idealisation of stress 

-strain behaviour - Curve A in Figure 4.24) are compared with the experi-

mental results of Yahiaoui (12) in Figure 4.29. Although t here is 

good agreement at low mean load (~ = 0.72), there is a significant 
P L 

difference at high mean loads (p- = 1.10) when plastic strains are large. 
L 

Other points of note from Figure 4.29 are:-

1. the finite element predictions indicate a shift in the 

point of maximum strain in the stress concentration wit h 

increasing load, 

2. both finite element predictions and experimental results. 

show the rate of increase of shank strain to be greater 

than those in the fillet so that for ~L = 1.10, shank 

strains exceed the peak values ir. the stress concentration. 
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4.3.3.3 Elastic-creep behaviour at constant axial load 

The effects of creep on the meridional stress distribution 

along the outside and bore surfaces are shown in Figures 4.30 and 

4.31 respectively. Creep has no effect on shank stress, whereas 

in the fillet region there is a considerable redistribution of 

stress and reduction in peak stress (Figures 4.30 and 4.31). Along 

the bore surface the transition between shank and flange stress is 

accentuated by creep and there is a reduction in the meridional 

stress in the region of the flange. 

4.3.4 Thermal loading cycle 

The thermal loading applied to the whole component is 

nominally identical to that used by Yahiaoui (12) in his experimental 

testing of the same component, and has been discussed in Section 

4.2.3 for the analysis of the shank. The temperature files were 

created and edited in the same way as for those used in the shank 
I 

analysis. The elastic theT~~l stresses during the first half of 

a thermal shock were computed in order to obtain a value for the 

thermal stress concentration factor in the fillet. Figure 4.32 

shows the time variation of elastically calculated meridional 

thermal stresses along the shank outside surface and at the most 

severe point in the fillet. The thermal stress to yield stress 

ratios at Gauss points nearest to the surface in the shank and 

fillet are 0.5 and 0.83 respectively. Extrapolation of these peak 

conditions to the shank and fillet surfaces gives a thermal stress 

concentration factor of 1.81 in the fillet. Also peak fillet 

thermal stress occurs approximately 0.3 seconds after the peak 

has been reached in the shank. 



- 74 -

4.3.5 Cyclic thermal loading with constant axial load 

4.3.5.1 'No creep' condition 

4.3.5.1.1 Elastic-perfectly-plastic material model 

Ratchetting Mechanism 

The regions of plastic growth during the first and second 

halves of the first thermal shock for ~ = 0.7 are shown in 
L 

Figure 4.33. The first thermal shock produces an increment of 

ratchet strain in the shank and the maximum ratchet strain occurs 

at the 'peak fillet' position. There is an 'elastic core' throughout 

the component. After a few cycles a steady cyclic state is reached 

where each shock produces an equal amount of ratchet strain, 

both in the shank and at the 'peak fillet' position. The regions of 

additional plastic straining during the 10th thermal shock (i.e. 

steady cyclic state) are shown in Figure 4.34. Whereas the whole 

shank section suffers plastic deformation during the shock, the 

major portion of the flange remains elastic and there is a 

relatively small plastic zone adjacent to the bore. In the fillet 

region, strains are accumulated at a more rapid rate as can be 

seen in Figure 4.35, which shows the distribution of 10th shock 

meridional ratchet strains along the outside of the shank and around 

the fillet. Figure 4.36 shows the 'exaggerated deformed shape' 

at the end of this shock and the incremental deformation due to 

the 11th shock. 

The largest strains occur in the fillet and the shank region 

adjacent to the fillet and result in considerable thinni ng of the 

section as well as axial strain. A small region of reverse plas-

ticity is apparent from Figure 4.34 in the region of the bore surface. 

Reversed plasticity is defined by a change in the direction of plastic 

straining as illustrat ed in Figure 4.37 where components of plastic 

\ 
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strain are plotted in the ~ plane for point A in the reverse 

plasticity region (see Figure 4.34). The fourth thermal shock is 

shown in detail; there is an overall reduction in equivalent plastic 

strain during the first half of the thermal shock and an increase 

during the second half. Furthermore the directions of plastic 

straining during the first and second halves of the cycle are 

virtually opposite. 

The accumulation of shank and peak fillet meridional ratchet 

strains during the first ten cycles for this mean load are shown 

in Figure 4.38. A steady cyclic state is reached in the fillet 

after - 6 cycles and from then on peak ratchet strain per cycle 

is constant, and greater than in the shank where the steady cyclic 

state is reached after the first cycle as discussed in Section 

4.2.4.1.1. 

Effect of mean load on ra"tchetting behaviour . 
Figure 4.39 shows the accumulation of shank and peak fillet 

meridional ratchet strains for a mean load of 0.5 of the limit load 

under which condition the steady state ratchet strains are zero in 

both the shank and fillet. The results for this loading condition. 

together with those for ~ = 0.7. are summarised in Table 4.4. 
L 

4.3.5.1.2 Comparison between experimental results and finite 

element predictions 

Yahiaoui (12) has carried out experimental tests on flanged 

tube components with a range of ~~ial loads and dwell periods between 

thermal shocks. In this section the results of 3 'rapid cycling' 

tests (i.e. ~ 15 minutes between shocks for steady state thermal 

conditions to be achieved) with negligible creep are compared with 

finite element predictions assuming a 'no creep' condition and 

USing the material models given in Figure 4.24. Comparison between 
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the experimental results for tests with a significant dwell period 

and equivalent finite element predictions including creep are 

discussed in Section 4.3.5.3. The modelling of the thermal shocks 

has already been discussed in Sections 4.2.3 and 4.3.4. 

The material models are based on uniaxial stress-strain data 

for the lead alloy at temperatures which are the extremes of the 

rig operating range, i.e. 20 0 C for the initial steady state 

condition prior to a thermal shock and 76°c at the intermediate 

steady state condition during the shock. This data is seen to fall 

into 2 discrete bands and the material is softer and resembles an 

elastic-perfectly-plastic material at the higher temperature. 

Elastic-perfectly-plastic, isotropic and kinematic hardening 

models of the stress-strain data are used in the finite element 

computations. For the elastic-perfectly-plastic model a yield 

stress of 21.5 MN/m2 is assumed based on the 0.2% proof stress of 

the material at 200 C and is seen to also be a reasonable model 

for the 76°c data (curve C, Figure 4.24). The isotropic and 

kinematic hardening models of the lower temperature data are curves 

A and B respectively in Figure 4.24. By definition, the kinematic 

hardening model is bilinear and is a reasonable model up to 

-0.6% strain. The isotropic hardening model uses a three straight 

line representation of the data with a reduction in plastic modulus 

at 0.6% strain and is a reasonable 'fit' up to - 1.5% strain. 

For the higher temperature data, curve D is used for both 

isotropic and kinematic hardening models and is a reasonable fit 

up to ~ 1.0% strain. 

Finite element predictions of total strain and ratchet strain 

(in the shank and at the 'peak fillet' positions) and meridional 

p 
strain distributions for p- = 0.5, 0.7 and 0.8 are compared with 

L 



- 77 -

the experimental results in Figures 4.40 to 4.44. 

The results are tabulated in Table 4.5. In Figures 4.40, 

4.42 and 4.44 the two sets of experimental data are for diamet­

rically opposed strain gauges, whereas average experimental results 

are given in Table 4.5 and Figures 4.41 and 4.43. 

In all cases, the predictions with isotropic and kinematic 

hardening models of the same temperature data are very similar, 

as can be seen from Table 4.5. The predictions in Figures 4.40 to 

4.44 are for the two extreme temperature kinematic hardening models. 

Inspection of the output indicated that there is no reverse plasticity 

with the kinematic hardening models and since strains are always 

less than 0.6.% (i.e. the breakpoint between curve A for isotropic 

hardening and curve B for kinematic hardening) small discrepancies 

in the predictions are due to differences in the programming of the 

two models. Detailed comparisons of the experimental results and 

finite element predictions are given below. The implications of these 

results, in terms of modelling technique, are discussed in Chapter 

8. 

pjPL = 0.5 (Figures 4.40 and 4.41) 

The finite element predictions of ratchet strain are zero 

after a few cycles whereas the experimental results tend to a 

non-zero (albeit small) steady state value. Total strains are 

underestimated in all cases. In particular the first cycle ratchet 

strains, which dominate the total strains, are significantly 

underpredicted. Also the predictions with all models are very 

similar. From the strain distributions in Figure 4.41 it is seen 

that the ratio of peak fillet to mid shank total strains is approxi­

mately 2 after the 1st and Jrd shocks from both the experimental results 

and finite element predictions. After the 10th shock the experimental 
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value of the ratio has reduced to ...., 1. 7. From the finite element 

predictions. generally the distribution 'peaks' are at the first 

Gauss point into the fillet and the changes in strain in the fillet 

region are less severe than is apparent from the experimental 

results. 

p/PL = 0.7 (Figuxes 4.42 and 4.43) 

By comparing the experimental shank initial strain (0.075 -

0.11% in Figure 4.42) with the expected value from the uniaxial 

data (0.065% from Figure 4.24) it would appear that the tube 

material has a lower yield than the uniaxial data. Again the 

finite element predictions of ratchet strain and hence total strain 

are less than the experimental data. In the shank. the large first 

cycle experimental ratchet strain (1281,.,.e from Table 4.5) is 

grossly underpredicted by the finite element models (98 - 202~~ 

from Table 4.5) and the increase in ratchet strain between first 

and second cycles which is predicted by the hardening models is 

not apparent in the experimental results. The ratchet strain pre­

dictions at the 'peak fillet' position are generally closer to the 

experimental data than in the shank. The ratchet strain predictions 

with the hardening models must eventually reduce to zero. whereas 

the experimental ratchet strains appear to be tending towards a 

constant value which is almost an order of magnitude greater than 

the steady state ratchet strain predictions with the elastic­

perfectly-plastic ~aterial model. For the experimental results 

in Figure 4.42 it can be seen that shank and peak fillet ratchet 

strains are very similar after ~ 4 cycles and this phenomenon is 

also predicted by the high plastic modulus kinematic hardening 

model (i.e. curve B). From the strain distributions in Figure 4.43 
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the 'peak fillet' strain prediction is again at the first Gauss 

point into the fillet and experimental strain distributions are 

more severe than the predicted results. The finite element 

results fail to predict the large reduction in shank ratchet strains 

adjacent to the fillet. The ratio peak fillet to mid shank total 

strain is overpredicted and, whereas the hardening models correctly 

predict a reduction in this ratio with successive cycles, the 

opposite effect is apparent with the elastic-perfectly-plastic model. 

pjPL = 0.8 (Figure 4.44) 

The comparisons in Figure 4.44 are for the shank only since 

it was found that the fillet strain gauge readings were inaccurate 

due to unbending of the gauges from the surface of the specimen. 

Differences between experimental results and the predictions are 

dominated by the large underprediction of the first cycle ratchet 

strain. The ratchet strain predictions with the kinematic hardening 

model using Curve D in Figure 4.24 are reasonably accurate for the 

2nd to 4th cycles analysed. The experimental steady state ratchet 

strain of ~ 0.05% is well predicted by the elastic-perfectly-

plastic model. 

4.3.5.2 Complete Redistribution (Elastic-perfectly-plastic 

material model) 

Ratchetting Mechanism 

The regions of plastic straining during the first and second 

halves of the first thermal shock for ~ = 0.7 are the same as 
L 

for the 'no creep' case shown in Figure 4.33 . 
. 

Figure 4.45 illustrates a steady state cycle 

for the whole component, with a mean load of 0.7 PL' by showing the 

regions of additional plastic straining 



- 80 -

during the 10th thermal shock, and may be compared with Figure 

4.34 fbr the 'no creep' condition. Yielding commences 

in the bore region and is accompanied by a plastic zone initiating 

from the fillet which spreads into the shank during the first 

half of the cycle. There is no further yielding in the fillet 

during the second half of the thermal shock, where a plastic zone 

initiating in the bore spreads radially outwards before contracting 

to zero. A local region of reverse plasticity (see Section 4.3.5.1.1) 

is apparent in the bore. By comparison of Figures 4.34 and 4.45, 

the second half of the thermal shock has a similar effect for both 

'no creep' and 'complete redistribution' cases, whereas the plastic 

zone growth during the first half of the thermal shock varies 

significantly between the two cases. The initial non-uniform 

residual strain field for 'no creep' case (for example see Figure 

4.16) peaks around the mid-radius and 'compressive' yielding in 

the bore is accompanied by a 'tensile' yield zone in the 'core' and 

there is no initial yielding in the fillet. The initial stationa~J state 

stress distribution for 'complete redistribution' is less severe, 

particularly in the shank, and the yield zone initiates in the 

fillet in preference to the 'core'. There is a marked similarity 

between the overall region of plastic growth for the 'no creep' 

and 'complete redistribution' conditions. 

The distribution of 10th shock meridional ratchet strains 

along the outside surface is shown in Figure 4.35. The peak fillet 

ratchet strains are larger than those in the shank and 'complete 

redistribution' leads to larger shank and fillet ratchet strains 

than are accumulated under 'no creep' conditions (Figure 4.38). 

Figure 4.46 shows the 'exaggerated' deformed shape at the end 
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of the 10th dwell period and the incremental deformation during 

the 11th shock and dwell period. 

Although there is a definite section thinning during the 

thermal shock (Figure 4.46(b)) the displacements are dominated by 

the dwell period behaviour and after 10 cycles there is little 

evidence of thinning in the total deformation (Figure 4.46(a)). 

Figures 4.36(b) and 4.46(b) give a direct comparison of ratchet 

deformation, allowing for the difference in displacement scales. 

The accumulation of shank and peak fillet meridional ratchet 

strains during the first ten cycles for this mean load are shown 

in Figure 4.38. The constant ratchet strain per cycle in the 

shank has already been discussed. In the fillet, the ratchet 

strains in the second and subsequent cycles are the same and less 

than the first cycle ratchet strain because the stationary state stress ­

distribution, after creep, at the start of the second and SUbsequent 

cycles is less favourable to ratchetting than the initial distri-

bution due to axial loading at the start of the first cycle. 

Complete redistribution leads to greater accumulations of ratchet 

strains in the shank and fillet than for the 'no creep' condition. 

Since both shank and fillet ratchet strains are constant after 

the first cycle, the ratchet strain distribution shown in Figure 

4.35 is the steady state behaviour. 

Effect of mean load on ratchettlng behaviour 

Figure 4.39 shows the accumulation of shank and peak fillet 

ratchet strains for a mean load of 0.5 PL and again peak fillet 

steady state ratchet strains are apparent after the first cycle. 

For In9 creep', this combination of steady mechanical and cyclic 

thermal loading results in shakedown both in the shank and at 

the peak fillet position, however the ratchetting process is 
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continuous if complete redistribution occurs during the dwell periods. 

For the peak fillet position, if any plastic growth occurs during 

the second cycle then the ratchetting process is continuous. The 

results for this loading combination, together with ~ = 0.7, are PL 
summarised in Table 4.4. 

Creep during the dwell periods 

The strains which accumulate during the first dwell period 

in the shank and the 'peak ratchet strain' position, £ d, are shown 

in Figure 4.47 for a mean load of 0.7 of the limit load. The 

behaviour in the fillet is similar to that for the shank already 

discussed in Section 4.2.4.2.1; that is the accumulation of dwell 

period strain is asymptotic to a straight line and with an increment 

of normalised strain, (Atd/EY)fillet' associated with the 

redistribution of stress. In the second and subsequent dwell 

periods, the strains are asymptotic to lines of the same gradient 

as for the first cycle with an equal increment of strain due to 

redistribution which is less than that for the first cycle. The 

peak fillet results together with the equivalent shank results from 

Table 4.), for this mean load and ~ = 0.5 are given in Table 4.6. 
L d 

The gradient of the asymptotic line, d( e / € )/a.r, is further 
y 

P normalised with respect to the mean load, p- . 
L 

For all cases, the increment of strain due to redistribution 

is relatively small 

normalised gradient, 

( < 0 .250 x yield strain), and the 

d( f.. d/ t. )/d f' 
____ ~~y~--_ ' is independent of mean load. 

p/PL 

4.).5.3 P~~ial redistribution - comparison with experimental results 

In addition to the comparisons between the experimental results 

for 'rapid cycling' and the finite element predictions assuming a 

'no creep' condition discussed in Section 4.).5.1.2, the results 
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of 2 tests with significant dwell periods between thermal shocks 

are compared with finite element predictions which include the 

effects of creep between shocks. The lead alloy material models 

described in Section 4.3.5.1.2 and shown in Figure 4.24 have been 

used together with the lead alloy material creep law from Table 

4.1. 

Figures 4.48 to 4.51 compare the experimental results and 

finite element predictions of total strain, ratchet strain and 

accumulated dwell period strain (in the shank and at the 'peak 

fillet' position) and meridional strain distributions for ~ = 0.7 
L 

with 24 hour and 120 hour dwell periods between thermal shocks. 

The results are tabulated in Table 4.7. The two sets of experimental 

total, ratchet and dwell period strains are for diametrically opposed 

strain gauges. Experimental strain distributions and the experi-

mental data in Table 4.7 are aveIage strain gauge results. The 

finite element predictions in Figures 4.48 to 4.51 are for the 

elastic-perfectly-plastic and two kinematic hardening models. 

Table 4.7 shows that the differences in predicted strains for the 

respective kinematic and isotropic hardening models are relatively 

small (see Section 4.3.5.1.2). 

p/PL = 0.7, 24 hour dwell period (Figures 4.48 and 4.49) 

The predictions of total accumulated strains are in good 

agreement with the experimental results in the shank and at the 

'peak fillet' positions; similarly the strain distributions. 

In particular, over the 8-10 cycles analysed, the predictions with 

curve D are in excellent agreement with the experimental data. For 

all models the dwell period strains are over-predicted, particularly 

during the first few (~3) dwell periods. In the shank this is 
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counterbalanced to a degree by the underprediction of ratchet 

strains. Ratchet strain predictions at the 'peak fillet' position 

are generally more accurate than in the shank. In the shank and 

at the 'peak fillet' position the experimental ratchet and dwell 

period strains approach a steady value after approximately 8-12 

cycles. 

p/PL = 0.7, 120 .hour dwell period (Figures 4.50 and 4.51) 

Again, the finite element predictions of total strain are in 

good agreement with the experimental data, particularly for the 

kinematic (and isotropic) hardening model based on Curve D in 

'Figure 4.24. Both the experimental values and finite element 

predictions of ratchet strain in the shank and at the 'peak fillet' 

position are very similar to those with the 24 hour dwell period 

between cycles (see Table 4.7) which implies an approach to 

'complete redistribution' conditions between cycles. 

In the shank the accuracy of the total strain predictions 

results from a balance of the underprediction of ratchet strains 

with the overprediction of dwell period strains. At the 'peak 

fillet' position the ratchet and dwell period strain predictions 

are in good agreement with the experimental data. Overall, the 

finite element predictions of dwell period strain accumUlation are 

more accurate than the predictions with a 24 hour dwell period. 

The finite element predictions of first cycle ratchet strain 

with zero and 120 hour initial dwell periods are compared with the 

average experimental results in Table 4.8. In the shank the initial 

120 hour dwell period computation has no effect on the ratchet strain 

predictions as would be expected with a zero plasticity creep 

interaction model. However there is a marked reduction in the 
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equivalent experimental values. At the peak fillet position, 

the differences between finite element predictions with zero and 

120 hour dwell periods is due to the stress redistribution during 

the initial dwell. The equivalent experimental 'peak fillet' 

results show a larger reduction due to the effect of the initial 

dwell period. 

The results given in Table 4.8 are used in the discussion of 

plasticity-creep interaction modelling in Chapter 8. 
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Parameter 

Young's Modulus 

Yield stress* 

Coefficient of expansion 

Poisson's Ratio 

Thermal conductivity 

Surface heat transfer 
coefficient 

Specific heat/unit volume 

,. A 

Creep 
Law ooc n 
Constants 

m ... 

* 0.2% proof stress 

Value 

23.2 x 109 

21.5 x 106 

28.84 x 10-6 

0.44 

35.1 

25.1 x 103 

1.43 x 106 

8.67 x 10-58 

7.3 

0.375 

Table 4.1 Flanged tube material data 

Units 

W/mK 



P 
PL 

0 

0.3 

0·5 

0.6 

0.7 

0.75 

0.8 

0.9 
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Normalised ratchet strain per cycle 

'No creep' 'Complete redistribution' 

1st cycle Steady state 1st cycle Steady state 

0 0 0 0 

0.034 0 0.034 0.034 

0.048 0 0.048 0.044 

0.067 0 0.067 0.065 

0.107 0.060 0.107 0.109 

0.193 0.232 0.193 0.194 

0.310 0.481 0.310 0.310 

0.883 1.356 0.883 0.894 

Table 4.2 Flanged tube shank ratchetting behaviour, 

Elastic-perfectly-plastic material. 



P 

~ 

0·5 

0.7 

- 88 -

P A£d 
PL cy 

0.3 0.129 

0.5 0.110 

0.6 0.137 

0.7 0.132 

0.75 0.163 

0.9 0.144 

Table 4.3 Flanged Tube Shank - Variation of At... d/ c 
y 

with mean load for an elastic-perfectly-plastic 

material assumption. 

. 

Normalised ratchet strain per cycle . 
'No creep' 'Complete redistribution' 

Position 1st cycle Steady state 1st cycle Steady state 

Shank 0.048 0 0.048 0.044 

Fillet 0.361 0 0.361 0.275 

Shank 0.107 0.060 0.107 0.109 

Fillet 0.852 0.128 0.852 0.608 

Table 4.4 Flanged Tube Ratchetting behaviour with an 

Elastic-Perfectly-Plastic material model. 



PULLOUTS 



P IPL 
Dwell period Cycle 

(hr. ) Number Average 
Experimental 

Init. 430 
1 750 
2 950 
3 1069 
4 1151 

0.5 0 5 1217 
6 1273 
7 1327 
8 1381 
9 1423 

10 1464 

!nit. 934 
1 2215 
2 3099 
3 3756 
4 4328 

0.7 0 5 4834 
6 5285 
7 5697 
8 6086 
9 6453 

10 6806 

Init. 1032 
1 2996 
2 4164 
3 5451 
4 6257 

0.8 0 5 7056 
6 7754 
7 8398 
8 8998 
9 9571 

10 10125 

Ratchet; S\~ra1n (IIC) 

Total Strain (,ac) 

Elastio-
perfect.ly-plaat.l0 

Curve C 

466 
5V 
519 
528 
535 
535 
535 
535 
535 
535 
535 

653 
751 
803 
861 
921 
973 

1033 
1089 
1142 
1193 
1245 

744 
1029 
1495 
1955 
2409 
2860 
3307 
3754 
4203 
4649 
5090 

Isotropic Klnematlc Isotropio Kinematic Average Elaatic- Isot.ropic Kinematio 

hardenlng hardenlng hardening hardening Expe·'~illlent.al p.rfect.ly~plaat.ic hardenlng hardening 

Curve A CUrve 8 Curve I) CUrve 0 CUrve: C Curve A Curve B 
I 

466 466 466 466 
. , - - - -

504 521 52? 529 320 44 38 55 

516 530 532 534 210 9 12 9 

520 532 533 536 130 9. 4 2 

520 532 533 541 97 7- 0 0 

520 532 536 541 90 d 0 0 

520 532 535 541 77 q 0 0 

520 532 535 541 72 d 0 0 

520 532 535 541 68 0 0 0 

520 532 535 541 61 0 0 0 

520 532 535 541 61 0 0 0 

652 652 652 652 - - - -
840 844 I 854 855 1281 98 187 192 

1082 1092 1154 1149 773 52 242 248 

1270 1284 1432 1J., 8 603 58 188 192 

1421 1440 1688 1664 536 60 151 156 

1542 1565 1925 1889 487 52 121 125 

1641 1672 2143 2097 423 60 99 107 

1724 1760 2350 2290 401 56 83 86 

1798 1838 2540 2470 376 53 74 78 

1857 1904 2721 2637 355 5, 59 66 

1907 1958 - - 344 51! 50 54 

744 744 I 746 - -- -
1233 1237 1260 1965 285 ij89 498 

1886 1873 2060 1032 466 653 636 

2375 2345 2779 846 460 489 472 

454 264 
, 

370 

2639 2715 3432 721 

~056 3007 I 
748 451 41'( 292 

3304 3241 633 447 248 234 

3504 3426 597 441- 200 185 

3669 3582 
554 449 165 156 

3808 3710 537 1646 139 128 

3878 - 520 441 70 -

Table 4.5(al Flanged Tube. Comparisons between experimental 'rapid cycling' results and finite 
element predictions assuming 'no creep' conditions. Shank res~l's. 

~Dwell perin1 strain 
(IIC ) 

Isotropl0 Kinematic Average Finite 
hardening hardenlng ExperIment.al Element 

CUrve 0 CUrve 0 

... -- - -
59 63 0 0 
7 5 -10 0 
1 2 -11 0 

0 5 -15 0 

3 0 -25 0 

-1 0 -21 0 
0 0 -18 0 
0 0 -14 0 

0 0 -19 0 
0 0 -20 0 

- - - -
201 202 0 0 

300 294 111 0 

278 265 54 0 

256 246 36 0 

237 225 19 0 

218 208 28 0 

207 193 11 0 

190 180 13 0 

181 167 12 0 

- 9 0 -
- --

514 0 0 
800 136 0 
719 150 0 
653 85 0 

51 0 
65 O . 
47 0 
166 0 
32 0 

34 0 



I 

PIP Dwell period Cycle 
L (hrs) Number Average 

Experimental 

Init. 693 
1 1490 
2 1784 
3 1936 
4 2040 

0.5 0 5 2122 
6 2195 
7 2258 
8 2317 
9 2373 

10 2416 

Init. 1265 
1 2767 
2 3822 
3 4517 
4 5080 

0.7 0 5 5578 
6 6007 
7 6399 
8 

; 

6763 
9 7096 

10 7420 

Total Strain (}.lE: ) Ratchet Strain (~£) 

Elastic-
perfectly-plastic 

CUrve C 

552 
887 
943 
968 
969 
969 
969 
969 
969 
969 
969 

773 
1563 
1898 
2129 
2299 
2447 
2575 
2695 
2814 
2932 
3048 

Isotropic Kinematic Isotropic Kinematic ' Average Elastic- Isotropic Kin~matic 

hardening hardening hardening hardening Experimental perfectly-plastic hardening hardening 

Curve ' A CUrve B Curve 0 CUrve 0 Q.lrve C CUrve A CUrve B 

552 552 552 552 
. . - - --

926 923 1006 1006 797 335 374 371 

999 981 j 
1095 1089 298 56 73 58 

1051 997 11 16 1110 161 :?5 52 16 

1070 1000 I 1129 1116 115 1 19 3 
I 

1138 106 0 5 0 
1075 1000 1 1150 I 

1075 1000 I 1148 1139 92 0 0 0 

1075 1000 
j 

1148 1139 83 0 0 0 

1075 1000 1148 1139 80 0 0 0 

1075 1000 i 1148 '\ 139 70 0 0 0 

I 1075 1000 1148 1139 64 0 0 0 

l 
773 773 

I 
7'13 773 - - - -

1681 1677 1810 1812 150Z '(90 908 904 

2154 2138 2490 2476 1002 335 473 461 

2429 2403 2981 2949 687 231 275 265 

2609 2577 3369 3311 558 170 180 174 

275·, 2710 
, 

3723 3643 500 148 142 133 
j 

2858 2812 
1 

4043 3938 437 128 107 102 

2947 2896 4319 4189 401 120 89 84 , 
3020 2961 ,I 4587 4425 372 119 73 65 
3080 3008 

I 
4837 4641 347 118 60 47 

3132 3051 - - 329 116 52 43 

Table 4.5(bl Flanged Tube. Comparisons between experimental 'rapid cycling' results ar.d ,finite 
element predictions assuming 'no creep' conditions. Peak fillet results. 

