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ABSTRACT 

The two main objectives in this study were investigating the microbial quality 

and microbial communities of 'use-by date' Mung bean sprouts by using 

conventional culture and 16S/18S rONA PCR-DGGE methods, and evaluating 

the efficacy of natural antimicrobial substances, chemical disinfectants, and 

thermal treatments in reducing and inhibiting the growth of the pathogens on 

mung bean seeds. Retail samples of pre-packed mung bean sprouts were 

obtained from three retailers in the local area. The microbial quality and 

communities were evaluated on the 'use-by date'. The highest counts of total 

aerobic counts (7.86 10gIO CFU/g), yeasts and moulds (7.0 10gIO CFU/g), total 

lactic acid bacteria (6.24 10gIO CFU/g) and total coliforms (6.63 10glO CFU/g) 

were found in samples from one shop and the OGGE band sequences also 

identified major populations of LAB from the same samples, These indicated 

poor quality and spoilage of the samples from this location and could be related 

to improper storage at temperatures above 5°C. 

The combination of conventional culture methods with the PCR-DGGE 

technique revealed a larger diversity of bacterial communities than eukaryotic 

ones based on the relative number of amplimers present on most of the OGGE 

gels. Identification based on band analysis revealed that the Enterobacteriaceae 

(29.6%), soil bacteria (20.4%), lactic acid bacteria (18.5%). yeast (14.8%). 

Pseudomonas spp. (13%), and Flavobacterium (3.7%) constituted the major 

populations in bean sprout samples. Cluster analysis of the OGGE patterns of 

both 16S and 18S rONA amplimers found no strong relationship between 

sample sources and batches indicating the variability of natural populations. 
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The use of natural antimicrobial products, such as a mixture of lime juice and 

vinegar (t: t, pH 2.83) and bacteriocin-like substances produced by 

Pediococcus acidilactici, failed to reduce and inhibit the growth of Listeria 

monocytogenes on mung bean seeds. The former solution had higher 

antimicrobial efficiency in reducing the pathogen on seeds (1.93 10glO CFU/g) 

compared to the Pediococcus broth culture (1.22 10glO CFU/g), but both 

solutions failed to inhibit the re-growth of the pathogen during the sprouting 

process and also reduced seed germination percentage by 13-18%. 

The evaluation of efficacy of sequential washing using a combination of 

chemical treatments (two-step dipping) against the pathogens on seeds showed 

that a two-step dipping treatment in a solution containing 2% sodium 

hypochlorite for to min followed by 5% lactic acid solution for 5 min was the 

most effective treatment. This treatment achieved the highest reductions of L. 

monocytogenes (2.91 loglo CFU/g) and Salmonella Typhimurium (3.20 10glO 

CFUlg) after treatment and continued to reduce the pathogen during the 

sprouting process. This may be due to the chemical residues on treated seeds 

which lowered both pathogens on sprouted seeds to below the limit of 

detection « 50 CFU/g) by direct plating without significantly affecting seed 

viability. 

The use of thermal treatments based on a hot and cold water dipping was found 

to be more effective in reducing the normal flora on seeds and less affecting of 

seed germination compared to microwave heating. The use of a hot and cold 

water dipping treatment at 92°e for t min followed by ice-cold water at 5°C 
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for 30 sec achieved the highest reduction of L. monocytogenes on seeds (>5 

\OglO CFU/g) but had the lowest gennination percentage (89%) compared to 

other hot and cold water dipping treatments. Microwave heating at 1-4 kW 

showed a poorer efficiency in reducing nonnal flora on seeds and severely 

affected seed viability. 

Overall, a two-step washing with 2% sodium hypochlorite followed by 5% 

lactic acid seems to be the most successful treatment in reducing and inhibiting 

the recovery of the pathogen during the sprouting process. However, the 

chemical residues on treated seed may become a negative image to apply this 

treatment in the sprout industry. 
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Mung bean sprouts consumption and nutrition 

Leguminous seeds are one of the richest and cheapest sources of proteins 

(Barroga et al., 1985). Their potential health benefits as well as good eating 

qualities have led to the consumption of many different types of sprouts from 

mung bean, alfalfa, rice, and wheat in different societies and have now gained 

popularity in many parts of the world (Sharma and Demirci, 2003; Pao et al., 

2004; Singh et al., 2005). Mung bean (Vigna radiata) is one of the most 

popular legumes in Pakistan, the Philippines, China, Korea, Japan, India and 

Bangladesh (Aman, 1979; Ali Siddiqui et aI., 200 I; Hur and Kor, 2002; 

Gabriel et al., 2007). Sprouts are known as rich sources of vitamins, minerals, 

enzymes, and amino acids (Neetoo and Chen, 2010). Raw mung bean was 

reported to contain 8.64% moisture, 25.04% protein, 1.30% fat. 3.76% ash, 

10.66% crude fibre and 59.24% total carbohydrate based on dry weight basis 

(EI-Moniem, 1999). Significant levels of vitamin A, B 1, B2 and niacin, 

calcium, iron, and fibre in sprouts are beneficial in alleviating micronutrient 

deficiencies (Anonymous, 2007a). 

Consumption of seed sprouts is gaining popularity in many parts of the world, 

including Europe and the United States (Robertson el al., 2002; Bari et al., 

2004). In the U.S., the recent shift in consumers' lifestyle towards 'healthy 



living and healthier foods' resulted in increased consumption of raw sprouts, 

mostly in salads and sandwiches (Feng, 1997). The increasing demand for 

mung bean in the Philippines can be attributed to the popularity of fast food 

establishments that served raw mung bean sprouts as a side dish with soup and 

other meals (Barroga et al., 1985; Gabriel, 2005; Gabriel., et aI., 2007). In 

Japan, 360,000 tons of bean sprouts are consumed per year (Bari et aI., 20 I 0), 

while in Korea, the current domestic market of mung bean sprout is estimated 

to be 170 billion won per annum (Lee et al., 2007). Because bean sprouts are 

frequently eaten raw (i.e. in salads and in sandwiches) or slightly cooked such 

as stir fry in oriental-type meals (Rajkowski and Thayer, 2001; Robertson et 

al., 2005), the growing consumer demand for the said products also increased 

the possibility of foodborne illnesses associated with bean sprouts 

consumption. 

1.2 Sprout associated outbreaks 

Consumption of raw sprouts is considered as an important risk factor 

associated with the occurrence of food-borne illness (Van Beneden et al., 1999; 

Proctor et al., 2001). Several outbreaks of foodborne illness linked to 

contaminated seeds are shown in Table 1.1. Most of the outbreaks have 

occurred in the US, Canada, Denmark, Finland, Norway, Japan, Sweden, UK, 

and Northern Ireland (Robertson et al., 2002; Emberland et al., 2007; HPA, 

2011). Numerous outbreaks of salmonellosis and E. coli 0157:H7 infection 

have been associated with eating mung bean, radish, mustard, cress and soy 

bean (Todoriki and Hayashi, 2000; Robertson et aI., 2002; Scouten and 
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Table 1.I: Sprout-related outbreaks In the U.S., Canada, Japan and other 
countries (1973-20 10) 

Year Type Pathogen Cases Location 

1973 Soy, cress, mustard Bacillus cereus 4 Texas 

1982 Bean sprout Yersinia enterocolilica 16 Pennsylvania 

1988 Mung Salmonella Saint-Paul 143 UK 

1990 Alfalfa Salmonella Anatum 15 US 

1994 Alfalfa Salmonella Bovismorbificans 228/210 SwedenlFinland 

1995 Alfalfa Salmonella Stanley 128 US 

1995 Alfalfa Salmonella Newport 133 US/CAN 

1995 Alfalfa Salmonella Newport 69 US 

1996 Alfalfa Salmonella Stanley 30 US 

1996 Alfalfa 
Salmonella Montevideo and 

650 US 
Salmonella Meleagridis 

1996 Radish E. coli 0157:H7 6,000 Ozaka, Japan 

1996 Radish E. coli 0157:H7 47 Kyoto, Japan 

1997 Alfalfa 
Salmonella Infantis and 

109 US Salmonella Anatum 

1997 Alfalfa E. coli 0157:H7 \08 US 

1997 Alfalfa Salmonella Senftenberg 60 US 

1997 Alfalfa Salmonella Meleagridis 78 CAN 

1998 Alfalfa Salmonella Havana 40 US 

1998 Alfalfa E. coli 0157:NM 8 US 

1999 Alfalfa Salmonella Mbandaka 83 US 

1999 Alfalfa Salmonella Typhimurium 119 US 

1999 Alfalfa Salmonella Muenchen 61 US 

1999 Alfalfa Salmonella Paratyphi B var. java 51 CAN 

1999 Alfalfa Salmonella spp. 34 US 

1999 Alfalfa Salmonella Muenchen 38 US 

1999 Clover Salmonella Saint-Paul 36 US 

2000 Mung Salmonella Enteritidis 75 US 

2000 Mung Salmonella Enteritidis 12 CAN 

2001 Alfalfa Salmonella Kottbus 32 US 

2001 Alfalfa Salmonella spp. 22 US 

2001 Mung Salmonella Enteritidis 84 CAN 

2001 Alfalfa Salmonella Paratyphi B var java 51 CAN 

2002 Alfalfa E. coli 0157:H7 7 US 

2003 Alfalfa Salmonella Saint-Paul 9 US 

2003 Alfalfa Salmonella Chester 26 US 

2003 Alfalfa E. coli 0157 :H7 7 US 

2003 Alfalfa Salmonella Saint-Paul 16 US 

2003 Alfalfa E. co1i0157:NM 13 US 

2004 Alfalfa Salmonella spp. 12 US 
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Table 1.I: Sprout-related outbreaks in the U.S., Canada, Japan and other 
countries (1973-2010) (cont' d). 

Year Type Pathogen Cases Location 

2005 Alfalfa E. coli 0157:H7 1 US 

2005 Mung Salmonella spp. 648 CAN 

Norway, 
2007 Alfalfa Salmonella Weltevreden 29 Denmark, 

Finland 

2009 Alfalfa Salmonella Saint-Paul 235 US 

England, 

2010 Mung Salmonella Bareilly 197 
Scotland. 
Northern 
Ireland 

Adapted from: Feng (1997); Watanabe el al. (1999); Taormina et al. (1999); Thompson and 
Powell (2000); Harb el al. (2003); Sivapalasingam el al. (2004); FSNET (2007); CCDR 
(2008); Health Canada (2007); Emberland el al. (2007); Falkenstein (2010); HPA (2011). 
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Beuchat, 2002; Barak et al., 2002; Health Canada, 2006). The outbreaks 

associated with contaminated mung bean sprouts were usually linked to 

Salmonella infection as shown in Table 1.1. For example, an outbreak of 

Salmonella infection that occurred in southern Finland in the 1992 was 

associated to one production lot of mung bean sprouts (Mattilla et al., 1994). In 

1998, an outbreak of Salmonella Saint-Paul infection that occurred in United 

Kingdom was connected to the consumption of bean sprouts obtained from 

several producers (0' Mahony et al., 1990). From 2000-2002, seven outbreaks 

of Sal. Enteritidis infections associated with mung bean sprouts were identified 

in the United States, Canada, and the Netherlands (Mohle-Boetani et al., 2009). 

Recently, the latest outbreak reported by the Center for Disease Control and 

Prevention (CDC), which affected 235 confirmed victims of Salmonella Saint­

Paul outbreak was caused by alfalfa sprouts between February and May of 

2009 (Falkenstein, 20 I 0). 

The outbreaks from Salmonella contaminated mung sprouts in the United 

Kingdom in 1988 and in the United States in 1997 produced international 

concern on the safety of seeds and their sprouts (Hu et al., 2004). In 1998, the 

National Advisory Committee on Microbiological Criteria for Foods 

(NACMCF) identified sprouts as a special food safety problem during the 

sprouting process due to the ability of bacterial human pathogens on seeds to 

grow from low numbers to very high numbers as a result of a favourable 

temperature, moisture and nutrient availability during propagation (USFDA, 

I 999a; NACMCF, 1999; Todoriki and Hayashi, 2000). It has been well 

established that consumption of contaminated sprouts poses a high risk for 
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young children, the elderly and immuno-compromised people (Brooks et aI., 

2001; Matos el al., 2002). 

1.3 The sources of sprout contamination 

The contamination of pathogenic microorganisms in sprouts can occur at 

different stages included pre- and post-harvest stages, during and after 

processing stages as shown in Table 1.2. However, the major source of human 

pathogens on sprouts implicated in many outbreaks of infection is thought to be 

from seeds rather than contamination of sprouts during or after production 

(Brooks el al., 2001; Scouten and Beuchat, 2002; Winthrop et al., 2003; Bari el 

al., 2004; Montville and Schaffner, 2004; Health Canada, 2006). 

Epidemiological investigations have revealed that the pathogens responsible 

for most outbreaks were transmitted to sprout vegetables from contaminated 

seeds (Weissinger and Beuchat, 2000; Brooks et al., 2001; Honish and 

Nguyen, 2001; Gill et al., 2003). A low residual pathogen population 

remaining on contaminated seeds after seed decontamination processes appear 

to be capable of growing to very high levels during sprouting (Neetoo et aI., 

2009). The primary reason and possible route for seed contamination appears 

to be from the seeds being treated as raw agricultural products rather than as a 

food product at the time of harvest as it may not be known ifthe seeds are to be 

use for human consumption or for planting, which consequently allows seeds 

to carry microorganisms from their original environment (Robertson el 

a/.,2002 Montville and Schaffner, 2005). Most seeds to be used for sprout 
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Table 1.2: Possible sources of pathogenic microorganism contamination on 
seeds and sprouts during pre-harvest and post-harvest conditions, and during 
and after processing 

Pre-harvest Post-harvest During and after processing 

Contaminated seeds Faeces (animal and human Improper basic hygiene 
origin) 

Faeces (animal and human Human handling (workers The presence of animals or 
origin) and consumers) other extraneous sources of 

pathogens in the processing 
environment 

Soil Contaminated devices used The use of contaminated 
for harvesting and processing equipment 

Contaminated irrigation Transport containers Improper control, storage and 
water display temperature 

Green or inadequately Wild and domestic animals 
treated manure 

Air (dust) Air (dust) 

Wild and domestic animals Cleaning water 
(ex. Dropping from rodents 
and ruminants) 

Inadequate agricultural Sorting, packing, other 
worker hygiene processing equipments 

Transport vehicles 

Improper storage 
(temperature and physical 
environment) 
Improper packaging 

Cross contamination 

Adapted from: Beuchat (1996a); Tauxe et ai, (1997); NACMCF, 1999; Van Beneden et al. 
(1999); Brooks et al. (2001); Johannessen el al. (2002). 
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production are grown in the open field similar to other agricultural crops, 

usually with no special precautions and can be contaminated by unpasteurized 

fertilizers, non-potable water, or grazing livestock (Mohle-Boetani et al., 2001; 

Fett, 2002). Using raw animal manure for fertilizer increases the potential for 

contamination of fruits and vegetables with both pathogens and spoilage 

organisms (Brackett, 1992). One of the guidelines available to the grower is to 

use the safe sludge matrix as a fertilizer which could enhance the microbial 

quality of the produce (Heaton and Jones, 2008). The 'safe sludge matrix' is an 

agreement made between Water UK and the British Retail Consortium (BRC) 

which include inputs from the Environment Agency (EA), Department of 

Enviromental Transport and Regiond (DETR), and Ministry of Agriculture 

Fisheries and Food (MAFF) (Chamber et al., 2001 a). It consists of a table of 

crop types with clear guidance on the minimum acceptable level of treatment 

for any sewage sludge-based product which may be applied to a particular crop 

or rotation (Table 1.3). This agreement was made to ensure the highest possible 

standards for food safety and to provide a framework which would give the 

retailers and food industry confidence that sludge reuse on agricultural land is 

safe (Chamber et al., 200Ia). 

Faecal material, soil and other inputs such as sewage overflow introduce 

enteropathogens directly to water (Heaton and Jones, 2008). Therefore, 

exploring the origin and the distribution of irrigation as well as the history of 

the land may limit the introduction of pathogenic bacteria to seeds (Buck et al., 

2003). Seeds can become contaminated with rodent faeces if stored in the 

warehouse in open containers (Mohle-Boetani et aI., 2001). Poor hygienic 
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Table 1.3: The safe sludge matrix 

Crop group Untreated Conventionally Enhanced treated 
slud~es· treated slud~es·· sludpesu • 

Fruit X X ~ 

Salads X X ~ 

30 month harvest interval 10 month 
applies harvest 

interval 
X applies 

Vegetables X 12 month harvest interval ~ 

applies 

Horticultures 
X X ~ 

Combinable and X ~ ~ 

Animal feed 
crops 
Grass and Forage Grazed X X 

Deep ~ 

injected or 3 week no 3 week no 
plaughed grazing grazing and 

only and > harvest 
harvest interval 

Harvested X ~ interval 
No grazing 
in season of ~ 

application .J 

"All applications must comply with the sludge (use in agriculture) regulations and DETR 

code of practice for agricultural use of sewage and sludge. 

X Applications not allowed (except when stated conditions apply) 

• Sludge which had been screened to remove litter and foreign objects but not normally 

stabilized. Any sludge that failed to reach the product standards for treated sludge is regarded 

as untreated. 

•• Treatment processes and standards that ensure at least 99% of pathogens have been 

destroyed . 

••• Treatment processes which are capable of virtually eliminating any pathogens which may 

be present in the original sludge. This sludge wiII be free from Salmonella and have been 

treated so as to ensure that 99.9999% pathogens have been destroyed (a 6 log reduction) 

(Chamber et al., 2001a; Chamber et al., 200Ib). 
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workers in the processing of fresh produce, mishandling at processing facilities 

and contamination of fresh produce during transportation and cross­

contamination at food service establishments from other contaminated food 

items or infected workers can all lead to contamination of ready-to-eat fruits 

and vegetables with several different bacterial pathogens (Brackett, 1992; Lin 

et aI., 1996). Therefore, a high standard of worker hygiene should be enforced, 

and human waste management at production sites should follow local laws 

(Buck et 0/., 2003). Seeds contain sufficient nutrients to support microbial 

growth, and nutrient leaching could foster growth both in the soak water and on 

the seed surface (Viswanathan and Kaur, 200 I). Sprouting processes start by 

soaking viable seed in water and then placing the seed in a warm, humid 

environment for an average of 3 to 7 days to foster germination and sprout 

growth (USFDA, 1999a). Seed requires the regular addition of water and 

incubation under warm conditions (room temperature) and water is typically 

added at regular intervals either as short as hourly intervals to as long as 

several times per day (Montville and Schaffner, 2005). During sprouting, a 

significant (p < 0.05) decrease in fat, carbohydrate fractions, anti-nutritional 

factors (trypsin inhibitor activity, hemagglutinin activity, tannin, and phytic 

acid) and total ash contents occurred in mung bean seeds (Mubarak, 2005). 

Sprouting conditions together with the nutrients released by sprouting seeds 

provide ideal conditions for the exponential growth of bacteria contaminating 

the seeds favouring the growth of pathogenic bacteria such as Salmonella and 

E. coli to reach a very high level in the finished products (USFDA, 1999a; 

Delaquis et 0/.,1999; NACMCF, 1999; Fu el al., 2001; Hu el 01.,2004; Pefias 

el al., 2009). Therefore, if the products are consumed raw or slightly cooked, 
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the risk of consuming viable pathogens is substantial (Fu et al., 2001). Bari et 

al. (1999) observed a rapid increase of E. coli 0157:H7 population from its 

initial inoculum (2.6 logto CFU/g) to 6-7 10glOCFU/g within 2 days during 

radish sprouting at 25°C. Schoeller et al. (2002) observed the growth of total 

bacteria on alfalfa seed rising from 3.5 logto CFU/g to 8.0 logto CFU/g during 

the first 24 h of sprout production before reaching 9 10glO CFU/g by 48 hand 

remained stable for the rest of sprouting period and refrigerated storage. 

1.4 Pathogenic bacteria associated with sprout-related 

outbreaks 

Salmonella and E. coli 0157:H7 are the major orgamsms consistently 

associated with sprout-related outbreaks (Thompson and Powell, 2000; Health 

Canada, 2006; Bari et al., 2008). Salmonella and E. coli 0157:H7 are transient 

species in the plant phyllosphere and can be found in animal faeces (Buck el ai, 

2003). Meanwhile, Bacillus cereus and Listeria monocytogenes, Clostridium 

perfringens and C. botulinum are potentially pathogenic bacteria commonly 

isolated from natural sources such as soils, sediments and decaying plants in 

soil, thus there is the possibility for these organisms to contaminated fresh 

produce (Johannessen et aI., 2002; Ells and Hansen, 2006; Heaton and Jones, 

2008). Further details and information on the major pathogenic bacteria 

involved in sprout-related outbreaks are enumerated below: 
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1.4.1 Salmonella spp. 

Salmonella is a genus of the family Enterobacteriacae which is characterized 

as Gram-negative, rod-shaped bacteria (Francis et al., 1999). The genus 

Salmonella is composed of over 2,700 serotypes for which animals and birds 

are the natural reservoirs (Beuchat, 1996a). They are commonly found in the 

intestinal tract of humans and animals, and are abundant in faecal material, 

sewage, and sewage-polluted water (Francis et al., 1999). Salmonella spp. are 

frequently found in contaminated soil and contaminated irrigation water, which 

has made this organism become one of the most frequent pathogenic bacteria 

found especially in the fields growing fresh produce (Francis et al., 1999; 

Health Canada, 2006). Salmonella was the most common bacterial agent 

related to produce-associated outbreaks in the United States from 1973 through 

1997 (Sivapalasingam et al., 2004). The most notable symptoms of Salmonella 

infection are nausea, vomiting, abdominal pain, dehydration, and non-bloody 

diarrhoea (Health Canada, 2006). Several strains of Salmonella spp. were 

identified as the pathogenic bacteria associated with sprout-related infections 

that occurred during 1990-2010 as shown in Table 1.1. The infective dose of 

Salmonella spp. has been proposed to be as low as 1-10 cells (Health Canada, 

2006). 

