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Abstract

The Notch signalling pathway is pivotal in ensuring that the processes of arterial spec-

ification, angiogenic sprouting and haematopoietic stem cell (HSC) specification are

correctly carried out in the dorsal aorta (DA), a primary arterial blood vessel in devel-

oping vertebrate embryos. Using the zebrafish as a model organism, and additional

experimental observations from mouse and cell line models to guide mathematical

modelling, this thesis aims to better understand the mechanisms involved in the es-

tablishment of a healthy vasculature in the growing embryo.

We begin by studying arterial and HSC specification in the zebrafish DA. Mathematical

models are used to analyse the dose response of arterial and HSC genes to an input

Notch signal. The models determine how distinct levels of Notch signalling may be

required to establish arterial and HSC identity. Furthermore, we explore how Delta-

Notch coupling, which generates salt-and-pepper patterns, may drive the average gene

expression levels higher than their homogeneous levels. The models considered here

can qualitatively reproduce experimental observations. Using laboratory experiments,

I was able to isolate DA cells from transgenic zebrafish embryos and generate temporal

gene expression data using qPCR. We show that it is possible to fit ODE models to such

data but more reliable data and a greater number of replicates at each time point is

required to make further progress.

The same VEGF–Delta–Notch signalling pathway is involved in tip cell selection in

angiogenic sprouting. Using an ODE model, we rigourously study the dynamics of a

VEGF–Delta–Notch feedback loop which is capable of amplifying differences betwen

cells to form period-2 spatial patterns of alternating tip and stalk cells. The analysis

predicts that the feeback strengths of Delta ligand and VEGFR-2 production dictate the

onset of patterning in the same way, irrespective of the parameter values used. This

model is extended to incorporate feedback from filopodia, growing in a gradient of

extracellular VEGF, which are capable of facilitating tip cell selection by amplifying the

resulting patterns. Lastly, we develop a PDE model which is able to properly account

for VEGF receptor distributions in the cell membrane and filopodia. Receptors can
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diffuse and be advected due to domain growth, defined by a constitutive law, in this

model. Our analysis and simulations predict that when receptor diffusivity is large, the

ODE model for filopodia growth is an excellent approximation to the PDE model, but

that for smaller diffusivity, the PDE model provides valuable insight into the pattern

forming potential of the system.
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CHAPTER 1

Introduction

As tissues grow beyond a certain size, their demand for nutrients, oxygen and waste

removal cannot be met by diffusion alone. This necessitates the need for a transport

system. For complex organisms with multiple organ systems, communication between

organs and tissues is essential for the transport of hormones, for example, which reg-

ulate physiological behaviour. Cells, such as those required for an immune response

or to heal injury, also need to be transported around the body. In the embryo, a trans-

port system may not initially be necessary but the growing organism, in particular the

adult, will require it due to the limitations of diffusive transport. Thus there comes a

point in development where blood vessels start to form in a process called vasculoge-

nesis. Once the initial vasculature has been established, its maintenance and remod-

elling are crucial for continued growth of the organism. Failure of the vasculature to

remodel properly can lead to complications such as those caused by the drug thalido-

mide, ( where abnormalities in newborn babies were caused by impaired blood vessel

development [1]). Maintenance and remodelling of the vascular system is also cru-

cial for wound healing and plays a role in a number of pathologies including diabetes,

rheumatoid arthritis, cancer and neurodegeneration (dementia).

The growing embryo undergoes embryonic patterning into 3 distinct germ layers, one

of which is the mesoderm. Angioblasts are mesodermally-derived cells and common

progenitors of blood and endothelial cells (ECs) that take part in vasculogenesis, the

de novo formation of blood vessels. During vasculogenesis angioblasts coalesce into a

cord-like structure, and become recruited to the EC lineage where they subsequently

undergo arterial and venous specification followed by lumenisation, a process in which

the vascular cords are hollowed to allow blood to flow through them in due course [2].

Initially, the vessels formed through vasculogenesis are free of smooth muscle cells,

pericytes and other associated cells which are later required for vessel stability and

integrity.
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CHAPTER 1: INTRODUCTION

One of the key ways in which the initial vasculature laid down by vasculogenesis re-

models itself is via angiogenesis, which is defined as the outgrowth of new blood ves-

sels from the pre-existing vasculature. The first step of angiogenesis is tip cell selec-

tion in which particular ECs, named tip cells, are chosen to leave their parent vessel

and form new branches of blood vessels in a process called angiogenic sprouting. The

sprouts are headed by tip cells but remain in contact with the parent vessel via prolif-

erative stalk cells. Thus angiogenesis enables the existing vasculature to expand and

provide tissues with an increased blood supply for the deliver of oxygen and nutrients.

When angiogenesis is not properly regulated, tissues become starved of oxygen (hy-

poxic) and secrete growth factors which initiate angiogenesis in nearbly blood vessels.

Angiogenesis is also implicated in a number of diseases included diabetes, rheumatoid

arthritis and cancer.

Vascular development is also coupled to haematopoiesis, the process by which ma-

ture blood cells form from the arterial blood vessels in a process called endothelial

to haematopoietic transition (EHT) [3]. Haematopoiesis is maintained throughout life

and the cells responsible for replenishing the blood system are haematopoietic stem

cells (HSCs), immature progenitors that can self-renew, i.e. divide and remain in an

undifferentiated, stem-cell state. They are also multipotent and, so, can give rise to

mature cells of all blood lineages including myeloid cells, such as macrophages, and

platelets and lymphoid cells, such as T-cells and B-cells. Together these two proper-

ties allow HSCs to reconstitute the blood system of hosts that have been exposed to

irradiation or chemotherapy. Hence HSCs are the active components in bone marrow

transplants performed in the clinic for patients suffering from cancer or acute radiation

syndrome (radiation poisoning).

In vertebrates HSCs first form during embryogenesis from the haemogenic endothe-

lium of the ventral wall of the dorsal aorta (DA), a major arterial blood vessel of the

developing embryo [4]. During EHT, the ECs of the DA switch off endothelial marker

genes, switch on haematopoietic genes and change their morphology from the long,

flat shape associated with ECs to round cells characteristic of the blood system. The

HSCs cells eventually leave the dorsal aorta and enter the blood circulation where they

temporarily occupy intermediary organs before seeding the bone marrow from which

they maintain the blood system of the adult organism [3, 5].

A shortage of HSCs, our limited ability to expand their numbers ex vivo and a lack of

donors in certain ethnic groups mean that new sources of HSCs are being sought [6].

Such sources include pluripotent, embryonic stem (ES) cells, taken from the inner cell

mass of blastula stage embryos, and also the recently discovered induced pluripotent
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CHAPTER 1: INTRODUCTION

stem cells which are reprogrammed cells derived from adult body cells. Investigating

the molecular programming of HSCs during embryogenesis will increase knowledge

of the signalling pathways by which they are specified and may, thus, facilitate the

reprogramming of such pluripotent cells to HSCs.

1.1 Biology background: Notch signalling

Notch signalling plays a key role in each of the three embryonic processes of arterial

specification; the selection of tip cells in angiogenic sprouting; and the specification of

HSCs. In arterial specification Notch is involved in establishing arterial gene expres-

sion marked by efnb2a. Loss of efnb2a or Notch pathway components in mice results

in embryonic lethality due to angiogenic defects and a failure to intercalate arteries and

veins [7, 8]. During angiogenic sprouting, Notch signalling is required for the correct

specification of tip cells and in its absence severe vascular abnormalities are observed

[9] Finally, Notch signalling is required for the formation of HSCs. Since Notch defi-

cient mice die at, or before, embryonic day 10.5 (E10.5), the time of HSC emergence, a

direct test of their ability to repopulate the adult blood system is precluded. However,

cell based assays using HSC progenitors at or just before the time of death have shown

these cells to have reduced HSC activity [10–12]. Zebrafish embryos with impaired

Notch signalling display similar vascular defects and a loss of HSC gene expression.

The requirement of Notch in the DA of vertebrate embryos to allow correct arterial

specification, angiogenic sprouting and HSC specification, intimately unites these oth-

erwise unrelated processes.

The Notch signalling pathway is an evolutionarily conserved mode of juxtacrine (di-

rect cell-to-cell) signalling in metazoans (multi-cellular organisms). Signals are passed

from cells to adjacent cells in direct contact when Delta or Jagged ligands interact with

Notch receptors located in the cell membranes. In mammals there are 5 canonical DSL

(Delta, Serrate, LAG-2) ligands: Delta-like 1 (Dll1), Delta-like 3 (Dll3), Delta-like 4

(Dll4), Jagged-1 (Jag1), Jagged-2 (Jag2) and four Notch receptors, Notch1 to Notch4

[13]. In canonical Notch signalling this interaction causes the ligand to be internalised

by the signalling cell, taking with it the extracellular portion of the Notch receptor.

Consequently there is a conformational change in the remaining receptor that facili-

tates proteolytic cleavages both outside and inside of the cell by ADAM/TACE and

γ-secretase, respectively. This results in the release of the Notch intra-cellular domain

(NICD), which translocates to the cell nucleus where it recruits the DNA binding pro-

tein CSL, and other co-activators, into a complex which activates Notch target genes.
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In the absence of NICD, CSL forms part of a corepressor complex that actively in-

hibits transcription of Notch target genes. The NICD-CSL activating complex how-

ever regulates Notch target genes, many of which are transcriptional repressors of the

Her/HRT/Hey families which in turn repress genes required for cell differentiation

[14, 15].

In this way Notch signalling is able to control a variety of processes in both the de-

veloping embryo and adult organism, including neuronal cell differentiation [16] and

T-cell specification and differentiation [17, 18]. In this thesis we focus specifically on

in its role during embryogenesis in the DA, specifically in arterial specification; tip cell

specification in angiogenesis; and the specification of HSCs from the ventral wall of the

DA. We use the zebrafish as a model organism to study these processes as the embryos

are initially transparent, facilitating imaging and analysis of the developing vascula-

ture. The embryos develop much faster than chick or mouse embryos and external

development means that they are more easily accessible than mouse embryos and do

not require the pregnant mother to be sacrificed. Lastly, the zebrafish’s fully sequenced

genome and the availability of mutants and genome editing tools makes identifying

the roles of specific genes considerably easier. Although challenging, these advantages

allow us to use the zebrafish embryo to collect quantitative gene expression data to

study the Notch controlled processes of interest.

In the next few sections we review the role played by Notch signalling in arterial spec-

ification, angiogenic sprouting and HSC specification.

HSC formation has been reported in the DA, the umbilical and vitelline arteries but

never in venous vessels [19]. Hence arterial identity may be an important pre-requisite

for HSC specification. Previously, arterial identity was assumed to be determined by

differences in blood flow through the vessels but studies in mouse and zebrafish have

demonstrated that arterial specification is in fact genetically determined, before circu-

lation initiates [20–23]. Notch plays a vital role in the genetic determination of arterial

identity. Targeted deletion of many Notch components including CSL, the Notch 1

receptor, the Mindbomb protein or the ligand Dll4, leads to a loss of arterial specifi-

cation identified by the expression of the gene efnb2a, which has been shown to be

a direct target of Notch signalling in the human microvascular endothelial cell line,

HMEC1 [24]. Efnb2a expression is lost in mouse and zebrafish embryos with im-

paired Notch signalling and ectopic expression of venous markers is observed in the

DA [20, 21, 25, 26]. In venous ECs the venous transcription factor COUP-TF11 sup-

presses Notch signalling. In its absence, arterial genes are upregulated in venous ECs

[27].
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Figure 1.1: Figure from the review by Phng and Gerhardt, 2009 [13], showing the

ligand–receptor interactions of Notch signalling and the downstream in-

tracellular signal transduction pathway. DSL ligands on a signalling cell

interact with Notch receptors on a signal receiving cell. This results in a

conformational change in the receptor which allows cleavage of the Notch

extracellular domain (NECD) by the enzyme ADAM. The extracellular do-

main is internalised into the signalling cell by the Ubiquitin ligase, Mind-

bomb. Subsequently, there is a second cleavage of the intracellular do-

main by the enzyme γ-secretase, which cleaves the Notch intracellular

domain (NICD) from the membrane, allowing it to translocate to the nu-

cleus. In the absence of NICD, CSL forms part of a corepressor complex

which inhibits Notch target genes such as the Her/HRT/Hey families of

transcription repressors. NICD triggers the transcriptional activation of

Notch target genes by displacing the corepressor complex with an acti-

vating one. Key: CoR=corepressor complex; NICD=Notch intracellular

domain; NECD=Notch extracellular domain; Ub=Ubiquitin ligase (Mind-

bomb).
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In zebrafish, the activation of Notch receptors and ligands in the DA is induced by a

cascade of signalling pathways as angioblasts (endothelial progenitors) migrate from

the posterior lateral mesoderm (PLM) to the midline of the embryo to form the DA

and posterior cardinal vein (PCV) (see Figure 1.2). Sonic Hedgehog signalling by the

notochord induces expression of VEGFA by the adjacent somites (paired segments of

mesoderm and precursors for bone and muscle in the adult organism). This activates

Vascular endothelial growth factor (VEGF) receptors (VEGFR-2/flk1) on the migrating

DA angioblasts, in turn, inducing them to express Notch ligands and receptors. As

a result of Notch signalling between the angioblasts, efnb2a expression is induced at

18hpf [21] specifying them as arterial.

One hypothesis about the formation of the DA is that the first cells to arrive at the

midline form the dorsal aorta angioblast chord, a precursor vessel to the DA. These

cells experience the greatest VEGFA signal and thus initiate Notch signalling, becom-

ing specified as arterial ECs whereas cells arriving subsequently form the PCV [22].

However, lineage tracing experiments by Zhong et al suggest that the identity of these

cells is determined while they are still in the PLM and gridlock/hey2 has a role, down-

stream of Notch, in recruiting angioblasts to an arterial fate, [20]. However hey2 has

been shown to be upstream of Notch and downstream of VEGF in a study by Rowlin-

son and Gering [28]. A recent study by Herbert and colleagues claims that formation

of the PCV occurs by selective sprouting of progenitor cells from a common precursor

vessel [29]. In summary the extent to which each of these mechanisms may be con-

tributing to vasculogenesis remains unclear.

Zebrafish embryos express two ligands for Notch, Dll4 and DeltaC, and three receptors

Notch 1a, Notch1b and Notch3 whose expression persists after initial arterial gene in-

duction at 18hpf, through to the time when the HSC markers runx1 and gfi1.1 are first

detected in the ventral wall of the DA [14, 25, 30].

Runx1 is the earliest detectable marker of HSC specification and can be visualised in the

ventral wall of the DA at 24hpf by in-situ hybridisation [25, 30, 33]. A double fluores-

cent in-situ hybridisation (Gering lab unpublished data) shows that runx1 is expressed

in a subset of arterial ECs, identifiable by the co-localised expression of runx1 with

efnb2a and flk1 (see Figure 1.4). Other markers of HSC specification in the zebrafish

embryo include gfi1.1 and cmyb which are detectable at 24hpf and 36hpf respectively in

the DA [25, 28, 30] (and Gering lab unpublished data). The expression of runx1, gfi1.1

and cmyb is either lost, for example in the mindbomb mutant, or reduced, such as in

embryos treated with the γ-secretase inhibitor, DAPT, demonstrating a Notch require-

ment in HSC specification [25, 28, 30]. In addition, ubiquitous overactivation of Notch
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Figure 1.2: Schematic of the zebrafish embryo at 18 and 25hpf. The left panel shows

lateral views (images modified from Kimmel et al [31]) and the right panel

shows transverse sections taken at a position just above the yolk-sac ex-

tension (YSE) (images modified from [25, 32]). At 14-16hpf, angioblasts

migrate from the posterior lateral mesoderm (PLM) to the midline (not

shown). (a) and (b) By 17-18 hpf, differentiation into arterial (blue) and ve-

nous (sky blue) cells has already begun. The first cells to reach the midline

experience the greatest VEGF signal, express Notch ligands and receptors

and form cell-cell junctions to coalesce and form the dorsal aorta angioblast

chord. Cells arriving subsequently are specified as venous ECs and prim-

itive red blood cells (red). (c) By 25hpf, the primary axial vessels, the dor-

sal aorta (depicted in green) and posterior cardinal vein (depicted in red)

are formed. (d) shows a transverse section of the embryo with the dorsal

aorta in red and the posterior cardinal vein in blue. Blood circulation be-

gins at this point. Key: DAAC=dorsal aorta angioblast chord; DA=dorsal

aorta; ISV=intersomitic vessel; PCV=posterior cardinal vein; NT=neural

tube; NC=notochord; S=somite; PLM=posterior lateral mesoderm.
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leads to ectopic expression of both runx1 and efnb2a in the PCV [28, 30] suggesting

that high levels of Notch signalling promote haemogenic differentiation of ECs. Fur-

thermore, Gering and Patient showed that Hedgehog is required at the same time for

both arterial and HSC specification. This would suggest that Notch may be required

twice, at low levels for efnb2a expression at 18hpf and at high levels for runx1 expres-

sion at 24hpf. In chapter 3, we use mathematical modelling to explore this hypothesis,

and present the supporting experimental evidence as motivation (see Figure 2.4).

CSL binding sites on the runx1 promoter, which would indicate a direct activation of

runx1 by Notch signalling, have not yet been identifed. However an (intronic) en-

hancer integrating inputs from Gata, Ets and Scl transcription factors has been located

in the runx1 gene in mouse embryos [34]. Since gata2 has been identified as a direct tar-

get of Notch signalling, and an enhancer inside the runx1 gene contains gata2 binding

sites, it is likely that gata2 mediates Notch’s effect on runx1 [35, 36]. The role of gata2

in HSC specification is further supported by a recent study in mouse embyos in which

Guiu and co-workers demonstrate that Hes1, which is also a Notch target, represses

gata2 so that HSC precursors can form properly. Loss of repression by Hes1 causes an

increase in gata2, runx1 and cmyb expression and a loss of HSC activity in the HSC

precursors [36].

The Notch requirements for arterial and HSC specification mentioned thus far have

been cell autonomous. A cell autonomous requirement demands the gene product be

present in that cell for the process to occur. In our case this means that the DA ECs

must receive a Notch signal to obtain the arterial and HSC phenotypes. A non-cell

autonomous requirement is one for which the gene product is required in a different

cell for the process to occur.

Such a non-cell autonomous Notch requirement has been identified by Clements et

al. They demonstrated that a non-canonical wnt16 signal is required for somitic1 ex-

pression of the Notch ligands DeltaC and DeltaD. Their combined activity is required

non-cell autonomously for the expression of the HSC marker genes runx1 and cmyb

whilst being dispensable for arterial specification and efnb2a expression [37].

In a recent paper, the same authors implicate the role of jam1a-jam2a interactions be-

tween migrating cells of the PLM and cells of the ventral somites in HSC specification.

Runx1 expression was lost in jam1a morphants but could be rescued by injection of

DeltaC and DeltaD mRNA. It is suggested that the role of jam1a-jam2a signalling is to

1Somites are dorsally located, paired segments of mesoderm which run along the longitudinally

aligned notochord of vertebrate embryos and develop into muscle and bone (vertebrae) in the adult ani-

mal
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Figure 1.3: Double fluorescent in-situ hybridisation showing the localisation of runx1

mRNA in flk1 (a,b,c) and efnb2a (d,e,f) mRNA positive cells in the ventral

wall of the DA. Single colour fluorescence shown in (a,b,d,e). Merges in

(c,f) suggest that runx1 (red) is expressed in a subset of flk1 positive (green)

and efnb2a positive (green) ECs since the two fluorescent markers are not

localised together in every EC. (Figure is unpublished data of the Gering

lab).

9



CHAPTER 1: INTRODUCTION

ensure effective Notch signal transduction in HSC precursors before the DA has formed

[38].

1.1.1 Notch signalling in sprouting angiogenesis and tip-cell selection

Angiogenesis is the process by which new blood vessels form from pre-existing ones

in response to external stimuli such as vascular endothelial growth factor (VEGF). It is

essential that angiogenesis is carried out correctly so that a functional and perfused vas-

culature can be established to deliver oxygen and nutrients to tissues and remove waste

products from them. Angiogenesis occurs in a number of physiological situations in-

cluding embryonic development, wound-healing [39], in corpus luteum development

and in bone morphogenesis. Aberrant regulation of angiogenesis can lead to lethality

and diseased states in both the adult organism and during development. Examples

of such pathologies in which angiogenesis occurs includes diabetes [40], rheumatoid

arthritis [41], intraocular neovascular disorders [42] and cancer [43].

In both physiological and pathological cases, angiogenesis involves the same steps.

ECs receive an angiogenic stimulus and establish a pattern of tip and stalk cells. The

tip cells degrade a basement membrane and are then able to leave the parent vessel. Tip

cells head the angiogenic sprout and migrate up gradients of growth factor by chemo-

taxis, followed by proliferative stalk cells which maintain contact with the parent ves-

sel. The tip cells dynamically extend and retract filopodia which explore the surround-

ing environment and guide the tip cell towards the growth factor source. Eventually

the tip-cell most likely anastomoses (reconnects) with other tip cells to form a circula-

tory loop. Lastly, mural cells, which are precursors for pericytes and smooth muscle

cells, also play a role in guiding and stabilising vessel sprouts during angiogenesis [44].

Once the vasculature has matured, pericytes and smooth muscle cells continue to af-

fect angiogenesis by influencing EC proliferation and stabilising the permeability of

blood vessels. They also play roles in neovascularisation, the formation of microvas-

cular networks in tissues, tumours and during wound-healing. The roles of pericytes

and smooth muscle cells are reviewed in more detail elsewhere [45, 46]. In this thesis,

we only concern ourselves with the first step of the angiogenic sprouting process, tip

cell selection.

Notch signalling plays a pivotal role in sprouting angiogenesis and tip-cell selection

as revealed by numerous studies using zebrafish intersomitic vessel (ISV) formation,

mouse retina vascularisation, tumours and cell culture assays. Cross-talk with the

VEGF signalling pathway has also been shown to be critically important in angiogenic

sprouting responses. Hence, in this section, we review some of the consequences for
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angiogenic tip cell selection of perturbing the Notch and VEGF pathways.

Tip cells are abundant in Dll4 expression and low in activated Notch expression whereas

stalk cells characteristically have low Delta and high Notch [9] expression. A blockade

of Notch signalling, for example in Dll4+/− heterozygous mice, which only have one

functional copy of a gene rather than the usual two, or in mice treated with a γ-secretase

inhibitor, results in hypersprouting and hyperbranching defects with excessive fusion

of the capillary network due to excessive tip cell formation. These physiological effects

are accompanied by ectopic expression of genes usually expressed in tip cells, such as

flt4, flk1, and pdgfb and widespread filopodia production [9, 47, 48]. Similar defects are

seen in zebrafish Dll4 mutants and morphants. Furthermore, the hyperbranching de-

fect is also observed in zebrafish embryos in which the expression of Notch1b and CSL

have been knocked down [49, 50]. The requirement for Notch signalling was shown

to be cell autonomous as cells with deficient CSL, that were transplanted into blastula

stage wild type embryos and subsequently contributed to the endothelium, preferen-

tially occupied the tip cell position compared to cells with activated Notch which did

not. Similar observations are evident from studies in mice [9, 50]. This suggests that a

cell’s ability to send and receive a Notch signal plays a role in determining its fate as a

tip or stalk cell and that tip and stalk cell fates are not stable, but may switch depending

on the level of Notch activation received. Indeed, work by Jakobsson and colleagues

suggests that ECs stimulated by VEGFA compete for the tip cell position in a shuffling

or ‘tug-of-war’ manner [51]. Studies using mouse tumour models also support a role

for Notch in supressing the number of tip cells [52, 53].

How Notch limits the number of tip cells is less well understood although mounting

evidence suggests that modulation of the VEGF pathway is involved. Notch appears to

achieve EC quiescence by reducing the sensitivity of surrounding cells to the extracel-

lular VEGF signal both in the DA and in stalk cells. By downregulating VEGF receptor

levels, Delta–Notch signalling seems to modulate the response of surrounding ECs to

extracellular VEGF. This prevents certain cells from adopting tip cell characteristics,

ensures that a stable parent vessel remains behind and that contact is maintained be-

tween it and the stalk cells of the sprout. Each of the zebrafish VEGF receptors has been

implicated in sprouting angiogenesis [13, 51].

There are 4 VEGF receptors in zebrafish: Flt1 (VEGFR-1); Flk1 and kdr (two alleles

of VEGFR-2), which are functionally similar and bind to the ligand VEGFA; and Flt4

(VEGFR-3) which binds to the ligand VEGFC. flt4 is expressed in angioblasts from

the 12 somite stage [54] but is downregulated in the DA from 24hpf in cells receiv-

ing a Notch signal, thereby decreasing the ability of the cells to respond to extracellular
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VEGFC [50, 55, 56].

Flk1 is required for normal angiogenesis: the plcg1 mutant, which has a mutation in

a gene encoding a protein in the intracellular signalling transduction pathway acting

downstream of flk1, fails to develop intersomitic vessels (ISVs) [57]. This phenotype

(or observed effect) is copied when both alleles of VEGFR-2, flk1 and kdr, are interfered

with. The flk1 mutant, y17, does not display the same phenotype as the plcg1 mutant as

it still exhibits some ISV sprouting. This is due to signalling via kdr since morpholino

knockdown2 of kdr in flk1 mutant embryos reduces signalling through both VEGFR-2

alleles to phenocopy the plcg1 mutant, resulting in a failure to develop ISVs [55, 57].

Flt1, the decoy receptor, scavenges VEGFA ligand and hence reduces signalling through

flk1. Consequently, loss of flt1 results in ectopic angiogenic sprouting from the DA due

to increased signalling via flk1. A recent study has shown that Semaphorin-PlexinD1

signalling induces soluble flt1 (sflt1) expression in DA angioblasts and thereby blocks

their angiogenic potential everywhere except at somite boundaries. Here the level of

PlexinD1 activation, and hence the level of sflt1, is low, promoting angiogenesis via

VEGF–VEGFR-2 signalling [58]. Krueger et al, however, claim that the loss of flt1 re-

sults in a downregulation of Notch receptor expression and hence a loss of Notch sig-

nalling in flt1 morphants (embryos injected with a morpholino) suggesting that Notch

may be upregulated by flt1 [59]. However this reduction may be caused by an increease

in VEGFA–VEGFR-2 activity . Others have shown that Notch promotes flt1 expression

[60, 61] raising the possibility of a positive feedback loop in the network.

The complexity of the cross-talk between the Notch and VEGF signalling pathways is

highlighted by the fact that VEGF induces Dll4 expression via flk1 in the mouse retina

[47, 62] and EC cultures [63]. This forms part of a negative feedback loop in which,

• VEGF binds to VEGFR-2 which leads to activation of Dll4,

• Dll4 binds to Notch receptors in adjacent cells, and bound Notch receptors inhibit

VEGFR-2 production in those cells.

This negative feedback loop constitutes a mechanism termed lateral inhibition and

characteristically forms salt-and-pepper patterns of tip and stalk cells which respec-

tively have high and low levels of Dll4. Analysis of this negative feedback loop forms

a major component of this thesis.

In the first half of this chapter we have reviewed the experimental work done by biol-

ogists studying the processes of arterial specification, angiogenic sprouting and HSC

2which interferes with mRNA splicing or translation
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specification. These processes are all intimately connected by Notch signalling in the

zebrafish DA and are summarised in Figure 1.4 (taken from the review by Gering and

Patient [14]).

Figure 1.4: Figure taken from the review by Gering and Patient, 2010 [14], showing the

role of Notch in (a) arterial specification of the DA; (b) tip cell specification

in sprouting angiogenesis; (c) HSC specification in the ventral wall of the

DA.

These insights will be essential for the formulation of mathematical models to study

arterial specification, tip cell selection and HSC specification. Thus, in the next half

of this chapter, we review the work done by mathematicians in studying the various

aspects of Notch signalling such as ligand-receptor interactions, pattern formation in

cells and the types of models use to study gene regulatory networks. This will give us

a insight into where this thesis fits in amongst the work done by others.

1.2 Mathematical modelling of biological systems

Mathematical modelling is widely used to help scientists understand the mechanisms

behind their experimental results. Beginning with a set of assumptions, or hypotheses

about a particular biological process, mathematical models are used as invaluable tools

to verify the consistency of these theories. They can be particularly useful in providing
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insight into the mechanisms and dynamics underlying a system where experiments are

either impossible, time-consuming or expensive to conduct. Modelling is an iterative

process involving refinement of both the initial biological hypotheses and reformula-

tion of the mathematical model. Modelling can also be useful for experimental design,

for instance, in deciding which biological measurements to make and when to make

them [64].

An example of where mathematical modelling has been successful in guiding exper-

imental work is in the study by von Dassow and colleagues, who initially tried and

failed to find a parameter set which could reproduce the characteristic periodic spa-

tial pattern of segement polarity genes in the early Drosophila embryo. Adding two

biologically feasible interactions to the genes in their original network allowed them

to reproduce the observed expression pattern for a large number of parameter sets.

They concluded that the network topology and interactions between genes were more

important than the specific details of the interactions, such as the values of reaction

rates. The insight gained herein was used to highlight the most valuable experiments

to conduct [65, 66].

In this section some of the key published mathematical models of juxtacrine signalling,

which include Notch signalling are reviewed, beginning with Collier et al’s model of

lateral inhibition [67]. This is then followed by reviews of more general models of

juxtacrine cell signalling which can give rise to patterns of larger wavelengths in the

contexts of TGF-α – EGF-R signalling and Delta-Notch signalling. Lastly, models of

Notch signalling in other non-juxtacrine contexts are briefly discussed.

1.2.1 Models of juxtacrine cell signalling

Collier et al developed the first cell-based, ordinary differential equation (ODE), model

of Notch signalling [67], to draw general conclusions about the pattern forming poten-

tial of Delta-Notch feedback loops. Their model used two variables per cell, p, one for

each of Delta (dp) and Notch (np) activity:

dnp

dt
= f (d̄p)− np (1.2.1)

dd̄p

dt
= ν

(
g(np)− dp

)
(1.2.2)

where ν is the ratio of the decay rates for Delta and Notch activities. Production of

Notch activity is an increasing function, f (.), of Delta activity in neighbouring cells, d̄p,

and Delta production is a decreasing function, g(.), of Notch activity in the same cell.

The authors showed that this feedback loop could amplify small scale differences in
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Delta and Notch expression between neighbouring cells. This mechanism, involving

cells with high Delta activity inhibiting their neighbours from delivering inhibition in

turn, was termed lateral inhibition and was able to generate spatial patterns with a

wavelength of two cells, provided that the feedback strength was sufficiently strong.

The feedback strength is controlled using the parameters in Hill functions, which we

cover later in this section. Their model was unable to generate longer wavelength

patterns.

Owen and Sherratt (1998) explicitly incorporated ligand-receptor binding kinetics into

a model of juxtacrine cell signalling. Their model consisited of three ODEs per cell, j:

ligand:
daj

dt
=

binding︷ ︸︸ ︷
−kaaj〈 f j〉+

unbinding︷ ︸︸ ︷
kd〈bj〉 −

decay︷︸︸︷
daaj +

production︷ ︸︸ ︷
Pa(bj) , (1.2.3a)

free receptors:
d f j

dt
= −ka〈aj〉 f j + kdbj − d f f j + Pf (bj) , (1.2.3b)

bound receptors:
dbj

dt
= +ka〈aj〉 f j − kdbj −

internalisation︷︸︸︷
kibj , (1.2.3c)

where ligand and receptor respresented TGF-α and EGF-R levels. Positive feedback

from bound receptors upregulated the production of both ligand and free receptor (Pa

and Pf terms), making this model quite different to the Collier model which used both

postive ( f ) and negative feedback (g) (see equations (1.2.1) and (1.2.2)). The key focus

of this paper was to determine the range and extent to which a juxtacrine signal decays

over a line of cells. The authors found that the decay rate for a wound-induced signal

decreased with as feedback strength increased. For certain parameter choices this de-

cay rate is not bounded below. The propagation of patterns with wavelength ≥ 2 is

also demonstrated [68].

Owen et al. (2000) investigated the lateral induction mechanism from their previous

model in which both receptor and ligand production are upregulated by bound recep-

tors. The authors found that lateral induction can indeed generate spatial patterns with

wavelengths longer than 2 cells. Fixing the receptor feedback strength and increasing

the ligand induction strength generates longer wavelength patterns. In conclusion, the

longest wavelength patterns were generated by the strongest ligand induction and the

weakest receptor induction. The relative change in both the amplitude and wavelength

of the pattern were robust to variations in the parameters of up to ±20% [69].

Wearing et al. (2000) further explored Owen and Sherratt’s 1998 model, paying particu-

lar attention to how the range of unstable wavenumbers varied with model parameters

as well as estimating the fastest growing patterning mode. Using linear analysis con-

ditions for generating patterns were found in terms of the strengths of the feedback

15



CHAPTER 1: INTRODUCTION

functions for production of ligand and receptor. Linear analysis predicted that certain

regions of parameter space could give rise to multi-mode patterns which occur when

multiple wavenumbers become unstable but numerical simulations show little regular

pattern [70].

Webb and Owen (2004) extended these previous models further by investigating the

effect of lateral inhibition and induction of both ligand and free receptor on different

cellular geometries (strings, squares and hexagons). The authors use linear analysis as

done previously and find that unlike the Collier model, their model gives rise to spatial

patterns with wavelengths greater than two cells for the case of lateral inhibition of lig-

and and receptor induction. Conversely ligand induction and receptor inhibition never

generate patterns. Spatiotemporal oscillations are also predicted and seen in numerical

simulations. Linear analysis predicts the onset of patterning well but fails to predict the

observed wavelengths implying that the model’s non-linearities are important. Lastly,

under the assumption of slow binding kinetics and constant receptor expression a for-

mal reduction can be made to the Collier model. When this isn’t the case, a reduction

cannot be made and the role of the cellular geometry in crucial [71].

Webb and Owen further extend previous models by including diffusive transport of

ligands and receptors in and between individual membrane segments to determine the

role of inhomogeneous distributions of ligands and receptors in juxtacrine signalling.

The authors find that ligand transport is essential for generating long range patterns

and without it the system cannot pattern in the case of lateral induction. A reduction to

Owen and Sherratt’s original model can be made by assuming diffusion of all species

is large, however, this may not be a realistic assumption for bound ligand-receptor

complexes as both species would be anchored in the cell membrane [72].

A common feature of the juxtacrine signalling models considered so far is that they

rely on co-operativity to pattern. During the sequential binding of many ligands to a

receptor, positive co-operativity occurs when the affinity of the ligand for the receptor

increases with each bound ligand. This generates a sigmoid switch-like response for

the receptor occupancy as a function of the ligand concentration: when there are small

numbers of ligands, fractional receptor occupancy is also small but as the ligand con-

centration increases, receptors quickly become occupied. The fraction of occupied and

free receptors are given by the Hill functions:

H1(x) =
xn

an + xn and H2(y) =
an

an + yn . (1.2.4)

The parameters associated with the Hill functions in equations (1.2.4), a and n, provide

a measure of the ligand affinity for the receptor. Hill functions can be used to measure
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the number of ligand molecules, n, required to bind the receptor to produce a functional

effect. However this estimate only holds under the assumption of extremely positive

co-operativity [73].

Both the Collier model [67] and the model of Owen and Sherratt [71], use co-operativity,

characterised by Hill functions of the type given in equation (1.2.4) to model activating

and inhibiting types of feedback. The functional form of H1(.) and H2(.) in equation

(1.2.4) correspond to f (.) and g(.) in equations (1.2.1) and (1.2.2) of the Collier model

and H1(.) corresponds to the functions Pa(.) and Pb(.) in equations (1.2.3a) and (1.2.3b)

of the Owen and Sherratt model. Linear analysis of the Collier and Owen models

shows that the feedback strengths, which are proportional to the Hill coefficient (or

co-operativity) determine the onset of patterning.

Recent work by Sprinzak and colleagues has shown that another mechanism, known as

cis-inhibition, is capable of generating the salt-and-pepper patterns of lateral inhibition

in the absence of co-operativity.

Cis-inhibition is the mechanism by which Delta and Notch on the same cell can bind

and mutually inactivate each other. This competes with binding of Notch and Delta

in trans (between adjacent cells). Sprinzak et al. show that in cells with more Notch

than Delta, Delta becomes inactivated. Consequently, these cells, termed ‘receivers’,

are only able to receive Notch signals but not send them. Conversely, cells with more

Delta are unable to receive Notch signals and become known as ‘senders’. This effect

results in a switch-like behaviour which can explain the sharp boundaries formed in

Drosophila wing vein formation occurring along a gradient of Delta expression [74].

In a more recent paper, Sprinzak et al added cis-inhibition to a model of lateral inhi-

bition (LI) and found that, compared to the model with LI alone, mutual inactivation

of Delta and Notch decreases the time taken to reach the patterned state by increas-

ing protein turnover when Delta and Notch are on the same cell. This decreases the

response time of the system. The equation for Delta production in the LI model with

cis-inhibition takes the following form:

dDi

dt
=

lateral inhibition︷ ︸︸ ︷
βD

1
1 + Rm

i
−

decay︷︸︸︷
γDi −

trans-binding︷ ︸︸ ︷
−Di〈Nj〉i

kt
−

cis-inhibition︷ ︸︸ ︷
NiDi

kc
, (1.2.5)

where Di and Ni are the concentrations of Delta and Notch on cell i, and kt and kc

are binding interaction strengths. Compared to the LI model, the LI model with cis-

inhibition was able to exhibit patterning in the absence of co-operativity because the

mutual inactivation terms: −Di Ni
kc

, provide the non-linearity required for the amplifica-

tion of small differences between cells without the need for co-operativity. By mutually
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inactivating Delta, Notch inactivation is also reduced, effectively upregulating Notch

and increasing the intercellular feedback [75].

1.2.2 Models of sprouting angiogenesis and tip cell selection

Continuum models use PDEs to describe the large scale network behaviour in terms of

EC densities. This was first done by Balding and McElwain in one dimensional simula-

tions using PDEs to describe tip and sprout cell densities to chemotactic stimuli. Their

solutions exhibit a wave-like behaviour of tip cells migrating towards the signalling

source [76]. This model is extended by Byrne and Chaplain to include random and

chemotactic fluxes to study angiogenesis in tumour neovascularisation [77]. The ef-

fect of fibronectin, an extracellular matrix protein (ECM), which induces a haptotactic

flux, causing cells to migrate up gradients of fibronectin, was modelled by Orme and

Chaplain in two dimensions [78]. Other models which further explore aspects of an-

giogenesis after tip cell selection such as the role of the ECM, matrix metalloproteases,

growth factors, integrins and pericytes are reviewed in [79, 80]

Bentley and colleagues developed an agent-based model for the selection of endothe-

lial tip cells in angiogenic sprouting. The model integrates the dynamics of the Notch

and VEGF-signalling pathways to explore the effects that VEGF gradient, lateral inhi-

bition and filopodia extension have on EC patterning and behaviour. The authors find

that particular VEGF environments allow the cells to stabilise into a salt-and-pepper

pattern of tip and stalk cells much faster. Low levels of VEGF generate little or no re-

sponse and higher levels result in synchronised oscillations between the tip and stalk

cell fates. Their model also predicts that patterns stabilise much faster in VEGF gra-

dients as opposed to uniform environments and it is suggested that filopodia act as

lateral inhibition amplifiers [81].

In a subsequent paper Bentley et al incorporated migration and fusion of tip cells into

their existing model but not proliferation. The authors found that fusing tip cells in-

hibit each other causing neighbouring stalk cells to flip fate and also that if the average

cell-cell junction size is inversely proportional to VEGF, then normal tip cell slection is

possible regardless of the VEGF level [82].

Merks and Glazier used a cellular potts model coupled to a PDE representing the dis-

tribution of VEGF secreted by a population of endothelial cells to model vasculogen-

esis and angiogenesis. The cells both extend filopodia and migrate in the direction of

chemoattractive gradient. The authors find two main mechanisms capable of driving

vasculogenesis, cell shape changes and contact inhibition of motility, the latter of which
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can also drive angiogenic sprouting. In the presence of VE-Cadherin binding at cell-cell

junctions (required for adhesion), extracellular VEGF-A inhibits EC motility, prolifer-

ation and filopodia extension. This results in the supression of chemotaxis at cell-cell

junctions, an inbalance of chemotactic forces and directed cell migration culminating

in angiogenic sprouting from initial blobs of cells [83].

Levine and colleagues devised a model of sprouting angiogenesis by coupling the the-

ory of reinforced random walks, modelling cell migration, to Michaelis-Menten kinet-

ics which model VEGF receptors as catalysts for transforming extracellular VEGF into a

protease enzyme. The enzyme moves to the exterior of the cell membrane, and acts as a

catalyst for fibronectin degradation, which consequently allows cell migration through

the ECM [84, 85]. The authors propose inhibiting angiogenesis by inhibiting the growth

factor, its receptor or the protease.

1.2.3 Models of Notch signalling in other contexts

Mathematical modelling of Notch signalling has been implemented in a number of

contexts including filopodia signalling, boundary formation and oscillations. Although

there are many examples one can choose from to demonstrate the diverse range of

models in the literature, a select few are briefly reviewed here.

Cohen et al. modelled the pattern of bristle precursor cells on the Drosophila notum

in which Delta-Notch signalling refines an initially disorganised pattern of bristle pre-

cursors into a well ordered one with a wavelength of approximately 4.6 cell diameters.

The authors showed that the lateral inhibition mechanism of the Collier model, which

exhibits period-2 patterns, is unable replicate wild-type precursor spacing. However

the inclusion of filopodia into their model, which transmit Delta-Notch signals, allows

communication between cells that are many cell diameters away and thus replicates

the correct spacing of bristle precursors [86].

Momiji and Monk have incorporated delays into a simplified model of Delta-Notch

signalling in the context of the neurogenic network, which determines the selection

of neural cells from initially undifferentiated cells, previously studied by Meir et al

[87]. Their DDE model extends the work of Collier et al. and investigates local and

intercellular feedback loops in a coupled two-cell system. By sequentially reducing

their full model they attribute its features, such as in- and out-of-phase oscillations

and amplitude death (a zero amplitude solution), to the roles played by the intracel-

lular and intercellular time delays in the simpler network motifs. In conclusion they

attribute the behaviours exhibited by their full network to the local intracellular feed-
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back loops[88] hence demonstrating that delays provide a mechanism for oscillatory

behaviour in models of Notch signalling.

Ozbudak and Lewis investigated the role played by Notch signalling in the formation

of somites in zebrafish embryos, which later give rise to structures such as vertebrae.

The cells in the posterior presomitic mesoderm (PSM) oscillate in her1/7 gene expres-

sion and, as result of growth and proliferation, pass into the anterior PSM where they

are marked according to their clock phase and become somites upon leaving the ante-

rior PSM. In this study, the authors block and overactivate the Notch pathway using

DAPT and an inducible double transgengic zebrafish line, respectively, to show that

only role of Notch signalling in the somites is to keep oscillations synchronised in the

PSM. Following perturbation of Notch sigalling, approximately 12 somites form nor-

mally before defective somites are deposited. This was replicated using the DDE model

herein with oscillations drifting out of synchronisation in a similar time [89].

1.2.4 Overview of models for studying gene regulatory networks

In this section an overview of the types of models available for analysing the behaviour

of GRNs is given as reviewed in [90], including a description of ODE models that we

use to model HSC specification in the next chapter.

Logic-based models are the simplest type of framework, focussing on the network

topology rather than changes in gene expression levels. Boolean networks are the most

common type of logic-based models employed in which genes in the network, xi, are

represented by nodes which can be in either of two states, ‘on’ (xi = 1) or ‘off’ (xi = 0).

Time is modelled using a series of discrete steps (t1, t2, ..., tn) at which the state of each

gene is updated based on a set of rules which manifests itself as a Boolean function

fi(x), such that,

xi(t + 1) = fi(x(t)) . (1.2.6)

Boolean models have the advantage of being computationally inexpensive to simulate

and require only qualitative information about the network structure for a model to be

formulated. Although such models can be informative about network stability, they

lack resolution in time and state, and thus may not alway account for the way in which

gene expression levels change continuously in time.