Dwell period strain 
(}.lE) 

Isotropic Kinematic Averai~e Finite 
hardening hardening Exper1montal Element 

Q.lrve D CUrve D 

- - - -
454 454 0 0 

89 83 - 4 0 
21 21 - 9 0 
13 6 -11 0 
21 22 -24 0 

- 2 1 -19 0 
u 0 -20 0 
0 0 -22 0 
0 0 -14 0 
0 0 -21 0 

- - - -
1037 1039 0 0 
680 664 53 0 
491 473 8 0 
388 362 5 0 
~54 332 - 2 0 
320 295 . - 8 0 
276 261 - 9 0 
268 236 - 8 0 
250 216 -14 0 
- - - 5 0 
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d(E.d/E ) d(Ed/E. )/dr 
A€.d/ f., 

P Y 
Position Y.. Y.. 

PL dr p7PL 1st cycle Steady state 

Shank 0.527 1.054 0.110 0.110 
0.5 

Peak Fillet 0.350 0.701 0.250 0.176 

Shank 0.742 1.060 0.132 0.132 
0.7 

Peak Fillet 0.521 0.743 0.150 0.088 

Table 4.6 Flanged Tube. Dwell period behaviour. 



Total Strain (~E) 

P/PL Dwell period Cycle 
(hrs) Number Average Elastic- Isotropic Kinematic 

Experimental perfectly-plastic hardening hardening 
Curve C Curve A OJrve B 

Ini t. 987 773 773 773 

1 2346 1680 ;809 1812 

2 3039 2260 2484 1452 

3 3511 2659 2903 2843 

4 3941 2966 3222 3140 

0.7 24 5 4;!61 3243 3473 3371 

6 4718 3496 3670 35'50 

7 4992 3716 3842 3'707 

8 5268 3933 3991 3834 

9 5538 4145 - -
10 5790 4334 - -

Ini t. 944 773 773 773 

1 2321 1788 1923 1924 

2 3086 2482 2688 2659 

3 3620 2987 3194 3137 

4 4057 3390 3558 3485 

120 4473 3759 3854 3766 
0.7 5 

6 4830 4092 4102 3998 

7 5133 4380 4303 4188 

8 5409 4668 4485 4353 

9 5703 4940 4642 4499 
-10 5943 - -

-

Ratchet Strain (~E) 

Isotropic Kinematic Average Elastic- Isotropic Kinematic Isotropic Kinematic 

hardening hardening Experimental perfectly-plastic hardening hardening hardening hardening 

Curve D Curve D Curve C Curve A Curve D Curve D Curve ') 

i~\ 773 - - - - -
1937 1135 695 824 827 952 

559 524 731 , 2791 649 470 
3401 444 332 358 325 534 

3922 408 256 276 249 468 

4370 402 235 217 193 404 

4747 345 216 168 147 339 

5102 268 188 148 130 32' 

5424 274 188 128 104 292 

5704 273 186 - - 252 

5976 256 165 246 - -
-

H3 773 - - - - - -
2043 2043 1012 674 809 810 929 929 

3008 2998 623 526 581 549 770 760 

3718 3691 435 402 1109 373 598 577 

4330 4283 354 322 290 269 529 505 

4867 4798 372 309 246 212 ~3 lt149 

5326 5232 307 280 205 182 395 366 

5754 5639 267 240 164 147 372 346 

6150 60 11 254 244 151 127 354 316 

- 265 232 129 - 113 - -
218 - - - - - --

Table 4.7(b) Flanged Tube. Comparisons between ~xperimental results and finite element predictions 
for cycling with 24 hour and' 20 hour dwell periods. Peak fillet results, 

Dwell Period Strain (liE) 

Average Elaetic- -. 
Experimental perfectlY-plastic 

Iaotropio Kinematic IsotroPic Kinemattc 
.,arden1ng hardenIng hardening hardenIng 

rune C Q.ll've A Curve B OJrve 0 OJrve D 

- - - - -
166 ,12 212 212 211 
37 no 1 16 116 12'1 
42 67 61 66 76 
18 51 43 48 53 
25 42 31.1 38 44 
13 37 29 32 38 
12 ~2 74 27 34 
7 29 21 23 30 
4 26 - - 28 
4 24 - - 26 

- - -. - - -
364 
142 

:,41 341 341 Ht 341 
'68 184 186 195 ',95 

99 '03 97 105 112 116 
83 81 74 79 83 87 
44 60 50 69 74 7~ 
50 53 43 50 64 68 
36 
21 

48 37 43 56 61 
44 31 38 42 56 

29 40 28 33 - -
22 - - - - -



Total Strain (~E) 

P/PL Dwell period Cycle 
(hrs) Number Average Elastic- Isotropic Kinematic 

Experimental perfectly-plastic hardening hardening 
Curve C Curve A OJrve B 

Ini t. 987 773 773 773 

1 2346 1680 ;809 1812 

2 3039 2260 2484 1452 

3 3511 2659 2903 2843 

4 3941 2966 3222 3140 

0.7 24 5 4;!61 3243 3473 3371 

6 4718 3496 3670 35'50 

7 4992 3716 3842 3'707 

8 5268 3933 3991 3834 

9 5538 4145 - -
10 5790 4334 - -

Ini t. 944 773 773 773 

1 2321 1788 1923 1924 

2 3086 2482 2688 2659 

3 3620 2987 3194 3137 

4 4057 3390 3558 3485 

120 4473 3759 3854 3766 
0.7 5 

6 4830 4092 4102 3998 

7 5133 4380 4303 4188 

8 5409 4668 4485 4353 

9 5703 4940 4642 4499 
-10 5943 - -

-

Ratchet Strain (~E) 

Isotropic Kinematic Average Elastic- Isotropic Kinematic Isotropic Kinematic 

hardening hardening Experimental perfectly-plastic hardening hardening hardening hardening 

Curve D Curve D Curve C Curve A Curve D Curve D Curve ') 

i~\ 773 - - - - -
1937 1135 695 824 827 952 

559 524 731 , 2791 649 470 
3401 444 332 358 325 534 

3922 408 256 276 249 468 

4370 402 235 217 193 404 

4747 345 216 168 147 339 

5102 268 188 148 130 32' 

5424 274 188 128 104 292 

5704 273 186 - - 252 

5976 256 165 246 - -
-

H3 773 - - - - - -
2043 2043 1012 674 809 810 929 929 

3008 2998 623 526 581 549 770 760 

3718 3691 435 402 1109 373 598 577 

4330 4283 354 322 290 269 529 505 

4867 4798 372 309 246 212 ~3 lt149 

5326 5232 307 280 205 182 395 366 

5754 5639 267 240 164 147 372 346 

6150 60 11 254 244 151 127 354 316 

- 265 232 129 - 113 - -
218 - - - - - --

Table 4.7(b) Flanged Tube. Comparisons between ~xperimental results and finite element predictions 
for cycling with 24 hour and' 20 hour dwell periods. Peak fillet results, 

Dwell Period Strain (liE) 

Average Elaetic- -. 
Experimental perfectlY-plastic 

Iaotropio Kinematic IsotroPic Kinemattc 
.,arden1ng hardenIng hardening hardenIng 

rune C Q.ll've A Curve B OJrve 0 OJrve D 

- - - - -
166 ,12 212 212 211 
37 no 1 16 116 12'1 
42 67 61 66 76 
18 51 43 48 53 
25 42 31.1 38 44 
13 37 29 32 38 
12 ~2 74 27 34 
7 29 21 23 30 
4 26 - - 28 
4 24 - - 26 

- - -. - - -
364 
142 

:,41 341 341 Ht 341 
'68 184 186 195 ',95 

99 '03 97 105 112 116 
83 81 74 79 83 87 
44 60 50 69 74 7~ 
50 53 43 50 64 68 
36 
21 

48 37 43 56 61 
44 31 38 42 56 

29 40 28 33 - -
22 - - - - -
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First cycle ratchet strain 

Dwell (%) 
Period 
(Hrs) Average Finite 

Experimental Element* 

0 0.13 0.01 - 0.02 
Shank 

120 0.05 0.01 - 0.02 

Peak 0 0.15 0.08 - 0.10 

Fillet 120 0.10 0.07 - 0.09 

* range of values for the 5 material models 

Table 4.8 Flanged Tube. Comparison between finite 

element predictions and experimental results. 

Effect of initial dwell period on 1st cycle 

ratchet strains. 
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Figure 4.1 Flanged tube shank. Comparison between 
experimental and predicted values of through 
thickness temperature difference during the 
first half of a thermal shock 

'::i 
.. ·~V . 

~V 
- ~--------

O~l----·~~-----~----~-----~----~----~----~----~-----' 
., 
I 2 3 4 56789 

Time (seconds) 

~ 
\..n 



- 96 -

60 

50 

--7 

0·65 

--L 

BO!~E 

Figure 4.2 Flanged tube shank. Through-thickness temperature distributions 
during the first half of a thermal shock 



)r 8 AXIAL 
'V HOOP 

I ~=z'--=z:::.z: ....... et, " "r \\ 
i \ _Cy! t::01 S 

I 

r 
010 

- 97 -

bxe 

Figure 4.3 Flanged tube shank. 
Elastic thermal stress 
distributions up to the 
most severe condition 
during the first half 
of a thermal shock 
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b) most severe conditions 
during first half of shock 

'I. Axial 

+ Hoop 

end of first half of 
shock 

b 0 

t = 2C· t.s 

d) most severe conditions 
during second halt· of shock 

e) end of shock 

<y r ,1 

ob"---...~lJ 
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f) end of shock 

Figure 4.4 Flanged tube shank (elastic-perfectly-plastic, cr-t/tS y = 1.94, 
P/PL = 0.7, 'no creep' conditions). Stress distributior.s due to 
initial loading and during the first thermal shock together with 
accumulated plastic strain distributions at the end of the first 
half and at the end of the first thermal shock. 
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a) most severe conditions 
during the first half 
of the shock 

b) most severe conditions 
during the second half 
of the shock 

c) end of shock 

Figure 4.5 Flanged tube shank (elastic-perfectly-plastic, er t/er y = 1.94, 
P/PL = 0.7, 'no creep' conditions). stress distributions 
during the second and subsequent thermal shocks 
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Figure 4.6 Flanged tube shank (elastic-perfectly-plastic, 6 t/6 y = 1.94, 
P/PL = 0.7). Accumulation of normalised ratchet strain during 
the first 10 cycles. 
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Figure 4.7 Flanged tube shank (elastic-perfectly-plastic, C5 JCS y = 1.94, 
'no creep' conditions). Variation of normalised first cycle 
and steady state ratchet strains with mean load . 
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Figure 4.8 Flanged tube shank (Linear hardening I (J tl er y = 1. 94 I pip = 0.9, : 
'no creep' conditions). Accumulation of normalised ratcMet . 
strain during the first 10 cycles. 
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Figure 4.9 Flanged tube shank (Linear hardening, (j tl r:5 y = 1.94). 
Accumulation of normalised ratchet strain in the first 
cycle. 
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linear hardening, 6' t! er y = 1.94, 'no creep' conditions). 
Normalised accumulated ratchet strain in 10 cycles. 
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Figure 4.20 Flanged tube shank (elastic-perfectly-plastic and linear 
hardening, 0- t/cr = 1.94, complete redistribution). 
Normalised accumulated ratchet strain in 10 cycles. 
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Figure 4.21 Flanged tube shank (elastic-perfectly-plastic and linear 
hardening, o-t/rJ' = 1.94, P/PL = 0.9, complete redistribution). 
Normalised accumulated dwell period strain after the 1st, 5th 
and 10th dwell periods. 
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Figure 4.34 Flanged tube. (Elastic-perfectly-plastic, er t/cr" y = 1.94, 
P/PL = 0.7, 'no creep' conditions). Regions of additional 
plastic straining during the 10th thermal cycle. 
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Figure 4.36 Flanged tube. (Elastic-perfectly-plastic, CJt/cr y = 1.94, 
P/ PL = 0.7, ' ~o creep' condition). 'Exaggerated' nodal 
displacements . 



- 131 -

LOCUS OF POINTS AT 

THE END OF HALF \,_. ~".. 1 
CYCLES _ ,. 

2 ,," , 

"~-\'i 
P \ 

/7
6 

LOCUS ·OF POINTS AT 
f~8 THE END OF FULL CYCLES 

x10 

Figure 4.37 Flanged tube. (Elastic-perfectly-plastic, CSt/ C5 y = 1.94, 
P/PL = 0.7, 'no creep' conditions). Cyclic variation in 
the componentp of plastic strain at point A in the reverse 
plasticity region (see Figure 4.34). 



6 

5 

3 

~>. 
w 

2 

o 
2 

- 132 -

PEAK FI LLET, 
. COMPLETE 

REDISTRI BUTION 

PEAK FILLET, 
NO CREEP 

) ) l' 

SHANK. COMPLETE 
F<ED I STRi BUTIOI\! 

~SfjANK. NO CREEP 

6 10 1 2 

Cl' (; LE t~Ut'-1 BER 
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CHAPTER FI"v"'E 

5 . STEPPED BEAM 

5.1 Introduction 

The development of the stepped beam component (Figure 3.2) has 

been discussed in Section 3.2.1. This component has a uniform 

section (shank) and a stress concentration due to the fillet 

radius at the change of section. The component behaviour under 

conditions of 

i) steady mechanical axial load; and 

ii) pure bending 

is discussed here. Ratchetting may occur when the two loading 

conditions are combined (i.e. steady mechanical axial load and 

cyclic bending) and creep in the dwell periods between successive 

cycles of bending will affect the behaviour. This chapter describes 

a detailed study of the shank behaviour in addition to the analysis 

of the whole component. Analysis of the whole component includes 

comparison with the experimental results of Yahiaoui (12). Section 

5.4 investigates the validity of Ainsworth's (7) bounding technique 

for the stepped beam shank. 

5.2 Shank Analysis 

,.2.1 Finite element model 

A three element model of a 10 mm length of shank is used 

together with three 'rigid' elements through which the loading is 

applied (see Figure 5.1). The purpose of the 'rigid' elements is to 

ensure t hat the section AB remains plane during deformation. Axial 

loading and bending is applied to the rigid elements with the con­

straint that the nodal displacements in the 'X' direction along AB 

are identical to the corresponding nodal displacements along the 
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left handedge of the rigid elements. The nodes on the left hand 

edge of the shank model are constrained to have zero displacement 

in the 'X' direction. Nodes 4 and JJ are constrained to have the 

same displacement in the 'y' direction and node 15 is fixed. The six 

elements are two-dimensional plane-stress 8-noded isoparametric elements. 

5.2.2 Data 

The material data is the same as for the analysis of the 

flanged tube shank described in Section 4.2.2 and given in Table 

4.1. 

5.2.) Bending cycle 

A complete bending cycle consists ofl-

i) application of a 'hogging' moment, M 

ii) reversal of load to give an equal 'sagging' moment, -M 

iii) the removal of the moment. 

The most severe conditions occur at the intermediate steady states 

of full positive and negative moment when the elastically calculated 

axial stress varies linearly through the section from 6M/bd2 to 

-6M/bd2 • 

5.2.4 Cyclic bending with constant axial load 

The creep ratchetting behaviour is bOQ~ded by the 'no-creep' 

condition (zero dwell period between cycles) and 'complete­

redistribution' (where creep returns the residual stress distribution 

after each cycle to the stationary state stress distribution). 

Elastic-perfectly-plastic, isotropic hardening and kinematic 

hardening models are considered. Ratchet strains quoted are in 

the axial direction and at the top and bottom surfaces which are 
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identified as the first tensile and first compressive surfaces. 

The first tensile (FT) surface is defined as the surface which 

experiences a tensile stress for the first application of moment 

during the first cycle. The first compressive (Fe) surface is 

the opposite surface which would have a compressive stress for 

the first application of moment during the first cycle with zero 

mean load. 

5.2.4.1 'No creep' condition 

5.2.4.1.1 Elastic-perfectly-plastic material model 

Ratchetting mechanism 

The axial stress distributions due to initial loading and 

during the first mechanical cycle are shown in Figure 5.2 for 

p/PL = 0.64 and M/My = 0.8 (where PL is the limit load in simple 

tension and M is the pure moment required to cause initial yielding y 

on the top and bottom surfaces). This first cycle produces a 

linearly varying increment of ratchet strain across the section 

with a maximum at the first tensile surface. A steady cyclic 

state is established after the first cycle with the cyclic variation 

in stress distribution being identical to that shown in Figure 5.2 

An equal amount of ratchet strain is produced in t te second 

and subsequent cycles which is constant across the section and 

less than the mean centreline value for the first cycle. The 

accumulation of surface ratchet strains, e r (defined in equation 

4.1), in the first t en cycles is s hOrffi in Figure 5.3. The initially 

straight beam experiences an increment of curvature and centreline 

growth du=ing the first cycle. For the second and subsequent cycles 

there are no further incremental changes in curvature. The variation 

in curvature during the first three cycles is shown in Figure 5.4 
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where K/K is the normalised curvature and K is the curvature y y 

at first yield in the absence of mean load 

This demonstrates the analogy between the stepped beam shank 

behaviour and that for Bree's (1,2) uniaxial model of a thin tube 

as the problem is e~uivalent to one of curvature control between 

a maximum for the first application of moment in a cycle and zero 

for the reversed moment. An analytical solution for the stepped 

beam shank is therefore available based on Bree's (1) analysis 

and has been used to obtain steady state ratchet strains. 

For the 'no creep' ratchetting case, the whole section yields 

during the cycle and Figure .5.2 shows a 'plastic core' (i.e. a 

region in the centre of the beam which yields during both halves 

of the cycle) to be present. The 'plastic-core' is an essential 

feature of this ratchetting mechanism and the ratchet strain is 

related to the size of the 'plastic core'. The ratchetting boundary 

is defined by the combination of steady and cyclic load for which 

the plastic region just extends from the first tensile surface to 

the centre line during the first half of the first cycle (and hence 

from the first compressive surface to the centreline for the 

second half of the first cycle). The presence of an 'elastic core' 

(i.e. a region in the centre of the beam that is always elastic) 

means that shakedown will always occur after the first cycle. 

Effects of mean load and cyclic bending load on ratchetting behaviour 

Burgreen (.5) has studied the cyclic behaviour of this component 

and the 'Burgreen diagram' shown in Figure 2.11 is eqUivalent to 

the 'Bree diagram' for a thin tube. The narrow band between shake-

down and collapse (i.e. ratchetting regime) implies that ratchet 
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strains are very sensitive to small changes in applied load. The 

ratchetting behaviour of the stepped beam shank with an elastic-

perfectly-plastic material model can be completely defined by 

three parametersl-

1. the first cycle first tensile surface ratchet strain 

2. the first cycle first compressive surface ratchet strain 

J. the steady state ratchet strain which is the same for 

both surfaces. 

Figure 5.5 shows the variations in these ratchet strains with 

mean load and cyclic bending load. The analytical solution (1) 

was used to obtain steady state ratchet strains and finite element 

solutions provided the first cycle behaviour. Figure 5.5 illustrates 

the strong dependence of the ratchet strains on mean load. 

5.2.4.1.2 Linear hardening models 

A bilinear representation of the monotonic stress-strain curve 

was used with ratios of plastic to elastic modulus of 0.01, 0.05, 

0.1. Isotropic and kinematic hardening models have been considered. 

Ratchetting mechanism 

The axial stress distributions due to initial loading and 

during the first cycle for p/PL = 0.8, M/My = 1.5 for isotropic 

hardening with EplE = 0.05 are shown in Figure 5.6 together with 

an indication of the extent of the yield zone at the extremities 

of the cycle. A 'plastic core' is evident and there is a linearly 

varying increment of ratchet strain across the section at t he end of 

the cycle, with a maximum at the first tensile surface. Unlike the 

elastic-perfectly-plastic case, the material has hardened and the 

'instantaneous' yield stress varies in relation to accumulated strain 

across the section. The second cycle variation in axial stress 
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distribution is shown in Figure 5.7. The exact shape of the stress 

distributions cannot be obtained from the Gauss point values and 

the distributions are only approximate. The size of the 'plastic 

core' has reduced due to material hardening and there is a similar 

reduction in the ratchet strain. The size of 'plastic core' 

reduces with each successive cycle until the 'plastic core' dis-

appears and ratchet strains are zero. Similarly the ratchet 

strains reduce monotonically to zero. The accumulation of surface 

ratchet strains during the first 10 cycles for these loading con-

ditions and hardening assumptions are shown in Figure 5.8. The 

accumulated first tensile surface ratchet strain is dominated by 

the large first cycle increment which hardens the material sig-

nificantly so that further ratchet strains are small and shakedown* 

occurs in ~ 6 cycles. The first compressive surface accumulated 

ratchet strain is always less than the first tensile surface and 

material hardening occurs at a slower rate with shakedown occurring 

in "-J 8 cycles. The residual curvature always has the same sign and 

is a maximum at the end of the first cycle. The residual curvature 

subsequently reduces to reach a steady state value when the compon-

ent has completely 'shaken-down' in ~ 8 cycles. 

The first cycle stress distributions for kinematic hardening 

with the same loading and plastic modulus are shown in Figure 5.9. 

The first application of moment produces an identical stress distri-

bution to that for isotropic hardening (Fig. 5.6). However the 

'constant yield range' associated with kinematic hardening results 

in a modification of the stress distribution during the second half 

of the first cycle as can be seen from figure 5.9. The approximate 

* shakedown is defined as the point at which ratchet strains are 
zero. However under certain conditions of load and kine~Atic 
hardening cyclic plasticity may be evident. 
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stress distributions during the second cycle are shown in Figure 

5.10. The axial stress/strain variations during the first cycle 

with isotropic and kinematic hardening assumptions are shown in 

Figures 5.11 and 5.12 for Gauss points nearest to the first tensile 

and first compressive surfaces respectively. For the first tensile 

surface, the kinematic hardening assumption results in more com-

pressive yielding during the second half of the cycle and for the 

first compressive surface the kinematic hardening assumption leads 

to more tensile yielding during the second half of the cycle; the 

net result being a reversal in residual curvature at the end of the 

cycle. The accumulation of surface ratchet strains during the 

first 10 cycles is shown in Figure 5.13. The residual curvature 

always has the same sign which is opposite to the results with 

isotropic hardening. The overall growth, in terms of centre line 

strain, is greater than with an isotropic hardening model (compare 

Figure 5.13 for kinematic hardening with Figure 5.8 for isotropic 

hardening). 

For this particular loading and plastic modulus, a reasonable 

estimate for maximum accumulated strain, for both hardening models, 

could be based on a finite element calculation for a single cycle, 

in which case the maximum ratchet strain across the section is the 

same for the two hardening models, although the behaviour is very 

different. 

Effects of mean load, bending load, hardening assumpt ion 

and Ep/E on ratchetting behaviour 

Finite element computations were performed for 10 cycles with a 

range of mean loads from p/PL = 0 to 0.8 and 3 bending loads; 

M/M = 1.0, 1.5 and 2.0. The cyclic ratchetting behaviour of the y 
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stepped beam shank for the range of mean loads, cyclic bending 

loads, hardening assumptions and EplE values is presented in the 

form of carpet plots, in Figures 5.14 to 5.19. These plots show 

the variation of accumulated surface ratchet strains with mean 

and cyclic load for the combinations of hardening assumption 

and EplE values given in Table 5.1. 

The figures show the accumulation of surface ratchet strains after 

the 1st and 10th cycles. Also the accumulations after the 2nd and 

5th cycles are given where there is a significant difference between 

1st and 10th cycle values. For EplE = 0.05 and 0.1 (Figs. 5.16 -

5.19) shakedown always occurs in less than 10 cycles. The number 

of cycles to shakedown is given for the extremities of mean load; 

intermediate mean loads result in shakedown in a number of cycles 

between those quoted. The number of cycles to shakedown is different 

for the two surfaces and depends on the hardening assumption. For 

EplE = 0.01 shakedown had not occurred in 10 cycles except for low 

mean loads. In view of the convergence problems associated with 

high mean and cyclic loads (i.e. requiring the moments to be applied 

in a large number of small increments) it was not practical to continue 

the computation beyond 10 cycles to the shakedown or steady cyclic 

state. 

Except for the cases below, the residual curvature is always 

positive for isotrop~c hardening and negative for kinematic hardening 

(positive curvature being defined as the curvature at the end of 

the first application of moment during the first cycle), 

(i) for EpfE = 0.05 and 0.1 and M/My = 1.0, there is no difference 

in the results for both hardening models and residual curva­

tures are positive (i.e. no reverse plasticity with kinematic 

hardening) 
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(ii) for EP/E = 0.1, M/My = 1.5, isotropic hardening and zero mean 

load the curvature at the end of the first cycle is negative 

(iii) for EpiE = 0.01, M/My = 1.5 and isotropic hardening, residual 

curvature is negative for p/PL < IV 0.5 

(iv) for EpiE = 0.01, M/My = 1.0 and kinematic hardening, the sign 

of the residual curvature is both mean load and cycle number 

dependent. 

There is a marked similarity in ratchetting behaviour between 

the first tensile surface with an isotropic hardening model and the 

first compressive surface with a kinematic hardening model. 

Accumulated ratchet strains increase with increases in both mean 

and cyclic loads and are dominated by the first cycle. The kinematic 

hardening model results in larger accumulated ratchet strains on the 

first compressive surface compared with the first tensile surface with 

isotropic hardening. 

There is also a similarity in ratchetting behaviour between the 

first tensile surface with a kinematic hardening assumption and the 

first compressive surface with an isotropic hardening assumption for 

EP/E values of 0.05 and 0.1. Ratchet strains increase with mean 

load but are a maximum for a bending load somewhere between 1.0 and 

2.0 of the yield moment, and shakedown is more rapid for the first 

compressive surface with an isotropic hardening assumption. 

Finally, the results can be used to identify combinations of 

loading and material behaviour which would result in unacceptably 

high accumulations of strain. 
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5.2.4.2 Complete redistribution 

5.2.4.2.1 Elastic-perfectly-plastic material model 

Ratchetting mechanism 

The axial stress distributions due to initial loading and during 

the first bending cycle for p/PL = 0.64 and M/My = 0.8 are identical 

to those shown in Figure 5.2. However between the end of the first 

bending cycle and the start of the second bending cycle, the stresses 

are allowed to completely redistribute to the stationary state stress 

distribution which is the same as the initial stress distribution. 