1.4.2 E. coli 01S7:H7 

E. coli is a common organism found in the intestinal tract of humans and 

animals often used as an indicator of faecal contamination (Francis and 

O'Beirne, 2002). Enterohaemorrhagic E. coli 0157:H7 is recognized as serious 
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foodborne pathogen and in generally associated with cattle and their products, 

specifically undercooked ground beef (Beuchat, 1996a; Bari et al., 1999). This 

pathogen was first identified in 1982 from two outbreaks of hemorrhagic colitis 

occurred among patrons of a fast-food restaurant chain in Oregon and 

Michigan due to the consumption of contaminated beef patty (Besser el al., 

1999). The infective dose for E. coli 0157:H7 is estimated to be less than 10 

cells, but this pathogen can grow rapidly to a large popUlation during sprout 

production (NACMCF, 1999; Health Canada, 2006). E. coli 0157:H7 can 

cause a variety of illness such as abdominal pain, nonbloody diarrhoea, fever, 

vomiting, and nausea including bloody diarrhoea, the hemolytic uremic 

syndrome and childhood kidney failure (Michino et aJ., 1999; Besser el al., 

1999; Hilborn et al., 1999). Fruits and vegetables have recently accounted for 

an increasing numbers of outbreaks (Besser et al., 1999). For example, a 

multistate outbreak of E. coli 0157:H7 infection linked to alfalfa sprouts 

grown from contaminated seeds occurred in the United States in June and July 

1997 (Breuer el al., 2001). The largest sprout-associated outbreak caused by 

consumption of E. coli 0157:H7 contaminated raw radish sprouts was 

dramatically realized during the summer of 1996 in Japan, which resulted in 

four deaths and affected more than 4,000 school children in and around Sakai 

city (Buck el al., 2003). A sprout-associated outbreak caused by nonmotile 

Shiga toxin-producing E. coli 0157:H7 also occurred in California in 1998 

(Mohle-Boetani el al., 2001). 
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1.4.3 Listeria monocytogenes 

Listeria spp. are Gram positive, facultatively anaerobic, oxidase negative, 

catalase positive, non-sporulating rods which consists of 6 distinct species (Ells 

and Hansen, 2006; Scollard et at., 2009). L. monocytogenes is an intracellular 

foodborne pathogen, well known as the causative agent of foodborne illness in 

humans called listeriosis which is a very serious cause of illnesses including 

meningitis, septicaemia, and abortion (Loessner et at., 2003; Berrada et aI., 

2006; Dabour et at., 2009; Scollard, et at., 2009). Listeriosis affects primarily 

pregnant women, newborns, infants, the elderly, and immuno-compromised or 

otherwise weakened individuals (Dabour et at., 2009). The presence of this 

pathogen is a major concern in processing plants for food because of the 

organism's ability to multiply at refrigeration temperatures and its ability to 

grow over a broad pH range of 4.1 to 9 (Herald and Zottola, 1988). 

Contamination with this pathogen indicates an unsatisfactory production 

process especially when it is present in high numbers (Berrada et at., 2006). It 

can survive longer under adverse environmental conditions than many other 

non-spore-forming bacteria of importance in foodborne disease (Fenlon, 1999). 

This pathogen has been isolated from commercially produced sprouted seeds, 

but no case of human listeriosis has been linked to sprouts (NACMCF, 1999). 

L. monocytogenes is associated with soil, plant and animal products and food 

processing environments (NACMCF, 1999). The presence of L. 

monocytogenes in plant materials is likely to be due to contamination from 

decaying vegetation, animal faeces, soil, river, and canal waters, or effluents 

from sewage treatment operations (Beuchat, 1996b). One of the reasons 
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Listeria is such as problem because it is a plant saprophyte which grow on 

decaying plant tissue. The development of high numbers of the pathogen in 

decayed vegetation such as aerobically spoiled silage has been cited as the 

source of infection in numerous cases of listeriosis in farm animals and it may 

be the origin of contamination capable of spreading along the food chain 

(Fenlon, 1999). This pathogen is present in many animals and can be isolated 

from their faeces on land they occupy (Beuchat, 1996b). The presence of L. 

monocytogenes in sprouts is not frequent compared with Salmonella or E. coli 

but this psychrotrophic pathogen still raises concern among fresh produce 

producers (Ells and Hansen, 2006). L. monocytogenes is an environmental 

pathogen and commonly contaminates moist areas of food processing plants 

which can make uncontaminated seeds or sprouts contaminated via wet 

equipment or aerosols in the sprout-growing environment (Schoeller et al., 

2002). Furthermore, L. monocytogenes may persist on contaminated seeds or 

sprouts or even increase during refrigerated storage because of the 

psychrotrophic nature of the pathogen (Schoeller el al., 2002). Listeria sp. has 

another key feature which is desiccation resistance so even when seeds are 

stored dry the organism is good at surviving. Recently, there was a report of L. 

monocytogenes being detected in red radish, alfalfa, and broccoli sprouts 

marketed in Korea, which poses a potential hazard for outbreaks from sprouts 

being sold in the country (Waje et al., 2009). 
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I.S Viral pathogens 

Foodborne viral infections generally propagate through the faecal-oral route, 

by direct contact or by consumption of contaminated food and water (Francis et 

al., 1999). Foods can be contaminated with viruses through contact with faeces 

(human) or faecally contaminated water, with vomit or water contaminated 

vomit, or in environments where infected people are present, and with aerosols 

generated by infected people (Koopmans and Duizer, 2004). Hepatitis A 

(HAV) and viral gastroenteritis particularly Norovirus (NoV) (formerly known 

as Norwalk-like virus (NLV) or small round structured viruses (SRSVs» are 

the most well documented viral contaminants in food (O'Brien et al., 2000; 

Seymour and Appleton, 2001; Koopmans and Duizer, 2004; Dawson et al., 

2005). They are also known viral pathogens which have been associated with 

fresh or minimally produced foods-associated outbreaks in frozen strawberries, 

raspberries, lettuce, melons, salads, watercress, diced tomatoes, green onions, 

and fresh-cut fruits (Rosenblum et ai., 1990; Niu et ai., 1992; Tauxe el al., 

1997; Hernandez el al., 1997; Pebody et ai., 1998; Hutin et al., 1999; Croci et 

al., 2002; Harris et ai., 2003; Charlotte et ai., 2005; Hjertqvist et al., 2006). 

Outbreaks caused by viral pathogens do not cause significant concern in the 

sprout industry compared to bacterial pathogens particularly Salmonella spp. 

and E. coli OI57:H7. This may be explained by the strictly intracellular 

parasitic nature of the viruses which do not allow them to replicate in food and 

water. Moreover, viral contamination of food never increases during 

processing, transport, or storage which makes the contaminated products look, 
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smell, and taste normal (Koopmans and Duizer, 2004). Unlike viruses, bacteria 

are able to proliferate rapidly during the sprouting process (e.g. because of 

warmth and humidity) and numerous sprout-related outbreaks have been linked 

to the contamination of bacterial pathogens in seeds. Although viruses do not 

grow or multiply in foods, foods may contaminate through human viruses and 

transmit infection (Seymour and Appleton, 2001). Fruits and vegetables are 

prone to be contaminated with sewage-contaminated surface water or during 

food preparation handling with poor hygiene practices and these can then 

transmit infection (Bidawid et aJ., 2000; Butot el aJ., 2007). Therefore, 

consumption of raw sprouts as a salad vegetable presents a great risk or hazard 

of viral infections to the consumer. 

Infection dose (number of cells) of Hepatitis A and Norovirus have been linked 

to outbreaks of produce-associated illness (10 to 50 for the former), and an 

unknown or probably low infection dose was linked to NoV infection cases 

(Harris et aJ., 2003). Viral gastroenteritis is a relatively mild disease and the 

incubation period of NoV gastroenteritis is 24-48 hours, and not all people who 

are infected with a NoV virus will develop NoV gastroenteritis symptoms 

(Seymour and Appleton, 2001; Prato et aJ., 2004; Schoen stadt, 2006). The 

common symptoms include watery diarrhoea, nausea, vomiting, some stomach 

cramping, low-grade fever, dehydration, and myalgia (Schoenstadt, 2006). In 

contrast, hepatitis A is often a more severe disease with a long incubation 

period of approximately 3-6 weeks and the most characteristic symptom is 

jaundice. Mild symptoms of nausea and malaise without jaundice are also 

commom (Seymour and Appleton, 2001). 
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1.6 Methods of analysis of seed sprouts 

Some sprout distributors and growers are currently testing seed samples prior 

to distribution or sprouting (Van Beneden et al., 1999). However, frequent 

failures in isolating a pathogen from implicated seeds suggest that seed 

contamination may occur at very low level or not be equally distributed within 

seed lots, and there is a limited number of samples tested (NACMCF, 1999; 

Brooks et al. 2001). The method of microbial testing of seeds is unlikely 

effective in term of isolating the pathogens as unsuccessful isolation of the 

outbreak bacterial strains from implicated seeds was usually found, despite 

abundant epidemiological evidence that seeds were the source of most sprout­

related outbreaks (Brooks et a/. 2001; Montville and Schaffner, 2005). This 

may be due to the bacterial cells being entrapped in cracks and crevices of the 

seeds, which make them inaccessible to selective enrichment broth used for the 

isolation of the implicated pathogens (Wu et al., 2001). In this case, the 

detection of pathogenic bacteria using molecular-based techniques, despite its 

higher efficiency in terms of reliability and speed will also has some limitations 

due to the inaccessibility to the bacterial cells which have been trapped inside 

the seed. In addition, conventional detection methods also revealed some 

limitations. Firstly, these methods require the microorganisms to be cultured 

and then characterized by their respective physiological and biochemical 

properties (Zhang and Fang, 2000). This may not provide a reliable result due 

to the limitations apparent with the plating approach that needs a prior decision 

on which bacteria to search for and knowledge of under which conditions these 

bacteria can grow. Moreover, there is a difficulty in developing media for 
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cultivation to accurately resemble specific conditions and it is well known that 

from some environments only a very limited population of the flora can be 

cultured (Rudi et al., 2002; Ercolini, 2003). Secondly, this technique requires a 

lot of media and chemicals, time-consuming, and expensive became of the 

limited number of replicate samples can be testes (Ercolini, 2003). The 

detection of pathogens such as Salmonella or Listeria in food samples usually 

takes 3 to 5 days or longer for confirmation results (D'lima and Suslow, 

2009). A traditional detection method based on that of the National Salmonella 

Reference Laboratory in 2007 using a culture-based technique can take 4 to 7 

days to confirm a positive sample (McCarty et al., 2009). The outgrowth of 

fast-growing organisms can affect the relevant organisms which grow more 

slowly and cause limitations to the study of microbial diversity and community 

structure (Crosby and Criddle, 2003). 

Bacterial identification based on molecular methods has been improving or 

developing which would enable the determination of the genetic diversity of 

complex microbial populations. These culture-independent methods can 

provide rapid, reliable results and are believed to overcome problems 

associated with selective cultivation and isolation of bacteria from natural 

samples (Ercolini, 2004). The molecular approaches have circumvented the 

need for cultivation because phylogenetically informative DNA sequences can 

be directly screened from the environment (Crosby and Criddle, 2003). 

Polymerase chain reaction - denaturing gradient gel electrophoresis (PCR­

DGGE) is usually employed to access the structure of microbial communities 
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in environmental samples without cultivation, and to determine the community 

dynamics in response to environment variations (Ercolini, 2004). This 

technique has been used to study the structure and/or evolution of microbial 

communities from complex microbial populations in different sample sources 

(Muyzer et al., 1993; Zhang and Fang, 2000; Vainio and Hantula, 2000; Ampe 

and Miambi, 2000; Ampe et al., 2001; Ogino et al., 2001; McCaig et al., 2001; 

Boon et al., 2002; Ercolini et al., 2003; Hewson and Fuhrman, 2004; 

Handschur et al., 2005; Zhang et al., 2005; Lee et al., 2005; Florez and Mayo, 

2006; Waters et al., 2006; Lagace et al., 2006; Spano et al., 2007). It has 

provided a new insight into microbial diversity and allows a more rapid and 

comprehensive analysis of microbial communities in comparison with 

cultivation based techniques (Dahllof et al., 2000; Boon et af.. 2002). This 

culture-independent technique yields fingerprints of microbial communities on 

single eletrophoretic tracks in which the number, precise position, and intensity 

of the bands in a gel track give an estimated number and relative abundance of 

numerically dominant organisms in the microbial communities (Ampe and 

Miambi, 2000). 

Applying PCR-OGGE method to analyze the microbial community starts with 

the extraction of total microbial DNA followed by PCR amplification to 

amplify the region of the bacterial 16S rRNA (16S rRNA) genes with universal 

or domain-specific primers and electrophoresis in denaturing gradient gel (Liu 

el al., 1997; Zhang and Fang, 2000; Brans and Van Elsas, 2008). The use of 

PCR and rRNA-based phylogeny has been effective in the exploration of 

microbial environments and the identification of uncultured organisms (Liu et 
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al., 1997). Ribosomal RNAs, integral elements of the protein synthesizing 

apparatus which is the basic component present in all primary kingdoms, are 

among the most highly conserved cellular molecules that contain sufficient 

sequence variability. The comparison ofrRNA sequences is a powerful tool for 

deducing phylogenetic relationships and allows the relationships between 

closely related groups to be determined (Weisburg et al., 1991; Devereux and 

Wilkinson, 2004). Polymerase chain reaction applied to region of this gene 

using conserved primers allows the generation of a mixture of amplicons which 

can be separated by DGGE leading to the dissection of microbial communities 

at the level of the phylogeny of their constituents (Brans and van Elsas, 2008). 

DGGE is a highly sensitive technique can be used to distinguish two DNA 

molecules that differ by as little as single-base substitution based upon 

differential melting double-stranded DNA molecules in a gradient with an 

increasing concentration of denaturant (urea and formamide) (Sheffield et al., 

1989; Hayes et al., 1999). As DNA fragments are electrophoresed through a 

linearly increasing gradient of denaturants, the fragment remains double 

stranded until it reaches the concentration of denaturants equivalent to a 

melting temperature (tnJ that cause the lower-temperature melting domains of 

the fragment to melt, the branching of the molecule caused by partially melting 

sharply decreases the mobility of the fragment in the gel (Sheffield et al., 

1989). Because single base changes in any of these domains will alter their 

melting temperature, these changes will lead to differences in the pattern of 

electrophoresis in the denaturing gradient gel, but if domain melts the fragment 

undergoes complete strand dissociation and the resolving power off the gel is 
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lost (Myers et al., 1985). Attachment of GC-rich sequence (GC-c1amp) to one 

of the PCR primers on it 5' end helps the DNA strand avoiding complete 

separation of the hybrid molecule (Myers et al., 1985; Ferris et al., 1996). 

Individual double-stranded DNA molecule denature along their length adjacent 

to the GC-c1amp according to their melting characteristic (i.e. sequences) this 

causes a change in its conformation and reduces its mobility to essentially halt 

at unique positions, forming discrete bands in the gel (Ferris et al., 1996; Hayes 

et al., 1999). 

1.7 Seed decontamination methods and processes 

It is well established that contaminated seed is the major problem associated 

with sprout related outbreaks which leads to the requirement for effective seed 

disinfection before sprouting (Delaquis et al., 1999). A few pathogenic cells on 

seeds can become a health hazard through rapid proliferation during the 

sprouting process (Thompson and Powell, 1999). Conventional washing and 

sanitizing agents normally reduce microbial populations by 1-2 log units but is 

not sufficient to assure microbial safety for fresh fruits and vegetables (Sapers, 

2001). Thus, it is essential to disinfect seeds before sprouting in order to 

prevent the growth of pathogenic bacteria in sprouts. The optimal disinfection 

procedure is not obvious, as the method must inactivate microbial pathogens, 

retain high germination rate, and most importantly, lower the use of chemical 

disinfectants to reduce their potential harmful effects (NACMCF, 1999; Lang 

el al., 2000; Robertson et al., 2002). Chemical treatments should not change 

the product's appearance, smell, taste or even nutritional properties, and must 
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not leave residues, must raise no objections from consumers or legislators, 

should be cheap and also convenient to use (Corry et al., 1995). 

The National Advisory Committee on Microbiological Criteria for Foods 

(NACMCF), the U.S. Food and Drug Administration, and the International 

Sprout Grower Association (ISGA) recommend the treatment of seeds in a 

solution containing 20,000 ppm active chlorine (derived from calcium 

hypochlorite) for 15-20 min before sprouting (NACMCF, 1999; Lang e/ al., 

2000; Rajkowski and Thayer, 2001; Winthrop et al., 2003). NACMCF also 

recommends treating seeds with combination treatment strategies that will 

achieve a 5-log reduction in the levels of Salmonella spp. and 

enterohaemorrhagic Escherichia coli 0157:H7 (NACMCF, 1999). However, 

the calcium chlorite solution at 20,000 ppm concentration is not practical for 

use by all sprouting operations (small-scale operations or consumers) and use 

of chlorinated compounds in food processing may not be acceptable to 

consumers (Lang et al., 2000). Moreover, it is obvious that this treatment could 

not guarantee a safe product because the efficacy of chlorine compounds in the 

presence of organic matter from soil and raw material during decontamination 

process decreased chlorine concentration, and hence the potential proliferation 

of the surviving microbes during the sprouting process still remain as a health 

hazard to consumers (Thompson and Powell, 1999; Kim et al., 2006). 

Several intervention treatments have been applied on seed and sprouts to 

evaluate their efficacy in reducing and inhibiting the growth of pathogenic 

bacteria especially E. coli 0 157:H7 and Salmonella on alfalfa and mung bean 
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seeds. These may be classified into chemical, biological, and physical 

decontamination treatments. 

1.7.1 Chemical decontamination 

Chemical decontamination is recently the most common method used to reduce 

contamination (Health Canada, 2006). Several chemical disinfectants have 

been applied onto seeds and sprouts especially on alfalfa and mung bean seeds 

to reduce and inhibit the growth of the pathogenic bacteria especially E. coli 

0157:H7 and Salmonella spp. (Table 1.4). So far, none of these intervention 

methods can completely eliminate the pathogens from seeds without affecting 

seed viability. Among all the chemical disinfectants, chlorinated water is the 

most widely used sanitizer to remove bacterial pathogens from fruits and 

vegetables in the food industry (Sapers, 200 I; Sengun and Karapinar, 2004; 

Wang et al .. 2006). Meanwhile, chlorine dioxide, ozone, organic acids, 

peracetic (peroxyacetic) acid and hydrogen peroxide are the main alternative 

sanitizing agents that gain interest in recent years (Olmez and Kretzschmar, 

2009). Table 1.5 summarised the advantages and limitations/disadvantages of 

popular chemical disinfectants usually used for fresh-cut vegetables industry. 
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Table 1.4 Seed decontamination using chemical disinfectants. 

Treatments 

Chlorine solutions 

Sodium hypochlorite, 
hydrogen peroxide, ethanol 

Gaseous acetic acid 

Ca(OClh, Tween 80. 
Acidified NaCI02, Acidified 
CI02• NaOCI. Ethanol, 
Hydrogen peroxide. 
Trisodium phosphate, 
Tsunami, Vortexx, Vegi-Clean 

N 
v. 

Seed typesllnitial inocula 

Alfalfa I Sal. Stanley 2 to 3 
10glOCFUlg 

Alfalfa I Salmonella 
(population in the suspension 
was 7.5 10glOCFUlmi 

Mung bean inoculated with E. 
coli OI57:H7. Sal. 
Typhimurium, and L. 
monocylogenes (3 to 5 
10gIOCFUlg). 

Alfalfa seeds I E. coli O157:H7 
2.04 to 3.23 10glOCFUlg 

Efficiency 

A solution containing 2,040 
~g1ml reduced the population to 
undetectable levels. 

Reduced Salmonella populations 
by more than 1000 fold. 

Salmonella and E. coli O157:H7 
were not detected by enrichment 
process of seeds treated with 242 
~I of acetic acid per liter of air for 
12 h at 45°C. 

Most treatments can reduce E. 
coli 0157:H7 to below detectable 
levels except Tween 80 and 
NaOCI. 

Negative effects References 

The pathogen was detected on Jaquette el al., 1996. 
seeds treated at lower 
concentration. 

Viable Salmonella cells were Beuchat, 1997. 
detected in treated seeds. I 

! 

L. monocylogenes was recovered Delaquis el al .• 1999. 
by enrichment from 2 of 10 tested 
samples. 

! 

Treatments ensuring larger Taormina and Beuchat, , 
reductions in numbers of the 1999. 
pathogen need to be developed. 

-



Table 1.4 Seed decontamination using chemical disinfectants (cont'd). 

Treatments 

Organic acids (5% lactic and 
acetic acid, 10 min. at 42°C) 

Ca(OClb 

Chlorine dioxide, Ozonated 
water 

Ca(CIOh 

Sulfuric acid scarification 

IV 
0\ 

Seed types/lnitia. iDO~U •• 

Alfalfa! E. coli 0 157:H7 8 10gIO 
CFU/g 

Alfalfa! no pathogen 
inoculations 

Alfalfa! E. coli 0157:H7 (6 
10glO CFU/g) 

Alfalfa! Salmonella 5.46 and 
7.48 10glO CFU/g. 

Alfalfa! E. coli 0157:H7 6.6 to 
7.3 10gIO CFU/g. 

EmcieD~Y 

Reduced populations of E. coli 
0157:H7 by 2.3-3.0 10glOCFU/g 

APC and coliform counts on 
treated seeds lower than non-
treated seeds by 1 10glO CFU/g. 
No yeasts and moulds detected in 
treated seeds. 

None of treatments was able to 
ensure complete elimination of 
pathogen on seeds. 

Reduced the populations of 
Salmonella by 4.98 and 3.86 10gIO 
CFU/g. respectively. 

Scarification with 0.1 to 2 N 
H2S04 for 5 to 20 min reduced the 
populations of E. coli 0157:H7 
by 2.1 to 5.0 10glO CFU/g. 

Negative effects RefereD~es 

I 

Recovery of the pathogen during Lang el al., 2000. 
sprouting. 

APC, coliforms, yeast and moulds Soylemez el al., 200 I. 
counts were increased during 
sprouting. 

Failed to achieve 5-log reduction Singh el al., 2003. 
criteria recommended by the 
NACMCF, ( 1999). 

The number of Salmonella Gandhi and Matthews. 
increased to > 7 10glOCFU/g in 2003. 

I sprouted seeds. 

I 

Seed germination decreased after Pandrangi el al., 2003. 

I 
60 min of scarification treatment. 

_~ __ J 



Table 1.4 Seed decontamination using chemical disinfectants (cont'd). 

Treatments 

Ca(CIOh 

Stabilized oxychloro-based : 
SOC (composed of a 
stabilizing agent and traces of 
chlorate), Ca(CIOh 

Fatty acid-based (peroxyacids. 
fatty acids (caprylic and capric 
acid), lactic acid. and glycerol 
monolaurate. 

N 
'-l 

Seed typallnitial inocula 

Cowpea! Sal. Typhimurium 
7.8IogIO CFUlg. 

Mung bean seed inoculated 
with a five strain cocktail of 
E. coli O157:H7 or 
Salmonella at 3-4 10glO 
CFU/g. 

