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For several decades researchers around the globe have been avidly investigating practical

solutions to the enduring problem of understanding visual content within an image. One

might think of the quest as an effort to emulate human visual system. Despite all the

endeavours, the simplest of visual tasks to us humans, such as optical segmentation

of objects, remain a significant challenge for machines. In a few occasions where a

computer’s processing power is adequate to accomplish the task, the issue of public

alienation towards autonomous solutions to critical applications remains unresolved.

The principal purpose of this thesis is to propose innovative computer vision, machine

learning, and pattern recognition techniques that exploit abstract knowledge of

human beings in practical models using facile yet effective methodologies. High-level

information provided by users in the decision making loop of such interactive systems

enhances the efficacy of vision algorithms, whilst simultaneously machines reduce users’

labour by filtering results and completing mundane tasks on their behalf.

In this thesis, we initially draw a vivid picture of interactive approaches to vision

tasks prior to scrutinising relevant aspects of human in the loop methodologies and

highlighting their current shortcomings in object recognition applications. Our survey

of literature unveils that the difficulty in harnessing users’ abstract knowledge is amongst

major complications of human in the loop algorithms. We therefore propose two novel

methodologies to capture and model such high-level sources of information. One solution

builds innovative textual descriptors that are compatible with discriminative classifiers.

The other is based on the random naive Bayes algorithm and is suitable for generative

classification frameworks.
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We further investigate the infamous problem of fusing images’ low-level and users’

high-level information sources. Our next contribution is therefore a novel random forest

based human in the loop framework that efficiently fuses visual features of images with

user provided information for fast predictions and a superior classification performance.

User abstract knowledge in this method is harnessed in shape of user’s answers to

perceptual questions about images. In contrast to generative Bayesian frameworks,

this is a direct discriminative approach that enables information source fusion in the

preliminary stages of the prediction process.

We subsequently reveal inventive generative frameworks that model each source of

information individually and determine the most effective for the purpose of class

label prediction. We propose two innovative and intelligent human in the loop fusion

algorithms. Our first algorithm is a modified naive Bayes greedy technique, while

our second solution is based on a feedforward neural network. Through experiments

on a variety of datasets, we show that our novel intelligent fusion methods of

information source selection outperform their competitors in tasks of fine-grained visual

categorisation.

We additionally present methodologies to reduce unnecessary human involvement in

mundane tasks by only focusing on cases where their invaluable abstract knowledge is

of utter importance. Our proposed algorithm is based on information theory and recent

image annotation techniques. It determines the most efficient sequence of information

to obtain from humans involved in the decision making loop, in order to minimise their

unnecessary engagement in routine tasks. This approach allows them to be concerned

with more abstract functions instead. Our experimental results reveal faster achievement

of peak performance in contrast to alternative random ranking systems.

Our final major contribution in this thesis is a novel remedy for the curse of

dimensionality in pattern recognition problems. It is theoretically based on mutual

information and Fano’s inequality. Our approach separates the most discriminative

descriptors and has the capability to enhance the accuracy of classification algorithms.

The process of selecting a subset of relevant features is vital for designing robust human

in the loop vision models. Our selection techniques eliminate redundant and irrelevant

visual and textual features, and therefore its influence on improvement of various human

in the loop algorithms proves to be fundamental in our experiments.
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Chapter 1

Introduction

1.1 Prologue

Mechanical reasoning has been contemplated by philosophers and mathematicians since

antiquity. Thinking machines and artificial entities first began to appear in ancient

Greek myths, such as Talos of Crete, and the bronze robot of Hephaestus. It is

widely acknowledged that by the middle ages artificial beings had been created by

polymaths and scholars like Jabir ibn Hayyan, Judah Loew and Paracelsus. History

is filled with stories of humanoid automatons built by intellectuals like Yan Shi, Hero

of Alexandria, and Al-Jazari who is renowned for writing the book of “Knowledge of

Ingenious Mechanical Devices” in 1206. The hand washing automaton illustrated in

figure 1.1 for instance is amongst the hundred devices he carefully described in his book.

By the 19th and the early 20th centuries, artificial beings had become a common feature

in fiction as in Mary Shelley’s acclaimed Frankenstein or Rossum’s Universal Robots by

the Czech writer Karel Capek.

Pamela McCorduck, the author of “Machines Who Think” [1], argues that all of these

efforts are examples of an ancient urge. A desire “to forge the gods”, as she describes

it. Stories of these creatures and their fates debate many of the similar hopes, fears and

ethical concerns that are presented by modern artificial intelligence today.

An intriguing branch of modern artificial intelligence is machine learning which is

concerned with the construction and study of systems that can learn from data. In

machine learning, pattern recognition centres around the identification of patterns and

regularities in data. All these domains have evolved substantially from their roots in

artificial intelligence, engineering and statistics but yet they have become increasingly

similar by integrating developments and ideas from each other. As a scientific discipline

1
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Figure 1.1: A hand washing automaton of Al-Jazari

that is highly correlated with these subject matters, computer vision is concerned with

the theory behind artificial systems that extract useful information from images as the

source of data. This thesis addresses the problem of semantic image understanding. Its

ultimate objective is to reveal the semantic meaning behind the pixels of an image.

In the rest of this chapter, we highlight the motivations behind our proposed work,

followed by challenges associated with our consciously defined aims and objectives. We

eventually conclude this chapter by listing our novel contributions to the resolution of

the challenges described.
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1.2 Motivation

Outstanding strides have been made in the field of digital imaging over the past years.

Digital images are now ubiquitous. From digital SLR1s and megapixel camera phones

to scanners and video surveillance systems, all these devices have made their notable

mark on our modern lives. The Internet has clearly been the catalyst in fostering the

growth of digital imaging. This rapid pace of growth has necessitated an urge to store,

retrieve, and understand visual content intelligently. Intelligent digital imaging has

already established its outstanding value in a variety of fields ranging from education to

medicine [2].

The outlasting problem of understanding the visual content of an image has been

vigorously scrutinised by the computer vision community. Researchers have been

extensively engaged in designing innovative methodologies for capturing, processing,

analysing, and understanding image data from the real world to engineer useful

information in form of practical decisions. Albeit research on computer vision tasks

dates back to the earliest days of computing and despite the huge growth of interest it

has seen in recent years, humans still consistently outperform state-of-the art computer

vision algorithms at most tasks both in terms of accuracy and efficiency.

Attempts have eagerly focused on closing the so-called sensory and semantic gaps [2].

In simple words, while the former describes the gap between real world objects and their

virtual representations in a computational space derived from recording of those objects,

the latter portrays the gap between extraction of information from some visual data by

computer systems and user interpretation of the same visual data in a given situation. An

ideal system should be able to narrow these gaps by capturing accurate representations

of a user’s semantic requests in order to be competent enough at providing desirable

outputs.

Despite all the efforts in the last few decades to overcome the aforementioned problems of

understanding visual content and its corresponding complications, it is naive to believe

that the-state-of-the-art techniques have matured adequately to serve our modern needs

for most real world applications. Simply, this is due to the fact that accuracies of such

technologies are not always solid. Furthermore, it is imperative to remind ourselves that

members of the public do not trust machines to decide independently for execution of

critical tasks [3], such as automatic diagnosis in medical applications. Therefore, we

think that there should be further systematic psychological research carried out on the

impact of technology on humans and their reactions to such intelligent entities.

1Single-lens Reflex
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The difficulties described thus far have gradually opened a new point of view in the

community. It is known that the most advanced technologies still have a long way

to become reliable, and it is clear that the issue of trust and public alienation towards

autonomous technologies will not disappear overnight. Hence among various approaches,

a number of researchers have recently shown interest in developing more pragmatic

solutions to the problem by introducing the notion of “Human in the Loop”. The

high-level knowledge of humans corrects any mistakes made by the algorithms. In return,

interactive algorithms decrease human labour in many mundane tasks. Having a human

in the decision making loop will also assure any doubts remaining in minds regarding

authentication and accuracy of a solution.

An illustrative example [4] in the paradigm of human in the loop is a computational

algorithm that finds a solution interactively. The solution may or may not satisfy the

user’s expectation. If the answer is affirmative, a solution has been found. If not,

the user will interact with the system to provide feedback that contains both human

high-level knowledge about the problem, as well as their intentions. This feedback will

be harnessed by the algorithm as more accurate constraint conditions or as stronger

priors to refine the proposed solution. This loop of human in the computational process

can be iterated until a satisfactory result is achieved. Figure 1.2 depicts this interactive

approach in an imaging setting.

Figure 1.2: An illustration of interactive approaches to imaging and vision

1.3 Aims and Objectives

The semantic image understanding problem can be tackled from a number of different

perspectives: i) image classification or annotation deals with determining whether an
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image contains a certain object, ii) object detection attempts to locate the presence of

an object within an image, and iii) image segmentation aims to assign a semantic label

to every pixel in an image. These problems may seem different on surface but they all

share intrinsic mutualities.

The difficulty of these tasks lies primarily in the huge volume of variability in real world

images. The pixel intensities that generate any given digital image are broadly dependent

on a large number of complex factors such as pose, appearance, shape, illumination etc.

Hence, it can be considered that extracting information about the real world from the

patterns of light that fall onto a camera’s sensor is ill-posed. We think that the issue

of high intra-class variation, and low inter-class variation demands accurate inferences

with internal models that effectively combine sensory evidence with prior knowledge

about the properties of real world objects. In this thesis, we ultimately aim to answer

the following questions that are fundamental in the realisation of a visually intelligent

automaton, which is capable of accurate inferences subject to a degree of assistance from

humans in its decision making loop:

1) A practical feature extraction method is the first building block of such accurate

algorithmic inferences. An ideal feature descriptor should be invariant to change

amongst various entities within the same semantic class, and should be discriminative in

differentiating between plausible semantic classes. It is usually vital to combine a number

of different feature descriptors to obtain a comprehensive understanding of visual content

within an image. This propagates to the further questions about effectiveness of each

feature combination, removal of redundant features, and how to efficiently combine these

feature descriptors.

2) Apart from low-level information attainable from visual feature descriptors, there

exists a void in formalising methodologies for capturing valuable high-level knowledge

from users in human in the loop settings. Their prior knowledge about properties of real

world can substantially enhance the accuracy of a learning method by overcoming the

semantic gap problem. Thus, precise scrutiny is obliged to develop methodologies that

harvest such beneficial knowledge.

3) Besides the aggravations caused by the information representation dilemma described

previously, selecting appropriate learning algorithms competent at recognising patterns

is a constitutional necessity. Accurate parametrisation of such algorithms is another

obstacle that we aim to precisely tackle.

4) We believe that utilisation of human abstract knowledge in the preceding algorithm

has to be executed in an arrangement that reduces the burden of its users. Humans
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should be concerned with abstract tasks rather than tedious and mundane assignments.

Achieving a balance in this scenario is another angle that needs to be explored.

5) Finally, decisive fusion of low-level visual information and high-level abstract

knowledge is the last significant component of an intelligent algorithm that is capable

of accurate inference. The accomplishment of effective fusion demands certain questions

to be answered and a number of difficult issues to be rectified. The most critical

complication is the evaluation of predictions based on each source of information

available.

We believe that it is becoming progressively common to frame computer vision problems

as that of inference in probabilistic models. This allows for more convenient reasoning

about higher level image concepts, a principled way to express uncertainty, and

separation of model design and inference. The aim of this thesis is to follow these

described schools of thoughts to tackle the technical challenges mentioned. We aim to

develop platforms where modern technologies help with the problem of understanding

visual content, and to implement user friendly interfaces that efficiently incorporate

high-level human knowledge.

1.4 Structure and Contributions

In this thesis, we will formally define what is meant by human in the loop algorithms,

illustrate how effective models can be learned from available sources of data, and describe

how these different sources of data, comprising low-level image information and high-level

human knowledge, can be combined to extract valuable information. This thesis makes

the following novel contributions in the field of interactive understanding of visual

content, and thence the remainder of this document is structured as below:

Chapter 2: presents an overview of fundamental constituents in computer vision and

pattern recognition problems, current methodologies for content understanding at pixel

and image level, and finally followed by an analytical comparison of existing work in the

area of interactive imaging and object recognition with human in the loop.

Chapter 3: discloses a novel “Random Forest” based human in the loop framework

that efficiently fuses visual features of images with user provided information for fast

predictions and a superior classification performance. User abstract knowledge in this

method is harnessed in shape of user answers to perceptual questions. These responses

are used to build textual features compatible with random forest classifiers. In contrast

to the generative Bayesian frameworks in chapter 4, this is a direct discriminative
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approach that enables information source fusion in the preliminary stages of the

prediction process. The work of this chapter has been published as follows:

1. Razeghi, O.; Zhang, Q. and Qiu, G. (2013), Interactive Skin Condition

Recognition, in ‘IEEE International Conference on Multimedia and Expo’, pp.

1–6.

2. Razeghi, O.; Fu, H. and Qiu, G. (2013), Building Skin Condition Recogniser

using Crowd-sourced High Level Knowledge, in ‘Medical Image Understanding

and Analysis’, pp. 225–230.

Chapter 4: introduces a “Random Naive Bayes” model of capturing human high-level

information that is compatible with the human in the loop Bayesian frameworks, in

addition to innovative “Human in the Loop Fusion Frameworks” that intelligently select

the most effective source of information suitable for making predictions. Through

experiments on a variety of human in the loop datasets, we demonstrate the advantages

of our “Random Naive Bayes” model in comparison to state-of-the-art methods both

in terms of accuracy and efficiency. We also show that our novel intelligent methods

of “Information Source Selection” outperform their competitors in tasks of fine-grained

visual categorisation. The work presented in this chapter has been published as follows:

1. Razeghi, O.; Qiu, G.; Williams, H. and Thomas, K. (2012), Skin Lesion Image

Recognition with Computer Vision and Human in the Loop, in ‘Medical Image

Understanding and Analysis’, pp. 167–172.

2. Razeghi, O.; Qiu, G.; Williams, H. and Thomas, K. (2012), Computer Aided Skin

Lesion Diagnosis with Humans in the Loop ‘Machine Learning in Medical Imaging’,

Springer Berlin Heidelberg, pp. 266–274.

3. Razeghi, O.; and Qiu, G. (2014), Object Recognition with Human in the Loop

Intelligent Framework, for ‘Journal of Pattern Recognition’, [under review].

Chapter 5: reveals a novel method to reduce unnecessary human intervention in

decision making procedures. Our proposed algorithm determines the most “Efficient

Sequence of Information” to obtain from humans involved in the decision making loop,

in order to minimise their unnecessary engagement in mundane tasks. This approach

allows them to be concerned with more abstract functions instead. The work presented

in this chapter has been published in:
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1. Razeghi, O.; Fu, H. and Qiu, G. (2013), Building Skin Condition Recogniser

using Crowd-sourced High Level Knowledge, in ‘Medical Image Understanding

and Analysis’, pp. 225–230.

Chapter 6: demonstrates a novel remedy for the curse of dimensionality in pattern

recognition problems that is based on “Mutual information and Fano’s Inequality”

methods. Our approach separates the most discriminative descriptors and has the

capability to enhance the accuracy of many classification algorithms. The process of

selecting a subset of relevant features is vital to designing robust human in the loop

vision models. Our selection techniques eliminate redundant or irrelevant visual and

textual features. The work presented in this chapter is illustrated in:

1. Razeghi, O.; and Qiu, G. (2014), Discriminative Dimension Reduction based on

Mutual Information, for ‘Journal of Pattern Recognition’, [under review].

Chapter 7: summarises the results presented in the thesis, outlines directions for future

work and concludes with a discussion.

Appendix A: exhibits a unique medical dataset containing 2309 images from 44

different skin conditions, which is suitable for human in the loop approaches. We believe

that this dataset will be useful in facilitating the development of computer-aided medical

diagnostic techniques. We have made the extracted low-level visual descriptors of images

in the dataset, and the crowd-sourced high-level knowledge of users publicly available in

the following paper:

1. Razeghi, O.; and Qiu, G. (2014), 2309 Skin Conditions and Crowd-sourced

High-level Knowledge Dataset for Building a Computer Aided Diagnosis System,

in ‘IEEE International Symposium on Biomedical Imaging’, pp. 61–64.



Chapter 2

Literature Review

The current computer vision literature has been profoundly engaged in exploring a

range of topics that can be categorised into pixel-level semantic image understanding,

and image-level visual content understanding respectively. Acquiring high-dimensional

data, detection of certain objects within an image, semantic segmentation, and building

more efficient mathematical models are prime examples of the former category, whilst

interpreting high-level knowledge, recognition of different classes of data, image retrieval

and image annotation are usually considered to be from the latter category. These topics

address the core problems in the context of interpreting semantic meaning from images.

In spite of their apparent differences, they all share a number of analogies. The issue

of representing images in confined mathematical models, also known as features, is one

common module. Classification is a key instance of another shared module amongst

most of the topics previously mentioned.

As this thesis concentrates on solving the problem of understanding visual content based

on a human in the loop approach, we will examine recent innovations in the field of

semantic understanding with a focus on relevant complications of involving humans in

the decision making loop. In the rest of this chapter, we will first review relevant methods

in feature extraction as the first building blocks of any semantic understanding system.

Subsequently, we will look into object categorisation and classification algorithms

of such systems. We then review object detection and semantic segmentation as

instances of understanding visual content at pixel-level. Afterwards, we will survey

image-level semantic understanding methodologies. We will be discussing automatic

image annotation, content based image retrieval, and finally we will summarise recent

human in the loop developments in the literature. We will conclude this chapter with a

short summary.

9
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2.1 Features in Computer Vision

A feature is defined to acquire visual properties of an image, either locally for small

patches of pixels or globally for the entire image. Features are perhaps the most

significant concept in computer vision. They are used to signify information that is

relevant for solving a computational task in a certain application. Features eliminate

the need to deal with pixels in computer vision tasks by abstracting the complexity of

data within an image. Classifiers are usually applied directly to extracted features of an

image.

There are various methods proposed in the literature that represent an image by

detecting points of interest and extracting meaningful descriptors from them. Feature

extraction algorithms based on their processing primitives are usually divided into three

basic categories: pixel-level, regional, and image-level. The following summarises a

number of popular feature extraction methodologies and widely used representation

techniques in the computer vision community.

2.1.1 Feature Extraction

Each point in an image is commonly represented by a value from the colour channels,

such as RGB, CMYK, or HSV . These colour values are accompanied by a location

(x, y) that corresponds to the position of that point in the image. However, a pixel

is usually placed in a larger spatial context when it comes to feature extraction at

pixel-level. A patch that centres on a given pixel is usually exploited to derive

descriptors. These extracted descriptors are thenceforth perceived to belong to that

central pixel.

The authors in [5] for instance propose an extraction method that covers a large area

centred on a pixel. Randomly cropped rectangles within this large space are used to

extract features. Assembled two-tuples that contain both extracted features and location

of the rectangles are then utilised as the feature of that particular pixel. This leads to

an exponential possibilities of features for any pixel within an image.

In contrast to pixel-level features, descriptors can be extracted at regional-level based

on the following aspects:

- Colour: Colour Name [6], Colour SIFT [7], etc.

- Texture: Texton Histogram [8], etc.

- Shape: Histogram of Oriented Gradients (HOG) [9], etc.



Chapter 2. Literature Review 11

- Geometry: Super Pixels [10], etc.

- Appearance: Scale Invariant Feature Transform (SIFT) [11], etc.

The authors in [12] intriguingly propose a kernel view of different regional features. Their

kernel descriptor technique directly turns pixel attributes, such as gradient, colour, and

local binary patterns into concise regional features. Kernel descriptors are claimed to

be straightforward to design and therefore can turn any type of pixel attribute into

regional-level features.

Contrastingly, CPAM [13] is introduced as a method of representing achromatic and

chromatic image signals independently. An opponent colour representation, human

vision theories, and modern signal processing technologies are combined to develop a

computationally efficient visual appearance model for coloured image patterns. The

opponent colour vision models achromatic and chromatic signals differently. The former

should be provided with a higher bandwidth and the latter’s signal can cope with

a lower bandwidth. The normalisation of these signals has the effect of removing

lighting condition to some extent. Consequently, the CPAM model demonstrates some

illumination invariant properties. A compact representation of these patterns is achieved

by vector quantisation [14], which is a well-developed statistical technique in the field of

modern digital signal processing. CPAM in summary captures statistical representation

of achromatic and chromatic spatial image patterns and uses their distribution to

characterise visual content of an image.

At image-level, GIST [15] descriptors are amongst competent candidates. A typical

GIST feature contains Gabor orientation histograms calculated over patches in a regular

grid. GIST features are tuned by default parameters such as: 3 colour planes, 4 by 4

cells, and 3 scales with different orientations. These default parameters will produce a

standard vector of 960 dimension. The colour histogram features, and fisher vectors [16]

are also considered to be in this category.

2.1.2 Features of Higher Level

Most features described in the previous section are known as “bottom-up” features due

to their intrinsic nature of computation. However, it is desirable to mention that there

has been comparatively recent interest in using the outputs of classifiers as a new type of

higher level features. Authors in [17] for instance examine the outputs of various object

detectors as new features for image classification problems. An extended version of this

idea can be found in [18], where the output of numerous individual action detectors is

utilised as new features for action recognition.
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A common characteristic of the aforementioned feature methods is that they are all in

general handcrafted and comparatively simple. They typically follow a procedure of:

1. dense sampling of local image patches,

2. describing patches by means of visual descriptors such as SIFT [11],

3. encoding descriptors into a high-dimensional representation,

4. and finally pooling over the entire image.

Recently, these handcrafted approaches have been substantially outperformed by the

introduction of the latest generation [19] of Convolutional Neural Networks (CNN)

[20, 21] to the computer vision field. These networks have a considerably more

sophisticated structure than standard representations. They are comprised of several

layers of non-linear feature extractors, and are therefore said to be deep. This is in

contrast to classical representation methods that are known to be referred to as shallow.

Whilst the structure of these deep methods is handcrafted, they contain a considerable

number of parameters learnt directly from data.

We have come to believe that considering the current rapid growth of interest in

feature representation techniques based on deep learning [22–24] and their superiority

of performance in many application settings [19], it is not inconceivable to observe a

decline in popularity of other methodologies within the community.

2.1.3 Feature Representation

An image is the representation of the external form of an object, generally as a

composition of different regions. It is commonly agreed that feature extraction should

not be merely assembling regional descriptors together. Concatenation of descriptors is

the least favourable method, as it leads to high-dimensional features, and exacerbates

the curse of dimensionality.

The most widely adopted alternative method in the literature is the “Bag of Visual

Words” representation. To represent an image using this method, one should think

of images as documents. Similar to documents, words in an image also need to be

described. To describe these words, the steps of feature detection, feature representation

and code generation have to be carried out. Feature detection is about extracting

a number of local regions or patches. These are considered as basic elements in an

image or also known as words in the described context. Feature representation deals

with the problem of describing local patches as numeric values. Code generation is the
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final step in the “Bag of Visual Words” model. This step involves converting vector

represented patches to codewords. Each patch in an image is linked to a particular

codeword through a clustering process. Eventually, the image will be represented by a

histogram of codewords.

Aside from the “Bag of Visual Words” representation [13, 25], there exist alternative

techniques like the covariance matrix representation [26, 27], fisher vector representation

[16], and graph representation [28]. Bag of features discards all information about

the geometry of underlying objects in an image. There is always a trade-off between

perspective invariance and discriminative power. Therefore, preserving at least an

approximation of image layout seems sensible for many classification problems. In

reality, feature representations that benefit from some degree of spatial information,

such as HOG [9], spatial pyramids [29] and their variants usually perform better in

classification problems than pure “Bag of Visual Words” techniques.

2.1.4 Feature Combination

There exists an extensive body of literature on features in computer vision, and there

are still new techniques emerging. However, it is evident that there are many problems

that cannot be solved by a single ideal feature, and a combination of dissimilar types

may be necessary. Different feature types capture different characteristics of an image.

It is usually essential to combine various types of features to achieve a comprehensive

understanding of an image.

The classic step after feature extraction in an image understanding problem is

classification. Thence, the literature has various examples of feature combination

techniques both at input and output level of classification step. For instance, the authors

in [30] illustrate that outstanding semantic segmentation results can be achieved by

simply concatenating local regional features with global bag of visual words descriptors as

input to classifiers, whilst research in [31] proves that aggregating classifiers’ probabilistic

outputs is a robust method of combination and performance gain.

Apart from simple aggregation techniques, kernel methods that represent relations

between samples of different feature channels have gained popularity in the literature.

This descriptor combination is performed at kernel level, which is regarded as a middle

level fusion stage. More formally, let {xi}Ni=1 be N instances, and let {fm}Fm=1 be a set

of F extracted features. Let us assume that the kernel function Km is performed on the

mth feature channel. The similarity between two instances based on their mth feature

fm is therefore defined as:
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SIM(i, j) = Km(fm(xi), fm(xj)) (2.1)

Feature combination based on kernels is thus about combining different Km into a single

kernel K∗. For example, authors in [32] introduce a method beyond simple arithmetic

to combine the kernels that produces superior results despite its simpleness. Other

methods include the straightforward linear combination of kernels, which is amongst

popular solutions in the literature:

K∗(xi, xj) =
F∑

m=1

βmKm(fm(xi), fm(xj)) (2.2)

where βm are the linear combination coefficients that can be learned by classification

algorithms, if desired.

2.1.5 Feature Selection

In machine learning and statistics, feature selection is the process of selecting a subset

of relevant features for use in model construction. This process is also known as variable

selection, attribute selection or variable subset selection in the literature. The principal

assumption in utilisation of a feature selection technique is that the data contains many

redundant or irrelevant features. Redundant features are those that provide no more

information than the currently selected features. Irrelevant features provide no useful

information in any context.

The simplest feature selection algorithm is to exhaustively test each possible subset

of features in order to find the set that minimises the error rate. This is indeed an

extensive search of the space, and therefore it is computationally intractable for all but

the smallest of feature sets. Furthermore, the choice of evaluation metric has a massive

influence on this simple algorithm. More interestingly, there are attempts in the relevant

literature that exploit higher order statistics to derive a discriminative subset of features

[33, 34]. These techniques enable low dimensional representation of inputs. They also

allow selected features to be well-separated.

In this thesis, we will present a novel feature selection method that employs the maximum

mutual information criterion to develop a supervised feature selection method for object

representation in classification applications. Our proposed methodology based on mutual

information exploits Fano’s inequality [35] in a similar manner as authors in [36, 37].

In [38, 39] mutual information is also employed in deriving supervised but part-based
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representations of objects. However, their methods are focused on extracting informative

features from objects rather than alleviating the curse of dimensionality by finding

discriminative subspaces.

2.2 Classification in Computer Vision

Classification is a machine learning concept that is common amongst many semantic

image understanding problems. Classification is essentially a pattern recognition

problem that is concerned with assigning a label to an input value. A supervised

classification algorithm learns to assign labels to objects by observing examples, also

known as the training data. It is common to come across methods in the literature that

transform the recognition task to a classification problem, despite the fact that these

two are not entirely analogous. In an ideal recognition task, the ability of recognising

unknown objects instantly is preserved but the classification paradigm undergoes a

burdensome step of one-to-one comparison of all learned classes that may be considered

as its obvious defect, in addition to its inability to recognise unseen classes.

In the rest of this section, we will review a number of classification methods that are

widely used in the relevant literature. These classifiers are also essential in building

practical human in the loop algorithms.

2.2.1 Bayesian Classifiers

The established Naive Bayes classifier falls into this category of classification algorithms

[40]. A Bayes classifier is a simple probabilistic method based on the theory of Thomas

Bayes1 with strong and naive assumptions of independence. Another term used in

literature for describing this probabilistic model is the “Independent Feature Model”.

There are numerous work in the literature [41–44] about applications of Naive Bayes

classifiers for solving computer vision tasks.

Formally, let p(c|F1, . . . , Fn) be the posterior probability of a sample belonging to a

certain class given a set of descriptors. Using Bayes’ theorem, the posterior can be

written as:

p(c|F1, . . . , Fn) =
p(F1, . . . , Fn|c)p(c)
p(F1, . . . , Fn)

(2.3)

1Thomas Bayes was an English statistician, philosopher and Presbyterian minister, known for having
formulated a specific case of the theorem that bears his name: Bayes’ theorem.
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In practical implementations, there is only interest in the numerator of this fraction,

since the denominator does not depend on c, and the values of the features Fi are given.