Redistribution is judged to be complete when the variation in axial 

stress is within 1% of the mean stress. With an assumption of zero 

interaction between plastic and creep strains, the second and sub­

sequent cycles will be identical to the first cycle with both surfaces 

experiencing an amount of ratchet strain equal to the first cycle 

value. The accumulation of ratchet strains during the first ten 

cycles is compared with the eqUivalent 'no creep' behaviour in 

Figure 5.3. Each cycle produces an equal increment of centre line 

growth and curvature. For these particular loading conditions the 

'complete redistribution' assumption gives an upper bound on ratchet­

ting behaviour for both the maximum (first tensile surface) and the 

centreline accumulation of ratchet strain. The general observations 

for the flanged tube shank discussed in Section 4.2.4.2.1 are also 

applicable here, i.e.:-

1. plastic growth across the whole section during a cycle 

is not necessary for continued ratchetting under 'complete 

redistribution' conditions (i.e. a 'plastic core' is not 

essential); and 
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2. any plastic straining during the first cycle will lead to 

continued ratchetting thus causing a shift in the ratchet-

ting boundary to ~he elastic/plastic boundary:-

+ = 1. 

The variation in curvature during the first three cycles is 

shown in Figure 5.4. There is a relatively 'small' increase in 

curvature during each dwel~ period and the cyclic variations in 

curvature for each cycle are identical (within the bounds of 

computational accuracy). 

Effects of mean load and cyclic ·bending load on ratchetting behaviour 

With complete redistribution between each cycle the ratchet 

strains on every cycle are identical and are the same as those for 

the 1st cycle without creep. 
'\ 

This has been indicated in Figure 5.5 

where the variations of the surface ratchet strains with mean load, 

for various values of the cyclic moment are plotted. It may be seen 

from Figure 5.5 that, for 'complete redistribution', the maximum 

steady state ratchet strains occur on the first tensile surface and 

are larger than those for the 'no creep' case, hence the 'complete 

redistribution' case provides an upper bound on maximum accumulated 

ratchet strains. The significant difference between the 'no creep' 

and 'complete redistribution' cases is that in the 'no creep' case 

there is no change in the residual curvature after the first cycle; 

in the 'complete redistribution' case, the ratchetting mechanism 

produces changes in curvature as well as changes in the mean strain. 

From Figure 5.5 it appears that for low values of M/My and high values 

of pip the 'compl&te redistribution' case may not provide an upper y 

bound for the mean ratchet strain and hence accumulated mean ratchet 

strain, although it does provide an upper bound for the maximum 

ratchet strain. 
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Creep during the dwell periods 

The surface strains which accumulate during the first dwell 

period for p/PL = 0.7 and M/My = 0.7 are shown in Figure 5.20 plotted 

against time function, ~ (defined by equation 4.2). As for the 

shank of the flanged tube, discussed in Section 4.2.4.2.1, the 

results are asymptotic to the 'virgin' creep curve at the same mean 

load and offset by an amount of strain due to stress redistribution, 

A E. d/ Ey ' which is greater for the first tensile surface but is 

relatively small for both surfaces. The variation of 6. e. d/ E. 
y 

at the surfaces with mean load and bending moment is shown in Figure 

5.21. In all cases the L~crement of strain due to stress redistri-

bution is small and although there appears to be some inconsistency 

in the results for M/M = 1.2 it must be remembered that the scatter y . 

is 'probably' within the computational accuracy of the program. 

The results for M/M = 0.8 are not included because it was found 
y 

that sufficient time had not been allowed for redistribution to be 

complete. d The general trend is for 6. c.. / E y to be larger on the 

first tensile surface and to be more sensitive to changes in mean 

load when compared with the first compressive surface. 

5.2.4.2.2 Linear hardening models 

Ratchetting mechanism 

The stress distribution due to initial loading and during the 

first cycle for p/PL ~ 0.8, M/My = 1.5 and EpfE = 0.05 are the same 

as those for the 'no creep' condition in Figures 5.6 and 5.9 for 

isotropic hardening and kinematic hardening respectively. Between 

the end of the first and the start of the second bending cycles 

'complete redistribution' returns the residual stress distribution 

to the steady state uniform stress distribution due to initial 

loading. However the material has hardened and tr~ next bending 

cycle produces less ratchet strain than the first at both surfaces 

for isotropic and kinematic hardening. 
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For isotropic hardening, the surface ratchet strains accumulated 

in 10 cycles are compared with the results for 'no creep' in Figure 

5.8. There is an overall increase in the accumulation of surface 

ratchet strains compared with the 'no creep' behaviour but the 

ratchetting must eventually cease when the material has hardened 

sufficiently for cycling to be within the elastic range. 

The accumulated surface ratchet strains in 10 cycles for 

kinematic hardening are compared with the 'no creep' .results in 

Figure 5.13. Again, there is an increase in the ratchet strains 

which must reduce to zero when the material has fully hardened. 

Effects of mean load, bending load, hardening assumption and Ep~ 

on ratchetting behaviour 

Finite element computations were performed for 10 cycles with 

a range of mean loads of p/PL = 0.2 to 0.8 and 3 bending loads; 

M/My = 1.0, 1.5 and 2.0. The variation in the cyclic behaviour of 

the stepped beam shank with mean load, bending moment, hardening 

assumption and EplE is given in Figures 5.22 to 5.26. Carpet plots 

are used to show the variation of accumulated ratchet strain with 

mean and cyclic loads for the combinations of hardening assumption 

and EplE given in Table 5.2. 

Results for EplE = 0.01 with kinematic hardening were not 

obtained because of the large amount of computation involved. The 

10th cycle ratchet strains (values in parenthesis) for the extremities 

of mean load (i.e. p/PL = 0.2 and 0.8) are given to indicate the 

cases where significantly more than 10 cycles are re~uired to reach 

shakedown. For the 'complete redistribution' case shakedown is 

related to purely elastic cycling with no cyclic plasticity region. 

For intermediate values of load the 10th cycle ratchet strains fall 

within the extreme values ~uoted. The residual curvatures are 

similar in direction to the 'no creep' case being generally positive 

for isotropic hardening and negative for kinematic hardening. The 
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main exception to this behaviour is for M/My = 1.0 and E~E = 0.05 

and 0.1 where there is no reverse plasticity for kinematic hardening 

and the results for isotropic hardening and kinematic hardening are 

therefore the same. In most cases, the accumulation of first tensile 

and first compressive surface ratchet strains under 'complete 
, 

redistribution' conditions is equal or greater than for the no 
I 

creep case in Figures 5.14 to 5.19. The opposite effect is apparent 

on the first compressive surface for EplE = 0.01 and M/My = 1.0. 

For EplE = 0.05 and 0.1, the effects of 'complete redistribution' 

on ratchet strains reduce with increasing bending load and for 

M/M = 2.0 the results for 'no creep' and 'complete redistribution' 
y 

are very similar. For the first tensile surface with isotropic 

hardening and the first compressive surface with kinematic hardening 

the accumulation of strain, particularly for large bending loads, 

is dominated by the ratchet strain in the first cycle. 

For EP/E = 0.05 and 0.1 the 10th cycle ratchet strains are 

generally small (less than, and in most cases, very much less than, 

0.23). However for EP/E = 0.01 which is approaching an elastic­

perfectly plastic model, 10th cycle ratchet strains up to the yield 

strain could be expected although the loading conditions would 

probably be unacceptable in view of the large first cycle ratchet 

strains of up to 50 times the yield strain. 

Creep during the dwell periods 

The dwell period behaviour with an elastic-perfectly-plastic 

material assumption has been discussed in Section 5.2.4.2.1. The 

dwell period behaviour for hardening materials is similar to that 

shown in Figure 5.20 with an asymptotically approached constant 

creep strain rate which is the same as for virgin material at the 

same load and an increment of strain due to stress redistribution, 

.6.E d/t.y' However the hardening of the material results in a 

reduction in the amount of stress redistribution for each successive 
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dwell period as shown in Figure 5.27 for_p/PL = 0.8, M/My = 1.5, 

EpfE = 0.05 and an isotropic hardening' assumption. Differences 

between first tensile and first compressive surface dwell period 

behaviour are seen to be insignificant after 10 cycles and the 

increment of dwell period strain due to stress redistribution is 

relatively small after a few cycles. The variation in ~E d/ f.. 
y 

for the first dwell period with bending load for the extremes of 

mean load (p/PL = 0.2 and 0.8) for EpfE = 0.05 are shown in Figure 

5.28. The 1st cycle redistribution strains are relatively insensi-

tive to the plastic modulus and values for the other plastic moduli 

are within 0.1 e of those in Figure 5.28. 
y 

The variation in time function for complete redistribution, 

r R' is shown in Figure 5.29. For a particular mean load, a range 

of ~ R values is given which indicates the variation with bending 

load and plastic modulus. In general the variation with bending 

load and plastic modulus is small and the redistribution time 

function is practically independent of mean load. From the 

definition of time function (e~uation 4.2) and Figure 5.29 it 

can be seen that the redistribution time depends mainly on the mean 

load. The large range for p/PL = 0.2, where redistribution times 

are large and dwell period strains small, is inconsistent with 

the results for higher mean loads and possibly relates to the 

accuracy criterion of the creep computation. 

5.3 Analysis of the Whole Component 

5.3.1 Finite element model 

The 46 element ~esh used to model a half section of the stepped 

beam is shown in Figure 5.30. Axial and bending loads are applied 

to 3 additional 'rigid' elements to maintain the 'plane-sections-

remain-plane' criterion discussed in Section 5.2.1. The left hand 
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end of the beam is clamped. Two-dimensional, plane stress, 8-noded, 

isoparametric elements are used throughout. The justification for using 

this mesh is discussed in Appendix II. When surface stress or strain 

distributions are quoted, data has been obtained for the Gauss points 

nearest to the surface shown in Figure 5.30. 

5.3.2 Data 

The material data is generally the same as for the shank and 

discussed in Section 5.2.2. Elastic-perfectly-plastic, isotropic 

hardening, kinematic and non-linear kinematic hardening models are 

used to investigate the 'no creep' ratchetting behaviour of the 

component, including a comparison with the experimental results of 

Yahiaoui (12) for which the multilinear representations of the lead 

alloy uniaxial stress-strain and cyclic behaviour, shown in Figure 

4.24, are used. The 'overlay method' (20) is used to model non-

linear kinematic hardening using two sub-layers of elements for the 

shank and is based on Curve A in Figure 4.24. The overlay model 

is shown in Figure 5.31 and the individual element data is given 

in Table 5.3. 

For the 'complete redistribution' case, an elastic-perfectly 

plastic material model is used. A time index of unity is assumed 

for the Norton Bailey creep law (other creep law constants from 

Table 4.1) together with an assumption of zero interaction between 

plastic and creep strains. 

5.3.3 Axial loading 

5.3.3.1 Elastic stresses 

The elastic surface meridional stress distribution due to an 

axial load is shown in Figure 5.32, from which a mechanical stress 

concentration factor due to axial loading of 1.8 is predicted 

(compared with 1.66 from photoelastic results (55)). Figure 5.33 
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shows the 'exaggerated' deformed shape for a mean load of 0.7 PLo 

There is an overall thinning of the component but no obvious 

necking in the region of the stress concentration. 

5.3.3.2 Elastic-plastic behaviour 

The development of the plastic zone with increasing axial load 

up to collapse is shown in Figure 5.34, for an elastic-perfectly­

plastic material assumption. The zone initiates in the fillet and 

moves into the shank with increasing load. At collapse, virtually 

the whole of the shank has yielded. 

5.3.3.3 Creep at sustained mean load 

The stationary state !1ieridional stress distribution is comyared 

with the meridional stress distribution due to an initial loading 

of p/PL = 0.7 in Figure 5.35. The values plotted are far the 

Gauss points nearest to the surface. There is a shift in the 

position of peak stress towards the shank and a drastic reduction 

in the magnitude of the peak stress in the fillet. 

5.3.4 Application of bending moment 

5.3.4.1 Elastic stresses 

The elastic surface meridional stress distribution due to 

bending is shown in Figure 5.36, from which a stress concentration 

factor in bending of 1.46 is predicted (compared with 1.38 from 

photoelastic results ·· (55)). 

5.3.4.2 Elastic-plastic behaviour 

The development of the plastic zone with increasir~ moment 

towards collapse is showp in Figure 5.37, for an elastic-perfectly­

plastic material assumption. The zone initiates in the fillet and 

spreads into the shank as load increases. Although yielding in the shank 

commences for M/Ivly = 1, this is not predicted for M/Hy = 1 .11 since the 

Gauss points nearest to the surface do not yield until M/My = 1.13. 
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Results for moments greater than 1.4 M (0.93 of the collapse moment) y 

could not be obtained because o~ convergence problems with the finite 

element program. However it is clear that, at collapse, the plastic 

zone will have reached the centreline of the beam and the majority of 

the shank will have yielded. 

5.3.5 Cyclic bending with sustained mean load 

5.3.5.1 'No creep' condition 

5.3.5.1.1 Elastic-perfectly-plastic material model 

Ratchetting mechanism 

The regions of yielding during the first and second cycles for 

p/PL = 0.7 and M/My = 0.7 are shown in Figure 5.38. 

At the first tensile and first compressive surface 'peak fillet' 

positions the ratchetting behaviour is 'similar' to that for the 

shank already discussed in Section 5.2.4.1.1. The first ~lcle 

produces increments of surface 'peak fillet' ratchet strain, the 
. 

first tensile surface experiencing a larger increment of ratchet 

strain. A steady state condition is reached after the first cycle 

where first tensile and first compressive surface 'peak fillet' 

ratchet strains are equal, and less than those in the first cycle. 

From Figure 5.38 it is seen that the reduction in fillet ratchet 

strains between the first and subsequent cycles is associated with 

a reduction in the yield zone in the fillet region. There are no 

further changes in residual 'curvature' of the component. The 

accumulation of surface ratchet strains in the shank and at the 

'peak fillet' positions during the first 10 cycles are shown in 

Figure 5.39. The distribution of steady state meridional ratchet 

strains, which is the same for both surfaces, is shown in Figure 

5.40, from which it is clear that 'peak fillet' ratchet strains 
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occur very close to the shank/fillet intersection and are less than 

those in the shank. 

Effects of mean load and bending load on ratchetting behaviour 

The accumulations of first tensile and first compressive 

surface shank and 'peak fillet' meridional ratchet strains in 10 

cycles for p/PL = 0.5 and M/My = 1.05 are shown in Figure 5.41. 

Again steady state conditions exist after the first cycle and 'peak 

fillet' meridional ratchet strains are less than those in the shank. 

The results for this loading and p/PL = 0.7, M/My = 0.7 are summarised 

in Table 5.4. The results are discussed in Chapter 7. 

5.3.5.1.2 Linear hardening models 

The accumulations of first tensile and first compressive surface 

shank and 'peak fillet' meridional ratchet strains in 10 cycles for 

p/PL = 0.54 and M/My = 1.30 are shown in Figure 5.42 for 'no creep' 

conditions. The results are for the isotropic and kinematic 

hardening models of the lead alloy stress-strain behaviour shown 

in Figure 4.24 and are normalised with respect to the relevant 

yield stress (i.e. er = 19.8 MN/m2). Both models predict shake­y 

down in under 10 cycles for the shank and 'peak fillet' positions 

with the possible exception of the first compressive surface in the 

shank with isotropic hardening for which the results indicate shake-

down in f'\..; 15 cycles. The reversal of residual curvature between 

isotropic and kinematic hardening models already identified for 

the shank is also apparent in the fillet region, although the term 

'curvature' is not strictly applicable to the fillet since strain 

distributions through the thickness are 'not linear. In the fillet 

it is more reasonable to compare surface strains, i.e. accumulated 

ratchet strains at the 'peak fillet' position are always greater 

on the first tensile surface for isotropic hardening and on the 
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first compressive surface for kinematic hardening. 

With the exception of the first cycle for the first tensile 

surface, the isotropic hardening model always predicts a greater 

accumulation of ratchet strains at the 'peak fillet' position com-

pared with the shank, whereas the kinematic hardening model predicts 

greater accumulations in the shank. The same is true for ratchet 

strains prior to shakedown. An upper bound on total accumulated strains 

in the component can be obtained qy considering the first compressive 

surface in the shank with kinematic hardening. 

The accumulation of ratchet strains at the shank surface with 

kinematic hardening are compared with the equivalent results with 

a non-linear kinematic hardening model in Figure 5.43. The results 

for the two models deviate during the 3rd cycle which indicates 

that strains during this cycle exceed the breakpoint value between 

Curves A and B in Figure 4.24 (i .e. the normalised equivalent of 

o.~ strain from Figure 4.24). For the 3rd and subsequent cycles 

prior to shakedown, the non-linear kinematic hardening model 

predicts ratchet strains which are larger than for kinematic harden­

ing. However, 10th cycle ratchet strains with a non-linear kinematic 

hardening model are small and shakedown has almost occurred, whereas 

for kinematic hardening, the results indicate shakedown in rv 8 

cycles. 

5.3.5.1.3 Comparison between experimental results and finite 

element predictions 

This section discusses the comparison between experimental t est 

data (12) and finite element predictions for a typical loading con­

dition. 
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M 
M * 

Y 
= 1.2 (Nominal) 

where PL* and My* are based on a 0.2% proof stress for the lead 

alloy of 21.5 MN/m2 . The experimental moments were applied 

I rapidly I (,....., 6 mins per cycle) and a I no creep I condition has 

been assumed for the finite element predictions. 

It was found that the curvature of the beam had an effect on 

the applied moments because of an additional moment due to the 

eccentricity of the axial load. This additional moment has been 

quantified for the shank and found to be significant (12). Table 

5.5 compares the nominal shank moments with the actual moments 

which vary during the first 5 cycles before reaching an approximate 

steady state of ±1.061 M *. Finite element predictions with these 
y 

actual moments are compared with the experimental shank results. 

Actual moments in the fillet have also been quantified and 

found to be up to 5% greater than shank values (12). In view of 

the strong dependence of strain on bending load it was considered 

unrealistic to use the shank moments in Table 5.5 for an analysis 

of the whole component and comparison between experimental results 

and finite element predictions are made for the shank region only. 

In addition to comparisons based on actual moments, experimental 

shank strains at the end of each quarter cycle are used to determine 

curvatures and finite element predictions in the s hank based on 

curvature controlled loading have been obtained. 

Actual moments 

Finite element predictions of total strains and ratchet strains 

in the shank for p/PL* = 0.5 and the steady state bending load 

of H/M * = 1.061 with an elastic-perfectly-plastic model (Curve C, y 



- 172 -

Figure 4.24) are compared with the experimental results in Figure 

5.44. The model correctly predicts the 'sign' of the residual 

curvature except for the first cycle but cannot predict the 

increase in this parameter with cycle number. The model over­

predicts the accumulation of strains because the steady state 

ratchet strain prediction of 0.07~ per cycle is larger (and after 

a few cycles vezy much larger) than the experimental ratchet 

strains. 

Comparison between the experimental results and finite element 

predictions of total strain and ratchet strain, using the actual 

moments from Table 5.5, with isotropic and kinematic hardening 

models are shown in Figures 5.45 and 5.46 respectively for the 

first 10 cycles. With both isotropic and kinematic hardening models, 

the first compressive surface total strains are greater than those 

for the first tensile surface, which is not the case from the 

experimental results. Also, both models predict shakedown in 

~10 cycles. The reduction in first compressive surface strain 

during the 2nd to 4th cycles with kinematic hardening is an 

unexpected result. The experimental and ~edicted variations in 

total surface strain during the first two cycles are compared in 

Figure 5.47. The finite element predictions for the first tensile 

surface are always lower than the experimental results. The 

opposite effect occurs on the first compressive surface. 

Curvature control 

Finite element predictions based on curvature controlled loading 

for isotropic and kinematic hardening models are compared with the 

experimental results in Figures 5.48 and 5.49 respectively. 

The 'incremental application of load' approach used in the 

finite element program made obtaining these results a slow and 
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tedious task and the predictions are therefore restricted to a 

few cycles. Obviously. both models will correctly predict the 

relative magnitudes of the surface strains but absolute values are 

over-predicted. However, the predictions, particularly with a 

kinematic hardening model, are in generally good agreement with 

the experimental results over the 6 cycles analysed. Since neither 

model can be used to predict material ratchetting, shakedown 

must eventually occur. 

5.3.5.2 Complete redistribution (Elastic-perfectly-plastic 

material model) 

Ratchetting mechanism 

The regions of yielding during the first and second cycles 

for p/PL = 0.7 and M/My = 0.7 are shown in Figure 5.50. There is 

a reduction in the yield zone in the fillet region between the first 

and second cycles. The component ratchet strains produced in the 

first cycle are identical to those for the 'no creep' condition. 

However between the end of the first cycle and the start of the 

second cycle, the residual stresses are allowed to completely 

redistribute to the stationary state stress distribution (shown 

in Figure 5.35). The behaviour of the shank under 'complete 

redistribution' conditions has been discussed in Section 5.2.4.2.1. 

At the 'peak fillet' positions, a steady state condition is reached 

after the first cycle and first tensile surface meridional ratchet 

strains are greater than those for the first cornpressive surface. 

The whole component experiences an increment of 'curvature' 

and overall growth for each cycle. The accumulations of surface 

ratchet strains in the shank and at the 'peak fillet' positions 

during the first 10 cycles are compared with those for the 'no creep' 
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condition in Figure 5.39. The distributions of first tensile and 

first compressive surface steady state meridional ratchet strains 

are compared with the 'no creep' case in Figure 5.40. For the 

'complete redistribution' case the 'peak fillet' ratchet stxains 

are greater than those in the shank, whereas for 'no creep' the 

converse occurs. 

Effects of mean load and bending load on ratchetting behaviour 

The accumulations of shank and 'peak fillet' meridional ratchet 

strains in 10 cycles for p/PL = 0.5 and M/My = 1.05 are compared 

with the 'no creep' case in Figure 5.41. The first cycle and 

steady state ratchet strains in the shank and fillet for this 

loading and p/PL = 0.7, M/My = 0.7 are given in Table 5.4. The 

results are discussed in Chapter 7. 

Creep during the dwell periods 

The strains which accumulate during the first dwell period 

in the shank and at the 'peak fillet' positions, Cd, are shown 

in Figure 5.51 for p/PL = 0.7 and M/My = 0.7. The results are 

asymptotic to straight lines with an increment of normalised strair., 

AEd/Ey , due to redistribution of stresses. AE d/c,y is positive 

in the shank and at the 'peak fillet' position on the first tensile 

surface. For the 'peak fillet' position on the first compressive 

surface, A E d / E is nega ti ve . There is some s cat ter in the 
. y 

results for the 'peak fillet' positions and a least squares fit 

was applied to the relevant data. The results in Figure 5.51 are 

a truncated version of the first dwell period behaviour which 

explains why the 'peak fillet' least squares fit may not appear to 

be accurate for the data points given. For the shank identical 

results are obtained for each dwell period since the initial stress 

distribution is the same as the stationary s t ate stress distribution. 
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In the fillet, steady state dwell period behaviour occurs after the 

first dwell period since the stationary state stress distribution 

is not the same as that due to axial load. The first and steady 

state dwell period constant strain rates, are 

identical but the amount of strain due to redistribution is 

constant after the first dwell period. The dwell period behaviour 

for this loading together with p/PL = 0.5, M/My = 1.05 is summarised 

in Table 5.6. The fillet results for p/PL = 0.5, M/My = 1.05 

indicate that redistribution might not be complete. For all cases, 

the increment of strain due to redistribution, Af}/ e. , is small. 
y 

The normalised gradient, (d( t. d/ c'y)/d r)/(p/PL), is independent 

of mean load. These results are discussed further in Chapter 7. 

5.4 Application of Ainsworth's Bounding Technigue to the shank 

Ainsworth's (7) bounding technique is used to obtain an upper 

bound on shank total centreline strain under 'complete redistribution' 

conditions with mean stress, er , using the finite element results 

for a 'no creep' computation with the same bending loads and a 

higher mean stress, Qi* (results taken from the analysis of the 

shank discussed in Section 5.2). Ainsworth suggests an optimum 

value for this higher mean load 

where n is the stress index in 

the creep law. 

The through thickness axial stress distribution at the end of each 

cycle, from the 'no creep , computations at mean stress C5 *, is 

used to predict centre line strain during the dwell period for the 

equivalent 'complete redistribution' condition at mean stress cr. 

Upper bounds for two loading situations have been obtained:-
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~ = 0.7, ~ = 1.0, ~ = 0.05, Isotropic hardening, dwell 
LyE 

period = 60 hrs, 

(ii) ~ = 0.4, ~ = 2.0, ~ = 0.05, Isotropic hardening, dwell 
L y 

period = 2000 hrs, 

using the predictions for 'no creep' computations with the same 

bending load, plastic modulus, hardening assumption but with the 

following mean loads:-

(i) P*= 0.8 { L (1 + 1) = 0.796 } PL PL n 

(ii) P* 0.5 {!'-(1+ 1) = 0.455 ) -= 
PL 

P
L 

n 

which are, as shown, reasonably close to Ainsworth's suggested 

optimum values. 

The derived upper bounds for cases (i) and (ii) are compared 

with the finite element predictions in Figures 5.52 and 5.53 

respectively. 

In both cases, the upper bound is grossly in excess of the 

finite element results due to the over-prediction of dwell period 

strains. Creep strains across the section, based on the residual 

stress at each Gauss point are used in a volume integral of the 

creep dissipation function in order to obtain an upper bound on 

the centre line dwell period strains. Due to the 'peaky' form of 

the residual stress distribution and high value of the stress index 

(7.3), the volume integral is dominated Qy the creep strain values 

for the central Gauss points where the peak stresses occur. It 

should be noted that these particular results have no practical 

application because of the exceptionally large accumulations of 

strain (up to 240%) which are far in excess of design limitations. 
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E 
Figure Number 

J. 
E 

Isotropic Hardening Kinematic Hardening 

0.01 5.14 5.15 

0.05 5.16 5.17 

0.1 5.18 5.19 

Table 5.1 Shank Study, 'no creep' conditions. Key to Figure numbers 

E 
Figure Number 

-2 
E 

Isotropic Hardening Kinematic Hardening 

0.01 5.22 -

0.05 5.23 5.24 

0.1 5.25 5.26 

Table 5.2 Shank study, complete redistribution. Key to figure numbers. 



Hardening E 6 y Ep1 

(GN/m2) (MN/m2) (GN/m2) 

Material 1 Kinematic 44.90 38.32 0.4 
" 

Material 2 Kinematic 1.50 8.86 0.4 

Composite Material Non-linear Kinematic 23.20 19.80 0.9WJ 

Table 5.3 Stepped Beam Shank. Element data used in 'overlay' model for 

non-linear kinematic hardening 

(see Figure 5.31) 

Ep2 

(GN/m2) 

-

-

0.4 

..... 
-..,J 
(X) 



P 
PL 

0.5 

0.7 

Normalised Ratchet Strain per cycle 

M 'No-creep' 'Complete redistribution' 

M Position 
y 1st cycle Steady State 1st cycle Steady State 

IT surface 2.175 0.555 2.175 2.204 

Shank 
~ FC surface -0.010 0.555 -0.010 -0.031 

1.05 

FT surface 3.293 0.322 3.293 2.417 

Fillet 

FC surface 1.573 0.322 1.573 1.040 

FT surface 2.611 1.500 2.611 2.613 

Shank 

FC surface 1.175 1.500 1.175 1.182 

0.7 

FT surface 3.973 1.025 3.973 2.902 

Fillet 

FC surface 1.335 1.025 1.335 1.347 
------ ----

Table 5.4 Stepped Beam Ratchetting Behaviour with an Elastic-perfectly 

Plastic Material Model 

! 

