
PISTON CONTROL FOR AN

INTEGRAL COMPRESSION WIND TURBINE

SIMON WOOLHEAD, MEng.

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

JULY 2015

i

Abstract

This thesis concerns an analysis of an Integral Compressed Air Wind Turbine (ICWT),

in which energy is extracted from a slow-moving renewable source through the use

of compressed air. This concept is particularly applicable to large offshore wind

turbines, and can be readily integrated with compressed air energy storage methods.

The ICWT has a very large rotor with free pistons travelling within the rotor blades,

inducting and compressing air to high pressures at each end of the stroke. The

compressed air can be stored and expanded when the energy is required, solving

the intermittency issue of wind energy. By gathering energy along the rotor blades,

rather than at the hub, it also avoids the very high torques associated with extremely

large turbines.

This thesis investigates optimal control strategies for ICWTs. Firstly, an initial model

of the system using coupled ordinary differential equations (ODEs) is constructed to

simulate a single piston pair of an ICWT system. This framework utilises several

‘modes’ which the system passes through in the course of each stroke, with movement

between modes controlled by simple algorithms. Calculations of potential and

required energy are developed to allow basic control of the valve timings.

The simulation is then extended to include thermal modelling of the walls of the

compression tube, using orthonormal polynomials. A long-duration instance of the

model is used to identify steady-state values for the orthonormal parameters, which

demonstrates that the wall temperatures would remain within 15 K of the ambient

ii

temperature.

One possible solution to the high temperatures caused by the near-adiabatic conditions

of the compression is added to the model; namely, the injection of water droplets to

the cylinder at the start of the compression stage. A method to efficiently simulate

a phase transition in Matlab is developed and implemented, allowing an analysis

of the optimum mass balance of water to be injected to reduce the exhausted air

temperature. An appendix examines several of the assumptions built into the model,

in particular the rigidity of the components and variations in the rotational velocity

of the rotor due to Coriolis and gravitational forces.

Two valve control schemes are developed and implemented into the model; firstly, a

simple proportional and derivative controller, which acts according to a rule dictating

a gradual reduction in the energy surplus. This option proves to be limited in the

degree to which it can avoid wasting compressed air. A second scheme, involving

a simple version of sliding-mode control with two controllers operating at different

timescales, is instead developed and shown to be significantly more effective at

improving the system efficiency.

Finally, an optimisation study is carried out on the ‘kick’ stage, in which stored

compressed air is used to accelerate the piston before compression. A large dataset

of simulations allows for the specification of a set of optimum parameters based on a

balance between power extraction from the rotating frame and net power generation.

iii

Acknowledgements

I would like to thank my supervisor, Prof. Seamus Garvey, for his guidance, expertise,

and above all his patience. I would also like to thank my internal assessor, Dr.

David Hann, for his vital feedback at my progression assessments. The assistance

of everyone from the Structural Integrity and Dynamics Group at everything from

LATEX to Matlab has been invaluable, in particular the advice of Dr. Andrew Pimm,

James Buck, Kai Wah Liew and Dr. Rupesh Patel and my associate supervisor, Prof.

Atanas Popov.

I would also like to thank my parents and all my family and friends for their constant

help and encouragement, which has been hugely appreciated. Finally, I owe the

existence of this thesis to my truly incredible wife Leeanne, without whose boundless

support throughout the last four years it would never have happened. Thank you.

iv

v

Contents

Abstract i

Acknowledgements iii

Contents v

List of Figures . xiii

Nomenclature xvii

1 Introduction 1

1.1 Wind rotor theory . 2

1.2 Large-diameter wind turbines . 5

1.2.1 Gearboxes . 5

1.2.2 Direct-drive machines . 6

1.3 Scaling effects . 6

1.4 The integral compression wind turbine 7

1.4.1 The ICWT stroke . 10

1.4.2 Conceptual design . 14

1.5 Aims and scope . 15

1.6 Layout of the thesis . 15

2 Literature review 19

2.1 Wind turbine technology . 19

2.1.1 Development to date . 20

vi Contents

2.1.2 Deployment . 22

2.2 Intermittency and dispatchability problems of renewable energy . . . 22

2.2.1 Possible solutions . 24

Interconnectors . 24

Load-following plant . 25

Demand-side management . 26

2.3 Energy storage . 26

2.3.1 Flywheels . 26

2.3.2 Electrochemical storage . 27

Flow batteries . 28

2.3.3 Pumped hydroelectric energy storage 28

2.3.4 Compressed air energy storage 29

Thermal considerations . 30

Deployment of CAES . 32

2.4 Free-Piston Energy Converters . 33

2.4.1 FPEC control . 35

2.5 Valves . 36

2.6 State-space simulations . 37

2.6.1 Ordinary differential equations 38

2.6.2 Numerical methods for nonlinear ODEs 40

Euler’s method . 40

Modified Euler’s method . 41

Runge-Kutta method . 41

Adaptive step sizes . 42

Numerical Differentiation Formulas 43

2.7 Control . 43

2.7.1 PID control . 43

2.7.2 Model Predictive Control . 45

2.7.3 Sliding mode control . 45

Contents vii

3 System modelling 49

3.1 Reference turbine specifications . 49

3.2 Model derivation . 52

3.2.1 Non-rotating model . 52

3.2.2 Basic rotating model . 54

3.2.3 Connected piston model . 56

3.2.4 Limitations of pressure state variable 57

3.3 Mass-based model . 57

3.3.1 Mass derivative . 57

3.3.2 Temperature derivative . 58

Adiabatic compression . 58

Thermal conduction . 59

Overall . 59

3.3.3 Pressure function . 59

3.3.4 Complete ODE . 61

3.3.5 Work done . 61

Pressure force method . 61

Gravity torque method . 62

3.4 Structure of the modelling code . 62

3.4.1 Operational modes . 62

3.4.2 Simulation events . 64

3.4.3 Packed state vector . 65

3.4.4 Physical properties . 67

Specific heat capacity of air 67

Thermal conductivity of air 68

viii Contents

4 Energy calculations 71

4.1 Potential energy in system . 71

4.1.1 Kinetic energy . 71

4.1.2 Centrifugal potential energy 72

4.1.3 Diametrically linked pistons 72

4.1.4 Gravitational potential energy 73

4.1.5 Total potential energy . 76

4.2 Energy required . 78

4.2.1 Energy to compress air . 78

4.2.2 Energy to exhaust compressed air 79

4.2.3 Work done by atmosphere . 80

4.2.4 Energy to overcome friction 80

4.2.5 Total energy required . 80

4.3 Conclusions . 81

5 Thermal modelling 83

5.1 Wall temperatures . 83

5.1.1 Wall temperature ODE . 84

Conduction internal to the wall 84

Conduction at wall surface 84

Total ODE . 85

5.2 Orthogonal Polynomials . 85

5.2.1 Gram-Schmidt orthonormalisation 86

5.2.2 Analytical method . 87

5.2.3 Numerical method . 88

5.2.4 Derivatives . 88

5.2.5 Weighting . 89

5.2.6 Projection matrices . 91

5.3 Implementation . 94

Contents ix

5.4 Finding steady-state wall temperatures 94

5.4.1 Newton-Raphson optimisation process 95

Modification to improve stability 97

5.4.2 Final steady state . 98

5.5 Conclusions . 100

6 Water cooling 101

6.1 Thermal properties . 101

6.1.1 Saturation temperature and pressure 102

6.1.2 Latent heat of evaporation 102

6.1.3 Specific heat capacity of water 102

6.2 Additional state variables . 106

6.3 Flow through valves . 106

6.4 Pressure and volume . 107

6.5 Two-temperature model . 107

6.5.1 Evaporation ODEs . 108

6.5.2 Energy required . 111

Adiabatic stage . 111

Isothermal stage . 112

Exhaust stage . 113

Total energy required . 113

6.5.3 Stiffness problems . 113

Water droplet test calculation 113

6.6 Single-temperature model . 117

6.6.1 States . 117

6.6.2 Evaporation ODEs . 117

6.6.3 Energy required . 122

6.6.4 Verification . 123

6.7 Conclusions . 124

x Contents

7 Exhaust valve control 127

7.1 Simple method . 128

7.1.1 Control algorithms . 130

7.1.2 Derivative control . 131

7.1.3 Implementation . 132

7.2 Hierarchical twin controller system 132

7.2.1 Principles . 132

Fast controller . 134

Slow controller . 134

7.2.2 Implementation in model . 136

Reduced simulation complexity 137

Simulated sensors . 137

7.2.3 Problems with two-parameter system 139

7.2.4 Single-parameter method . 139

7.2.5 Results . 140

7.3 Simulation duration . 140

8 System optimisation 145

8.1 Variables & targets . 146

8.1.1 Controlled variables . 146

8.1.2 Dependent variables . 147

Power fraction . 147

Net rate of air being exhausted 150

8.1.3 Rotor speed consideration . 151

8.2 Exploratory simulations . 151

8.2.1 Results . 154

Single rotor speed . 154

Maxima . 154

Four rotor speeds . 156

Contents xi

8.3 Defining a control surface . 156

8.3.1 Control surface results . 159

8.4 Conclusions . 166

9 Conclusions and future work 167

9.1 Contributions of present work . 167

9.2 Future work . 168

References 178

Appendices 179

A Assumptions made in the model . 179

B Tie rod dynamic behaviour . 181

B.1 Natural frequency . 181

B.2 Modelling . 182

C Rotational speed of the rotor . 183

C.1 Effect of piston forces . 183

Coriolis forces . 183

Gravity forces . 184

C.2 Net effect on rotor . 185

D Heat transfer at walls . 185

E Linearising the model about a given state 188

F MATLAB scripts . 192

F.1 Core model scripts . 192

F.2 Ancilliary scripts . 247

xii Contents

xiii

List of Figures

1.1 The Lanchester-Betz limit to rotor power coefficient 3

1.2 Glauert’s extended momentum theory with rotating rotor wake . . . 3

1.3 Rotor power coefficient and tip-speed ratio with varying blade count 4

1.4 Turbine cost models . 8

1.5 Overall view of the ICWT rotor . 9

1.6 The seven stages of the stroke, with valve operation 11

1.7 Angular diagram showing stages . 12

1.8 Velocity profile of the piston with stages 13

1.9 Stroke stage plotted against piston position 13

2.1 The 1888 wind turbine of Charles Brush 20

2.2 Wind farm intermittency . 22

2.3 HVDC interconnectors in Europe in 2011 24

2.4 Example CAES system . 29

2.5 General Compression’s ‘GCAES’ system with salt dome storage . . . 30

2.6 The Advanced Adiabatic CAES system 31

2.7 Use of a liquid piston and water-mist cooling for CAES 31

2.8 Free-piston air compressor patent . 33

2.9 Free-piston gas generator illustration 34

2.10 Chatter in sliding mode control . 46

3.1 Work done in an adiabatic compression process 50

xiv List of Figures

3.2 Final air temperature for an adiabatic compression process starting
at 293 K . 51

3.3 Forces and variables in non-rotating model 53

3.4 Forces and variables in basic rotating model 55

3.5 Air masses with connected pistons 56

3.6 The results of two methods to calculate work done 63

3.7 Unpacked state vector . 66

3.8 Packed ‘state structure’ . 66

3.9 Specific heat capacities of air cp,a and cv,a 67

3.10 Thermal conductivity of air, kth,air 69

4.1 Predicted values of θlock . 77

4.2 Error in θlock predictions . 77

4.3 Energies in the system during a stroke 82

5.1 Legendre set of orthogonal polynomials 86

5.2 Accuracy of two GSONP methods at generating the Legendre polyno-
mials . 89

5.3 Weighting curve for inner products 90

5.4 Generating points with nonlinear spacing 90

5.5 Set of orthogonal polynomials, weighted towards the ends of the
compression tube . 91

5.6 Wall temperature contours, starting from uniform 293 K 93

5.7 Steady-state Twall profile . 99

6.1 Saturation temperature of water, Tsat 103

6.2 Latent heat of vaporisation of water, Lf→g 104

6.3 Specific heat capacities of water, cp,wg and cp,wf 105

6.4 Particle temperature distribution from two-temperature wet model . 110

6.5 Thermal diffusion of 10 K gradient in water droplet 116

6.6 Derivative dTsat
dp of water saturation curve 119

List of Figures xv

6.7 Calculation of evaporation power . 121

6.8 Example evaporation curve . 122

6.9 Phase transitions of the water during a stroke 125

6.10 The effect of water injection on temperature in the compression chamber126

7.1 Control block diagram for simpler control system 133

7.2 ‘Fast’ and ‘slow’ simulated control scheme 138

7.3 Illustrative kHP and ψ trajectory from single-parameter method . . . 141

7.4 Actual kHP and ψ trajectory from single-parameter method 141

7.5 Simulation speed required for a variety of simulation counts 143

8.1 Cartesian position of piston pair centre-of-mass 148

8.2 Working torque . 149

8.3 HP air exhaust rates . 150

8.4 Surface of ṁanet values for θ̇ = 0.4 rad/s 152

8.5 Surface of Ėη values for θ̇ = 0.4 rad/s 153

8.6 CoM trajectory at maximum ṁanet for θ̇ = 0.4 rad/s 154

8.7 CoM trajectory at maximum Ėη for θ̇ = 0.4 rad/s 155

8.8 Working torque at maximum Ėη for θ̇ = 0.4 rad/s 155

8.9 Surfaces of ṁanet values for multiple θ̇ values 157

8.10 Surfaces of Ėη values for multiple θ̇ values 158

8.11 Quadratic curves through maximum ṁanet values 159

8.12 3D curve described by maximum ṁanet values 160

8.13 Definition of optimum surface . 161

8.14 Grid of simulations run on control surface 162

8.15 Control surface ṁanet values in 3D 163

8.16 Control surface Ėη values in 3D . 164

8.17 Net airflow rate ṁanet for optimum surface 165

8.18 Normalised power Ėη for optimum surface 165

xvi List of Figures

C.1 Rotor torques due to Coriolis forces from piston motion 184

C.2 Rotor torques due to gravity . 185

C.3 Rotational inertia due to pistons . 186

C.4 Simulation of rotor angular velocity over one cycle 186

D.1 Basic thermal model showing boundary layer thickness 189

E.1 Sample output graph from linearisation function 191

xvii

Nomenclature

Acronyms and initialisms

EU European Union

NREL National Renewable Energy Laboratory, USA

FPEC Free-Piston Energy Converter

CAES Compressed Air Energy Storage

PID Proportional, Integral, Derivative

VSCS Variable Structure Control System

SMC Sliding Mode Control

ODE Ordinary Differential Equation

FSAL First Same As Last

NDF Numerical Differentiation Function

SSQ Sum of Squares of Differences

SVD Singular Value Decomposition

KERS Kinetic Energy Recovery System

PHES Pumped Hydroelectric Energy Storage

HVDC High-Voltage Direct Current

DSM Demand-Side Management

ICWT Integral Compressed Air Wind Turbine

TDC Top Dead Centre

xviii Nomenclature

BDC Bottom Dead Centre

GPE Gravitational Potential Energy

CPE Centrifugal Potential Energy

LP, HP Low-pressure and high-pressure

CoM Centre of Mass

GSONP Gram-Schmidt Orthonormalisation Process

Symbols and mathematical notation

y State vector

t Time

θ Angular position of compression tube, in radians

h Position of piston along compression tube

m Mass

mP Piston mass

T Temperature

L Length

LB Length of blade

LPE Half length of piston

LTE Distance from rotor axis to end of compression tube

t Thickness

k Valve constants

p Pressure

r Pressure ratio

ptarg Target pressure

A Area

F Force

Fµ Friction force

P Polynomial

Nomenclature xix

cp Specific heat capacity at constant pressure

cv Specific heat capacity at constant volume

Lf→g Specific heat of vaporisation of water

E Energy

Epot Potential energy

Ereq Required energy

EWD Work done

Ė Power

ψ Control parameter

v Wind speed

cPR Rotor power coefficient

λ Tip-speed ratio

kth Thermal conductivity

Common subscripts and modifiers

0 Instantaneous value of the variable in question

i The current element

a Airmass

wf Liquid water

wg Steam

m Mixture of air, steam and water

comp The compression stage

exh The exhaust stage

lock The locked stage

kick The ‘kick’ stage

atm Atmospheric

CT The compression tube

PE Piston end

xx Nomenclature

TE Compression tube end

1, 2 Identifiers referring to the respective compression chambers (see Figure 3.5)

α, β Identifiers referring to opposed pistons (see Figure 3.5)

Dot notation, as in ḣ and θ̈, is used to indicate derivatives with respect to time.

Matrices and vectors are typeset in bold, as A and y.

1

Chapter 1

Introduction

Global climate change is rapidly becoming the largest single issue facing world civili-

sation in the 21st century, with extremely widespread impacts including agricultural

production crashes, increased flooding, loss of water security, desertification, wildfires,

and diseases. Anthropogenic greenhouse gas emissions are now considered to be

responsible for most of the global average temperature increase over the last 50 years,

and the effects of continued emissions are very likely to be more significant than

those in the second half of the 20th century. [1]

To stave off the worst-case scenarios, limiting the global temperature rise to 2 K

is needed, but this requires for a reduction in carbon dioxide emissions of up to

85% from 2000 to 2050. The ongoing use of fossil fuels is a major part of the issue,

contributing 57% of all anthropogenic greenhouse gas emissions in 2004. This is

therefore driving an enormous degree of research and investment into ways to reduce

these emissions, particularly renewable energy sources. [2]

The European Union (EU) has set targets of both reducing greenhouse gas emissions

by 20% and increasing the proportion of energy consumption from renewable sources

to 20% by 2020. The latter target is likely to be extremely challenging for the UK,

2 Chapter 1. Introduction

and given the immaturity of other technologies, will require an enormous investment

in wind energy. [3]

5% of the UK’s electricity was generated from wind in 2013 [4]. Onshore wind in

the UK is showing clear signs of reaching saturation, but offshore wind remains

relatively immature. Investment has so far focussed on installing conventional

turbines offshore in shallow water, with more installations expected in the future [5].

However, wind energy is expensive, and additionally the system costs associated

with its intermittency and dispatchability problems promise to add more than 5% to

the operating cost of the entire electrical system in the UK [6]. In total, meeting the

UK’s emissions requirements is likely to cost e2.5 billion per year [7].

This thesis is an exploration of an alternative design of wind turbine, which is

intended to avoid some of the system costs of wind energy. To fully explain this

concept, we must first consider the science underlying the design of wind turbines.

1.1 Wind rotor theory

The first publication of wind rotor theory was in 1920 by Prof. Albert Betz [8]. By

considering the reduction in linear wind velocity before and after the rotor in terms

of both kinetic energy and momentum, Betz formulated an expression for the rotor

power coefficient, cPR, which is the fraction of the available kinetic energy extracted

by the rotor:

cPR =
1

2

(
1−

(
v2

v1

)2
)(

1 +
v2

v1

)
(1.1)

where v1 is the wind speed upstream of the turbine and v2 is the downstream speed. By

differentiating and then solving this expression, we obtain the Lanchester-Betz limit

of cPR = 16
27 , when the air leaving the turbine has 1

3 of its initial velocity [9, p.43] [10, p.83].

This maximum is shown in Figure 1.1.

Chapter 1. Introduction 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lanchester−Betz limit

R
o
to
r
p
o
w
e
r
c
o
e
ffi
c
ie
n
t
c
P
R

Ratio of downstream windspeed to upstream windspeed, v2

v1

Figure 1.1: The Lanchester-Betz limit to rotor power coefficient

Figure 1.2: Glauert’s extended momentum theory with rotating rotor wake, taken
from Hau and Von Renouard [10, p.91]

4 Chapter 1. Introduction

Figure 1.3: Rotor power coefficient and tip-speed ratio with varying blade count,
taken from Hau and Von Renouard [10, p.95]

Later work, in particular by Glauert, developed ‘wing theory’, which showed that the

actual power coefficient of a single-rotor turbine is limited further by the rotational

momentum imparted to the airflow by the rotor, known as ‘swirl’, shown in Figure 1.2.

This is characterised using the tip-speed ratio, λ, which is the ratio of the tangential

speed of the blade tip to the wind speed:

λ =
θ̇LB

vW
(1.2)

where LB is blade length, vW is wind speed, and θ̇ is the rotational speed of the

rotor.

Rotors with differing numbers of blades have different optimum tip-speed ratios,

Chapter 1. Introduction 5

as shown in Figure 1.3. For the standard ‘Danish’ 3-bladed upwind design, a

λ of around 7 is a good balance between minimum swirl and maximum energy

extraction. [10, p.91–105]

1.2 Large-diameter wind turbines

Since the optimum tip-speed ratio for a turbine design is independent of rotor

diameter, it means that larger wind turbines in the same wind speeds must turn

more slowly. For a 2.5 MW wind turbine, θ̇ = 2.6 rad/s [10, p.351], which is difficult

to reconcile with the very high rotational speeds of around 260 rad/s required by

most power station electrical generators [10, p.306]. There are broadly two approaches

to dealing with this problem, which is a focus of much current research.

1.2.1 Gearboxes

Most large turbines installed today use gearboxes with ratios from 1:50 to 1:100,

combined with relatively conventional generators [10, p.306]. Due to the large ratios

required, wind turbine gearboxes generally have multiple stages, which are some mix

of planetary and parallel shaft stages. Planetary stages are lighter, have lower losses,

and are capable of ratios of up to 1:12 per stage, but their higher costs mean they

are less common in turbines below 500 kW [10, 350–356].

This complexity increases cost; the gearbox represents around 10% of the total capital

cost of an offshore turbine, compared to 8% for the entire turbine electrical system

and 7% for the rotor blades [11, p.9]. Additionally, the tough operating conditions and

difficulty of maintenance and replacement resulted in gearboxes causing the most

downtime per failure of any turbine component, according to two separate studies of

offshore turbines [9, p.663].

6 Chapter 1. Introduction

1.2.2 Direct-drive machines

An alternative to gearboxes is the use of low-speed generators coupled directly to

the rotor. Synchronous machines are used, combined with frequency modulation

equipment to harmonise the output frequency for the grid [9, p.367]. The resulting

drivetrain is mechanically simpler, although more electrically complex.

However, the generators required are larger diameter, heavier, and require more

cooling than those used with gearboxes. The use of either hand-winding on the large

number of poles in electrically excited generators, or very high strength permanent

magnets, also increases manufacturing complexity. [10, p.418–420]

1.3 Scaling effects

The problem of tip-speed ratio with large wind turbines may be generalised by

considering scaling laws.

Since tip-speed ratio is constant, the rotational speed θ̇ at rated conditions is inversely

proportional to turbine diameter D.

Rotor power is given by [10, p.102]:

Ė = cPR
ρa
2
v3

Wπ

(
D

2

)2

(1.3)

where cPR is rotor power coefficient, ρa is the air density, and vW is the rated wind

speed. Since all the parameters except blade length are constant with increasing

turbine size, the power output (and thus the costs of the generator and other electrical

systems) is proportional to D2 [9, p.327]. Other component costs which are proportional

to D2 might include surface treatments and covers.

Dividing power by rotor speed, we find that shaft torque increases in proportion

Chapter 1. Introduction 7

to D3. As gearbox costs are approximately proportional to the input torque, we

take gearbox cost as proportional to D3. Mass and volume also rise with D3, as do

several costs which depend on those factors such as tower, bearings, and foundation

cost [9, p.327–329].

A very detailed cost model was built for the US National Renewable Energy Labora-

tory in 2006 by Fingersh et al. [12]. The NREL model was based on 7 WindPACT

US Department of Energy studies into various turbine subsystems, providing very

accurate data on scaling proportions. It found costs scaled in proportion to D1.8446

for the generator, D2 for electrical connections, D2.498 for gearbox, D1.2 for the

foundations, and D3 for the blade material and D2.5 for the labour involved in the

blade manufacture [12].

To generalise, we can model the total cost of the turbine as a polynomial in D with

positive coefficients. By dividing through by D2, we obtain a function for cost per

unit energy [9, p.328], [13]. One such function, normalised to 100 at D = 60 m, was

calculated by Burton et al. [9, p.327] and is shown in Figure 1.4 in black. The minimum

cost per unit energy was found to be located at D = 43.6 m; the NREL model

found that the minimum cost per unit energy is at a rotor diameter slightly larger

than 70 m [9, p.331]. Both of these cost models are for onshore turbines, which are

substantially smaller than the offshore turbines currently under investigation, but no

cost model has yet been formulated for offshore machines.

1.4 The integral compression wind turbine

A 2010 concept by Garvey [14] called the Integral Compression Wind Turbine (ICWT)

aims to define a turbine with an alternative cost curve, with a minimum cost per

unit energy which is both lower than that for conventional designs, and also located

at a significantly larger diameter. A purely hypothetical cost curve for such a design

8 Chapter 1. Introduction

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Minimum
at D = 43.6 m Minimum

at D = 200 m

Rotor diameter (m)

C
o
st

 p
e
r

u
n

it
 e

n
e
rg

y
,
n

o
rm

a
li

se
d

Current design

with 5% reduction

Alternative design

Figure 1.4: Simplified turbine cost model from Burton et al. [9, p.327],
with hypothetical alternative design

is shown in Figure 1.4 in blue.

The ICWT concept is designed specifically to avoid the use of low-speed shafts

and very high torques and bending moments which characterise existing very large

turbines. Instead, it aims to extract the energy directly at the blades themselves,

without transmitting the power through a shaft [15, p.127].

The ICWT uses a very large rotor with hollow compression tubes within the blades,

shown in Figure 1.5. Pistons travelling freely under the action of gravity fall down the

tubes, with a carefully-controlled valve system using their kinetic and gravitational

potential energy to intake, compress and exhaust air into a high-pressure manifold.

The compressed air is then piped down to sea level, where it is either sent straight to

high efficiency expansion turbines to extract the energy or piped to storage balloons

on the seabed. The rotor is held up on a tetrahedral frame with cross-bracing,

anchored so that it yaws freely with changes in wind direction. [14]

Chapter 1. Introduction 9

Cable bracing

Pistons

Rotation

Figure 1.5: Overall view of the ICWT rotor

A second key advantage of the ICWT concept is its compatibility for energy storage.

As outlined in section 2.2, renewable power has a significant problem with inter-

mittency due to the uncontrollable nature of the various energy sources involved.

Compressed air energy storage (CAES) is attracting a great deal of attention for

its suitability in dealing with variable power plant, in particular wind [16]. By con-

verting renewable energy directly to a suitable storage medium, the ICWT design is

inherently more controllable than conventional wind turbines.

10 Chapter 1. Introduction

1.4.1 The ICWT stroke

Between strokes, the pistons will reside at the end of the compression tubes, ‘locked’

there by the centrifugal force. Valves to the atmosphere are held open to allow the

free movement of the piston. When the blade reaches a preset angle, the piston

is pushed away from the end of the tube using compressed air, driving it against

centrifugal force; this is referred to as the ‘kick’.

Once the piston is moving at a preset speed, the valve delivering the compressed

air is closed, and the high pressure air behind the piston expands, continuing to

accelerate it down from the end of the tube. Once the pressure behind the piston

reaches atmospheric pressure, valves are opened to allow the free movement of air

into the tube above the piston as it falls, described as the ‘freefall’ stage.

Next, the tube below the piston is sealed, and the air begins to compress as the

piston descends. Once it reaches the target pressure, a valve allows it to exhaust

from the tube. Finally, the piston comes to a rest at the end of its stroke. Any excess

compressed air which was not exhausted is dumped to the atmosphere.

For every full rotation of the ICWT rotor, the piston in each blade will make two

strokes: one towards the hub of the rotor, and one towards the blade tip. Both

strokes are shown in Figure 1.7, along with the labelled stages of the stroke.

The piston velocity follows the profile shown in Figure 1.8, which is plotted against

time; it can be seen that the whole stroke takes around 6 seconds. In terms of

position along the tube, Figure 1.9 shows that the majority of the piston’s travel

is in freefall, with compression starting at a position after the piston has travelled

approximately 83% of the tube’s length.

Chapter 1. Introduction 11

L
o
ck

ed
K

ic
k

E
x
p

an
si

on
F

re
ef

al
l

C
om

p
re

ss
io

n
E

x
h

au
st

D
u

m
p

in
g

H
P

va
lv

e

L
P

p
or

t

L
P

p
or

t

H
P

va
lv

e

D
u

m
p

va
lv

e

F
ig

u
re

1
.6

:
T

h
e

se
ve

n
st

ag
es

of
th

e
st

ro
ke

,
w

it
h

va
lv

e
op

er
at

io
n

12 Chapter 1. Introduction

0 1.5708 3.1416 4.7124 6.2832
0

30

60

90

120

150

P
is

to
n

 r
a
d

ia
l

p
o
si

ti
o
n

 (
m

)

Tube angle θ (rad)

0

1

2
π

π

3

2
π

Piston
trajectory

KickExpansio
n

Freefall

Com
pression

Exhaust

Locked

Kick

Expansio
n

Freefall

Com
pression

Exhaust

Locked

θ
kick

θ
kick

Figure 1.7: Angular diagram showing stages

Chapter 1. Introduction 13

−1 0 1 2 3 4 5 6 7
−10

0

10

20

30

40

50

Start of kick

HP valve closed

Air pressure behind

piston equalised

Start of compression

Start of

exhaust

Piston halts

Time since start of kick (s)

P
is

to
n

 v
e
lo

ci
ty

 (
m

/s
)

Figure 1.8: Velocity profile of the piston with stages

020406080100120

Freefall C
o
m

p
re

ss
io

n

E
x
p

a
n

si
o
n

K
ic

k

E
x
h

a
u

st

Distance from end of tube (m)

Figure 1.9: Stroke stage plotted against piston position

14 Chapter 1. Introduction

1.4.2 Conceptual design

The design calls for a very large, multi-bladed rotor, to reduce the rotational speed

and thus the centrifugal force seen by the pistons (which must be overcome by the

kick in every stroke). By linking opposing pistons, as shown in Figure 1.5, the

effective radial positioning of the centre of mass of a piston pair is halved.

To seal around the pistons in travel, the conceptual design calls for labyrinth seals

with injected water. This water may be expressed from small orifices in the tube

wall and scooped into the piston, and then injected between the labyrinth seal rings

during compression.

Each blade contains a long, cylindrical compression tube, running from close to the

hub out to near the blade tip. At each end of the tube, there are 3 orifices for air to

flow through, as shown in Figure 1.6.

A low-pressure (LP) port, which allows the free movement of air to and from the

atmosphere during the freefall stage of the stroke (to keep the air pressure equal to

atmospheric pressure on each side of the piston), is required to allow for large flow

rates at low pressure differences. Since this is only required at points remote from

the end of the tube, however, it can occupy a large space in the compression tube

wall. Depending on the operating requirements of a fully-detailed design, it may

even not require the capacity to be closed, existing as a permanent hole through

which atmospheric air can be inducted. This is shown in Figure 1.6, in which the LP

ports are located remote from the ends and not closed during the stroke.

Each end also requires a high-pressure (HP) valve, which allows the exhaust of the

HP air after compression, into the HP manifold for conduction away to storage. This

valve must actuate at very high speed, so a final design would utilise many small

check valves for this purpose, with electronic actuation applied to the check springs.

Additionally, this valve is opened to provide the kick, using air from the HP manifold.

Chapter 1. Introduction 15

A third valve is a simple dump valve, which is used to remove any high-pressure air

which remains in the tube after the piston has come to a halt.

The high-pressure air is carried from the valves at the tube ends to a manifold in the

rotor hub, and from there to turbines and storage facilities shared across the wind

farm.

1.5 Aims and scope

The aim of this project is to construct a detailed simulation of an Integral Compression

Wind Turbine, and to propose and investigate valve control approaches.

The objectives are:

1. Create a coupled mechanical, thermal and airflow simulation environment in

which behaviour can be fully predicted

2. Investigate the possibility of water-cooling to reduce air temperatures

3. Design and implement a control structure to ensure the efficient operating of

the ICWT system

1.6 Layout of the thesis

This thesis comprises eight chapters plus this introduction.

Literature review

The second chapter contains a short overview of the various fields this project spans,

including wind turbine technology, energy storage, free-piston energy converters,

state-space simulations, and basic control techniques.

16 Chapter 1. Introduction

System modelling

The third chapter covers the derivation of the basic specification of the ICWT which

will be modelled in this thesis, along with the derivation of the core model. It also

addresses some of the implementation details of the program code.

Energy calculations

The fourth chapter details the algorithms used to calculate the various energies of

the system, divided into the potential energy available and the energy required to

compress the air in the cylinder. A method for the prediction of the angle of the

compression tube at the end of the stroke is also presented.

Thermal modelling

The fifth chapter is concerned with accurate thermal modelling of the compression

tube, and begins by laying out the differential equations which govern the wall

temperatures. It then goes on to describe a technique for generating and using

orthogonal polynomials with the Gram-Schmidt method, which provide a useful way

to model the wall temperature profile. Finally, it addresses the identification of the

eventual steady-state temperature profile of the wall through a Newton-Raphson

method.

Water cooling

The sixth chapter is about the possibility of injecting water droplets into the cylinder

before the compression stage to reduce the exhaust temperature of the air. It

outlines a system of ODEs and events to model a mix of air, water and steam in the

compression chamber, and describes the effect of implementing it on the model.

Chapter 1. Introduction 17

Exhaust valve control

The seventh chapter outlines some different control strategies for the exhaust valves

in the system, from a relatively simple method involving the surplus energy, to a

two-level nested controller system incorporating elements of model predictive control.

System optimisation

The eighth chapter describes the optimisation of the ‘kick’ stage. Two competing

objectives are described, and a large number of simulations are run to investigate the

state-space available through control of the kick parameters. A preferred operating

surface is identified, and an inter-cycle control technique involving it is outlined.

Conclusions and future work

The ninth chapter reflects on the results found over the course of the work, and

describes fruitful future research which may be investigated around ICWTs and the

model laid out in this thesis.

18 Chapter 1. Introduction

19

Chapter 2

Literature review

In order to provide a suitable overview of the background literature relating to this

project, this chapter will cover several disparate topics. We begin by considering

the history and development of wind turbines, reviewing the issues surrounding

dispatchability and intermittency of wind energy, before moving on to the various

forms of energy storage and their respective attributes. Free-piston energy converters,

which have some similarity to the ICWT concept, are then discussed, followed by

basic valve technology and state-space simulations. Finally, a section considers some

control techniques which will be useful concepts in the work.

2.1 Wind turbine technology

Wind power is one of the most significant contributors of renewable electricity to the

world’s power grids, and is generally considered a mature technology.

20 Chapter 2. Literature review

Figure 2.1: The 1888 wind turbine of Charles Brush,
taken from Wikimedia Commons [17]

2.1.1 Development to date

In the 1890s, electricity remained a niche pursuit; generators were typically linked

directly to the system load, making the intermittency of wind a significant problem

right at the outset. Accordingly, in the first few years of their existence, wind turbine

systems were closely linked to energy storage.

The first wind-powered electrical generator was constructed by Charles Brush in

Ohio in 1888. It owed much to the flour-grinding and water-pumping windmills of

the time, with a 144-bladed wheel and a rotating tower structure, and generated just

12 kW of DC power, used to charge batteries for lighting. It used two transmission

belts to increase shaft speed by a factor of 50:1, in the process highlighting the first

hurdle for turbines to overcome: the conventional multiblade rotors used for raising

Chapter 2. Literature review 21

water were just too slow for effective electrical generation. [18, p.36]

In 1891, the pioneering Danish researcher Prof. Poul laCour independently constructed

a four-bladed turbine, using the dynamo to electrolyse water to produce hydrogen

gas, which was then burned for light. It used a four-bladed shuttered rotor to increase

speeds and reduce maintenance. His subsequent designs built on this foundation, and

by 1908 72 turbines had been constructed, some reaching 35 kW in power. [10, p.24]

Two factors combined to help wind generation in the first quarter of the 20th century.

Firstly, the design of smaller rotors was boosted by the interest in development of

propellers for fixed-wing aircraft; and secondly, the rise in fuel prices caused by the

First World War brought about a key opportunity for renewable energy. Small 2.5 kW

generators for the charging of batteries became common in America in the 1930s,

and larger 50 kW ‘Aeromotor’ turbines were produced in Europe by F.L. Smidth.

Already, these turbines had begun to conform to what is now called the ‘Danish’

model of turbine; a two- or three-bladed horizontal-axis rotor, upwind of a gearbox

and generator set, all mounted on the top of a narrow tower. [18, p.37–39], [10, p.25–26]

Despite the achievement of the first megawatt-scale turbine, constructed in 1941,

development was slow up until the 1973 Suez oil crisis. A sudden rise in the cost of

oil, combined with early warnings about an eventual depletion of fossil fuels, spurred

a great deal of interest in renewable power, and wind power research programmes

were started or accelerated in the USA, Sweden, Denmark and Germany. Turbines

both small and large, from 55 kW up to 500 kW, were put into production, and the

1980s saw several experimental turbines in the megawatt scale - in particular the

Growian 3 MW, in 1983. Promoted as a key vision of the future of wind energy, the

Growian turbine’s crippling technical problems warned off development of similarly

large machines. Vertical-axis machines hit a similar roadblock in the shape of the

1985 Éole 4 MW project, which was dismantled and the Canadian programme which

created it terminated shortly afterwards. [10, p.43–54]

22 Chapter 2. Literature review

Figure 2.2: Wind farm intermittency, taken from MacKay [20, p.187]

2.1.2 Deployment

From the 1980s onwards, wind power has focussed on wind farms, with tens of

turbines onshore or offshore to provide a significant contribution to the power grid; a

worldwide total of 94 GW was operating by 2007. Concerns about land costs and

public perception have led to the development of offshore wind farms, which are

rapidly increasing in installed capacity; the EWEA estimates that 40 GW will be

installed in Europe alone by 2030. [19] The UK had 11.2 GW of rated wind capacity

at the end of 2013, equivalent to 4.8 GW after discounting for intermittency - 5.7%

of the UK’s total generating capacity [4, p.29].

2.2 Intermittency and dispatchability problems of re-

newable energy

Conventional electrical grids have minimal storage capacity; in 2008, the world had

125 GW of electrical energy storage, compared to a generation capacity of 3.9 TW [21].

Electrical grids therefore are closely controlled to keep supply and demand as close

Chapter 2. Literature review 23

as possible at all times, creating plans which account for not only plant capacity and

downtime but also weather forecasting and TV schedules [20, p.196]. In this context,

the operating characteristics of the grid’s generating capacity are critically important.

Renewable energy sources, in particular wind and wave power, suffer from a significant

drawback in this context: the quantity of renewable energy available for harvesting

at any one time limits the power which can be generated. In the case of wind energy,

this limit intrudes significantly into the normal operation of a wind farm. The

capacity factor of a wind turbine is given by:

capacity factor =
Mean power output

Rated power
(2.1)

Modern turbines are sufficiently low-maintenance to attain 98% technical availabil-

ity [10, p.586] (i.e. they are offline due to maintenance or other technical reasons for

2% or less of the time), but wind speeds which are too high or too low keeps the

capacity factor of most onshore wind farms around 30% [20, p.33] [10, p.587]. Periods of

low output, when a wind farm operates at 10% or less of its rated power, may last

for as long as several days [20, p.187]. In addition, these lulls can be relatively sudden;

changes of 20% of rated capacity in 30 minutes are common [21], and one operator

saw a sudden reduction of 87% of power in 6 hours [10, p.664].

A second problem is due to the difficulty of predicting wind conditions, over periods

from 10 minutes to 7 days. Although this was a significant historic concern, current

techniques combining artificial neural networks with real-time telemetry and complex

models are capable of predicting power output 24 hours in advance with errors around

15% of the wind farm’s rated capacity. Additionally, projections based on total

energy produced rather than hour-by-hour power output tend to be more accurate,

since the timing predictions are particularly difficult. This represents an advantage

for wind farms with integral or associated energy storage systems, since they are

capable of using their storage capacity to smooth out the discrepancies and meet

24 Chapter 2. Literature review

Figure 2.3: HVDC interconnectors in Europe in 2011, taken from the Guardian [24]

contracted power schedules more accurately. [22]

Taken together, this intermittency issue restricts large-scale penetration of wind

energy. The Intergovernmental Panel on Climate Change (IPCC) to recommend that

power grids contain only 15-20% of renewable capacity to avoid these problems [23, p.41].

Other sources recommend limits of 10% [22], with significant investment in stabilising

measures required if that limit is exceeded.

2.2.1 Possible solutions

Interconnectors

The intermittency effect of renewables is reduced with increasing grid size, both

geographically and electrically; a network with widely separated wind farms is less

likely to see a simultaneous reduction in capacity at several, and reducing the fraction

Chapter 2. Literature review 25

of the overall grid generation capacity which is represented by any particular wind

farm also aids in counteracting variation. Increased high-voltage direct current

(HVDC) interconnection between electrical grids can allow for up to an extra 7% of

wind penetration, up to 28% without negative effects, by increasing the size of the

grid relative to the possible renewable fluctuations [25].

The UK National Grid intends to expand the UK’s 4 GW interconnector capacity to

8–9 GW by 2020 [26]. However, this is at best a short-term solution, as interconnected

grids will still have strict limits on overall variability, and large weather systems

(covering whole regions) are not uncommon.

Load-following plant

At present, most of the variability is managed on the supply-side, by conventional

fossil-fuel plant capable of operating in load-following mode (in which its output is

scaled according to the current grid requirements) [20, p.186], [6, p.33]. Current reserve

capacity in the UK is around 20%, mainly used for dealing with demand peaks [27]; a

reserve of up to 10% of installed wind capacity is additionally required [22].

Nuclear power plant, which represented 11.7% of UK generating capacity in 2013 [4, p.29],

is less suitable. Although Generation III and III+ reactors are technically capable

of load-following, their production costs are primarily due to operating and capital

expense rather than fuel, so running at reduced load does not significantly reduce

costs. Combined with mechanical fatigue effects, this makes nuclear load-following

economically infeasible for the foreseeable future [28]. Therefore, as fossil-fuel plant

are decommissioned over the next 5–35 years and replaced by nuclear and renew-

ables [29, p.10], this capability will be eroded.

26 Chapter 2. Literature review

Demand-side management

Demand-side management (DSM) is another technique. First developed in the 1970s

as a response to energy security concerns following the 1973 oil crisis, DSM has

attracted significantly more interest in recent years as part of wider ‘smart grid’

proposals [27]. Methods range from simply paying significant consumers for reductions

in energy use, to remote deactivation of consumer appliances such as freezers and

heaters during peak times [20, p.196]. However, current cost estimates indicate that

additional reserve fossil-fuel generating capacity is less expensive than the roll-out of

DSM technology [30].

2.3 Energy storage

Energy storage is thus a critical part of future renewables technology, and is the

focus of a great deal of research and development. It is even a legal requirement in

some areas; California Assembly Bill 2514 in 2010 requires utilities to include storage

of at least 5% of daytime peak power usage by 2020 [31].

There are several different methods of energy storage being used at grid-scale today,

each with different characteristics and different applications. This section will outline

the basic properties of the four most prominent technologies, with a particular view

to their suitability for use with wind energy systems.

2.3.1 Flywheels

Flywheels have been used as energy storage devices, particularly for load smoothing,

for tens of thousands of years. Original examples in spindles, spinning wheels and

wood-turning lathes were used to smooth out variable power supplies, normally

harmonically-varying torque from a foot-pedal. Early steam engines used flywheels to

Chapter 2. Literature review 27

convert from linear oscillations of steam pistons to constant-velocity rotational move-

ment. In the 1970s, flywheels entered the power generation domain as uninterruptible

power supplies for critical infrastructure, for which they are now commonplace [32].

Recent developments have seen flywheels used for short-term energy storage in

Kinetic Energy Recovery Systems (KERS) in Formula 1 cars [33].

These applications are natural consequences of the key properties of flywheels for

energy storage: they offer high short-term storage efficiency, large charge and dis-

charge rates, mechanical simplicity, and no reduction in capacity with time. Modern

flywheels, utilising magnetic bearings and partial- or absolute-vacuum chambers to

reduce energy losses due to friction, can last for over 20 years [34] and reach turnaround

efficiencies of over 85% for storage periods of seconds; however, this reduces to 45%

after 24 hours [35], making them unsuitable for the long-term storage needed for wind.

They are also expensive, with costs in the region of 300–600 e/kW·h [16].

2.3.2 Electrochemical storage

Batteries are an extremely common method of energy storage at very small scales

due to their high energy densities, which range from 20 W·h/kg for lead-acid up

to 180 W·h/kg for lithium-ion [16]. However, they have several drawbacks for use at

grid-scale. Lead-acid batteries, although the cheapest per unit of energy at around

185 e/kW·h [16], last only 500–1000 cycles while requiring frequent maintenance,

ventilation and temperature control [21]. The longest-lasting are nickel-cadmium

batteries with 3500 cycles [16], but these exhibit a ‘memory effect’ in which partial

cycling reduces their capacity over time - particularly unsuitable for renewables [21].

Additionally, their use of toxic heavy metals raises serious environmental issues, even

aside from the limited quantities available for low-cost extraction [36].

28 Chapter 2. Literature review

Flow batteries

Flow batteries are a relatively new concept, comprising separate tanks of electrolytic

solution which are passed through an electrochemical cell with an ion-selective

membrane [35]. Since the storage is separate from the electrode array, flow batteries

are more modular and become cheaper with larger energy capacities [16]. Vanadium

redox flow batteries cost around 120 e/kW·h [16], and 12 MW·h have been installed

at the Sorne Hill wind farm in Ireland - sufficient to smooth out fluctuations of a

few minutes, but only enough to make up for a drop in wind power of 65% for one

hour [20, p.200].

2.3.3 Pumped hydroelectric energy storage

Pumped hydroelectric energy storage (PHES) involves the connection of two large

reservoirs of water, separated by a vertical distance of up to 800 m [37]. At times

of excess supply the plant pumps water up to the upper reservoir, storing energy

as gravitational potential until there is a supply shortage, when sluice gates open

allowing flow through a turbine at the bottom. Some facilities, known as ‘pump-

back’ PHES, produce a net power output due to glacial meltwater or rainfall in the

catchment area of the upper reservoir [37].

PHES is the most common form of energy storage on the world’s energy grids, making

up 3% of the power capacity and 97% of the storage capacity [21]. A particularly

strong early driver of development in the UK, US and Japan was nuclear plant,

which requires a large power input to perform a ‘black start’ (in which the reactor

is brought online from a fully shut down state) and is also less capable of adapting

to changes in demand than fossil-fuel plant (see section 2.2.1). Construction slowed

significantly in the 1990s, but recovered in the 2000s as variable renewable energy

sources became a larger part of electrical grids worldwide [37].

Chapter 2. Literature review 29

Figure 2.4: Example CAES system, taken from Dı́az-González et al. [16]

Although PHES has a relatively low cost of 10–20 or 35–70 e/kW·h [16], a high

turnaround efficiency and a long operating lifetime, they are considered relatively

unsuitable for use purely to support wind farms. This is primarily because they

are uneconomic at the small sizes most renewables require, and they additionally

require project lead times of 10 years to construct - significantly longer than most

wind farms [21].

2.3.4 Compressed air energy storage

With conventional compressed air energy storage (CAES), a compressor intakes air

at 0.1 MPa from the atmosphere and compresses it to around 4–7 MPa for storage [35].

When the energy is required the compressed air is heated, then fed through a series

of turbines linked to generators [16]. Finally, a recuperator uses the residual heat after

the expansion stage to heat the air coming out of storage.

To avoid the use of expensive pressure vessels, the air may be stored around 600 m

underground in disused mines, limestone caverns or underground natural gas storage

caves, where the geostatic pressure provides reinforcement [35]. Salt domes, which are

mined by dissolving the salt into water that is then piped out under pressure, are

particularly suitable for this purpose as the salt is self-sealing under pressure [39, p.284].

30 Chapter 2. Literature review

Figure 2.5: General Compression’s ‘GCAES’ system with salt dome storage, taken
from Saylor [38]

Another approach is to use hydrostatic pressure, by storing the air in reinforced

fabric bags in the sea at depths around 600 m [40].

Thermal considerations

Compressing air increases both heat and pressure, due to the ideal gas law [41, p.157]:

pV = mRspecT (2.2)

If the thermal energy was left in the compressed air, the storage vessel would need

excellent thermal insulation to avoid losing energy, in addition to the high strength

the pressure requires; this is not possible in practical systems.

As reducing carbon emissions was not a priority, early plants simply discarded

the thermal energy in the compressed air, replenishing it by burning natural gas

before the expansion stage, which is known as ‘diabatic’ CAES operation [42]. This is

Chapter 2. Literature review 31

Figure 2.6: The Advanced Adiabatic CAES system, taken from Yang et al. [43]

Figure 2.7: Use of a liquid piston and water-mist cooling for CAES, taken from Qin
and Loth [45]

relatively inefficient and reliant on fossil fuels, so modern systems instead store the

thermal energy in some way.