Since gene expression and its products are continuous rather than binary, with down-

stream effects occuring at different threshold levels of expression, ODE models are a

good, alternative way of modelling GRNs. The state of an ODE model is described us-

ing continuous variables, xi, representing gene expression levels. Transitions between
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states are defined in terms of non-linear update functions, fi, which give a coupled

system of non-linear ODEs of the form

ẋ = f(x) . (1.2.7)

Since Boolean models lack continuous parameters, an advantage of using ODE models,

is that bifurcation theory, in particular, can be used to determine parameter values at

which the system changes its qualitative behaviour [91]. Analysis of ODE models can

give insight into how switches, oscillators and other complex behaviours are generated

from network level features such as positive and negative feedback loops. In compari-

son to Boolean models, a disadvantage of ODE models is that they tend to have a large

number of kinetic parameters, most of which are usually unknown and difficult to

determine experimentally. In such cases, ODE models are restricted to qualitative anal-

ysis or computational methods for determining the unknown parameter values using

fitting and learning algorithms, for example. Work by von Dassow and colleagues used

this approach to infer parameter values in the segment polarity network in Drosophila.

Later, the authors would go on to find that the model’s dynamic behaviour was robust

to variations in parameter values [65]. Meir and colleagues came to similar conclusions

regarding the neurogenic network involving Delta-Notch signalling in Drosohila [87].

ODE models tend to make simplifying assumptions about the system under consider-

ation, for example, assuming linearity between transcription factor concentrations and

transcription rates, when in reality, the regulation is complex. This includes the pro-

cesses of chemical and structural (epigenetic) modification of DNA, post-transcriptional

modifications, transport and degradation of mRNA, translation and post-translational

modifications. Including these assumptions in the non-linear function, f , allows us to

model and subsequently analyse the effects of such processes.

The processes above may take some time to complete, for example, in the event that it

takes time, T, to transcribe a molecule of mRNA, the concentration of mRNA about to

undergo translation at a ribosome at time, t, is likely to be a reflection of the transcrip-

tion factor concentrations at the promoter at time, t− T, rather than the concentration

at the promoter at time, t. In the event that such delay times are known, GRNs can be

studied using delay differential equations (DDEs). The disadvantage is that the inher-

ent delays in these processes may affect the system dynamics, for instance, transform-

ing steady states into oscillations. DDEs also require the specification of a history func-

tion just as ODEs require an initial condition. This makes them infinite dimensional

dynamical systems, with discontinuous derivatives at the time points t = 0, T, 2T, ...

which are known as knots. Since most DDEs don’t have analytical solutions, one needs

to be careful that the discontinuities do not compromise the algorithm used by the nu-
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merical solver.

Both logic-based and continuous ODE models assume that the dynamics of the GRN

are deterministic, when in reality the reactions taking place are subject to intrinsic and

extrinsic noise. This becomes crucial to consider when the number of molecules in the

system is small. In such cases, stochastic models can be used to model the GRN in

which a master equation determines the update in gene expression levels and governs

how the probability of the network being in a particular state evolves over time. This is

difficult to solve and is usually studied using stochastic simulation algorithms (SSAs).

Solving SSAs is computationally intensive due to the multiple runs required to esti-

mate aggregate behaviour and the detailed experimental data required to fit the model

compared to deterministic models.

1.2.5 Model fitting and experimental data

Mathematical models, such as the ODE models used in this thesis, require biologi-

cal parameter values to generate realistic solutions. In cases where such data is not

available, these models can be analysed using bifurcation analysis to give insight into

the model behaviour for different parameter regimes. In order to reproduce experi-

mental data, realistic parameter values are required. With the exception of simple or-

ganisms, GRNs are usually complex with multiples transcription factors and feedback

loops determining the network behaviour. This makes it difficult to obtain accurate

measurements for the required parameters. In such cases, these parameter values can

be inferred mathematically by fitting the model to the experimental data. In general

this is difficult to do as data is often only available for a subset of genes. Successfully

fitting the model to the data is dependent on the type of biological data available and

the mathematical method used to implement the fit.

Quantitative data is available for both protein and mRNA levels but in this thesis we

focus on the methods used to obtain the latter. Quantitative PCR (qPCR) can be used

to measure the absolute or relative levels of mRNA, with the latter being measured

relative to a ‘house-keeping’ gene whose expression is assumed (temporally) constant

and constitutive. This is discussed in more detail in §2.4.4. qPCR can be performed on

whole embryos to establish how gene expression varies with developmental staging,

but does not have any spatial resolution. Such information can be obtained by using

in-situ hybridisation on whole embryos or transverse sections, for example, which re-

sults in coloured staining in tissues where specific mRNA transcripts are located. The

limitation of in-situ hybridisation is that the data is not quantitative and can often be

biased by overstaining and background staining.
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There are a number of methods available to find an optimum parameter set which

involve exploring an n-dimensional parameter space, either randomly or in some ‘ef-

ficient’ way which minimises the error between the experimental data and the model

prediction. In most cases, the error is defined as a sum of squares

J(Xdata
i , Xmodel

i ) =
N

∑
i=1

(
Xdata

i − Xmodel
i

)2
(1.2.8)

where Xdata
i are the experimental data points and Xmodel

i are the solution values from

the model [92]. This sort of function assigns a larger error to data points of large mag-

nitude compared to smaller data points. Thus a weighted function is often considered:

J(Xdata
i , Xmodel

i ) =
N

∑
i=1

wi

(
Xdata

i − Xmodel
i

)2
(1.2.9)

where wi = (1/Xdata
i )2 represents the weighting for the ith data point.

The parameter space can be explored using both local and global methods. Local meth-

ods start from an initial guess and search the parameter space in the immediate neigh-

bourhood to converge to a parameter set which minimises the error to within some

tolerance. Local methods converge quickly to the minimum error, however, there may

be other minima which they fail to find. Thus global methods are used to search the en-

tire parameter space, usually by incorporating some stochastic element so that different

regions of parameter space can be explored. These methods, however, can be compu-

tationally expensive, involving long runs in order to serach the entire parameter space

well enough. An effective way to combine the advantages of both methods is to use a

hybrid method. These methods explore the parameter space using a global search and

when a ‘good’ region has been identified, they converge quickly using a local method.

One such example is by Pan and Wu who combine the global simulated annealing

method, first developed by Metropolis [93] with the local downhill simplex method,

developed by Nelder and Mead [94], to estimate hydraulic parameters in a model of

water flow through soil. Other efficient methods of parameter estimation include the

global genetic algorithm [95, 96] and the local Levenberg-Marquardt algorithm [97].

However, in this thesis we minimise an error of the form (1.2.9).

Numerical bifurcation analysis for ODE models using XPPAUT

Biological systems usually contain a number of free parameters describing the system

dynamics. An important aim in modelling such systems is to determine how their

behaviour changes in response to varying the model parameters. Since there is no

systematic way to explore a model as a function of all of its parameters, the first step
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is usually to reduce the number of parameters by non-dimensionalisation, for instance

and by fixing well established parameter values.

In this thesis, non-dimensionalisation of our ODE models is followed by steady state

analysis. One way to achieve this is by using the software package XPPAUT which

integrates the ODEs to steady state and furthermore, provides an interface to the con-

tinuation package, AUTO [98]. Continuation allows us to follow steady state solutions

as functions of model parameters by utilising the implicit function theorem. In short,

the theorem states that for a system of ODEs:

du
dt

= G(u, λ) , (1.2.10)

under regularity assumptions on G, if there exists a steady state u∗, i.e. ∃λ such that

G(u∗, λ) = 0 then there exists a locally unique family (or a branch) of steady state

solutions, u = u(λ) satisfying G(u, λ) = 0. For a small increment in the parameter

value, AUTO is able to converge back to the solution branch by using an arclength-

continuation method. The stability of these branches is automatically calculated by

analysing the eigenvalues of the linearised system. This also allows automatic detec-

tion of bifurcation points in the system which correspond to changes in stability at

particular points along solution branches.

1.3 Thesis overview and context

Chapter 2: This chapter aims to understand the timing of arterial specification at 18hpf

followed by HSC specification at 24hpf in the zebrafish embryo. We present experi-

mental observations, both our own and those of others, to form the hypothesis that

Notch signalling is required twice: at 18hpf at a low level, which is sufficient for the in-

duction of arterial gene expression, and at 24hpf, at a higher level, to induce HSC gene

expression. Three initial feedforward ODE models with a prescribed input of NICD

are explored and conditions on the parameters are derived such that arterial gene in-

duction precedes HSC gene expression. One of these models is developed further to

explore the effect of intercellular coupling. We show that for certain parameter values,

salt-and-pepper patterning can also help drive higher HSC gene expression in alternat-

ing cells at 24hpf. Lastly we describe the experimental procedures used to obtain gene

expression data from arterial ECs using qPCR and we demonstrate that parameters can

be estimated by fitting the model to the qPCR data.

Chapter 3: In this chapter, we explore, using an ODE model, the VEGF–Delta–Notch

feedback loop which has been implicated in tip cell selection during angiogenic sprout-
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ing. The loop characteristically generates period-2 (salt-and-pepper) patterns of al-

ternating tip and stalk cells for a range of parameter values. We use linear stability

analysis and the Routh-Hurwitz conditions to define regions of parameter space, cor-

responding to the feedback strengths of Delta and VEGFR-2 production, for which the

system admits patterning. A single generic picture, describing the onset of patterning,

is obtained which is independent of the parameter values used. The predictions of the

linear analysis are tested using numerical simulations in strings of cells with differ-

ent boundary conditions. The system manifests period-2 spatial patterns, oscillatory

behaviour and multiple homogeneous steady states with travelling wave behaviour.

Chapter 4: This chapter extends the ODE model of Chapter 3 by exploring the role of

filopodia growth, in a gradient of VEGF, with the ability to enhance VEGFR-2 produc-

tion. These model extensions correspond to three new parameters in the model whose

effects are explored using steady state and bifurcation analysis. The analysis predicts

that filopodia act to facilitate patterning by allowing the system to exhibit patterns for

a wider range of parameter values, compared to the equivalent ODE model of Chapter

3. The filopodia-related parameters also give rise to a larger amplitude pattern capa-

ble for coexisting with the small amplitude pattern of Chapter 3. These predictions

are confirmed using numerical simulations. Linear stability analysis predicts that in-

creased filopodia feedback strength destroys the stable regions of parameter space to

facilitate tip cell selection.

Chapter 5: This chapter aims to understand how sensible it was to use an ODE model,

in Chapter 4, to study the effects of filopodia growth on tip cell selection. In this model

we investigate the effects of VEGF receptor diffusion and advection in the cell mem-

brane and filopodia, which grow into a gradient of extracellular VEGF. Advection is

driven by a number of constitutive growth laws which are investigated numerically.

We conduct numerical continuation of stable steady states of the PDE model by in-

tegrating the time-dependent model forward in time until it approaches steady state,

modifying the parameters and initialising the next simulation using the previous state.

The bifurcation diagrams for each PDE model variant (using different growth laws) are

compared to the equivalent diagram for the ODE model of Chapter 4. All PDE models

agree with their ODE counterparts when receptor diffusivity is large. When diffusion

is small, the agreement breaks down.

The work in this thesis builds on and extends some of the key published works, dis-

cussed above.

The modelling work carried out in Chapter 2 is novel, to the best of our knowledge. The

role of Notch signalling in arterial and HSC specification, using ODEs to model dose
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response and intercellular Delta-Notch coupling, has not been investigated previously.

The experimenal procedures used to acquire fluorescent ECs from zebrafish embryos,

isolation of RNA and the qPCR assay were performed according to standard proce-

dures. The parameter fitting is performed by minimising a cost function representing

the absolute value between experimental data points and ODE model predictions as

done previously [92, 99, 100].

Collier et al.’s model model of lateral inhibition provided the original framework of

an ODE model with whole cell variables for Delta and Notch activity coupled to each

other using one negative and one positive feedback function [67]. Owen and Sherratt,

extended this work by, instead, modelling lateral induction of ligands. Their model

also used binding kinetics to describe Delta–Notch interactions in terms of their con-

centrations [68]. The model of Bentley et al. is an agent based model which considers

Delta–Notch signalling coupled to VEGF–VEGFR-2 signalling [81].

Our ODE model for tip cell selection, in Chapter 3, uses aspects of all three of these

models. We study the VEGF–Delta–Notch feedback loop, modelled by Bentley et al

in their agent based model, using ODEs for whole cell variables for the concentrations

of Delta, Notch and VEGF receptors. The ODEs are formulated using binding kinetics

and one positive and one negative feedback loop. To our knowledge, this is the first of

this kind of ODE model for tip cell selection, which uses bifurcation and linear analysis

to give further insight. Similarly, the ODE model of Chapter 4 is unique in its analysis

of the role of filopodia in tip cell selection using dynamical systems theory.

The work in Chapter 5 considers the effect of domain growth on the pattern form-

ing potential of the VEGF–Delta–Notch system. The effect of ligand diffusion in cell

membranes has previously been modelled by Webb and Owen [72]. Others have in-

vestigated the effects of domain growth on pattern formation [101–103]. Using this as

a basis, we allow both diffusive and advective transport of receptors in the cell mem-

brane, where advection is defined by constitutive laws. The scheme for numerical con-

tinuation was developed by ourselves.
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CHAPTER 2

Systems Biology of Notch

Signalling in Haematopoietic Stem

Cell Specification

2.1 Notch signalling in arterial specification and HSC specifi-

cation

Haematopoietic stem cells (HSCs) arise as the result of an endothelial to haematopoi-

etic cell transition (EHT) which has been observed in arterial but not venous blood

vessels [14]. Hence arterial identity may be an important pre-requisite for a HSC fate.

The gene efnb2a has been identified as a direct target of Notch signalling in the human

microvascular endothelial cell line (HMEC1) [24] and is a marker of arterial identity in

zebrafish and mouse embryos. Embryos with impaired Notch signalling fail to express

efnb2a at 18 hours post fertilisation (hpf) and also exhibit arteriovenous shunts (abber-

ant connections between arteries and veins). These traits suggest that arterial/venous

distinction is not maintained, implicating Notch signalling as being essential for arte-

rial specification [20, 21, 25].

The expression of Notch ligands and receptors persists beyond initial arterial gene in-

duction (18 hpf) and into the time window of HSC specification (see Figure 2.1) which

can be recognised by the expression of the HSC marker gene runx1 at 24 hpf. Embryos

deficient in Notch signalling lack expression of the HSC markers runx1, gfi1.1 and c-

myb in the ventral wall of the dorsal aorta DA, the site of EHT in zebrafish embryos

([25, 30] and Gering Lab unpublished data). Embryos treated with the γ-secretase in-

hibitor DAPT also lose runx1 expression suggesting that Notch signalling is essential

for HSC specification (see Figure 2.4).
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Figure 2.1: Expression of the Notch receptors, Notch 1b and Notch 3 at 24hpf, and

ligands, Delta C and Delta-like 4 (Dll4) at 24 and 18hpf respectively, in the

dorsal aorta of the zebrafish embryo. The location of mRNA transcripts

in the embryo is visualised using the purple stain (see yellow arrows) as

in the in-situ hybridisation assays shown. The left and right panes show

lateral and transverse-sectional views of the embryo. Yellow arrows show

expression in the DA. (These in-situ data are from the Gering lab).
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Notch signalling is essential for normal angiogenesis in zebrafish (and mouse) em-

bryos. At 21 hpf in zebrafish, tip cells are selected from endothelial cells comprising the

DA by responding to Vascular Endothelial Growth Factor (VEGF). Selection happens

due to a Notch-controlled process called lateral inhibition where a cell with high Delta

expression prevents neighbouring cells from adopting the same (in this case the tip

cell) fate by activating their Notch receptors. Tip cells lead angiogenic sprouts towards

the source of growth factor, followed by stalk cells which allow the sprout to maintain

contact with the parent vessel, the DA. Embryos with reduced Notch signalling dis-

play enhanced vessel branching, most likely due to reduced lateral inhibition. Notch

represses expression of the VEGF receptors (VEGFR2/flk1 and VEGFR3/flt4) suggest-

ing that its role in angiogenesis is to limit the ability of ECs to respond to extracellular

VEGF, thus stabilising the angiogenic stalk and DA cells, stopping them from taking

on the migratory behaviour of tip cells [14, 50, 54]. The retained expression of flt4 in

the DA, due to a loss of Notch signalling can be seen in Figure 2.2 which was adapted

from the work done by Siekmann and Lawson [50].

Since HSCs emerge from the DA after it has undergone arterial specification and angio-

genesis, it is likely that the correct succession of these Notch-controlled processes (see

Figure 2.3) needs to be carried out for successful HSC specification. Next we present

and discuss the findings of our experimental work and conclude with a hypothesis

which may explain the correct order in which events take place.

We utilise two different ways of knocking down Notch signalling: using the mindbomb

mutant and by using the γ-secretase inhibitor, DAPT. Mindbomb is a protein required

to successfully internalise the Delta-Notch extracellular domain complex into the sig-

nalling cell. As such, the mindbomb mutant has poor Notch signal transduction [104].

The DAPT inhibitor prevents effective cleavage of NICD, the Notch signalling effector,

by inhibiting the cleaving enzyme γ-secretase. The inhibitor is dissolved in the solvent

DMSO and its effectiveness, therefore, depends on a variety of factors including, per-

meability of the embryo’s cell membranes, concentration required for inhibition and

the length of time that embryos are incubated in the inhibitor.

In-situ hybridisation data from the Gering lab, shows that the expression of both runx1

and efnb2a is lost in the mindbomb mutant (see Figure 2.4b) whereas only runx1 is

lost in DAPT treated embryos (see Figure 2.4a). Furthermore, the Notch reporter,

12×CSL:Venus, has very low Venus expression at 18hpf (see Figure 2.5), when efnb2a

expression is first detected in the DA [21, 22]. However, the Venus expression is clearly

visible at 24hpf, when runx1 expression is first detected in the ventral wall of the DA

[25, 30, 33] and when flt4 is downregulated (see Figure 2.2) [50, 54]. This suggests that
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Figure 2.2: Figure adapted from Siekmanna and Lawson, 2007 [50]. Before 24 hpf flt4

is a pan-endothelial marker (not shown). However by 24hpf VEGFR-3/flt4

becomes supressed in the DA and in intersomitic vessel sprouts at 24hpf

and flt4 becomes a marker of venous identity from this point onwards.

This confirms the original finding by Thompson et al. 1998 [54]. Red and

blue brackets mark the DA and PCV respectively. (d) and (f) show no

DA expression of flt4 in control morphants with expression in the PCV

only. (e) and (g) show retained expression of flt4 in the DA, stalk cells

(white arrow in (f)) and the tip cells (black arrow heads) in the absence of

Notch signalling. This suggests that the role of Notch is to downregulate

VEGFR-3 in DA ECs. In (a) some expression of flt4 is expected in the tip

cells of control embryos, consistent with a role for VEGFC–flt4 signalling

in angiogenic sprouting [48], however, these cannot be seen as they are in a

differnt focal plane (visible in the original Figure). Key: MO=morpholino;

nc=notochord.
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lower levels of Notch signalling are present at 18hpf than at 24hpf. At 18hpf this low

level seems sufficient to drive efnb2a expression but is not sufficient to downregulate

flt4 or switch on runx1. Only at 24hpf are the levels high enough to achieve this (see Fig-

ure 2.3). As such, our in-situ hybridisation data in Figure 2.4 suggest that whilst Notch

signalling is blocked, possibly completely, in the mindbomb mutant, DAPT treatment

only eliminates Notch signalling partially.

In the next section we model the sensitivity of efnb2a and runx1 to the received Notch

signal.

18 20 22 24 26 28
Hours post 
fertilisation

efnb2a (arterial) runx1 and gfi 1.1 (HSC)

Hypothesised increasing Notch signal

experimental data 
collection points

angiogenic 
sprouting

Figure 2.3: The timing of Notch controlled processes in the zebrafish DA, driven by

a hypothesised increasing Notch signal. Arterial specification at 18 hpf is

identified by efnb2a expression. This is followed by angiogenic sprouting

at 21 hpf where lateral inhibition by Notch signalling is required for tip cell

specification and stability of both the DA and the trailing stalk cells. Lastly,

at 24 hpf, HSC specification is marked by runx1 expression which is likely

to be activated by high levels of Notch signalling.

2.2 Mathematical modelling

The aims of this chapter are to produce mathematical models that can correctly explain

the timing of the experimentally observed expression of arterial and HSC marker genes

in the DA. By combining our experimental observations from §2.1 with the observa-

tions made by others (see Table 2.1), we use Figure 2.6 to summarise the hypothetical

interactions underlying the models that follow.

Initially we develop a simple feed-forward ordinary differential equation (ODE) model,

with a prescribed input of Notch intracellular domain (NICD) to describe a homoge-

neous population of cells without Delta-Notch mediated cell-coupling as this gives a

simple type of model with relatively few ODEs which we can later build on. The model

will consider 3 different functional types of responses downstream of Notch and com-

pare the sensitivity of efnb2a and runx1 to the incoming Notch signal for each response

type.

Following this, we extend our ODE model to account for cell-cell interactions, allowing
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Figure 2.4: Expression of efnb2a and runx1 as detected by in-situ hybridisation at 25-

26hpf (a) after pharamcological treatment with the (γ-secretase) Notch sig-

nalling inhibitor DAPT and (b) in the mindbomb mutant. (b) shows loss

of both efnb2a and runx1 in the DA (green arrows) of the mindbomb mu-

tant whereas (a) shows a loss of runx1 (green arrow) but not efnb2a (black

arrow) in DAPT treated embryos. (In-situ data is from the Gering lab).
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Figure 2.5: The 12×CSL:Venus line is a transgenic Notch reporter line of zebrafish.

Cells receiving a Notch signal express the yellow fluorescent protein,

Venus, which appears green when viewed using the FITC filter set on our

microscope. Fluorescence of the Venus protein increases over time, sug-

gesting that the DA cells receive a temporally increasing Notch signal.
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Figure 2.6: Gene regulatory network (GRN) in arterial ECs. Delta and Notch bind-

ing results in activation of efnb2a for arterial specification, and runx1 and

gfi1.1 activation for HSC specification. Feedback from flt4 and flk1 may

influence expression of Notch ligands and receptors. Arrows/bars repre-

sent activation/repression of gene expression respectively; Dotted lines:

potential feedback loops.

cells to communicate via Delta-Notch signalling. In particular we investigate a system

of two coupled cells with periodic boundary conditions i.e. a string of cells, j = 1, 2, in

which the right-hand neighbour of cell j = 2 is identical to cell j = 1 and the left-hand

neighbour of cell j = 1 is identical to cell j = 2. In terms of the cellular concentrations,

uj, periodic boundary conditions are equivalent to u3 = u1 and u0 = u2. Including

Delta-Notch coupling allows us to investigate the effect of lateral inhibition feedback

on efnb2a and runx1 expression. This feedback loop, which is investigated in more

detail in the next chapter, involves Notch inhibition of the VEGF receptors (flk1 and

flt4) which previously induced expression of Delta and Notch in all DA angioblasts

at approximately 17hpf, just before the onset of arterial gene expression (see dashed

lines in Figure 2.6 and Table 2.1 for references). In this chapter, we do not explicitly

incorporate the effect of the VEGF receptors on Delta or Notch. Instead we allow the

production rate of Delta ligand to be an increasing function of a prescribed extracellular

VEGF concentration, multiplied by a decreasing function of NICD. Thus we determine

whether Delta-Notch mediated cell coupling can qualitatively explain the experimental

observations presented in §2.1.

Flt4 supression by Delta–Notch signalling was originally considered in our models

as its downregulation, reported by others [50, 54, 56], coincided with our hypothe-

sised upregulation of Notch. However, we find that we cannot reliably isolate DA

angioblasts in our experimental results. The cell population was contaminated, most

likely, with PCV angioblasts. Thus we measure flt4 expression in a wider population
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of angioblasts in which flt4 is not downregulated by Notch signalling. As such, we

choose not to model the unreliable flt4 data. The contamination does not seem to affect

the runx1 and efnb2a upregulation observed in the experimental results. This is likely

due to the fact that, if contamination is indeed caused by the PCV angioblasts, since

runx1 and efnb2a are not normally detected in the PCV, the inclusion of some PCV an-

gioblasts in the isolated population of cells is unlikely to make a large difference to the

observed expression.

Interaction Source of evidence Direct?

NICD-CSL→ efnb2a Human EC line (Grego-Bessa, 2007)[24] Yes

NICD-CSL→mCherry Zebrafish (Our own unpublished data) Yes

NICD-CSL→ gfi1.1 Zebrafish (Our own unpublished data) No

NICD-CSL→ gata2 Mouse (Robert-Moreno, 2005; Guiu et al

2013)[35, 36]

Yes

gata2→ runx1 Mouse (Nottingham et al., 2007)[34], (Guiu

et al 2013)[36]

Yes

NICD-CSL a flt4 Zebrafish (Siekmann and Lawson, 2007;

Gore et al., 2011;

Thompson et al., 1998)[50, 54, 105] ;

Mouse (Tamella et al., 2008)[48]

No

NICD-CSL a flk1 Mouse (Suchting et al., 2007; Bentley et al.,

2008) [47, 51, 81]

No

flt4→ Delta/(Notch) Unknown - assuming interaction similar to

flk1-Delta signalling

Unknown

flk1→ Delta/(Notch) Lawson 2002 [22], Liu et al., 2003 [63],

Bentley et al., 2008 [81]

Unknown

runx1 a flk1 Mouse cell line (Hirai et al., 2005) [106] Unknown

runx1→ runx1 Swiers et al 2010 [4] Yes

gfi1.1 a gfi1.1 - Yes

Table 2.1: Evidence for the interactions in our models. These interactions are diagram-

matically summarised in Figure 2.6

2.2.1 Model formulation

As a first step in exploring the responses of enfb2a and runx1 to Notch signalling, we

ignore the Delta-Notch binding processes and model the downstream dynamics us-

ing a prescribed input of NICD (see Figure 2.7). We analyse the effect of a linearly
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increasing Notch signal (the simplest form of increasing function) on the expression

of downstream genes. We are most concerned with the mechanism by which Notch

activation may induce expression of efnb2a at 18hpf and expression of runx1, at 24hpf

leading to arterial specification preceding HSC specification.

Figure 2.7: A reduced GRN which excludes Delta-Notch binding. A prescribed Notch

input signal drives the expression of efnb2a, directly and expression of

runx1 via gata2. Model variables are in brackets.

One way in which this may be possible would be a difference in promoter sensitivities

of each gene. The gene efnb2a has been identified as a direct target of Notch signalling

in the human microvascular endothelial cell line, HMEC1 [24], whereas the effect of

Notch on runx1 expression is assumed to be mediated through the activation of gata2

[35, 36]. Whether this mediation is responsible for the delayed activation of runx1 is

currently unclear. Other possible mechanisms contributing to the delay may be extra

processing steps in the regulation, for example, transcriptional, translational and post-

transcriptional modification related delays although we know of no experimental data

confirming this.

In modelling the transcription of gata2, efnb2a, runx1 and flt4, we make a number of

assumptions:

• No basal trancription is assumed.

• The mRNA degradation rate is assumed to be identical for all transcripts.

• Proteins and translation are neglected for all genes.

• The input to the model is a linearly increasing NICD input signal over time,

Ni(t) = t. The model is run for finite time as Ni → ∞ as t → ∞ may be un-

realistic.

The following system of equations is used to model transcription downstream of Notch:
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gata2 mRNA:
dg
dt

=
c1Ni

c2 + Ni
− Dg , (2.2.1a)

Efnb2a mRNA:
de
dt

=
c3Ni

c4 + Ni
− De , (2.2.1b)

Runx1 mRNA:
dr
dt

=
c5g

c6 + g
− Dr , (2.2.1c)

Flt4/Flk1 mRNA:
d f
dt

=
c7

c8 + Ni
− D f . (2.2.1d)

where c1, c3, c5, c7 are the maximal mRNA production rates for each gene and c2, c4, c8,

(c6) are the concentrations of NICD (gata2) at which the production rate of each mRNA

species is at half of its maximum value. We use the following scalings to reduce the

number of parameters and simplify the model:

g =
c1

D
ĝ , e =

c3

D
ê , r =

c5

D
r̂ , f =

c7

D
f̂ , (2.2.2)

where hats denote dimensionless variables. The equation for runx1 scales as follows

dr̂
dt

= D
( c1

D ĝ
c6 +

c1
D ĝ
− r̂
)

. (2.2.3)

The final rescaled model is defined as

gata2 mRNA:
dĝ
dt

= D
(

Ni
c2 + Ni

− ĝ
)

, (2.2.4a)

Efnb2a mRNA:
dê
dt

= D
(

Ni
c4 + Ni

− ê
)

, (2.2.4b)

Runx1 mRNA:
dr̂
dt

= D
(

ĝ
ĉ6 + ĝ

− r̂
)

, (2.2.4c)

Flt4/Flk1 mRNA:
d f̂
dt

= D
(

1
c8 + Ni

− f̂
)

, (2.2.4d)

where ĉ6 = c6D
c1

.

2.2.2 Quasi-steady state and dose response solutions

Dose response curves can be an insightful way to analyse how the steady states of a

model change with respect to an input. By assuming that the Notch input varies slowly,

we can make a quasi-steady state assumption for the genes in (2.2.4). The quasi-steady
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states of the model in (2.2.4a)-(2.2.4d) are found by setting d
dt = 0, and are given by:

ĝ(Ni) =
Ni

c2 + Ni
, (2.2.5)

ê(Ni) =
Ni

c4 + Ni
, (2.2.6)

r̂(Ni) =
ĝ(Ni)

ĉ6 + ĝ(Ni)
, (2.2.7)

f̂ (Ni) =
1

c8 + Ni
. (2.2.8)

Substituting (2.2.5) into (2.2.7) yields

r̂ =
1

ĉ6 + 1
Ni

α + Ni
, (2.2.9)

where

α =
ĉ6c2

ĉ6 + 1
, (2.2.10)

is the parameter specifying the value of Notch at which runx1 achieves its half-maximal

concentration. After making the quasi-steady state assumption, the parameters c2, c4, c8

correspond to the dose of NICD at which the steady state mRNA concentrations attain

their half-maximal value and ĉ6 corresponds to the sensitivity of runx1 to gata2. Thus,

for runx1 expression to be less sensitive to NICD, we require

α =
ĉ6c2

ĉ6 + 1
> c4 . (2.2.11)

However, in the case where Ni� 1,

r̂ ≈ 1
ĉ6 + 1

Ni
α

=
Ni

ĉ6c2
and ê ≈ Ni

4
. (2.2.12)

These responses are linear and for efnb2a to grow faster we require

1
c4

>
1

ĉ6c2
. (2.2.13)

Figure 2.8 shows how varying c2, whilst keeping ĉ6 fixed, modulate how quickly (rela-

tive to efnb2a) runx1 mRNA concentrations respond to low doses of Notch.

Henceforth, we assume that the NICD concentration is not small. Thus condition

(2.2.11) determines the delayed onset of runx1 relative to efnb2a.

In this case, for fixed c2, when ĉ6 � 1, α ∼ ĉ6c2, and when ĉ6 → ∞, α → c2. Thus

α is an increasing, saturating function of ĉ6. However, for fixed ĉ6, the half-maximal

concentration, α, is proportional to c2. Hence, α is always linearly proportional to c2

whereas the dependence on ĉ6 = c6D
c1

is only significant when ĉ6 is small. This implies
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Figure 2.8: Dose response curves for gata2, efnb2a and runx1 for low doses of NICD

input using the parameter values in Table 2.2 unless otherwise stated. Re-

sponses are linear and are shown for c2 = 1, 4, 8 by plotting equations

(2.2.5)-(2.2.8). Runx1 levels grow more slowly than efnb2a as c2 is in-

creased. Equation (2.2.13) is satisfied for the dash-dot curve, c2 = 8, with

equality shown in the dashed curve, c2 = 4.

that the role of c2, gata2’s sensitivity to NICD, may be more important in achieving

a delayed response to Notch signalling than runx1’s sensitivity to gata2, ĉ6. Using

the parameter values in Table 2.2, where the half-maximal concentration parameter for

efnb2a, c4 = 2, and α = 1
3 , 2, 4 by choosing c2 = 1, 6, 12 respectively, we demonstrate

in Figure 2.9, that we can induce runx1 to respond earlier, at the same time and later

than efnb2a. The plots therein use a linearly increasing Notch signal Ni(t) = t and are

normalised so that their maximum value on the interval N ∈ [0, 30] is 1.

Although ĉ6, the sensitivity of runx1 to gata2, has a small role in determining the runx1

delay, it determines the level to which the runx1 mRNA level saturates. Equation (2.2.5)

implies that

ĝ→ Gmax = 1 , (2.2.14)

where Gmax is the maximum, quasi-steady state concentration of gata2. Thus, equations

(2.2.5) and (2.2.9) both imply that runx1,

r̂ → Rmax =
Gmax

ĉ6 + Gmax
=

1
ĉ6 + 1

as Ni→ ∞ . (2.2.15)

where Rmax is the maximum, quasi-steady state concentration of runx1.

As ĉ6 → 0 then Rmax → 1 and when ĉ6 → 1, then Rmax → 0.5. For ĉ6 > 1, Rmax < 0.5
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Figure 2.9: Dose reponse concentration curves, quasi-steady state approximations and

numerical solutions to equations (2.2.5)-(2.2.8) using the parameters from

Table 2.2. Row 1 has c2 = 1 and α = 1/3 for which runx1 is more sensitive

to Notch than efnb2a. Row 2 has c2 = 6 and α = 2 for which runx1 and

efnb2a have the same response (co-location of (thick) green and blue lines).

Row 3 has c2 = 12 and α = 4 for which runx1 is less sensitive to Notch. We

use an increasing Notch input signal, Ni(t) = t, and all curves are scaled

by their maximum value, otherwise runx1 would saturate to 1
1+1/2 = 2

3

making it difficult to determine whether its initial response is quicker than

efnb2a’s.
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and tends to zero as ĉ6 → ∞. This is illustrated in Figure 2.10 which shows that for

ĉ6 < 1, runx1 quickly reaches its half-maximal concentration and saturates close to its

Rmax value, whereas for ĉ6 > 1, runx1’s sensitivity to gata2 is weak, such that Rmax

values greater than 0.5 are unattainable because gata2 has reached its maximum and

can provide no more activation for runx1.

Parameter Physical Meaning Estimated value

c1 Maximum rate of transcription for gata2 1

c2 Concentration of Notch at which transcription

of gata2 is half-maximal

-

c4 Concentration of Notch at which transcription

of efnb2a is half-maximal

2

c6 Concentration of gata2 at which transcription

of runx1 is half-maximal

0.5

c8 Concentration of Notch at which transcription

of flt4 is half-maximal

1

D mRNA degradation rate 1 h −1

ĉ6 Dimensionless concentration of gata2 at which

transcription of runx1 is half-maximal

c6D
c1

α Dimensionless concentration of Notch at which

the response of runx1 is half-maximal

c2 ĉ6
ĉ6+1

Table 2.2: Parameter values used for the model in equations (2.2.5)-(2.2.8) and (2.2.4a)-

(2.2.4d).

Thus for runx1 to be detectable we require Rmax to be ‘large enough’ which is obtained

by increasing runx1’s sensitivity to gata2 by making ĉ6 ‘small enough’. For a reduced

response to Notch, relative to efnb2a, we require c2 to be large enough such that α > c4.

The time dependent behaviour of the model depends on the functional form taken by

NICD. By assuming Ni(t) = t, both the quasi-steady approximation and the behaviour

of the ODE model solutions closely match the dose responses. For this form of input

signal the half-maximal concentrations can be viewed as characteristic times taken to

reach the half-maximum concentration. Figure 2.11 illustrates a situation where runx1

reaches its half-maximal concentration 2 hours after efnb2a reaches its half-maximal

concentration. This is done for parameter values corresponding to the blue curve in

Figure 2.10.

In this section we have shown that when the genes downstream of Notch have Michaelis-
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Figure 2.10: Dose responses of runx1 to a gata2 input for ĉ6 = 0.1, 0.5, 1.2 calculated by

plotting equation (2.2.7) for ĝ ∈ [0, 1]. Parameter values are as per Table

2.2. For ĉ6 > 1, levels of runx1 greater than 1
2 become unattainable (see

red curve for example) because the maximum dose of gata2 can never

exceed ĝ = 1. In this case the runx1 response is almost linear. When

ĉ6 < 1, runx1 is very sensitive to gata2 and reaches its half-maximal value

before gata2 reaches ĝ = 1 (see black curve for example). Hence the runx1

response starts to saturate to a maximum value which approaches Rmax =

1.
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Figure 2.11: Dose response curves, quasi-steady and time-dependent solutions to the

system in (2.2.5)-(2.2.8) using the parameters in Table 2.2 (corresponding

to the blue curve in Figure 2.10) and c2 = 12. These parameters can give

efnb2a induction before runx1 induction as seen in experimental results.
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Menten type responses to Notch (see equations (2.2.5)-(2.2.8)), runx1’s effective sensi-

tivity to NICD, α, is proportional to gata2’s sensitivity to Notch, c2. Thus we manipu-

late c2 until condition (2.2.11) is satisfied such that for a Notch input which increases

linearly with time, Ni(t) = t, runx1 is effectively transcribed at a later time relative to

efnb2a. We find that gata2 acts as a filter, only allowing runx1 to respond to NICD,

once its expression levels are sufficiently high.

2.2.3 The effect of runx1 having a sigmoidal response to gata2

In this section we test whether changing the functional form of the responses can in-

crease the delay in runx1 transcription. We do this by modifying equations (2.2.4a)-

(2.2.4d) so that runx1 has a sigmoidal response to gata2. In particular we replace equa-

tion (2.2.4c) with

dr̂
dt

= D
(

ĝm

ĉm
6 + ĝm − r̂

)
, (2.2.16)

where m is a coefficient controlling the sharpness of the runx1 response. The quasi-

steady state of (2.2.16) is given by

r̂ =
ĝm

ĉm
6 + ĝm =

(
Ni

c2+Ni

)m

ĉm
6 +

(
Ni

c2+Ni

)m →
1

ĉm
6 + 1

as Ni→ ∞ . (2.2.17)

It is straightforward to show that Ni1/2, the half-maximal response concentration for

runx1, is achieved at

Ni1/2 = β =
c2ĉ6

(1 + 2ĉm
6 )

1
m − ĉ6

. (2.2.18)

The form of β is similar to α. For instance, β is a linear function of c2 for a fixed value

of ĉ6 and thus we vary it to manipulate the delay in runx1.

Since runx1 is a sigmoid function of gata2 mRNA (see equation (2.2.17)), we begin

by examining the response of runx1 to gata2 mRNA for ĉ6 = 0.1, 0.5, 1.2 (see Figure

2.12). Similarly to the model in §2.2.2, when ĉ6 < 1, r̂ → Rmax > 0.5. For ĉ6 > 1, r̂

only traverses part of its sigmoid response curve and time-dependent solutions tend to

Rmax < 0.5.

By fixing ĉ6 = 0.5, m = 2 and c2 = 12, we observe the dose-response and time-

dependent solutions corresponding to the blue curve in Figure 2.12 (see Figure 2.13).

The Figure shows that the runx1 concentration tends to Rmax = 1
0.52+1 = 0.8 and has a

half-maximal concentration of β = 8.2788. Thus runx1 reaches it’s half-maximal con-

centration approximately 6.3 hours after efnb2a reaches its half-maximal concentration.
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Figure 2.12: Dose responses of runx1 to a gata2 input for ĉ6 = 0.1, 0.5, 1.2 and m = 2

calculated by plotting equation (2.2.17) for ĝ ∈ [0, 1]. The parameters

used were as per Table 2.2. The gata2 mRNA concentration tends to 1 and

therefore, when ĉ6 > 1, levels of runx1 > 1
1+1 = 1

2 become unattainable

(see red curve for example). When ĉ6 < 1, runx1 reaches its half-maximal

value for a dose of gata2, corresponding to a value of ĉ6 which is less than

ĝ = 1 (see black curve for example). Hence the runx1 response saturates

to a maximum value which approaches Rmax = 1.
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Figure 2.13: Dose response curves, quasi-steady and time-dependent solutions to the

system in (2.2.5)-(2.2.8) using the parameters in Table 2.2 (corresponding

to the blue curve in Figure 2.12) and c2 = 12. The quasi-steady approx-

imation gives a good approximation to the time-dependent ODE solu-

tions. For a linearly increasing input Ni(t) = t, both quasi-steady and

ODE solutions behave like the dose response curves. Our choice of pa-

rameters in this figure gives efnb2a induction before runx1 induction with

a larger delay in the induction of runx1 in this model than the model from

§2.2.2. For example, in the model of this section, runx1 reaches its half

maximal concentration at approximately 8.3h into the simulation whereas

in the model of §2.2.2 runx1 reaches its half maximal concentration after

only 4h. The longer delay time is attributable to the functional form of

runx1’s response to gata2 which is sigmoidal for the model of this sec-

tion.
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Using the same parameter values, as those used in the model of §2.2.2, we find that

runx1’s sigmoidal response to gata2, reduces its sensitivity to Notch signalling. Com-

parison of the half-maximal Notch concentrations of this model, β = 8.2788, and those

of the model in §2.2.2, α = 4, demonstrates this.

2.2.4 The effect of gata2 having a sigmoidal response to Notch

In this section we model the system of equations (2.2.4a)-(2.2.4d) but instead allow

gata2 to have a sigmoidal response to the NICD input. This involves replacing equation

(2.2.4a) with

dĝ
dt

= D
(

Nim

cm
2 + Nim − ĝ

)
, (2.2.19)

for which the quasi-steady state is given by

ĝ =
Nim

cm
2 + Nim . (2.2.20)

This tends to

Gmax = 1 as Ni→ ∞ . (2.2.21)

Thus, equations (2.2.20) and (2.2.7) both imply

r̂ → Rmax =
Gmax

ĉ6 + Gmax
=

1
ĉ6 + 1

, (2.2.22)

which gives the same Rmax value as the model in §2.2.2. Alternatively, substitution of

(2.2.20) into (2.2.7) and refactorising the denominator gives

r̂ =
1

ĉ6 + 1
Nim

γm + Nim . (2.2.23)

where

γ =

(
cm

2 ĉ6

ĉ6 + 1

) 1
m

(2.2.24)

Since runx1 responds to gata2 in the same way as per §2.2.2, the runx1–gata2 dose re-

sponse curves are very similar to those observed in Figure 2.10 so are ommited for this

model. Since the gata2 response to Notch is sigmoidal, the gata2–NICD dose response

curves look similar to those observed for the runx1–gata2 dose response for the model

in §2.2.3 (see Figure 2.12). These are also ommited here.

The effect of gata2’s sigmoidal response to runx1 is shown in Figure 2.14 which shows

that for fixed values of ĉ6 = 0.5, m = 2 and c2 = 12

46



CHAPTER 2: SYSTEMS BIOLOGY OF NOTCH SIGNALLING IN HAEMATOPOIETIC STEM

CELL SPECIFICATION

0 10 20 30
0

0.2

0.4

0.6

0.8

1

N

le
v
e
l

Dose response.  Rmax = 0.66667, γ = 6.9282

 

 

g
e

r
f

0 10 20 30
0

0.2

0.4

0.6

0.8

1

time

le
v
e
l

Quasi−steady approximation

 

 

g
e

r
f

0 10 20 30
0

0.2

0.4

0.6

0.8

1

time

le
v
e
l

Time−dependent solutions

 

 

g
e

r
f

Figure 2.14: Dose response curves, quasi-steady and time-dependent solutions to the

system in (2.2.6)-(2.2.8) and equation (2.2.20) using the parameters in Ta-

ble 2.2 and c2 = 12. The quasi-steady approximation gives a good ap-

proximation to the time-dependent ODE solutions. For a linearly increas-

ing input Ni(t) = t, both quasi-steady and ODE solutions behave like

the dose response curves. Our choice of parameters in this figure allow

efnb2a induction before runx1 induction with a delay in the induction of

runx1 (γ ≈ 6.9h). This delay is larger than the delay in the first model in

§2.2.2 which has α = 4 and slightly smaller than the delay from the model

in §2.2.3 which has β ≈ 8.3 (compare with dose responses from Figures

2.11 and 2.13).