I , 

....... 
-.,J 

'" 
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Actual M/M * 
Cycle Nominal M/My* 

y 

in the shank 

+M +1.2 +1.003 

0 0 +0.066 
1 -M -1.2 -1.114 

0 0 -0.034 

+M +1.2 +1.034 

0 0 +0.041 
2 -M -1.2 -1.032 

0 0 -0.020 

+M +1.2 +1.057 

0 0 +0.017 
3 -M -1.2 -1.060 

0 0 -0.026 

+M +1.2 +1.073 

0 0 +0.007 
4 -M -1.2 -1.063 

0 0 -0.017 

+M +1.2 +1.057 

0 0 +0.007 
5-10 -M -1.2 -1.066 

0 0 -0.004 

Table 5.5 Effect of eccentricity on applied 

moments 



P M 
d(e.d/E ) d(£d/£ )/dr 

Position Y.. Y.. 
PL M dr pjP

L y 

IT surface 0.502 1.004 

Shank 

FC surface 0.500 1.000 

0.5 1.05 

FT surface 0.479 0.959* 

Fillet 

FC surface 0.410 0.819* 

FT surface 0.700 1.000 

Shank 

FC surface 0.699 0.998 

0.7 0.7 

FT surface 0.704 1.005 

Fillet 

FC surface 0.718 1.026 
-- -- --- - --~--

* redistribution possibly not complete 

Table 5.6 Stepped Beam. Dwell Period Behaviour. 

1st cycle 

0.302 

0.218 

0.159 

0.217 

0.237 

0.079 

0.077 

-0.040 
-~ 

D.E, d/£y 

Steady State 

0.302 

0.218 

0.154 

0.209 

0.237 

0.079 

0.116 

-O.OlU 

I 

1-4 
(X) 
1-4 
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Figure 5.2 Stepped beam shank (elastic-perfectly-plastic, M/My = 0.8, 
p/PL = 0.64, 'no creep' conditions). Axial stress distributions 
due to i~tial loading and during the first cycle. 



22 

20 

18 

1 6 

1 4 

- 184 -

o FIRST TENSILE 

/ 

SURFACE 
'COMPLETE 
REDISTRIBUTION' /0 

I /0 
>. 1 2 w /0 
~ 
w 

10 

8 

6 .. 

2 

o 

o 

6. FIRST TENSILE 
/ SURFACE 

L?:i • NO CREEP' 

/ /~ FI RST COMPRESSIVE 
SURFACE 

'NO CREEP' 

o / /./ 

/ //W 
o L?:i / . 

/ / 'Rl t:l.-'t:l.....,...cJ ~~~~Ag~MPRESSIVE 
t/8 ~ ~t:l~ • COMPLETE 

t::5. /" (!]....... REDISTRI BUTION' 

/~ (!]~ 
~ 

2 4 6 . 8 10 
Cycle Num ber 

Figure 5.3 Stepped beam shank (elastic-perfectly-plastic, M/M = 0,8, 
p/PL = 0.64). Accumulation of normalised ratchet ~train 
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~>.. 
....... 
~ 

4 

3 

2 
(1 

\ 
(r 

1 

- 185 -

~\ 

, COMPLETE 
REDISTRIBUTION' 

8 /~ \. ~ 
8 

'NO CREEP' 

OIiJ---t7-t---r--e;~--A--l/6 
1st bending 1st dwell 2nd bending 2nd ct.Nell 3rd bending 

cycle period cycle period cycl e 

Figure 5,4 Stepped beam sh~~ (elastic-perfectly-plastic, M/M = 0. 8 , 
P/PL = 0.8). Variation in normalised curvature duting the 
first J cycles. 
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Figure 5.5 . Stepped beam shank (elastic-perfectly-plastic). 1aria ti on in 
normalised ratchet strain for the first and subsequent cycles 
with mea~ load and bending load. 
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Figure 5.6 stepped beam shank (Isotropic hardening, EplE = 0.05, M/My = 1.5, 
P/PL = 0. 8 , 'no creep' conditions). Axial stress distributio~s 
due to initial loading and during the first cycle. 



- 188 -

-~ }~ 
2 \2 

8 

/ 

\ 
End of 2ndcycle 

-0·5 

-1·0 

\l 

-1·5 

-2·0 
~b\:"""'~:"""~t"-~or--S"'<""~"""S~~-"'-'''-''''or-S~Si~ Approx. exte !1t of 

yielding a t +H 

~~ Approx. extent of yielding at - M 
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p/ PL = 0.8 ). Accumulation of normalised ratchet strain during 
the first 10 cycles. 
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P/ PL = 0.8, 'no creep' conditions). Axial stress distributions 
due t o i:1itial loading and during the first cycle. 
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Figure 5.10 Stepped beam shank. (Kinematic harde~ing, En/E = 0.05, M/My = 1.5 
P/ PL = 0. 8 , 'no creep' conditions). Axial sfress distributions 
during the 2nd cycle. 
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Figure 5.24 Stepped beam shank (Kirematic hardening, Ep/E = 0.05, complete redistribution). 
Accumulation of normalised ratchet strain in 10 cycles - see Figure 5.22 for notation. 
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Figure 5.25 Stepped beam shank (Isotropic hardening, En/E = 0.1, complete redistribution). 
Accumulation of normalised ratchet strain fn 10 cycles - see Figure 5.22 for notation. 
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Figure 5.26 Stepped beam shank (Kinematic hardening, EP/E = 0.1, complete redistribution). 
Accumulation of normalised ratchet strain in 10 cycles - see Figure 5.22 for notation. 
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in increment of normalised strain due to stress redistribution 
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redistribution during the first dwell period with me~~ a~ 
bending loads. 
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Figure 5.38 Stepped beam (Elastic-perfectly-plastic, ~/My = 0.7, P/PT = 0.7. 
I no creep I conditions). Regions of yielding during the ¥irst 
and second cycles. 
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CHAPTER SIX 

6. 'HOLE-IN-PLATE', CIRCULAR PLATE AND SHOULDERED TUBE COMPONENTS 

6.1 Introduction 

In this chapter, the analysis of the 'hole-in-plate', circular 

plate and shouldered tube components is described. Each component 

ratchets when subjected to steady mechanical and cyclic thermal 

loading. The effects of the steady mechanical and thermal loads 

are initially studied independently prior to the analysis of 

ratchetting. The effect of creep during dwell periods is bounded 

by consideration of the 'no creep' and 'complete redistribution' 

cases. 

An elastic-perfectly-plastic material model is used throughout 

and the material data is given in Table 6.1. Appendix I lists the 

'standard' input data used in the finite elerr.ent analyses. 

6.2 'Hole-in-plate' Component 

6.2.1 Finite element model 

The 27 element mesh used to model a quarter section of the 

'hole-in-plate' component (see Figure 3.3) is shown in Figure 6.1. 

The axes of symmetry AB and CD are constrained to have no dis-

placement in the global X and Y directions respectively and a 

mechanical load is applied to the right hand end of the mesh in 

the global X direction. Two-dimensional, plane stress, 8 noded isopara-

metric elements are used and the ,iustification of this mesh is discussed 

i n Appendix 11. The Gauss points nearest to AB are also shown i n 

Figure 6.1. 

6.2.2 Nechanical loading 

6.2.2.1 
, 

Elastic stresses 

The elastic normal stress distribution across the section of 

maximum stress variation, AB, due to the mechanical loading is shown 
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in Figure 6.2 from which a maximum mechanical stress concentration 

factor of 2.43 is obtained .at point A. The 'exaggerated' deformed 

shape for a mean load of 0.7 of the limit load is shown in Figure 

6.3. The comparatively large deformation of the element nearest 

to point A is clear. 

6.2.2.2 Elastic-plastic behaviour 

The growth of the pla.stic zone in the component when subjected 

to increasing mechanical load up to collapse is shown in Figure 

6.4. The plastic zone grows from the point of peak stress, A, 

and at collapse there is a band of yielded material with part 

of section AB remaining elastic. 

6.2.2.3 Creep at sustained mean load 

The effects of creep on the normal stress distribution along 

AB is shown in Figure 6.5, for Gauss points nearest to the axis 

of symmetry. The fully redistributed stress distribution is 

approximately linear and the reduced stress concentration factor 

is approximately 1.21. 

6.2.3 Thermal loading cycle 

The component is initially under isothermal conditions and 

is insulated except for the surface of the hole. A thermal shock 

consists of:-

(i) a ramp increase in the temperature of the hole surface 

of 60 0 C in 2 seconds; 

(ii) a dwell period of 1000 seconds for conditions to stabilise 

at the increased temperature; 

(iii) a ramp reduction in the temperature of the hole surface of 

60 0 C in 2 seconds; and 
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(iv) a further dwell period of 1000 seconds for the original 

isothermal conditions to be re-established. 

The most severe stress conditions occur during the transient. 

The temperature response at points A, B, C, D and the variation 

in through thickness temperature difference across AB and CD are 

shown in Figure 6.6 for the first half of the transient (i.e. 

(i) and (ii)). The temperature files used to apply the thermal 

shocks were edited to an acceptable number of increments without 

affecting the severity of the transient. The times chosen and 

the temperature distributions along AB and CD during the first 

half of the thermal shock are given in Figure 6.7. The thermal 

stress conditions are more severe along AB than CD and Figure 6.8 

shows the time variation in elastically calculated thermal stress 

normal to AB at the Gauss point nearest to A for the first 15 

seconds of the first half of a thermal shock. This stress is 

negative and peaks at approximately 2.7 seconds after the start 

of the ramp change in temperature. 

Equivalent linear temperature differences were obtained from the 

non-linear temperature distributions across AB, shown in Figure 6.7, 

by the approach suggested by Yamamoto et al (49) and a maximum 

o value of 51.7 C was obtained. Using this value in the equation 

for maximum thermal stress, (5 t = Eo(AT/2, gives a maximum 

normalised thermal stress range, crt/c}y = 1.37, for the complete 

cycle. 

6.2.4. Cyclic thermal loading with sustained mean load 

6.2.4.1 'No creep' condition 

Ratchetting mechanism 

The plastic zones due to an initial mechanical load of 0.7 
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of the limit load, at the end of the first half thermal cycle and 

at the end of the first complete thermal cycle are shown in Figure 

6.9. The first thermal cycle generates an increment of plastic 

strain across part of the section AB and the maximum ratchet strain 

is at point A in the direction tangential to the hole. 

After the first cycle a cyclic steady state is reached and 

the development and translation of the zones of additional plastic 

growth during a steady state thermal cycle are shown in Figure 6.10. 

The residual stress distributions across AB at the end of a steady 

state cycle are given in Figure 6.11. There is a peak value at an 

intermediate position between A and B. During the first half of 

a steady state thermal shock yielding initiates from this position 

(see Figure 6.10) and moves outwards to B. During the second half 

of the thermal shock, yielding initiates at A and moves outwards 

towards the centre of the section "(Figure 6.10). The total regions 

of additional plastic growth during a steady state thermal cycle 

are given in Figure 6.12. The whole section experiences an incre­

ment of plastic strain. Since the steady state plastic zones are 

narrower near the hole (i.e. near A) than they are on the outside 

surface (i.e. near B), larger ratchet strains would be expected 

to occur near the hole. This is shown to be the case in Figure 6.13(a), 

which shows the distribution of steady state ratchet strains across 

AB in the direction normal to AB. The steady state ratchet strain 

at A is less than the first cycle value. Figure 6.1J(b) shows the dis­

tribution of steady state ratchet strain along the outside surface and 

shows the peak value to be away from B but still significantly less than 

the ratchet strain at A. 

The 'exaggerated' nodal displacements at the end of the 8th 

shock and the incremental 'exaggerated' nodal displacements due to 

the 9th shock are shown in Figure 6.14. There is a reduction in the 

section AB and an ovalisation of the hole which has a general 
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increase in diameter. 

The accumulation of ratchet strains at point A during the 

first 10 cycles is shown in Figure 6.15. 

Effect of mean load on ra tchetting behaviour 

The accumulation of peak ratchet strains (at point A) for a 

mean load of 0.5 of the limit load during the first 10 cycles is 

shown in Figure 6.16. In this case the steady state condition is 

achieved in approximately 5 cycles and the steady state ratchet 

strains are very small (( At. r/f. y )6S= 0.015). A summary of the 

results for p/PL = 0.5 and 0.7 is given in Table 6.2 and the results 

are discussed in Chapter 7. 

6.2.4.2 Complete redistribution 

Ratchetting mechanism 

The plastic zones due to an initial mechanical load of 0.7 

of the limit load, at the end of the first half thermal cycle and 

at the end of the first thermal cycle are identical to those for 

the 'no creep' case shown in Figure 6.9. Between the end of the 

first thermal cycle and the start of the second thermal cycle the 

stresses redistribute to the stationary state stress distribution 

which for the section AB is given in Figure 6.11. The variation of 

stress normal to AB, at A and B and at the point of peak residual 

stress, during the first dwell period is given in Figure 6.17. 

The stationary state stress distribution (Fig. 6.11) does not have 

a central peak value. Steady cyclic state conditions exist after 

the first cycle and the regions of additional plastic strain during 

a steady state cycle are shown in Figure 6.18. During the first 

half of the cycle, yielding is restricted to regions around A and 

B. The second half of the cycle is very similar to that for the 
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'no creep' case shown in Figure 6.10, where yielding initiates from 

the bore and extends over approximately one half of the section 

during the half cycle. The distribution of steady state ratchet 

strain in the direction of applied load across the section AB is 

compared with the 'no creep' case in Figure 6.13(a). The distribution 

is non-linear with a large increase in ratchet strains in the region 

close to A where the peak ratchet strain occurs. A relatively flat 

steady state distribution of ratchet strain along the outside surface 

is shown in Figure 6.13(b). steady state ratchet strains at A are less 

than the first cycle and the accumUlation of peak ratchet strains during 

the first 10 cycles is shown in Figure 6.15. 

The 'exaggerated' displacements after 8 cycles, during the 

9th thermal shock and during the 9th dwell period are shown in 

Figure 6.19. The reduction in section AB and ovality of the hole 

of the 'no creep' case is again apparent under 'complete redistri­

bution' conditions but there is an overall reduction in hole 

diameter at A which results from the dwell period behaviour. 

Effects of mean load on ratchetting behaviour 

The accumulation of peak ratchet strains (at point A) for a 

mean load of 0.5 of the limit load during the first 10 cycles is 

compared with the 'no creep' case in Figure 6.16. With 'no 

creep' the ratchet strains are very small but with 'complet e 

redistribution' resulting from creep, the component ratchets with a 

large accumulation of i nelastic strain. A summary of the results f or 

p/PL = 0.5 and 0.7 is given in Table 6.2 and the results are 

discussed in Chapter 7. 

Creep during the dwell periods 

The tangential strain which accumulates during the first dwell 

period at point A for a mean load of 0.7 PL is shown in Figure 6.20. 
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The steady state behaviour which occurs during the second and 

subsequent dwell periods is similar to that for the first dwell 

period. The normalised steady state strain rates and increments 

of normalised strain due to stress redistribution, D. f.. dj £ y, for 

this load and pjP
L 

= 0.5 are given in Table 6.3. For both loads 

the increments of strain are negative because the stress at A 

increases during the redistribution. The dwell period results 

are discussed in Chapter 7. 

6.3 Circular Plate Component 

6.3.1 Finite element model 

The 40 element, axisymmetric mesh used to model the circular 

plate component (see Figure 3.4) was previously used by Hyde (32) 

and is shown in Figure 6.21. The edge of the plate is constrained 

to have the same radial displacement at each node and the steady load 

consists of a transverse pressure applied to the top face. Axisymmetric 

8-noded isoparametric elements are used. When stress and strain dis-

tributions are quoted, the results are for Gauss points nearest to 

faces (0.11 mm) or edges (0.44 mm). 

6.).2 Transverse pressure loading 

6.).2.1 Elastic stresses 

The radial variation i n elastic stress along the top (pressurised) 

and bottom faces is shown in Figure 6.22 for a transverse pressure 

load of 0.7 of the collapse load. The collapse load is based on 

the theory of Hopkins and Wang (56) for a circular plate with a 

'built-in' edge and a uniformly distributed transverse load, 

i.e. = 6.25 
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where P 1 is the collapse load and M 1 is the collapse moment co co 

for a beam of unit thickness and depth equal to the thickness of 

the circular plate. For the circular plate configuration used a 

collapse pressure of 4.25 x 105 N/m2 is obtained. 

The results plotted in Figure 6.22 are for the Gauss points 

nearest to the surfaces. The clamping arrangement and effects of 

pressure on the top surface at the edge result in slightly lower 

radial and hoop stresses on the bottom face compared with the top 

pressurised face. The 'exaggerated' deformed shape for the same 

loading is shown in Figure 6.23. 

6.3.2.2 Elastic-plastic behaviour 

The elastic-plastic behaviour of the component when subjected 

to increasing transverse pressure load up to collapse is shown in 

Figure 6.24. Yielding initiates at the four 'corners' of the mesh 

and at collapse plastic hinges at the edge and centre of the plate 

are evident. The results also give an indication of the accuracy 

of the Hopkins and Wang C5@ theory; in the finite element analysis 

collapse occurs at a pressure of 1.05 of the Hopkins and Wang 

collapse pressure. 

6.3.2.3 Creep at sustained mean load 

The effect of creep on the hoop and radial stress distributions 

on the centre line (AB in Figlrre 6.21) is shown in Figure 6.25 for 

a transverse pressure of 0.474 of the collapse pressure. There is 

no difference between hoop and radial stress components. The 

initially linear variation redistributes to a highly non-linear 

form with large stress gradients in the region of the 'neutral 

plane. Creep has a similar effect on the hoop and radial 
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stress distributions at the edge (CD in Figure 6.21) as shown in 

Figures 6.26 and 6.27 respectively. 

6.3.3 Thermal loading cycle 

The component is initially under isothermal conditions and 

the edge is insulated. A thermal shock consists of:-

(i) the application of a 40 0c through thickness temperature 

gradient. This is obtained by reducing the temperature of 

the pressurised face by 400 C in 2 seconds at a constant rate 

with the temperature of the unpressurised face held constant; 

(ii) a period of time for the temperature gradient to stabilise; 

(iii) an equivalent ramp increase in the temperature of the 

pressurised face; and 

(iv) a further period of time for the initial isothermal conditions 

to be re-established. 

The worst thermal conditions occur when the maximum temperature 

difference exists and using the Bree (1) equation for thermal 

stress, the maximum normalised thermal stress range, ~t, is 
y 

1.41 which was confirmed by the finite element elastic analysis. 

The temperature files used to apply the thermal shocks were 

those developed by Hyde 02) for his analysis of the component. 

6.3.4 Cyclic thermal loading with sustained transverse pressure 

6.).4.1 'No creep' condition 

Ratchetting mechanism 

The first thermal cycle produces ratchet strains which vary 

throughout the component. The largest value of tensile ratchet 

strain occurs at the bottom edge of the plate (position D in 

Figure 6.21) in the transverse direction. There is an equal 
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compressive ratchet strain at the same point in the radial direction. 

At the centre of the plate the maximum tensile ratchet strain occurs 

at point A in the transverse direction with an e~ual compressive 

ratchet strain at point B in the same direction. Ratchet strains 

quoted are tensile and for points A (centre) and D (edge) in the 

transverse direction. The accumulation of ratchet strains at the 

edge and centre of the plate during the first 10 cycles and the 

individual ratchet strains for a pressure of 0.7 of the collapse 

pressure are shown in Figure 6.28. steady state conditions are not 

reached and ratchet strains continue to reduce during the 10 cycles 

analysed. Larger accumulations of ratchet strain occur at the 

edge. The regions of additional plastic straining for the two halves 

of the 2nd thermal shock and during the 10th thermal shock are shown 

in Figures 6.29 and 6.30 respectively. Plastic straining is apparent 

at the edge and centre of the plate (during the first and second 

halves of the shock respectively). The reduction in ratchet strain 

between the 2nd and 10th shocks corresponds to a reduction in 

the yield zone at the edge whereas there is no apparent reduction 

in the yield zone at the centre. Unlike the other components, 

ratchetting occurs i n the absence of a 'plastic core'. The 

'exaggerated' displacements at the end of the 10th thermal shock 

and during the 11th thermal shock are shown in Figure 6.31. 

Effect of transverse pressure on ratchetting behaviour 

The accumulation of edge and centre ratchet strains during the 

first 10 cycles and the individual ratchet strains for a pressure of 

0.295 and 0.4 of the collapse pressure are shown in Figure 6.32 and 

for 0.474 of the collapse pressure in Figure 6.33. In all cases, 

shakedown occurs in less than 5 cycles. The results are summarised 

in Table 6.4 and are discussed in Chapter 7. 
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6.3.4.2 Complete redistribution 

Ratchetting mechanism 

The ratchet strains produced by the first thermal shock are 

identical to those for the 'no creep' condition. Between the end 

of the first thermal shock and the start of the second shock the 

residual stress field is allowed to completely redistribute to a 

stationary state stress distribution which is the same as the 

stress field developed by creep from the initial stress distribution 

with the applied pressure only, (see Figures 6.25 to 6.27). Unlike 

the 'no creep' case a steady cyclic state is reached after the 

first cycle where second and subsequent thermal shocks produce 

the same increment of ratchet strain which is less than the first 

cycle value. The regions of additional plastic straining during 

a steady state cycle are shown in Figure 6.34 for a pressure of 

0.7 of the collapse pressure. Plastic straining is again apparent 

at the edge during the first half of the shock and at the centre 

during the second half of the shock and a 'plastic hinge' at the 

edge is evident when the 40 0C linear temperature gradient is 

fully established. The accumulation of ratchet strains at the 

edge and centre of the plate during the first 10 cycles and the 

individual ratchet strains for a pressure of 0.7 of the collapse 

pressure are compared with those for the 'no creep' condition in 

Figure 6.28. The 'exaggerated' nodal displacements at the end 

of 10 cycles, during the 11th shock and during the 11th dwell 

period are shown in Figure 6.35 for the same loading. 

Effect of transverse pressure on ratchetting behaviour 

The accumulation of edge and centre ratchet strains during the 

first 10 cycles and the individual ratchet strains for a pressure 
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of 0.295 and 0.4 of the collapse pressure are compared with the 

'no creep' behaviour in Figure 6.32 and for 0.474 of the collapse 

pressure in Figure 6.33. The results are summarised in Table 6.4 

and are discussed in Chapter 7. 

Creep during the dwell periods 

The strains which accumulate during the first dwell period 

at the point of maximum tensile ratchet strain (i.e. point D in 

Figure 6.21) in the transverse direction for a pressure of 0.7 of 

the collapse pressure are shown in Figure 6.36. The behaviour is 

similar to that for the components already discussed and steady 

state conditions occur during the second and subsequent dwell 

periods. The normalised steady state strain rates and increments 

of normalised strain due to stress redistribution at point D for 

pressures of 0.295, 0.4, 0.474 and 0.7 of the collapse pressure 

are given in Table 6.5. These results are discussed in Chapter 7. 

6.4 Shouldered Tube Component 

6.4.1 Finite element model 

The 50 element, axisymmetric mesh used to model the shouldered 

tube component (see Figure 3.5) was previously used by Hyde et al 

(10, 11) and is shown in Figure 6.37. The left hand end of the 

mesh (shank face) is constrained to have zero displacements in 

the axial direction. Axial loading is applied to the right hand 

end which is constrained to have cons t ant displacement in the axial 

direction. Axisymmetric 8-noded isoparametric elements are used. 



- 247 -

6.4.2 Axial mechanical loading 

6.4.2.1 Elastic stresses 

The elastic stress distributions along the outside surface 

and bore due to an axial load are shown in Figures 6.38 and 6.39. 

The meridional stress is dominant and peak conditions occur in the 

fillet. The results are for the Gauss points nearest to the 

surface. At the surface, a mechanical stress concentration factor 

of 1.59 has previously been obtained (10). The 'exaggerated' 

deformed shape for a mean load of 0.7 of the limit load is shown 

in Figure 6.40. There is a localised necking close to the shank! 

fillet transition. 

6.4.2.2 Elastic-plastic behaviour 

The elastic-plastic behaviour of the component subjected to 

increasing axial load up to collapse is shown in Figure 6.41. 

Yielding initiates in the fillet and the yielded zone is very 

localised even at high load (p/P
L 

= 0.9). At collapse a significant 

region of the shank remains elastic. 

6.4.2.3 Creep at sustained mean load 

The stationary state meridional stress distributions for the 

Gauss points nearest to the outside surface and bore are compared with 

the initial stress distributions in Figures 6.42 and 6.43 respectively. 

There is a significant reduction in the stress concentration factor in 

the fillet but the stationary s t ate and initial stress distributions 

along the bore surface are very similar. 

6.4.3 Thermal loading cycle 

Initial isothermal conditions are maintained by fluid flowing 

through the bore and along the outside surface. The temperature 

of the bore fluid flow remains constant. A thermal shock consists of:-
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(i) a ramp reduction in the temperature of the fluid flowing 

along the outside surface of 56°c in 2 seconds; 

( ii) a period. of I· 2. seconds for the temperature gradient to be 

fully established; 

(iii) a ramp increase in the temperature of the fluid flowing 

along the outside surface of 56°C in 2 seconds; and 

(iv) a further period of I·~ seconds for the initial isothermal 

conditions to be re-established. 

For this thermal load the most severe thermal conditions occur 

when the maximum temperature difference exists (i.e. (ii)) and an 

almost linear through thickness variation in temperature is 

established in the shank. 

Results are obtained for two maximum normalised thermal stress 

ranges, 1.42 and 2.83, based on the Bree (1) equation for thermal 

stress. 

i.e. 2(1 - ~ ) cJ 
y 

The temperature files used to applied the thermal shocks were those 

obtained by Hyde et al (10, 11). 

6.4.4 Cyclic thermal loading with sustained ~~ial load 

6.4.4.1 'No creep' condition 

Ratchetting mechanism 

The stress distributions in the sD~nk due to initial loading, 

at the end of the first half of the first thermal cycle and at the 

end of the first complete thermal cycle for p/PL = 0.5 and 

(J't/ (5 y = 2.83 are shown in Figure 6.44. There is an increment 

of ratchet strain in the first cycle and a steady cyclic state is 
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established after the first complete cycle. Maximum ratchet strains 

occur in the axial direction and are constant with radius. Steady 

state ratchetting will occur in the shank when there is a central 

region which experiences plasticity during both halves of the 

thermal cycle. 

At the 'peak fillet' position, where the largest ratchet 

strains are accumulated, a steady cyclic state is also reached 

after the first cycle. The distribution of steady state, meridional 

ratchet strain along the outside surface of the component is shown 

in Figure 6.45 for F/FL = 0.5 and crt/cry = 2.83. The accumulations 

of ratchet strain in the shank and at the 'peak fillet' position 

during the first 10 cycles for this loading are shown in Figure 

6.46. 

The ratchetting mechanism in the fillet for F/FL = 0.7 and 

(ft/~y = 1.42 is discussed below. The regions of additional 

plastic straining for a steady state cycle are shown in Figure 

6.47 and the accumulation of ratchet strain in the shank and at 

the 'peak fillet' position during the first 10 cycles are shown 

in Figure 6.48. During the first half of the thermal shock, 

Yielding initiates in the shank and fillet and the yield zone is 

fully developed by increment 11. The zone of plastic straining 

contracts as the steady state thermal gradient is established. 