One approach is to use heat exchangers to remove the heat from the air after

compression, as in the Advanced Adiabatic CAES project [42]. The heat is then

added back into the compressed air before expansion [44]. This increases storage

efficiency, but the high pressure and temperature conditions have caused problems

for development of suitable turbines and exchangers to make the system economically

viable [43].

Water-mist cooling has also been considered for use with CAES [45], following earlier

work which considered its use for railway tunnels [46] and the compression stage

of gas turbines [47]. Several companies, including LightSail Energy [48], General

32 Chapter 2. Literature review

Compression [49] and SustainX [50], use a mechanical piston compressor with a water

spray or foam to absorb the heat during compression instead [51], which is then either

used for heating of buildings or held in a thermal store [44,52]. This allows both

processes to operate close to isothermally, which has the potential for significant

efficiency savings; in particular, the low temperature conditions allow for the use of

the same unit for compression and expansion [53].

Deployment of CAES

Initial research in the 1970s focussed on the use of CAES for load-levelling, to

allow fossil-fuel and nuclear power plant to run continuously at their most efficient

rate while the CAES plant absorbed fluctuations in demand [54]. The first CAES

installation was built as an adjunct to a nuclear power station in 1978 at Huntorf in

Germany, and is capable of providing 290 MW onto the grid for 2 hours with 90%

availability. Today, it provides variable supply to the grid for 3 hours per day. The

second followed in 1991 at McIntosh, AL, USA at a coal-fired plant, and can produce

110 MW for 26 hours; amongst other improvements, it was the first plant to use a

recuperator, reducing fuel consumption by 25% [21].

CAES has one of the lowest costs of any large-scale energy storage system at 3–5

or 10–70 e/kW·h [16], as well as fast start-up times and high power capacities [21].

Additionally, its good long-term storage capabilities and use of standard gas turbines

and compressors, allowing for modular and scalable designs, makes it an ideal form

of storage for use with renewable energy harvesters. As a result, there has been a

significant resurgence in interest in CAES, particular for wind farms. Plants are

proposed in Cheshire, UK and California, New York, Texas, and Utah in the United

States [21].

The Iowa Stored Energy Park was a 270 MW facility near a large number of wind

farms, intended to be finished in 2015 [21]. The plant would have used bubbles in

Chapter 2. Literature review 33

Figure 2.8: Free-piston air compressor illustration, taken from Pescara [56]

underground aquifers to store compressed air, since the displaced water would provide

a back-pressure to assist with the exhaust; however, the project was terminated after

problems with permeability of the aquifer sandstone proved insurmountable [55, p.76].

2.4 Free-Piston Energy Converters

Free-piston engines were first patented in 1928 by Pescara. His engines comprised

a single free piston-head without connecting rod, moving in a single double-ended

cylinder, as shown in Figure 2.8. After the valves (part 62) inject fuel into the

left-hand end of the cylinder, the spark plug ignites the mixture and forces the piston

to the right. The exhaust gases are vented through the ports (42) while the piston

is compressing air on the right-hand end of the cylinder. Once it reaches sufficient

pressure, the check valve (53) opens and the air is exhausted into the reservoir. The

remaining air acts as a spring to ‘bounce’ the piston back towards the combustion end,

compressing the fuel-air mixture ready for the next cycle. The air in the compressor

end is replenished through the check valves (50). [56]

34 Chapter 2. Literature review

Figure 2.9: Free-piston gas generator illustration, taken from Mikalsen and
Roskilly [59]

Subsequent improvements led to a multi-stage design, patented in 1941 [57], and its

small size and efficiency was exploited in the German navy during the Second World

War as a source of compressed air to launch torpedos [58]. Despite early research into

potential applications as gas generators for automotive applications, they failed to

become widespread and were effectively abandoned until more recently [59], when

their potential for use in hybrid vehicles [60] and mobile robotics [61] saw a resurgence

in interest.

Hydraulic free-piston engines use the linear piston motion to directly apply hydraulic

force, usually combined with accumulators to store the energy [62]. They have

been investigated and developed for use in construction vehicles, where their easy

starting (using the stored hydraulic energy), low cost, low weight, and efficiency

characteristics provide an advantage over the rotary diesel engines and hydraulic

pumps conventionally used [59]. However, compared to rotary engines, they place

greater demands on the control system (including the valves) due to significantly

higher piston accelerations. High-speed control is thus important to ensure effective

operation [63].

Chapter 2. Literature review 35

2.4.1 FPEC control

Control of piston motion in FPECs has concentrated on optimisation of top- and

bottom-dead-centre (TDC and BDC) positions in combustion FPECs, to maximise

efficiency and emissions [64]. Work on free-piston compressors by Johansen et al. [65]

implemented a three-level control structure: low-level control subsystems effect the

timing of compressor, exhaust and air cushion valves, while the timings are set by

an intermediate-level piston motion controller, attempting to optimise the TDC

and BDC positions to match efficiency and load control parameters input from the

top-level supervisory controller.

Tikkanen and Vilenius [66] used a two-level control structure to set the injected fuel

mass in a double-acting compressor, aiming to optimise the compression ratio and

thus performance. Since actual compressor load could not be controlled, a quasi-load

circuit designed to help balance the system was also introduced. Feed-forward control,

allowing the structure to response to quickly-varying loads, was required in addition

to normal PID control of the fuel injection.

Work by Mikalsen and Roskilly [67] concerned the optimisation of a single-acting

free-piston generator, which used a similar control structure to optimise TDC and

BDC positions, but additionally aimed to keep frequency roughly constant through

a wide range of loads. Fuel injection rate and timing, as well as bounce chamber air

mass, were controlled to compensate for large TDC errors caused by load variation.

Subsequent work [68] found that basic PID control was unsuitable due to the coupled

nature of the load and required TDC position. They recommended the investigation

of feedforward and nonlinear control techniques. A further paper [69] used a predictive

method: the piston velocity at an instant halfway through compression is used to

predict TDC position using a kinetic energy approach using a linear relationship.

This resulted in significantly improved performance under varying loads.

The ICWT system is similar to a free-piston engine, but the lack of any combustion

36 Chapter 2. Literature review

stroke leads its cycles to be quite different. In particular, the lack of ignition timing

control (which is the focus for most FPEC research) requires the ICWT to be

controlled through valve action alone.

2.5 Valves

Control valves, first seen in the 1930s, today come in a vast range of sizes, functions,

features and capabilities. Characterising a valve, in which the input is compared to

the flow reduction, is a key concern of control valves, and some classes of valve are

difficult or impossible to characterise.

The commonest type of control or throttle valve is the linear-motion globe valve,

in which a spherical plug is inserted into a narrow gap (called the seat) to allow

or obstruct flow. The plug is moved at right-angles to the flow direction, so the

flow path is necessarily nonlinear to go around it and through the seat. This type’s

flexibility to requirements and simplicity are key virtues, but its relatively large size

and weight often count against it. [70]

Butterfly valves, in which a disk rotating provides the regulating element, are also

used for throttling. Generally preferred in low-pressure applications or where size or

weight is important, a key advantage of butterfly valves is their linear flow path -

when fully open, the flow need not make any turns at all, and only the edge profile

of the valve obstructs the flow. However, they develop significant torques from the

flow when used in high-pressure environments, which introduces significant control

difficulties. They are best used as on-off valves, although their high actuation speeds

opens the possibility of ‘bang-bang’ (binary) control methods. [70]

A similar design is the ball valve, in which a solid ball with a bored hole is rotated to

align the hole with the flow. These share many advantages with butterfly valves, and

also have a linear flow path and a very high capability to resist pressure differences

Chapter 2. Literature review 37

(due to the large surface area supporting the ball). Characterisable-ball valves, which

use half of a full sphere to regulate the flow, are better for control; eccentric plug

valves operate on a similar basis, rotating a plug away from a set to avoid restricting

the flow path. [70]

One important concern for this project is valve balancing, which determines how

the pressure difference across a valve affects the ease of opening or closing the valve.

Since the tube-end valves in the rotor will need to operate extremely quickly, of the

order of 0.01 seconds, it is very important that the force required to operate them is

small. [71]

We also require a very low residence volume in the end of the piston tube, to improve

the compression and exhaust efficiency; to this end, the valves chosen will need to be

located very close to the tube and be designed to take up very little space in the

tube when closed.

2.6 State-space simulations

The modelling of physical systems by the use of differential equations is well under-

stood. This thesis is concerned principally with the construction of a state-space

model of nonlinear differential equations.

In constructing a simulation, the first step is to categorise the variables which define

the system behaviour into inputs, which are unaffected by the system; and state

variables, which represent a particular quantity of the system itself; and outputs,

which are the values we are interested in solving for (possibly including one or more

state variables) [72, p.62]. These are commonly combined into vectors, here written as

the input vector u, the state vector y, and the output vector q.

For example, in the case of a vehicle model, the inputs might include both environ-

mental attributes such as the acceleration due to gravity and the road conditions,

38 Chapter 2. Literature review

and core system parameters such as the vehicle mass and throttle position. The state

variables contain enough information to completely describe the state of the system

at any particular time t; depending on the complexity of the simulation, they might

be as simple as the vehicle’s position and velocity, or they could include details such

as the current pitch, roll and yaw angles and angular speeds, the suspension position

for each wheel, and the fill level of the fuel tank. The outputs might be the fuel

consumption or the velocity. [72, p.2–3]

The minimum number of state variables is equal to the number of independent energy

levels in a system. For example, in a simple pendulum, energy may be stored either

as gravitational potential energy, or as kinetic energy; therefore, there must be at

least two state variables in the model [73, p.86].

2.6.1 Ordinary differential equations

The governing equations of any complex system will generally be expressed as ordinary

differential equations, which are simply relations between state and input variables

which include their derivatives. For example, we consider a simple mass-spring system

in which the only state variable is the displacement of the mass. The acceleration

(the second derivative of position with respect to time) is:

d2y

dt2
= − k

m
y (2.3)

To remove the higher-order d2y
dt2

term, a substitution is employed [74, p.225]. We add a

second state variable, the velocity, to obtain:

dy1

dt
= y2

dy2

dt
= − k

m
y1 (2.4)

Chapter 2. Literature review 39

Using dot notation and matrix form, this is written:

ẏ1

ẏ2

 =

 0 1

− k
m 0


y1

y2

 (2.5)

ẏ = Ky (2.6)

The general form of this is: [75, p.23–24] [73, p.86]:

ẏ(t) = A(t)y(t) + B(t)u(t) (2.7)

q(t) = C(t)y(t) + D(t)u(t) (2.8)

where A, B, C and D are matrices.

Some systems are nonlinear, in which the governing ODEs cannot be written as

a linear combination of y and u. An ODE might involve two variables multiplied

together, a variable raised to a power, or the derivative of a state variable; for

example, the governing equation of a pendulum at an angle θ from the vertical is:

θ̈ = − sin θ (2.9)

Since sin θ is not linear, the matrices cannot be extracted and the general form is

instead [73, p.89]:

ẏ(t) = f(y,u, t) (2.10)

q(t) = g(y,u, t) (2.11)

Most nonlinear differential equations do not have analytical solutions. Their solution

is normally via numerical methods.

40 Chapter 2. Literature review

2.6.2 Numerical methods for nonlinear ODEs

The earliest technique for solving ODEs numerically was formulated by Leonhard

Euler in 1768. [72, p.121]

Euler’s method

First, rearrange in the form:

dy

dt
= f(y, t) (2.12)

Next, using Taylor’s approximation to a first-order continuous derivative:

dy

dt

∣∣∣∣
t0

= lim
δt→0

y(t0 + δt)− y(t0)

δt
(2.13)

we combine and rearrange, to obtain an equation for the next state in terms of the

current state y0 and time t0
[72, p.121] [75, 226–228].

y(t0 + δt) ≈ y0 + f(y0, t0)δt (2.14)

In simple terms, the algorithm draws a tangent to the solution curve at the current

point, then steps a distance δt along that tangent. If the solution curve is locally

‘well-behaved’, meaning it has a low second derivative so the gradient is relatively

constant across the timestep, then the approximation will be accurate; however

it will be very inaccurate if the gradient changes too quickly, known as a ‘stiff’

problem. [72, p.121–125]

Chapter 2. Literature review 41

Modified Euler’s method

A simple modification is modified Euler, which additionally calculates the gradient at

the second point and averages the two gradients to obtain an accurate result [72, p.125]:

k1 = f(y0, t0)

ỹ(t0 + δt) = y0 + k1δtc

k2 = f(ỹ(t0 + δt), t0 + δt)

y(t0 + δt) ≈ y0 +
δt

2
(k1 + k2) (2.15)

Although requiring twice as many evaluations of the (often computation-expensive)

derivative function, this change can reduce the error by more than half for the same

set of steps [72, p.126].

Runge-Kutta method

It may be noted that the Euler methods use only the first term of Taylor’s approxi-

mation to a derivative. By increasing the number of Taylor terms used to model the

gradient, we may further increase accuracy. This is effectively fitting the curve with

higher-order polynomials instead of straight tangents. This was generalised in 1900

as the Runge-Kutta family of methods, of which the most common is the 4th-order

algorithm [72, p.127]:

y(t0 + δt) ≈ y0 +
δt

6
(k1 + 2k2 + 2k3 + k4) (2.16)

where k1 = f (y0, t0)

and k2 = f

((
x0 +

δt

2
k1

)
,

(
t0 +

δt

2

))
and k3 = f

((
x0 +

δt

2
k2

)
,

(
t0 +

δt

2

))
and k4 = f ((x0 + δtk3) , (t0 + δt))

42 Chapter 2. Literature review

The Dormand-Prince method is a modification of the Runge-Kutta methods for 4th-

and 5th-order evaluation. The algorithm, created in 1980 [76] and also known as

DOPRI, has several advantages; most notable is that it is particularly effective for

multiple steps, due to the last function evaluation each step being identical to the

first evaluation of the next step, known as First Same As Last (FSAL).

Dormand-Prince is built into Matlab as the basis for the ode45 ODE solving

function [77]. A 4th-order polynomial interpolant also allows Matlab to both generate

additional points in the output without requiring more function evaluations, and

allows the precise location of user-defined events, when some function g(y, t) is equal

to zero.

Adaptive step sizes

One way to improve the accuracy of any of the Runge-Kutta family of methods

is simply to reduce the step size, but this leads to a corresponding increase in

the number of function evaluations required and thus the computational resources

consumed [74, p.229]. To strike the best balance, adaptive step size methods have been

developed, which test and retry with smaller steps if the error is too great. This is a

standard part of most ODE solvers in Matlab [77].

A particular advantage is seen with strongly nonlinear systems, which can be stiff

in some parts of the state space (requiring very small steps) while being nonstiff

elsewhere [72, p.129]. An example of this might be two particles acting under a gravita-

tional attraction; while the particles are distant, the forces on them will be small

and the timesteps can be correspondingly large, but as they move closer together the

forces increase rapidly demanding smaller timesteps to retain accuracy. An adaptive

step size algorithm allows the timestep to scale efficiently to the local requirements.

Chapter 2. Literature review 43

Numerical Differentiation Formulas

For extremely stiff systems the Runge-Kutta methods are insufficiently stable, re-

quiring timesteps too small for the working precision, and numerical differentiation

formula (NDFs) are used instead. First developed by Klopfenstein in the 1970s [78],

NDFs work by constructing local Jacobian matrices, which include information from

previous steps to allow increased stability when dealing with high stiffness [79].

The Matlab function ode15s is based on an NDF method, and includes the same

event-handling capabilities of ode45. It is capable of solving considerably stiffer

problems than ode45, and additionally requires less resources. However, it is slightly

less accurate [77].

2.7 Control

2.7.1 PID control

The most basic form of control is proportional. The error (the difference between the

current state and the desired value) is calculated, multiplied by a gain value, and

fed back into the system. This has a few disadvantages, most notably a non-zero

steady-state error, in which the output will reach a point where the disturbance and

the control signal balance out; also, in higher-order systems, high proportional gains

can cause instability. However, proportional control is extremely simple, relatively

stable, and quick, so it forms the main part of most control applications. [73,74,80]

To avoid this steady-state error, an integrator is introduced into the control system.

This takes the integral of the error signal and multiplies it by a different gain value,

then adds it to the control signal. Integrators ‘detect’ the small steady-state error by

allowing it to build up over time, eventually cancelling it out; since the initial error

remains ‘stored’ in the integrator’s state, it does not stop working when the error

44 Chapter 2. Literature review

reaches zero. However, this can introduce oscillations to the system and instability

to the system, especially when combined with a high proportional gain. [73,74,80]

The third component, then, is derivative control. Unlike the others, derivative control

in its ‘pure’ sense depends on knowledge of the future behaviour of the error; in

practice, this needs to be estimated based on recent observations. Including the

derivative of the error signal allows the control system to ‘predict’ upcoming error

changes; for instance, if the error is heading rapidly towards zero and there is a

risk of overshoot, the derivative error signal acts to ‘damp’ the controller down and

reduce any oscillation that might occur. Correctly-tuned derivative control can even

render otherwise unstable systems stable. [73,74,80]

Most modern electronic controllers are ‘PID’ controllers, meaning they include all

three components and allow them to be individually adjusted to tune the system.

A variety of more exotic controllers also exist, which are generally designed for spe-

cialist situations; for instance, fractional-order control involves a modified integrator

function, designed to avoid having a single natural frequency for the controller. Many

of these more complex controllers have internal dynamics, however; for instance,

a simple low-pass filter (to filter out high-frequency noise from the control signal)

involves a time delay. This is a key factor in many decisions to use simpler control

systems. [74]

One relevant subtype of PID control is PD control, in which the integral term is

omitted. This is extremely fast, and it is useful in cases where the intention is to

track a moving target. However, the controller is susceptible to high-frequency noise,

which will be exaggerated by the derivative component, and since it lacks the integral

part it also has a degree of steady-state error. [73,80]

Chapter 2. Literature review 45

2.7.2 Model Predictive Control

Model Predictive Control (MPC), also known as receding horizon control, first devel-

oped in the 1970s, is a method for controlling a process which uses a computational

model of the process itself. Detailed information about the current state of the

system is fed into the model, which simulates the effect of many changes to the

control signal over a short timescale; the first step of the most successful strategy is

then implemented, and the controller starts again for the next system state. [81]

A key advantage of MPC is its ability to deal with significant time delays. The

main downside is that nonlinear systems can be prohibitively complex to simulate at

the speed required for practical implementations of MPC; however, many systems

can be linearised about the operating point, and other systems are modelled using

closely-fitted orthonormal bases of polynomials to simplify calculation. [81]

2.7.3 Sliding mode control

For some systems, it is extremely hard to define a stable single control structure which

provides sufficient regulation. To assist in solving these cases, variable structure

control systems (VSCSs) were developed, based on the work by Emel’yanov and

Barbashin in the USSR in the early 1960s [82, p.1].

VSCSs define multiple separate control substructures, and select which to use during

operation based on the current operating state. By careful choice of switching

function, the system can guarantee that every control substructure is stable for the

entire region it is applied.

The most common form of VSCS is sliding mode control (SMC), in which a ‘sliding

surface’ [82, p.5] is first defined (also known as a ‘discontinuity’ [83, p.320] or ‘switching’

surface [84, p.11] for obvious reasons). This is a particular relationship between all of

the controlled variables, which governs the final system response.

46 Chapter 2. Literature review

Figure 2.10: Chatter in sliding mode control, taken from Zak [83, p.319]

Next, control substructures are devised such that they always direct the system

back towards the sliding surface. Finding suitable substructures is known as the

reachability problem; they may take the form of PID controllers or more advanced

laws [82, p.41-46]. They are required to exhibit convergence on the sliding surface in

finite time, not asymptotic [84, p.29], and they must themselves be stable in their

respective regions (though not necessarily outside them) [83, p.324]. Reducing the

‘reaching time’ taken is particularly important since the system only reaches its

robustness goals when on the surface; very high input gains are used to minimise

this timespan [82, p.31].

The theoretical result is that the state trajectories of the controlled system quickly

converge on the sliding surface for any starting position, and then the closed-loop

feedback of the appropriate substructures holds the system onto it. When on the

surface the system is operating in the eponymous ‘sliding mode’, in which its order

is reduced to beneficial effect [84, p.158]. In practice, there is a integration timestep

problem. The system, rather than being locked onto the sliding surface, oscillates

Chapter 2. Literature review 47

through it as the switching function repeatedly changes control structure in finite

intervals [82, p.32]; in the theoretical case, this occurred at an infinite frequency [84, p.132].

This ‘chattering’ effect is shown in Figure 2.10.

Caused by the discontinuous nature of the SMC method, chattering causes heat losses,

high mechanical wear and control inaccuracy in practical systems. One solution

is to define a ‘boundary layer’ around the sliding surface, within which a different

control structure is applied; it is even possible to select control laws such that the

system becomes continuous around the surface. Ultimately however, any solution to

chattering will necessarily dilute the robustness and efficacy of SMC [84, p.135–140].

48 Chapter 2. Literature review

49

Chapter 3

System modelling

This chapter will first outline the process of finding a set of design parameters, which

describe the example ICWT system we will investigate. A simple system of coupled

ODEs is then outlined and developed into a detailed simulation. Finally, we will

cover details of the way the system has been implemented in Matlab.

3.1 Reference turbine specifications

For an ideal gas in adiabatic compression, we have the relationship [41, p.180]:

pV γ = k (3.1)

We can find the energy required to compress air in terms of r, the ratio of final to

initial pressure, by integrating an adiabatic process with respect to pressure, from a

pressure p0 and a volume V0 up to a pressure p0r. We also introduce ρa,0, the density

50 Chapter 3. System modelling

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12
x 10

5

Pressure ratio

W
o
rk

 d
o
n

e
 (

J
/k

g
 a

ir
)

Figure 3.1: Work done in an adiabatic compression process

of air at the initial conditions.

Ecomp =

∫
V dp (3.2)

Ecomp = k
1
γ

p0r∫
p0

p
1
γ dp

Ecomp = p
1
γ

0 V0

(
γ

γ − 1

)(
p
γ−1
γ

0

(
r
γ−1
γ − 1

))
Ecomp

V0ρa,0
=

p0

ρa,0

(
γ

γ − 1

)(
r
γ−1
γ − 1

)
(3.3)

If we take p0 = 101.325 kPa [85, p.26], ρa,0 = 1.207 kg/m3 and γ = 1.401 [85, p.16],

we can calculate the work done per kg of air for a range of pressure ratios, as

shown in Figure 3.1. The curve clearly levels off at high pressures; to strike a good

balance between high power density and high containment costs, we set our target

ptarg = 7 MPa, a pressure commonly used in CAES systems [35] with an energy

density (assuming adiabatic expansion) of 696 kJ/kg air.

Chapter 3. System modelling 51

0 20 40 60 80 100 120 140 160 180 200
200

400

600

800

1000

1200

1400

Pressure ratio

F
in

a
l

a
ir

 t
e
m

p
e
ra

tu
re

 (
K

)

Figure 3.2: Final air temperature for an adiabatic compression process
starting at 293 K

The temperature after adiabatic compression is given by [41, p.180]:

T = T0r
γ−1
γ (3.4)

This relationship, for an initial temperature of 293 K, is plotted in Figure 3.2. The

temperature after compression to 7 MPa is around 989 K.

Next, we calculate our tip-speed ratio λ using Equation 1.2. For this study, we will

take LB = 150 m and λ = 6.3 at vW = 9.5 m/s, resulting in a rated rotor speed θ̇ of

0.4 rad/s.

If our rotor achieves a normal rotor power coefficient cPR of 70% of the Betz limit, or

0.4148 overall, then at vW = 9.5 m/s we can use Equation 1.3 to calculate that the

design rotor will harvest a power of 15.2 MW. Given 4 separate compression tubes

and 2 strokes per cycle, this equates to 29.9 MJ per stroke.

52 Chapter 3. System modelling

The maximum possible energy which could be extracted from a mass mP falling a

distance LB under an acceleration due to gravity of g is trivially mP · h · g, but our

pistons will not fall perfectly vertically nor for the full length of the blade. If we

assume we will be able to capture 80% of the theoretical maximum gravitational

potential energy, and the pistons have a range of LB − 20 = 130 m, we find each

piston pair will need a mass of around 29.2×103 kg.

To store 29.9 MJ in each stroke at an energy density of 696 kJ/kg air will require the

induction of 35.5 m3 of air per stroke. If we set the compression tube cross-sectional

area A = 1 m3, the tube will be able to hold 150 m3 in total, and induction of the air

through ports on the tube walls away from the ends will be easily able to accomplish

this.

3.2 Model derivation

3.2.1 Non-rotating model

We begin with a very simple non-rotating model with just 4 state variables; piston

position h, piston speed ḣ, pressure above piston p1 and pressure below piston p2, as

shown in Figure 3.3.

From the equation of state, we have:

mḧ = A(p2 − p1)−mg (3.5)

Adding in the piston velocity as the state variable ḣ, the standard substitution is

used to reduce the order of the ODE, with ḣ = z and ḧ = ż, obtaining two simple

Chapter 3. System modelling 53

mP g

Ap2

Ap1

LCT

h

ḣ

Figure 3.3: Forces and variables in non-rotating model

first-order differential equations:

ḣ = z (3.6)

ḧ =
A

m
(p2 − p1)− g (3.7)

The compressibility factor of a gas, which how closely its behaviour conforms to the

ideal gas law, is given by:

Z =
p

ρRspecT
(3.8)

Air has a compressibility factor of 0.9997 at 300 K and 101.3 kPa [85, p.16,26], very

close to 1, so it will be treated as an ideal gas. We will initially assume that heat

transfer to and from the compressed air is negligible, due to the short timescales

involved, implying that the compression cycle is adiabatic. This gives [41, p.180]:

pV γ = k (3.9)

This equation is true provided the mass of air in the cylinder is constant. We

54 Chapter 3. System modelling

will calculate k1 and k2 (above and below the piston respectively) from the initial

pressures (p1,0 and p2,0) and initial piston position (h0, or (LCT−h0) in the rimwards

direction).

k1 = p1,0 ((LCT − h0)A)γ (3.10)

k2 = p2,0(h0A)γ (3.11)

Rearranging these and differentiating with respect to time, we obtain:

ṗ1 =
k1

Aγ
γḣ(LCT − h)−1−γ (3.12)

ṗ2 =
k2

Aγ
γḣh−1−γ (3.13)

We combine these into vector form:



ḣ

ḧ

ṗ1

ṗ2


=



z

A
m(p2 − p1)− g

k1
Aγ γḣ(LCT − h)−1−γ

k2
Aγ γḣh

−1−γ


(3.14)

ẏ = f(y) (3.15)

This form is suitable for use with the ODE solvers built into Matlab.

3.2.2 Basic rotating model

Adding constant-speed rotation to the previous system is relatively simple. We need

only add a state variable representing the current angle of the system from horizontal,

θ, adjust the gravitational acceleration to rotate with it, and add in a term due to

Chapter 3. System modelling 55

Ffric

Ap2

Ap1mP θ̇
2(h+ LTE)

mP g

θ

θ̇

Figure 3.4: Forces and variables in basic rotating model

centripetal acceleration. This makes the acceleration part of the ODE:

ḧ =
A

mP
(p2 − p1)− g sin θ + θ̇2(h+ LTE) (3.16)

We will also add Coulomb friction to the model, which is a constant µ outside a

chosen velocity bandwidth and ramps linearly at low velocities inside the limits set

by ḣHB, the ‘velocity half-bandwidth’;

Friction force, Fµ =


µ for ḣ > ḣHB,

µ

ḣHB
ḣ for − ḣHB < ḣ < ḣHB,

−µ for ḣ < −ḣHB.

(3.17)

56 Chapter 3. System modelling

Hub

Airmass 1

Alpha piston

Airmass 2

Airmass 1

Beta piston

Airmass 2

Figure 3.5: Air masses with connected pistons

Including this friction in the acceleration expression, the complete model is thus:



ḣ

ḧ

ṗ1

ṗ2


=



ḣ

A
mP

(p2 − p1)− g sin θ + θ̇2(h+ LTE)− Ffric
mP

k1
Aγ γḣ(LCT − h)−1−γ

− k2
Aγ γḣh

−1−γ


(3.18)

3.2.3 Connected piston model

To expand the model to two connected opposing pistons, we will assume that the

connecting rod is perfectly rigid. Since the pistons are the same distances from the

Chapter 3. System modelling 57

ends of their tubes, the pressures and masses are all equivalent. The centre of mass,

for calculating the centrifugal force, is located halfway between the two pistons.

The pistons are referred to as the ‘alpha’ piston (with pressures p1 on its rimward

face and p2 on its hubward face) and ‘beta’ piston (with pressures p2 on its rimward

face and p1 on its hubward face). For clarity, directions will be given relative to the α

piston, so ‘alpha-hubwards’ refers to the direction from the alpha piston towards the

rotor hub (and is thus equivalent to ‘beta-rimwards’). This is shown in Figure 3.5.

A new variable of ‘airmass height’ ha is introduced, which is given by:

ha,1 = LCT − h

ha,2 = h (3.19)

3.2.4 Limitations of pressure state variable

This model has a significant problem: it does not account for mass flow of air into

or out of the cylinder. To add mass flow to the model, we will need to replace the

pressure state variables with temperature state variables.

3.3 Mass-based model

This model has three core state variables for each compression chamber: volume V ,

mass m, and temperature T . The rate of change of volume is trivially given by the

piston velocity ḣ and the tube cross-sectional area A.

3.3.1 Mass derivative

Mass flow rate ṁ will vary depending on three valve constants;

58 Chapter 3. System modelling

km in Inflow valve, allowing air to enter the cylinder whenever the pressure is below

atmospheric pressure patm.

km exh Exhaust valve, allowing air to leave the cylinder into the HP manifold when

the pressure is above the target pressure ptarg.

km out Outflow valve, allowing air to flow out of the cylinder to increase piston speed

before it begins compression.

3.3.2 Temperature derivative

In order to add temperature to this model, we consider two components contributing

to rate of change of temperature.

Adiabatic compression

Firstly, in the case of adiabatic compression (with no thermal energy transfer), we

have the following relation between temperature and specific volume [41, p.180];

TV γ−1m1−γ = constant (3.20)

where γ is the heat capacity ratio of air. Differentiating under the product rule;

0 = V γ−1m1−γ
(
Ṫcomp

)
+ Tm1−γ

(
(γ − 1)V γ−2V̇

)
+ TV γ−1

(
−(γ − 1)m−γṁ

)
Ṫcomp = T (γ − 1)

(
V γ−1m−γṁ−m1−γV γ−2V̇

)
V 1−γmγ−1

Ṫcomp = T (γ − 1)
(
V 1−γ+γ−1mγ−1−γṁ−mγ−1+1−γV 1−γ+γ−2V̇

)
Ṫcomp = T (γ − 1)

(
ṁ

m
− V̇

V

)

Ṫcomp = T (γ − 1)

(
ṁ

m
− ḣa
ha

)
(3.21)

Chapter 3. System modelling 59

We now have an expression for Ṫcomp, the rate of change of temperature due to

compression.

Thermal conduction

The second case we will consider is that of a stationary volume of hot compressed

air losing heat to the surrounding cylinder. Here, the rate of change of temperature

is given by [41, p.508]:

Ṫtrans =
Uha(TCT − T)

mcv,a
(3.22)

Where U is the heat transfer coefficient per unit length of the compression tube

surface.

Overall

These two components can be superposed, obtaining;

Ṫ = T (γ − 1)

(
ṁ

m
− ḣa
ha

)
+
U (TCT − T)

mcv,a
(3.23)

3.3.3 Pressure function

Volume and mass are state variables, so we will find a relation for p which we can

use in all circumstances - including during air flow into or out of the cylinder. We

will use the ideal gas law [41, p.157]:

p(Ah) = mTRspec (3.24)

60 Chapter 3. System modelling

and the isentropic compression relation;

T

Tatm
=

(
p

patm

) γ−1
γ

(3.25)

Combining these two relations, we can eliminate the current temperature T and

obtain;

p =

(
mTatmRspec

V

)γ
p1−γ

atm (3.26)

The model can calculate the pressure as an internal variable, updated each timestep

based on the current values of state variables m and h.

Chapter 3. System modelling 61

3.3.4 Complete ODE

We can now detail the complete ODE for this model;

p1 =

(
m1TatmRspec

A(LCT − h)

)γ
p1−γ

atm

p2 =

(
m2TatmRspec

Ah

)γ
p1−γ

atm

ḧ =
A

mP
(p2 − p1)− g sin θ + θ̇2(h+ LTE)− Ffric

mP

˙ma,1 =



km in(patm − p1) for p1 < patm,

km exh(ptarg − p1) for p1 > ptarg,

km out(patm − p1) if p1 > patm and mode is freefall,

0 otherwise.

˙ma,2 =



km in(patm − p2) for p2 < patm,

km exh(ptarg − p2) for p2 > ptarg,

km out(patm − p2) if p2 > patm and mode is freefall,

0 otherwise.

(3.27)

3.3.5 Work done

We describe two distinct methods of tracking work done.

Pressure force method

This method is based on the work done against the pressure forces on the piston.

EWD =

∫
F dh (3.28)

62 Chapter 3. System modelling

In the alpha-rimwards direction;

EWD,p =

∫
2A(p1 − p2) dh

ĖWD,p =
d

dh

(∫
2A(p1 − p2) dh

)
dh

dt

ĖWD,p = 2A(p1 − p2)ḣ (3.29)

This function is also true if we consider the alpha-hubwards direction, since the sign

of ḣ changes for positive work and the pressures switch places.

Gravity torque method

This method considers the work done lifting the piston by the rotor. This is simply

the weight of the piston pair as a torque, multiplied by the rotor speed:

ĖWD,g =
2h− LCT

2
cos(θ)mP gθ̇ (3.30)

An example output from the final model is shown in Figure 3.6. It can be seen that

the overall gradient, representing the total power of the system, is equal for both

state variables. The gap between the two curves is the energy stored in the system

itself, as compressed air.

3.4 Structure of the modelling code

3.4.1 Operational modes

The model’s behaviour is defined by a series of operational modes. In full, these

modes are:

Mode 0 Freefall. Airflow is allowed both into and out of both compression tubes in

Chapter 3. System modelling 63

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

12

14

16
x 10

7
W

o
rk

 d
o
n

e
 (

J
)

Time (s)

Pressure method

Gravity method

Figure 3.6: The results of two methods to calculate work done

one diametrically opposite pair, to allow the piston pair to build up kinetic

energy as it drops. Its position and velocity are closely monitored to calculate

both Epot., the energy currently in the system, and Ereq, the energy required

to compress the remaining air. When Epot. = 1.02×Ereq, the mode advances.

Mode 1 Compressing. The valve ahead of the piston is closed, allowing the pressure to

increase as the piston decelerates. The intake valve behind the piston remains

open. Once the pressure in the cylinder reaches the target ptarg, the mode

advances.

Mode 2 Exhausting. The control algorithms are called for every step taken in this

mode, adjusting the constant on the exhaust valve to control how the energy

in the system is dissipated. As the compressed air is exhausted to the storage,

the piston will slow down further until it stops close to the end of the tube.

The mode advances when the piston velocity reaches 0.

Mode 3 Dumping. The piston is locked in position to prevent it moving, and the tiny

64 Chapter 3. System modelling

remaining amount of high-pressure air in the system is dumped out to the

atmosphere. The brakes thus need only to support the weight of the pistons,

and not also resist the pressure of this remnant. Once the air pressure has

equalised with the atmospheric pressure, the mode advances.

Mode 4 Locked. The system remains locked in position as the tube rotates, until it

reaches a set angle at which it will start to kick the piston.

Mode 5 Kicking. The brakes are disengaged and the exhaust valve is opened. The hot

compressed air pushes the piston away from the end, giving it the initial energy

needed to start falling again. The mode advances once the piston has reached

a set velocity.

Mode 6 Kick expansion. The exhaust valve is closed again, and the compressed air in

the chamber is allowed to expand as the piston moves away from it. Once the

pressure reaches atmospheric pressure, the mode switches back to freefall.

3.4.2 Simulation events

As described in subsection 2.6.2, the numerical methods we will use to solve the

simulation work significantly better if the system is non-stiff, i.e. if the derivative

functions calculated are smooth and do not change abruptly.

Since our system has very different functions for some state variables depending on

the operating mode, we would need to switch between different modes of behaviour

based on the mode. However, this would represent a discontinuity in the derivative

function, making the problem extremely stiff and potentially preventing any numerical

solution.

As a solution, we will use the Matlab ODE solvers’ event location property. A

user-defined function is passed the state variable and time on every step evaluation,

and calculates a vector of event variables. When one of the event variables changes

Chapter 3. System modelling 65

sign from one evaluation to the next, Matlab will locate the exact time and state

at that position, and optionally halt the operation of the simulation.

We will set an events function which will detect the conditions for switching between

each mode and halt the system when they are detected. Code in the container

function will then update a sys.mode variable to reflect the new value, concatenate

the output results, and then restart the simulation with the halting state set as the

initial conditions.

By ensuring that any logical tests within the ODE function consider only those

variables which are switched outside the ODE, such as sys.mode and sys.dir

(the direction in which compression is occurring), we can avoid the existence of

discontinuities and thus keep the model stiffness as low as possible.

3.4.3 Packed state vector

The way the simulation deals with state vectors has been implemented in a very

flexible way. Matlab’s ODE solvers require state vectors as inputs (for both the

initial state and the output from the ODE), but this is a difficult format to work

with. Newly added state variables need to be at the end of the state vector, not

in a logical order, or all previous references need to be updated to reflect the new

ordering; also, the difficulty of mapping y(8) to m2 while y(9) represents T1 often

leads to indexing errors, which can be very difficult to spot while debugging.

The solution to this issue was to use a function called SW pack, which converts a

state vector into a structure with fields corresponding to each state variable, and

cell arrays for variables which are different for the different ends of the tube. The

respective formats are shown in Figure 3.7 and Figure 3.8.

For instance, model pack maps y(3) to y.hdot, which clearly marks it as the

piston velocity ḣ, and it converts y(7) and y(8) to y.T{1} and y.T{2}, which allow

66 Chapter 3. System modelling

y =



θ
h

ḣ
m1

m2

mout

T1

T2

TPE,1

TPE,2

TTE,1

TTE,2

WD
I

tdelay,1
...

tdelay,4

θOP,1
...

θOP,12


Figure 3.7: Unpacked state vector

y.theta = θ

y.h = h

y.hdot = ḣ

y.m{1 : 2} = m1,m2

y.m out = mout

y.T{1 : 2} = T1, T2

y.T pe{1 : 2} = TPE,1, TPE,2

y.T te{1 : 2} = TTE,1, TTE,2

y.wd = WD

y.I = I

y.tdel =

tdelay,1
...

tdelay,4


y.opthets =

 θOP,1
...

θOP,12


Figure 3.8: Packed ‘state structure’

functions within the ODE to loop twice and easily reference whichever monolithic air

temperature T1 or T2 is appropriate for the calculation. It also stores all of the θOP

values (the coefficients of the orthogonal polynomials, which are used to calculate the

current wall temperature profile) in a single vector, y.opthets, which allows vector

calculations to be used much more easily. The state vector is thus only represented

as a vector when passed to Matlab’s solving functions, and converted to a structure

immediately afterwards to simplify code. Adding a new state variable only requires

the modification of the SW pack function.

Although this packing and unpacking step adds overhead to the function, it is

minimised by the Matlab compiler, which parallelises the operation during the

just-in-time acceleration part of its compiler.

Chapter 3. System modelling 67

0 500 1000 1500
700

800

900

1000

1100

1200

1300

Temperature (K)

S
p

e
ci

fi
c

h
e
a
t

ca
p

a
ci

ty
 (

J
/k

g
 K

)

c
p,a

c
v,a

Figure 3.9: Specific heat capacities of air cp,a and cv,a, based on Lemmon et al. [86]

3.4.4 Physical properties

For optimum accuracy of the simulation, we will use functions to calculate those

physical properties of the system that may vary during operation.

Specific heat capacity of air

To obtain accurate values for the specific heat capacities of air cp,a and cv,a over a

range of temperatures, we implement the highly-accurate formulae given by Lemmon

et al. [86] in Matlab. The resulting curves are shown in Figure 3.9.

γa, the heat capacity ratio (also known as the adiabatic index), can then be calculated

from the two specific heat capacities given by the Lemmon et al. [86] functions:

γa =
cp,a(T)

cv,a(T)
(3.31)

68 Chapter 3. System modelling

Thermal conductivity of air

For kth,air, the thermal conductivity of the air, we use data from Rogers and May-

hew [85, p.16] imported into Matlab, as shown in Figure 3.10. Since this will need to

be evaluated several times for each timestep, we fit a polynomial to the curve rather

than use a Matlab linear interpolation function such as interp1, which would

take significantly longer to evaluate. In a test with 105 pseudorandom temperature

values, the standard linear interpolation function interp1 took 16.76 s, the faster

interp1q took 5.09 s, and the polynomial evaluation function polyval took 4.08 s,

representing a performance boost for the polynomial method of 75.7% over interp1

and 19.9% over interp1q.

A cubic polymonial fitted to the data, as plotted in Figure 3.10, has an error of

around 0.5% for the range required.

Chapter 3. System modelling 69

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.02

0.04

0.06

0.08

0.1

0.12
T

h
e
rm

a
l

co
n

d
u

ct
iv

it
y
 (

W
/m

 K
)

Rogers & Mayhew data

3rd−order polynomial

200 400 600 800 1000 1200 1400 1600 1800 2000
0.001%

0.01%

0.1%

1%

10%

Temperature (K)

E
rr

o
r

Error between fitted polynomial and linear interpolation

Figure 3.10: Thermal conductivity of air, kth,air

70 Chapter 3. System modelling

71

Chapter 4

Energy calculations

Our piston control system will use a constantly-updated estimate of the potential

energy in the piston, compared to a calculation of how much energy is required to

compress and exhaust the remaining air in the tube, to determine the timing of the

start of the compression stage, for optimum system performance. Data from the

energy functions is also useful as a performance metric.

4.1 Potential energy in system

First, we calculate the total potential energy of the piston and use it as two variables

(in the rimwards and hubwards directions).

4.1.1 Kinetic energy

The total kinetic energy of the piston is calculated simply from its current velocity;

Epot,kin =
1

2
mP ḣ

2 (4.1)

72 Chapter 4. Energy calculations

4.1.2 Centrifugal potential energy

The potential energy from the centrifugal acceleration can be found by integrating

the centrifugal force over the distance from the piston’s current height to the limit of

its movement at LCT;

Epot,cent =

∫
mrθ̇2 dr (4.2)

= mθ̇2

LCT∫
h

h̄+ LTE dh̄

= mθ̇2(LCT − h)

(
LCT + h

2
+ LTE

)
(4.3)

When compressing air in the hubwards direction, this component is unhelpful and

will detract from the work done. As a result, it has a different sign depending on

which end of the tube is considered.

4.1.3 Diametrically linked pistons

In a system with two diametrically linked pistons, each of height 2LPE, the behaviour

of the combination in the hubwards and rimwards directions is different;

Epot,cent = mθ̇2

LCT
2
−LPE∫

h0−
LCT

2

r dr

= mθ̇2

[
r2

2

]LCT
2
−LPE

h0−
LCT

2

=
1

2
mθ̇2 (h0 − LPE) (LCT − LPE − h0) (4.4)

This expression (a negative quadratic with roots at h0 = LPE and h0 = LCT − LPE)

can be used when considering either direction for compression.

Chapter 4. Energy calculations 73

4.1.4 Gravitational potential energy

GPE needs to consider the distance to the hub for the upper part of the revolution

(0 < θ < π) and the distance to the rim for the lower part of the revolution

(π < θ < 2π). This is complicated by the change of sign of sin(θ).

Epot,gr =


mgh sin θ if sin θ > 0,

mg(h− LCT) sin θ if sin θ < 0.

(4.5)

This function does not work, however, since θ will change during the time it takes

the piston to reach the end of the tube. A more accurate function assumes linear

deceleration, obtaining:

ḧ = at+ b (4.6)

ḣ = a
t2

2
+ bt+ c (4.7)

h = a
t3

6
+ b

t2

2
+ ct+ d (4.8)

We let tlock be the time when the piston reaches the end and is locked into place,

obtaining the boundary conditions:

t = 0, h = h0, ḣ = ḣ0, θ = θ0 (4.9)

t = tlock, h = hlock, ḣ = 0, θ = θlock (4.10)

tlock =
θlock − θ0

θ̇
(4.11)

74 Chapter 4. Energy calculations

We use these boundary conditions to obtain the constants:

a =
12

t3lock

(
h0 − hlock +

tlock

2
ḣ0

)
(4.12)

b =
6

t2lock

(
hlock − h0 −

2tlock

3
ḣ0

)
(4.13)

c = ḣ0 (4.14)

d = h0 (4.15)

We now integrate to find the potential energy. The minus sign is required either due

to the direction of ḣ or the sign of sin θ, depending on the current radial position.

Epot,gr = −
tlock∫
0

mgḣ sin θ dt

= −mg
tlock∫
0

(a
2
t2 + bt+ c

)
sin θ dt

= −mg
[(a

2
t2 + bt+ c

)(− cos θ

θ̇

)
− (at+ b)

(
− sin θ

θ̇2

)
+ a

(
cos θ

θ̇3

)]tlock

0

= −mg

 a

(
tlock

sin θlock

θ̇2
+

cos θlock

θ̇3
− cos θ0

θ̇3

)
+ b

(
sin θlock − sin θ0

θ̇2

)
+ c

(
cos θ0

θ̇

)


Substituting in expressions for a, b and c;

Epot,gr = mg
12

t3lock

(
tlock

2
ḣ0 + h0 − hlock

)(
cos θ0

θ̇3
− tlock

sin θlock

θ̇2
− cos θlock

θ̇3

)
+mg

6

t2lock

(
hlock − h0 −

2tlock

3
ḣ0

)(
sin θ0 − sin θlock

θ̇2

)
−mgḣ0

(
cos θ0

θ̇

)
(4.16)

Chapter 4. Energy calculations 75

Substituting in tlock =
(
θlock−θ0

θ̇

)
;

Epot,gr = mg
12

(θlock − θ0)3

(
θlock − θ0

2θ̇
ḣ0 + h0 − hlock

)
× (cos θ0 − (θlock − θ0) sin θlock − cos θlock)

+mg
6

(θlock − θ0)2

(
hlock − h0 −

2(θlock − θ0)

3θ̇
ḣ0

)
(sin θ0 − sin θlock)

−mgḣ0

(
cos θ0

θ̇

)
(4.17)

The values of hlock and θlock vary depending on the direction in which we are

considering compression. For a set of two diametrically-connected pistons each of

length 2LPE, we replace h0 with h0− LCT
2 , the position of the centre of gravity of the

piston pair; the gravitational potential energy available for compressing air in the

rimwards direction (relative to the α piston) is given by setting hlock = LCT
2 − LPE,

while in the hubwards direction we have hlock = LPE − LCT
2 . The angle of the piston

at the end a compression stroke must obviously be the same in either case, so we pick

a suitable θlock for the hubwards stroke and use θlock + π for the rimwards stroke.

However, this method both requires us to choose some appropriate value for θlock

and also generates asymptotes in the function where θ0 = θlock.

An alternative to using a constant is to use a function to estimate tlock, and use that

to obtain a θlock which is always slightly ahead of the current value. If we assume

that centrifugal force is absent and that the tube will not rotate significantly during

the descent of the piston, we can use the standard equations of motion;

t =
v − v0

a
, v2 = v2

0 + 2as

t =

√
v2

0 + 2as− v0

a
(4.18)

76 Chapter 4. Energy calculations

In the rimwards case, we have;

v0 = ḣ0

s = (LCT − h0 − LPE)

a = g sin θ0

t =

√
ḣ2

0 + 2(g sin θ0)(LCT − h0 − LPE)− ḣ0

g sin θ0
(4.19)

In the hubwards case, we have;

v0 = −ḣ0

s = h0 − LPE

a = g sin θ0

t =

√
ḣ2

0 + 2(g sin θ0)(h0 − LPE) + ḣ0

g sin θ0
(4.20)

We can use these functions to obtain estimates for tlock, which we then substitute

into θlock = θ0 + tlockθ̇ to obtain an estimate for θlock.

Figure 4.1 shows the predicted values of θlock over a short simulation, with the start

of compression and the end of the exhaust both marked with points. Figure 4.2

shows the trajectory of the error in the prediction over the time before the piston

stopped for several cycles; the maximum error is 0.35 rad, 2 rad before the end of

the stroke, which reduces to around 0.1 rad by the position in which the compression

starts. This is more than accurate enough for our purposes.