Alfalfa seeds inoculated with 
a 3 strain cocktail of E. coli 
0\57:H7, Sal. Typhimurium 
DT I 04, L. monocytogenes to 
contain - 6 to 8 10glO CFU/g 

Efficiency 

Maximum reduction in 
Salmonella by 3.5 
10gIOCFU/g. 

SOC at 100 and 200 ppm 
reduced E. coli 0157:H7 and 
Salmonella to undetectable 
level. 

After a 3 min exposure to the 
15X concentration, 
populations of all three 
pathogens were reduced > 5 
log units 

Negative effects References 

The populations of Salmonella Singh et al .• 2005. 
significantly increased during 
germination. 

The pathogens were detected Kumar et al .• 2006. 
in enrichment process. 

Sprout yield was lower than Pierre and Ryser, 2006. 
untreated seeds. 



Table 1.5 Advantages and limitations of chemical disinfection methods for 
fresh-cut produce industry. 

Disinfection method Advantages Limitation/Disadvantages 

Chlorine - Low cost - Produces hazardous 
(Hypochlorite) - Easily available carcinogenic 

halogenated 
disinfection by-
products at high 
levels 

- Reacts with organic 
matter 

- Efficacy is affected 
by the presence of 
organic matters 

- Corrosive 
- Activity pH 

dependent 
- Not allowed for 

organic products 
Organic acids - Easy to use - Long contact time. 

- No toxicity not relevant to the 
industry 

- Interferes with the 
sensory quality 

- Relatively lower 
antimicrobial 
etlicacy 

- Not allowed for 
organic products 

Peroxyacetic acid - Efficacy is not - Low antimicrobial 
atfected by etlicacy at 
organic load of permitted levels for 
water vegetables 

- Efficacy IS - Not allowed for 
unaffected by organic products 
temperature 
changes 

- No harmful 
disinfection by-
products 
formation 

- Not corrosive at 
permitted levels 
«80 J>pm) 

Source: OImez and Kretzschmar. (2009). 
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Table 1.5 Advantages and limitations of chemical disinfection methods for 
fresh-cut produce industry (Cont'd). 

Disinfection method Advantages LimitationlDisadvantages 

Hydrogen peroxide - No residue - Low antimicrobial 
problem efficacy 

- Easy to use - Long contact time 

- Low cost - Phytotoxic, negative 
impact on overall 
quality 

- Requires the removal 
of residual H20 2 after 
processing 

- Not allowed for 
organic products 

Source: Olmez and Kretzschmar. (2009). 
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1.7.1.1 Chlorine compound 

Chlorine is the most widely used disinfectant in fresh-cut industry (Scollard el 

01., 2009; Olmez and Kretzschmar, 2009). The antibacterial activity of chlorine 

happens when hypochlorites (NaOCI: sodium hypochlorite, Ca(OClh: calcium 

hypochlorite) or chlorine gas is added to water. Each chemical will generate 

chlorine gas (Cb), hypochlorous acid (HOC I), and hypochlorite ion (OCr) in 

various proportions, depending on the pH of the solution as shown by the 

following reactions (Seymour, 2003; Picha, 2009): 

NaOCI + H20 -. NaOH + HOCI 

Ca(OCI) --+Ca2+ + 20Cr 

HOC I --+ H+ + OCI' 

Free available chlorine or sometimes referred to as 'free chlorine' or 'free 

residual chlorine' is the amount of hypochlorous acid (HOC I) and hypochlorite 

ions (OCr) in chlorinated water which are both strong oxidizers that react with 

other dissolved chemicals as well as organic matter and microorganisms 

(Seymour, 2003; Health Canada. 2006). Hypochlorous acid (HOCI) has the 

highest bactericidal activity and its lethal effect on microorganisms is thought 

to be attributed to chlorine that combines with cell membrane proteins to form 

N-chloro compounds, which in turn interfere with cell metabolism (Parish el 

aI., 2003; Seymour, 2003). However, the industrial use of chlorine solution as 

disinfectant for fresh produce revealed several disadvantages. For example, the 
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efficacy of chlorine compounds is not consistent because it can deplete rapidly 

in the presence of organic matter in soil and on product surfaces (Sapers, 2001 ; 

Wang et 01. 2006). In the cleaning process of fresh produce, the use of chlorine 

solution allows chlorine to rapidly react with organic materials that are released 

from raw produce into solution. Organic matter on the surface of fresh or fresh-

cut products, microbes and soils, rapidly decrease chlorine concentration, 

producing the requirement for additional chlorine to maintain the disinfecting 

capacity of the system (Seymour, 2003; Fan et 01., 2009). Schoeller e/ 01. 

(2002) found that alfalfa sprouts dipped in the 10 ppm active chlorine 

decreased the active chlorine concentration to 2.8 ppm (± 0.4 ppm) after 10 

min. The use of excessive chlorination in food-processing water with 

hypochlorite has prompted concerns related to the production of harmful 

organochlorine and carcinogenic compounds from the reactions of chlorine 

with trace amounts of organic material in washing solution (Hilgren and 

Salverda, 2000; Wang et 01.. 2006). Commercial sprout producers who are 

using chlorine at 20,000 ppm to treat sprout seeds face the burden of 

discharging the used chlorine solution into municipal wastewater treatment 

(Bari et 01., 2010). The high concentration of chlorine solutions used for seed 

decontamination does not guarantee complete elimination of pathogenic 

bacteria (Table 1.4) (Delaquis e/ 01., 1999). Pre-soaking contaminated seed in a 

20,000 mgIL of calcium hypochlorite solution can reduce, but does not 

eliminate the pathogen from clover sprout seeds (Brook et al., 2001). 

Pathogens vary in their sensitivity to chlorine, for instance, L. monocytogenes 

is generally more resistant than Salmonella and E. coli 0157:H7 (Burnett and 
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Beuchat, 2001). According to Beuchat et al. (2001) the difference in 

inoculation procedure such as dip, spray, or spot inoculum and source of alfalfa 

seeds cause the difficulty of predicting the effectiveness of 20,000 ppm of 

chlorine in killing Salmonella or E. coli OI57:H7. The major problem 

associated with inoculation by dipping or spraying is that the number of cells 

actually applied or adhering to the produce is not known and the acquired 

inoculums among individual test units is often highly variable (Beuchat et al., 

200 I). Seed cultivar, age, pre-treatment (scarification), and seed coat damage, 

as well as type and amount of organic material surrounding the target cells are 

likely to influence the adhesion characteristics of cells and the lethal effect of 

sanitizers (Breidt and Fleming, 1997). Moreover, microorganisms can be 

located in protected regions near the surface of the plant material e.g. bacteria 

can be harboured within stomata or under trichosomes or other surface features 

of plant material and these also bring about the ineffectiveness of washing or 

sanitizers to remove bacteria from produce (Breidt and Fleming, 1997). 

Pathogenic bacteria are able to infiltrate cracks, crevices, and intercellular 

spaces of seeds and produce, thus, protecting them against direct exposure to 

active sanitizer components (Weissinger and Beuchat, 2000; Buck et al., 2003). 

Cracks and cavities in the seed cause difficulties in removing the contaminated 

microorganisms thriving in these areas because the forces holding the 

organisms are strong, and would require vigorous cleaning to effect removal 

(Robertson et aJ., 2002). According to Burnett and Beuchat (200 I), chlorine 

and other sanitizers reduce populations of microbial cells exposed on the 

surface of produce by up to 2 or 3 10glO units but little is known about the 

efficacy of sanitizer in killing cells located in the protected sites of the 
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epidermis and within tissues. Moreover, native biofilms on sprout surfaces 

may act as protected sites for bacterial, plant and human pathogens making 

their elimination by physical or chemical means more challenging (Fett and 

Cooke, 2005). 

1.7.1.2 Organic acids 

Organic acid solution is one of the common disinfectants that have been used 

by several researchers in order to inhibit the pathogens on seeds and sprouts 

(Table 1.4). The weak organic acids such as acetic, lactic, benzoic and sorbic 

acids are the most common classical examples that are often used as food 

preservative agents (Forsythe, 2000; Rasooli, 2007). The antimicrobial action 

of organic acids is due to pH reduction in the environment, disruption of 

membrane transport and/or permeability, anion accumulation, or a reduction in 

internal cellular pH by the dissociation of hydrogen ions from the acid (Parish 

el a/., 2003). A number of these actions are caused by the free permeable 

movement of the undissociated form of weak acids such as acetic and lactic 

acid across the plasma membrane (lipophilic) that enters the microbial cells 

(Forsythe, 2000). On entering the cell, the acid dissociates in the cytoplasm 

(where the pH is higher), charged anions and protons are released which cannot 

cross the plasma membrane and leads to the disruption of the protein motive 

force, and consequently uncouples the oxidative phosphorylation and nutrient 

transport processes (Dillon and Cook, 1994; Forsythe, 2000). 
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Among organic acids, lactic, and acetic seem to be more popularly used as 

disinfectants on seeds and sprouts as can be seen in Table 1.4. For example, 

Lang el al. (2000) treated alfalfa seeds with 5% lactic and acetic acid for 10 

min at 42°C and observed the reduction of E. coli 0157:H7 by 2.3-3.0 10gIO 

CFU/g, but the pathogen was still recovered during the sprouting process (Lang 

el al., 2000) The mixtures of organic acids appear to be more antimicrobial 

than the use of just an individual acid (Dillon and Cook, 1994). However, there 

are also some disadvantages of using organic acid to disinfect seeds and 

sprouts. Weissinger and Beuchat (2000) observed that dipping Salmonella 

contaminated seeds in solution containing 5% acetic, lactic or citric acid 

substantially reduced the ability of seeds to germinate, made sprouts slightly 

etiolated, and had less seed vigour than the control (Weissinger and Beuchat, 

2000). The application of organic acid as washing solution at low pH to 

disinfect fresh fruits and vegetables may damage metal containers and 

processing equipments (as with chlorine) (Seymour, 2003). 

I. 7 .1.3 Peroxyacetic acid 

Peroxyacetic acid (or peracetic acid: PAA). CH)COOH is an equilibrium 

mixture of peroxy compound, hydrogen peroxide, and acetic acid represented 

by the following equilibrium (Hilgren and Salverda, 2000; Sapers, 2001; 

Dell'Erba el al., 2004): 
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PAA is a strong oxidant and disinfectant with a higher oxidation potential than 

chlorine and chlorine dioxide (Kitis, 2004). The mechanism of oxidation is by 

the transfer of electrons. The strong oxidizer kills or inactivates 

microorganisms faster (Anonymous, 2011a). PAA has a stronger biocidal 

action than either hydrogen peroxide or acetic acid and its biocidal active form 

is the undissociated acid, which prevails at pH < 4.7, based upon the release of 

active oxygen according to the following equations (Liberti et al., 1999). 

The mechanism of action of PAA is believed to function similarly with other 

oxidizing agents which kills microorganisms by aggressive oxidation of lipids, 

ionic protein bonds, sulfhydryl groups, disruption of cysteine disulfide bonds 

and a disruption of chemiosmotic gradient balances used to drive membrane 

transport and A TP production (Rutala et al., 2008; Marjani et al., 2010., 

Anonymous, 20 11 b). 

The use of peroxyacetic acid is sometimes more preferred than the other 

commonly used antimicrobial agents such as chlorine and hypochlorite in the 

fresh-cut industry. This is because of its environmentally-friendly 

decomposition by-products (oxygen, acetic acid, water), and greater stability in 

the presence of organic soil (Hilgren and Salverda, 2000; Sapers, 2001). 

Breakdown of PAA generates acetic acid and hydrogen peroxide in food after 

treatments. The amounts of acetic acid that remains in foods present no safety 
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concern since it would be at acceptable levels for use as an antimicrobial. 

Hydrogen peroxide, upon contact with food, rapidly breaks down into water 

and oxygen (Azanza, 2004). This is unlike chlorine, which lacks efficacy of 

pathogen reduction when the water contains heavy organic loads and can form 

potentially carcinogenic organochlorine compounds by reacting with trace 

amounts of organic material (Gonzalez e/ 01., 2004; Wang e/ 01., 2006). 

I. 7 .1.4 Hydrogen peroxide 

Hydrogen peroxide (H202) is Generally Recognized as Safe (GRAS) to be 

applied on some food items but has not yet been approved to be used as an 

antimicrobial wash for fresh produce (Sapers, 200 I). H20 2 possesses 

bactericidal and inhibitory activity due to its properties as an oxidant, and its 

capacity to generate hydroxyl radicals (Parish e/ 01., 2003). The mechanism of 

hydrogen peroxide in killing vegetative bacteria and fungi is known to involve 

DNA damage (Forsythe, 2000). It has an advantage over using chlorine 

compounds in terms of not leaving any undesirable residues as it is rapidly 

decomposed by the catalase enzyme (found throughout the plant kingdom), and 

generates water and oxygen molecules instead (Sapers, 200 I; Hajduk and 

Sur6wka, 2005; Olmez and Kretzschmar, 2009). 

Hydrogen peroxide has been applied as antimicrobial solution for fresh fruits 

and vegetables. The immersion of carrot in solutions of H20 2 reduced the 

microbial contamination with an increased in the effectiveness of the solutions 

at higher concentration and longer exposure to treatment (Hajduk and 

36 



Sur6wka, 2005). The whole melon treated with 2.8% H202 reduced L. 

monocytogenes by 3 10gIO CFU/g (Ukuku et aI., 2005). 

1.7.2 Biological method 

Most ofthe consumers now expect and prefer minimally processed food which 

has a longer shelf-life, high quality, is safer for consumption and is free from 

chemical preservatives (Devlieghere el al., 2004; Rasooli, 2007). This change 

in the consumer's preference intensified the pressure for the food industry to 

lessen the chemical preservatives and raised more attention to the application 

of less toxic natural antimicrobial compounds to control pathogens in food 

products (Hill, 1995; Tripathi and Dubey, 2004; Souza et al., 2005; McIntyre et 

al., 2007; Rasooli, 2007). 

In general, there are three classes of naturally occurring antimicrobial 

substances: (I) antimicrobials from animals such as enzymes (lysozyme, 

lactoperoxidase), other proteins (\actoferrins, lactoferricins, and 

ovotransferrins), small peptides (histatin and magainins), immunoglobulins 

(lactoglobulins and ovoglobulins) (Board, 1995; Satyanarayan Naidu, 2003); 

(2) antimicrobials from plants such as phytotoxins, phenolic compounds, 

organic acids, and essential oils (Nychas, 1995); and (3) microorganism-based 

and their antimicrobial products such as bacteriocins, bacteriophage, and 

organic acids (Hill, 1995). Recently, several studies have been focusing on 

using protective cultures such as lactic acid bacteria, pathogen-specific 

bacteriophage or natural antimicrobial compounds like bacteriocins, vinegar, 
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lime and lemon juice to inhibit the growth of pathogenic bacteria on seeds and 

sprouts (Table 1.6). 

1.7.2.1 Natural antimicrobial compounds 

The use of natural antimicrobial compounds against the pathogens in food 

products has obtained green labelling and a natural image (Devlieghere et a/., 

2004). Natural organic acids can be present in fruits and vegetables, can 

accumulate as a result of fermentation or be added during processing (Wiley, 

1994). Vinegar (acetic acid) and lemon juice (citric acid) have been used as 

flavouring and preservative agents in traditional foods since antiquity (Wiley, 

1994; Samelis and Sofos, 2003; Smith, 2003). Most vinegar contains acetic 

acid at a 4% level and its antimicrobial effect appears to be due to the 

depression of pH below the optimum growth range of microorganisms and 

metabolic inhibition by the intact molecules (Wiley, 1994). The use of vinegar 

and lemon or lime juices either alone or in combination has shown their 

antimicrobial effects against foodborne pathogens in fresh produce. Among 

wine, vinegar, tea, and olive oil, vinegar showed the strongest bactericidal 

effect by reducing the counts of inoculated L. monocytogenes, Sa/. Enteritidis, 

Shigella sonnei, and Yersinia sp. (initial populations were 5-6 10glO CFVlml) to 

levels below the detection limit and killing most of the E. coli and Staph. 

aureus cells (Medina el al., 2007). Pao et al. (2008), dipping alfalfa and mung 

bean sprouts grown from Sa/. enterica inoculated seeds (initial counts on alfalfa 

and mung bean sprouts was 7.6 and 6.9 10glO CFU/g, respectively) in 2% acetic 

acid for 24 and 48 h eliminated the pathogen after treatment «I ceIl/2Sg). 
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Table 1.6 Seed decontamination using natural antimicrobials products. 

Treatments 

Antagonist strain 
( Enterobacteriaceae bean 
sprout isolates) 

Salmonella Phage-A (lysing 
Sal. Typhimurium), Phage-B 
(lysing S. Montevideo) 

Pseudomonas jluorescens 2-79 
(active reagent: phenazine-I-
carboxylic acid and fluorescent 
siderophore) 
Pseudomonas jluorescens 2-79 

Salmonella 
(SSP6) 

\j.J 

-.a 

Bacteriophage 

Seed typesllnitial 
inocula 

Mung bean 

Mustard, Broccoli! 
Salmonella 2 to 3 10glO 
CFUlg. 

Alfalfa! Sal. enterica 
serovars 3.9 - 4.4 10glO 
CFUlg 

Alfalfa! Salmonella 1-3 
10glO CFUlg. 

Alfalfa! Sal. 
Oranienburg 7 10glO 
CFUlml 

Reductions of microorganisms 

Preventing the growth of 
Pseudomonas jluorescens: a major 
bacterial spoilage organisms in sprout 

A 1.37 log suppression of Salmonella 
growth after applying Phage-A on 
mustard seeds. 

A 1.50 log suppression of Salmonella 
growth after applying the mixture of 
Phage-A and Phage-B on broccoli 
seeds 

Reduced the populations of 
Salmonella by 5 10glO CFUlg at 6 
days of sprouting 

Reduced the populations of 
Salmonella by 2-3 10glO CFU/g 

Reduced viable Salmonella approx. 1 
10glOCFUlg 

- -- ----

Negative effects References 

Not mentioned Enomoto el al., 2004. 

Compared with the control, phage Pao et al., 2004. 
treatment significantly suppressed the 
growth of Salmonella on either 
broccoli or mustard seeds at 24 hour. 
but not at 4 hour 

! 

No adverse effect on sprout yield and Fett, 2005. 
appearance 

Not mentioned Liao.2008. 

Development of phage resistance in Kocharunchit el al., 2009. 
Salmonella popUlation. 



Table 1.6 Seed decontamination using natural antimicrobials products (cont'd). 

Treatments 

Vinegar (5% acetic acid) 

~ 
o 

Seed types/Initial 
Inocula 

Cowpea! Sal. 
Typhimurium 7.8 loglO 
CFU/g 

Reductions of microorganisms 

Maximum reduction in Salmonella 
by 7.8 loglO CFU/g 

~-

Negative effects References 

The populations of Salmonella Singh et al., 2005. 
significantly increased during 
germination 

Vinegar drastically reduced seed 
germination percentage 



Treatment of rocket leaves with fresh lemon juice and vinegar caused a 

significant reduction of Sal. Typhimurium populations range between 1.23 and 

4.17 10gIO CFU/g and between 1.32 and 3.12 10gIO CFU/g, respectively. The 

maximum reduction was reached by using a lemon juice-vinegar mixture (I: I) 

for 15 min, which reduced the number of the pathogen to an undetectable level 

(Sengun and Karapinar, 2004). Chang and Fang (2007) noted that treating E. 

coli 0157:H7 inoculated on lettuce with commercial rice vinegar (5% acetic 

acid; pH 3.0) for 5 min reduced the pathogen population 3 logs at 25°C. 

Vinegar (5% acetic acid) treatment was found to produce a greater lethal effect 

on the elimination of Salmonella from cowpea seeds compared to chlorine 

treatment (20,000 ppm active chlorine) (Singh et al., 2005). Besides the 

antibacterial activity, vinegar is found to have the power to inactivate the 

parasite (Giardia duodenalis). The application of undiluted vinegar (4% acetic 

acid) to sanitize vegetables can reduce the risk of foodbome giardiasis, 

although the risk of infection still exists because some of the cysts survived 

after the other treatments with diluted vinegar at 21°C (Costa et al., 2009). 

1.7.2.2 Antagonist microorganisms and their metabolic products 

The use of natural or controlled microbiota and/or antimicrobial compounds to 

inhibit or destroy undesired microorganisms in foods to extend its shelf-life 

and enhance its safety is referred to as biopreservation (Schillinger et al., 1996; 

Ananou et al .• 2007; Garcia et al., 2010). Bacteriocins can help to reduce the 

41 



addition of chemical preservatives as well as satisfY the consumer demands for 

safe, fresh, and ready-to-eat minimally-processed foods (Galvez et al., 2007). 

Bacteriocins, bacteriophage, and bacteriophage-encoded enzymes are included 

in this concept (Garcia et al., 2010). Bacteriocins are ribosomally-synthesized 

peptides or proteins with antimicrobial activity and are produced by different 

groups of bacteria with a bactericidal or bacteriostatic effect on other closely 

related bacteria (Daw and Falkiner, 1996; Adams, 2003; Abee and Delves-

Broughton, 2003; Ray and Miller, 2003; Devlieghere et al., 2004; Galvez et al., 

2007; Garcia et al., 2010). The use ofbacteriocins in food production has been 

inadvertently used for centuries. However, their deliberate use as food-

biopreservatives was recognized in the early 1950s. Nisin was first discovered 

in 1928, when its production in milk stored overnight prior to cheese making 

led to the inhibition of a Lactobacillus starter culture. It was first commercially 

marketed in England in 1953; since then it has been approved for use in over 

48 countries (Adams, 2003; Deegan et al., 2006). To date, the commercially 

produced bacteriocins are nisin which are produced by Lac/ococcus lac/is and 

pediocin PA-I which are from Pediococcus acidilactici marketed as 

Nisaplin TM and ALTA TM243 1 , respectively (Deegan et al., 2006). 

Nisin is a polypeptide consisting of 34 amino acids and is an atypical protein 

that contains unusual amino acids and lanthionine rings known to be a 

characteristic of a large group of inhibitory polypeptides produced by different 

Gram-positive bacteria (Abee and Delvel-Broughton, 2003). It interacts 

electrostatically with membrane phospholipid of vegetative bacteria, producing 

transient, non-selective, pores, and the rapid efflux of ions, amino acids, and 
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A TP through the pores results in collapse of transmembrane proton-motive 

force and cell death (Adams, 2003). Pediocin is classified as a non-Ianthionine 

bacteriocin (Class lIa), also cystibiotic, or anti-listerial type peptide because of 

its high bactericidal action against L. monocytogenes and other Listeria species 

(Ray and Miller, 2003). It is a plasmid-encoded peptide produced by 

Pediococcus acidilactici, and commercially exploited as a bacteriocin­

containing powder mainly used in meat products (Sobrino-Lopez and Martin­

Belloso, 2008). Up to now, the effect of adding pediocin-producing strains or 

pediocin-like products to control the pathogens on mung bean seeds has not 

been well studied. 