Hence, the denominator is effectively constant. The numerator is equivalent to the joint

probability model: p(F1, . . . , Fn, c). Applying the chain rule for repeated applications of

conditional probability, and assuming that each feature Fi is conditionally independent

of every other feature Fj for j 6= i given the category c, the joint model can be expressed

as:

p(c|F1, . . . , Fn) ∝ p(F1, . . . , Fn, c)

∝ p(F1|c)p(F2|c)p(F3|c) . . . p(Fn|c)p(c)

∝
n∏
i=1

p(Fi|c)p(c) (2.4)

The naive Bayes classifier combines the naive Bayes probability model with a decision

rule. One conventional method is to select the hypothesis that is most probable. This

is the familiar maximum a posteriori or MAP decision rule. The corresponding Bayes

classifier is therefore defined as:

y(f1, . . . , fn) = arg max
c

n∏
i=1

p(Fi = fi|C = c)p(C = c) (2.5)

The assumption on distributions of features is called the event model of the Naive Bayes

classifier. For discrete features, multinomial and Bernoulli distributions are amongst

popular choices. To deal with continuous data, a typical assumption is that the values

are distributed according to a Gaussian distribution.

Kernel Density Estimator is a non-parametric way of estimating the probability density

function of a random variable. KDE is essentially a data smoothing problem where

inferences about the population are made, based on a finite data sample [45]. When

combined with a Bayesian classifier, it can be used in a supervised learning method.

2.2.2 Support Vector Machine

A Support Vector Machine (SVM) in essence is a mathematical algorithm that benefits

from four basic concepts: a separating hyperplane, a maximum margin hyperplane, a

soft margin that allows correct classification of data that is not separable and a kernel

that is basically a mathematical trick in form of a function to project data from a lower

dimensional to a higher dimensional space.
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In linear binary settings, linear SVMs [46] learn a hyperplane that separates the training

data based on their corresponding labels. Given a training dataset D, a set of n points

of the form:

D = {(xi, yi)|xi ∈ R, yi ∈ {−1, 1}}ni=1 (2.6)

where the yi is either 1 or −1, indicating the class to which the point xi belongs.

The objective is to find the maximum-margin hyperplane that divides data points with

different class labels.

Figure 2.1: Maximum-margin hyperplane and margins for an SVM trained with
samples from two classes. Samples on the margin are called the support vectors.

Any hyperplane can be written as the set of points x satisfying: w · x − b = 0, where ·
denotes the dot product, and w is the normal vector to the hyperplane. The parameter
b
‖w‖ determines the offset of the hyperplane from the origin along the normal vector

w. If the training data are linearly separable, two hyperplanes can be selected in such

a way that no points lie in between them. The region bounded by these hyperplanes

is called the “margin”. The distance between these two hyperplanes is 2
‖w‖ , thus it is

required to minimise ‖w‖ to maximise their distance. Figure 2.1 illustrates the resulting

maximum-margin hyperplane and the support vectors. To prevent data points from

falling into the margin, the following constraints are imposed for each i:

w · xi − b ≥ 1 for xi of the first class (2.7)
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w · xi − b ≤ −1 for xi of the second class

This can be rewritten as:

yi(w · xi − b) ≥ 1 for all 1 ≤ i ≤ n. (2.8)

SVMs can also handle non-linear data by adopting the kernel trick. A kernel K(x1, x2)

is defined as the inner product of functions φ(x1) and φ(x2):

K(x1, x2) = 〈φ(x1), φ(x2)〉 (2.9)

where φ(.) is a mapping function that projects the original data x into a higher (infinite)

dimensional space φ(x).

For multiclass problems, x together with its label information y is projected into a joint

high dimensional space φ(x, y). A standard multiclass kernel SVM can be defined as:

min
w,b,ξ

1

2
‖w‖2 +

N∑
i=1

ξi (2.10)

s.t. (w.φ(xi, yi) + byi)− (w.φ(xi, y) + by) ≥ 1− ξi, ∀i, y 6= yi

where b is a vector composed of {by, y ∈ Y }. The non-negative slack variables ξi measure

the degree of misclassification of the data xi, and the optimisation becomes a trade off

between a large margin and a small error penalty [47]. The predicted class y for a test

sample x is then:

y = arg max
y∈Y

w.φ(x, y) + by (2.11)

y = arg max
y∈Y

N∑
i=1

αiyK(xi, x) + by

where αiy is a Lagrange multiplier.

It is important to mention that Support Vector Machines generate uncalibrated values

that are not probabilities. A sigmoid function is usually used to map the output of SVMs

into probabilities. Support Vector Machines plus the sigmoid function will preserve the

sparseness of SVM, while still yielding probabilities of useful quality [48].
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2.2.3 Multiple Kernel Learning

Support Vector Machines deploy a single kernel matrix. There are many occasions

where one kernel is either inadequate or the range of choice for kernels’ types is very

vast. Feature combination is an instance of such scenarios. Multiple Kernel Learning

(MKL) is therefore defined as a methodology that aims to learn an optimal combination

of different kernels. The following are examples of MKL implementations within the

community.

The pioneering work of Multiple Kernel Learning dates back to Lanckriet et al. attempt

in [49]. Nevertheless, the survey in [50] lists a number of recent MKL learning algorithms,

and concludes minimum contrasts between them in terms of their accuracies based on a

substantial empirical comparison. The formulation of MKL is still under scrutinisation

by researchers, despite its success in many applications [51–55].

Typical MKL is essentially a linear combination of different kernels. This proves to be

an unnecessarily strong constraint, as argued in [56]. The authors instead propose to

learn augmented coefficients for every sample in each feature channel. This is achieved

by augmenting the kernel matrices. Since the augmented kernel is a block diagonal

matrix, the coefficients learned are equivalent to learning different kernels separately,

and subsequently inserting a suitable bias term for all the kernel classifiers.

OBSCURE [52] is an alternative state-of-the-art multiclass multiple kernel learning

algorithm that obtains excellent performance in a considerably lower training time. The

conventional formulation of MKL algorithms is extended to accommodate a parameter

that enables sparsity of a solution to be selected. The new proposed setting facilitates

a fast convergence rate at lower iterations, as the number of kernels increases.

The MKL methodology proposed in [55] employs a state-of-the-art classifier to search

for an object in all possible windows of an image. It uses the multiple kernel learning

algorithm of Varma and Ray [51] to learn an optimal combination of exponential

Chi-Square kernels. Each of these kernels captures a different feature channel. Such

a powerful classifier to test all image sub windows is not efficient. Thus, the model

introduces a three stage classifier that integrates linear, quasi-linear and non-linear kernel

SVMs. The non-linearity of kernels increases their discrimination power at the cost of

computational complexity.

The computational infeasibility is also aggravated by the fact that the number of regions

to be searched in each image is large and feature histograms that describe them are

high dimensional. To overcome this issue, their solution adopts a cascade approach,

a multi-stage classifier, where each stage utilises a more powerful and more expensive
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classifier. The first stage classifier employs fixed aspect windows [9, 57, 58], the second

classifier considers multiple aspect ratios learnt from data and the third is a jumping

window [59] classifier. The output of these classifiers is a set of candidate regions that

are passed onto more powerful classifiers at the later stages.

Kernel-based methods, including SVM and MKL algorithms, are usually more robust

than their linear counterparts. However, they are not scalable to large scale settings.

On the contrary, resorting to linear algorithms leads to failure in dealing with non-linear

data. This trade-off has fuelled the pursuit of alternative solutions in the community.

2.2.4 Artificial Neural Networks

The term “Neural Network” has its origins in attempts to seek mathematical

representations of information processing in biological systems. Since then it has been

used broadly to cover a wide range of different models [60–62]. Many of these models

have been the subject of exaggerated claims regarding their biological plausibility.

Nonetheless, biological realism would impose entirely unnecessary constraints from the

perspective of practical applications of pattern recognition. Our focus in this thesis is

therefore on neural networks as efficient models for statistical pattern recognition. In

particular, we shall restrict our attention to the multilayer perceptron class of neural

networks that possess very beneficial practical values.

The perceptron algorithm, also termed the single-layer perceptron, is the simplest

feedforward network and a linear classifier in the context of neural networks. More

formally, the perceptron is an algorithm for learning a binary classifier, a function that

maps its input x to an output value f(x):

f(x) =

1 if w · x+ b > 0

0 otherwise
(2.12)

where w is a vector of real-valued weights, w · x is the dot product
∑
i
wixi, and b is

the bias, a term that shifts the decision boundary away from the origin and does not

depend on any input value. Spatially, the bias alters the position not the orientation of

the decision boundary. Formally, the quantities aj known as activations of neurons are:

aj =
∑
i

wixi + b (2.13)
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where each of these quantities are transformed using an activation function h(aj). A

perceptron is an artificial neuron which deploys the Heaviside step function as the

activation function.

The perceptron learning algorithm does not terminate if the learning set is not linearly

separable. The most famous example of the perceptron’s inability to solve problems

with linearly nonseparable vectors is the Boolean exclusive-or problem. However, a

modification of the standard linear perceptron can distinguish data that are not linearly

separable.

A multilayer perceptron is a feedforward artificial neural network model that consists of

multiple layers of nodes in a directed graph, where each layer is fully connected to the

next one. Apart from input nodes, every node in this model is a processing element with

a nonlinear activation function. The nonlinear activation functions enable the ability

to distinguish data that are not linearly separable. They are generally chosen to be

sigmoidal functions such as the logistic sigmoid or the “tanh” function. The overall

network function for sigmoidal output unit activation functions takes the form:

yk(x,w) = σ

∑
j

wkjh

(∑
i

wjixi + bj

)
+ bk

 (2.14)

where the set of all weight parameters have been grouped together into a vector w. Thus

the neural network model is simply a nonlinear function from a set of input variables

{xi} to a set of output variables {yk} controlled by a vector w of adjustable parameters.

The multilayer perceptron encloses an input layer, an output layer and one or more

hidden layers of nonlinearly activating nodes. Each node in one layer connects with a

certain weight wij to every node in the following layer.

The multilayer perceptron utilises a supervised learning technique called

backpropagation for training the network [62, 63]. Backpropagation, an abbreviation

for “backward propagation of errors”, is typically employed in conjunction with an

optimisation method such as gradient descent [64]. This method calculates the gradient

of a loss function with respects to all the weights in the network. The gradient is fed to

the optimisation method, which in turn exploits it to update the weights in an attempt

to minimise the loss function.

Multilayer perceptron models were a popular machine learning solution in the 1980s,

finding applications in diverse fields such as speech and image recognition. They faced

strong competition from the much simpler support vector machines in the 1990s until
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recently, where there has been renewed interest in backpropagation networks due to the

successes of deep learning in various applications [22–24, 65, 66].

2.2.5 Ensemble Classification

Ensemble methods in the area of machine learning use multiple learning algorithms

to obtain an improved predictive performance. This improvement is in comparison to

what could be achieved from any of the constituent learning algorithms. The concept of

combining classifiers is analogously proposed as a new direction for the improvement

of individual classifiers’ performance. These classifiers could be based on a variety

of classification methodologies, and may achieve different rate of correctly classified

individuals. Thus, the goal of classification result integration algorithms is to generate

more certain, precise and accurate outcomes.

Numerous methods have been suggested for the ensemble of classifiers creation: using

different subset of training data with a single learning method, using different training

parameters with a single training method, and using different learning methods are all

amongst these methodologies. Bootstrap aggregating (Bagging) [67] and boosting [68]

are both commonly used techniques of the first category. In the rest of this section,

we will review ensemble of decision trees and naive Bayesian classifiers as instances of

methods that exploit the bagging technique.

2.2.5.1 Random Forest

One of the influential works on decision trees is the Classification and Regression Trees

(CART) book of Breiman et al. [69], where the authors define the basics of decision

trees and their application in classification and regression. Nonetheless, training optimal

decision trees from data has been a long standing problem, for which one of the most

prevalent algorithms is “C4.5” of Quinlan [70]. A number of years has passed since

the introduction of decision trees. Their recent revival is due to the discovery that

ensembles of slightly different trees tend to produce superior accuracies on previously

unseen data. This is a phenomenon known as generalisation [71, 72]. Ensembles of trees

will be discussed in this section but let us first focus on individual trees.

A tree is a collection of nodes and edges organised in a hierarchical structure. Nodes

are divided into two groups: internal (split) and terminal (leaf) nodes. In contrast to

graphs a tree does not contain loops. A decision tree is a tree used for making decisions.

A decision tree can be interpreted as a technique for splitting complex problems into a

hierarchy of simpler ones. From a high-level point of view, the functioning of decision
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trees can be separated into offline and online phases that corresponds to training and

testing stages respectively.

Random forest is an ensemble of random decision trees [72]. In typical classification

settings, each tree in the forest is trained independently on a random subset of training

data. For classification, the outputs from individual trees are combined to form the final

prediction.

Formally, consider a set of training samples {xi}Ni=1, their corresponding class labels,

and a set of extracted features as {Fi}Ni=1. Split functions within the nodes of a tree

divide the samples into two subsets, named left and right child respectively. Amongst

practical splits are the familiar linear classifiers:

wTF + b ≥ 0 go to left child

otherwise go to right child
(2.15)

Multiple splits are generated by selecting different feature dimensions or thresholds. The

widely used information gain criteria [73–75] is typically used to find the best split at

each node in the training stage:

Score(split) = 4E = − |Gl|
|Gn|

E(Gl)−
|Gr|
|Gn|

E(Gr) (2.16)

where Gn is the set of training samples in node n. E(G) is the Shannon entropy of

the class distribution in the set of samples G. Gl and Gr represent the training images

contained in node n’s left and right child node respectively. The Shannon entropy is

defined mathematically as:

E(G) = −
∑
c∈C

p(c)log(p(c)) (2.17)

where C is the set of class labels for samples G. This split action is performed recursively

on training samples until the stopping criterion is satisfied. The criterion could be the

maximum depth of the tree. Alternatively a minimum information gain can be imposed.

Tree growing may also be stopped when a node contains less than a predefined number

of training points. Avoiding full grown trees has been demonstrated to have positive

effects in terms of generalisation [71, 72].

During training, information that is useful for prediction in testing will be learned for

all leaf nodes. In a classification scenario, each leaf may store the empirical distribution
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over the classes associated to the subset of training data that has reached that leaf. The

probabilistic leaf predictor model for the tth tree is therefore: pt(c|x). To classify a test

sample as some c class, it is sent through all trained trees. It starts from the root node

and traverses down to right or left nodes based on the split function, and eventually falls

into one of the leaf nodes. Leaf nodes store a normalised probability distribution of the

occurrence of all possible classes in the dataset. Tree testing can often be performed in

parallel, thus achieving high computational efficiency on modern parallel CPU or GPU

hardware.

The outputs from different trees are combined together as the final result of the random

forest. Combining all tree predictions into a single forest prediction may be carried out

by a simple averaging operation. For instance, in classification final output is obtained

by:

p(c|x) =
1

T

T∑
t=1

pt(c|x) (2.18)

where T is the number of decision trees in the forest. Although trees are not statistically

independent, it is possible to alternatively multiply the trees’ outputs together to form

a final result:

p(c|x) =
1

Z

T∏
t=1

pt(c|x) (2.19)

where the partition function Z ensures probabilistic normalisation.

Previous research on random forest has commonly focused on its discriminative

power. For instance, it has been successfully deployed in applications such as: image

classification [75], object detection [76], and human pose estimation [77]. Recent years

have seen an explosion of forest-based techniques in the machine learning, vision and

medical imaging literature [74, 75, 78–82]. A recent success story of applying decision

forests in a practical computer vision setting is perhaps the Microsoft Kinect for XBox

360 console [77, 83].

2.2.5.2 Random Naive Bayesian

Randomised learning methods rely on two major concepts to train an ensemble of similar

type classifiers: i) employing random input selection, and ii) random feature selection.

The main advantages of these methods are the improved stability and decreased variance



Chapter 2. Literature Review 25

of the resulting classifier. Using random input selection techniques, such as bagging,

several classifiers are trained on different subsets of the training space and additively

combined to form an ensemble. Bagging improves the final classifier in terms of stability

and classification accuracy. It also helps to avoid overfitting.

The low computational and memory costs of random naive Bayes classifiers makes them

suitable for applications where computational power and memory are limited or if very

large datasets have to be processed. Interestingly, the work from Prinzie and Van

den Poel in [84] illustrated the fact that the tree structure of random forests can be

replaced by simpler learning methods such as naive Bayes without a significant loss

in the performance. For instance, authors of [85] developed an efficient online learner

by adapting the random naive Bayes classifier to the online domain. They propose to

use online histograms as weak learners, which perform superiorly compared to simple

decision stumps. Their approach is applicable to incremental learning on machine

learning datasets, and it is empirically evaluated on the task of tracking by detection.

In short, the random naive Bayesian classifiers ensemble is created by randomly selecting

F features out of the feature pool D. The class conditional probability distribution

p(xf |y) of every feature is subsequently modelled for each class y. The probability of

a sample observation x belonging to the class y can then be described by combining B

randomly trained naive Bayes classifiers, each using F ≤ |D| features.

2.3 Understanding Visual Content at Pixel Level

Thus far, we have reviewed the most significant building blocks of many computer

vision algorithms: features, and classifiers. We now review their utilisation for the

purpose of semantic understanding. The literature in visual content understanding

at pixel-level is conventionally divided into two broad categories: object detection,

and image segmentation. The following are amongst prime examples of work in these

categories.

2.3.1 Object Detection

Object detection is usually performed either for rigid objects with specific shapes,

or those of amorphous spatial extent. Examples of the former are pedestrians, and

cars whilst trees, road, and sky are amongst instances of the latter. Most current

methodologies in the literature are devised to deal with rigid objects, since it is still very

challenging to detect non-rigid objects.
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The most straightforward approach in object detection is the sliding window method.

A predefined sub-window slides over the test image to cover all possible locations and

scales. The features in the sub-window are extracted, and fed to a classifier that has

been trained to determine whether the sub-window contains the specific object or not.

This method is amongst the dominating approaches despite its simplicity.

For instance, the authors of [86] address the problem of object detection in a unique

way. Their underlying model utilises a graph whose nodes represent a dense set of

regions. The edges of the graph illustrate the grid structure of the underlying image.

They act as springs to ensure that the geometry of nearby regions remains consistent

during the matching process. The algorithm constructs a kernel suitable for SVM based

classification using only one type of feature. The matching process formulates an energy

optimisation problem defined over graphs with a coarse grid of the underlying image.

Their framework for image classification can be readily extended to object detection

using sliding windows.

Recent modifications to the sliding windows method attempt to increase the detection

efficiency using branch and bound [87], or to combine a holistic window with

inner parts of the sub-window that represent elements of the object in test [88].

However, a prominent example of a state-of-the-art detection system is perhaps the

deformable part-based model of [89]. It builds on carefully designed representations and

kinematically inspired part decompositions of objects, expressed as a graphical model.

Using discriminative learning of graphical models allows them to build high-precision

part-based models for variety of object classes.

In real world scenes, objects are often occluded by other objects. Hence, part-based

methods are inherently more robust than holistic approaches in dealing with occlusion

in real world applications. Current influential methods include the constellation model

of [90, 91], and the Hough voting based techniques in [92]. The constellation model

treats the object as a constellation of local parts, and infers their optimal combination

in a Bayesian framework. Albeit the strategy of treating an object as a constellation of

parts is more robust to occlusion, its defect is its lack of discriminative power.

It is commonly understood that human object recognition systems rely heavily on

context. Hence, many existing object detectors in the literature exploit context to

improve their performances. For instance, work in [93] benefits from image categorisation

as a prior to guide object detection, while [94] deploys an entropy criterion to select

unknown objects. Concatenated features of neighbouring known classes and unknown

objects are then used to detect the remaining unknowns.
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In summary, object detection is used to detect only a certain class in an image. However,

it remains an unresolved problem despite the fact that there are numerous attempts in

the literature aiming to tackle the issue. The state-of-the-art techniques, such as [89],

are still below real world requirements in some applications.

2.3.2 Image Segmentation

In computer vision, image segmentation is the process of partitioning an image into

multiple segments or a set of pixels. The primary reason for this task is to simplify an

image into something that is more straightforward to analyse. Image segmentation is

normally deployed to locate objects or find boundaries within an image.

The objective of [95] is the unsupervised segmentation of image sets into background

and foreground. The resulting segmentation will improve the classification performance.

Their algorithm has better performance compared to many of its predecessors due to the

fact that the actual segmentation task is carried out at different levels: pixels and colour

distributions for individual images and super pixels with learnable features at image set

level. These levels together with powerful inference algorithms, such as SVMs, result in

the high performance.

The practical importance of segmentation is observed in [96], where the authors

consider an automated processing pipeline for tissue micro array analysis, also known

as TMA, of renal cell carcinoma. The tasks to achieve such analysis map to several

challenging machine learning challenges such as nuclei segmentation and classification.

The segmentation of cell nuclei is performed using Graph Cut [97–99]. Several shape and

histogram features are extracted from the resulting segmentations. To achieve reliable

classification results, an SVM with different kernels and distances is used. The results

illustrate that all extracted features from segmentations are essential to an optimal

performance. The carefully selected kernels perform considerably better than chance

and are analogous to human domain experts.

Table 2.1 illustrates four different commonly used segmentation algorithms and their

employed methodologies. Interactive Graph Cuts and Binary Partition Trees have

proved to be the most effective algorithms in terms of average accuracy over time [100].

2.4 Understanding Visual Content at Image Level

The idea of understanding the semantic meaning of each pixel may seem very appealing.

However, this has proved to be very difficult to achieve at current levels of technology.
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Table 2.1: Segmentation Algorithms

Methodology Algorithm

Region Growing Seeded Region Growing [101]
Graph and MRF Models Interactive Graph Cuts [98]
Classifiers Simple Interactive Object Extraction [102]
Hierarchical, Split and Merge Interactive Seg. using Binary Partition Trees [103, 104]

It is therefore suggested to take a step back, and contemplate on a more abstract

level of semantic image understanding. There even exist scenarios where we only need

image-level semantic meanings. The Content Based Image Retrieval (CBIR) systems

are instances of such situations. A precise image-level semantic understanding can even

serve as context information, which in turn may enhance the performance of semantic

understanding at pixel-level [93].

The rest of this section lists three major tasks that are concerned with visual content

understanding at image-level: content classification, content based image retrieval, and

automatic annotation. These three tasks are indeed closely related. An image annotation

algorithm could automatically assign an image with a number of keywords. An image

retrieval system then retrieves images directly based on these suggested keywords.

Furthermore, the problem of image annotation itself could be decomposed into a set

of image classification tasks, where each task aims to predict the existence of a distinct

tag.

2.4.1 Visual Content Classification

The literature in the field of visual content classification is extremely rich, and it is

infeasible to cover all aspects of such a vast domain. Alternatively, we aim to select

three key subproblems related to the field, and explore their details:

1) The vision task of multiclass classification becomes challenging when the number

of classes is very large. Testing against every single class is computationally infeasible

in such cases. This complication can be solved by learning or imposing a structure over

the set of classes.

The solution presented in [105] introduces a method for fast multiclass classification by

learning label embedding trees and optimising overall tree loss. The proposed solution is

faster than One-vs-Rest methods while yielding comparable accuracy to state-of-the-art

frameworks. Their approach relies on two main ideas. Firstly, each node in the label

tree predicts the subset of labels to be considered by its children. This will decrease

the number of label classes at a logarithmic rate until a prediction is made. Secondly,
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both image features and labels are jointly embedded into a low dimensional space using

a linear transformation, which still optimises the overall tree loss.

As a practical application of multiclass classification, a novel approach to natural

scene categorisation is introduced in [106], where a collection of local regions in a

scene is represented as part of a theme. Such themes are conventionally learnt from

hand annotations of experts. In contrast to the norm, this model learns such themes

without supervision. It learns characteristic intermediate themes of scenes without any

human intervention. The model is capable of categorising images into hierarchies by

a Bayesian framework, yielding a performance similar to what humans can do under

normal circumstances. The algorithm in their solution is based on a Latent Dirichlet

Allocation model introduced by Blei et al. in [107].

2) In spite of complications caused by a large number of classes in multiclass classification

scenarios, computer vision research has seen great success in basic level categorisation.

This is in contrast to fine-grained categorisation, which has received little attention.

These are classes of objects which are not usually recognisable by ordinary human beings.

Simple examples of such classes may range from animal species and aircraft models to

botany [108, 109]. Unlike basic level categorisation, fine-grained categorisation may be

problematic even for humans. Thus, an automated system to accomplish this task could

prove valuable in many applications.

The goal of fine-grained categorisation is to some extent achieved in [110] by

discriminative feature mining and randomisation. The latter is essential to be able

to handle the massive feature space and prevent the problem of overfitting. Their

model proposes a random forest [72] with discriminative decision trees to determine

image patches that are highly discriminative for the purpose of categorisation. Each

decision tree in the forest considers a small number of patches. This will ensure little

correlation between trees and consequently better performance on their fine-grained

image classification problem.

3) An ideal algorithm of visual content classification needs to possess the ability to

distinguish between known objects and those of unseen categories. Hence, the goal

of object category discovery is to automatically identify groups of image regions

that belong to some unknown category. This task is usually performed in a purely

unsupervised setting. Therefore, the performance of such categorisation depends on

accurate assessments of similarity between unlabelled regions in images.

Authors in [111] introduce a new framework to cluster unlabelled data more accurately

by learning from a set of labelled categories and optimising similarity. Their model

demonstrates that including both labelled and unlabelled training data, when optimising
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similarity metric, leads to general improvement in terms of quality of the system.

Their implementation includes a multiple kernel, and an optimised similarity space.

Image segmentations are classified into familiar and unfamiliar by a k-nearest-neighbour

algorithm. Unfamiliar segmentations are clustered in the optimised space in order to

enable discovery of new categories.

2.4.2 Content Based Image Retrieval

Content based image retrieval (CBIR), also known as query by image content (QBIC)

and content based visual information retrieval (CBVIR), is the application of computer

vision methodologies to the image retrieval problem. Fortunately, there exist useful

review surveys [2, 112] that list references to a huge number of systems and their core

technologies in the field. In simple words, CBIR systems like [113, 114] propose novel

ways to search for digital images in very large databases.

In CBIR systems, many feature extraction strategies have been proposed for retrieving

images that are similar in terms of colour, texture, shape, etc. However, it is important

to note that features that are effective for classification problems may not be suitable for

retrieval and display of visually similar images, in particular for medical CBIR systems.

Applications of CBIR and classification in medical imaging have already been presented

in the literature but they are mostly targeted at radiological images [115].

In an interesting approach [116–118] present CBIR systems as a diagnostic tool for skin

lesion photographic images. They illustrate that using composite features improves the

overall performance, in comparison to the utilisation of a larger number of standard

features. A genetic algorithm is used to combine simple features using a series of

operations in order to derive the synthesised descriptors.

2.4.3 Automatic Image Annotation

As the name is self-explanatory, proposed solutions of image annotation problem

attempt to find practical ways to automatically annotate image content with meaningful

keywords. For instance, the “Relevance Model” estimates the joint probability of

keywords and the image [119].

A simple framework for automatic image annotation using global features and robust

non-parametric density estimation is presented in [120]. Their model employs the Bayes’

theorem to invert the conditional dependencies of choosing a suitable word in regards

to a given image. The method of inference in the proposed model is a non-parametric

density estimator formulated by the kernel smoothing technique of Parzen [45]. It is
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known that smoothing improves efficiency for finite samples. Global colour features are

used for modelling keyword densities and the popular Earth Mover’s Distance metric is

also effectively incorporated within this framework.

Most previously proposed annotation methods assign keywords separately but the

correlation between keywords to improve image annotation performance has recently

received considerable attention. Nevertheless, estimating the joint probabilities of sets

of keywords and unlabelled images has proved to be computationally unmanageable. In

order to overcome the issue of computation, [121] proposes a heuristic greedy iterative

algorithm to calculate the probability of a suitable keyword as a semantic caption of an

image. In their approach, the correlations between keywords are analysed by “Automatic

Local Analysis” of text information retrieval. In addition, a new image generation

probability estimation method is proposed by them based on region matching.

The co-occurrence of keywords in a limited training set is rare, which translates into a

very sparse co-occurrence matrix. Nonetheless, a zero probability in the training data

does not necessarily mean the correlation will never occur in the future. Therefore,

various smoothing methods have been introduced in the relevant literature to rectify

the problem. Non-negative Matrix Factorisation [122] and the Jelinek-Mercer algorithm

[123] are two examples of such smoothing methods. They allocate a small non-zero

probability to the keywords in the matrix.

A hybrid probabilistic model is introduced in [124] to solve the problem of content based

image tagging. The proposed solution integrates low-level image features and high-level

user provided tags to automatically annotate images. The approach exploits a tag-image

association matrix. The number of images is usually very large and user provided tags

are very diverse in this matrix. This means that the association matrix is very sparse

and difficult to be used directly for estimating tag to tag co-occurrence probabilities.

Thus, they introduce a collaborative filtering method based on Non-negative Matrix

Factorisation to tackle the issue of data scarcity. An L1 norm kernel method is employed

to estimate the correlations between low-level image features and semantic concepts

provided by human knowledge.