During the second half of the thermal shock there is no further 

Plastic straining in the shank but a plastic zone spreading from 

the bore in the region of the fillet is sufficiently large to 

produce a band of plastic growth through the section close to 

the fillet which in turn ensures an increment of plastic strain 

across the section. In the shank a substantial (approx. 2/3 rds) part 
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remains elastic during the complete cycle and, in the absence of a 

'plastic-core', ratchetting would not be expected after the first 

cycle. This is shown to be the case in Figure 6.48 where steady 

state ratchet strains in the shank are zero and there is no 

further accumulation of ratchet strains after the first cycle. 

In the fillet, from Figure 6.48, it would appear that the steady 

cyclic state is established after approximately 6 cycles. The 

'exaggerated' deformed shapes after the 10th cycle and during the 

11th cycle are shown in Figure 6.49. The absence of shank 

ratchetting is apparent from Figure 6.49(b). There is a reduction 

in cross-sectional area in the region of the fillet. 

Effects of mean load and thermal load on ratchetting behaviour 

The accumulations of shank and 'peak fillet' ratchet strains 

during the first 10 cycles for p/PL = 0.5 and crt/cry = 1.42 

are shown in Figure 6.50. steady state ratchet strains are zero 

in the shank and very small in the fillet. The results for this 

load combination, p/PL = 0.7, o-t/o-y = 1.42 and p/PL = 0.5, 

art/cry = 2.83 are summarised in Table 6.6. These results are 

discussed in Chapter 7. 

6.4.4.2 Complete redistribution 

Ratchetting mechanism 

The ratchet strains in the shank and at the 'peak fillet' 

positions produced by the first thermal shock are identical to 

those for the 'no creep' condition. Between the end of the first 

thermal shock and the start of the second thermal shock the 

stresses completely redistribute to the stationary state stress 
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distributions shown in Figures 6.42 and 6.43. In the shank the 

ratchet strains in the second and subsequent cycles are the same 

and are equal to the first cycle ratchet strains. At the 'peak 

fillet' position a steady cyclic state is reached after the first 

cycle and ratchet strains produced in the second and subsequent 

cycles are the same but differ from the first cycle value because 

the stationary state stress distribution (which is the initial 

condition for the second and subsequent cycles) is different to 

the initial stress distribution due to axial loading. The ratchet 

strains accumulated in the shank and at the 'peak fillet' position 

during the first 10 cycles for p/PL = 0.5 and art/cry = 2.83 are 

compared with the 'no creep' case in Figure 6.46. The steady 

state ratchet strains and hence the accumulation of ratchet strains 

are greater for the 'complete redistribution' condition. 

The regions of additional plastic straining during a steady 

state thermal cycle for p/PL = 0.7 and ~t/~y = 1.42 are shown in 

Figure 6.51. The accumulation of ratchet strains in the shank 

and at the 'peak fillet' positions for this loading are compared with 

the 'no creep' case in Figure 6.48. In the shank, the 'plastic-

core' requirement for continued ratchetting is not applicable if 

creep occurs; all cycles are identical and any plastic straining 

during the first cycle will be repeated in each subsequent cycle. 

In the fillet, a band of yielded material is evident, as for the 

'no creep' case, but not essential for ratchetting to continue. 

The 'exaggerated' deformed shapes after the 10th cycle, during the 

11th shock and during the 11th dwell period for p/P
L 

= 0.7, 

crt/cry = 1.42 are shown in Figure 6.52. The radial displacements 

are zero in the rigid shoulder but inward radial displacements 
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occur in the shank. There is a reduction in cross section close to 

the fillet during the thermal shock. 

Figure 6.52 shows that there is a greater reduction in bore 

diameter in the shank compared with the shoulder during the thermal 

cycle and the dwell period. 

Effects of mean load and thermal load on ratchetting behaviour 

The accumulation of ratchet strains for p/PL = 0.5 and 

er t/ (J" y = 1. 42 are shown in Figure 6.50. The res ul ts for the 

various load combinations are summarised in Table 6.6 and are 

discussed in Chapter 7. 

Creep during the dwell periods 

The strains which accumulate in the shank and at the peak 

ratchetting position in the fillet during the first two cycles 

for p/PL = 0.5 and Ci t/ 6 y = 2.83 are shown in Figure 6.53. The 

re,sults are asymptotic to straight lines; the gradient of the 

straight line is the same for the first and second (and hence 

subsequent) cycles. There is a greater accumulation of dwell 

period strains in the shank compared with the fillet. The steady 

state strain rates and increments of strain due to stress 

redistribution for this loading, p/PL = 0.5, CSt/Ciy = 1.42 and 

p/PL = 0.7, C5 t/ er y = 1.42 are given in Table 6.7 and discussed 

in Chapter 7. 



Parameter Hole-in-plate Circular Plate Shouldered Tube 

I Young's Modulus (GN/m2) 23.2 23.1 23.2 

Yield Stress (MN/m2) 15.0 15.0 13.8 & 6.9 

Coefficient of 
(oC-1) 1.71 x 10-5 2.57 x 10-5 2.88 x 10-5 expansion 

Poisson's Ratio 0.44 0.44 0.44 

Thermal Conductivity (W/mK) 35.1 35.1 35.1 

Surface heat 
(kW/m2K) 

{26.4 bore 
Transfer coefficient - - 32.0 outside shank & fillet 

15.7 outside shoulder 

Specific heat/ . 

(J/m3K) 
6 6 6 unit volume 1.43 x 10 1.43 x 10 1.43 x 10 

A 8.67 x 10-58 8.67 x 10-58 8.67 x 10-58 
Creep Law 
constants -< n 7.3 7.3 7.3 

lm 1.0 1.0 1.0 
------

Table 6.1 Material data for 'hole-in-plate', circular plate and shouldered tube components 

l\) 
\.J\ 
v..> 

I . 
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Normalised Ratchet Strain per Cycle 
p 

'No creep' 'Complete redistribution' PL 
1st cycle Steady State 1st cycle Steady State 

0.5 1.902 0.015 1.902 1.071 

0.7 3.312 1.737 3.312 2.441 

Table 6.2 Ratchetting behaviour of 'hole in plate' component 

P 
d(Ed/E. ) d(Ed/E. )/dr ~t diE. 

'i. 'i. y 
P

L dr p7PL 1st cycle Steady State 

0.5 1.534 3.069 -0.183 -0.144 

0.7 2.169 3.099 -0.371 -0.481 
I 

Table 6.3 Dwell period behaviour of 'hole in plate' component 
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Normalised ratchet strain per cycle 

' No creep' 'Complete Redistribution' 

-L- Position 1st cycle steady state 1st cycle Steady State 
Pcol 

Centre 0.240 0 0.240 0.183 
0.295 

. 
Edge 1.503 0 1.503 1.225 

! 

Centre 0.408 0 0.4<:l8 0.290 
0.4 

Edge 2.871 0 2.871 2.356 

Centre 0.744 0 0.744 0.372 

0.474 Edge 3.924 0 3.924 3.293 

Centre 2.994 0.560* 2.994 1.886 
0.7 

Edge 7.712 1.078* 7.712 7.270 

* 10th cycle values. 

Table 6.4 Ratchetting behaviour of circular plate 

-L-
d( E. d/LZ ) d([d/E )/dr 6.E. d/c y Position Z 

Pcol dr P7Pcol 
1st cycle Steady State 

0.295 D 0.474 1.607 0.093 -0.024 

0.4 D 0 ';643 1.607 0.091 -0.078 

0.474 D 0.769 1. 623 0.077 -0.044 

0.7 D 1.075 1.536 -0.156 -0.212 

Table 6.5 Dwell period behaviour of circular plate 



[~:JOM P 
PL 

1.42 0.5 

1.42 0.7 

2.83 0.5 

~ 

[~;]NOM P 
PL 

1.42 0.5 

1.42 0.7 

2.83 I 0.5 
I 
I 

Normalised Ratchet Strain per Cycle 

Position 'No creep' 'Complete Redistribution' 

1st cycle Steady State 1st cycle steady state 

Shank 0.109 0 0.109 0.108 

Peak Fillet 1.648 0.012 1.648 1.518 

Shank 0.235 " 0 0.235 0.239 

Peak Fillet 2.304 0.082 2.304 2.127 

Shank 0.685 0.187 0.685 0.686 

Peak Fillet 3.701 1.558 3.701 3.748 
--- - - ~ - -'---- ~ --- ---------

Table 6.6 Ratchetting behaviour of shouldered tube 

d( £ d/E.. ) d( ed/E. )/dr ~Ed/E. 
Position Y.. Y.. 

dr PjPL 
y 

1st cycle Steady State 

Shank 0.495 0.990 0.207 0.207 

Peak Fillet 0.259 0.518 0.425 0.400 

Shank 0.704 1.006 0.262 0.262 

Peak Fillet 0.372 0.531 0.541 0.518 

Shank 0.504 1.008 0.740 0.740 

Peak Fillet 0.269 0.538 0.817 0.841 

Table 6.7 Dwell period behaviour of shouldered tube 

N 
\Jl 
~ 
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Figure 6.1 'Hole-in-plate'. Finite element mesh showing the positions of 
the Gauss points nearest to the AB and CL axes. 
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Figure 6.2 'Hole-in-plate'. Elastic normal stress distribution 

~long AB due to m~chanical l oading. 
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Figure 6.5 'H 1 o e-in 1 AB' due -p ate'. Red to creep at istribution f A sustained 0 normal st mean load ( ress' 1 . see Fi a on~ gure 6.1) 



Figure 6 .6(a) 'Hole-in-plate'. Temperature response across AB due to a ramp increase in bore 
surface temperature of 60 0c in 2 secs. 
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Figure 6.6(b) 'Hole-in-plate' Temperature response across CD due to a ramp incre&.se in bore surface 
temperature of 60°c in 2 secs. 
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' Hole -in-plate'. Temperature distribution along AB during a 
ramp increase in bore surface temperature of 60 0c in 2 secs. 
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Figure 6.8 'Hole-in-plate'. Variation in maximum 
elastic thermal stress during a ramp 
increase i n bore surface temperature of 
60°C in 2 secs. 
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init ial loading 

first half of cycle 

second hal f of cycle 

Figure 6.9 'Hole-in-plate' (elastic-perfectly-plastic, CJt!cr- y = 1.37, 
P/ PL = 0.7, 'no creep' conditions). Regions of plastic 
straining due to initial loading and during the first thermal 
shock. 
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Figure 6.10 'Hole-in-plate' (elastic-perfectly-plastic, 
(J" tI er y = 1.37, P/PL = 0.7, 'no creep' conditions). 

Regions of additional plastic straining during 
a steady state thermal cycle. 2nd half of cycle (cooling ) 
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Figure 6.11 'Hole -in-plate' (elastic-perfectly-plastic. ~t!cry = 
1.37. p/PL = 0.7). Residual stress distributions at 
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str ess dis tributions. (see Figure 6.1) 
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" 

First half of Cfcle 

Second half of cycle 

Figure 6.12 'Hole-in-plate' (elastic-perfectly-plastic, er t! er y = 1.37, 
p/PL = 0.7, 'no creep' conditions). Regions of plastic 
straining during a steady state thermal cycle. 
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COMPLETE RED ISTRI BUTION 
\l 

A 

'Hole-in-plate' (elastic-perfectly-plastic, (j.J (j y = 1.37, 
p/Ft = 0.7). Distribution of normalised steady state ratchet 
strains {across. AB' in the direction normal to AB (see Figure 
6.1) . 
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\l Complete Redistribution 
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Figure 6 .13( b) 

x x 
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Gauss point positions 

'Hole-in-plate' (elastic-perfectly-plastic, <ft/Cf = 
1.37, p/PL = 0.7). Distribution of normalised ste~y 
state ratchet strains along the outside 'surface', 
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a) end of the 8th shock 
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Figure 6.14 ~Hole-in-plate' (elastic-perfectly-plastic, cr t/6 y = 1.37, 
P/PL = 0.7, 'no creep' conditions). 'Exaggerated' nodal 
displacements. 
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Figure 6.15 
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POSITION OF INTEREST 
(MAX STRESS) 

'Hole-in-plate' (elastic-perfectly­
plastic, ~t/cry = 1.37, P/PL = 0.7). 
Accumulation of maximum normalised 
ratchet strains during the first 10 
cycles. 
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Figure 6 .16'Hole-in-plate' (elastic-perfectly-plastic, cr t! 0' y = 1.37, 

p/PL = 0.5). Accumulation of maximum normalised ratchet 
strains during the first .10 cycles. 
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Figure 6.17 'Hole-in-plate' (elastic-perfectly-plastic, crtlCly = 1.37, 
P/PL = 0.7, complete redistribution). Variation in stress 
normal to AB, at points across AB, during the first dwell 
period. 
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Figure 6.16 'Hole-in-plate' (elasti~-~erfe~tly-plast'c ~t/~y = 1 .J7. P/ PL = 0.7. 
complete redistribution). Regions of addi tional plastic s t rainIng 
dur ing a steady state thermal cycle. 
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a) end of the 8th cycle 
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Figure 6.19 'Hole-in-plate' (elastic-perfectly-plastic, (5 ti CS y = 1.37, 
p/ PL = 0.7, complete redistribution). 'Exaggerated' nodal 
disp lacements. 
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.-

Figure 6.20 'Hole-in-plate' (elastic-perfectly-plastic, CS J (5 y = 1.37, 
P/PL = 0.7, complete redistribution). Accumulation of 
normalised tangential strain at point A during the first 
dwell period. 
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Figure 6.21 Circular plate . Finite element mesh. 
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Figure 6 .22 Circular plate. Elastic stress distributions due to a 
transverse pressure loading of 0.7 'of the collapse pressure. 
(see Section 6.).1) 
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Figure 6.24 Circular plate (elastic-perfectly-plastic). Gro~th of plastic zone with increasing 
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Figure 6.26 Circular plate. Redistribution 
of normalised hoop stress 'along 
CD ' due to steady load creep 
for P/Pcol = 0.474. (see Section 
6.3~1) 
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Figure 6.27 Circular plate. Redistribution of 
normalised radial stress 'along CD' 
due to steady load creep for 
P/Pcol == 0.474. (see Section 6.3.1.) 
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Figure 6 .28 Circular plate (elastic-perfectly-plastic, rr tl cry = 1.41, P/Pcol = 0.7). Accumulated 
and i ndi vidual maximum normalised ratchet strains at the edge and centre for the first 
10 cycles. 
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Figure 6 .29 Circular Plate (elastic-perfectly-plastic, O't/cr y == 1.41, P/Pcol == O. ,? , 'no creep' 
conditions). Regions of additional plastic straLting for the two halves of the 2nd 
thermal shock. 
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1st half of cycle (cooling) 
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A[ __ ?C 
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11 Figure 6.30 Circular plate (elastic-perfectly-plastic, <5t/6 y = 1.41, 
P/Pcol = 0.7, 'no creep' conditions). Regions of additional 
plastic straining during the 10th thermal shock. 
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a) end of the 10th shock 
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Figure6.J1 Circular plate (elastic-perfectly-plastic, er t/ ()::( = 1.41, 
p/ Pcol = 0.7, ' no creep' conditions). 'Exaggerated nodal 
displacements. 
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and indi vidual maximum normalised ratchet strains at the edge and centre. 

I\) 
'.0 
f-'o 



>. 
w 

1.0 

30 
I /i= 

IT 
:r >.. 

w -L-

4 

3 

&fl 

+~+-+~-+-+-+-+ 

L:;-
w 20 W 2 

'NoCreep' 
• Complete 

1 0 1- lEdge I 
~C_e_n_tr_e~ ______ ~ ______ ~ 

-/ 
h-/:::'--&-f::0r---8-8-fr-~& 

-.x-X-~~ 
-=:~r--~--\:l-~'V-'V--\-1 

6 + 
\-1 x 

o 2 4 6 8 10 12 
. CYCLE NUMBER 

<l 

1 

¥ 

o 

x--x~--x--x--x--x--x--x 

2 468 
CYCLE NUMBER 

10 12 

Figure 6.33 Circular plate (elastic-perfectly-plastic, C5t/C5y = 1.41, plPcol = 0.474). Accumulated and 
indi vidual maximum normalised ratchet strains at the edge and centre for the first 10 cycles. 
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1st half of cycle (cooling) 
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I Figure 6.34 Circular plate (elastic-perfectly-plastic, 0-tl (J" y = 1.41, 
I plPcol = 0.7, complete redistribution). Regions of 

additional plastic straining during a steady state cycle. 
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a) end of the 10th cycle 
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CHAPTER SEVEN 

7. A CORRELATION OF THE RATCHETTING AND DWELL PERIOD BEHAVIOUR 

OF THE COMPONENTS 

7.1 Introduction 

The analysis of the 5 components has been described in Chapters 

4-6. This Chapter presents a synopsis of the results. Section 7.2 

compares in detail the behaviour of all 5 components when elastic­

perfectly-plastic and zero plasticity/creep interaction models are 

assumed. This comparison is extended for the flanged tube and 

stepped beam results with material hardening and zero plasticity/ 

creep interaction models in Section 7.3. The ratchetting mechanism, 

ratchet strains and dwell period strains are correlated and the 

implications for design are discussed in Chapter 8. 

Characteristic ratchetting and dwell period behaviours are 

identified which will be used in Chapter 8 to recommend design 

procedures based on both limited finite element 'exact' solutions 

and approximate methods of solution. Ratchet strains for both 

the 'no creep' and 'complete redistribution' conditions are considered. 

Finally, the effects of 'partial redistribution' of stresses 

during the dwell periods between cycles are assessed in Section 7.4. 

7.2 Elastic-Perfectly-Plastic Haterial Model (All 5 Components) 

7.2.1 Nechanical and t hermal l oading conditions 

The mechanical and thermal loading conditions used in the 

analysis of the five components are summarised in Table 7.1, tqgether 

with the thermal and mechanical stress concentration factors in 

regions of peak stress. Thermal conditions are defined by the 

Fourier number, kt j P CpLc 2 , the Biot number, hLc/ k, and the 

nominal elastic thermal stress, r5 t/ 6 y' The characteristic time J 
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t , is taken as the duration of the ramp temperature change (i.e. 
c 

zero for a step change) and the characteristic length, Lc' is the 

bore diameter for the flanged tube and shouldered tube, the hole 

diameter for the 'hole-in-plate' component and the thickness for 

the circular plate. For the 'hole-in-plate' component and circular 

plate, where changes in metal surface temperature are used to 

define the transient, the surface heat transfer coefficient and 

hence the Biot number are taken as infinity. For components with 

cyclic thermal loading, nominal elastic thermal stresses are based 

on the Bree (1) equation, using an equivalent linear temperature 

distribution (49) for the flanged tube and 'hole-in-plate' compon-

ents, as discussed in chapters 4-6. For the stepped beam, the 

analogy between the shank and the Bree thin tube is used to obtain 

an 'eqUivalent' nominal thermal stress based on cyclic changes in 

curvat~e. The 'equivalent' thermal stress concentration factor 

in the fillet is taken as the stress concentration factor due to 

pure bending. 

7.2.2 Ratchetting mechanisms 

The ratchetting mechanisms of the components can be classified 

into 4 categories:-

(i) first cy~le mechanism (all components); 

(ii) steady state, 'no creep' mechanism (all component s except 

circular plate); 

(iii) continuous transient, ' no creep' mechanism (circular plate); and 

(iv) steady state, complete redistribution mechanism (all components). 

The behaviour of the shanks and regions of stress concentration 

are generally similar. 
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7.2.2.1 First cycle mechanism 

During the first cycle there will be an increment of growth 

at any point in the structure that experiences yielding. For com­

ponents with uniform sections and stress concentrations the plastic 

zone initiates in the fillet and for 'low' loadings yielding in the 

fillet may not be accompanied by yielding in the shank. 

7.2.2.2 Steady state, 'no creep' mechanism 

For the uniform sections of the tubes and beam, steady state 

non zero ratchet strains are accumulated when the whole section 

suffers plastic deformation at some point during the cycle. The 

stress distributions at the start and end of the cycle are 

identical and the increment of plastic strain is constant 

across the section. For the stepped beam shank the development of 

the plastic zone during a cycle is similar to that of the 'Bree' 

beam (1). During the first half of the cycle, a plastic zone, 

initiating from a surface, spreads inwards towards the neutral 

axis and may be accompanied by a 'smaller' zone initiating from 

the other surface. During the second half of the cycle the plastic 

zone initiates from the opposite surface and the maximum depths 

of yielded material is the same as during the first half of the 

cycle. For ratchetting the 'major' plastic zone must cross the 

neutral axis during both halves of t he cycle. A 'plastic core' 

(i.e. a region around the neutral axis which yields during both 

halves of the cycle) is an essential feature of ratchetting. Other 

mechanisms have been observed, for example in t he case of the flanged 

tube shank, a plastic zone initiates from within the sect ion and 
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spreads outwards during the first half of the cycle. During the 

second half of the cycle, the plastic zone initiates at the bore 

surface and spreads radially outwards. Again there is a requirement 

for a 'plastic core'. 

In the fillet regions of the tubes and beam and the section AB 

for the 'hole in plate' component steady~state ratchetting 

may, depending on loading conditions, be accompanied by 

an initial transient effect. The existence of a 'plastic core' 

is also essential for steady state 'no creep' ratchetting and, 

again, the cyclic development of the plastic zones varies with com­

ponents and loadings. For the tubes and beams the plastic zone 

initiates in the fillet and spreads into the shank and ratchet 

strains vary across the section. 'Peak fillet' ratchet strains are 

in the meridional direction. There is a 'necking' of the component 

across the section during a cycle when compared with the shank. 

For the 'hole-in-plate' component, incremental plastic strains 

are accumulated across the whole of section AB during a cycle. 

Tl1e ratchet strains are a maximum at the hole surface CA) and 

produce an elongation of the hole in the direction of steady 

mechanical load. 

7.2.2.3 Transient, 'no creep' mechanism 

For the circular plate, ratchet strains reduce monotonically 

(in all but the highest load case to zero) and a steady state 

ratchetting cor.dition does not exist. An increment of ratchet strain 

is produced by the development of plastic zones from the edge and 

centre of the plate during the first and second halves of the 

cycle respectively. The reduction in ratchet strain per cycle is 

associated with a reduction in the plastic zone between successive 

cycles which is apparent at the edge but not significant at the centre. 
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The presence of an 'elastic core' at all times during a cycle is 

a possible indication that shakedown will eventually occur as 

suggested by Townley et al (57) for pressure vessels. 

7.2.2.4 Steady state, 'complete redistribution' mechanism 

In all cases, ratchetting will occur if any plastic strains 

are produced during a steady state cycle. For the uniform sections 

of the tubes and beam, the ratchetting mechanism is identical to 

that for the first cycle, discussed in Section 7.3.1, since the 

initial stress distribution due to steady mechanical load is 

the same as the stationary state stress distribution. For the 

fillet regions of the tubes and beam, the 'hole in plate' component 

and the circular plate,steady state ratchetting occurs for the 

second and subsequent cycles if there is any plastic straining 

during the second cycle. For all components, with the possible 

exception of the circular plate, there is no requirement of a 

'plastic core' for steady state ratchetting. For the circular plate, 

Figure 6.34 indicates a definite 'plastic hinge' at t he edge although 

this 'plastic hinge' is not considered to be essent ial for continued 

ratchetting. 

7.2.3 Ratchet s t rains 

A summary of the ratchet strains obtained for t he five compon­

ents is given in Tables 7.2 and 7.3 for the 'no creep' and 'complet e 

redistribution' conditions. The characteristic behaviour is found 

to fall into 3 categories:-

A - equal ratchet strains for all cycles; 

B - equal ratchet strains for the second and subsequent cycles; and 

C(n) - steady state ratchet strains per cycle after n cycles. 
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7<2.3.1 Qualitative assessment 

7.2.3.1.1 'No creep' cOl"'.di tion 

With the exception of the circular plate, a constant ratchet 

strain per cycle occurs after a small number of cycles (in many 

cases only one). 

Uniform shank regions 

In the shank regions of the tubes and beam a steady state 

situation is achieved after the first cycle (i.e, type B). The 

ratchet strains produced in the second and subsequent cycles are 

equal, in some cases zero, and less than the first cycle values 

(if maximum surface or centreline ratchet strains are considered 

for the stepped beam shank). Under these conditions, the initial 

uniform stress distribution due to steady mechanical load is 'more 

favourable' for ratchetting than the non-uniform residual stress 

distribution at the end of each cycle. The detailed studies of 

the flanged tube and stepped beam shanks have identified particular 

loadings for which 'more favourable' residual stress fields may 

or do exist, as follows~-

(i) for the flanged tube shank with high mean load (p/PL > 0.75) 

- see Table 4.2 

(ii) for the stepped beam shank, Figure 5.5 indicates that steady 

state centreline ratchet strains may be greater than the first 

cycle ratchet strain for high mean loads and low bending loads, 

which are outside the range of loadings considered. 

Regions of stress concentration 

With the exception of the circular plate, steady cyclic state 

conditions are achieved after a few cycles (up to 6, i.e. type C) 

although for extreme loading conditions the steady cyclic state is 
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reached after the first cycle (i.e. type B). 

For the circular plate, ratchet strains reduce monotonically 

with cycle number and, in all but the highest mean load case 

(p/PL = 0.7), have reduced to zero in under 4 cycles. For the 

highest mean load peak ratchet strains are still reducing after 

10 cycles. This monotonic reduction in ratchet strains is con­

sistent with the results of Hyde (32) and Goodman and Goodall (21). 

Comparison between shank and fillet 

For the two axisymmetric, thermally loaded tubes the first cycle 

and steady state peak fillet ratchet strains are greater than the 

corresponding shank values. Furthermore the shouldered tube results 

for ()t/ er y = 1.42 show that the onset of ratchetting in the fillet 

occurs at reduced mean load compared with the shank. 

For the mechanically cycled stepped beam, first cycle peak 

fillet ratchet strains are also greater than the corresponding 

shank values. However, the steady state peak fillet ratchet strains 

are less than t he shank values. Since the tensile meridional strains 

in the fillet of the stepped beam are accompanied by compressive 

strains in the other two directions, the reduction in these compressi ve 

strains due to the constraints of the increased section will also 

contribute to a reduction in the tensile meridional strains. 

Alternatively, for the axisymmetric components, the hoop strains are 

tensile and due to poisson's ratio effect reduce the overall t ensile 

meridional s t rains. Hence a reduction in hoop strains due t o the flange 

or shoulder constraint can have an adverse effect on the meridional 

strains. 

7.2.3.1.2 'Complete redistribution' 

A steady cyclic state, with constant ratchet strain per cycle, 

occurs in the first one or two cycles for uniform sections and 

stress ~oncentration regions respectively. 
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Uniform shank regions 

Each cycle produces an equal aMount of ratchet strain (i.e. 

type A) since the initial stress distribution due to steady mean 

load is identical to the stationary state stress distribution. 

Any plastic strains produced in the first cycle will also be 

accumulated during each subsequent cycle. The implication is a 

shift in the shakedown and ratchetting boundary to the 'elastic 

limit' line (i.e. below which, cycling is purely elastic). 

For the 'complete redistribution' case to be an upper bound 

on ratchet strains, the second cycle 'no creep' ratchet strain 

(i.e. the steady state value since the characteristic is type B) 

must not be greater than the first cycle ratchet strain. This 

is the case for all uniform sections in Tables 7.2 and 7.3 (if 

maximum surface or centreline ratchet strains are being considered 

for the stepped beam) and is generally so in all but the high mean 

load shank results (see Section 7.2.3.1.1 - Uniform shank regions). 