4.1.5 Total potential energy

We can combine the above three expressions into two variables representing potential

energy. Epot,1 is the energy available for compressing air rimwards of piston α and

Chapter 4. Energy calculations 77

0 5 10 15 20 25
0

5

10

15

20

25

θ (rad)

P
re
d
ic
te
d
θ
lo
ck

va
lu
e
(r
a
d
)

Compression started

Piston stopped

Direction 1

Direction 2

Figure 4.1: Predicted values of θlock

−2.5 −2 −1.5 −1 −0.5 0
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

E
rr
o
r
in

θ
lo
ck

p
re
d
ic
ti
o
n
(r
a
d
)

Angle before θlock (rad)

Figure 4.2: Error in θlock predictions

78 Chapter 4. Energy calculations

hubwards of piston β;

Epot,1 =
1

2
mḣ2 +

1

2
mθ̇2h(LCT − h) + Epot,gr,1 (4.21)

Epot,2 is the energy available for compressing air hubwards of piston α and rimwards

of piston β;

Epot,2 =
1

2
mḣ2 +

1

2
mθ̇2h(LCT − h) + Epot,gr,2 (4.22)

We reduce computation time by calculating only one of these at a time, depending

on the current direction of movement of the piston pair.

4.2 Energy required

The model must continuously calculate the energy required to compress and exhaust

the air currently in the tube. Before the valve is closed, this air will be at atmospheric

pressure.

4.2.1 Energy to compress air

The air must be compressed from the current pressure in the tube up to the target

air pressure of the HP manifold. The energy required to do this is given by;

Ecomp =

∫
p dV

Since we know that V = hA and p = kV −γ [41, p.180], we can substitute;

Ecomp = kA1−γ
h2∫
h1

h−γ dh

Chapter 4. Energy calculations 79

We can find the limiting piston positions by considering the ratio between the

target pressure ptarg and the current pressure, p1 or p2 depending on direction. The

current length of the volume to be compressed may be (LCT− h) for alpha-rimwards

compression or h for alpha-hubwards compression; we will denote the current pressure

as p0 and the distance from the current position to the end of the stroke as h0 to

obtain a general expression.

Ecomp = kA1−γ
h0∫

h0

(
p0
ptarg

) 1
γ

h−γ dh

= (p0A
γhγ)

A1−γ

1− γ

[
h1−γ

0 − h1−γ
0

(
p0

ptarg

) 1−γ
γ

]

=
p0h0A

1− γ

(
1−

(
p0

ptarg

) 1−γ
γ

)
(4.23)

4.2.2 Energy to exhaust compressed air

The compressed volume is given by;

Vexh = h0A γ

√
p0

ptarg

(4.24)

The work done exhausting this volume at constant pressure ptarg is given by;

Eexh =

∫
p dV

=

0∫
Vexh

ptarg dV

= h0Aptarg γ

√
p0

ptarg
(4.25)

80 Chapter 4. Energy calculations

4.2.3 Work done by atmosphere

There will be a negative contribution to the energy required, from the work done by

atmospheric pressure behind the piston. We find;

Eatmos =

∫
p dV

=

h0A∫
0

patm dV

Eatmos = −h0Apatm (4.26)

4.2.4 Energy to overcome friction

Our model includes only a constant Coulomb friction force, Fµ, so the energy required

is simply;

Efric = h0Fµ (4.27)

4.2.5 Total energy required

We can now write an expression for the total energy required to compress and exhaust

the air in the tube, in terms of the tube area, the starting and target pressures, and

the distance the piston needs to move;

Ereq = h0

(
p0A

1− γ

(
1−

(
p0

ptarg

) 1−γ
γ

)
+Aptarg γ

√
p0

ptarg
+ Fµ −Apatm

)
(4.28)

This is built into the function SW control energy, which is called by the events

function SW events to be calculated for each timestep and compared to the potential

energies in the system to determine the correct point at which to switch modes.

Chapter 4. Energy calculations 81

4.3 Conclusions

This chapter outlined both a set of functions and a process by which the various

potential energies in the system may be calculated. Their implementation into the

model results in Figure 4.3, which shows how the various components change as the

piston moves through the stroke. The functions are of use not only in the decision of

when the compression stage should start, but also for the calculation of work done,

which provides a metric for the system performance, which will be discussed further

in chapter 8.

82 Chapter 4. Energy calculations

0
1

2
3

4
5

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

x
 1

0
7

Energy (J)

T
im

e
 sin

ce
 sta

rt o
f k

ick
 (s)

E
n

e
rg

y
 re

q
u

ire
d

K
in

e
tic e

n
e
rg

y

C
e
n

trifu
g
a
l p

o
te

n
tia

l e
n

e
rg

y

G
ra

v
ita

tio
n

a
l p

o
te

n
tia

l e
n

e
rg

y

T
o
ta

l p
o
te

n
tia

l e
n

e
rg

y

C
o
m

p
re

ssio
n

 sta
g
e
 sta

rte
d

F
ig

u
re

4.3:
E

n
ergies

in
th

e
sy

stem
d

u
rin

g
a

stroke

83

Chapter 5

Thermal modelling

As described in the previous chapters, the model assumes the compression to be fully

adiabatic, involving no heat transfer to or from the compression cylinder and the

piston. To increase the accuracy, this chapter will outline the process and results of

adding a thermal model of the compression tube to the overall model.

Since the air compression occurs at the ends of the tube, and the particularly high

temperatures associated with the target pressure are also at the extreme ends, we

will design a thermal model which possesses great accuracy at the ends.

5.1 Wall temperatures

We now introduce new properties Q, the rate of thermal energy transfer per unit

area; (ρCTcp,CT), the thermal mass of the wall per unit volume; kth,CT, the internal

thermal conductivity of the tube wall per unit area; U , a heat transfer coefficient;

r, the radius of the cylinder; rt, the radial thickness of the wall; and z, a spatial

coordinate for the wall. We consider the heat transfer acting over a vertical section

of cylinder ∆z and assume that r >> rt.

84 Chapter 5. Thermal modelling

5.1.1 Wall temperature ODE

We begin by considering the ordinary differential equation which governs the wall

temperature. This is made up of two components: one due to heat transfer within

the wall, and one due to heat transfer to or from the air mass. We assume the

cylinder is thermally isolated from its surroundings.

∂TCT

∂t
(z, t) =

∂TCT

∂t

∣∣∣∣
int

+
∂TCT

∂t

∣∣∣∣
surf

(5.1)

Conduction internal to the wall

If we consider a thin element of the cylinder, we find that the thermal transfer along

the cylinder is simply the second-order partial derivative of the temperature with

respect to height, multiplied by the rate of heat flow and divided by the thermal

mass of the element.

∂TCT

∂t

∣∣∣∣
int

=
kth,CT (2π r rt)

δ2TCT
δz2 ∆z

2π r rt ∆z (ρcp)CT

∂TCT

∂t

∣∣∣∣
int

=
kth,CT

(ρcp)CT

δ2TCT

δz2
(5.2)

This will allow us to model the diffusion of heat along the length of the cylinder.

Conduction at wall surface

Here, we consider the heat transfer acting over an area equal to the circumference

multiplied by ∆h;

∂TCT

∂t

∣∣∣∣
surf

=
Q (2π r∆z)

2π r∆z (ρcp)CT

∂TCT

∂t

∣∣∣∣
surf

=
Q

(ρcp)CT
(5.3)

Chapter 5. Thermal modelling 85

The rate of thermal energy transfer per unit area of wall inner surface, Q, is given

by [41, p.508];

Q = U ×∆T (5.4)

where we will take the heat transfer coefficient per length of tube U to be given by

considering the resistance of nominal thicknesses of wall, tCT, and air, tair.

1

U
=

tCT

kth,CT
+

tair

kth,air
(5.5)

We can simply take tCT = rt
2 , half the radial thickness of the wall. kth,air is obtained

by interpolation of data from Rogers and Mayhew [85, p.16] as shown in section 3.4.4.

We assume the thickness of the air boundary layer to be tair = 0.003 mm, as detailed

in appendix D.

Total ODE

Combining these two expressions, we obtain;

∂TCT

∂t
(z, t) =

kth,CT

ρcp

∂2TCT

∂z2
+

Q

ρcp
(T − TCT) (5.6)

In order to simplify the process of finding ∂2TCT
∂z2 , we will model temperature in the

wall as a linear combination of orthogonal polynomials.

5.2 Orthogonal Polynomials

We first define a weighted inner product, for two polynomials f(z) and g(z):

〈f, g〉 =

b∫
a

f · g · w(z) dz (5.7)

86 Chapter 5. Thermal modelling

−1 −0.5 0 0.5 1
−0.1

−0.05

0

0.05

0.1

z

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

Figure 5.1: Legendre set of orthogonal polynomials

where w(z) is a weighting function which is positive for all z values, and a and b

are the limits of the region of interest. If f and g are ‘orthogonal’, this means that

〈f, g〉 = 0. If we take w(z) = 1, a = −1 and b = 1, we obtain a set of polynomials

referred to as the Legendre polynomials, shown in Figure 5.1.

5.2.1 Gram-Schmidt orthonormalisation

By convention, our first polynomial is a constant. We let the second polynomial take

the form of a straight line, and find it using the definition of orthogonality;

P0 = 1 (5.8)

P1 = z + c

Chapter 5. Thermal modelling 87

〈P0, P1〉 = 0

LCT∫
0

1× (z + c)×
(

1− z

LCT

)
dz = 0

c = −LCT

3
(5.9)

We can now find as many orthogonal polynomials as required using a recurrence

relation derived from the Gram-Schmidt orthonormalisation process (GSONP);

Pi+1 =

[
z − 〈z, Pi, Pi〉

〈Pi, Pi〉

]
Pi −

[
〈Pi, Pi〉
〈Pi−1, Pi−1〉

]
Pi−1 (5.10)

This delivers a series of polynomials, each of the order of its index (i.e. P4 is a

4th-order polynomial).

5.2.2 Analytical method

Initially, a method of generating the polynomials using analytical methods was tried.

Here, we carry out operations on the polynomial coefficients to multiply and integrate

the polynomials. This method led to a build up of significant orthonormalisation

errors after a relatively low number of polynomials were generated, due to the

numerical instability of the algorithm.

88 Chapter 5. Thermal modelling

5.2.3 Numerical method

An alternative technique was adopted whereby the polynomials are represented as

vectors of coordinates, m elements long. First, we define a basis of z-values:

z =



z1

z2

z3

...

zm


=



a

a+ b−a
m

a+ 2 b−am
...

b


(5.11)

We similarly define the weight function w(z) as a vector of values w from w1 to

wm, and the ith polynomial Pi as a vector Pi with terms Pi,1 up to Pi,m. The inner

product of two vectors is now:

〈P1,P2〉 =
m∑
i=1

P1,i · P2,i · wi (5.12)

We can now carry out GSONP as before. This method results in a significant increase

in accuracy when generating larger numbers of polynomials, as shown in Figure 5.2.

5.2.4 Derivatives

Recalling that we require a function for ∂2TCT
∂z2 for Equation 5.6, we will obtain the

derivatives to the vectors using fitted polynomials. As we know the order of each

of the m polynomials and have n points to fit, this will be very accurate provided

n� m. We will take n = 1000 and m = 12 to provide adequate detail.

Obtaining derivatives is then simply a case of analytically differentiating the polyno-

mials by operations on their coefficients.

Chapter 5. Thermal modelling 89

0 2 4 6 8 10 12 14 16 18 20
10

−20

10
−15

10
−10

10
−5

10
0

Number of orthogonal polynomials generated

In
n

e
r

p
ro

d
u

ct
 e

rr
o
r

m
a
g
n

it
u

d
e

Analytical method

Numerical method

Figure 5.2: Accuracy of two GSONP methods at generating the Legendre
polynomials

5.2.5 Weighting

In our case, we will weight the polynomials to be more accurate closer to the ends of

the tube. This is better for this system because the majority of heat flow will occur

into and out of the ends of the tube. This is done in two ways.

Firstly, we will set the weighting curve to be five times larger at the tube ends than

at the middle, using a 4th-order polynomial with centring and scaling. We take:

w(z) = 4

(
2z

LCT
− 1

)4

+ 1 (5.13)

a = 0

b = LCT

This weighting function is shown in Figure 5.3.

Secondly, we will generate more points at the ends than in the middle, by interpolating

90 Chapter 5. Thermal modelling

0 20 40 60 80 100 120
0

1

2

3

4

5

6

z

W
e
ig

h
ti

n
g
 f

u
n

ct
io

n

Figure 5.3: Weighting curve for inner products

0 50 100
0

20

40

60

80

100

120

Linear input

N
o
n

li
n

e
a
r

o
u

tp
u

t

Nonlinear coordinate map

0 50 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Output values

D
if

fe
re

n
ce

s

Gap widths

Figure 5.4: Generating points with nonlinear spacing

Chapter 5. Thermal modelling 91

0 20 40 60 80 100 120
−0.05

0

0.05

z

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

Figure 5.5: Set of orthogonal polynomials, weighted towards the ends of the
compression tube

a linearly-spaced set of points on a quadratic curve, as shown in Figure 5.4. Since

we will generate the polynomials in the form of vectors of coordinates, the increased

point density at the ends will weight the inner product function towards the ends.

Figure 5.5 shows a set of orthogonal polynomials generated using the weighting

method outlined above.

5.2.6 Projection matrices

The orthogonal basis of polynomials described above allows us to calculate ∂TCT
∂t (z, t)

at any point along the wall. In order to ‘close the circle’ and formulate a usable

ODE to model the wall temperatures, we need an expression which dictates how the

coefficients of those polynomials change with respect to time.

First, we give each polynomial Pi a state-variable coefficient θi, so the wall tempera-

92 Chapter 5. Thermal modelling

ture at a point z is given by;

Tw(h) =
n∑
i=0

θiPi(z) (5.14)

The problem is now to calculate the derivative, θ̇, of this vector of n orthogonal

polynomial coefficients. We can do this by evaluating Ṫ at m different values of z

(calling this vector Ṫfull), and using a projection matrix A to convert to the (far

smaller) vector θ̇. A can be constructed quite simply; each row corresponds to

one of the m values of z, and each column corresponds to one of the n orthogonal

polynomials P1 to Pn.

A ≡



P1(z1) P2(z1) . . . Pn(z1)

P1(z2) P2(z2) . . . Pn(z2)

...
...

. . .
...

P1(zm) P2(zm) . . . Pn(zm)


(5.15)

The projection is thus:

Ṫfull ' A θ̇ (5.16)

Using the Moore-Penrose pseudoinverse for non-square matrices:

(
ATA

)−1
AT Ṫfull ' θ̇ (5.17)

A can be calculated before the simulation is run, along with
(
ATA

)−1
AT , so the

computational load during the simulation is smaller.

Chapter 5. Thermal modelling 93

0
1
0

2
0

3
0

4
0

5
0

6
0

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

−
7
e
−

0
5

−
6
e
−

0
5

−
5
e
−

0
5

−
5
e
−

0
5

−
4
e−

0
5

−
4
e−

0
5

−
3
e
−

0
5

−
3
e
−

0
5

−2
e−

05

−
2
e−

0
5

−
2
e
−

0
5

−
2
e
−

0
5

−1e−
05

−
1
e
−

0
5

−
1
e
−

0
5

0

0

0

0

1
e−

0
5

T
im

e
 (

s)

Positionz(m)
C

o
n

to
u

r
p

lo
t

o
f

w
a
ll

 t
e
m

p
e
ra

tu
re

s

Temperature difference from 293 K (K)

−
7

−
6

−
5

−
4

−
3

−
2

−
1

01x
 1

0
−

5
P

is
to

n
 t

ra
je

ct
o
ry

F
ig

u
re

5.
6:

W
al

l
te

m
p

er
at

u
re

co
n
to

u
rs

,
st

ar
ti

n
g

fr
om

u
n

if
or

m
29

3
K

94 Chapter 5. Thermal modelling

5.3 Implementation

Implementing this in the model, the output can be viewed as a ’temperature surface’;

the total sum across all the orthogonal polynomials, plotted against position and

time. The results of running the model for 1 minute of simulated time, with the wall

temperature initialised to a uniform 293 K, are shown as a contour plot in Figure 5.6.

It can be seen that, firstly, the general pattern is that the wall temperature reduces

in the centre, while the tube ends remain the same temperature or slightly warmer.

The visible cycle of the piston trajectory h(t) (shown as a black line) with rises in

TCT at the tube ends demonstrates the heat flow into the wall; at the very end, a net

heat flow into the wall due to the adiabatic compression heat, while the rest of the

cyclinder is cooled by the expanding kicks, particularly around 10 m from the end.

It is clear that the distribution of wall temperatures will reach a steady state after

some initial duration.

5.4 Finding steady-state wall temperatures

We use singular value decomposition (SVD) to look at the matrix of orthogonal

polynomial coefficients output from a long-term simulation, Θ. The number of non-

zero elements singular values will tell us how many functions are linearly independent.

Firstly, we make the assumption that each orthogonal polynomial coefficient θi(t) is

a linear combination of decaying exponential terms, as:

θ1(t) = a1 + b1e
−τbt + c1e

−τct + d1e
−τdt + . . .

θ2(t) = a2 + b2e
−τbt + c2e

−τct + d2e
−τdt + . . .

If we make an initial guess at a set of values for τ , the decay constants, we can use a

Chapter 5. Thermal modelling 95

relatively simple Moore-Penrose pseudo-inverse to calculate the coefficients for each

orthogonal polynomial;



θ1(t1) θ2(t1) . . . θn(t1)

θ1(t2) θ2(t2) . . . θn(t2)

θ1(t3) θ2(t3) . . . θn(t3)

...
...

...
...


=



1 e−τbt1 e−τct1 e−τdt1

1 e−τbt2 e−τct2 e−τdt2

1 e−τbt3 e−τct3 e−τdt3

...
...

...
...





a1 a2 . . . an

b1 b2 . . . bn

c1 c2 . . . cn

d1 d2 . . . dn


(5.18)

Θ = FA

A = (FTF)−1FTΘ (5.19)

We can then construct a matrix of ’projected’ θ values - a version of Θ based on the

A we have calculated.

Θproj = FA (5.20)

From the differences between Θ and Θproj we obtain the sum of squares of differences

(SSQ), which we can use as a measure of how appropriate the τ values we picked

were.

SSQ =
∑
i

∑
j

(
Θprojij −Θij

)2
(5.21)

However, this still requires us to manually tune the τ values.

5.4.1 Newton-Raphson optimisation process

We know that we are looking for a minimum value of the SSQ, where:

∂SSQ

∂τi
= 0 ∀ i (5.22)

96 Chapter 5. Thermal modelling

To find this minimum, we form up two arrays of derivatives. Firstly, a vector of

first-derivatives;

d =



∂SSQ
∂τ1

∂SSQ
∂τ2
...

∂SSQ
∂τn


(5.23)

Although it is possible in this case to find the derivatives analytically, it is simpler to

use a simple numerical derivative. Given a function which calculates the SSQ from a

given set of τ values, getSSQ, we have:

∂SSQ

∂τi
=

1

2εi
(getSSQ(τi+)− getSSQ(τi−)) (5.24)

where τi+ is equal to τ with a small perturbation εi added to the ith value, and τi−

has the perturbation subtracted. εi is normally found as 0.001× τi.

Next, we form the Hessian matrix of second-order partial derivatives, H, which is

given by:

H =



∂2SSQ
∂τ1∂τ1

∂2SSQ
∂τ1∂τ2

. . . ∂2SSQ
∂τ1∂τn

∂2SSQ
∂τ2∂τ1

∂2SSQ
∂τ2∂τ2

. . . ∂2SSQ
∂τ2∂τn

...
...

. . .
...

∂2SSQ
∂τn∂τ1

∂2SSQ
∂τn∂τ2

. . . ∂2SSQ
∂τn∂τn


(5.25)

To find these second-order derivatives, we use the same simple method outlined

above. We obtain perturbed τ vectors τi− & τi+ and τj− & τj+ (with perturbations

to the elements τi and τj respectively), and we combine them into τ vectors such as

τi−,j+, in which the ith element has been perturbed downwards and the jth element

Chapter 5. Thermal modelling 97

upwards. Then, we calculate the derivatives twice:

∣∣∣∣∂SSQ

∂τi

∣∣∣∣
j+

=
1

2εi
(getSSQ(τi+,j+)− getSSQ(τi−,j+))∣∣∣∣∂SSQ

∂τi

∣∣∣∣
j−

=
1

2εi
(getSSQ(τi+,j−)− getSSQ(τi−,j−)) (5.26)

∂2SSQ

∂τi∂τj
=

1

2εj

(∣∣∣∣∂SSQ

∂τi

∣∣∣∣
j+

−
∣∣∣∣∂SSQ

∂τi

∣∣∣∣
j−

)

=
1

4εiεj

 getSSQ(τi+,j+)− getSSQ(τi−,j+)

− getSSQ(τi+,j−) + getSSQ(τi−,j−)

 (5.27)

The symmetry of H (from Clairaut’s theorum, which states that successive partial

derivations are commutative) reduces the number of calculations required to obtain

H.

Once we have d and H, we can calculate an updated τ , τ ′, according to standard

Newton-Raphson:

τ ′ = τ −H−1d (5.28)

Modification to improve stability

We will further modify the Newton-Raphson optimisation algorithm to improve

its stability, by reducing the size of the step between adjacent τ values. A crude

approach would be:

τ ′ = τ − (1− ζ)H−1d (5.29)

where ζ = 0.95 initially, and is further reduced as ζ ′ = 0.95ζ on each step.

However, on some steps, it might be desirable to reduce ζ by more or less than 0.95,

98 Chapter 5. Thermal modelling

so we will adopt a different method. Firstly, we compute a new value for τ , with a

reduction factor of ξ:

τ ′ = τ − ξH−1d (5.30)

Then, we use the new τ value τ ′ to recalculate the Hessian matrix, H′. This is

multiplied by the original correction:

d′ = H′
(
H−1d

)
(5.31)

Finally, we find the greatest difference between the derivative vectors d and d′ when

scaled relative to the corresponding entry in d;

∆ = max

(
d′i − di

di

)
(5.32)

If ∆ > 0.01, then we take ξ′ = ξ
2 and start over. Once we have a suitably small ∆,

we accept that step and move on.

5.4.2 Final steady state

The resulting constant parts of the coefficient matrix (the values a1, a2 etc.) are the

values of θ which define the final steady-state wall temperature. A simulation which

ran for 48 hours of simulated time found the steady-state temperature profile to be

Chapter 5. Thermal modelling 99

0 20 40 60 80 100 120
275

280

285

290

295

300

Position on tube wall z (m)

W
a
ll
te
m
p
er
a
tu
re

T
C
T
(K

)

Figure 5.7: Steady-state Twall profile

given by:

θi =



1.469× 104 for i = 1,

375.1 for i = 3,

214.1 for i = 5,

59.27 for i = 7,

−25.13 for i = 9,

−46.77 for i = 11,

0 for even i.

(5.33)

The zero value on the even polynomials is due to their asymmetry; as the temperature

profile is fundamentally symmetric, the polynomials with odd orders (z, z3, z5 &c.)

make no net contribution to the steady-state temperature profile.

The resulting steady-state profile is shown in Figure 5.7.

100 Chapter 5. Thermal modelling

5.5 Conclusions

This chapter has outlined a method and set of equations to govern both heat flow

within the tube walls, and heat flow onto and off the walls. The model is now capable

of accurately representing the non-adiabatic nature of the compression process in

detail, which gives greater confidence in its results.

101

Chapter 6

Water cooling

This chapter covers an investigation into the proposition of spraying liquid water into

the compression tube as small droplets. This is intended to reduce the maximum

temperature seen, as the air mass’ thermal energy is partially consumed by the larger

heat capacity and phase change energy of the water. This is similar to the approach

taken by the CAES companies LightSail Energy [48], General Compression [49] and

SustainX [50].

We introduce a new subscript, m, which indicates that the term is related to the

mixture of air, steam and water.

6.1 Thermal properties

We require several new parameters which give the thermal properties of water, both

liquid and steam.

102 Chapter 6. Water cooling

6.1.1 Saturation temperature and pressure

Firstly, we introduce the saturation temperature of water, Tsat (also known as the boil-

ing point), which is dependent on pressure. Data from Rogers and Mayhew [85, p.3–5]

is imported into Matlab, as shown in Figure 6.1. As in section 3.4.4, we fit a

polynomial curve to the data to increase speed compared to interpolating. A cubic

polymonial fitted to the data, as plotted in Figure 6.1, has an error of around 0.1%

for the range required.

6.1.2 Latent heat of evaporation

The model also needs an accurate value for the latent heat of evaporation, which

is the energy required for the phase transition of water from liquid to gas, denoted

here as Lf→g, which is dependent on pressure. This is given as a set of points by

Rogers and Mayhew [85, p.3–5], shown in Figure 6.2. A 9th-order polynomial, also

plotted in Figure 6.2, has an error (relative to linear interpolation) of less than 1%

until pressure reaches 107 Pa, which is above our target pressure.

6.1.3 Specific heat capacity of water

For accurate operation, the simulation needs to be able to evaluate the heat capacities

at constant volume or pressure of liquid water, cv,wf and cp,wf , and steam, cv,wg and

cp,wg, respectively.

Data from Rogers and Mayhew [85, p.10] is imported into Matlab, and 4th-order

polynomials are fitted to allow fast evaluation of both cp,wg and cp,wf as functions of

temperature, as shown in Figure 6.3. Since liquid water is effectively incompressible,

cv,wf = cp,wf , so the same polynomial can be used for both; for clarity, derivations

will retain them as separate terms, and another function created for cv,wf . The

Chapter 6. Water cooling 103

10
4

10
5

10
6

10
7

250

300

350

400

450

500

550

600

650

700

750
S

a
tu

ra
ti

o
n

 t
e
m

p
e
ra

tu
re

 (
K

)

Rogers & Mayhew data

Critical point

3rd−order polynomial

10
4

10
5

10
6

10
7

0.001%

0.01%

0.1%

1%

Pressure (Pa)

E
rr

o
r

Error between fitted polynomial and linear interpolation

Figure 6.1: Saturation temperature of water, Tsat

104 Chapter 6. Water cooling

10
4

10
5

10
6

10
7

0

0.5

1

1.5

2

2.5
x 10

6

L
a
te

n
t

h
e
a
t

o
f

v
a
p

o
ri

sa
ti

o
n

 (
J
/k

g
)

Rogers & Mayhew data

9th−order polynomial

10
4

10
5

10
6

10
7

0.0001%

0.01%

1%

100%

Pressure (Pa)

E
rr

o
r

Error between fitted polynomial and linear interpolation

Figure 6.2: Latent heat of vaporisation of water, Lf→g

Chapter 6. Water cooling 105

200 250 300 350 400 450 500 550 600 650
1000

2000

3000

4000

5000

6000

7000

8000
S
p
e
c
ifi
c
h
e
a
t
c
a
p
a
c
it
y
(J

/
k
g
K
)

Rogers & Mayhew liquid water data

4th−order polynomial

Rogers & Mayhew steam data

4th−order polynomial

200 250 300 350 400 450 500 550 600 650
0.001%

0.01%

0.1%

1%

10%

Temperature (K)

E
rr

o
r

Error between fitted polynomials and linear interpolation

Figure 6.3: Specific heat capacities of water, cp,wg and cp,wf

106 Chapter 6. Water cooling

function for cv,wg is simply obtained from cp,wg using the universal gas constant R̄

and the molar mass of water Mw:

cv,wg(T) = cp,wg(T)− R̄

Mw
(6.1)

6.2 Additional state variables

Some assumptions are made:

• Water in the tube is either liquid or gas (steam)

• Steam temperature is equal to air temperature, so we replace the airmass

temperature Ta with the air-steam mixture temperature Tm, using the subscript

m to denote ‘mixture’. This is justified due to the extremely turbulent nature

of the flows within the compression tube.

At a minimum, we must add two new state variables.

mwf Mass of liquid water

mwg Mass of steam

Each has a corresponding entry in the rate vector ẏ, and all three are ‘paired’ for the

two different compression volumes, giving rise to individual state variables mwf,1,

mwf,2, mwg,1, and mwg,2.

6.3 Flow through valves

We will assume that inducted air is completely dry. To apply this in the simulation, we

sum the positive mass flow rates through the three valves (low-pressure to atmosphere,

Chapter 6. Water cooling 107

high-pressure to storage, and dump to atmosphere) and apply that exclusively to ṁa.

Then, we sum the negative mass flow rates to form ṁm
−ve, which is then divided

between the three masses in the compression tube based on their mass fraction.

Effectively, we are assuming perfectly mixed gas is output.

ṁa =
ma

ma +mwf +mwg
ṁm

−ve (6.2)

˙mwf =
mwf

ma +mwf +mwg
ṁm

−ve (6.3)

˙mwg =
mwg

ma +mwf +mwg
ṁm

−ve (6.4)

6.4 Pressure and volume

The pressure function must also be altered. We need to work out the total number

of moles of air and water vapour, using their molar masses Ma and Mw, then use

the universal gas constant to calculate the total pressure.

p =

(
ma

Ma
+
mwg

Mw

)
R̄ · Tm
V

(6.5)

All evaluations of the volume are adjusted to take into account the volume occupied

by the liquid water. We assume its density to be constant.

V ′ = Aha −
mwf

ρwf
(6.6)

6.5 Two-temperature model

Initially, two temperature state variables per compression chamber were used:

Tm Temperature of air-steam mixture

Twf Temperature of liquid water

108 Chapter 6. Water cooling

Since Ta has been replaced with Tm, we must modify the functions for Ṫa similarly.

We alter the thermal inertia:

Thermal inertia for the mixture = macv,a(Tm) +mwgcv,wg(Tm) (6.7)

where cv,a(Tm) is the specific heat capacity at constant volume of air at Tm. This

inertia is used throughout the calculations for the various parts of ˙Tm.

The heat capacity ratio, γ, must also be altered to reflect the effect of the steam,

using an average of the air and steam cv and cp values weighted by their respective

masses:

cp,m =
cp,ama + cp,wgmwg

ma +mwg

cv,m =
cv,ama + cv,wgmwg

ma +mwg

γm =
cp,m
cv,m

=
cp,ama + cp,wgmwg

cv,ama + cv,wgmwg
(6.8)

6.5.1 Evaporation ODEs

To find the rates of change of these state variables, firstly we consider the rate of

heat transfer into the liquid water, Q̇a→wf .

Q̇a→wf = kevap(Ta − Tsat)mwf (6.9)

where Ta is the temperature of the air, Tsat is the saturation temperature of water

at the current air pressure, and kevap is a ‘rate of evaporation’ constant. mwf is

included so that the rate scales with the volume of water, which is used as a proxy

for the available surface area for heat transfer to occur across. The effect of this

energy transfer is added to the expression for ˙Tm from Equation 3.23 using the new

Chapter 6. Water cooling 109

thermal inertia:

˙Tm
′
= ˙Tm +

−Q̇a→wf
macv,a +mwgcv,wg

(6.10)

Next, we formulate an expression for the fraction of Q̇a→wf which is being used for

vaporising the water.

Assuming that the temperature of the liquid water particles follows a Gaussian

probability density function (PDF), with µ = Twf and σ = 5 K, we obtain the

distributions shown in Figure 6.4:

PDF (Ti) =
1

σ
√

2π
e

(Ti−Twf)
2

2σ2 (6.11)

CDF (Ti) =
1

2

(
1 + erf

(
Ti − Twf√

2σ2

))
(6.12)

We assume that the energy passing into the water Q̇a→wf is split proportionally

between water particles which are above the saturation temperature Tsat (and will

use the energy for the phase transition) and those below Tsat (which will increase in

temperature instead). This proportion is obtained by evaluating the CDF at Tsat.

The rate of vaporisation is thus simply:

˙mwf evap =
(1− CDF (Tsat)) · Q̇a→wf

Lf→g(Tm)
(6.13)

˙mwgevap = − ˙mwf evap (6.14)

where Lf→g(Tm) is the latent heat of vaporisation of water at Tm. The rate of change

of temperature of the liquid water is similarly uncomplicated:

˙Twf =
CDF (Tsat) Q̇a→wf
mwf · cv,wf (Twf)

(6.15)

where cv,wf (Twf) is the specific heat capacity at constant volume of liquid water, at

110 Chapter 6. Water cooling

−30 −20 −10 0 10 20 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Temperature difference from Twf (K)

P
o
p

u
la

ti
o
n

 d
e
n

si
ty

Population density function

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1
Cumulative distribution function

Temperature difference from Twf (K)

C
u

m
u

la
ti

v
e
 f

ra
ct

io
n

Figure 6.4: Particle temperature distribution from two-temperature wet model

Chapter 6. Water cooling 111

the current temperature Twf .

6.5.2 Energy required

Adding water also alters the energy required by the system. At present, the energy

calculation in the model considers three components: to compress the dry air, to

exhaust the dry air, and to defeat the small Coulomb friction. We will model the ‘wet’

compression as a stage of adiabatic compression followed by a stage of isothermal

compression.

Adiabatic stage

Unlike the dry air energy required calculation, which assumed adiabatic compression

from p0 up to ptarg, the first stage of wet compression will run from Ta,0 to an

estimated final temperature Ta,max. We calculate the γ value for the mixture, γm,

by assuming that all the water injected will evaporate instantly, so the mass of water

is used as the mass of steam:

γm =
cp,ama + cp,wgmwf

cv,ama + cv,wgmwf
(6.16)

Using the standard adiabatic relationships, we find that the piston position in the

limits of the integral will be from h0 to h0

(
Ta,0
Ta,max

) 1
γ−1

, and use the substitution

pV = kadi, setting the constant using the initial conditions (pressure at p0, position

112 Chapter 6. Water cooling

at h0).

Ecomp,adi =

∫
pdV

=

∫
(kadiA

−γh−γ) d(Ah)

= (p0A
γhγ0)A1−γ

h0∫
h0

(
Ta,0

Ta,max

) 1
γ−1

h−γ dh

= p0Ah
γ
0

[
h1−γ

1− γ

]h0

h0

(
Ta,0

Ta,max

) 1
γ−1

=
p0Ah

γ
0

1− γ

[
h1−γ

0 − h1−γ
0

(
Ta,0
Ta,max

) 1−γ
γ−1

]

=
p0Ah0

1− γ

(
1− Ta,max

Ta,0

)
(6.17)

Isothermal stage

This is followed by an isothermal process, in which pV = kiso. We set the constant

using the conditions at the end, where the pressure is ptarg and the piston position is

p0h0

ptarg

(
Ta,max

Ta,0

)
. The energy in this stage is:

Ecomp,iso =

∫
pdV

=

∫
(kisoA

−1h−1) d(Ah)

=

(
p0

(
Ta,max

Ta,0

) γ
γ−1

Ah0

(
Ta,max

Ta,0

) 1
1−γ
) h0

(
Ta,0

Ta,max

) 1
γ−1∫

p0h0
ptarg

(
Ta,max
Ta,0

) h−1 dh

= p0Ah0

(
Ta,max

Ta,0

)(
loge

(
h0

(
Ta,0
Ta,max

) 1
γ−1

)
− loge

(
p0h0

ptarg

(
Ta,max

Ta,0

)))

= p0Ah0

(
Ta,max

Ta,0

)
loge

(
ptarg

p0

(
Ta,max

Ta,0

) γ
1−γ
)

(6.18)

Chapter 6. Water cooling 113

Exhaust stage

During the exhaust stage, the work done is simply the final pressure multiplied by

the tube area and the distance moved during exhaust (from the final piston position);

Eexh = Ah0p0
Ta,max

Ta,0
(6.19)

Total energy required

Adding these components to those which are the same as for dry air (energy to over-

come friction, minus that done by the atmosphere) we obtain the overall expression:

Ereq =
p0Ah0

1− γ

(
1− Ta,max

Ta,0

)
+ p0Ah0

(
Ta,max

Ta,0

)
loge

(
p0

ptarg

(
Ta,max

Ta,0

) γ
γ−1

)

+ p0Ah0
Ta,max

Ta,0
+ h0Fµ −Ah0patm (6.20)

6.5.3 Stiffness problems

Implementing this two-temperature model, we run into a significant problem. The

model becomes extremely stiff, requiring timesteps much smaller than is practically

possible to solve. To investigate the cause of this instability, we will examine the

time constant of the liquid water temperature state variable, through a simple water

droplet model.

Water droplet test calculation

We consider a solid sphere of water, and look at the diffusion of heat into the droplet

from the air surrounding it. The heat passing through a concentric spherical surface,

114 Chapter 6. Water cooling

with a radius r and thermal conductivity k is given by;

Q(r) = −∂T
∂r
· k ·

(
4πr2

)
(6.21)

We can form the partial differential equation by considering the net heat going into

a hollow-spherical element of thickness ∆r;

(cvρ)
∂T

∂t

(
4πr2∆r

)
= −

∣∣∣∣∂T∂r k (4πr2
)∣∣∣∣
r

+

∣∣∣∣∂T∂r k (4πr2
)∣∣∣∣
r+∆r

(6.22)

cvρ

k

∂T

∂t

(
r2 ·∆r

)
=

∣∣∣∣∂T∂r r2

∣∣∣∣
r+∆r

−
∣∣∣∣∂T∂r r2

∣∣∣∣
r

(6.23)

The right hand side is a derivative with respect to r, which obtains;

cvρ

k

∂T

∂t
r2 =

∂2T

∂r2
r2 + 2r

∂T

∂r
(6.24)

∂T

∂t
=

k

cvρ

(
∂2T

∂r2
+
∂T

∂r

2

r

)
(6.25)

For water at 293 K, we take k = 0.609 W/m·K, cv = 3.951 kJ/kg·K and ρ =

998.3 kg/m3.

The initial temperature profile is a spherical droplet at a uniform 293 K, with

the outer surface at 393 K. This is represented numerically as a large vector of

temperature values, where the numerical derivatives at each point are defined as:

∣∣∣∣∂T∂r
∣∣∣∣
i

=
Ti+1 − Ti−1

ri+1 − ri−1
(6.26)∣∣∣∣∂2T

∂r2

∣∣∣∣
i

=
Ti+1 − 2Ti + Ti−1

(ri+1 − ri)(ri − ri−1)
(6.27)

Chapter 6. Water cooling 115

with the end conditions:

∣∣∣∣∂T∂r
∣∣∣∣
r1

=

∣∣∣∣∂T∂r
∣∣∣∣
r2

and

∣∣∣∣∂2T

∂r2

∣∣∣∣
r1

=

∣∣∣∣∂2T

∂r2

∣∣∣∣
r2

(6.28)∣∣∣∣∂T∂r
∣∣∣∣
rend

=

∣∣∣∣∂2T

∂r2

∣∣∣∣
rend

= 0 (6.29)

If we substitute these into the PDE, we obtain;

∣∣∣∣∂T∂t
∣∣∣∣
ri

=
k

cvρ

(
Ti+1 − 2Ti + Ti−1

(ri+1 − ri)(ri − ri−1)
+
Ti+1 − Ti−1

ri+1 − ri−1

2

ri

)
(6.30)∣∣∣∣∂T∂t

∣∣∣∣
ri

=
k

cvρ

[
1

(ri+1 − ri)(ri − ri−1)
+

2

ri(ri+1 − ri−1)

]
Ti+1

+
k

cvρ

[
−2

(ri+1 − ri)(ri − ri−1)

]
Ti

+
k

cvρ

[
1

(ri+1 − ri)(ri − ri−1)
− 2

ri(ri+1 − ri−1)

]
Ti−1 (6.31)

This allows us to calculate a matrix D such that;

Ṫ (r) = D · T (r) (6.32)

Modelling this in the Matlab m-file thermal mod func with a 10 K temperature

difference and a 2 × 104 m diameter droplet gives the profile shown in Figure 6.5.

It can be readily seen that after only 1.5× 10−5 seconds, the centre of the droplet

has warmed to within 1 K of the outer edge. This fast time constant leads to an

extremely high eigenvalue of the overall ODE system, increasing its stiffness.

Since the time constant is so fast, this variable lends itself extremely well to being

removed. We will assume that the temperature changes instantaneously, so only one

temperature state variable is needed for the whole mixture. This change (to a simple

Differential Algebraic Equation, or DAE) should work to reduce the stiffness of the

model and improve its efficiency.

116 Chapter 6. Water cooling

0 0.2 0.4 0.6 0.8 1

x 10
−4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x 10
−5

−9

−8

−8

−7

−7

−6

−6

−5

−5

−4

−4

−3

−3

−2

−
2

−1

−
1

Radial position (m)

T
im

e
 (

s)

T
e
m

p
e
ra

tu
re

 d
if

fe
re

n
ce

 f
ro

m
 e

d
g
e
 (

K
)

−9

−8

−7

−6

−5

−4

−3

−2

−1

Figure 6.5: Thermal diffusion of 10 K gradient in water droplet

Chapter 6. Water cooling 117

6.6 Single-temperature model

One assumption is added:

• The air, the steam and the liquid water all have the same temperature Tm.

This necessitates redefining γm:

γm =
cp,ama + cp,wgmwg + cp,wfmwf

cv,ama + cv,wgmwg + cv,wfmwf
(6.33)

We also modify the thermal inertia of the mixture to include the effect of liquid water

and steam:

New thermal inertia = macv,a(Tm) +mwgcv,wg(Tm) +mwfcv,wf (Tm) (6.34)

6.6.1 States

We will assume that each mixture can have three possible states: liquid water, phase

transition, and steam. In the liquid state, mwg = 0; in the steam state, mwf = 0.

In the Matlab model, the states are tracked by a new field of the sys structure,

sys.phase, which is a cell array of integers; a value of 1, 2 or 3 in the sys.phase{2}

field shows that mixture 2 is liquid, in transition, or steam respectively. Moving

between states is controlled by events which detect when either mwf = 0 or mwg = 0,

in the phase transition, or when Tm = Tsat otherwise.

6.6.2 Evaporation ODEs

During the phase transition, the mixture’s temperature and pressure position is

always on the saturation curve, Tsat(p). This means that the rate of change of the

118 Chapter 6. Water cooling

mixture temperature is simply the rate of change of the saturation temperature:

˙Tm = ˙Tsat = dTsat(p)
dp · ṗ (6.35)

The gradient of the saturation curve, dTsat(p)
dp , can be obtained using the fitted

polynomial being used to estimate the saturation curve, described in subsection 6.1.1.

We calculate the numerical derivative for every line segment of the linear interpolation,

then fit a polynomial to that curve; the result of this is shown in Figure 6.6. We

obtain an expression for the rate of change of pressure, ṗ, by differentiating the

rearranged ideal gas law with respect to t:

p =

(
ma

Ma
+
mwg

Mw

)
R̄Tm

Aha −
mwf
ρw

(6.36)

p =
R̄

A

(
maTm
Ma

+
mwgTm
Mw

)
1

ha
(6.37)

ṗ =
R̄

A

((
ṁaTm +ma

˙Tm
Ma

+
˙mwgTm +mwg

˙Tm
Mw

)
h−

(
ma

Ma
+
mwg

Mw

)
Tmḣa

)
1

h2
a

(6.38)

Note that we have assumed that Aha �
mwf
ρw

, which is justified due to the large

value of ρw. Problematically, this expression contains ˙mwg and ˙Tm on the right-hand

side, which both depend on ṗ.

Rearranging this is simplified by the introduction of several intermediate variables,

Chapter 6. Water cooling 119

10
4

10
5

10
6

10
7

10
−6

10
−5

10
−4

10
−3

10
−2

D
e
ri

v
a
ti

v
e
 (

K
/P

a
)

Gradient of linear interpolation

2nd−order polynomial fit to midpoints

10
4

10
5

10
6

10
7

0.01%

0.1%

1%

10%

100%

Pressure (Pa)

E
rr

o
r

Error between fitted polynomial and linear interpolation derivatives

Figure 6.6: Derivative dTsat
dp of water saturation curve

120 Chapter 6. Water cooling

x1 to x4:

ṗ =

(
ma

Ma
+
mwg

Mw

)
R̄

Aha
˙Tm +

(
ṁa

Ma
Tmha −

(
ma

Ma
+
mwg

Mw

)
Tmḣa

)
R̄

Ah2
a

+
TmR̄

MwAha
˙mwg (6.39)

ṗ = x1
˙Tm + x2 + x3 ˙mwg (6.40)

where x1 =

(
ma

Ma
+
mwg

Mw

)
R̄

Aha

and x2 =

(
ṁaR̄

MaA
− x1ḣa

)
Tm
ha

and x3 =
TmR̄

MwAha

Recalling that ˙Tm = ˙Tsat, we obtain:

˙Tsat = dTsat(p)
dp

(
x1

˙Tsat + x2 + x3 ˙mwg

)
(6.41)

˙Tsat =
x2 + x3 ˙mwg

1− x1x4
x4 (6.42)

where x4 = dTsat(p)
dp

To find the evaporation rate ˙mwg, we consider the adiabatic rate of change of

temperature ˙Tmadi, which would be the actual rate ˙Tm if a phase transition was not

occurring, as in Equation 3.21:

˙Tmadi = Tm (1− γm)

(
ṁa

ma
− ḣa
ha

)
(6.43)

γm here is obtained with Equation 6.33, using the current values of mwf and mwg.

The difference between the two rates ˙Tmadi and ˙Tsat, shown in Figure 6.7, is multiplied

by the heat capacity of the mixture to give an expression for the power being used

for the phase change. Dividing by the latent heat of vaporisation at the current

pressure, Lf→g(p), will give the evaporation rate. We also include a component

due to the instantaneous flow through valves, ˙mwgvlv, as given by Equation 6.3 and

Chapter 6. Water cooling 121

p p+ ṗδt

Tm

Tm + ˙Tmadiδt

Tadi(p)

Tsat(p)

Tm + ˙Tsatδt

(
˙Tmadi − ˙Tsat

)
δt

Temperature

Pressure

Figure 6.7: Calculation of evaporation power

Equation 6.4.

˙mwg =
(

˙Tmadi − ˙Tsat

)
x5 + ˙mwgvlv (6.44)

where x5 =
macp,a(Tm) +mwgcp,wg(Tm) +mwfcp,wf (Tm)

Lf→g(p)
(6.45)

Our final expression is thus:

˙mwg =

˙Tmadix5 + ˙mwgvlv −
x2x4x5

1− x1x4

1 +
x3x4x5

1− x1x4

(6.46)

By symmetry, the mass flow rate of the liquid component is ˙mwf = − ˙mwg. A

temperature - pressure plot for this model is shown in Figure 6.8. It can be seen that

the trajectory hews extremely closely to the saturation curve during the evaporation

stage.

122 Chapter 6. Water cooling

10
5

10
6

10
7

300

350

400

450

500

550

600

650

Pressure (Pa)

T
e
m

p
e
ra

tu
re

 (
K

)

Saturation curve

Simulation

ODE events

Figure 6.8: Example evaporation curve

6.6.3 Energy required

It is significantly more complicated to attempt an analytical solution to find the

energy required to compress the air in this case. Instead, we construct a simple

function, SW water energy, which takes the model’s parameters structure GP and

runs a simple, non-rotating, constant piston velocity model.

The initial conditions set the airmass at ambient temperature and pressure, and

use any downward velocity and initial position h init for the piston. The amount

of water to be added is a given fraction, GP.water add, of the mass of air in the

compression chamber. An internal events function detects when the simulation has

reached the saturation temperature and when the water mass has fully evaporated,

Chapter 6. Water cooling 123

and switches a phase variable accordingly.

The simple model has an internal state variable to track work done, y.WD, with the

rate given by:

d

dt
y.WD = − ˙hmAp (6.47)

The simulation ends when the airmass reaches the target pressure, ptarg. It then

sums the compression work done, the energy required to exhaust (based on the final

piston height), the work done against Coulomb friction, and the negative work done

by atmospheric pressure on the opposite side of the piston:

Ereq = y.WD(end) + hendAptarg + hinitFµ − hinitApatm (6.48)

Dividing through by the initial airmass height hinit obtains an expression for energy

required per metre, suitable for use based on the piston position. The energy function

SW control energy is updated to use this method for calculating energy required.

6.6.4 Verification

Unfortunately, practical data was not available to verify this model. However, many

of the specific functions used have a basis in the literature.

• The technique for calculating the values of γ and thermal inertia of the mixture,

in Equation 6.33 and Equation 6.34, is similar to the approach taken by Kim

et al. [47].

• Equation 6.45 uses the phase change energy of the water at the current pressure

to calculate the mass flow rate of evaporation, in a similar manner to work by

Qin and Loth [45] and Barrow and Pope [46].

124 Chapter 6. Water cooling

• Finally, the use of the temperature derivative to map the pressure change onto

the evaporation curve, as shown in Figure 6.7, is supported by work by Fu

et al. [87].

6.7 Conclusions

Figure 6.9 shows the levels of liquid water and steam changing at the end of a

compression stage, when the air is hot. The upper graph clearly shows the transition

onto and off the saturation curve, corresponding with the start and end of the phase

transition, along with the condensation when the temperature dropped at the end of

the exhaust stroke.