The application of LAB as protective cultures or their bacteriocins as 

biopreservation agents on minimally processed vegetables could inhibit or 

prevent the growth of pathogenic bacteria found on fresh produce (Bennik et 

al., 1999). The application of pure mundticin (200AU/ml) (bacteriocin 

produced by Enterococcus mundtii) to modified atmosphere-stored mungbean 

sprouts during a washing step or in a coating procedure with an alginate film 

was successful against L. monocytogenes (Bennik et al., 1999; Settanni and 

Corsetti, 2008). Washing Bacillus-inoculated alfalfa, soybean sprouts and 

green asparagus with a solution containing enterocin AS-48 (25 J.1g/ml) 

produced by Enterococcus faecalis reduced viable counts of B. cereus and B. 

weihenstephanensis by 1.0-1.5 and by 1.5-2.38 log units, respectively after the 

treatments (Cobo Molinos et aI., 2008). The authors also observed that 

combinations of enterocin AS-48 with several other antimicrobials and 

sanitizers greatly enhanced the bactericidal effects. 
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Bacteriophages (phage) are viruses that specifically infect and multiply in 

bacteria before killing them (McIntyre et al., 2007; Garcia et al., 2010). Phages 

are divided into two types, virulent and temperate depending on their life 

cycles (Garcia et al., 20 I 0). Virulent phage strictly follow a lytic cycle wherein 

they multiply within the bacterial cells, bring a rapid lysis and death to the host 

bacterial cell, and release the phage progeny (Hanlon, 2007; Garcia et al., 

20 I 0). Meanwhile, temperate phage may enter the lysogenic cycle either by 

inserting their DNA into the bacterial chromosome where it replicates as part 

of the host genome or by replicating independently in the cytoplasm like a 

plasmid (prophage) and could later on enter lytic cycle (Garcia et al., 2010). 

There are several benefits from using bacteriophage to control pathogenic 

bacteria in food products (Hanlon, 2007). Bacteriophages target only the 

pathogens of interest and do not affect normal flora. The initial dose of phage 

increases exponentially as the virus multiplies within the bacterial host and 

quite often there is no need to carry out repeat dosing. In addition, phages are 

also easy to produce (Hanlon, 2007). Kacharunchitt et af. (2009) treated Sal. 

Oranienburg contaminated alfalfa seeds with Salmonella bacteriophage SSP6 

and observed I 10glO CFU/g reduction of viable Salmonella after 3 h of phage 

application. However, Salmonella-treated with phage was found to be resistant 

to the same (SSP6) or different (SSP5) phage after the second addition. A 

mixture of three E. coli OI57:H7-specific bacteriophages (ECP-IOO) were 

effective in killing the pathogen on fresh-cut cantaloupe and lettuce at 

refrigerated temperatures (Sharma el al., 2009). A combination of lytic 

bacteriophage with Enterobacler asburiae JX I , a bacterial strain which 
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exhibited stable antagonistic activity against a broad range of Salmonella 

serovars (Agona. Berta, Enteritidis, Hadar, Heidelberg, Javiana, Montevideo, 

Muenchen, Newport, Saint Paul, and Typhimurium) was found to reduce the 

growth of Salmonella inoculated on mung bean and alfalfa seeds to 

undetectable level after treatment (Ye et a/., 2010). 

1.7.3 Physical decontamination 

Several physical decontamination methods such as high hydrostatic pressure, 

gamma irradiation, thermal treatment, low pressure cold plasma. ultrasound, 

and supercritical carbon dioxide have been applied on different types of seeds 

(Table 1.7). However, the most common method used is thermal treatment, 

more specifically, conventional heating. Heat treatment is one of the oldest 

methods of preservation which has a potential to provide hurdles or barriers in 

reducing microorganisms and inhibiting enzyme activity (Wiley, 1994). 

I. 7.3.1 Conventional heating 

In conventional heating, heat reaches the outer surfaces of a foodstuff and heat 

transferred to the product interior is either by conduction (e.g. in solids such as 

meat), or by convection (e.g. in liquids such as milk) (Marra et al., 2009). 

Japanese sprout producers disinfect mung bean seeds with hot water before 

they are sprouted to remove microorganisms (mould and bacteria) that may 

contribute to rotting. This process also helps to soften hard seeds which are 

sometimes present in seeds lots, to enhance germination and to improve the 

colour of the bean sprouts (Enomoto et al .• 2004; Bari et al., 2010). Bari et al. 
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Table 1.7 Seed decontamination process using physical treatments. 

Treatments 

Hot water (60°C, 70°C, 
and 90°C; to sec, 5 and 10 
min) 

Hot water 

Hot water 
Mung bean: 2-20 min for 
55-80°C. 
Radish and alfalfa: 0.5-8 
min for 5J-64°C. 

Hot water I cold water 

--

~ 
0\ 

- -- -

Seed typesl Initial inocula 

Rice seed 

Alfalfa! Sal. Stanley 2 to 3 10glO 
CFUlg. 

Mung bean, radish and alfalfa! 
Sal. Senftenberg W775, Sal. 
Bovismorbificans 
E. coli 0157: H- (> 7 10glO 
CFU/g.) 

Mung bean! E. coli 0157:H7 
6.08 10gIO CFUlg and Salmonella 
5.34 10gIO CFU/g. 

- - -

Em~ien~y 

At 90°C reduced APC - 3 10glO 
CFU/g. 

Reduced fungi by 1 10glO CFU/g. 

Reduced the pathogen to 
undetectable level at ~ 57°C 

Reduced the populations of all 
pathogens> 5 10glO CFU/g. 

Reduced E. coli 0157 :H7 and 
Salmonella to undetectable levels 
and no survivors were found in 
the enrichment medium and 
during sprouting process. 

-

Negative efl'eds Rereren~es 

Embryo was lethally damaged. Piemas and Guiraud, 1997. 

Higher temperature reduced the Jaquette ef al., 1996. 
sprouting rate (~ 54°C for to min) 

Higher temperature and longer Weiss and Hammes, 2005. 
exposure times reduced the 
sprouting rate (Ex. 12 min 55°C, 
8 min 58°C, 4 min 60°C, 3 min 
62°C, reduced the germination 
rate of radish seed to be lower 
than 95%) 

Prolonged treatment time leads to Bari el al., 2008. 
retarded growth of the sprouts. 

Temperatures of hot water 
dropped by 2 to JOC after 
immersing seeds into the water. 



Table 1.7 Seed decontamination process using physical treatments (cont'd). 

Treatments 

Hot water 

Gamma irradiation 

Gamma irradiation 

Gamma irradiation 

~ 
-....I 

Seed types/Initial inocula 

Mung bean/ E. coli 0157:H7 and 
Salmone/la, non-pathogenic E. 
coli 5 to 6 10glO CFU/g. 

Alfalfa! Sal. Mbandaka 8 10glO 
CFU/g. 

Alfalfa! no pathogen inoculated 
onto seeds. 

Alfalfa and broccolil E. coli 
0157:H75-6logIO CFU/g. 

Efficiency 

Reduced E. coli 0157:H7 by 2.8, 
4.3 10glO CFUlg and below 
detectable level after treatments 
with hot water at 85°C for 10, 20, 
and 30 sec, respectively. 

Reduced Salmonella by 3.2 10glO 
CFUlg, and below detectable 
level after treatments with hot 
water at 85°C for 10, and 20sec, 
respectively. 

Absorbed dose at 4 kGy 
eliminated viable Sal. Mbandaka 
from naturally contaminated 
seeds. 

Reduced the populations of T AC 
by 2-3 10glO CFU/g. 

Reduced the populations of total 
coliform by 2-4logIO CFU/g. 

Absorbed dose at 8 kGy resulted 
in a 5 log reduction of E. coli 
0157:H7. 

Negative effects References 

Not mentioned. Bari el 01., 2010. I 

I 

I 

Not mentioned. Thayer el 01.,2003. 

Radiation dose affected the yield Rajkowski and Thawyer, , 
ratio (> 3 kGy). 2001. 

I 

Reduction in the length and Kim el 01., 2006. 
thickness of the sprouts was 
observed. 



Table 1.7 Seed decontamination process using physical treatments (cont'd). 

Treatments 

High hydrostatic pressure 
(HHP) (575 MPa 2 min; 
475 MPa 8 min at 40°C). 

High hydrostatic pressure 
(HHP) (500 and 600 MPa 
for 2 min at 20°C in wet 
state). 

High hydrostatic pressure 
(550 MPa for 2 min at 
40°C) 

~ 
00 

Seed typesJ Initial inocula 

Alfalfa! nonpathogenic 
variants of E. coli 0157: 
NM (MF7123A) 5 10g10 
CFUlg, L. monocytogenes 
ATCCI91 \3 710g 1O CFUlg. 

Alfalfa 

Alfalfa! E. coli 0157:H7 
5 10glO CFUlg. 

Emciency 

Reduced E. coli 0157: NM 
(MF7123A) by 1.4 10gIO CFU/g at 575 
MPa, 2 min and 2.0 10glO CFU/g at 475 
MPa, 8 min at 40°C. 

Reduced L. monocytogenes by 0.8 10gIO 
CFU/g at 575 MPa, 2 min and 1.1 10glO 
CFU/g at 475 MPa, 8 min at 40°C. 

Reduced E. coli 0\57:H7 by 3.5 and 
5.7 10glOCFU/g after treated at 500 and 
600 MPa for 2 min at 20°C in wet 
state, respectively. 

Reduced the populations of E. coli 
0157:H7 by 5 10glO CFUlg 

Negative effects References 

Not able to eliminate the Ariefdjohan el 01., 2004. I 

pathogens. 

The increased of pressure or 
exposure to HHP severely 
affected seed viability. 

Recovery of the pathogen in Neetoo el 01., 2008. 
! 

enrichment broth 

I 

! 

No adverse affect on seed Neetoo el 01., 2009. 
I viability. 
I 



Table 1.7 Seed decontam ination process using physical treatments (cont' d). 

Treatments 

High hydrostatic pressure 
(HHP) 100 to 400 MPa, 5-
15 min, 10 to 40°C 

Low pressure cold plasma 

Ultrasound at 23 or 55°C 
with 
times 

~ 
-c 

different exposure 

-- ---

Seed types/Initial inocula Emciency 

Alfalfa Mung bean sprouts form seed treated at 
Mung bean 250 MPa, 40°C show inactivation of 

total aerobic mesophilic bacteria, total 
and faecal coli forms by 2.0, 2.4 and 2.0 
log units, respectively. 

Alfalfa sprouts from seed treated at 250 
MPa, 40°C reduced faecal coliform 
population by 2 log units. 

Wheat Reduced the fungi to below 1 % of 
initial load 
Reduced Aspergillus spp. and 
Penicillillm spp. by 3 10gIO CFU/g. 

Alfalfa and broccoli seeds None of the treatments achieved over a 
2 log reduction in E. coli O157:H7 
without lowering the germination to 
below 85%. 

- - ---------

Negative etTects References 

Raising the pressure (from 100 to Pei\as et al., 2008. 
400 MPa) adversely affected seed 
germination ratio 

Fungal killing rates depended on Selcuk et al., 2008. 
plasma gas types, exposure times, 
type and surface of contaminated 
seeds 

Adversely affected seed viability. Kim et al., 2006. 



Table 1.7 Seed decontamination process using physical treatments (cont'd). 

Treatments 

Dry heat treatment (50°C) 
for 17 or 24 h 

Supercritical carbon 
dioxide 

Acidic electrolyzed water 
(AEW) at 55°C for \0 min 

Vl 
o 

Seed types/Initial inocula 

Alfalfa, radish, broccoli, 
mung bean! E. coli O157:H7 
5 to 6 log(o CFU/g. 

Alfalfa (20 MPa, 45°C, 15 
min) 

Alfalfa and broccoli seeds 

Efficiency 

Reduced E. coli 0 157:H7 to below the 
detectable levels in all seed types 
excluding mung bean seeds. 

Reduced E. coli 0157:H7, L. 
monocylOgenes. and Sal. Typhimurium 
more than 7 10gIO CFU/g. 

Reduced E. coli 0157:H7 population 
by 3.4 and 3.3 loglO CFU/g, for the 
alfalfa and broccoli seeds, respectively. 

Negative effects References 

Increase of pathogen to 7.0 10gIO Bari el 01., 2009. 
CFU/g in fully sprouted radish, 
broccoli, and alfalfa. 

Impaired the seed germination Jung el 01., 2009 
capability 

Failed to achieve 5-log reduction Kim el 01., 2006. 
criteria recommended by the 
NACMCF, (1999). 



(2008) found no viable pathogens in 24 h enrichment samples after 72 h of 

gennination of treated mung bean seeds contaminated with a four-strain 

cocktail of E. coli 0157:H7 (strain CR-3, MN-28, MY-29 and DT66) and 

Salmonella Enteritidis (strain SE-I, SE-3, and SE-4 isolated from chicken 

faeces; strain SE-2 isolated from bovine faeces) with hot water (90°C) for 1 

minute followed by dipping in chilled water for 30 seconds. Pao et al. (2008) 

successfully eliminated Salmonella in contaminated mung bean sprouts by 

dipping the sprouts in hot water at 70 or 80°C for 20s, 90°C for lOs or 100°C 

for 5s. The investigators also suggested the use of this method as an effective 

way of disinfecting mung bean seeds before sprouting, and for the processor to 

avoid using high concentrations of chemical disinfectants. The current 

pasteurization method of mung beans in Japan which involved dipping seeds in 

hot water at 85°C for 10 sec was found to be more effective in disinfecting 

inoculated E. coli OI57:H7, Salmonella, and non-pathogenic E. coli on mung 

bean seeds, than using the calcium hypochlorite treatment (20,000 ppm for 20 

min) recommended by the U.S. Food and Drug Administration (Bari et al., 

2010). 

1.7.3.2 Microwave technology 

Microwave heating started as a by-product of the radar technology developed 

during World War II (Tang and Chow, 2007). It is the portion of the 

electromagnetic spectrum located between infrared radiation and radiowaves 

(Lidstrom et al., 2001). Microwaves have wavelengths of I millimeter to 1 
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meter, with corresponding frequencies between 300 MHz (million cycles per 

second) and 300 GHz (Billion cycles per seconds) with two most common used 

frequencies of 0.915 and 2.45 GHz (Thostenson and Chou, 1999; Lidstrom et 

al., 2001). Microwaves are produced by vacuum tube devices called 

magnetrons and klystrons, the former being currently available at power levels 

from a few hundred watts to 50 kW while the latter are not used in current 

practice (Mullin, 1995). Microwave heating has advantages over conventional 

methods in reducing process time and improving food quality (Tang and Chow, 

2007). In conventional thermal processing the energy is transferred either 

through convection, conduction, or radiation of heat from the surfaces of the 

material (Tho stenson and Chou, 1999). These heating techniques are quite slow 

and a temperature gradient can develop within the sample (Lidstrom et al., 

2001). In contrast, microwave heating differs from conventional heating in 

that heat is generated volumetrically within the material through molecular 

interaction with the electromagnetic field resulting in the conversion of 

electromagnetic energy to heat generating throughout the material with faster 

heating rates (Thostenson and Chou, 1999; Oliveira and Franca, 2002; Marra et 

al., 2009). Microwave heating can be particularly beneficial in modem 

sterilization and pasteurization operations to control pathogenic and spoilage 

microorganisms in packaged foods (Tang and Chow, 2007). Hong e/ al. (2004) 

reported that microwave irradiation immediately attacks the cell membranes of 

faecal coliforms in biosolids which lowers bacterial activity while external 

heating allows more growth until the temperature is reached typically 48-S7°C. 

Therefore, microwave heating can be an alternative method for seed 
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decontamination which may help to improve the safety of sprouts and 

minimize the use of chemical disinfectants. 

1.8 Objectives 

The main objectives of this project were to study the microbial communities in 

mung bean sprouts and evaluate the efficacy of seed decontamination 

treatments to reduce and inhibit the growth of the pathogens on mung bean 

seeds. More specifically: 

To examine the microbiological quality of mung bean sprouts 

marketed in the local area using culture-dependent and culture -

independent methods. 

To develop the protocol for examining microorganism profiles in 

mung bean sprouts using molecular techniques. 

To evaluate the efficacy of chemical disinfectants, natural 

antimicrobial compounds, bacteriocin-producing strains, and 

thermal treatments on the inactivation of the growth of pathogenic 

bacteria present in mung bean sprouts 
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CHAPTER 2 

GENERAL MATERIALS AND METHODS 

2.1 The study of microbial quality and communities in 'use by' 

date mung bean sprout 

2.1.1. Sampling of 'use by' date mung bean sprouts 

Bagged, prepared and ready-to-stir fry raw mung bean sprouts were collected 

from three locations (two supermarkets and one retail shop) in the local area. 

One sample was collected and tested each month from February 2007 through 

to February 2008 (one sample was collected from each outlet in tum). Over a 

year, four samples were worked on. Samples were taken to the laboratory in a 

cool box at - 4°C. The testing was carried out on the 'use-by date' of each 

sample. 

2.1.2 Sample preparation and microbial analysis 

Sprout samples (25g) were placed in a sterile stomacher bag and maximum 

recovery diluents (MRD; 225ml; Oxoid eM 0733, Basingstoke, UK) were 

added to make a tenfold dilution unless otherwise stated. The samples were 

then homogenized using a stomacher (Stomacher® 400 circulator, Seward, UK) 

at 230 rpm (revolutions per minute) for I min. Further serial dilutions were 

made as required using 1 ml of the homogenate and 9 ml of MRD before 

plating on appropriate media. Total aerobic plate counts, Salmonella spp., 

Listeria spp., Bacillus cereus were enumerated or detected based on National 
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Standard Methods (FlO, F13, F15, and F19, respectively) recommended by the 

Health Protection Agency, UK (HPA, 2007). 

2.1.2.1 Total aerobic count 

Plate count agar (Oxoid; CM325) was used for the enumeration of total aerobic 

count using surface plate method by inoculating 0.1 ml of each dilution on the 

agar (in duplicate) and incubating at 30°C for 48 h. 

2.1.2.2. Salmonella detection and enumeration 

Salmonella detection and enumeration was performed by suspending 25g 

samples in 225 ml buffered peptone water and stomaching for 1 min at 230 

rpm using a stomacher (Model 400, Seward Medical, London) as previously 

described in Section 2.1.2. For enrichment samples, the homogenates were 

incubated at 37°C for 18±2 h before transferring an aliquot (0.1 ml) of the 

enriched culture into 10 ml of Rappaport Vassiliadis Soya Peptone Broth 

(RVS, CM0866, Oxoid, UK). The incubation was carried out at 42°C for 24±3 

h before it was sub-cultured on XLD agar and incubated at 37°C for 24±3 h. 

Typical Salmonella colonies (red colonies with black centres) were further sub­

cultured onto BHI agar and incubated overnight at 37°C before confirmatory 

testing (Section 2.1.3.7). Salmonella enumeration was carried out by plating 

sprout homogenates (0.1 ml) on XLD agar plate in duplicate and incubated at 

37°C for 24±3 h prior to counting the presumptive colonies. 
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2.1.2.3 Detection and enumeration of L. monocytogenes and other Listeria spp. 

2.1.2.3.1 Detection of L. monocytogenes and other Listeria spp. 

The detection of L. monocytogenes and other Listeria spp. consisted of two 

enrichment steps (primary and secondary enrichment). In primary enrichment, 

sprout samples (25g) were mixed with 10 ml of Half Fraser broth prepared 

from Fraser broth base (Oxoid, CM0895) supplemented with Half Fraser 

supplement (Oxoid, SRO 166), homogenized by stomaching for 1 min at 230 

rpm and incubated at 30°C for 24 h. An aliquot of primary enrichment (0.1 ml) 

was transferred to 10 ml of Fraser broth (the mixture of Fraser broth base 

mixed with Fraser supplement; Oxoid, SROI56) and incubated at 37°C for 48 h 

for the secondary enrichment. A loopful of primary and secondary enrichment 

was streaked separating onto Listeria selective agar (Oxford formulation; 

Oxoid, CM0856 supplemented with Listeria selective supplement Oxford; 

Oxoid, SROI40A) and incubated at 30°C for 48 h in aerobic conditions. 

Typical Listeria spp. colonies on Oxford selective agar (brown colonies with 

aesculin hydrolysis, black zones around colonies) were examined. 

2.1.2.3.2 Enumeration of total Listeria spp. 

Sprout samples were prepared as previously described in Section 2.1.2. 

Enumeration of total Listeria spp. was made using the surface plate method by 

inoculating 0.5 ml of each dilution onto Oxford agar and incubating at 30°C up 

to 48 h in aerobic conditions. Presumptive colonies (brown colonies with 

aesculin hydrolysis, black zones around colonies) were counted to give a total 

Listeria spp. counts. 
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2.1.2.4 Enumeration of Bacillus cereus 

Sprout samples were prepared as in Section 2.1.2. Enumeration of B. cereus 

was perfonned by inoculating 0.1 ml of each dilution in duplicate onto Bacillus 

cereus selective agar prepared using B. cereus agar base (Oxoid, CM0617) 

with polymyxin B supplement (Oxoid. SR0099) and egg yolk emulsion 

(Oxoid, SR004 7). Plates were incubated in aerobic conditions at 30°C for 18-

24 h and typical colonies of B. cereus (colonies with a distinctive turquoise to 

peacock blue colour surrounded by a good egg yolk precipitate of the same 

colour) were examined and counted. The appearance of distinctive turquoise to 

peacock blue colour of B. cereus colonies is due to the addition of 

bromothymol blue as a pH indicator for detecting mannitol utilisation (Oxoid 

Manual, 2006). The pH reduction associated with mannitol utilisation causes 

green-basal colour change to yellow and because B. cereus is not able to utilise 

mannitol, thus a distinctive blue colour with a good egg yolk precipitation of 

the same colour distinguish B. cereus from other Bacillus spp. except B. 

rhuringienesis (Oxoid Manual, 2006). 