Supervised learning from multiple sources of annotation data has been a challenging

problem to this date. Combining knowledge from different information sources is far from

being a solved problem. The increasing availability of more annotators from different

expertise domains, the difficulty of obtaining ground truth in particular cases such as

cancer detection in medical images, in addition to the subjectivity of annotators portray

the importance of studying supervised learning when there are multiple annotators with

variable skills. The labels annotators provide may be unreliable, noisy or inconsistent

depending on the instance of data they observe. The projected system in [125] develops
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a probabilistic approach to the problem of annotators from different sources with

various levels of expertise. Their model is suitable for dealing with missing annotators,

estimating the ground-truth, and evaluation of annotators. The implementation is

carried out in the context of statistical inference once the correct conditional distribution

is observed. Their presented approach produces classification and annotator models that

allow estimates of the true labels and annotator variable expertise.

The goal of finding a solution to the problem of image annotation, where class labels

are not easily attainable, has been explored in [126]. The authors of this work propose

to utilise tags of training images as the supervising information to guide the generation

of random trees. This enables the retrieved nearest neighbour images to be not only

visually alike but also semantically related. It is important to mention that unlike

the conventional decision forests, which fuse the information contained at each leaf

node individually, their method treats the random forest as a whole and introduces

new concepts such as: “Semantic Nearest Neighbour (SNN)” and “Semantic Similarity

Measure (SSM)” that approximately indicate “which” and “how many times” training

images fall on the same leaf node with the query image. Succinctly, they annotate an

image from the tags of its semantic nearest neighbour based on their proposed semantic

similarity measure. Their new technique is intrinsically scalable and competitive to

state-of-the-art methods. In the upcoming chapters, we will introduce a method of

reducing strain imposed on users of human in the loop applications based on this

adoptable annotation framework.

2.5 Understanding Visual Content by Human in the Loop

Many problems in the field of computer vision are immensely difficult or even impossible

to be solved entirely by automatic solutions. Thus, in tackling such problems, it is not

only helpful but also vital to explicitly incorporate high-level knowledge of humans and

their intentions. The fundamental technical challenges based on this philosophy are

therefore to capture and harness such abstract knowledge computationally. Human in

the loop algorithms can be utilised to represent interactive, hybrid human-computer

methods for the purpose of object classification, segmentation, and annotation in

computer vision settings.

2.5.1 Visual Content Classification

In traditional passive approaches, the output of an object detector is combined

with high-level knowledge in a post processing phase in order to boost classification
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performance of a particular problem such as scene recognition. In contrast, a new

framework in [127] demonstrates an active approach that benefits from high-level

knowledge by implementing an interaction between a reasoning module and a sensory

module. The reasoning module gathers high-level knowledge about a scene and its

object relations. It also commands the sensory module to alter its attentional focus

and determine the contents of the scene. On the other hand, the sensory module is

responsible for detecting objects and extracting features from images. The novelty of

such an active paradigm is that the sensory module, guided by the reasoning module,

shifts its focus of attention to a small number of objects in the scene. This translates

into faster and more accurate scene recognition. The attention mechanism is achieved

by using a maximum information gain approach. This means that each detected object

should maximise the augmented information for scene recognition.

Visual attributes is another interactive solution that provides a beneficial intermediate

representation between low-level image features and high-level categories of classification

problem. These attributes are gaining importance in the recognition literature.

Attributes that are both nameable and discriminative appear to be in disagreement.

The paper in [128] introduces a method to define a vocabulary of attributes that is

simultaneously nameable to humans and discriminative to machines. Their model

demonstrates a way to actively augment this vocabulary with new attributes that

resolve confusion at class level. The framework also proposes a novel way to prioritise

candidate attributes by their probability of being associated with a nameable property.

The key technical obstacles solved in this model are determining attributes based on

visual features separability and current class confusion, modelling the nameability of

such attributes and finally selecting representative image examples that will prompt

reliable human responses of attribute names.

Lampert et al. in [129] study the classification problem when training and testing sets

are disjoint. This is when there are no training examples of the target classes available.

They attempt to solve the problem of object classification by utilising human specified

high-level description of target objects rather than training images. The description

contains arbitrary semantic attributes such as shape, colour and even geographic

information. The proposed method solves the problem by transferring information

between classes. This transfer is by means of an intermediate representation that consists

of high-level and semantic per class attributes. This method facilitates an efficient way

to incorporate human knowledge into the system. In the proposed multiclass attribute

based classifier, the posterior distribution of the training class labels at test time derives

a distribution over the labels of unseen classes by using an intermediate class attribute

relationship.
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From a different perspective, the proposed model in [130] utilises a similar technique

to the 20 questions game where the visual content of an image interactively poses the

next possible question. The goal is to correctly classify the object with a minimum

number of questions asked. Their methodologies account for imperfect user responses

and unreliable computer vision algorithms. User inputs in the system raise the accuracy

to levels that are practical for an application, whilst at the same time reducing the

amount of time and human interaction required.

Their model exploits visual content of an image and the current history of question

responses to intelligently ask the next question. Maximum information gain, which is

widely used in decision trees [69], is used as the criterion to select the following question.

Question responses are estimated as a multinomial distribution with parameters learnt

from a training set of user responses collected from Mechanical Turk2. The training set

includes user responses along with their confidence in their answers. The confidence or

certainty value is parametrised by three distinctive options: guessing, probably and

definitely. The training set is also incorporated with a Dirichlet prior to improve

robustness and performance when the training data is sparse. The model in this paper

allows any off-the-shelf multiclass object recognition algorithm to be plugged into the

visual 20 questions game. In their experiments, vision algorithms based on Andrea

Vedaldi’s publicly available source code [55] are utilised to evaluate the datasets.

A later work [131] from the same group approaches local part categorisation with the

emphasis on users to locate different parts of an object. As in the previous example, this

model is also designed for fine-grained visual categorisation. The machine intelligently

asks the most appropriate question and the user responds by either answering the binary

question or clicking on object parts. By employing computer vision algorithms and

analysing user responses, the overall amount of human effort is minimised, while the

accuracy results show an improvement over challenging datasets of uncropped images

with noisy backgrounds. This achievement means that the proposed solution counts for

errors and inaccuracies of vision algorithms and ambiguities in multiple forms of human

feedback like their perception of part location, attributes, and corresponding class labels.

2.5.2 Image Segmentation

An interactive solution to the segmentation problem is presented in [132]. In their

new region merging based method, users only have to approximately mark the location

and region of objects and background by using strokes, also known as markers. A

novel maximal similarity based region merging mechanism is introduced to direct the

2https://www.mturk.com
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process. The proposed model automatically merges initial segmented regions by mean

shift segmentation. It also defines object contours by labelling all non-marker regions as

either object or background. The matching process is dynamic and adaptive to image

content. Thus, it does not require a similarity threshold to be set in advance.

An important requirement in designing an interactive system is its usability. The authors

in [133] present an interactive segmentation tool with such considerations in mind to

ensure a high level of user experience. The proposed tool can rapidly and easily evolve

optimal image segmentation parameters from scratch. It incorporates user local search

and makes the fitness function more dynamic to enhance the underlying decision making

process. Further improvements, such as a hybridising evolutionary algorithm, are made

in the proposed framework. This algorithm contains domain specific knowledge in form

of hint features. These features guide the mutation or utilisation of more texture kernels

to work with a wider range of images.

2.5.3 Semi-automatic Image Annotation

The image annotation framework in [134] proposes a solution to the problem of

interleaving interactive labelling. The annotation of new examples is semi-automated

by an online learning model, where a recently labelled example is used to update the

system’s parameters. The framework is specifically applied to solve the problem of

part-based detection and interactive labelling of deformable part models.

This approach takes advantage of both strongly and weakly supervised methods. The

former delivers computational tractability, whilst reduction in human interaction time

is granted by the latter. Furthermore, online algorithms are employed to optimise a

structured SVM function for incrementally training a vision system that is capable of

doing more mundane or obvious labelling tasks. Their system gradually develops into a

more powerful solution, which eventually reduces the amount of human annotation time

per image.

A novel multilabel learning framework, also known as Semi-Automatic Dynamic

Auxiliary-Tag-Aided, is presented in [135] to interactively solve the problem of image

annotation. Their framework boosts the classification rate of a target tag by the

classification results from a subset of other annotations, known as auxiliary tags. These

auxiliary tags, which are strongly correlated with the target tag, are determined in terms

of normalised mutual information. For a given image, the set of target tags recommended

by the auxiliary classifier can be refined by user feedback and therefore the proposed

model will try to suggest more appropriate tags in the next iteration of the algorithm. In

contrast to traditional static methods, this speeds up the image annotation procedure.
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2.5.4 Medical Applications of Human in the Loop

Medical applications of human in the loop settings are relatively limited in the computer

vision literature. For instance, existing approaches to exploiting Information and

Communications Technology (ICT) in dermatology, such as teledermatology (TD) and

computer aided diagnosis (CAD) have had limited success [136]. TD’s total reliance

on human experts viewing electronic images from a remote location to perform disease

diagnosis is severely hindered by a shortage of human specialists. The core technology

for CAD, computer vision, is still an evolving research subject and performances are not

yet practically useful. As a result, almost all research in applying CAD to dermatology

has been limited to melanoma conditions and using clinical or dermatoscopic images

[136].

An example of a traditional computer aided diagnosis system is an automated melanoma

recognition framework introduced in [137]. Initially, a binary mask of lesion is obtained

by a number of basic segmentation algorithms alongside a fusion strategy. A set of

shape and radiometric features is calculated to determine the malignancy of a lesion.

As a different approach, a physics-based model of tissue colouration [138] provides a

cross-reference between image colours and the fundamental histological parameters of

skin lesions. The model is built by computing the spectral composition of light remitted

from the skin. The model is representative of all the normal human skin colours.

Abnormal skin colours do not conform to this model and thus can be detected.

The authors in [139] utilise optical spectroscopy and a multi-spectral classification

scheme using SVMs to assist dermatologists in their diagnosis of skin lesions. Another

solution is a computer image analysis system presented in [140] that differentiates early

melanoma from benign pigmented lesions. The analysis system extracts features related

to the size, shape, boundary, and colour of each lesion. Feature extraction in [141] is

limited to the quantification of degree of symmetry. The symmetry quantification step

presents a six dimensional feature vector that can be exploited to classify pigmented skin

lesions as benign or malignant. The solution demonstrates that the underlying scheme

outperforms methods based on the principal component decomposition that is generally

used for this category of applications.

A more practical framework is proposed in [142] that assesses a series of 588 flat

pigmented skin lesions. The proposed analyser groups 48 parameters into 4 categories

that are used to train an artificial neural network. A feature selection procedure confirms

that as few as 13 of the variables are adequate to discriminate the two groups of

“melanoma” and “other pigmented” skin lesions.



Chapter 2. Literature Review 37

Surprisingly limited research exists in applying computer vision techniques to recognising

other common skin conditions based on ordinary photographic images. Furthermore,

wide availability of mobile computing and smart phone devices have spurt extensive

activities to exploit these technological advancements for dermatology applications.

Carefully studying 79 dermatology-themed smartphone apps surveyed in [143] has

intriguingly come to two conclusions: ubiquitous mobile computing technologies offer

new opportunities and possibilities for developing new applications in dermatology

to help improve patient care; however, all existing systems follow the traditional TD

paradigm and none have intelligent CAD capabilities. These conclusions led us to take

an interest in applying human in the loop algorithms on a dermatology dataset of various

skin conditions, and not focus merely on methods of diagnosing melanoma cases from

dermatoscopic images.

It is sensible to mention that there are examples of human in the loop approaches

[144, 145] in alternative domains of medical imaging besides dermatology applications.

Authors in [144] for example present an approach to Content Based Image Retrieval

(CBIR), which combines the expertise of a human, image characterisation from computer

vision, and automation made possible by machine learning. Although they have an

overall classification accuracy of approximately 93%, this result is not uniform across

disease classes. For less populous condition classes, their accuracy can be far lower.

Their solution can also benefit from a better utilisation of user feedback when retrieval

results are judged unsatisfactory. Authors of [145] introduce a physician in the loop

content based image retrieval system for HRCT image databases that suffers from similar

shortcomings. High-resolution computed tomography (HRCT) is computed tomography

(CT) with high resolution, which is used in the diagnosis of various health conditions.

Although the literature demonstrates a number of attempts at fabricating CBIR medical

systems for dermatological purposes [118, 146], and quite a few attempts at assessing

severity of specific conditions automatically [147], the lack of a reliable medical system

for unskilled users, who may provide misleading information, is apparent.

2.5.5 Information Source Fusion in Human in the Loop Applications

Information fusion in our context is the process of integration of multiple sources of

data and knowledge representing the same object into a consistent, accurate, and useful

representation. It consists in the merging of information in order to deduce a decision

less noisy than the one obtained with only one source of information. Information fusion

is an established area and data fusion systems are now widely used in various settings
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such as: sensor networks [148], robotics [149], image processing [150], and computer

security [151].

Information fusion is common in classification [152]. The process of fusing information

sources in classification settings can be accomplished either at input or output end of

classifiers. At input level, information sources in form of feature vectors are jointly

fed into a classification algorithm. This is usually considered to be a method of data

aggregation. As opposed to input level fusion, predictions from individual classifiers

can be combined to produce a final result at output end of classification models. For

instance, the problem of combining classifiers, which use a single source of information,

has been previously studied in [31]. The authors introduce a common theoretical

framework for combining classifiers by a number of simple schemes such as the product,

sum, min, max, and median rule. They also compare these combination schemes to a

majority voting strategy that assigns the class label based on the number of votes it

receives from available classifiers. The sensitivity of these schemes to estimation errors

is also investigated in their work to establish the fact that the sum rule is the most

resilient combination scheme amongst the rest. Ensemble methods [153, 154], such as

bootstrap aggregating (Bagging) [67] and boosting [68], are also widely used techniques

of fusion at output level. State-of-the-art ensembles of convolutional neural networks

[155] have recently made significant impacts on the challenging ImageNet computer

vision competition [156].

Unlike classification, information fusion techniques have not been fully exploited in the

context of human in the loop vision applications. The sources of data in human in the

loop settings commonly include visual features extracted from images and high-level

information obtained from users in the loop. Therefore, human in the loop approaches

need to solve a supervised learning problem induced by abundance of choice in selecting

the correct prediction from available classifiers that are trained separately on multiple

sources of visual and user provided information.

One of the pioneering examples in fusion of information sources at output level for a

human in the loop application is described in [130]. They propose to use the Bayesian

framework to combine the visual information and user answers to perceptual questions

for a bird species recognition system. It is our understanding that their method does

not fully exploit the option of intelligent fusion for the two sources of low-level visual

and high-level human provided information, as each of the sources in their framework

is estimated separately and put together subsequently with equal weights to form an

answer. This kind of later fusion is the norm in the literature [157, 158], although the

lack of estimating interactions between visual features and user answers is known to be

an issue.
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Attempts to rectify the aforementioned problem of equal weight fusion are presented

in [159–161]. In a slightly different domain, authors of [159] introduce a multimedia

retrieval system that jointly models visual and textual components of a sample. As any

other similar system, their human provided information is annotations from a range of

users with inconsistent quality in their work, and thus the available annotations are not

complete. An algorithm that evaluates the effectiveness of visual and textual components

separately, and performs intelligent fusion is still desired.

To the best of our knowledge, research so far has not considered the problem of

information source fusion for human in the loop classification applications in detail. In

the following chapters of this thesis, we will emphasise the importance of intelligent

information source fusion in enhancing efficacy of classification tasks by reviewing

empirical results from a number of human in the loop datasets.

2.5.6 Current Shortcomings in Human in the Loop Approaches

We firmly believe that deep review of current methodologies in the human in the loop

literature highlights several issues that still require a degree of contemplation:

i) It is of utmost importance to devise creative ways to harness human abstract

knowledge in a manner that is beneficial to the computer vision algorithms. ii) It is

of great interest to devise algorithms that find the most discriminative features amongst

available descriptors that are either based on visual information or crafted from human

abstract knowledge. iii) The burden on human in the decision making loop of a computer

vision algorithm has to be kept at minimum, whilst the advantage of utilising their

knowledge remains intact. iv) The fusion of low-level image information and high-level

human knowledge demands robust generative or discriminative frameworks. v) It is

preferable to have a fusion framework that intelligently selects the most reliable source

of information available either from images or users in the loop.

In the next few chapters of this thesis, we will be scrutinising each of the aforementioned

issues, and will suggest possible solutions to rectify them for realisation of robust human

in the loop computer vision algorithms.

2.6 Summary

Visual content understanding is a vast field of research with numerous techniques and

methodologies proposed in the literature, and it is infeasible to list all related works
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in one section. Therefore, we listed the most relevant vision methods to the theme of

human in the loop in this chapter.

We will further review related work to our proposed techniques and methodologies in

the following chapters, where it deems necessary.



Chapter 3

Discriminative Object

Recognition with Humans in the

Loop

Human in the loop classification frameworks are typically designed to enhance

recognition performance by fusing low-level visual information of images with high-level

knowledge of users. Amongst the most intrinsic problems of these frameworks are the

absence of techniques for representing human abstract knowledge, and the abundance

of fusing methodologies for merging heterogeneous sources of information.

In this chapter, we introduce a discriminative random forest framework that harnesses

human knowledge in a compact representation form and performs a simple but effective

task of information source fusion. Our proposed approach reviews several core problems

in realisation of discriminative human in the loop image recognition frameworks and

attempts to answer these fundamentally relevant questions:

1. How to efficiently utilise user-provided information?

2. How to employ this abstract knowledge in an interactive fashion?

3. How to fuse low-level visual features and high-level user information for an

enhanced recognition performance, subject to compatibility with discriminative

classifiers like random forests?

We will evaluate our introduced solution on a number of compatible datasets, and as an

application of the human in the loop approach, we aim to exploit our proposed interactive

41



Chapter 3. Discriminative Object Recognition with Humans in the Loop 42

methodology to build an innovative tool that assists primary healthcare workers with

recognising various skin conditions.

Worldwide, it is believed that there are between 1000 to 2000 possible skin conditions and

around 20% of them are difficult to diagnose [162]. Skin diseases have a major adverse

impact on quality of life and many are associated with significant psychosocial mobility.

A recent comprehensive assessment of healthcare needs for skin conditions in the UK

[162] suggests that 54% of the population experience a skin condition in a given twelve

month period and around 23% to 33% of the population have skin problems, which can

benefit from medical care at any one time. The UK healthcare system relies on primary

care as gatekeepers. Despite skin disorders being one of the most common reasons

that people refer to their general practitioners, typical GPs paradoxically get minimal

training in dermatology. Clearly, there is an acute skill shortage to meet the healthcare

needs of the nation [162]. Furthermore, as the ratio of consultant dermatologists to

the general population has remained very low in many resource-poor countries [163],

a system that could automatically recognise skin diseases would be ideal to meet this

apparently worldwide need.

A clinically approved tool would ultimately offer sufferers correct treatment and care

in a timely manner; thus reducing their suffering, whilst enhancing the quality of their

lives. Figure 3.1 illustrates our proposed human in the loop tool and its usability for

recognition of skin conditions.

Figure 3.1: Sketch of an application scenario depicting our human in the loop visual
image recognition tool for skin disease diagnosis: a patient with a skin complaint walks
into a primary care clinic to be seen by a care worker. The physician then uses a
smart phone to take pictures of the affected skin areas and uploads them via the mobile
network to a central server. On receiving the photos and associated clinical information,
a software agent in the central server will then intelligently choose an appropriate
question from a pre-constructed dermatological question bank. The selected question
is then sent back to the user who then sends an answer back to the agent. The Q&A
is performed interactively and iteratively until the agent is sufficiently confident to
output a possible diagnosis. User answers along with the visual appearance of the skin

conditions are modelled together to arrive at a diagnosis.

State-of-the-art computer vision techniques for fine-grained classification of skin lesions

are still far from satisfaction [136]. Therefore, a more realistic way is to utilise
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human knowledge by including users in the decision-making loop. This approach

boosts accuracy of such system, and also helps with the issue of trust and public

alienation towards autonomous technologies [3]. We collected a large image dataset

of 44 skin conditions to carry out research on human in the loop object recognition

techniques for the purpose of skin conditions diagnosis. We used the crowd-sourcing tool

Amazon Mechanical Turk to ask ordinary internet users a set of predefined perceptual

questions and through collecting user answers to these enquiries, we obtained high-level

information about the images. We assumed that users are non-medical professionals and

the questions were not necessarily structured to be medically relevant. Further details

about our arrangements for data collection and building the “Derm2309” dataset will

be explored in the “Experiments and Results” section.

In the section 3.5 of this chapter, we will emphasise the fact that human interactions

within our proposed system provide invaluable information to the skin recognition

algorithms. The experiments illustrate that traditional techniques based on low-level

visual features and Support Vector Machines (SVMs) can only achieve a very low

recognition rate of approximately 13%, indicating the challenging nature of our medical

application. However, incorporating a human in the loop approach with users answering

non-medically relevant questions can boost the recognition rate to nearly 25%, achieving

a performance increase of 90% over the baseline techniques. By incorporating medically

relevant questions, our proposed technique can achieve a recognition rate of 48%,

achieving a performance enhancement of 270% over conventional baseline techniques.

3.1 Problem Formulation

In a human in the loop classification setting, the ultimate problem is to associate an

object with a meaningful class label. Hence, the problem that we aim to rectify becomes

the probability estimation of an object belonging to a certain class. This is formalised

in estimating a conditional probability given two inputs, where c∗ is the predicted class

label, c is a class label, x is image information, and S is any sequence of abstract

information available from the human in the loop:

c∗ = f(x, S) = max
c∈C

p(c|x, S) (3.1)

For instance, in our human in the loop applications, users provide information in form

of answers to perceptual questions that help with better classification of visual objects.

We now need to examine information representation techniques and propose suitable

classification algorithms.
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3.2 Representation of Low-level Image Information

Image representation plays an important role in quality of any classification solution.

It has been common practice [164, 165] to employ multiple visual features to represent

an image. However, it is not trivial to effectively combine heterogeneous features, as

we briefed in chapter 2. Common practice usually follows a weighting paradigm where

similar or different weights are assigned to distinct features.

We aim to devise a random forest solution suitable for fine-grained classification in our

implementation of the human in the loop recognition framework. Therefore, the method

of fusing different visual features is correlated with the choice of the split function of a

random tree in the forest. Given the visual feature representation F for a sample, there

are many ways of defining the split function at each node. Linear classifiers [75, 110] are

examples of such ways:

wTF + b ≥ 0 go to left child

otherwise go to right child
(3.2)

where w is a vector of real-valued weights, and b is the bias. The above method will

face difficulties when the feature dimensionality is high, as the valid search space grows

rapidly and consequently selecting an appropriate split becomes more complicated. To

narrow down the search space for the split function, there are dimensionality reduction

methods, such as Kernel PCA [166], that construct more compact representations of

each feature channel. For instance, the split function of a random tree at each node is

defined as the following:

F ′i ≥ thresh go to left child

otherwise go to right child
(3.3)

where F ′ denotes the kernel PCA reduced feature.

In our proposed random forest approach, a number of feature extraction and

representation techniques (e.g. SIFT [11], PHOW-HSV [167], etc.) can be deployed to

form visual feature vectors of various lengths that are appropriate for describing a sample

image. It is believed that a careful combination of visual features may improve the

performance of a classification algorithm. We have tested a number of visual descriptors

for each dataset in our experiments and have made a number of conclusions about the

most discriminative features but figuring out these combinations in a brute force manner

has not been the main focus of our work.
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3.3 Representation of High-level User Information

We harness user-provided information in form of answers to perceptual binary questions

in developing our human in the loop classification solution. These answers can be

regarded as presence of tags in each image. The answers to these questions help the

algorithm to classify images more efficiently. For instance, the presence of a tag “Red”

in an image can be regarded as the answer to a binary question: “Is the object red?”

Obviously, this is merely a simple example that can be easily answered by an algorithm

purely based on visual features of an image. However, the importance of these answers

(tags) become apparent when visual features fail to capture the complexity present in

visually similar images of different classes.

User-provided answers can be used to build textual feature vectors with each element

representing the presence of a tag. These textual vectors have length n representing n

possible questions. Instead of only 0 and 1 values representing absence or presence of

tags respectively, users’ answers to the binary questions can be quantified by a certainty

value, i.e. guessing, definitely, and probably. These certainty values allow our framework

to assign more weights to more confident answers. Therefore, each element in the vector

is set as a discrete probability between 0 to 1 representing the probability of a tag

belonging to an image. Any positive answer has a probability value above 0.5, and any

negative one below 0.5. We set probably as a middle value between definitely and 0.5,

and guessing as a middle value between probably and 0.5. Table 3.1 shows these values.

Although other definitions of these numerical values are possible, we have not considered

this as a focus of current studies.

Table 3.1: User Answers Certainties

Answer Guessing Probably Definitely

Positive 0.625 0.75 1
Negative 0.375 0.25 0

The simple Graphical User Interface depicted in figure 3.2 illustrates an example of

described procedure for answering perceptual questions in a medical settings, where the

objective is to categorise a patient’s skin lesions into one of known conditions. The

GUI represents each potential test image to the user vividly, and by providing a set of

tick boxes and popup menus makes it very straightforward for an inexperienced user to

answer questions or interact with the underlying framework. Ticking a box translates

into a positive answer, whereas unchecked boxes are the negative responses.
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Figure 3.2: A skin lesion image is displayed to user. A question and its possible
answers are pictured in each screen. The human operator checks the relevant answers
and can assign confidence votes to quantify their responds. After answering a question,
the user clicks on the “Next” button to show the next question and its relevant answers.
The user will repeat this process until all questions are explored, or the maximum

permissible number of questions are reached.

3.4 Human in the Loop Random Forest Classifier

The fusion of visual information x and user’s abstract source of information S is

achievable both at input and output end of human in the loop classification frameworks.

At the input end, fusion is performed by simply concatenating x and S together, forming

a universal source of information U . The concatenated source U can be used as an

input to any typical classifier including our proposed ensemble of random trees. In a

probabilistic settings, this is defined as:

p(c|x, S) = p(c|x ∪ S) = p(c|U) (3.4)

3.4.1 Random Forest Construction

In our proposed implementation, the concatenated vectors U are exploited by a bootstrap

aggregating (bagging) ensemble algorithm that follows the standard method in [72] to

train random trees, and classify test samples. The widely adopted maximum information

gain criteria [73], calculated based on class labels of the training images, is used in our

approach as the score function to select a good split:

Score(split) = 4E = − |Gl|
|Gn|

E(Gl)−
|Gr|
|Gn|

E(Gr) (3.5)



Chapter 3. Discriminative Object Recognition with Humans in the Loop 47

where E(G) is the Shannon entropy of class label distributions in the set of samples G.

Gl and Gr represent the training images contained in node n’s left and right child nodes

respectively. Gn is the set of training samples in node n.

3.4.2 Classification in the Random Forest

To classify a test image as some c class, it is passed through all the trained trees. It

starts from the root node and traverses down to right or left nodes based on the split

function, and eventually falls into one of the leaf nodes. Leaf nodes store a normalised

probability distribution of the occurrence of all possible classes in the dataset. For each

observation and each class, the score generated by each tree is the probability of this

observation originating from this class computed as the fraction of observations of this

class in a tree leaf. A common voting technique, which averages these scores over all

trees in the ensemble, classifies the image.

The number of trees in the random forest has an influence on its final performance.

Experiments with a few numbers are normally practised in a grid search approach to

select a suitable size. Any larger size than a saturating point do not usually show a

significant improvement.

3.5 Experiments and Results

We now evaluate our proposed interactive object recognition framework that is based on

random forest classifiers on 6 suitable human in the loop datasets. The first 4 datasets

contain medical images, and the last 2 are examples of alternative domains appropriate

for interactive recognition.

3.5.1 Derm90 and Derm706 Skin Conditions Dataset

Prior to constructing the “Derm2309” [168], we created two smaller skin conditions

datasets to perform an initial examination of our proposed human in the loop object

recognition techniques for dermatology. Images of these datasets with their ground truth

classification were mainly collected from: http://www.dermis.net. The first (Derm90)

and the second (Derm706) datasets contain 90 and 706 dermatological images of 3 and

7 different skin conditions respectively.

The 3 classes of the “Derm90” dataset are: Discoid Eczema, Infantile Acne, and Scabies.

They each contain 30 images. Allergic Vasculitis, Atopic Eczema, Bullous Pemphigoid,
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Lichen Planus, Mycosis Fungoides, Squamous Cell Carcinoma, and Superficial Spreading

Melanoma constitute the 7 classes of the “Derm706” dataset. They contain 72, 143,

71, 72, 83, 92, and 173 images respectively. The imbalanced distribution of class

labels in this dataset is due to the varying availability of ground-truthed samples and

human annotators. Amongst frequently used methods that aim to solve the problem of

learning with imbalanced datasets are undersampling, oversampling, and deployment of

cost-sensitive learning systems [169]. The training sets in our experiments are balanced,

and we believe that the skewed distribution of class labels in the testing sets cannot

have a significant impact on the final output of our classifier.