2.2.5 Summary

In summary, we have have explored three different models in which efnb2a and runx1

respond to Notch signalling for a linearly increasing Notch signal of the form Ni(t) = t.

Each of these models has a characteristic time at which each gene reaches its half-

maximal steady state concentration value. We find that the model in which the re-

sponses are all of Michaelis-Menten type has the shortest delay between the onset of

runx1 and efnb2a expression. The model with the next largest delay is the one in which

gata2 has a sigmoid response to Notch, with all other responses of Michaelis-Menten

type. The model with the largest delay between the induction of efnb2a and runx1 ex-

pression is the model in which runx1 has a sigmoid response to gata2 with all other re-

sponses being of Michaelis-Menten type. The larger delay time in the latter two models

discussed here can be attributed to the sigmoid response functions included in them.
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2.3 The potential role of cell coupling on HSC specification in

arterial ECs

In this section, we extend the model in (2.2.1) to account for Delta-Notch mediated

cell coupling upstream of the NICD input. The model remains continuous in time but

contains a spatial aspect for which we use the discrete variable, j, to denote the cell

index for a line of N cells: (j = 1, 2, ..., N) [67]. For simplicity we focus on a two-cell

system, with periodic boundary conditions so that N = 2 and we identify u3 = u1 and

u0 = u2 where uj represents the cellular concentrations of a species in cell j.

In this model Delta ligands reversibly bind Notch receptors on adjacent cells. The bind-

ing reaction can be summarised as follows:

∆j±1 + Nj
kB−−⇀↽−−
k−B

Bj , (2.3.1)

where Nj and Bj represent the concentrations of unbound and bound Notch receptors

in cell j, respectively, and ∆j±1 represents the concentration of Delta ligand on cells ad-

jacent to cell j. The Delta-Notch binding here is modelled in a similar way to how Owen

and Sherratt modelled ligand-receptor binding [68]. Our model also assumes that the

Notch receptors are conserved between bound and unbound forms. This assumption

of a constant number of Notch receptors per cell is equivalent to assuming a constant

concentration of Notch receptors, Ntot, if we also assume that the cell volume remains

fixed.

The bound receptors undergo cleavage of their Notch intracellular domain (NICD),

which translocates to the nucleus and directly activates efnb2a, gata2 and runx1 via

gata2 as per Figure 2.6. In practice, ligand-receptor binding leads to internalisation

of the extracellular fragment of the Notch receptor into the signalling cell, followed

by cleavage of the intracellular domain, NICD, leaving behind a non-functional in-

tramembrane fragment. For simplicity, we ignore the details of the cleaving process

and assume that the concentration of NICD is proportional to the concentration of

bound receptors in cell j, as per [67],

Nij = k2Bj , (2.3.2)

where k2 is a dimensionless parameter representing the change in the concentration of

Nij due to a change in bound Notch receptor concentration. It is important to note that

equation (2.3.2) is only realistic if we assume that the production of Nij does not con-

sume bound Notch receptors. This is equivalent to assuming that new NICD fragments

are rapidly reattached to cleaved receptors, immediately yielding functional bound re-

ceptors.
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The parameters herein and their physical meanings are given in Table 2.4. One of the

key differences between this model and the model from §2.2.2 is that the NICD input

is no longer prescribed. Instead NICD dynamics are governed by a combination of the

feedback from the newly incorporated upstream Delta-Notch binding and an extracel-

lular VEGF signal which acts to increase the production rate of Delta without explicity

incorporating VEGF receptor binding (see Figure 2.15).

Figure 2.15: A two cell model of the GRN in Figure 2.6 which accounts for Delta-Notch

binding without explicitly incorporating VEGF–VEGFR-2 binding. In-

stead Delta production is an increasing signal of extracellular VEGF, V(t),

which would otherwise activate Delta via flk1 and/or flt4, and a decreas-

ing function of NICD in its own cell, which would inhibit Delta by down-

regulating the production of flk1 and/or flt4. The regulation of efnb2a,

gata2 and runx1 is the same as in Figure 2.7 except NICD is no longer

prescribed in this model. The model input is the increasing, saturating

VEGF signal V(t). Model variables are in brackets.

Applying the law of mass action to the species in equation (2.3.1) we obtain the follow-

ing system of equations:
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Delta:
d∆j

dt
= kD(Nij, V(t)) + k−B

(
Bj−1 + Bj+1

2

)
−kB

(
Nj−1 + Nj+1

2

)
∆j − µ∆j , (2.3.3a)

Bound Notch:
dBj

dt
= kB

(
∆j−1 + ∆j+1

2

)
Nj − k−BBj , (2.3.3b)

Unbound Notch: Nj = Ntot − Bj , (2.3.3c)

NICD: Nij = k2Bj . (2.3.3d)

where

kD(Nij, t) =
ᾱhn

hn + Nin
j

V(t) , (2.3.4)

is the production rate of Delta which decreases with the level of NICD in cell j i.e. inhi-

bition by neighbouring cells (see Figure 2.15). The parameters ᾱ, h and n represent the

maximal production rate of Delta, the sensitivity of Delta production to NICD, and the

strength of inhibition by NICD, respectively. As well as decreasing with NICD concen-

tration, the Delta production rate also increases with the extracellular concentration of

VEGF, which begins increasing at 17hpf:

V(t) =
t− t1

h1 + t− t1
H(t− t1)→ 1 as t→ ∞ , (2.3.5)

where t1 = 17. The parameter h1 is the time after 17hpf at which the concentration of

VEGF is at 0.5; and H(.) is the Heaviside switch function that initiates Delta production

at 17hpf, defined as:

H(t) =


0, t < 0

0.5, t = 0

1, t > 0

. (2.3.6)

2.3.1 Modelling assumptions

Our model averages the level of inhibition it receives from the neighbouring cells on

either side. This is represented in equations (2.3.3) using the fractional terms. For a

string of cells, this assumption may be unrealistic in cases where there is an asymmet-

ric distribution of bound Notch receptors on cell j. In vivo, upon unbinding, unbound

Notch receptors would be left on cell j and Delta ligand would be returned to the sig-

nalling cell. Our model, however, predicts that half of the Delta ligands would be
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returned to cell j− 1 and the other half to cell j + 1. This may be problematic as one of

the neighbouring cells would unrealistically generate Delta ligands which would have

effectively been transferred from two cells away. A number of existing models take

this averaging approach (see [68, 74] for example). Webb and Owen, explicitly account

for the sides of the cell and only allow bound receptors to unbind to adjacent cell sur-

faces in their model. The authors find no significant qualitative differences between the

models with and without explicitly defined sides, only minor quantitative differences

[72].

2.3.2 Dimensionless model

We introduce the following scalings:

∆j = Ntotδj , Bj = Ntotbj , Nj = Ntotnj , Nij = NtotNi∗j , (2.3.7)

where Ntot = 1× 10−7M is the total concentration of Notch receptors (calculated us-

ing cell size and Notch receptor data from [72, 81]) and lower case variables and Ni∗j
are dimensionless variables. The star is dropped for notational convenience. Equa-

tions (2.3.3) are coupled to the scaled equations for the genes downstream of Notch

in equations (2.2.4). However since the model in §2.2.3 has the largest effective delay

in runx1 transcription from all three of the previous models considered, we choose to

replace equation (2.2.4c) with equation (2.2.16). Together these yield the following sys-

tem of rescaled equations with dimensional time (in units of hours) and scaled NICD

concentration expressed in units of 10−7 M 1:

1Assuming a cell with a 10µm diameter and 10,000 Notch receptors as per [72, 81].
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dδj

dt
= kD(Nij, t) + k−B

(
bj−1 + bj+1

2

)
− k̄B

(
nj−1 + nj+1

2

)
δj − µδj , (2.3.8)

dbj

dt
= k̄B

(
δj−1 + δj+1

2

)
nj − k−Bbj , (2.3.9)

nj = 1− bj , (2.3.10)

Nij = k2bj (2.3.11)

dĝj

dt
= D

(
Nij

c2 + Nij
− ĝj

)
, (2.3.12)

dêj

dt
= D

(
Nij

c4 + Nij
− êj

)
, (2.3.13)

dr̂j

dt
= D

(
ĝm

j

ĉm
6 + ĝm

j
− r̂j

)
, (2.3.14)

d f̂ j

dt
= D

(
1

c8 + Nij
− f̂ j

)
, (2.3.15)

where

kD(Nij, t) =
t− t1

h1 + t− t1

ᾱh̄n

h̄n + Nin
j

H(t− t1) , (2.3.16)

with h1 and t1 defined as per equation (2.3.5). The parameter h̄, is the NICD thresh-

old for Delta inhibition and n is a coefficient controlling the feedback strength of the

inhibition. In equations (2.3.8)-(2.3.16), the following parameter groupings are used:

ᾱ =
α

Ntot
, k̄B = kBNtot , h̄ = hNtot . (2.3.17)

The half-maximal concentrations in the denominators of equations (2.3.12)-(2.3.15) have

been scaled with Ntot as follows:

c∗2 = c2Ntot , c∗4 = c4Ntot , ĉ∗6 = ĉ6Ntot , c∗8 = c8Ntot . (2.3.18)

We drop the star on the dimensionless variables for convenience.

For the parameter values in Table 2.3, numerical simulations of equations (2.3.8)-(2.3.15)

yield a patterning bifurcation at approximately 20hpf (see Figure 2.16). The homoge-

neous steady state is unstable and alternating cells express high and low concentrations

of Delta and Notch. This leads to high and low expression of efnb2a and runx1 mRNA.

For the parameter values chosen here, patterning in runx1 expression manifests after

the homogeneous steady state has grown to a concentration of approximately 0.32.
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Thus the model predicts that the concentration of runx1 initially increases homoge-

neously and then decreases in alternate cells due to patterning. To the best of our

knowledge, this has not been observed in experiments although it is possible that the

initial increase is undetectable by in-situ. If the average level of runx1 is measured us-

ing in-situ hybridisation or qPCR experiments, then the model suggests, that for these

parameter values, the average runx1 concentration after patterning is no higher than

the homogeneous steady state.

Ideally we would like the system to bifurcate whilst the homogeneous steady state is

high for efnb2a and low for runx1 but retain similar solutions in alternating cells (a

weak salt-and-pepper pattern) for efnb2a after the pitchfork but admit an asymmetri-

cal, large amplitude pattern for runx1. This would mimic the early arterial specification

in the whole of the DA and specification of HSCs in a subset of cells, albeit not in every

other cell, as suggested by fluorescent in-situ hybridisation (see [21] and Figure 1.4).
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Figure 2.16: Numerical simulation of a two-cell system in which equations (2.3.8)-

(2.3.16) are integrated using homogeneous initial conditions with all vari-

ables starting at 0 and parameter values as per Table 2.3. Since the model

is at the homogeneous steady state when the VEGF signal switches on

at t = 17hpf, any random perturbation added to the initial condition

will have decayed back to the homogeneous steady state by the time the

system reaches the pitchfork at 20hpf. Thus we add noise to the model

solutions for t < 21 to allow the system to move away from the stable

manifold of the homogeneous steady state. This simulation predicts that

the two-cell model exhibits patterning due to lateral inhibition and that

the homogeneous steady state for runx1 increases to approximately 0.32

before the pattern manifests significantly. The pattern is not capable of

amplifying the average level of runx1 relative to the homogeneous steady

state (blue dashed line).
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Parameter Physical Meaning Estimated value

ᾱ Maximum rate of Delta production 2 µk−B
kB
× 4 = 3.13

h Concentration of NICD at which inhibition of

Delta is half-maximal

0.5

h1 Time at which the VEGF concentration is at half

of its maximum level (shifted by 17h)

1

n Strength of lateral inhibition from bound Notch

receptors

6

m Response strength of runx1 to gata2 3

k−B Dissociation rate for bound Notch receptors 27.2 × 4 h−1

k̄B Association rate of Delta and Notch 0.5 ×103 × 4 h−1

µ Decay rate of Delta ligand 1.8 ×4 h−1

k2 NICD per bound Notch 1

c1 Maximum rate of gata2 production 1×4

c2 Concentration of Notch at which the transcrip-

tion rate of gata2 is half-maximal

50.45

c4 Concentration of Notch at which transcription

of efnb2a is half-maximal

0.1

c6 Concentration of gata-2 at which transcription

of runx1 is half-maximal

0.001

D mRNA degradation rate 15.1 ×4 h−1

ĉ6 Sensitivity of runx1 to gata2 c6D
c1

= 0.0151

Table 2.3: Parameter values used to numerically simulate equations (2.3.8)-(2.3.16) in

Figure 2.16. (Concentrations are in units of 1× 10−7M).
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By using a different parameter set (see Table 2.4), our model is able to exhibit such

behaviour. If we assume that the VEGF dynamics are slow, relative to the Delta-Notch

binding and the transcription of the downstream genes, we can vary V(t) = V0, a

constant, as a bifurcation parameter using XPPAUT (see §1.2.5 and [98] for details) and

observe the downstream dose responses for NICD, efnb2a and runx1 (see Figure 2.17).

Figure 2.17a shows how the steady state of NICD varies as the constant extracellular

VEGF input, V0, is increased, using the parameter values in Table 2.4. The homoge-

neous steady state is stable and increases non-linearly with V0. A supercritical pitch-

fork bifurcation at V0 = 0.115 causes the homogeneous steady state to become unstable

and two new stable patterning branches emerge. For a system of N cells, odd and even

cells would have steady state solutions located on each of the high and low patterning

branches, respectively.

Figure 2.17b,c shows bifurcation diagrams for efnb2a and runx1 mRNA concentrations

using the same parameter values. These bifurcation diagrams qualitatively capture

some of the key features seen in experimental data. Firstly the inclusion of Delta-

Notch coupling allows salt-and-pepper patterning of runx1 and efnb2a mRNA con-

centrations. The pattern is more exaggerated (solutions are very different in each cell)

for the runx1 response than for the efnb2a response. In other words, the stable, steady

state mRNA concentrations, in each cell, for efnb2a, remain almost homogeneous af-

ter the pitchfork bifurcation, (approximately the same as the average concentration of

the two cells) whereas the patterning branches for runx1 are quite disparate (hetero-

geneous). This behaviour is consistent with experimental observations showing that

all cells in the DA are specified as arterial from 18hpf onwards [21] whereas only cer-

tain cells are specified as runx1-positive HSC precursors at 24hpf (see Figure 1.4 for an

example).

Secondly, due to the type of functional responses for efnb2a to NICD, and runx1 to

gata2, efnb2a is more sensitive to Notch than runx1 is. Further, efnb2a requires a

smaller dose of VEGF to saturate at its maximum steady state value runx1. The pa-

rameters controlling this sensitivity are c4 and β (see equation (2.2.18)) which specify

the dose of NICD required for efnb2a and runx1 to reach their half-maximum concen-

trations. For the choice of parameter values in Table 2.4, these doses are Nij = 0.1

for efnb2a and Nij = 5.4142 for runx1 (see the dose response curves for efnb2a and

runx1 in Figure 2.18). Figure 2.17a informs us that these NICD doses are attained at

V0 = 0.0017 and V0 = 0.16. The time at which these doses of VEGF and, hence, NICD

are obtained, however, depends on the functional form of V(t).

These two features are summarised in the dose response curves for gata2, efnb2a and

55



CHAPTER 2: SYSTEMS BIOLOGY OF NOTCH SIGNALLING IN HAEMATOPOIETIC STEM

CELL SPECIFICATION

Figure 2.17: Bifurcation diagrams showing the steady state concentrations for (a)

NICD, (b) efnb2a and (c) runx1 mRNA in a two-cell system as the ex-

tracellular VEGF concentration, V0, is varied. The diagrams are pro-

duced using XPPAUT, by integrating the system of equations (2.3.8)-

(2.3.15) to steady state using the parameters in Table 2.4 and then con-

tinuing the solutions for V0 ∈ [0, 0.5]. Initial conditions for XPPAUT are

δj = 0.1063, bj = 0.5605, Nij = 0, gj = 0.1, ej = 1, rj = 1, f j = 0.3 for

j = 1, 2. A pitchfork bifurcation is found at V0 = 0.115. (b) shows that af-

ter the pitchfork bifurcation the patterning branches for efnb2a are close

together and remain approximately homogeneous as the VEGF dose is

increased over time. (c) shows that in contrast, the patterning branches

for runx1 start close together (approximately homogeneous) but quickly

separate (pattern) as the VEGF dose increases. Thus as time, and hence

VEGF, increases, cell coupling and the functonal forms for responses

downstream of Notch, induce arterial identity homogeneously but assign

the HSC fate differentially in a salt-and-pepper fashion.
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runx1 in Figure 2.18. The Figure shows the steady state mRNA concentrations for

efnb2a and runx1 marked by green and blue markers respectively. These were taken at

the last time point of a numerical simulation of a two-cell system in which equations

(2.3.8)-(2.3.15) were integrated using constant VEGF inputs of V0 = 0.115 (crosses) and

V0 = 0.5 (circles). For an extracellular VEGF concentration which increases contin-

uously over time, this Figure qualitatively demonstrates that the model can replicate

achieving homogeneous arterial identity at the early time point, 18hpf, followed by

heterogeneous HSC specification.

In Figure 2.19 we integrate the system of equations (2.3.8)-(2.3.16) using the parameter

values in Table 2.4 and initial conditions: δj = 0, bj = 0, gj = 0, ej = 0, rj = 0, f j = 1 for

j = 1, 2. This corresponds to sweeping through the bifurcation diagrams in Figure 2.17

over time. When the VEGF level increases past V(t) = 0.115, the pattern can start to

grow. However, the homogeneous steady state does not become unstable until approx-

imately 25hpf. For the system to pattern, it requires a heterogeneous perturbation of

the homoegeneous steady state at approximately 25hpf. Such a perturbation cannot be

provided via the initial conditions as it would decay back to zero. Thus, we add small

random noise to the input signal V(t) for t < 25. This seems to be sufficient to move

solutions away from the homogeneous steady state.

The VEGF input signal, V(t) (black line in Figure 2.19), saturates to ᾱ = 0.3, a loca-

tion inside the parameter window. Thus both runx1 and efnb2a admit patterns here.

The runx1 homogeneous steady state bifurcates asymmetrically and splits into two

branches of disparate solutions whose average is greater than that of the homogeneous

steady state (see Figure 2.19 blue dashed line). The efnb2a homogeneous steady state,

however, is already near its maximum when the system reaches the pitchfork. After

the pitchfork bifurcation the patterning branches for efnb2a admit similar solutions, as

required.
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Figure 2.18: Dose responses of gata2, efnb2a and runx1 mRNA concentrations to

NICD for parameters as per Table 2.4. Overlaid are green (blue) crosses

and circles marking the steady state concentrations of efnb2a (runx1) for

low and high extracellular VEGF concentrations respectively, taken from

the last time point of a two-cell simulation in which equations (2.3.8)-

(2.3.15) were integrated. Parameters used were as per Table 2.4 and sim-

ulations were started at 0 for all variables except Ni1 = 0.1. Since V0 ∝ t,

The circles and crosses correspond to the extracellular VEGF concentra-

tion at early and late time points respectively. The green crosses show that

for low VEGF signals, the steady state mRNA concentration for efnb2a

in both cells is high and homogeneous whereas the blue crosses show

that the steady state mRNA concentration for runx1 is low in both cells.

The circles show that in high VEGF concentrations which drive the high

Notch signal from 24 hpf, the efnb2a concentration remains high and ho-

mogeneous (green circles) whereas the runx1 concentration is patterned

i.e. high in one cell and low in the other (blue circles). Hence this model

qualitatively mimics early homogeneous arterial identity followed by dif-

ferential HSC selection at 24hpf. An example of non-homogeneous runx1

mRNA expression observed in the DA is shown in Figure 1.4, albeit not

salt-and-pepper.
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Figure 2.19: Timecourses for gata2, efnb2a and runx1 mRNA concentrations in a two-

cell system, calculated by integrating the system of equations (2.3.8)-

(2.3.16) using initial conditions δj = 0, bj = 0, gj = 0, ej = 0, rj = 0, f j = 1

for j = 1, 2 and parameter values as per Table 2.4. We integrate the sys-

tem to t = 200h which allows V(t) (black line) to saturate to ᾱ = 0.3

such that the system comes to rest inside the patterning window seen in

Figures 2.17. Although the pitchfork bifurcation is located at V0 = 0.115,

the pattern in runx1 mRNA expression does not manifest until V0 ≈ 0.2.

For the parameter values used here, patterning acts to amplify the aver-

age runx1 mRNA concentration relative to the homogeneous steady state

(blue dashed line). Solid lines and stars represent solutions in cells 1 and

2 respectively.
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Parameter Physical Meaning Estimated value

ᾱ Maximum rate of Delta production 0.3

h Concentration of NICD at which inhibition of

Delta is half-maximal

3.5

h1 Time at which the VEGF concentration is at half

of its maximum value (shifted by 17h)

1h

n Strength of lateral inhibition from bound Notch

receptors

6

m Response strength of runx1 to gata2 3

k−B Dissociation rate for bound Notch receptors 0.25h−1

k̄B Association rate of Delta and Notch 1h−1

µ Decay rate of Delta ligand 1h−1

k2 NICD per bound Notch 15

c1 Maximum rate of gata2 production 1

c2 Concentration of Notch at which the transcrip-

tion rate of gata2 is half-maximal

175

c4 Concentration of Notch at which the transcrip-

tion rate of efnb2a is half-maximal

0.1

c6 Concentration of gata-2 at which the transcrip-

tion rate of runx1 is half-maximal

0.03

D mRNA degradation rate 1h−1

ĉ6 Sensitivity of runx1 to gata2 c6D
c1

= 0.03

Table 2.4: Parameter values used to numerically simulate equations (2.3.8)-(2.3.16) in

Figure 2.19. (Concentrations are in units of 1× 10−7M).
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2.4 Experimental techniques

In this section, the methodology for acquiring the quantitative experimental data to

validate our models with is explained. We use quantitative PCR (qPCR) to measure the

relative expression levels of efnb2a, runx1 and flt4 in ECs but there is a large amount

of experimental work required before such data can be obtained.

2.4.1 Transgenic zebrafish lines

In order to identify cells in the embryo we use two transgenic zebrafish lines. The first

is the flk1:gfp line which uses the endothelial specific promoter of the flk1 gene to drive

expression of green fluorescent protein (GFP) in endothelial cells (see Figure 2.20a).

The second zebrafish line is the Notch reporter, 12×CSL:mCherry, which consists of

12 CSL binding sites in front of a minimal promoter that drives expression of the red

fluorescent protein, mCherry, in response to binding of the NICD-CSL complex in cells

receiving a Notch signal. Figure 2.20(b) shows the expression pattern of the Notch

reporter in the 12×CSL:Cerulean line which has an identical expression pattern to the

12×CSL:mCherry line except this line fluoresces in the blue cerulean protein instead of

the red mCherry protein. A third Notch reporter line, also identical in expression level,

is the 12×CSL:Venus line shown in Figure 2.5.

Each fluorescent protein can only be detected after stimulation by the appropriate

wavelength of light. Visualisation also requires a filter with an appropriate bandwidth

to view the emitted wavelengths of light.

By crossing flk1:gfp fish with 12×CSL:mCherry fish, double transgenic embryos which

express both transgenes and hence both fluorescent proteins, are generated (see Figure

2.20(c)).

We aim to acquire ECs in which runx1 will be expressed. These are located in the DA

(arrow in Figure 2.20(a)) which has a higher flk1:gfp expression level than the PCV,

thus making it appear more fluorescent.

2.4.2 Embryo dissociation and preparation of cell suspension

For each biological replicate, N double transgenic flk1:gfp; 12×CSL:Cerulean sec-

tions/embryos2 are incubated in Liberase Blendzyme in 1× Hanks Balanced Salt Solu-

2Using the trunk sections (without heads or tails) removes non-endothelial parts of the embryo which

dilute the changes in the EC gene expression we are trying to detect
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(a) flk1:gfp (b) 12×CSL:Cerulean (c) flk1:gfp; 12×CSL:Cerulean

Figure 2.20: (a) Hybrid bright-field/dark-field image of a 24hpf flk1:gfp embryo

shows gfp expression in ECs which comprise the trunk and head vascu-

lature. The gfp expression is high in the DA and low in the PCV. We will

take advantage of this to sort arterial ECs. Labelled: Dorsal Aorta - DA,

Posterior Cardinal Vein - PCV, Intersomitic Vessel - ISV. (b) Notch reporter

expression in the trunk: Cerulean expression marks cells receiving an ac-

tive Notch signal. Arrow shows the DA which is Cerulean positive. (c)

Double transgenic flk1:gfp; 12×CSL:Cerulean embryo. The DA expresses

both GFP and Cerulean proteins. Arrowheads show the dorsolateral and

ventral walls of the DA.

tion (HBSS) at 31 ◦C for 1 hour, where

N ≈

200 20hpf whole embryos

100 23 and 27hpf trunk sections
. (2.4.1)

The embryos are dissociated by periodically macerating with a P1000 pipette whilst

incubated in the Liberase Blendzyme. The resulting cell suspension is strained through

a 40µm cell strainer and the cells are pelleted and washed three times by centrifugation

in 5% fetal calf serum (FCS) in 0.9 × phosphate buffered saline (PBS), at 1500 rpm for

5 mins. The final resuspension in 300µL of FCS/PBS is taken to the FAC sorter for cell

sorting.

The same procedure is also repeated for 200 single transgenic flk1:gfp embryos, 200

single transgenic 12×CSL:mCherry embryos and 200 wild type embryos which are not

fluorescent. These are used as controls in the FAC sorting experiments described in the

next section.

2.4.3 Fluorescence-activated cell sorting (FACS)

ECs are sorted using a FAC sorter as shown in Figure 2.21(a). We exploit the increased

activity of the flk1 promoter in the aortic endothelium which causes the DA to fluoresce

at a higher level than the PCV. Using the control embryos we define cut-off points,
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called gates, based on the background expression level of gfp and mCherry in con-

trol embryos. Gates define boundaries between gfphigh (assumed arterial) and gfplow

(assumed venous) cells. Cells identified as gfphigh are sorted into 350µL of extraction

buffer.

(a) flk1:gfp

gfp 

ce
ru

le
an

 

(b) cells after one gfp+ sort

Figure 2.21: (a) A jet of liquid, to which the cell suspension is added, is ejected from a

nozzle such that it splits into droplets, each containing a single cell from

the suspension. A laser then examines each droplet. If the droplet con-

tains a fluorescent cell, then the reflected light is analysed by a computer

which applies an appropriate charge to the droplet. Charged deflection

plates attract (or repel) the droplets into the appropriate collecting tubes.

(Image in (a) from www.abcam.com) (b) A typical FACS plot in which the

x and y axes represent gfp and cerulean fluorescence respectively. Cells

in the gfphi region are identified as arterial ECs (although later we find

that not all of these cells may be arterial) and are sorted for further down-

stream analysis (see §2.4.4). Cells from the gfplo region are identified as

venous cells.

2.4.4 RNA extraction, cDNA synthesis and real-time qPCR

Using the RNeasy micro kit, the FAC-sorted gfphi cells are lysed and their messenger

RNA (referred to as RNA) is extracted. During extraction, it is common for genomic

DNA also to be carried over, resulting in an aqueous solution of RNA and some DNA.

Therefore this solution is DNAse treated to prevent contamination from genomic DNA

at later stages of the procedure. During this step, the DNAse enzyme digests and

breaks down genomic DNA, removing it from the sample. Following DNAse treat-

ment, the assumed pure RNA is pelleted by centifugation and resuspended in 14µL

of nuclease-free H20. Approximately 2-3 µL of this liquid is dead volume, leaving

10− 12µL to be used in the reverse transcription step. Approximately 5µL is reverse

transcribed to form double-stranded complementary DNA (cDNA). The remaining
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5µL is used as a minus-RT control.3

cDNA is generated by placing solutions of individual nucleotides and RNA into a re-

verse transcription reaction with a reverse transcriptase enzyme. The enzyme adds

complementary nucleotides to the RNA strand, converting it to a double-stranded

cDNA molecule. The cDNA differs from double stranded, genomic DNA in that it

only contains nucleotides comprising the exons of genes involved in processes further

downstream such as translation into proteins. Genomic DNA, however, also contains

nucleotides which code for introns. After transcription, introns are removed from the

primary transcript in a process called splicing. Thus the cDNA obtained from a reverse

transcription reaction is a double stranded representation of genes which are being ac-

tively transcribed.

The reverse transcription occurs in a 20µL reaction and both cDNA and minus-RT sam-

ples are diluted 1 in 3 to give a total volume of 60µL to be used as templates in qPCR

reactions.

qPCR is the amplification of cDNA template in a three-step process inside a thermo-

cycler which is able, rapidly, to heat (and cool) samples. Individual nucleotides, taq

polymerase enzyme and short (approximately 20 base pair) specifically designed sin-

gle stranded sequences called forward and reverse primers and a TaqMan probe are

added to the reaction mixture (see 2.22a). The TaqMan probe has a fluorophore at-

tached at one end and a quencher at the opposite end. The quencher prevents emission

of fluorescence from the fluorophore whilst the two ends are in close proximity.

Step 1 is the denaturing or melting step. The temperature is raised to 94◦C and the dou-

ble stranded cDNA separates into two single strands (see Figure 2.22b). Step 2 is the

annealing step and involves lowering the temperature to approximately 60◦C so that

the complementary taqman probe and forward and reverse primers can bind to their

specific sequences (see Figure 2.22c). Step 3 is called elongation and involves increas-

ing the temperature to approximately 70◦C which is the optimum temperature for taq

polymerase to extend the primers by successively adding the individual nucleotides

(see Figure 2.22c). Elongation results in twice the number of cDNA molecules. During

the elongation phase, the taq polymerase digests the taqman probe, which binds be-

tween the forward and reverse primers, releasing the fluorophore from the vicinity of

the quencher. This allows the fluorescence to be detected by the thermocycler. These

three steps constitute a cycle of amplification and are typically repeated 25-40 times.

The accumulation of fluorescence at each cycle, results in curves of fluorescence in-

3A minus-RT sample undergoes an identical reverse transcription reaction except the reverse transcrip-

tase enzyme is replaced with H2O

64



CHAPTER 2: SYSTEMS BIOLOGY OF NOTCH SIGNALLING IN HAEMATOPOIETIC STEM

CELL SPECIFICATION

tensity vs cycle number such as those in Figure 2.23. The point at which the detected

fluorescence is statistically significantly greater than the background fluorscence level,

denoted fluorescent threshold in Figure 2.23, is called the cycle threshold value, Ct. The

fluorescent threshold and Ct values are automatically calculated by the thermocycler’s

software. Initially, the cDNA template is limiting and the reagents are in excess, caus-

ing an exponential increase in fluorescence with cycle number. Once enough template

has accumulated, the taq polymerase becomes saturated with template and the reaction

enters the linear phase where the fluorescence increases proportionally to cycle number.

After some time, the reagents, most likely the individual nucleotides, become used up

and limiting and, hence, amplification stops, causing the fluorescence level to plateau.

Theoretically, different samples with the same fluorescence level contain the same num-

ber of molecules, thus the earlier a sample is detected on the plot, the greater the initial

number of molecules and the smaller the Ct value.

The Ct value is inversely proportional to the inverse of the initial number of molecules,

N0:

Ct ∝
1

log2N0
(2.4.2)

=⇒ N0 = k̄2−Ct , (2.4.3)

where k̄ is the number of molecules present after Ct cycles of amplification.

Figure 2.23 shows Ct values for samples identified on the basis of colour and each

cDNA sample was derived by diluting the previous sample 1 in 2. Thus, assuming the

red sample has concentration a0µg/µL, then the orange, lime green, green, cyan and

indigo samples have concentrations given by a0
2 , a0

4 , a0
8 , a0

16 and a0
32 µg/µL respectively.

Assuming the volume of each sample is the same, the number of molecules per sample

is also half that of the previous sample in the sequence.

Suppose we want to find the ratio of initial copy numbers r0 and o0 of the red and

orange samples which have Ct values given by Ctr and Cto respectively (see Figure

2.23), then from equation (2.4.3) it follows that

r0

o0
=

k1

k2

2−Ctr

2−Ct0
.

Since the number of molecules detected at the fluorescence threshold is theoretically the

same, we must have k1 = k2. Thus the ratio of initial copy numbers is given by

r0

o0
= 2Cto−Ctr ≡ 2∆Ct . (2.4.4)

In 2.4.4, Ctr − Cto is also known as the ∆Ct value. Figure 2.23 shows that Cto − Ctr = 1
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(marked with *), and therefore

r0 = 2o0 , (2.4.5)

i.e. 1 in 2 dilutions correspond to a 1 cycle shift. It also follows that 1 in 4 dilutions

result in a 2 cycle shift, etc (see ** in Figure 2.23 where Ctv−Ctm = 2). This is commonly

referred to as the comparative ∆Ct method [107]. The qPCR data are analysed using

the comparative CT method of [107] in Microsoft Excel.

The experimental procedures described here were carried out by myself in the Gering

lab. In the next section, we demonstrate how a simple ODE model can be fitted to the

∆Ct values obtained from qPCR experiments.

2.5 Parameter estimation in a model for efnb2a and runx1 acti-

vation by Notch signalling

In this section we fit our model to experimental qPCR data generated using the meth-

ods described above. We identify those parameter values which minimise the error

between the experimental data from qPCR experiments and the output from the ODE

model. In equations (2.2.4) we assume that the NICD input initiates at t = 17hpf there-

after increases linearly over time so that

Ni(t) = Cn(t− 17)H(t− 17) . (2.5.1)

The parameters to be fitted are c2, c4, ĉ6 and Cn, where Cn is the rate at which the NICD

input signal increases.

The experimental data are presented in the form of ∆Ct values, as described above (see

Table 2.5). They are the differences between Ct values for flt4, runx1, efnb2a and the

housekeeping gene ef1-α.

Equation (2.4.4) shows that exponentiating the negative ∆Ct values converts them to

concentrations relative to a particular gene, which in our case is the housekeeping gene,

ef1α that has a constitutive and constant expression pattern over the time course for

which we have. We average the ∆Ct values at each time point and transform the data

to give relative concentrations (see Table 2.6).

The data shows a temporal increase in the flt4 gene expression which does not agree

with the in-situ hybridisation experiments in [50, 54, 56]. Possible reasons for this dis-

crepancy are discussed at the end of this chapter. Currently, we ignore the flt4 experi-

mental data and focus on fitting to the efnb2a and runx1 data only.
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Figure 2.22: Figure showing the 3 steps of the TaqMan qPCR assay, as described in

§2.4.4 of the text.
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Figure 2.23: qPCR amplification plot of relative fluorescence vs cycle number for a

dilution series of cDNA samples named after their colour. Each of the

coloured curves correspond to cDNA samples obtained by sequentially

diluting the red sample 1 in 2. For instance, let us assume the sample

corresponding to the red curve has concentration a0µg/µL, then the or-

ange, lime green, green, cyan and indigo curves have concentrations a0
2 ,

a0
4 , a0

8 , a0
16 and a0

32 µg/µL respectively. The violet and magenta samples

were obatined by sequentially diluting the indigo sample 1 in 4. Thus 1

in 2 dilutions correspond to a 1 cycle change in Ct value and 1 in 4 dilu-

tions correspond to a 2 cycle change (see equation 2.4.4).

68



CHAPTER 2: SYSTEMS BIOLOGY OF NOTCH SIGNALLING IN HAEMATOPOIETIC STEM

CELL SPECIFICATION

Time point (hpf) flt4 runx1 efnb2a

20 4.7575 11.1749 8.3005

20 5.0920 12.1763 8.5105

20 6.1923 11.3020 8.7884

23 4.0893 11.0295 7.4586

27 3.2540 10.4049 7.5120

27 3.1053 9.0639 7.5137

Table 2.5: ∆Ct values generated from qPCR experiments where. ∆Ci
t = Ci

t −Cef1α
t and

i = flt4, runx1 and efnb2a. There are three biological replicates at 20hpf, one

replicate at 23hpf and two at 27hpf.

Time point (hpf) flt4 runx1 efnb2a

20 0.024565 0.00033326 0.0026994

23 0.058749 0.00047840 0.0056851

27 0.11036 0.0011739 0.0054719

Table 2.6: 2−∆Ct values generated for flt4, runx1 and efnb2a by using equation (2.4.4)

and exponentiating the values in Table 2.5. Runx1 and efnb2a data both

increase over time. Efnb2a data decrease slightly at the last time point.

The increase in efnb2a data is initially large and then appears to saturate

whereas runx1 data is initially low and increases quickly after 23hpf sug-

gesting that efnb2a data reach high levels relatively quickly, compared to

runx1. In contrast to other experimental results, flt4 data also increase over

time, suggesting that FAC sorting cells using the flk1:gfp zebrafish line is

not sufficient to reliably sort arterial ECs based on high gfp expression.
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We note that the mRNA concentrations in (2.2.4) are scaled on the ratio of the maximal

production rate to the mRNA decay rate. The experimental data, however, still has

some scale. In other words, they are not measured relative to a reference value. There-

fore, for each gene, we divide each data point by the largest data point and fit the ODE

model parameters to this normalised data using a least squares approach. This is done

using the fmincon function in MATLAB. The function to be minimised is

J(Xdata
i , Xmodel

i ) =
M

∑
j=1

N

∑
i=1

wij

(
Xdata

i − Xmodel
i

)2

j
(2.5.2)

where M = 2 is the number of genes (efnb2a and runx1) and N = 3 is the number of

data points (20,23,27hpf), subject to the constraints c2, c4, ĉ6, Cn > 0. Figure 2.24 shows

the lowest 80% of the optimal fits obtained for these four parameters using 400 random

initial guesses, and also the top 15 of these which have the shortest minimised distance.

The fits show that the initial gradient of efnb2a is steeper than that of runx1 implying

that efnb2a responds slightly faster to the Notch input signal than runx1. However the

data points for runx1 at 20 and 23hpf are somewhat lower than the data point at 27hpf

suggesting that fitting a sigmoid response function for runx1 to gata2 or gata2 to NICD

may be more appropriate.

We note that our model assumes no basal transcription for gata2, efnb2a or runx1.

Therefore their concentrations are always zero until Notch activation at 17hpf. The

data suggest that there may be a baseline level of expression before Notch activation:

by including this we will likely obtain better fits.

2.6 Conclusions and further work

The aim of this chapter was to increase our understanding of how Notch signalling

controls arterial specification and HSC specification by using a combination of math-

ematical modelling and experimental data and observations. We began by presenting

experimental evidence from the literature which supports the hypothesis that Notch

signalling is needed twice during embryonic devlopment: once, at low levels, to spec-

ify the arterial identity of ECs of the DA and later, at higher levels, to specify HSC

identity. Arterial and HSC specification are characterised by the expression of efnb2a

and runx1, respectively, in the embryo.

To test how different levels of NICD may influence the expression of efnb2a and runx1,

we developed three ODE models, which can be applied to either a single cell or a homo-

geneous population of cells. In each model, efnb2a is a direct target of Notch signalling,
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Figure 2.24: The upper 4 plots show histograms of the lowest 80% of optimally fit-

ted parameter values for each of c2, c4, ĉ6, Cn. Each plot is obtained by

minimising the cost function in equation (2.5.2) 400 times, starting with a

random initial guess. This was implemented using the fmincon function

in MATLAB. The fits are sorted in ascending order (best fit to worst fit)

and the ODE model solutions for the top 15 fits which have the smallest

minimised errors are plotted in the lower 4 plots. We also note that the

data for flt4 have not been fitted here due to inconsistencies with previous

experimental evidence.
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as is the gene gata2, which in turn drives expression of runx1. These interactions are

supported by evidence from experimental data in zebrafish, mouse and human en-

dothelial cell lines [24, 34, 35]. For each ODE model, we considered dose responses of

efnb2a and runx1 to NICD and runx1 to gata2. We also considered the behaviour of

quasi-steady solutions for efnb2a, gata2 and runx1 and the full time-dependent sys-

tem of ODEs, which are driven by a prescribed linearly increasing signal of NICD:

Ni(t) = t.

In the first model, we considered the system of ODEs in equations (2.2.4) which used

Michaelis-Menten kinetics, derived from Shea-Ackers type expressions, for transcrip-

tional regulation. We demonstrated that, by satisfying the conditions associated with

the half-maximal concentration parameters for runx1 and efnb2a, runx1 could be made

to respond more slowly to the NICD input than efnb2a, in our model. For the linearly

increasing Notch input, Ni(t) = t, high levels of Notch induced runx1 mRNA ex-

pression at later times and low levels induced efnb2a expression at earlier times. The

model predicted that gata2’s sensitivity to NICD was more important runx1’s sensitiv-

ity to gata2 in determining the delay in runx1 induction relative to efnb2a. This result

is not entirely obvious as one would assume that runx1’s sensitivity to gata2 is equally

as important as gata2’s sensitivity to NICD. Further experimental work in zebrafish

may need to investigate the role of gata2 more closely in induction of runx1 expression

downstream of Notch.

In the second model (equations (2.2.4)), we also used Michaelis Menten kinetics for

transcription, however, runx1 was modelled using a sigmoidal, Hill function type re-

sponse to gata2. Similar conditions were derived as in the previous model to achieve

a delayed runx1 response to Notch, relative to efnb2a. For the same parameter values,

this model achieves a larger transcriptional delay as the initial gradient of the response

curve is shallower for Hill functions with Hill coefficients > 1 than for those with Hill

coefficients equal to 1.

The third model assumed a sigmoidal response of gata2 to NICD with the remaining

responses as per the first model. For the same parameter values, the runx1 delay in this

model is longer than the delay from the first model and slightly shorter than the delay

from the second model.

We also investigated the role of cell coupling on the downstream responses. Figure

2.6 indicates the presence of several feedback loops. We chose to model the feedback

loop in which the VEGF receptors flk1 and flt4 activate Delta and Notch signalling

without explicitly incorporating the binding processes into the model. Instead of NICD

repressing flk1 and flt4, which in turn are responsible for activating Delta and Notch
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production, we introduce Delta and Notch binding in a two-cell system in which the

production rate of Delta is a decreasing function of NICD and a temporally increasing,

saturating function of extracellular VEGF. We show that this model exhibits salt and

pepper patterns in which alternate cells express high and low levels of NICD leading

to high and low levels of efnb2a and runx1.

Using parameter values from the literature (see Table 2.3), we varied the parameters

whilst keping them at the same order of magnitude to see if the lateral inhibition driven

patterning mechanism of the model could recapitulate the gene expression seen in flu-

orescent in-situ data whereby efnb2a expression is homogeneously specified in all cells

of the DA but runx1 expression is only seen in a subset of cells (see Figure 1.4). A

key difference between the model behaviour and the in-situ hybridisation is that the

in-situ data does not show salt-and-pepper patterning for runx1 expression. For the

realistic parameter values used here, the solutions for runx1 bifurcated symmetrically

from a large value of runx1 (see Figure 2.16). This meant that the pattern was unable

to amplify the average mRNA concentration relative to the homogeneous steady state.

Using a less physically realistic parameter set (see Table 2.4), runx1 bifurcated asym-

metrically and, as such, the pattern was able to contribute to an increase in the average

level of runx1 (see Figure 2.19). The latter parameter set also allowed induction of

efnb2a before runx1.

The two-cell models considered here exhibit patterning driven by the lateral inhibition

mechanism. We have assumed this to be mediated by VEGF–VEGF receptor bind-

ing although this is not explicitly included in our model (see Figure 2.15). Including

VEGF–VEGF receptor interactions into the current model is another potential avenue

for future work as the binding kinetics can generate their own interesting dynamics.

These dynamics are explored more extensively, in the context of tip cell selection in

Chapters 3 and 4.

Details of the experimental techniques used to acquire the mRNA from arterial ECs

were also presented, followed by a detailed description of qPCR and the numerical

output that it generated.