Regions of stress concentration 

For all components, including the circular plate, a steady 

cyclic state exists after the first cycle since the stationary 

state stress distribution is established after each cycle (i.e. 

Type B). Steady state ratchet strains are greater than the equiva­

lent 'no creep' results and hence the 'complete redistribution' 

case is the upper bound. The results imply a reduction in the 

size of the shakedown region. Although continued ratchetting was 

found for all cases, it is conceivable that particular loadings 

could result in 'small' first cycle ratchet strains followed by 

shakedown. In this case the ratchetting boundary would not 

correspond to the elastic limit line and the shakedown region would 

be somewhat larger than the elastic region. 
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Comparison between shank and fillet 

For all cases, including the stepped beam, peak fillet ratchet 

strains are greater than the equivalent shank values. 

7.2.3.2 Quantitative correlation 

7.2.3.2.1 Bree's analysis 

'No creep' condition 

The results for the five components and the elastic-perfectly­

plastic results from the flanged tube shank study in Table 4.2 have 

been correlated on the basis of Bree's (1) analysis by plotting the 

results, using equivalent load values on a 'Bree' diagram in Figure 

7.1 using the notation in Table 7.4. The full curves are the 

ratchetting boundary and lines of constant ratchet strain per cycle 

for the Bree problem. The points are plotted at the equivalent loading 

conditions for the various components and the numerical value 

adjacent to each 'blacked in' symbol is the steady state ratchet 

strain. Open symbols indicate a zero steady state ratchet strain 

(i.e. shakedown). The equivalent loads for the components are 

obtained as follows. In all cases the steady mechanical load, 

p/P
L

, is taken as the now~nal value (in the case of the 'peak 

fillet' regions of the stepped beam, flanged and shouldered tubes 

the nominal shank value is used). For the uniform regions of the 

flanged tube and shouldered tube, the elastic thermal stress range, 

crt /6y ' is based on an 'equivalent' linear temperature distribution; 

the intermediate steady state temperature distribution through the 

shank of the shouldered tube is reasonably linear whereas the 

approach of Yamamoto et al (49) has been used to 'linearise' the 

most severe non-linear temperature distribution through the flanged 

tube shank. For the uniform region of the stepped beam the 
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'equivalent' elastic thermal stress range is based on cyclic changes 

in curvature using the analogy between the stepped beam shank and 

the Bree beam. For the fillet regions of the beam and tubes an 

estimate of the elastic thermal stress range is obtained by multi­

plying the shank value b1 the thermal stress concentration factor 

('equivalent' thermal stress concentration factor for the stepped 

beam). This method of estimating the thermal stress in fillet 

regions is considered to be pessimistic since the high stress 

regions caused b1 geometric discontinuities axe usually very 

localised whereas the cyclic thermal load factor for ratchetting is 

associated with the distribution through the whole section, as 

illustrated by the Yamamoto eqUivalent thermal stress approach. 

The peak temperature distribution through the circular plate 

is linear and the elastic thermal stress range can be obtained 

directly from Bree' s equation. The nominal elastic thermal stress 

range for the 'hole-in-plate' component is the equivalent linear 

value for the most severe temperature distribution during the 

transient. A thermal stress concentration factor due to geometry 

effects is not readily quantified for this problem. However for 

the tubes it is seen from Table 7.1 that the thermal stress concen­

tration factor is greater than the mechanical stress concentration 

factor and, on this assumption, an elastic thermal stress range for 

the 'hole-in-plate' component has been obtained by multiplying the 

nominal value by the mechanical stress concentration factor. Using 

these methods of determining ~he equivalent steady and cyclic loads, 

the steady state ratchetting results are presented in Figure 7.1. 

It can be seen that, for all of the cases examined, the ratchetting 

boundary and lines of constant ratchet strain per cycle from Bree's 
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analysis are conservative .. Th~refore the use of 'equivalent' linear 

temperature distributions and thermal stress concentration factors, 

which can both be determined relatively easily, appears to offer 

a simple method of conservatively dealing with transient thermal 

loading and complex geometries for 'no creep' conditions. 

'Complete redistribution' 

The equivalent loading conditions for all components are 

identical to those described for the 'no creep' case. This is 

obviously true for cyclic thermal loading and figure 5.4 shows the 

same to be true for the stepped beam shank which experiences the 

same cyclic curvature range for both the 'no creep' and 'complete 

redistribution' cases. For the 'complete redistribution' case 

Bree suggests the elastic limit line as the 'new' ratchetting 

boundary with the disappearance of the shakedown region and this has 

been verified in the previous discussions in the studies of the 

flanged tube and stepped beam shanks. Alternatively, Leckie (45) 

suggests that: 'the effects of plasticity are likely to be small 

provided the load is less than n/(n + 1) of the shakedown load'. 

The steady state ratchet strain results for the components for the 

'complete redistribution' case are compared with the Bree boundary 

and the n/(n + 1) boundary in Figure 7.2. For the stepped beam, 

the maximum surface ratchet strains are quoted. 

In all cases the Bree boundary is conservative as expected 

since it allows for no plastic growth during a cycle. With the 

exception of the circular plate results, the n/(n + 1) boundary is 

also conservative; the steady state ratchet strain for the shouldered 

tube shank with p/PL = 0.5 (the only other point within this boundary) 

is small. The n/(n + 1) boundary approach is not a satisfactory 

design criterion for the circular plate which has already been 
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shown to have a significantly different cyclic behaviour to the 

other components. With the exception of the circular plate, it 

is suggested that the 'no creep' ratchetting boundary also provides 

a reasonable design criterion for the 'complete redistribution' 

ratchetting behaviour of the components using the simple methods 

of estimating steady and cyclic loads. Furthermore for the flanged 

tube, 'hole in plate' and shouldered tube the lines of constant 

ratchet strain for the 'no creep' case in Figure 7.1 ; are either 

conservative or very similar to the results obtained for the 

'complete redistribution' case. 

7.2.3.2.2 Cousseran analysis 

The 'efficiency diagram' (Figure 2.12' suggested by Cousseran 

et al (50) and the proposed method for limiting accumulated 

inelastic strains are discussed in Section 2.2.2.2.2. To obtain the 

efficiency index, V, and the secondary stress ratio, SR, suggested 

by Cousseran et al in order to compare the correlated results on 

the 'efficiency diagram' the following data is required: 

(i) the primary stress; 

(ii) the secondary stress; 

(iii) the accumulated inelastic strain; and 

(iv) the test (computation) duration. 

The primary and secondary stress have been obtained in the same 

way as the steady mechanical load and elastic thermal stress range 

parameters respectively used for the correlation of the component 

results on the basis of Brae's analysis discussed in the previous 

section. For regions of stress concentration no account is taken 

of the mechanical stress concentration factor in t.he definition 

of prima.~ stress and the secondary stress is obtained by multiplying 
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the nominal value (based on a linear or 'equivalent' linear temper-

ature distribution) by the thermal stress concentration facto!.". 

An 'equivalent' secondary stress and thermal stress concentration 

factor is used for the beams and, in the absence of a thermal 

stress concentration factor for the 'hole in plate' component, 

the mechanical stress concentration factor is used. The secondary 

stress ratio is therefore, 

6t 
- x SCFth (Jy SR = __ ..w; _____ _ 

P 6t 
- + - x SCFth PL ($ y 

where th& thermal stress concentration factor, SCFth , is unity for 

the uniform regions of the tubes and beam and for the circular 

plate. 

The efficiency index, V, is obtained by dividing the primary 

stress by an effective stress, 6" eff (see Section 2.2.2.2.2). In a 

normalised form 

V = 

The normalised effective stress, er eff/ () y' is based on the 

normalised accumulated inelastic strain (ratchet plus dwell period 

strain) and the duration of the test and is obtained from the 

normalised isochronous stress-strain curves. An example of the 

normalised isochronous stress-strain curves for the material data 

used in the analysis of the flanged tube is shown in Figure 7.3. 

These curves have been constructed by adding the normalised creep 

strain for a time duration, t, and steady stress, <feff , (based 

on the assumed creep law) to the normalised elastic strain associated 

with creff • The t = 0 curve is the normalised elastic-perfectly 
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plastic material stress/strain model used for all the components. 

For the correlation of the component results on the basis of the 

'efficiency diagram', the accumulated inelastic strain in 10 cycles 

has been used to obtain the effective stress . 

A method of determining effective stress is explained with 

the aid of Figure 7.4. For a given test duration, t', the effective 

c ine, stress corresponding to an accumulation of inelastic strain, c, 

is obtained from a line drawn parallel to the elastic line. 

It will be shown that, for an elastic-perfectly-plastic 

material assumption, the effective stress can be obtained analytically 

for both the 'no creep' and 'complete redistribution' conditions. 

'No creep' condition 

The test duration is taken as zero sL~ce there are no dwell 

periods between cycles and hence for any accumulation of inelastic 

strain the normalised effective stress is always unity. The 

normalised effective stress is therefore independent of the number 

of cycles being computed. The results for the components are given 

in Table 7.5 and correlated on the basis of the 'efficiency diagram' 

in Figure 7.5 which also includes the relevant results from the 

flanged tube shank study taken from Table 4.2. The notation is the 

same as that for the Bree correlation. For all cases where the steady 

state ratchet strains are non-zero, the results fall within the 

.' 
cloud of data points presented by Cousseran et al (see Figure 2.12). 

This is not necessarily the case when shakedown occurs. The simi-

larity between this correlation of the results and the representation 

of the results on a Bree diagram is clear since the points which 

are inside the shakedown boundary in Figure 7.1 are also within the 

eqUivalent Bree line in Figure 7.5. 
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For a given efficiency index it is possible to define a lower 

and mean value for the secondary stress ratio using either the 

equivalent Bree line or a mean line through the cloud of data. The 

efficiency indices in Table 7.5 for the components have been used 

to determine lower and mean value estimates for the thermal stress 

range which are compared with the assumed thermal stress range in 

Table 7.6. For the 'no creep' case this method shows no dis-

tinction between shank and peak fillet estimates of thermal stress 

range also the estimates vary with mean load. The discrepancies 

between the estimated and assumed thermal stress ranges reflect 

the positions of the data points in Figure 7.5 compared with the 

equivalent Bree line and the cloud of data points in Figure 2.12. 

'Complete redistribution' 

The test duration is taken as 10 x the dwell period since 

the accumulation of inelastic strains in 10 cycles is being used 

for the correlation. For the elastic-perfectly-plastic material 

assumption used, the method of evaluating effective stress from 

the isochronous curves proposed by Cousseran et al can be reduced 

to an analytical solution based on normalised inelastic strain, 

[ine/[ , and test duration, t. The inelastic strain is identical y 

to the creep strain that would be accumulated in a uniaxial test 

at the effective stress for the same time duration. For the creep 

law used in the analys is 

E ine = n 
ActH t 

and hence 

n eine 
6'eHo = 

At 
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Therefore the normalised effective stress is given by:-

(Jeff 

(Jy 

The results for the components are given in Table 7.5 and correlated 

on the 'efficiency diagram' in Figure 7.6. The results fall within 

a band which is similar to the cloud of data in Figure 2.12 

although some of the results, typically those for the stress 

concentrations, appear to be above that cloud. This is a possible 

indication of pessimism in evaluating peak thermal stress using 

a thermal stress concentration factor since a reduction in thermal 

stress would reduce the secondary stress ratio for these data 

points. For this 'pessimistic' thermal stress, the effective 

stress and, hence, accumulated inelastic strain estimate using a 

'mean' line through the cloud of data is higher than the value 

predicted by the finite element method. The estimated lower 

and mean values of thermal stress range, obtained by the method 

described in the previous section, are compared with the assumed 

values in Table 7.6. The estimated values are generally low and 

vary with mean load. The estimates are low because t he actual 

data points in Figure 7.6 are generally above a mean line t hrough 

the cloud of dat a. 
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7.2.4 Dwell period strains 

The dwell period behaviour for all components and loadings is 

found to be similar. When dwell period strains are plotted against 

time function, the response shows two distinct stages:-

(i) an initial non-linear behaviour while stress redistribution 

occurs; and 

(ii) a steady state condition, once stress redistribution is 

complete, where additional dwell period strains are due to 

creep alone and linearly related to time function. 

The dwell period behaviour can be characterised by three parameters: 

(i) the normalised increments of strain due to stress redistribution 

during the first dwell period, (At dj Ey)1; 

(ii) the normalised increments of strain due to stress redistribution 

during the second and subsequent dwell periods, 

t t ; and s a e 

(iii) the steady state strain rate, d( C dj (, )jdr, which is the 
y 

same for each dwell period. 

A summary of these parameters for all the components and loadings 

considered is given in Tables 7.2 and 7.3. 

For regions of uniform stress, the stress distribution at the 

end of each cycle is identical and the increments of strain due to 

stress redistribution during each dwell period are the same. In 

regions of stress concentration, the stress distribution at the end 

of the second and subsequent cycles is the same and different to 

the first cycle and equal increments of strain due to stress 

redistribution are accumulated during each dwell period after the 

first. 
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7.2.4.1 Steady state strain rates 

In uniform regions it has been shown in Section 4.2.4.2.1 

that the steady state strain rate is equal to the normalised mean 

load, p/PL and hence the normalised steady state strain rates, 

(d(EG/E.y)/dr)/p/PL, are unity. 

In the fillet regions of the tubes and beams and the peak 

ratchetting position of the 'hole in plate' component and circular 

plate the normalised steady state strain rates are independent of 

steady and cyclic loads. For the tubes and beam, the normalised 

steady state strain rates at the 'peak fillet' position are the 

same as (beam) or less than (tubes) the equivalent shank values. 

For the stepped beam with p/PL = 0.5 and M/My = ±1.05, the difference 

between first tensile surface and first compressive surface normalised 

steady state strain rates in the fillet is a possible indication 

that redistribution was not complete particularly since these 

values differ from those for p/PL = 0.7 and M/My = ±0.7. The 

normalised steady state strain rates can often be determined using 

the simple reference stress approach or the O'Donnell and Forowski 

method (6). 

7.2.4.2 Normalised increments of strain due to stress redistribution 

From Table 7.2, the normalised increments of strain due to 

stress redistribution are seen to be small (less than, and in most 

cases very much less than, 0.84) and in some cases negative. Also 

the first and steady state dwell period values are either identical 

(uniform sections) or very similar (non-uniform stress distribution 

where the ~aximum difference occurs in the circular plate and is 

0.169) . 
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7.3 Yaterial Hardening Model (Flanged Tube and Stepped Beam) 

The presence of material work hardening has a significant effect 

on component ratchetting and creep behaviour when compared with 

observations in the previous sections for an elastic-perfectly­

plastic material model. This section reviews the results for the 

flanged tube and stepped beam with a material hardening model and 

compares the behaviour with that already described for an elastic­

perfectly-plastic material model. 

7.3.1 Ratchetting mechanisms 

A steady state ratchetting condition is not reached due to 

the increase in yield stress. 3 categories of behaviour are noted. 

(i) first cycle mechanism (as described in Section 7.2.2.1); 

(ii) continuous transient, 'no creep' mechanism; and 

(iii) continuous transient, complete redistribution mechanism. 

7.3.1.1 Transient 'no creep' mechanism 

The 'plastic core' requirement for ratchetting in both uniform 

regions and stress concentrations described in Section 7.2.2.2 is 

applicable. The development of the plastic zones in the flanged 

tube and stepped beam is very similar to that described in Section 

7.2.2.2; however due to hardening the size of the 'plastic core' 

reduces between successive cycles and ratchetting stops when the 

'plastic core' disappears. For isotropic hardening further cycling 

is within the elastic range. For kinematic hardening either elastic 

range cycling or a stable cyclic loop is reached, depending on 

loading conditions. 

7.3.1.2 Transient complete redistribution mechanism 

Although the stationary state stress distribution is achieved 

after each cycle, the increase in yield stress is comparable to a 
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reduction in the severity of the subsequent cycle and there is a 

reduction in ratchet strain. A 'plastic core' is not essential for 

an increment of ratchet strain to be accumulated in a cycle. 

Isotropic and kinematic hardening models predict the same 

'shakedown' behaviour to those discussed in Section 7.3.1.1. 

7.3.2 Ratchet and dwell period strains 

The predictions of ratchet and dwell period strains accumulated 

in the shanks of the flanged tube and stepped beam with work 

hardening material models have been described in detail in Sections 

4.2 and 5.2 respectively. Some results for the stress concentration 

regions of the flanged tube (Sections 4.3.5:1.2 and 4.3.5.3) and 

stepped beam (Section 5.3.5.1.2) are also given. In this section, 

the accumulated inelastic strain results are compared on the 

'efficiency diagram' (50). 

For the flanged tube shank and peak fillet results, the secondary 

stress ratio, SR, is obtained by the method described in Section 

7.2.3.2.2. The equivalent thermal stress range obtained for the 

stepped beam with an elastic-perfectly-plastic material model and 

described in Section 7.2.3.2.1 is based on a change in curvature 

during a cycle which does not vary with cycle number. This condition 

does not apply when the material hardens as can be seen for the 

example in Figure 7.7. The cyclic curvature range reduces and only 

achieves a constant value when ratchetting ceases. For t his reason 

the stepped beam results are not included. 

7.3.2.1 ' No creep' condition 

Figure 7.8 shows an example of the normalised isochronous 

stress-strain curves for a hardening material. For the 'no creep' 

condition (t = 0 curve) the normalised effective stress, Clefr/C>y' 
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for a normalised accumulated inelastic strain, f ine/E , is given 
y 

by:-

eJeff = 
cS y 

EinelE 
y 

(~EI~Ep---"'1) + 1 

The flanged tube results are given on the 'efficiency diagram' in 

Figure 7.9. In most cases, the results fall within the cloud of 

data points presented by Cousseran et al (see Figure 2.12), the 

exception being the low mechanical load results from the flanged 

tube shank study (i.e. V = 0.) where shakedown occurs in one or two 

cycles. 

7.).2.2 Ratchetting with creep 

From Figure 7.8 it can be seen that two possible expressions 

for eJeft/cJy can be used depending on the accumulated inelastic 

strain:-

i.e. (i) if E.. ine <. A <J ntm C ine = A 0- ntm y , eff 

and 
creff = [ [ine/Er] 1/n 

C>y AE c) n-1 t m 
y 

or (ii) if Cine » A cr- ntm E, ine :: A 0- ntm + y , eff 

(() eff- c)y) (E/Ep - 1) 
E 

n 

and E ine/E y = AEo'/-1tm (~e:f~ + (~e:f -1)( ~p - 1 J 
which can be solved iteratively for rSeff/r5"y' 

The results are given on the 'efficiency diagram' in Figure 7.10. 

Since the accumulated inelastic strain results from the flanged 
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tube shank survey with complete redistribution (using a high 

stress index) are dominated by the dwell period strains, which are 

in turn dominated by the steady state strain rate components, the 

normalised effective stress is slightly larger than the mean load, 

p/PL, and the efficiency index is almost unity. The results do 

not fall within the Cousseran cloud of data points. Alternatively, 

the results for the flanged tube with 24 and 120 hour dwell periods, 

previously discussed in Section 4.3.5.3, compare well with the 

cloud of data points in Figure 2.12. 

7.4 Effects of Partial Redistribution on Ratchet and Dwell 

Period Strains 

The discussion in the previous sections has been based on the 

results for the 'no creep' and 'complete redistribution' cases. 

The results for the 'complete redistribution' case are independent 

of time index. This section gives a brief summary of the likely 

behaviour of the components when stress redistribution between 

cycles is only partial and when a realistic time index is used. 

The relevant flanged tube results from Section 4.3.5.3 are referenced. 

For uniform regions of the tubes and beams, the residual stress 

field at the end of each cycle is modified during the dwell period 

but does not return to the constant stress field associated with 

the mean load. After a finite number of dwell periods, greater than 

one, a steady state residual stress field condition will be reached 

and from then on both ratchet strains and dwell period strains will be 

the same for each subsequent cycle and dwell period. This is indicated 

for the flanged tube from Figures 4.48 and 4.50. 

For the 'peak fillet' positions of the tubes and beam and 

for the 'hole in plate' and circular plate components, the 
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residual stress field at the end of each cycle is modified during 

the dwell period but does not return to the stationary state stress 

distribution. Again a steady state condition of constant ratchet 

and dwell period strains is reached after a finite number of cycles 

and can be seen for the flanged tube component in Figure 4.48. 

The ratchet and creep strains under conditions of partial redistribu­

tion are bounded Qy the 'no creep' and 'complete redistribution' 

cases. The proximity of the results to the bounds depends on the 

degree of redistribution (i.e. the length of the dw~ll period). 



Table 7.1: Thermal and Mechanical Loading Conditions (Elastic-perfectly-plastic) 

~ P Nominal elastic Thermal stress Mechanical stress 
Component Fo Bi P

L 
thermal stress concentration factor concentration factor 

(kt /pC L2) (h L /k ) + C1 I c p y 
--- ---

Flanged 'fube 0 12.87 0.5, 0.7 1 .9 11 1.81 1.53 

0'-

0.5 2.58 1.46 1.80 
not not , Stepped Beam 

applicable applicable 
0.7 2.51 1.46 1. 80 

Hole in Plate 0.08 IX) 0.5, 0.7 1.37 - 2.43 l Circular Plate 0.295, 0.4 not not i 12.27 ID 1 • !Il applicable applicable 0.474&0.7 

I 15.80 (Bore) 
1.42 1.96 1. 59 I Shoul dered 'fube O. 11 19.15 (outside 0.5,0.7 

I shank & i 
I 

I fillet) 
1. 59 I i 9.39(outside 0.5 2.83 1. 96 

I I shoulder') 
i 



Table 7.2 SUJDr.Iaryor F'langed "'be, 'Hole-in-Plate! Circular Plate and Shouldered "'be results (ElastIc-perrectly-plastlc) 

NormalIsed Ratchet Strain per Cycle (~cr/e ) 
y 

No creep Complete redistributIon 

Component P Position 1 st cycle Steady state OlaracterIstlc Steady state OlaracteristIc 
d(ed/e) 

PL 
:r: 

b<ehav1our behaviour dr 

shank 0.048 0 B 0.044 A 0.527 

fl .. r.g~d 0.5 

peak fillet 0.361 0 C(4 ) 0.275 B 0.350 

1\,b", shank 0.107 0.060 B 0.109 A 0.742 

0.7 

peak fillet 0.852 0.128 C(6 ) 0.608 B 0.521 

Hol",-in I 0.5 reak 1. 902 0 . 015 C(5 ) 1.071 B 1.534 

plate 0.1 peak 3.312 1. 737 B 2.441 B 2.169 

I 0.295 outside edge 1.503 0 B 1.225 B 0.474 
Cir~ular 0.4 outside edge 2.871 0 B 2.356 0.643 B 

Plate 
0.47~ outside edge 3.924 0 C(3) 3.293 B 0.769 

0.7 outside edge 7.712 1.078' • C(10 )t. 7.no B 1.075 

shank 0.109 0 Il 0.108 A 0.495 

Shouldered 0.5 

pea:, fillet 1.648 0.012 C(4 ) 1.518 B 0.259 
1\Jt.e 

Ut shank 0 . 235 0 B 0.239 A 0.704 
(" = 1.42 ) 0.7 y 

pe"k fillet 2.304 0.082 C(5 ) 2.127 B 0.372 

Shou ldered shank 0.685 0.187 B 0.685 A 0.504 
1\Jbe 

0.5 
at 
(" = 2.83) peak f! \let 3.701 1.558 Il 3.748 B 0.269 

Y 

Value!) quoted "re 10th cycle ratchet. str .. tn". After 10 cycle" the ratchet "tnstn per cyde w.~s tltlll reduc tng. 

d(ed le lId:' y 

P 
P

L 

1.054 

0.701 

1.060 

0.743 

3.069 

3.099 

1.607 

1.607 

1.623 

1.536 

0.990 

0.518 

1.006 

0.531 

1.008 

0.538 

~ed lE 
y 

1st cycle Steady state 

0.110 0.110 

0.250 0.176 

0.132 0.132 

0.150 0.088 

-l 
-0.183 -0.144 

I 

-0.371 -0.481 I 

0.093 . -0.024 

0.091 -0.078 

0.077 -0.044 

-0.156 -0.212 I 

0.207 0.207 I 
I 

0.425 0.400 

0.262 0.262 

0.541 0.518 

0.740 0.740 

0.817 0.841 

\..,J 
\..,J 
-..J 



Table 7.3 Summary of Stepped Beam Results (Elastic-perfectly-plastic) 

Normalised Ratchet Strain per Cycle 

No creep Complete redistribution 
P M Position 1st cycle ·Steady state Characteristic Steady state Cllaracteristic p- M 
L y behaviour behaviour 

FT 2.175 0.555 B 2.204 A 

shank { 

Fe -0.010 0.555 B -0.031 A 

0.5 ~1.05 
FT 3.293 0.322 B 2.411 B 

fillet { 

FC 1.573 0.322 B 1.040 B 

FT 2.611 1.500 B 2.613 A 

shank { 

FC 1.175 1.500 D 1.182 A 

0.7 ~O. 7 
FT 3.973 1.025 B 2.902 B 

fillet { 

~'C 1.335 1.025 D 1.347 B 

FT - first tensile surface * redi s tribution possibly not complete 
FC - first compressive surface 

d(Ed /E ) 
~ 

d(Ed lE }tlr y 
dr P/P

L 

0.502 1.004 

0.500 1.000 

0.479 0.959 * 

0.410 0.819* 

0.700 , .000 

0.699 0.998 

0.704 1.005 

0.718 1.026 

- --- ---_ ._--

liE d /E 

1 st c},,:!le 

0.302 

0.218 

0.159 

0,211 

0 . 237 

0.079 

0.077 

-0.0110 

---~ 

Y 

Steady state 

0.302 

0.218 

0.154 

0.209 

0.231 

0.019 

0.116 

-0.0111 

I 

\» 
\» 
CD 
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Symbol 

Component 

Shakedown Ratchetting 

{ shMk 0 • 
Flanged tube 

peak fillet 0 • 
{"hank 

X ~ 

Stepped beam 

peak fillet + + 
'Hole-in-plate' t> .. 
Circular plate 0 • 

{ shank \7 • 
Shouldered tube 

peak fillet ~ ~ 

Table 7.4 Notation used in Figures 7.1, 7.2, 7.5 and 7.6. 