The lesions within the images were manually segmented using bounding boxes that

included pixels of lesion, healthy skin and noise, such as hair. A set of 10 visual features

were extracted from the entire surface of these bounding boxes, which as a whole were

treated as single instances. The extracted features from individual bounding boxes were

concatenated in cases where more than one box was needed to locate the affected area in

the image. Table 3.2 lists the accuracy rates of these 10 conventional visual descriptors

on the pilot datasets. Each of these 10 features were used to construct Chi-Squared

kernels. The combination of the resulting kernels was achieved by the multiple kernel

learning algorithm of [52].

Although combining multiple features is a common practice in the literature [50], it is

nevertheless interesting to know which visual features will be the most discriminative

for our current application. It becomes evident that PHOW-HSV [167] is the most

competent feature, yielding comparable results to accuracy of all features combined

together by our selected multiple kernel learning algorithm. We therefore utilise this

single descriptor to represent visual information of each image in all versions of our larger

skin conditions dataset. The Pyramid Histogram of Visual Words (PHOW) features [75]

are a variant of dense SIFT descriptors [11], extracted at multiple scales. The colour

version of PHOW extracts descriptors on the three HSV image channels and stacks them

up.

Table 3.2: Individual Visual Features’ Accuracies on Pilot Dermatology Datasets

Feature CPAM GB PHOG-180 PHOW-GREY SIFT
Accuracy 45.97% 32.86% 27.62% 51.61% 42.54%

Feature SSIM GIST PHOG-360 PHOW-HSV DENSE-SIFT
Accuracy 34.88% 45.77% 42.34% 57.06% 46.37%

High-level user information about the images was obtained from answers to both

contextual and perceptual questions such as: age of patient, history of disease in the

immediate family, itchiness, contagiousness, duration of discomfort, colour, border, and

shape of skin lesions. Answers to these questions were collected by fabricating medical
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scenarios for a small group of 5 users from the University of Nottingham who had limited

levels of clinical knowledge. Table 3.3 lists 8 questions and 36 possible answers used in

the “Derm90” dataset and table 3.4 lists 13 questions and 67 possible answers used in

the “Derm706” dataset.

We consulted two medical professionals from the centre of Evidence Based Dermatology

at the University of Nottingham, and a dermatological reference [170] to scientifically

derive these questions. The questions’ set of “Derm706” was constructed to be more

comprehensive in order to compensate for the more varied skin conditions present in this

dataset. Wherever specific medical terms were used, a guide image with explanations

was available for users to avoid confusion.

Table 3.3: Derm90 Dataset Questions

Tags used as Answers to the Questions

Site? 13. Excoriated 26. Yellow
01. Head Lesion? 27. Orange
02. Trunk 14. Flat 28. Grey
03. Arms 15. Raised Age?
04. Legs 16. Fluid Filled 29. Infant
Condition? 17. Broken Surface 30. Young
05. Acute Colour? 31. Adult
06. Chronic 18. Pink 32. Old
Surface? 19. Red Contagiousness?
07. Normal 20. Purple 33. Contagious
08. Scaly 21. Mauve 34. Non-contagious
09. Hyperkeratotic 22. Brown Itchiness?
10. Warty 23. Black 35. Itchy
11. Crust 24. Blue 36. Non-itchy
12. Exudate 25. White

3.5.1.1 Experiment Setup

We employed the following descriptors to form the visual feature vectors: Coloured

Pattern Appearance Model (CPAM) [13], Geometric Blur (GB) [55], Global Image

Descriptor (GIST) [171], Pyramid Histogram of Oriented Gradients (PHOG) and its

variations [55], Scale-invariant Feature Transform (SIFT) and its variations, Pyramid

Histogram of Visual Words (PHOW) and its variations [167], and Self-similarity Feature

(SSIM) [55]. User provide information in form of tags are likewise used to construct

textual descriptors.

The training and testing sets of “Derm90” are split by a 50:50 ratio. This translates into

15 training and 15 testing samples for each class, totalling 45 training and 45 testing

images in the dataset. In the case of “Derm706” dataset, there are 30 training samples
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Table 3.4: Derm706 Dataset Questions

Tags used as Answers to the Questions

Age? 23. Generalised 45. Excoriation
01. Infant Arrangement? 46. Lichenification
02. Child 24. Discrete 47. Atrophy
03. Adult 25. Coalescing 48. Papillomatous
04. Elderly 26. Disseminated 49. Warty
History? 27. Annular 50. Umbilicated
05. Personal 28. Linear 51. Shiny
06. Family 29. Grouped Colour?
Site? Erythema? 52. Blood
07. Face 30. Erythematous 53. Pigment
08. Scalp 31. Non-Erythematous 54. Lack of Blood/Pigment
09. Ears Duration? 55. Others
10. Mouth/Tongue/Lips 32. Acute 56. Multicolour
11. Trunk 33. Chronic Border?
12. Hands Type? 57. Well-defined
13. Genitalia 34. Flat 58. Poorly Defined
14. Lower Legs 35. Raised Solid 59. Accentuated Edge
15. Feet 36. Fluid Filled Shape?
16. Nails 37. Cyst 60. Round
Number? 38. Comedone 61. Irregular
17. Single 39. Broken Surface 62. Rectangular
18. Multiple Surface? 63. Serpiginous
Distribution? 40. Normal 64. Dome shaped
19. Symmetrical 41. Keratinisation 65. Spherical
20. Asymmetrical 42. Scale 66. Pedunculated
21. Unilateral 43. Broken 67. Flat topped
22. Localised 44. Crust

per class. This split ratio generates a total of 210 training and 496 testing images for

the 7 classes of this dataset.

All results presented in this section are based on these features and a 5-time repeated

random sub-sampling cross validation method.

3.5.1.2 Baseline Results

We initially deployed LIBSVM [172] as a baseline to examine the efficacy of our

random forest solution. LIBSVM implements the “one-against-one” approach [173] for

multiclass classification. We used a voting strategy in our experiments, where each

binary classification was considered to be a voting. A sample is therefore designated to

be in a class with the maximum number of votes. Our selected LIBSVM classifier is

an RBF kernel SVM. The cost parameter of the classifier is the default value 1. The

gamma parameter in the kernel function is set to the default value 1 over the number
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of features. Parameter estimation using grid search with cross-validation can be also

employed in the experiments.

The mean classification accuracy of LIBSVM using visual descriptors, and tuned by

default parameters levels at 57.78% for the “Derm90” dataset. The LIBSVM classifier

and textual features result in an accuracy of 97.13% for the same dataset. 61.09% and

96.03% are visual and textual based classification accuracies respectively for “Derm706”

dataset. The combination of visual and textual features leads to mean accuracies of

97.66% for “Derm90” and 96.16% for “Derm706” datasets.

3.5.1.3 Random Forest Results

We trained our introduced random forest solution on an ensemble of 500 trees to evaluate

its effectiveness in comparison to the baseline alternative. We obtain an average accuracy

of 61.53% based on the extracted visual features for “Derm90”. The same test results

in an average accuracy of 64.74% for “Derm706”. We also trained the same number of

trees merely with our textual descriptors. The average accuracies saturate at 97.84% and

97.18% for “Derm90” and “Derm706” respectively. Random forest performs superiorly

in comparison to LIBSVM in both visual and textual only tests. Once these features are

combined, the classification accuracy for “Derm90” rises to 98.01%. The mean accuracy

of combined descriptors levels at 97.38% in case of “Derm706”. Table 3.5 and table 3.6

summarise these results.

Table 3.5: Derm90 Dataset Classification Accuracies

Method Visual Features Tags Features Fusion of Visual and Tags

LIBSVM 57.78% 97.13% 97.66%
RF 61.53% 97.84% 98.01%

Table 3.6: Derm706 Dataset Classification Accuracies

Method Visual Features Tags Features Fusion of Visual and Tags

LIBSVM 61.09% 96.03% 96.16%
RF 64.74% 97.18% 97.38%

Table 3.7 reveals individual class accuracies for the “Derm90” Dataset. The mean

classification accuracies of individual class labels in the “Derm706” dataset are similarly

illustrated in table 3.8.

Table 3.7: Derm90 Dataset Individual Class Accuracies

Class Discoid Eczema Infantile Acne Scabies
Accuracy 100% 100% 93%
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Table 3.8: Derm706 Dataset Individual Class Accuracies

Class Allergic Vasculitis Atopic Eczema Bullous Pemphigoid
Accuracy 100% 89.38% 100%

Class Squamous Cell Carcinoma Lichen Planus
Accuracy 98.38% 95.23%

Class Superficial Spreading Melanoma Mycosis Fungoides
Accuracy 98.6% 96.22%

All these empirical results highlight the usefulness of incorporating high-level knowledge

in form of answers from users into our classification algorithms. The fusion results

of these two pilot datasets are heavily influenced by textual descriptors due to their

discriminative qualities. Even though our classification technique can achieve excellent

recognition rates without visual features, we believe that computer vision plays an

imperative role in reducing human labour by decreasing the number of questions users

have to answer in order to arrive at a correct classification. We will further examine this

concept in chapter 5.

A fully functioning system will need a question bank of hundreds, if not thousands of

tags. Thus, the role computer vision plays is vital for improving efficiency. Furthermore,

some images cannot be classified correctly without computer vision, even after gathering

answers to all available questions. Figure 3.3 plots the recognition rates of computer

vision combined with user answers and illustrates mean accuracies of the algorithm solely

based on human answers to questions without visual features being involved.

Figure 3.3: Computer vision plays an imperative role in reducing human labour by
decreasing the number of questions required in order to achieve high accuracy results
of above 80%. Textual and visual based accuracies merge approximately after asking
29 questions in Derm706 dataset. Answering all questions leads to very high mean

accuracies.
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3.5.2 Derm2309 Skin Conditions Dataset

We developed the challenging “Derm2309” dataset [168] over the course of 3 months.

The dataset contains 2309 visually similar photographs of 44 different skin conditions.

Images with their ground truth classification are all from DermIS1. Images are not

stored locally but links to original files are available in our public release of this dataset.

Examples of dataset images can be found in figure 3.4.

Figure 3.4: Examples of skin lesion photographic images from Derm2309 dataset.
Original data courtesy of: http://www.dermis.net

Skin lesion images in our dataset range from different types of Eczema to various

cancerous conditions, such as Superficial Spreading Melanoma. Rare conditions like

Bullous Pemphigoid, as well as more common diseases like Psoriasis are also amongst

the condition classes of the dataset. There are on average 52 samples per class in this

dataset. At the extreme ends, Chronic Radiodermatitis has only 23 images, whilst

Superficial Spreading Melanoma consists of 177 images. Table 3.9 presents the complete

list of these skin conditions. As in our pilot skin conditions datasets, the imbalanced

distribution of class labels in “Derm2309” dataset is due to the varying availability of

ground-truthed samples and human annotators.

The training sets in our experiments are balanced, and we believe that the skewed

distribution of class labels in the testing sets cannot have a significant impact on the

final output of our classifier. However, there are a few cases where the number of

test samples for a particular class label may remain very low, for instance in Chronic

Radiodermatitis. This problem can be addressed if a leave-one-out cross validation

method is applied on the dataset. We understand that this is necessary to perform in

the future work in order to confidently establish the accuracy of our classifier.

There were no preprocessing steps applied on the images of the dataset. The lesions were

manually segmented under supervision of a medical expert using a bounding box that

1http://www.dermis.net
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Table 3.9: Full List of Derm2309 Skin Conditions

ID No. Samples Condition’s Name

02 37 Acrodermatitis Chronica Atrophicans Herxheimer
04 38 Acrolentiginous Melanoma
06 47 Allergic Contact Dermatitis
07 72 Allergic Vasculitis
10 31 Alopecia Areata
33 143 Atopic Eczema
28 67 Basal Cell Carcinoma
30 71 Bullous Pemphigoid
39 23 Chronic Radiodermatitis
43 59 Chronic Stationary Psoriasis Vulgaris
18 55 Dermatomyositis
19 55 Discoid Lupus Erythematosus
22 47 Dyskeratosis Follicularis
24 36 Epidermolysis Bullosa Hereditaria
25 38 Granuloma Annulare
16 39 Hemangioma
17 35 Herpes Zoster
20 32 Ichthyosis Congenita
21 30 Incontinentia Pigmenti
23 68 Lichen Planus
42 52 Lichen Planus of the Mucosa
31 52 Lichen Sclerosus et Atrophicus
40 47 Morpheiform Basal Cell Carcinoma
32 83 Mycosis Fungoides
44 45 Nail Changes Psoriasis Vulgaris
01 44 Neurofibromatosis Generalisata
03 59 Nevocytic Nevus
05 26 Onychomycosis
08 43 Pemphigus Mucosae
09 43 Pemphigus Vulgaris
36 30 Pityriasis Rubra Pilaris Devergie
37 51 Progressive Systemic Scleroderma
38 39 Psoriasis Inversa
26 35 Pyoderma Gangrenosum
27 37 Seborrheic Keratosis
29 39 Secondary Lues
41 67 Solid-Cystic Basal Cell Carcinoma
34 92 Squamous Cell Carcinoma
35 55 Stevens-Johnson Syndrome
11 48 Subacute Cutaneous Lupus Erythematosus
12 177 Superficial Spreading Melanoma
13 38 Urticaria Pigmentosa
14 47 Verruca Vulgaris
15 37 Vitiligo
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includes pixels of lesion, healthy skin, and noise such as hair. Features were extracted

from the entire surface of these bounding boxes, which as a whole were concatenated

and treated as single instances. Extracted features are included in the public release of

our dataset [168].

High-level user information about images of this dataset is obtained from answers to

questions such as: age of patient, site, number, distribution, arrangement, type, surface,

colour, border, and shape of skin lesion. Medical professionals and a dermatological

reference [170] were used to scientifically derive these questions. There are 37 possible

answers to these questions, which can be regarded as presence of tags. Answers to these

simple perceptual questions were collected from 361 “Amazon Mechanical Turk” workers.

We adhered to general policies of Amazon Mechanical Turk (AMT) in the collection

process, as well as seeking essential ethical approvals from the University of Nottingham

for the involvement of human participants. Figure 3.5 represents a screenshot from the

template used by the workers. Table 3.10 lists the type of tags used as answers to the

questions that we deploy in the implementation of our solution to recognition of skin

conditions. All workers’ answers are also available in the public release of our dataset.

Figure 3.5: Screenshot of “Amazon Mechanical Turk” interface used by users. Image
courtesy of: http://www.dermis.net

3.5.2.1 Experiment Setup

Combining multiple features is a prevalent practice in implementation of computer vision

and machine learning applications. It was nevertheless interesting to examine which

visual features would be the most effective in recognition of skin conditions. As it was
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Table 3.10: Derm2309 Dataset Questions

Tags used as Answers to the Questions

Age? Distribution? 26. Normal
01. Infant 14. Bilateral 27. Scale
02. Child/Teen 15. Unilateral 28. Broken Surface
03. Adult 16. Localised 29. Changes in thickness
04. Old 17. Generalised Colour?
Site? Arrangement? 30. Blood (pink/red/purple/mauve)
05. Head 18. Discrete 31. Pigment (brown/black/blue)
06. Mouth/Tongue/Lips 19. Coalescing 32. Lack of Blood/Pigment (white)
07. Trunk/Torso 20. Annular 33. Others (yellow/orange/grey)
08. Arms/Hands 21. Linear Border?
09. Sex Organs Type? 34. Well defined
10. Legs/Feet 22. Flat 35. Poorly defined
11. Nails 23. Raised Solid Shape?
Number? 24. Fluid Filled 36. Round
12. Single 25. Broken Surface 37. Irregular
13. Multiple Surface?

established by experimenting with skin conditions pilot datasets, we decided to extract

PHOW-HSV to form feature vectors of length 1024 for the “Derm2309” dataset.

PHOW is the dense SIFT [11] features applied at several resolutions. Scales at which

our colour dense SIFT features were extracted are: 4, 6, 8, and 10. Each value is used

as a bin size for the feature extraction function. Step in pixels of the grid, at which the

dense SIFT features are extracted, was set to 5. Answers to the perceptual questions

were used to construct textual features.

Training and testing images are selected randomly by a typical split for supervised

learning algorithms, subject to reserving at minimum a few number of samples from

every class in the testing set. This approach generates 880 training and 1429 testing

images. Hence, there are 20 training samples per class, and the rest are used for testing.

A standard split ratio, where 80% of images are used for training and 20% are reserved

for testing, is also available in our experiment on this dataset. The 80:20 split ratio

results in 1881 training and 428 testing samples.

All results presented in this section are based on a 5-time repeated random sub-sampling

cross validation method.

3.5.2.2 Baseline Results

We employed LIBSVM [172] as a baseline to measure the quality of our random forest

solution. Our selected LIBSVM classifier is an RBF kernel SVM as in the previous
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experiment. The mean classification accuracy of LIBSVM using visual features, and

tuned by default parameters levels at 13.37%. The LIBSVM classifier using tags features

results in an accuracy of 14.77%. The combination of visual and tags features leads to

a 16.03% accuracy. These SVM baseline results illustrate the sheer difficulty of this

dataset. Adhering to a different split of data, where 80% of images are used for training

and 20% for testing, yields average accuracies of 30.22%, 16.73%, and 32.61% for visual,

textual, and combined descriptors respectively.

3.5.2.3 Random Forest Results

We trained our proposed random forest technique on 500 trees to evaluate its

effectiveness in comparison to the SVM baseline technique. We obtain an average

accuracy of 15.76% based on the extracted visual features. We also trained the same

number of trees only with our tags features. The average accuracy saturates at 16.58%.

Random forest performs more effectively than LIBSVM in both visual and textual only

tests. More importantly, as it is clear not the visual-only nor the textual-only results

are very accurate but once the features are combined, the classification accuracy rises

to 25.12%. This emphasises the usefulness of incorporating high-level knowledge in

form of answers from users. Table 3.11 summarises these results and table 3.12 reveals

individual class accuracies. It is interesting to mention that adhering to a 80:20 split of

data produces mean accuracies of 31.41%, 17.99%, and 35.98% for visual, textual, and

combined descriptors respectively on this dataset.

Table 3.11: Derm2309 Dataset Classification Accuracies

Method Visual Features Tags Features Fusion of Visual and Tags

LIBSVM 13.37% 14.77% 16.03%
RF 15.76% 16.58% 25.12%

Our tests illustrate that using tags almost always improves the individual class

performances. Only in class 21 (Incontinentia Pigmenti) incorporating tags reduces

the visual-only result to 10%. This is mainly due to the fact that users cannot

discriminatively describe the characteristics of this particular skin condition using our

predefined set of questions. However, there are classes like 42 (Lichen Planus of

the Mucosa), where tags enhance visual-only results from under 19% to over 59%.

Visual-only features fail dramatically on class 23 (Lichen Planus) but with the help

of tags, there is an 8% improvement.

Figure 3.6 shows the accuracy of the random forest algorithm based on the number of

tags randomly utilised in the solution.
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Table 3.12: Derm2309 Dataset Individual Class Accuracies

Class #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11
Accuracy 8.3 58.8 25.6 33.3 16.6 3.7 44.2 47.8 21.7 45.4 28.5

Class #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22
Accuracy 43.9 33.3 11.1 47 21 20 11.4 28.5 25 10 29.6

Class #23 #24 #25 #26 #27 #28 #29 #30 #31 #32 #33
Accuracy 8.3 12.5 5.5 40 11.7 34 10.5 33.3 34.3 3.1 6.5

Class #34 #35 #36 #37 #38 #39 #40 #41 #42 #43 #44
Accuracy 15.2 11.4 40 6.4 5.2 55.6 22.2 14.8 59.3 10.2 48

Figure 3.6: Number of answers incorporated, and their impact on overall accuracy of
the “Derm2309” Dataset.

3.5.3 MIAS Mammographic Dataset

As a supplementary method of evaluation, we test our random forest algorithm on the

MIAS database released by the Mammographic Image Analysis Society [174]. Due to

popular request, the owners of the original MIAS database reduced every image to

200 micron pixel edge. They also clipped or padded every image of this dataset to

1024 pixels by 1024 pixels. Their public release contains 322 films, and the following

auxiliary high-level information: character of background tissue (fatty, fatty glandular,

dense glandular), class of abnormality (calcification, well-defined/circumscribed masses,

spiculated masses, ill-defined masses, architectural distortion, asymmetry, normal), and

severity of abnormality (benign, malignant). Figure 3.7 illustrates a few example images

from this dataset.

The images in the dataset can be grouped into: Benign, Malignant, and Normal

classes. There are 64 samples of the Benign, 207 samples of the Normal, and 51

samples of the Malignant class present in this dataset. As in our previous datasets, the

imbalanced distribution of class labels in the dataset is due to the varying availability

of ground-truthed samples and human annotators. The training sets in our experiments
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Figure 3.7: Examples of mammographic images from the MIAS dataset.

are balanced, and we believe that the skewed distribution of class labels in the testing

sets cannot have a significant impact on the final results of our classifier.

There were no preprocessing steps applied on the images of this dataset. A number

of visual features were extracted from the entire surface of the films, which as a whole

were treated as single instances. The full list of extracted features are available in the

“Experiment Setup” section.

A set of 10 questions based on their released high-level information are assembled

together to incorporate the abstract knowledge of a user in the loop. Table 3.13 lists

these questions.

Table 3.13: MIAS Dataset Questions

Tags used as Answers to the Questions

Type of Abnormality? Background Tissue?

01. Calcification 08. Fatty
02. Well-defined masses 09. Fatty-glandular
03. Needle-like masses 10. Dense-glandular
04. ill-defined masses
05. Architectural distortion
06. Asymmetry
07. Normal
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3.5.3.1 Experiment Setup

We built visual feature vectors of length 5756 to represent the visual information of

images in this dataset. In addition to SIFT and grey PHOG features [167] described

previously, we added Grey-Level Co-occurrence Matrix (GLCM) [175], Local Binary

Patterns (LBP) [167], Local Phase Quantisation (LPQ) [176], and Canny Edge Detector

[177] features to the selection. To utilise our human in the loop approach, the dataset

questions were exploited to build textual feature vectors of 10 dimension.

Training and testing images are randomly selected by a standard split for supervised

learning algorithms, subject to reserving at minimum a number of samples from every

class in the testing set. This approach generates 90 training and 232 testing images.

Hence, there are 30 training samples per class and 34 testing images of the Benign, 177

testing images of the Normal, and 21 testing images of the Malignant class.

As before, all results presented in this section are based on a 5-time repeated random

sub-sampling cross validation method, and the reported scores are the average of the 5

accuracies.

3.5.3.2 Baseline Results

The RBF kernel LIBSVM [172] solution produces an average classification accuracy

of 14.65% using visual features. The mean classification accuracy based on textual

features turns out to be approximately 88.79%. In contrast to visual features, the

textual descriptors are very discriminative in this dataset. The combination of visual

and textual features leads to a 88.65% accuracy. It seems that SVM baseline solution

fails to exploit the discriminative power of tags available for classification of images in

this dataset, as the combination recognition rates are merely as accurate as the textual

results.

3.5.3.3 Random Forest Results

As in the previous cases, our random forest framework concatenates the visual and

textual feature vectors to train 700 random trees. It is clear from table 3.14 that the

addition of high-level human knowledge drives up the average accuracy of our proposed

algorithm from 28.44% to 90.94%. It is evident that the random forest framework is

outperforming the baseline’s result on this dataset using the visual features. It performs

almost as good as the SVM solution using the textual features. The fusion accuracy
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of this framework is 90.94%, which is higher than the achieved result from the baseline

solution.

In this dataset, the low-level visual features struggle mostly between the benign, and

malignant classes. It is very hard to distinguish between these two classes using only

visual features. However, the information provided by the human in the loop can

significantly improve the accuracy of these classes. The user in the loop helps the

frameworks to distinguish more confidently between the classes of this dataset. Again

these results highlight the fact that the random forest framework is a simple and

computationally tractable solution that produces superior, or at least comparable results

to baseline solutions such as SVM on different datasets of various applications. It is clear

from the results that visual features alone achieve very low recognition rates, reiterating

the challenging nature of these visual recognition tasks. Human in the loop can boost

accuracy rates to more acceptable levels.

Table 3.14: MIAS Dataset Classification Accuracies

Method Visual Features Tags Features Fusion of Visual and Tags

LIBSVM 14.65% 88.79% 88.65%
RF 28.44% 88.36% 90.94%

3.5.4 Caltech-UCSD Birds 200 Dataset

Caltech-UCSD Birds 200 [178] is a dataset of 6033 images over 200 bird species from

North America that cannot usually be identified by non-experts. In many cases, different

bird species in this dataset are nearly visually identical. Figure 3.8 illustrates example

images from this dataset.

The number of unique class labels in this dataset is 200, which corresponds to the 200

bird species. The full list of class labels is available online from the authors’ released

materials. This is a balanced dataset, which contains almost 30 images per class, evenly

distributed in the training and testing sets.

There were no preprocessing steps applied on the images of this dataset. All samples

have a bounding box that locates the bird in the image. Visual features were extracted

from the entire surface of these bounding boxes, which as a whole were treated as single

instances. All the extracted features are listed in the following section.

This dataset contains 25 visual questions that encompass 288 binary attributes, also

referred to as tags. These attributes are extracted from http://www.whatbird.com, a bird

field guide website. The full list of attributes can be found in their released material

[178]. However, table 3.15 illustrates a sample of these tags.



Chapter 3. Discriminative Object Recognition with Humans in the Loop 62

Figure 3.8: Examples of Caltech-UCSD Birds 200 photographs.

Table 3.15: Caltech-UCSD Birds 200 Dataset Questions

Sample of Tags used as Answers to the Questions

Back Colour? Forehead Colour? Under Tail Colour? Crown Colour?

01. Buff 67. Grey 157. Orange 241. Blue
02. White 68. Buff 158. Yellow 242. Black
... ... ... ...

Back Pattern? Head Pattern? Underparts Colour? Eye Colour?

16. Spotted 82. Capped 172. Grey 256. Yellow
17. Solid 83. Eyebrow 173. Yellow 257. Black
... ... ... ...

Belly Colour? Leg Colour? Upper Tail Colour? Tail Pattern?

20. Yellow 93. White 187. Buff 270. Striped
21. Brown 94. Blue 188. Brown 271. Solid
... ... ... ...

Belly Pattern? Nape Colour? Upperparts Colour? Throat Colour?

35. Striped 108. White 202. Buff 274. Brown
36. Solid 109. Black 203. Brown 275. Buff
... ... ... 276. Black
Bill Shape? Primary Colour? Wing Colour? 277. White
39. Cone 123. Brown 217. Black 278. Orange
40. Dagger 124. Grey 218. Buff 279. Grey
... ... ... 280. Yellow
Breast Colour? Shape? Wing Pattern? 281. Blue
48. White 138. Perching-like 232. Striped 282. Iridescent
49. Grey 139. Owl-like 233. Spotted 283. Olive
... ... ... 284. Rufous
Breast Pattern? Size? Wing Shape? 285. Green
63. Striped 152. Small 236. Long Wings 286. Pink
64. Solid 153. Medium 237. Broad Wings 287. Purple
... ... ... 288. Red
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3.5.4.1 Experiment Setup

In our experiments, we employed 10 image features with specific parametrisation

including Coloured Pattern Appearance Model (CPAM) [13], Geometric Blur (GB)

[55], Global Image Descriptor (GIST) [171], Pyramid Histogram of Oriented Gradients

(PHOG) and its variations [55], Scale-invariant Feature Transform (SIFT) and its

variations, Pyramid Histogram of Visual Words (PHOW) and its variations [167], and

Self-similarity Feature (SSIM) [55]. The textual information form a 288 dimensions tag

vector that was utilised in our classification experiments.

Training and testing images are randomly selected according to the original split ratio

released by the authors of this dataset. Their approach generates 3000 training and 3033

testing images. Hence, there are 15 training and approximately 15 testing samples per

class present in the dataset.

All results described in this section are based on a 5-time repeated random sub-sampling

cross validation method, and the reported scores are the mean of the 5 accuracies.

3.5.4.2 Baseline Results

The RBF kernel LIBSVM [172] baseline solution generates an average classification

accuracy of nearly 19% using visual features. The mean classification accuracy based

on high-level textual information saturates at approximately 61.92%. In comparison

to visual features, the textual descriptors are more discriminative in this dataset. The

fusion of visual and textual features shows a mean accuracy of 63.32%.

3.5.4.3 Random Forest Results

Our random forest framework concatenates the visual and textual feature vectors to

train 1000 random trees. Table 3.16 highlights the fact that the average accuracy of

our proposed algorithm improves from 20.51% to 66.32% by adding human high-level

knowledge. It is also evident that the random forest framework is outperforming the

baseline’s result on this dataset using the visual features. The fusion accuracy of this

framework surpasses the obtained result from the baseline SVM solution at 63.32%.