Lastly we fitted the parameters of the first model to qPCR data. In analysing the data

we noticed that, contrary to in-situ hybridisation data from the literature [50, 54, 56],

the flt4 concentration was increasing in the DA EC population from 20 to 27hpf (see

Table 2.6). Initially we sorted gfp+ cells from whole embryos and found that the in-

crease in flt4 expression was very large from 20-27hpf. We assumed that RNA from

non-specific tissues may have been interfering with or overriding the expression from

the DA, especially since there are many gfp+ cells in the head vasculature (see Figure
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2.20a), which would have been sorted as gfphigh cells. Therefore we decided to remove

the head region and the tail region of the embryo, as neither contribute to the central

trunk region in which HSCs are specified. We managed to reduce the temporal increase

in flt4 but we never obtained qPCR data showing the temporal downregulation of flt4

in the gfphigh cells.

One possible explanation is the presence of gfphigh cells in the PCV which are venous

in identity. Herbert and colleagues argue that the PCV is formed as a result of selective

sprouting of DA ECs. In this process, DA ECs leave the vessel from 21-24 hpf and mi-

grate ventrally to contribute to the formation of the adjacent PCV [29]. However the

authors do not specify the number of cells involved in ventral sprouting or the relative

contribution of their proposed mechanism to the formation of the PCV. If this mecha-

nism were to contribute a significant number of cells to the PCV then these cells would

remain gfphigh in our transgenic flk1:gfp embryos because the gfp protein is relatively

stable. Since these cells would have switched off arterial markers and switched on ve-

nous markers, flt4 would not be downregulated in them. If this were the case, we could

be misidetifying venous gfphigh ECs as arterial ECs, and we would need to rely on a

transgene other than flk1:gfp to identify and sort the arterial ECs.

The efnb2a and runx1 data, however, appeared to be increasing in the expected way.

We fitted the model to their data points and the fits looked as expected. The runx1 fit

would likely be better if we modelled runx1 or gata2 using the sigmoidal responses

of our second and third models, albeit a more phenomenological choice, rather than

using a Michaelis-Menten type expression. Thus we propose that fitting this model to

the data be left for future work. We also note that at 20hpf, the expression of both runx1

and efnb2a is not zero. As such, other future work could involve incorporating basal

transcription into these models and fitting them to the data.

Our experimental data was limited in terms of the number of time points and the num-

ber of replicates performed at each time point. Each experiment required us to grow

approximately 800 embryos, including embryos used for fluorescent colour controls, to

the age of 20, 23 or 27 hpf. We found it difficult to keep all 800 of these embryos growing

at the same rate as embryo growth was sensitive to changes in temperature. This meant

that, in a sample of 200 embryos, there were slight differences in the ages of individual

embryos. Hence the experimental time points needed to be kept sufficiently apart or

one sample, for example the 23hpf sample, may have contained embryos which fell

into the category of another time point, the 20hpf sample for instance. Future mod-

elling work may also need to take into account the variabity in the time point being

measured.
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Lastly, the number of replicates is low because the FACS facility was not always avail-

able for us to use. There was the possibility of sorting our samples at another institu-

tion, for example, but this would bring about other complications such as transport of

cell samples and cell viability.
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CHAPTER 3

An Ordinary Differential Equation

Model of VEGF–Delta–Notch

Signalling in Angiogenic Tip Cell

Selection

3.1 Introduction

Angiogenesis is the outgrowth of new blood vessels from existing vessels and involves

the processes of capillary sprouting, endothelial cell (EC) proliferation and vessel re-

modelling [23]. It is essential in reproduction, development and wound repair [39, 108,

109] and also plays a key role in tumour growth and metastasis [7, 23]. Angiogenesis

proceeds when ECs respond to chemoattractants such as epidermal growth factor, fi-

broblast growth factor and transforming growth factor families. The best characterised

chemoattractant is VEGF-A which is a member of the vascular endothelial growth fac-

tor (VEGF) family of growth factors. VEGF-A stimulates sprouting of tip cells from the

parent vessel which lead the angiogenic sprout, migrating via chemotaxis, towards the

source of growth factor. Tip cells further respond by extending long, thin extensions

of the cell membrane called filopodia which locate areas of higher VEGF concentra-

tions, allowing rapid capillary growth up spatial gradients of VEGF. [23, 110, 111]. We

explore filopodia dynamics in more detail in the next chapter.

This work develops a simple ODE model of the first stage of angiogenesis, during

which tip cells are selected from ECs lining existing blood vessels.

During the earliest stages of angiogenesis, before sprouting, in addition to responding
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to VEGF, individual ECs are also regulated by interactions with neighbouring cells. In

particular, differential selection for the tip cell fate is controlled by the interaction of

Notch receptors with Delta ligands on adjacent ECs. Experimental observations rein-

force the importance of VEGF and Notch pathway ligands and receptors in angiogen-

esis. In particular, knockout mice with a homozygous deletion for the genes encoding

VEGF-A or any of the 3 mammalian VEGF receptors display embryonic lethality due to

vascular malformations as do mice with a heterozygous deleton of VEGF-A [112]. Sim-

ilarly, deletion of the Notch receptors, Notch1 and Notch4, is lethal as is, the heterozy-

gous deletion of the Notch ligand Delta-like 4 (Dll4). These mice die due to vascular

remodelling defects and arteriovenous malformations [11, 26, 113].

The key interactions between the VEGF and Notch signalling pathways during tip cell

selection, can be summarised in two steps: (1) VEGF binds and activates its receptor,

VEGFR-2, leading to up-regulation of Dll4; (2) Dll4 binds and activates Notch receptors

on neighbouring cells to down-regulate VEGFR-2 expression in those cells. [9, 47, 49,

62, 109]. The resulting Delta-Notch lateral inhibition feedback generates a spatial pat-

tern of cells where alternating cells are selected for different fates: a “salt and pepper"

pattern of tip cells separated by one or two stalk cells [81, 109].

We here develop a system of ODEs which exhibits this feedback and subsequent pat-

terning and accounts for similar outcomes as those modelled by Bentley et al. in their

agent-based simulations [81]. Their model, which is defined on a 3D lattice, simulates

a ten EC-long capillary whose cells can extend and retract filopodia. The filopodia and

cells both contain VEGF receptors which can bind to VEGF in the surrounding envi-

ronment and each cell communicates to its neighbours via Delta-Notch signalling. The

model exhibits salt-and-pepper patterns and hypothesises phenomena such as oscilla-

tions between the tip and stalk cell fate in high VEGF environments. The authors assess

the tip cell phenotype, pattern formation and pattern stability by scoring the system

post-simulation. Being an agent based model, it is not amenable to much mathemat-

ical analysis. Such models lack the rigorous analytical tools that differential equation

models have available to them, especially those from dynamical systems theory such

as bifurcation analysis and linear stability analysis. These techniques are invaluable for

understanding the mechanisms by which pattern formation occurs and in this chapter

they are used to characterise the existence and stability of the model’s steady states.

In § 3 we consider a simple model of VEGF - Delta - Notch interactions while neglecting

the growth of filopodia. By first examining a system of 2-cells in a spatially homoge-

neous distribution of VEGF, we show that if the feedback strengths for the activation

of Delta and inhibition of VEGF Receptor-2 (VEGFR-2) are sufficiently strong then the
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cells can enter a heterogeneous steady state where one cell has higher levels of bound

VEGFR-2 and Dll4 and lower levels of bound Notch receptors, corresponding to the

tip cell fate and the other cell has lower levels of VEGFR-2 and Dll4 but a high level of

bound Notch, corresponding to the stalk cell fate. By performing numerical bifurcation

analysis using xppaut, we show that a heterogeneous steady state will not occur if the

level of extracellular VEGF ligand is either too high or low.

In §3.5, for purposes of tractability, we assume a quasi-steady state for bound VEGFR-2

and carry out linear stability analysis on this system to find its steady state bifurcations.

This allows us to determine the growth rate of different perturbations and hence to

identify any patterning modes. We use the Routh-Hurwitz stability criteria to define

conditions which must hold for the model to exhibit the period-2, “salt and pepper”

pattern and show that is the dominant unstable mode. We also identify regions of

parameter space, corresponding to the strengths of Dll4 and VEGFR-2 production, in

which the system admits the “salt-and-pepper” steady states. Linear stability analysis

is then used to characterise their local stability.

3.2 Model overview

We consider a string of N endothelial cells (ECs) signalling via the VEGF–Delta–Notch

system and with negligible filopodia growth (Figure 3.1). VEGF is assumed to be se-

creted by nearby tissues which may include hypoxic cells in the case of a tumour,

macrophages in wound healing or somite cells during zebrafish development. We

assume that the VEGF level is not depleted and that VEGF receptors (VEGFR-2) are

uniformly distributed over the cell membranes. Any delays between VEGF binding to

VEGFR-2 and production of Dll4 (Delta); between production of Dll4 and binding to a

Notch receptor of an adjacent cell; between Delta-Notch binding and the down regula-

tion of VEGFR-2 are ignored, as are recovery delays representing the time before gene

expression returns to normal [81].

Denoting the jth EC in the string of cells by j ∈ 1, 2, ..., N the binding and unbinding

reactions for VEGF with VEGFR-2 and Delta with Notch are the following

V + RUj
kVR



k−VR
RBj (3.2.1)

∆j±1 + Nj
kB



k−B
Bj (3.2.2)

where

• V represents the concentration of extracellular VEGF molecules adjacent to the

upper surface of the ECs,
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• RUj− the concentration of unbound VEGFR-2 molecules on the surface of cell j,

• RBj− the concentration of bound VEGFR-2 molecules on the surface of cell j,

• ∆j− the concentration of Dll4 ligand molecules on the surface of cell j,

• Nj− the concentration of unbound Notch receptor molecules on the surface of

cell j,

• Bj− the concentration of bound Delta-Notch receptor complexes on the surface

of cell j.

VEGF can also bind VEGF Receptor-1 (VEGFR-1) and its soluble form sFlt1, a “scav-

enger" receptor which sequesters VEGF and hence reduces signalling via VEGFR-2

[58]. By interpreting V as the number of VEGF molecules available to VEGFR-2 af-

ter VEGFR-1 binding has taken place, that is, V = VsinkVtotal where Vtotal is the total

number of VEGF molecules and Vsink is the proportion of Vtotal left for VEGFR-2 bind-

ing [81], we decide to neglect explicit binding of VEGFR-1.

Reactions (3.2.1) and (3.2.2) and their interactions are illustrated in Figure 3.1 for a pair

of adjacent cells.

Figure 3.1: A self-made cartoon of the VEGF - Delta - Notch feedback loop in a string

of N cells (shown for N = 2). VEGF binding to VEGFR-2 induces Dll4

expression, which in turn binds to Notch receptors on adjacent cells, sup-

pressing VEGFR-2 expression. Interactions between Delta and Notch on

the same cell or from bound VEGFR-2 onto Notch receptors is neglected

for simplicity.

In this model cell j may interact with cells, j± 1 so that, for example, in reaction (3.2.2),
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the Delta molecules from cells j± 1 interact with the Notch molecules from cell j. For

simplicity we assume that Notch receptors on cell j cannot be bound and activated by

Delta ligands on the same cell as is the case in other models [74]. We model the VEGF

- VEGFR-2 and Delta - Notch binding processes in reactions (3.2.1) and (3.2.2) using

the law of mass action. The activation of Dll4 by bound VEGFR-2 and the inhibition of

VEGFR-2 by bound Notch receptor complexes constitute two types of feedback in the

model and define the rates of production for Dll4 and VEGFR-2 which we model using

the functions g and f respectively. We also assume that Dll4 and unbound VEGFR-2

are linearly degraded. No production or decay is assumed for Notch receptors and

hence they are conserved in the model.

Using these principles, the following system of ODEs is used to describe the concen-

trations of ligands/receptors in cell j:

dRUj

dt
= f (Bj)︸ ︷︷ ︸

down-regulation of VEGFR-2

+k−VRRBj − kVRVRUj − λRUj︸ ︷︷ ︸
internalisation

, (3.2.3)

dRBj

dt
= kVRVRUj − k−VRRBj , (3.2.4)

d∆j

dt
= g(RBj)︸ ︷︷ ︸

increase in Dll4 production

+k−B

(Bj−1 + Bj+1

2

)
− kB∆j

(Nj−1 + Nj+1

2

)
− µ∆j︸︷︷︸

decay

,

(3.2.5)

dNj

dt
= k−BBj − kB

(∆j−1 + ∆j+1

2

)
Nj , (3.2.6)

dBj

dt
= kB

(∆j−1 + ∆j+1

2

)
Nj − k−BBj . (3.2.7)

The total concentration of Notch receptors is denoted by Ntot. We assume a fixed cell

volume so that the concentration, Ntot, is proportional to the number of Notch recep-

tors. Thus Ntot is given by the sum of bound and unbound receptor concentrations at

any given point in time. Initial and boundary conditions used in numerical simulations

are given in §3.2.1.

We choose f to be a positive, monotonically decreasing function of bound Notch re-

ceptors representing its down-regulation of VEGFR-2 and we choose g to be a positive,

monotonically increasing function of bound VEGFR-2, representing its activation of

Dll4. In our numerical simulations, we use the following functional forms for f (.) and

g(.):

f (x) =
RU0

1 + (x/b)m and g(x) = gmax
xn

xn + an . (3.2.8)
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In (3.2.8) the parameters RU0 and gmax are the maximal production rates of VEGF re-

ceptor and Dll4 respectively; b and a are the concentrations of bound Notch and bound

VEGF receptor at which the production rates of VEGF receptor and Dll4 are at half

of their maximal values, RU0 and gmax; and m and n are the associated Hill coeffi-

cients controlling the sharpness of the switching action of f and g respectively. Thus

limm→∞ f (x) = 1− H(x − β) and limn→∞ g(x) = H(x − α) where H(x) is the Heavi-

side step function defined by

H(x) =


0 if x < 0
1
2 if x = 0

1 if x > 0

. (3.2.9)

To facilitate the subsequent analysis, the variables are scaled using typical concentra-

tion values that they exhibit, for example, the concentrations of Dll4 and Notch re-

ceptors are scaled with the total concentration of Notch receptors; VEGF receptors are

scaled with the ratio of their maximal production rate to their disociation rate; and time

is scaled with the inverse of the disociation rate for VEGF-VEGFR-2 binding. Thus

equations (3.2.3)-(3.2.7) have the following non-dimensional forms:

drUj

dt
= f (bj) + rBj −V∗rUj − λrUj , (3.2.10)

drBj

dt
= V∗rUj − rBj , (3.2.11)

dδj

dt
= gmaxg(rBj) + k−B

(
bj−1 + bj+1

2

)
− kB

(
nj−1 + nj+1

2

)
δj − µδj , (3.2.12)

dbj

dt
= kB

(
δj−1 + δj+1

2

)
nj − k−Bbj , (3.2.13)

nj = 1− bj . (3.2.14)

For a full derivation of the dimensionless system (3.2.10) - (3.2.14), including relevant

scalings for the Hill functions, f and g, see Appendix A.

3.2.1 Initial and boundary conditions used in numerical simulations

For numerical simulations of equations (3.2.10) - (3.2.14), we use initial conditions close

to the homogeneous steady state which are equivalent to perturbing the homogeneous

steady state. Perturbations are either homogeneous (spatially uniform) where all solu-

tions start at the same small distance from the steady state or heterogeneous where a

small, randomly generated number is added to each steady state variable. The bound-

ary conditions are periodic such that cell j = N has neighbours j = N − 1 and j = 1

and cell j = 1 has neighbours j = 2 and j = N. The specific forms used for f (.) and
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g(.) in numerical simulations are as per (3.2.8). In most cases we refer to and observe

the solutions of a two-cell system in which we numerically integrate (3.2.10)-(3.2.14)

for j = 1, 2 and periodic boundary conditions that identify j = 0 = 2 and j = 1 = 3.

3.3 Homogeneous and period-two steady states

We set the left hand side of equations (3.2.10)-(3.2.13) to zero and find homogeneous

steady state solutions for which all cells express the same concentration of ligands and

receptors, and period-two spatially patterned (salt-and pepper) steady states where

alternate cells express the same levels of ligands and receptors. At the homogeneous

steady state we have that

uj = ue ∀j, where uj = rUj, rBj, δj, nj, bj .

With d
dt = 0, equation (3.2.10) + (3.2.11) gives

rUe =
1
λ

f (be) ,

which on substitution into (3.2.11) gives

rBe =
V∗

λ
f (be) . (3.3.1)

With d
dt = 0, substitution of ne from (3.2.14) into (3.2.13) gives

δe =
k−Bbe

kB(1− be)
. (3.3.2)

Substituting (3.3.1) and (3.3.2) into (3.2.12) + (3.2.13), with d
dt = 0, gives

gmaxg
(

V∗

λ
f (be)

)
=

µk−Bbe

kB(1− be)
, (3.3.3)

or equivalently be = h(be), where

h(x) =
ĝmaxg

(
V̂ f (x)

)
1 + ĝmaxg

(
V̂ f (x)

) , (3.3.4)

with ĝmax =
gmaxkB

µk−B
and V̂ =

V∗

λ
.

For period-2 patterning solutions in strings of even numbered cells with periodic bound-

ary conditions we have uj−1 = uj+1 , ∀j which allows us to combine the concentrations

of variables in adjacent cells together into a single variable:

uj−1 = uj+1 = uj±1 for uj = rUj, rBj, δj, nj, bj . (3.3.5)
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We then solve for bj±1 in terms of bj, in the same way as above, to give

bj±1 = h(bj) . (3.3.6)

Thus the concentration of bound Notch in neighbouring cells can be expressed as a

function, h(.), of the concentration in cell j. Applying h to both sides of (3.3.6) allows

us to find period-2 patterning solutions:

bj±2 = h(bj±1) = h ◦ h(bj) = bj . (3.3.7)

In summary, for the system of equations in (3.2.10)-(3.2.14), the fixed points of h(.) de-

termine the spatially homogeneous steady states and the fixed points of h ◦ h(.) deter-

mine the period-2 patterning steady states. Since the fixed points of h ◦ h(.) also include

the fixed points of h(.), period-2 solutions, in particular, are fixed points of h ◦ h(.) but

not of h(.).

When f (x) and g(x) are positive, monotonically decreasing and increasing functions

respectively, (see (3.2.8)), h(x) is positive and monotonically decreasing with a unique

fixed point (and hence a unique homogeneous steady state) x0 ∈ [0, h(0)] whereas h ◦
h(x) is positive and monotonically increasing on this interval. Originally, Collier and

colleagues found a similar result where a composition of their production functions for

Delta and Notch activity, f g(.), determined steady state levels in neighbouring cells

[67]. This function is analogous to our decreasing function h(.) (see 3.3.4) which is also

a composition of increasing and decreasing production functions, albeit for Dll4 and

VEGFR-2 production.

In general patterning requires

h′(be) < −1 , (3.3.8)

where be = x0 is the homogeneous steady state value for bound Notch and h(.) is the

function defined in (3.3.4). This is because

(h ◦ h)′(be) = h′(h(be))h′(be) = h′(be)
2 , (3.3.9)

where ′ denotes differentiation. When condition (3.3.8) holds, (h ◦ h)′(be) > 1. Conse-

quently h ◦ h(x) has two distinct fixed points (not fixed points of h(x)) corresponding to

period-2 patterns. The slope at the fixed point, h′(be), can be changed by manipulating

the parameters comprising h(.).

Using specific forms for f and g (see §3.2.1) we show that it is possible to construct

a system with −1 < h′(be) < 0 which exhibits a solitary homogeneous steady state

(see Figure 3.2a) or one with h′(be) < −1, which exhibits period-2 spatial patterns (see
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Parameter Numerical Value

V∗ 0.12

λ 0.5

gmax 1

k−B 0.25

kB 3

µ 1

α 0.5

β 0.33

m 2

n 2

Table 3.1: Table of dimensionless parameter values for the model without filopodia

Figure 3.2b). By using the same parameter values as in Figure 3.2b we reinforce these

results using numerical simulations of a two-cell system (defined in §3.2.1) (see Figure

3.3) and show that, for m = n = 2, perturbing the homogeneous steady state causes the

solutions to diverge to the period-2, spatially patterned steady state. This demonstrates

that the homogeneous steady state becomes unstable when h′(be) < −1.

In Figure 3.3a, simulations are started at the homogeneous steady state and we apply a

small positive perturbation to rU1. The system tends to the spatially-patterned steady

state with period-2 where cell 1 has a high level of Delta (tip cell state) and cell 2 has a

low level of Delta (stalk cell state). In Figure 3.3b we perturb rU2 and find that the sys-

tem tends to the opposite period-2 spatially-patterned steady state, with cell 2 having

high Delta and cell 1 having low Delta.

By applying a homogeneous perturbation to any pair of variables of the two-cell sys-

tem, all variables remain on the stable manifold of the unstable steady state (not shown).

This suggests that given h′(be) < −1, patterning occurs when the symmetry of the sys-

tem is broken.

For a system exhibiting a solitary homogeneous steady state only, with −1 < h′(be) <

0, numerical simulations of a two-cell system (see §3.2.1) decay back to the steady state

(not shown) suggesting that it is stable.
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Figure 3.2: Plot showing the fixed points of h(x) and h ◦ h(x) (for h defined in (3.3.4))

using the parameter values in Table 3.1 except for V∗ = 0.33. (a) shows

that when m = n = 1, −1 < h′(be) < 0, and h(x) has a unique fixed point

corresponding to a system which exhibits a single homogeneous steady

state at bj = 0.7734. Consequently, h ◦ h(be) < 1 and h ◦ h(.) has no distinct

fixed points meaning patterning cannot occur. Figure 3.2 (b) shows that

when m = n = 2 and h′(be) < −1, h ◦ h(.) has two distinct fixed points

at bj ≈ 0.301 and bj ≈ 0.806 corresponding to a pair of period-2, spatially

patterned steady states. The common fixed point of h(.) and h ◦ h(.) at

bj ≈ 0.5605 determines the homogeneous steady state.
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Figure 3.3: Numerical simulation of a two-cell system obtained by numerically inte-

grating equations (3.2.10)-(3.2.14) using the parameters in Table 3.1 except

V∗ = 0.33. Initial and boundary conditions are as outlined in §3.2.1. Initial

conditions are perturbed using a heterogeneous perturbation. (a) Positive

perturbation of rU1 only. The system tends to the period-2 steady state

where cell 1 has a high level of Delta and cell 2 has a low level. (b) Positive

perturbation of rU2 only. The system tends to the opposite period-2 steady

state where cell 1 has a low level of Delta.
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3.4 Numerical bifurcation analysis

In this section we aim to characterise the parameter space in terms of the existence

and stability of solutions, most notably by identifying regions that give rise to sta-

ble, period-2 patterning solutions. We use numerical bifurcation analysis to determine

the stability of the homogeneous and period-2 spatial patterning steady states and the

bifurcations by which they are created and disappear as key model parameters vary.

Since period-2 spatial patterns are determined by fixed points of h ◦ h(x) so we focus on

varying the parameters V̂ and ĝmax which appear in the definition of h(.) (see (3.3.4)).

The model exhibits patterning for a range of values of V∗ (recall V̂ = V∗
λ ). Figure

3.4a shows that the homogeneous steady state becomes unstable via a supercritical

pitchfork bifurcation at V∗ ≈ 0.0977 where two stable branches emerge, representing

a stable period-2 spatial patterning solution. Here, alternating cells express high (low)

levels of bound Notch receptor and the other ligands/receptors. We say that the system

is bistable here as there are two steady state values for each value of the bifurcation pa-

rameter. The patterning region terminates at another supercritical pitchfork bifurcation

where the period-2 branches coincide with the unstable homogeneous steady state. For

larger values of V∗ the stable branches disappear and the homogeneous steady state

becomes stable again. We remark that increasing the total concentration of Notch re-

ceptors, Ntot, (see Appendix A) widens the range of values of V̂ for which the system

is bistable, (see Figure 3.4b).

If we fix V∗ = 0.12 (so that V̂ = 0.24 again), use the parameters from Figure 3.4b, but

allow gmax to vary, we see a similar bifurcation diagram (see Figure 3.5a), with bista-

bility for a range of values of ĝmax. Pitchfork bifurcations again mark the endpoints of

this patterning region and the stability of the steady states is identical to that described

for Figure 3.4. The two-parameter bifurcation diagram for V̂ and ĝmax (see Figure 3.5b)

shows that if ĝmax is made small enough, the pitchforks coalesce, thereby terminating

the bistable region. For larger values of ĝmax it is unclear whether the pitchforks ever

coalesce, however, the system is bistable for a smaller range of V̂ values here than it

is for lower values of ĝmax. Hence the model predicts that it is harder for the system

to pattern for large values of either parameter and this may be important for clinical

purposes.
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Figure 3.4: Bifurcation diagram for the system (3.2.10)-(3.2.14) showing how the

steady state of bound Notch, bj, changes with V∗. Solid (dashed) lines

are stable (unstable) solutions as categorised by xppaut continuation soft-

ware. (a) For parameters in Table 3.1 with the exception of {gmax, kB, β} =
{1.3129, 2.285, 0.4376}, period-2 spatial patterns exist for 0.09765 ≤ V∗ ≤
0.210. (b) For parameters in Table 3.1 with the exception of {gmax, kB, β} =

{1.0526, 2.85, 0.3509} (corresponding to an increase in the total number of

Notch receptors), the system can now pattern for 0.0640 ≤ V̂ ≤ 0.406.
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Figure 3.5: (a) Bifurcation diagram for the system (3.2.10)-(3.2.14) showing how, when

V∗ = 0.12, the steady state of bound Notch, bj, varies with gmax. The

parameter values are the same as those used in Figure 3.4b. Key: Solid

(dashed) lines represent stable (unstable) solutions as categorised by xp-

paut continuation software. (b) Diagram highlighting regions of V̂ − ĝmax

parameter space in which the system admits patterning and was produced

using two-parameter continuation in xppaut and parameter values as per

Figure 3.4a. The lines show the position of the pitchfork bifurcations and

hence the boundary of the patterning region in V̂ − ĝmax parameter space.
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3.5 Bifurcation analysis of the homogeneous steady state

In the previous section we used numerical bifurcation analysis to show that the system

in (3.2.10)-(3.2.14) exhibits period-2 spatial patterns for a range of V̂ and ĝmax values. In

this section we characterise the pattern forming potential of the system by analytically

determining the linear stability of the homogeneous steady state and using the Routh-

Hurwitz stability criteria, derive necessary conditions for patterning.

To begin we make a few simplifications. Firstly, we make the quasi-steady state as-

sumption that VEGF-VEGFR-2 binding is rapid so that drBj/dt = 0 in equation (3.2.11)

which gives rBj = V∗rUj. To simplify notation, we let 〈bj〉 =
bj−1+bj+1

2 and 〈δj〉 =
δj−1+δj+1

2

denote the coupling between the cells. For each cell, j, (3.2.10)-(3.2.14) reduce to give:

drUj

dt
= f (bj)− λrUj , (3.5.1)

dδj

dt
= gmaxg(V∗rUj) + k−B〈bj〉 − kB(1− 〈bj〉)δj − µδj , (3.5.2)

dbj

dt
= kB〈δj〉(1− bj)− k−Bbj. (3.5.3)

Following Webb and Owen [71], we perform linear stability analysis of the homoge-

neous steady state which is given by the O(1) terms (rUe, δe, be). We substitute rUj =

rUe + εr̂Uj, δj = δe + εδ̂j and bj = be + εb̂j (for 0 < ε � 1) into (3.5.1)-(3.5.3), and retain

O(ε) terms which gives

dr̂uj

dt
= f ′(be)b̂j − λr̂uj , (3.5.4)

dδ̂j

dt
= gmaxV∗g′(V∗rUe)r̂uj − (kB(1− be) + µ)δ̂j + (k−B + kBδe)〈b̂j〉 , (3.5.5)

db̂j

dt
= kB(1− be)〈δ̂j〉 − (kBδe + k−B)b̂j . (3.5.6)

We seek solutions of the form û = ũ · exp(ikj + σt), where ũ are constants and σ is the

growth rate of perturbations with wavenumber k. We consider an infinite line of cells

with periodic boundary conditions and note that

〈ûj〉 =
ûj−1 + ûj+1

2
= ũ · eikj+σt · cos(k). (3.5.7)

Substituting this ansatz into equations (3.5.4)-(3.5.6) gives σv = M · v where v =[
r̂uj, δ̂j, b̂j

]>
,

M =


−λ 0 A

gmaxV∗B −(kB(1− be) + µ) (k−B + kBδe)K

0 kB(1− be)K −(kBδe + k−B)

 , (3.5.8)
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K = cos(k),

A = f ′(be) and B = g′(V∗rUe) . (3.5.9)

Now the strengths of inhibition/activation of VEGF-R2 and Dll4 ligand respectively

are measured by the two gradients of f and g at the homogeneous steady state. The

stability of the linearized system is determined by the eigenvalues of M, which are the

roots of the characteristic polynomial: P(σ; K) = σ3 + a1σ2 + a2σ + a3 = 0 where

a1 = k−B + kBδe + µ + kB(1− be) + λ , (3.5.10)

a2(K) = (µ + kB(1− be))(k−B + kBδe)− kB(1− be)(k−B + kBδe)K2+

+ λ(k−B + kBδe + µ + kB(1− be)) , (3.5.11)

a3(K) = λ(k−B + kBδe)
(
µ + kB(1− be)− kB(1− be)K2)

− ABgmaxV∗kB(1− be)K . (3.5.12)

For a patterning instability, we require the homogeneous steady state to be stable to

homogeneous perturbations (for which K = 1) and unstable to non-homogeneous per-

turbations. This is analogous to a Turing instability in which the homogeneous steady

state is stable to spatially uniform perturbations but unstable to spatially varying per-

turbations [114]. The steady state is stable to homogeneous perturbations if all roots of

P(σ; K = 1) = 0 have <(σ(K = 1)) < 0. It is unstable to spatially varying perturba-

tions if one or more roots of P(σ, K) = 0 have <(σ(K)) > 0 for K ∈ [−1, 1) [71].

The roots of P(σ, K) = 0 are, in general, difficult to determine analytically, so we de-

termine which modes generate patterning instabilities in the linearised system by fix-

ing K = cos(k) ∈ [−1, 1], numerically identifying the eigenvalues of M, and plotting

<(σi(K)) i = 1, 2, 3 vs K for different values of V̂ (see Figure 3.6). This is done for a

range of values of V̂ ∈ [0.18, 0.43] which span the bistable region in Figure 3.4. We find

that the maximum of the real parts, <(σi(K)), always becomes positive at K = −1, or

equivalently for wavenumber k = π, corresponding to a period-2 spatial pattern. We

see similar dispersion relations for the parameters used in Figure 3.4b and Figure 3.5a

(not shown). Hence the observed pitchfork bifurcations correspond to <(σi(−1)) = 0.

To understand how <(σi(K)) change sign, in particular at K = −1, we look to the

Routh-Hurwitz stability criteria which state that the roots of P(σ; K) = 0 will all have

<(σi(K)) < 0 if and only if the coefficients satisfy the following conditions, which for

a cubic polynomial, are

a1 > 0 , (3.5.13)

a3(K) > 0 , (3.5.14)

a1 · a2(K)− a3(K) > 0 . (3.5.15)
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Figure 3.6: Dispersion relation plotting the eigenvalues, σi(K), i = 1, 2, 3 of M (3.5.8)

for the linearised system (3.5.4)-(3.5.6) for different values of the parameter

V̂ which lie at the centre of the bistable region and on either side of the two

pitchfork bifurcations in Figure 3.4a. Parameters used are as per Figure

3.4a. The patterning instability occurs when the maximum of the three

eigenvalues becomes positive. This always happens at K = −1 for those

values of V̂ which lie inside the bistable region in Figure 3.4a. This suggests

that the dominant unstable mode for this system is the one corresponding

to the period-2, “salt and pepper” spatial pattern.
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Inequality (3.5.13), is satisfied for all values of the model parameters whereas a2 and a3

are quadratic equations in K = cos(k).

3.5.1 Stability to homogeneous perturbations

For stability to homogeneous perturbations we require a3(1) > 0 and a1 · a2(1) −
a3(1) > 0 [71]. Substituting K = 1 into (3.5.12) and simplifying, gives

a3(1) = λµ(kBδe + k−B)− ABV∗gmaxkB(1− be) .

All parameter values are positive and 0 ≤ be ≤ 1, so a3(1) > 0 if and only if

AB <
λµ(kBδe + k−B)

gmaxV∗kB(1− be)
= W . (3.5.16)

Similarly, substituting K = 1 into (3.5.15) gives

a1 · a2(1)− a3(1) = (a1 − λ) · [(k−B + kBδe)µ + a1λ] + ABV∗gmaxkB(1− be) .

wherein a1 − λ = kBδe + k−B + kB + µ > 0. Hence a1 · a2(1)− a3(1) > 0 if and only if

AB > − 1
V∗gmaxkB(1− be)

(a1 − λ)
[
(k−B + kBδe)µ + a1λ

]
= −X . (3.5.17)

3.5.2 Stability to non-homogeneous perturbations

For a spatial instability, we require at least one root of P(σ; K) = 0 to have <(σ(K)) > 0

for some K ∈ [−1, 1) whilst <(σ(1)) < 0. Since a1 is indepenent of K, the instability

may only arise if ∃K ∈ [−1, 1) such that a3(K) < 0 or a1 · a2(K) − a3(K) < 0. Since

both conditions are quadratics in K with negative leading coefficient, and we impose

a3(1) > 0 and a1a2(1) − a3(1) > 0 for stability to homogeneous perturbations, the

only possibility for a patterning bifurcation occurs when either condition has a single

root at K = −1. Figure 3.7 shows sketches of the quadratic Routh-Hurwitz conditions

and demonstrates how K = −1 is the first wavenumber at which the violation occurs,

giving rise to a patterning instability.

We also illustrate the transition from homogeneity to patterning in Figure 3.8 using the

parameter values from Table 3.1. We vary V̂ whilst keeping all other parameters fixed

at the values used in Figure 3.4a. The bifurcation point is observed at V̂ ≈ 0.195 or

equivalently V∗ ≈ 0.0977 in accordance with Figure 3.4a.

Since we know that the Routh-Hurwitz conditions are first violated at K = −1, a system

which patterns must have either a3(−1) < 0 or a1 · a2(−1)− a3(−1) < 0 as shown in
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Figure 3.7: A sketch of the quadratic Routh-Hurwitz conditions with negative lead-

ing coefficient, (either a3(K) or a1 · a2(K)− a3(K)) showing the transition

from no patterning to patterning. (a) The Routh-Hurwitz conditions in

(3.5.14) and (3.5.15) are satisfied when the quadratic is positive for all val-

ues of K ∈ [−1, 1) which produces no patterns. (b) The bifurcation point

is where the Routh-Hurwitz condition is equal to zero at K = −1. (c) The

Routh-Hurwitz conditions in (3.5.14) and (3.5.15) are violated for a range of

K ∈ [−1, 1) in which the quadratic is negative, thus giving rise to patterns.

The wavelength of the pattern is determined by the mode with the most

negative real part which is K = −1 in this case (period-2 spatial patterns).
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Figure 3.8: Routh-Hurwitz condition a3(K) plotted as a function of K for values of

V̂ = 0.18, 0.21, 0.30, 0.40, 0.43, which are on either side of the bifurcation

points marking the ends of the patterning window. Remaining param-

eters values: as per Table 3.1, except {gmax, kB, β} = {1.31, 2.29, 0.438}.
The right hand column shows a zoomed-in view of the Routh-Hurwitz

condition at K = −1. A period-2 patterning bifurcation occurs when

the Routh-Hurwitz condition a3(K) has a single root at K = −1 caus-

ing the homogeneous steady state to become unstable (see the plots for

V̂ = 0.21, 0.30, 0.40). Varying V̂ keeps a3(1) > 0, hence the homogeneous

steady state remains stable to homogeneous perturbations.
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Figure 3.7c. By substituting K = −1 into (3.5.15) and (3.5.14), a3(−1) < 0 if and only if

AB < − λµ(k−B + kBδe)

gmaxV∗kB(1− be)
= −W , (3.5.18)

and a1a2(−1)− a3(−1) < 0 (Figure 3.7c) if and only if

AB >
1

V∗gmaxkB(1− be)
(a1 − λ)

[
(k−B + kBδe)µ + a1λ

]
= X . (3.5.19)

Stability to homogeneous perturbations and instability to non-homogeneous perturba-

tions requires satisfying both (3.5.16) and (3.5.17) and either one of (3.5.18) or (3.5.19).

These conditions define hyperbolae in the A-B plane which delimit stability regions

discussed in §3.6.

3.5.3 Patterning bifurcations are generated via purely real eigenvalues chang-

ing sign

Sign changes in the real parts of the eigenvalues of M (3.5.8) occur on the four curves,

AB = ±W,±X (illustrated in the A-B plane in Figure 3.9), where

W =
λµ(kBδe + k−B)

gmaxV∗kB(1− be)
and X =

1
V∗gmaxkB(1− be)

(a1 − λ)
[
(k−B + kBδe)µ + a1λ

]
.

Patterning instabilities occur on curves corresponding to K = −1:

A = −W
B

sign change in σ with =(σ) = 0 (patterning/real instability) ,

A =
X
B

sign change in <(σ) for =(σ 6= 0) (patterning/Hopf instability) ,

whereas instabilities to homogeneous perturbations occur on the curves corresponding

to K = 1:

A = −X
B

sign change in <(σ) for =(σ 6= 0) (homogeneous/Hopf instability) ,

A =
W
B

sign change in σ with =(σ) = 0 (homogeneous/real instability) .

Only curves AB = ±W correspond to bifurcations as they are the locus of points in

the A-B plane at which the first eigenvalue(s) of (3.5.1)-(3.5.3) take positive real part.

Moreover, only AB = −W corresponds to a patterning bifurcation since traversing it

maintains stability of the homogeneous steady state to homogeneous perturbations.

Hence the homogeneous/Hopf instability always occurs “after" the patterning/real

instability, for example, whilst moving along the path p2 (see Figure 3.9), AB = −X

is always crossed after AB = −W. This is because W < X for all realistic choices of
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parameter values. This can be proved by contradiction: if W > X, then after some lines

of algebra, we arrive at the following inequality:

(k−B + kBδe)
[
λkB(1− be) + λ2 + λ + µ

]
+ (µ + kB(1− be)) [µ(k−B + kBδe) + a1λ] < 0 ,

which cannot hold since the sum of positive parameter values cannot be negative.

Hence the patterning bifurcation always occurs when a purely real eigenvalue changes

sign and never due to a pair of complex conjugate eigenvalues crossing the imaginary

axis.

The patterning instability at AB = X does not correspond to a patterning bifurcation

as the homogeneous steady state has already lost stability via a purely real eigenvalue

changing sign on AB = W. This curve corresponds to a transcritical bifurcation in

which the homogeneous steady state exchanges its stability with another steady state

(see Figure 3.14) to become unstable.

3.6 Feedback strengths determine patterning regions

For general choices of the functions f and g, the stability of the homogeneous steady

state to homogeneous and heterogeneous perturbations and the ability to produce pat-

terning is determined by the values of their slopes at the homogeneous steady state,

A = f ′(be) and B = g′ (rBe) = g′(V∗rUe). Positive (negative) values of A and B

represent production (inhibition) of VEGF receptors and Dll4 ligand by the relevant

proteins, whilst their magnitude provides information about the strength of activa-

tion/repression.

We characterise the stability of the homogeneous equilibrium in the A-B plane using

the Routh-Hurwitz conditions, formulated in the previous section, which correspond

to four hyperbolae in the A-B plane. We also interrogate the real parts of the eigenval-

ues of the Jacobian matrix of the quasi-steady system (3.5.8) for different choices of A

and B to confirm our analysis. Both approaches are collated in Figure 3.9 and neither

one makes any prior assumptions about the homogeneous steady state value or the

forms of f and g.

In practice, changing A and B can be achieved by changing the values of α, β, m and n

which are associated with our choices of f and g. In general this will also change the

value of the underlying homogeneous steady state and/or the positions of the Routh-

Hurwitz hyperbolae relative to the axes. In Appendix D we explain how it is possible

to choose 3 model parameters such that A and B can be varied by manipulating the Hill

coefficients, m and n, without altering the underlying steady state and hence without
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changing the positions of the hyperbolae. These parameter choices (summarised in

the non-shaded rows of Table E.1) are used for all analyses of the A-B plane (Figure

3.9) unless otherwise stated and thus allow for comparisons of N-cell systems with

different feedback strengths.

Figure 3.9: Stability of the homogeneous steady state for the quasi-steady state model

(3.5.1)-(3.5.3). Parameter values chosen as in Appendix E and Table E.1.

Postive (negative) values of A represent VEGFR-2 induction (inhibition)

due to bound Notch receptors, and positive (negative) values of B repre-

sent Dll4 ligand induction (inhibition) due to bound VEGFR-2. Colours in-

dicate the stability of the homogeneous steady state for a particular choice

of values for A and B and are assigned by evaluating the sign of the real

parts of the eigenvalues of M in equation (3.5.8) (see Table 3.2). Overlaid

are the Routh-Hurwitz conditions corresponding to AB = ±W (in red and

green) and AB = ±X (in blue and magenta). These correspond to equa-

tions (3.5.16)-(3.5.19). The arrows, p1 and p2, are paths in parameter space

along which we continue solutions (see Figures 3.12 and 3.14). Red squares

lower-right: m = 15, n = 8 (grey region); m = 35, n = 8 (white region).

Lower-left: m = 15, n = −8; m = 35, n = −8.

In Figure 3.9 we sketch the Routh-Hurwitz hyperbolae (3.5.16)-(3.5.19) in the A-B plane.

Stability to homogeneous perturbations demands that both (3.5.16) and (3.5.17) are

satisfied corresponding to points lying between the two red hyperbolae, (on which

a3(1) = 0), and the two blue hyperbolae, (on whicha1a2(1)− a3(1) = 0). Instability to

non-homogeneous perturbations requires satisfying either (3.5.18), which corresponds
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Region Stability to Sign of supi <(σi(K)) (i = 1, 2, 3)

Hom pert Het pert K = cos(0) = 1 K = cos(π) = −1

Black Stable Stable −ve −ve

Grey Stable Unstable −ve +ve

White Unstable Unstable +ve +ve

Table 3.2: Table summarising the stability of the homogeneous steady state to homo-

geneous (Hom) and non-homogeneous (Het) perturbations and the signs of

the maximum of the real parts of the three eigenvalues of M (3.5.8) in each

of the coloured regions of the stability plot in Figure 3.9.

to points lying outside of the two green hyperbolae a3(−1) = 0 or (3.5.19), which corre-

sponds to points lying outside of the two magenta hyperbolae a1a2(−1)− a3(−1) = 0.

The intersection of these conditions are the two grey regions which is the set of points,

{A, B}, satisfying (3.5.16), (3.5.17) and (3.5.18) for which we have a patterning instabil-

ity.

In the black region, we have a3(1) > 0 and a1a2(1) − a3(1) > 0 which make the ho-

mogeneous equilibrium stable to homogeneous perturbations and a3(−1) > 0 and

a1a2(−1) − a3(−1) > 0 giving stability to non-homogeneous perturbations for K ∈
[−1, 1). Hence the steady state is stable in this region.

In the white region neither Routh-Hurwitz condition is satisfied and the homogeneous

steady state is unstable.

The Routh-Hurwitz hyperbolae lie precisely on the boundaries to the coloured stability

regions marking the steady state bifurcation points of the system in the A-B plane. This

is demonstrated in Figure 3.10 by plotting both the Routh-Hurwitz conditions and the

real parts of the eigenvalues as functions of A (moving along the path p2) for a fixed

value of B corresponding to n = 8.

3.6.1 Lower-right quadrant (A < 0, B > 0 biologically relevant)

To understand better the types of solutions and bifurcations that the system exhibits in

the A-B plane, we use continuation methods (Figure 3.12a). In this section we investi-

gate how patterning instability arises when we choose specific Hill function forms for

the feedback functions f and g. In the next section we investigate the behaviour of the

system in the lower left quadrant in which the homogeneous steady state destabilises

via a transcritical bifurcation.