2.1.2.5 Enumeration of other organisms 

For all other organisms, appropriate dilutions of the sprout samples prepared as 

in Section 2.1.2 was spread plated in duplicate using 0.1 ml samples. Total 

lactic acid bacteria (LAB) and Lactococcus spp. were enumerated on DeMan­

Rogosa-Sharpe (MRS) and M 17 agar (Oxoid, CM 0361; Oxoid, CM0785, 

respectively) with incubation under both aerobic and 5% carbondioxide 

vacuum at 30·C and 42"C, respectively. Dichloran Rose Bengal 
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Chloramphenicol (DRBC) (Oxoid, CM 0727) was used for yeast and moulds 

enumeration and incubated at 2SoC for 3 days (Toumas, 200S). Total coliforms 

were enumerated on MacConkey No.3 agar (Oxoid, CM OIlS) and incubated 

at 30·C for 48 h. Pseudomonas agar base (Oxoid, CMSS9) supplemented with 

C-F-C supplement (Oxoid, SRI03) was used to evaluate the count of 

Pseudomonas spp. Incubation was carried out at 30°C for 48 h. 

2.1.3 Phenotypic characterization study 

Initial confirmation of pathogen isolates after seed decontamination treatments 

involved Gram staining, colony and cell morphology, catalase, oxidase, 

haemolysis test (only for presumptive L. monocytogenes colonies) and motility, 

respectively. Four presumptive colonies of L. monocytogenes and Sal. 

Typhimurium from each seed decontamination treatment were randomly 

sampled from countable plates of Oxford selective agar and XLD agar, 

respectively. Isolates were cultivated in BHI broth overnight at 37°C for 24 h 

before streaking on BHI agar and incubated under the sample condition. A 

well-isolated single colony was further used for the characterization. 

2.1.3.1 Gram stain 

The gram stain was carried out using an overnight grown culture on BHI agar. 

A well-isolated single colony was mixed with a loopful of sterile MRD on 

clean glass slide and heat fixed. Slides were placed in the staining tray and the 

smear flooded with a series of stains with appropriate exposure times for each 

stain as follows: crystal violet (Prolab Diagnostic, Neston, UK) for I min then 
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rinsed with tap water; Lugol's iodine (Pro lab Diagnostic) for 30 sec then rinsed 

with tap water; decolorized with 95% alcohol (Methylated spirit 99% VN 74, 

Fisher Scientific, Loughborough, UK) for I min and and counterstain with 

safranin (Prolab Diagnostic) for 30 sec and rinsed with tap water (Cappuccino 

and Sherman, 2001). Colony morphology of organisms was examined under 

the microscope (Carl Zeiss, Laboval 4, Jena, Germany) using oil immersion 

objective at XI 00 magnification. 

2.1.3.2 Catalase test 

A drop of3% hydrogen peroxide (Fisher Scientific H/1800115, UK) was placed 

on an overnight grown colony of a pure culture on BHI agar. The presence of 

bubbling indicates a positive result caused by the degradation of hydrogen into 

oxygen and water (Cappuccino and Sherman, 200 I). 

2.1.3.3 Oxidase test 

Oxidase test was carried out using the oxidase identification sticks (Oxoid, 

BR0064A). The test was performed by following the manufacturer's 

instructions. An overnight grown colony was touched with the impregnated 

oxidase stick and rotated to pick up a small mass of cells for with examination 

of the changes after 30 sec and 3 min. A positive result is shown by the 

development of a blue-purple colour. 
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2.1.3.4 Motility test 

A well isolated colony of an overnight grown culture was mixed with a drop of 

sterile MRD to make an emulsion on clean glass slide then covered with a 

cover slip. The motility was observed under the phase contrast microscopy 

using an oil immersion objective at X I 00 magnification. 

2.1.3.5 Haemolysis test 

The ability of an organism to hydrolyze red blood cells was examined by 

streaking an overnight presumptive L. monocytogenes grown at 30°C in BHI 

broth onto blood agar prepared from Columbia blood agar base (Oxoid, 

CM0331) mixed with 5% sterile defibrinated sheep's blood (Oxoid, SR0051). 

Plates were incubated at 37°C for 24-48 h and the haemolysis reaction was 

studied. Hemolytic activities are classified as: 

Gamma hemolysis (y-hemolysis): No lysis of red blood cells results, 

no significant change in the appearance of the medium surrounding 

the colonies. 

Alpha hemolysis (a-hemolysis): Incomplete lysis of red-blood cells, 

with the reduction of hemoglobin, results in a greenish halo around 

the bacterial growth. 

Beta hemolysis (~-hemolysis): Lysis of red blood cells with 

complete destruction and use of hemoglobin by the organism results 

in a clear zone surrounding the colonies (Cappuccino and Sherman, 

2002). 
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2.1.3.6 API Listeria® test 

Only Gram-positive, rod shape, non-spore fonning, catalase positive, oxidase 

negative, motile at 25Co, and positive haemolysis was used to identify and 

confinn Listeria species using the API Listeria commercial kit REF 10 300 

(BioMerieux, UK Ltd, Basingstoke) by following the manufacturer's 

instructions. The results were analyzed using computer software available 

online from the API website. 

2. 1.3.7 Salmonella confinnation 

Presumptive Samonella colonies (red colonies with black centre on XLD agar) 

were randomly picked and identified by the following examination: Gram­

staining negative, rod shape, catalase-positive, oxidase-negative, and motility 

at 37°C. Further identification was carried out using the Salmonella Latex Test 

(Salmonella 100 Test Kit DR I 108A, Oxoid, UK). 

2.1.3.8 L. monocytogenes confinnation by polymerase chain reaction 

Polymerase chain reaction (PCR) was also used to confinn the identification of 

L. monocytogenes in parallel with the API Listeria commercial test kit. The 

PCR assay was carried out using primers based on a fragment of the sequence 

A Y878649 published in NCBI, and only a section codifying for prfA was used 

(Table 2. 1), and the size of the sequence expected was a fragment of 450 bp 

(Table2.2) (Nova, 2009). Extraction of DNA from L. monocytogenes was made 

by the method described in Section 2. 1.5.2. The PCR reactions were performed 

in a programmable heating incubator (Techne, Progene). Each reaction had a 
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Table 2.1 PCR primers used in this study 

Target Primers· PositionD Sequenc:e (5'-3') References 
Ol"2anisms 

Bacteria V3F 341-357 CCTACGGGAGGCAGCAG Muyzer el al., 
1996. 

V3R 518-534 ATTACCGCGGCTGCTGG Muyzer el al., 
1996. 

V3F-GC 341-357 A GC clamp was attached to the 
5' end ofV3F primer 

Eukaryote Ef 1427- 1427-1453 TCTGTGATGCCCTTAGATGT Van Hannen el 
1453 TCTGGG al., 1998. 

ER 1616- 1616-1637 GCGGTGTGTACAAAGGGCA Van Hannen el 
1637 GG al., 1998. 

Ef 1427- 1427-1453 A GC clamp was attached to the 
1453 GC 5' end ofEf 1427-1453 primer 

GC clamp CGCCCGCCGCGCGCGGCGG Muyzer el al., 
GC 1996. 
GGGGCGGGGGCCCGGGGGG 

L. PrfAIF CCTAATCCTCGAACTT Nova, 2009 
mOl/ocytogenes TTTCCGATGTTAAG 

prfAIR GCGTTTAAAAGACGAA Nova, 2009 
CAGAACAGCAATGA 

a F forward primer; R reverse primer. 

b Corresponding to the numbering in the Escherichia coli sequence. 
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Table 2.2 Expected peR products (450 bp) to be obtained with the primers 
designed for L. monocytogenes. 

cctaatcctc gaactttttc cgatgttaag ttgagtacga actgctctac 
tttgttgttt aatgctgcag catactgacg aggtgtgaat gttaatgaag 
tggcactaat atggttaaga aacagtttgt tgtccgcttt agaagcttga 
taagcagtct ggacaatctc tttgaatttt tttttcacac tcggaccatt 
gtagtcatct tgaattactt ggttggatgc gccgaactgc atgccgaatt 
tgtgtgaatt aatgactaat ggcttttttg tgtggttctc tgaaagtaat 
aatatttttc cgcggatatc tttcaatgta gggattttat tgctcgtgtc 
atttctggga gtggtgtaaa aataatcttt gtaaatgttg attaatggtt 
gaattcggta atcaaaacta tcattgctgt tctgttcgtc ttttaaacgc 
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total volume of 50 ~1. One microlitre of DNA sample was added to 49 ~I 

master mix containing I ~I of 100 pmol of each primer, 5 ~I of mixed 

deoxynucleotide triphosphate (2.5 mM each), 5 ~I of lOX DreamTaq® Green 

buffer (Fermentas, UK), and 0.25 ~I of 5U DreamTaq® DNA polymerase 

(Fermentas, UK). PCR reaction was run with an initial denaturation step at 

94°C for 2 min; 30 cycles at 94°C for 30 sec, 62°C for 45 sec, and 72 °c for 60 

sec. Final extension was completed at 72 °C for 10 min (Adapted from Nova, 

2009). The PCR products were immediately checked on 1% agarose gel. 

2. 1.4 Gel Electrophoresis 

Gel electrophoresis assay was used to examine the quantity of the DNA and 

PCR products. Agarose gel (I %) (Melford agarose molecular biology grade, 

Melford Laboratories Ltd, Ipswick, UK) was prepared in I X T AE buffer (0.04 

M Tris. 0.00 I M EDT A, I. I 4 ml glacial acetic acid; Fisher Scientific, UK) 

containing 2 mglml of ethidium bromide (EIPSOO/03, Fisher Scientific 

Loughborough, UK). Each five microlitre of DNA or PCR products was mixed 

with I ~I of a blue/orange 6X loading dye (Prom ega, Southampton, UK) before 

loading the samples into gel electrophoresis wells. A one kilobase pair or 100 

bp DNA ladder (Promega, UK) was used as a marker for DNA and PCR 

products in gel electrophoresis assays, respectively. The gel was run in I X 

T AE buffer at 90V for 45 min. The PCR products were visualized under UV 

light and photograph the gel using the Gel Documentation systems (Bio-Rad, 

Hempstead. UK). 
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2.1.5 Polymerase chain reaction-Denaturing Gradient Gel Electrophoresis 

assay (pCR-DGGE) 

PCR-DGGE was used to ascertain the microbial diversity both directly from 

mung bean sprout samples (bean sprout pellets) and from the cultured plates. 

2.1.5.1 Sample preparation 

The samples of homogenized sprouts in MRD remaining after use for viable 

counts (2.1.2) were used for direct population analysis. The homogenized 

sprout sample in MRD (20 mt) was transferred to a sterile centrifuge tube and 

centrifuged at 20442 x g (Beckman® Floor centrifuges model 12-21) for 10 

min. The supernatant was discarded and sprout samples in MRD suspension 

were refilled (20m I each time) and centrifuged until large pellets were obtained 

(-40 ml of MRD suspension were centrifuged in total). The pellets were 

transferred to an eppendorf tube and 1 ml of the sprout samples in MRD 

suspension (1 ml) was added and further centrifuged at 15700 x g (Eppendorf 

Microcentrifuge model 5415R) for 5 min until 3-4 mm depth of pellet was 

obtained. These 'sprout pellets' were used for DNA extraction. For the cultured 

population analysis, the bulk cells of bacteria and fungi were harvested from 

the 10-1 dilution agar plate of each medium by adding 4 ml of sterile water onto 

the surface of the agar plate and re-suspending with a sterile spreader. The 

suspension was transferred to an eppendorf tube and centrifuged at 15700 x g 

for 5 min to obtain a cell pellet. Pellets from mung bean sprouts and bulk cells 

of bacteria and fungi were re-suspended in 100 III of sterile RO water and kept 

at -20°C until ready for use. 
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2.1.5.2. DNA extraction 

DNA extraction was carried out using a combination of guanidium thiocyanate 

-based DNA extraction (GES) (adapted from Pitcher et ai., 1989) with a glass 

bead beating method (adapted from Rudi et ai., 2002). The cell pellet (bean 

sprout pellets and bulk cell pellets) was suspended in 1 ml ice-cold GES lysis 

butTer (25 mM Tris-CI pH 8; IOmM EDTA; 50 mM sucrose) and centrifuged 

at 15700 x g (Eppendorf Microcentrifuge model 5415R) for 1 min. The 

supernatant was removed and the pellet was re-suspended in 1 00 ~I of GES 

lysis butTer. The re-suspended pellet was beaten with glass beads (0.5 mm 

glass beads: soda lime, Biospec Products, Inc. UK) in an eppendorf tube using 

a vortex mixer until the pellet was fully dispersed (-5 min). Lysozyme (5 ~I, 

50 mg/ml) was added to the bacterial bulk cells or Iyticase (5 ~I, 20 mg/ml) to 

fungal bulk cells and incubated at room temperature for 5 min. Both enzymes 

were added to bean sprout pellets at the same levels. GES reagent (500 ~I; 5M 

guanidium thiocyanate, O.lM EDTA, 0.5% sucrose) was added, mixed well 

and incubated at room temperature for 5 min. The lysate was cooled in ice for 2 

min and ice-cold ammonium acetate (250 ~I, 7.5 M) was added. This was 

mixed and incubated in ice for 10 min, followed by the addition of24:1 CHCb: 

isoamyl alcohol addition (0.5 ml), vortexed brieftly and centrifuged at 15700 x 

g for 10 min. Supernatant (maximum 500 Ill) was transferred to a fresh 

eppendorf tube, 0.1 volume of sodium acetate (3M, pH 5.2) and 2 volume of 

absolute ethanol were added to the supernatant, vortexed and incubated at room 

temperature for 2 min before chilling at -20°C overnight. The DNA was 

collected by centrifugation at 15700 x g, 4°C for 45 min. The DNA pellet was 

washed in 70% ethanol and dissolved in 50 III sterile RO water. DNA presence 
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was checked on 1% agarose gel (Melford Laboratories Ltd, Ipswick, UK) using 

the protocol previously described in Section 2.1.4. 

2.1.5.3 DNA quality and quantity analysis using Nanodrop® analysis 

The purity and quantity of the DNA was checked by using the Nanodrop® ND-

1000 UV-Vis spectrophotometer (Labtech International, East Sussex, UK) 

following the manufacturer's instructions. In general, the analysis was started 

by running the nanodrop software installed in the computer and choosing the 

DNAIRNA nucleic button. The instrument was initialized by dropping 2 J.l1 of 

sterile distilled water on the analyzer. The next step was to run the blank using 

2 J.l1 drop of the substance used to suspend the DNA samples (sterile RO 

water). The sample analysis was carried out by dropping 2 J.l1 of DNA 

suspension on the analyzer and the DNA quantity was revealed as ng/J.l1 of 

sample. DNA quality was determined by reading the 2601280 ratio which 

indicates protein contamination. The DNA sample is considered pure when the 

ratio is above 1.8. 

2.1.5.4 PCR amplification 

Total DNA from the sprout pellets and bulk cells were used as template to 

amplify the V3 region of the bacterial 16S rONA by PCR using the universal 

primers V3-GC-F (Sigma 6421-115) and V3R (Sigma 6426-072) spanning the 

V3 region of the 16S ribosomal DNA (rDNA) (Table 2.2) (Muyzer et al., 1993; 

Murray et al., 1996; Ercolini et al., 2001; Temmerrnan et al., 2003). The 

primers Efl427-1453 and Er1616-1637 (Van Hannen et al., 1998) were used to 
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amplify the 18S rDNA of the eukaryotic species (Table 2.1).To both forward 

primers, a GC clamp was attached to the 5' end of the forward primer (Muyzer 

et al., 1993) to prevent complete melting of the DNA fragments during DGGE 

analysis. Amplifications were performed in a programmable heating incubator 

(Techne, Progene). Each mixture (final volume, 50 Ill) contained 1 III of 

template DNA or an equal volume of water (for negative control reactions), 0.1 

pmol of each primer, each deoxynucleotide triphosphate at a concentration of 

0.25 mM, 2.5 mM MgCh (AB gene, Thermo Scientific, Epsom, UK), 5 III of 

lOX PCR buffer (AS gene), and 1.25 U of Taq polymerase (AB gene). The 

same conditions were used for both sets of primers. PCR amplification was 

carried out as follows: initial denaturation at 94°C for 5 min, followed by 10 

cycles of initial annealing starting at 66°C for 1 min and decreasing 1°C every 

cycle; 20 cycles were performed at 56°C and a final extension at noc for 3 

min (Ercolini et al., 2003). The PCR products were checked for quantity by 

using gel-electrophoresis assay on 1 % agarose gel as described in Section 

2.1.4. PCR products with GC clamp were stored at -20°C until used for DGGE 

analysis. 

2.1.5.5 DGGE analysis 

The DCode Universal Mutation Detection system (Sio-Rad, Hempstead, UK) 

was used for the separation of the PCR amplicons with the procedure described 

by Ercolini et a/. (2003). The samples (15 III ofPCR products with 10 III of2X 

loading dye) of approximately 200 bp sizes were run in 8% (w/v) 

polyacrylamide gels in IX TAE buffer. The loading dye (2X) contained 0.25ml 
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2% Bromophenol blue (B1P620/44 Fisher Scientific, UK) + 0.25 ml 2% Xylene 

cyanol FF for molecular biology (X4126-IOG Sigma, UK) + 7 ml of 100% 

Glycerol (G/0650/17 Fisher Scientific, UK) + 2.5 ml sterile RO water. Parallel 

electrophoresis was performed at 60°C using a gradient of 20%-50% urea­

formam ide (100% corresponding to 7 mol/l urea; Sigma U-063 I ) and 40% 

(w/v) formamide; Sigma F-9307» increasing in the direction of the 

electrophoresis. The electrophoresis conditions were 50 V for I 0 min followed 

by 6 h at 170 V. The gels were stained for 5 min in aqueous ethidium bromide 

(0.5 mg/L, Fisher Scientific, Loughborough) followed by IS min de-staining in 

100 ml sterile RO water and visualized under UV light and photograph the gel 

using the Gel Documentation systems (Bio-Rad, Hempstead, UK). 

2.1.5.6 Sequencing ofDGGE fragments 

Bands on the polyacrylamide gels were isolated from the gel with a sterile 

scalpel, and placed in sterile eppendorftubes. The DNA was eluted in 20 III of 

sterile deionised water overnight at 4°C. One microlitre of this solution was 

used as a template for re-amplification reactions using the original pair of 

primers but without a GC clamp, under the same PCR conditions. PCR 

products that gave a single band on 1% agarose gel were purified with a 

Wizard ill PCR Preps DNA Purification system (Promega, Southampton, UK) 

and then sequenced at MWG (Germany) sequencing laboratory. Sequence data 

were analysed using the Basic Local Alignment Search Tool (BLAST) system. 
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2.1.5.7 Analysis ofDGGE patterns 

Gel images were analyzed by the FPQuest™ software package version 4.5 

(Bio-Rad, Hempstead, UK). One reference sample was defined as the 

'standard' pattern for normalisation across gels. Analysis was carried out using 

the Dice coefficient and Unweight Pair Group Method with Arithmatic Mean 

(UPGMA) cluster analysis. 

2.1.6 Statistical analysis 

Log counts from four samples of mung bean sprouts from each outlet were 

analysed and counts from different outlets were subjected to analysis of 

variance. When significant (p < 0.05), means were compared using Tukey's 

test at 5% significance level. All analyses were conducted using the SPSS 

version 16 statistical software. 

2.2 Mung bean seeds decontamination protocol 

2.2.1 Bacterial strains used 

The bacterial strains used in this study are listed in Table 2.3 

2.2.1.1 Working cultures 

All working cultures were maintained on both non-selective agar (brain heart 

infusion agar: BHI, Oxoid, CM 1 032a) and selective agar consisting of M 17 

agar (Oxoid, CM0785) for Leo /aetis subsp./aetis; MRS agar (deMan Rogosa 
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Table 2.3 The bacterial strains used in the study. 

Strain Characteristic SourcelReference 

L. monocylogenes Serovar4b University ofNottingharn collection' 
NCTCI1994 

L. monocylogenes Serovar 4b University of Nottingham collection 
ATCC23074 

E. coli NCTC86 University of Nottingham collection 

Laclococcus laclis subsp. Bacteriocin producing University of Nottingham collection 
laclis NCIMB8586 strain 

Pediococcus acidilaclici Bacteriocin producing University of Nottingham collection' 
NCIMB700993 strain 

Salmonella Typhimurium Wild type University of Nottingham collection 
(Tumes) 

Salmonella Enteritidis Wild type University ofNottingharn collection' 
(Plattem) 

... DIvIsion of Food SCiences, School of Blosclences, Sutton Bonmgton Campus, Umverslty of 
Nottingham, Loughborough, Leicestershire, LE 12 SRD. 
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Sharpe: Oxoid, CM0361) for P. Acidilactici; MacConkey No. 3 agar 

(Oxoid,CM 115) for E. coli; Xylose Lysine Deoxycholate (XLD) agar (Oxoid, 

CM469) for Salmonella spp. Culture plates were stored at 4°C and sub-

cultured weekly. Prior to use, the cultures were passed twice by loop 

inoculation in 9 ml BHI broth and incubated at 37°C for 18-24 h. 

2.2.1.2 Stock cultures 

Each stock culture was maintained in BHI broth, containing 20% glycerol and 

stored at -80°C except for Lc. lactis subsp. lactis and P. acidilactici which 

were maintained in MI7 and MRS broth containing 20% glycerol, respectively. 

2.2.2 Mung bean seeds preparation 

Mung bean seeds were purchased from a local supennarket. Each batch of 

mung bean seeds (I OOg) was surface disinfected for 10 min in 250 ml of 2% 

sodium hypochlorite at ambient temperature followed by washing three times 

in I I of sterile RO water and allowing to dry on sterile filter paper for 2 h 

(Adapted from Warriner et al., 2003). 

2.2.3 Preparation of pathogen inocula 

2.2.3.1 Preliminary method 

At the beginning of the experiment, the inocula of L. monocytogenes 11994 

were prepared by inoculating cells from a single, well-isolated colony on a BHI 

plate stored at 4°C into a universal bottle containing 10 ml of BHI broth and 
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incubated overnight at 37°C. This was followed by inoculating overnight 

culture onto the entire surface of a BHI agar plate by using a MRD-dampened 

cotton wool swab and incubated overnight under the same conditions. The cell­

suspension was made by mixing an overnight culture on a BHI plate with 4 ml 

of sterile RO water using a sterile spreader. Suspended-cells were harvested by 

centrifugation at 4000 x g for 10 min at 4°C and washed once in 20 ml of 

sterile MRD. The cell pellet was finally re-suspended in 200 ml of sterile MRD 

to obtain a cell density of approximately 7-8 10glO CFU/ml (adapted from 

Warriner el al., 2005; Ruiz-Cruz el al., 2007). This method was not adapted in 

this particular work because it is time consuming and more laborious 

cultivating and incubating the pathogen inocula on BHI agar. A second method 

to circumvent this issue was developed instead (2.2.3.2). 