A series of simulations were run to determine the effect of the water mass fraction

on the peak temperature. To obtain the target temperature reduction, from around

900 K to 700 K, we use a water mass fraction of 0.06 (i.e. 0.06 kg of water are added

at the start of the compression stage for every kg of air in the cylinder). The resulting

profile, compared to the system without water-cooling,is shown in Figure 6.10.

From these results, we conclude that water injection is suitable for beneficially

reducing the temperature of the exhaust air. Further research is needed to investigate

the system efficiency at different levels of water mass fraction, and to more accurately

simulate the water droplets with velocity and size considerations taken into account.

Chapter 6. Water cooling 125

0.35 0.4 0.45 0.5 0.55
350

400

450

500

550

600

650

700

750

800

T
e
m

p
e
ra

tu
re

 (
K

)

Saturation temperature at current pressure

Temperature of mixture

Start of phase transition

End of phase transition

0.35 0.4 0.45 0.5 0.55
−0.5

0

0.5

1

1.5

2

2.5

3

M
a
ss

 o
f

w
a
te

r
co

m
p

o
n

e
n

t
(k

g
)

Time since start of compression (s)

Liquid water mass

Steam mass

Figure 6.9: Phase transitions of the water during a stroke

126 Chapter 6. Water cooling

0 2 4 6 8 10 12
0

100

200

300

400

500

600

700

800

900

Time (s)

T
em

p
er
a
tu
re
,
T
m
(K

)

Entire piston stroke

No water injection

Water mass fraction 0.06

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3
200

300

400

500

600

700

800

900

Time (s)

T
em

p
er
a
tu
re
,
T
m
(K

)

Compression and exhaust stages

Figure 6.10: The effect of water injection on
temperature in the compression chamber

127

Chapter 7

Exhaust valve control

The control of the exhaust valves in the system is paramount; by controlling the

compression and exhaust of the air, as well as the ‘kick’ to drive the pistons against

centrifugal force at the start of the stroke, the intention is that the principle method

of control for the whole system should be through the air valves. This involves

consideration of both timing, as outlined in other chapters, and throttling.

The control of the exhaust valve is a difficult problem, although it involves few

state variables and a single second-order system, because it is extremely nonlinear

and operates over a very short timescale. The time interval between the airmass

being compressed reaching the target pressure, and that airmass being subsequently

exhausted, is very short, around 0.08 seconds; the piston must be stopped with a

minimum of wasted energy as close to the end of the compression tube as possible.

Additionally, the period over which the exhaust valve acts is not known in advance,

prevent the use of control techniques which operate continuously or with known start

and end states. In this chapter, two control techniques are investigated.

A simple method is described, which modifies the energy calculation which determines

the timing of the start of compression to include an energy surplus. Then, the HP

valve is throttled to gradually remove the energy as the exhaust stage continues.

128 Chapter 7. Exhaust valve control

A second method is then shown, which uses a hierarchical twin controller system.

The method models the valve as a simple mass-spring-damper system tracking a

parameter-defined trajectory. A ‘fast’ proportional controller keeps the valve constant

on the trajectory, while a second ‘slow’ controller periodically updates the trajectory

definition parameters ψ based on simulations of the exhaust stroke.

7.1 Simple method

After the energy calculations (detailed in chapter 4) estimate that the energy required

is equal to total potential energy, the system will close the outflow valve and keep the

air mass inside the tube constant while it is compressed. This event is located based

on estimates of the system’s energy, and (particularly for the physical system) this

will not be a perfect solution. As a result, the piston may have too much or too little

energy, and a control system is required if the system is to operate at peak efficiency

and to avoid destructive impacts. To simplify the control needed, all adjustments

will take place after the air has reached the target pressure and while it is being

exhausted to the reservoir.

In cases where the piston has too much energy, throttling the exhaust valve to raise

the pressure in front of the piston will provide an adequate way to prevent contact

between the piston and the tube end. This has the added advantage that the surplus

energy is removed linearly with the air flow out of the piston, reaching zero at the

same time the piston stops.

On the other hand, if the piston has too little energy, the solution is much more

difficult; dumping some volume of air to atmosphere is an undesirable solution, due

to both noise and inefficiency problems. To illustrate, we consider a case in which

the piston has less energy than is required to exhaust the remaining compressed air,

so a volume surplus (A · δh) needs to be dumped. The surplus energy δEexh in this

Chapter 7. Exhaust valve control 129

case is given by:

δEexh = Aptargδh

δh =
δEexh

Aptarg
(7.1)

Assuming the compression was perfectly adiabatic, we can find the corresponding

initial volume of the air which will be dumped, A(δh)0:

(
A(δh)0

Aδh

)γ
=

(
ptarg

patm

)
(7.2)

(δh)0 =
δEexh

Aptarg

(
ptarg

patm

) 1
γ

(7.3)

Finally, we substitute this into the adiabatic compression energy expression, Equa-

tion 4.23 to calculate the energy already expended to compress this surplus volume,

Ecomp,surp;

δEcomp = (δh)0
Apatm

1− γ

(
1−

(
patm

ptarg

) 1−γ
γ

)

δEcomp =
δEexh

Aptarg

(
ptarg

patm

) 1
γ Apatm

1− γ

(
1−

(
patm

ptarg

) 1−γ
γ

)
δEcomp

δEexh
=

1

ptarg(γ − 1)

(
ptarg − patm

(
ptarg

patm

) 1
γ

)
(7.4)

Substituting in our parameters and taking γ = 1.401, we find that 1.755 J of already-

used energy must be wasted for every Joule of surplus. This is very inefficient, so to

avoid needing to dump air, the energy required function is adjusted upwards, erring

on the side of a higher-energy piston. The control algorithm will then set the valve

parameter on the basis of the current energy surplus (recalculated at every step).

130 Chapter 7. Exhaust valve control

7.1.1 Control algorithms

The first step is to obtain a ‘reference’ HP valve constant kHP,ref . We define the mass

flow rate equation;

kHP,ref =
ṁ

∆p
(7.5)

If kHP,ref is sufficiently large, little energy is lost, since the pressure difference across

the valve ∆p → 0. To pick a suitable basic value of kHP,ref , we estimate the total

amount of energy we are expecting to lose due to the valve throttling, Eloss. This is

given by:

Eloss = VT ×∆p (7.6)

kHP,ref can now be found by considering typical average values of ṁa and VT during

exhaust for an uncontrolled model.

We form an error signal ε based on the proportional difference between the current

energy surplus δE and a ‘desired’ energy surplus δEdes, both normalised relative to

Eloss;

ε =
δE − δEdes

Eloss
(7.7)

δEdes is included to force the system to gradually remove the energy surplus as the

piston moves towards its endpoint; without this factor, the control function would

attempt to reduce the energy surplus to zero immediately, risking it overshooting

and requiring energy to be wasted to correct it. We define δEdes using a ramping

function based on the fraction of the exhaust stroke distance the piston has travelled.

When the piston has stopped moving at the end of the exhaust stroke, it is locked in

place at a position hlock. The piston position recorded at the start of the exhaust

Chapter 7. Exhaust valve control 131

stroke was hexh.

δEdes = Eloss ×
hlock − ha
hlock − hexh

(7.8)

The ‘working’ value of the valve constant, kHP, is calculated from kHP,ref and the

error multiplied by a gain, G;

kHP = kHP ref × 10−Gε (7.9)

The exponential form of this control algorithm allows it to react suitably to large

error signals while preventing it from becoming negative, since a negative valve

constant is a physical impossibility.

7.1.2 Derivative control

As described above, the system is based on proportional control only, with no

derivative or integral components. However, since the system needs to respond

extremely quickly, we now consider a component based on the derivative of the error

signal. To obtain an estimate of the derivative in a causal system, we follow standard

practice in using a first-order filter. In effect, this is emulating a series RL circuit, in

which the voltage across a resistor and an inductor in series is taken as the input, and

the voltage across the inductor along is the output. This has the transfer function:

Vout

Vin
=

Ls

R+ Ls
(7.10)

where R is the resistance of the resistor, and L is the inductance of the inductor. For

R� L, this functions as a ‘differentiator’ - the output signal will approximate LR−1

times the rate of change of the input signal.

We model this in our state-space model using a state variable, I (the current in the

132 Chapter 7. Exhaust valve control

inductor), governed by

L
dI

dt
= Vin(t)−RI(t) (7.11)

İ =
1

L

(
Vin(t) −RI(t)

)
(7.12)

The derivative is thus approximated by:

˙Vin ≈
R

L

(
Vin(t) −RI(t)

)
(7.13)

Figure 7.1 shows a control block diagram of the control system.

7.1.3 Implementation

Problems were encountered implementing this control system, relating to the in-

stability of the error signals. Our model avoids these issues by saturating at two

points; once, applied to the proportional error signal before it is used to calculate

the derivative signal; and a second time, after the exponential is taken, to represent

the upper limit on the physical valve.

The model performs relatively well; with the control functions set up to attempt to

stop the piston at the end of the tube, simulations report the piston stops around

2 mm from the end. However, moving to a new system was required, which would

better represent both the time delay on the valve response as well as the desire for a

smoother valve throttling trajectory.

7.2 Hierarchical twin controller system

7.2.1 Principles

In order to be as efficient as possible, our control algorithm must have two objectives:

Chapter 7. Exhaust valve control 133

e
n
e
r
g
y
c
a
l
c

h
a

+ −
∆
E

d
es

e
n
e
r
g
y
c
a
l
c

∆
E

a
ct

1
∆
E

su
rp
,s

w
s
a
t

−
P

g
a
in

P
er

r

s
−
D

g
a
in

D
er

r

+
+

1
0
^

s
a
t

k
ra

t
m
o
d
e
l

1
.

T
h

e
e
n
e
r
g
y
c
a
l
c

fu
n

ct
io

n
ca

lc
u

la
te

s
b

ot
h

th
e

en
er

gy
re

q
u

ir
ed

to
co

m
p

re
ss

th
e

ai
r

in
th

e
sy

st
em

,
an

d
th

e
p

ot
en

ti
al

en
er

gy
in

th
e

sy
st

em
,

as
o
u

tl
in

ed
in

au
to

re
fs

ec
:s

y
se

n
er

gy
.

2
.

T
h

e
1
0
^

fu
n

ct
io

n
re

tu
rn

s
th

e
va

lu
e

o
f

10
ra

is
ed

to
th

e
p

ow
er

of
th

e
in

p
u

t
si

gn
al

,
as

la
id

ou
t

in
E

q
u

at
io

n
7.

9.

3
.

T
h

e
s
a
t

fu
n

ct
io

n
sa

tu
ra

te
s

th
e

in
p

u
t

si
gn

al
to

so
m

e
se

t
li
m

it
u

si
n

g
a

ta
n

fu
n

ct
io

n
.

F
ig

u
re

7.
1:

C
on

tr
ol

b
lo

ck
d

ia
gr

am
fo

r
si

m
p

le
r

co
n
tr

ol
sy

st
em

134 Chapter 7. Exhaust valve control

• when piston velocity ḣa = 0, air mass height ha = 0

• when ḣa = 0, the surplus energy E∆ = 0

We define a simple linear trajectory for the target valve coefficient kHP,targ, defined

by two parameters:

kHP,targ = ψd(ψe − t) (7.14)

ψd is the decay parameter, which controls the rate at which the valve is closed, and

ψe is the end parameter, which controls the time at which the valve will be fully

closed. These parameters form the interface between two separate controllers, being

set by a ‘slow’ controller and followed by a ‘fast’ controller.

Fast controller

The fast controller, which updates many times for each update of the slow controller,

is a simple proportional and derivative controller. It tries to keep the valve constant

kHP on a trajectory defined by kHP,targ, calculated using values of ψd and ψe it has

been passed, using a combination of derivative and proportional control mechanisms.

We also model the valve constant as a simple mass-spring-damper system in its own

right, to simulate the time delay between the control signal and the actual valve

closure. This a common approach, as seen in work by Hõs et al. [88], Xu et al. [89]

and Garcia [90]. The specific damping and stiffness constants are similar to those in

Hõs et al. [88], picked to be suitably fast for the control purposes of the system.

Slow controller

The slow controller explores the phase space of ψ values near the current set,

determining better parameters using Newton’s method of optimisation. It runs

Chapter 7. Exhaust valve control 135

concurrently with the fast controller, sending out an updated set of parameters after

each iteration.

Firstly we define a small proportionate perturbation, δ = 0.05. Next, the controller

runs five simulations, which all simulate the exhaust stage up until ḣa = 0, with

slightly different parameters in each case:

(0,0) with ψd = ψd,0 and ψe = ψe,0, the current values

(1,0) with ψd = (1 + δ)ψd,0 and ψe = ψe,0

(-1,0) with ψd = (1− δ)ψd,0 and ψe = ψe,0

(0,1) with ψd = ψd,0 and ψe = (1 + δ)ψe,0

(0,-1) with ψd = ψd,0 and ψe = (1− δ)ψe,0

This quincunx pattern of points is known as a ”five-point scheme”, often used to

calculate finite difference approximations to the first and second derivatives of a data

field in two dimensions. We only need the first derivatives, but by taking all five

points we can avoid bias in our estimation.

Each simulation produces two outputs, which are the values of the targets ha and E∆

when the simulation finished at ḣa = 0. For each of these two targets, we calculate a

gradient to obtain an approximation to the partial derivative of each target value

with respect to each parameter. So:

∂ha
∂ψd

=
ha,(1,0) − ha,(−1,0)

2δψd
(7.15)

136 Chapter 7. Exhaust valve control

Similarly:

∂ha
∂ψe

=
ha,(0,1) − ha,(0,−1)

2δψe
(7.16)

∂E∆

∂ψd
=
E∆,(1,0) − E∆,(−1,0)

2δψd
(7.17)

∂E∆

∂ψe
=
E∆,(0,1) − E∆,(0,−1)

2δψe
(7.18)

 ∂ha
∂ψd

∂ha
∂ψe

∂E∆
∂ψd

∂E∆
∂ψe


∆ψd

∆ψe

 =

∆ha

∆E∆

 (7.19)

The desired change in the targets, on the right-hand side, is that the values should

change from those obtained from the current values (ha,(0,0) and E∆,(0,0)) to zero.

By inverting the matrix, we can calculate the required changes in the parameters,

∆ψd and ∆ψe, to obtain this change.

 ∂ha
∂ψd

∂ha
∂ψe

∂E∆
∂ψd

∂E∆
∂ψe


−1 −ha,(0,0)

−E∆,(0,0)

 =

∆ψd

∆ψe

 (7.20)

The improved values of the parameters are then passed over to the fast controller,

and the slow controller starts again from the new values. This whole cycle has taken

a time tδ.

7.2.2 Implementation in model

The Matlab model constructed has one disadvantage and a few advantages compared

to implementing the control mechanism in a real system.

The disadvantage is that, while a real system would be able to run the slow controller

in parallel with the fast controller and the system progressing, we are limited to

Chapter 7. Exhaust valve control 137

strictly non-parallel operation; generally, Matlab can only execute one command at

a time. To solve this, we use one of our advantages - that we can ’pause time’, by

halting execution of the system simulation. If we do this, we can record the current

state of the targets ha and E∆ and, while ’offline’, calculate (by the slow controller

algorithm described above) the next pair of values for the parameters ψd and ψe.

This is explained in Figure 7.2.

We must, however, continue the system simulation for a period of time before we

stop again and pass our new parameters in for the fast controller, to represent the

time the slow controller would take to run. This one-step delay must be observed to

avoid ‘cheating’ by running the slow controller ‘instantaneously’ (from the point of

view of the simulation proper).

An advantage is that we possess a complete and accurate model of the simulation for

the slow controller to use; the simulation itself. To avoid false confidence from this,

we must implement two features.

Reduced simulation complexity

The first feature is a flag variable, part of the parameter structure GP, which is set to

true for the simulations run by the slow controller. Inside the ODE function, we

now selectively eliminate terms from the ODE, both to increase the speed of the slow

controller simulations and to represent the inaccuracy of the sensors. In particular,

we remove the terms corresponding to the wall temperatures Twall, the fast controller

mass-spring-damper system and the shock absorbers at the tube ends.

Simulated sensors

Secondly, we create a ‘Chinese wall’ between the control and simulation functions:

the function SW sensors, which converts a state vector into a structure of ‘sensor

138 Chapter 7. Exhaust valve control

t0 t1 t2 t3

1

8

7

3

6

2

2

2

4

5

6

5

3
4

7
2

6

5

3
4

7

1. The exhaust stage of the ‘real’ simulation is triggered from the ODE events
function. The current state vector is recorded, and the simulation starts with
a first-guess at ψ.

2. The ‘real’ simulation runs for a short period of time, the approximate runtime
for the ‘slow’ controller (on specialised hardware).

3. When the ‘real simulation pauses, the recorded state vector is passed to the
slow controller function.

4. The slow controller runs a ‘fast-forward’ simulation, which uses the current
value of ψ to predict what the state will be at the time the slow controller
finishes.

5. The slow controller then runs several simulations, each with a different value
of ψ, for use in the optimisation problem.

6. The results from those simulations are used to return an improved value for ψ.

7. The core script records its latest state vector for the next time, and the ‘real’
simulation resumes with the improved value for ψ.

8. When the piston halts, the exhaust stage is complete.

Figure 7.2: ‘Fast’ and ‘slow’ simulated control scheme

Chapter 7. Exhaust valve control 139

data’. By ensuring the various control functions can only accept state information

in this form, we can guarantee that all data to the controller has passed through

this function, which can itself then deliberately degrade the results. For example, it

would not be possible to sense the air and water masses in the compression tube,

so the sensor structure first erases those terms, then reconstructs them using the

other variables and the pressure. It would also not be able to detect the compression

cylinder wall temperatures, so it overwrites them with constant values which will be

assumed. Finally, we could implement algorithms in this function to represent sensor

noise and resolution issues. This has not been done in this work, but remains a clear

option.

7.2.3 Problems with two-parameter system

When implemented in the model, very large changes in the ψ values were observed

for even minor changes. On investigation, the determinant of the matrix on the

left-hand side of Equation 7.20, which contains the partial derivative estimates for

the objectives, was found to be close to zero. As a result, inverting it was producing

extremely large values.

This is due to the objective variables ha and E∆ being insufficiently independent.

Since they are so closely related, the algorithm is attempting to solve for two variables

with one input, resulting in significant errors.

7.2.4 Single-parameter method

Instead, we move to a method with a single parameter, ψ. We require that the valve

constant be equal to some constant multiplied by the piston position, defining the

140 Chapter 7. Exhaust valve control

target of the fast controller as:

kHP,targ = ψ · ha (7.21)

We need only run three simulations, denoted as:

(0) with ψ = ψ0, the current value

(-1) with ψ = (1− δ)ψ0

(1) with ψ = (1 + δ)ψ0

The update function becomes:

∂ha
∂ψ

δψ = −ha,(0)

∆ψ = −ha,(0)
2δψ

ha,(1) − ha,(−1)
(7.22)

An illustrative trajectory of kHP and ψ is shown in Figure 7.3.

7.2.5 Results

Once implemented in the model, we obtain the trajectory shown in Figure 7.4.

7.3 Simulation duration

In order for the twin controller system to operate, the simulations in the slow

controller must run in less time than the update interval. The time taken to run the

slow controller is the sum of the time taken running the ‘catch-up’ simulations and

the time taken running the ‘projection’ simulations (given by a triangular number

formula). If we intend to run n1 iterations of the slow controller, each of which runs

Chapter 7. Exhaust valve control 141

2

3

4
x 10

−3
ψ

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

2

4

6

8
x 10

−3

H
P

 v
a
lv

e
 c

o
n

st
a
n

t
(k

g
/s

 P
a−

1
)

Time since start of exhaust (s)

k
ref

k
HP

Figure 7.3: Illustrative kHP and ψ trajectory from single-parameter method

6

8

10
x 10

−3

ψ

−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0

1

2

3

4

5
x 10

−3

H
P

 v
a
lv

e
 c

o
n

st
a
n

t
(k

g
/s

 P
a−

1
)

Time since start of exhaust (s)

k
ref

k
HP

Figure 7.4: Actual kHP and ψ trajectory from single-parameter method

142 Chapter 7. Exhaust valve control

m projection simulations in series, during a total exhaust duration of texh, the total

simulated time is:

tsim =

(
n

n+ 1
+

m

n+ 1

n(n+ 1)

2

)
texh

tsim
texh

=
n

n+ 1
+
mn

2
(7.23)

We can now define a ratio of controller-simulated time to real time, ṫ; this is effectively

a measure for how quickly the simulation can run. If ṫ = 1, for instance, this means

that the simulation is running in realtime; it takes 1 second to simulate 1 second

of operation. If this is larger than the limit defined above, then the simulation is

workable;

ṫ >
n

n+ 1
+
mn

2
(7.24)

For our model outlined above, m = 3. Specialised parallel-processing hardware with

m cores would be able to run the projection simulations concurrently instead of

consecutively, effectively reducing m to 1. These limits are shown in Figure 7.5, along

with a horizontal dashed line at ṫ = 0.9, indicating the simulation speed obtained

without optimisation on the author’s desktop computer∗.

For best performance of the exhaust valve, it was found that a minimum of 3

iterations of the slow controller were needed, requiring a simulation speed ṫ > 3.33

on a parallel-processing machine. It is likely that significant performance gains could

be made using specialised control processors, so this factor of 3.7 speed increase is

reasonable with further research and development.

∗Matlab R2013b on 64-bit Windows 7, with an Intel E8400 3 GHz processor and 4 GB RAM.

Chapter 7. Exhaust valve control 143

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

Number of slow controller iterations carried out, n

R
e
q
u
ir
e
d
si
m
u
la
ti
o
n
sp
e
e
d
,
ṫ

Current system performance

Serial processing (m = 3)

Parallel processing

Figure 7.5: Simulation speed required for a variety of simulation counts

144 Chapter 7. Exhaust valve control

145

Chapter 8

System optimisation

In the final part of the project, we consider the possibility of inter-cycle control, in

which we modify the parameters governing the ‘kick’ stage of the ICWT cycle.

The kick stage comes after the piston pair has been locked at one end of the

compression tube following a stroke. When the compression tube reaches a an

angle θkick, the HP valve connecting the compression chamber to the HP manifold is

opened and HP air fills the compression chamber, pushing the piston pair towards the

middle of the compression tube against centrifugal force. When the piston velocity

has reached a velocity ḣkick, the HP valve is closed and the air in the compression

tube allowed to expand until it reaches patm. At that point, the intake valve to

the atmosphere is opened, and the departing piston draws in air ready for the next

stroke.

There are two reasons to attempt to minimise the air used in the kick. The first

is simply that the net air mass flow rate over many cycles is increased if we can

avoid spending too much air on the kicking stroke. The second concerns the power

fluctuations; the ICWT is producing compressed air on a repeating cycle, which

could be viewed as a combination of a constant term and a sine wave. The constant

term represents the real power produced, while the peaks and troughs of the sine

146 Chapter 8. System optimisation

wave (due to the intermittent nature of the exhaust and kick stages) is the reactive

power in the system. Since the piping and turbomachinery will be sized according to

the instantaneous peak power output, we must aim to maximise the real power and

minimise the reactive power, by reducing the amount of air passed back in the form

of the kick.

A second competing objective is to control the power absorbed by the rotor. This is

necessary to allow the ICWT to operate in varying wind conditions, since we must

be able to tune the amount of power taken from the wind according to the quantity

of power available to avoid overrunning the turbine.

The objectives for this chapter are:

• to quantify the possible performance changes from considerations of operating

speed

• To outline a possible long-term control strategy for the model

8.1 Variables & targets

8.1.1 Controlled variables

The kick stage involves two control inputs, which we will alter to effect the desired

changes in the targets. The first is the kick angle θkick, which is the angle at which

the control system opens the HP exhaust valve behind the piston and starts to drive

it towards the hub. If the kick begins too early in the cycle, while the compression

tube is still close to horizontal, a large quantity of high-pressure air will be used

before the piston pair reaches the required velocity to get to the end of the tube

before the start of the next kick; if the kick comes too late in the cycle, the piston will

not have time to fully complete its descent before the compression tube is horizontal

again.

Chapter 8. System optimisation 147

The second control input is the piston velocity at which the HP valve closes, ḣkick.

High velocities waste compressed air, while too low a value will result in the piston

taking too long to complete its stroke, reducing the amount of potential energy

available to be converted. A very low ḣkick might even fail to defeat centrifugal force,

preventing the CoG of the piston pair from crossing through the axis.

It is clear that these two inputs are not wholly independent, so our aim will be

to define a particular relationship between θkick and ḣkick. The control system will

implement a particular kick parameter pair [ḣkick, θkick] which obeys that relationship

to obtain the desired outcome in the dependent variables.

8.1.2 Dependent variables

Power fraction

A key concern is the ‘verticality’ of the piston stroke. If the kick stage starts too early

or ends too late, or if the piston moves too slowly at the start, the piston will fail to

take full advantage of the gravitational potential energy in the system, negatively

affecting the ability of the system to absorb power at a given θ̇. We will measure the

verticality of the piston stroke in terms of power.

Firstly, we will calculate an expression for the maximum energy that the system could

produce. Consider a piston locked at the limit of its movement until the compression

tube was vertical, then released to fall the full distance from the edge into the centre

instantaneously. The work done in half a cycle is given by:

EWD,max = 2 (LCT − LTE)mP g (8.1)

148 Chapter 8. System optimisation

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

Cartesian CoM trajectory

Horizontal position (m)

V
e
rt

ic
a
l

p
o
si

ti
o
n

 (
m

)

θ̇ = 0.4 rad/s
ḣkick = 4.5 m/s
θkick = 0.7 rad

Ideal

Actual

Figure 8.1: Cartesian position of piston pair centre-of-mass

Dividing this by the time taken gives an expression for the maximum average power:

ĖWD,max = 2 (LCT − LTE)mP g
π

θ̇
(8.2)

The simulation model has a state variable which tracks the work done against

gravitational torque, governed by Equation 3.30:

ĖWD =
2h− LCT

2
cos(θ)mP gθ̇ (8.3)

By dividing the average power throughout an individual simulation by the theoretical

maximum power obtainable with those parameters, we obtain a normalised power,

denoted Ėη.

To illustrate this, we run the model for 3 minutes of simulated time, with θ̇ =

0.4 rad/s, ḣkick = 4.5 m/s and θkick = 0.7 rad. The resulting Cartesian trajectory,

in Figure 8.1, shows that the stroke starts off relatively close to the ideal case but

Chapter 8. System optimisation 149

0 0.5 1 1.5 2 2.5 3
−5

0

5

10

15

20
x 10

6

Tube angle θ (rad)

W
o
rk

in
g
 t

o
rq

u
e
 (

N
m

)

θ̇ = 0.4 rad/s
ḣkick = 4.5 m/s
θkick = 0.7 rad

Ideal

Actual

Figure 8.2: Working torque

diverges significantly by the time of the compression and exhaust strokes. It can

also be seen that the piston pair CoM is on the left-hand side of the rotor hub for a

noticeable period in each stroke, during which time the piston pair is actually adding

energy back into the rotor through a positive gravity torque.

The effect of this is more clear in Figure 8.2, which plots the gravitational torque

against the modulus of the tube angle with π (to show multiple cycles superimposed).

The point discontinuity in the ideal cycle at θ = π
2 is a result of the instantaneous

stroke in its definition. The work done in a stroke is the integral of the torque with

angle; the area between the two curves in the region π
2 < θ < π is the difference

between the average power per piston pair of 2.46 MW and the 4.50 MW maximum

at that rotor speed, resulting in Ėη = 0.55. Closing this gap will be one objective.

150 Chapter 8. System optimisation

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

M
a
ss

 o
f

7
0
B

A
R

 a
ir

 e
x
h

a
u

st
e
d

 (
k

g
)

Time (s)

θ̇ = 0.4 rads/s
ḣk = 4.5 m/s
θk = 0.7 rads

Net (1.42 kg/s avg)

Gross (1.94 kg/s avg)

Figure 8.3: HP air exhaust rates

Net rate of air being exhausted

A second objective is to maximise the net rate of air being exhausted, ṁanet. Whether

this is being expanded to provide electricity or being stored, it is important that we

know the optimum kick parameters to maximise the rate at which pressurised air

is being produced. The net rate (which takes account of reverse flow through the

HP valve, mostly during the kick stage but also while the valve is closing after the

exhaust stage) is trivially obtained by considering the initial and final values of the

air exhausted state variable. We also track the gross rate ṁagross (which only counts

positive outflow), to measure the ratio.

The two exhaust masses are shown in Figure 8.3. The dashed lines are a straight

line fitted to the data after the warming-up period; the gradients of these give the

rates as ṁanet = 1.42 kg/s and ṁagross = 1.94 kg/s.

Chapter 8. System optimisation 151

8.1.3 Rotor speed consideration

It is clear that the kick parameter pairs (ḣkick, θkick) which obtain the maximum

values of net exhaust rate ṁanet and normalised power Ėη will vary depending on

rotor speed, since increasing centrifugal force will require a more energetic kick. The

strategy will therefore also need to consider the rotor speed as a variable input.

8.2 Exploratory simulations

The next step is to quantify the field of possible kick parameter values, running

the model with each set of parameters to obtain data on the resulting values of the

dependent variables. To this end, the model’s Matlab script is converted into a

function, which can be run inside a pair of nested loops in a container script to

iterate through possible values of each kick parameter in turn. The container script

exploits the fully-independent nature of the individual simulations to implement a

very basic parallelisation technique, dividing the field into several segments which

can each be run by a different computer and subsequently assembled into a single

mesh.

We use simulations with a uniform duration of 180 seconds of simulated time, striking

a balance between computer time and accuracy. It can be seen in Figure 8.3 that

this timespan is enough to overcome the initial warm-up period, allowing time

for transients to die down, and provide a sufficient period of regular operation for

measuring the dependent variables.

152 Chapter 8. System optimisation

2
4

6
8

1
0

1
2

1
4

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.4

1
.6

0

0
.2

0
.4

0
.4

0
.6

0
.6

0
.8

0
.8

0
.8

1

1
1

1

1.2

1
.2

1
.2

1.2

1.4

1.4

1
.4

1.41.4

1.6

1.6

1
.6

1.6

1.6

1.8

1.8

1.8

1.8

2

2

F
a
ile

d
sim

s

M
a
x

2
.0

6
 k

g
/s

θ̇
=

0
.4

ra
d
/
s

K
ick

velo
city

ḣ
k
(m

/
s)

Kick angle θk (rad)

Net rate of air being exhausted (kg/s)

−
0
.2

0 0
.2

0
.4

0
.6

0
.8

1 1
.2

1
.4

1
.6

1
.8

F
ig

u
re

8.4:
S

u
rface

of
ṁ
a

n
et

valu
es

for
θ̇

=
0.4

rad
/s

Chapter 8. System optimisation 153

2
4

6
8

1
0

1
2

1
4

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.4

1
.6

M
a
x

0
.9

0
9

0
.3

0.
4

0
.4

0.5
0.

5

0
.5

0.6

0.6

0
.6

0
.6

0.
7

0.7

0
.7

0
.8

0.
8

0.8

0
.8

0.9

F
a
il

e
d

si
m

s

θ̇
=

0
.4

ra
d
/
s

K
ic
k
ve
lo
ci
ty

ḣ
k
(m

/
s)

Kickangleθk(rad)

Fraction of max power 4.495 MW

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

F
ig

u
re

8.
5:

S
u

rf
ac

e
of
Ė
η

va
lu

es
fo

r
θ̇

=
0.

4
ra

d
/s

154 Chapter 8. System optimisation

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

M
a
ss

 o
f

7
0
B

A
R

 a
ir

 e
x
h

a
u

st
e
d

 (
k

g
)

Time (s)

θ̇ = 0.4 rad/s
ḣk = 8.625 m/s
θk = 0.5325 rad

Net (2.06 kg/s avg)

Gross (3.20 kg/s avg)

Figure 8.6: CoM trajectory at maximum ṁanet for θ̇ = 0.4 rad/s

8.2.1 Results

Single rotor speed

The first set of results, for rotor speed θ̇ = 0.4 rad/s, are shown in Figure 8.4 and

Figure 8.5. The grey markers at the left edge of the field are simulations which did

not complete, due to the kick being insufficient to overcome the centrifugal force.

The maxima for each surface are labelled.

Maxima

The maximum ṁanet value observed was 2.0602 kg/s, at (ḣkick = 8.625 m/s, θkick =

0.5325 rad), as shown in Figure 8.6. The maximum Ėη was 0.9089, at (ḣkick =

13.875 m/s, θkick = 0.7455 rad), with a trajectory and gravity torque as shown in

Figure 8.7 and Figure 8.8 respectively.

Chapter 8. System optimisation 155

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

Cartesian CoM trajectory

Horizontal position (m)

V
e
rt

ic
a
l

p
o
si

ti
o
n

 (
m

)

θ̇ = 0.4 rad/s
ḣk = 13.875 m/s
θk = 0.7455 rad

Ideal

Actual

Figure 8.7: CoM trajectory at maximum Ėη for θ̇ = 0.4 rad/s

0 0.5 1 1.5 2 2.5 3
−5

0

5

10

15

20
x 10

6

Tube angle θ (rad)

W
o
rk

in
g
 t

o
rq

u
e
 (

N
m

)

θ̇ = 0.4 rad/s
ḣkick = 13.875 m/s
θkick = 0.7455 rad

Ideal

Actual

Figure 8.8: Working torque at maximum Ėη for θ̇ = 0.4 rad/s

156 Chapter 8. System optimisation

Four rotor speeds

The next step is to extend this data to different rotor speeds. The resulting contour

plots are shown in Figure 8.9 and Figure 8.10. The black lines represent the extent

of the data gathered. In total, these graphs summarise around 1000 computer-hours

of simulation.

It is clear from Figure 8.9 that ṁanet < 0 for θ̇ = 0.6 rad/s, so we will discard that

set of data and concentrate on the lower three rotor speeds.

8.3 Defining a control surface

We now define a control surface using the local maxima of each surface. First,

a quadratic function f1(θ̇) which returns ḣkick is obtained from the three points

representing the maximum ṁanet for each rotor speed tested; then, a second quadratic

is likewise obtained as θkick = f2(ḣkick), as shown in Figure 8.11. This set of relations

represents one possible solution for the control strategy, defining a pair of kick

parameters for every rotor speed to maximise ṁanet. The combined curve is shown

in black in Figure 8.12, passing through the maxima at each rotor speed level.

The same technique is repeated on the maximum Ėη points. Each pair of points is

then connected with a straight line, representing the affine combination of the two

curves, as seen in Figure 8.13.

From inspection of Figure 8.10, it can be seen that the locations of maximum Ėη are

always at the edge of the field corresponding to the highest value of ḣkick investigated.

This is due to the definition of Ėη; since the ideal cycle assumes a stroke of zero

duration, increasing kick velocity will result in the power fraction asymptotically

approaching unity. Therefore, we will extend the control surface past the recorded

maximum Ėη points.

Chapter 8. System optimisation 157

0
5

1
0

1
5

2
0

2
5

0

0
.5

1

1
.5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

Rotorspeedθ̇(rad/sec)

K
ic
k
ve
lo
ci
ty

ḣ
k
(m

/
s)

K
ic
k
a
n
g
le

θ
k
(r
a
d
)

Net rate of air being exhausted (kg/s)

−
2

−
1
.5

−
1

−
0
.5

00
.5

11
.5

2

F
ig

u
re

8.
9:

S
u

rf
ac

es
of
ṁ
a

n
et

va
lu

es
fo

r
m

u
lt

ip
le
θ̇

va
lu

es

158 Chapter 8. System optimisation

0
5

1
0

1
5

2
0

2
5

0

0
.5

1

1
.5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

Rotor speed θ̇ (rad/sec)

K
ick

velo
city

ḣ
k
(m

/
s)

K
ick

a
n
g
le

θ
k
(ra

d
)

Fraction of max power at that speed

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

F
igu

re
8
.10:

S
u

rfaces
of
Ė
η

valu
es

for
m

u
ltip

le
θ̇

valu
es

Chapter 8. System optimisation 159

0.3 0.4 0.5

2

4

6

8

10

12

14

Rotor speed θ̇ (rad/s)

K
ic
k
ve
lo
ci
ty

ḣ
k
(m

/
s)

First quadratic

0 5 10 15
0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

K
ic
k
a
n
g
le

θ
k
(r
a
d
)

Kick velocity ḣk (m/s)

Second quadratic

Figure 8.11: Quadratic curves through maximum ṁanet values

8.3.1 Control surface results

The final step is to explore the values of the dependent variables on the control

surface itself. A grid of values is drawn up, as shown in Figure 8.14, and every

point is simulated as before, taking a further 300 computer-hours. The contours

are then mapped onto the control surface and plotted, as shown in Figure 8.15 and

Figure 8.16.

160 Chapter 8. System optimisation

0
5

1
0

1
5

2
0

0

0
.5

1

1
.5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

K
ick

velo
city

ḣ
k
(m

/
s)

K
ick

a
n
g
le

θ
k
(ra

d
)

Rotor speed θ̇ (rad/sec)

Net rate of air being exhausted (kg/s)

0 0
.2

0
.4

0
.6

0
.8

1 1
.2

1
.4

1
.6

1
.8

2

F
igu

re
8
.1

2:
3D

cu
rve

d
escrib

ed
b
y

m
ax

im
u

m
ṁ
a

n
et

valu
es

Chapter 8. System optimisation 161

0
5

1
0

1
5

2
0

0

0
.5

1

1
.5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

K
ic
k
ve
lo
ci
ty

ḣ
k
(m

/
s)

K
ic
k
a
n
g
le

θ
k
(r
a
d
)

Rotorspeedθ̇(rad/sec)

Fraction of max power at that speed

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

F
ig

u
re

8.
13

:
D

efi
n

it
io

n
of

op
ti

m
u

m
su

rf
ac

e

162 Chapter 8. System optimisation

0
5

1
0

1
5

2
0

0

0
.5

1

1
.5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

K
ick

velo
city

ḣ
k
(m

/
s)

K
ick

a
n
g
le

θ
k
(ra

d
)

Rotor speed θ̇ (rad/sec)

Net rate of air being exhausted (kg/s)

0 0
.2

0
.4

0
.6

0
.8

1 1
.2

1
.4

1
.6

1
.8

2

F
igu

re
8
.14:

G
rid

of
sim

u
lation

s
ru

n
on

con
trol

su
rface

Chapter 8. System optimisation 163

0
5

1
0

1
5

2
0

0

0
.5

1

1
.5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

K
ic
k
ve
lo
ci
ty

ḣ
k
(m

/
s)

K
ic
k
a
n
g
le

θ
k
(r
a
d
)

Rotorspeedθ̇(rad/sec)

Net rate of air being exhausted (kg/s)

00
.5

11
.5

2

F
ig

u
re

8.
15

:
C

on
tr

ol
su

rf
ac

e
ṁ
a

n
et

va
lu

es
in

3D

164 Chapter 8. System optimisation

0
5

1
0

1
5

2
0

0

0
.5

1

1
.5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

K
ick

velo
city

ḣ
k
(m

/
s)

K
ick

a
n
g
le

θ
k
(ra

d
)

Rotor speed θ̇ (rad/sec)

Fraction of max power at that speed

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

F
ig

u
re

8.16:
C

on
trol

su
rface

Ė
η

valu
es

in
3D

Chapter 8. System optimisation 165

5 10 15 20
0.3

0.35

0.4

0.45

0.5

Velocity ḣk (m/s)

R
o
to
r
sp
ee
d
θ̇
(r
a
d
/
se
c)

N
e
t

ra
te

 o
f

a
ir

 b
e
in

g
 e

x
h

a
u

st
e
d

 (
k

g
/s

)

0

0.5

1

1.5

2

Figure 8.17: Net airflow rate ṁanet for optimum surface

5 10 15 20
0.3

0.35

0.4

0.45

0.5

Velocity ḣk (m/s)

R
o
to
r
sp
ee
d
θ̇
(r
a
d
/
se
c)

F
ra

ct
io

n
 o

f
m

a
x
 p

o
w

e
r

a
t

th
a
t

sp
e
e
d

0.75

0.8

0.85

0.9

0.95

Figure 8.18: Normalised power Ėη for optimum surface

166 Chapter 8. System optimisation

8.4 Conclusions

It can be seen in Figure 8.17 that the overall peak ṁanet is 2.3 kg/s, obtained at

a rotor speed of 0.34 rad/s and a kick velocity of 5 m/s. From the contours, we

can also state that ṁanet is primarily dependent on kick velocity, and is relatively

independent of rotor speed for ḣkick > 10 m/s.

While ṁanet appears to be inversely proportional to ḣkick, obtaining a high normalised

power value Ėη is significantly dependent on achieving both a low rotor speed and a

high kick velocity; this verifies our assumptions about the ‘optimum’ kick verticality.

Inter-cycle control, which would vary these parameters to select a particular desired

performance, is clearly possible and desirable. A clear future direction of research

would be to consider how external variables such as wind speeds, grid electricity

prices or storage conditions might require alternative ṁanet or Ėη outputs, and design

a control structure intended to allow the ICWT to alter its settings to seek the new

optimum performance.

Finally, we find that it is critically important to achieve low rotor speed to avoid

reductions in both ṁanet and Ėη. Peak ṁanet for the reference turbine is 0.34 rad/s;

since this differs from the optimum rotor speed as governed by wind rotor theory,

which was set as 0.4 rad/s in Figure 3.1, we can conclude that the reference turbine

is below the optimum rotor diameter for the ICWT concept. Larger rotors, turning

more slowly, would result in a better fit between the aerodynamic and compression

optimum rotor speeds.

167

Chapter 9

Conclusions and future work

9.1 Contributions of present work

This thesis has presented a detailed simulation of an integral compression wind

turbine (ICWT).

Starting from basic non-rotating models, the simulation was extended to include

the capacity for mass flow of air both from the atmosphere into the compression

cylinder and from the cylinder into a high-pressure manifold for storage. A set of

algorithms were derived for calculating both the instantaneous potential energy in

the system were formed, partly based on a predicted angle at the end of the exhaust

stroke, and also the energy required to compress and exhaust the air below the piston.

Matlab solver events were implemented to switch between different compression

stages without discontinuities, allowing the accurate simulation of the model despite

its nature as a highly-stiff system of ODEs.

The temperature profile along the compression cylinder wall was then added to

the simulation, modelled as a series of orthogonal polynomials generated using the

Gram-Schmidt orthogonalisation process. Heat flow into and out of the cylinder

168 Chapter 9. Conclusions and future work

wall was simulated, allowing the wall temperatures and the air mass temperatures to

interact as part of the system of ODEs. A steady-state wall temperature profile was

found, using a modified Newton-Raphson process in conjunction with the results of

a long-term simulation, based on linear combinations of exponential terms.

The equations governing a water-cooling mechanism were derived, simulating the

effects of spraying a fine mist of water droplets into the compression cylinder imme-

diately before the compression stroke. Algorithms to track the change of state of the

water were developed and implemented in the larger model, showing the reduction

in exhaust temperature which could be achieved.

Strategies for exhaust valve control were outlined, starting with a relatively simple

exponential proportional control mechanism based on energy surplus. Next, a more

complex twin-controller strategy was described, with an inner proportional controller

seeking targets set by a model-based control system. Although successful, constraints

of computing power prevented it from being physically realisable on present hardware.

Finally, an optimisation study was carried out, looking at the optimum parameters

for the turbine’s ‘kick’ stage. Relevant objective variables of net air exhaust rate

and rotor power fraction were devised, and a large-scale search space was outlined

and investigated over 1000 computer-hours. Using this insight into the behaviour

of the system, an optimum operating surface was identified, representing the best

trade-off between energy produced and energy harvested; further investigation into

the objective variables on that surface allowed a general inter-cycle control technique

to be outlined.

9.2 Future work

Several areas of future research are envisaged as progressions of the work in this

thesis.

Chapter 9. Conclusions and future work 169

Control modelling and implementation

The implementation of the inter-cycle sliding-mode control system described in

Chapter 8 would represent a clear next step, providing the necessary control to

ensure efficient operation of a practical ICWT.

Another area of investigation would be the potential for the use of bistable valves

and pulse-width modulation to approximate valve constants.

Variable rotor speed

Appendix C calculated that the effect on the rotor of the moving masses was

relatively minor and thus assumed constant rotor speed. An improved simulation

would certainly model rotor speed as a variable, and additionally model some degree

of wind variablility, which would significantly increase verisimilitude. Additionally,

the tracking of spanwise forces in the rotor plane would allow a degree of simple

finite element analysis to model the in-plane deflections of the rotor blades.

One particular detail of interest, which would be a natural study area for a variable

rotor speed model, is the problem of starting an ICWT rotor from stationary, using

air from the HP manifold to move the pistons and thus start the rotor turning.

Rotor axis movement

That model could be extended by the addition of five further axes to provide a full

three-dimensional mass-spring-damper system modelling translation and rotation

of the rotor axis in any direction. Wind forces, tower shadow effects, and yawing

& feathering processes could all modelled and their effect on the piston dynamics

observed.

170 Chapter 9. Conclusions and future work

Double-piston sim

Another useful addition to the model would be the variables to track the two paired

pistons separately, including spring and damping forces between them from the tie

rod.

Sensor noise

Adding a simulation of sensor inaccuracy to SW sensors would allow the investigation

of the effects of sensor quantisation, noise and bias on the efficient operation of the

system.

171

References

[1] Rajendra K. Pachauri, Andy Reisinger, et al. Climate Change 2007: Synthesis
Report. Contribution of working groups I, II and III to the fourth assessment
report of the Intergovernmental Panel on Climate Change. Technical report,
Intergovernmental Panel on Climate Change, 2007. URL https://www.ipcc.

ch/report/ar4/syr/.

[2] Ottmar Edenhofer, Ramón Pichs-Madruga, Youba Sokona, Kristin Seyboth,
Susanne Kadner, Timm Zwickel, Patrick Eickemeier, Gerrit Hansen, Steffen
Schlömer, Christoph von Stechow, et al. Renewable Energy Sources and Climate
Change Mitigation: Special report of the Intergovernmental Panel on Climate
Change. Cambridge University Press, 2011. URL http://ipcc.ch/report/

srren/.

[3] European Union Committee. The EU’s target for renewable energy:
20% by 2020. Technical Report 175-I, UK House of Lords, Octo-
ber 2008. URL http://www.publications.parliament.uk/pa/ld200708/

ldselect/ldeucom/175/175.pdf.

[4] Electricity: chapter 5, Digest of United Kingdom energy statistics (DUKES).
Online, July 2014. URL https://www.gov.uk/government/statistics/

electricity-chapter-5-digest-of-united-kingdom-energy-statistics-dukes.

[5] Paraic Higgins and Aoife M. Foley. Review of offshore wind power development
in the United Kingdom. In 12th International Conference on Environment and
Electrical Engineering (EEEIC), pages 589–593. IEEE, 2013. doi: 10.1109/
EEEIC.2013.6549584.

[6] Goran Strbac. Quantifying the system costs of additional renewables in 2020.
Technical report, ILEX Energy Consulting & Manchester Centre for Electrical
Energy, UMIST, October 2002. URL http://webarchive.nationalarchives.

gov.uk/+/http://www.berr.gov.uk/files/file21352.pdf.

[7] Richard Slark and Gareth Davies. Compliance costs for meeting the 20% renew-
able energy target in 2020. Technical report, Pöyry Energy Consulting for the UK
Department for Business, Enterprise and Regulatory Reform, March 2008. URL
https://www.gov.uk/government/uploads/system/uploads/attachment_

data/file/42974/1_20090501132011_e____Compliancecosts.pdf.

https://www.ipcc.ch/report/ar4/syr/
https://www.ipcc.ch/report/ar4/syr/
http://ipcc.ch/report/srren/
http://ipcc.ch/report/srren/
http://www.publications.parliament.uk/pa/ld200708/ldselect/ldeucom/175/175.pdf
http://www.publications.parliament.uk/pa/ld200708/ldselect/ldeucom/175/175.pdf
https://www.gov.uk/government/statistics/electricity-chapter-5-digest-of-united-kingdom-energy-statistics-dukes
https://www.gov.uk/government/statistics/electricity-chapter-5-digest-of-united-kingdom-energy-statistics-dukes
http://webarchive.nationalarchives.gov.uk/+/http://www.berr.gov.uk/files/file21352.pdf
http://webarchive.nationalarchives.gov.uk/+/http://www.berr.gov.uk/files/file21352.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/42974/1_20090501132011_e____Compliancecosts.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/42974/1_20090501132011_e____Compliancecosts.pdf

172 References

[8] Albert Betz. Das maximum der theoretisch möglichen ausnutzung des windes
durch windmotoren. Zeitschrift fr das gesamte Turbinenwesen, 26:307–309,
1920.