Firstly we continue solutions along the path, p1, in the lower-right quadrant of Figure
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Figure 3.10: Plots of the Routh-Hurwitz conditions and the <(σi(K)) for i = 1, 2, 3

when K = −1, 1 and B = 6.0606 (n = 8). A (or equivalently m) varies

along the path p2 in Figure 3.9. Parameter values are as per Table 3.1 ex-

cept for V∗ = 0.33. Plots (a) and (b) show that the homogeneous steady

state is stable to homogeneous perturbations when all Routh-Hurwitz

conditions are positive i.e. all eigenvalues have negative real part (black

region). Plots (c) and (d) show where a patterning instability occurs (grey

region), meaning that the (K = −1) mode grows whilst the K = 1 mode

decays. (Colours in (c) and (d) are consistent with those used in Figure

3.9)
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3.9 where A (and hence m) is varied for a fixed B and fixed values of the remaining pa-

rameters (see Table E.1). A stable homogeneous steady state (black region) becomes un-

stable via a pitchfork bifurcation which breaks symmetry. As the black/grey boundary

is traversed, the slope of h(x) decreases through h′(x) = −1 and the slope of h ◦ h(x)

incresases through d
dx h ◦ h(x) = 1, causing the number of crossing points to increase

from 1 to 3 at the pitchfork bifurcation (see supplementary plots in Figure 3.12a). The

period-2 spatial patterning solutions (grey region) are stable but these solutions are

truncated in Figure 3.12a when the lower branch of solutions becomes extremely small.

As the feedback strengths are increased further, a Hopf bifurcation at the grey/white

boundary gives rise to an unstable limit cycle (see Figure 3.11). The system exhibits

identical behaviour in the upper left quadrant.

3.6.2 Lower-left quadrant (A < 0, B < 0)

Solutions are also continued along the path p2 (Figure 3.14). The stable homogeneous

steady state loses stability via a transcritical bifurcation to an unstable steady state aris-

ing from a saddle node bifurcation (see supplementary plots in Figure 3.14). While

the outer branches resemble those of the pitchfork bifurcation, they are two separate

branches of stable, homogeneous solutions. There are no period-2 solutions in the

lower-left and upper-right quadrants because the slopes of f and g have the same sign,

in which case h(x) is monotonically increasing on [0, 1]. In this case, it is possible to

show that all fixed points of h ◦ h(x) are also fixed points of h(x) and therefore corre-

spond to homogeneous solutions.

Lemma 1. Given a monotonically increasing function y = h(x) with n fixed points,

with gradient h′(xi) at the ith fixed point (for 1 ≤ i ≤ n), then y = h ◦ h(x) has the

same fixed points as h(x) with gradient h′(xi)
2 there.

Proof Suppose x = xi is a fixed point of h(.). Then

xi = h(xi)⇒ h(xi) = h ◦ h(xi) = xi . (3.6.1)

Hence any fixed point of h(x) is also a fixed point of h ◦ h(x). At such a fixed point,

d
dx

(h ◦ h(xi)) = h′(h(xi))h′(xi) = h′(xi)
2 .

The result of Lemma 1 then implies

(h ◦ h(xi))
′

< h′(xi), 0 < h′(xi) < 1

> h′(xi), h′(xi) > 1
, (3.6.2)

99



CHAPTER 3: AN ORDINARY DIFFERENTIAL EQUATION MODEL OF

VEGF–DELTA–NOTCH SIGNALLING IN ANGIOGENIC TIP CELL SELECTION

0 20 40 60 80
0

0.5

1

1.5

2

t

Simulation for A=−15.6104 and B=6.0606 (m=35,n=8)
Steady state = 0.56052

 

 

Ru1

Delta1

B1

Ru2

Delta2

B2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y
=

b
j

Steady states for A=−15.6104 and B=6.0606 (m=35,n=8)
Steady state = 0.56052

 

 

y = x

y = h(x)

y = h(h(x))

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

Simulation for A=−15.6104 and B=6.0606 (m=35,n=8)
Steady state = 0.56052

 

 

Ru1

Delta1

B1

Ru2

Delta2

B2

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

Simulation for A=−6.6902 and B=6.0606 (m=15,n=8)
Steady state = 0.56052

 

 

Ru1

Delta1

B1

Ru2

Delta2

B2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y
=

b
j

Steady states for A=−6.6902 and B=6.0606 (m=15,n=8)
Steady state = 0.56052

 

 

y = x

y = h(x)

y = h(h(x))

0 20 40 60 80
0

0.5

1

1.5

2

t

Simulation for A=−6.6902 and B=6.0606 (m=15,n=8)
Steady state = 0.56052

 

 

Ru1

Delta1

B1

Ru2

Delta2

B2

(a) LRQ -grey region (b) LRQ -white region

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

Simulation for A=−15.6104 and B=−6.0606 (m=35,n=−8)
Steady state = 0.56052

 

 

Ru1

Delta1

B1

Ru2

Delta2

B2

0 20 40 60 80
0

0.5

1

1.5

2

t

Simulation for A=−15.6104 and B=−6.0606 (m=35,n=−8)
Steady state = 0.56052

 

 

Ru1

Delta1

B1

Ru2

Delta2

B2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y
=

b
j

Steady states for A=−15.6104 and B=−6.0606 (m=35,n=−8)
Steady state = 0.56052

 

 

y = x

y = h(x)

y = h(h(x))

(c) LLQ -white region

H
o

m
o

g
e

n
e

o
u

s 
p

e
rt

u
rb

a
ti

o
n

R
a

n
d

o
m

 p
e

rt
u

rb
a

ti
o

n

Figure 3.11: Numerical simulations of the quasi-steady two-cell system in (3.5.1)-

(3.5.3) starting close to the homogeneous steady state. Rows 1 and 2

perturb the homogeneous steady state with homogeneous and random

(non-homogeneous) perturbations respectively. The last row shows fixed

points of h(x) and h ◦ h(x) marking the existence of homogeneous and

period-2 spatial patterning solutions respectively. Columns (a)-(c) use

parameters from distinct regions of the A-B plane: (a) m = 15, n = 8

(b) m = 35, n = 8 (red markers in the grey and white regions of Figure 3.9

on the path p1 in parameter space). (c) m = 35, n = −8 (Red marker in the

white region on the path p2). Parameters from Appendix D and Table E.1.

In the grey region of the lower right quadrant, homogeneous perturba-

tions decay back to the steady state and non-homogeneous perturbations

grow to a period-2 spatial pattern. In the white region, homogeneous per-

turbations grow to a limit cycle and non-homogeneous oscillations grow

to the period-2 spatial pattern. In the white region of the lower left quad-

rant, the homogeneous steady state is unstable and both homogeneous

and non-homogeneous perturbations cause the solutions to move to one

of two new homogeneous steady states.
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Figure 3.12: (a) Continuation of solutions to the quasi-steady two-cell system in

(3.5.1)-(3.5.3) for a fixed value of n = 8 (B = 6.0606) and the remaining pa-

rameters whilst varying m, and hence A, along the path, p1, of Figure 3.9.

(a) Colours are consistent with those used in Figure 3.9. There is a single,

stable homogeneous steady state for m ∈ [0, 1.138) which loses stability

at m ≈ 1.138 where a pitchfork bifurcation occurs and a pair of stable

branches representing a period-2 spatial pattern emerge. The pitchfork

bifurcation corresponds to a sign change in the Routh-Hurwitz condition

a3(−1) as illustrated by the co-location of the pitchfork bifurcation with

the colour change from black to grey. Open circles indicate an unstable

limit cycle emerging from the Hopf bifurcation at m ≈ 26.12 which corre-

sponds to a sign change in the Routh-Hurwitz condition a1a2(1)− a3(1)

as shown by the colour change from grey to white. Supplementary plots

show how the slope of h(x) around the pitchfork relates to the number of

crossings points of x, h(x) and h ◦ h(x). PB - pitchfork bifurcation
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such that, in quadrants A < 0, B < 0 and A > 0, B > 0, h(x) is always sandwiched

between the curves y = h ◦ h(x) and y = x. A period-2 patterning solution in these

quadrants would require h ◦ h(x) to be of the form shown in Figure 3.13 which vio-

lates (3.6.2). Hence only homogeneous solutions exist in these quadrants and period-2

x

h(x)

h(h(x))

x

Figure 3.13: A sketch of the form h ◦ h(.) would be required to take for the system

in equations (3.5.1)-(3.5.3) to exhibit a period-2 pattern in the quadrants

A, B < 0 and A, B > 0. When h ◦ h(.) has distinct fixed points it vio-

lates the result (3.6.2) following from Lemma 1 and no longer sandwiches

y = h(x) between itself and the line y = x. Hence there can be no pe-

riod - 2 patterns in these quadrants.

patterning solutions cannot occur.

For stronger feedback strengths in this quadrant, an unstable limit cycle emerges from

a Hopf bifurcation but we never see this numerically. The same behaviour arises for

A > 0, B > 0.

Although the biologically relevant region of the A-B plane is the lower-right quadrant,

our analysis suggests that a patterning instability can only occur when the slopes of f

and g are of opposite signs (lower-right and upper-left quadrants). Changing the sys-

tem parameters may shift the Routh-Hurwitz hyperbolae but their positions, relative

to each other, remain unchanged. As such, the qualitative behaviour of the model in

the upper-left and lower-right quadrants remains unchanged for any choice of phys-

ically realistic parameter values. The analysis here also holds regardless of the types

of feedback functions, f , g, used. In these quadrants, traversing the boundary between

the stable (black) and unstable (grey) regions allows the system to exhibit spatial insta-

bilities corresponding to a pattern with a wavelength of 2 cells.

By continuing solutions for negative m (corresponding to an increasing saturating feed-

back function f ), a single bifurcation diagram in the left half-plane, B < 0, summarises
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Figure 3.14: Continuation of solutions to the quasi-steady, two-cell system in (3.5.1)-

(3.5.3) with n = −8 (B = −6.0606) whilst varying m, and hence A,

along the path p2 in Figure 3.9. Parameters are chosen as in Appendix

D. Colours are consistent with those used in Figure 3.9. There is a single,

stable homogeneous steady state for m ∈ [0, 0.5906) which loses stabil-

ity at m ≈ 0.5906 when a pair of steady states is created (one stable, one

unstable) in a saddle node bifurcation. So for m ∈ (0.5906, 1.138) there

are two, stable steady states (outer crossing points) and an unstable one

(middle crossing point). At m ≈ 1.138 there is a transcritical bifurcation at

which the steady state at bj = 0.5605 exchanges stability with the unsta-

ble steady state created in the saddle node bifurcation at m ≈ 0.5906. The

upper and lower branches represent two distinct, stable homogeneous

solutions. Open circles indicate an unstable limit cycle emerging from a

Hopf bifurcation at m ≈ 26.12. Supplementary plots show how the slope

of h(x) around the bifurcation points relates to the number of crossings

points of x, h(x) and h ◦ h(x). SNB - saddle node bifurcation; TCB - tran-

scritical bifurcation.
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the system dynamics (see Figure 3.15).
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Figure 3.15: Bifurcation diagram produced by continuation of steady state solutions in

the half-plane B < 0 showing how the existence and stability of solutions

changes as m (and hence A) varies along the line B = −6.0606 (n = −8)

in Figure 3.9. Solid lines represent stable steady states, thin/dotted lines

represent unstable steady states and open circles represent limit cycle so-

lutions. SNB - saddle node bifurcation; TCB - transcritical bifurcation;

HB - Hopf bifurcation; PB - pitchfork bifurcation. Colours are consistent

with those of Figure 3.9.

3.7 Numerical simulations for a string of N cells

In the following subsections, we numerically integrate the model in (3.2.10)-(4.1.16) us-

ing the ode45 solver in MATLAB for a string of N = 20 cells. Parameter values are

as outlined in Table E.1. Initial conditions are homogeneous and random perturba-

tions about the homogeneous steady state. Each cell, j, Delta-Notch signals with its

two neighbouring cells, j± 1, except for cells j = 1 and j = N at each end of the spa-

tial domain whose signalling is determined by the boundary conditions specified in a

coupling matrix (not shown). We show numerical solutions for four different types of
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boundary conditions.

3.7.1 Zero flux BCs: single neighbour with 2 × inhibition

In this case, cells j = 1 and j = N have a single neighbour, namely, cell j = 2 and

j = N − 1 respectively, which deliver twice the regular level of Delta inhibition so that

cells j = 1 and j = N experience the same level of inhibition as the non-boundary

cells. Numerical simulations of the string show that the system admits patterning in

the grey region of the A-B plane when disturbed by spatially varying perturbations but

not when disturbed by spatially uniform perturbations (see Figure 3.16(a)-(c)). The sys-

tem is unstable to both homogeneous and inhomogeneous perturbations in the white

region of the A < 0, B > 0 quadrant (see Figure 3.16(d)-(h)). In particular, all cells os-

cillate in synchrony when the homogeneous equilibrium is perturbed homogeneously

(see Figure 3.16(d)). This is consistent with our linear analysis (see Figure 3.9) and

previous numerical simulations of two-cell systems (see Figure 3.11).

3.7.2 Periodic BCs

In the case of periodic boundary conditions, cell j = 1 has neighbouring cells j = 2

and j = N and cell j = N has neighbouring cells j = 1 and j = N − 1. Applying

periodic boundary conditions to a string of cells is equivalent to modelling a ring of

cells. Simulations of the ring are shown in Figure 3.17. These are, again, consistent

with our numerical observations in two-cell systems (see Figure 3.11).

3.7.3 Zero flux: single neighbour with regular inhibiton

The boundary conditions in this section are another type of zero flux condition in which

cells j = 1 and j = N have a single neighbour, namely, cells j = 2 and j = N − 1

respectively which each deliver their normal level of inhibition. Therefore the cells at

the boundary receive only half of the level of inhibition received by the other cells. The

boundary conditions generate an inhomogeneity which allows the pattern to spread

inwards from the boundaries, even when the homogeneous steady state is perturbed

with a homogeneous perturbation. Cells at the centre of the domain continue to behave

according to local influences until the inhomogeneity reaches them. Hence these are the

last cells to pattern. For parameters from the grey region these cells transition from the

homogeneous steady state to a pattern (see Figure 3.18a) and for parameters from the

white region these cells transition from oscillating about the homogeneous steady state
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Figure 3.16: Numerical simulations of equations (3.5.1)-(3.5.3) for a string of N = 20

cells using zero flux boundary conditions. Initial conditions are pertur-

bations of the homogeneous steady using: a small spatially uniform per-

turbation in (a) and (d); a randomly generated, spatially varying pertur-

bation in (b)-(h). For m = 15, n = 8 (red square in the grey region on the

path p1 in Figure 3.9) the space-time plot in (a) shows stability to homo-

geneous perturbations; (b) shows instability to non-homogeneous pertur-

bations; (c) shows the levels of bound Notch, bj, in the string of cells at the

end of the simulation in (b). For m = 35, n = 8 (red square in the white

region on the path p1 in Figure 3.9) (d) shows synchronised oscillations

of bound notch in all cells when the homogeneous steady state is homo-

geneously perturbed; (e), (f), (g) show solutions for rUj, δj and bj for the

system with a randomly perturbed homogeneous steady state. (h) shows

the solutions for bj at the end of the simulation in (g).
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Figure 3.17: Numerical simulation of a ring of N = 20 cells using periodic boundary

conditions in which cells j = 2 and j = N neighbour cell j = 1 and cells

j = 1 and j = N − 1 neighbour cell N. The left and right columns show

simulations from the red square markers in the grey and white regions of

Figure 3.9 which have m = 15, n = 8 and m = 35, n = 8 respectively. Ho-

mogeneous perturbations decay to the homogeneous steady state in the

grey region in (a) and oscillate synchronously in all cells in (c). (b) and

(d): In both grey and white regions, random/non-homogeneous pertur-

bations of the steady state diverge to the period-2 spatial pattern. (e) and

(f) show solutions at the end of the simulations in (a) and (d).
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into a period-2 pattern (see Figure 3.18c). Random perturbations of the homogeneous

steady state cause inhomogeneities to develop randomly across the domain and initiate

formation of the period-2 pattern locally (see Figure 3.18b,d).

3.7.4 Zero flux: cell sees itself

In this section the cell at the boundary receives signals from both its single neighbour-

ing cell as well as itself. Therefore cell j = 1 sees cells j = 2 and j = 1 adjacent to

itself, and cell j = N sees cells j = N − 1 and j = N. For a homogeneous perturba-

tion, the boundary cells have two neighbours which are perturbed in the same way.

Therefore the system is stable to homogeneous perturbations in the grey region (see

Figure 3.19a) and oscillates about the steady state in the white region (see Figure 3.19c).

Randomly perturbing the homogeneous steady state, causes the system to pattern in

both the grey and white regions (see Figure 3.19b,d). However, boundary cells adopt a

different steady state to the other cells in the domain as the inhibition they receive from

themselves is different to that received from their other neighbour.

3.8 Travelling waves in the bistable system

In this section we simply acknowledge the presence of travelling waves exhibited by

the system in particular regions of parameter space where there are multiple homoge-

neous steady states. Wave behaviour is not explored in this thesis, however, it has been

extensively investigated in strings of cells by others [68, 115–117].

For A, B < 0 and A, B > 0 we have an unstable homogeneous steady state and a pair

of stable homogeneous steady states. We expect the unstable and stable steady states

to be connected by travelling waves. The waves can be seen moving in both directions

in Figure 3.20. Cell j = 50 experiences a locally heterogeneous perturbation causing

its solutions to fall into the basin of attraction of one of the stable steady states and

a wave to be initiated. The remaining cells effectively experience a locally homoge-

neous perturbation until the moving wave causes their solutions to fall into the basin

of attraction of one of the stable steady states.

3.9 Discussion

In this chapter we have investigated a discrete-space mathematical model of angio-

genic tip cell selection in a string of cells. Using an ODE framework we have studied
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Figure 3.18: Numerical simulation for a string of 20 cells using boundary conditions

in which the boundary cells, j = 1 and j = N, have a single neighbour,

cell j = 2 and j = N − 1 respectively, that delivers the regular amount

of inhibition. Hence cells j = 1 and j = N only receive half of the

amount of inhibition compared to other cells in the domain which have

two neighbours. The left and right columns show simulations from the

red square markers in the grey and white regions of Figure 3.9 which have

m = 15, n = 8 and m = 35, n = 8 respectively. Homogeneous perturba-

tions ((a) and (c)), including no perturbation (not shown) of the homoge-

neous steady state result in patterning. The boundary conditions cause

an inhomogeneity from which the pattern spreads inwards. Hence cells

at the centre of the domain either remain at the homogeneous steady state

(a) or oscillate about it, (c), until the wave of patterning reaches them. (b)

and (d) show similar behaviour in both grey and white regions where

random/non-homogeneous perturbations of the steady state diverge to

the period-2 spatial pattern. However, this pattern is induced by local in-

homogeneities rather than a wave carrying the pattern inwards from the

boundaries. (e) and (f) show solutions at the end of the simulations in (b)

and (d).
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Figure 3.19: Numerical simulation for a string of 20 cells using boundary conditions

in which cell j = 1 has neighbours j = 1 and j = 2 and cell j = N

has neighbours j = N and j = N − 1. The left and right columns show

simulations from the red square markers in the grey and white regions

of Figure 3.9 which have m = 15, n = 8 and m = 35, n = 8 respectively.

Homogeneous perturbations decay to the homogeneous steady state in

the grey region in (a) and oscillate synchronously in all cells in the white

region, (c). (b) and (d): In both grey and white regions, random/non-

homogeneous perturbations of the steady state diverge to the period-2

spatial pattern but cells at the boundary settle to a different steady state.

(e) and (f) show solutions at the end of the simulations in (b) and (d).
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Figure 3.20: Numerical simulation for a string of 100 cells using zero flux boundary

conditions as per Figure 3.16. Parameters are as per Figure 3.14 with m <

1.138 as specified within the figure. Hence there are two outer, stable

homogeneous steady states and one unstable one between these. Initial

conditions are the stable steady state at be = 0.5605 + 0.1 for 1 ≤ j ≤ 50

and be = 0.5605 − 0.3 for 51 ≤ j ≤ 100. (a) For m = 0.85, we see a

travelling wave moving to the left and all solutions tend to the lower

steady state near be ≈ 0. (a) For m = 0.73, we see a travelling wave

moving to the right and all solutions tend to the upper steady state at

be ≈ 0.5605.
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the properties of an intracellular VEGF–Delta–Notch signalling pathway determining

the emergence of a salt-and-pepper spatial pattern from an initially homogeneous pop-

ulation of ECs, where every other cell is fated to become a sprouting tip cell. Bentley

and colleagues originally studied this system using a heirarchical agent-based mod-

elling framework and we here make various comparisons to their work [81]. By using

a dynamical systems approach we were able to use mathematical tools such as lin-

ear stability analysis and bifurcation theory to analyse our model. No such analytical

methods exist for agent-based models.

We focus only on the initial process of tip cell selection in metazoan development, un-

like other models of angiogenesis, some of which model processes such as the enzy-

matic breakdown of the primary vessel wall, tip cell migration, sprout elongation and

proliferation, interactions with the extracellular matrix, anastomosis and remodelling

[79, 84].

Our model exhibits the period-2 (“salt-and-pepper”) spatial pattern, previously seen in

both the Bentley and Collier models [67, 81], and predicts that it is the dominant mode.

This suggests that longer wavelength patterns may require additional mechanisms.

These could include, for example, the inclusion of cell growth, proliferation or long

range filopodia growth, in the lateral direction, transmitting Delta-Notch signalling

between ECs further afield [86].

We used numerical simulations and bifurcation analysis, to confirm the pattern form-

ing potential of our model. By linearising a reduced system of equations ((3.5.1))-

(3.5.3)), which assume a quasi-steady state for bound VEGFR-2 and Notch receptor

conservation, we were able to use the Routh-Hurwitz stability criteria to determine

when the system would admit a patterning instability in terms of parameters repre-

senting the feedback strengths of VEGFR-2 production, A, and Dll4 ligand production,

B. This gave a single generic picture (Figure 3.9) which is always of the same form

regardless of parameter choices or the functional forms of ligand and receptor produc-

tion. This allows strong statements to be made about the model behaviour, for example,

the system exhibits period-2 spatial (salt-and-pepper) patterns which can only occur if

the type of feedback for VEGFR-2 and Dll4 production are different (one activating, one

inhibiting). The analysis also suggests that the system always admits patterning via an

instability in which a real eigenvalue changes sign and never via a Hopf instability.

In numerical simulations of our model, the feedback strengths, A and B, are propor-

tional to the Hill coefficients, m and n, of the Hill functions used to model the produc-

tion of ligands and receptors. Thus, in a similar way to the Collier model, our model re-

lies on co-operativity in order to exhibit period-2 patterns [67]. This is in contrast to the
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recent work by Sprinzak and colleagues in which the mutual inactivation of Delta and

Notch on the same cell, due to binding, provides the non-linearity needed to exhibit

period-2 patterns in the absence of co-operativity [75]. When the feedback strengths

in our model are either both activating or both inhibiting, the system is bistable with

a pair of stable homogeneous solutions and one unstable homogeneous solution. By

studying our model for an N-cell system, we were able to verify that the same linear

analysis holds for strings of cells. For appropriate choices of initial conditions, we also

see travelling wave solutions moving in both directions which connect the unstable

and stable homogeneous steady states (see Figure 3.20). Travelling wave behaviour

between homogeneous steady states was also seen in Monk’s model of juxtacrine sig-

nalling [115].

Our model, like the Collier model, has two feedback loops, one positive and one nega-

tive. However the Collier model only considers two species per cell: Delta activity and

Notch activity. This is in contrast to our model which incorporates two extra equations

for unbound and bound VEGF receptors per cell. Another difference is that our model

explicitly considers Delta–Notch and VEGF–VEGFR-2 binding and uses concentrations

to describe the species rather than the measures of activity used in the Collier model.

A feature of our model is that the “salt-and-pepper" patterning window exists for a

finite range of values for V̂, which can be interpreted as the EC’s perception of VEGF

in the environment and ĝmax, which can be interpreted as the strength of inhibition de-

livered to neighbouring cells. At high concentrations of extracellular VEGF, our model

exhibits a solitary homogeneous steady state whereas the Bentley model exhibits os-

cillations [81]. The oscillations in their model may be due to a delay caused by the

“passing of actin tokens" between the memAgents comprising the filopodia in their

model. Our model, however, does not account for such delayed effects.

Incorporating delays into our model is a possible avenue for future work that may al-

low our model to exhibit stable limit cycle solutions. Interestingly our model, given by

equations (3.5.1)-(3.5.3), which uses parameter choices from Appendix D, also exhibits

oscillations but these emerge via a Hopf bifurcation when the feedback strength is suf-

ficiently strong (see grey-white transition in Figure 3.9). This limit cycle was found to

be unstable and was only detected in numerical simulations when perturbing the ho-

mogeneous steady state homogeneously. Oscillatory feedback loops in cells commu-

nicating via Notch signalling are crucial in other contexts such as attaining the correct

spacing of somites by the vertebrate segmentation clock [89, 118, 119].

Cells at different locations in the embryo may be located in different regions of pa-

rameter space. For instance, ECs in the dorsal wall of the zebrafish DA sprout to form
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secondary intersomitic blood vessels whereas ECs in the ventral wall, which hours later

become specified as HSC precursors, remain relatively quiescent. Cells in the ventral

wall do not sprout or migrate but instead maintain the integrity of the vessel, a trait

likely due to the closer proximity of the dorsal wall to the (somitic) VEGF source. Our

model could be extended to incorporate both vessel walls, including the ECs of the

ventral wall. This may allow us investigate how the signalling is different in each wall

and whether the differential VEGF signal sensed by the cells of each wall could account

for their distinct behaviour. The ECs of the ventral wall may, for example, lie at a lo-

cation in parameter space in which there is a single stable homogeneous steady state

rendering them unable to pattern, whereas cells in the dorsal wall may lie inside the

patterning window (see Figure 3.4). Another possibility is that perhaps both walls ex-

hibit patterning but there are extra mechanisms, that we have not accounted for, which

supress tip cell selection in the ventral wall. In Chapter 2, we showed how, for some

parameter values, patterning could amplify the average concentration of runx1, rela-

tive to the homoegenous steady state. Patterning could, in theory, amplify the average

level of a factor suppressing tip cell selection in the ventral wall.

The inclusion of transcriptional, translational and recovery delays is one way of ex-

tending this work as they have been shown to be important in other models of Delta-

Notch signalling[81, 89]. Our model inevitably overlooks the effect of other pathways

involved in angiogenesis and vessel morphogenesis, for instance, the connections be-

tween the Notch pathway and others such as TGFβ, Hedgehog, or Wnt signalling may

need to be considered [23]. However the analysis that we have presented here would

be much more difficult, if not impossible, to carry out in the presence of these other sig-

nalling pathways. Another interesting way to develop this work would be to extend

the existing model to n-dimensional arrays of squares and/or hexagons in a fashion

similar to Webb and Owen [71].

In the next chapter we extend the ODE model of this chapter by incorporating filopodia

growth in a gradient of extracellular VEGF, and feedback from filopodia length onto

VEGFR-2 production, into our current ODE model.
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CHAPTER 4

Modelling and Analysis of

Filopodia Extension Regulated by

VEGF–Delta–Notch Signalling in

Angiogenic Tip Cell Selection

In this Chapter we extend our model to investigate how filopodia extension can influ-

ence, and be influenced by VEGF receptor production. The assumption of a constant

extracellular VEGF concentration is relaxed and, as in the Bentley model [81], we allow

filopodia to grow in linear gradients of extracellular VEGF, perpendicularly away from

the cell. In multi-cellular simulations using strings of ECs, the VEGF concentration

is kept homogeneous in the direction parallel to the string. As the maximal growth

rate parameter of filopodia tends to zero, the system reduces to the model analysed in

Chapter 3. We consider the effect of filopodia growth on spatial patterning in both spa-

tially homogeneous and linearly increasing gradients of VEGF. This is done for the two

cases where filopodia extension enhances VEGFR-2 production or where there is no

such effect. We show that whilst filopodia growth is coupled to the reactions from the

model in Chapter 3, both enhancement of VEGF receptor production by filopodia ex-

tension and linear gradients of VEGF are mechanisms that facilitate pattern formation

in strings of ECs. This is demonstrated using appropriate numerical simulations and

bifurcation analysis. Moreover, our analysis in this chapter suggests that VEGF gradi-

ents (as opposed to the absolute VEGF concentration) may not be required to achieve

the salt-and pepper pattern. In such cases patterning can be achieved via positive feed-

back from filopodia length onto VEGFR-2 production or via the signalling processes

alone which are discussed in Chapter 3.
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4.1 Model Overview

We extend our VEGF-Delta-Notch model of Chapter 3 (see equations (5.3.4)-(3.2.7)) to

investigate how filopodia growth modulates pattern formation in populations of ECs.

Filopodia are membrane protrusions formed by the recruitment and polymerisation

of actin in response to a chemoattractant [81]. Actin levels are increased in response

to VEGF - VEGFR-2 binding leading to filopodia extension. Filopodia are also able to

retract when there is insufficient VEGF available [81, 110, 111].

Thus far we have only considered a constant concentration of extracellular VEGF. How-

ever experimental work by Ruhrberg and colleagues, shows that the local gradient of

VEGF is important for EC sprouting and migration [111]. Hence we also incorporate

a VEGF gradient into our model. For simplicity, we consider a linear gradient. In the

presence of a VEGF gradient, filopodia extend in the direction of higher VEGF concen-

tration [110, 111] and thus a longer filopodium will allow a cell to access more VEGF

via VEGFR-2 located along its length (see Figure 4.1). In our model, filopodia grow by

sensing the average concentration of bound VEGFR-2. Therefore, even in a constant

field of VEGF, longer filopodia expose a greater surface area of cell membrane to the

environment, allowing the cell access to more extracellular VEGF. Hence the growth of

filopodia introduces a positive feedback to the model: the binding of VEGF allows for

the extension of filopodia, which in turn allow for further binding of VEGF. Thus, cells

with longer filopodia can quickly gain an advantage in acquiring a tip cell fate. This

ultimately accelerates and facilitates pattern formation in ECs.

The notation used for the variables is the same as that used in §3. However, due to the

inclusion of a spatially varying extracellular VEGF concentration, the variables are now

interpreted as spatially averaged concentrations rather than concentrations alone. We

revisit this in Chapter 5, where we present a PDE model of this system in which VEGF

receptors are transported along filopodia. We show that in the limit of large receptor

diffusivity, the concentrations of receptors become homogeneous and this ODE model,

which uses spatially averaged variables, is a good approximation with reasonable as-

sumptions.

4.1.1 Filopodia growth

We assume that each cell, j, extends a single filopodium from its upper surface which is

characterised by its time-dependent length, Fj(t). The length of the periphery of cell j is

given by L0 + Fj(t) where L0 is the fixed length of the cell body membrane and is con-

sidered to be constant for all cells (see Figure 4.1). Note that Fj(t) ≥ 0 , ∀ t ∈ R, j ∈ Z.
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Another assumption is that the growth of filopodia is a direct consequence of VEGFR-2

activation [81, 110] and the details of actin accumulation are ignored. Filopodia growth

is then determined by the following ODE:

dFj

dt
= φ w(R̄Bj)− γFj(t) , (4.1.1)

where the production term w(R̄Bj) is assumed to be a positive, monotonically increas-

ing Hill function of the average VEGFR-2 concentration of cell j, R̄Bj. This is given by

w(R̄Bj) =
R̄q

Bj

Cq + R̄q
Bj

, (4.1.2)

where q represents the strength of response to bound VEGFR-2, φ represents the maxi-

mal extension rate of the filopodium and C represents the average bound VEGF recep-

tor concentration at which the extension rate is half-maximal, φ
2 . This is analogous to

a threshold level of bound VEGF receptors required for filopodial elongation. Lastly,

γ represents the rate of retraction of the filopodium. This choice of feedback function

is phenomenological as the exact mechanism by which bound VEGF receptors cause

filopodia extension is unclear.

The following system of equations is formulated by coupling (4.1.1) to equations (3.2.10)-

(3.2.14), which have been modified to account for enhanced VEGFR-2 production due

to filopodia growth and a non-constant extracellular VEGF distribution:

dFj

dt
=φ w(R̄Bj)− γFj(t) , (4.1.3)

dR̄Uj

dt
=(1 + θ̂Fj(t)) f (B̄j) + k−VRR̄Bj − kVRR̄Uj

∫ L0+Fj(t)
0 V(x)dx

L0 + Fj(t)
− λR̄Uj , (4.1.4)

dR̄Bj

dt
=kVRR̄Uj

∫ L0+Fj(t)
0 V(x)dx

L0 + Fj(t)
− k−VRR̄Bj , (4.1.5)

d∆̄j

dt
=g(R̄Bj) + k−B

(
B̄j−1 + B̄j+1

2

)
− kB∆̄j

(
N̄j−1 + N̄j+1

2

)
− µ∆̄j , (4.1.6)

dN̄j

dt
=k−BB̄j − kB

(
∆̄j−1 + ∆̄j+1

2

)
N̄j , (4.1.7)

dB̄j

dt
=kB

(
∆̄j−1 + ∆̄j+1

2

)
N̄j − k−BB̄j . (4.1.8)

The new terms representing the modifications (filopodia growth terms) are shown in

red. Moreover

V(x) =

{
V0 0 ≤ x ≤ L0

V0 + ψ(x− L0) L0 ≤ x ≤ L0 + Fj(t)
, (4.1.9)
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Figure 4.1: Sketch of a two-cell system for the model including filopodia growth. The

ECs communicate via Delta-Notch signalling and the interactions betwen

Delta and Notch, VEGF and VEGFR-2, rates of turnover and the feedback

functions are identical to the model neglecting filopodia growth (3.2.10)-

(3.2.14). Each cell body has a constant membrane length L0 and extends

a single filopodium of length Fj(t) on which bound and unbound VEGF

receptors are located. We consider the effect of linear gradients of VEGF

on the pattern forming potential of our model in which the cell bodies are

situated in a constant concentration of VEGF and the filopodia extend into

the gradient of VEGF. The corresponding VEGF profile is shown on the

right hand side.
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is the spatial VEGF profile. The cell bodies, which have a fixed length, L0, are located

in a constant concentration of VEGF, V0, and the filopdia grow perpendicularly away

from the cell, into the linear gradient of VEGF which initiates at the upper membrane

of the cell and increases linearly away from it with gradient ψ (see Figure 4.1).

The term f (Bj) is a decreasing function of bound Notch receptors representing inhibi-

tion of VEGFR-2 production as in the model neglecting filopodia growth in §3 (see also

Figure 4.1). The term (1 + θ̂Fj(t)) represents enhanced VEGFR-2 production in cells

with longer filopodia lengths.

Since we are assuming spatially averaged concentrations for VEGFR-2, we incorporate

a non-constant extracellular VEGF concentration, V(x), into our existing model by con-

sidering a spatial average of VEGF seen by the cell. This is accomplished by integrating

out the spatial dependence in equation (4.1.9) and dividing by the total domain length,

L0 + Fj, as shown by the VEGF–VEGFR-2 binding terms in equations (4.1.4) and (4.1.5).

The integral is evaluated as follows:∫ L0+Fj(t)

0
V(x)dx =

∫ L0

0
V0 dx +

∫ L0+Fj(t)

L0

(ψ(x− L0) + V0) dx

= L0V0 +
ψ

2
x2
∣∣∣∣L0+Fj(t)

L0

+ (V0 − ψL0)x|L0+Fj(t)
L0

= L0V0 +
ψ

2
(

Fj(t)2 + 2L0Fj(t)
)
+ (V0 − ψL0)Fj(t)

=V0
(

L0 + Fj(t)
)
+

ψ

2
Fj(t)2 . (4.1.10)

The
∫ L0+Fj(t)

0 V(x)dx
L0+Fj

terms with numerator as per equation (4.1.10) replace the constant

concentration of VEGF, V, used in the ODE model without filopodia binding (compare

equations (4.1.4) and (4.1.5) in §3 with (3.2.3) and (3.2.4)).

We non-dimensionalise this expression for the VEGF concentration and rescale equa-

tions (4.1.3)-(4.1.5) noting that the filopodia length, Fj(t), is scaled with the length of

the membrane, L0 (see Appendix B for details of scalings and parameter groupings),

whereas equations (4.1.6)-(4.1.8) are non-dimensionalised in the same way as for the

model neglecting filopodia growth (see Appendix A).
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The dimensionless system is given as follows,

dFj

dt
=φ w(rBj)− γFj , (4.1.11)

drUj

dt
=(1 + θFj) f (bj) + rBj − rUj

(
V0 +

ψ

2
Fj(t)2

1 + Fj(t)

)
− λrUj , (4.1.12)

drBj

dt
=rUj

(
V0 +

ψ

2
Fj(t)2

1 + Fj(t)

)
− rBj , (4.1.13)

dδj

dt
=gmaxg(rBj) + k−B

(
bj−1 + bj+1

2

)
− kB

(
nj−1 + nj+1

2

)
δj − µδj , (4.1.14)

dbj

dt
=kB

(
δj−1 + δj+1

2

)
nj − k−Bbj , (4.1.15)

nj =1− bj . (4.1.16)

Boundary conditions used in numerical simulations of (4.1.11)-(4.1.16) are identical to

those used for the no-filopodia model (see §3.2.1). Initial conditions used in simula-

tions are either a homogeneous or random perturbation about the homogeneous steady

state.

4.2 Steady state analysis

Steady states of the model in equations (4.1.11) - (4.1.16) are found by setting the time

derivatives of these equations to zero. We begin by looking for homogeneous solutions

for which

uj = ue ∀j, where uj = Fj, rUj, rBj, δj, nj, bj .

With d
dt = 0, equation (4.1.12) + (4.1.13) gives

rUe =
1
λ
(1 + θFe) f (be) , (4.2.1)

and equation (4.1.11) gives

Fe =
φ

γ
w(rBe). (4.2.2)

Substituting both (4.2.1) and (4.2.2) into equation (4.1.13), with d
dt = 0, gives

rBe =
1
λ

(
1 +

θφ

γ
w(rBe)

)
f (be)

V0 +
ψ

2

φ2

γ2 w(rBe)
2

1 + φ
γ w(rBe)

 . (4.2.3)

Since equations (4.1.14)-(4.1.16) are identical to equations (3.2.12)-(3.2.14) from the model

without filopodia growth, we repeat the steps taken therein which yield

gmaxg (rBe) =
µk−Bbe

kB(1− be)
. (4.2.4)
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This is comparable to equation (3.3.3) except in this model we cannot express rBe, in-

side the argument of g(.), in terms of be due to the heavy coupling between equations

(4.1.11)-(4.1.13). Thus equation (4.2.4) rearranges to

be =
ĝmaxg(rBe)

1 + ĝmaxg(rBe)
(4.2.5)

where ĝmax is the dimensionless parameter defined as ĝmax =
gmaxkB

µk−B
. Substitution of

(4.2.5) into (4.2.3) gives one non-linear equation to solve for the homogeneous steady

state for bound VEGFR-2:

rBe =
1
λ

(
1 +

θφ

γ
w(rBe)

)
f
(

ĝmaxg(rBe)

1 + ĝmaxg(rBe)

)V0 +
ψ

2

φ2

γ2 w(rBe)
2

1 + φ
γ w(rBe)

 . (4.2.6)

Solutions to this equation can be visualised by plotting the fixed points of the right-

hand side for varying values of the new filopodia growth parameters (see Figure 4.2).

The homogeneous steady state is no longer unique in this model since, unlike h(bj)

in the model without filopodia growth (see equation (3.3.4)), the right-hand side of

equation (4.2.6) is not neccessarily a monotonically decreasing function for all realistic

parameter choices. Therefore there is not neccessarily a unique fixed point and hence

a homogeneous steady state. For ψ = 0, equation (4.1.11) decouples and this model

is equivalent to the model without filopodia growth. In this case, the right-hand side

of equation (4.2.6) is a decreasing function of rBj and the homogeneous steady state is

unique. As ψ increases, the number of homogeneous steady states increases from 1 to

3. Non-zero receptor feedback via θ > 0 is also likely to generate more homogeneous

solutions.

Next we look for period-2 spatially patterned steady states which have uj−1 = uj+1 , ∀j.

We denote this as a common variable uj±1 which replaces the averaged terms in equa-

tions (4.1.14)-(4.1.16). Setting the time derivatives to zero, and solving in the same way

as for the homogeneous steady state, equations (4.1.11)-(4.1.13) yield equation (4.2.6)

again, whereas solving equations (4.1.14)-(4.1.16) gives

bj±1 =
ĝmaxg(rBj)

1 + ĝmaxg(rBj)
.

Thus the equations for period-2 patterning solutions are given by

rB1 =
1
λ

(
1 +

θφ

γ
w(rB1)

)
f
(

ĝmaxg(rB2)

1 + ĝmaxg(rB2)

)V0 +
ψ

2

φ2

γ2 w(rB1)
2

1 + φ
γ w(rB1)

 , (4.2.7)

rB2 =
1
λ

(
1 +

θφ

γ
w(rB2)

)
f
(

ĝmaxg(rB1)

1 + ĝmaxg(rB1)

)V0 +
ψ

2

φ2

γ2 w(rB2)
2

1 + φ
γ w(rB2)

 . (4.2.8)
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Figure 4.2: Homogeneous steady states of the ODE model with filopodia growth in

equations (4.1.11)-(4.1.16) for filopodia growth parameter, φ = 2, and in-

creasing VEGF gradient, ψ = 0, 1.5, 3, 3.75, 5. Homogeneous steady states

of the model correspond to fixed points of the right-hand side of equa-

tion (4.2.6) and intersections of the coloured curves with the line rBj = rBj.

There is a single homogeneous steady state for ψ = 0 (solid blue line).

Increasing ψ further increases the number of homogeneous steady states

exhibited by the model from 1 to 3. The bifurcation point is located at ap-

proximately ψ = 3.75 (magenta line). The dash-dot line corresponds to

ψ = 0, θ = 1.5 and is also not a strictly decreasing function, suggesting

that the system is also likely to have more homogeneous steady states for

larger values of θ whilst keeping ψ fixed.
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These can be visualised in the rB1 − rB2 plane for ψ = 0.38 (see Figure (4.3)). This

picture, however, changes dynamically as ψ is changed and this is explored in more

detail in the next section where numerical bifurcation analysis is used to analyse the

behaviour of the model’s steady states.
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Figure 4.3: Figure showing how the period-2 steady states of the ODE model with

filopodia growth in equations (4.1.11)-(4.1.16) for linear VEGF gradient

ψ = 3.8, which is just after the bifurcation shown by the magenta curve

in Figure 4.2. The green and red curves are plots of equations (4.2.7) and

(4.2.8) respectively. Intersections of the curves represent solutions to this

pair of equations, in particular, homogeneous solutions are located on the

line rB1 = rB2 and the remaining intersections represent period-2 pattern-

ing solutions. For ψ = 3.8 there are three homogeneous solutions in a

agreement with Figure 4.2 and two pairs of period-2 patterning solutions.

One is located at rB1 = 1.4605, rB2 = 1.1052 and the other (not visible) is

located at rB1 = 12.06, rB2 = 0.03489.

4.3 Two-cell analysis

Our model with filopodia growth, (4.1.11)-(4.1.16), includes three new parameters,

which determine how filopodia growth modulates and is modulated by the system
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Parameter Numerical Value Physical meaning

V0 0.095 Constant level of VEGF seen by cell body

λ 0.5 Decay rate of unbound VEGFR-2

gmax 1.3129 Maximum production of Dll4

k−B 0.25 Dissociation rate of bound Delta-Notch complexes

kB 2.285 Association rate of Delta and Notch

µ 1 Decay rate of Delta ligand

α 0.5 Response threshold for Dll4 production

β 0.4376 Response threshold for VEGFR-2 production

m 2 Response strength for VEGFR-2 production

n 2 Response strength for Dll4 production

γ 0.5 Retraction rate of filopodia

C 1 Response threshold for filopodia production

q 2 Response strength for filopodia growth

φ 2 Maximum growth rate for filopodia

ψ Variable Gradient of VEGF

θ Variable Effect of filopodia on VEGFR-2 production

Table 4.1: Table of dimensionless parameter values for the filopodia model and their

physical meaning. Shaded rows indicate new parameters of the model with

filopodia growth

dynamics. These key parameters are:

• φ - the maximum growth rate of filopodia

• θ - the extent to which filopodia regulate the production of unbound VEGFR-2

• ψ - the gradient of extracellular VEGF

To investigate the effect of each of these we first run numerical simulations of a two-cell

system defined by equations (4.1.11)-(4.1.16) using combinations of the 3 new coupling

parameters, whilst keeping the remaining parameters fixed (see Table 4.1). We then

perform bifurcation analysis using xppaut numerical continuation software on the same

two-cell system to verify our numerical observations. We show that in the presence of

filopodia growth, (φ > 0), the parameters, θ and ψ, can induce or amplify patterning.
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4.3.1 Feedback through filopodia growth

We remark that as the concentration of rBj at which the filopodia growth is half of

its maximum value, C → ∞, or if φ = 0 in (4.1.11) then the homogeneous steady state

value of filopodia length is Fe = 0 and there is no contribution from filopodia growth to

the production of unbound VEGF receptors or to the integrals in equations (4.1.12) and

(4.1.13). In this case the model reduces back to the model neglecting filopodia growth

(see equations (3.2.10)-(3.2.14)). Since φ > 0 is a necessary condition for the existence

of a non-zero, steady state filopodia length, all subsequent analysis is performed with

φ > 0.