Ta ble 7 .5 Eva l ua tion of pa r ame t e rs for Couss eran diagr a m( e las t i c - per f ec tlY-Plastic} 

°t P 'No Creep . Complete Redistr i but i on 
Component r;:- Pos ition (SCF l

th 
S R 

° c ine/ £ in y 
£ R 1£ 1n IXIratlon ° e ff °eff V 

\' 
IXIrat i on 

10 chles (hrs) 
y 

( hrs) 0 10 cycles ° y y 

Shank - 0.795 0 .048 0 1.0 0.5 29.806 5, 000 0.581 0.861 
0.5 

Peak f illet 1.81 0 . 875 0 .~ 50 0 1.0 23.196 0.891 0.5 5 ,000 0 . 56 1 

flanged t u be 1. 9~ 

Shank - 0.73 5 0 .6~7 0 1.0 0.7 15.632 200 0 .826 0 .8~ 7 

0 .7 Peak fill e t 1.81 0 . 83~ 2 .492 0 1.0 0 . 7 16.539 200 0. 833 0.8~0 

Shan k - 0. 838 7.170 " 0 1.0 0.5 30 .~85" 10,000 0. 723 0 .692 
2 .56 0.5 

Peak fi ll e t 1.46 0.883 6.191" 0 1.0 0 . 5 31. 7~1" 10 ,000 0.727 0 . 688 
Ste pped b"a m 

Shank - 0. 782 16 . 111" 0 1.0 0.7 91 .625" 10, 000 0 .84 1 0.832 
~ 

2 .51 0 .7 
Peak fi lle t 1. ~ 6 0 . 840 13.1 98 " 0 1.0 0 . 7 95 .155" 10,000 0.84 5 0.828 g 

0. 5 Pe a k 2.43 0.869 2. 250 0 1.0 0.5 ~3. 9 13 20, 000 0 . 691 0.724 

'Hole i n pla t e' 1. 37 0.1 Peak 2 .~3 0 . 626 18 . 945 0 1.0 0.7 119.328 5, 000 0 . 958 0 .131 

0. 295 Ou t side edge - 0 .627 1.503 0 1.0 0.295 31 .188 900,000 0 .392 0.753 

0. 4 CXttside edge - 0 .779 2. 871 0 1.0 0.4 66. 802 150 ,000 0 .556 0 .119 
Ci r cu l a r p la t e 1.4 1 0 .474 CXttsi de e dge 0.748 4. 084 0 1.0 0 . 414 63 . ~92 50, 000 0.642 0.738 -

0 . 7 CXttside edg e - 0 .668 21. 335 0 1.0 0 . 7 169. 531 10 ,000 0. 915 0.765 

Shank - O.HO 0 . 109 0 1.0 0.5 19 .337 50,000 0.585 0.855 
0.5 Peak fi ll e t 1. 96 0 . 848 1.820 0 1. 0 0 .5 21.795 50,000 0. 615 0 .8 13 

1. 42 

Shank - 0. 670 0 .235 0 1.0 0.7 27. 993 6 ,000 0 .823 0 .B5 1 

Shoulder ed t ube 0.7 Pea k rillet 1. 96 0.799 3.455 0 1.0 0 . 7 39.235 6,000 0. 862 0.81 2 

Shank - 0 .850 2 .368 0 1.0 0 .5 17 .585 500 ,000 0 . 767 0 .652 

:: .83 0.5 Peak fille t 1. 96 0. 917 17 .123 0 1.0 0.5 28 . 445 500 ,OuO 0.8 19 0 .6 11 

- -- -- - - - -_._---

~dX surface val u e s 
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Estimated (Jt!()y 

Component P Position 
CJt 'No creep' Complete 

PL 
(5" used Redistribution 

y 

Lower Mean Lower Mean 

0.5 Shank 1.94 2.00 3.07 0.32 0.69 

Flanged Peak Fillet 3.51 2.00 3.07 0.24 0.59 

Tube Shank 1.94 1.17 2.10 0.48 1.00 0.7 
Peak Fillet 3.51 1.17 2.10 0.53 1.05 

0.5 Shank 2.58 2.00 3.07 0.80 1.50 

Stepped Peak Fillet 3.77 2.00 3.07 0.79 1.46 

Beam Shank 2.58 1.17 2.10 0.56 1.09 0.7 
Peak Fillet 3.77 1.17 2.10 0.53 1.07 

'Hole-in- 0.5 Peak 3.33 2.00 J.07 0.75 1.29 
plate' 0.7 Peak J.33 1.17 2.10 1.05 1.82 

0.295 Outside Edge 1.41 3.18 5.07 0.38 1.00 

Circular 0.4 Outside Edge 1.41 2.46 4.04 0.62 1.08 

Plate 0.474 Outside Edge 1.41 2.05 3.32 0.65 1.16 

0.7 Outside Edge 1.41 1.17 2.10 0.86 1.56 

0.5 Shank 1.42 2.00 3.07 0.33 0.70 

Peak Fillet 2.78 2.00 3.07 0.44 0.85 

Shouldered 0.7 Shank 1.42 1.17 2.10 0.47 0.98 

Tube Peak Fillet 2.78 1.17 2.10 0.62 1.19 

0.5 Shank 2.83 2.00 3.07 1.02 1.77 

Peak Fillet 5.55 2.00 3.07 1.22 2.06 

Table 7.6 Comparison between assumed thermal stresses and estimated 
thermal stresses from the Cousseran diagram. 
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Figure 7.4 An example of t he method used to determine the 
'effective stress' in a Cousseran analysis. 
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Fi gure 7. 7 St epped beam shank (Kine~~tic hardening, Ep/E = 0.05, 
M/My = 1.0, p/ PL = 0. 8 , 'no creep' corrlitions). Variation 
in normalised cyclic curvature range during the first 10 
cycles. 
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Figure 7.8 An example of the normalised isochronous stress-strain 
curves for a work hardening material. 
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Figure 7.9 Flanged tube (material hardening, 'no creep' conditions). 
Correlation of the ratchett i ng behaviour on an Efficiency 
Diagram. 
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Figure 7.10 Flanged tube (material hardening, ratchetting with creep). 
Correlation of the ratchetting behaviour on an Efficiency 
Diagram. 
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CHAPTER EIGHT 

Potential problems of ratchetting with creep can be i dentif i ed 

in components in conventional and nuclear power plant, chemical 

plant and aero engines. The design of components which are likely 

to experience severe loading conditions should include an assessment 

of the likelyhood and effects of ratchetting. 

Four main assessment techniques are:-

1. Experimental tests on actual components with loadings and 

temperatures typical of 'in service' conditions. 

2. Model testing. 

3. Finite element predictions. 

4. Approximate analytical solutions. 

A major disadvantage of experimental tests under 'in service' 

conditions is the high cost of rig manufacture for generally h igh 

operating temperatures and the difficulty in measuring deformations 

under experimental test conditions. Also long 'in service' timescales 

may inhibit the amount of useful information that can be obtained 

in an experimental test of limited durat i on. 

Model materials such as lead and copper have been used t o 

investigate the ra t chetting and creep behaviour of components. 

These materials have relatively low melting temperatures and creep 

at temperatures which can be achieved experimentally at reascna ble 

cost and at which measurements ef deformation can be obtained 

with relative ease. Although, in seme cases, the results from 

model testing may be used directly to predict the behaviour of 

actual engineering cemponents, a more important aspect of model 
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testing, and directly related to this work, is the interaction 

between model tests and analytical prediction techniques. If 

model material behaviour can be accurately predicted using analy­

tical methods then the same analytical methods can be used to 

predict the behaviour of actual components which may have different 

geometries but have similar material characteristics to ~.he model 

material and similar loading conditions. Within the Department 

of Mechanical Engineering at this University, a lead alloy has 

been used extensively as a model material. The latest experimental 

tests have been carried out by Yahiaoui (12) who discusses the 

usefullness of the lead alloy as a model material. 

The finite element method and approximate analytical solutions for 

predicting component behaviour form the basis of the investigations in 

this research. Valuable insights into the ratchetting and creep behaviour 

of components (particularly in regions of stress concentration where 

relevant research is very limited) have been obtained. 

The finite element method has been used:-

1. to investigate the mechanisms of ratchettingj 

2. to study in detail the effects of loading, material 

behaviour assumptions and stress redistribution on the 

ratchetting and dwell period behaviour of simple components; 

3. to identify the characteristic ratchetting and dwell period 

behaviour of a number of complex components and loadings in 

order to suggest simplified design procedures based on 

a) limited finite element computations, 

b) approximate analytical techniques, 

c) a combination of finite element solutions and 

approximate techniques. 
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4. to examine the accuracy to which the results of experi­

mental tests can be predicted by finite element solutions 

using simplified material models and to identify the short­

falls of the models in order to suggest improvements in 

the modelling techniques. 

The results of the detailed studies of the flanged tube and 

stepped beam shanks are discussed in section 8.2. The results 

of the comparative study of five components with significantly 

differing geometries and loadings have been discussed in Chapter 1. 

The implications of these results in terms of simplified design 

procedures are discussed in section 8.3. 

The results and implications of the comparisons between 

experimental model testing (12) and finite element predictions are 

discussed in section 8.4. 

8.2 Detailed Studies of the Flanged Tube and Stepped Beam Shanks 

A major disadvantage of the finite element method for predicting 

the behaviour of complex components subjected to severe loadings, 

particularly where plasticity and creep effects are to be investi­

gated, is the high cost of obtaining the necessary results. Not 

only are the ~untim~ and core storage requirements of the non-linear 

program large but also the manhours required to develop an 

adequate mesh, generate the data and investigate suitable material 

models. A considerable amount of useful data on the effects of 

loading conditions, material models and stress redistribution during 

dwell periods on cyclic behaviour can be obtained from simple models 

of the uniform regions within a component where a limited number of 

elements and simplified constraints can be used. The data preparation 
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and 'runtimes' for these simple models is relatively small. For 

example, finite element computations for the flanged tube with 

identical loading conditions and material assumption were performed 

for 9 cycles and the ~untimes'were 

shank model 

whole component model 

239 secs 

5400 secs 

The main disadvantage of the simple models is their inability 

to represent regions of stress concentration (which are often the 

most critical regions of the component). 

The results for the uniform shanks of the flanged tube and 

stepped beam can be used in two ways. Firstly the normalised form 

of the results make them of direct relevance to components with 

the same geometry made from any material with the same behaviour 

characteristics. Secondly, since the components differ signifi­

cantly in geometry and loading conditions, similar 'trends' in 

behaviour, which have been identified, may be applicable for a 

range of components and loadings. 

There are two significant differences between the two components:-

1. The total axial strain of the flanged tube shank does not 

vary radially; the behaviour of this component can 

be defined by a single parameter, i.e. the maximum ratchet 

or dwell period strain. The stepped beam shank experiences 

changes in curvature as well as axial strain and the strain 

varies with through-thickness position. Two parameters are 

required to define the behaviour; max: mum surface ratchet and 

dwell period strains are used in preference to centreline 

strain and curvature since they provide a direct measure of 
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the maximum strains in the component. However, some 

interesting behaviour can be more easily explained in 

terms of curvature. 

2. The cyclic loading is load controlled for the beam but is 

strain controlled for the tube. As a result the limit load 

for the beam depends on both the steady axial load and the 

cyclic bending load but the limit load of the tube depends only 

on the steady load (i.e, the thermal load alone cannot cause 

collapse) , 

Usually the 'complete redistribution' case is the upper 

bound on incremental and accumulated ratchet strains although 

some cases have been identified for which the 'no creep' case 

provides the upper bound (i,e. high mean loads). Obviously the 

'complete redistribution' case will always be the upper bound for 

total accumulated strains. The elastic-perfectly-plastic material 

model results in a cyclic steady state with equal ratchet strains 

after the first cycle for the 'no creep' case and for each cycle 

for the 'complete redistribution' case. The presentation of the 

data for the steady cyclic state behaviour with an elastic-perfectly­

plastic material model is simple because the ratchet strains and 

dwell period strains are independent of cycle number. The ratchet 

strains predicted by the isotropic and kinematic hardening models 

will eventually reduce to zero, For the flanged tube shank a 

single magnitude of cyclic thermal load has been considered and in 

all the cases investigated there is no reverse plasticity with the kine­

matic hardening model; hence the results for isotropiC and kinematic 

hardening are ideally the same- small differences in the results are 

due solely to variations in the programming technique for the two 

hardening models. tor the stepped beam shank a range of cyclic 
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bending loads have been used and differences between the predictions 

with isotropic and kinematic hardening models are apparent. 

Normalised ratchet strains per cycle and accumulated ratchet 

strains increase with mean load and decr~ase with increasing 

plastic modulus. However, it should be noted that for realistic 

material modelling, the yield stress used for an elastic-perfectly­

plastic material model is likely to be higher than that for an 

equivalent hardening model (see Figure 4.24); in this case, 

predictions of accumulated ratchet strain with the hardening model 

may initially be greater than with an elastic-perfectly-plastic 

model. From the results of the stepped beam shank survey the maximum 

surface ratchet strains also inc~ease with cyclic load. For high 

mean loads the 'no creep' case may provide the upper bound on tota l 

accumulated ratchet strains. For the beam shank this generalisation 

relates to centreline ratchet strains, but the maximum surface 

accumulated ratchet strains in the beam are always greater for the 

'complete redistribution' case. For the 'no creep' case \~ith an 

elastic-perfectly-plastic material model an analytical solution for 

steady state ratchet strains in the stepped beam shank is available. 

Alternatively cyclic change in curvature, which can be obtained from 

the analytical $olution,is analogous to the thermal stress parameter 

used by Bree and can be used in the Bree equations to obtain ratchet 

strains. The narrow ratchetting band between shakedown and colla pse 

regimes means that ratchet strains are very sensitive to small 

changes in steady and cyclic loads. The sensitivity of ratchet 

strains to load (for both elastic-perfectly-plastic and hardening 

material models) is of particular importance when comparisons between 
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finite predictions and experimental results are made (see section 

8.4 ). 

The effects of hardening model and dwell periods on the 

incremental changes in curvature of the stepped beam shank is 

an interesting feature of the results. With an elastic-perfectly-

plastic material model the residual curvature at the end of each 

cycle is the same for the 'no creep' case. For the 'complete 

redistribution' case there are equal increments of centreline 

ratchet strain and curvature for each cycle and only small changes 

in curvature during the dwell periods. For a non-zero plastic 

modulus the curvature response depends on the cyclic bending load. 

For the lowest cyclic bending load (i.e. M/M = 1.0) the results 
y 

for isotropic and kinematic hardening models are the same. The 

residual curvature is a maximum at the end of the first cycle and 

reduces towards a steady state value during the second and subse-

quent cycles for both the 'no creep' and 'complete redistribution' 

cases. For higher cyclic bending loads, the residual curvatures 

for each cycle are 'positive' for isotropic hardening and 'negative' 

for kinematic hardening for both the 'no creep' and 'complete redist-

ribution' cases. Again changes in curvature during the dwell periods 

are small. The 'reversal' of residual curvature may provide a simple . 
means of choosing between isotropiC and kinematic hardening models 

for a finite element analysis based on the observed curvatures during 

a simple experimental test. 

For hardening material models, 'the differences between the 

loading conditions for the two components has a significant effect 

on the accumulation of ratchet strains. The severe loading condi-

tions for the stepped beam shank results in an accumulation of 
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ratchet strains which is dominated by the first cycle for both 

'no creep' and 'complete redistribution' cases. The flanged tube 

shank loadings are less severe and total accumulated ratchet 

strains cannot be reasonably predicted from the results for a 

single cycle of load. 

For the 'complete redistribution' case the value of the time 

function for redistribution is found to be virtually independent 

of mean and cyclic loads and the degree of hardening. The incre­

ments of dwell period strain due to stress redistribution are 

small in comparison to the total dwell period strains. For an 

elastic-perfectly-plastic material assumption this increment is 

the same for each dwell period and for hardening materials, the 

increment of strain due to stress redistribution is a maximum for 

the first dwell and reduces during the second and subsequent dwell pericds 

8.3 Comparative Study of Components - Implications or. Design 

The finite element method is a very powerful, but also very 

expensive, prediction technique for components subjected to ratchetting 

and creep. The results of the comparison of component behaviour, 

discussed in Chapter 7, provide information on how computations can 

be kept to a minimum and yet give exact or reasonable est i ma tes of 

accumulated strain. Also, the resul~ of the finite element analyses 

are used to test the validity of approximate methods for obtaining 

estimates of total strain. 

The comparison of the results for the five components of 

differing geometries and loading conditions assumes an elastic­

perfectly-plastic model with no interaction between plastic and 

creep strains. The elastic-perfectly-plastic material assumption is 
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used extensively to model the behaviour of engineering materials 

in preference to hardening assumptions and, except for the 'no. creep' 

case for the circular plate, the characteristic steady cyclic state 

condition limits the number of cycles required for an exact 

solution. The results for the five components have been normalised 

so that they can be applied to other similarly shaped components 

which are made from materials with the same form of material behaviour 

and have similar loadings. 

The effects of creep during the dwell periods on ratchet 

strains and the effects of the residual stress fields at the end 

of a cycle on the dwell period behaviour have been bounded by the 

'no creep' and 'complete redistribution' cases. In practice, if 

dwell periods are not of sufficient duration for stress redistri­

bution to be complete then the actual accumulation of strain will 

be between the two tounds. The 'complete redistribution' case 

always provides the upper bound on accumulated strain and in all 

but the high mean load cases (which would not generally occur in 

such components) provides the upper bound on accumulated ratchet strain. 

8.3.1 'No creep' case - ratchet and total accumulated strains 

Finite element solutions 

For the uniform regions of the tubes and beam the steady cyclic 

state, with constant ratchet strain per cycle, occurs after the 

first cycle. Exact solutions for total accumulated strains are 

obtained from finite element predictions for two cycles only and 

an approximate solution based on one cycle only is unjustified in 

terms of the 'time saving'. However it is noted that, except for 

the high load cases for the flanged tube and stepped beam, the 

steady state ratchet strains are less than the first cycle ratchet 

strain. 
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At the 'peak fillet' positions for the tubes and beam and 

at the position of maximum strain for the 'hole-in-plate' component, 

the steady cyclic state is reached in a few (up to six) cycles. 

Furthermore for the shouldered tube with higher cyclic thermal 

load (a t /a y : 2.83), the steady cyclic state is reached after the 

first cycle, compared with four cycles for at/cry: 1.42 and the 

same steady load. In all cases considered the steady state ratchet 

strain is less than the first cycle ratchet strain. In view of 

the likely 'in-service' conditions of low-medium steady loading and 

high cyclic loading it is suggested that exact solutions can be 

obtained from finite element solutions for two cycles. For lower 

cyclic loads it has been shown that steady state ratchet strains 

are smaller, but of the same order of magnitude, as the second 

cycle ratchet strains and in this case conservative estimates of 

accumulated strain can be obtained from a two cycle finite element 

analysis. 

For the circular plate, the ratchet strains (in all but the 

high steady load case) reduce monotonically to zero. For the 

high steady load case the ratchet strains were still reducing after 

ten cycles. This difference in behaviour can possibly be explained 

by the way in which the stress distributions due to steady and 

cyclic loading interact. The steady pressure loading and cyclic 

through thickness temperature gradients imposed on the circular 

plate produce similar stress distributions, i.e. compressive 

on the top (pressurised)surface and tensile on the other surface. 

The other four components investigated have dissimilar stress 

distributions due to steady and cyclic loading and require a 

'plastic-core' for continued ratchetting. For the circular plate, 
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a 'plastic-core' concept is not applicable since collapse would 

occur beforehand. An exact solution for the accumulated strain 

in a circular plate type component requires a complete analysis 

to shakedown which, for the cyclic load considered and for low-

medium steady loading, is very rapid. A conservative estimate 

of accumulated strain could be based on finite element computations 

for two cycles. However, the degree of pessimism might be unreal-

istically high if a larger number of cycles were being considered. 

Approximate methods of solution 

The Bree diagram (1) including lines of constant ratchet 

strain per cycle can be used to obtain conservative estimates of 

steady state ratchet strains for all of the components which exper-

ience cyclic thermal loading, based on the definitions of equivalent 

steady and cyclic loads given in Chapter 7 which can be obtained 

from a relatively simple elastic thermal analysis. For the stepped 

beam shank exact values of ratchet strain can be obtained using an 

equivalent cyclic thermal load based on changes in curvature. For 

the tubes and beam the estimates for the shanks are better than for 

the 'peak fillet' positions which draws attention to the pessimism 

of the definition of cyclic load based on the thermal stress concen-

tration factor. It was seen that, with the exception of the circular 

plate, the first . cycle ratchet strains are 'reasonably' predicted 

by the lines of constant ratchet strain per cycle on the Bree 

diagram (e.g. the maximum surface strain i n the beam shank is under-

estimated by approximately 1.5 E) in which case a 'reasonable' 
y 

estimate of accumulated strair.s can be made. Also the ratchetting 

boundary on the Bree diagram is found to be conservative for all the 

cases considered. 
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When the results for the components are correlated on the 'efficiency 

diagram' suggested by Couserran et al (50) they generally fall within 

the cloud of data points in figure 2.12; the exceptions being the combin­

ations of primary and secondary stress which results in shakedown. However 

the 'efficiency diagram' cannot be used to estimate accumulated strains 

for the 'no creep' case with an elastic-perfectly-plastic material since 

for non-zero steady state ratchet strains the ratio of effective stress to 

yield stress is unity and the Couserran method would estimate accumulated 

strains which are either zero or indeterm~nate. 

8.3.2 'Complete redistribution' case 

8.3.2.1 Ratchet strains 

Finite element solutions 

For the uniform regions of the tubes and beam, each cycle produces 

an equal amount of ratchet strain and the exact solution for accumulated 

ratchet strain requires only 1 cycle to be computed. For non-uniform stress 

regions, including the circular plate, constant ratchet strains per cycle 

exist for the second and subsequent cycles and are very similar in magnitude 

to the first cycle ratchet strain.. An exact prediction for accumulated 

ratchet strain is obtained from a finite element analysis for 2 cycles 

of load and a good, but not necessarily conservative, approximation can be 

based on the results for a single cycle. 

Approximate methods of solution 

With the exception of the circular plate, t he 

lines of constant ratchet strain per cycle on the Bree diagram for a 'no 

creep' condition can be used to obtain an estimate (up to ~ 0.5 € 
y 

per cycle underestimate) of the steady state ratchet strain for the complete 

redistribution condition. The difference between the circular plate and 

the other componen~has already been discussed and the non-conformity is not 

unexpected. The lead controlled, rather than strain controlled, character-
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istic of the stepped beam shank is suggested as a possible explanation 

for the high first cycle (and hence steady state) ratchet strains. 

The n/(n + 1) ratchetting boundary suggested by Leckie (45) appears 

to be satisfactory for all of the components except the circular plate 

and provides a more acceptable design criteria than the very restrictive 

'elastic line' ratchetting boundary suggested by Bree (1). In fact, with 

the exception of the circular plate, the 'complete redistribution' case 

ratchet strains for loadings within the 'no creep' boundary were relatively 

small (~O .108 c ). 
. y 

8.3.2.2 Dwell period strains 

Finite element solutions 

For the uniform regions of the tubes and beam, the dwell period 

behaviour between each cycle is identical and the exact solution can be 

obtained from the results for a single dwell period. In regions of stress 

concentration the second and subsequent dwell periods produce identical 

results and the exact solution can be obtained after only 2 dwell period 

computations. A good approximation of accumulated dwell period strains 

can be obtained from the predictions for the first dwell period since 

there is only a slight difference in the increment of dwell period strain 

due to redistribution between the first and second (steady state) dwell 

periods. d The normalised steady state creep rates, (d (e: Ie:
y

) Idf) I (P IP L)' 

are i ndependent of load, P/P L, and can be obtained fr om a s i ngle steady 

load finite element creep solution at any value of mean load. 

Approximate methods of solution 

The normalised increment of dwell period strain due to stress 

redistribution,6e:d
/E , is small; les~ than and in most cases much less than 

y 

0.84. The strains accumulated during long dwell periods are there fore 

dominated by the contribution frem the steady state creep rates and in 

d cases of negative 6e: lE , dwell period strains based on the steady state 
y 
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creep rates are conservative. The reference stress approach can often be 

used to determine normalised creep rates and therefore offers a simple 

method of estimating dwell period strains. Alternatively the O'Donnell 

and Porowski method (6) may be suitable in order to obtain a bound on 

creep strain. 

8.3.2.3 Total accumulated strains 

Finite element solutions 

From the preceding discussion of ratchet strains and dwell period strains 

it is clear that the exact solution for total accumulated strains can be 

obtained from finite element solutions for 2 cycles and d10Tell periods. 

Reasonable estimates of accumulated strain require only one cycle and 

dwell period to be computed. 

Approximate methods of solution 

A combination of approximate ratchet strains, based on a single cycle 

finite element solution or the Bree diagram, and estimated dwell period 

strains, using the Reference stress Method or O'Donnell and Porowski, 

can be used to estimate accumulated strains. Alternatively, since the 

correlation of the results for 'complete redistribution' on the 'efficiency 

diagram' gives data points which generally lie within or slightly above 

the cloud of data presented by Cousseran et al (50), a reasonable approxi­

mation of accumulated strains can often be obtained from the efficiency 

diagram, for example using a mean line through the cloud of data. 

The Ainsworth (7) upper bound approach has been used for the stepped 

beam shank with a hardening material assumption and in both of the cases 

considered the bound is extremely conservative. This unnecessarily large 

overestimate is shown to result from the high stress index of the lead 

material in which case it is anticipated that a similar degree of over­

estimation would be apparent withan elastic-perfectly-plastic material 

assumption. A major criticism of the Ainsworth approach is that it requires 

a full'finite element analysis for an equivalent 'no creep' case together 

with some detailed processing of the output data. The additional computation 
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during the dwell periods for an exact solution may not have a signifi-

cant effect on the overall cost (in terms of runtime and processing 

time) of obtaining a solution. Also the Ainsworth bound is based on 

a 'no-creep' solution at a higher mean load than the exact solution and 

must therefore require more iterations for the solution. A failing of the 

method is that it cannot be used to obtain strains in stress concentrat ion 

regions. 

8.3.3 Notes on failure 

For both the 'no-creep' and 'complete redistribution' cases for 

the flanged tube and shouldered tube and for the 'complete redistribution' 

case for the stepped beam, the accumulation of strain is greater at the 'peak 

fillet' position than in the shank. Using a failure criterion based on 

total accumulated strain, the component life is limited by the accumulation 

of strain in the fillet, whereas fora uniaxial test, component failure in 

the shank is likely. 

Fatigue failures may occur for combinations of steady and cyclic 

load which result in reverse plasticity. This aspect of failure has not 

been investigated but it is suggested that the 'position' of such a fatigue ? 

failure is not intuitively obvious since both steady and cyclic stresses 

are increased by a stress raiser. 

8.4 Comparisons Between Experimental Results and Finite Element Pred i ctions 

The comparisons of finite elem~nt predictions with the experimental 

results for the flanged tube for 5 loading cases, have different degrees 

of success depending on mean load, position in the component and dwell 

period. In the shank, the predictions of accumulated ratchet strain are 

low compared with the experimental results. In particular the first cycle 

ratchet strain is grossly under predicted although the predictions improve 

with increasing load. It is suggested that a possible reason for the under-

estimate, particularly for the first cycle, is the inaccurate modelling 

ef the 'knee' of the stress-strain curve which is mest noticeable for the 
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elastic-perfectly-plastic model and is reflected in the predictions 

with this model. At high mean load the effects of inaccurate 'knee' 

modelling would be less pronounced and this is confirmed by the 

predictions. Also the predictions of 'peak fillet' ratchet strains, 

where stress levels are obviously higher, are significantly improved. 

Furthermore the finite element predictions of ratchet strain for the 

24 hour and 120 hour dwell period tests are in good agreement with 

the experimental results over the range of cycles considered. The 

tendancy of the experimental shank and peak fillet ratchet strains to 

a steady state non-zero value, associated with material ratchetting, 

cannot ultimately be predicted by the hardening models. The elastic-

perfectly-plastic material model will predict a steady cyclic state 

condition and reasonable estimates of steady state ratchet strain are 

obtained in the shank for P/P L = 0.8 'no-creep' and in the fillet for 

P/P
L 

= 0.7 with 24 hour and 120 hour dwell periods. The amount of 

material ratchetting is directly related to the degree of reverse 

plasticity ar.d hence to the loading conditions. Since finite element 

predictions with isotropic and kinematic hardening models are nominally 

the same (i.e. no reverse plasticity with kinematic hardening) and 

considering the relatively low thermal loading it is suggested that 

material ratchetting is limited and the absence of a material ratchetting 

model is not a serious restriction on the ability to obtain reasonable 

predictions for the flanged tube. Over the range of cycles considered, 

the hardening model of the 76
0

C lead alloy stress strain data (Curve D 

Figure 4.24 ) provides the best estimates of ratchet strain accumulation. 