[9] Tony Burton, Nick Jenkins, David Sharpe, and Ervin Bossanyi. Wind Energy
Handbook. John Wiley & Sons, 2nd edition, 2011. doi: 10.1002/9781119992714.

[10] Erich Hau and Horst Von Renouard. Wind Turbines: Fundamentals, Tech-
nologies, Application, Economics. Springer, 3rd edition, 2013. doi: 10.1007/
978-3-642-27151-9.

[11] Renewables Advisory Board. Value breakdown for the offshore wind sector.
Technical report, Department of Energy and Climate Change, UK Govern-
ment, February 2010. URL https://www.gov.uk/government/publications/

offshore-wind-sector-value-breakdown.

[12] Lee Jay Fingersh, M Maureen Hand, and Alan S Laxson. Wind turbine design
cost and scaling model. Technical Report NREL/TP-500-40566, National
Renewable Energy Laboratory, USA, December 2006. URL http://www.nrel.

gov/wind/pdfs/40566.pdf.

[13] Andrew Cordle. Evaluating the optimal lifetime design of dif-
ferent support structure concepts under the loads of larger tur-
bines. Conference presentation, ‘Future Offshore Foundations 2013’,
October 2013. URL http://www.windpowermonthlyevents.com/events/

future-offshore-wind-foundations-2013/agenda-7/.

[14] Seamus D. Garvey. Structural capacity and the 20MW wind turbine. Proceedings
of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,
224(8):1083–1115, December 2010. doi: 10.1243/09576509JPE973.

[15] Peter Jamieson. Innovation in wind turbine design. John Wiley & Sons, 2011.
doi: 10.1002/9781119975441.

[16] Francisco Dı́az-González, Andreas Sumper, Oriol Gomis-Bellmunt, and Roberto
Villafáfila-Robles. A review of energy storage technologies for wind power
applications. Renewable and Sustainable Energy Reviews, 16(4):2154–2171, 2012.
doi: 10.1016/j.rser.2012.01.029.

[17] File:wind turbine 1888 charles brush.jpg. Wikimedia Commons, 2014. URL
http://commons.wikimedia.org/wiki/File:Wind_turbine_1888_Charles_

Brush.jpg. Public domain.

[18] David A. Spera, editor. Wind Turbine Technology. ASME Press, 1994.

[19] Christian Kjaer, Bruce Douglas, Raffaella Bianchin, and Elke Zander. Wind en-
ergy - the facts. Online, October 2008. URL http://www.ewea.org/fileadmin/

ewea_documents/documents/publications/WETF/1565_ExSum_ENG.pdf.

https://www.gov.uk/government/publications/offshore-wind-sector-value-breakdown
https://www.gov.uk/government/publications/offshore-wind-sector-value-breakdown
http://www.nrel.gov/wind/pdfs/40566.pdf
http://www.nrel.gov/wind/pdfs/40566.pdf
http://www.windpowermonthlyevents.com/events/future-offshore-wind-foundations-2013/agenda-7/
http://www.windpowermonthlyevents.com/events/future-offshore-wind-foundations-2013/agenda-7/
http://commons.wikimedia.org/wiki/File:Wind_turbine_1888_Charles_Brush.jpg
http://commons.wikimedia.org/wiki/File:Wind_turbine_1888_Charles_Brush.jpg
http://www.ewea.org/fileadmin/ewea_documents/documents/publications/WETF/1565_ExSum_ENG.pdf
http://www.ewea.org/fileadmin/ewea_documents/documents/publications/WETF/1565_ExSum_ENG.pdf

References 173

[20] David J. C. MacKay. Sustainable Energy - without the hot air. UIT Cam-
bridge, 2008. ISBN 978-1-906860-01-1. doi: 10.1119/1.3273852. URL
www.withouthotair.com.

[21] Marc Beaudin, Hamidreza Zareipour, Anthony Schellenberglabe, and William
Rosehart. Energy storage for mitigating the variability of renewable electricity
sources: An updated review. Energy for Sustainable Development, 14(4):302–314,
2010. ISSN 0973-0826. doi: 10.1016/j.esd.2010.09.007.

[22] Pavlos S. Georgilakis. Technical challenges associated with the integration of
wind power into power systems. Renewable and Sustainable Energy Reviews, 12
(3):852–863, 2008. ISSN 1364-0321. doi: 10.1016/j.rser.2006.10.007.

[23] Robert T. Watson, Marufu C. Zinyowera, and Richard H. Moss, editors. Tech-
nologies, Policies and Measures for Mitigating Climate Change. IPCC, November
1996. URL http://www.ipcc.ch/pdf/technical-papers/paper-I-en.pdf.

[24] Damian Carrington. BritNed power cable boosts hopes for European supergrid.
Online, April 2011. URL http://www.theguardian.com/environment/2011/

apr/11/uk-netherlands-power-cable-britned.

[25] R.K. Edmunds, T.T. Cockerill, T.J. Foxon, D.B. Ingham, and M. Pourkashanian.
Technical benefits of energy storage and electricity interconnections in future
British power systems. Energy, 70(0):577–587, 2014. ISSN 0360-5442. doi:
10.1016/j.energy.2014.04.041.

[26] National Grid Interconnector Positioning Statement. Online,
March 2014. URL http://www2.nationalgrid.com/About-us/

European-business-development/Interconnectors/.

[27] Peter Warren. A review of demand-side management policy in the UK. Renewable
and Sustainable Energy Reviews, 29(0):941–951, 2014. ISSN 1364-0321. doi:
10.1016/j.rser.2013.09.009.

[28] Laurent Pouret, Nigel Buttery, and W.J. Nuttall. Is nuclear
power inflexible? Nuclear Future, 5(6):333–340, 2009. URL http:

//www.nuclearinst.com/CoreCode/Admin/ContentManagement/MediaHub/

Assets/FileDownload.ashx?fid=74608&pid=13034&loc=en-GB&fd=False.

[29] Electricity Market Reform: policy overview. Online, Novem-
ber 2012. URL https://www.gov.uk/government/publications/

electricity-market-reform-policy-overview--2.

[30] Goran Strbac. Demand side management: Benefits and challenges. Energy Policy,
36(12):4419–4426, 2008. ISSN 0301-4215. doi: 10.1016/j.enpol.2008.09.030.
Foresight Sustainable Energy Management and the Built Environment Project.

[31] Nancy Skinner. CA AB-2514 Energy storage systems. Online, September
2010. URL http://leginfo.legislature.ca.gov/faces/billNavClient.

xhtml?bill_id=200920100AB2514.

www.withouthotair.com
http://www.ipcc.ch/pdf/technical-papers/paper-I-en.pdf
http://www.theguardian.com/environment/2011/apr/11/uk-netherlands-power-cable-britned
http://www.theguardian.com/environment/2011/apr/11/uk-netherlands-power-cable-britned
http://www2.nationalgrid.com/About-us/European-business-development/Interconnectors/
http://www2.nationalgrid.com/About-us/European-business-development/Interconnectors/
http://www.nuclearinst.com/CoreCode/Admin/ContentManagement/MediaHub/Assets/FileDownload.ashx?fid=74608&pid=13034&loc=en-GB&fd=False
http://www.nuclearinst.com/CoreCode/Admin/ContentManagement/MediaHub/Assets/FileDownload.ashx?fid=74608&pid=13034&loc=en-GB&fd=False
http://www.nuclearinst.com/CoreCode/Admin/ContentManagement/MediaHub/Assets/FileDownload.ashx?fid=74608&pid=13034&loc=en-GB&fd=False
https://www.gov.uk/government/publications/electricity-market-reform-policy-overview--2
https://www.gov.uk/government/publications/electricity-market-reform-policy-overview--2
http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=200920100AB2514
http://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=200920100AB2514

174 References

[32] Bjrn Bolund, Hans Bernhoff, and Mats Leijon. Flywheel energy and power
storage systems. Renewable and Sustainable Energy Reviews, 11(2):235–258,
2007. ISSN 1364-0321. doi: 10.1016/j.rser.2005.01.004.

[33] Douglas Cross and Chris Brockbank. Mechanical hybrid system comprising
a flywheel and CVT for motorsport and mainstream automotive applications.
Technical report, SAE Technical Paper, 2009.

[34] R. Sebastin and R. Pea Alzola. Flywheel energy storage systems: Review and
simulation for an isolated wind power system. Renewable and Sustainable Energy
Reviews, 16(9):6803–6813, 2012. ISSN 1364-0321. doi: 10.1016/j.rser.2012.08.008.

[35] H. Ibrahim, A. Ilinca, and J. Perron. Energy storage systems - characteristics
and comparisons. Renewable and Sustainable Energy Reviews, 12(5):1221–1250,
2008. ISSN 1364-0321. doi: 10.1016/j.rser.2007.01.023.

[36] Cyrus Wadia, Paul Albertus, and Venkat Srinivasan. Resource constraints on the
battery energy storage potential for grid and transportation applications. Journal
of Power Sources, 196(3):1593–1598, 2011. doi: 10.1016/j.jpowsour.2010.08.056.

[37] J.P. Deane, B.P. Ó Gallachóir, and E.J. McKeogh. Techno-economic review of
existing and new pumped hydro energy storage plant. Renewable and Sustainable
Energy Reviews, 14(4):1293–1302, 2010. ISSN 1364-0321. doi: 10.1016/j.rser.
2009.11.015.

[38] April Saylor. General Compression looks at energy storage from a differ-
ent angle. Online, February 2011. URL http://energy.gov/articles/

general-compression-looks-energy-storage-different-angle.

[39] John Andrews and Nick Jelley. Energy Science: Principles, Technologies, and
Impacts. Oxford University Press, 2007.

[40] Andrew J. Pimm, Seamus D. Garvey, and R. J. Drew. Shape and cost analysis
of pressurized fabric structures for subsea compressed air energy storage. In
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Me-
chanical Engineering Science, volume 225, pages 1027–1043. SAGE Publications,
May 2011. doi: 10.1177/0954406211399506.

[41] Gordon Frederick Crichton Rogers, Yon Richard Mayhew, and Michael
Hollingsworth. Engineering Thermodynamics: Work and Heat Transfer. Pearson
Education, 4th edition, 1992.

[42] Chris Bullough, Christoph Gatzen, Christoph Jakiel, Martin Koller,
Andreas Nowi, and Stefan Zunft. Advanced adiabatic compressed
air energy storage for the integration of wind energy. In Pro-
ceedings of the European Wind Energy Conference, 2004. URL
http://www.ewi.uni-koeln.de/fileadmin/user_upload/Publikationen/

Zeitschriften/2004/04_11_23_EWEC_Paper_Final.pdf.

http://energy.gov/articles/general-compression-looks-energy-storage-different-angle
http://energy.gov/articles/general-compression-looks-energy-storage-different-angle
http://www.ewi.uni-koeln.de/fileadmin/user_upload/Publikationen/Zeitschriften/2004/04_11_23_EWEC_Paper_Final.pdf
http://www.ewi.uni-koeln.de/fileadmin/user_upload/Publikationen/Zeitschriften/2004/04_11_23_EWEC_Paper_Final.pdf

References 175

[43] Ke Yang, Yuan Zhang, Xuemei Li, and Jianzhong Xu. Theoretical evaluation
on the impact of heat exchanger in advanced adiabatic compressed air energy
storage system. Energy Conversion and Management, 86(0):1031–1044, 2014.
ISSN 0196-8904. doi: 10.1016/j.enconman.2014.06.062.

[44] Benjamin Bollinger, Patrick Magari, and Troy O. McBride. High-efficiency
liquid heat exchange in compressed-gas energy storage systems, May 2012. URL
http://www.google.com/patents/US8171728.

[45] Chao Qin and Eric Loth. Liquid piston compression efficiency with droplet heat
transfer. Applied Energy, 114:539–550, October 2014. doi: 10.1016/j.apenergy.
2013.10.005.

[46] H. Barrow and C. W. Pope. Droplet evaporation with reference to the ef-
fectiveness of water-mist cooling. Applied energy, 84(4):404–412, 2007. doi:
10.1016/j.apenergy.2006.09.007.

[47] Kyoung Hoon Kim, Hyung-Jong Ko, and Horacio Perez-Blanco. Analytical mod-
eling of wet compression of gas turbine systems. Applied Thermal Engineering,
31(5):834–840, April 2011. doi: 10.1016/j.applthermaleng.2010.11.002.

[48] LightSail website. Online, 2014. URL http://www.lightsail.com.

[49] General Compression website. Online, 2014. URL http://www.

generalcompression.com.

[50] SustainX website. Online, 2014. URL http://www.sustainx.com.

[51] Xian Ma, Jingtian Bi, Weili Chen, Zhisen Li, and Tong Jiang. Research on new
compressed air energy storage technology. Energy and Power Engineering, 5
(4B):22–25, 2013. doi: 10.4236/epe.2013.54B004.

[52] Shimshon Brokman, Isaac Shnaid, and Dan Weiner. Compressed air energy stor-
age method and system, July 1996. URL http://www.google.com/patents/

US5537822.

[53] Richard Brody. Optimizing grid infrastructure with site-flexible, fuel-free com-
pressed air energy storage. In IEEE PES T&D Conference and Exposition,
pages 1–4. IEEE, 2014. doi: 10.1109/TDC.2014.6863149.

[54] Albert J. Giramonti, Robert D. Lessard, William A. Blecher, and Edward B.
Smith. Conceptual design of compressed air energy storage electric power
systems. Applied Energy, 4(4):231–249, 1978. ISSN 0306-2619. doi: 10.1016/
0306-2619(78)90023-5.

[55] Robert H. Schulte, Nicholas Critelli Jr., Kent Holst, and Georgianne Huff.
Lessons from Iowa: Development of a 270 Megawatt Compressed Air Energy
Storage Project in Midwest Independent System Operator. Technical report,
Sandia National Laboratories, Albuquerque, New Mexico, January 2012. URL
http://www.sandia.gov/ess/publications/120388.pdf.

http://www.google.com/patents/US8171728
http://www.lightsail.com
http://www.generalcompression.com
http://www.generalcompression.com
http://www.sustainx.com
http://www.google.com/patents/US5537822
http://www.google.com/patents/US5537822
http://www.sandia.gov/ess/publications/120388.pdf

176 References

[56] Raul Pateras Pescara. Motor-compressor apparatus, January 1928. URL
http://www.google.com/patents?id=KoM_AAAAEBAJ.

[57] Raul Pateras Pescara. Motor compressor of the free piston type, May 1941.
URL http://www.google.com/patents/US2241957.

[58] William T. Toutant. The Worthington-Junkers free piston air compressor.
Journal of the American Society for Naval Engineers, 64(3):583–594, 1952. ISSN
1559-3584. doi: 10.1111/j.1559-3584.1952.tb02985.x.

[59] R. Mikalsen and A.P. Roskilly. A review of free-piston engine history and
applications. Applied Thermal Engineering, 27:2339–2352, 2007. doi: 10.1016/j.
applthermaleng.2007.03.015. URL http://www.sciencedirect.com/science/

article/pii/S1359431107000968.

[60] R. Mikalsen and A.P. Roskilly. Performance simulation of a spark ignited free-
piston engine generator. Applied Thermal Engineering, 28(14–15):1726–1733,
2008. ISSN 1359-4311. doi: 10.1016/j.applthermaleng.2007.11.015.

[61] E. J. Barth J. Riofrio. A free piston compressor as a pneu-
matic mobile robot power supply: Design, characterization and exper-
imental operation. International Journal of Fluid Power, 8(1):17–28,
March 2007. URL http://www.vanderbilt.edu/dces/PDF/papers/journal/

Riofrio%20Barth%20FPC%20Int%20J%20of%20Fluid%20Power.pdf.

[62] A. Hibi and T. Ito. Fundamental test results of a hydraulic free piston internal
combustion engine. Proceedings of the Institution of Mechanical Engineers,
Part D: Journal of Automobile Engineering, 218(10):1149–1157, 2004. doi:
10.1177/095440700421801010.

[63] Seppo Tikkanen and Matti Vilenius. On the dynamic characteristics of the
hydraulic free piston engine. In ICMA’98: International conference on machine
automation, pages 193–202. Tampere University of Technology (TUT), 1998.
URL http://cat.inist.fr/?aModele=afficheN&cpsidt=1368555.

[64] Tor A. Johansen, Olav Egeland, Erling Aa. Johannessen, and Rolf Kvamsdal.
Dynamics and control of a free-piston diesel engine. Journal of Dynamic
Systems, Measurement, and Control, 125:468–474, September 2003. doi: 10.
1115/1.1589035.

[65] Tor Arne Johansen, Olav Egeland, Erling Aa Johannessen, and Rolf Kvams-
dal. Free-piston diesel engine timing and control - toward electronic cam- and
crankshaft. IEEE Transactions on Control Systems Technology, 10(2):177–190,
2002. doi: 10.1109/87.987063.

[66] Seppo Tikkanen and Matti Vilenius. Control of dual hydraulic free piston
engine. International journal of vehicle autonomous systems, 4(1):3–23, 2006.
doi: 10.1504/IJVAS.2006.009305.

http://www.google.com/patents?id=KoM_AAAAEBAJ
http://www.google.com/patents/US2241957
http://www.sciencedirect.com/science/article/pii/S1359431107000968
http://www.sciencedirect.com/science/article/pii/S1359431107000968
http://www.vanderbilt.edu/dces/PDF/papers/journal/Riofrio%20Barth%20FPC%20Int%20J%20of%20Fluid%20Power.pdf
http://www.vanderbilt.edu/dces/PDF/papers/journal/Riofrio%20Barth%20FPC%20Int%20J%20of%20Fluid%20Power.pdf
http://cat.inist.fr/?aModele=afficheN&cpsidt=1368555

References 177

[67] R. Mikalsen and A.P. Roskilly. The control of a free-piston engine generator.
part 1: Fundamental analyses. Applied Energy, 87(4):1273–1280, 2010. ISSN
0306-2619. doi: 10.1016/j.apenergy.2009.06.036.

[68] R. Mikalsen and A.P. Roskilly. The control of a free-piston engine generator.
part 2: Engine dynamics and piston motion control. Applied Energy, 87(4):
1281–1287, 2010. ISSN 0306-2619. doi: 10.1016/j.apenergy.2009.06.035.

[69] R. Mikalsen, E. Jones, and A.P. Roskilly. Predictive piston motion control in a
free-piston internal combustion engine. Applied Energy, 87(5):1722–1728, 2010.
ISSN 0306-2619. doi: 10.1016/j.apenergy.2009.11.005.

[70] Philip L. Skousen. Valve Handbook. McGraw-Hill, 1997.

[71] Heinz P. Bloch. A Practical Guide to Compressor Technology. John Wiley &
Sons, 2nd edition, 2006.

[72] Bohdan T. Kulakowski, John F. Gardner, and J. Lowen Shearer. Dynamic
Modeling and Control of Engineering Systems. Cambridge University Press, 3rd
edition, 2007. ISBN 978-0-521-86435-0. doi: 10.1017/CBO9780511805417.

[73] Arthur G. O. Mutambara. Design and Analysis of Control Systems. CRC Press,
1999.

[74] George Ellis. Control System Design Guide. Elsevier Academic Press, 3rd
edition, 2004.

[75] Bernard Friedland. Control System Design - An Introduction to
State-Space Methods. Dover Publications, 1986. ISBN 978-0-486-
44278-5. URL http://app.knovel.com/hotlink/toc/id:kpCSDAISS1/

control-system-design/control-system-design.

[76] J.R. Dormand and P.J. Prince. A family of embedded Runge-Kutta formulae.
Journal of Computational and Applied Mathematics, 6(1):19–26, 1980. ISSN
0377-0427. doi: 10.1016/0771-050X(80)90013-3.

[77] Lawrence F. Shampine and Mark W. Reichelt. The MATLAB ODE
suite. SIAM Journal on Scientific Computing, 18(1):1–22, 1997. doi:
10.1137/S1064827594276424. URL http://www.mathworks.co.uk/help/pdf_

doc/otherdocs/ode_suite.pdf.

[78] R. W. Klopfenstein. Numerical differentiation formulas for stiff systems of
ordinary differential equations. RCA Review, 32(3):447–462, 1971.

[79] R. Ashino, M. Nagase, and R. Vaillancourt. Behind and beyond the Matlab
ODE suite. Computers & Mathematics with Applications, 40(45):491–512, 2000.
ISSN 0898-1221. doi: 10.1016/S0898-1221(00)00175-9.

[80] C. C. Bissell. Control Engineering. Chapman & Hall, 2nd edition, 1994. doi:
10.1007/978-1-4899-7224-8.

http://app.knovel.com/hotlink/toc/id:kpCSDAISS1/control-system-design/control-system-design
http://app.knovel.com/hotlink/toc/id:kpCSDAISS1/control-system-design/control-system-design
http://www.mathworks.co.uk/help/pdf_doc/otherdocs/ode_suite.pdf
http://www.mathworks.co.uk/help/pdf_doc/otherdocs/ode_suite.pdf

178 References

[81] Liuping Wang. Model Predictive Control System Design and Implementation
Using MATLAB. Advances in Industrial Control. Springer, 2008.

[82] Christopher Edwards and Sarah Spurgeon. Sliding Mode Control: Theory and
Applications. Taylor & Francis, 1998. ISBN 978-0748406012.

[83] Stanislaw H. Zak. Systems and Control. Oxford University Press, 2003. ISBN 978-
0-19-515011-7. URL http://app.knovel.com/hotlink/toc/id:kpSC000001/

systems-and-control/systems-and-control.

[84] Vadim Utkin, Jürgen Guldner, and Ma Shijun. Sliding Mode Control in Elec-
tromechanical Systems. Taylor & Francis, 1999. ISBN 0-7484-0116-4.

[85] G.F.C. Rogers and Y.R. Mayhew. Thermodynamic and Transport Properties of
Fluids. Blackwell Publishing, fifth edition, 1995.

[86] Eric W. Lemmon, Richard T. Jacobsen, Steven G. Penoncello, and Daniel G.
Friend. Thermodynamic properties of air and mixtures of nitrogen, argon, and
oxygen from 60 to 2000K at pressures to 2000MPa. Journal of Physical and
Chemical Reference Data, 29(3):331–385, 2000. doi: 10.1063/1.1285884.

[87] Long Fu, Guoliang Ding, and Chunlu Zhang. Dynamic simulation of air-to-water
dual-mode heat pump with screw compressor. Applied Thermal Engineering, 23
(13):1629–1645, 2003. doi: 10.1016/S1359-4311(03)00109-1.

[88] C.J. Hõs, A.R. Champneys, K. Paul, and M. McNeely. Dynamic behavior of
direct spring loaded pressure relief valves in gas service: Model development,
measurements and instability mechanisms. Journal of Loss Prevention in the
Process Industries, 31(0):70–81, 2014. ISSN 0950-4230. doi: http://dx.doi.org/
10.1016/j.jlp.2014.06.005.

[89] Bing Xu, Ruqi Ding, Junhui Zhang, and Qi Su. Modeling and dynamic
characteristics analysis on a three-stage fast-response and large-flow direc-
tional valve. Energy Conversion and Management, 79:187–199, 2014. doi:
doi:10.1016/j.enconman.2013.12.013.

[90] Claudio Garcia. Comparison of friction models applied to a control valve. Control
Engineering Practice, 16(10):1231–1243, 2008. doi: 10.1016/j.conengprac.2008.
01.010.

http://app.knovel.com/hotlink/toc/id:kpSC000001/systems-and-control/systems-and-control
http://app.knovel.com/hotlink/toc/id:kpSC000001/systems-and-control/systems-and-control

179

Appendices

A Assumptions made in the model

The following are assumed to be constant and uniform:

• Wind speed

• External air pressure

• Air temperature at intake

• Compression tube’s radius and length

• Max Coulomb friction on pistons

• Temperature and pressure of air in the HP manifold

• Behaviour parameters of valves and shock absorbers

• Position and orientation of the rotor’s axis of rotation

The following are assumed to be negligible or non-existent:

• Bending of the compression tube, both in- and out-of-plane

• Bending of the tie rod

180 Appendices

• Extension of the tie rod

• Torque in the tie rod

• All elastic deformation, except for the shock absorbers in the axial direction

only

• All inelastic deformation

• All thermal expansion

• Fatigue of all parts, including thermal and mechanical fatigue

• Time delay or lag on signal and switches

• Leakage through any seal or closed valve, including the seal around the piston

• Any effects due to rotation of the pistons about the tube axis

• Any aerodynamic effects in the tubes - see uniform pressure rule below

• Magnetic or electrostatic forces

The following relationship and rules are assumed:

• All intake air is treated as dry air, with no effects from water vapour or salt

deposition

• The temperature and pressure is uniform for each compression chamber

• The locking brakes on the piston are of infinite strength

• All sensors are of infinite resolution, perfect accuracy, and instantaneous

reaction time

• The mass flow rate through the valve is assumed to be ṁ = k∆p

Appendices 181

B Tie rod dynamic behaviour

The system at present uses several pairs of pistons, with each piston remaining on

one side of the central hub but connected to a diametrically opposing piston using

a tie rod. This rod, which will transmit only tensile force, reduces the tendency of

centrifugal effects to force the pistons to the outer edge of the tube and hold it there.

It is important to understand the forces in the tie rod, both to better understand the

design requirements governing it and also to predict the effects of non-synchronous

actuation of valves in opposing sides of the hub on each piston.

B.1 Natural frequency

First, the force in the tie rod can be found by considering the centrifugal force on a

single piston when the tie rod is centred in the tube;

Fcent = θ̇2

(
LCT + 2LTE

2

)
mP

= 0.42 · 130 + 2 · 5
2

· 30× 103

= 336 kN (1)

We consider two possible materials; a steel at 100 MPa working stress and 200 GPa

stiffness, and an aramid composite at 500 MPa working stress with 70 GPa stiffness.

We can find the cross-sectional area of the tie rod for each material;

A =
Fcent

σ

=
3.36× 105

100× 106

= 3360 mm2 (2)

182 Appendices

We will use a mass-spring analogy to find the resonant frequency of the system. This

considers the longitudinal vibrational mode, in which the first mode represents the

pistons oscillating first towards, and then away from each other. From the basic

stress-strain relationship and Hooke’s law, the analogous spring stiffness is;

k =
A · E
L

=
3.36× 10−3 · 200× 109

70

= 9.6 MN/m (3)

The natural frequency is;

ωn =

√
k

m

=

√
9.6E6

30× 103

= 2.85 Hz (4)

For an aramid with a working stress of 500 MPa and a Young’s modulus of 70 GPa,

the natural frequency is 0.753 Hz. This means that, on the timescales of the forces in

the simulation, the pistons are not rigidly connected, and asymmetric perturbations

on the order of 0.1 seconds in duration may not be observed at the other piston at

all. The model will need to reflect this by modelling each piston separately.

B.2 Modelling

We build a basic mass-spring model, using a single piston mass and the stiffness

worked out above. Under normal use, the force on the tie rod should be a constant -

since the tension due to the centrifugal force is constant, and all other forces should

apply to the pistons equally. We will model the result of a failure in one set of valves

so that the rod is subjected to the full pressure forces from a single piston.

Appendices 183

C Rotational speed of the rotor

C.1 Effect of piston forces

During operation of the turbine, the pistons exert two different forces on the rotor:

Coriolis forces and gravity forces.

Coriolis forces

Coriolis forces are fictitious forces which appear in a rotating reference frame. They

are due to the conservation of rotational momentum; as our pistons move radially

while restrained in the compression tube, their rotational inertia (relative to the

centre of the rotor) changes. The momentum in this change is transferred to the

rotor, which sees a force equal to the derivative of the overall rotor’s inertia.

The Coriolis force required to keep a single piston in line along the compression tube,

with a velocity (radially in the rotor reference frame) of ḣ and a mass of mP , with

rotor rotational speed of θ̇ is given by:

FCoriolis = −2mP θ̇ḣ (5)

This force is thus applied to the rotor at a distance of (h + LTE) from the hub,

producing the Coriolis torque:

τCoriolis = −2mP θ̇ḣ(h+ LTE) (6)

This is also the expression given by differentiating the rotational inertia for the piston

about the hub, m(h+ LTE)2. Since there is no net change in the inertia of the rotor

over time, we can conclude that the Coriolis torque will have no net effect; however,

the fluctuating torque may cause cyclic variations in the rotational velocity of the

184 Appendices

0 1 2 3 4 5 6
−8

−6

−4

−2

0

2

4
x 10

7

θ position (rads)

T
o
rq

u
e
 (

N
m

)

Piston pair 1

Piston pair 2

Piston pair 3

Piston pair 4

Total

Average

Figure C.1: Rotor torques due to Coriolis forces from piston motion

rotor. Figure C.1 shows the Coriolis torque from eight pistons (arranged in four

pairs) around a full revolution of the rotor.

Gravity forces

The pistons will also produce a gravity torque, which is generated by the component

of the gravity force on each piston which acts orthogonally to the compression tube.

This is simply given by:

τgravity = − cos(θ)mP g(h+ LTE) (7)

Work done against this gravity torque is the means by which the turbine is extracting

energy from the wind, so we expect this to average out at some negative value equal

to the power of the turbine divided by the rotational speed θ̇. This is shown in

Figure C.2.

Appendices 185

0 1 2 3 4 5 6
−6

−5

−4

−3

−2

−1

0

1
x 10

7

θ position (rads)

T
o
rq

u
e
 (

N
m

)

Piston pair 1

Piston pair 2

Piston pair 3

Piston pair 4

Total

Average

Figure C.2: Rotor torques due to gravity

C.2 Net effect on rotor

We can trivially calculate the rotational inertia of the pistons over the full cycle, which

is shown in Figure C.3. We also need to make an estimation of the rotational inertia

embodied in the non-compressing part of the rotor; this includes the compression

tubes, blade elements, bracing cables, and bearings. Combining these two inertias

with the total torque resulting from the Coriolis and gravity forces, we can simulate

the variation in rotor angular velocity over a cycle, as shown in Figure C.4. It is

clear that any variation from neutral values is minimal

D Heat transfer at walls

In Section 5.1.1, we needed a value for the effective thickness of the boundary layer

of air at the surface. To obtain that value, we will construct a simple ODE.

We consider a solid cylinder of air, and look at the diffusion of heat into the air

186 Appendices

0 1 2 3 4 5 6
0

2

4

6

8

10

12
x 10

8

θ position (rads)

R
o
ta

ti
o
n

a
l

in
e
rt

ia
 (

k
g
 m

2
)

Piston pair 1

Piston pair 2

Piston pair 3

Piston pair 4

Total

Average

Figure C.3: Rotational inertia due to pistons

0 2 4 6 8 10 12 14 16
0.397

0.398

0.399

0.4

0.401

0.402

0.403

0.404

0.405

0.406

Time (s)

R
o
to

r
a
n
g
u
la
r
v
e
lo
c
it
y
θ̇
(r
a
d
/
s)

Figure C.4: Simulation of rotor angular velocity over one cycle

Appendices 187

from the circumferential wall surrounding it. The heat passing through a cylindrical

surface along the tube axis, with a radius r, height z, and thermal conductivity k is

given by;

Q(r) = −∂T
∂r
· k · (z · 2πr) (8)

We can form the partial differential equation by considering the net heat going into

a hollow-cylindrical element of thickness ∆r;

(cvρ)
∂T

∂t
(z · 2πr ·∆r) = −

∣∣∣∣∂T∂r k (z2πr)

∣∣∣∣
r

+

∣∣∣∣∂T∂r k (z2πr)

∣∣∣∣
r+∆r

(9)

Divide through by k · z · 2π;

cvρ

k

∂T

∂t
(r ·∆r) =

∣∣∣∣∂T∂r r
∣∣∣∣
r+∆r

−
∣∣∣∣∂T∂r r

∣∣∣∣
r

(10)

The right hand side is a derivative with respect to r, which obtains;

cvρ

k

∂T

∂t
r =

∂2T

∂r2
r +

∂T

∂r
(11)

∂T

∂t
=

k

cvρ

(
∂2T

∂r2
+
∂T

∂r

1

r

)
(12)

For air, we take k = 0.02587 W/m·K. At 800 K and 7 MPa, cv = 8116 J/kg·K and

ρ = 29.72 kg/m3.

The initial temperature profile is a uniform air mass at 600 K, with the wall at 293 K.

This is represented numerically as a large vector of temperature values, where the

numerical derivatives at each point are defined as:

∣∣∣∣∂T∂r
∣∣∣∣
i

=
Ti+1 − Ti−1

ri+1 − ri−1
(13)∣∣∣∣∂2T

∂r2

∣∣∣∣
i

=
Ti+1 − 2Ti + Ti−1

(ri+1 − ri)(ri − ri−1)
(14)

188 Appendices

With the end conditions:

∣∣∣∣∂T∂r
∣∣∣∣
r1

=

∣∣∣∣∂T∂r
∣∣∣∣
r2

and

∣∣∣∣∂2T

∂r2

∣∣∣∣
r1

=

∣∣∣∣∂2T

∂r2

∣∣∣∣
r2

(15)∣∣∣∣∂T∂r
∣∣∣∣
rend

=

∣∣∣∣∂2T

∂r2

∣∣∣∣
rend

= 0 (16)

If we substitute these into the PDE, we obtain;

∣∣∣∣∂T∂t
∣∣∣∣
ri

=
k

cvρ

(
Ti+1 − 2Ti + Ti−1

(ri+1 − ri)(ri − ri−1)
+
Ti+1 − Ti−1

ri+1 − ri−1

1

ri

)
(17)∣∣∣∣∂T∂t

∣∣∣∣
ri

=
k

cvρ

[
1

(ri+1 − ri)(ri − ri−1)
+

1

ri(ri+1 − ri−1)

]
Ti+1

+
k

cvρ

[
−2

(ri+1 − ri)(ri − ri−1)

]
Ti

+
k

cvρ

[
1

(ri+1 − ri)(ri − ri−1)
− 1

ri(ri+1 − ri−1)

]
Ti−1 (18)

This allows us to calculate a matrix DT such that;

Ṫ (r) = DT · T (r) (19)

Modelling this in the m-file thermal mod func with a 400 K temperature difference

and around 1 second of conduction time produces the temperature profile shown in

Figure D.1. This shows that only the first 2–3 mm of air will experience a temperature

rise. As a result, we will take tair = 0.003 mm.

E Linearising the model about a given state

The Matlab model has experienced serious problems with stability throughout its

lifetime. Extensive work has been done into the issues, including constructing a

modified Euler solver to manually solve the ODE.

Having an accurate method of linearising the model is useful to determine its degree

Appendices 189

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

0

1

2

3

4

5

6

7

8

9

10

1
1

5
0

5
0

1
0
0

1
0
0

1
5
0

1
5
0

2
0
0

2
0
0

25
0

2
5
0

300

3
0
0

Radial position (m)

T
im

e
 (

s)

T
e
m

p
e
ra

tu
re

 d
if

fe
re

n
ce

 f
ro

m
 e

d
g
e
 (

K
)

50

100

150

200

250

300

Figure D.1: Basic thermal model showing boundary layer thickness

190 Appendices

of stiffness and nonlinearity, which may affect the capability of the Matlab solvers

to solve it. This was accomplished by building a function to calculate the sensitivity

of the rate vector to small changes in the state vector. This sensitivity is represented

in the matrix A, as shown below;

A ≡



dẏ1

dy1

dẏ1

dy2
. . . dẏ1

dyn

dẏ2

dy1

dẏ2

dy2
. . . dẏ2

dyn

...
...

. . .
...

dẏn
dy1

dẏ3

dy2
. . . dẏn

dyn


(20)

The element in the ith row and jth column is the derivative of ẏi (the ith element of

the rate vector) with respect to yj (the jth element of the state vector).

To find each element of A, we extend the simple numerical derivative formula from

Equation 5.24 to the vector case:

dẏi
dyj

=
ẏi(yj + ε)− ẏi(yj − ε)

2ε
(21)

The rate vector ẏ is calculated twice, from two state vectors; both are based on y0,

the state about which we are linearising the problem, with a small increment ε either

added or subtracted from the jth element. The difference between the value of the

jth element in each rate vector is then divided by 2ε, giving an estimate of dẏi
dyj

.

In order to obtain the best possible estimates for every element of A, we try the

above numerical differentiation for a wide range of logarithmically-spaced ε values,

then calculate the differences between all these estimates. A log-log plot of these

differences versus ε shows a clear boundary; below some value of epsilon, the estimates

will change randomly as we encounter the accuracy limits of the algorithm, while

above this value, the estimates increase with ε. We pick the value of epsilon just above

this boundary, to minimise the error. An example of the output of lineariser.m is

Appendices 191

ab
s(
er
ro
rs
(4
,7
,:
))

ǫ

Fig.4b: differences between the values of dẏ4

dy7

ǫ

ab
s(
n
u
m

d
er
iv
(4
,7
,:
))

Fig.4a: abs(num deriv(4,7,:))

10−15 10−10 10−5 100 105

10−15 10−10 10−5 100 105

10−15

10−10

10−5

100

105

101.3

101.5

101.7

Figure E.1: Sample output graph from linearisation function

shown in Figure E.1.

The linearisation allows the investigation of the stiffness of the model about a

particular state. Due to this stiffness, we move away from the Runge-Kutta family

of solvers and use the ode15s solver based on numerical difference formulae instead.

192 Appendices

F MATLAB scripts

F.1 Core model scripts

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_run.m 1 of 4

% function out = SW_run(in_omega,in_th,in_hdot); isFunction = true;
% To make this script into a function, uncomment the line above.
if ~exist('isFunction','var') || isFunction == false
 tic; clc; close all; clear; isFunction = false;

end
dotimestamp, fprintf('Running %s ...\n',mfilename);
warning off verbose; warning off backtrace; % Change warning message

%% Get parameters
GP = SW_getparameters;
dotimestamp, fprintf(' - xxl is %i, ControlGraphs is %i, PlotGraphs is %i.\n',...

 GP.xxl,GP.ControlGraphs,GP.PlotGraphs);
if isFunction % Use input if running as a function
 GP.omega = in_omega;

 GP.C.th_kick = in_th;
 GP.C.kick_hdot = in_hdot;
end

% Overrides
% GP.water_add = 0; % Turn off water injection
GP.runtime = 30;
GP.xxl = 0;

% GP NEVER MODIFIED BELOW THIS LINE
%---

%% Define initial y, y_init
y_init.theta = 0.7861; % theta, CCW angle from horizontal (rads)
y_init.h = 90; % h, height (must be suitable for mode 0)

y_init.hdot = -15; % h dot, velocity
h_a = GP.h_a_fun(y_init.h);
for c1 = 1:2 % Stuff with both ends

 y_init.m_a{c1} = h_a{c1}*GP.A*GP.p_atm/(GP.T_atm*GP.R_univ/GP.Mol.air);
 % Air masses, m_a (based on ideal gas law)
 y_init.T_a{c1} = GP.T_atm-30; % Air/steam/water temperatures, T_a

 y_init.m_wg{c1} = 0; % Steam masses, m_wg
 y_init.m_wf{c1} = 1e-6; % Liquid water masses, m_wf
 y_init.T_te{c1} = (GP.T_kick+GP.T_atm)/2+3; % Temperatures of ends of tube, T_te
 y_init.T_pe{c1} = GP.T_atm+6.2; % Temperatures of ends of piston, T_pe

 y_init.k_e{c1} = 0; % Valve constants, k_e
 y_init.k_e_dot{c1} = 0; % Rates of change of valve constants, k_e_dot
end

y_init.m_out.net = 0; % Net m_out, mass of air in storage (subtracting kick)
y_init.m_out.exh = 0; % Exhausted m_out, total mass of air exhausted (ignoring kick)
y_init.wd_p = 0; % E_WD,p, work done by piston vs pressure

% (positive compressing, positive exhausting, negative kicking)
y_init.wd_g = 0; % E_WD,g, work done by rotor vs gravity

y_init.opthets = zeros(GP.T.npolys,1); % Coefficients of orthpolys
y_init.opthets(1) = 1.469273985e4; % Projected steady state
y_init.opthets(3) = 375.114;

y_init.opthets(5) = 214.0543;
y_init.opthets(7) = 59.27124;
y_init.opthets(9) = -25.13436;
y_init.opthets(11) = -46.76907;

y_init.vecsize = 23 + GP.T.npolys;
y0 = SW_pack(y_init);

%% Initialise sys and counting variables
sys = struct; % Structure of modes and other persistent settings

sys.dir = 3; % Current direction of operation
sys.mode = 0; % Current mode of operation
sys.psi = {0,0}; % Control trajectory parameters

sys.comp_m_a = {0,0}; % Air masses when compressing started (for sensors.m)

% Initial values of controlled variables:
sys.C.Emarg = 0.15; % Additional fraction of energy needed at compression switch

sys.cyclenum = 1; % What cycle we're on

sys.phase = {1,1}; % Phase of water. 1 = liquid, 2 = phasechange, 3 = steam.

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_run.m 2 of 4

sys.sim = false; % Is this current run occurring inside the slow controller?

if GP.debug_msg, SW_debug_message(2); end % Reset debug message

out.sys(1) = sys;
t0 = 0; out.te = t0; out.yev = y0; out.ie = 0;
numpoints = 0; out.evtdata = [];

out.t = t0; out.yv = y0;
if GP.xxl == -1 % If we're recording full sets of states
 moderefine = 3*ones(1,7); moderefine(5) = 1; % Refine more points unless locked

else
 moderefine = ones(1,7); % Never refine points
end

%% Run simulation
docolumns = @(x) fprintf(' ODETime Theta/pi Pts CTime Event Description\n');

dotimestamp, fprintf('Running simulation for %.1f minutes internal time, using ode15s\n',GP.runtime);
if ~isFunction && GP.WaitBar
 dotimestamp(0), docolumns(1);
 h = waitbar(0,'Running simulation...');

end
eventdur = tic; % Start the event timer
simdur = tic; % Start the simulation timer

while GP.simfail == false && t0 < GP.runtime * 60

 if sys.mode == 2 % If we're exhausting
 tf = t0 + GP.C.slow_runtime; % Run for the duration of the slow controller
 else

 tf = t0 + 1; % Otherwise run for 1 second
 end

 % Escalate stiffness warning to an error (undocumented)
 warning error MATLAB:ode15s:IntegrationTolNotMet; %#ok<CTPCT,WNTAG>
 try % In case of ODE solver error
 % Deactivate ill-conditioned matrix warning

 warning off MATLAB:illConditionedMatrix
 [t,y,te,ye,ie] = ode15s(@(t,y)SW_ode(GP,sys,t,y),[t0,tf],y0, ...
 odeset('Events',@(t,y)SW_events(GP,sys,t,y),'Refine',moderefine(sys.mode+1)));

 % Reactivate ill-conditioned matrix warning
 warning on MATLAB:illConditionedMatrix

 y = y'; ye = ye'; % Rotate y and ye to be rows (for SW_pack)
 t0 = t(end); % Prepare for next loop of matrix
 y0 = y(:,end);

 % Delete the last status update
 if GP.debug_msg, SW_debug_message(1); end

 if GP.xxl == -1 % If recording all states
 for c1 = 1:length(t)
 out.sys(length(out.t)+c1) = sys;

 end
 out.t = [out.t; t(2:end)];
 out.yv = [out.yv, y(:,2:end)];

 end
 numpoints = numpoints + length(t);

 if numel(ie) > 1 % If multiple events occuring simultaneously
 dotimestamp, fprintf('ERROR - simultaneous events at ODETime %.6f [%s]\n',...
 t0,num2str(ie(:)'));

 GP.simfail = true; % Get out of the while loop
 elseif ~isempty(ie) % If an event has happened
 switch ie % What event just happened?
 case {1 , 2}

 eventname = sprintf('Dir %i energy matched, compressing', ie);
 sys.dir = ie; sys.mode = 1;
 y0 = SW_pack(y0); % Pack to struct

 sens_temp = SW_sensors(GP,t,y0,sys);

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_run.m 3 of 4

 sys.comp_m_a = sens_temp.y.m_a; % Remember current airmass value
 y0.m_wf{sys.dir} = GP.water_add * y0.m_a{sys.dir}; % Add water
 y0 = SW_pack(y0); % Unpack to vector
 case 3

 eventname = 'Pressure reached, exhausting';
 sys.mode = 2;
 % Set initial value for psi

 sys.psi{sys.dir} = 1e-3;
 % Save current state ready for slow controller
 sens_queued = SW_sensors(GP,t0,SW_pack(y0),sys);

 % Close all figures if control_slow is plotting
 if GP.ControlGraphs, close all; end
 case 4

 eventname = 'Piston stopped, dumping';
 sys.mode = 3;
 if GP.ControlGraphs % Add surface of target value

 targsurf.x = get(gca,'XLim'); targsurf.y = get(gca,'YLim');
 fill3(...
 targsurf.x([1,1,2,2]),targsurf.y([2,1,1,2]),...
 GP.C.targ*[1,1,1,1],'g',...

 'FaceAlpha',0.5,'EdgeAlpha',0.5,'EdgeColor','g');
 end
 y_temp = SW_pack(y0); % Pack to struct temporarily

 h_a_temp = GP.h_a_fun(y_temp.h); % Get h_a at end
 sys.C.Emarg = sys.C.Emarg ... % Update Ereq_margin using proportional control
 + GP.C.Emarg.gain * (h_a_temp{sys.dir} - GP.C.Emarg.h_targ(sys.cyclenum));

 case 5
 eventname = 'Pressure equal, piston at rest';
 sys.mode = 4;

 case 6
 eventname = 'Angle reached, kick started';
 sys.mode = 5;

 case 7
 eventname = 'Velocity reached, kick closed';
 sys.mode = 6;
 case 8

 eventname = 'Pressure equalised, entering freefall';
 sys.dir = 3; % 3 = no dir
 sys.mode = 0;

 sys.cyclenum = sys.cyclenum + 1;
 case { 9 , 10 } % Entered phase transition
 event_end = ie-8; % Which end had the event happen

 eventname = sprintf(' - dir %i started phase transition',event_end);
 sys.phase{event_end} = 2;
 case { 11 , 12 } % Finished phase transition by running out of steam

 event_end = ie-10; % Which end had the event happen
 sys.phase{event_end} = 1; % We're in liquid region
 eventname = sprintf(' - dir %i now in liquid phase',event_end);

 case { 13 , 14 } % Finished phase transition by running out of water
 event_end = ie-12; % Which end had the event happen
 sys.phase{event_end} = 3; % We're in liquid region
 eventname = sprintf(' - dir %i now in steam phase',event_end);

 end
 if GP.xxl <= 0 || (ie == 8 && mod(sys.cyclenum,GP.xxl) == 0)
 % If recording all events, or at end of a cycle

 out.ie = [out.ie; ie]; %#ok<*AGROW>
 out.te = [out.te; te]; % Save the state information
 out.yev = [out.yev, ye];

 if GP.xxl ~= -1 % If not recording everything
 out.sys(length(out.te)) = sys;
 end

 out.evtdata = [out.evtdata; numpoints,toc(eventdur),sys.dir,ie];
 end
 if ~isFunction
 dotimestamp, fprintf('%12.6f %10.4f %7i %6.2f %2i %s\n', ...

 te, ye(1)/pi, numpoints, toc(eventdur), ...
 ie, eventname);
 end

 eventdur = tic; numpoints = 0; % Reset event timer and points counter

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_run.m 4 of 4

 elseif sys.mode == 2 % Stopped at the end of a slow controller run
 if ~isFunction
 dotimestamp, ...
 fprintf('%12.6f %10.4f %7i %6.2f - - Timestop for control_slow\n', ...

 t0, y0(1)/pi, numpoints, toc(eventdur));
 end
 % Use the queued sens pack from last stop to update sys.psi

 sys.psi{sys.dir} = SW_control_slow(GP,sys,sens_queued,GP.ControlGraphs,true);
 % Now save a sensor pack of the current state to use at the next stop
 sens_queued = SW_sensors(GP,t0,SW_pack(y0),sys);

 % Add new column headings if needed
 if GP.ControlGraphs, dotimestamp(0), docolumns(1); end
 eventdur = tic; numpoints = 0; % Reset event timer and points counter

 end
 catch exception % If we hit an error during the ODE solving ...
 % ... and if that error was the tolerance warning we escalated

 if strcmp(exception.identifier,'MATLAB:ode15s:IntegrationTolNotMet')
 % say so then quit the while loop.
 dotimestamp, fprintf('ERROR - %s\n',exception.identifier);
 GP.simfail = true; % Quit the while loop

 else % If it wasn't the warning we escalated
 rethrow(exception); % Then it did count after all.
 end

 end
 if ~isFunction && GP.WaitBar
 waitbar(toc(simdur)/(GP.runtime*60),h);

 end
end
if ~isFunction && GP.WaitBar

 close(h);
end
dotimestamp, fprintf(' - Simulation ended.\n');

if GP.debug_msg, SW_debug_message(2); end % clear persistents

%% Save data
out.GP = GP;

if ~isFunction % don't save if we're in function mode
 % Specify a filepath *outside* Dropbox (avoid wasting time syncing 100MB files)
 file.name = ['../../../../MATLAB_outputs/',datestr(now,'yyyy-mm-dd_HH.MM'),'.mat'];

 save(file.name,'out');
 file.data = dir(file.name);
 if file.data.bytes > 2e6

 file.size = sprintf('%.3f MB',file.data.bytes/1e6);
 else
 file.size = sprintf('%.0f kB',file.data.bytes/1e3);

 end
 dotimestamp, fprintf(' - Saved structure ''out'' to file %s (%s)\n',...
 file.name,file.size);

end

%% Finish up
SW_postprocess;

dotimestamp, fprintf('%s complete.\n',mfilename);

%% Postpostprocessing

% custom_solver(out,plots,GP,sys); % Call other solvers to look into stability
% lineariser;

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_getparameters.m 1 of 2

function GP = SW_getparameters

% This function returns the default set of parameters for the model

% One-off runs are controlled by changing the variables in SW_run

%% Overall parameters

GP.runtime = 3; % Internal ODEtime to run for in minutes

GP.PlotGraphs = true; % Plot final graphs?