These results reiteratively highlight the important fact that our random forest framework

is a simple and computationally tractable solution that produces superior, or at least

comparable results to baseline solutions such as SVM. It is crystal clear from the

results that visual descriptors alone achieve very low recognition rates, reiterating the
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challenging nature of some visual recognition tasks. Human in the loop can enhance

accuracy rates to more acceptable levels in challenging scenarios.

We believe that the minor drop from textual-only to fusion results on this dataset

is statistically insignificant and due to the unfortunate random permutations of our

training and testing samples. Furthermore, the role of textual information becomes more

worthwhile, with respect to reducing the burden on users of interactive applications. We

will discuss this matter in more details in the upcoming chapters.

Table 3.16: Caltech-UCSD Birds 200 Dataset Classification Accuracies

Method Visual Features Tags Features Fusion of Visual and Tags

LIBSVM 19% 61.92% 63.32%
RF 20.51% 66.43% 66.32%

3.5.5 Ground Photograph Habitat Dataset

Torres [179] presents a geo-referenced habitat image database containing high resolution

ground photographs that have been manually annotated by experts. This is the first

publicly available image database specifically designed for the development of multimedia

analysis techniques for ecological applications. The availability of experts’ annotations

in this database enables human in the loop algorithms to be employed for improved

categorisation of their data. The original work from these authors presents a random

forest based method for annotating an image with the habitat categories it belongs to.

The authors introduce a random projection based technique for constructing a random

forest classifier. Their approach is able to classify only three of the main habitat classes

with a reasonable degree of confidence. Although their work has not fully examined the

potential benefit of deploying a human in the loop approach, we aim to evaluate our

proposed interactive method on an extended version of their adaptable dataset.

The Ground Photograph Habitat database consists of 1086 ground images with 4203

annotated polygons. There is an average of 3.85 annotations per image in this dataset,

with the minimum number of distinct habitats present per image being 1 and the

maximum being 6. All photographs were manually ground-truthed by an expert in

Phase 1 classification. Annotation information is stored in XML files, which save the

points of the polygons defining each annotation. Annotations do not overlap, since each

pixel within an image uniquely belongs to one habitat. All images are geo-referenced,

and they were taken with the same camera, a Sony Cybershot DSCHXvb with a 10.2

mega pixels sensor, and a 3648x2736 pixels resolution. Figure 3.9 illustrates a few

example images from the dataset.
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Figure 3.9: Examples of labelled ground-taken habitat photographs. SI stands for
Semi-improved.

The photographs were taken during the months of February, July, and August in

Christmas Commons, New Forest, and Titchfield Haven in the UK. Given the nature of

the locations visited, mostly habitats from classes: Woodland and scrub, Grassland and

marsh, Tall herb and fern, Heathland, and Miscellaneous, which includes the boundary

habitats, are present in this dataset. There are 27 distinct habitats in the set.

The numbers of instances (shown inside the brackets) from each habitat available in

the dataset are as follows: Woodland broad-leaved (399), Woodland mixed (242), Scrub

dense (295), Scrub scattered (21), Acid grassland semi-improved (149), Neutral grassland

unimproved (125), Neutral grassland semi-improved (386), Improved grassland (296),

Marshy grassland (62), Poor semi-improved grassland (6), Bracken continuous (55),

Bracken scattered (16), Tall ruderal (52), Dry dwarf shrub heath acid (40), Dry dwarf

shrub heath basic (8), Dry heath acid grassland mosaic (88), Fern (1), Standing water

(18), Cultivated arable (63), Cultivated ephemeral short perennial (1), Hedge and trees

species rich (110), Hedge and trees species poor (226), Fence (231), Wall (11), Dry ditch

(15), Sky (1042), Other/non-habitats (245).

The habitat dataset is a multilabel classification problem. It is a variant of the multiclass

classification problem, where multiple target labels must be assigned to each instance.

Formally, multilabel learning can be phrased as the problem of finding a model that

maps inputs x to vectors y, rather than scalar outputs as in the ordinary classification

problem. To make the dataset compatible with the scalar outputs of our multiclass

random forest classification algorithms, we exploit a transformation method that maps

each combination of labels present in the dataset to a unique new label. This translates

to 347 unique class labels. Evaluation metrics for multilabel classification are inherently

different from those used in multiclass classification, due to their inherent differences
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of the classification problem. Therefore, we use the following modified metrics for the

habitat dataset:

Hamming Loss (relaxed metric): the percentage of the wrong labels to the total

number of labels. This is a loss function, so the optimal value is zero. 1 − loss
equals to the accuracy.

Exact Match (strict metric): is the most strict metric, indicating the percentage of

samples that have all their labels classified correctly.

There were no preprocessing steps applied on the images of this dataset. As in the

previous datasets, visual features were extracted from the entire surface of these images,

which as a whole were treated as single instances. The list of extracted features are

available in the following section.

We transform this dataset into a compatible application of interactive recognition by

introducing a set of 17 binary questions that summarises the perceptual information of

images as seen by the human in the loop. The questions are listed in table 3.17. All

questions were answered by inexpert users to expand high-level information available in

this dataset.

Table 3.17: Ground Photograph Habitat Dataset Questions

Tags used as Answers to the Questions

Structure? 09. Reed
01. Boundary 10. Bracken or fern
02. Fence Trees?
03. Wall 11. Trees with leaves
Landscape? 12. Trees without leaves
04. Sky 13. Trees with mixed leaves
05. Water Field?
06. Other 14. Heath
Plants? 15. Arable land or crops
07. Bushes 16. Grass with flowers or non-uniform grass
08. Herbs 17. Uniform grass

3.5.5.1 Experiment Setup

In our solution, we employed 10 visual features to represent the habitat dataset. These

descriptors are: Coloured Pattern Appearance Model (CPAM) [13], Geometric Blur

(GB) [55], Global Image Descriptor (GIST) [171], Pyramid Histogram of Oriented

Gradients (PHOG) and its variations [55], Scale-invariant Feature Transform (SIFT)

and its variations, Pyramid Histogram of Visual Words (PHOW) and its variations [167],
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and Self-similarity Feature (SSIM) [55]. These visual descriptors result in formation of

8976-dimensional feature vectors. Textual features were constructed based on the 17

questions, we described in the last section.

Training and testing images are randomly selected and split into a common ratio for

supervised learning algorithms, subject to reserving at minimum a few number of

samples from every class in the testing set. This approach generates 657 training and

429 testing images. Our selected split ratio also ensures that all the 347 unique classes

of the dataset are present in the training set and are available to be used by the learning

algorithm.

All results presented in this section are based on a 5-time repeated random sub-sampling

cross validation method, and the reported scores are the average of the 5 accuracies.

3.5.5.2 Baseline Results

Our selected LIBSVM classifier [172] is an RBF kernel support vector machine, similarly

tuned to our setups in the previous datasets. The SVM solution based on visual features

achieves relaxed and strict accuracies of 38.91% and 3.03% respectively. Results based on

textual features are 44.22% and 5.94%. The combination of visual and textual features

in the baseline solution obtains accuracies of 50.32% for relaxed and 10.78% for strict

metrics.

3.5.5.3 Random Forest Results

The low-level visual features in both the SVM baseline approach and our random forest

solution particularly struggle to distinguish between semi-improved, and unimproved

grassland classes. These classes are even subjective for human surveyors. Additionally,

broad-leaved trees can be part of both the Woodland habitat, which is composed

of broad-leaved trees, and the Mixed Woodland habitat, which is itself composed of

broad-leaved trees and coniferous trees. This similarity in classes explains the reason

why the low-level features may struggle to classify these habitats. In these cases, the

value of human in the loop additional information becomes very clear. A few simple

perceptual binary answers from a user can help the framework to make the right decision.

Our random forest framework concatenates the visual and textual features together,

and trains 700 random trees. Table 3.18 summarises the accuracies of our random forest

framework using different types of features. The results of both evaluation metrics

we described previously are presented. As it is clear, the combination of low-level
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visual features with high-level knowledge of users increases the average accuracy of our

algorithm to 57.22%. This enhancement is true with both metrics.

Table 3.18: Ground Photograph Habitat Dataset Classification Accuracies

Baseline SVM

Metric Visual Features Tags Features Fusion of Visual and Tags

Strict 3.03% 5.94% 10.78%
Relaxed 39.91% 44.22% 50.32%

Random Forest Framework

Metric Visual Features Tags Features Fusion of Visual and Tags

Strict 13.75% 11.65% 17.94%
Relaxed 53.24% 52.81% 57.22%

It is clear that our random forest framework is outperforming the baseline SVM solution

in every aspect of the evaluation. The random forest framework is a simple and

computationally tractable solution that produces interesting results on this dataset using

both strict and relaxed metrics.

3.6 Conclusion

We have come to believe that a human in the loop approach that combines high-level

cognitive information with traditional low-level visual features offers the possibility of

developing practically useful machine vision technologies. This is particularly true whilst

the pursuit for fully automatic solutions continues. Human in the loop enables realisation

of applications that are believed to be impractical, or too critical to be left for computers

to administer single-handedly.

Our random forest framework is a reliable solution that can be improved to produce

practical results for a range of different applications. We strongly believe that by working

closely with dermatologists for instance, our work can be improved and expanded to

practical levels suitable for health care providers across the world. An enhanced solution

can be installed on smart mobile phones or tablets, and used by physicians to improve

patients’ quality of lives in both developed and developing countries where access to

health services is scarce.

In this chapter, we proposed a simple but powerful method to utilise and quantify user

answers to simple perceptual questions in a systematic way that can be incorporated

into our introduced framework of fusing heterogeneous sources of data. Furthermore, we

formulated a method based on random forest technology that combines visual features

of images with their relevant user abstract information to achieve promising recognition
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rates. Our proposed framework has the capability to be used in an interactive fashion.

Once in testing mode, users of our system can answer an application’s questions as little

as they desire, and still receive a prediction based on available information. Certainly,

more answers means more information, which in turn leads to more solid classification

accuracies.

In the following chapters, we will discuss more intricate methodologies for fusing various

information sources, and will examine potential solutions for achieving the most effective

fusion based on available information sources. We will also address the issues centred

around user involvement in human in the loop frameworks, and possible remedies to

reducing their burden, whilst still being able to capture their useful abstract knowledge.



Chapter 4

Generative Object Recognition

with Humans in the Loop

Amongst major human in the loop technical complications is the problem of information

source fusion. In the “Understanding Visual Content by Human in the Loop” section

of chapter 2, we defined the term “fusion” in the context of our work as a data fusion

process, where the sources of data are image’s low-level and users’ high-level information.

In the preceding chapter, we introduced a discriminative random forest approach that

exploits user’s abstract knowledge in a framework, where both visual and textual sources

of information are considered to be analogous. Consequently, they are concatenated to

form one single source of information prior to being fed to the random forest classifier.

Contrary to these input level fusion algorithms, there are methodologies that model

visual and textual descriptors separately to conclude a final prediction.

The fusion of low-level visual information and high-level human knowledge has been

previously achieved by the pioneering framework of [130], which assigns equal weights

to all available sources of information. Their general framework is capable of employing

almost any off-the-shelf multiclass object recognition algorithm. They further illustrate

that incorporating models of stochastic user responses leads to better reliability in

comparison to deterministic field guides generated by experts. Their evaluation results

demonstrate that utilising user input drives up recognition accuracy to levels that are

sufficient for practical applications, whilst at the same time, computer vision reduces

the amount of human interaction required.

Nevertheless, it is reasonable to assume that these different origins of information are

not always equally reliable or discriminative. For instance, in a classification setting,

outputs from a typical visual classifier may not be as accurate as the outputs from a

classifier trained on user provided information. The opposite may also be valid, where

70
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user knowledge is more misleading, vague and noisy than the visual information of

objects in an image. Therefore, it is sensible to investigate either methodologies that

are capable of selecting the most informative and reliable source, or algorithms that are

competent enough to intelligently assign appropriate weights to each and every source

of information available.

In this chapter, we mainly aim to introduce solutions to the aforementioned problem

of information source fusion. Nevertheless, we will likewise explore appropriate

classification methods of visual and textual information. Our proposed innovative

algorithms are:

1. A modified naive Bayes algorithm that adaptively selects an individual classifier’s

output or combines more to produce a definite answer.

2. A neural network based algorithm which feeds the outputs of classifiers to a 4-layer

feedforward network to generate a final output.

3. A novel generative model based on random naive Bayes classifiers to capture and

analyse abstract information from users.

Our proposed methods intelligently combine available sources of information in order to

enhance classification performance for difficult visual recognition tasks. To illustrate the

efficacy of our proposed approaches over traditional fusion techniques [130], we present

experimental results on a variety of computer vision datasets suitable for human in the

loop object recognition.

4.1 Problem Formulation

As before, the problem that we aim to solve is to find the probability of an object

belonging to a certain class. This is formalised in estimating a conditional probability

p(c|x, S) given two variables, where c is class, x is image information, and S is any

sequence of abstract information available from the human in the loop. The fusion of x

and S is achievable both at the input or the output end of classification algorithms as

illustrated in figure 4.1.

1) At input level, as we detailed in chapter 3, fusion is performed by simply concatenating

x and S together, and forming a universal source of information U . The concatenated

source U can be used as an input to any typical classifier. In a probabilistic setting, this

is defined as:
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Figure 4.1: Fusion Frameworks at Input and Output Levels

p(c|x, S) = p(c|x||S) = p(c|U) (4.1)

where || is our selected notation for illustrating mathematical concatenation.

2) Fusion at output level in contrast to the previous case combines the output of classifiers

independently trained on the two sources of information to produce an overall output

in form of:

p(c|x, S) = f
(
p(c|x), p(c|S)

)
(4.2)

where f is the fusion function, and p(c|x), p(c|S) are the posterior probabilities

obtained from separate classifiers trained on visual and textual information respectively.

Depending on the form of f , we can design a variety of fusion models.

In spite of simplicity in implementation of fusion methods at input end of classifiers,

concatenation at this level may not fully appreciate the discriminative capacity of each

information source. Alternatively, we aim to propose a solution that learns separate

models for each source of information available. Thus, we employ typical classifiers

commonly used in the relevant literature to classify individual information sources and

present two intelligent strategies to implement the fusion function f of equation (4.2).
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4.2 Intelligent Information Source Fusion

It is generally assumed that class posterior outputs from probabilistic classifiers can be

considered as certainty measures, if the training and testing sets are randomly selected

from the same distribution. This is a reasonable assumption for the learning problems

that we are targeting to solve. Hence, this hypothesis leads us to formulation of the

following two strategies.

4.2.1 A Modified Naive Bayes Information Fusion Algorithm

The information fusion in equation (4.2) becomes the classic naive Bayes classifier when

the two sources of information are assumed independent. This can be formally expressed

by defining the fusion function f as:

f(x, S) = xS → f
(
p(c|x), p(c|S)

)
= p(c|x)p(c|S) (4.3)

where x and S are the image and user provided information respectively.

We have observed through experiments that for certain classes, decisions made on one

information source can be more reliable than the other. It is therefore reasonable to

speculate that if the probability of a class estimated from one source is too insignificant,

then that source is very likely to be unreliable for predicting the class label. Based on

this rationale, we present a modified algorithm of naive Bayes information fusion.

Algorithm 1 Modified Naive Bayes Information Fusion p(c|x, S)

Require: image information: x, user information: S, class labels: C
for all Samples do

if p(c|x) < Θx[c] then

p(c|x, S) ∝ p(c|S)
p(c)

else if p(c|S) < ΘS [c] then

p(c|x, S) ∝ p(c|x)
p(c)

else
p(c|x, S) ∝ p(c|x)p(c|S)

p(c)
end if

end for
return arg max

c
p(c|x, S)

The preceding algorithm 1 is very straightforward. For each class c, we estimate a

threshold θx[c] for visual image information, and a separate threshold θS [c] for user’s

source of information. If the probability of a class estimated from one source is smaller

than its threshold, then only the probability estimated based on the other source is
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used to predict the class. The original naive Bayes algorithm [130] is utilised when the

probabilities of a class estimated from both sources are greater than their respective

thresholds. If the estimated probability is smaller than both thresholds, it does not

matter which classifier is employed. We will illustrate in the experimental section that

for certain applications this modification can significantly improve accuracy over the

classic naive Bayes classifier, which is indeed a special case of our intelligent fusion

algorithm.

The optimal thresholds for each class and every source of information are estimated by a

grid search approach that exhaustively examines a range of possible values. The selected

threshold for each class is a value that leads to the finest classification performance over

the training dataset of samples with known class labels T = {(Gi, Ci) : i ∈ [n]}. This is

achieved by minimising the empirical risk:

L(Θ;T ) =
1

n

n∑
i=1

l(Ci, f(Gi; Θ)) (4.4)

where Θ is a set of thresholds to be learned, and l is measure of error between groundtruth

Ci and predicted f(Gi; Θ) labels. Threshold values in practice filter out uncertain

predictions from deployed classifiers in our fusion framework. Algorithm 2 summarises

our method in selecting suitable thresholds.

Algorithm 2 A Grid Search Approach for Optimal Threshold Selection

Require: class label: c, matrix of posterior probabilities: P
Step 0: Generate a discrete set of possible thresholds: Θ = {0, 0.1, 0.2, ..., 1}
Step 1: Create an empty set to store scores of each threshold: Scores = ∅
while there exist unexamined θ ∈ Θ do

Step 2: Create an empty set to store predicted labels: K = ∅
for all samples with true label c do

Step 3: Find vector of posterior probabilities: V ec = Pj,:
Step 4: Find probability of the most probable class: p = arg max(V ec)
if p > θ then

Accept label: K = K ∪ label
end if

end for
Step 5: Calculate F1 measure obtained by threshold θ
Step 6: Store calculated measure: Scores = Scores ∪measure

end while
return arg max

θ
(Scores)
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4.2.2 Neural Network Fusion Algorithm

The method discussed previously is a greedy approach. It follows the problem solving

heuristic of making the locally optimal choice in selecting suitable weights for every

predicted class label with the aim of finding a global optimum. The weights are in essence

the calculated thresholds for outputs from classifiers. However, greedy algorithms

usually fail to find the globally optimal solution. Our proposed greedy approach does not

operate holistically on all class labels. It examines each class label at a time, and hence

can make commitments to certain choices too early, which prevents it from finding the

best overall solution afterwards. It may even produce the unique worst possible solution.

In an attempt to find the global optimum, we propose a pattern recognition solution

that trains a supervised neural network to produce desired outputs in response to sample

inputs. More specifically, we intend to deploy a feedforward backpropagation network

[180]. Our selected choice of network training function is a scaled conjugate gradient

backpropagation approach [181] that updates weight and bias values according to the

scaled conjugate gradient method.

The architecture of the neural network we aim to use has 4 layers, as depicted in

figure 4.2. The input layer has 2n input units. ik, where k = {1, 2, ..., n}, is the

predicted probability of class k based on the image’s visual source of information using a

standard classifier. Some of these classifiers are described in section 4.3 of this chapter.

Similarly, Sk, where k = {1, 2, ..., n}, is the predicted probability of class k based on

the user provided textual source of information. We employ two hidden layers in our

implementation and their number of units is determined experimentally. The output

layer has n units, each corresponding to one of the class labels. In preparing the “desired”

output for an input training sample, we set the corresponding unit’s desired output to

1 and the rest to 0. For instance:

L1 = 0, L2 = 0, ..., Lk−1 = 0, Lk = 1, Lk+1 = 0, ..., Ln = 0 (4.5)

is the desired output corresponding to a training sample belonging to class k. Once

the network is trained, the final decision about the class label is made based on the

following:

c∗ = arg max
k

Lk (4.6)

We further need to calculate a network performance that leads to good classification.

Thus, we suggest to minimise a cross-entropy term [182] given targets, outputs,
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Figure 4.2: Neural Network Layout

performance weights, and optional parameters. Our selected entropy term is therefore

defined as:

H(C, Ĉ) = −
∑
i

C(i) log Ĉ(i) (4.7)

where H(C, Ĉ) is the computed cross-entropy of true and predicted class labels, which

heavily penalises outputs that are extremely inaccurate, with very little penalty for fairly

correct classifications.

4.3 Classifiers in Fusion Frameworks

The classification of available information from images and users involved in human

in the loop vision applications is usually performed by a number of commonplace

techniques. Fusion at input level for instance can be carried out by an SVM solution

or an ensemble approach like our random forest method in chapter 3 that concatenates

visual and textual descriptors. At output level, it is plausible to apply a combination

of similar or different classifiers on available sources separately. Table 4.1 summarises

these common settings in human in the loop frameworks. Please note that RF and RNB

stand for Random Forest and Random Naive Bayes respectively in this table, and || is

the selected notation for illustrating mathematical concatenation of descriptors.
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Table 4.1: Classifiers Settings in Human in the Loop Frameworks

Feature Visual Textual Visual || Textual

Input Level N/A N/A SVM, RF
Output Level SVM, RF SVM, RF, RNB N/A

In the next section, we introduce our proposed generative classifier suitable for harnessing

user knowledge, and our selected discriminate method for classification of low-level visual

information in human in the loop applications. In the experiment section of this chapter,

we will compare the results of these classifiers to their common alternatives.

4.3.1 A Generative Model for High-level User Information

We build an innovative random naive Bayes model to estimate the posterior probability

of p(c|S). This allows us to classify a user’s high-level information effectively. Our

approach learns the class-conditional density p(S|c) by a generative model that estimates

user answers S for each possible class label c.

4.3.1.1 Presentation of High-level Information

As in our previous works [157, 158, 160, 161] described in chapter 3, we collect high-level

information about images in the form of answers to perceptual questions. These answers

can be regarded as presence of tags in each image. The importance of these tags become

apparent when visual features fail to capture the complexity present in visually similar

images.

Suppose there are T possible tags in our problem. Let t ∈ {1, ..., T} be an array of

indices to those T tags, and let S = {s1, ..., st−1, st} be a set of user answers about the

presence of such tags in an image. Then an image can be represented as a vector of tags.

To deal with user reasoning that is approximate rather than exact, we quantify presence

of tags in an image by a certainty value that describes user confidence in their response.

This is in contrast to the traditional binary approach, where tags’ random variables

take on only true or false values. Our answered tags random variable st have a discrete

truth value that ranges in an interval between 0 and 1, corresponding to their chance

of presence in an image. These certainty values v ∈ {1, ..., V } allow the model to assign

more weight to more confident answers. Any positive answer has a probability value

above 0.5, and any negative one is below 0.5. We set analogous terms for these certainty

values like probably as a middle value between definitely and 0.5, and guessing as a

middle value between probably and 0.5. Table 4.2 shows these certainty values, where
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V = 6. Although other definitions of these numerical values are possible, we have

not considered this as a focus of current studies and retained original values set in the

previous chapter.

Table 4.2: User Answers Certainties

Answer Guessing Probably Definitely

Positive 0.625 0.75 1
Negative 0.375 0.25 0

4.3.1.2 Modelling User Answers

Our proposed generative model for estimating user provided high-level information needs

the class conditional density p(S|c) to be specified. We make the assumption that

questions are answered by the user independently given the class, and any randomness

in their response is not image dependant:

p(S|c) =
T∏
t

p(st|c) (4.8)

We estimate p(st|c) separately for each value of c, thus we only solve C separate

density estimation problems. An expedient strategy to avoid the problem of exponential

explosion is to naively assume that the parameters of such conditional distribution are

independent. Since st ∈ {1, ...,K}, the multinomial class-conditional density for each

p(st|c) is defined as:

p(st|c, θc) =

K∏
k=1

θ
I(st=k)
ck (4.9)

Similarly, we fit a multivariate multinomial distribution to our discrete training vector:

p(S|c, θ) =

T∏
t=1

K∏
k=1

θ
I(st=k)
tck (4.10)

where θtck = p(st = k|c) is the probability of observing the tth tag being k given that

the class label is c.
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4.3.1.3 Ensemble of Random Naive Bayes Classifiers

Frequently, an ensemble of models performs superiorly in contrast to any individual

model. To take advantage of such increased stability, we propose to employ an ensemble

averaging process, where we train a group of random naive Bayes Classifiers. Each of

these individual classifiers may overfit the training data. However, the combination of

these classifiers usually results in a new network that alleviates the problem of sensitivity

to random noise in the training set.

In an ensemble learning method, injection of randomisation leads to decorrelation

between the individual classifiers, and improved generalisation [71, 72]. We introduce

randomisation in our ensemble model by two mainly used means of: i) random input

selection, and ii) random feature selection. These procedures of injecting randomisation

help us achieve higher robustness with respect to presence of noisy data in user responses.

Firstly, given our collected training set S of size n, a bootstrap aggregating technique is

used to generate m new training sets Si, each with the same size n, by sampling from S

uniformly and with replacement. By sampling with replacement, some observations may

be repeated in each Si. Every set Si is expected to have a fraction of the unique examples

of S, the rest being duplicates. The B random naive Bayes models are subsequently

fitted using the above m bootstrap samples.

Secondly, we randomly select F features out of user responses’ feature pool S for each

random naive Bayes classifier. The probability distribution p(sf |c) of each feature is

therefore modelled for each class c. The probability of a sample s belonging to the class

c can eventually be defined as:

p(s|c) ∼
B∑
b=1

F∏
f=1

pb(sf |c) (4.11)

where we combine B randomly trained naive Bayes classifiers, each using a subset of

available features F <= |T |, by a voting scheme for the final classification. The scheme

selects the class label with the highest number of votes as the predicted label.

4.3.2 A Discriminative Classifier for Image Low-Level Information

In our proposed implementation, the visual model of fusion equation (4.2) is designed

to directly learn a function that computes the class posterior p(c|x). This is therefore

defined as a discriminative model that discriminates between different classes given the

feature input.
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It is sensible to reiterate that image representation plays an important role in the quality

of any visual classification solution. It is believed that a careful combination of visual

descriptors may improve performance of the classification algorithm but this is not the

main focus of our current work. Instead, we aim to use a selection of well-known

visual words with specific parametrisation to form visual feature vectors suitable for

our classifiers.

Our main selected discriminative model of visual information is based on a bootstrap

aggregating ensemble algorithm that follows the standard method in [72] to train random

trees, and classify test samples. The widely adopted information gain criteria [73],

calculated based on class labels of the training images, is used as the score function to

select a good split:

Score(split) = 4E = − |Gl|
|Gn|

E(Gl)−
|Gr|
|Gn|

E(Gr) (4.12)

where E(G) is the Shannon entropy of class labels distributions in the set of samples G.

Gl and Gr represent the training images contained in node n’s left and right child nodes

respectively. Gn is the set of training samples in node n. Leaf nodes store a normalised

probability distribution of the occurrence of all possible classes in the dataset.

4.4 Experiments and Results

We now illustrate the effectiveness of our proposed intelligent fusion techniques suitable

for incorporating human abstract knowledge in the decision making loop of visual object

recognition tasks. We have tested our solution on 4 datasets appropriate for evaluating

human in the loop applications. There are 2 examples from medical settings, and 2

applications of fine-grained visual classification.

The combination results at output level are based on two discriminative methods for

visual and textual features: i) an RBF kernel Support Vector Machine tuned similarly

to our experiments’ setup in the previous chapter, and ii) an ensemble of 1000 bagged

decision trees that we described previously in 4.3.2. We also have two generative

approaches suitable only for textual information from users: i) method of [130], and

ii) our introduced 1000 random naive Bayes solution in 4.3.1. All results presented are

based on a 5-time repeated random sub-sampling cross validation method. It may be

necessary to clarify that the fusion accuracies at input level presented for random forest

and SVM methods are the results of concatenating visual and textual feature vectors,

similar to our experiments in the previous chapter.
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4.4.1 Derm2309 Skin Conditions Dataset

This previously introduced dataset [168] contains images of skin conditions from 44

different diseases. Details of the dataset were fully described in the preceding chapter.

Table 4.3 illustrates classification accuracies of this dataset using different features and

methods.

4.4.1.1 Visual Results

The SVM solution has a mean classification accuracy of 13.37%. The random forest

technique results in an average accuracy of 15.76%. These classifiers are both fed with

the same type of visual features available from the public release of this dataset.

4.4.1.2 Textual Results

The SVM classifier using textual features results in an accuracy of 14.77%. A random

forest trained with the textual features has an average accuracy of 16.58%. The learned

model of [130] based on the multinomial distribution results in a mean accuracy of

18.4% on this dataset. Our proposed random naive Bayes method has an average

accuracy of 21.02%, a better performance than the SVM, and random forest approach.

This reiterates the effectiveness of our proposed solution to modelling high-level user

information in this dataset.