For the tests with 24 hour and 120 hour dwell periods between thermal 

shocks (i.e. P/P L = 0.7) the predictions of individual dwell period 

strains and hence accumulated dwell period strains are generally higher 
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than the experimental results, with the exception of the 'peak fillet' 

predictions with 120 hour dwell period which are within the wide band 

of experimental data. Dwell period strain predictions reduce with 

reducing ratchet strain in the same way as the experimental results but 

the degree of overestimation is seen to increase with increasing inelastic 

strain. The greatest dwell period strains are predicted by the model 

which predicts the highest ratchet strains (i.e. Curve 0 Figure 4.24). 

Fessler, Hyde and Webster (25) have shown that, for a similar lead alloy, 

plastic pre-strain generally has a diminishing effect on creep strain 

compared with virgin creep data although at high stress levels the 

opposite effect was noted. 

From the experimental results in Table 4.8 it would appear that 

the accumulated initial dwell period strains cause a reduction in the 

first cycle ratchet strain in the shank. The same effect may also occur 

in the fillet but the argument is qualitative since stress redistribution 

will contribute towards the reduction. 

The following three improvements to modelling technique are suggested 

together with a qualitative assessment of their effect on predictions:-

A. more accurate modelling of the knee of the uniaxial stress 

strain curve; 

B. a material ratchetting modelling; and 

C. a plasticity-creep interaction model 

For the 'no-~reep' predictions, A and B would results in higher accumulated 

ratchet strain predictions in the shank as required. At the 'peak fillet' 

position a material ratchett i ngrnodel would again improve the predictions; 

the effects of more accurate knee modelling on 'peak fillet' ratchet 

strains are uncertain. For the finite element predictions with significant 

dwell periods the effects of A and B on ratchet strains are similar to 
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those for the 'no creep' condition. However an indirect effect of 

A and B is an anticipated increase in the dwell period strains. In 

contrast, it is suggested that a more realistic plasticity-creep 

interaction model could reduce the predictions of both ratchet and 

dwell period strains. In this case, the overall effect of the three 

suggested improvements is uncertain and in order to maintain good 

agreement between experimental and finite element results, the effects 

of A and B would need to be, to a large extent, counterbalanced by 

that of C. It must be pOinted out, however, that although material 

ratchetting and plasticity-creep interaction are not modelled, the overall 

predictions of total strain using simple models generally compa~favourably 

with the experimental results especially considering the spread of the 

experimental uniaxial data, particularly for creep, obtained by Yahiaoui 

(12 ). 

From the comparisons between experimental and predicted strain 

distributions it would appear that the position of peak strain is not 

accurately predicted. A possible explanation is that machining inaccur­

acies in the mould used to produce the components results in a truncation 

of the fillet radius by _6
0 

at the shank/fillet interface (12). This 

would cause both a shift in the apparent position of peak strain and an 

increase in the stress concentration factor in the fillet. 

The agreement between the experimental results for the 'load 

controlled' stepped beam and finite element predictions using load 

control is poor. The effect of the eccentricity of the axial load on 

the applied moments was not fully appreciated in the early stages of the 

project when a list of possible candidate components and loadings was 

drawn up . and the two components chosen for detailed analysis. Having 

later quantified the effect of eccentricity, the actual moments were found 
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to be significantly different to the nominal values (for example, see 

table 5.5) and mom~nts in the fillet were ~5% greater than the shank 

values. In view of the large changes in strain associated with relatively 

small changes in load, finite element predictions based on nominal moments 

which had already been obtained, were not considered to be relevant for 

the comparison (e.g. compare shank predictions from figure 5.42, where 

, 

PL & My are based on 0y = 19.8 MN/m2 rather than 0.2% proof stress, with 

predictions in figures 5.45 and 5.46). Also comparisons were restricted to 

the shank. The finite element predictions of ratchet strain with isotropic 

and kinematic hardening models are significantly lower than the experimental 

results and predict shakedown in N10 cycles. A material ratchetting model 

would improve the predictions but the degree of improvement is unquantified 

at this time. In contrast, the elastic-perfectly-plastic model using 

steady state moments over predicts the accumulation of ratchet strain and 

in particular the steady state ratchet strain. Finite element predictions 

based on curvature control are more accurate than those based on load 

control, in particular those with a kinematic hardening model. Both load 

and strain control problems arise in practice and the problems of predic­

tion in each case have to be considered. 

8.5 SUGGESTIOhS FOR FURTHER WORK 

Although good agreement between experimental results and finite 

element predictions for the flanged tube has been achieved with simple 

models of material behaviour, it is suggested that the implementation 

of both material ratchetting and plasticity-creep interaction models 

into the finite element program should be pursued. Material ratchetting 

has been shown to be significant from the experimental results for the 

high cyclic loading conditions of the stepped beam. Experimental data 

suggests that the cyclic behaviour of the lead alloy could be more 
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accurately predicted by a Goodman and Goodall model. Yahiaoui (12) 

reports on tests which have already been performed on the lead alloy 

to determine suitable constants for the Goodman and Goodall equations 

and to investigate the interaction between plastic and creep strains. 
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CHAPTER NI NE 

9. SUMMARY OF CONCLUSI ONS 

1. The finite element method has proved to be a very powerful, albeit 

expensive, technique for predicting the ratchetting and creep 

behaviour of components. 

2. The detailed parameter survey of the flanged tube and stepped 

beam shanks has provided a valuable insight into the effects of 

loading conditions, material hardening and stress redistribution 

due to creep during the dwell periods between cycles of load on 

ratchetting and dwell period behaviour. These 'simplistic' models 

have highlighted effects that would not necessarily be recognised 

by 'whole component' analyses which, because of cost and time 

limitations, must be restricted in terms of the variation in the 

relevant parameters being investigated. 

3. The flanged tube shank is a strain controlled cycling problem and 

ratchet strains are constant across the section. The uniform 

beam is load controlled and there may be variations in ratchet strain 

across t he section and hence incremental growth in the direction of 

applied load ma~ be accompanied by incremental changes in curvature. 

4. For both models ratchet strains increase with mean load and are 

inversely related to the degree of the material hardening. For 

t he uniform beam, the maximum surface ratchet strain also i ncreases ' 

with cyclic bend~ng load. Ratchet strains on t he opposite surface 

are at a maximum for an intermediate cyclic berning load. 

S. The elastic-perfectly-plastic material model predicts a ratchett i ng 

process which, above the shakedown limit, is continuous !or both 

the plane tube and beam shank models with a constant ratchet strain 

per cycle. With material hardening, both isotropic and kinematic 

hardening models must ultimately predict shakedown to elastic 
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cycling or cyclic plasticity. When cyclic loads are relatively 

small (i.e. flanged tube) and no reverse yielding occurs the 

predictions from isotropic and kinematic hardening models are the 

same. For the higher cyclic loading conditions in the beam shank 

and particularly for a high plastic modulus, material hardening 

during the first cycle results in an accumulation of ratchet strain 

which is dominated by the first cycle. 

6. The effects of stress redistrib~tion due to creep in the dwell 

periods between cycles of load are bounded by the 'no creep' (rapid 

cycling) and complete redistribution (slow cycling) cases aralysed. 

The complete redistribution case provides the upper bound on accumu­

lated strain and in general on accumulated ratchet strain although 

situations have been identified where the 'no creep' case will 

predict the greater ratchet strains; typically for high mean load 

and relatively low cyclic load combinations which would not be 

expected in practise. 

7. The accumulation of strain during the dwell periods is characterised 

by an initial transient stage due to stress redistribution super­

imposed on a steady state strain rate. The increments of strain due 

to redistribution are small compared with the total accumulation of 

dwell period strain. The steady state strain rates and redistribution 

times are directly related to steady load and are independent of 

cyclic load an~ hardening assumption. 

8. The mechanisms of ratchetting have been investigated by considering 

5 components with significantly different geometries and loading 

conditions using an elastic-perfectly-plastic material model and a 

zero plasticity-creep interaction rule for the 'no creep' and complete 

redistribution cases. 4 of the 5 components have very similar 

ratchetting mechanisms; the 'no creep' mechanism for the circular 

plate ceing the exception to the general rule. The similarity in 
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behaviour of these 4 components can be explained in the way that 

the stress distributions due to steady and cyclic loading interact. 

9. For the 'no creep' case in uniform sections arrl regions of stress 

concentration a 'plastic core' (i.e. a portion of the ratchetting 

section which experiences plastic growth during both halves of a 

cycle) is required for ratchetting to be continuous. The 'plastic 

core' is not evident for the circular plate which will eventually 

shakedown under 'no creep' conditions. From the survey of the 

flanged tube and stepped beam shanks it has been shown that the 

monotonic reduction in ratchet strain due to material hardening is 

associated with a reduction in the size of the 'plastic core' and 

ratchetting ceases when the 'plastic core' disappears. 

10. The 'plastic core' requirement is not essential for continued 

ratchetting with an elastic-perfectly-plastic material model and 

complete redistribution conditions. In plane regions, ratchetting 

is continuous for ~oad combinations which produce any plastic strain 

during the first cycle. In regions of stress concentration, continued 

ratchetting was predicted for all components and loading conditions 

including the circular plate, although a small shakedown region 

would be expected. 

11. For the range of components and loadings considered both shakedown 

and ratchetting conditions have been identified. Wit h the elastic­

perfectly-plast~c material model, the accumulations of ratchet strains 

can be characterised by 3 categories which cover both the 'no creep' 

and complete redistribution conditions. I n all of the cases con­

sidered ratchet strains are enhanced ay complete redistribution in 

the dwell periods also ratchetting is evident under complete 

redistribution conditions for loadings which result in shakedown 

for the equivalent 'no creep' conditions. 
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12. For the two axisyrnmetric tube components having uniform sections 

and stress concentrations, the accumulations of meridional ratchet 

strain at the 'peak fillet' positions are greater than in the 

shank. for all loadings and dwell period assumptions. Ratchetting 

at the 'peak fillet' position can occur for loadings that result 

in shakedown in the shank. For the 'plane stress' stepped beam, 

'no creep' meridional ratchet strains in the fillet are less than 

in the shank due to the effects of the increased section on strains 

in the other two directions. 

13. The increments of dwell period strain due to stress redistribution 

are always small and in some cases negative and the accumulated 

dwell period strain is dominated by the steady state component. 

The steady state strain rates in the fillet regions of the tubes 

are significantly less than in the shank and are directly propor­

tional to mean load. For the stepped beam, steady state strain 

rates in the shank and .fillet are similar and directly proportional 

to mean load. 

14. With the exception of the '~o creep' case for the circular plate 

an elastic-perfectly-plastic material model will predict a cyclic 

steady state both in the plane sections and at points of high 

stress and this limits the number of computed cycles that are 

required for an exact solution. Similarly, exact steady state 

strain rates during the dwell periods for a range of mean loads 

can be obtained from a single load creep solution. Guidelines for 

the necessary computations for exact and approximate solutions are 

given and in general only two complete cycles, including dwell 

periods, have to be computed. 
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15. For the 'no creep' condition with an elastic-perfectly-plastic 

material model, the Bree ratchetting boundary and lines of con-

stant ratchet strain per cycle are conservative for all of the 

components (uniform sections and stress concentrations) and loadings 

considered, with the exception of the circular plate, using simple 

definitions of the steady and equivalent cyclic loads. In regions 

of stress concentration, equivalent cyclic loads are related to 

'nominal' values by the thermal or equivalent thermal stress con-

centration factor which is shown to be a pessimistic assumption. 

16. With complete redistribution between cycles of load, the nln + 1 

boundary suggested by Leckie is satisfactory for all of the com-

ponents and loadings except the circular plate and is far less 

restrictive than the elastic limit line boundary suggested by Bree. 

Furthermore the Bree ratchetting boundary for the 'no creep' con­

dition provides a reasonable guideline for the 4 components. 

17. The non-conformity of the circular plate component has been high-

lighted throughout the analysis. The approximate methods suggested 

are restricted to components subjected to loading conditions which 

are similar to Bree's thin tUbe. The ability to incorporate the 

effects of stress concentratio~into approximate design calculations 

based on the Bree diagram is a significant feature of the results. 

18. The correlation of the finite element results on the 'efficiency 

diagram' of Coupseran et al supports the theory that the accumu-

lation of inelastic strain depends on the loading conditions and can 

be separated from t he effects of material behaviour and test 

duration. The finite element results using the lead alloy material data 

generally correlate well with the cloud of data presented by Cousseran 

et al for a range of stainless steels. 

\ 
\ 

\ 

, 
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19. The upper bound approach suggested by Ainsworth has proved to be 

an extremely conservative method of bounding strain accumulations 

in a situation of ratchetting with creep. The analysis is restricted 

to two examples for the stepped beam shank but suggests similar 

conclusions for the other components since the pessimism is 

associated with the high value of stress index in the creep law. 

The overall saving, in terms of computing costs and manhours, is 

also questionable. The approach cannot be used for SCF's. 

20. The accumulation of strain during long dwell periods can be reasonably 

estimated from the steady state strain rate since the increment of 

strain due to stress redistribution is small compared with the 

total accumulation. For plane regions the steady state strain 

rate is equal to the creep strain rate associated with the mean 

stress. In regions of stress concentration steady state strain 

rates for a range of mean loads ca~ be obtained from a single 

steady load creep finite element solution or alternatively the 

Reference stress Method or O'DonnellandPorowski bound can often be used. 

21. The comparison between experimental results and finite element pre­

dictions for the flanged tube has shown that generally good agree­

ment can be obtained using simple models of material behaviour. 

This agreement is partially attributed to the relatively low magnitude 

of the cyclic thermal load under which conditions material ratchet­

ting is limited. 

22. A qualitative assessment of the likely effects of improved 

modelling techniques, including material ratchetting and plasticity­

creep interaction models, confirms the anticipated i mprovement in 

predictions. However the implementation of improved models into 

existing finite element programs may not necessarily be cost 

effective, particularly in view of the flanged tube results. It 
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is also suggested that more accurate modelling of the uniaxial 

stress-strain curve is necessary for improved predictions in regions 

of 'nominal' stress. A non-linear kinematic hardening model may, 

therefore, be necessary and the overlay method can be used for 

such a model without the need for detailed program modification. 

23. For high cyclic loads a material ratchetting model is required 

as shown by the comparison of results for the stepped beam shank, 

which also highlights the problems of modelling a load controlled 

cycling situation. Care must be taken to ensure that any inter­

action between steady and cyclic loads is accounted for in the 

definition of the problem to be solved. 
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APPENDIX I 

THE NON-LI1~AR FINITE ELEMENT PROGRAM 

AI.1 Introduction 

Prior to 1979, the document giving details of the non-linear 

finite element creep and plasticity facilities within the Department 

of Mechanical Engineering was a manual written by Dwivedi (58). The 

manual also gives details of programming, j09 control and data input 

for programs run on the University's ICL 1900 series computer in 

operation at that time. The routines necessary for plasticity and 

creep computations were stored in a number of separate files and 

different combinations of these files were used depending on the 

type of analysis, 

i.e. a) mechanical and/cir thermal plasticity only 

b) creep only 

c) plasticity and creep. 

This resulted in unnecessary duplication of routines and the 

author's first action was to develop an 'all-embracing set of 

routines in a single file which combined all the existing facilities, 

some of which were only available with certain types of problem 

(e.g. a restart facility). 

The facilities available in 1979 have been enhanced by 

modifications and the major modifications are described briefly 

in this Appendix . Full details of present program capabilities 

including data input and job control for running programs on the 

now fully operational ICL 2900 series computer (which replaced the 

1900 in 1981-82) are given in a new manual (59 ) , which also includes 

a flow chart for the program. This Appendix i ncludes details of the 

'standard' parameters (e.g. accuracy cri t eria) which have been used in 

t he analyses. 
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Table Ai.i compares the present capabilities with those 

des cri bed by Dwi vedi (58) . 

AI.2 Methods of Solution 

Methods of solution for non-linear finite element analyses vary 

in complexity and are described in many references (e.g. 60, 61, 62). 

Dawson (63) describes the technique used for mechanical and thermal 

plasticity by the routines in this program. In brief, mechanical 

and the~Al loads are applied incrementally up to their required 

values, and elastic-plastic solutions are obtained by the method 

of successive elastic solutions where the elastic stiffness matrix 

is used throughout. (For thermal loading, the final temperature 

distribution is reached incrementally using nodal temperature 

distributions stored in a file; having been obtained from a previous 

transient thermal analysis.) For each increment, solutions are 

obtained using a 'reverse gradient' iteration technique developed 

by Dawson (63). The von Mises yield criterion and Prandtl-Reuss 

flow rules are used to determine the increments of plastic strain 

and an elastic re-solution is used for stresses. Convergence is 

based on the eqUivalent stress at each Gauss point being within a 

specified tolerance using the eqUivalent strain and uniaxial stress­

s train curve. 

A time m~ching procedure is used for creep computations which 

is described by Dwivedi (58). For each time step, the equivalent 

creep strain increment is obtained by assuming a constant stress. 

The von rUses effective stress and Prandtl-Reuss flow rules are used 

to determine the components of incremental creep strain and the 

elastic re-solution process provides the stresses. Initially the 

time step is small in order to limit the change in stress to an 
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acceptable level. If the change in stress violates a specified 

criterion, the time step is halved and the creep strains re­

calculated. If the criterion is met, the total creep strains are 

up-dated, the time step is doubled and the process is repeated 

until the final time is reached. 

AI.) Modifications to the Program 

Modifications fall into 3 categories:-

1. consolidating existing facilities; 

2. specific improvements for detailed component analysis; and 

3. general improvements in the facilities. 

Restart facility 

The restart facility enables the user to divide a large 

computational problem into a number of more manageable units. On 

completing a series of plasticity and/or creep computations, 

information relating to the final conditions of the structure can 

be stored on a file and used to restart the problem, i.e. used as 

the initial conditions for a further series of computations. 

Furthermore, restart information can be stored at any stage 

so that in the event of a job failure (hardware break, lack of 

convergence or maximum time limit) the program can be restarted 

from the last successfully completed computation. 

Two independent loading cases 

This modification is included for the analysis of the stepped 

beam component subject to a constant axial load and cyclic bending 

load although it permits analysis of any component subject to two 

independently varying load cases. A load case is defined as a 

series of nodal loads which remain in the same proportion during a 
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loading or unloading operation. 

More than one period of creep 

The single period of creep facility available prior to 1979 

has been extended to allow computation of periods of creep inter­

spaced with mechanical/thermal plasticity. 

Element dependent properties 

The plastic and creep properties can be varied within the 

elements of a structure which facilitates analysis of composite 

material structures and provides a basis for the 'overlay method' 

(20) to be used. (see Section 5.).2). In addition, the user can 

specify the 'plastic' elements; the remainder will be assumed to be 

elastic during the computation. 

Change in creep convergence criterion 

A change in stress criterion based on the maximum stress in 

the structure is preferred to the previous criterion which compared 

change in stress at a Gauss point with the absolute value of stress 

at that point. Experience has shown that unnecessary computational 

time has been devoted to meeting the previous criterion at a point 

in the structure where stress levels are orders of magnitude below 

the mean stress since 

as 

Graph plotting facility 

The graph plotting facilities, until now only available in 

conjunction with standard finite element calculations ( 64) have 

been extended so that stress and strain distributions (spacial or 

increment/time dependent) resulting from plastic and creep loadings 



- 391 -

can be automatically plotted. 

Obtaining the plots is a two-stage process, the creep and 

plasticity program being modified to allow the necessary information 

to be stored on a file. 

The second stage, a simple FORTRAN program, extracts and 

manipulates the data into the required form for submission to 

the graph plotting routines. 

General improvements to output 

The output has been generally improved in four areasl-

1. omission of unwanted output; 

2. removal of constant values (e.g. Gauss point co-ordinates) 

from the incremental output and replaced by a single 

listing of these parameters; 

3. more detailed output - item 2. has allowed more 'space' 

in the incremental output for other useful data to be 

printed; 

4. clearer headings. 

AI.4 Additional data used in the analyses 

In addition to the finite element mesh and material data described 

in the text, it is necessary to specify values for the parameters which 

control the incremental and time marching procedures. This data is 

given in Table AI.2. For thermal plasticity, the incremental tempera­

ture distributions are described in the relevant sections. For the 

stepped beam, the bending loads were generally applied in 10 equal 

increments although in some cases (i.e. high mean load, high bending 

load and low EpfE) it was necessary to use 30 increments. 
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Program CaEabilities Erior to Existing Program CaEabilities 

1979 (Ref. 58) (Ref. 59) 

1. Mechanical and/or thermal 

plasticity only I Any combination of mechanical 
2. Creep only plasticity, thermal plasticity 

3. Mechanical and/or thermal and creep computations. 

plasticity interspaced with one 

period of creep , 
i 

4. Thermal loading and unloading ! Thermal loading and unloading i 

5. Restart facility available ; 
Restart facility generally 

with plasticity program only available 

(i.e. 1.) 
! 

6. One loading case for 

I 
One or two independent loading 

mechanical plasticity cases 

7. Material hardening assumptions I 
Elastic-Perfectly-plastic ! 

Elastic-Perfectly-plastic I Isotropic Hardening I 

Isotropic Hardening j Kinematic Hardening 

I . 
Kinematic Hardening Non-linear Kinematic Hardening 

I 
I (via overlay method) 

8. Material Creep behaviour 1 Power law, Sinh law I 

! 
power law, Sinh law I Strain and time hardening 

Strain and time hardening I 
9. - Element dependent plastic and 

creep material data 

10. - Graph plotting 

Table ALl 
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Description Variable name (59) Value 

Starting ti me interval 

for time marching SeA 1.0 

creep computation 

Max. number of iterations MAXITN 30 

Convergence accuracy 

for plasticity computation TOLl 0.005 

Iteration Modulus YMOD 2 x Young's Mod. 

Tolerance for creep 

computation TOL 0.05 

Table At.2 Additional data used in the analysis 
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APPENDIX 11 

JUSTIFICATION OF THE FINITE ELEMENT MESHES 

AII.1 Introduction 

In designing finite element meshes it is necessary to balance 

accuracy and cost and this Appendix presents a justification for the 

finite element meshes of the flanged tube, stepped beam and 'hole in 

plate' components. The circular plate and shouldered tube component 

meshes have been inherited from previous projects and their justifi-

cation is described elsewhere (see Chapter 6). Where necessary, 

reference is made to results already given in this document. Some 

results from a previous report (51) are reproduced. 

AII.2 Flanged Tube 

AII.2.1 Shank model 

The acceptability of a four element through thickness shank model 

is confirmed by the small discontinuities in the axial stress distri-

butions for the adopted shank length (g = 40 mm) in Figures AII.1 and 

AII.2 for mechanical and thermal loading respectively. These results are 

reproduced from an earlier document (51). A 2 x 2 Gauss array has 

been used in line with Dawson's (63) recommendations. The outermost 

Gauss points are 0.48 mm from their respective surfaces, compared 

with a 9 mm tube thickness (see Section AII.J.1). 

AII.2.2 Whole component model 

The 50 element mesh given in Figure 4.23 is a modified version 

of an earlier mesh which had been used to determine suitable dimen-

sions for the final component (51). The original mesh is reproduced 

in Figure AII.J. Preliminary finite element computations with this 

mesh indicated a maximum discontinuity i n stress at the shank/fillet 

,j 
1 
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interface of ~ 25%. The mesh was subsequently modified in this 

region (compare Figure 4.23 with Figure AII.3) and the discontinuity 

reduced to ~ 15%, which was considered to be acceptable. 

AII.3 Stepped Beam 

AII.3.1 Shank model 

An investigation was undertaken to determine a suitable finite 

element mesh for the shank. A 10 mm length of shank (25 mm deep by 

10 mm thick) was modelled in several different ways by varying both 

the number of through thickness elements and the number of Gauss 

integration points per element. An axial load and bending moment 

was applied via an equal number of 'rigid' elements, in order to 

maintain a 'plane-sections-remain-plane' criterion (see Section 5.2.1) 

and the resulting elastic-plastic stress distributions for an 

elastic-perfectly-plastic material model are compared with the 

exact solution in Figure AII.4. 

Although the results for a coarse mesh (2 elements and 2 by 2 

Gauss array) are not significantly different from those for the more 

refined meshes, this configuration should be avoided because of the 

relatively large dista~ce from the outer surfaces to the first Gauss 

point. Errors will occur when the plastic zone has not reached the 

outer Gauss point in which case the program will incorrectly predict 

an elastic solution. 

A final choice of 3 elements with a 2 by 2 Gauss integration 

array was based on the following considerations:-

1. the required accuracy of the results; 

2. the proximity of the outer Gauss points to the shank 

surfaces (1.8 mm); 

3. the recommendation of a 2 by 2 Gauss array given by Dawson 
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(63) in his initial development of the elastic-plastic 

program; and 

4. the compatibility between the shank model and the shank 

region of the whole component model and hence a 'reasonable' 

limit on the number of elements in the shank. 

AII.3.2 Whole component model 

The finite element mesh used is shown in Figure 5.30. The 

elastic stress distributions along the shank surface and around the 

fillet were computed for tension and pure bending and the results are 

given in Figures 5.32 and 5.36 respectively. Discontinuities in 

stress of up to 20% are apparent in the fillet region and, although 

large, were considered acceptable based on the following arguments:-

1. Gauss point values predicted by the elastic-plastic-creep 

program -should be of acceptable accuracy; 

2. similar discontinuities were present and had been accepted 

for an axisymmetric tube component of a previous project 

(65); and 

3. good agreement between predicted stress concentration 

factors and those from photoelastic techniques had been 

obtained. i.e. 

Stress Concentration Factor 

Finite Element Photoelastic (55) 

Tension 1. 80 1.66 

Bending 1.46 
i 

1.38 

It is seen from Figures 5.32 and 5.36 that the chosen length 

of shank is sufficient to ensure uniform stress conditions 

in the mid-shank region. 
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AII.4 'Hole-in-plate' 

The elastic stress distribution along the axis of symmetry 

with highest stress gradients (AB) due to axial load is shown in 

Figure 6.2 for the 27 element mesh in Figure 6.1. The 5 elements 

through the section AB result in acceptable levels of discontinuities 

in stress at element boundaries «e%). A 2 x 2 Gauss array, giving 

10 Gauss points across section AB, has been used. The extreme Gauss 

points are within 1 mm of A and B, compared with 25 mm across the 

section AB. 
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Figure AII.2 Axisymmetric component with fluid heating. 
Worst case axial stress distribution in the 
shank (at t = 2 secs) during a 2 second ramp 
change in bore fluid temperature. 
(from reference 51), 
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Stepped beam shank (elastic-perfectly-plastic, P/PL = 0.48, 
f;;j~ly = O. ( 2). Comparison between exact soluti on and fi :1i te 
element predictions of axial stress distribution (from 
reference 51). 
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