GP.WaitBar = false; % Plot fancy waitbar?

GP.ControlGraphs = false; % Plot control_slow graphs?

GP.xxl = -1; % Sets data recording policy:

% -1 = record all states,

% 0 = record state at every event,

% n = record state every nth half-cycle (one cycle = both ends compress)

GP.debug_msg = false; % Print live debug message?

% Set which entries in y to display:

GP.debug_vals = {'y.T_a{2}','y.hdot','y.h'};

%% GP - Core parameters

GP.g = 9.80665; % Accel due to gravity

GP.p_atm = 101325; % Atmospheric air pressure

GP.p_targ = 70e5; % Target air pressure

GP.T_atm = 293; % Atmospheric air temp in Kelvin

GP.A = 1; % Xsec area of tube

GP.A_tr = 0.003; % Xsec area of tie rod.

GP.A_tend = 0.8*GP.A; % Xsec area of one tube end for heat transfer calcs

GP.L_hubrad = 5; % Distance from rotation centre to tube base

GP.L_T = 130; % Length of tube

GP.L_ph = 5; % Half piston length (symmetric about coordinate)

GP.m_P = 30e3; % Mass of a piston pair and cable

GP.F_mu = 1000; % Maximum Coulomb friction on pistons

GP.v_HB = 0.5; % Velocity half-bandwidth (for friction ramping)

GP.omega = 0.40; % Rotational speed (in rad per sec)

%% GP - Direction and shock absorber anonymous functions

% Direction functions, to get airmass height and velocities

GP.h_a_fun = @(h) { GP.L_T - GP.L_ph - h ; h - GP.L_ph };

GP.h_a_dot_fun = @(hdot) { -hdot ; hdot };

% Generalised piecewise line definition

% (evaluates continuous function with negative gradient and saturation at 0)

GP.spline = @(P, x) 0.5*(P.grad*(P.interc - x) ...

 + sqrt(P.grad^2 * (x - P.interc).^2 + 4*P.rad^2));

% Shock absorbers at end of tube

% Damping function - will return *damping constant*

GP.shox.D.rad = 100; % Radius of curvature of rounding on continuous function

GP.shox.D.interc = 0.01; % h-intercept of linear part of force function

GP.shox.D.grad = 1.5e9; % Rate of change of damping constant (linear part of fcn)

% Shock absorbers at end of tube

% Spring function - will return *force*

GP.shox.S.rad = 100; % Radius of curvature of rounding on continuous function

GP.shox.S.interc = 0.005; % h-intercept of linear part of force function

GP.shox.S.grad = 1.5e9; % Spring stiffness of linear part

% Total shock absorber force

% sign(GP.L_T/2 - h) is +ve at low h and -ve at high, so always towards tube middle

% Both are doubled to reflect 2 pistons

GP.shox.force = @(h,h_dot,h_a) ...

 sign(GP.L_T/2 - h) * 2*GP.spline(GP.shox.S,h_a)... % Spring force

 - h_dot * 2*GP.spline(GP.shox.D,h_a); % Damping force

%% GP - Temperature-related parameters & functions

GP.R_univ = 8.3144621; % Universal gas constant \bar{R}

GP.Mol.air = 28.9645/1e3; % Molar mass of air

GP.Mol.wat = 18.0155/1e3; % Molar mass of water

GP.rho_water = 958; % Density of liquid water (at 373K)

% Get various functions for thermal properties like heat capacity, conductivity, boiling point

GP.Tfun = SW_thermal_funcs(false);

% Func for heat capacity ratio of air/steam mix (normally 1.401 for dry air)

GP.gam = @(m_a, m_wg, m_wf, T) ...

 (GP.Tfun.c_pa(T).*m_a + GP.Tfun.c_pwg(T).*m_wg + GP.Tfun.c_pwf(T).*m_wf) ./ ...

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_getparameters.m 2 of 2

 (GP.Tfun.c_va(T).*m_a + GP.Tfun.c_vwg(T).*m_wg + GP.Tfun.c_vwf(T).*m_wf);

GP.water_add = 0.08; % kg of water to add per kg of air at start of compression

GP.T.T_max = 300; % Assumed maximum temperature (for energy required isothermal part)

GP.T_kick = 500; % Temperature of air injected during kick (in K)

GP.T.k_wall = 35; % Thermal conductivity of wall in W/(K*m)

GP.T.rho_wall = 7800; % Density of wall

GP.T.cp_wall = 0.46e3; % Volumetric heat capacity of wall

GP.T.pe_t = 0.1; % Thickness of end-of-piston for heating calcs (m)

GP.T.m_add = 1e-3; % Small mass added to stabilise T functions at low mass

GP.T.R.t_wall = 0.005; % Thermal thickness of wall for thermal resistance

GP.T.R.t_air = 0.15; % Thickness of air boundary layer for thermal resistance

GP.T.R.func = @(T_bl) GP.T.R.t_wall./GP.T.k_wall + GP.T.R.t_air./GP.Tfun.k_air(T_bl);

% Function to get thermal resistance per m^2 at a given boundary layer temp T_bl

GP.T.npolys = 12; % Number of polynomials used for wall temp

% Get op.Ap, op.Apdd, op.psdinvAp and op.hvals for wall temp modelling

GP.T.op = SW_getorthovectors(GP.T.npolys, [0,GP.L_T], false);

%% GP - Control- & valve-related

GP.dump.k = 1e-3; % Dump valve constant (kg/s per Pa)

GP.dump.spec.rad = 100; % Radius of curvature on rounding func

GP.dump.spec.interc = 1e5; % Set pressure difference where valve starts to dump (Pa)

GP.dump.spec.grad = -1; % Negative gradient of inclined line (1)

GP.dump.fun = @(dp) GP.dump.k * GP.spline(GP.dump.spec,dp); % (input in Pa, output in kg/s)

GP.C.k_LP = 0.1; % LP valve constant in&out (kg/s per Pa)

GP.C.val_sat = 0.0045; % Saturation limit of HP valve constant (kg/s per Pa)

GP.C.val_stiff = 1e7; % 'Spring' force on HP valve constant

GP.C.val_damp = 2*2*sqrt(GP.C.val_stiff); % Damping on HP valve constant = 2*C_crit

GP.C.ptb = 0.1; % Fraction to perturb sys.psi by in slow controller

GP.C.slow_runtime = 0.02; % Time it takes slow controller to run (s)

GP.C.targ = GP.shox.S.interc; % Target h_a for slow controller

% Get energy required per unit height for set constants

GP.C.Ereq_fun = SW_water_energy(GP,false);

% First-level control: Ereq_margin

GP.C.Emarg.gain = 3e0; % Gain to apply to Ereq_margin control

% Target dump airmass height (in m) as a function of cycle number

GP.C.Emarg.h_targ = @(cycle) GP.shox.D.interc * (5*exp(-0.15*cycle) + 1) ;

% Second-level control: Kick end velocity

% GP.C.kick_hdot.decay = 0.99^(1/20); % Factor to discount updates by (reduce speed)

% Preset: angle when to start kick

GP.C.th_kick = 0.8; % Angle when to kick piston after rimwards comp (radians)

GP.C.kick_hdot = 7; % Piston velocity when to disengage kick

% System variables

GP.post = false; % Allow deactivation of debug messages in post

GP.replay = false; % Tells ODE to access stored control signals

GP.simfail = false; % Allows neat error cleanup from while loop

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_ode.m 1 of 3

function [ydot, Tdot, accel_cmp] = SW_ode(GP,sys,t,y)
% [ydot, Tdot] = SW_ode(GP,sys,t,y)
ydot = SW_pack(0*y);
y = SW_pack(y);

h_a = GP.h_a_fun(y.h);
h_a_dot = GP.h_a_dot_fun(y.hdot);

p = SW_pressure(GP,y);

%% POSITION & ACCELERATION

ydot.theta = GP.omega;
ydot.h = y.hdot;
% Pressure accel

accel_cmp(1) = (p{2}-p{1})*(2*GP.A - GP.A_tr)/GP.m_P;
% Gravitational accel
accel_cmp(2) = - GP.g*sin(y.theta);

% Centrifugal accel
accel_cmp(3) = (y.h-GP.L_T/2)*(GP.omega^2);
% Friction accel
fric = -y.hdot*GP.F_mu/GP.v_HB;

fric(fric > +GP.F_mu) = +GP.F_mu;
fric(fric < -GP.F_mu) = -GP.F_mu;
accel_cmp(4) = fric/GP.m_P;

% Shock absorber accel
if ~sys.sim && sys.dir ~= 3
 % Only if we're not inside a control_slow simulation and not in freefall

 accel_cmp(5) = GP.shox.force(y.h,y.hdot,h_a{sys.dir}) / GP.m_P;
end
% Total accel

accel_cmp(6) = sum(accel_cmp);
ydot.hdot = accel_cmp(6);

%% VALVES & AIR MASS
% Will need sens package both times
sens = SW_sensors(GP,t,y,sys,sys.sim);
for c1 = 1:2 % Once for each direction

 m_dot = zeros(3,1); % Initialise
 % Find out k_ref
 k_ref = SW_control_fast(GP,sys,c1,sens); % Note c1 is passed into control_fast as direction

 if sys.sim % If we're running in a slow-controller simulation
 k_exh = k_ref; % Assume the controller gets what it wants
 else % Apply k_ref target to simple valve ode

 ydot.k_e{c1} = y.k_e_dot{c1}; % Mass-spring-damper analogy
 ydot.k_e_dot{c1} = GP.C.val_stiff * (k_ref - y.k_e{c1}) ...
 - GP.C.val_damp * y.k_e_dot{c1};

 k_exh = y.k_e{c1}; % Otherwise use the actual value
 k_exh(k_exh<0) = 0; % Use 0 if negative
 end

 % Get total HP mass flow rate
 m_dot(1) = k_exh * (GP.p_targ - p{c1});
 if sys.dir == c1 && sys.mode == 3
 % If dumping in this direction, also have dump valve open

 m_dot(2) = - GP.dump.fun(p{c1} - GP.p_atm);
 end
 if sys.dir ~= c1 || sys.mode == 0

 % If not compressing this way, or in freefall, then allow free movement of air through LP
 % valve
 m_dot(3) = GP.C.k_LP * (GP.p_atm - p{c1});

 end
 % Find total outwards MFR, i.e. total of negative components only
 m_dot_out = sum(m_dot(m_dot<0));

 % Spread that around the air / liquid water / steam using a weighted average
 m_total = y.m_a{c1} + y.m_wf{c1} + y.m_wg{c1};
 ydot.m_a{c1} = m_dot_out * y.m_a{c1}/m_total;
 ydot.m_wf{c1} = m_dot_out * y.m_wf{c1}/m_total;

 ydot.m_wg{c1} = m_dot_out * y.m_wg{c1}/m_total;
 % Now add total positive MFR to air component only (intake is dry).
 ydot.m_a{c1} = ydot.m_a{c1} + sum(m_dot(m_dot>0));

 % Finally, m_out only tracks HP valve flow (not dump or LP):

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_ode.m 2 of 3

 ydot.m_out.net = ydot.m_out.net ... % Start with current value
 - max(m_dot(1),0)... % add m_dot(1) if it's positive
 - min(m_dot(1),0)*y.m_a{c1}/m_total; % Scale m_dot(1) by air fraction if not
 if ydot.m_out.net > 0 % If positive exhaust

 ydot.m_out.exh = ydot.m_out.net; % Include in exhausted air
 end % (otherwise, ydot.m_out.exh will default to 0)
end

%% AIRMASS TEMPERATURES
% Initialise Tdot, vector to collect all components of airmass Tdot

Tdot = zeros(5,2);
% >> Do ideal-gas-law based Tdot component
for c1 = 1:2 % Once for each end

 gamma = GP.gam(y.m_a{c1},y.m_wg{c1},y.m_wf{c1},y.T_a{c1});
 Tdot(1,c1) = y.T_a{c1} * (gamma - 1) * ...
 (ydot.m_a{c1}/(y.m_a{c1}+GP.T.m_add) - h_a_dot{c1} ./ h_a{c1});

end
if ~sys.sim % If not in a simulation...
 % >> Wall temperatures
 % Calculate current cylinder temperature profile

 h_index = find(GP.T.op.xvals>y.h,1); % Index of first element of hvals above piston
 T_A = 0*GP.T.op.xvals;
 T_A(h_index:end) = y.T_a{1}; % Rimwards temps

 T_A(1:h_index-1) = y.T_a{2}; % Hubwards temps
 T_ext = GP.T_atm * ones(length(GP.T.op.xvals),1);
 % Calculate wall temperature profiles

 T_w = GP.T.op.Ap * y.opthets;
 d2Twdh2 = GP.T.op.Apdd * y.opthets;
 % Get thermal resistance of boundary layer based on wall temps

 Rth_wall = GP.T.R.func(T_w);
 % Calculate heat transfer on inner and outer surfaces
 Q_insurf = (T_A - T_w) ./ Rth_wall; % Positive *into* wall

 Q_outsurf = (T_ext - T_w) ./ Rth_wall; % Positive *into* wall
 % For wall, combine Tdot_surf with along-wall conduction and get thdot
 Twdot = (-GP.T.k_wall * d2Twdh2 + Q_insurf + Q_outsurf)/(GP.T.rho_wall * GP.T.cp_wall);
 ydot.opthets = GP.T.op.psdinvAp * Twdot;

 % >> Air conduction Tdot components
 % For air, integrate inner surf trans on each side (indexing with piston interval
 % ignored)

 TAdot_int = -Q_insurf .* GP.T.op.xdiffs;
 TAdot_surf(1) = sum(TAdot_int(h_index:end)); % Rimwards
 TAdot_surf(2) = sum(TAdot_int(1:h_index-1)); % Hubwards

 for c1 = 1:2 % Loop for each end
 % Find air thermal inertia based on mass and c_v function
 air_thermal_inertia = (y.m_a{c1} + GP.T.m_add) * GP.Tfun.c_va(y.T_a{c1})...

 + y.m_wg{c1} * GP.Tfun.c_pwg(y.T_a{c1}); % Includes steam
 % Conduction from wall into air;
 Tdot(2,c1) = TAdot_surf(c1) / air_thermal_inertia;

 % Conduction at relevant end of piston
 Q_piston = GP.A * (y.T_a{c1} - y.T_pe{c1}) ./ GP.T.R.func(y.T_pe{c1}); % Q in W
 % Piston end Tdot
 ydot.T_pe{c1} = Q_piston / (GP.A * GP.T.pe_t * GP.T.rho_wall * GP.T.cp_wall);

 % Air Tdot component from piston
 Tdot(3,c1) = - Q_piston ./ air_thermal_inertia; % -ve since Q was into piston
 % Conduction at relevant end of tube

 Rth_end = GP.T.R.func(y.T_te{c1});
 Q_end_int = GP.A_tend * (y.T_a{c1} - y.T_te{c1}) ./ Rth_end; % from air side (W)
 Q_end_ext = GP.A_tend * (GP.T_kick - y.T_te{c1}) ./ Rth_end; % from exhaust side (W)

 % Tube end Tdot
 ydot.T_te{c1} = (Q_end_int + Q_end_ext) / ...
 (GP.A * GP.T.pe_t * GP.T.rho_wall * GP.T.cp_wall);

 % Air Tdot component from tube end
 Tdot(4,c1) = - Q_end_int ./ air_thermal_inertia;
 % >> Air mixing Tdot component
 if ydot.m_a{c1} > 0 % If air flowing in, then also mix temperatures

 if sys.mode == 4 % If kicking, base it on GP.T_kick
 mixingdT = GP.T_kick - y.T_a{c1};
 else % If in freefall, base it on GP.T_atm

 mixingdT = GP.T_atm - y.T_a{c1};

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_ode.m 3 of 3

 end % Now add in mix based on ratio of mass to mfr
 Tdot(5,c1) = mixingdT * ydot.m_a{c1} / (y.m_a{c1}+GP.T.m_add);
 end
 end

end

for c1 = 1:2

 % >> Sum all components so far for ydot.T_a
 ydot.T_a{c1} = sum(Tdot(:,c1));
 %% Phase transition

 if sys.phase{c1} == 2 % If currently changing phase ...
 % Components of complicated pdot, Tdot_sat and m_wg algebra tomfoolery.
 x_1 = (y.m_a{c1}/GP.Mol.air + y.m_wg{c1}/GP.Mol.wat)...

 * GP.R_univ / (GP.A*h_a{c1});
 x_2 = ((ydot.m_a{c1}/GP.Mol.air) * (GP.R_univ / GP.A) - x_1*h_a_dot{c1})...
 * y.T_a{c1} / h_a{c1};

 x_3 = GP.R_univ*y.T_a{c1} / (GP.Mol.wat*GP.A*h_a{c1});
 x_4 = GP.Tfun.dT_sat(p{c1});
 x_5 = (GP.Tfun.c_pa(y.T_a{c1}).*y.m_a{c1} ...
 + GP.Tfun.c_pwg(y.T_a{c1}).*y.m_wg{c1} ...

 + GP.Tfun.c_pwf(y.T_a{c1}).*y.m_wf{c1}) ...
 / GP.Tfun.L_water(p{c1});
 % Formula for m_wg

 ydot.m_wg{c1} = (ydot.T_a{c1}*x_5+ydot.m_wg{c1}-x_2*x_4*x_5/(1-x_1*x_4))...
 / (1 + x_3*x_4*x_5/(1-x_1*x_4));
 % Formula for Tdot_sat

 ydot.T_a{c1} = x_4*(x_2 + x_3*ydot.m_wg{c1})/(1-x_1*x_4);
 % Symmetry
 ydot.m_wf{c1} = - ydot.m_wg{c1};

 end
end

%% WORK DONE
% Work done against pressure
ydot.wd_p = (2*GP.A-GP.A_tr)*(p{1} - p{2})*y.hdot;
% Work done against gravity

total_grav_torque = -cos(y.theta)*(GP.m_P/2)*GP.g*(2*y.h - GP.L_T);
% Negative to get work done vs gravity torque
ydot.wd_g = -total_grav_torque*GP.omega;

%% Finalise
if ~GP.post && GP.debug_msg

 SW_debug_message(false, GP, t, y, Tdot, gamma)
end
ydot = SW_pack(ydot);

end

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_pressure.m 1 of 1

function p = SW_pressure(GP,ys)

% SW_pressure takes a structure ys as its input then outputs a cell array.

% If the structure contains vectors of states, then the cell array contains vectors

% of pressures at the corresponding states; if the structure contains a single state,

% the cell array will merely contain single variables.

% Based on gas law (not relative to T_atm) with molar calculation for air and steam.

% Includes adjustment for volume taken up by liquid water.

p = cell(2,1);

h_a = GP.h_a_fun(ys.h);

for c1 = 1:2

 p{c1} = GP.R_univ * (ys.m_a{c1}/GP.Mol.air + ys.m_wg{c1}/GP.Mol.wat)...

 .*ys.T_a{c1}./(GP.A*h_a{c1} - ys.m_wf{c1}/GP.rho_water);

end

end

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_control_fast.m 1 of 1

function k_targ = SW_control_fast(GP,sys,dir,sens)

if sys.mode == 2 && sys.dir == dir % If exhausting in this dir, use trajectory

 h_a = GP.h_a_fun(sens.y.h); % Correct for direction and half piston height

 k_targ = sys.psi{sys.dir} * h_a{sys.dir};

 % Saturation:

 k_targ(k_targ<0) = 0; % Use 0 if negative

 k_targ(k_targ>GP.C.val_sat) = GP.C.val_sat;% Use GP.C.val_sat if over GP.C.val_sat

elseif sys.mode == 5 && sys.dir == dir % If kicking in this dir, use max

 k_targ = GP.C.val_sat;

else % If not kicking or exhausting, keep exhaust valve closed!

 k_targ = 0;

end

end

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_control_slow.m 1 of 3

function psi_out = SW_control_slow(GP,sys,sens,ControlGraphs,FastForward)

% sys = SW_control_slow(GP,sys,sens,ControlGraphs,FastForward)

% Runs five simulations in a quincunx pattern, starting at the current model state,

% and updates the values for sys.phi(1:2). Inputs include sens, potentially-inaccurate

% 'sensor data package' containing versions of t, y and p.

if GP.ControlGraphs, dotimestamp, fprintf('Running %s ...\n',mfilename); end

% if true, psi_out = sys.psi{sys.dir}; return; end

%% Extract sens

t0 = sens.t;

y0 = SW_pack(sens.y); % Make initial y0 vector from input sensor data state

%% Run sim for duration of slow controller to "fast-forward" it to application point

if FastForward

 % Run sim from now until [GP.C.slow_runtime] seconds in the future

 sol = ode15s(@(t,y)SW_ode(GP,sys,t,y),[t0,t0+GP.C.slow_runtime], y0);

 % Set t0 and y0 to the state at the end of that sim

 t0 = sol.x(end);

 y0 = sol.y(:,end);

 if ControlGraphs

 dotimestamp, fprintf(' - Completed fastforward, initialising simulations ...\n');

 end

end

%% Initialise perturbation array

% Build array of perturbed psi values

psi.arr = sys.psi{sys.dir} * (1 + GP.C.ptb*[0,-1,+1]);

% Initialise the array to hold the values of h_end

h_end = 0*psi.arr;

plots.name = {'baseline';'psi -';'psi +'};

if ControlGraphs

 % Create cell arrays for plotting of graphs

 plots.col = {'k';'r';'b'};

 plots.line = {'-';'-';'-'};

 plots.var = {'h',...

 sprintf('m_a{%i}',sys.dir),...

 sprintf('k_e{%i}',sys.dir)};

 plots.var_num = length(plots.var);

 for c1 = 1:plots.var_num+1

 figure(c1);

 end

end

tmp.sys = sys; % Create a temporary sys variable to use in the simulation

tmp.sys.sim = true; % So that the ODE knows it's in a simulation

%% Solve ODE 3 times

% dotimestamp, fprintf(' - Running quincunx ...\n');

for c1 = 1:3

 tmp.sys.psi{sys.dir} = psi.arr(c1); % Get trial value of psi

 simtime = tic;

 % Run sim using loop values of sys, stopping when piston stops

 sol = ode15s(@(t,y)SW_ode(GP,tmp.sys,t,y),[t0,t0+1], y0, ...

 odeset('Events',@(t,y)SW_slow_events(GP,y),'Refine',1));

 % Pack up y and y-event data

 sol.yes = SW_pack(sol.ye);

 % Save result value

 h_a = GP.h_a_fun(sol.yes.h);

 h_end(c1) = h_a{sys.dir};

 if ControlGraphs

 dotimestamp, fprintf(' - Completed %s sim in %gs; h_end = %g for psi = %g\n',...

 plots.name{c1},toc(simtime),h_end(c1),tmp.sys.psi{sys.dir});

 sol.ys = SW_pack(sol.y);

 % Plot the trajectories for each of the variables in plots.var

 for c2 = 1:plots.var_num

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_control_slow.m 2 of 3

 figure(c2); hold on; % Switch to appropriate figure

 plotdata = eval(['sol.ys.',plots.var{c2}]);

 plot3(sol.x,t0+0*sol.x,plotdata,...

 [plots.col{c1},plots.line{c2}],...

 'DisplayName',plots.name{c1});

 end

 end

% if c1==1 && h_end(c1)<GP.C.targ % If baseline sim is good enough

% if ControlGraphs % Say we're done

% dotimestamp, fprintf(' - Baseline h_end < GP.C.targ, short-circuiting.\n');

% end

% psi_out = sys.psi{sys.dir}; % Use current value

% return; % Quit.

% end

end

if ControlGraphs

 plots.var{plots.var_num+1} = 'h';

 for c1 = 1:(plots.var_num+1)

 figure(c1); hold on;

 set(gcf,'Name',plots.var{c1});

 xlabel('Simulation time (s)');

 ylabel('Timestamp (s)');

 zlabel(strrep(plots.var{c1},'_','_'));

 title(strrep(sprintf('%s - ys.%s',mfilename,plots.var{c1}),'_','_'));

 grid on; legend('show');

 end

 % On the last plot:

 plot3(psi.arr([2,1,3]),t0+0*psi.arr,h_end([2,1,3]),'k+-'); % Plot quincunx

 legend('hide'); xlabel('\psi value');

end

%% Do Newton-Raphson and update sys

% Gradient

grad = (h_end(3)-h_end(2)) / (psi.arr(3) - psi.arr(2));

% Multiply grad inverse by des. change in outputs to get req. change in psi

psi_out = sys.psi{sys.dir} + (GP.C.targ - h_end(1)) /grad ;

if ControlGraphs

 %% Add answer (assumed and actual) to plots

 figure(1+plots.var_num); hold on; % Go to h plot

 % Get actual h of answer

 tmp.sys.psi{sys.dir} = psi_out;

 sol = ode15s(@(t,y)SW_ode(GP,tmp.sys,t,y),[t0,t0+1], y0, ...

 odeset('Events',@(t,y)SW_slow_events(GP,y),'Refine',1));

 sol.yes = SW_pack(sol.ye);

 final_h_a = GP.h_a_fun(sol.yes.h); % Save height value

 % Plot current-assumed-actual

 plot3([sys.psi{sys.dir},psi_out,psi_out],[t0,t0,t0],[h_end(1),GP.C.targ,final_h_a{sys.dir}],'b-o');

 %% Output answer to window

 dotimestamp, fprintf(...

 ' - Altered k_e multiplier @ t = %gs from %g to %g\n',...

 t0,sys.psi{sys.dir},psi_out);

 dotimestamp, fprintf(' - %s complete.\n',mfilename);

end

end

function [value,isterminal,direction] = SW_slow_events(GP,y)

% [value,isterminal,direction] = SW_slow_events(y)

% Subfunction to tell control_slow's sims to stop when the piston does

y = SW_pack(y);

% Stop if piston stops

value(1) = y.hdot;

% Stop if piston hits end

h_a = GP.h_a_fun(y.h);

value(2) = h_a{1} * h_a{2};

% Always stop & don't care about direction

isterminal(1:2) = 1; direction(1:2) = 0;

end

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_control_slow.m 3 of 3

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_events.m 1 of 1

function [value,isterminal,direction] = SW_events(GP,sys,t,y)

y = SW_pack(y);

p = SW_pressure(GP,y);

% Set default values of output variables

value= ones(14,1); % Never trigger

isterminal = value; % Always stop when triggered

direction = 0*value; % Never care about direction

switch sys.mode % Direction-independant mode selector

 case 0 % Freefall

 sens = SW_sensors(GP,t,y,sys);

 if sens.y.hdot > 0, lookdir = 1; % If rimwards...

 else lookdir = 2; end % If hubwards ...

 E = SW_control_energy(GP,lookdir,sens);

 result = E(5) - E(1)*(1+sys.C.Emarg);

 if y.hdot > 0

 value(1) = result;

 elseif y.hdot < 0

 value(2) = result;

 end

 case 1 % Compressing

 value(3) = p{sys.dir} - GP.p_targ;

 case 2 % Exhausting

 value(4) = y.hdot;

 case 3 % Dumping, awaiting piston stop

 value(5) = sin(y.theta +0.0001 - GP.C.th_kick);%y.hdot; %p{sys.dir} - GP.p_atm;

 case 4 % Resting, awaiting angle

 value(6) = sin(y.theta - GP.C.th_kick);

 case 5 % Kick engaged

 value(7) = abs(y.hdot) - GP.C.kick_hdot;

 case 6 % Expanding after kick

 value(8) = p{sys.dir} - GP.p_atm;

end

if GP.water_add > 0

 for c1 = 1:2 % For each direction

 if sys.phase{c1} == 2 % If currently boiling

 event_end = c1 + [10,12]; % Set both events [11,13] or [12,14] depending on end

 value(event_end(1)) = y.m_wg{c1}; % Lower-numbered event if out of steam

 value(event_end(2)) = y.m_wf{c1}; % Higher-numbered event if out of water

 direction(event_end) = -1; % Only interested in downwards-pointing events

 else % If not currently boiling

 event_end = 8+c1; % Then set event 7+c1

 % Watch for hitting boiling point

 value(event_end) = y.T_a{c1} - GP.Tfun.T_sat(p{c1});

 if sys.phase{c1} == 3 % If we're (nominally) in steam region

 direction(event_end) = -1; % Only interested in downwards-trending crossings

 else % If we're (nominally) in liquid region

 direction(event_end) = +1; % Only interested in upwards-pointing crossings

 end

 end

 end

end

value = real(value);

end

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_control_energy.m 1 of 2

function [E,th_E] = SW_control_energy(GP,dir,sens)

% [E,err] = SW_control_energy(GP,sys,sens) calculates the potential and required

% energies based on the current state and pressure, which are passed in in the 'sensor

% data package' structure sens.

%

% It will change which direction it's considering based on

% internal switches, so inputs don't need to be filtered.

%

% Outputs are:

% E Vector of energies:

% E(1) Energy required

% E(2) Kinetic energy

% E(3) Centrifugal PE

% E(4) Gravitational PE

% E(5) Total PE

% th_E Predicted angle when piston reaches end, for post

%% Switch direction depending on direction of interest

if dir == 1 % If rimwards...

 th_0 = sens.y.theta + pi;

else

 th_0 = sens.y.theta;

end

% Get airmass height and piston velocity

h_a = GP.h_a_fun(sens.y.h);

h_0 = h_a{dir};

h_a_dot = GP.h_a_dot_fun(sens.y.hdot);

hdot_0 = h_a_dot{dir};

% Get appropriate pressure and air temperature

p_0 = sens.p{dir};

T_a0 = sens.y.T_a{dir};

m_a0 = sens.y.m_a{dir};

E = zeros(5,1); th_E = 0;

%% Energy required

E(1) = 2 * GP.C.Ereq_fun(h_0); % 2* because double-ended

%% Kinetic & centrifugal potential energies

E(2) = 0.5*GP.m_P*(hdot_0^2);

E(3) = 0.5*GP.m_P*(GP.omega^2) * h_0 * (GP.L_T - 2*GP.L_ph - h_0);

%% Gravitational potential energy

if sin(th_0) ~= 0 % Prevent NaN errors from th_E = -Inf etc.

 % Predict the final angle of the tube

 th_E = th_0 + GP.omega * (...

 hdot_0 + sqrt((hdot_0^2)+2*GP.g*sin(th_0)*h_0))...

 / (GP.g*sin(th_0));

 % Is speed more than 3* required?

 % Cap the velocity to prevent it assuming it overshoots in the GPE calc

 limit = - 3*h_0*GP.omega/(th_E-th_0);

 hdot_0(hdot_0 > limit) = limit;

 % Calculate GPE

 E(4) = (GP.m_P*GP.g*12/((th_E-th_0)^3))...

 *((th_E-th_0)*hdot_0/(2*GP.omega)+h_0)...

 *(cos(th_0)-(th_E-th_0)*sin(th_E)-cos(th_E))...

 + ...

 (GP.m_P*GP.g*6/((th_E-th_0)^2))...

 (-h_0-2(th_E-th_0)*hdot_0/(3*GP.omega))...

 *(sin(th_0)-sin(th_E))...

 - ...

 GP.m_P*GP.g*hdot_0*cos(th_0)/GP.omega;

end

%% Total potential energy

E(5) = sum(E(2:4));

E = real(E);

if dir == 1

 th_E = th_E - pi; % Correct th_E for export

end

end

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_control_energy.m 2 of 2

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_postprocess.m 1 of 2

dotimestamp, fprintf('Running %s ...\n',mfilename);
%% xxl switching
if GP.xxl ~= -1; % if we only recorded states at events, use that as the dataset
 out.t = out.te;

 out.yv = out.yev;
end
out.yv = real(out.yv);

out.ys = SW_pack(out.yv);
out.yes = SW_pack(out.yev);

%% Initialising
dotimestamp, fprintf(' - Stepping through output data ...\n');
clear pp;

if ~isFunction || GP.PlotGraphs
 for c1 = 1:2
 pp.E{c1} = zeros(5,length(out.t));

 pp.th_E{c1} = 0*out.t;
 pp.k_targ{c1} = 0*out.t;
 end
 pp.yvdot = 0*out.yv;

 pp.Tdot = zeros(5,2,length(out.t));
 pp.accel_cmp = zeros(6,length(out.t));
 pp.sysvec.dir = 0*out.t;

 pp.sysvec.mode = 0*out.t;
 pp.sysvec.psi{1} = 0*out.t;
 pp.sysvec.psi{2} = 0*out.t;

 pp.sysvec.C.Emarg = 0*out.t;
 pp.sysvec.C.kick_hdot = 0*out.t;
 pp.sysvec.cyclenum = 0*out.t;

 pp.sysvec.phase{1} = 0*out.t;
 pp.sysvec.phase{2} = 0*out.t;

 GP.post = true; % just in case anything needs to know we're in post

 %% Step through for non-vectorised values
 pp.p = SW_pressure(GP,out.ys); % get all pressures at once

 if GP.WaitBar, h = waitbar(0,'Stepping through ys ...'); end
 for c1 = 1:length(out.t)
 sys = out.sys(c1); % look up the 'current' value of sys

 pp.sysvec.dir(c1) = sys.dir; % de-vectorise out.sys.dir, .mode, .psi, .phase and .Ereq
 pp.sysvec.mode(c1) = sys.mode;
 pp.sysvec.psi{1}(c1) = sys.psi{1};

 pp.sysvec.psi{2}(c1) = sys.psi{2};
 pp.sysvec.phase{1}(c1) = sys.phase{1};
 pp.sysvec.phase{2}(c1) = sys.phase{2};

 pp.sysvec.C.Emarg(c1) = sys.C.Emarg;
 pp.sysvec.cyclenum(c1) = sys.cyclenum;
 sens = SW_sensors(GP, out.t(c1), SW_pack(out.yv(:,c1)), sys); % pass through sensors

 for c2 = 1:2 % get e, th_e and k_targ for both ends
 [pp.E{c2}(:,c1),pp.th_E{c2}(c1)]... % get energies and th_e
 = SW_control_energy(GP,c2,sens);
 pp.k_targ{c2}(c1) = SW_control_fast(GP,sys,c2,sens);

 end % get rates for all the state variables
 [pp.yvdot(:,c1),pp.Tdot(:,:,c1),pp.accel_cmp(:,c1)]...
 = SW_ode(GP,sys,out.t(c1),out.yv(:,c1));

 if GP.WaitBar, waitbar(c1/length(out.t),h); end
 end
 if GP.WaitBar, close(h); end

 pp.ysdot = SW_pack(pp.yvdot);

 %% Vectorised processes

 dotimestamp, fprintf(' - Running vectorised postprocesses ...\n');
 h_a = GP.h_a_fun(out.ys.h);
 for c1 = 1:2
 pp.th_E{c1} = real(pp.th_E{c1}); % reify th_E

 % energy surplus
 pp.dE{c1} = pp.E{c1}(5,:) - pp.E{c1}(1,:);
 % valve area

 pp.valve_area{c1} = -pp.ysdot.m_a{c1} ./ ...

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_postprocess.m 2 of 2

 sqrt(2.*(pp.p{c1}-GP.p_targ).*out.ys.m_a{c1}./h_a{c1});
 pp.valve_area{c1} = real(pp.valve_area{c1});
 % specific volume & gamma values
 pp.spec_vol{c1} = h_a{c1}*GP.A ./ out.ys.m_a{c1};

 pp.gam.tv{c1} = 1 + log(out.ys.T_a{c1}./GP.T_atm) ./ ...
 log((GP.T_atm*(GP.R_univ/GP.Mol.air)/GP.p_atm)./pp.spec_vol{c1});
 pp.gam.tp{c1} = (1 - log(out.ys.T_a{c1}./GP.T_atm) ./ ...

 log(pp.p{c1}./GP.p_atm)).^-1;
 pp.gam.pv{c1} = log(pp.p{c1}./GP.p_atm) ./ ...
 log((GP.T_atm*(GP.R_univ/GP.Mol.air)/GP.p_atm)./pp.spec_vol{c1});

 end
 % Rotor-affecting variables: coriolis forces, piston weight forces...
 pp.piston{1}.rad = out.ys.h + GP.L_hubrad; % Distance from hub to alpha piston CoG

 pp.piston{2}.rad = GP.L_T + GP.L_hubrad - out.ys.h; % Distance from hub to beta piston CoG

 pp.piston{1}.sign = 1; pp.piston{2}.sign = -1; % Reflects turnwise change for beta piston

 pp.rotor.torq.cori = 0; % Initialise cumulatives
 pp.rotor.torq.grav = 0;
 pp.rotor.torq.net = 0;
 for c1 = 1:2

 % Coriolis force
 pp.piston{c1}.corio = -2*(GP.m_P/2)*GP.omega.*out.ys.hdot * pp.piston{c1}.sign;
 % Torque due to coriolis force

 pp.piston{c1}.torq.cori = pp.piston{c1}.corio .* pp.piston{c1}.rad;
 pp.rotor.torq.cori = pp.rotor.torq.cori + pp.piston{c1}.torq.cori; % Cumulative
 % Torque due to gravity

 pp.piston{c1}.torq.grav = -cos(out.ys.theta).*(GP.m_P/2)*GP.g.*pp.piston{c1}.rad...
 * pp.piston{c1}.sign;
 pp.rotor.torq.grav = pp.rotor.torq.grav + pp.piston{c1}.torq.grav; % Cumulative

 % Net torque
 pp.piston{c1}.torq.net = pp.piston{c1}.torq.cori + pp.piston{c1}.torq.grav;
 pp.rotor.torq.net = pp.rotor.torq.net + pp.piston{c1}.torq.net; % Cumulative

 end
 % Rotational inertia due to pistons
 pp.rotor.inertia = (GP.m_P/2) * (pp.piston{1}.rad.^2 + pp.piston{2}.rad.^2);
end

%% One-off calculations
if out.t(end)>150 % If we have more than 150s of data

 % Only base the linefits on the last 150s of data
 pp.power.index = find(out.t<out.t(end)-150,1,'last');
else % Otherwise use all of it

 pp.power.index = 1;
end
% Work done vs pressure

pp.power.wd_p = polyfit(out.t(pp.power.index:end),out.ys.wd_p(pp.power.index:end)',1); % linear
pp.power.wd_p = pp.power.wd_p(1); % only want first coefficient
% Work done vs gravity

pp.power.wd_g = polyfit(out.t(pp.power.index:end),out.ys.wd_g(pp.power.index:end)',1); % linear
pp.power.wd_g = pp.power.wd_g(1); % only want first coefficient
% Air exhausted
pp.power.m.net = polyfit(out.t(pp.power.index:end),out.ys.m_out.net(pp.power.index:end)',1);

pp.power.m.net = pp.power.m.net(1);
pp.power.m.exh = polyfit(out.t(pp.power.index:end),out.ys.m_out.exh(pp.power.index:end)',1);
pp.power.m.exh = pp.power.m.exh(1);

%% Finished - pass to plotgraphs if needed
dotimestamp, fprintf(' - %s complete.\n',mfilename);

if isFunction
 out.pp = pp; % Store that
end

if GP.PlotGraphs
 SW_plotgraphs;
end

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_plotgraphs.m 1 of 9

dotimestamp, fprintf('Running %s ...\n',mfilename);
%% Preparation
clear plots;
if ~exist('file','var') || ~isstruct(file) || ~isfield(file,'name')

 % If there's no filename for this run
 file.name = '[not saved]';
end

set(0,'DefaultFigureWindowStyle','docked');
set(0,'DefaultFigureColor','w');
set(0,'defaultAxesXGrid','on');

set(0,'defaultAxesYGrid','on');
set(0,'defaultAxesZGrid','on');

%% Create common surtitle for all plots
% variables to include
plots.NoTitles = false; % Set to true to exclude titles

if plots.NoTitles
 plots.autotitle = @(str) []; % Never add a title
else
 % Variables to include

 plots.subtitlevars = {'GP.omega','GP.C.th_kick','GP.C.kick_hdot','file.name'};
 % Build subtitle accordingly
 plots.subtitle = [];

 for c1 = 1:length(plots.subtitlevars)
 if ischar(eval(plots.subtitlevars{c1}))
 plots.subtitletype = '%s';

 else
 plots.subtitletype = '%g';
 end

 plots.subtitle = sprintf('%s%s = %s, ',...
 plots.subtitle,plots.subtitlevars{c1},...
 sprintf(plots.subtitletype,eval(plots.subtitlevars{c1})));

 end
 plots.subtitle = [plots.subtitle(1:end-3),10]; % delete last comma and add a newline
 % Create anonymous function including underscore fixer
 plots.autotitle = @(str) title(strrep([plots.subtitle, str],'_','_'));

 % Alternate fancy title for thesis - no actual title
 plots.autotitle = @(str) title(str);

end
plots.floatstr = @(loc) SW_cornertext(...
 ['$\dot{\theta} = ',sprintf('%g',GP.omega),'$ rad/s',10,...

 '$\dot{h}_\mathrm{kick} = ',sprintf('%g',GP.C.kick_hdot),'$ m/s',10,...
 '$\theta_\mathrm{kick} = ',sprintf('%g',GP.C.th_kick),'$ rad'],...
 loc, true);

%% Set common x-axis
plots.axes = [];

if true % true = plots use time as dependant variable, false = plots use angle
 plots.xvar = out.t;%-out.te(6); %#ok<*UNRCH>
 plots.xlab = 'Time (s)';% since event 6';

 plots.xlims = [0,Inf];%[out.te(find(out.ie==4,1,'first')),out.te(find(out.ie==6,1,'first'))];
 % plots.xevents = out.te;
else

 plots.xvar = mod(out.ys.theta,pi);
 plots.xlab = '\theta (rad)';
 plots.xlims = [out.ys.theta(1) out.ys.theta(end)];

 % plots.xevents = out.ye.theta;
end

plots.xlimsind{1} = find(plots.xvar>=plots.xlims(1), 1);
plots.xlimsind{2} = find(plots.xvar<=plots.xlims(2), 1,'last');

plots.xsub = plots.xlimsind{1}:plots.xlimsind{2}; % X-points we're going to plot

if length(plots.xsub)>750 % If we're going to try and plot more than 750 points
 plots.xsub = round(linspace(plots.xsub(1),plots.xsub(end),750));
end

plots.opsub = round(linspace(1,length(GP.T.op.xvals),100)); % Only plot 100 points

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_plotgraphs.m 2 of 9

pp.Tsurf = GP.T.op.Ap(plots.opsub,:) * out.ys.opthets(:,plots.xsub); % max 100×750
pp.Tsurf_diff = pp.Tsurf - GP.T.op.Ap(plots.opsub,:) ...
 * repmat(out.ys.opthets(:,1),1,750); % max 100×750

plots.dircol{1} = 'r'; plots.dircol{2} = 'b';

%% Tdot components

% plots.Tdot.sz = size(pp.Tdot,1);
% plots.Tdot.cols = get_colour_spec(plots.Tdot.sz);
% plots.Tdot.names = {'Ideal gas'; 'Wall conduction'; ...

% 'From piston end'; 'From tube end';'From air mixing'};
% for c1 = 1:2
% figure('Name',['Tdot in dir ',num2str(c1)]); hold on;

% for c2 = 1:plots.Tdot.sz
% plots.Tdot.v = pp.Tdot(c2,c1,:);
% plots.Tdot.v = plots.Tdot.v(:);

% plot(plots.xvar,plots.Tdot.v,...
% 'Color',plots.Tdot.cols(c2,:),...
% 'DisplayName',plots.Tdot.names{c2});
% end

% h = plot(plots.xvar,pp.ysdot.T{c1},'k');
% set(h,'DisplayName','Total');
% plots.autotitle(['Tdot output in dir ',num2str(c1),' (1=rimwards)']);

% ylabel('Tdot (K per second)');
% legend('toggle','Location','Best')
% SW_plotgraphs_tweaks;

%
% for c2 = 1:plots.Tdot.sz
% figure('Name',sprintf('dir%i Tdot, %s',c1,plots.Tdot.names{c2})); hold on;

% plots.Tdot.v = pp.Tdot(c2,c1,:);
% plots.Tdot.v = plots.Tdot.v(:);
% plot(plots.xvar,plots.Tdot.v,plots.dircol{c1});

% plots.autotitle(sprintf(...
% '"%s" component of Tdot in the %i direction',plots.Tdot.names{c2},c1));
% ylabel('Tdot (K per second)');
% SW_plotgraphs_tweaks;

% end
% end

%% Position, velocity and forces
figure('Name','Position and velocity'); hold on;
subplot(2,1,1), plot(plots.xvar,out.ys.h,'k'); hold on;

plot(plots.xvar([1,end]),GP.L_ph*[1,1],'k--');
plot(plots.xvar([1,end]),(GP.L_T-GP.L_ph)*[1,1],'k--');
plots.autotitle('Position and velocity'); ylabel('h (m)');

SW_plotgraphs_tweaks;
subplot(2,1,2), plot(plots.xvar,out.ys.hdot,'m');
plots.autotitle('Position and velocity'); ylabel('h-dot (m/s)');

SW_plotgraphs_tweaks;

plots.title = 'Force components';
figure('Name',plots.title); hold on;

plots.force.names = {'Pressure','Gravity','Centrifugal',...
 'Friction','Shock absorber','Net'};
plots.force.cols = get_colour_spec(length(plots.force.names)-1);

plots.force.cols = [plots.force.cols; [0,0,0]]; % Add black for the last
for c1 = 1:length(plots.force.names)
 plot(plots.xvar,pp.accel_cmp(c1,:)*GP.m_P,...

 'Color',plots.force.cols(c1,:),...
 'DisplayName',plots.force.names{c1}); hold on;
end

plots.autotitle(plots.title);
ylabel('Magnitude (N)');
legend('show');
SW_plotgraphs_tweaks;

%% Polar plots
plots.title = 'Cartesian CoM trajectory';

figure('Name',plots.title); hold on;

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_plotgraphs.m 3 of 9

c1 = [linspace(0,pi/2,1e3),linspace(3*pi/2,2*pi,1e3)]';
[plots.pol.rim.x, plots.pol.rim.y] = pol2cart(c1, GP.L_T/2-GP.L_hubrad);
plots.pol.ideal.r = c1*0 + (GP.L_T/2 - GP.L_hubrad);
[plots.pol.ideal.x, plots.pol.ideal.y] = pol2cart(c1,plots.pol.ideal.r);

[plots.pol.x, plots.pol.y] = pol2cart(out.ys.theta(1e4:end),out.ys.h(1e4:end)-GP.L_T/2);
h = plot(0,0,'ko'); % Plot a centre
SW_nolegend(h);

% hLine = plot(plots.pol.rim.x, plots.pol.rim.y,'k');
% set(get(get(hLine,'Annotation'),'LegendInformation'),...
% 'IconDisplayStyle','off'); % Hide that from the legend

plot(plots.pol.ideal.x, plots.pol.ideal.y,'b',...
 'DisplayName','Ideal');
plot(plots.pol.x, plots.pol.y,'k',...

 'DisplayName','Actual');
plots.autotitle(plots.title); axis equal; legend('Location','SouthWest');
set(gca,'XLim',[-1,1]*GP.L_T/2,'YLim',[-1,1]*GP.L_T/2);

xlabel('Horizontal position (m)');
ylabel('Vertical position (m)');
plots.floatstr('TL');

plots.title = 'Polar plot of gravity torque';
figure('Name',plots.title);
% subplot(3,1,1:2);

hold on;
c1 = linspace(0,pi,2e3)'; c1(end) = [];
plots.pol.torq.ideal.r = - cos(c1).*GP.g*GP.m_P.*(GP.L_T/2 - GP.L_hubrad);

% Gravity torque
plots.pol.torq.actual.r = -cos(out.ys.theta).*(out.ys.h-GP.L_T/2)*GP.g*GP.m_P;
[plots.pol.torq.ideal.x, plots.pol.torq.ideal.y] = ...

 pol2cart(c1,plots.pol.torq.ideal.r);
plots.pol.torq.actual.th = mod(out.ys.theta(1e4:end)+pi/2,pi)-pi/2;
[plots.pol.torq.actual.x, plots.pol.torq.actual.y] = ...

 pol2cart(plots.pol.torq.actual.th,plots.pol.torq.actual.r(1e4:end));
h = plot(0,0,'ko'); % Plot a centre
SW_nolegend(h);
plot(plots.pol.torq.ideal.x, plots.pol.torq.ideal.y,'b',...