2.2.3.2 Method to prepare the pathogen inocula 

To prepare the inocula, a single, well-isolated colony from a BHI plate stored 

at 4°C was inoculated into a universal bottle containing 9 ml of BHI broth and 

incubated overnight at 30°C. One loopful of overnight culture was transferred 

into 20 ml BHI broth and grown overnight under the same conditions. The cells 

were harvested by centrifugation (4,000 X g for 10 min at 4°C) and washed 

once in 20 ml of sterile MRD (CM0733a, Oxoid). The cell pellet was finally 

re-suspended in 200 ml of sterile MRD to obtain a cell density of 

approximately 6 10glO CFU/ml (adapted from Warriner el al., 2005; Ruiz-Cruz 

el al., 2007). Sal. Typhimurium inoculum was prepared in the same manner as 
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L. monocytogenes inoculum except for the incubation temperature which was 

carried out at 37°C instead of 30°C. 

2.2.4 Mung bean seed inoculation 

2.2.4.1 Preliminary method 

The surface sanitized seeds (100 g) were submerged in the pathogen inoculum 

(200 ml) for 30 min. The inoculum liquid was decanted and the seeds were 

placed on a double layer of sterile filter paper (22 cm diameter, Filter paper, 

Fisher Scientific, UK) to dry overnight (-14 h) in a class II safety cabinet to 

obtain an average contamination level of approximately 6 logto CFU/g 

(adapted from Jaquette et al., 1996). This method was used only in the 

experiment of examining the effect of bacteriocin-like substances produced by 

P. acidilactici against L. monocytogenes on seeds. The main reason for not 

using this method is the very long contact time (30 mins) between seeds and 

the inocula which may cause higher attachment and numbers of the pathogen 

on inoculated seeds. This is not usually found in naturally contaminated seeds. 

A second method to overcome this problem was developed instead (2.2.4.2). 

2.2.4.2 Seed inoculation 

Each batch of surface sanitized seeds (50 g) was submerged in 200 ml of either 

L. monocytogenes 11994 or Sal. Typhimurium inocula prepared using the 

method described in Section 2.2.3.2 for 10 min to obtain an average 

contamination level of 6 logto CFU/g. Seeds were separated over a double-
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layer of sterile filter paper to remove the excess inoculum under a class II 

safety cabinet for 3 h and then directly used within 3 h. 

2.2.5 Mung bean seed germination 

2.2.5.1 Preliminary method 

Seeds were evaluated for their ability to germinate. Approximately 25 seeds 

were placed on water-saturated 90-mm-diameter No.4 filter paper (Whatman, 

Fisher Scientific, Loughborough, UK) in a plastic 90-mm-diameter Petri Dish 

and placed in the dark at 25°C for 48 h (4 Petri Dishes per treatment). The 

number of germinated seeds, which were chosen with the radicle becoming 

visibly protruded from the seed coat by at least 2 mm, was counted and the 

percentage was calculated (Kim et al., 2006). This method was only used to 

examine the germination percentage of contaminated seeds treated with natural 

antimicrobial substances (Chapter 5) due to the limited space to germinate the 

seeds in an incubator at 25°C. A second method to circumvent this problem 

was developed instead (2.2.5.2). 

2.2.5.2 Germination process 

Approximately 10 seeds were placed in a sterile universal bottle containing 3 

ml of sterile RO water. Seeds were germinated in the dark at 25°C for 48 h. 

Ten universal bottles replicates were prepared and the number of germinated 

seeds was counted and the percentage was calculated (Kim et aI., 2006). 
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2.3 Screening antimicrobial activity of bacteriocin-producing 

strains against the pathogens 

2.3.1 Preparation of indicator strains 

The inocula of the indicator strains (L. monocytogenes 11994, L. 

monocytogenes 23074, E. coli, Sal. Typhimurium, and Sal. Enteritidis; Table 

2.3) were prepared by inoculating a single, well-isolated colony of each 

organism from a BHI plate stored at 4°C into 9 ml ofBHI broth and incubating 

overnight at 37°C. One loopful of overnight culture was transferred to 9 ml 

BHI broth and grown overnight under the same conditions. 

2.3.2 Preparation of cell-free supernatant (CFS) of bacteriocin-producing 

strains 

Cell-free supernatants (CFS) of bacteriocin- producing-strains (Lc. lactis subsp. 

lactis and P. acidilactici; Table. 2.3) were prepared by inoculating a single 

well-isolated colony of each organism in 10 ml of BHI broth and incubating in 

a shaking incubator (200 rpm) overnight at 37°C. Cultures were centrifuged at 

12,000 x g, for 10 min at 4°C. The supernatants were collected and adjusted to 

pH 6.5 with 5 M NaOH. Cell-free supernatant (CFS) was sterilized by filtration 

through a 0.2-J.lm-pore-size filter (Sartorious, Fisher Scientific, UK). 

2.3.3 Antimicrobial activity of CFS of bacteriocin-producing strains 

against food-borne pathogens 

The study of antimicrobial activity of Le. lactis subsp. lactis and P. acidilaclici 
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against indicator strains was carried out using agar well and paper-disc 

diffusion assays with modifications (Parente et ai., 1995; Smith et ai., 2005; 

Wei et ai., 2008) on BHI agar plates containing 20 ml of medium in 90 mm 

petridishes. The inoculum of each indicator strain (Section 2.3.1) was spread 

evenly on the surface of the BHI agar using a sterile cotton bud. Fifteen 

millimetre wells were bored in each plate using the open end of a sterile test 

tube. One hundred microlitre of the neutralised CFS (Section 2.3.2) was 

pipetted into each well and left at room temperature for 30 min to allow the 

CFS to be absorbed into the agar. The plates were incubated at 37°C for 24 h 

and any zones of inhibition were measured. The paper disc diffusion assay was 

carried out by dipping a sterile circular paper disc (0 = 13.0 mm, AA size, 

Whatman, Fisher Scientific, UK) in cell-free supernatant for 30 min before 

placing on a lawn of newly-spread indicator strain. The plates were left at 

ambient temperature for 30 min to allow the absorption of the filtrate into the 

agar before incubating at 37°C for 24 h and measurement of the zone of 

inhibition. 

2.4 Preliminary study of antibacterial activity of bacteriocin­

like substances against L. monocytogenes on Mung bean seeds 

2.4.1 Preparation of the broth culture, cell-pellet suspension, and cell-free 

supernatant (CFS) of bacteriocin-producing strains (P. acidilactici and Lc. 

lactis) 

Whole cell cultures were prepared by inoculating cells from a single, well-
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isolated colony of BHI agar stored at 4°C in a universal bottle containing 9 ml 

of BHI broth and incubating in a shaking incubator at 200 rpm overnight at 

37°C. A loopful of overnight culture was transferred to an Erlenmeyer flask (1 

I) containing 500 ml of BHI broth and incubated under the same conditions to 

obtain a cell concentration of 8-9 10glO CFU/ml. The cell suspension was 

prepared by centrifuging the broth culture at 12,000 x g, for 10 min at 4°C 

(Beckman® Floor centrifuges model 12-21), before removing the supernatant. 

The retained pellet was washed once with 20 ml of sterile MRD before re-

suspended in 400 ml of MRD to obtain a cell concentration of 8-9 10glO 

CFU/ml (Magnusson and SchnUrer, 200 I). Discarded supernatants were used 

to prepare cell free supernatants (CFS) by neutralizing the pH to 6.S with SM 

NaOH and sterilization by filtration through 0.2-J.1m-pore-size filter (Millipore, 

Fisher Scientific, UK) to produce a neutralised CFS before direct use or storing 

at -20°C (Bennik et al.. 1999) for further use. 

2.4.2 Effect of temperature (beat) on crude bacteriocin in neutralized CFS 

Ten millilitre of neutralized CFS (Section 2.4.1) in a sterile universal bottle 

was incubated at 80°C for 20 min. One hundred micro litre of treated CFS was 

used to determine the antibacterial activity as in Section 2.3.3. 

2.4.3 Effect of enzyme treatment on crude bacteriocin in neutralized CFS 

One ml of neutralised CFS (Section 2.4.1) was treated with proteinase K 

enzyme (Promega, UK) and catalase enzyme (Sigma-Aldrich, UK). Enzymes 

were applied at a final concentration of 0.5 mg/ml for proteinase K and 300 
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Vlml for catalase enzyme before incubation at 37°C for 2 h. CFS was heated at 

100°C for 3 min to inactivate enzyme activity and tested for bacteriocin 

activity (Lee, 2002). The untreated sample was used as a control. 
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CHAPTER 3 

ANALYSIS OF MICROBIAL QUALITY AND 

COMMUNITIES OF 'USE-BY DATE' MUNG BEAN 

SPROUTS USING PCR-DGGE AND CULTURE-BASED 

METHODS 

3.1 Introduction 

The major source of human pathogens in sprout-related outbreaks is suspected 

to be from seeds used for sprouting rather than from contamination of sprouts 

during or after production (Scouten and Beuchat, 2002; Winthrop et ai., 2003; 

Bari et aI., 2004; Montville and Schaffner, 2004). Therefore, the microbial 

testing of seeds and spent irrigation water to detect pathogens is needed to 

prevent the risk from foodbome illness. Microbial analysis using culture­

dependent methods is the most commonly applied approach in evaluating the 

microbial quality of raw fruit and vegetables. However, classical methods for 

the determination of bacterial viability rely on the ability of cells to grow 

actively and form visible colonies on solid media (Keer and Birch, 2003). This 

causes some limitations such as firstly knowing the bacteria to search for, 

providing optimum growth conditions and the difficulty of developing media 

for successful cultivation of all contaminants (Rudi et at., 2002). Moreover, the 

conduction of microbial testing with classical methods is time consuming, for 

example, microbial analysis for the detection of Salmonella is labour-intensive 

and takes days to complete (Keer and Birch, 2003; Kramer and Lim, 2004). 



Inaddition, the microbes captured in seed cracks, crevices or on the seed 

surface are able to proliferate inside the seed sprouts during the sprouting 

process and this may minimize the chance of the internalized organism being 

thoroughly homogenized with the diluent during the sample preparation 

process. Classification based on physiological or biochemical features may not 

always be possible as an estimated 99% of all organisms in nature cannot be 

isolated, or in other words, any organisms that do not grow on the culture 

media will be excluded from the study (Muyzer, 1999; Steele el aI., 2005). 

Culture-independent methods are increasingly being used to detect microbes in 

foods as these techniques are believed to overcome problems associated with 

selective cultivation and isolation of bacteria from natural samples (Ercolini, 

2004). These molecular approaches have circumvented the need for cultivation 

because phylogenetically informative DNA sequences can be directly screened 

from the environment (Crosby and Criddle, 2003). The combination of 

polymerase chain reaction (PCR) of the 16S rRNA gene (rONA) with 

denaturing gradient gel electrophoresis (DGGE) has provided a new insight 

into microbial diversity and allows a more rapid and comprehensive analysis of 

microbial communities in comparison with cultivation-based techniques 

(OahllOf et ai., 2000; Boon el aI., 2002). Thus, the use ofthis rapid and reliable 

examination method to evaluate the presence of microorganisms in sprouted 

seeds and sprouts might be helpful in detecting and identifying the pathogenic 

and spoilage microorganisms present in bean sprouts. This study therefore 

aimed to evaluate the microbiological quality of mung bean sprouts marketed 

in the local area using the culture-dependent and PCR-OGGE based methods. 
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3.2 Microbiological quality of 'use-by date' mung bean sprouts 

Over a period of 12 months, ready-to-stir fry mung bean sprouts were collected 

monthly from three retail locations as detailed in Section 2.1.1., and examined 

for total aerobic counts (T AC), total coliforms, B. cereus, lactic acid bacteria, 

yeast and moulds, and Listeria species (Section 2. J. 2. J to 2. J. 2. 5). In addition, 

the presence of Salmonella spp. was investigated in all samples. The results 

which are the average of the four replicate samples per retail outlets are shown 

in Fig. 3.1. The averages of TAC (6.35-7.86 10glO CFU/g), B. cereus counts 

(3.70 - 4.55 10glO CFU/g), total coliforms (5.15 -6.63 loglO CFU/g), total lactic 

acid bacteria and total counts on M 17 agar incubated at 42°C under aerobic 

(2.22 - 3.05 loglO CFU/g, 6.05 - 7.13 10glO CFU/g, respectively) and 5% carbon 

dioxide (C02) conditions (2.14 - 2.95 10glO CFU/g, 6.45 - 7.19 10glO CFU/g, 

respectively), and total counts on M 17 agar incubated at 30°C under 5% CO2 

conditions (6.49 - 7.68 10gIO CFU/g) were not significantly different (p > 0.05) 

among the three locations. The highest total coliforms counts (6.63 10glO 

CFU/g) were found in shop D samples. Meanwhile, the averages of yeast and 

mould counts (4.7 - 7.0 10gIO CFU/g), total Listeria spp. (3.49 - 5.26 10g1O 

CFU/g), and total lactic acid bacteria incubated at 30°C under 5% CO2 

conditions (3.67 - 6.24 10glO CFU/g) were significantly different among the 

three sources (p < 0.05). Samples from shop D had the highest counts of 

organisms in most of the microbial analyses. Two samples from this shop 

possessed a sour smell on the 'use-by date' of the samples which indicated 

spoilage and poor quality and this may be due to the highest total LAB counts 

on MRS agar incubating at 30°C under 5% carbon dioxide condition (6.24 
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Fig 3 .1 Microbial counts (log lO CFU/g) of 'use-by date' Mung bean sprouts. Means with 
different superscript letters are significantly different (p < 0.05). Counts are the mean of four 
replicate samples. 
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Yeast and mould counts on Oichloran Rose Bengal Chloramphenicol agar 

Listeria species counts on Listeria selective agar (Oxford formulation) 
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Total coliforms counts on MacConkey No. 3 agar 
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under 5% CO2 condition 

Total lactic acid bacteria on OeMan-Rogosa-Sharpe agar incubating at 42°C under 

aerobic condition 

Total lactic acid bacteria counts on OeMan-Rogosa-Sharpe agar incubating at 42°C 

under 5% CO2 condition. 

A supermarket and retail shop, respectively in Loughborough, UK 

A supermarket in ottingham. UK. 
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10glO CFU/g) and yeast and mould counts (7.0 10glO CFU/g) of shop D samples 

compared with other two sources (3.68 - 4.25 10glO CFU/g; 4.70 - 5.86 10glO 

CFU/g, respectively). Interestingly, the counts of total LAB obtained from 

sample B 1 which was the only sample collected from shop D produced by the 

same producer but packed in polystyrene foam tray wrapped with shrink film, 

had no growth of LAB on MRS agar incubating under the same conditions. In 

addition, shop A samples had the lowest microbial counts (in most of the 

microbial analyses) which are considered the best samples in terms of quality 

in this study. Interestingly, Salmonella was not detected in any of the samples. 

Counts of total Listeria spp. were high and between 3.49 and 5.26 10gIOCFU/g. 

Presumptive colonies on Oxford agar were not confirmed as L. monocytogenes 

by further testing because it was planned to use the molecular method based on 

PCR-DGGE analysis to reveal microbial communities and in identifying the 

microorganisms present in raw sprout samples in the following experiments. 

Therefore if there were any pathogens harbouring in sprouts, it should be able 

to detect them using the molecular technique. However, the high counts of 

presumptive colonies of L. monocytogenes on the selective media still 

demonstrate a potential risk of the products for 'at risk' awareness groups. In 

addition, although two incubation temperatures were used for enumerating the 

lactic acid bacteria in this study, it may be more appropriate to focus only on 

enumerating those isolates which are able to grow at normal storage 

temperatures or refrigeration-abuse temperatures instead of 42°C, because 

there is a very low possibility that raw bean sprouts would be exposed to this 

highly abuse temperature. 
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3.3 Characterization of microbial communities of 'use-by date' 

mung bean sprouts by using PCR-DGGE 

DGGE analysis of 16S rDNA and 18S rDNA amplified from bean sprouts and 

bulk cells genomic DNA (Section 2.1.5) was used to study the diversity of 

microbial communities in the samples. Based on the number of bands present 

in all gels, there was a greater variety of bacterial species (7-15 bands/track) 

compared to eukaryotic organisms (3-5 bands/track) (Fig. 3.2, Appendix B 1, 

82, and 83, respectively). These results are similar in DNA templates obtained 

both from bean sprout pellets and confluent culture plates. Interestingly, the 

DGGE profiles of the DNA amplified with the I6S primers obtained directly 

from bean sprout pellets had fewer bands compared to the profiles from the 

cultured cells. In contrast, the DNA extracted directly from bean sprout pellets 

and cultured cells amplified with the I8S primers generated almost similar 

DGGE profiles in terms of diversity and intensity (Fig. 3.2, Appendix 81, B2, 

and B3, respectively). 

A larger diversity of the eUkaryotic community was observed in shop D 

samples as shown by the greater number of bands (8-10) in those tracks (Fig. 

3.3 Dl and D4) compared with the samples from the other two sources (3-5 

bands) (Fig. 3.3 AI, A3, CI, C2 and C4, respectively). This suggests that a 

high diversity of eukaryotic communities exist in samples from this origin 

which may also correspond to the higher yeast and mould counts obtained from 

this sample source (Fig. 3.1). In addition, profiles from the cultured cells from 

specific selective media showed highly similar profiles corresponding to their 
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Fig. 3.2 OGGE fingerprints of the 16S and 18S rONA amplified products from 
sample AI. 
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Fig.3.3 OGGE fingerprints of the I8S DNA amplified products from different 
sample sources. 

AI : lane I: DRBC 
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lane 3: bean sprouts pellet 
lane 3: bean sprout pellet 
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lane 3: bean sprout pellet 

A,H,C refers to the three shops; No.1, 2, and 4 are an individual samples from each 
source. 

DRBC: 

PCA: 

18S rD A amplimers from bulk cells collected from Dichloran Rose Bengal 
Chloramphenical agar. 
18 rONA amplimers from bulk cells collected from Plate Count Agar 
Bean sprout pellet: 18S rD A amplimers from bean sprout sample. 
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sampling sources. For example, related profiles were seen from MacConkey 

No.3 agar when comparing the three samples from shop A (Fig. 3.4; lane I, 2, 

and 3), shop C (Fig. 3.4; lane 1,2,3) and shop D (Fig. 3.4; lane 1,2, and 3) but 

these were distinctive from each other. This is not surprising as the results were 

expected to show some similarity between profiles of organisms achieved due 

to the selective nature of the medium. 

3.4 Identification of dominant organisms by band analysis 

Dominant bands were excised from the DGGE gels and sequenced. The 

biodiversity of the microbial communities obtained by band analysis is shown 

in Table 3.1 and Fig. 3.5. The predominant organisms in the samples belong to 

Enterobacteriaceae (29.6%), soil bacteria (20.4%), lactic acid bacteria (18.5%), 

yeast (14.8%), Pseudomonas spp. (13%), and Flavobacterium (3.7%), 

respectively. A strong occurrence of several LAB species (Weissella soli, W 

cibaria, W confuse, W ghanensis, Lactococcus sp., and Leuconostoc citreum) 

in shop D samples are probably linked to the higher LAB counts and poor 

quality of samples from this origin compared with other sources because only 

two strains of LAB (Lc. laslis subsp. laclis and Leuc. mesenteroides) were 

identified from shop A samples, and no LAB species were obtained from shop 

C samples). 
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Fig 3.4 DOGE fingerprints of 16S rONA amplimers from cultured cells 
collected from MacConkey No.3 agar. 

Shop A: Lane 1, 2, and 3: 16 rO A amplimers from bulk cells collected from MacConkey 
agar from sample AI, A2 and A3, respectively. 

Shop C: Lane 1, 2, and 3: 16S rDNA amplimers from bulk cells collected from MacConkey 
agar from sample CI, C2 and C3 , respectively. 

Shop 0 : Lane 1, 2, and 3: 16S rONA amplimers from bulk cells collected from MacConkey 
agar from sample 01 , 02 and 03, respectively. 
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Table 3.1 Organism identification by band analysis. 

No. 
1 

2 

3 
4 

5 
6 

7 
8 
9 
10 
II 
12 

13 
14 
IS 
16 
17 

18 
19 

20 
21 
22 

23 
24 

'oJ:) 

o 

Organism Identification 
Pseudomonas sp. 

Pseudomonas sp. 
Pseudomonas putida 
Pseudomonas pulida 
Pseudomonas lubricans 

Pseudomonasj7uorescens 

Pseudomonas plecoKlossicida 
Uncultured Eukaryote clone 

Uncultured Eukaryote clone 
Enterobacter sp. 
Enterobacter sp. 
Enterobacter sp. 

Enterobacter cloacae 

Enterobacter cloacae 
Enterobacter cloacae 
Enterobacter saka=akii 
Enterobacter saka=akii 

Enterobacter pyrinus 

Uncultured E. coli 
Lactococcus sp. 
Lactococcus lactis subsp. lac tis 
Leuconostoc mesenteroides 
Leuconostoc citreum 
Weissella soli 

RID. NO 
Z6KWHBEE012 

Z6NSAXWPO 16 
Z6MPWMRWO 14 
Z6PFYKMY014 
Z6SFMDYEO] 6 

X82DBYYBOIl 

Z6JFSW4C014 
X7TGD89MO] 4 
WUTGE8W60]4 
OTS9SKWNO]2 

OY2FRRVOl2 

WUSYJCPOO14 
X7RVI791014 

WUGPTW7DO 16 
WUPN3W4601R 
OTSOSP6KO 12 
Z6KD4KM1014 

WUP07 APWO 16 

X81 T224UO 11 
Z6S9JSVD016 
X83D57WUO] 1 
X83W9C030] 1 
NV3 DNPPRO 12 
NV3 19CHNO 13 

% Identity Sample DNA Sources Sampling Date 

98% D2 Bulk cells from Pseudomonas selective agar 17/10/2007 
97% D4 Bulk cells from Pseudomonas selective agar 12/1112007 

98% D2 Bulk cells from MacConkey No.3 ~ar 17/10/2007 

96% C4 Bulk cells from Pseudomonas selective agar OS/12/2007 
]00% D2 Bulk cells from Pseudomonas selective agar ]7/1012007 

98% Al Bulk cells from XLD agar 06/02/2007 
98% D4 Bulk cells from MacConkey No.3 agar 12/1112007 

98% A] Bean pellet amplified with 18S primers 06/0212007 
]00% B] Bean pellet ampli tied with 18S primers 08/02/2007 
]00% C3 Bulk cells from MacConkey No.3 agar 04/1112007 

98% A2 Bean pellet amplified with 16S primers 16/07/2007 
99% Bl Bulk cells from BGA agar 08/0212007 
98% Al Bulk cells from M 17 agar at 42"C, S% CO2 06/02/2007 
100% BI Bulk cells from M 17 agar at 42'C 08/02/2007 

99% Bl Bulk cells from BGA agar 08/02/2007 

99% A3 Bulk cells from MacConkey No.3 agar 20/08/2007 

98% A3 Colony_ from Bacillus cereus selective ~ar 20/0812007 

100% Bl Bulk cells from M17 agar at 3TC 08/0212007 
100% Al Bulk cells from XLD agar 06/02/2007 
100% D2 Bean pellet amplified with 16S primers 17/10/2007 

100% AI Bulk cells from MRS agar at 30'C 06/0212007 
97% A] Bulk cells from MRS agar at 30'C 06/0212007 

99% Dl Bulk cells from MRS agar at 30'C 25/09/2007 
98% Dl Bulk cells from MRS agar at 30'C 25/0912007 



Table 3.1 Organism identification by band analysis (Cont'd). 