Table 4.3: Mean Accuracy of Classification Algorithms on Derm2309 Dataset

Information Source Classification Technique Mean Accuracy

Visual Based
SVM 13.37%
Random Forest 15.76%

Textual Based

SVM 14.77%
Random Forest 16.58%
Naive Bayes [130] 18.4%
Random Naive Bayes 21.02%

4.4.1.3 Combination Results

The most effective fusion solution for this dataset is again proved to be the neural

network approach based on random forest visual and random naive Bayes textual

classification techniques. It is quite interesting to note that in table 4.4 a simple

concatenation of visual and textual features and utilising a SVM algorithm yields a

classification accuracy of merely 16.03%. However, the deployment of neural network
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approach based on the same visual and textual features results in a mean accuracy

of 34.81%. This is an improvement of 18.78%. Baseline’s combination [130] accuracy

result of this dataset saturates at 22.39% using a visual SVM and a textual naive Bayes

classification technique.

Once visual and textual features are combined at input level using the random forest

technique, the classification accuracy rises to 25.12%. These improvements show the

usefulness of high-level knowledge in shape of answers from users. Our most effective

version of the greedy solution outperforms the Bayesian baseline combination in [130]

by approximately 8%. Our neural network approach performs better than other fusion

techniques with a 34.81% mean accuracy. These results also illustrate the importance

of source selection, and our proposed intelligent fusion methods.

Table 4.4: Mean Accuracy of Fusion Algorithms on Derm2309 Dataset

Fusion Classifier Concatenation

Input Level
SVM 16.03%
RF 25.12%

Fusion Classifier Equal Weight Greedy Alg. Neural Net.

Output Level
SVM+SVM 18.7% 20.98% 23.9%

RF+RF 25.58% 28.7% 31.74%
RF+RNB 26.08% 30.95% 34.81%

4.4.2 MIAS Mammographic Dataset

As another potential human in the loop medical application, we test our algorithms

on the aforementioned MIAS database released by the Mammographic Image Analysis

Society [174]. Full details of our experiment’s setup for this dataset can be found in the

previous chapter.

4.4.2.1 Visual Results

We build visual feature vectors of 5756 dimension to represent the visual information of

images in this dataset. In addition to the SIFT and PHOG features, we add Grey-Level

Co-occurrence Matrix (GLCM) [175], Local Binary Patterns (LBP) [167], Local Phase

Quantisation (LPQ) [176], and Canny Edge Detector [177] descriptors to the selection.

In this dataset, the low-level visual features struggle mostly between the benign, and

malignant classes. It seems that it is very hard to distinguish between these two classes

using only visual features. The random forest classifier is outperforming the SVM

baseline result on this dataset using the same visual features, as seen in table 4.5.
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4.4.2.2 Textual Results

The answer to the binary questions can be used to build user response pairs suitable for

the Bayesian method described in [130]. Each user response s contains an answer, and

a confidence value. As before, to utilise the random forest classifier, the questions are

exploited to build a textual feature vectors of 10 dimension. Random forest performs

almost as effective as the naive Bayes model in [130] using merely textual features. Our

proposed random naive Bayes method produces comparable mean accuracies to other

accurate approaches on this dataset.

Table 4.5: Mean Accuracy of Classification Algorithms on MIAS Dataset

Information Source Classification Technique Mean Accuracy

Visual Based
SVM 14.65%
Random Forest 28.44%

Textual Based

SVM 88.79%
Random Forest 88.36%
Naive Bayes [130] 89.65%
Random Naive Bayes 89.65%

4.4.2.3 Combination Results

Table 4.6 summarises the mean accuracies of various techniques using different sources

of information. The combination of low-level visual features with high-level knowledge

of human in the loop leads to an average accuracy of 89.65% using the Bayesian method

[130] of equal weight fusion. Due to the discriminative nature of questions in this dataset,

the mean accuracy of the framework using textual features is very high. However, the

Bayesian fusion method fails to exploit the information contained in the visual features

to improve the combination accuracy. The fusion accuracy is only as precise as the tags’

results on this dataset using the Bayesian or alternative techniques. Our introduced

greedy algorithm of source selection can improve the performance slightly but our neural

network approach exploits the visual information more efficiently, and enhances the

fusion accuracy to 94.81% from the baseline result of 89.65% produced by the Bayesian

framework.

At input level, the random forest framework concatenates the visual and textual feature

vectors. The addition of human high-level knowledge drives up the mean accuracy of

the algorithm from 28.44% based on visual descriptors to a staggering 90.94%. It is clear

from the results that visual features alone achieve very low recognition rates, reiterating

the challenging nature of these visual tasks. Nevertheless, human in the loop knowledge



Chapter 4. Generative Object Recognition with Humans in the Loop 84

can boost recognition rates to more acceptable levels. Our proposed fusion techniques

produce enhanced results in comparison to most accurate solutions on this dataset.

Table 4.6: Mean Accuracy of Fusion Algorithms on MIAS Dataset

Fusion Classifier Concatenation

Input Level
SVM 88.65%
RF 90.94%

Fusion Classifier Equal Weight Greedy Alg. Neural Net.

Output Level
SVM+SVM 88.45% 89.25% 89.25%

RF+RF 89.23% 90.4% 91.23%
RF+RNB 90.9% 90.08% 94.81%

4.4.3 Caltech-UCSD Birds 200 Dataset

CUB-200 [178] is the familiar dataset from our previous chapter. It includes 6033 images

over 200 bird species, such as Myrtle Warblers, Pomarine Jaegars, and Black-footed

Albatrosses. Details of the experiment’s setup were previously described.

4.4.3.1 Visual Results

The computer vision algorithm in [130] is based on Andrea Vedaldi’s publicly available

source code [55], which combines vector-quantised geometric blur and colour/grey

SIFT features using spatial pyramids, multiple kernel learning, and per-class 1-vs-all

SVMs. The authors also add features based on full image colour histograms and

vector-quantised colour histograms. They use a validation set to tune parameters for

the visual classification p(c|x). For comparative purposes, we also test this dataset using

our proposed discriminative random forest solution with the same visual features.

The main advantage of employing computer vision on this dataset is to reduce human

labour by minimising the number of questions user has to answer, or in other words the

number of tags needed to improve the quality of classification predictions. Computer

vision is more effective at reducing the average amount of time than reducing the time

spent on the most challenging images. It is clear from the results in table 4.7 that

random forest outperforms the SVM algorithm on this dataset.

4.4.3.2 Textual Results

A deterministic user with precise responses is assumed to achieve perfect classification

accuracy on this dataset within the first few rounds of answering questions. However,
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this assumption is not realistic, since subjective answers by user are common and

unavoidable. Stochastic user responses increase the number of questions necessary to

achieve a certain accuracy level. It is important to note that some images in this dataset

can never be classified correctly without computer vision, and solely by utilising user

answers.

We represent the classification accuracy results when merely user responses are

incorporated without any computer vision involved in the process in this section. The

learned model of [130] based on multinomial distribution results in a mean accuracy

of 66% due to its ability to tolerate a reasonable degree of error in user answers. We

also include the results from a number of different methods capable of estimating class

conditional p(S|c) to clearly illustrate the power of our random naive Bayes solution.

The performances of an SVM baseline solution in addition to the discriminative random

forest method in [160, 161] are also included for better comparison in table 4.7.

Table 4.7: Mean Accuracy of Classification Algorithms on CUB-200 Dataset

Information Source Classification Technique Mean Accuracy

Visual Based
SVM 19%
Random Forest 20.51%

Textual Based

SVM 61.92%
Random Forest 66.43%
Naive Bayes [130] 66%
Random Naive Bayes 68.89%

4.4.3.3 Combination Results

The fusion of information sources at input level with feature concatenation and output

level with assigned equal weights show no significant difference. However, it is clear

from table 4.8 that our intelligent source selection methods outperform the conventional

fusion techniques. Our neural network method of intelligent source selection based on

predictions from a random forest visual classifier and a random naive Bayes textual

classification technique yields the best performance at 68.89%. This is in contrast to

baseline results from authors in [130], who report an average accuracy of 66% based on

a SVM visual classifier and a naive Bayes textual classification method.

It is also worth to mention that user responses drive up the accuracy of computer vision

algorithms. Not only vision improves overall performance but also there are some cases

that cannot be correctly classified without computer vision, even after asking all possible

questions. The main advantage of the visual question paradigm is that contextual sources

of information can easily be incorporated in the system. For instance in this dataset,

information such as behaviour and habitat can be utilised as additional questions to
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help with better identification of different species. It is clear that our fusion techniques

improve the overall accuracy of this dataset more effectively than conventional methods.

Table 4.8: Mean Accuracy of Fusion Algorithms on CUB-200 Dataset

Fusion Classifier Concatenation

Input Level
SVM 63.32%
RF 66.32%

Fusion Classifier Equal Weight Greedy Alg. Neural Net.

Output Level
SVM+SVM 63.38% 64% 64.18%

RF+RF 66.38% 67.3% 68.7%
RF+RNB 66.4% 68.83% 68.89%

4.4.4 Ground Photograph Habitat Dataset

The extended version of previously deployed Ground Photograph Habitat database

[179] consists of 1086 ground images with 4203 annotated polygons. There are 27

distinct habitats present in the dataset. Full details of this dataset can be explored

in the preceding chapter. Evaluation metrics for multilabel classification are inherently

different from those used in multiclass classification, due to the inherent differences of

the classification problem. In our tests as in the previous chapter, we use the following

metrics for the habitat dataset:

Hamming Loss (relaxed metric): the percentage of the wrong labels to the total

number of labels. This is a loss function, so the optimal value is zero. 1 − loss
equals to the accuracy.

Exact Match (strict metric): is the most strict metric, indicating the percentage of

samples that have all their labels classified correctly.

4.4.4.1 Visual Results

We build 8976-dimensional visual feature vectors to represent the visual information of

the habitat dataset. The visual features used are: Coloured Pattern Appearance Model

(CPAM) [13], Geometric Blur (GB) [55], Global Image Descriptor (GIST) [171], Pyramid

Histogram of Oriented Gradients (PHOG) and its variations [55], Scale-invariant Feature

Transform (SIFT) and its variations, Pyramid Histogram of Visual Words (PHOW) and

its variations [167], and Self-similarity Feature (SSIM) [55].

It is important to remember that the low-level visual features in this dataset particularly

struggle to distinguish between semi-improved, and unimproved grassland classes of
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this dataset. These classes are even subjective for human surveyors. Additionally,

broad-leaved trees can be part of both the Broad-leaved Woodland habitat, which

is composed of broad-leaved trees, and the Mixed Woodland habitat, which is itself

composed of broad-leaved trees and coniferous trees. This similarity in classes explains

the reason why the low-level features may struggle to classify these habitats. It is

evident that our proposed random forest classifier outperforms the alternative baseline

SVM significantly.

4.4.4.2 Textual Results

The answer to questions in table 3.17 can be used to build user response pairs suitable

for the Bayesian framework of [130]. Each user response s contains an answer, and

a confidence value that deals with user’s uncertainty in answering the questions. The

answers to the questions can also be used to build textual feature vectors of 17 dimension

suitable for our approach. The results of these modelling methods can be found in table

4.9. It is again clear that our random naive Bayes method surpasses other possible

solutions.

Table 4.9: Mean Accuracy of Classification Algorithms on Ground Photograph Habi-
tat Dataset. Representing both Relaxed and (Strict) Metrics

Information Source Classification Technique Mean Accuracy

Visual Based
SVM 38.91% (3.03%)
Random Forest 56.6% (16.78%)

Textual Based

SVM 44.22% (5.94%)
Random Forest 52.81% (11.65%)
Naive Bayes [130] 45.66% (6.06%)
Random Naive Bayes 58.72% (17.94%)

4.4.4.3 Combination Results

Our proposed intelligent source selection methods prove to be very effective on this

dataset. The neural network approach based on predictions from random forest visual

and random naive Bayes textual classifiers achieves an intriguing mean accuracy of

68.25% and 35.19% for relaxed and strict metrics respectively. These results highlight

the fact that there is an impressive 15.47% improvement over results from the same

classifiers joined in an equal weight framework for the relaxed metric. This is also true

for the strict metric, where a 23.25% enhancement is evident. The baseline results based

on the proposed algorithm in [130] yield an average accuracy of 51.21% for relaxed and

11.65% for strict metrics.
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Table 4.10 summarises the accuracies of different fusion methods. The results of both

evaluation metrics we described previously is presented. As it is clear, the combination of

low-level visual features with high-level knowledge of users increases the average accuracy

of the algorithms. This is true with both metrics. The addition of human high-level

knowledge drives up the mean accuracy of the algorithm. It is obvious that our intelligent

fusion techniques are outperforming other frameworks in every aspect of the evaluation.

Table 4.10: Mean Accuracy of Fusion Algorithms on Ground Photograph Habitat
Dataset. Representing both Relaxed and (Strict) Metrics

Fusion Classifier Concatenation

Input Level
SVM 50.32% (10.78%)
RF 57.22% (17.94%)

Fusion Classifier Equal Weight Greedy Alg. Neural Net.

Output
Level

SVM+SVM 51.14% (11.2%) 53.3% (12.01%) 59.88% (21.63%)

RF+RF 57.22% (17.94%) 59.7% (21.47%) 65.22% (30.78%)

RF+RNB 52.78% (11.94%) 61.6% (22.37%) 68.25% (35.19%)

4.5 Conclusion

In this chapter, we introduced novel intelligent methodologies for selecting the most

effective source of information available in human in the loop fusion frameworks.

It is very interesting to note that our proposed neural network approach always

produces superior, or at minimum comparable results to the greedy method of selecting

information sources. It is also important to reiterate the fact that both our intelligent

information fusion techniques improve classification accuracies of currently common

literature methods such as: feature concatenation at input level, and considering equal

weights for separate classifiers at output level [130].

We believe that our intelligent method of source selection plays a deciding role in effective

incorporation of human in the loop knowledge that is truly necessary in solving difficult

tasks of object recognition. Our proposed approaches effectively select the most reliable

source of information from available classifiers and fuse them to produce more reliable

predictions. Moreover, our introduced random naive Bayes solution to modelling user

answers is a novel and efficient method in the relevant human in the loop literature. The

experimental results illustrate the effectiveness of our solutions on a variety of application

domains.



Chapter 5

Ranking Order of Human

Information

In the previous chapters, we reviewed how to efficiently harness user abstract information

for the purpose of enhancing the efficacy of classification algorithms. We believe that it

is imperative to emphasise the fact that although human interactions with our proposed

frameworks provide invaluable information which refines recognition outputs, the burden

on the user should be kept to a minimum.

It is universally agreed that computers are very efficient machines in performing mundane

tasks in contrast to humans who are good at more abstract delegations. In our proposed

human in the loop applications, we utilise human knowledge in the form of answers

to perceptual questions that describe complex subjects in images. Therefore, there

exist settings like our selected medical applications, where a large bank of questions

and answers are necessary in order to solve the problem at levels appropriate for clinical

practice. It becomes obvious that in such scenarios, it is neither acceptable nor plausible

to expect any user to answer hundreds of potential questions.

An intelligent sorting mechanism is vital for filtering irrelevant questions and

constructing a set of decisive enquiries that improves the quality of predictions from

classification algorithms. We believe that it is also expedient for any human in the

loop classification algorithm to have the capability of answering those filtered questions

automatically. An ideal system should be able to quantify its automatic answers with a

degree of confidence, and limit user intervention to uncertain cases.

We intend to propose an innovative approach that ranks perceptual questions according

to their relevance to a given image. This means that rather than asking those questions

in a random stochastic order, we want to rank them based on the quality of predicted

89
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answers and prompt merely the questions to which user responses can provide the most

significant improvement in terms of accuracy. In simple words, our introduced system

reduces the user’s burden by minimising the number of questions necessary to achieve

the best possible performance.

In this chapter, we will first review a solution to the problem of filtering relevant questions

to ask from the human in the loop, and then present our intelligent random forest based

technique that automatically responds to selected questions, and only invokes human

engagement when it is critical. The proposed approach is potentially compatible with

relevant online learning algorithms.

5.1 Problem Formulation

The principal objective is to discover appropriate methods for selecting questions related

to a particular image content in order to avoid troubling the human operator constantly.

We envisage that the answer to this complication is found by looking into information

gain theory and several statistical methods of calculating user responses.

Formally let Q = {q1, ..., qn} be a set of possible questions, and Ai be the set of possible

answers to qi. The user’s answer is therefore defined as some random variable ai ∈ Ai. As

it was described formerly, we also allow users to quantify each response with a certainty

value vi ∈ V , where V = {Guessing, Probably,Definitely}. The user’s response is then

a pair of random variables si = (ai, vi).

We then exploit an information gain criterion and Kullback-Leibler divergence [73] to

efficiently select the next set of suitable questions for a user in the loop. The upcoming

question is singled out by looking into image information, its set of possible answers,

as well as examining previous user responses. The question that yields maximum

information gain is selected. These are the questions, which approximately divide the

search span into halves in each round of algorithm iteration. The expected information

gain of posing the additional question is therefore defined as the following:

I(c; si|x, St−1) = Es[DKL(p(c|x, si ∪ St−1)||p(c|x, St−1))] (5.1)

where c is class, x is image information, and St−1 = {si(1), ..., si(t−1)} is the set of

responses obtained by time step t− 1. This can be further simplified by:

I(c; si|x, St−1) =
∑

si∈Ai×V
p(si|x, St−1)(H(c|x, si ∪ St−1)−H(c|x, St−1)) (5.2)
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where H(c|x, St−1) is the entropy of p(c|x, St−1):

H(c|x, St−1) = −
C∑
c=1

p(c|x, St−1)log(p(c|x, St−1)) (5.3)

These equations are employed to iteratively select a predefined number n of questions

in order of importance for the user to answer. The overall logical flow of this process is

illustrated in figure 5.1.

Figure 5.1: A sample image is displayed to the user in the loop. For each image, a
question and its possible answers are also displayed. The user answers the question. The
user will repeat the process until all the questions are finished or a threshold is reached.
The next question is selected by looking at previous user’s answers and computer vision

input. The final decision is also made by combining these two elements.

The inevitable problem induced by this approach is the issue of selecting a suitable value

for n, otherwise the process could in theory continues exhaustively until all possible

questions in set Q are asked. The simplest solution to such complication is to learn a

threshold value θ for the estimated information gain I(c; si|x, St−1) to reject statistically

insignificant questions:

I(c; si|x, St−1) > θ select the next question

otherwise stop asking new questions
(5.4)

However, learning such a threshold is not a trivial task. By implementing this approach,

the estimation of conditional probability distribution p(c|x, S) is clearly dependent on the

number of questions answered by the user and not the entire set of possible questions.

In the next section, we will introduce our novel solution that automatically predicts

answers to all available questions, and in turn enables p(c|x, S) to be estimated based

on a full range of possible questions and answers in any given dataset.
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5.2 Automatic Answer Prediction

The performance boost by the human in the loop is only valuable if the burden on

the user is kept to a minimum. The burden in our setting is defined as the number

of answered questions required to reach an acceptable performance. Hence, the user is

supposed to answer only a subset of questions from the entire set. Although the entire

set of questions is not answered exhaustively by the user in the loop, the classification

algorithm should still produce a reasonable response. The list of questions is ranked in

order of importance by the information gain criterion (5.1) described previously.

Ideally, we need to automatically predict responses for those questions left unanswered

by the user in a given application. This approach allows the classification algorithm to

fully exploit all available perceptual questions in the set. We innovatively treat this as

an image annotation problem, where predicting presence of tags is the same as guessing

answers to questions. It is clear that not all automatic annotations will be perfect, and

hence the least confidently predicted tags will be singled out to be asked directly from

a user.

In other words, sorting the predicted probability of tags in reverse order provides the

algorithm with a ranking list of most important questions to ask. We then ask the

user to provide correct answers to those least confidently generated replies by the tag

prediction algorithm. Thus, the user will be in charge of stopping the process at any

time they deem appropriate. This in turn will reduce the number of questions to reply

and therefore lowers the burden on the user involved in the decision making loop.

Our proposed approach in contrast to previous methods [130, 157] is to treat the ranking

of questions in order of importance as an annotation problem, where estimating the

presence of tags is the same as automatically predicting answers to perceptual questions.

This approach actually enables users to answer questions as many as they desire.

5.2.1 Construction of a Random Forest for Tag Prediction

To solve this annotation problem, we propose the construction of a random forest

algorithm that exploits tag information instead of the usual class labels to guide the

generation of its random trees. This approach allows the correlations among different

tags to be modelled implicitly. We compute the corresponding tag histograms of the left

and the right child nodes after a split at each node. The tag histogram of the left node

needs to be quite different from the tag histogram of the right node in order to obtain

a reasonable split.
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The widely adopted information gain criterion [73] is used as the score function to select

a suitable split at each node in the training stage. The constructed forest’s splits are

therefore selected based on the tags distribution of images instead of class labels used

in conventional random forests:

Score(split) = 4E = − |Gl|
|Gn|

E(Gl)−
|Gr|
|Gn|

E(Gr) (5.5)

where E(G) is the Shannon entropy of tag distributions in the set of samples G. Gl

and Gr represent the training images contained in node n’s left and right child nodes

respectively. Gn is the set of training sample in node n. This random forest algorithm is

trained on a collection of visual features similar to those utilised in the previous chapters.

The maximum depth and the minimum number of leaf node observations are selected

experimentally.

Whilst the input to the forest is a query image, which traverses down all the trained trees

until leaf nodes are reached, the output from the forest is a concatenated set of training

samples stored in the leaf nodes associated with the query image. The concatenated

set can be represented by a histogram that highlights training samples stored in the

leaf nodes, in addition to their frequency. We further clarify the usefulness of this

histogram representation as the output of our constructed forest in the following section

by introducing two auxiliary terms.

5.2.2 Tag Prediction by the Random Forest Algorithm

We consider the training images stored in the leaf nodes of the random forest as the

“Semantic Neighbours” of the test image. From the semantic neighbours of all trees,

we can conclude that the more often two images fall into the same leaf node, the more

semantically similar they are, and consequently they are more likely to share similar

tags. Thence, the two proposed concepts “Semantic Nearest Neighbour (SNN)” and

“Semantic Similarity Measure (SSM)” literally indicate “which” and “how many times”

training images fall on the same leaf node with the query image. The concepts of

semantic neighbours are illustrated in figure 5.2.

More specifically, the semantic similarity measure between the test and a given training

image is calculated as the number of times that the test image appears in the semantic

neighbour set. Using this measure, we can sort all images in the semantic neighbours

to retrieve the K semantic nearest neighbours. The K semantic nearest neighbour has

an important role in prediction of tags for the test image. These predicted tags will be

associated with a probability indicating how likely they are about to occur.
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Figure 5.2: An example showing the concepts of semantic neighbours. A query image
passes through all random trees. The training images stored at the leaf nodes on which
the query image falls into form the semantic neighbour set. Based on this, the semantic
similarity measure between the query and a given training image is calculated as the
number of times that the given image appears in the semantic neighbour set. A larger

semantic similarity measure indicates higher similarity.

Formally, we denote I the query image and Q the probabilities of assigning tags. Let

Ii represents I’s ith semantic neighbour with its count value denoted as ci. The ground

truth tags of Ii is denoted as Ti. Suppose there are M tags in total, hence Q and Ti can

be represented as M size vectors: Q = (q1, ..., qM )T and Ti = (ti1, ..., tiM )T . Here, tij is

an indicator function that shows tag j’s probability for the ith image. The prediction of

Q is totally influenced by Ti and ci values:

qj =
K∑
i=1

(
tij
Z
∗ f(ci)

)
, j ∈ {1, 2, ...,M} (5.6)

where Z is a normalising constant equal to
∑K

i=1

∑M
j=1 tij . The term f(ci) represents a

function that monotonically increases with ci. This term in fact reflects that a neighbour

with a larger count value should contribute more to the predication of tags. Based on

the computed vector (q1, q2, ..., qM )T , we can predict l tags for the test image which

correspond to the l largest qj values.

Possible forms of f(ci) include f(ci) = ci, f(ci) = c2i , etc. The form of f(ci) utilised in

our work is: f(ci) = c2i , since it proves to perform empirically superior to its potential

variations. However, adhoc choices of f(ci) may not be fully convincing. Authors of

[126] introduce a systematic method to learn f(ci) from training data.
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5.3 Experiments and Results

We evaluate our proposed algorithms on several medical datasets that contain

photographic images of skin lesions from various skin conditions. The first set of

experiments are carried out on the two preliminary skin datasets, which we explored

previously in chapter 3. The second set of experiments are performed on our previously

introduced larger “Derm2309” skin lesion dataset published in [168]. We also examine

“MIAS mammographic” and “Caltech-UCSD Birds 200” datasets and present their

respective results.

5.3.1 Derm90 and Derm706 Skin Conditions Datasets

In these pilot experiments, we concluded that different users could answer the same

question differently but this would not affect the final correct recognition of the skin

condition in a test image. This is achieved regardless of the method deployed for the

estimation of conditional probability distribution p(c|x, S). This classification algorithm

independence is due to the influential ranking of decisive questions evoked by equation

(5.1). It is obvious that the prediction of skin condition was carried out after a few time

steps and not once all the questions were answered by the users.

5.3.1.1 Order of User Answers

Table 5.1 lists the orders of questions selected by the ranking equation (5.1) from

“Derm90” dataset to ask from 3 different users for the purpose of classifying 3 sample

test images. It is evident that albeit questions assigned to different users are selected

in various orders based on their history of previous answers, and although their replies

to the same questions can differ from each other, the classification algorithm is still

capable of successfully classifying all test images due to presence of visual information

and sensible answers. Table 5.2 lists the orders of selected questions from “Derm706”

dataset in a similar experimental settings.

The correct diagnosis of Test Image 1, Test Image 2, and Test Image 3 in table 5.1 are

Infantile Acne, Discoid Eczema, and Scabies respectively. It is clear from the results

that our ranking algorithm (5.1) selects “Lesion Type” as the first question to ask from

the users in the loop. Contextual questions such as “Site” of the affected area, and

“Age” of the patient are amongst the next top queries. From the ranking algorithm’s

point of view on these testing images, “Contagiousness”, and “Itchiness” are not very

discriminative and therefore are not helpful in decreasing the uncertainty in labelling

the samples.
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Atopic Eczema, Superficial Spreading Melanoma, and Mycosis Fungoides are the ground

truth labels of Test Image 1, Test Image 2, and Test Image 3 in table 5.2. It is

apparent from the table that “Lesion Type” and “Surface Type” are amongst the first

questions selected by the ranking algorithm discussed previously. Depending on the

visual information of test images and users’ history of answers to the preceding queries,

a number of questions, such as “Site”, “Arrangement”, and “Colour” of lesions, are

ranked by the algorithm in order of importance in predicting the correct labels. It is

clear that “Erythema” and “Duration” of the conditions are not considered to be very

informative by the ranking algorithm for labelling these test samples.

Computer aided diagnosis has proved to be effective in removing the subjectivity of

human observers and reducing inter-observer discrepancies in a number of medical

applications [183, 184]. We believe that our results from this experiment are consistent

with this conclusion.

Table 5.1: Order of Derm90 Questions Asked by the Ranking Algorithm from 3
different Users for 3 Test Images. The numbers refer to the questions in Table 3.3.

User 1 User 2 User 3 User 1 User 2 User 3 User 1 User 2 User 3

4 4 4 4 4 4 4 4 4
6 1 6 6 1 6 6 1 6
1 6 1 1 3 1 3 6 3
3 5 3 3 6 3 5 3 5
2 3 2 2 2 2 1 5 1
8 2 8 5 5 5 2 2 2
7 8 7 8 8 8 8 8 8
5 7 5 7 7 7 7 7 7

Test Image 1 Test Image 2 Test Image 3

5.3.1.2 Frequency of User Answers

Figure 5.3 illustrates the frequency of possible answers selected by users in our pilot

experiments for the “Derm706” dataset. This frequency histogram can be potentially

useful in redefining the set of perceptual questions available for a skin lesion dataset.

Hypothetically, an answer that is present in almost all images of different classes cannot

be very informative to a classification algorithm. This is also a valid assumption for

the ranking equation (5.1), due to the underlying nature of its entropy calculation.
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Table 5.2: Order of Derm706 Questions Asked by the Ranking Algorithm from 3
different Users for 3 Test Images. The numbers refer to the questions in Table 3.4.

User 1 User 2 User 3 User 1 User 2 User 3 User 1 User 2 User 3

9 9 9 10 10 10 9 9 9
4 3 10 9 3 4 10 1 3
10 1 6 5 1 6 6 10 10
6 6 5 6 6 3 3 5 5
3 4 3 3 5 1 1 6 1
5 10 4 1 9 5 12 3 6
1 5 1 13 11 9 5 12 13
13 7 13 4 12 11 13 4 11
11 2 11 8 4 12 11 13 4
7 13 12 11 2 2 8 11 12
2 11 2 12 13 13 4 7 2
12 12 8 2 8 7 7 8 8
8 8 7 7 7 8 2 2 7

Test Image 1 Test Image 2 Test Image 3

Informally this can be explained by the fact that the less likely an event is, the more

information it provides when it occurs.