 'DisplayName','Ideal');
plot(plots.pol.torq.actual.x, plots.pol.torq.actual.y,'k',...
 'DisplayName','Actual');

axis equal; legend show;
set(gca,'XLim',[-20,5]*1e6,'YLim',[-10,10]*1e6);
plots.autotitle(plots.title);

xlabel('Torque (Nm)'); ylabel('Torque (Nm)');
plots.floatstr('BR');

plots.title = 'Gravity torque';
figure('Name',plots.title);
% subplot(3,1,3);

hold on;
% plot(out.ys.theta, interp1q(c1,plots.pol.torq.ideal.r,mod(out.ys.theta,2*pi)'),'b',...
% 'DisplayName','Ideal');
% plot(out.ys.theta, plots.pol.torq.actual.r,'k',...

% 'DisplayName','Actual')
% Mod version - one loop with multiple traces
plot(mod(c1,pi),-abs(plots.pol.torq.ideal.r),'b',...

 'DisplayName','Ideal');
plots.pol.torq.actual.th2 = mod(out.ys.theta(1e4:end),pi);
plots.pol.torq.actual.dth = [diff(plots.pol.torq.actual.th2),1];

plots.pol.torq.actual.th2(plots.pol.torq.actual.dth<0)=NaN;
plot(plots.pol.torq.actual.th2,plots.pol.torq.actual.r(1e4:end),'k',...
 'DisplayName','Actual')

xlabel('Tube angle \theta (rad)'); ylabel('Total gravity torque (Nm)');
legend('location','NorthEast');
set(gca,'XLim',[0,pi]);...
% 'XTick',pi*(-0.5:0.25:1.5),...

% 'XTickLabel',{'-pi/2','-pi/4','0','pi/4','pi/2'});
% plots.autotitle(plots.title);
plots.floatstr('TL');

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_plotgraphs.m 4 of 9

%% Pressure, temperature & density
figure('Name','Air pressures'); hold on;
plot(plots.xvar,GP.p_targ+0*plots.xvar,'k--');
for c1 = 1:2

 plot(plots.xvar,pp.p{c1},plots.dircol{c1});
end
plots.autotitle('Air pressures'); ylabel('Pressure (Pa)');

legend('p_{targ}','dir 1','dir 2');
set(gca,'YScale','log');
SW_plotgraphs_tweaks;

figure('Name','Air temperatures'); hold on;
% plot(plots.xvar,GP.Tfun.T_sat(pp.p{2}),'k--','DisplayName','T_{sat}(p_2)');

for c1 = 1:2
 plot(plots.xvar,out.ys.T_a{c1},plots.dircol{c1},...
 'DisplayName',['dir ',num2str(c1)]);

end
plots.autotitle('Air/steam/water temperatures'); ylabel('Temperature (K)');
legend('show');
SW_plotgraphs_tweaks;

figure('Name','Air densities'); hold on;
for c1 = 1:2

 plot(plots.xvar,pp.spec_vol{c1}.^-1,plots.dircol{c1});
end
legend('dir 1','dir 2');

plots.autotitle('Air densities'); ylabel('Density (kg/m^3)');
SW_plotgraphs_tweaks;

%% Water
figure('Name','Water masses'); hold on;
for c1 = 1:2

 plot(plots.xvar,out.ys.m_wf{c1},['-',plots.dircol{c1}],...
 'DisplayName',sprintf('m_{wf} in dir %i',c1));
 plot(plots.xvar,out.ys.m_wg{c1},['--',plots.dircol{c1}],...
 'DisplayName',sprintf('m_{wg} in dir %i',c1));

end
plots.autotitle('Water masses'); ylabel('Mass of water (kg)');
legend('show');

SW_plotgraphs_tweaks;

%% Air mass, mass flow rate & volumetric flow rate

figure('Name','Air masses'); hold on;
for c1 = 1:2
 plot(plots.xvar,out.ys.m_a{c1},plots.dircol{c1});

end
plot(plots.xvar,out.ys.m_out.net,'m');
legend('dir 1','dir 2','Net exhausted',...

 'Location','NorthWest');
ylabel('m (kg)');
plots.autotitle('Air masses');
if max(out.ys.m_out.net) > 2.5*max(out.ys.m_a{1})

 set(gca,'Ylim',[0, 2.5*max(out.ys.m_a{1})]);
end
SW_plotgraphs_tweaks;

for c1 = 1:2
 figure('Name',sprintf('Air mass & mass flow rate - dir %i',c1)); hold on;

 subplot(2,1,1), plot(plots.xvar,out.ys.m_a{c1},plots.dircol{c1});
 plots.autotitle(sprintf('dir %i air mass',c1));
 ylabel('Air mass (kg)'); SW_plotgraphs_tweaks;

 subplot(2,1,2), plot(plots.xvar,pp.ysdot.m_a{c1},plots.dircol{c1});
 title(sprintf('dir %i air mass flow rate',c1));
 ylabel('Air mass flow rate (kg/s)'); SW_plotgraphs_tweaks;

 figure('Name',sprintf('Air volume & volumetric flow rate - dir %i',c1)); hold on;
 subplot(2,1,1), plot(plots.xvar,out.ys.m_a{c1}.*pp.spec_vol{c1},plots.dircol{c1});
 plots.autotitle(sprintf('dir %i air volume',c1));

 ylabel('Air volume (m^3)'); SW_plotgraphs_tweaks;

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_plotgraphs.m 5 of 9

 subplot(2,1,2), plot(plots.xvar,pp.ysdot.m_a{c1}.*pp.spec_vol{c1},plots.dircol{c1});
 title(sprintf('dir %i air volumetric flow rate',c1));
 ylabel('Air volumetric flow rate (m^3/s)'); SW_plotgraphs_tweaks;
end

%% Theta_E predictions
plots.title = 'thetalock_predictions';

figure('Name',plots.title); hold on;
plots.dircol_rgb = [1,0,0;0,0,1]; % Set up red and blue
plots.dircol_rgb_lite = 1 - (1-plots.dircol_rgb)*0.3; % Make lighter

plots.th_E = cell(2,1);
for c1 = 1:2
 plots.th_E{c1}.theta = [];

 plots.th_E{c1}.th_E = [];
end
ind.stop = find(out.ie==4); % Find all the stopping times

for c1 = 1:length(ind.stop) % For each of those
 % Find the immediately preceeding switch into freefall
 ind.freefall = find(out.ie(1:ind.stop(c1))==7,1,'last');
 if ~isempty(ind.freefall) % If that worked

 ind.t1 = find(out.t==out.te(ind.freefall),1); % Find the index in out.t
 else
 ind.t1 = 1; % Otherwise go from 1

 end
 % Find the stopping entry in out.t
 ind.t2 = find(out.t==out.te(ind.stop(c1)));

 % Find out which direction it was in
 ind.dir = pp.sysvec.dir(ind.t2-1);
 % Build up the vectors

 plots.th_E{ind.dir}.theta = [plots.th_E{ind.dir}.theta;...
 NaN;out.ys.theta(ind.t1:ind.t2)'];
 plots.th_E{ind.dir}.th_E = [plots.th_E{ind.dir}.th_E;...

 NaN;pp.th_E{ind.dir}(ind.t1:ind.t2)];
 % And the error signal
 plots.th_E2(c1).theta = out.ys.theta(ind.t1:ind.t2)'-out.ys.theta(ind.t2);
 plots.th_E2(c1).th_E = pp.th_E{ind.dir}(ind.t1:ind.t2)-pp.th_E{ind.dir}(ind.t2);

end
for c1 = 1:2
 h = plot(out.ys.theta,pp.th_E{c1},... % Plot the whole lines

 'Color',plots.dircol_rgb_lite(c1,:)); hold on; % ... faded
 SW_nolegend(h);
end

plot(...
 [out.yes.theta(out.ie==1),out.yes.theta(out.ie==2)]',...
 [interp1q(out.ys.theta',pp.th_E{1},out.yes.theta(out.ie==1)');...

 interp1q(out.ys.theta',pp.th_E{2},out.yes.theta(out.ie==2)')],'kx',...
 'DisplayName','Compression started'); % Plot the compression started points
plot(out.yes.theta(out.ie==4),out.yes.theta(out.ie==4),'kd',...

 'DisplayName','Piston stopped'); % Plot the piston stopped points
for c1 = 1:2
 plot(plots.th_E{c1}.theta,plots.th_E{c1}.th_E,... % Plot the relevant bits
 'Color',plots.dircol_rgb(c1,:),... % ... not faded

 'DisplayName',sprintf('Direction %i',c1)); hold on;
end
title(plots.title); legend('show','Location','SouthEast'); grid on;

ylabel('Predicted θ_lock value (rad)','interpreter','latex');
xlabel('\theta (rad)');
plots.xlimsgot = get(gca,'Xlim');

set(gca,'Ylim', plots.xlimsgot);

% Alternative method (plotting just error signals)

plots.title = 'thetalock_errors';
figure('Name',plots.title); hold on;
for c1 = 1:length(plots.th_E2)
 plot(plots.th_E2(c1).theta,plots.th_E2(c1).th_E,'k');

end
title(plots.title); title([]);
ylabel('Error in θ_lock prediction (rad)','interpreter','latex');

xlabel('Angle before θ_lock (rad)','interpreter','latex');

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_plotgraphs.m 6 of 9

%% Energies and energy surplus
plots.E.names = {'Energy required','Kinetic PE',...
 'Centrifugal PE','Gravitational PE','Total PE'};

plots.E.style = {'k','b--',...
 'b:','b-.','b-'};
for c1 = 1:2

 plots.title = sprintf('Energies in dir %i',c1);
 figure('Name',plots.title); hold on;
 for c2 = 1:5

 plot(plots.xvar,pp.E{c1}(c2,:),plots.E.style{c2},...
 'DisplayName',plots.E.names{c2});
 end

 % plot(plots.xvar,out.ys.wd,'m',...
 % 'DisplayName','Work done');
 plots.autotitle(plots.title);

 ylim([0,Inf]);
 ylabel('Energy (J)');
 legend('show',...
 'Location','NorthWest')

 % if max(out.ys.wd) > 2.5*max(pp.E(5,:))
 % set(gca,'Ylim',[0, 2.5*max(pp.E(5,:))]);
 % end

 SW_plotgraphs_tweaks;

 plots.title = sprintf('Surplus energy in dir %i',c1);

 figure('Name',plots.title); hold on;
 plot(plots.xvar(pp.sysvec.dir==c1),pp.dE{c1}(pp.sysvec.dir==c1),'k-');
 plots.autotitle(plots.title); ylabel('Energy surplus');

 SW_plotgraphs_tweaks;
end

%% Power and kg-per-s fitted lines
figure('Name','Work done'); hold on;
if out.t(end)>150 % If we have more than 150s of data
 % Only base the linefits on the last 150s of data

 plots.pow.index = find(out.t<out.t(end)-150,1,'last');
else % Otherwise use all of it
 plots.pow.index = 1;

end
% Linear polyfits:
plots.pow.polys.m.net = polyfit(plots.xvar(plots.pow.index:end), ...

 out.ys.m_out.net(plots.pow.index:end)',1); % Net airmass
plots.pow.polys.m.exh = polyfit(plots.xvar(plots.pow.index:end), ...
 out.ys.m_out.exh(plots.pow.index:end)',1); % Exh airmass

plots.pow.polys.wd_p = polyfit(plots.xvar(plots.pow.index:end), ...
 out.ys.wd_p(plots.pow.index:end)',1); % Work done
plots.pow.polys.wd_g = polyfit(plots.xvar(plots.pow.index:end), ...

 out.ys.wd_g(plots.pow.index:end)',1); % Work done

% Work done
hold on;

plot(plots.xvar,out.ys.wd_p,'b','DisplayName','Pressure method');
h = plot(plots.xvar(plots.pow.index:end),polyval(plots.pow.polys.wd_p, ...
 plots.xvar(plots.pow.index:end)),'b--');

SW_nolegend(h);
plot(plots.xvar,out.ys.wd_g,'r','DisplayName','Gravity method');
h = plot(plots.xvar(plots.pow.index:end),polyval(plots.pow.polys.wd_g, ...

 plots.xvar(plots.pow.index:end)),'r--');
SW_nolegend(h);
plots.autotitle(...

 sprintf('Work done with linefits (pressure = %g MW, gravity = %g MW)'...
 ,pp.power.wd_p/1e6,pp.power.wd_g/1e6));
ylabel('Work done (J)'); legend('Location','SouthEast');
SW_plotgraphs_tweaks;

plots.floatstr('TL');

% Air exhausted

figure('Name','Air exhaust rates'); hold on;

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_plotgraphs.m 7 of 9

plot(plots.xvar,out.ys.m_out.net,'b',...
 'DisplayName',sprintf('Net (%g kg/s avg)',pp.power.m.net));
h = plot(plots.xvar(plots.pow.index:end),polyval(plots.pow.polys.m.net, ...
 plots.xvar(plots.pow.index:end)),'b--');

SW_nolegend(h);
plot(plots.xvar,out.ys.m_out.exh,'r',...
 'DisplayName',sprintf('Gross (%g kg/s avg)',pp.power.m.exh));

h = plot(plots.xvar(plots.pow.index:end),polyval(plots.pow.polys.m.exh, ...
 plots.xvar(plots.pow.index:end)),'r--');
SW_nolegend(h);

plots.autotitle(sprintf(...
 'Air exhausted linefits (net rate = %g kg/s, exh rate = %g kg/s, ratio = %g)',...
 pp.power.m.net,pp.power.m.exh, pp.power.m.exh/pp.power.m.net));

ylabel(sprintf('Mass of %g MPa air exhausted (kg)',GP.p_targ/1e6));
legend('show','Location','SouthEast');
SW_plotgraphs_tweaks;

plots.floatstr('TL');

%% Ereq_margin tuning
figure('Name','Ereq_margin tuning'); hold on;

subplot(2,1,1), plot(plots.xvar,pp.sysvec.C.Emarg,'k');
ylabel('Value'); plots.autotitle('Ereq_margin value');
SW_plotgraphs_tweaks;

plots.dump.times = out.te(out.ie==4); % Find all start-of-dump event times
for c1 = 1:length(plots.dump.times)
 index = find(out.t==plots.dump.times(c1));

 plots.dump.xvar(c1) = plots.xvar(index);
 plots.dump.h_a_temp = GP.h_a_fun(out.ys.h(index));
 plots.dump.h_a(c1) = min(plots.dump.h_a_temp{1}, plots.dump.h_a_temp{2});

end
subplot(2,1,2), hold on;
plot(plots.xvar,GP.C.Emarg.h_targ(pp.sysvec.cyclenum),'m','DisplayName','Target height');

plot(plots.dump.xvar,plots.dump.h_a,'k','DisplayName','Actual height');
ylabel('Height of airmass at start of dump (m)'); title('Air mass height');
legend('show','Location','NorthEast'); SW_plotgraphs_tweaks;

%% Valve constants
for c1=1:2
 plots.title = sprintf('dir %i valve constant',c1);

 figure('Name',plots.title);
 subplot(4,1,1),
 plot(plots.xvar,pp.sysvec.psi{c1},'m');

 ylabel('\psi');
 SW_plotgraphs_tweaks;
 plots.autotitle(plots.title);

 subplot(4,1,2:4),
 plot(plots.xvar,pp.k_targ{c1},'k',plots.xvar,out.ys.k_e{c1},plots.dircol{c1});
 legend('k_{ref}','k_{HP}');

 ylabel('HP valve constant (kg/s per Pa)')
 SW_plotgraphs_tweaks;
end

%% Valve area
figure('Name','Valve area'); hold on;
for c1 = 1:2

 plot(plots.xvar,pp.valve_area{c1},plots.dircol{c1});
end
legend('dir 1','dir 2');

plots.autotitle('HP valve xsec area');
ylabel('HP valve area (m^2)');
SW_plotgraphs_tweaks;

%% Gamma values & T versus p
figure('Name','Gamma values')
for c1=1:2

 subplot(3,1,1), hold on, plot(plots.xvar,pp.gam.tv{c1},plots.dircol{c1});
end
title('T & v based gamma');

SW_plotgraphs_tweaks;

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_plotgraphs.m 8 of 9

for c1=1:2
 subplot(3,1,2), hold on, plot(plots.xvar,pp.gam.tp{c1},plots.dircol{c1});
end
title('T & p based gamma');

SW_plotgraphs_tweaks;
for c1=1:2
 subplot(3,1,3), hold on, plot(plots.xvar,pp.gam.pv{c1},plots.dircol{c1});

end
title('p & v based gamma');
SW_plotgraphs_tweaks;

figure('Name','T versus p plots'); hold on;
plots.p_scale = logspace(0.9*log10(GP.p_atm),1.1*log10(GP.p_targ),300)';

plot(plots.p_scale,GP.Tfun.T_sat(plots.p_scale),'k--');
for c1 = 1:2
 plot(pp.p{c1},out.ys.T_a{c1},plots.dircol{c1});

end
set(gca,'XScale','log');
legend({'T_{sat}','dir 1','dir 2'},'Location','NorthWest');
plots.autotitle('T vs p'); ylabel('T (K)'); xlabel('p (Pa)'); grid on;

%% Tube- and piston-end temperatures
figure('Name','Tube-end temperatures'); hold on;

for c1 = 1:2
 plot(plots.xvar,out.ys.T_te{c1}-out.ys.T_te{1}(1),plots.dircol{c1});
end

legend('dir 1','dir 2');
plots.autotitle('Relative tube-end temperatures');
ylabel(sprintf('Temperature difference from %gK starting temp (K)',out.ys.T_te{1}(1)));

SW_plotgraphs_tweaks;

figure('Name','Piston-end temperatures'); hold on;

for c1 = 1:2
 plot(plots.xvar,out.ys.T_pe{c1}-out.ys.T_pe{1}(1),plots.dircol{c1});
end
legend('dir 1','dir 2');

plots.autotitle('Relative piston-end temperatures');
ylabel(sprintf('Temperature difference from %gK starting temp (K)',out.ys.T_pe{1}(1)));
SW_plotgraphs_tweaks;

%% Wall temperatures
dotimestamp, fprintf(' - Plotting temperature figures ...\n');

figure('Name','T_wall diff contours')
[conts,h] = contour3(plots.xvar(plots.xsub),GP.T.op.xvals(plots.opsub),...
 pp.Tsurf_diff); hold on; SW_nolegend(h);

set(h,'LineWidth',2);
h2 = clabel(conts,h,'LabelSpacing',300);
% h2 = clabel(conts,h,'manual');

SW_nolegend(h2);
plot(plots.xvar,out.ys.h,'k','DisplayName','Piston trajectory');
ylabel('Position z (m)','interpreter','latex');
zlabel('Temperature (K)');

plots.autotitle('Contour plot of wall temperatures');
h = colorbar;
ylabel(h,sprintf('Temperature difference from %g K (K)',GP.T_atm));

view([0,90]);
SW_plotgraphs_tweaks;

figure('Name','T_wall diff mesh')
mesh(plots.xvar(plots.xsub),GP.T.op.xvals(plots.opsub),pp.Tsurf_diff);
ylabel('Position along tube (m)');

zlabel(sprintf('Temperature difference from %g K (K)',GP.T_atm));
plots.autotitle('Mesh plot of wall temperature changes');
view(52,23); %shading interp;
SW_plotgraphs_tweaks;

figure('Name','Wall temperature mesh')
mesh(plots.xvar(plots.xsub), GP.T.op.xvals(plots.opsub), pp.Tsurf-GP.T_atm);

view(52,23); %shading interp;

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_plotgraphs.m 9 of 9

set(gca,'ylim',[0,GP.L_T]);
ylabel('Position along tube (m)');
zlabel(sprintf('Temperature difference from ambient of %g K (K)',GP.T_atm));
plots.autotitle('Mesh plot of wall temperatures');

SW_plotgraphs_tweaks;

% for c1 = 1:GP.T.npolys

% figure('Name',sprintf('Theta %i vs time',c1));
% plot(plots.xvar,out.ys.opthets(c1,:),'k');
% plots.autotitle(sprintf('Coefficient of the %i orthogonal polynomial',c1));

% SW_plotgraphs_tweaks;
% end

% figure('Name','Wall temperature meshes')
% subplot(2,1,1), mesh(plots.xvar(plots.xsub), GP.T.op.xvals(plots.opsub), pp.Tsurf);
% view(-110,29);

% ylabel('Position along tube (m)');
% zlabel('Temperature(K)');
% SW_plotgraphs_tweaks;
% subplot(2,1,2), mesh(plots.xvar(plots.xsub), GP.T.op.xvals(plots.opsub), pp.Tsurf-GP.T_atm);

% view(-110,29);
% ylabel('Position along tube (m)');
% zlabel(sprintf('Temperature difference from ambient of %gK (K)',GP.T_atm));

% SW_plotgraphs_tweaks;

%% Ending

linkprop(plots.axes,'Xlim'); % Ensure all plots have the same x-axis limits
set(gca,'Xlim',plots.xlims); % and set those limits to plots.xlims
dotimestamp, fprintf(' - %s complete.\n',mfilename);

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_pack.m 1 of 1

function yout = SW_pack(yin)

% yout = SW_pack(yin)

% if yin is a row vector, SW_pack will return a structure yout which contains fields

% (which may be themselves cell arrays or scalars) for each of the state

% variables in yin.

% if yin is a matrix, SW_pack will return the same structure, but every variable

% will be a vector (and every cell array will contain vectors not

% scalars) representing the columns.

% if yin is a structure, SW_pack will return a matrix yout which contains all the

% fields in yin, sorted into the appropriate order to be transformed back.

if isstruct(yin)

 yout = zeros(yin.vecsize,length(yin.theta));

 yout(1,:) = yin.theta;

 yout(2,:) = yin.h;

 yout(3,:) = yin.hdot;

 yout(4,:) = yin.m_a{1};

 yout(5,:) = yin.m_a{2};

 yout(6,:) = yin.m_wf{1};

 yout(7,:) = yin.m_wf{2};

 yout(8,:) = yin.m_wg{1};

 yout(9,:) = yin.m_wg{2};

 yout(10,:) = yin.m_out.net;

 yout(11,:) = yin.m_out.exh;

 yout(12,:) = yin.T_a{1};

 yout(13,:) = yin.T_a{2};

 yout(14,:) = yin.T_pe{1};

 yout(15,:) = yin.T_pe{2};

 yout(16,:) = yin.T_te{1};

 yout(17,:) = yin.T_te{2};

 yout(18,:) = yin.wd_p;

 yout(19,:) = yin.wd_g;

 yout(20,:) = yin.k_e{1};

 yout(21,:) = yin.k_e{2};

 yout(22,:) = yin.k_e_dot{1};

 yout(23,:) = yin.k_e_dot{2};

 yout(24:end,:) = yin.opthets;

else

 yout.theta = yin(1,:);

 yout.h = yin(2,:);

 yout.hdot = yin(3,:);

 yout.m_a{1} = yin(4,:);

 yout.m_a{2} = yin(5,:);

 yout.m_wf{1} = yin(6,:);

 yout.m_wf{2} = yin(7,:);

 yout.m_wg{1} = yin(8,:);

 yout.m_wg{2} = yin(9,:);

 yout.m_out.net = yin(10,:);

 yout.m_out.exh = yin(11,:);

 yout.T_a{1} = yin(12,:);

 yout.T_a{2} = yin(13,:);

 yout.T_pe{1} = yin(14,:);

 yout.T_pe{2} = yin(15,:);

 yout.T_te{1} = yin(16,:);

 yout.T_te{2} = yin(17,:);

 yout.wd_p = yin(18,:);

 yout.wd_g = yin(19,:);

 yout.k_e{1} = yin(20,:);

 yout.k_e{2} = yin(21,:);

 yout.k_e_dot{1} = yin(22,:);

 yout.k_e_dot{2} = yin(23,:);

 yout.opthets = yin(24:end,:);

 yout.vecsize = size(yin,1);

end

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_sensors.m 1 of 2

function sens = SW_sensors(GP, t, y, sys, perfect)
% sens = SW_sensors(GP, t, y, sys, perfect)
% Accepts an input structure y with all the usual fields (as defined in SW_pack), and
% outputs a structure sens which contains a set of simulated sensor data.

%
% For instance, y.m is not passed through to sens.y.m, since it is not possible
% to measure airmass with a sensor; instead, SW_sensors calls SW_pressure and uses the

% pressure values (along with other components of y) to calculate an approximation to
% the airmass, stored in sens.y.m. Some components are rounded to some finite
% resolution or modified by the addition of noise.

%
% If perfect = true, t, y and p are just passed-through to sens without the addition
% of noise or other alterations. This is for use inside SW_control_fast only. If

% omitted, perfect is assumed to be false.

%% Get pressure and pass everything through by default

p = SW_pressure(GP,y); % This is the real pressure
sens.p = p;

sens.y = y;

sens.t = t;

if nargin == 4 || ~perfect
 %% Wipe fields we aren't allowed to know
 % We need to estimate these later

 for c1 = 1:2
 sens.y.m_a{c1} = NaN;
 sens.y.m_wf{c1} = NaN;

 sens.y.m_wg{c1} = NaN;
 end

 % These don't need to be estimated
 sens.y.m_out.net = 0;
 sens.y.m_out.exh = 0;
 sens.y.wd = 0;

 % Overwrite wall temperature functions with initial conditions
 sens.y.opthets = zeros(GP.T.npolys,1); % Coefficients of orthpolys

 sens.y.opthets(1) = 1.469273985e4; % Projected steady state
 sens.y.opthets(3) = 375.114;
 sens.y.opthets(5) = 214.0543;

 sens.y.opthets(7) = 59.27124;
 sens.y.opthets(9) = -25.13436;
 sens.y.opthets(11) = -46.76907;

 for c1 = 1:2
 % Temperatures of ends of tube, T_te
 sens.y.T_te{c1} = (GP.T_kick+GP.T_atm)/2+3;

 % Temperatures of ends of piston, T_pe
 sens.y.T_pe{c1} = GP.T_atm + 6.2;
 end

 %% Add resolution & noise details

 %% Calculate the air and water masses
 % based on the sens.y and p_sens APPROXIMATIONS
 % (formula from SW_pressure, rearranged)

 h_a = GP.h_a_fun(sens.y.h);
 for c1 = 1:2 % Set freefall conditions for both ends by default
 % Assume no steam and no liquid water

 sens.y.m_wg{c1} = 0;
 sens.y.m_wf{c1} = 0;
 sens.y.m_a{c1} = (sens.p{c1} * GP.A*h_a{c1})...
 ./ (sens.y.T_a{c1} * GP.R_univ/GP.Mol.air);

 end
 if sys.mode == 1 % If compressing ...
 sens.y.m_a = sys.comp_m_a; % use logged airmass instead

 % Get mass of steam from pressure (assume no volume change due to liquid water)

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_sensors.m 2 of 2

 sens.y.m_wg{sys.dir} = GP.Mol.wat*(sens.p{sys.dir}*GP.A*h_a{sys.dir}...
 ./(sens.y.T_a{sys.dir}*GP.R_univ) - sys.comp_m_a{sys.dir}/GP.Mol.air);
 % Get mass of liquid water from ratio
 sens.y.m_wf{sys.dir} = GP.water_add * sys.comp_m_a{sys.dir} - sens.y.m_wg{sys.dir};

 elseif sys.mode == 2 % If exhausting ...
 % Get air mass by assuming ratio is constant (assume no liquid water)
 sens.y.m_a{sys.dir} = (sens.p{sys.dir}*GP.A*h_a{sys.dir}) ./ ...

 (sens.y.T_a{sys.dir}*GP.R_univ * (GP.water_add/GP.Mol.wat + 1/GP.Mol.air));
 % Get steam mass from ratio
 sens.y.m_wg{sys.dir} = GP.water_add * sens.y.m_a{sys.dir};

 end
end

end

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_sigmoid.m 1 of 1

 function ydivs = SW_sigmoid(ndiv, rat, lims, withplot)

% --- sigmoid ---

% ydivs = sigmoid(ndiv, rat, lims, withplot)

% This subdivides the interval [lims] into [ndiv] sub-intervals

% with the central ones being (roughly) <rat> times as big as the first.

% <ydivs> contains exactly ndiv entries (woo).

% withplot = true creates a figure showing the result and tictoc.

% Version 1. Based on bender.m by SDG, modified 22.07.2011 by SW

% ---

% Start by thinking about the (much easier) interval [0 1]

% --- Polynomial is a*x^2 + b*x. ---

% dydx(0) = 1-a/2

% dydx(+1) = a+1-a/2 = 1+a/2

% The ratio of the latter / the former = <rat>

% Hence 1+a/2 = rat * (1-a/2)

% a = 2*(rat-1)/(1+rat)

a = 2*(rat-1)/(1+rat);

b = 1-a/2;

xdivs = linspace(0,1,ndiv)'; % Generate a linear input

fliplength = ceil(ndiv/2); % Work on the first half including midway

ydivs = a*xdivs(1:fliplength).^2 + b*xdivs(1:fliplength);

% Flip ydivs and glue it together again

ydivs = [ydivs;(1-flipud(ydivs(1:(end - mod(ndiv,2)))))];

% If ndiv is odd, then we need to ignore the central point;

% mod(ndiv,2) = 1 if ndivs odd, 0 if even

% Scale it to fit lims

xdivs = xdivs*diff(lims) + lims(1);

ydivs = ydivs*diff(lims) + lims(1);

if withplot

 figure('Name','Sigmoid.m')

 subplot(1,2,1), plot(xdivs,ydivs,'k');

 xlabel('Linear input'), ylabel('Nonlinear output');

 title('Nonlinear coordinate map'); grid on; xlim(lims); ylim(lims);

 subplot(1,2,2), plot(ydivs(2:end),diff(ydivs),'k');

 xlabel('Output values'), ylabel('Differences');

 title('Gap widths'); grid on; xlim(lims);

end

end

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_getorthovectors.m 1 of 3

function [ov,maxerror] = SW_getorthovectors(nvectors, lims, withplot, weight)
%ov = SW_orthovectors(npolys, lims, withplot)
% This is a function to generate orthogonal vectors. Inputs are:
% npolys How many vectors to generate

% lims The range over which the vectors need to be orthonormal.
% Needs to be set up as [lower, upper] !
% withplot Boolean - if true, func will plot graphs of orthopolys and errors.

% weight Boolean - if true, func will use weighting functions
%
% Outputs a structure ov containing six parts:

% xvals A vector of the x co-ords
% xdiffs A vector of the x diffs *at* each point (avg of upper and lower).
% Ap A matrix of the orthonormal vectors.

% Apd As Ap, but the derivative values.
% Apdd As Ap, but the second derivative values.
% (Ap, Apd and Apdd can be used to evaluate the sum of the vectors by

% multiplying with a vector of coefficients theta.)
% psdinvAp The pseudoinverse of Ap (since Ap is not normally square).
% Also outputs the maximum error magnitude.
%

% 2012-02-02
dotimestamp, fprintf('Running %s ...\n',mfilename);
npoints = 1000;

if ~exist('weight','var')
 weight=true;
end

%% Define x and the weighting function
if weight

 gapratio = 60;
 xvals = SW_sigmoid(npoints,gapratio,lims,withplot);
 xbasis = SW_sigmoid(npoints,gapratio,[-1,+1],false);

 % Establish weighting vector
 order = 4; wtpolylims = [1,5];
 weight = xbasis.^order; % Make curve

 weight = diff(wtpolylims)*weight/max(weight) + wtpolylims(1); % Scale curve

 % Plot weight function

 if withplot
 figure('Name','orthovector_weights');
 plot(xvals,weight,'k'); xlabel('z'); ylabel('Weighting function');

 end
else
 xvals = linspace(lims(1),lims(2),npoints)';

 xbasis = linspace(-1,1,npoints)';
 weight = 1;
end

%% Generate Vandermonde matrix
V = zeros(npoints,nvectors);
for c1 = 1:nvectors

 V(:,c1) = xbasis.^(c1 - 1);
end

%% Find the largest vector and move it to the front
norms = zeros(nvectors,1);
for c1 = 1:nvectors

 norms(c1) = norm(V(:,c1));
end
[~, index] = sort(norms,'descend');

V = V(:,index);

%% Perform modified Gram-Schmidt
% Define inner product function

innerprod = @(a,b) sum(weight .* a .* b);
A = V;
for c1 = 1:nvectors

 for c2 = 1:c1-1 % for each of the vectors already orthogonalised

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_getorthovectors.m 2 of 3

 % Subtract projection
 A(:,c1) = A(:,c1) - innerprod(A(:,c2),A(:,c1))*A(:,c2);
 end
 % Normalise

 A(:,c1) = A(:,c1) ./ sqrt(innerprod(A(:,c1),A(:,c1)));
end

%% Calculate properties
% Create anon function to get nice differences
equidiff = @(vec) 0.5*([vec(2)-vec(1); diff(vec)] + [diff(vec); vec(end)-vec(end-1)]);

ov.xvals = xvals;
ov.xdiffs = equidiff(xvals);

ov.Ap = A;
ov.psdinvAp = (ov.Ap.' * ov.Ap) \ ov.Ap.';

dotimestamp, fprintf(' - Calculating derivatives with polyfit() & polyder() ...\n');
scaling = 2/diff(lims); % Scaling factor since using xbasis for diffs
for c1 = 2:nvectors
 dpoly = polyder(polyfit(xbasis,A(:,c1),c1-1));

 Apd(:,c1) = polyval(dpoly,xbasis) .* scaling;
 Apdd(:,c1) = polyval(polyder(dpoly),xbasis) .* scaling^2;
end

ov.Apd = Apd;
ov.Apdd = Apdd;

%% Calculate errors
if withplot || nargout > 1

 accuracy = zeros(nvectors);
 for c1 = 1:nvectors
 for c2 = 1:c1

 accuracy(c1,c2) = innerprod(A(:,c1),A(:,c2));
 accuracy(c2,c1) = accuracy(c1,c2); % Symmetry
 end
 end

 % Fix so that 0 everywhere means correct
 accuracy = accuracy - eye(nvectors);
 % Calculate errors

 errors = sqrt(real(accuracy).^2+imag(accuracy).^2);
 maxerror = max(errors(:));
end

%% Plot orthovectors
if withplot
 dotimestamp, fprintf(' - Plotting orthovectors ...\n');

 % Get colour data
 colours = get_colour_spec(nvectors);

 figure('Name','Orthovectors')
 clf; hold on;
 % subplot(3,1,1:2);
 hold on;

 % Plot the lines with colours worked out above
 for c1 = 1:nvectors
 h = plot(xvals,A(:,c1),...

 'Color',colours(c1,:),...
 'DisplayName',['$P_{',num2str(c1),'}$']);
 end

 title(['Orthonormal basis of polynomials',10,...
 '(normalised, no coefficients)']);
 xlabel('z');

 grid on; legend('toggle');
 xlim(lims); h = legend('Location','NorthEastOutside');
 set(h,'Interpreter','LaTeX');

 % Plot the weighting function
 % subplot(3,1,3), plot(xvals,weight,'k-');
 % title('Weighting function used for GSONP'); xlim(lims); grid on;

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_getorthovectors.m 3 of 3

 %% Plot accuracy
 figure('Name','Orthovector errors');
 set(gcf,'WindowStyle','docked'); clf; hold on;
 mesh(errors,'FaceColor','none');

 grid on; shading interp;
 title(['Inner product errors',10, 'max = ',...
 num2str(max(real(accuracy(:)))),', min = ',...

 num2str(min(real(accuracy(:))))]);
 zlabel('Complex magnitude of error'); colorbar; view(-17,35);
 xlabel('First input poly'), ylabel('Second input poly');

end
dotimestamp, fprintf(' - %s complete.\n',mfilename);

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_thermal_funcs.m 1 of 6

% funcs = SW_thermal_funcs(PlotGraphs)

% This function returns a structure of function handles. All functions use SI units only.

%

% funcs.c_pa(T) and funcs.c_va(T) return the heat capacity at constant pressure or volume of

% dry air, by making a call to lemmon.m (originally by SDG).

%

% funcs.k_air(T) can be used to quickly evaluate the thermal conductivity of air within the

% temperature range 175 - 1900 K, based on data from Rogers & Mayhew steam tables. Outside

% this range, inaccurate values based on the fitted curve will be returned.

%

% funcs.T_sat(p) and funcs.p_sat(T) return the saturation temperature of water, aka boiling

% point, and saturation pressure of water respectively. funcs.T_sat is accurate from

% 0.1 - 221.2 BAR, and funcs.p_sat is accurate from 318.95 - 647.3 K. Outside these ranges,

% inaccurate values based on the fitted curves will be returned. The critical point of

% water is at (221.1 BAR, 647.3 K).

%

% funcs.dT_sat(p) returns the gradient of the saturation curve (d T_sat / d p_sat) at a given

% pressure. This uses the derivative of the previous polynomial.

%

% funcs.L_water(p) will return the latent heat of water at pressures in the range

% 0.02 - 30 BAR. Outside this range, inaccurate values based on the fitted curve will be

% returned.

%

% funcs.c_pwf(T), funcs.c_pwg(T), funcs.c_vwg(T), funcs.c_vwg(T) will return the heat capacity

% at constant pressure (_p) or constant volume (_v) for liquid water (_f) and steam (_g).

% These datasets are valid from 273.16 - 573.15 K only. Outside this range, inaccurate

% values based on the fitted curve will be returned. c_pwf = c_vwf since water is

% incompressible (included as separate functions for convenience).

%

% If the argument PlotGraphs is included and is true, a figure showing the two functions will

% also be plotted.

%

% Added to model by SW on 2012-03-05, modified to avoid interp on 2013-01-31, modified to add

% T_sat, L_water, c_pwf and c_pwg on 2013-10-07.

function funcs = SW_thermal_funcs(PlotGraphs)

% Some constants

R_univ = 8.3144621; % Universal gas constant \bar{R} (J/ mol K)

Mol.air = 28.9645/1e3; % Molar mass of air (kg/mole)

Mol.wat = 18.0155/1e3; % Molar mass of water (kg/mole)

%% PlotGraphs setup

if ~exist('PlotGraphs','var')

 PlotGraphs = false;

elseif PlotGraphs

 subtitle = [10,'from ',mfilename];

 subtitle = strrep(subtitle,'_','_'); % Make underscores display properly

 numpoints = 2e3;

 padding = 0.1;

end

%% c_p,a and c_v,a (heat capacities of air)

% code moved to internal_cp_func because cp cannot be returned in one operation, due to the

% way lemmon.m works.

funcs.c_pa = @(T) internal_cp_func(T,R_univ/Mol.air);

funcs.c_va = @(T) funcs.c_pa(T) - R_univ/Mol.air;

if PlotGraphs

 figure('Name','c_p,a and c_v,a'); hold on;

 c_a.T = linspace(50,1500,numpoints);

 c_a.cp = funcs.c_pa(c_a.T);

 c_a.cv = funcs.c_va(c_a.T);

 plot(c_a.T,c_a.cp,'r','DisplayName','c_{pa}');

 plot(c_a.T,c_a.cv,'b','DisplayName','c_{va}');

 grid on; title(['Specific heat capacities of air, from lemmon.m by SDG',subtitle]);

 xlabel('Temperature (K)'), ylabel('Specific heat capacity (J/kg K)');

 legend('show','Location','NorthWest');

end

%% k (thermal conductivity of air)

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_thermal_funcs.m 2 of 6

% Data from Rogers & Mayhew steam tables, p16.

k.T = [175:25:400, 450:50:1400, 1500:100:1900]'; % In Kelvin

k.k = [1.593,1.809,2.020,2.227,2.428,...

 2.624,2.816,3.003,3.186,3.365,...

 3.710,4.041,4.357,4.661,4.954,...

 5.236,5.509,5.774,6.030,6.276,...

 6.520,6.754,6.985,7.209,7.427,...

 7.640,7.849,8.054,8.253,8.450,...

 8.831,9.199,9.554,9.899,10.233]' *1e-5... % In kW/mK

 *1e3; % In W/mK

% Fit polynomial (order 3) to data

warning off MATLAB:polyfit:RepeatedPointsOrRescale % Tested, fit is still fine at order 3.

k.poly = polyfit(k.T,k.k,3);

warning on MATLAB:polyfit:RepeatedPointsOrRescale % Reset.

% Create anonymous function

funcs.k_air = @(T) polyval(k.poly, real(T));

if PlotGraphs

 figure('Name','k_air');

 subplot(3,1,1:2), hold on;

 k.pg.T = padded_linspace(k.T(1),k.T(end),padding,numpoints);

 k.pg.k = funcs.k_air(k.pg.T);

 plot(k.T,k.k,'k+', k.pg.T,k.pg.k,'b-');

 title('Thermal conductivity of air');

 grid on; ylabel('Thermal conductivity, k (W/m K)');

 axesgroup = gca;

 subplot(3,1,3), hold on;

 k.pg.interp = interp1q(k.T,k.k,k.pg.T);

 plot(k.pg.T,abs(k.pg.k-k.pg.interp)./k.pg.interp,'b-');

 xlabel('Pressure (Pa)'), ylabel('Error');

 title('Error between fitted polynomial and linear interpolation');

 set(gca,'YScale','log','YMinorGrid','off');

 xlabel('Temperature (K)')

 ylim([1e-5,1e-1]);

 set(gca,'YTick',[1e-5,1e-4,1e-3,1e-2,1e-1]);

 set(gca,'YTickLabel',{'0.001%','0.01%','0.1%','1%','10%'});

 linkprop([axesgroup,gca],{'XLim','XScale','XMinorGrid'});

end

%% T_sat and p_sat (saturation temperature and pressures of water, aka boiling point)

% Saturation pressure (in BAR) (Rogers & Mayhew, p3-5)

T_s.p = [0.1:0.02:0.5, 0.55:0.05:1, 1.1:0.1:3, 3.5:0.5:6, 7:1:20, 22:2:50, 55:5:200, ...

 202:2:220, 221.2]' * 1e5; % Convert from BAR to Pa

% Saturation temperature (in K) (Rogers & Mayhew, p3-5)

T_s.T = [45.8, 49.4,52.6,55.3,57.8,60.1, ...

 62.2,64.1,65.9,67.5,69.1, ...

 70.6,72.0,73.4,74.7,75.9, ...

 77.1,78.2,79.3,80.3,81.3, ...

 83.7,86.0,88.0,90.0,91.8, ...

 93.5,95.2,96.7,98.2,99.6, ...

 102.3,104.8,107.1,109.3,111.4, ...

 113.3,115.2,116.9,118.6,120.2, ...

 121.8,123.3,124.7,126.1,127.4, ...

 128.7,130.0,131.2,132.4,133.5, ...

 138.9,143.6,147.9,151.8,155.5, ...

 158.8,165.0,170.4,175.4,179.9, ...

 184.1,188.0,191.6,195.0,198.3, ...

 201.4,204.3,207.1,209.8,212.4, ...

 217.2,221.8,226.0,230.0,233.8, ...

 237.4,240.9,244.2,247.3,250.3, ...

 253.2,256.0,258.8,261.4,263.9, ...

 269.9,275.6,280.8,285.8,290.5, ...

 295.0,299.2,303.3,307.2,311.0, ...

 314.6,318.0,321.4,324.6,327.8, ...

 330.8,333.8,336.6,339.4,342.1, ...

 344.8,347.3,349.8,352.3,354.6, ...

 357.0,359.2,361.4,363.6,365.7, ...

 366.5,367.4,368.2,369.0,369.8, ...

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_thermal_funcs.m 3 of 6

 370.6,371.4,372.1,372.9,373.7, 374.15]' +273.15; % Convert from C to K

% Create anonymous functions

T_s.Tpoly = polyfit(log(T_s.p), T_s.T, 3);

funcs.T_sat = @(p) polyval(T_s.Tpoly, log(p));

% === Speed test ===

% funcs.T_sat_interp1 = @(p) interp1(T_s.p,T_s.T,p);

% funcs.T_sat_interp1q = @(p) interp1q(T_s.p,T_s.T,p);

% count = 1e5;

% rand_p = rand(count,1)*(log10(221.2)-log10(0.1))+log10(0.1);

% fprintf('\nPoly : '); tic;

% for c1 = 1:count

% Tsat = funcs.T_sat(rand_p(c1));

% end

% time(1) = toc; fprintf('%f sec\n',time(1));

% fprintf('Interp1 : '); tic;

% for c1 = 1:count

% Tsat = funcs.T_sat_interp1(rand_p(c1));

% end

% time(2) = toc; fprintf('%f sec (poly %.1f%% faster)\n',time(2),100*(time(2)-time(1))/time(2));

% fprintf('Interp1q : '); tic;

% for c1 = 1:count

% Tsat = funcs.T_sat_interp1q(rand_p(c1));

% end

% time(3) = toc; fprintf('%f sec (poly %.1f%% faster)\n',time(3),100*(time(3)-time(1))/time(3));

% Find midpoint values of gradient

T_s.dT.dT = diff(T_s.T)./diff(T_s.p);

T_s.dT.p = T_s.p(1:end-1) + 0.5*diff(T_s.p);

% Polyfit to gradient

T_s.dTpoly = polyfit(log(T_s.dT.p),log(T_s.dT.dT),2);

funcs.dT_sat = @(p) exp(polyval(T_s.dTpoly,log(p)));

if PlotGraphs

 figure('Name','T_sat');

 subplot(3,1,1:2), hold on;

 T_s.pg.p = exp(padded_linspace(log(T_s.p(1)),log(T_s.p(end)),...

 padding, numpoints));

 T_s.pg.T = funcs.T_sat(T_s.pg.p);

 plot(T_s.p, T_s.T, 'k+', 'DisplayName','Rogers & Mayhew data');

 plot(T_s.p(end),T_s.T(end),'ro','DisplayName','Critical point');

 plot(T_s.pg.p, T_s.pg.T, 'b-','DisplayName','3rd-order polynomial');

 grid on; legend('show','Location','NorthWest');

 title('Saturation temperature of water');

 ylabel('Saturation temperature, T_sat (K)','Interpreter','latex');

 set(gca,'XScale','log');

 axesgroup = gca;

 subplot(3,1,3), hold on;

 T_s.pg.interp = interp1q(T_s.p,T_s.T,T_s.pg.p);

 plot(T_s.pg.p,abs(T_s.pg.T-T_s.pg.interp)./T_s.pg.interp,'b-');

 xlabel('Pressure (Pa)'), ylabel('Error');

 title('Error between fitted polynomial and linear interpolation');

 set(gca,'YScale','log','YMinorGrid','off'); xlabel('Pressure (Pa)');

 ylim([1e-5,1e-2]);

 set(gca,'YTick',[1e-5,1e-4,1e-3,1e-2]);

 set(gca,'YTickLabel',{'0.001%','0.01%','0.1%','1%'});

 linkprop([axesgroup,gca],{'XLim','XScale','XMinorGrid'});

 figure('Name','dT_sat');

 subplot(3,1,1:2),

 hold on;

 % Construct zero-order hold line

 T_s.pg.dTi.p = T_s.p([1,sort([2:length(T_s.p)-1,2:length(T_s.p)-1]),length(T_s.p)]);

 T_s.pg.dTi.dT = T_s.dT.dT(sort([1:length(T_s.dT.dT),1:length(T_s.dT.dT)]));

 % Interpolated & polydur datasets

 T_s.pg.dTinterp = interp1q(T_s.pg.dTi.p,T_s.pg.dTi.dT,T_s.pg.p);

 T_s.pg.dTpolyder = polyval(polyder(T_s.Tpoly),log(T_s.pg.p))./ T_s.pg.p;

 plot(T_s.pg.dTi.p,T_s.pg.dTi.dT,'k-','DisplayName','Gradient of linear interpolation');

% plot(T_s.dT.p,T_s.dT.dT,'m+','DisplayName','Midpoint values');

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_thermal_funcs.m 4 of 6

% plot(T_s.pg.p, T_s.pg.dTpolyder,'r-','DisplayName','Polyder solution ');

 plot(T_s.pg.p, funcs.dT_sat(T_s.pg.p), ...

 'b-','DisplayName','2nd-order polynomial fit to midpoints');

 grid on; title('Derivative $\frac{\mathrm{d}T_\mathrm{sat}}{\mathrm{d}p}$ of saturation curve',...