Thus we first incorporate the effect of filopodia growth due to VEGF binding (φ > 0),

in the absence of receptor feedback (θ = 0) and a VEGF gradient (ψ = 0). In this case

equation (4.1.11) decouples and the steady state value for the filopodia length is given

by

Fe =
φ

γ
.

rq
be

Cq + rq
be

. (4.3.1)

In this case the steady states and the criteria for period-2 spatial patterns are identical

to those for the system without filopodia, illustrated in Figure 3.5. We have confirmed

this with numerical simulations of a two-cell system with φ = 0 and φ = 2 (not shown).

4.3.2 Feedback through VEGF receptor production (θ > 0 = ψ)

In this section we consider the effect of feedback via VEGFR-2 production, (θ > 0),

whilst neglecting the effect of spatial variations in extracellular VEGF (ψ = 0). Figure

4.4 shows that as θ is increased, the patterning window gets both taller and wider as the

pitchforks move apart. Thus there are parameter sets which allow patterning for θ = 0

but give a more exaggerated pattern for θ > 0 and others that will not allow patterning

with θ = 0 but will for θ > 0. This gives rise to two types of patterning behaviour:

pattern amplification and pattern induction, which can both be observed in numerical

simulations of the two-cell system defined by equations (4.1.11)-(4.1.16). (see Figure

4.5(a)-(c) and (a)-(b)). Pattern amplification and induction can be explained in terms of

the positive feedback generated by θ > 0. Longer filopodia give rise to increased levels

of VEGFR-2, which in turn allow more VEGF to bind, further increasing the length of

the filopodia.

Lastly we fix V0 = 0.12, and analyse the effect that varying θ has on the existence and

stability of steady states. The bifurcation diagram in Figure 4.6(a), for a two-cell system

defined by equations (4.1.11)-(4.1.16), shows the steady state of bound Notch in cell 1
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Figure 4.4: Bifurcation diagrams in V0-space for the system in (4.1.11)-(4.1.16) with pa-

rameters as per Table 4.1 for θ = 0 (inner) and θ = 0.5 (outer) showing a

dilation of the patterning window in response to increasing feedback via

inceased VEGF receptor production, θ. Solid (thin/dotted) lines indicate

stable (unstable) steady states. Changing θ from 0 to 0.5, causes the pitch-

forks to move further apart. Consquently, the stable period-2 patterning

solutions also move away from the homogeneous steady state. This creates

regions of parameter space where patterns can be induced or amplifed by

changing the value of θ. These regions are marked with I (induction re-

gion) and A (amplification region) and are delimited by vertical, dashed

lines.
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Figure 4.5: A demonstration of pattern amplification and induction using numerical

simulations of the two-cell system in equations (4.1.11)-(4.1.16) with peri-

odic boundary conditions and initial conditions corresponding to a ran-

dom perturbation about the homogeneous steady state. Parameters are as

per Table 4.1 unless otherwise specified. Lines - solutions in cell 1. Aster-

isks - solutions in cell 2. (a)-(d) show that one or both of θ and ψ are able to

amplify the period-2 pattern. (e)-(f) show that patterning can be induced

by activating the effect of the VEGF gradient ψ. Similar solutions for pat-

tern induction are obtained when θ is made non-zero (not shown - but see

induction regions in Figure 4.4).
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against θ. As θ is increased, the system undergoes a pitchfork bifurcation at θ ≈ 0.0712

where the stable branch for the unique homogeneous steady state becomes unstable.

At θ ≈ 2.13 the branches lose stability at a pair of fold bifurcations. At θ ≈ 2.10 these

branches again turn stable and plateau to b1 ≈ 0.0574 and b2 ≈ 0.921.

We fix θ = 2.11 which places the system in a quad-stable region and vary V0 to get

the bifurcation diagram in Figure 4.6(b). This is similar to the bifurcation diagram in

Figure 3.4(a) and (b) except it has extra fold bifurcations which show the existence of a

second patterning solution for V0 ∈ (0.0946, 0.0957) and for V0 ∈ (0.488, 0.498).
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Figure 4.6: (a) Steady state bifurcation diagram for the system in (4.1.11)-(4.1.16)

showing the branches of the homogeneous and period-2 spatially pat-

terned steady states for bound Notch whilst varying θ. Produced using

the parameters in Table 4.1. There are 4 regions of stability. We have

mono-stability for 0 < θ < 0.07123, bi-stability for 0.07123 < θ < 2.099,

quad-stability for 2.099 < θ < 2.132 and another region of bistability for

θ > 2.132. (b) Bifurcation diagram of b1 vs V0 for θ = 2.11 and the remain-

ing parameters as per Table 4.1. As we vary V0 the system passes through

the quadstable region. This occurs between the two pairs of fold bifurca-

tions at V0 ≈ 0.0946 and V0 ≈ 0.0957 and again between V0 ≈ 0.488 and

V0 ≈ 0.498. In these regions there are two types of patterned steady states,

with one type having a more exaggerated pattern than the other

4.3.3 Feedback through VEGF gradient (ψ > 0 = θ)

Next, we fix the feedback via VEGFR-2 production (set θ = 0) and consider the effect of

a spatially varying field of VEGF (ψ > 0). The filopodia equation no longer decouples

as ψ modulates the steady state of unbound and bound VEGF receptors (see equations

(4.1.12)-(4.1.13)), which in turn feed back into the equation for filopodia growth (see

(4.1.11)). The bifurcation diagram in Figure 4.7(a) shows the steady state of bound
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Notch receptors in cell 1 whist varying ψ.
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Figure 4.7: Steady state bifurcation diagram for equations (4.1.11)-(4.1.16) showing

the branches of the homogeneous and period-2 spatially patterned steady

states for bound Notch, bj, whilst varying the VEGF gradient, ψ. There are

four distinct regions of stability: a mono-stable region for 0 < ψ < 0.157,

where there is a single, stable homogeneous steady state; a bistable region

for 0.157 < ψ < 0.618 where there is a single period-2 patterning solu-

tion; a quadstable region for 0.618 < ψ < 1.80 where there are two stable,

period-2 patterning solutions (one solution exists on the inner pair of sta-

ble branches and the second on the outer pair). Lastly, there is another

bistable region for ψ > 1.80 consisting of the outer pair of period-2 pat-

terning branches. (b) Bifurcation diagram of b1 against V0 for ψ = 0.8.

As V0 varies, there are two pairs of fold bifurcations at V0 ≈ −0.0668 and

V0 ≈ 0.162 and again between V0 ≈ 0.230 and V0 ≈ 0.287. Since V0 is

a concentration, results for V0 < 0 are physically unrealistic. Parameter

values are as per Table 4.1 unless otherwise stated.

The homogeneous steady state becomes unstable via a pitchfork bifurcation at ψ ≈
0.157 and the period-2 spatial pattern branches supercritically from this such that in

a line of cells, alternating cells exhibit steady states on each of the two patterning

branches. These lose stability at a pair of fold bifurcations at ψ ≈ 1.80 and then be-

come stable again at ψ ≈ 0.618. Between the two pairs of fold bifurcations in Figure

4.7(a) the system is quad-stable and has two stable patterning solutions. When the sys-

tem lies on the inner pair of branches, the filopodia are of comparable length. However,

the outer pair of branches corresponds to a large amplitude pattern where one of the

filopodia is relatively large (see Figure 4.8)

In the quadstable region, the system exhibits hysteresis which may be important to

consider if the gradient varied over time. This could, for instance, force the system onto
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Figure 4.8: Bifurcation diagram for equations (4.1.11)-(4.1.16) showing how the steady

state filopodia lengths in a two-cell system change as the extracellular

VEGF gradient, ψ, is varied. Parameters used are as per Table 4.1. This

figure shows that the large amplitude pattern corresponding to the outer

pair of branches in Figure 4.7(a) has one very large filopodia tending to

length F1 ≈ 4.00 and one very small one tending to length F1 ≈ 0.00491 as

φ→ ∞.
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the outer pair of stable patterning branches. Since one of these corresponds to having a

very long filopodium, being in this parameter regime could be a potential mechanism

by which a cell can use its filopodium to explore the surrounding environment before,

for example, migrating.

In the previous section we observed that at ψ = 3.8 the system has multiple homoge-

neous and period-2 patterning solutions (see Figure 4.3). By continuing the diagram in

Figure 4.7(a) for ψ > 2, we are also able to capture the system’s non-unique homoge-

neous steady states (see Figure 4.9). These extra homogeneous steady states are due to

a fold bifurcation at ψ = 22.36. This diagram also shows an unstable patterning solu-

tion which branches subcritically from a pitchfork bifurcation at ψ ≈ 3.754. For large

ψ, these branches most likely connect to the outer patterning branches which are estab-

lished at the fold bifurcation located at ψ ≈ 0.6179. However XPPAUT was unable to

identify a bifurcation joining these two pairs of branches together.

In §3.3, we observed that the pitchfork bifurcation occured when the condition in equa-

tion (3.3.8) was satisfied. For this model, we analyse the behaviour of equations (4.2.7)

and (4.2.8), which correspond to the green and red curves respectively in Figures 4.10

and 4.11. Their intersections determine the period-2 steady states, and we observe their

behaviour as we vary ψ ∈ [0, 24] in the parameter space in Figure 4.9.

Figure 4.10(a) outlines the location of bifurcations in ψ parameter space. We begin at the

pitchfork bifurcation at ψ = 0.1568 where there is a single intersection of the two curves

on the line rB1 = rB2, with gradient −1, corresponding to a stable homogeneous steady

state becoming unstable (arrow in Figure 4.10(b)). As φ is further increased, the green

curve attains gradient < 1 and the red curve attains gradient > 1 at the intersection

point. This results in two new intersections (marked with +’s in Figure 4.10(c)). These

correspond to the stable period-2 pattern on the inner pair of branches. At ψ = 0.6179,

the green and red curves intersect at two new locations (marked with arrrows in (d))

which correspond to fold bifurcations. Here the stable period-2 patterning solution

and the unstable branches connecting them to the inner pair of patterning branches, is

born. These are marked with +’s and squares, respectively. Figure 4.10(e) shows these

two solutions moving apart as ψ is further increased until, at ψ = 1.798, the unstable

branches (squares) and the inner patterning branches (+’s) annihilate each other at

another fold/limit point bifurcation. This leaves a single homogeneous steady state

coexisting with the large amplitude, outer branch patterning solution at ψ = 2 (see

Figure 4.10(g)).

Further increasing ψ stretches the ‘bumps’ in the green and red curves upwards and

to the right, respectively, until they lie tangent to the line rB1 = rB2 at ψ = 3.745. This
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Figure 4.9: Bifurcation diagram showing how the steady states of the ODE model with

filopodia growth in equations (4.1.11)-(4.1.16) change whilst varying the

linear VEGF gradient ψ. The unstable homogeneous steady state branch

folds back at a saddle node at ψ = 22.36 and folds again at ψ = 3.745.

Hence there are 3 homogeneous steady states for 3.745 < ψ < 22.36. The

homogeneous steady state becomes stable at a subcritical bifurcation at

ψ = 3.754. The unstable patterning branches from this pitchfork appear to

connect to the outer patterning branches, however, xppaut was unable to

identify a saddle node bifurcation for ψ as large as ψ = 150. Key: HSS =

homogeneous steady state; PFLB = pitchfork lower branch; PFUB = pitch-

fork lower branch (the unstable patterning branches emerging from the

subcritical pitchfork).

132



CHAPTER 4: MODELLING AND ANALYSIS OF FILOPODIA EXTENSION REGULATED BY

VEGF–DELTA–NOTCH SIGNALLING IN ANGIOGENIC TIP CELL SELECTION

corresponds to a limit point bifurcation where two new unstable homogeneous steady

states are born (arrow in Figure 4.11(a)). At ψ = 3.754, the system goes through a

subcritcal pitchfork bifurcation. The gradient of the curves at the upper crossing point

(arrow in Figure 4.11(b)) traverses through−1. This gives rise to an extra pair of unsta-

ble period-2 patterning solutions (see Figure 4.11(c): marked with triangles) whilst si-

multaneously allowing the homogeneous solution corresponding to the upper crossing

point on the diagonal to become stable. As ψ is further increased, the unstable period-2

solutions move towards the axes (corresponding to the two patterning branches con-

verging for large ψ) whilst along the line rB1 = rB2, the middle crossing point (unstable

homogeneous solution) moves towards and annihilates the lower crossing point at a

fold bifurcation at ψ = 22.36. For ψ > 22.36, there is a single stable homogeneous

solution, 1 stable pair of patterning solutions and 1 unstable pair of patterning solu-

tions (see Figure 4.11(d)). The bifurcation points in Figure 4.10b,d,f and Figure 4.11a,b

correspond to the bifurcation in Figure 4.9.

We fix ψ = 0.8, placing the system in the quadstable region, and vary V0 to get the

bifurcation diagram in Figure 4.7(b). This is similar to the bifurcation diagram in Figure

3.4(a) and (b) except it has extra fold bifurcations which show the existence of a second

patterning solution for V0 ∈ (0.230, 0.287). A second quad-stable region exists for V0 ∈
(−0.0668, 0.162).

We find that changes in ψ can also act to both amplify (see Figure 4.5(a) and (b)) or

induce patterns (numerical simulations of the two-cell system are qualitatively simi-

lar to Figure 4.5(e)-(f) and are therefore omitted). The pitchfork and fold bifurcations

in Figure 4.7 correspond to the same pitchfork and fold bifurcations in Figure 4.6(a)

except they occur at different numerical values in each parameter space. This will be

confirmed in the next section when conducting two-parameter bifurcation analysis.

4.3.4 Feedback through combinations of filopodia growth, receptor produc-

tion and VEGF gradient (θ, ψ > 0)

In the previous two subsections we have seen that for φ > 0, the model exhibits 3 types

of stability regions whilst varying either θ or ψ. In the mono-stable region there is a sin-

gle, stable homogeneous steady state. In the bistable region, period-2 spatial patterns

can form, and in the quad-stable region, two pairs of stable branches are present for the

same parameter value.

Firstly, we look at the combined effect of feedback via VEGFR-2 production (θ > 0) and

a VEGF gradient (ψ > 0) using the parameters from Table 4.1. By varying both ψ and
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Figure 4.10: Homogeneous and period-2 patterning steady state solutions of the ODE

model considering filopodia growth in equations (4.1.11)-(4.1.16). These

correspond to on and off-diagonal intersections, respectively, of the

green and red curves. Plots were constructed by simultaneously solv-

ing equations (4.2.7) and (4.2.8) for ψ = 0.1568, 0.4568, 0.6179, 1, 1.798, 2.

(a) shows the bifurcation structure of the model and the number of

homogeneous/patterning branch solutions (see also Figure 4.9) Key:

PF=Pitchfork, and LP=Limit point (or fold) bifurcations (both marked

with arrows); +: stable period-2 solutions, open circles: unstable homo-

geneous solutions, squares: unstable non-patterning branches connect-

ing the inner and outer patterning branches between the limit points at

ψ ≈ 0.6179 and ψ ≈ 1.798.
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Figure 4.11: Steady state solutions of the ODE model in equations (4.1.11)-(4.1.16), de-

fined and calculated as described in Figure 4.10 for ψ > 2. See Figures

4.10(a) and 4.9 for locations of bifurcations. (a) shows the limit point at

ψ = 3.745 where both curves are tangent to the line rB1 = rB2. (b) shows

the subcritical pitchfork bifurcation at ψ = 3.754 where both curves have

slope -1 at the point of intersection (arrow). (c) shows the presence of

an unstable period-2 patterning solution (triangles) which emerges from

the pitchfork bifurcation in (b). (d) shows the presence of a single ho-

mogeneous solution after the destruction of two solutions at the LP at

ψ ≈ 22.36 (see zoom inset). Both pairs of period-2 patterning solutions

are large amplitude for large ψ. Key: triangles: unstable, period-2 pat-

terning branches; closed(open) circles correspond to stable(unstable) ho-

mogeneous solutions. Note that there are 2 stable, period-2 patterning

solutions for large rB1, rB2 not shown in (a),(b),(c) and 2 stable and 2 un-

stable in (d).
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θ we follow the pitchfork and fold bifurcations in Figure 4.7a to get the two parameter

diagram shown in Figure 4.12a. The limit points move closer together as ψ → 0. At

ψ = 0 Figure 4.6(a) represents a slice through the two-parameter diagram in Figure

4.12a. Here the system is quadstable only for a small range of values of θ. Thus the

solutions may be able to move between the bistable and quadstable patterning regions

in response to perturbations in parameter values or changes in parameter values due to

development or disease in the embryo. The difference between the equilibrium value

of the “inner" and “outer" solution branches is not significant for values of θ in the

quadstable region of Figure 4.6. This is not the case in Figure 4.7 where the “inner" and

“outer" branches are spaced further apart.

We also follow the pitchfork and fold bifurcations into (ψ, φ) space in Figure 4.12b. We

find that there are still 4 distinct stability regions: one monostable, two bistable and a

quadstable region. Together these results suggest that the stability regions in φ− ψ− θ

space may be bounded by curved surfaces.
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Figure 4.12: Two parameter bifurcation diagrams for the two-cell model defined by

equations (4.1.11)-(4.1.16). Continuation of the pitchfork (PF) and fold

(Fold) bifurcations in (a) θ-ψ space and (b) φ-ψ space. The bifurcations

separate the monostable (M), bistable (B) and quadstable (Q) regions of

the system. In (a) the θ-axis is equivalent to a slice corresponding to

Figure 4.6(a) and the φ-axis is equivaluent to a slice representing Figure

4.7(a).

4.4 Linear stability analysis

In this section we use linear stability analysis to compare how the models with and

without filopodia pattern in terms of the feedback strengths of VEGFR-2 production
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(A) and Dll4 ligand production (B). We begin with the dimensionless system in (4.1.11)-

(4.1.16) and, following our steps from the model neglecting filopodia growth (see §3.5),

assume a quasi-steady state for bound VEGF receptors which gives

rBj = rUe

(
V0 +

ψ

2
Fe(t)2

1 + Fe(t)

)
.

This makes the following analysis more tractable and is motivated by the idea that

binding processes occur on a faster timescale than transcriptional and translational pro-

cesses. We remark that a conservation of Notch receptors in their bound and unbound

forms has been assumed in equation (4.1.16) giving nj = 1 − bj. We linearise about

the homogeneous steady state, given by the O(1) terms (Fe, rUe, δe, be). We substitute

Fj = Fe + εF̂j, rUj = rUe + εr̂Uj, δj = δe + εδ̂j and bj = be + εb̂j (for 0 < ε� 1) and retain

O(ε) terms giving:

dF̂j

dt
=
{

φw′(pG(Fe)rUe)rUe p′G(Fe)− γ
}

F̂j + φw′(pG(Fe)rUe)rUe p′G(Fe) r̂Uj , (4.4.1)

dr̂Uj

dt
=(1 + θFe) f ′(be)b̂j + θ f (be)F̂j − λr̂Uj , (4.4.2)

dδ̂j

dt
=gmaxg′(pG(Fe)rUe)rUe p′G(Fe)F̂j + ḡmaxg′(pG(Fe)rUe)pG(Fe)r̂Uj , (4.4.3)

− (µ + kB(1− be))δ̂j + (k−B + kBδe)〈b̂j〉 ,

db̂j

dt
=kB(1− be)〈δ̂j〉 − (k−B + kBδe)b̂j , (4.4.4)

where the w(.) is as per equation (4.1.2) and

pG(Fe) = V0 +
ψ

2
F2

e
1 + Fe

, (4.4.5)

is the dimensionless concentration of VEGF at the homogeneous steady state. We again

look for solutions of the form ûj = ũj · exp(ikj + σt), where uj = Fj, rUj, δj, bj and k, σ

and the 〈〉 notation are as defined in the no filopodia model. We substitute this ansatz

into the linearised system (4.4.1)-(4.4.4). This gives σv = Mv where v =
[

F̂j, r̂uj, δ̂j, b̂j

]>
and M is the Jacobian matrix of the filopodia system given by

M =


φ UVrUe − γ φ UpG(Fe) 0 0

θ f (be) −λ 0 (1 + θFe)A

gmaxBVrUe gmaxBpG(Fe) −(kB(1− be) + µ) (k−B + kBδe)K

0 0 kB(1− be)K −(k−B + kBδe)

 , (4.4.6)

with K = cos(k) and

A = f ′(be) , B = g′(pG(Fe)rUe) , U = w′(pG(Fe)rUe) , V = p′G(Fe) (4.4.7)
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The parameters A, B, U and V represent four types of feedback at the homogeneous

steady state: feedback via VEGF receptor inhibition (A); feedback via ligand activation

(B); feedback via filopodia growth U; and feedback via a VEGF gradient V.

The stability of the system is determined by the roots of the characteristic polynomial

which is a quartic equation in σ given by

P(σ; K) = σ4 + a1σ3 + a2σ2 + a3σ + a4 . (4.4.8)

Expressions for the coefficients, ai (i = 1, 2, 3, 4), are given in Appendix C.

The Routh-Hurwitz conditions for a quartic equation of this form are given by

a1 > 0 , (4.4.9)

a1a2(K)− a3(K) > 0 , (4.4.10)

a3(K) [a1a2(K)− a3(K)]− a2
1a4(K) > 0 . (4.4.11)

a4(K) > 0 . (4.4.12)

For fixed values of U and V, these inequalities can be used to delimit stability regions

in the A-B plane for this model (see Figure 4.13).

4.5 Modulation of stability regions by filopodia feedback

The linearised system of ODEs (4.4.1)-(4.4.4) contains 4 feedbacks terms (see (4.4.7)).

The new terms in the filopodia model relate to U and V. However, V depends only

on ψ which fixes the steady state values rUe, Fe and rBe (see equations (E.0.7), (E.0.8)

and (E.0.10)). Hence it is not possible to vary V independently of A, B and U without

changing the steady state. Therefore we focus on unfolding our anlysis of the A-B

plane by varying the strength of filopodia production, U. This is done by fixing ψ

and θ (and hence the homogeneous steady state and the feedback strength, V), whilst

varying U ∝ q. In appendix E we show how to choose β, α, C and gmax such that

the feedback strengths A, B and U can be varied without changing the homogeneous

steady state.

Figure 4.13 (a),(b) shows that varying U in the absence of filopodia feedback (φ > 0,

θ = ψ = 0) has no effect on the patterning regions in the A-B plane (see Figure 3.9) as

the ODE for filopodia growth decouples. For non-zero values of θ and ψ the underlying

homogeneous steady state, rBe, changes (see Figure 4.13(o)). Rows (c)-(f), (g)-(j) and (k)-

(n) relate to cases which lie on the same contour line in Figure 4.13(o) and hence give

rise to the same homogeneous steady state rBe = 0.66. Increasing the filopodia feedback
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Figure 4.13: Stability plots in the A-B plane for the quasi-steady filopodia system us-

ing parameter values as per Table E.1 unless otherwise specified. We fix

values of θ and ψ in each row: (a)-(b) θ = 0, ψ = 0 (c)-(f) θ = 0.5, ψ = 0

(g)-(j) θ = 0, ψ = 0.495 (k)-(n) θ = 0.206, ψ = 0.206. (o) The contour

plot shows how the homogeneous steady state, rBe, varies with θ and ψ.

Traversing each row from left to right corresponds to increasing the feed-

back strength of filopodia production, U, which is achieved by varying

the Hill coefficient, q. For each pair of fixed θ, ψ, increasing the strength of

filopodia production, U, causes at first, the stable black region, and then

the grey region to disappear. Key: Solid and dashed green lines depict

equality of the condition (4.4.12) at K = ±1 respectively; Thick and thin

black lines depict equality of the condition (4.4.11) at K = ±1 respectively.
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strength, U, causes the stable black region to shrink and ultimately vanish. For stronger

feedback strengths, similar behaviour is exhibited by the unstable grey region until the

only remaining region is the unstable (white) one. When the homogeneous steady state

becomes unstable, the system exhibits stable period-2 spatial patterns.

4.5.1 Loss of the black stable region

In each row of Figure 4.13 the vanishing of the black region coincides with the violation

of a4(K) > 0 (for K = −1, 1) ∀ A, B. In the A− B plane, a4(K = ±1) take the hyperbolic

forms

AB = ±c0(U) =
µ [λ(γ−UVφrUe)−Uθ f (be)pG(Fe)φ] (k−B + kBδe)

γkB(1− be)gmax pG(Fe)(1 + θFe)
(4.5.1)

respectively (shown as solid and dashed green curves) where c0(U) is a constant pa-

rameterised by U. As U increases, it causes c0 to change sign which is responsible for

violating a4(K = ±1) > 0 ∀ A, B. The parameter values in Table E.1 give c0(1) > 0

and c0(1.5) < 0. Since c0(U) is a smooth linear function of U and hence continuous

on [1, 1.5], by the intermediate value theorem ∃U0 ∈ [1, 1.5] such that c0(U0)=0. As U

passes through U0, a4(K = 1) = 0 (the solid green curve) transitions from the A, B > 0

quadrant to the A < 0 < B quadrant. The dashed green curve, a4(K = 1) = 0 simulta-

neously switches in the opposite direction.

Stability of the homogeneous steady state demands the system lie simultaneously be-

low the solid green and above the dashed green curves for B > 0 and vice versa for

B < 0 which is not possible after c0 changes sign.

Equivalently we examine a4(K), for fixed A and B of different signs (i.e. in a patterning

quadrant), which is quadratic in K:

α0K2 + β0K + γ0 , (4.5.2)

and is explicitly given in (C.0.4). The coefficients α0 and γ0 are functions of U. When

U = 0, α0(U = 0) < 0 and γ0(U = 0) > 0 so (4.5.2) is concave downwards and has

a turning point for K < 0. As U is increased through some critical U = U0, α0(U)

becomes positive and γ0(U) becomes negative. Hence a4(K) is concave upwards with

a turning point for K > 0. At the transition point, α0(U0), γ0(U0) = 0 and a4(K) is

linear in K, passing through the origin.

4.5.2 Loss of the grey patterning region

Figure 4.13 also shows that the vanishing of the grey patterning region, in which the

homogeneous steady state is unstable to non-homogeneous perturbations, happens
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after the destruction of the black stable region, when the filopodia feedback strength,

U is further increased. This is because increasing U changes the functional form of the

Routh-Hurwitz condition in (4.4.11), corresponding to the black curves in Figure 4.13.

For fixed K,

a3(K) [a1a2(K)− a3(K)]− a2
1a4(K) = 0⇔ A2B2 + c1(U)AB + c2(U) = 0 , (4.5.3)

where c1(U) and c2(U) are constants parameterised by U. The explicit form of this

Routh-Hurwitz condition is algebraically intractable but numerical plots (see black

curves in Figure 4.13 (i) and (j)) suggest that the disappearance of the grey region co-

incides with a switching of the thick black curve (which has K = 1) from the quad-

rant with A < 0 < B to the quadrant with A, B < 0. This is attributable to a sign

change in the coefficient c2. In Figure 4.13 (i) numerical calculations give both c1(U =

1.5), c2(U = 1.5) < 0 whereas in (j), c1(U = 2) < 0 < c2(U = 2). Consequently, the

homogeneous steady state is no longer stable to homogeneous perturbations ∀A, B.

4.5.3 Numerical simulations

In this subsection we take a fixed point in the A − B plane of Figure 4.13 (g),(h) and

(j) and, using the parameter values therein, show the effect of increasing the filopodia

feedback strength, U, using numerical simulations of a two-cell, quasi-steady filopodia

system. As the filopodia feedback strength, U, increases, the Routh-Hurwitz hyperbo-

lae for a4(K = ±1) come together shrinking the black region until it disappears and

the fixed point in the A-B plane, which was in the stable black region in (g), transitions

to the unstable grey region in (h) and finally the unstable white region in (j). Both of

the grey and white regions have stable period-2 patterns. Hence increasing the filopo-

dia feedback strength, U facilitates pattern formation by moving the boundaries of the

stability regions.

Using the parameter values from Figure 4.13 (g), (h) and (i) again, we simulate the

quasi steady filopodia system in a ring of N = 30 cells. The two cell-system exhibits no

patterning when it lies in the black stable region (see Figure 4.15 (a)) but does exhibit

patterns when it lies in the grey and white unstable regions (see Figure 4.15 (b) and (c)).

These patterns are not very robust and contain “errors” since the system at the fixed

point in the A − B plane does not have particularly strong feedback strengths A, B.

Hence it takes a long time for solutions to reach a robust pattern. Stronger feedback

strengths reach a robust pattern in a comparable timeframe to the simulations in Figure

4.15 and can even correct “errors” (not shown).
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Figure 4.14: Numerical simulations of the quasi-steady filopodia system with θ = 0

and ψ = 0.495. A = −0.5 and B = 1 are fixed whilst U is varied (using

the Hill coefficient q) as shown in plot titles. (a,b,c) correspond to simu-

lations from the stability plots in (g,h,j) respectively, in Figure 4.13 with

parameters identical to those used therein. In each case, initial conditions

are a random perturbation about the homogeneous steady state. As the

filopodia feedback strength, U, is made stronger, the two-cell system is

able to pattern (b,c) where it could not before (a).
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Figure 4.15: Numerical simulations of the quasi-steady filopodia system for a ring of

N = 30 cells with θ = 0 and ψ = 0.495. A = −0.5 and B = 1 are

fixed whilst U is varied (using the Hill coefficient q) as shown in plot

titles. (a,c,e) are space-time plots showing the level of bound Notch, bj,

in each cell in the ring and correspond to simulations from the stability

plots in (g,h,j) respectively, in Figure 4.13. In each case, initial conditions

are a random perturbation about the homogeneous steady state. As the

filopodia feedback strength, U, is made stronger, the string of cells is able

to admit patterning: (c-f), where it could not before: (a,b). (b,d,f) show

the level of bj at the end of the simulations in (a,c,e) respectively.
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4.6 Discussion

We incorporate filopodia growth into our ODE model of Chapter 3, allowing their

growth in a linear gradient of extracellular VEGF to give cells with a filopodium an

advantage by either increasing their production of VEGFR-2 (via the θFj term in equa-

tion (4.1.12)) and/or allowing them to bind more VEGF (via the term multiplying ψ in

equations (4.1.12) and (4.1.13)). These two mechanisms act as part of a positive feed-

back loop, enabling further elongation of filopodia in these ECs. Our model predicts

that filopodia facilitate spatial pattern formation, by either amplifying an existing pat-

tern or inducing one which was not present in the absence of filopodia (see Figure 4.5).

Interestingly, our model predicts that patterning is still possible even in the absence of

a linear gradient of VEGF (ψ = 0). In this case induction or amplification of a pattern

needs to occur due to feedback onto VEGFR-2 production (θ > 0) (see Figure 4.4). This

is consistent with the agent based model of Bentley et al. [81].

Due to the incorporation of an equation for filopodia growth: (4.1.3); the VEGF recep-

tor feedback term in equation (4.1.4); and the inclusion of a linearly increasing VEGF

gradient, ψ; the equations of this model are more non-linear and much more heavily

coupled than for the system of ODEs in Chapter 3. In this model, period-2 steady state

solutions were found by simultaneously solving equations (4.2.7) and (4.2.8) whereas

in the model without filopodia growth, period-2 solutions corresponded to finding the

fixed points of the function h ◦ h(x) (see equation 3.3.7). Simultaneous solution of equa-

tions (4.2.7) and (4.2.8) for a range of values for the VEGF gradient, ψ, shows that the

filopodia growth terms can introduce an extra ‘bump’ in these curves which is respon-

sible for producing the large amplitude (outer branch) pattern (see Figure 4.10d). This

also allows the small amplitude pattern to be destroyed at another pair of folds (see

Figure 4.10f). Biologically ,this gives a mechanism to induce large amplitude patterns

that cannot be obtained without filopodia.

For large values of the VEGF gradient, ψ, our model exhibited multiple homogeneous

steady states. The fixed points of equation (4.2.6) corresponded to homogeneous steady

states. We found that the filopodia growth terms arising from a non-zero value for the

VEGF gradient, ψ, or receptor feedback, θ, were capable of introducing a ‘bulge’ in the

curve corresponding to equation (4.2.6) allowing multiple fixed points. We confirmed

these predictions using bifurcation analysis (see Figure 4.9).

Bifurcation analysis, varying the filopodia feedback parameters ψ and θ using XPPAUT,

also confirmed the coexistence of large and small amplitude patterns as predicted by

steady state analysis. The large amplitude pattern corresponded to cells having one
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very long and one extremely short filopodium (see Figure 4.8). The long filopodia may

be able to reach further afield and help cells explore their environment more efficiently.

Such a large amplitude pattern may allow communication between ECs many cell di-

ameters away, using long filopodia. Two parameter continuation, using XPPAUT, also

showed the movement of the pitchfork and fold bifurcations in ψ− θ and ψ− φ param-

eter space (see Figure 4.12).

The introduction of an equation for filopodia growth made linear stability analysis

more difficult than in Chapter 3 (see coefficients of equation (4.4.8) in Appendix C). The

extra Routh-Hurwitz condition arising from the filopodium equation marked the grey-

white boundary in the stability plots (see black curves in Figure 4.13). Linear analysis

showed that increasing the filopodia feedback strength, U, caused the stable regions of

A-B parameter space to shrink and vanish. This caused the homogeneous steady state,

for a fixed point in the A-B plane, to become destabilised (see Figure 4.13). Numerical

analysis, in which we increased the filopodia feedback strength, U, by increasing the

Hill coefficient, q, in the production function, w(.), for filopodia growth, confirmed the

predictions of the linear analysis. In this model also, the onset of patterning did not

depend on the specific functional forms of the feedbacks f (.), g(.), or w(.); only on

their respective slopes, A, B, U, at the homogeneous steady state.

A natural way of extending this work would be to allow multiple filopodia to grow

per cell or to incorporate recovery delays representing the time before gene expression

returns to normal [81]. Other extensions could involve allowing the cells to divide

and migrate away from the vessel, though this would necessitate the need for a spa-

tial geometry. Allowing the VEGF concentration to vary in the j direction, parallel to

the string of cells, could be another interesting avenue for further work. Zygmunt et

al., have shown that Semaphorin-Plexin signalling, between zebrafish somitic cells and

ECs of the DA, can induce DA cells, away from somite boundaries, to secrete solu-

ble flt1, which limits signalling via the VEGF–VEGFR-2 interactions we have studied

here [58]. Thus Semaphorin-Plexin signalling represents one possible way in which

an external signalling pathway may modulate the spatial distribution of VEGF in the j

direction.
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CHAPTER 5

A Partial Differential Equation

Model for Intramembrane VEGF

Receptor Transport-Regulated

Filopodia Extension

The trafficking of proteins and receptors is known to be important for moving proteins

from their sites of synthesis to their sites of action [120]. Coupling of receptors with

effector molecules, other receptors, cytoskeletal elements and other membrane asso-

ciated components requires diffusion within the cell membrane bilayer. This process

has been investigated using experimental techniques such as fluorescence recovery after

photobleaching (FRAP) [121, 122]. Transmembrane proteins such as receptors may, in

certain cases, be required to establish polarity across or between cells [72, 123]. Sim-

ilarly, the dynamics of cells stimulated by spatially varying signals, (for example, a

gradient of extracellular VEGF), may differ from those of cells exposed to a spatially

homogeneous signal.

In this chapter we formulate a model to investigate how the VEGF–Delta–Notch sig-

nalling system is modulated by filopodia growth. We account for spatial variation in

VEGFR-2 along the filopodium and cell membrane which is caused by spatial gradi-

ents of extracellular VEGF. We formulate model in which the concentrations of un-

bound and bound VEGFR-2 are spatially resolved. PDEs describing the spatiotempo-

ral evolution of unbound and bound VEGFR-2 are coupled to ODEs describing the

time evolution of whole cell variables: the cellular concentrations of Delta ligands and

Notch receptors. We use this framework to explore the effects of receptor diffusion,

and filopodia growth, on the pattern forming potential of a string of discrete, coupled
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cells.

5.1 PDE model framework and model equations

We consider Delta-Notch interactions in terms of whole cell variables (as in Collier et

al [67, 68, 71, 74]. Bound VEGF receptors upregulate production of Delta ligand which

binds to Notch receptors on neighbouring cells. Consequently, the bound Notch recep-

tors on the neighbouring cells downregulate their production of (unbound) VEGFR-2.

Thus we assume that the VEGF-regulated production of Delta ligand is an increasing

function of the bound VEGFR-2 concentration at the cell body. There are alternative

choices for coupling between whole cell and local variables: these are discussed below.

The geometry for our model, in the discrete cell direction, is identical to that shown

in Figure 4.1 with j defined as the discrete cell variable. The spatial geometry in the

direction of the cell membrane and filopodia is shown in Figure 5.1 for a single cell.

The cell body has a fixed length, L0, and the growing filopodium has time-dependent

length Fj(t). The cell body is located in a constant concentration of VEGF and the

filopodia extend into a linearly increasing gradient.

The model variables for VEGF, unbound and bound VEGFR-2 are the concentrations

(densities) of ligands and receptors as a function of distance along the membrane, mea-

sured from the bottom of cells that extend filopodia ‘upwards’ or equivalently in the x

direction (see Figure 5.1).

The local variables are given by:

ρUj(x, t), the density of RUj, VEGFR-2 receptors on cell j

ρBj(x, t), the density of RBj, bound VEGFR-2 receptors on cell j.

The whole cell variables are given by:

δj(t), the density of ∆j, (unbound) Dll4 in cell j

nj(t), the density of Nj, (unbound) Notch in cell j

bj(t), the density of Bj, bound Delta-Notch compound, Notch from cell j

Fj(t), the length of the filopodia projecting from cell j,

and the extracellular VEGF concentration is

V(x) = V0 + ψ(x− L0) ,
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Figure 5.1: Schematic showing the spatial aspect in the filopodia (or x) direction of a

single cell for the PDE model. The geometry in the string (or cell) direction

remains the same as earlier (see Figure 4.1). The cell body has fixed length

L0 and the filopodium has time-dependent length Fj(t). The extracellu-

lar VEGF distribution, V(x), (superimposed in black) assumes that the cell

body is located in a constant concentration of VEGF and that the filopodia

extend into a linearly increasing gradient which extends perpendicularly

away from the cell. In this model VEGFR-2 (blue lines) can diffuse and

advect in the cell membrane. A sketch of their spatial distribution is plot-

ted in blue, ρBj(x, t). The local strain rate is defined to be zero at the cell

body, and hence the domain does not grow for 0 < x < L0. The strain rate

is some function of bound VEGFR-2 for L0 < x ≤ L0 + Fj, and here the

domain grows causing advection of receptors along the filopodium.

148



CHAPTER 5: A PARTIAL DIFFERENTIAL EQUATION MODEL FOR INTRAMEMBRANE

VEGF RECEPTOR TRANSPORT-REGULATED FILOPODIA EXTENSION

where L0 is the length of the fixed cell membrane and ψ is the linearly increasing gra-

dient of VEGF, which initiates from the upper surface of the string of ECs.

The equations for Delta and Notch are similar to those used in the ODE model of §4

(see equations (4.1.14)-(4.1.16)):

dδj

dt
=gmaxg(R̃Bj) + k−B

(
bj−1 + bj+1

2

)
− kB

(
nj−1 + nj+1

2

)
δj − µδj, (5.1.1)

dbj

dt
=kB

(
δj−1 + δj+1

2

)
nj − k−Bbj, (5.1.2)

nj =1− bj. (5.1.3)

The variable R̃Bj = R̃Bj(t) is some spatially averaged measure of the total amount of

VEGF bound to cell j. For example, we might consider the global average receptor

concentration:

R̃Bj(t) = R̄Bj(t) =

∫ L0+Fj(t)
0 ρBj(x, t)dx

L0 + Fj(t)
. (5.1.4)

The biological justification for this choice would be if signal transduction from all

VEGFR-2 was integrated by the cell. An alternative might be that signal transduc-

tion depends on the concentration of bound VEGFR-2 close to the nucleus or indeed

the concentration at any single point on the cell membrane, x ∈ [0, L0]. For simplicity,

we proceed using the concentration of bound VEGFR-2 at the bottom/proximal end of

the cell where x = 0, R̃Bj(t) = ρBj(0, t).

We assume that VEGFR-2 can bind and unbind with extracellular VEGF at association

and dissociation rates, kVR and k−VR, respectively. We also assume that unbound VEGF

receptors decay linearly with rate µ and that their production is downregulated by

bound Notch receptors. Hence, the equations for ρUj(x, t) and ρBj(x, t), defined on the

domain x ∈ [0, L0 + Fj(t)] as follows,

∂ρUj

∂t
=(1 + θ̂Fj(t)) f (bj) + k−VRρBj − kVRρUjV(x)− λρUj

+ DU
∂2ρUj

∂x2︸ ︷︷ ︸
Diffusion

− ∂

∂x
(
vjρUj

)
︸ ︷︷ ︸

Advection

, (5.1.5)

∂ρBj

∂t
=kVRρUjV(x)− k−VRρBj + DB

∂2ρBj

∂x2 −
∂

∂x
(
vjρBj

)
. (5.1.6)

DU and DB represent the diffusivity of unbound and bound VEGF receptors in the

cell membrane, and the ∂
∂x

(
vjρ
)

term represents the advective transport of receptors in

the filopodia with local advective velocity vj(x, t) which is determined by constitutive

laws that we define later in this chapter. Each law assumes domain growth is localised
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in the filopodia (zero domain growth at the cell body). Thus a Dirichlet condition at

x = 0 matching the velocity at the cell body is specified under the assumption that the

proximal end remains fixed:

vj(0, t) = 0. (5.1.7)

The remaining terms represent VEGFR-2 production and linear degradation, and VEGF–

VEGFR-2 binding and unbinding as specified in the ODE model earlier (see equations

(4.1.4) and (4.1.5)). In this model however, the VEGF concentration at position x is

given by

V(x) = L0 + ψ(x− L0) , (5.1.8)

rather than being approximated by an integral, as per the ODE model in Chapter 4 (see

equation (4.1.10)).

The boundary conditions for ρUj and ρBj are zero flux at x = 0 and x = L0 + Fj(t):

∂ρUj

∂x
(0, t) = 0 =

∂ρUj

∂x
(L0 + Fj(t), t) , (5.1.9)

∂ρBj

∂x
(0, t) = 0 =

∂ρBj

∂x
(L0 + Fj(t), t) . (5.1.10)

This ensures that VEGF receptors are not lost at the domain boundaries. Furthermore,

the velocity at the end of the filopodia defines the overall growth rate of the filopodia

domain:
dFj

dt
= vj(L0 + Fj(t), t). (5.1.11)

The initial conditions are specified when conducting numerical simulations. Thus far,

the dimensional model is specified by the ODEs in equations (5.1.1)-(5.1.3); the PDEs

in equations (5.1.5)-(5.1.6) with boundary conditions in equations (5.1.9)-(5.1.10) and

filopodia length as per equation (5.1.11). It remains to determine the flow, vj(x, t) which

has boundary condition in equation (5.1.7). We consider several examples in the sec-

tions that follow.