Figure 5.3: Frequency of answers selected by users in the “Derm706” dataset.

5.3.2 Derm2309 Skin Conditions Dataset

We evaluate the efficacy of our proposed random forest approach for automatic prediction

of answers to perceptual questions on our larger “Derm2309” skin conditions dataset.

There are several intriguing conclusions that can be drawn from this experiment:
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5.3.2.1 Automatic Answers Accuracy

It is very interesting to note that our solution is capable of answering all the questions

automatically, and achieving a superior performance to results based solely on visual

descriptors. In chapter 3, we revealed the advantages of incorporating high-level user

information into the conventional vision algorithms. It became clear that textual

descriptors built based on user provided information could improve the average accuracy

of our selected classification algorithms. It is evident in this experiment that automatic

answers to the same perceptual questions can replace real users’ responses to some degree

and still improve the overall performance of the classification algorithm.

Classification accuracy based on visual features saturates at 15.76% on this dataset,

whilst the combination of these visual features with our fully predicted answers, where no

real user is involved in answering the questions, results in an average accuracy of 17.91%.

These results are obtained from a standard random forest classification algorithm similar

to our introduced technique in the previous chapters.

5.3.2.2 Questions Ranking Effect

It is imperative to clarify the fact that users in our proposed system do not need to answer

all questions. Our model utilises both user provided answers, as well as automatically

predicted tags in calculating the final classification results, despite the fact that some

of these answers may have been wrongly predicted. Figure 5.4 represents the effect of

adding user provided answers to our solution. As we gradually replace least confident

automatic tags with user provided answers, the average accuracy rises. It is important

to note that the system does not require to utilise all user tags to achieve its peak

performance. In the same figure, results from randomly picked tags are also presented

for comparison purposes. It is obvious that randomly picking user tags has not the same

effective results as selecting the least probably correct ones using our solution.

Our proposed method reaches the peak performance on this dataset after utilising 30

answers from the user. However, it is clear that the same results cannot be achieved

by replacing the automatically predicted answers with real user responses in a random

stochastic order. This reiterates the fact that our proposed method of reducing user’s

burden can be fairly effective.
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Figure 5.4: Mean classification accuracy results on Derm2309 Dataset: System pre-
dicted tags reduce the number of user tags required to achieve peak performance. Re-

sults from randomly picked tags is also illustrated.

5.3.3 MIAS Mammographic Dataset

As a further evaluation of our proposed random forest approach for automatic prediction

of answers to perceptual questions, we set up a similar experiment to our previous test

on the MIAS Mammographic Dataset.

5.3.3.1 Automatic Answers Accuracy

Classification accuracy based purely on visual descriptors levels at 28.44% on this

dataset. This result is achieved using a random forest algorithm as the method of

classification. The combination of visual features and our automatically predicted

answers, where no real user is involved in answering the questions, results in a mean

accuracy of 44.39%.

This highlights the fact that even a fully automatic set of answers can significantly

increase accuracy rates of a very difficult visual object recognition application. In chapter

3, we extensively discussed the benefits of high-level user information. It is once again

observed that textual descriptors built based on user provided information can improve

the average accuracy of selected classification algorithms.
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5.3.3.2 Questions Ranking Effect

Figure 5.5 illustrates the effect of introducing user provided answers to our random

forest classification algorithm. As before, we gradually replace least confident automatic

tags with user provided answers. It becomes evident that the average overall accuracy

increases. It is imperative to emphasis once more that the system does not need to

deploy all user tags to achieve its peak performance. In the same figure, results from

randomly picked tags are also presented. It is again obvious that randomly picking

user tags has not the same effect as selecting the least probably correct ones using our

proposed solution. Our model utilises both user provided answers, and automatically

predicted tags in calculating the final classification results. This is despite the fact that

some of these tags may have been inaccurately predicted.

Our proposed ranking algorithm reaches the peak performance on this dataset after

utilising 8 answers from the user. It is evident that similar results cannot be obtained

by replacing the automatically predicted answers with real user responses in a random

order. This reiterates the fact that our proposed method of reducing user’s burden can

be useful in interactive medical applications that may require a large bank of questions

and answers.

Figure 5.5: Mean classification accuracy results on MIAS Dataset: System predicted
tags reduce the number of user tags required to achieve peak performance. Results

from randomly picked tags is also presented.

5.3.4 Caltech-UCSD Birds 200 Dataset

We attempted to examine our automatic prediction technique on the “Caltech-UCSD

Birds 200” Dataset. However, the achieved results were not as promising as our tests
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on medical datasets. We assume that this failure is partially due to the low number

of training images in the dataset, considering its large variability of class labels and

possible tags. We believe that a more effective method of automatic annotation is

needed to obtain reasonable results on this dataset.

5.3.4.1 Automatic Answers Accuracy

Classification accuracy based on visual descriptors levels at 20.51% on this dataset,

whilst the combination of the same visual descriptors with our automatically predicted

answers, where no user is involved in answering the questions, leads to an accuracy

of 21.94%. These results are obtained from a standard random forest classification

algorithm similar to our introduced technique in the previous chapters.

Although the overall outcome of our experiments on this dataset fails to show the

encouraging results we observed on the preceding datasets, it is still worth noting

that our proposed solution is capable of answering all the questions automatically, and

achieving a slightly better performance than results based only on visual features. As

it was mentioned before, in chapter 3, we revealed the advantages of incorporating

user information into vision algorithms. It is again observable that textual descriptors

improve the average accuracy of our classification algorithm. Automatic answers to the

perceptual questions can replace real users’ input to some extent and marginally improve

the overall performance on this dataset.

5.3.4.2 Questions Ranking Effect

Our model utilises both user provided answers and automatically predicted tags in

calculating the final classification results. Figure 5.6 represents the effect of adding user

provided answers to our solution. As we gradually replace least confidently predicted

tags with user provided answers, the average accuracy rises. It is desirable for us to

design a system that reaches its peak performance without utilising all user answers. In

the same figure, results from randomly selected tags are also presented.

It is clear that our proposed method of replacing system predicted tags fails to achieve

an improved result over a random method of replacement on this dataset. The random

method achieves its peak performance at approximately 65% after utilising 230 user

provided tags, whereas our intelligent method levels at 61.13% after incorporating the

same number of user tags. It takes the entire set of user answers for our proposed method

to reach the peak performance. Therefore, this failure prevents the desired alleviation

of burden imposed on our users in the loop.
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In contrast to the last two cases, the total number of tags to predict is larger in this

dataset. We believe that our intelligent selection method fails to accomplish its purpose

due to the smaller number of training samples per class, and the larger number of class

labels present in this dataset. More training samples and a more robust method of label

prediction should in theory help with fixing the issues faced on this dataset.

Figure 5.6: Mean classification accuracy results on CUB-200 Dataset: System pre-
dicted tags should reduce the number of user tags required to achieve peak performance.

Results from randomly picked tags is illustrated.

5.4 Conclusion

In this chapter, we introduced intelligent methods to select the best sequence of questions

that improves classification performance, and simultaneously removes the burden from

user’s side. Firstly, we introduced the information gain criterion useful for effective

ranking of questions in order of their decisiveness in finalising a correct classification.

Secondly, we proposed our random forest approach for automatic prediction of user

answers in order to eradicate the need for exhaustive examination of every single question

in a given dataset. We tested the efficacy of these algorithms in a medical setting on

several skin conditions datasets with various levels of size and difficulty.

In the following chapter, we will discuss an innovative approach that separates the

most discriminative features and has the capability to enhance the accuracy of many

classification algorithms, including our interactive techniques. The process of selecting a

subset of relevant features is vital to designing robust human in the loop vision models.

Our proposed selection techniques in the next chapter eliminate redundant or irrelevant

visual and textual features, and therefore they are considered to be an important primary

step in utilising any of the introduced techniques in the previous chapters.
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Discriminative Subspace Selection

based on Mutual Information

In many machine vision and pattern recognition applications, the infamous “curse

of dimensionality” is a well-known problem. A widely used approach to alleviate

this complication is subspace methods, where the original data is projected onto a

new space in which lower dimensional feature vectors are used to approximate the

original vectors. Amongst conventional subspace methods are: Principal Component

Analysis (PCA) [185], Linear Discriminant Analysis (LDA) [186], various frequency

analysis based transforms such as the Fourier Transform (FT) [187], and its derivative

the Discrete Cosine Transform (DCT) [188], short-time Fourier Transform, Wavelet

Transform (WT) [189], and other variations of frequency analysis method such as the

Hadamard Transform (HT) [190]. Random Projection (RP) [191], where the original

data is projected onto a lower dimensional random directions, has also been used for

dimensionality reduction.

Nevertheless, it is reasonable to claim that all these subspace methods were not originally

developed specifically for pattern recognition or object classification applications. PCA

is for identifying subspaces, in which the input data has the largest variance, such

that the inverse transform from a lower dimensional subspace recovers the original

data with minimum loss of energy. FT, DCT, WT, and HT are all for retaining the

lower frequency components of the original data. Surprisingly, pattern recognition

literature conventionally adopts these methods, as they were originally developed for

dimensionality reduction, without questioning if they also make theoretical and practical

sense when applied to pattern recognition.

We believe an ideal representation is in a space where the classes of data are well

separable. As we will demonstrate later, directly applying these methods in pattern

103
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recognition or classification is not always the best practice, and a new information theory

based method for selecting the subspaces can enhance the performance of a learning

system substantially. A discriminative subspace can also boost the efficiency of “Human

in the Loop” classification algorithms, which may suffer from the abundance of potential

visual and textual descriptors. This chapter makes the following main contributions:

1. It enhances a common practice widely used by practitioners in the field of

pattern recognition. To the best of our knowledge, this work originally highlights

the interesting fact that in implementation of dimensionality reduction subspace

methods, such as [192–196] for pattern recognition or classification applications,

practitioners should not directly adopt the conventional methods but instead

explicitly opt for a discriminative subspace from the transforms.

2. It develops an information theory based technique for systematically selecting

subspaces that are discriminative and therefore are suitable for pattern recognition

or classification purposes.

3. It presents extensive experimental results on a variety of computer vision and

pattern recognition tasks to illustrate that the subspaces selected based on the

maximum mutual information criterion will almost always improve performance

regardless of the classification techniques in use.

In the rest of this chapter, our setup is the regular multiclass setting, where we

have a labelled dataset {(xi, yi) ∈ X × Y } sampled iid from a distribution D on

Rd × [l]. We therefore need a classifier f : Rd → [l] with low generalisation error

PD(f(x) 6= y). To keep focus on the effectiveness of our subspace selection method,

we restrict ourselves to three classifiers: Random Forest, Support Vector Machine, and

Naive Bayes in the evaluation section of this chapter. We believe our discriminative

dimensionality reduction method can also improve the performance of other classifiers

given any particular settings.

6.1 Problem Formulation

Our proposed technique is close in nature to existing methods that work by finding

suitable subspaces constructed from data. These methods generally find directions v

that maximise a signal to noise ratio:

R(v) =
vTSv

vTNv
(6.1)
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where matrices S andN are selected such that quadratic forms vTSv and vTNv represent

signal and noise respectively along direction v. This ratio allows us to categorise

similar methods in those that can produce many directions, and those that can generate

discriminative directions. One of the most straightforward statistics involving both

features and labels to extract directions is the matrix E[xyT ]. This is the collection of

class-conditional mean feature vectors in a multiclass classification setting. However,

it is relatively safe to expect that such simple first moment statistics fail to contain

all the information available in the data distribution. Alternatively, a collection of

the conditional second moment matrices Ci = E[xxT |y = i] can be used to extract

features. Nevertheless, there is no reason to expect that these extracted directions are

specific to class i. The directions may be very similar for all classes, and hence not

very discriminative. A simple solution to this problem is to use the ratio of expected

projection magnitudes conditional on different class labels. This necessitates to address

which class pairs to extract directions. When the number of class labels is modest, it is

possible to consider all ordered pairs of classes but unfortunately this is not the case in

many applications.

We believe that it may be advantageous to explore higher than second order statistical

information to derive a discriminative subspace, which not only enables low dimensional

representation of inputs but also allows input projections to be well-separated. For

instance, kernel based subspace methods [33, 34, 197] exploit higher order statistics

to derive a subspace. Information theory [198] can also be used to benefit from

higher order statistics. Mutual information measures general statistical dependence

between variables rather than their linear correlations. It is also invariant to monotonic

transformations performed on the variables. These illustrate a number of advantages

that information theoretic approaches may have over similar methods for deriving

discriminative subspaces.

6.2 Mutual Information Subspace

Inspired by the aforementioned advantages of mutual information over alternative

solutions, we introduce the implementation of a method based on information theory.

This technique exploits mutual information to guard against selecting non-discriminative

directions, while allowing the extraction of a diverse range of transformation vectors.

Formally, we let X and Y be discrete random variables with sets of possible outcomes.

We then define the mutual information between X and Y as:
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I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(6.2)

where p(x, y) is the joint probability distribution function of X and Y , and p(x) and

p(y) are the marginal probability distribution functions of X and Y respectively.

Mutual information measures the amount of information x conveys about y. In the

context of object classification, Fano’s inequality [35] provides us with a lower bound for

the probability of error, and an upper bound for the probability of correct classification.

Formally, the probability of misclassification error Pe = P (y 6= y′) has the following

bound:

P (y 6= y′) >=
H(Y )− I(X;Y )− 1

log(C)
(6.3)

where H(Y ) is the entropy of Y , X is the ensemble of random variable x, and C is the

number of object classes.

Equation (6.3) quantifies at best how well we can classify objects using available features.

However, an upper bound of the probability of misclassification error cannot be expressed

in terms of Shannon’s entropy. The best one can do is to minimise the lower bound to

ensure an appropriately designed classification algorithm performs well. Since both C

and H(Y ) are constants, we can maximise the mutual information I(X;Y ) to minimise

the lower bound of the probability of misclassification error. At this point, the task

develops into finding the transform function that minimises this lower bound. We

therefore implement the preceding transform function by finding a low-dimensional

representation f of the original set of N d-dimensional observations Xd×N . This is

achieved by projecting the original input data onto a k-dimensional (k << d) subspace

using a k × d matrix G:

fk×N = Gk×dXd×N (6.4)

In this chapter, we are motivated by mutual information and an information theoretic

criterion to select the projection matrix G∗:

G∗ = arg max
∀G

I(GX;Y ) (6.5)

where Y is the identity variable of input variable X, I(X;Y ) is the mutual information

between X and Y .
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The mutual information I(GX;Y ) is calculated by estimating the probability density

from a finite number of samples. Let us assume that we have N number of samples in

the training set. The probability densities p(x), p(y), and p(x, y) can be approximated

by histograms. The difference between the true value I and the estimation I of the

mutual information can be estimated by adapting the analysis of [199], as the following:

∆I ≡ I − I ≈ 1

2N

(∑
x,y

(δnxy)
2

nxy
−
∑
x

(δnx)2

nx
−
∑
y

(δny)
2

ny

)
(6.6)

where the sums are over the discretised intervals and δn are the fluctuations of the

countings with respect to the mean values (δn = n − n). The approximation is valid

up to the second order of the relative fluctuations, and if the ratios do not change

significantly with x and y.

Different subspace methods differ in their way of computing and selecting base vectors of

the projection matrix G. We need to clarify that our criterion for selecting base vectors

in the projection matrix G differs intrinsically from their conventional counterparts.

Specifically, we want to employ the maximum mutual information criterion (6.5) to

select the appropriate k base vectors.

To find the first base vector of G, we select one computed vector from a subspace method

at a time, and project all other computed vectors from the training set onto that selected

vector. The projections are a set of scalar numbers, which can be discretised. The

samples’ identities can be used to estimate the joint probability. The joint probability

can be deployed to estimate the mutual information between the projections and the

class distribution, as discussed previously. The vector with projection outputs that

maximises the mutual information is selected as the first transform base of matrix G.

This base is subsequently removed from the vectors’ set.

The process continues until all required k base vectors are found. If we have a large

enough pool of samples, it is reasonable to assume that most informative representative

bases will be selected. The representational quality and discriminative power of f is

dependent on the computed base vectors of matrix G. In the rest of this chapter to

clarify the practicality of this approach, we exemplify the computation and selection

procedures of a data-independent, data-dependent, and the random projection methods

of dimensionality reduction using mutual information criterion. The pseudo code in 3

summarises our process described in this section thus far.
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Algorithm 3 Mutual Information Subspace Algorithm

Require: Observations: Xd×N , Labels: Y , Number of base vectors: k
Step 0: Compute subspace transformation matrix G

e.g. eigenvectors of covariance matrix form Gd×d in PCA

Step 1: Compute projections of samples X onto base vectors of G
i.e. form projection matrix Zd×N = GX

Step 2: Compute mutual information for every base vector of Z as in eq.6.2
i.e. calculate I(Zi×1;Y ),∀i ∈ d

Step 3: Sort all base vectors based on their calculated I(Zi×1;Y )
i.e. construct matrix G∗ = ∅
while there exist unsorted base vectors v do
v = arg max

∀i∈d
I(Zi×1;Y )

G∗ = G∗ ∪ {v}, Z = Z − {v}
end while

return First k rows of G∗

6.2.1 Examples of Common Subspace Methods

Data Independent Transform - DCT:

The projection matrix G in the Discrete Cosine Transform (DCT) method of

dimensionality reduction is the transform coefficients. Conventionally, reduction is

achieved in the inverse transform by discarding the transform coefficients corresponding

to the highest frequencies. In contrast to the convention, we propose to use the mutual

information criterion (6.5) to select the k transform coefficients used in the projection

matrix, and not simply the coefficients corresponding to the lowest frequencies.

Data Dependent Transform - LDA:

LDA computes an optimal projection by minimising the within-class distance and

maximising the between-class distance simultaneously, thus achieving maximum class

discrimination. The optimal transformation in LDA can be readily computed by

applying an eigendecomposition on the so-called scatter matrices. More specifically,

eigenvectors corresponding to the k − 1 largest eigenvalues form columns of G. Instead

of relying on largest eigenvalues to form the projection matrix, our proposed mutual

information criterion selects the base vectors of G.

Data Dependent Transform - PCA:

In Principal Component Analysis (PCA), eigenvalue decomposition of data covariance

matrix is computed as E{XXT } = EΛET , where the columns of matrix E are the

eigenvectors of data covariance matrix E{XXT } and Λ is a diagonal matrix containing

the respective eigenvalues. The k eigenvectors corresponding to the k largest eigenvalues
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of the covariance matrix form the projection matrix G. In contrast to this traditional

approach of selecting the first k vectors, we rely on the mutual information criterion

(6.5) explained previously to select the appropriate bases of matrix G.

Random Projection - RP:

A simple probability distribution can form the base vectors of the projection matrix G

in the Random Projection method of dimensionality reduction:

gij =


+1 with probability 1/3

0 with probability 1/3

−1 with probability 1/3

(6.7)

Conventionally, the first k computed vectors from this distribution constitute the

projection matrix G. However as before, we propose to use the mutual information

criterion (6.5) to select the required k bases instead.

6.2.2 Useful Properties

The feature descriptors resulting from maximising equation (6.2) have a number of useful

properties that we list below:

Proposition (Maximum Dependence) By maximising equation (6.2), we ensure that

two random variables X and Y are statistically as dependent as possible. This means

that feature vectors most relevant to a certain class is always preferred.

Proof. Mutual information I(X;Y ) = 0 if and only if X and Y are independent random

variables. In such case, the joint probability between the two variables is p(x, y) =

p(x)p(y), and therefore:

log

(
p(x, y)

p(x)p(y)

)
= log 1 = 0 (6.8)

This criterion enables our algorithm to maximally exploit the data by selecting the most

informative descriptors of a certain class.

Proposition (Nonlinear Separation) Mutual information ability to consider nonlinear

relations between variables can be advantageous over linear methods of analysis like

correlation.
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Proof. Mutual information is capable of measuring general dependence between two

variables. Variables x and y are linearly independent if E(xy) = E(x)E(y), and

generally independent if p(x, y) = p(x)p(y). Hence, general independence implies

linear independence, but not vice versa. This property enables this algorithm to be

advantageous over linear methods of analysis.

We intend to test our introduced method on data-independent, data-dependent, and

the random projection dimensionality reduction techniques. We prove that our solution

empirically works well, as we illustrate in the evaluation section of this chapter.

6.3 Experiments and Results

We evaluate our discriminative subspace selection method on a number of benchmark

datasets. However, we firstly assess simple synthetic data to graphically illustrate the

efficacy of our proposed technique. All results presented in this section are based on a

5-time repeated random sub-sampling cross validation method. We fix three commonly

used multiclass classifiers and compare their outcomes to solely examine the performance

of our algorithm and discard other potentially influential factors. The selected classifiers

are an ensemble of 200 bagged decision trees, an RBF kernel SVM, and a naive Bayes

model.

It is imperative to note that the main focus here is not to exactly achieve state-of-the-art

classification performance on all datasets through a vigilant engineering procedure, but

to emphasise the usefulness of our mutual information technique given any method of

subspace dimensionality reduction. Our algorithm outperforms the original subspace

methods in all tests or at minimum produces comparable results. State-of-the-art

performance is easily attainable once our feature selection approach is combined with

carefully crafted descriptors and fine-tuned hyperparameters of robust classifiers.

6.3.1 Synthetic Data

In this pilot experiment, we generate a 100-by-2 matrix R of random variables chosen

from a multivariate normal distribution with mean vector µ, and a symmetric positive

semi-definite covariance matrix Σ to simplify the visualisation process. The synthetic

data is an example of a binary classification problem, where two sets of 50 instances

belong to 2 discriminable class labels. The data is randomly split into a 50:50 training

and testing sets.
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We project the 2-d features onto a 1-d subspace and use a naive Bayesian classifier to

categorise the data in the projected 1-d space. The purpose of this experiment is to

verify the soundness of our method and to demonstrate the possible advantages of our

technique over conventional subspace methods. We hence compare our algorithm with

the well-known subspace method of Principal Component Analysis, and measure the

mutual information between the projected 1-d features and the data’s class labels to

examine the relation between mutual information and classification error.

Figure 6.1 depicts a situation, where projecting the data onto the 1-d PCA base

fails to discriminate between the two classes, whilst projecting the data onto our

subspace alleviates the classification problem by making classes easier to separate. In

this example, PCA finds the direction of maximal variance but fails to determine the

most discriminative direction. From this simple experiment, we also conclude that the

mutual information and classification error have a direct relation: the higher the mutual

information contained in the subspace, the lower the classification errors are and vice

versa.

Figure 6.1: 2D illustration of a two class dataset, where PCA and mutual information
subspaces have been drawn. The projection on a 1D line clearly demonstrates the

separability of data using our subspace selection method (right box, top line).

Principal Component Analysis is a widely used linear transform for dimensionality

reduction. It is an optimal reduction technique in the mean square error sense. The

eigen subspace captures the directions of maximal variance in data. Nevertheless, as

we just illustrated in figure 6.1, the maximal variance and discriminative directions

are not guaranteed to coincide. Therefore, PCA subspace is not always appropriate

for representing the data in a classification settings. We believe that our algorithm

captures higher order, more general statistical information, and therefore is a more

suitable candidate than the alternative solutions.
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6.3.2 Derm2309 Skin Conditions Dataset

This familiar dataset [168] contains images of skin conditions from 44 different diseases.

There are 880 training and 1429 testing images, totalling 2309 images in the dataset. In

the original release of this dataset, there are 20 training images per class, and the rest are

used for testing. The sheer difficulty of this dataset, in addition to our adherence to its

original split of training and testing sets lead to the observed low average classification

accuracies in our experiments.

Table 6.1 represents the mean classification accuracies based on different fractions of

the data’s original dimensions. The mean accuracies of the same classifiers using no

dimensionality reduction technique on this dataset are 20.37%, 19.4%, and 18.88% for

random forest, SVM, and naive Bayes respectively. It is evident from the LDA results

that classification of this dataset can be performed in the reduced space more accurately

than in the original space. This improvement is observable from the outputs of all the

three classifiers.

The LDA method achieves the best performance on this dataset by using 70% of the

available data. This result is obtained by the random forest classifier. It is clear that

our mutual information technique can indeed enhance the accuracies returned by all the

dimensionality reduction methods. Our technique enhances the accuracies of LDA and

random projection more noticeably than the other dimensionality reduction methods

using the random forest and the naive Bayes classifiers.

These results are based on PHOW-HSV, and textual features enclosed in the public

release of this dataset.

Table 6.1: Mean Accuracies in Percentage on Derm2309 Dataset

Classifier Random Forest SVM Naive Bayes

Dimension 10% 30% 50% 70% 10% 30% 50% 70% 10% 30% 50% 70%

DCT 16.52 16.03 16.79 15.89 14.75 14.75 15.75 15.75 12.27 12.97 11.99 11.64
DCT+MI 16.66 17.49 16.79 17.91 16.75 16.75 17.75 17.75 14.38 14.45 13.38 13.45

LDA 12.06 15.12 20.90 25.40 14.84 15.32 19.26 20.23 10.96 12.67 16.74 20.41
LDA+MI 15.21 19.74 23.97 26.87 17.43 19.01 19.75 20.23 14.25 17.67 19.32 20.41

PCA 13.37 20.64 18.54 16.72 17.06 19.65 18.25 17.27 12.32 15.52 16.98 17.00
PCA+MI 15.26 21.20 19.17 18.61 19.30 19.86 18.25 17.34 13.04 17.01 17.84 17.07

RND 11.24 12.08 12.43 13.06 16.17 15.75 15.75 15.75 10.22 12.25 14.83 15.81
RND+MI 14.46 14.60 14.46 15.44 16.17 15.82 15.75 15.75 13.43 14.76 15.81 15.95

W/O
20.37 19.40 18.88

Reduction
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6.3.3 MIAS Mammographic Dataset

We test our proposed subspace selection algorithms on the aforementioned MIAS

database released by the Mammographic Image Analysis Society [174]. Full details

of our experiment’s setup for this dataset was described in the previous chapters. It

may be necessary to mention that adopting a smaller number of trees in this chapter

leads to the observed lower average classification accuracies in our experiments.

Table 6.2 represents the mean classification accuracies based on different fractions of

data’s original dimensions. The average classification accuracies using no dimensionality

reduction technique on this dataset are 35.41%, 33.22%, and 32.14% for the random

forest, SVM, and naive Bayes classifiers respectively. The results of all our proposed

dimensionality reduction methods illustrate that classification of this dataset can be

performed in the reduced space more accurately than in the original space. This

enhancement is observable from the outputs of all the three classifiers.

The PCA and random projection methods enhanced by our mutual information

technique achieve the best performance on this dataset. These enhancements are

observable by all the three classifiers. In spite of our mutual information technique’s

ability to improve the average accuracies of all the dimensionality reduction methods,

LDA illustrates the smallest enhancement in the results obtained by all the classifiers.

The random naive Bayes classifier demonstrates a modest improvement of results by

using any dimension larger than 30% of the data’s original dimensionality. This is

mostly noticeable with DCT and LDA techniques.

These results are based on visual feature vectors of length 5756, which include: SIFT

[11], grey PHOG features [167], Grey-Level Co-occurrence Matrix (GLCM) [175], Local

Binary Patterns (LBP) [167], Local Phase Quantisation (LPQ) [176], and Canny Edge

Detector [177] features. To utilise human in the loop information, the dataset questions

were exploited to build textual descriptors.

6.3.4 MSRC 21-class Dataset

MSRC 21-class is a well-known dataset [5] that contains 591 images. Each image has

pixel-level ground-truth labels from 21 semantic classes. These 591 images are split into

276 for training, 59 for validation, and the remaining 256 images for testing purposes.