NO. Organism Identification RID. NO % Identity Sample DNA sources Sampling Date 

25 Weissella soli NV3YIKAP013 97% DI Bulk cells from PCA a2ar amplified with 16S primers 25/0912007 

26 Weissella soli Z6TCX2GZOI2 98% D4 Bulk cells from M 17 aR.ar at 30·C 12/1112007 

27 Weissella cibaria Z6RN8X300 16 99% D4 Bulk cells from M 17 aR.ar at 30·C 12/1112007 

28 Weissella confuse Z6RVK88V016 95% D4 Bulk cells from MRS agar at 30·C 1211112007 

29 Weissella ghanensis Z6S1ABC2014 98% D2 Bean Dellet amolified with 16S primers 1711012007 

30 Candida paJmioleophiia Z6PYJD7YOl4 99% D2 Bean Dellet amplified with 18S primers 1711012007 

31 Candida lusitaniae Z6K2BWNKOIR 98% CI Bulk cells from DRBC agar 24/0912007 

32 Candida lusitaniae N03GW26VOIR 100% DI Bulk cells from DRBC agar 25/0912007 

33 Candida arcane N068X69BO 16 96% DI Bulk cells from DRBC:!gar 25/0912007 

34 Pichiafermentans N0532XJGOIR 99% DI Bulk cells from DRBC agar 25109/2007 

35 Pichia fermentans X7PYZA6011 98% AI Bulk cells from DRBC agar 06/0212007 

36 Chryseobacterium sp. WURYTUBGOI6 100% A2 Colony from Bacillus cereus selective agar 16/0712007 

37 EIi:abethkinJ{ia miricola WUJYMVX60 II 99% A3 Colony from Bacillus cereus selective agar 20/08/2007 

38 Stenotrophomonas sp. WUT5J6FEOIR 100% A3 Colony from Bacillus cereus selective agar 20/0812007 

39 Stenotrophomonas sp. WUR5X8VDO 14 99% A3 Colony from Bacillus cereus selective agar 20/0812007 

40 Stenotrophomonas maltophilia WUSFMTJMOl6 100% A3 Colony from Bacillus cereus selective agar 20/0812007 

41 Stenotrophomonas maltophilia Z6P3GXC5016 99% A3 Bulk cells from Bacillus cereus selective agar 20/0812007 

42 Klebsiella pneumonia WURJE2EDO I R 99% BI Bulk cells from M 17 agar at 42·C 08/0212007 

43 Klebsiella pneumoniae OY370E2TOl6 99% A2 Bulk cells from XLD agar 16/07/2007 

44 Enterobacter sp. OY3XlUCPOl6 98% A2 Bulk cells from MI7 agar at 3TC 16/07/2007 

45 Klebsiella oxytoca Z6NI5X4JOI4 100% A2 Colony from Bacillus cereus selective agar 16/0712007 

46 Bacillus cereus Z6T4J1BFOI6 99% C4 Bulk cells from Bacillus cereus selective agar 0511212007 

47 Bacillus pumillls OTUFZR3WOI6 98% BI Bulk cells from Listeria selective agar 08/0212007 

\C) 



Table 3.1 Organism identification by band analysis (Cont'd). 

NO. 

48 

49 

50 

51 

52 

53 

54 

\Q 
tv 

Organism Identification 

Acinetobacter bay/vi 

Acinetobacter bay/)'i 
Acinetobacter soli 
Acinetobacter soli 
Rahnella sp. 

Curtobacterium citrellm 

Sinorhi=obium fredii 

RID. NO % Identity 

NV3TRNMBOIR 100% 

OTTPFBKCO 12 98% 

OTSWNNC5016 98% 

Z6R6TSP2016 98% 

OTT2FWK7016 98% 

OTTBVHVP016 100% 

~TSH86HfOI4 __ L 99% 

Sample DNA sources Samplin~ Date 

D1 Bulk cells from MacConkey No.3 agar 25/09/2007 

D3 Bulk cells from MacConkey No.3 agar 06/1112007 

D2 Bulk cells from MacConkey No.3 agar 17/10/2007 

D4 Bulk cells from M 17 agar at 30T 12/1112007 

Bl Bulk cells from MacConkey No.3 agar 08/02/2007 
Cl Bulk cells from Listeria selective agar 24/09/2007 
A3 Bulk cells from Listeria selective agar 20/0812007 



Flavobacterium 
4% 

Fig. 3.5 Dominant organisms found In ' use-by date ' mung bean sprouts as 
identified by band sequence analysis. 
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A comparison of band analysis between two DNA sources from pure colonies 

and bulk cells grow on B. cereus selective agar of sample A3 was carried out to 

determine the similarities of bacterial communities between these two sources. 

Interestingly, DNA obtained from different colonies collected from B. cereus 

selective agar and produced pure isolates shows greater diversity of bacterial 

populations compared to the DNA of bulk-cells colonies. As three bacterial 

species consisting of Stenotrophomonas maltophilia, Elizabethkingia miricola, 

and Enterobacter (Cronobacler) sakazakii were identified from the former 

DNA source (Fig. 3.6 and Fig 3.7). Meanwhile, the DNA from the latter 

sample generated only one intense band in the gel track and the sequencing 

result revealed that this band belonged to Stenotrophomonas maltophilia 

(Table 3.1). The results obtained show that identification which is based on 

band analysis focusing on the intense bands from the DGGE gel, which usually 

reveal the predominant species, may have excluded the small groups of 

organisms in the sample. In contrast, band analysis from a single colony which 

has been cultivated under appropriate conditions and may provide larger 

amount of the DNA template to be amplify by polymerase chain reaction 

technique, enhancing the opportunity for small group of microorganisms in the 

sample to be detect. However, analysis of single colonies would be time 

consuming and labour-intensive compared to the use of bulk cells' DNA as the 

template. 

94 



1 2 

1 

S't ... otro,Ao ... o ....... 
Mlf1lltopAillf1l 

16S 

3 4 s 

Fig. 3.6 DGGE fingerprints of the 16S rDNA amplified products of bean sprout 
pellet and single colony isolated from B. cereus selective plate of sample A2 
and A3. 

Lane I: Blank 

Lane 2: 

Lane 3: 

Lane 4: 

Lane 5: 

16S rDNA amplimers from: 

colony no.1 collected from B. cereus selective plate (A2) 

Bean sprout sample (A3) 

colony no .6 collected from B. cereus selective plate (A3) 

colony no .7 collected from B. cereus selective plate (A3) 
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Fig. 3.7 DGGE fingerprints of the l6S amplified products from bean sprout 
pellets and single colony isolated from B. cereus selective plate of sample A2 
and A3. 

Lane 1-2: Blank 

Lane 3: 

Lane 4: 

Lane 5: 

Lane 6: 

Lane 7: 

Lane 8: 

Lane 9: 

Lane 10: 

Lane 1 I: 

Lane 12: 

Lane 13 : 

Lane 14: 

Lane 15 : 

Lane 16: 

168 rDNA amplimers from: 

colony no.7 collected from B. cereus selective plate (A2) 

colony no.2 collected from B. cere liS selective plate (A2) 

Bean sprout sample (A2) 

colony no.2 collected from B. cereus selective plate (A3) 

colony no.7 collected from B. cereus selective plate (A3) 

colony no.6 collected from B. cereus selective plate (A3) 

colony no.4 collected from B. cere liS selective plate (A3) 

colony no.9 collected from B. cereus selective plate (A3) 

colony no. I collected from B. cereus selective plate (A3) 

colony no .8 collected from B. cereus selective plate (A3) 

colony no .5 collected from B. cereus selective plate (A3) 

colony no.7-7 collected from B. cereus selective plate (A3) 

colony no.3 collected from B. cereus selective plate (A3) 

Bean sprout sample (A3) 
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3.5 Analysis of similarity 

The similarity between the OGGE patterns of microbial communities from the 

three sampling sources was determined by comparison of profiles by cluster 

analysis method. The bacterial communities of cultivated organisms on PCA 

agar from different samples formed 5 clusters at a similarity level of 30%. 

Within each cluster there was no strong relationship with source or time of 

sampling (Fig. 3.8). Similarly, eukaryotic communities of cultivated organisms 

on ORBC agar from different samples formed 4 clusters at a similarity level of 

30% with different DGGE patterns from different samples in each cluster (Fig. 

3.9). This phenomenon was also reflected in the communities obtained by 

direct analysis of the sprouts. The cluster analysis of the OGGE patterns of the 

bean sprout pellets amplified with the 16S and 18S primers created 4 and 3 

clusters at a similarity level of 30% with no strong relationship among 

sampling sources (4 and 3 clusters, Fig. 3.10 and Fig. 3.11, respectively). A 

comparison of the clusters obtained using cultivated bacterial, yeast and mould 

cells shows some similarities in the cluster grouping as we observed the OGGE 

patterns of sample A 1 and C I, sample A3 and 03 which obtained from 

cultivated microorganisms on PCA agar (cluster 3 and cluster 5, Fig. 3.8) and 

ORBC plates (cluster 3, Fig 3.9) were located in the same cluster. It is possible 

that culture conditions may be increasing the similarity of the communities 

selecting similar organisms. However, when communities from a specific 

culture condition were compared (the OGGE patterns of MI7 and MRS agar 

Fig 3.12 and Fig. 3.13, respectively), there was a strong batch relationship. 
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Fig. 3.8 Cluster analysis of bacterial communities of the bulk-cells DNA 
obtained from PCA agar amplified with the 16S primers. 
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Fig. 3.9 Cluster analysis of yeast and mould communities of the bulk-cells 
DNA obtained from DRBC agar amplified with the 18S primers. 

99 



9 II R j;! ~ ~ ~ Ii! ~ IjI a , , , , , 
A1:. 301007 PELLET16S I Cluster 1 

rl .02:. 301107 PELLET16S 

n. .04:. 190208 PELlET16S 

., .C2:. 121207 PELlET16S I Chuter2 
.C3:. 171207 PELLET16S 

',L!- .01:. 241007 PELLET16S .. A3:. 41007 PELlET16S I Cluster 3 
... 1 I .C4:. 150208 PELlET16S 

I .Bl:. 311007 PELlET16S 

....I.l A3:. 311007 PELlET16S I Chutar4 
.C1:. 221007 PELLET16S 

A2. 300707 PELLET16S 

.03:. 171207 PELLET16S 

A4:. 121207 PELLET16S 

Fig. 3.10 Cluster analysis of bacterial communities obtained from the bean­
pellet DNA amplified with the 16S primers. 
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Fig. 3.11 Cluster analysis of yeast and mould communities obtained from the 
bean-pellet DNA amplified with the 18S primers. 
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Fig. 3.12 Cluster analysis of bacterial communities of the bulk-cells DNA 
obtained from M 17 plates incubated under different conditions. 

101 



IlOl (QItO-I(!CII I .... O!ij,.Oft 1oOft)(Oft.lOOftj 
DOGE 

, , , , , 

r4 
~ 

• 
D 

~ I 

,JZI 

,ll.l 

.. 

~ 
~ 

,(1 
~ 
I 

, 
.C4.19020B MRS30 CO2 I Clustu 1 
C4 190208 MRS30 

.A1.301007 MRS37 

.A1 301007 MRS30 
I CJust.r 2 .CU2I007 MRS30 CO2 

.CU21007 MRS30 

04 190208 MRS30 CO2 I CJust.r 3 
04190208 MRS30 

.A4.121207 MRS30 I CJustu4 

.A4.121207 MRS30 CO2 

A3.41007 MRS42 CO2 

lid 
1 

01241007 MRS30 CO2 I CJust.r ~ 
.01 241007 MRS30 , 

.02 061207 MRS42 I Cluster .. 
02 061207 MRS42 CO2 

02 061207 MRS30 CO2 

.A3.41007 MRS30 CO2 

C3 171207 MRS30-2 
CJustu i 

.A3.41007 MRS30 

.C3.11I207 MRS30 

.C3 171207 MRS42 

02.061207 MRS30 -1 

.03.171207 MRS42 CO2 
I CJustu8 

03171207 MRS42 

Fig. 3.13 Cluster analysis of microbial commUnities of the bulk-cells DNA 
obtained from MRS plates incubated under different conditions. 
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3.6 Discussion 

3.6.1 Microbial quality of 'use-by date' mung bean sprouts 

The total aerobic counts of 'use-by date' mung bean sprouts in this study are in 

agreement with those of other studies as these counts were observed to be in 

the range of 6.35 - 7.86 10gIO CFU/g which is similar to the levels found in 

other commercial sprouts (8 - 9 10gIO CFU/g) (Splittstoesser et aI., 1983; Rasch 

et al., 2005). Surprisingly, Gabriel et aJ. (2007) observed a higher level of T AC 

(11.38 10gIO CFU/g) in retailed mung bean sprouts marketed in the Philippines. 

This high T AC level was reported to be due to the lack of the most 

recommended control measures which are necessary to reduce microbiological 

risks from the producers and retailers, for example seeds are stored in sacks, 

unprotected from cross contamination, seeds are not treated with any 

disinfectants, sprouting is not enclosed, and hand washing is not always 

practised. High counts of T AC in fresh produce may be due to the 

contamination from soil and other natural sources (Nascimento et aJ., 2003). 

According to Arrow (2002), TPC values in the range of 8 - 9 10glO CFU/g are 

commonly reported for sprouts, without adverse effects on the product's 

quality. The level of TAC found in the current study was in the range that is 

normally found in fresh sprouts. Although there were no significant differences 

(p> 0.05) in TAC between the sampling sources, the highest counts (7.86 10gIO 

CFU/g) were found in shop D samples followed by shop C (7.33 10glO CFU/g) 

and shop A samples (6.35 10glO CFU/g). This suggests that shop D samples 

tend to have lower quality compared to other sources; and this may be due to 

poor refrigeration at the point of sampling. 
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Coliform counts found in this study (5.15 - 6.63 logto CFU/g) were lower than 

those reported by Dep and Joshi (2007) who saw coliform counts in the range 

of 7.4 - 7.7 logto CFU/g from sprout samples grown hydroponically at home. 

Nevertheless, high numbers of the total coli forms found in fresh fruit and 

vegetables are not normally seen as an indicator of good microbiological 

quality of the products. The Western Australia guideline for ready-to-eat foods 

classifies a sample as unacceptable if the coliform counts exceed 3.04 logto 

CFU/g (Arrow, 2002). However, the value range of coliforms suggested in this 

guideline is not a useful indicator for vegetables because coliforms are 

commonly found in sprouts (Arrow, 2002). 

The identification ofthe organisms by band analysis found coliform organisms 

consisting of Enterobacter cloacae, Entero. sakazakii, Klebsiella pneumoniae, 

K. oxytoca, and E. coli in 'use-by date' mung bean sprouts. The presence of E. 

coli is quite common in mung bean sprouts (Bennik et al., 1998; Robertson et 

al., 2002; Gabriel, 2005; Gabriel et al., 2007; Abadias et al., 2008). Robertson 

et al. (2002) suggested using E. coli as an indicator organism of the hygiene 

status of sprouts and other vegetables instead of Enterobacter spp. and 

Klebsiella spp. because these two latter organisms are normally present in the 

environment and are opportunistic pathogens which are not usually considered 

to be of importance to food hygiene. Meanwhile, E. coli is a common 

occurrence in faeces so can be used as an indicator of faecal contamination and 

the possible presence of enteric pathogens (Adams and Moss, 2008). The 

occurrence of E. coli (total) ~ 100 CFU/g in fresh fruits and vegetables is 

considered unsatisfactory according to the guidelines published by the Public 
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Health Laboratory Service (PHLS) in 2000 for the microbiological quality of 

some ready-to-eat food samples at the point of sale (Gilbert et 01., 2000). 

However, the identification using band analysis only detected one band 

obtained from the bulk cells ofXLD plate as E. coli (Table 3.1) which suggests 

that the samples used in this study were less contaminated with faecal 

materials. Direct analysis of E. coli levels using Tryptone Bile X-glucuronide 

medium (TBX agar) would be a way by which the levels could be determined 

and enumerated. This is because the medium is more specific to differentiate 

between E. coli and other coliforms in food samples due to a chromogen 5-

bromo-4-chloro-3-indolyl-f3-D-glucoronide (BClG or known as X-

glucuronide) it contains, which is targeted by the enzyme glucuronidase 

produced by most E. coli strain (Bridson, 2006; HPA, 2007). 

The total Listeria spp. counts were in the range of 3.49 - 5.26 10gIO CFU/g, with 

the highest counts again seen in shop D samples. The presence of Listeria sp. is 

common on plant materials as it is a plant saprophyte. Moreover, the 

occurrence of Listeria spp. in salad vegetables could result from an original 

contamination from raw material or from cross contamination during 

processing, packaging, or at retail (Little et 01., 2007). According to the PHLS 

guidelines, the level of total Listeria spp. found in 'use-by date' mung bean 

sprouts is considered unsatisfactory because it was higher than 100 CFU/g 

(Gilbert et 01., 2000). Meanwhile the presence of L. monocytogenes on fresh 

fruits and vegetables at a similar level is considered as unacceptable/potentially 

hazardous due to its potential for growth during storage (Gilbert et 01., 2000). 

Yeast and mould (YM) populations found in this study were in the range of 4.7 
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- 7 logto CFU/g which is higher than the YM counts found in retail mung bean 

sprouts from randomly selected public markets in the national capital region of 

the Philippines (1.23-5.29 logto CFU/g) (Gabriel et al., 2007). The highest YM 

counts were again seen in shop D samples (7 logto CFU/g). The species 

identification based on band analysis found only yeast species as the major 

eukaryote organisms in 'use-by date' mung bean sprouts. Toumas et al. (2005) 

also found yeast as the most prevalent organisms among 39 ready-to-eat salads, 

49 whole fresh vegetables and 116 sprout samples (bean, alfalfa, broccoli, 

crunchy: adzuki bean-green pea-red and green lentil-mung bean, garlic, onion, 

clover, lentil, and multi-seed sprouts). Based on the identification by band 

analysis, Candida spp. was the most abundant yeast species followed by Pichia 

Jermentans. Candida spp. and Pichia spp. are common yeasts species found in 

fresh produce and several other species have been found in various fruits and 

vegetables. For example, Trinidade et al. (2002) isolated Candida spp., 

Cryptococcus spp., Pichia spp., Rhodotorula spp., Kloeckera spp. from 

Brazilian tropical fruits. Chanchaichaovivat et al. (2007) isolated Pichia 

guilliermond;;, Candida musae, and Can. quercitrusa from Thai fruits 

(Rambutan and Longan). Candida species found in the current study consisted 

of Can. lusitaniae, Can. palmioleophila, and Can. arcane. This may be due to 

the different types of samples used in the study and fruit can have quite 

different flora because of their low pH. Candida species are yeast that are 

widely distributed in the environment and are commonly found in human 

gastrointestinal and genital tracks included the GI tract of almost all animals 

(Vazquez, 2003; Treagan, 2010). However, Candida species constitute the 

dominant fungal genus responsible for human disease and they are the most 
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common fungal pathogen that affect human (Vazquez, 2003; Treagan, 2010). 

Can. palmioleophila has been isolated from acidic tea soils of Kagoshima 

prefecture in Japan (Kanazawa et al., 2005). Can. arcane was isolated from the 

digestive tract, frass, and habitat of beetles (Suh and Blackwell, 2005). Can. 

lusitaniae has been infrequently reported as an opportunistic pathogen but 

caused serious and fatal disease in the host if it was isolated (Blinkhom et al., 

1989). Postmaster et al. (1997) isolated this yeast species on the surface of 

banana. It is possible that seeds were the sources of Candida species found in 

this study. Pichia jermentans, which is the only one Pichia species found in 

this study is known as a spoilage yeast that normally cause the spoilage of fresh 

produce (Ragaert et al., 2006). Therefore, the presence of this organism is quite 

common in vegetables and can also indicate the occurrence of spoilage in bean 

sprouts. 

The LAB populations ranged from 3.6 - 4.8 10gIO CFU/g at 30°C under aerobic 

conditions which is quite similar to the levels found in alfalfa and soybean 

sprouts (3.4 - 7.5 10gIO CFU/g; Abadias et al., 2008). Meanwhile, the retail 

mung bean sprouts sampled from the public markets in the national capital 

region of the Philippines were found to have higher levels of the LAB counts 

(5.24 - 10.47 10gIO CFU/g) (Gabriel et ai., 2007), compared to the levels found 

in this study. The highest occurrence of LAB was again found in shop 0 

samples (4.84 and 6.24 10gIO CFU/g, incubating at 30°C under both aerobic and 

5% carbon dioxide, respectively) and two samples from this shop had an off-

odour (sour smell) on its 'use-by date'. Lactic acid bacteria are one ofthe most 

common microflora usually found in fresh fruits and vegetables (Trias et al.. 
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2008). However, they are considered as one of the spoilage microorganisms in 

fresh produce because the outgrowth of these bacteria can cause deterioration 

with the production of organic acids such as lactic acid and acetic acid which 

are responsible for the presence of off-flavours and odours (Jacxsens et al., 

2003). Lactic acid bacteria proliferate well under anaerobic conditions and 

usually generate spoilage problems for minimally processed vegetables packed 

under controlled atmospheres such as using vacuum or CO2• The identification 

by band analysis found Weissella species as the most abundant LAB species 

and these mainly came from shop 0 samples, including Lactococcus sp. and 

Leuconostoc citreum. 

The high counts of LAB together with YM are usually linked to the spoilage 

conditions in vegetables. Jacxsens et al. (2003) observed the intense growth of 

spoilage organisms dominated by LAB and yeasts in mixed bell peppers and 

grated celeriac which resulted in detectable levels of organic acids and in the 

rejection by a trained sensory panel. Similarly, the highest counts of YM and 

LAB observed in shop 0 samples together with the production of an off-odour 

observed on the day that the test was carried out, indicated the spoilage 

condition and poor quality of the samples from this shop. This may be due to 

temperature abuse while displaying the samples at the point of sale. It was 

observed that the samples were sometimes placed in a basket next to the 

refrigerated display shelf instead of being placed under proper refrigerated 

conditions, which may have caused the proliferation of several groups of 

microorganisms, such as LAB, YM, TAC, total coli forms, total Listeria spp. 