5.2 Domain growth laws

Growth is driven by local expansion of the cell membrane which leads to the transport

of material comprising the membrane and filopodia (lipids, proteins and actin, for ex-

ample). In our model, membrane extension, specifically in the filopodia, is stimulated

by bound VEGFR-2. In the cell body, there may be constant membrane turnover due to

endocytosis which is balanced by production but for convenience we define the local

strain rate in the cell body to be zero. In the filopodia, we suppose that the local strain

150



CHAPTER 5: A PARTIAL DIFFERENTIAL EQUATION MODEL FOR INTRAMEMBRANE

VEGF RECEPTOR TRANSPORT-REGULATED FILOPODIA EXTENSION

depends on the local concentration of bound VEGFR-2 and the filopodium length mi-

nus some constant which accounts for membrane turnover or endocytosis. Thus the

general form of the local strain rate is

∂vj

∂x
=

0, 0 ≤ x < L0

Γ(ρBj(x, t), Fj(t))− γ, L0 ≤ x ≤ L0 + Fj(t)
, (5.2.1)

where Γ is an operator for domain growth which takes the form of a function of the

bound VEGFR-2 concentration, ρBj(x, t), and the filopodium length, Fj(t). This is to

be a local function in the case where growth depends on locally bound VEGFR-2, or a

function of an integral in the case where growth depends on the global average con-

centration of bound VEGFR-2 (see equation (5.1.4)). We consider these two cases and a

third case, in which the growth depends on the receptor concentration at a single point

(x = 0), individually, and compare the form of the ODE for filopodia growth predicted

by the PDE model of this section and the ODE model of §4.

In the sections that follow, we consider both filopodia length independent and depen-

dent forms for Γ. In §5.2.1-5.2.3 we consider a form of local growth which is indepen-

dent of the filopodia length:

Γ(ρBj(x, t), Fj(t)) = Φ(ρBj(x, t)) , (5.2.2)

and in §5.2.4-5.2.5 we consider filopodia length-dependent growth:

Γ(ρBj(x, t), Fj(t)) =
Φ(ρBj(x, t))

Fj(t)
. (5.2.3)

5.2.1 Local strain dependent on the local bound VEGFR-2 concentration

In this case the local strain rate, ∂vj/∂x, is assumed to be zero in the cell body due to

the assumption of zero growth and decay there. In the filopodia, Γ is some filopodium

length-independent function, Φ, of the local receptor concentration, ρBj(x, t). Hence

the local strain rate is given by:

∂vj

∂x
=

0, 0 ≤ x < L0

Φ(ρBj(x, t))− γ, L0 ≤ x ≤ L0 + Fj(t)
. (5.2.4)

Integrating this with respect to x and applying the boundary condition gives

vj(x, t) =

0, 0 ≤ x < L0∫ x
L0

Φ(ρBj(x, t))dx− γ(x− L0), L0 ≤ x ≤ L0 + Fj(t)
, (5.2.5)
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and in particular,

dFj

dt
= vj(L0 + Fj(t), t) =

∫ L0+Fj(t)

L0

Φ(ρBj(x, t))dx− γFj(t) . (5.2.6)

We also note that if Φ were a linear operator e.g. Φ(y) = ζy, then using equation (5.1.4),

dFj

dt
=ζ

∫ L0+Fj(t)

L0

ρBj(x, t)dx− γFj (5.2.7)

=ζ

(
(L0 + Fj)R̄Bj −

∫ L0

0
ρBj(x, t)dx

)
− γFj, (5.2.8)

which is in contrast to the growth rate, w(.), used in the phenomenological ODE model

of §4 (see equation 4.1.3). This is due to the multiplying factor (L0 + Fj) in equation

(5.2.8) which we expect will lead to unbounded growth (this is shown later) and the

correcting integral due to the zero contribution from [0, L0] in this model. We do, how-

ever, obtain the general property, similar to the ODE model of chapter (see equation

(4.1.3)), that the filopodia elongation rate should be some function of bound VEGFR-2

density minus decay.

5.2.2 Local strain dependent on the global average bound VEGFR-2 concen-

tration

If Γ is another filopodia length-independent function, Φ, of the global average bound

VEGFR-2 concentration, R̄Bj(t), then the strain rate, ∂vj/∂x, is given by

∂vj

∂x
=

0, 0 ≤ x < L0

Φ(R̄Bj(t))− γ, L0 ≤ x ≤ L0 + Fj(t)
. (5.2.9)

This can be integrated directly as the right-hand side is (piecewise) spatially indepen-

dent and after applying the boundary conditions we obtain

vj(x, t) =

0, 0 ≤ x < L0

(Φ(R̄Bj(t))− γ)(x− L0), L0 ≤ x ≤ L0 + Fj(t)
, (5.2.10)

and in particular,

dFj

dt
= vj(L0 + Fj(t), t) = (Φ(R̄Bj(t))− γ)Fj(t). (5.2.11)

The growth function, Φ, multiplying Fj (t) may be problematic given the kind of form

we expect, (compare with equation (4.1.3)), because, similarly to the growth law in

§5.2.1, the Φ(R̄Bj(t))Fj(t) term is likely to lead to the unbounded growth of Fj(t).
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5.2.3 Local strain dependent on the VEGFR-2 concentration at the proximal

end of the cell (x = 0)

This section considers a specific case in which domain growth depends on the bound

VEGFR-2 concentration at a single point and is independent of the filopodium length.

A growth law of this type may be appropriate if the cell nucleus co-ordinated transport

of actin for filopodia growth is determined by the VEGF signal at the cell body. This

could be a point close to the nucleus, for instance. However, choosing the point x = 0

is both analytically and numerically tractable. The strain rate becomes integrable and

allows us to validate our method of numerical integration in the sections that follow.

The strain rate is given by

∂vj

∂x
=

0 , 0 ≤ x < L0

Φ(ρBj(0, t))− γ , L0 ≤ x ≤ L0 + Fj(t)
. (5.2.12)

Since this is spatially independent, it can be directly integrated to give

vj(x, t) =

0 , 0 ≤ x < L0(
Φ(ρBj(0, t))− γ

)
(x− L0) , L0 ≤ x ≤ L0 + Fj(t)

, (5.2.13)

which yields an equation for filopodia growth of the form

dFj

dt
= vj(L0 + Fj(t), t) = (Φ(ρBj(0, t))− γ)Fj(t). (5.2.14)

The issue of unbounded growth due to the Φ(ρBj(0, t))Fj(t) term arises again for this

case. In fact, the form of equation (5.2.14) is very similar to equation (5.2.11).

5.2.4 Filopodia length-dependent local bound VEGFR-2 dependent growth

model

In this section, we consider a form for Γ which is dependent on the filopodia length as

given in equation (5.2.3). A biological justification for this could be that there is limited

material for growth which has to be distributed over the length of the filopodium and

hence division of the local growth term by the filopodium length in equation (5.2.3). We

show that provided we assume a large receptor diffusivity, we can obtain an equation

for Fj, which is identical to the one belonging to the ODE model of Chapter 4 (see

equation (4.1.3)).

We assume that the operator Γ takes the form

Φ(.)
Fj(t)

. (5.2.15)
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Now the strain rate in (5.2.4) changes to

∂vj

∂x
=

0, 0 ≤ x < L0

Φ(ρBj(x,t))
Fj

− γ, L0 ≤ x ≤ L0 + Fj(t)
. (5.2.16)

Integrating this and applying the boundary condition gives

v(x, t) =

0, 0 ≤ x < L0∫ x
L0

Φ(ρBj(x,t))dx
Fj

− γ(x− L0), L0 ≤ x ≤ L0 + Fj(t)
. (5.2.17)

By assuming large receptor diffusivity, we have an approximate spatially homoge-

neous distribution of bound VEGFR-2:

ρBj(x, t) ≈ R̄Bj(t) , (5.2.18)

which allows us to evaluate the integral in equation (5.2.17) which is now given by

dFj

dt
=Φ(R̄Bj(t))

∫ L0+Fj(t)
L0

dx
Fj(t)

− γFj(t)

=Φ(R̄Bj(t))− γFj(t) (5.2.19)

which is in agreement with the ODE in equation (4.1.3).

5.2.5 Filopodia length-dependent global average and proximal end VEGFR-

2 dependent growth models

In this section we again consider a form for Γ which is dependent on the filopodia

length as given in equation (5.2.3) with biological justification as given in §5.2.4.

We show that the models assuming growth dependent on the global average and prox-

imal end bound VEGFR-2 concentrations each give an ODE: vj(L0 + Fj, t) =
dFj
dt in

agreement with equation (4.1.3) of the ODE model. For the model considering global

average VEGFR-2 dependent growth we obtain the following strain rate

∂vj

∂x
=

0, 0 ≤ x < L0

Φ(R̄Bj(t))
Fj

− γ, L0 ≤ x ≤ L0 + Fj(t)
, (5.2.20)

which can be integrated to give

vj(x, t) =

0, 0 ≤ x < L0(
Φ(R̄Bj(t))

Fj
− γ

)
(x− L0), L0 ≤ x ≤ L0 + Fj(t)

, (5.2.21)
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and in particular

dFj

dt
= vj(L0 + Fj(t), t) = Φ(R̄Bj(t))− γFj(t) , (5.2.22)

which agrees with the form of equation (4.1.3).

The same steps can be taken for the model considering proximal end bound VEGFR-2

from equation (5.2.12). Therefore the algebra is ommited here but yields the following

ODE for filopodia growth:

dFj

dt
= vj(L0 + Fj(t), t) = Φ(ρBj(0, t))− γFj(t) , (5.2.23)

which is also of the required form (matching equation (4.1.3)).

We note that for both global average and proximal end dependent models, the assump-

tion of large receptor diffusivity is not necessary to obtain the form of dFj
dt matching

equation (4.1.3).

We note that for a growth operator of the form

Γ =
Φ(.)
Fj(t)

, (5.2.24)

which depends on the filopodium length Fj, both global average bound VEGFR-2 and

proximal end bound VEGFR-2 dependent growth models give ODEs for filopodia ex-

tension which agree with those of the ODE model. We also expect the local bound

VEGFR-2 model to agree with the ODE model when VEGFR-2 diffusivity is rapid.

Without this condition we do not obtain the same form of ODE for filopodia growth as

used in the ODE model of Chapter 4.

5.3 Numerical simulation

In this section we simulate equations (5.1.1)-(5.1.11) for the following growth laws:

• proximal end bound VEGFR-2 dependent growth divided by filopodia length

(see equation (5.2.12)) ,

• local bound VEGFR-2 dependent growth divided by filopodia length (see equa-

tion (5.2.16)) ,

• local bound VEGFR-2 dependent growth divided by the entire domain length (as

equation (5.2.16) but divided by L0 + Fj) ,

• global average bound VEGFR-2 dependent growth (see equation (5.2.20)) ,
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• local bound VEGFR-2 dependent growth (no division by filopodia length; see

equation (5.2.16)) .

Numerical simulations are performed, in the order listed above, The order in which the

models are simulated is different to the order in which they were first presented in §5.2.

In this section, we simulate the models in order of increasing complexity required to

numerically implement each model. We start by considering the model with proximal

end VEGFR-2 dependent growth as it is the simplest to set up. This model has fewer

PDEs (2 second order PDEs in equations (5.1.5) and (5.1.6)) which are easier to solve

than equations for local and global average bound VEGFR-2 dependent growth laws.

This is because, for growth depending on VEGFR-2 at a single point, the PDE for the

strain rate decouples from equations (5.1.5) and (5.1.6).

We then simulate model variants with local bound VEGFR-2 dependent growth. The

spatially dependent strain rate involves coupling an extra PDE for the strain rate, ∂vj
∂x , to

the 2 second order PDEs. We simulate local VEGFR-2 dependent growth divided by the

filopodia length, followed by local VEGFR-2 dependent growth divided by the entire

domain length. This latter case corresponds to a different ODE model for filopodia

growth and we compare the steady state behaviour and bifurcation structure of the

two models.

Following this, we simulate growth depending on the global average bound VEGFR-

2 as it is the most complicated model to implement. By introducing an extra variable

representing the cumulative number of bound VEGFR-2, we are able to track the global

average concentration of receptors.

Finally we consider local growth without dividing by the filopodia or entire domain

lengths to demonstrate that filopodia lengths can grow unbounded depending on the

parameters used. This justifies dividing the growth terms by Fj(t) in the previous sec-

tions so that our models exhibit physically realistic solutions.

Numerical simulations of two-cell systems with periodic boundary conditions (with

respect to the cell number, j) are carried out using the Fortran/NAG routines D03PHF

and D03PKF (details are given in §5.3.2). These two solvers require the domain size

to be fixed. Hence we begin by mapping the equations in (5.1.5)-(5.1.11) onto a fixed

domain. Finite element method solvers, which work directly on deforming or adapt-

ing meshes, offer another possible way of integrating these equations directly, without

rescaling onto a fixed domain but we proceed using the former [124].

Before mapping the equations to a fixed domain, we non-dimensionalise the model

in equations (5.1.1)-(5.1.11) to allow for comparison with the ODE model of Chapter
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4. Equations (5.1.5)-(5.1.6) and the boundary conditions in (5.1.9)-(5.1.10) are non-

dimensionalised in the same way as averaged bound and unbound VEGF receptors

are in Chapters 3 and 4 (see Appendix B). The new variables, ρUj, ρBj, x, vj have the

following scalings:

ρUj =
RU0

k−VR
ρ∗Uj , ρBj =

RU0

k−VR
ρ∗Bj , x = L0x∗ , v = L0k−VRv∗ (5.3.1)

where the stars, on the dimensionless variables are dropped for convenience. The new

dimensionless diffusion coefficients of the PDE model are as follows:

D∗U = L2
0 k−VRDU , D∗B = L2

0 k−VRDB . (5.3.2)

The stars on the dimensionless parameters are dropped for convenience here too.

5.3.1 Transforming PDEs to a fixed domain

The governing equations are solved using the Fortran/NAG routines, D03PHF and

D03PKF on a spatial domain of fixed length. However, since the filopodia in our model

dynamically extend and retract, the domain length evolves over time making this a

moving boundary problem. Thus the PDEs in equations (5.1.5) and (5.1.6), the bound-

ary conditions, (5.1.9) and (5.1.9), and the growth law, ∂vj
∂x , must all be transformed onto

a fixed domain. We do this following Crampin et al [101].

We use the uniform spatial scaling given by

ξ j(x, t) =
x

rj(t)
where rj(t) = L0 + Fj(t) , (5.3.3)

to transform the spatial co-ordinate in cell j, x ∈ [0, L0 + Fj], to the unit interval [0, 1].

We rewrite equations (5.1.5) and (5.1.6) as

∂ρUj

∂t
=ηUj(ρUj, ρBj, x, bj, Fj(t)) + DU

∂2ρUj

∂x2 −
∂

∂x
(
vjρUj

)
, (5.3.4)

∂ρBj

∂t
=ηBj(ρUj, ρBj, x) + DB

∂2ρBj

∂x2 −
∂

∂x
(
vjρBj

)
, (5.3.5)

where

ηUj = (1 + θ̂ Fj(t)) f (bj) + k−VRρBj − kVRρUjV(x)− λρUj

ηBj = kVRρUjV(x)− k−VRρBj

Using the transformation in (5.3.3) the time derivatives become

∂

∂t
=

∂

∂t
+

∂

∂ξ j

∂ξ j

∂t
=

∂

∂t
− ∂

∂ξ j

x
r2

j

drj

dt
=

∂

∂t
−

ξ j

rj

∂

∂ξ j

drj

dt
, (5.3.6)
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and the spatial derivatives become

∂

∂x
=

∂

∂ξ j

∂ξ j

∂x
=

∂

∂ξ j

1
rj

. (5.3.7)

Applying these to equations (5.1.5) and (5.1.6), and denoting the transformed variables

for unbound and bound VEGF receptors by ρ̃U(ξ j(x, t), t) and ρ̃B(ξ j(x, t), t), we obtain

∂ρ̃Uj

∂t
= ηUj(ρUj, ρBj, x, bj, Fj(t)) +

1
rj

∂

∂ξ j

(
DU

1
rj

∂ρ̃Uj

∂ξ j
− vjρUj

)
+

1
rj

ξ j
∂ρ̃Uj

∂ξ j

drj

dt
, (5.3.8)

∂ρ̃Bj

∂t
= ηBj(ρUj, ρBj, x, bj, Fj(t)) +

1
rj

∂

∂ξ j

(
DU

1
rj

∂ρ̃Bj

∂ξ j
− vjρBj

)
+

1
rj

ξ j
∂ρ̃Bj

∂ξ j

drj

dt
, (5.3.9)

and the zero flux boundary conditions in equations (5.1.9) and (5.1.10) are given by

1
rj

∂ρUj

∂ξ j
(0, t) = 0 =

1
rj

∂ρUj

∂ξ j
(1, t) , (5.3.10)

1
rj

∂ρBj

∂ξ j
(0, t) = 0 =

1
rj

∂ρBj

∂ξ j
(1, t) . (5.3.11)

In general, the flow, vj(x, t), is determined by integrating the local strain rate, ∂vj
∂x (x, t)

which we define and transform, case-by-case, in the examples that follow.

5.3.2 Numerical solvers and numerical continuation methodology

We integrate the models outlined at the beginning of 5.3 using two Fortran/NAG rou-

tine methods. The first method, D03PHF, integrates linear or non-linear systems of

parabolic PDEs in one space dimension coupled to ODEs. The PDEs are solved using

the method of lines by which they are discretised using finite difference methods, con-

verting them to ODEs, and then solved using a backward differentiation formula. This

method is used to implement the proximal end bound VEGFR-2 dependent growth law

because in this case the model comprises two second order, reaction-diffusion equa-

tions.

The D03PKF solver integrates systems of first order PDEs in one space dimension, cou-

pled to ODEs. The solver uses a Keller box scheme to discretise and reduce the PDEs to

ODEs which are then solved in the same way as D03PHF. We use this method when the

first order PDE cannot be integrated directly, when we consider local bound VEGFR-2

dependent growth, for example. In such cases, we convert our second order PDEs for

ρUj(x, t) and ρBj(x, t) to a system of 4 first order PDEs. These are coupled to the first

order PDE for the velocity, vj, giving 5 PDEs coupled to 3 ODEs which are solved using

the local VEGFR-2 dependent growth model.
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For each model, we compare the steady state solutions and bifurcations of the PDE

model with the steady states and bifurcations of the ODE model from Chapter 4. We

focus on the sensitivity of our model solutions to variations in the VEGF gradient, ψ,

and thus compare steady state solutions for bound Notch receptors, b1, b2, and filopo-

dia lengths, F1, F2, in two-cell systems of the ODE and PDE models using parameter

values from Table 4.1. We already have the steady states for the ODE model (see Figure

4.7a). To produce the equivalent bifurcation diagram for the PDE model, we perform

semi-automated numerical continuation.

For a particular value of the parameter ψ, we impose initial conditions close to the ho-

mogeneous steady state and integrate equations (5.1.1)-(5.1.11), with the appropriate

growth law, forwards in time. To determine whether the system has reached steady

state, we calculate the relative change in the L2-norm of the solution vector, corre-

sponding to the ODE variables, and terminate integration when the relative change in

the norm was < 1× 10−9. The parameter ψ was then increased, and integration re-

peated, using as initial conditions, the steady state for the previous value of ψ. In this

way we established the locations of the steady state branches in parameter space.

One of the challenges in assigning initial conditions corresponding to the final solution

following integration from the previous run was that initial conditions usually began

on a steady state branch. When the system moved beyond the pitchfork bifurcation, the

initial conditions corresponded to being on the stable manifold of the unstable homoge-

neous branch of solutions. Therefore we added a perturbation to the initial conditions

so the system could move away from the unstable homogeneous steady state and settle

at a period-2 spatial pattern.

By varying ψ ∈ [0, 2], we were able to capture the pitchfork bifurcation (of the ODE

model) at ψ ≈ 0.157 and the inner (low amplitude) patterning branches. When the

system reached the pair of fold bifurcations at ψ ≈ 1.80, it moved to the outer (large

amplitude) patterning branches. In order to find the outer patterning branches for

0.618 < ψ < 1.80 (the quadstable region) we decreased ψ from 2 to 0 as the system

only moved to the inner pair of patterning branches at the pair of fold bifurcations

at ψ ≈ 0.618. We term finding the steady state solutions of the PDE model in this

way, by increasing and decreasing the bifurcation parameter, a forward and reverse run,

respectively.

Since D03PHF and D03PKF solve PDEs on a fixed domain, when plotting the spatial

distribution of VEGF receptors, we transform back from the scaled/fixed domain ξ j ∈
[0, 1] to the growing domain which extends to the filopodium tip x ∈ [0, L0 + Fj].
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5.4 Simulation of proximal end bound VEGFR-2 dependent

filopodia growth

In this section we assume that the growth of the domain at position x depends on

ρBj(0, t), the concentration of bound VEGFR-2 at the proximal end of the domain (x =

0), as defined in §5.2.3 and define the local strain rate as

∂vj

∂x
=

0 , 0 ≤ x < L0

φw(ρBj(0,t))
Fj(t)

− γ , L0 ≤ x ≤ L0 + Fj(t)
, (5.4.1)

where w(.) is as defined in equations (4.1.1) and (4.1.2), which, using the transformation

in equation (5.3.3), gives

∂vj

∂ξ j
=


0 , 0 ≤ ξ j <

L0
L0+Fj(t)(

φw(ρBj(0,t))
Fj(t)

− γ
)
(L0 + Fj(t)) , L0

L0+Fj(t)
≤ ξ j ≤ 1

. (5.4.2)

In this case, an arbitrary point along the cell membrane could be chosen to define the

growth rate at position x, however choosing the point x = 0 makes sense from a numer-

ical point of view as it is invariant under the transformation in equation (5.3.3) making

it the simplest spatial coupling point to use.

5.4.1 Simulation with algebraically defined velocity profile

Since the form of the local strain rate in equation (5.4.1) is independent of the spatial

variable, x, it can be integrated to find an explicit algebraic expression for the velocity

given by

vj(x, t) =

0 , 0 ≤ x < L0(
φw(ρBj(0,t))

Fj(t)
− γ

)
(x− L0) , L0 ≤ x ≤ L0 + Fj(t)

. (5.4.3)

The corresponding scaled velocity can be found by either transforming equation (5.4.3)

(using 5.4.1) or by integrating equation (5.4.2), and is given by

vj(ξ j, t) =


0 , 0 ≤ ξ j <

L0
L0+Fj(t)(

φw(ρBj(0,t))
Fj(t)

− γ
)
(ξ j(L0 + Fj(t))− L0) , L0

L0+Fj(t)
≤ ξ j ≤ 1

. (5.4.4)

Equations (5.1.1)-(5.1.11), with velocity as per equation (5.4.3), are integrated to steady

state for values of ψ ∈ [0, 2] using the numerical continuation method described in

§5.3.2. In Figure 5.2 we show that the steady state solution branches for bound Notch
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Figure 5.2: Bifurcation diagram constructed by integrating equations (5.1.1)-(5.1.11),

using the algebraically defined velocity profile in equation (5.4.3) arising

from the growth law in equation (5.4.1), to steady state and plotting steady

solutions for bound Notch receptors, b1, b2, for ψ ∈ [0, 2] (plotted in ma-

genta). This is superimposed with the corresponding bifurcation diagram

from the ODE model with filopodia grown given in equations (4.1.11)-

(4.1.16) (plotted in black; also see Figure 4.7). For a large receptor diffu-

sivity, in this case D = 1000, the steady states of the PDE and ODE models

match up very well.
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receptors, b1, b2, from the PDE model using the parameter values in Table 4.1, closely

match the steady state solutions of the corresponding ODE model (see Figure 4.7)

The PDE model’s solutions appear to deviate slightly from the ODE model solutions for

ψ ∈ [1.5, 1.8]. This deviation decreases when the number of spatial mesh points used

to discretise the PDEs is increased or when the diffusion coefficients for unbound and

bound VEGF receptors, DU and DB, are increased. Figure 5.3 shows that, for ψ = 1.7,

increasing the diffusion coefficients beyond DU , DB = 300 does not significantly affect

convergence of the two model solutions. A finer spatial mesh, however, does further

improve the agreement between the two models.

We therefore fix the diffusion coefficients at DU , DB = 300, and run simulations of the

PDE model to steady state, for increasing numbers of spatial mesh points. We find that

the steady state solutions of the PDE model converge to the steady state solutions of

the ODE model (see Figure 5.4).

5.4.2 Simulation with a coupled PDE for the strain rate

In this section, we simulate the same model for domain growth based on the VEGFR-

2 level at the proximal end of the cell, as per equation (5.4.1). However, instead of

using the algebraic form for the advection velocity, given in equation (5.4.3), we couple

the strain rate, ∂vj
∂x , to the remaining equations and allow the solver to determine the

advection velocity at each integration step. We do this to develop simulations that can

be applied to the more complex growth laws for which algebraic expressions for vj(x)

are not available. In this way we can test the numerical methods against the results in

§5.4.1 and verify that D03PKF integrates the PDE for v(x, t) correctly.

In order to use the Fortran/NAG routine, D03PKF, we first converted equations (5.1.5)

and (5.1.6) to a system of first order PDEs (as described in §5.3.2) to integrate an equiv-

alent system of equations with ∂vj
∂x used to determine the advection velocity.

In this section we show that the two numerical methods used to solve the model with

proximal-end (x = 0) bound VEGFR-2 dependent growth, one using an algebraically

defined velocity profile (see (5.4.3)) and the other using a PDE for the velocity, agree

well. This gives us faith in the solution profiles calculated by D03PKF. By running

the model to steady state, whilst varying ψ, we find that this simulation model has

an equivalent bifurcation diagram to the method used in §5.4.1 when the diffusion

coefficients DU , DB are large (compare Figures 5.2 and 5.5).

Since it is only the numerical method which changes, and not the growth law, we also

expect the two methods to give equivalent steady state bifurcation diagrams when the
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Figure 5.3: Convergence of the steady state PDE model solutions to the ODE model’s

steady state solutions as the diffusion coefficients, DU = DB, are varied

(Dρ is shorthand for both). PDE model solutions are found by integrating

equations (5.1.1)-(5.1.11) for a two-cell system with the algebraic expres-

sion for the advection velocity given in equation (5.4.3). Simulations of

the two cell system were run using extracellular VEGF gradient parame-

ter, ψ = 1.7 (where agreement between the ODE and PDE model solutions

is relatively poor with small numbers of spatial mesh points) and diffu-

sion coefficients, Dρ ∈ [10, 1000]. For 141 mesh points, as Dρ is increased,

the steady state of bound Notch receptors in each cell of the PDE model,

b1, b2 (shown as blue crosses in upper two plots), approaches, but does not

reach, the steady state of bound Notch receptors in the ODE model (blue

dashed line in upper two plots). Increasing the number of mesh points

improves the agreement between the PDE (red and green crosses in upper

two plots) and ODE models. Similar convergence is seen for the filopodia

lengths (lower two plots). In all cases, the PDE solutions do not change

significantly beyond Dρ = DU = DB = 300.
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Figure 5.4: Convergence of the PDE model’s steady state solutions to the steady states

of the ODE model for increasing number of mesh points used in the dis-

cretisation of the PDE model. PDE model solutions were calculated by

integrating equations (5.1.1)-(5.1.11) with the algebraically defined veloc-

ity profile in equation (5.4.3). Simulations of the two-cell system were run

using extracellular VEGF slope parameter, ψ = 1.7 (where convergence

to the ODE model’s steady states is relatively poor with small numbers

of spatial mesh points), and diffusion coefficients, DU = DB = 300. As

the number of spatial mesh points is increased, the steady state of bound

Notch receptors in each cell of the PDE model, b1, b2 (shown as blue crosses

in upper two plots), approaches the steady state of bound Notch receptors

in the ODE model in equations (4.1.11)-(4.1.16) (blue dashed lines in upper

two plots). Similar convergence is seen for the filopodia lengths (lower two

plots).
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receptor diffusivity is small. Figure 5.5 shows that for DU , DB = 1, the agreement with

the ODE model in equations (5.2.14)-(4.1.16) is not as good. The figure also shows that

the fold bifurcations at ψ ≈ 0.618 shift to the right.

We also show numerical simulations of the two-cell system for a particular value of the

VEGF gradient, (ψ = 1.95), at which the model exhibits a single, large amplitude sta-

ble period-2 patterning solution (corresponding to the outer pair of solution branches)

in which one cell has a very long filopodium and the other a very short one (see Fig-

ure 4.8). At ψ = 1.95, our simulations give steady state filopodia lengths F1 ≈ 3.9

and F2 ≈ 0.0049, as opposed to the lengths F1 ≈ 0.066 and F2 ≈ 0.037 when ψ = 0.4

(inner pair of patterning branches). When the diffusion coefficients DU , DB are large,

the steady state distribution of unbound and bound VEGFR-2 on both cells is approxi-

mately spatially uniform (see Figures 5.7a and 5.7c). Cell 1 has a long filopodium which

extends relatively far into the VEGF gradient. This results in high of VEGF-VEGFR-2

binding near the filopodium tip. Due to the large diffusion coefficient, the receptors

quickly redistribute themselves along the filopodium and cell body, attaining a fairly

spatially uniform distribution (blue plot in Figures 5.7a and 5.7c). Cell 2, however, has

a very short filopodium which does not extend far into the VEGF gradient. Hence most

of the VEGF-VEGFR-2 binding occurs in a constant concentration of VEGF and conse-

quently the concentration of bound receptors is almost spatially uniform (red plot).

For smaller diffusion coefficients, the receptors move less quickly in the cell mem-

brane, leading to spatially non-uniform steady state distributions of receptors along

the filopodium and cell body (see Figures 5.7b and 5.7d). This is most apparent in

cell 1 (blue plot in Figure (5.7)b), which has a long filopodium reaching far into the

VEGF gradient. Since most binding occurs near the end of the filopodium, where the

VEGF concentration is highest, the concentration of bound receptors increases along

the filopodium, away from the cell. In contrast, despite the smaller diffusion coeffi-

cients, the receptor distribution in the cell with the shorter filopodia (see 5.7b and 5.7d)

is almost homogeneous, since most of the binding occurs in the cell body, where the

VEGF concentration is fixed at a constant value.

The agreement between the models in this section and §5.4.1 gives us confidence that

the D03PKF solver correctly calculates the advection velocity by integrating the strain

rate. Thus we can begin exploring more interesting and biologically realistic growth

laws for which the strain rate is not analytically integrable.
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Figure 5.5: Bifurcation diagram showing steady state PDE model solutions (magenta)

for bound Notch, bj (shown in magenta) as the VEGF gradient ψ is varied.

Solutions were obtained by integrating equations (5.1.1)-(5.1.11) subject to

the proximal end bound VEGFR-2 dependent growth law (with a coupled

PDE for the strain rate in (5.4.1)) to steady state. The equations were in-

tegrated using the DO3PKF routine for systems of first order PDEs. This

numerical method produces very similar results to the D03PHF routine

which was used to investigate the equations of the same model, with an al-

gebraically defined velocity profile (compare with Figure 5.2). Good agree-

ment with the ODE model solutions (superimposed in black) is observed,

particularly near the fold bifurcations at ψ ≈ 1.80 using this numerical in-

tegrator (compare with Figure 5.2). Parameter values used to integrate the

PDEs are identical to those used to calculate the ODE model’s steady states

in Figure 4.7. PDE model solutions for DU , DB = 1 (blue), as described in

§5.3.2, show that when receptor diffusivity is small enough, the agreement

with the ODE model is not so good.
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Figure 5.6: Bifurcation diagram showing steady state PDE model solutions for the

filopodia lengths, F1, F2 (shown in green) as the VEGF gradient ψ ∈ [0, 2]

is varied. The equivalent bifurcation diagram from the ODE model is su-

perimposed in black. This Figure was generated in the same way as Figure

5.5, but is used to demonstrate that the agreement between the ODE and

PDE models for the filopodia length variables is also good.
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Figure 5.7: Spatial solution profiles of bound VEGFR-2, rBj in (a,b), and unbound

VEGFR-2 in (c,d) for a two-cell system defined by equations (5.1.1)-(5.1.11)

with VEGF slope parameter ψ = 1.95 and domain growth depending on

the proximal VEGFR-2 concentration (see equation (5.4.1)). (a,c) When

DU , DB = 300 so that receptor diffusivity is large, the steady state dis-

tribution of VEGFR-2 over the cell membrane and filopodium is almost

homogeneous. However, in (b,d) DU , DB = 10 (and diffusivity is small),

the steady state distribution of VEGFR-2 is spatially inhomogeneous. (b)

shows that the highest concentration of bound VEGFR-2 is at the filopo-

dia tip where the extracellular VEGF concentration is greatest. (c) shows

the highest concentration of unbound VEGFR-2 is along the cell body

(x ∈ [0, L0]) where the VEGF concentration is lowest. Both cell 1 and 2

have proximal ends at x = 0. The co-ordinate systems for cells 1 and 2

increase to the left and right, respectively. Initial conditions are close to

the homogeneous steady state and model parameters are as per Figure 4.7

unless otherwise stated.
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5.5 Simulation with growth dependent on local bound VEGFR-

2 concentration divided by the filopodia length

In this section, we assume domain growth based on ρBj(x, t), the local concentration of

bound VEGFR-2. We use a local strain rate of the form

∂vj

∂x
=

0 , 0 ≤ x < L0

φw(ρBj(x,t))
Fj(t)

− γ , L0 ≤ x ≤ L0 + Fj(t)
. (5.5.1)

Using the transformation in equation (5.3.3), equation (5.5.1) scales to

∂vj

∂ξ j
=


0 , 0 ≤ ξ j <

L0
L0+Fj(t)(

φw(ρBj(ξ j(x,t),t))
Fj(t)

− γ
)
(L0 + Fj(t)) , L0

L0+Fj(t)
≤ ξ j ≤ 1

. (5.5.2)

Equation (5.5.1) rate cannot, in general, be integrated directly. Instead we couple the

strain rate in (5.5.1) to equations (5.1.1)-(5.1.11) and integrate the system in this section

in the same way as the model in §5.4.2.

To compare this growth law with the growth law in equation (5.4.1), we integrate equa-

tions (5.1.1)-(5.1.11) to steady state for ψ ∈ [0, 2] using parameters identical to those

used in Figure 4.7(a) and diffusion coefficients, DU , DB = 300. The resulting bifurca-

tion diagram is presented in Figure 5.8 and is in excellent agreement with the diagram

of the equivalent ODE model (see Figure 4.7).

At ψ = 1.95, we anticipate that one of the cells in a two-cell system will have a larger

filopodium than the other cell. To confirm this, we ran a two-cell simulation using

the growth law in equation (5.5.1). Figure 5.9 shows that this growth law produces

solution profiles which are almost identical to those for the growth law which depends

on bound VEGFR-2 at the proximal end of the cell (compare Figures 5.9 and 5.7).

5.5.1 Small diffusion

Both the proximal end and locally bound VEGFR-2 dependent filopodia growth laws

exhibit spatially non-uniform steady states for receptor diffusivity values, DU = 10

and DB = 10 (see Figure 5.9). However, for the local growth law of this section, the

bifurcation diagram obtained, by varying ψ while holding the other parameters fixed

at the values used in Figure 5.9, looks identical to that obtained in the limit of large

diffusion: DU , DB = 300, (see Figure 5.8). Therefore we omit the bifurcation diagram

for D = 10 and seek to determine how small we have to make the diffusion coefficients

in order to modulate the bifurcation structure seen in Figure 5.8.
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Figure 5.8: Bifurcation diagram showing steady state PDE model solutions for bound

Notch, bj (shown in magenta) as the VEGF gradient, ψ, is varied. Solutions

were obtained by integrating equations (5.1.1)-(5.1.11) and the growth law

considering the local bound VEGFR-2 concentration in equation (5.5.1) to

steady state. Superimposed (in black) is the corresponding bifurcation dia-

gram from the ODE model in (4.1.11)-(4.1.16) considering filopodia growth

(see Figure 4.7). Parameter values used to integrate the PDEs are identical

to those used to caluculate the ODE model’s steady states in Figure 4.7with

diffusion coefficients for unbound and bound VEGFR-2, DU , DB = 300.

For large diffusivity the PDE model steady states and bifurcations agree

well with the ODE model.

170



CHAPTER 5: A PARTIAL DIFFERENTIAL EQUATION MODEL FOR INTRAMEMBRANE

VEGF RECEPTOR TRANSPORT-REGULATED FILOPODIA EXTENSION

Figure 5.9: Spatial solution profile for bound VEGF receptors, rBj, in a two-cell system

defined by equations (5.1.1)-(5.1.11) with VEGF slope parameter ψ = 1.95

and domain growth depending on the local VEGFR-2 concentration as de-

fined in equation 5.5.1. (a) uses DU , DB = 300 and shows that when recep-

tor diffusivity is large, the final steady state distribution of VEGFR-2 over

the cell membrane and filopodium is almost homogeneous, whereas (b)

uses DU , DB = 10 and shows that when diffusivity is small, the final steady

state distribution of VEGFR-2 over the cell membrane and filopodium is

spatially inhomogeneous. For DU , DB = 300 and DU , DB = 10 the spa-

tiotemporal solution profiles for this growth law look identical to the so-

lution profiles from the proximal end VEGFR-2 two-cell simulations (com-

pare with Figure 5.7a,b).
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Figure 5.10 shows the steady state level of bound Notch receptors after a peturbation

of the unstable homogeneous steady state at ψ = 0.4 whilst varying DU , DB ≤ 10.

For DU , DB ≤ 0.1, the system is no longer in the patterned state, suggesting that the

pitchfork bifurcation has shifted to the right.

Hence we simulate equations (5.1.1)-(5.1.11) to steady state whilst varying ψ for dif-

ferent values of the diffusion coefficients, DU , DB. We superimpose the resulting bi-

furcation diagrams using DU , DB = 0.5, 0.25, 0.1 with the bifurcation diagram for the

equivalent ODE model (see Figure 5.11). The agreement between the PDE and ODE

models, breaks down when DU , DB are small. The pitchfork and fold bifurcations

move towards each other and the outer patterning branches begin to move towards

the underlying homogeneous steady state. Calculation of similar bifurcation diagrams,

for smaller diffusion coefficients becomes computationally expensive but our analysis

suggests that when diffusion is small, strings of cells are less likely to pattern (due to

the steeper gradient required) and the resulting patterns have smaller amplitudes.

5.6 Simulation with growth dependent on the locally-bound

VEGFR-2 concentration divided by the total domain size

In this section, we assume that domain growth depends on the local concentration

of bound VEGFR-2, ρBj(x, t), scaled by the total domain size, L0 + Fj, rather than the

filopodia length alone, as was previously assumed. Growth is then governed by a local

strain rate of the form

∂vj

∂x
=

0, 0 ≤ x < L0

φw(ρBj(x,t))
L0+Fj(t)

− γ , L0 ≤ x ≤ L0 + Fj(t)
. (5.6.1)

In this case the ODE for filopodia length becomes

dFj

dt
= φw(rBj)

Fj

1 + Fj
− γFj . (5.6.2)

Dividing the growth by the entire domain length could be biologically justified if the

material for growth was shared out over the whole cell membrane. When Fj is large,

we expect this model to give similar results to the growth laws in which we divide by

the filopodia length. To analyse the effect of this growth law, we integrate the system of

equations (5.1.1)-(5.1.11) to steady state for ψ ∈ [0, 2] for the model parameters in Table

4.1 and diffusion coefficients, DU , DB = 300. The resulting bifurcation diagrams for

bound Notch receptors and filopodia lengths are shown in Figure 5.12. The diagrams

show that although the homogeneous solutions for the two models coincide for 0 <
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Figure 5.10: Comparison of steady state solutions of a two-cell system for bound

Notch, b1, b2, in the ODE model in equations (4.1.11)-(4.1.16) (dashed and

dot-dashed line), and the PDE model (crosses and squares) for DU , DB =

10−3, 10−2, 10−1, 1, 10 at ψ = 0.4 (a VEGF gradient for which the equiva-

lent ODE model exhibits a period-2 pattern). Simulations were started

close to the homogeneous steady state. For DU , DB = 1, 10, the PDE

model exhibits a patterned state in which cells 1 and 2 have high and

low levels of bound Notch respectively. For smaller diffusion coefficients,

perturbations of the homogeneous steady state of the PDE model decay

back to, b1, b2 = 0.3648. This implies that the pitchfork bifurcation, at

which patterning first occurs, moves to the right when decreasing the dif-

fusion coefficient. Model parameters are as Figure 4.7 unless otherwise

stated.
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Figure 5.11: Bifurcation diagram showing how steady state solutions of bound Notch,

b1, b2, in a two cell system vary with the VEGF gradient, ψ. Coloured solu-

tion branches were calculated by integrating the PDE model in equations

(5.1.1)-(5.1.11) and growth law depending on the local bound VEGFR-2

concentration in equation (5.5.1) (as described in §5.3.2) to steady state for

ψ ∈ [0, 2] and fixed values of the diffusion coefficients: blue (DU , DB =

0.5), red (DU , DB = 0.25) and magenta (DU , DB = 0.1). Superimposed

in black is the bifurcation diagram for the corresponding ODE model in

equations (4.1.11)-(4.1.16) from Figure 4.7a. The diagram suggests that

as the diffusion coefficients are reduced, the outer branches move to-

wards the homogeneous steady state, the pitchfork bifurcation moves to

the right and the fold bifurcations at ψ ≈ 1.80 move to the left. Hence, the

agreement between the ODE and PDE models collapses as the diffusion

coefficients are decreased. Model parameters are as in Figure 4.7 unless

otherwise stated.
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ψ < 1.173, there is no agreement for ψ > 1.173. For ψ > 1.173, the large-amplitude

(outer) patterning branches of the two models coincide, but for ψ < 1.173 there are no

such branches. There is no pitchfork bifurcation and thus no small amplitude (inner

branch) pattern for this model.

5.7 Simulation for growth depending on the average bound

VEGFR-2 concentration

In this section we simulate the PDE model with the domain growth dependent on the

global average value of bound VEGFR-2:

∂vj

∂x
=

0, 0 ≤ x < L0

φw(R̄Bj)

Fj(t)
− γ , L0 ≤ x ≤ L0 + Fj(t)

. (5.7.1)

The global average is calculated, in our simulations, by introducing a variable repre-

senting the cumulative amount of bound VEGFR-2, r̂B(x, t) which is defined by the

following PDE:

∂r̂B

∂x
= ρB(x) . (5.7.2)

Thus,

r̂B(x) =
∫ x

0
ρB(x)dx , (5.7.3)

and the global average is given by

R̄Bj =
r̂B|x=1+Fj

1 + Fj
. (5.7.4)

Since the domain length in the rescaled model is ξ j(L0 + Fj, t) = 1, the global average

in the rescaled model is given by

R̄Bj = r̂B|ξ j=1 , (5.7.5)

and we track this variable at each timestep and couple it to the equation for domain

growth (see equation 5.7.1).

We investigate the effect of domain growth that depends on the average receptor con-

centration by integrating equations (5.1.1)-(5.1.11) and equation 5.7.1 to steady state for

ψ ∈ [0, 2]. The resulting bifurcation diagram is shown in Figure 5.13 and shows that

there is excellent agreement with the ODE model when the diffusion coefficients are

large. When diffusion is small (DU , DB = 0.25) the agreement with the equivalent ODE

model is less good.
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Figure 5.12: Bifurcation diagram showing the steady state solutions for bound Notch

receptors, b1, b2, of the PDE model (in green) as the VEGF gradient, ψ is

varied. Solutions were obtained by integrating equations (5.1.1)-(5.1.11)

and growth law depending on the local bound VEGFR-2 concentration

divided by the entire domain length in 5.6.1 (as described in §5.3.2) for

diffusion coefficients DU , DB = 300 and the parameters in Table 4.1. Su-

perimposed is the bifurcation diagram for the corresponding ODE model

defined by equations (5.6.2) and (4.1.12)-(4.1.16) (in black) calculated us-

ing XPPAUT. The two models have different bifurcations, for instance, the

PDE model does not have a pitchfork bifurcation for the chosen parame-

ters and the outer branches only coincide for certain values of ψ > 1.173 (a

fold bifurcation). The lower diagram shows that the homogeneous steady

state filopodia lengths are Fj = 0 for ψ ∈ [0, 2] and for ψ > 1.173 one

filopodium remains at zero while the other takes non-zero length, coin-

ciding with the PDE steady state.
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Figure 5.13: Bifurcation diagram for equations (5.1.1)-(5.1.11) using the growth law

in equation (5.7.1) which assumes that domain growth depends on the

global average of bound VEGFR-2, R̄Bj. The figure shows how the steady

state concentration of bound Notch receptors, b1, b2, varies with the VEGF

slope parameter ψ for diffusion coefficients DU , DB = 300 (magenta

curve). Superimposed is the corresponding bifurcation diagram from

the ODE model in equations (4.1.11)-(4.1.16) (see Figure 4.7a). The fig-

ure shows that the there is a very good agreement between this model

and the equivalent ODE model when the diffusion coefficients are large.