Table 6.3 represents the mean classification accuracies based on different fractions as

before. The mean accuracies of the same classifiers using no dimensionality reduction

technique on this dataset level at 64.4%, 61.95%, and 59.3% for random forest,
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Table 6.2: Mean Accuracies in Percentage on MIAS Dataset

Classifier Random Forest SVM Naive Bayes

Dimension 10% 30% 50% 70% 10% 30% 50% 70% 10% 30% 50% 70%

DCT 29.74 30.17 31.47 31.47 26.29 27.43 29.22 32.10 26.72 29.31 30.60 30.60
DCT+MI 35.78 36.64 37.50 37.07 28.90 31.19 35.29 36.61 29.74 30.60 32.33 31.47

LDA 30.43 30.86 38.71 39.74 30.95 30.05 36.17 37.78 23.71 25.17 30.07 30.16
LDA+MI 34.60 34.54 39.64 40.33 33.06 33.19 38.10 38.66 26.12 28.43 31.81 32.92

PCA 32.33 34.48 31.47 26.29 31.44 33.63 32.11 30.03 31.47 31.03 31.90 30.17
PCA+MI 38.79 35.78 43.10 39.22 36.72 35.09 40.79 36.71 32.76 33.19 33.62 34.48

RND 30.60 29.74 24.14 33.62 26.64 27.01 26.02 29.82 30.17 30.17 31.03 31.03
RND+MI 41.38 42.67 39.66 43.97 36.54 36.78 38.48 39.97 36.64 35.34 34.05 34.91

W/O
35.41 33.22 32.14

Reduction

SVM, and naive Bayes respectively. It is observable from the results of all our

employed dimensionality reduction techniques that classification of this dataset cannot

be performed in the reduced space more accurately than in the original space. This

is noticeable from the outputs of all the three classifiers. Dimensionality reduction is

primarily used for compression. Thus, it can only help learn a better classifier, when

the data does have a low dimensional structure. We believe that the observed difference

between the classification results in the original and the reduced space requires further

investigation in the future, as the gap between the two seems to be abnormal on this

dataset.

The DCT and random projection methods achieve the best performance in the reduced

space on this dataset by using 50% and 70% of the data’s original dimensions. These

results are obtained by the random forest and the SVM classifiers. LDA’s results do

not exhibit a substantial improvement after utilising 70% of the available data. This

is due to the absence of a significant difference between the ranking of eigenvalues and

eigenvectors returned by the original LDA and our mutual information technique. PCA

also demonstrates a similar results to some extent on this dataset using 70% of the data’s

original dimensions.

These results are based on Texton, colour histograms, and PHOG visual features.

6.3.5 Oxford Flower Recognition Dataset

The Oxford flowers dataset [200] contains 17 different types of flowers. Each class

contains 80 samples, 40 for training, 20 for validation, and the rest for testing.

Table 6.4 describes the mean classification accuracies based on different fractions of

data’s original dimensions. The mean classification accuracies using no dimensionality
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Table 6.3: Mean Accuracies in Percentage on MSRC 21-class Dataset

Classifier Random Forest SVM Naive Bayes

Dimension 10% 30% 50% 70% 10% 30% 50% 70% 10% 30% 50% 70%

DCT 51.94 56.13 57.74 57.10 52.26 52.26 56.26 56.26 40.32 39.68 41.94 44.19
DCT+MI 54.84 56.13 58.06 59.35 54.26 54.26 59.26 59.26 42.58 46.45 47.42 47.10

LDA 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 41.29 46.77 46.77 46.77
LDA+MI 51.94 54.19 52.26 50.00 51.94 54.84 52.90 50.00 41.29 50.32 50.32 46.77

PCA 56.77 53.55 46.13 46.77 50.65 49.03 49.68 50.00 42.58 47.74 46.13 40.97
PCA+MI 60.32 57.74 54.52 47.42 52.26 49.35 49.68 50.00 43.23 48.06 46.45 41.94

RND 50.00 50.97 52.90 54.19 52.26 52.26 52.26 52.26 37.10 42.58 42.90 43.55
RND+MI 54.19 58.06 56.45 59.68 58.26 58.26 58.26 58.26 40.65 42.90 45.48 45.81

W/O
64.40 61.95 59.30

Reduction

As some results seem unintuitive even though confirmed through repeated experiments,
we acknowledge that further analysis of the results is warranted as part of our future

work for this chapter.

reduction technique on this dataset are 49.53%, 46.4%, and 43.35% for the random forest,

SVM, and naive Bayes classifiers respectively. It is evident from the LDA results that

classification of this dataset can be performed in the reduced space more accurately than

in the original space. This improvement is observable from the outputs of the random

forest and the SVM classifiers. PCA results produced by the SVM and the naive Bayes

classifiers also demonstrate an improvement in the reduced space in comparison to the

original space.

The LDA method enhanced by our mutual information technique achieves the best

performance on this dataset by using 50% or 70% of the available data. These results

are obtained by the SVM classifier. The naive Bayes classifier illustrates a steady

improvement of about 1% in the results of all the dimensionality reduction techniques.

The noticeable exception to these improvements is the DCT method, which benefits

from a larger enhancement using all fractions of the data’s original dimensions. Our

proposed technique enhances the accuracies of random projection more noticeably than

the other dimensionality reduction methods using the random forest classifier. LDA and

SVM contrastingly exhibit some of the smallest improvements on this dataset.

The visual features used are: HSV colour histograms, SIFT, and MR8 texture

descriptors.

6.3.6 Pascal VOC2007 Challenge Dataset

Pascal visual object classes of 2007 challenge dataset [201] has 20 distinguishable classes,

as follows: person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle, boat, bus, car,
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Table 6.4: Mean Accuracies in Percentage on Oxford Flower Dataset

Classifier Random Forest SVM Naive Bayes

Dimension 10% 30% 50% 70% 10% 30% 50% 70% 10% 30% 50% 70%

DCT 41.76 43.53 42.65 42.94 41.76 39.41 39.71 39.41 31.18 29.71 29.12 28.24
DCT+MI 45.00 43.53 42.94 46.18 41.76 39.41 39.71 39.41 33.12 34.29 35.76 36.06

LDA 37.94 45.88 47.65 49.71 40.59 47.94 48.53 50.00 31.76 38.24 38.82 40.00
LDA+MI 39.12 46.47 48.82 50.00 40.59 47.94 50.00 50.00 31.76 38.24 40.00 40.00

PCA 44.71 40.59 35.29 32.94 46.76 46.76 45.88 45.88 47.65 42.35 36.18 39.71
PCA+MI 47.94 42.06 41.18 35.00 47.06 48.76 47.88 47.88 48.24 43.53 36.18 39.71

RND 38.82 40.88 39.41 42.06 44.12 40.88 39.12 40.88 35.88 39.41 40.59 42.35
RND+MI 41.18 43.53 47.65 42.94 44.41 40.88 39.71 41.18 36.76 40.00 41.47 42.65

W/O
49.53 46.40 43.35

Reduction

motorbike, train, bottle, chair, dining table, potted plant, sofa, and tv/monitor. Train,

validation, and test sets have 9963 images in total containing 24640 annotated objects.

Table 6.5 displays the average classification accuracies based on different fractions of

original data. The average classification accuracies using no dimensionality reduction

technique on this dataset stand at 31.41%, 29.82%, and 27.28% for the random forest,

SVM, and naive Bayes classifiers respectively. It is evident from the DCT, LDA, and

PCA results that classification of this dataset can be performed in the reduced space

more accurately than in the original space. This improvement is observable from the

outputs of all the three classifiers. The only exception on this dataset is the random

projection technique that illustrates a less accurate results in the reduced space. This

outcome is evident across all the three classifiers.

The DCT and PCA methods enhanced by our mutual information technique achieve

the best performance on this dataset. These results are obtained by the random forest

and the SVM classifiers. A steady improvement of approximately 2% is observable

from all the dimensionality reduction methods using the same classifiers. The naive

Bayes classifier demonstrates the least significant enhancement in all the dimensionality

reduction techniques, particularly using any fractions larger than 50% of the data’s

original dimensions.

The results are based on 15 publicly released visual descriptors: Gist, DenseSift,

DenseSiftV3H1, HarrisSift, HarrisSiftV3H1, DenseHue, DenseHueV3H1, HarrisHue,

HarrisHueV3H1, Rgb, RgbV3H1, Lab, LabV3H1, Hsv, and HsvV3H1.
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Table 6.5: Mean Accuracies in Percentage on Pascal VOC2007 Dataset

Classifier Random Forest SVM Naive Bayes

Dimension 10% 30% 50% 70% 10% 30% 50% 70% 10% 30% 50% 70%

DCT 32.45 32.33 32.18 32.96 30.50 30.96 32.49 30.96 25.37 26.31 26.24 26.62
DCT+MI 34.24 33.55 33.71 33.49 33.20 31.55 33.49 33.18 27.72 27.03 27.71 27.90

LDA 25.61 26.96 28.02 30.08 26.55 28.31 30.90 32.80 23.43 25.55 28.78 29.24
LDA+MI 27.33 27.96 30.50 33.99 29.72 30.83 31.55 33.55 25.50 28.18 28.78 29.24

PCA 32.77 32.74 30.96 30.83 30.78 31.46 30.02 31.96 29.53 28.94 28.06 27.99
PCA+MI 34.78 34.49 33.46 32.08 32.80 34.49 33.96 33.49 29.72 29.22 28.25 28.28

RP 21.42 21.92 28.61 22.02 20.77 22.33 28.18 21.24 20.94 21.12 21.12 20.84
RP+MI 22.80 23.43 29.43 25.30 21.18 24.55 29.71 24.08 22.66 22.22 21.66 21.66

W/O
31.41 29.82 27.28

Reduction

6.3.7 UCI Machine Learning Repository Datasets

We further present experiments on two UCI repository datasets available from: [202].

Sonar, Mines vs. Rocks is the dataset used by Gorman and Sejnowski in their study of

the classification of sonar signals using a neural network [203]. The dataset’s task is to

discriminate between sonar signals bounced off a metal cylinder and those bounced off

a cylindrical rock.

Table 6.6 describes the mean classification accuracies of UCI-Sonar dataset based on

different fractions of original dimensions. The average classification accuracies using no

dimensionality reduction technique on this dataset are 76.87%, 77.3%, and 74.64% for

the random forest, SVM, and naive Bayes classifiers respectively. It is evident from

the results of all our selected dimensionality reduction techniques that classification of

this dataset can be performed in the reduced space more accurately than in the original

space. This improvement is observable from the outputs of the random forest and the

SVM classifiers.

The LDA method enhanced by our mutual information technique obtains the best

performance on this dataset. These results are achieved by the random forest and the

naive Bayes classifiers. The most significant enhancement by our proposed technique

can be observed in the results of the random projection method. Smaller improvements

are evident from the results of other dimensionality reduction methods using fractions

larger than 30% of data’s original dimensions.

There is only one feature used for the purpose of classification in this dataset. Each

feature is a set of 60 numbers in the range 0.0 to 1.0. Each number represents the

energy within a particular frequency band, integrated over a certain period of time.
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Table 6.6: Mean Accuracies in Percentage on UCI-Sonar Dataset

Classifier Random Forest SVM Naive Bayes

Dimension 10% 30% 50% 70% 10% 30% 50% 70% 10% 30% 50% 70%

DCT 79.55 82.95 82.95 81.82 77.73 77.73 77.73 77.73 61.36 57.95 56.82 56.82
DCT+MI 81.82 82.95 82.95 88.64 81.73 81.73 81.73 81.73 62.50 60.23 60.23 56.82

LDA 87.50 87.50 87.50 87.50 87.50 87.50 87.50 87.50 83.77 83.77 85.77 85.77
LDA+MI 89.77 87.50 87.50 87.50 87.50 87.50 87.50 87.50 87.77 87.77 89.77 89.77

PCA 76.14 77.27 75.00 75.00 79.55 81.82 77.27 79.55 73.86 68.18 67.05 69.32
PCA+MI 82.95 82.95 78.41 76.14 80.68 82.95 79.55 80.68 76.14 71.59 68.18 70.45

RND 54.55 72.73 73.86 77.27 47.73 67.73 73.86 73.86 54.55 53.41 59.09 60.23
RND+MI 76.14 80.68 80.68 81.82 57.95 67.73 77.73 77.43 75.00 75.00 73.86 76.14

W/O
76.87 77.30 74.64

Reduction

Multiple Features dataset consists of features of handwritten numerals (‘0’-‘9’) extracted

from a collection of Dutch utility maps. 200 patterns per class, for a total of 2000

patterns, have been digitised in binary images. These digits are represented in terms of

the following six feature sets: 76 Fourier coefficients of the character shapes, 216 profile

correlations, 64 Karhunen-Love coefficients, 240 pixel averages in 2 by 3 windows, 47

Zernike moments, and 6 morphological features.

Table 6.7 also illustrates the mean classification accuracies of UCI-MFeat dataset based

on different fractions of data’s original dimensions. The mean accuracies of the same

classifiers using no dimensionality reduction technique on this dataset are 96.51%,

94.51%, and 93.38% for random forest, SVM, and naive Bayes respectively. It is clear

from the results of all our selected dimensionality reduction techniques that classification

of this dataset can be performed in the reduced space more accurately than in the original

space. This improvement is evident from the outputs of the random forest and the SVM

classifiers.

The average enhancement of the DCT technique using our mutual information method

is about 1%. This is observable from the results of all the three classifiers. LDA’s

improvements are only significant in results obtained from a 10% fraction of the data.

PCA and random projection methods both exhibit small improvements on most fractions

of the data’s original dimensions. The random projection method enhanced by our

mutual information technique achieves the best performance on this dataset by using

70% of the available data, and by utilising the random forest classifier.

These classification results are based on the 6 publicly released features, discussed

previously.
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Table 6.7: Mean Accuracies in Percentage on UCI-MFeat Dataset

Classifier Random Forest SVM Naive Bayes

Dimension 10% 30% 50% 70% 10% 30% 50% 70% 10% 30% 50% 70%

DCT 96.25 96.50 97.00 97.00 90.75 90.75 93.75 93.75 86.75 88.50 89.25 89.25
DCT+MI 96.75 96.75 97.00 97.00 91.75 91.75 95.75 95.75 90.50 90.75 91.00 91.75

LDA 61.25 95.00 97.00 98.00 64.50 95.75 98.00 98.00 65.25 96.25 97.00 98.00
LDA+MI 65.75 95.25 97.00 98.00 71.75 96.25 98.00 98.00 76.50 97.50 98.00 98.00

PCA 97.25 97.00 96.75 95.00 79.75 88.25 94.50 95.00 96.75 95.50 95.00 94.00
PCA+MI 97.50 97.50 97.00 97.50 79.75 91.25 94.50 98.00 96.75 96.00 95.25 94.00

RND 94.00 96.00 97.00 96.50 52.75 80.75 90.75 90.75 93.75 95.00 95.50 95.00
RND+MI 96.50 98.00 97.50 98.50 54.50 80.75 96.75 96.75 93.75 95.75 95.50 96.25

W/O
96.51 94.51 93.38

Reduction

6.3.8 Yale Face Recognition Dataset

The Yale Face database [196] contains 165 grayscale images of 15 individuals in GIF

format. There are 11 images per subject, one per different facial expression or

configuration: center-light, w/glasses, happy, left-light, w/no glasses, normal, right-light,

sad, sleepy, surprised, and wink.

Table 6.8 illustrates the mean classification accuracies based on different fractions of

data’s original dimensions. The average accuracies of the same classifiers using no

dimensionality reduction technique on this dataset level at 85.85%, 84.92%, and 83.65%

for random forest, SVM, and naive Bayes respectively. It is observable from the results

of our employed dimensionality reduction techniques that classification of this dataset

cannot be always performed in the reduced space more accurately than in the original

space. It is only our introduced PCA technique that improves the average performances

of the random forest and the naive Bayes classifiers.

It seems that our proposed mutual information technique does not significantly influence

the final accuracy results of the dimensionality reduction methods. This is evident when

any fractions larger than 30% of the data’s original dimensions are utilised by the three

classifiers. The most noticeable improvement is observed from the DCT method using

a 10% fraction. This is due to the fact that DCT selects the lowest frequencies for

construction of the transformation matrix. It is apparent that the selected frequencies

are not necessarily discriminative for the purpose of classification on this dataset.

The only visual feature used in this dataset is the image intensity values ranging from

0 to 255.
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Table 6.8: Mean Accuracies in Percentage on Yale Face Dataset

Classifier Random Forest SVM Naive Bayes

Dimension 10% 30% 50% 70% 10% 30% 50% 70% 10% 30% 50% 70%

DCT 64.44 66.67 68.89 68.89 67.78 65.56 65.56 65.56 37.78 51.11 51.11 46.67
DCT+MI 68.89 68.89 68.89 68.89 76.67 67.78 65.56 65.56 71.11 60.00 51.11 46.67

LDA 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00
LDA+MI 82.22 82.22 82.22 80.00 82.22 82.22 82.22 80.00 82.22 82.22 82.22 80.00

PCA 82.22 77.78 68.89 53.33 75.56 73.33 71.33 71.33 62.22 82.22 71.11 64.44
PCA+MI 88.89 82.22 80.00 68.89 79.56 77.33 71.33 71.33 66.67 86.67 75.56 71.11

RND 75.56 80.00 75.56 75.56 71.11 74.44 70.00 70.00 71.11 73.33 73.33 73.33
RND+MI 77.78 82.22 77.78 77.78 71.11 76.67 70.00 70.00 73.33 73.33 77.78 75.56

W/O
85.85 84.92 83.65

Reduction

6.3.9 Interpretation of Results

We believe our proposed method can improve the performance of any subspace

procedure. The computational expense of DCT is O(dN log2(dN)). LDA’s O(d2N)

calculation is dominated by the computation of the within-class scatter and its inverse.

PCA is estimated asO(d2N)+O(d3), and Random Projection complexity isO(dkN). We

know that the computational overhead from our algorithm on these subspace methods

is negligible. It is not feasible to interpret a certain message from the results of random

projection technique on our datasets, apart from a solid improvement over the original

method. However, a few interesting points can be observed from the results on the DCT,

LDA, and PCA procedures:

First Few Low Frequency Bases are not Necessarily Discriminative

The results of our DCT experiments on the selected datasets illustrate the point

that the first few low frequency bases are not necessarily preferred by our mutual

information method. Interestingly, 31.44% of the first 10 frequencies selected by our

mutual information algorithm are different from the original DCT technique.

First Few Principal Components are Discriminative

Unlike DCT, the results from all datasets in our experiments highlight the fact that

the first 10 principal components are also usually selected by our mutual information

method. There is only a 3.38% difference between the selection of our mutual information

method, and the original PCA technique. The same conclusion cannot be drawn from the

largest eigenvalues and their corresponding eigenvectors returned by the LDA approach.

There appears to be a significant difference between typical LDA selections and our

proposed mutual information method.
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Performance of Algorithms Exhibits Asymptotic Behaviour at 70%

As the number of base vectors in the projection matrices increases, i.e. the dimension of

input data escalates, the difference in classification accuracies of our mutual information

method and the original subspace techniques becomes negligible. This behaviour starts

to surface for DCT, LDA and PCA procedures with approximately 70% of original

dimensions. Table 6.9 displays these asymptotic results by listing the number of different

bases returned by the two methods in percentage.

Table 6.9: Difference in Bases returned by our MI and the Conventional Methods in
Percentage

Dim. Derm MIAS MSRC OXF VOC Sonar MFeat Yale Avg.

DCT

10% 78.30 88.89 87.72 55.45 37.16 66.67 48.44 83.33 68.24
30% 63.21 59.26 69.19 52.42 32.55 61.11 43.81 60.53 55.26
50% 44.15 42.22 54.36 41.09 26.75 43.33 40.43 34.38 40.83
70% 26.01 25.60 31.67 26.62 17.96 26.19 26.65 22.47 25.39

LDA

10% 20.00 40.11 10.00 06.39 13.16 06.00 100.0 14.29 26.24
30% 38.46 38.97 33.33 05.09 11.75 12.40 33.33 14.29 23.45
50% 09.09 16.78 28.57 12.50 12.34 12.40 02.33 14.29 13.53
70% 03.09 13.10 00.00 03.00 10.02 04.01 00.00 00.00 04.15

PCA

10% 12.83 15.22 16.14 12.75 12.97 20.00 04.50 11.96 13.29
30% 11.89 10.83 11.45 11.52 13.02 17.65 08.19 08.56 11.63
50% 06.57 21.70 13.52 10.73 10.34 03.45 04.85 09.33 10.06
70% 05.54 22.43 09.77 10.39 04.71 04.88 08.52 10.33 09.57

6.4 Conclusion

In this chapter, we illustrated a novel method based on mutual information for

discriminative subspace selection. We demonstrated empirical efficacy via multiple

experiments on different datasets. Due to this empirical, computational, and statistical

properties, we believe our proposed model has the potential capacity to be employed in

a wide range of computer vision and pattern recognition problems including human in

the loop algorithms.



Chapter 7

Concluding Remarks

In this thesis, we studied semantic image understanding with human involved in

the decision making loop of vision algorithms. This chapter will summarise our

major contributions, highlights their limitations, discuss potential improvements, and

directions for future work. We will conclude with a summary.

7.1 Main Contributions

In chapter 3, we introduced a novel “Random Forest” based human in the loop framework

that efficiently fuses visual features of images with user provided information. This

approach enables fast prediction and superior classification performance on a number

of human in the loop datasets. User abstract knowledge in this method is harnessed in

the shape of user answers to perceptual questions. These responses are used to build

“Textual Descriptors” that are compatible with random forest classifiers. Contrary to

generative Bayesian frameworks in the following chapter, this is a direct discriminative

approach that leads to data fusion at input level of classifiers.

Our next contribution was described in chapter 4, where we proposed a “Random

Naive Bayes” model of capturing human high-level information that is compatible

with generative human in the loop Bayesian frameworks. We additionally introduced

innovative “Human in the Loop Fusion Schemes” that intelligently select the most

effective source of information available for making predictions. Through experiments

on a variety of human in the loop datasets, we demonstrated the advantages of

our “Random Naive Bayes” model in comparison to the-state-of-the-art methods of

capturing user abstract knowledge both in terms of accuracy and efficiency. We

also stated that our new methodologies for intelligent selection of information sources

122
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outperform their competitors in tasks such as fine-grained categorisation. This was

achieved by devising two separate learning algorithms that assign variable weights to

each source of information, unlike conventional methods which assume all sources are

equally effective in determining the correct class label in classification settings.

Chapter 5 revealed new methods to reduce unnecessary human intervention in decision

making procedures. Our proposed algorithm determines the most “Efficient Sequence

of Information” to obtain from users in the decision making loop in order to minimise

their unnecessary involvement in mundane tasks. Our approach in practice allows users

to be more concerned with abstract functions instead. This was accomplished first by

examining information theory and leveraging a criterion [130] that ranks perceptual

questions in order of their importance in arriving at the correct classification rapidly.

We then scrutinised algorithms that take this approach further by attempting to

predict answers to the perceptual questions automatically without the need for human

intervention. This became possible by treating the issue in hand as an automatic

annotation problem, where the algorithm seeks human assistance merely in uncertain

cases.

We demonstrated a novel remedy for the “curse of dimensionality” in pattern recognition

problems that is based on “Mutual information and Fano’s Inequality” methods in

chapter 6. Our approach separates the most discriminative descriptors and has the

ability to enhance the accuracy of many classification algorithms. The process of

selecting a subset of relevant features is critical for designing robust human in the

loop vision models where the vast availability of options in selecting visual or textual

descriptors make it difficult to find and adopt the most effective settings. In other words,

our devised selection techniques simply eliminate redundant or irrelevant visual and

textual features. The evaluation results confirmed the fact that our proposed algorithm

is capable of enhancing classification accuracies regardless of decisions made in selecting

the dimensionality reduction method or the classification algorithm.

Finally in appendix A, we cited our published paper that extensively describes our

procedures for collecting and constructing a human in the loop adaptable dataset, which

contains 2309 photographic images of 44 different skin conditions. The publicly released

version of our dataset contains the extracted visual features from images, in addition to

users’ answers that we harnessed using the “Amazon Mechanical Turk” interface. We

believe that our skin conditions dataset is very useful in facilitating the development of

computer aided medical diagnostic techniques in dermatology.
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7.2 Limitations and Future Work

We truly believe that the work presented in this thesis is merely a start in their respective

fields. We think that they have either raised new questions to investigate, or left room

for future improvements.

In chapter 3, we introduced a simple method to harness human abstract knowledge in

form of answers to predefined perceptual question. An interesting but difficult subject to

explore is the matter of evaluating the possibility of constructing questions automatically

based on information provided by visual descriptors. A short examination of the

relevant literature reveals a preliminary work [128] based on an interactive approach

that intelligently selects discriminative regions of an image to be named as meaningful

or meaningless by the human operator. We speculate the selected discriminative

and nameable regions of images can then be used to derive more relevant perceptual

questions depending on the application’s domain. A comprehensive set of evaluations

on more detailed “Questions and Answers” bank should turn the possibility of developing

practical solutions more plausible. Furthermore, the uncertainties in user answers to the

perceptual questions were modelled using several adhoc values listed in table 3.1. A more

efficient approach should learn these values, which practically influence the outcomes of

classifiers, from a training set of data collected from human in the loop participants.

Bayesian frameworks in chapter 4 were implemented by making a few assumptions that

turned the estimation of full joint distributions easier. Obviously, more sophisticated

techniques should be exploited to estimate the probability distribution p(c|x, S). In

our preliminary work, this was not plausible due to insufficient training data. The

performance of these algorithms and subsequently the classifiers is directly dependent

on the quality of visual or textual descriptors. We believe that the current move towards

deep learning methods for feature extraction rather than handmade descriptors can play

an imperative role for the efficiency of our developed human in the loop algorithms.

We further assume that expanding our experiments on a wider range of classification

algorithms can draw a more vivid picture on the effectiveness of our introduced fusion

techniques.

The question ranking technique based on information gain presented in chapter 5 is a

greedy algorithm that may fail to find the global optimum. There should be alternatives

that alleviate this issue. Our introduced technique of image annotation in the same

chapter can also be enhanced to perform more accurately. There are still dark corners

that need immediate attention in order to accomplish a robust but practical human in

the loop framework. One of the main difficulties is the issue of selecting an appropriate

number of questions to ask from users. There are also user behaviour analysis techniques
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that could potentially lead to more effective implementation of user interfaces. These

improved interfaces will help to harness operators’ abstract knowledge more efficiently.

Furthermore, the negative results we observed on the “Caltech-UCSD Birds 200” dataset

need detailed investigation.

Chapter 6 technique of discriminative subspace selection is a competent method of

enhancing classification accuracies. The main drawback of our current solution is the

issue of tractability. Although our proposed mutual information method’s complexity is

negligible, it is directly affected by the subspace method in use and its computational

costs are therefore proportional with sample size. As computers are getting more

powerful, it is not unrealistic to assume that our algorithm becomes computationally

practicable on very large datasets. Additional systematic evaluation of our mutual

information technique on more variety of object classification and pattern recognition

applications can further reassure the efficacy of our proposed algorithm.

Last but not least, we truly think that our developed skin conditions “Derm2309” dataset

in appendix A can be improved by devising a bigger “Questions and Answers” bank.

Involving a larger group of users with various prior medical knowledge would definitely

elevate the usability of our dataset in facilitating the development of computer aided

medical diagnostic solutions.

7.3 Epilogue

In this thesis, we aimed to provide practical solutions to the enduring problem of

visual content understanding by incorporating human high-level information in the

decision making loop using simple methodologies. Whilst chapter 3 enclosed the

most straightforward technique of utilising both visual and textual information in a

discriminative random forest framework, chapter 4 revealed a number of generative

techniques that model each source of information individually in order to determine

the most effective source for the purpose of class label prediction. Chapter 5 presented

methodologies to reduce human unnecessary involvement in mundane tasks by only

focusing on cases where their invaluable abstract knowledge is of utter importance.

Finally, the feature selection algorithm presented in chapter 6 is in fact the primary step

in any of the object classification algorithms. Hence, its influence on improvement of

precisions for various human in the loop algorithms can prove to be integral.

We truly assume that it is intriguing to conclude this thesis with a little food for thought:

Should the community merely seek the path of finding automatic

resolutions to the problem of visual content understanding, and consider
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human in the loop techniques solely as an intermediate step that meanwhile

enables implementation of practical solutions to many real world problems?

If autonomous solutions are the long seeking answers to many real world

problems, how can we ease people’s reaction to such proposals?

Or there actually exist critical applications where individuals will never

trust fully autonomous solutions with no human supervision, and hence

further enhancement of these techniques is a must?



Appendix A

Derm2309 Skin Conditions

Dataset

Automatic recognition of skin conditions from medical images is still an unreachable

goal at the current level of technology. By involving human in the loop and combining

high-level cognitive information with traditional low-level visual features, developing

practically useful machine vision technologies suitable for medical applications may

become a reality.

In this appendix, we provide the URL to our challenging human in the loop image

recognition dataset [168], which not only provides imagery data but also the images’

associated high-level information.

We believe that our dataset is a very useful addition to the current computer-aided

diagnosis systems within medical imaging groups, as well as more general visual object

recognition communities.

A.1 Data Format

All our dataset materials are saved as Matlab “mat” files. The public release of files

includes: image URLs, bounding boxes information, extracted PHOW visual features,

user provided answers, and a list of skin conditions classes.

A.2 Method to Read

All data can be loaded into the Matlab workspace using the Matlab “load” command.

127
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A.3 Evaluation Criteria

Average classification accuracy is the main evaluation criterion for our multiclass dataset.

Precision and recall may also be calculated for each individual class present in the

dataset.

A.4 Download Address

Dataset is available to download from: https://db.tt/RuPsutgR
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