 'Interpreter','latex');

 ylabel('Derivative (K/Pa)');

 set(gca,'XScale','log','XMinorGrid','off','YScale','log','YMinorGrid','off');

 legend('show','Location','NorthEast'); xlim([8e3,3e7]);

 axesgroup = gca;

 subplot(3,1,3), hold on;

% plot(T_s.pg.p, abs(T_s.pg.dTinterp - T_s.pg.dTpolyder)./T_s.pg.dTinterp, ...

% 'r-', 'DisplayName','Polynomial derivative');

 plot(T_s.pg.p, abs(T_s.pg.dTinterp - funcs.dT_sat(T_s.pg.p))./T_s.pg.dTinterp, ...

 'b-', 'DisplayName','Polynomial fitted to midpoints');

 xlabel('Pressure (Pa)'), ylabel('Error');

 title('Error between fitted polynomial and linear interpolation derivatives');

 set(gca,'YScale','log','YMinorGrid','off','XScale','log','XMinorGrid','off');

 xlabel('Pressure (Pa)');

 ylim([1e-4,1]);

 set(gca,'YTick',10.^(-4:1));

 set(gca,'YTickLabel',{'0.01%','0.1%','1%','10%','100%'});

 linkprop([axesgroup,gca],{'XLim','XScale'});

end

%% L_water (latent heat of vaporisation of water)

% Pressure values (Rogers & Mayhew, p3-5)

L.p = T_s.p;

% Latent heat values (in J/kg) (Rogers & Mayhew, p3-5)

L.L = [2392, 2383,2376,2369,2363,2358, 2353,2348,2343,2339,2336, ...

 2332,2328,2325,2322,2318, 2315,2313,2310,2308,2305, 2298,2293,2288,2283,2278, ...

 2273,2269,2266,2262,2258, 2251,2244,2238,2232,2226, 2221,2216,2211,2206,2202, ...

 2198,2193,2189,2185,2182, 2178,2174,2171,2168,2164, 2148,2134,2121,2109,2097, ...

 2087,2067,2048,2031,2015, 2000,1986,1972,1960,1947, 1935,1923,1912,1901,1890, ...

 1870,1850,1831,1812,1795, 1778,1761,1744,1729,1714, 1698,1683,1668,1654,1639, ...

 1605,1570,1538,1505,1473, 1441,1410,1379,1348,1317, 1286,1255,1224,1194,1163, ...

 1131,1099,1067,1034,1001, 967,932,895,858,819, 778,735,689,639,584, 560,535,508,479,447, ...

 412,373,328,270,170, 0]' * 1e3; % Convert from kJ/kg to J/kg

% Create anonymous function.

L.poly.p = logspace(log10(L.p(1)),log10(L.p(end)),5e2)';

warning off MATLAB:polyfit:RepeatedPointsOrRescale

L.poly.poly = polyfit(log10(L.poly.p), interp1q(L.p,L.L,L.poly.p), 9);

warning on MATLAB:polyfit:RepeatedPointsOrRescale % Reset.

funcs.L_water = @(p) polyval(L.poly.poly, log10(p));

if PlotGraphs

 figure('Name','L_water'); hold on;

 L.pg.p = logspace(log10(L.p(1)), log10(L.p(end)), numpoints)';

 subplot(3,1,1:2), hold on;

 plot(L.p,L.L,'k+','DisplayName','Rogers & Mayhew data');

 L.pg.L_fun = polyval(L.poly.poly,log10(L.pg.p));

 plot(L.pg.p,L.pg.L_fun,'b-',...

 'DisplayName','9th-order polynomial');

 ylimits = get(gca,'YLim'); xlimits = get(gca,'XLim');

 title(['Latent heat of vaporisation of water',subtitle]);

 grid on; ylabel('Latent heat of vaporisation (J/kg)');

 set(gca,'XScale','log'); set(gca,'YLim',ylimits,'XLim',xlimits);

 subplot(3,1,1:2), legend('show','Location','SouthWest');

 axesgroup = gca;

 subplot(3,1,3), hold on;

 L.pg.interp = interp1q(L.p,L.L,L.pg.p);

 plot(L.pg.p,abs(L.pg.L_fun-L.pg.interp)./L.pg.interp,'b-');

 xlabel('Pressure (Pa)'), ylabel('Error');

 title('Error between fitted polynomial and linear interpolation');

 set(gca,'YScale','log');

 set(gca,'YTick',[1e-6,1e-4,1e-2,1]);

 set(gca,'YTickLabel',{'0.0001%','0.01%','1%','100%'});

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_thermal_funcs.m 5 of 6

 ylim([1e-6,1]);

 linkprop([axesgroup,gca],{'XLim','XScale'});

end

%% c_p,wf and c_p,wg (heat capacity at constant pressure for water, both liquid & gas)

% c_p values, temperature axis (Rogers & Mayhew, p10)

c_pw.Tdata = [0.01, 5:5:150, 160:10:300]' +273.15; % Convert from C to K

% c_pwf (heat capacity at constant pressure, for liquid water) (Rogers & Mayhew, p10)

c_pw.f.data = [4.21,4.204,4.193,4.186,4.183, ...

 4.181,4.179,4.178,4.179,4.181, ...

 4.182,4.183,4.185,4.188,4.191, ...

 4.194,4.198,4.203,4.208,4.213, ...

 4.219,4.226,4.233,4.240,4.248, ...

 4.26,4.27,4.28,4.29,4.30, ...

 4.32,4.35,4.38,4.42,4.46, ...

 4.51,4.56,4.63,4.70,4.78, ...

 4.87,4.98,5.10,5.24,5.42, 5.65]' * 1e3; % Convert from kJ/ kg K to J/kg K

% c_pwg (heat capacity at constant pressure, for gaseous water) (Rogers & Mayhew, p10)

c_pw.g.data = [1.86,1.86,1.86,1.87,1.87, ...

 1.88,1.88,1.88,1.89,1.89, ...

 1.90,1.90,1.91,1.92,1.93,...

 1.94,1.95,1.96,1.97,1.99, ...

 2.01,2.03,2.05,2.07,2.09, ...

 2.12,2.15,2.18,2.21,2.25, ...

 2.29,2.38,2.49,2.62,2.76, ...

 2.91,3.07,3.25,3.45,3.68, ...

 3.94,4.22,4.55,4.98,5.46, 6.18]' * 1e3; % Convert from kJ/ kg K to J/kg K

% Define anonymous functions

warning off MATLAB:polyfit:RepeatedPointsOrRescale % Tested, fit is still fine at order 4.

c_pw.f.poly = polyfit(c_pw.Tdata,c_pw.f.data,4);

funcs.c_pwf = @(T) polyval(c_pw.f.poly,T);

c_pw.g.poly = polyfit(c_pw.Tdata,c_pw.g.data,4);

funcs.c_pwg = @(T) polyval(c_pw.g.poly,T);

warning on MATLAB:polyfit:RepeatedPointsOrRescale % Reset.

funcs.c_vwf = funcs.c_pwf; % Liquid water is incompressible!

funcs.c_vwg = @(T) funcs.c_pwg(T) - R_univ/Mol.wat;

if PlotGraphs

 figure('Name','c_pwf and c_pwg');

 subplot(3,1,1:2), hold on;

 c_pw.pg.T = padded_linspace(c_pw.Tdata(1),c_pw.Tdata(end),padding,numpoints);

 c_pw.pg.f = funcs.c_pwf(c_pw.pg.T);

 c_pw.pg.g = funcs.c_pwg(c_pw.pg.T);

 plot(c_pw.Tdata,c_pw.f.data,'b+','DisplayName','Rogers & Mayhew liquid water data');

 plot(c_pw.pg.T,c_pw.pg.f,'b-','DisplayName','4th-order polynomial');

 plot(c_pw.Tdata,c_pw.g.data,'r+','DisplayName','Rogers & Mayhew steam data');

 plot(c_pw.pg.T,c_pw.pg.g,'r-','DisplayName','4th-order polynomial');

 ylabel('Heat capacity, c_p (J/kg K)','interpreter','latex');

 legend('show','Location','NorthWest');

 title('Heat capacities of water at constant pressure, $c_{p,wf}$ and $c_{p,wg}$',...

 'Interpreter','latex');

 axesgroup = gca;

 subplot(3,1,3), hold on;

 c_pw.pg.finterp = interp1q(c_pw.Tdata,c_pw.f.data,c_pw.pg.T);

 c_pw.pg.ginterp = interp1q(c_pw.Tdata,c_pw.g.data,c_pw.pg.T);

 plot(c_pw.pg.T,abs(c_pw.pg.f-c_pw.pg.finterp)./c_pw.pg.finterp,'b-');

 plot(c_pw.pg.T,abs(c_pw.pg.g-c_pw.pg.ginterp)./c_pw.pg.ginterp,'r-');

 xlabel('Pressure (Pa)'), ylabel('Error');

 title('Error between fitted polynomials and linear interpolation');

 set(gca,'YScale','log','YMinorGrid','off');

 xlabel('Temperature (K)')

 ylim([1e-5,1e-1]);

 set(gca,'YTick',[1e-5,1e-4,1e-3,1e-2,1e-1]);

 set(gca,'YTickLabel',{'0.001%','0.01%','0.1%','1%','10%'});

 linkprop([axesgroup,gca],{'XLim','XScale'});

end

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_thermal_funcs.m 6 of 6

end

%% Function to use T to get cp from lemmon scripts

function cp_out = internal_cp_func(T, Rspec)

T = real(T);

rho = 70e5./(Rspec./T); % 70e5 is arbitrary pressure value (cp is isobaric)

[~,~,~,cp_out] = lemmon(rho,T); % Ignore first 3 outputs

end

%% Function which duplicates linspace, with padding, for the plots

function vector = padded_linspace(start, finish, padding, numpoints)

range = finish - start;

vector = linspace(start-padding*range, finish+padding*range, numpoints)';

end

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_water_energy.m 1 of 3

% This is a function to calculate the energy required to compress air with a given fraction of

% liquid water from air pressure up to 70BAR and then exhaust it. It includes the energy used

% to change phase. It is based on water_energy.m and was built on 2013-09-19 by SW,

function E_req_func = SW_water_energy(GP,PlotGraphs)

dotimestamp, fprintf('Running %s ...\n',mfilename);

% The one constant that isn't in GP that we need:

GP.hdot = -1; % Speed of piston

% Initialise

y_init.h = 100; % Any value will do, it gets divided through at the end

y_init.hdot = GP.hdot;

y_init.T_a = GP.T_atm;

y_init.m_a = y_init.h*GP.A*GP.p_atm/(y_init.T_a*GP.R_univ/GP.Mol.air);

y_init.m_wf = GP.water_add * y_init.m_a;

y_init.m_wg = 0;

y_init.WD = 0; % Work done (integral of instantaneous power)

phase = 1;

y0 = pack(y_init); t0 = 0;

out.t = 0; out.yv = pack(y_init);

out.te = []; out.ie = []; out.ye = [];

% Run ODE in loop

finished = false;

while ~finished

 clear sol;

 sol = ode15s(@(t,y)ode(GP,y,phase),t0+[0,100],y0, ...

 odeset('Events',@(t,y)events(GP,y,phase),'Refine',1));

 t0 = sol.x(end);

 y0 = sol.y(:,end);

 out.t = [out.t, sol.x(2:end)]; % Concatenate

 out.yv = [out.yv, sol.y(:,2:end)];

 out.te = [out.te,sol.xe];

 out.ie = [out.ie,sol.ie];

 out.ye = [out.ye,sol.ye];

 if sol.ie == 1 % If tripped this phase's check

 phase = phase + 1;

 else % Otherwise we're done.

 finished = true;

 end

end

out.ys = pack(out.yv);

h_end = out.ys.h(end);

% Total energy required (sim + exhaust - atmo + friction)

E_req = out.ys.WD(end) + h_end*GP.p_targ*GP.A - y_init.h*GP.A*GP.p_atm + y_init.h*GP.F_mu;

% Function form

E_req_func = @(h_a) h_a * E_req/y_init.h;

if PlotGraphs

 dotimestamp, fprintf(' - Plotting graph...\n');

 % Prepare the data

 out.yes = pack(out.ye);

 out.pp.p = pressure(GP,out.ys);

 figure('Name',mfilename); hold on;

 % Plot the three datasets

 plot(out.pp.p,GP.Tfun.T_sat(out.pp.p),'k-','DisplayName','Saturation curve');

 plot(out.pp.p,out.ys.T_a,'b-','DisplayName','Simulation');

 plot(interp1q(out.t',out.pp.p',out.te'),out.yes.T_a,'ko',...

 'DisplayName','ODE events');

 legend('show','Location','SouthEast');

 % Add chrome

 xlabel('Pressure (Pa)'); set(gca,'XScale','log');

 ylabel('Temperature (K)'); grid on; box on;

 plottitle = sprintf('From %s\nGP.water_add = %g, energy required = %g MJ / m air',...

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_water_energy.m 2 of 3

 mfilename,GP.water_add,E_req/1e6);

 title(strrep(plottitle,'_','_'));

end

dotimestamp, fprintf(' - %s complete.\n',mfilename);

end

%% ODE function

function ydot = ode(GP, y, phase)

ydot = pack(0*y);

y = pack(y);

p = pressure(GP,y); % Pressure

ydot.h = GP.hdot;

ydot.hdot = 0;

% Get gamma using general formula

gamma = GP.gam(y.m_a, y.m_wg, y.m_wf, y.T_a);

% Get Tdot_adi, adiabatic rate

ydot.T_a = y.T_a * (1-gamma) * (ydot.m_a/y.m_a + y.hdot/y.h);

if phase == 2 % If in evaporating phase

 %% New method (allows variable ydot.m_wg and correct ydot.T_a_adi)

 % Components of complicated pdot, Tdot_sat and m_wg algebra tomfoolery.

 x_1 = (y.m_a/GP.Mol.air + y.m_wg/GP.Mol.wat)...

 * GP.R_univ / (GP.A*y.h);

 x_2 = ((ydot.m_a/GP.Mol.air) * (GP.R_univ / GP.A) - x_1*ydot.h)...

 * y.T_a / y.h;

 x_3 = GP.R_univ*y.T_a / (GP.Mol.wat*GP.A*y.h);

 x_4 = GP.Tfun.dT_sat(p);

 x_5 = (GP.Tfun.c_pa(y.T_a).*y.m_a ...

 + GP.Tfun.c_pwg(y.T_a).*y.m_wg ...

 + GP.Tfun.c_pwf(y.T_a).*y.m_wf) ...

 / GP.Tfun.L_water(p);

 % Formula for m_wg

 ydot.m_wg = (ydot.T_a*x_5+ydot.m_wg-x_2*x_4*x_5/(1-x_1*x_4))...

 / (1 + x_3*x_4*x_5/(1-x_1*x_4));

 % Formula for Tdot_sat

 ydot.T_a = x_4*(x_2 + x_3*ydot.m_wg)/(1-x_1*x_4);

 % Symmetry

 ydot.m_wf = - ydot.m_wg;

end

% Work done

ydot.WD = - y.hdot * p * GP.A;

% Repack

ydot = pack(ydot);

end

%% ODE events function

function [value, isterminal, direction] = events(GP,y,phase)

y = pack(y); p = pressure(GP,y);

switch phase

 case 1

 value(1) = GP.Tfun.T_sat(p) - y.T_a; % Stop if hit saturation temperature

 case 2

 value(1) = y.m_wf; % Stop when no water left

 case 3

 value(1) = 1; % Never stop (rely on value(2) to finish)

end

value(2) = p - GP.p_targ; % Stop if target pressure

isterminal(1:2) = true; % Always stop

direction(1:2) = false; % Never care about direction

end

%% pressure function

function p = pressure(GP,ys)

p = (ys.m_a/GP.Mol.air+ys.m_wg/GP.Mol.wat)*GP.R_univ .*...

 ys.T_a ./(GP.A*ys.h-ys.m_wf/GP.rho_water);

C:\Users\eaxsw\Dropbox\PhD\MATLAB\current_model\SW_water_energy.m 3 of 3

end

%% pack function

function yout = pack(yin)

if isstruct(yin)

 yout(1,:) = yin.h;

 yout(2,:) = yin.hdot;

 yout(3,:) = yin.m_a;

 yout(4,:) = yin.m_wf;

 yout(5,:) = yin.m_wg;

 yout(6,:) = yin.T_a;

 yout(7,:) = yin.WD;

else

 yout.h = yin(1,:);

 yout.hdot = yin(2,:);

 yout.m_a = yin(3,:);

 yout.m_wf = yin(4,:);

 yout.m_wg = yin(5,:);

 yout.T_a = yin(6,:);

 yout.WD = yin(7,:);

end

end

Appendices 247

F.2 Ancilliary scripts

C:\Users\eaxsw\Dropbox\PhD\MATLAB\thermal_mod_func.m 1 of 2

%thermal_mod_func

% This function simulates thermal diffusion through a cylinder of air using a

% point-derived numerical difference model.

%

% It has been extended on 2013-03-02 to do the same calculation for a spherical droplet of

% water.

clear all; close all; clc;

Tfuncs = SW_thermal_funcs(false);

% Properties of each sim

sim(1).name = 'Cylinder of air';

sim(1).constant = 1; % 1 for cylinder, 2 for sphere

sim(1).t.init = 600; % Initial temperature of all points

sim(1).t.contours = sim(1).t.init-[300:50:550,599]; % Temperature contours to plot

sim(1).t.end = 293; % Temperature of node at end

sim(1).radius = [0.2,0.6]; % Range of radii to model (t.end will be at upper limit)

sim(1).tlims = [0,10]; % Timespan for simulation

sim(1).rho = 29.72; % Density

sim(1).cv = Tfuncs.c_va(sim(1).t.init); % Volumetric heat capacity (J/kgK)

sim(1).k = Tfuncs.k_air(sim(1).t.init); % Thermal conductivity

sim(2).name = 'Droplet of water';

sim(2).constant = 2; % 1 for cylinder, 2 for sphere

sim(2).t.init = 293; % Initial temperature of all points

sim(2).t.end = sim(2).t.init+10; % Temperature of node at end

sim(2).t.contours = -9:-1; % Temperature contours to plot

sim(2).radius = [0,1e-4]; % Range of radii to model (t.end will be at upper limit)

sim(2).tlims = [0,1.5e-5]; % Timespan for simulation

sim(2).rho = 998.3; % Density

sim(2).cv = Tfuncs.c_vwf(sim(2).t.init); % Heat capacity (J/kgK)

sim(2).k = 0.596; % Thermal conductivity (W/m^2)

for c1 = 1:length(sim)

 P = sim(c1); % Parameters

 % Set up the arrays

 npoints = 300;

 r = linspace(P.radius(1),P.radius(2),npoints+1);

 r = r(2:end); % Eliminate first point

 T0 = P.t.init + 0*r; % Initial vector of temperatures

 T0(end) = P.t.end; % Set last point

 DT = zeros(npoints); % Square matrix

 const = P.k / (P.cv / P.rho); % Constant part

 for c2 = 2:(npoints-1)

 bit(1) = 1 / ((r(c2+1)-r(c2))*(r(c2)-r(c2-1)));

 bit(2) = P.constant / (r(c2)*(r(c2+1)-r(c2-1)));

 DT(c2,c2-1) = const*(bit(1) + bit(2));

 DT(c2,c2) = const*(-2*bit(1));

 DT(c2,c2+1) = const*(bit(1) - bit(2));

 end

 DT(1,:) = DT(2,:);

 air_thermal_ode = @(t,y) DT*y;

 disp('Running ODE solver...')

 sim(c1).sol = ode15s(air_thermal_ode,P.tlims,T0);

 % Only plot 100 points in each direction

 plots.rng.leng = 100;

 if length(sim(c1).sol.x) > plots.rng.leng

 % Get plotsrng.leng equally-spaced points from time

 plots.rng.t = round(linspace(1,length(sim(c1).sol.x),plots.rng.leng));

 else

 plots.rng.t = 1:length(sim(c1).sol.x);

 end

C:\Users\eaxsw\Dropbox\PhD\MATLAB\thermal_mod_func.m 2 of 2

 plots.t = sim(c1).sol.x;

 if npoints > plots.rng.leng

 % Get plotsrng.leng equally-spaced points from radius

 plots.rng.r = round(linspace(1,npoints,plots.rng.leng));

 else

 plots.rng.r = 1:npoints;

 end

 plots.r = r(plots.rng.r);

 figure('Name',[sim(c1).name,' mesh'])

 set(gcf,'WindowStyle','docked'); clf;

 mesh(plots.t,plots.r,sim(c1).sol.y(plots.rng.r,plots.rng.t)); hold on; shading interp;

 grid on; view([105, 30]);

 ylabel('Radial position (m)'), xlabel('Time (s)'), zlabel('Temperature (K)');

 title([sim(c1).name,10,'Plot of temperatures with time']);

 figure('Name',[sim(c1).name,' contours'])

 set(gcf,'WindowStyle','docked'); clf;

 mesh(plots.t,plots.r,sim(c1).sol.y(plots.rng.r,plots.rng.t)-sim(c1).t.end,...

 'FaceColor','none','EdgeColor',[0.5,0.5,0.5]); hold on;

 [conts,h] = contour3(sim(c1).sol.x,r,sim(c1).sol.y-sim(c1).t.end,...

 sim(c1).t.contours);...

 set(h,'LineWidth',2); clabel(conts);

 grid on; view([105, 30]); % clabel(conts);

 ylabel('Radial position (m)'), xlabel('Time (s)'), zlabel('Temperature (K)');

 title([sim(c1).name,10,'Contour plot of temperatures with time']);

 sim(c1).eigens = eig(DT);

 figure('Name',[sim(c1).name,' eigenvalues'])

 set(gcf,'WindowStyle','docked'); clf; hold on;

 plot(log(abs(sort(sim(c1).eigens))),'k+-'); grid on;

 ylabel('Eigenvalue'), title([sim(c1).name,10,'Plot of log(abs(sort(eigenvalues of DT))']);

 disp('Done!');

end

C:\Users\eaxsw\Dropbox\PhD\MATLAB\exp_fitter.m 1 of 3

function exp_fitter
% This function loads a saved data file, runs out.yv through model_pack to get opthets,
% deletes the rest, then tries to fit exponentials to it.
tic; clc; close all;

dotimestamp, fprintf('Running %s ...\n',mfilename);

%% Load data, tidy it up, get opthets

dotimestamp, filename = input(' - Enter the filename to load ''out'' from >> ','s');
load(['outputs/',filename,'.mat']);

if out.GP.xxl ~= -1; %#ok<NODEF>
 out.t = out.te;
 out.yv = out.yev;

end
out.yv = real(out.yv);
out.ys = model_pack(out.yv);

% Save what we want, delete out
in.t = out.t;
THETA = out.ys.opthets';

in.GP = out.GP;
clearvars out;

% Delete the even columns of THETA since they correspond to asymmetric polynomials,
% no significant contribution to the steady state
THETA(:,2:2:size(THETA,2)) = [];

%% SVD the matrix to get an idea of how many exponentials we have
DS = svd(THETA);

for c1 = 1:length(DS)
 dotimestamp, fprintf(' DS(%i) = %g\n',c1,DS(c1));
end

%% Newton-Raphson tau to get better values
% Assign initial values for tau
tau = [2e-6; 3e-5; 1e-7];

% tau = [1e-3; 3e-4; 1e-5];
perturb = 0.001; % size of perturbations to tau for finding derivatives
THpack.TH = THETA;

THpack.t = in.t; % pack up data for easier passing to subfunction
HESSIAN = get_HESSIAN(tau,perturb,THpack); % Get Hessian of initial tau
xi = 1;

loops = 150;
rec.tau = zeros(length(tau),loops);
rec.xi = zeros(loops,1);

derivs = 0*tau;

for c1 = 1:loops

 rec.tau(:,c1) = tau;
 rec.xi(c1) = xi;

 if mod(c1,floor(loops/10)) == 1 || c1 == loops

 %% Talk about the current values
 [SSSQ,THpredict,SSQ] = get_SSSQ(tau,THpack);
 dotimestamp, fprintf(' - Loop %i, tau = ',c1);

 for c2 = 1:length(tau)
 fprintf('%g, ',tau(c2))
 end

 fprintf('and SSSQ = %g\n',SSSQ);
 if c1 == 1 || c1 == loops % If on first or last loop
 % Plot it

 figure('Name','exp_fitter output');
 for c2 = 1:size(THETA,2)
 subplot(3,2,c2);
 hold on;

 plot(THpack.t,THpack.TH(:,c2),'k','DisplayName','Original \Theta');
 plot(THpack.t,THpredict(:,c2),'b','DisplayName','\Theta_p');
 legend('show','Location','Best'); grid on;

 xlabel('t (s)'); title(sprintf('\\theta %i, SSQ = %g',c2*2-1,SSQ(c2)));

C:\Users\eaxsw\Dropbox\PhD\MATLAB\exp_fitter.m 2 of 3

 end
 end
 end
 %% Calculate the correction to apply

 % Calculate the derivs vector
 for c2 = 1:length(tau) % Which element we're perturbing
 ptb_v = 0*tau;

 ptb_v(c2) = tau(c2)*perturb; % Perturbation amount
 SSSQ(1) = get_SSSQ(tau - ptb_v ,THpack);
 SSSQ(2) = get_SSSQ(tau + ptb_v ,THpack);

 derivs(c2) = (SSSQ(2)-SSSQ(1)) / (2*ptb_v(c2)); % Numerical derivative
 end
 % Calculate the correction

 correc = HESSIAN\derivs;

 %% Try some xi values

 looping = true;
 while looping
 tau_p = tau - xi*correc; % Try the current xi
 HESSIAN = get_HESSIAN(tau_p, perturb,THpack); % get the "next" Hessian

 derivs_p = HESSIAN * correc; % Estimate the next derivs
 if max((derivs_p - derivs)./derivs) > 0.01 % if too divergent
 xi = xi / 2; % Reduce xi and try again

 else % if good enough
 tau = tau_p; % use current tau (and current Hessian, already calc'd)
 looping = false; % stop retrying xi values

 end
 end

end

figure('Name','Tau values')

for c1 = 1:length(tau)
 subplot(length(tau),1,c1),plot(rec.tau(c1,:),'k+-');
 grid on; title(sprintf('tau %i',c1));
end

dotimestamp, fprintf(' - %s completed.\n',mfilename);
end

function [SSSQ, THpredict, SSQ] = get_SSSQ(tau, THpack)
% This function is used by exp_fitter to calculate the sum of sums of squares of errors
% of a particular set of tau-values, when used to predict the THETA matrix. It also

% outputs the predicted \Theta matrix and the sums of squares of errors.

% Calculate the FUNCS matrix, the functions which we're linearly combining;

FUNCS = zeros(length(THpack.t),length(tau)+1);
FUNCS(:,1) = 1; % Constant term
for c1 = 1:length(tau)

 FUNCS(:,c1+1) = exp(-tau(c1).*THpack.t);
end
% Calculate the coefficient matrix with the psudoinverse of FUNCS
COEFF = (FUNCS' * FUNCS) \ FUNCS' * THpack.TH;

% Reconstruct the data and calculate the sum of the differences squared
THpredict = FUNCS * COEFF;
SSQ = sum((THpack.TH-THpredict).^2);

SSSQ = sum(SSQ);
end

function HESSIAN = get_HESSIAN(tau, perturb, THpack)
% This function calculates the Hessian matrix for a set of tau-values.
HESSIAN = zeros(length(tau));

for c1 = 1:length(tau) % For every entry in tau
 for c2 = 1:c1 % For every entry in tau up to the current one
 ptb_v{1} = 0*tau; %#ok<*AGROW>
 ptb_v{2} = 0*tau;

 ptb_v{1}(c1) = tau(c1)*perturb; % Perturbation in c2-nd direction
 ptb_v{2}(c2) = tau(c2)*perturb; % Perturbation in c3-rd direction
 SSSQ(1) = get_SSSQ(tau - ptb_v{1} - ptb_v{2} ,THpack);

 SSSQ(2) = get_SSSQ(tau + ptb_v{1} - ptb_v{2} ,THpack);

C:\Users\eaxsw\Dropbox\PhD\MATLAB\exp_fitter.m 3 of 3

 SSSQ(3) = get_SSSQ(tau - ptb_v{1} + ptb_v{2} ,THpack);
 SSSQ(4) = get_SSSQ(tau + ptb_v{1} + ptb_v{2} ,THpack);
 HESSIAN(c1,c2) = (SSSQ(4) - SSSQ(3) - SSSQ(2) + SSSQ(1))...
 / (4 * ptb_v{1}(c1) * ptb_v{2}(c2));

 HESSIAN(c2,c1) = HESSIAN(c1,c2); % symmetric
 end
end

end

C:\Users\eaxsw\Desktop\kick_optim results\0.4_new\S...\kick_optimisation_2.m 1 of 2

% This script is for use with a modified version of SW_run.

% The modification is to turn it into a function, as follows:

% function [out, pp] = SW_run(hdot_kick, th_kick)

% It also needs to have the inputs inserted into the GP definition, and

% the 'clear' statement at the start excised.

% GP.PlotGraphs should be false.

% GP.runtime should be around 2.

% GP.xxl should be 0.

% The internal saving system should be turned off.

%

% Modified on 2014-01-23 by SW.

tic; clear all; clc; close all;

dotimestamp, fprintf('Running %s ...\n',mfilename);

machine_ID = 5;

num_of_machines = 5;

omega = 0.4;

%% Initialise

vert = 60;

horiz = 90;

switch machine_ID

 case 1

 vert_range = 1:16;

 case 2

 vert_range = 17:27;

 case 3

 vert_range = 28:38;

 case 4

 vert_range = 39:49;

 case 5

 vert_range = 50:60;

end

inputs.th_kick = linspace(0, pi/2, vert)';

inputs.kick_vel = 2.75 + 0.125*((1:horiz)-1)';

inputs.th_kick = inputs.th_kick(vert_range);

dotimestamp,fprintf('Running with machine_ID = %i, omega = %g, and vert_range =\n',...

 machine_ID, omega);

disp(vert_range);

outputs.th_end = zeros(length(inputs.th_kick),length(inputs.kick_vel));

outputs.m.exh = outputs.th_end;

outputs.m.net = outputs.th_end;

outputs.wd = outputs.th_end;

%% Run simulations

for c1 = 1:length(inputs.th_kick)

 for c2 = 1:length(inputs.kick_vel)

 dotimestamp, fprintf('- Datetime is %s\n',...

 datestr(now,'yyyy-mm-dd_HH:MM:SS'));

 dotimestamp, fprintf('- Running %i of %i, %i of %i ...\n',...

 c1, length(inputs.th_kick), c2, length(inputs.kick_vel));

 out = SW_run(omega, inputs.th_kick(c1), inputs.kick_vel(c2));

 if out.GP.simfail % If the sim failed

 outputs.th_end(c1,c2) = NaN; % Gimme a NaN

 outputs.m.net(c1,c2) = NaN;

 outputs.m.exh(c1,c2) = NaN;

 outputs.wd(c1,c2) = NaN;

 else

 out.yes = SW_pack(out.yev);

 out.ys = SW_pack(out.yv);

C:\Users\eaxsw\Desktop\kick_optim results\0.4_new\S...\kick_optimisation_2.m 2 of 2

 if out.t(end)>150 % If we have more than 150s of data

 % Only base the linefits on the last 150s of data

 pow.index = find(out.t<out.t(end)-150,1,'last');

 else % Otherwise use all of it

 pow.index = 1;

 end

 % Linear polyfits:

 pow.polys.m.net = polyfit(out.t(pow.index:end), ...

 out.ys.m_out.net(pow.index:end)',1); % Net airmass

 pow.polys.m.exh = polyfit(out.t(pow.index:end), ...

 out.ys.m_out.exh(pow.index:end)',1); % Exh airmass

 pow.polys.E = polyfit(out.t(pow.index:end), ...

 out.ys.wd(pow.index:end)',1); % Work done

 % Save those variables

 outputs.m.net(c1,c2) = pow.polys.m.net(1);

 outputs.m.exh(c1,c2) = pow.polys.m.exh(1);

 outputs.wd(c1,c2) = pow.polys.E(1);

 % Find the last angle the piston stopped

 outputs.th_end(c1,c2) = out.yes.theta(find(out.ie==4,1,'last'));

 % Tidy up

 clear out;

 end

 end

end

num_isnans = sum(isnan(outputs.th_end(:)));

endtime = toc;

save(sprintf('omega_%.1f_machine_ID_%i.mat',omega,machine_ID))

dotimestamp,fprintf('Number of NaNs found = %i\n',num_isnans);

dotimestamp, fprintf('Simulations are complete.\n');

C:\Users\eaxsw\Desktop\kick_optim results\superaggregator.m 1 of 4

clc; clear all; close all;

vals = 3:6;

for c1 = vals

 temp = load(sprintf('agg_%i',c1));

 agg{c1} = temp.agg;

end

plots.fields = {'m_net','ratio','power_norm'};

plots.clabel = false;

plots.titlestr.m_net = 'Net rate of air being exhausted (kg/s)';

plots.titlestr.ratio = 'Net airmass rate divided by exhausted rate';

plots.titlestr.power_norm = 'Fraction of max power at that speed';

plots.contours.m_net = -2:0.05:4;

plots.contours.ratio = -2:0.02:1;

plots.contours.power_norm = -1:0.01:2;

% Plot the four-layer simple version first

for c1 = 1:length(plots.fields)

 superagg_plotfun(agg,vals,plots,plots.fields{c1});

 set(gcf,'Name',['ko_simple_',get(gcf,'Name'),'_3D']);

 set(gca,'xlim',[-1,25],'zlim',[0.3,0.6]);

end

% Only interested in the three-layer version from now on

vals = 3:5;

% Initialise

omega = [];

m_net.kick_vel = [];

m_net.th_kick = [];

pow = m_net;

for c1 = vals

 omega = [omega, agg{c1}.omega];

 % Find max m_net location

 [row,col] = find(agg{c1}.m_net == max(agg{c1}.m_net(:)));

 m_net.kick_vel = [m_net.kick_vel, agg{c1}.kick_vel(col)];

 m_net.th_kick = [m_net.th_kick, agg{c1}.th_kick(row)];

 % Find max power_norm location

 [row,col] = find(agg{c1}.power_norm == max(agg{c1}.power_norm(:)));

 pow.kick_vel = [pow.kick_vel, agg{c1}.kick_vel(col)];

 pow.th_kick = [pow.th_kick, agg{c1}.th_kick(row)];

end

% Omega set for polyval polyfit

omega_set = linspace(omega(1),omega(end),1e3);

% Max net air out

% Quadratic to get th_kick for given kick_vel

m_net.th_poly = polyfit(m_net.kick_vel,m_net.th_kick,2);

% Quadratic to pick best kick_vel for a given omega

m_net.kick_poly = polyfit(omega,m_net.kick_vel,2);

% kick_vel data for curve

m_net.kick_vel_set = polyval(m_net.kick_poly,omega_set);

% th_kick data for curve

m_net.th_kick_set = polyval(m_net.th_poly,m_net.kick_vel_set);

figure('Name','ko_quadratics');

subplot(1,2,1), hold on;

plot(omega,m_net.kick_vel,'k+');

plot(omega_set,m_net.kick_vel_set,'b-');

xlabel('Rotor speed $\dot{\theta}$ (rad/s)','Interpreter','LaTeX');

ylabel('Kick velocity \dot{h}_k (m/s)','Interpreter','LaTeX');

title('First quadratic');

subplot(1,2,2), hold on;

C:\Users\eaxsw\Desktop\kick_optim results\superaggregator.m 2 of 4

plot(m_net.kick_vel,m_net.th_kick,'k+');

plot(m_net.kick_vel_set,m_net.th_kick_set,'b-');

ylabel('Kick angle θ_k (rad)','Interpreter','LaTeX');

xlabel('Kick velocity \dot{h}_k (m/s)','Interpreter','LaTeX');

title('Second quadratic');

% Max power extraction

% Quadratic to get th_kick for given kick_vel

pow.th_poly = polyfit(pow.kick_vel,pow.th_kick,2);

% Quadratic to pick best kick_vel for a given omega

pow.kick_poly = polyfit(omega,pow.kick_vel,2);

% kick_vel data for curve

pow.kick_vel_set = polyval(pow.kick_poly,omega_set);

% th_kick data for curve

pow.th_kick_set = polyval(pow.th_poly,pow.kick_vel_set);

% Hypotenuse length

hypot = 10;

% Angles from m_net peak to pow peak

angles = atan((pow.th_kick - m_net.th_kick)...

 ./ (pow.kick_vel - m_net.kick_vel));

% Positions of right edges

rightedge.kick_vel = m_net.kick_vel + hypot*cos(angles);

rightedge.th_kick = m_net.th_kick + hypot*sin(angles);

% Remove low-scoring values (to even out color plotting)

for c1 = vals

 agg{c1}.m_net(agg{c1}.m_net < -0.1) = NaN;

 agg{c1}.ratio(agg{c1}.ratio < 0) = NaN;

 agg{c1}.power_norm(agg{c1}.power_norm<0.6) = NaN;

end

for c1 = 1:length(plots.fields)

 superagg_plotfun(agg,vals,plots,plots.fields{c1});

 set(gcf,'Name',['ko_lines_',get(gcf,'Name'),'_3D']);

 plot3(m_net.kick_vel,m_net.th_kick,omega,'k+');

 plot3(m_net.kick_vel_set,m_net.th_kick_set,omega_set,'k-');

 if c1>1

 plot3(pow.kick_vel_set,pow.th_kick_set,omega_set,'k-');

 plot3(pow.kick_vel,pow.th_kick,omega,'k+');

 for c2 = 1:3

 plot3([m_net.kick_vel(c2),rightedge.kick_vel(c2)],...

 [m_net.th_kick(c2),rightedge.th_kick(c2)],omega(c2)*[1,1],'k-')

 end

 end

end

% Grid for vis

grid_height = 94;

grid_width = 80;

omega_grid = linspace(omega(1),omega(end),grid_height)';

m_net.kick_vel_grid = polyval(m_net.kick_poly,omega_grid);

m_net.th_kick_grid = polyval(m_net.th_poly,m_net.kick_vel_grid);

pow.kick_vel_grid = polyval(pow.kick_poly,omega_grid);

pow.th_kick_grid = polyval(pow.th_poly,pow.kick_vel_grid);

angles = atan((pow.th_kick_grid - m_net.th_kick_grid)...

 ./ (pow.kick_vel_grid - m_net.kick_vel_grid));

rightedge.kick_vel_grid = m_net.kick_vel_grid + hypot*cos(angles);

rightedge.th_kick_grid = m_net.th_kick_grid + hypot*sin(angles);

grid.kick_vel = [];

grid.th_kick =[];

for c1 = 1:length(omega_grid)

 grid.kick_vel = [grid.kick_vel; linspace(...

 m_net.kick_vel_grid(c1), rightedge.kick_vel_grid(c1), grid_width)];

 grid.th_kick = [grid.th_kick; linspace(...

 m_net.th_kick_grid(c1), rightedge.th_kick_grid(c1), grid_width)];

end

grid.omega = omega_grid * ones(1,grid_width);

C:\Users\eaxsw\Desktop\kick_optim results\superaggregator.m 3 of 4

for c1 = 1:length(plots.fields)

 superagg_plotfun(agg,vals,plots,plots.fields{c1});

 set(gcf,'Name',['ko_grid_',get(gcf,'Name'),'_3D']);

 mesh(grid.kick_vel,grid.th_kick,grid.omega,...

 grid.omega*0+agg{vals(1)}.(plots.fields{c1})(1),...

 'FaceColor','none','EdgeColor',[0,0,0]); hold on;

end

% Get control surface data

temp = load('agg_control.mat'); control = temp.agg;

% Interpolator to get th_kick values from omega and kick_vel values

interpolator = scatteredInterpolant(control.kick_vel(:),control.omega(:),control.th_kick(:));

for c1 = 1:length(plots.fields)

 superagg_plotfun(agg,vals,plots,plots.fields{c1});

 set(gcf,'Name',['ko_contsurf_',get(gcf,'Name'),'_3D']);

 [C,h] = contour3(control.kick_vel,control.omega,control.(plots.fields{c1}),...

 plots.contours.(plots.fields{c1}));

 for c2 = 1:length(h)

 set(h(c2),'ZData',get(h(c2),'YData')); % set Z (omega) to Y

 set(h(c2),'YData',... % Look up appropriate values for Y (th_kick) using interpolant

 interpolator(get(h(c2),'XData'),get(h(c2),'ZData')));

 end

 if plots.clabel

 h2 = clabel(C,plots.contours.(plots.fields{c1})(end:-3:1));

 for c2 = 1:length(h2)

 try

 pos = get(h2(c2),'Position');

 set(h2(c2),'Position',[pos(1),interpolator(pos(1),pos(2)),pos(2)]);

 catch

 set(h2(c2),'ZData',get(h2(c2),'YData'));

 set(h2(c2),'YData',interpolator(get(h2(c2),'XData'),get(h2(c2),'ZData')));

 end

 end

 end

 % Draw box around control surface

 patch(...

 [m_net.kick_vel_set';rightedge.kick_vel_grid(end:-1:1)],...

 [m_net.th_kick_set';rightedge.th_kick_grid(end:-1:1)],...

 [omega_set';omega_grid(end:-1:1)],...

 'k','FaceColor','none','EdgeColor','k');

 % Add in midline (top and bottom are covered by patch)

 plot3([m_net.kick_vel(2),rightedge.kick_vel(2)],...

 [m_net.th_kick(2),rightedge.th_kick(2)],omega(2)*[1,1],'k-')

end

for c1 = 1:length(plots.fields)

 figure; hold on;

 set(gcf,'Name',['ko_contsurf_',plots.fields{c1},'_2D']);

 [C,h] = contour(control.kick_vel,control.omega,control.(plots.fields{c1}),...

 plots.contours.(plots.fields{c1}));

 % clabel stuff needs to be added for this one

 % Draw box around control surface

 patch(...

 [m_net.kick_vel_set';rightedge.kick_vel_grid(end:-1:1)],...

 [omega_set';omega_grid(end:-1:1)],...

 'k','FaceColor','none','EdgeColor','k');

 % Add in midline

 plot([m_net.kick_vel(2),rightedge.kick_vel(2)],...

 omega(2)*[1,1],'k-')

 % Add in optimum points

 xlabel('Velocity \dot{h}_k (m/s)','interpreter','latex');

 ylabel('Rotor speed $\dot{\theta}$ (rad/sec)','interpreter','latex');

 c = colorbar;

 ylabel(c,plots.titlestr.(plots.fields{c1}));

end

C:\Users\eaxsw\Desktop\kick_optim results\superaggregator.m 4 of 4

C:\Users\eaxsw\Desktop\kick_optim results\superagg_plotfun.m 1 of 1

function superagg_plotfun(agg,vals,plots,field)

figure('Name',field);

axes; hold on;

view([-28,22]);

for c1 = vals

 % Create contours

 [C,h] = contour3(agg{c1}.kick_vel,agg{c1}.th_kick,agg{c1}.(field),...

 plots.contours.(field));

 % Move contours into position on plane

 for c2 = 1:length(h)

 set(h(c2),'ZData',get(h(c2),'ZData')*0+agg{c1}.omega);

 end

 if plots.clabel

 % Label contours

 h2 = clabel(C,plots.contours.(field)(end:-3:1));

 for c2 = 1:length(h2)

 try

 % Move text contourlabels

 pos = get(h2(c2),'Position');

 set(h2(c2),'Position',[pos(1:2),agg{c1}.omega]);

 catch

 % Move + contourlabel markers

 set(h2(c2),'ZData',agg{c1}.omega);

 end

 end

 end

 % Draw flat box at data limits for this speed

 patch(agg{c1}.kick_vel([1,end,end,1]),agg{c1}.th_kick([1,1,end,end]),...

 agg{c1}.omega*[1,1,1,1],'k','FaceColor','none','EdgeColor','k');

end

xlabel('Kick velocity \dot{h}_k (m/s)','interpreter','latex');

ylabel('Kick angle θ_k (rad)','interpreter','latex');

zlabel('Rotor speed $\dot{\theta}$ (rad/sec)','interpreter','latex');

box on;

set(gca,'xlim',[-1,24],'ylim',[-0.1,1.7],'zlim',[0.3,0.5],...

 'ztick',0.3:0.05:0.6);

% title(plots.titlestr.(field));

c = colorbar;

ylabel(c,plots.titlestr.(field));

% Plot backside box

% axis auto;

% axis manual;

% xlim = get(gca,'xlim'); ylim = get(gca,'ylim'); zlim = get(gca,'zlim');

% patch(xlim([2,2,2,2]),ylim([1,1,2,2]),zlim([1,2,2,1]),...

% 'k','FaceColor','none','EdgeColor','k');

% patch(xlim([1,1,2,2]),ylim([2,2,2,2]),zlim([1,2,2,1]),...

% 'k','FaceColor','none','EdgeColor','k');

end

	Abstract
	Acknowledgements
	Contents
	List of Figures

	Nomenclature
	Introduction
	Wind rotor theory
	Large-diameter wind turbines
	Gearboxes
	Direct-drive machines

	Scaling effects
	The integral compression wind turbine
	The ICWT stroke
	Conceptual design

	Aims and scope
	Layout of the thesis

	Literature review
	Wind turbine technology
	Development to date
	Deployment

	Intermittency and dispatchability problems of renewable energy
	Possible solutions
	Interconnectors
	Load-following plant
	Demand-side management

	Energy storage
	Flywheels
	Electrochemical storage
	Flow batteries

	Pumped hydroelectric energy storage
	Compressed air energy storage
	Thermal considerations
	Deployment of CAES

	Free-Piston Energy Converters
	FPEC control

	Valves
	State-space simulations
	Ordinary differential equations
	Numerical methods for nonlinear ODEs
	Euler's method
	Modified Euler's method
	Runge-Kutta method
	Adaptive step sizes
	Numerical Differentiation Formulas

	Control
	PID control
	Model Predictive Control
	Sliding mode control

	System modelling
	Reference turbine specifications
	Model derivation
	Non-rotating model
	Basic rotating model
	Connected piston model
	Limitations of pressure state variable

	Mass-based model
	Mass derivative
	Temperature derivative
	Adiabatic compression
	Thermal conduction
	Overall

	Pressure function
	Complete ODE
	Work done
	Pressure force method
	Gravity torque method

	Structure of the modelling code
	Operational modes
	Simulation events
	Packed state vector
	Physical properties
	Specific heat capacity of air
	Thermal conductivity of air

	Energy calculations
	Potential energy in system
	Kinetic energy
	Centrifugal potential energy
	Diametrically linked pistons
	Gravitational potential energy
	Total potential energy

	Energy required
	Energy to compress air
	Energy to exhaust compressed air
	Work done by atmosphere
	Energy to overcome friction
	Total energy required

	Conclusions

	Thermal modelling
	Wall temperatures
	Wall temperature ODE
	Conduction internal to the wall
	Conduction at wall surface
	Total ODE

	Orthogonal Polynomials
	Gram-Schmidt orthonormalisation
	Analytical method
	Numerical method
	Derivatives
	Weighting
	Projection matrices

	Implementation
	Finding steady-state wall temperatures
	Newton-Raphson optimisation process
	Modification to improve stability

	Final steady state

	Conclusions

	Water cooling
	Thermal properties
	Saturation temperature and pressure
	Latent heat of evaporation
	Specific heat capacity of water

	Additional state variables
	Flow through valves
	Pressure and volume
	Two-temperature model
	Evaporation ODEs
	Energy required
	Adiabatic stage
	Isothermal stage
	Exhaust stage
	Total energy required

	Stiffness problems
	Water droplet test calculation

	Single-temperature model
	States
	Evaporation ODEs
	Energy required
	Verification

	Conclusions

	Exhaust valve control
	Simple method
	Control algorithms
	Derivative control
	Implementation

	Hierarchical twin controller system
	Principles
	Fast controller
	Slow controller

	Implementation in model
	Reduced simulation complexity
	Simulated sensors

	Problems with two-parameter system
	Single-parameter method
	Results

	Simulation duration

	System optimisation
	Variables & targets
	Controlled variables
	Dependent variables
	Power fraction
	Net rate of air being exhausted

	Rotor speed consideration

	Exploratory simulations
	Results
	Single rotor speed
	Maxima
	Four rotor speeds

	Defining a control surface
	Control surface results

	Conclusions

	Conclusions and future work
	Contributions of present work
	Future work

	References
	Appendices
	Assumptions made in the model
	Tie rod dynamic behaviour
	Natural frequency
	Modelling

	Rotational speed of the rotor
	Effect of piston forces
	Coriolis forces
	Gravity forces

	Net effect on rotor

	Heat transfer at walls
	Linearising the model about a given state
	MATLAB scripts
	Core model scripts
	Ancilliary scripts