When receptor diffusivity is small (DU , DB = 0.25), the agreement be-

tween the ODE and PDE models is less good. Model parameters are as

per Figure 4.7, unless otherwise stated.
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5.8 Growth depends on local VEGFR-2 concentration without

scaling

In this section, we again study domain growth which depends on the local bound

VEGFR-2 concentration. Here however, the domain growth rate is not scaled by either

the filopodia or total domain lengths, in contrast to §5.5 and §5.6 respectively. Thus,

the growth is governed by

∂vj

∂x
=

0 , 0 ≤ x < L0

φw(ρBj(x, t))− γ , L0 ≤ x ≤ L0 + Fj(t)
. (5.8.1)

Using the transformation in equation (5.3.3), equation (5.5.1) scales to

∂vj

∂ξ j
=


0 , 0 ≤ ξ j <

L0
L0+Fj(t)(

φw(ρBj(ξ j(x, t), t))− γ
)
(L0 + Fj(t)) , L0

L0+Fj(t)
≤ ξ j ≤ 1

. (5.8.2)

The choice of parameter values in this model determines the steady state concentration

distribution for ρBj(x, t). Thus for certain parameter values, we expect the filopodia

to grow quickly since the φw(ρBj(x, t)) term is multiplied by Fj(t). Figure 5.14, which

simulates equations (5.1.1)-(5.1.11) shows this to be the case for the parameter values

in Table E.1.

We can also expect similar choices of parameter values, used with other growth laws

(proximal and global average dependent growth) to give unbounded filopodia growth.

We confirm that dividing the growth terms in the strain rate by the filopodia length, to

give the same ODE for filopodia growth as the ODE moel of equations (5.1.11) - (4.1.16),

gives bounded solutions for the filopodia lengths.

5.9 Comparison of models with growth dependent on local,

global average and proximal end VEGFR-2 concentrations

We have shown that the proximal, local and global average VEGFR-2 dependent growth

laws give exactly the same bifurcation diagram when the receptor diffusivity is large,

that is one that has an excellent agreement with the corresponding ODE bifurcation

diagram from Figure 4.7. When the diffusivity is small, we expect the growth law de-

pending on the proximal end bound VEGFR-2 concentration to deviate the most from

the ODE model. This is because, for small receptor diffusivities, the bound VEGFR-

2 steady state distribution is inhomogeneous (see Figures 5.7 and 5.9) and lowest at
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Figure 5.14: Two cell simulation of equations (5.1.1)-(5.1.11) using the growth law in

equation (5.8.1) in which filopodia growth depends on the local concen-

tration of bound VEGFR-2 without being divided by either the filopo-

dia or entire domain lengths. Initial conditions used are close to the ho-

mogeneous steady state. Simulations show that, unlike the other model

variables, for the parameter values in Table E.1 except for ψ = 0.5 and

m = n = 30, the filopodia lengths do not settle to steady state but instead,

filopodia grow without bound. The unbounded growth is dependent on

the parameters. We found that for the parameter values as per Table 4.1

(which were also used in simulations of all the other growth laws), the

filopodia do not grow without bound.
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x = 0:

ρBj(0, t) < ρBj(x, t) ∀ x ∈ (0, L0 + Fj] . (5.9.1)

Figure 5.15 confirms that the proximal end VEGFR-2 dependent model deviates the

most from the ODE model and the local growth model deviates the least. The dif-

ferences between the three models are most apparent near ψ ≈ 2 where the filopo-

dia lengths are the longest. Where the filopodia are short, for example, on the inner

branch solution near the pitchfork bifurcation, the three models show almost identical

behaviour with overlapping stedy states.

Figure 5.16 shows that if we make the diffusion coefficients smaller, there are much

bigger differences between all 3 types of model (compare Figures 5.15 and 5.16). These

are, again, most apparent when the filopodia lengths are large, i.e. in the vicinity of the

(outer branch) large amplitude pattern. Since diffusion is even smaller in this Figure,

differences can be distinguished even where the filopodia lengths are small (see inset

zoom of Figure 5.16). As the diffusion coefficients are decreased beyond DU , DB =

0.25, we expect the differences between the local and global average dependent growth

models to also increase.

5.10 Conclusions and further work

In this chapter we have developed a PDE model to investigate the role of VEGF-modulated

Delta-Notch signalling in angiogenic tip cell selection in order to properly take account

of the spatial distributions of VEGFR-2 that spatially-averaged ODE models cannot

address. This is done by separately developing PDEs for unbound and bound VEGF

receptors which allow both diffusive and advective transport of VEGF receptors along

the cell membrane and filopodia. Our motivation for studying this came from the fact

that inhomogeneous distributions of proteins and receptors commonly occur and ep-

ithelial structures are often oriented with polarity. We have shown that, for sensible

choices of growth laws governing filopodia extension, and receptor diffusivity span-

ning many orders of magnitude, the ODE model of Chapter 4 gives an excellent ap-

proximation to a problem with a significant spatial aspect. We also demonstrate the

extent to which our ODE model gives good approximations. We show that paying ex-

plicit attention to the spatial details can be crucial as, in the limit of small diffusion,

our PDE model can produce dynamics which differ from those of the equivalent ODE

models which ignore such details.

To begin, we outlined the model equations and considered three types of constitutive
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Figure 5.15: Bifurcation diagrams for the PDE model with receptor diffusivity

DU , DB = 1 using the local (magenta) and global average (red) and prox-

imal (blue dashed) growth laws in equations (5.4.1), (5.5.1) and (5.7.1)

respectively and parameter values as in Figure 4.7. The location of

the curves was calculated by integrating the system to steady state for

ψ ∈ [0, 2] using reverse runs as described in §5.3.2. The curves show

the local VEGFR-2 dependent model has the closest match with the ODE

model (superimposed in black) followed by the global average VEGFR-2

dependent model, followed by the proximal end bound VEGFR-2 depen-

dent growth model (see the ‘zoom’ inset). For the receptor diffusivity

used in this Figure, the pitchfork bifurcations approximately coincide at

ψ ≈ 0.18 for all three models as the filopodia lengths are small here.
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Figure 5.16: Bifurcation diagrams for the PDE model with receptor diffusivity

DU , DB = 0.25 using the local (magenta) and global average (red) and

proximal (blue) growth laws in equations (5.4.1), (5.5.1) and (5.7.1) respec-

tively and parameter values as per Figure 4.7. The location of the curves

was calculated by integrating the system to steady state for ψ ∈ [0, 2] us-

ing reverse runs as described in §5.3.2. The curves show that the local

VEGFR-2 dependent model has the closest match with the ODE model

followed by the global average VEGFR-2 dependent model. For the diffu-

sivity used, we could not find large amplitude (outer branch) solutions for

ψ ≤ 2 in the proximal end VEGFR-2 dependent model (blue). However,

this model’s pitchfork bifurcation shifts furthest from the ODE model’s

pitchfork bifurcation (see ‘Pitchfork zoom’ inset), suggesting this model

agrees least well with the ODE model.
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growth laws formulated in terms of the local strain rate, ∂vj
∂x . Filopodia growth laws

which depend on local, global average and proximal end VEGFR-2 concentrations were

considered. In each case, we compared the form of the filopodia extension rate derived

from the advection velocity (see equation (5.1.11)) with the equivalent rate from the

ODE model in equation (4.1.3).

Our analysis showed that filopodia length-independent growth laws, for the three

cases of growth depending on the proximal, local and global average concentrations

of VEGFR-2, produced ODEs for filopodia growth which were different to the cor-

responding ODE for the filopodia extension rate in Chapter 4. Our numerical simu-

lations showed that filopodia could grow without bound in such cases and the un-

bounded growth was dependent on the parameter values used. When the growth

terms were inversely proportional to filopodia length, the models with growth laws

considering the global average concentration gave rise to an ODE of the same form

as equation (4.1.3). In contrast, although the model considering local bound VEGFR-2

levels also gave an equivalent ODE to equation (4.1.3) for the filopodia extension rate,

the whole PDE model only had solutions equivalent to the ODE model when the addi-

tional assumption of large receptor diffusivity was made. In this case, receptor concen-

trations equilibrated rapidly, became spatially uniform and were almost equivalent to

the global average concentration.

Our numerical analysis began by exploring the model using proximal-end bound VEGFR-

2 dependent growth. We were able to find an analytical expression for the velocity,

vj(x, t), and verify that the numerical integrator correctly integrated the strain rate.

This then gave credence to the upcoming numerical simulations of models with spa-

tially dependent strain rates in §5.5,5.6,5.7,5.8. For large receptor diffusivity, we ex-

pected this model to coincide with the ODE model as homogeneity implied ρBj(0, t) =

R̄Bj(t) and numerical simulations confirmed this (see Figure 5.2).

Using numerical simulations of a two-cell system we were able to verify the consistency

of the local and global average VEGFR-2 dependent models with the ODE model, for

large receptor diffusivity, by comparing the bifurcation structure of each model (see

Figures 5.8 and 5.13). When the receptor diffusivity became small enough, the numeri-

cal results in Figure 5.11 predicted that the pitchfork bifurcation would occur for larger

values of the VEGF gradient and that the patterning branches would move towards

the homogeneous steady state. This suggested that it becomes more difficult for cells

to pattern when receptor diffusivity is small enough, because a larger VEGF gradient

is needed to shift the system past the pitchfork and into the low amplitude patterning

window (inner branches). The compression of these branches also suggested that the
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patterns generated for small receptor diffusivity would be smaller in amplitude.

The inner and outer pairs of stable patterning branches on the bifurcation diagrams

in Figures 5.5, 5.8 and 5.13 corresponded to small and large amplitude patterns re-

spectively. The small amplitude pattern had alternating cells with longer and shorter

filopodia, albeit of comparable length. This contrasted to the large amplitude pattern,

in which alternating cells had one very long and one very short filopodium. In this case

the long filopodium reached further into the field of extracellular VEGF and numeri-

cal simulations suggested that the distribution of receptors would be homogeneous

(inhomogeneous) for large (small) diffusion coefficients. Our models showed that, for

some cases, where diffusion is small enough to give inhomogeneous distributions of

VEGFR-2 the agreement between the ODE and PDE models is still good.

Gerhardt and co-workers have shown that VEGF–VEGFR-2 signalling is necessary for

filopodia extension. Thus it is likely that the local growth rate may depend on the

local concentration of bound VEGFR-2. We, however, have scaled the growth by the

filopodium length whilst it remains unclear as to how or why the local growth rate

should have information about this global property.

In §5.6, we scaled the growth by the total domain length, L0 + Fj and confirmed that al-

though the steady state solutions for bound Notch receptors in the ODE and PDE mod-

els match in certain places, their bifurcation structures varies remarkably. In particular,

for the parameter values used, we found no pitchfork bifurcation or low amplitude (in-

ner branch) pattern. These differences can be attributed to the fact that this growth law

corresponds to an ODE for filopodia extension which is different to the ODE in (4.1.3).

By generating the bifurcation diagram for the ODE model in XPPAUT, we have shown

that the PDE model agrees with the equivalent ODE model but the behaviour of this

model for smaller receptor diffusivity remains to be tested.

In summary, our numerical analysis suggested that for the three models in §5.4, 5.5

and 5.7, which use sensible filopodia growth laws, the ODE model of §4 provides an

excellent approximation, when the receptor diffusivity is large, for predicting the onset

of patterning and the corresponding steady state solutions, including the new large

amplitude patterns that arise due to the inclusion of filopodia growth. It is only when

the VEGFR-2 diffusivity is sufficiently small, does the PDE model offer fresh insight

into the behaviour of the system and its bifurcation structure. However, since it is

currently unclear whether biologically realistic VEGFR-2 diffusivity is small enough

to warrant using the PDE models of this section, we conclude that the simpler ODE

model is sufficient for studying pattern formation in cells extending filopodia without

the extra complexity of the PDE models.
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Our numerical bifurcation analysis also predicted that for sufficiently small receptor

diffusivity, where there is a discrepancy between the ODE and corresponding PDE

models, the proximal end bound VEGFR-2 model least agreed with the ODE model of

Chapter 4. The local bound VEGFR-2 dependent growth model had the best agreement

followed by the global average bound VEGFR-2 dependent model (see Figure 5.15).

In order to generate bifurcation diagrams for our PDE model, we performed semi-

automated numerical continuation as described in §5.3.2. Using this method we saw

that for small receptor diffusivity there is some discrepancy between the ODE and PDE

model bifurcations. It would be interesting to locate the unstable branches of the sys-

tem and conduct two-parameter continuation, for instance, and follow the fold bifur-

cations in ψ−DU , DB space. However, this would be a big challenge as we would need

to formulate our PDEs into a numerical continuation routine that calculates the Jaco-

bian of the system at each step and makes use of techniques such as pseudo arc-length

continuation to locate unstable branches.

We conclude this chapter by stating that the PDE and ODE models of this chapter and

Chapter 4, respectively, give qualitatively similar results. Thus, our PDE model justi-

fies using the ODE model in reasonable cases regarding filopodia growth and receptor

diffusivity.

5.10.1 Further work

One way in which we could further extend the work from this chapter, would be to

consider the effect of other relevant growth laws such as apical growth. For this law,

the growth would be zero everywhere except in a small layer of length l from the tip of

the filopodium.

Other important analysis that remains to be done is applying linear stability analysis to

this system, although it is unclear under which circumstances an underlying homoge-

neous steady state would exist from which the system could diverge from, given that it

initiated from the stable manifold. Should such a steady state exist, an appropriate co-

ordinate system to use would be (x, j), i.e. (position along the cell membrane, position

along the string) and pertubations could be written in the form

ũ(x, t) = exp(ikx + iκ j + σt) , (5.10.1)

which implies a dispersion relation for σ in terms of the wavenumbers k and κ in the

filopodia (x) and string (j) directions respectively.

Thus far, the ECs in our models have remained stationary. A natural way to proceed

further with this work would be to include the effects of cell growth, proliferation and
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migration up the spatial gradient of VEGF. Allowing cells to extend multiple filopodia

is also another possibility. The model could also be used to test the effect of VEGF or

VEGF receptor inhibitors on the ability of ECs to sprout tip cells. Lastly allowing the

VEGF gradient to vary in the j direction would also be an interesting way to extend

this work.
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Conclusions

The establishment of a functional and perfused network of blood vessels is essential

for the transport of oxygen, nutrients,immune system cells and the removal of waste

products from tissues in, both, the growing embryo and the adult organism. Initially,

blood vessels are formed in a process called vasculogenesis in which endothelial pre-

cursor cells coalesce together and undergo arteriovenous specification so that blood

circulation may ensue in an organised fashion. Subsequently, tube formation hollows

these primitive vessels before the onset of blood circulation.

In order to meet the metabolic demands of growing tissues, or to alleviate stresses

caused by wound healing, for example, the primary vasculature remodels itself by an-

giogenesis: the formation of new blood vessels from pre-existing ones. Angiogenesis

begins with the selection of particular endothelial cells to become tip cells which re-

spond to extracellular cues, such as growth factors, by sprouting from the primary

blood vessel and migrating towards the source of growth factor.

Haematopoietic stem cells (HSCs), which are derived from the same blood vessels that

undergo sprouting hours earlier in the zebrafish embryo, are responsible for the re-

plenishment of the components of the blood system, such as, red blood cells, myeloid

and lymphoid cells. HSCs play this role in both the developing embryo and in the

adult where they are necessary for homeostasis and the ability to invoke an immune

response.

The aim of this thesis was to develop our understanding of how Notch signalling con-

trols each of the following processes in the dorsal aorta of zebrafish embryos:

• Arterial specification at 18hpf ,

• Tip cell selection at 21hpf ,

• HSC specification at 24hpf .
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We began in Chapter 1, by providing an overview of these processes, and reviewed

key published works which have provided us with an insight into the biological mech-

anisms underpinning them. Key biological observations from the literature included a

Hedgehog–VEGF–Notch signalling cascade which has shown to be necessary for both

arterial and HSC specification in cells of the DA [22, 25]; and an intimate connection

between the VEGF and Notch signalling pathways influencing the response of ECs to

VEGF and thereby allowing the selection of tip cells for angiogenic sprouting from an

initially equivalent population of cells [9, 13, 23, 50, 56, 110]. This was followed by a

review of existing mathematical models used to study juxtacrine cell signalling, angio-

genic sprouting and tip cell selection and models of Notch signalling in other contexts.

Chapter 2, uses a combination of mathematical modelling and experimental data to

investigate arterial and HSC specification in ECs. Experimental data implicate efnb2a

and runx1 as markers of arterial and HSC identity, respectively, during development

[21, 25, 30, 33]. In-situ hybridisation results from the Gering lab show that knock-

down of Notch signalling in the mindbomb mutant results in a loss of efnb2a and

runx1 whereas knockdown with the γ-secretase inhibitor, DAPT, results in a loss of

runx1 only (see Figure 2.4). In addition, the transgenic zebrafish Notch reporter line,

12×CSL:Venus has low expression of the fluorescent protein, Venus, in the DA at 18hpf,

when efnb2a is first detected and higher expression at 24hpf, when runx1 expression is

first detected and when flt4 expression is downregulated (see Figure 2.5). This led to

the hypothesis that Notch signalling was needed at two distinct time points: at 18hpf

at a low level which is capable of inducing efnb2a expression and at 24 hpf at a higher

level which is sufficient to drive runx1 expression.

To test this hypothesis we used three ODE models to simulate the responses of gata2,

efnb2a and runx1 to a prescribed, increasing input signal of NICD. The first model used

Michaelis-Menten kinetics to model their responses, and provided that conditions on

parameter values associated with promoter sensitivity were met, was capable of delay-

ing the runx1 mRNA expression level, relative to efnb2a (see Figure 2.11). The last two

models introduced a sigmoidal response in the pathway activating runx1 and demon-

strated that it could increase the delay time in the induction of runx1 by effectively

making it less sensitive to NICD. We sought to determine whether incorporating Delta-

Notch coupling upstream of NICD and allowing a prescribed VEGF input to drive the

system could amplify the average level of runx1 in cells after the induction of efnb2a.

Delta-Notch signalling invokes the lateral inhibition mechanism which characteristi-

cally generates salt-and-pepper patterns with a wavelength of two cells. We showed

that our model can exhibit this behaviour but is dependent on the parameter values
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used (see Figures 2.16 and 2.19).

We also outlined the experimental procedures that I carried out in the Gering labora-

tory in order to obtain gene expression data for efnb2a, runx1, and flt4. The experi-

ments were much more challenging than expected. Our data showed that flt4 was not

downregulated in gfphigh cells (assumed arterial) (see Table 2.6). Hence, we concluded

that using the flk1:gfp transgenic line was not sufficient to reliably isolate arterial cells.

Further work would need to use a different combination of transgenic lines to success-

fully isolate the appropriate ECs. The shortcomings of our current methodology could

also be remedied by performing qPCR on RNA isolated from individually FAC sorted

cells. This would prevent the effects of analysing RNA from a mixed population of ar-

terial and venous ECs. The runx1 and efnb2a qPCR data showed the appropriate trend

and increased from 20-27hpf. For proof of concept, we fitted the parameters of our

simple feed-forward model of §2.2.3 with sigmoidal runx1 response to gata2, to this

experimental data. The parameter fitting highlighted the possible need for including

basal transcription into the model and the use of statistical methods for model selection.

In conclusion more reliable data, a greater number of replicates at each time point, fine-

tuned models, and further knowledge of the genetic interactions are required to make

further progress in determining the role of Notch in arterial and HSC specification.

The following three chapters focused on modelling the process of tip cell selection in

strings of ECs. In Chapter 3, we analysed the VEGF–Delta–Notch signalling processes

in the absence of filopodia growth, VEGF gradients or transport of receptors. In this

model extracellular binding of VEGF to its receptor VEGFR-2 upregulated the produc-

tion of the ligand Dll4 which subsequently bound Notch receptors on adjacent cells

(see Figure 3.1). The bound Notch receptors, in adjacent cells, caused downregulation

of VEGFR-2 in those cells. Consequently, these cells had a reduced response to VEGF

and were specified as stalk cells, whereas cells with high levels of VEGFR-2 were fated

as tip cells. We implemented this feedback into an ODE modelling framework and

subsequently studied it using analytical and numerical approaches. Numerical sim-

ulations, in a system of two coupled cells, initially close to the homogeneous steady

state, showed that the model was, by itself, capable of generating patterns for particu-

lar parameter values. Maniupulating the Hill coefficients in the production functions

for Dll4 ligand and VEGFR-2 allowed the formation of period-2 spatial patterns by in-

creasing the non-linearity of the production responses. Using steady state analysis, we

implicated parameters corresponding to the extracellular level of VEGF, V∗, and the

maximal production rate of Dll4 ligand, gmax, to allow patterning. Analysis using the

bifurcation package, XPPAUT, confirmed that the model could indeed exhibit patterns
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for a range of V∗ and gmax (see Figure 3.4).

We investigated the onset of patterning by analysing the linear stability of the ho-

mogeneous steady state. The patterning instability was of Turing type such that the

homogeneous steady state was stable to homogeneous perturbations and unstable to

spatially varying perturbations. Our analysis suggested that patterning occured when

a real eigenvalue of the linearised system changed sign. Furthermore, we used the

Routh-Hurwitz conditions formulated for a reduced system of equations in which we

assumed a quasi-steady state for bound VEGFR-2 and conservation of Notch receptors.

We found that the Routh-Hurwitz conditions were always quadratic (as a function of

the cosine of the wavenumber) with negative leading coefficient. Violation of these

conditions, corresponding to a patterning instability, indicated that the first mode to

become unstable was the period-2 patterning mode (see Figures 3.7 and 3.8). By for-

mulating the Routh-Hurwitz conditions in terms of the feedback strengths of Dll4 lig-

and, A, and VEGFR-2, B, we identifed regions of parameter space which admitted the

period-2 spatial pattern (see Figure 3.9). The Routh-Hurwitz conditions, delimiting

these regions, retain their positions relative to each other in response to changes in the

model parameters. Furthermore, this meant that the homogeneous steady state always

became unstable to admit patterning when a real eigenvalue changed sign and never

due to a pair of complex conjugates crossing the imaginary axis. Numerical integra-

tion and continuation of steady state solutions validated the predictions of our linear

analysis (see Figures 3.15 and 3.17). We also explored the effects of different boundary

conditions and found that if cells at the boundary did not receive the correct amount

of inhibition, the instabilty spreads into the domain, causing the system to pattern. We

also observed travelling waves for A, B < 0 and A, B > 0 where our system admits

multiple homogeneous steady states (see Figure 3.20).

Chapter 4 extended the ODE model of chapter 3 by incorporating filopodia growth us-

ing a variable representing the length of the filopodium on cell j. The ODE for filopodia

growth was coupled to ODEs for the spatially averaged concentrations of unbound and

bound VEGF receptors, Delta ligand (Dll4) and a conserved concentration of Notch re-

ceptors per cell. The cells were exposed to a gradient of VEGF which the filopodia

grew into. The growth of filopodia was induced by the number of VEGF receptors

which were assumed to be located both in the cell membrane and the filopodium and

in turn, VEGF receptor production was enhanced by the filopodia length in that cell.

The effects of receptor feedback, θ, and the linear gradient of VEGF, ψ, were investi-

gated using using numerical simulations and bifuraction analysis. The analysis sug-

gested that the feedbacks introduced by filopodia growth facilitated pattern formation
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in strings of cells. They did this by increasing the range of values in parameter space for

which the system could admit patterning, thus creating regions of parameter space in

which systems of cells with filopodia could pattern, unlike equivalent systems of cells

without filopodia growth. This was confirmed using numerical simulations. Steady

state analysis also suggested that the model would be able to exhibit multiple homo-

geneous and period-2 patterning solutions which could coexist in particular regions of

parameter space. This was confirmed using numerical continuation, as θ or ψ were var-

ied (see Figures 4.6 and 4.7). Notably, filopodia growth allowed the existence of a large

amplitude pattern in which one cell had an extremely long filopodium and the other

cell a very short filopodium. This differed from the small amplitude pattern for which

the filopodia were of a relatively similar size. Further feedback via the growth terms

could also destroy the small amplitude pattern. The system also exhibited hysteresis

effects due to the coexistence of the two patterns. Lastly we used linear stability analy-

sis to determine how filopodia feedback modulates the growth rate of perturbations of

the homogeneous steady state. For a fixed point in the A-B plane, our linear analysis

showed that increasing the feeback strength, U, which corresponded to the slope of the

production function for filopodia growth, shrinks the stable region and the unstable

patterning region of parameter space, until the homogeneous steady state is unstable

to perturbations of all wavelengths (see Figure 4.13). Thus filopodia growth acts to

facilitate patterning by destabilising the homogeneous steady state. These predictions

were also confirmed using numerical analysis (see Figure 4.14).

Chapter 5 aimed to understand the conditions under which the spatially averaged

model in Chapter 4 could be used to study the effects of filopodia growth on tip cell

selection. The model is discrete in the string (j) direction, consisting of whole cell vari-

ables for the concentrations of Delta ligand and Notch receptors, and is spatially re-

solved in the direction of filopdia growth (x). We used PDEs to describe the spatiotem-

poral evolution of unbound and bound VEGFR-2 in the cell membrane and filopodia.

VEGF receptors were allowed to diffuse in the cell membrane and filopodia, and ad-

vection of receptors was determined by three types of constitutive law defining domain

growth: growth depending on the local bound VEGFR-2 concentration, the global av-

erage VEGFR-2 concentration, and the concentration of VEGFR-2 at the proximal end

of the cell. The growth laws defined a local strain rate: dvj
dx which was integrated ana-

lytically to obtain an expression for the advection velocity. The filopodia growth rate,
dFj
dt , was defined as the velocity at the end of the domain: v(x, t)|x=L0+Fj . We found that

all three growth laws gave expressions for the filopodia growth rate which could po-

tentially exhibit exponential growth, which we later confirmed for the local VEGFR-2

dependent growth law using a numerical simulation (see Figure 5.14). To avoid expo-
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nentially growing filopodia lengths in our PDE model, we divided the growth terms by

the filopodia length. This was justified by assuming that the local growth rate would be

smaller for a larger filopodium due to distribution of material for growth throughout

the filopodium. This led to ODEs for the filopodia growth rate which were equivalent

to the corresponding ODE from Chapter 4.

Using numerical continuation (described in §5.3.2) we showed that the steady states

and bifurcation structure of the PDE model, for each of the growth laws, coincided

with the bifurcation structure of the ODE model from Chapter 4 when the receptor

diffusivity was large. Numerical simulation of cells exhibiting the large amplitude pat-

tern, with a long filopodium extending far into the gradient of VEGF, showed that

rapid equilibration of receptors lead to an almost spatially homogeneous distribution

of VEGF receptors in the membrane. In contrast, when the receptor diffusivity was

small, the steady state distribution of VEGFR-2 was inhomogeneous, with a higher

concentration of bound receptors at the filopodium tip than at the cell body (see Figure

5.7). In addition, for small VEGFR-2 diffusivity, the steady states and bifurcations of

the PDE models were different to the those of the equivalent ODE model from Chapter

4. We found that the model using proximal end VEGFR-2 dependent growth agreed

least of all three growth laws, whereas the local bound VEGFR-2 dependent growth

law gave the best agreement (see Figures 5.15 and 5.16). In conclusion, we found that

different growth laws were capable of exhibiting almost identical solutions to the ODE

model of Chapter 4 when the receptor diffusivity was large. It remains to be deter-

mined whether physically realistic values for the diffusion coefficients would necessi-

tate the use of PDE model of this chapter over the ODE model of Chapter 4.

In this thesis we have developed both ODE and PDE models to investigate the role of

Notch sigalling in the processes of arterial specification, tip cell selection during angio-

genic sprouting, and HSC specification. We began by using experimental results and

observations to guide mathematical models to better understand how Notch signalling

can induce arterial and HSC gene induction in the developing zebrafish embryo. We

then developed three models to study tip cell selection in angiogenic sprouting and

found that filopodia growth and the spatial distribution of VEGF receptors are impor-

tant factors in tip cell selection. We have also highlighted several prospects for future

work which may shed further light on the role of Notch signalling in the developmental

processes studied herein.
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APPENDIX A

Non-dimensionalisation and

scalings for the model without

filopodia growth: (3.2.10)-(3.2.14)

We non-dimensionalise the model in (3.2.10)-(3.2.14) by scaling the variables with typ-

ical time and concentration scales of the model as follows,

t = 1
k−VR

τ , (A.0.1)

Nj = Ntotnj (A.0.2)

Bj = Ntotbj , (A.0.3)

∆j = Ntotδj , (A.0.4)

RUj = RU0
k−VR

rUj , (A.0.5)

RBj = RU0
k−VR

rbj . (A.0.6)

The two functions f and g are scaled in the following way,

f (x) =
RU0

1 + (bx)m ,

g(x) =
gmax xn

xn + an .

Hence

f (Bj) = f (bjNtot) = RU0

1
1 + (bNtotbj)m , (A.0.7)

g(RBj) = g
(

RU0

k−VR
rBj

)
= gmax

(
RU0

k−VR
rBj

)n

(
RU0

k−VR
rBj

)n
+ an

. (A.0.8)
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WITHOUT FILOPODIA GROWTH: (3.2.10)-(3.2.14)

We define

β =
1

bNtot
and α =

ak−VR

RU0
, (A.0.9)

and rewrite (A.0.7) and (A.0.8) as:

f (Bj) = RU0 f̃ (bj) and g(RBj) = gmax g̃(rBj) , (A.0.10)

where f̃ and g̃ are normalised to have maximum value equal to 1 and are given, in

terms of the dimensionless parameters, β and α, as

f̃ (bj) =
1

1 +
(

bj
β

)m and g̃(rBj) =
rn

Bj

rn
Bj + αn . (A.0.11)

The non-dimensional model contains 10 dimensionless parameters altogether:

V∗ =
kVR

k−VR
V , (A.0.12)

λ̄ =
λ

k−VR
, (A.0.13)

ḡmax =
gmax

k−VRNtot
, (A.0.14)

k̄−B =
k−B

k−VR
, (A.0.15)

k̄B =
kBNtot

k−VR
, (A.0.16)

µ̄ =
µ

k−VR
, (A.0.17)

as well as β and α as defined in (A.0.9) and the two Hill coefficients, m and n.

For notational simplicity we drop the bars on parameters (A.0.13)-(A.0.17) and the

tildes on the production functions in equation (A.0.11). The full dimensionless system

is given in equations (3.2.10)-(3.2.14).
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Non-dimensionalisation and

scalings for the model considering

filopodia growth: (4.1.3)-(4.1.5)

We non-dimensionalise the model in equations (4.1.3)-(4.1.8) using the appropriate

scalings below. The new model introduces a single variable, Fj, for the length of a

filopodium on cell j, which is scaled with the fixed length of the cell body membrane,

L0, as follows,

Fj = L0F∗j . (B.0.1)

For RUj, RBj, ∆j, Nj and Bj we use the same scalings as in Appendix A. The Hill func-

tions f (Bj) and g(rBj) have also been non-dimensionalised as in Appendix A. The

filopodia growth function w(rBj) is non-dimensionalised in the same way as the func-

tion g previously. The four new dimensionless parameters C̄, θ, γ̄ and φ̄ are defined as

follows

C̄ =
Ck−VR

RU0
, (B.0.2)

θ = L0θ̂ , (B.0.3)

γ̄ =
γ

k−VR
, (B.0.4)

φ̄ =
φ

L0 k−VR
(B.0.5)

For convenience we drop the star from the dimensionless Fj in (B.0.1) and the bars on

C, γ and φ.

We next non-dimensionalise the term from equations (4.1.4) and (4.1.5) involving the

non-constant VEGF field
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APPENDIX B: NON-DIMENSIONALISATION AND SCALINGS FOR THE MODEL

CONSIDERING FILOPODIA GROWTH: (4.1.3)-(4.1.5)

− kVR

k−VR

∫ L0+Fj(t)
0 V(x)dx
(L0 + Fj(t))

rUj . (B.0.6)

Here the scaling for R̄Uj has already been cancelled and 1
k−VR

is the scaling for time. We

substitute in the expression for the integrated form of V(x) from (4.1.10) to obtain

− kVR

k−VR(L0 + Fj(t))

(
V0(L0 + Fj(t)) +

ψ

2
Fj(t)2

)
rUj (B.0.7)

Choosing the scaling in (B.0.1) for Fj(t) and cancelling L0 + Fj(t) we get

−
(

Ṽ0 +
ψ

2

F∗j (t)
2

(1 + F∗j (t))

)
rUj (B.0.8)

which has the following two dimensionless parameters

Ṽ0 = V0
kVR

k−VR
, (B.0.9)

ψ̃ = ψL0
kVR

k−VR
. (B.0.10)

Henceforth, for convenience, we drop the tildes from Ṽ0 and ψ̃, and the star on Fj(t).
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Routh Hurwitz conditions for the

filopodia system

The characteristic polynomial for (4.4.6) is a quartic of the form σ4 + a1σ3 + a2(K)σ2 +

a3(K)σ + a4(K) where the coefficients are given by

a1 = γ + λ + µ + kB(1− be) + k−B + kBδe −UVφrUe , (C.0.1)

a2(K) = −kB(1− be)(k−B + kBδe)K2 + λ(γ−UVφrUe) (C.0.2)

+ (γ + λ−UVφrUe)(µ + kB(1− be) + k−B + kBδe)

+ (µ + kB(1− be))(k−B + kBδe)−Uθ f (be)pG(Fe)φ ,

a3(K) = −kB(1− be)(k−B + kBδe)(γ + λ−UVφrUe)K2 (C.0.3)

− kB(1− be)ABḡmax pG(Fe)(1 + θFe)K

+ (γ + λ−UVφrUe)(k−B + kBδe)(µ + kB(1− be))

+ (µ + kB(1− be) + k−B + kBδe) [λ(γ−UVφrUe)−Uθ f (be)pG(Fe)φ] ,

a4(K) = −kB(1− be)(k−B + kBδe) [λ(γ−UVφrUe)−Uθ f (be)pG(Fe)φ]K2 (C.0.4)

− kB(1− be)ABḡmax pG(Fe)(1 + θFe)γK

+ (µ + kB(1− be))(k−B + kBδe) [λ(γ−UVφrUe)−Uθ f (be)pG(Fe)φ] .
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The four Routh-Hurwitz conditions for the quartic characteristic polynomial of the

filopodia model are given by

a1 > 0 , (C.0.5)

a1a2(K)− a3(K) > 0 , (C.0.6)

a3(K) [a1a2(K)− a3(K)]− a2
1a4(K) > 0 , (C.0.7)

a4(K) > 0 . (C.0.8)

Condition (C.0.5) is identical for both the filopodia and no-filopodia models. We here

show that the Routh-Hurwitz conditions in equations (C.0.6) and (C.0.8) reduce to their

analogues in the no-filopodia model.

Consider (C.0.8) at K = −1 which gives

a4(−1) = µ(k−B + kBδe) [λ(γ−UVφrUe)−Uθ f (be)pG(Fe)φ] (C.0.9)

+ kB(1− be)ABḡmax pG(Fe)(1 + θFe)γ .

This reduces to the condition in (3.5.18) as φ → 0. It should be noted that Fe → 0 and

pG(Fe)→ V0 as φ→ 0 (see (4.4.5)). Thus

lim
φ→0

a4(−1) = γ [(k−B + kBδe)λµ + kB(1− be)ABḡmaxV0] ,

= γã3(−1) ,

where ã3 is the constant coefficient of the characteristic polynomial for the no-filopodia

model (see equation (3.5.12)). Similarly

lim
φ→0

(a1a2(1)− a3(1)) = kB(1− be)(k−B + kBδe)(a1 − λ) (C.0.10)

+ kB(1− be)ABḡmaxV0 + (γ + a1)(k−B + kBδe)(µ + kB(1− be))

(γ + λ) [(γ + a1)(a1 − λ)− (k−B + kBδe)(µ + kB(1− be) + λγ] .

For this condition we also need to assume that γ is negligible, which gives

lim
φ→0,γ→0

(a1 · a2(1)− a3(1)) =

(a1 − λ) [λa1 + µ(k−B + kBδe)] + kB(1− be)ABḡmaxV0 , (C.0.11)

such that imposing a1 · a2(1) − a3(1) > 0 recovers the equivalent condition from the

no-filopodia model given in (3.5.17) with V0 = V∗.
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Parameter choices for the

no-filopodia model

We here show how to choose the parameters gmax, α and β so that we can vary the val-

ues of A and B to move around the plane in Figure 3.9 without changing the value of

the homogeneous steady state or the positions of the Routh-Hurwitz hyperbolae. We

begin by considering the quasi-steady system outlined in (3.5.1)-(3.5.3) at the homoge-

neous steady state (rUe, δe, be). Adding (3.5.2) and (3.5.3) at steady state gives

gmax g(V∗rUe) = µδe ,

which fixes the value of gmax in terms of δe, rUe and the remaining model parameters as

gmax = µδe
αn + (V∗rUe)

n

(V∗rUe)n . (D.0.1)

Here the steady state values of rUe and δe are determined by be as follows. Equation

(3.5.1) at steady state gives

f (be) = λrUe ,

so that

rUe =
1
λ

βm

βm + bm
e

. (D.0.2)

and equation (3.5.3) fixes δe as

δe =
k−Bbe

kB(1− be)
. (D.0.3)

Substituting (D.0.3) and (D.0.2) into (D.0.1) defines the parameter gmax in terms of be.

Next we would like to make the slopes of f and g independent of the homogeneous

steady state as these are the key regulators of the model behaviour.
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The slope of f is given by

f ′(be) =
−m βm bm−1

e
(βm + bm

e )
2 (D.0.4)

but if we choose β = be then

A = f ′(be) =
−m b2m−1

e
4b2m

e
= − m

4be
. (D.0.5)

Similarly, when β = be the slope of g is given by

g′(V∗rUe) = g′
(

V∗ βm

λ(βm + bm
e )

)∣∣∣∣
β=be

= g′
(

V∗

2λ

)

=
nαn

(
V∗
2λ

)n−1

(
αn +

(V∗
2λ

)n
)2 .

By choosing α = V∗
2λ we have

B = g′(V∗rUe) =
n
4

(
V∗

2λ

)2n−1

(
V∗

2λ

)2n =
λ

2V∗
n . (D.0.6)

Both (D.0.5) and (D.0.6) are linear functions of m and n for a fixed be and our choices of

α and β give us entire ranges for A, B ∈ (−∞, ∞).

In summary, we choose and fix be and all model parameters except gmax, β and α, which

are specified in terms of these as described above. (See the non-shaded rows of Table

E.1 for parameter values used with be = 0.5605).
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Parameter values for the filopodia

model

We use an approach similar to that of Webb and Owen [71] in choosing our parameters.

When analysing the system in the A-B plane, all parameters are fixed except for two

free parameters, m and n in the no-filopodia system. These are the Hill coefficients of

f and g, describing the rate of production for VEGF receptors and Delta ligand respec-

tively. The free parameters can be interpreted as a measure of the response strengths

of ligand and receptor production. Similarly, in the system which includes filopodia

growth, q is the free parameter indicating the response strength, U, of filopodia growth.

We here show how to choose the parameters gmax, α, β and C in the filopodia system

such that we can vary the free parameters m, n and q without changing the underlying

homogeneous steady state. This is important as it allows us to compare the behaviour

of the model using different response strengths.

The system of equations at the homogeneous steady state is given by

0 =φ w(rBe)− γFe , (E.0.1)

0 =(1 + θFe) f (be) + rBe − rUe

(
V0 +

ψ

2
F2

e
1 + Fe

)
− λrUe , (E.0.2)

0 =rUe

(
V0 +

ψ

2
F2

e
1 + Fe

)
− rBe , (E.0.3)

0 =gmaxg(rBe) + k−Bbe − kB(1− be)δe − µδe , (E.0.4)

0 =kBδe(1− be)− k−Bbe , (E.0.5)

where Fe, rUe, rBe, δe and be are the steady state values of the model variables. We fix
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the equilibrium level of bound Notch receptors, be and choose

β = be, α = rBe, C = rBe. (E.0.6)

where rBe is the homogeneous steady state of bound VEGF receptors to be determined

in terms of the model parameters. Substituting these into the steady state system fixes

the Hill functions: f (be) = g(rBe) = w(rBe) =
1
2 and gives

Fe =
φ

2γ
, (E.0.7)

rUe =
1

2λ
(1 + θFe) =

1
2λ

(1 + θ
φ

2γ
) , (E.0.8)

δe =
k−Bbe

kB(1− be)
. (E.0.9)

Substituting (E.0.8) into (E.0.3) defines the steady state of bound VEGF receptors

rBe =
1

2λ

(
1 +

θφ

2γ

)(
V0 +

m̃
2

φ2

4γ2 + 2φγ

)
, (E.0.10)

(in terms of the fixed model parameters λ, µ, θ, φ, γ, V0, ψ, kB and k−B). Substituting the

expression for δe (E.0.9) into (E.0.4)+(E.0.5) defines the model parameter gmax as

gmax =
2µk−Bbe

kB(1− be)
, (E.0.11)

which is equivalent to (D.0.1) with α = V∗
2λ , rUe as in (D.0.2) and δe as in (D.0.3).

The expression for rBe in (E.0.10) defines α and C as

α =
1

2λ

(
1 +

θφ

2γ

)(
V0 +

m̃
2

φ2

4γ2 + 2φγ

)
(E.0.12)

C =
1

2λ

(
1 +

θφ

2γ

)(
V0 +

m̃
2

φ2

4γ2 + 2φγ

)
(E.0.13)

Hence, choosing the parameters as in (E.0.6) is sufficient for the choices of gmax, α and

C in (E.0.11)-(E.0.13) but not necessary as for certain values of m and n, our model

exhibits multiple homogeneous steady states. The slopes of the production functions

are given by

f ′(be) =
−m βm bm−1

e
(βm + bm

e )
2 , g′(rBe) =

n αn rn−1
Be

(αn + rn
Be)

2 , w′(rBe) =
n Cn rn−1

Be
(Cn + rn

Be)
2 , (E.0.14)

however, after applying our parameter choices from (E.0.6), these become

A = f ′(be) =
−m
4be

, B = g′(rBe) =
n

4rBe
, U = w′(rBe) =

q
4rBe

. (E.0.15)

Hence varying the values of m, n and q allows us to change the feedback strengths A,

B and U but doesn’t change the value of the homogeneous steady state parameterised

by be and rBe in (E.0.10). It should be noted that A is the same as in the no-filopodia

model, (D.0.5), and B = n
4

2λ
V0

when φ = 0 which is equivalent to the expression from

the no-filopodia model, (D.0.6), with V0 = V∗. All parameter choices are summarised

in Table E.1.
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APPENDIX E: PARAMETER VALUES FOR THE FILOPODIA MODEL

Parameter Numerical Value

V0 0.33

λ 0.5

k−B 0.25

kB 3

µ 1

β 0.5605

φ 2

γ 0.5

ψ 0

θ 0

gmax (E.0.11) =⇒ 0.2126

α (E.0.12) =⇒ 0.33

C (E.0.13) =⇒ 0.33

m -

n -

q -

Table E.1: Table of dimensionless parameter values for A-B plane analysis of the no-

filopodia model (unshaded rows) and filopodia model (shaded rows). The

parameter V0 is the filopodia model equivalent to V∗ (used in the model

without filopodia) and m, n and q (filopodia model) are free parameters

used to vary the feedback strengths whilst keeping a fixed homogeneous

steady state of be = 0.5605 and rBe = 0.33.
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