The highest counts of all these organisms were found in shop 0 samples, 
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leading to the product's deterioration. In contrast, samples from shop A and 

shop C, which were kept under proper conditions, recommended by the 

producers, had lower microbial counts in most of the microbial analyses made, 

compared to shop D samples. In whole vegetables, keeping the surface dry can 

stop microbial growth. However, many vegetables are only vulnerable to 

spoilage once they are cut. This is why there is a problem with cut vegetables 

and the need to be chilled. Bean sprouts are highly perishable and have a 

delicate nature; therefore the proper control of refrigerator temperatures is very 

important. Moreover, most of vegetables have a pH greater than 4.5 and 

therefore storage temperature becomes the principle factor that controls 

microbial growth (De Roever, 1998). 

3.6.2 Microbial communities in 'use-by date' mung bean sprouts 

The identification of microorganisms using band analysis was a very useful 

method that can provide good understanding about the microbial community of 

mung bean sprout samples. Isolation using culture media, although considered 

as the most common methodology to access bacterial communities due to its 

simple application, has a limited analysis of bacterial diversity (Andreote et al., 

2009). The combination of these two methods (culture-dependent and 

molecular methods) generated very useful information regarding both 

microbial quality and communities of bean sprout samples. 

The PCR-DGGE patterns observed from the bulk-cells' DNA amplified with 

the 16S primers was more complex than those obtained from the DNA directly 
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extracted from bean sprouts pellets. It is possible that low numbers of bacterial 

cells or slowly growing bacteria within the flora constituted a major population 

in the DNA directly extracted from bean sprout pellets which resulted in the 

low microbial diversity after PCR amplification. Meanwhile, small population 

components of the cultivated bacterial cells, once grown up on different media, 

could provide enough DNA to be used as the template for the PCR-DGGE 

analysis, which generated more complex microbial diversity than using the 

direct extraction DNA from bean pellets. This suggests that there were a low 

number of non-cultivable species presences in the bean sprouts. Nonetheless, 

this phenomenon was not found in the eukaryotic community as both DNA 

templates created highly similar DGGE profiles in most samples. This may be 

due to less complexity of the fungal community in bean sprout samples, as can 

be clearly seen from band identification which revealed only two yeast species 

in 'use-by date' mung bean sprouts. 

Consequently, most of the bands identified in this study came from the DGGE 

patterns of bulk cells' DNA more than bean sprout pellets (Table 3.1). The 

band identification revealed that the Enterobacteriaceae, soil bacteria, lactic 

acid bacteria, Pseudomonas spp., yeast, and Flavobacterium constituted the 

major population found in 'use-by date' mung bean sprouts. This finding was 

slightly different from previous studies carried out by Weiss et af. (2007) who 

observed the main components of microbiota of hydroponically grown mung 

bean sprouts consisted of the genera Bacillus, Enlerobacter, as well as 

Azotobacter beijerinckii, while the predominant bacterial biota of mung bean 

sprouts grown in soil consisted of Pseudomonas sp. (the roots), and Bacillus 
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sp. (hypocotyls parts). This difference is likely caused by different sampling 

sources which may affect the microflora presence in the samples. The 

Enterobacteriaceae was the largest group among all major populations found in 

this study. Similarly, several researchers have also observed that the major 

population in mung bean sprouts belongs to the family Enterobacteriaceae. 

Abadias el al. (2008) reported high contamination by Enterobacteriaceae in 

soybean and alfalfa sprouts from retail establishments with a mean level of 7.2 

10glO CFU/g. Bennik el al. (J 998) found Enterobacteriaceae and Pseudomonas 

species constituting the major popUlations in mung bean sprouts and cut 

chicory endive before and after controlled atmosphere conditions. Several 

Enterobacteriaceae strains were isolated from the native microflora of healthy 

growing bean sprouts in the laboratory and on sprouts cultivated in factories 

(Enomoto, 2004). Enlerobacter spp. and Klebsiella spp. are the most abundant 

Enterobacteriaceae species found in this study. These organisms are common 

Enterobacteriaceae found in bean sprouts (Patterson and Woodbums, 1980; 

Bennik et ai., 1998; Weiss et al., 2007). Bennik et al. (J 998) also found 

Entero. cloacae as one of the prevalent species in mung bean sprouts before 

and after storage under atmospheric conditions at 8°C. Piemas et al. (1997) 

reported that Klebsiella spp. (K. oxytoca and K. pneumonia) and Enterobacter 

spp. (Entero. aerogenes, Entero. cloacae, Entero. agglomerans) were the most 

frequent coliforms found in rice seeds selected for commercial production of 

sprouts. This is not surprising as Enterobacter spp. and Klebsiella spp. are 

often isolated from water, soil, and vegetation (Johannessen et al., 2002). The 

habitats of Klebsiella spp. include sewage, drinking water, soils, surface 

waters, industrial effluents, and vegetation (Bagley, 1985). Enterobacter sp. 

111 



and Klebsiella sp. can live in soil as nitrogen-fixing enteric bacteria and have 

frequently been isolated from the roots of various plants (Haahtela el a/., 

1981). Although, they are opportunistic pathogens in human but not usually 

considered to pose a risk for public health and food hygiene (Robertson et al., 

2002; Johannessen et al., 2002; Gabriel et al., 2007). 

Enterobacter sakazakii was found in sample A3, from bulk cells collected from 

MacConkey No.3 and B. cereus selective medium. This coliform bacterium is a 

motile, non-spore forming, Gram-negative facultative anaerobe that grows on 

media used to isolate enteric organisms such as MacConkey, eosin methylene 

blue and deoxycholate agar (Iversen and Forsythe, 2003). It is an opportunistic 

pathogen that causes a well known infection in neonates such as bacteraemia, 

necrotizing enterocolitis and infant meningitis related to powdered infant 

formulae (Iversen and Forsythe, 2003). However, it has been isolated from a 

diverse range of environmental and food samples. Samples from a factory 

taken by scraping or sweeping surfaces, and household samples taken mainly 

from vacuum cleaner bags showed the presence of Entero. sakazakii in 

factories producing milk pOWder, cereals, chocolate, potato flour, and pasta as 

well as in domestic environments, which strongly indicates that it is a 

wi~espread microorganism (Chantal Kandhai et al., 2004). It has been isolated 

from floor drains, air, a vacuum canister, broom bristles, a room heater, 

electrical control box, a clean-in-place valve, a floor dryer, floor, and 

condensate in a dry product processing environment in the United States 

(Gurtler et al., 2005). Since the organism is not part of the normal animal and 

human gut flora, thus it is probable that soil, water and vegetables are the 
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principal sources of contaminated foods; rat and flies may be the additional 

sources of contamination (Iversen and Forsythe, 2003). 

Member of the Enterobacteriaceae and Pseudomonas sp. are known to have 

proteolytic and pectinolytic activities which can cause soft-rot spoilage and this 

is a common spoilage type found in bean sprouts (Rasch et al., 2005). Enomoto 

(2004) reported that the primary source of pectinolytic bacteria found in 

sprouts is generally believed to be the seed and when the pectinolytic enzymes 

degrade cell walls of sprouts, the spoilage can expand to the surrounding 

sprouts because irrigation water spreads the bacteria throughout the container, 

and the whole batch must then be discarded. According to Jacxsens et al. 

(2003), pectinolytic microorganisms, such as Pseudomonas spp., Erwinia spp., 

and yeast, such as Candida spp., can grow fast on vegetables. Interestingly, no 

Enterobacteriaceae and Pseudomonas spp. were identified from shop 0 

samples but instead higher numbers of LAB and yeast species were identified 

by band analysis. The high counts of LAB and YM found in this shop suggest 

that these two organisms may be the major organisms responsible for the poor 

quality and spoilage in the samples. Jacxsens et al. (2003) already observed a 

spoilage dominated by Gram-negative microorganisms (Enterobacteriaceae) in 

mixed lettuce and chicory endives and leafy tissues, which normally contain 

low concentrations of sugars. Conversely, in sugar-rich products such as the 

mixed bell peppers and grated celeriac, LAB and yeasts were dominant 

spoilage organisms. Mung bean has been reported to contain eleven low 

molecular weight carbohydrates including fructose, glucose, sucrose, raffinose 

family oligosaccharides (raffinose, manninotriose, stachyose, and verbascose), 
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inositols (myo-inositol and O-methyl-scyllo-inositol), and inositol-containing 

oligosaccharide (galactinol) and digalactosylglycerol (Aman, 1979). During 

germination, there was a rapid decrease of raffinose family oligosaccharides in 

mung bean, while the content of glucose, fructose, and sucrose showed a 

maximum increase after 48 h germination (Aman, 1979). Trindade et al. (2002) 

mentioned that yeast has the ability of quickly utilizing the simple sugars 

present as substrates. Therefore, the increase in the level of low molecular 

weight carbohydrates during germination of mung bean sprouts may have 

supported the rapid growth of yeast strains and LAB especially during poor 

temperature storage. 

Soil bacteria were the second major population found in 'use-by date' mung 

bean sprouts. They consisted of Stenotrophomonas maltophilia, Acinetobacter 

baylyi, Curto bacterium citreum. Bacillus cereus and Sinorhizobium fred;;. 

These bacteria may come from seeds or environmental sources such as soil, 

irrigation water, animals, and fertilizers. B. cereus is a potentially pathogenic 

bacterium that is normally isolated from soil and the environment. It is a well 

known food borne pathogen which causes two types of illnesses namely emetic 

and diarrhoeal syndromes (Johannessen et al., 2002; Rosenquist et al., 2005). 

In this study, the counts of B. cereus were between 3.7 - 4.6 loglOCFUlg, and 

the highest count was again found in a sample from shop D. Harmon et af. 

(1987) observed similar B. cereus counts on alfalfa and mung bean sprouts 

from naturally contaminated seeds in a home sprouting kit ranging from 3.72 -

4.52 10glO CFU/g. Arrow (2002), who detected B. cereus in seven refrigerated 

and un-refrigerated samples (alfalfa, mung bean, bean sprout, sunflower, snow 
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pea, onion, and others), indicated that it is not surprising because of the nature 

of seed horticulture and its common association with soils and soil 

contamination. Harmon et aJ. (1987) mentioned that the level of B. cereus 

which is considered likely to cause food poisoning is > 5 10gIQ CFU/g. Granum 

(2005) stated that the total infective dose seems to vary due to a big difference 

in the amount of enterotoxin produced by different strains and other factors. 

For example, the infection is more likely if the dish is eaten late in a meal than 

if eaten earlier and the levels of vegetative cells may increase if the food is 

temperature abuse. Therefore, the minimal level required to provoke the 

disease was estimated to be around 5-8 10glO CFU of viable cells or spores/g of 

ingested foods and any food containing greater than 3 10glO CFU/g cannot be 

considered completely safe for consumption (Ehling-Schulz, et al., 2004; 

Granum, 2005). 

Stenotrophomonas maltophilia is a non fermentative Gram-negative bacilli 

previously known as Pseudomonas maltophilia or Xanthomonas maltophilia 

(Palleroni and Bradbury, 1993; Denton and Kerr, 1998). It is the only member 

of the genus Stenotrophomonas and has risen to prominence over the last 

decade as an important nocosomial pathogen associated with significant 

case/fatality ratios in certain patient populations, particularly in individuals 

who are severely debilitated or immunosuppressed (Denton and Kerr, 1998; De 

Oliveira-Garcia et al., 2003; Boaventura et al., 2004). It is found in a wide 

variety of aquatic, soils, and rhizosphere environments (Denton et al., 1998). 

Qureshi et aJ. (2005) reported that washing ready-to-eat salads in chlorinated 

water before sale is insufficient to remove St. maltophilia and this bacterium 
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was cultured from 14 of 18 salad samples. The authors pointed out that the 

bacterium may exist in biofilms on these products. De Oiliveira- Garcia et al., 

(2003) mentioned that Stenotrophomonas clinical strains form a biofilm that 

confers natural protection against host immune and different antimicrobial 

agents. Thus, the presence of this bacterium in mung bean sprouts may be due 

to biofilm formation which enabled the organism to survive throughout the 

decontamination processes and to proliferate during storage until the point of 

sampling. 

Acinetobacter baylyi is a member of the genus Acinetobacter, a heterogeneous 

group which brings together ubiquitous bacteria found in water, soils and even 

on human skin (Abdel-EI-Haleem, 2003; Barbe et al., 2004). It is a soil-living 

bacterium and has been reported as a very nutritionally versatile organism 

(Vallenet et al., 2008). Acinetobacter spp. clinical strain isolates have similar 

characteristics to Stenotrophomonas sp. For example, these bacteria have been 

implicated in a variety of nosocomial infections, including bacteraemia, urinary 

tract infections and secondary meningitis which are often difficult for the 

clinician to treat because of the widespread resistance of these bacteria to the 

major group of antibiotics (Bergogne-Berezin and Towner, 1996). These Gram 

negative bacteria can use various carbon sources for growth and can be 

cultured on relatively simple media (Barbe et al., 2004). Bergogne-Ben5zin and 

Towner (1996) mentioned the good growth of Acinetobacter spp. on 

MacConkey agar, which was similar to the results obtained in this study. 

Acinetobacter bay/yi and A. soli were identified by band analysis from the bulk 

cells' DNA collected from MacConkey agar. 
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Chryseobacterium sp. and Elizabethkingia miricola are Flavobacterium 

bacteria, which was the smallest population group found in this study and has 

not been found in other studies. They were isolated from the colonies 

cultivated on B. cereus selective plates of sample A2 and A3, and identified by 

band analysis. It is possible that these two strains belong to the same genus 

because Elizabethkingia miricola was previously known as Chryseobacterium 

miricola before being transferred to the genus Elizabethkingia after the strain 

was re-evaluated by using a polyphasic taxonomic approach (Kim et al., 2005). 

Chryseobacterium sp. and Elizabethkingia miricola in bean sprouts may come 

from environmental sources, because they are usually found in diverse habitats 

such as water, plant roots, foods and even the clinical environments (Van Wyk, 

2007). 

The cluster analysis of the DGGE fingerprints revealed that there was no strong 

relationship within the source and batch of sampling as most of the clusters 

(generated at cut-off value 30%) consisted of the DGGE patterns from different 

samples. In addition, the dendrogram of the DGGE patterns of the bulk cells 

collected from M17 and MRS plates revealed high similarity (at cut of value 

50%) of the fingerprint patterns corresponding to an individual batch. The 

widely diverse microbial communities in 'use-by date' mung bean sprouts may 

be due to several factors such as irrigation water, soils, fertilizers, animal, 

sprouting conditions, or seeds itself which can influence the growth of different 

types of microorganisms during mung bean sprout production. 
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3.7 Conclusions 

The highest counts of total LAB, YM, TAC, total coliforms, and total Listeria 

sp. were found in shop D samples, which indicate this poor quality leading to 

the product's deterioration as manifested by the 'otT-odour' detected in samples 

on the day that the testing was carried out. Failure to store the sprouts under 

refrigerated storage appeared to be a likely cause of this. The fact this was 

evident on the use-by date is of concern, however the off-odour production 

may be a safe-guard as this may prevent the sprouts being eaten. 

The combination of conventional culture methods and PCR-DGGE analysis 

illustrated a better understanding of microbial community in mung bean 

sprouts than using each technique separately. Greater diversity of flora was 

evident from cultured populations than by direct analysis and this may indicate 

that the populations present are readily cultivable species. The bacterial 

communities were more complex than the eukaryotic ones as shown by the 

higher number of bands usually found in the DGGE patterns of PCR products 

amplified with the 16S primers. 

The Enterobacteriaceae, soil bacteria, lactic acid bacteria, yeast, Pseudomonas 

spp., and Flavobacterium constituted the major populations found in this study. 

Some potentially pathogenic bacteria were identified by band analyses such as 

Stenotrophomonas maltophilia. Acinetobacter baylyi. Bacillus cereus, and 

Enterobacter sakazakii. 
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CHAPTER 4 

EFFICACY OF NATURAL ANTIMICROBIALS IN 

ELIMINATING LISTERIA MONOCYTOGENES ON MUNG 

BEAN SEEDS 

4.1 Introduction 

The presence of L. monocytogenes on sprouts is not frequent compared to 

Salmonella or E. coli but this psychrotrophic pathogen still raises concerns 

among fresh produce producers (Ells and Hansen, 2006). Ponniah et al. (2010) 

investigated the prevalence of L. monocytogenes in raw vegetables sampling 

from wet markets and hypermarkets in Selangor, Malaysia and found the 

occurrence of Listeria spp. in wild parsley, cucumber, and Japanese parsley, 

with L. monocytogenes mainly detected on Vigna unguiculata (yardlong bean), 

Japanese parsley, and wild parsley. Thus, this indicates the possibility of a 

listeriosis outbreak from raw vegetable consumption. The ability of L. 

monocytogenes to grow at refrigeration temperatures is unusual in foodborne 

pathogens which provide a significant threat for a foodborne infection from 

this organism (Pucci et aI., 1988). Moreover, the shelf-life of mung bean 

sprouts relies mainly on the refrigeration temperatures at which they are stored. 

Some mung bean sprouts are sold in modified atmosphere, creating the 

possibility of growth of L. monocytogenes in bean sprouts (Settanni and 

Corsetti, 2008). Therefore, a successful decontamination method to eliminate 



L. monocytogenes from seeds could help to ensure microbial safety and could 

prevent the risk of a listeriosis outbreak from raw sprout consumption. 

Recently, interest has increased in using natural antimicrobial products in food 

preservation because of consumer demands for natural, high quality and fresh 

products with low levels of or no chemical preservatives (Dufour et al., 2003; 

Dabour e/ al., 2009). This trend increases the demand for consumer-friendly 

antimicrobial compounds, i.e. molecules of natural origin, not toxic for 

humans, environmentally safe, not expensive and easily found on sale (Corbo 

et al., 2009). Moreover, the use of natural antimicrobials can lower the risk for 

the handler from exposure to hazardous compounds and these can also be 

applied to organic products. 

Biopreservation refers to the extended storage life and enhanced safety of 

foods by using their natural or a controlled microflora and/or their antibacterial 

products as the preservative system (Hugas, 1998). Bacteriocins are 

antimicrobial peptides or proteins produced by bacteria that kill or inhibit the 

growth of other bacteria (Cleveland et al., 2001; Corbo et al., 2009; Lappe et 

al., 2009). They are recognized as safe and as natural biopreservatives which 

are able to control undesirable bacterial contamination, particularly human 

pathogens such as L. monocytogenes (Pucci et al., 1988; Chollet et al., 2008). 

Bacteriocins are generally heat stable and readily degraded by proteolytic 

enzymes in the human intestinal tract (Cleveland et al. 2001) 
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Bacteriocins associated with food preservation belong to the heat-stable class I 

lantibiotics (nisin) and class II small peptides (pediocin AcHIP A I) (Jamuna 

and Jeevaratnam, 2004). All class lIa bacteriocins e.g. pediocin and sakacin P 

are active against Listeria (Anastasiadou et al., 2008; Papagianni and 

Anastasiadou, 2009). The most widely studied, nisin is produced by certain 

strains of Lactococcus lactis subsp. lactis (Chollet et al., 2008). It was 

developed in the early 1960s and recognized as a food preservative by 

F AOIWHO in 1969. The FDA approved the use of nisin as an additive in 

canned products in the United States to inhibit the growth of C. botulinum in 

1988 (Jones et al., 2005). Recently, a pediocin produced by a Pediococcus 

acidilactici containing formulation has been marketed under the commercial 

name Alta, 2314® (Papagianni and Anastasiadou, 2009). Several studies have 

demonstrated the potential of bacteriocins on the biopreservation of foods of 

plant origin, especially the minimally processed vegetables (Schillinger et al., 

1996; Francis and O'Beirne, 1998; Bennik et al., 1999). For example, Ponce et 

al. (2008) reported that bacteriocin-like substances produced by Enterococcus 

faecium, Le. lactis, Entero. hirae and Entero. canis isolated from organic 

vegetables had antimicrobial activity against L. monocytogenes and E. coli. 

Washing fresh-cut lettuce with bacteriocin-containing solutions decreased the 

viability of L. monocytogenes by 1.2-1.6 10glO CFU/g immediately after 

treatment (Allende et al., 2007). Enterocin AS-48 solution produced by Entero. 

faecalis was effective in reducing viable counts of Bacillus cereus inoculated 

on soybean, alfalfa sprouts and green asparagus by 1.06, 1.3, and 1.59 

10g1OCFU/g, respectively (Cobo Molinos el al., 2008), when samples were 

refrigerated at 6°C. Therefore, treating seeds with bacteriocins could help to 
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reduce and control undesirable microorganisms on seeds and could also 

decrease the use of chern ical preservatives. 

Organic acids have a long history of being utilized as food additives and 

preservatives for preventing food deterioration and for extending the shelf life 

of perishable food ingredients (Ricke, 2003). The antimicrobial action of 

organic acids is due to pH reduction in the environment, disruption of 

membrane transport and/or permeability, anion accumulation, or a reduction in 

internal cellular pH by the dissociation of hydrogen ions from the acid (Parish 

et aI., 2003). Acetic acid and citric acid especially in the natural forms which 

can be obtained from vinegar and lemon or lime juice, respectively, may be 

useful as a sanitizer for fresh produce at the household level. They are also 

inexpensive and simple household preservatives which could remove or at least 

reduce pathogens, causing less health risk to consumers (Parish et aI., 2003; 

Sengun and Karapinar, 2005). Citric acid is a tricarboxylic acid which is 

different from acetic and lactic acids which are monocarboxylic acid 

(Buchanan and Golden, 1994). Citric acid can also act as a sequestering agent 

of divalent ions, such as Ca2
+ and Mg2

+ and have a disrupting effect on the 

outer membrane of Gram-negative bacteria (Ocana-Morgner and Dankert, 

2001). However, acetic acid has usually been found to be more effective in 

killing microorganisms. This is probably due to the lower pH achieved by 

similar concentrations of acetic acid, because at low pH, acetic acid is more 

undissociated than citric acid (Cervenka et al., 2004). 
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The purpose of this study was to evaluate the antibacterial activity of crude 

bacteriocin-like inhibitory substances and a mixture of lime juice and vinegar 

in reducing the populations of L. monocytogenes on mung bean seeds. The 

study (excluding the preliminary study) was performed in three replicates. 

Mean values of tRe microbial counts and germination percentages were 

compared using the two-sample paired Student's t-test at 5% significance level. 

4.2 Antibacterial activity of the neutralised cell-free 

supernatant (CFS) produced by bacteriocin-producing strains 

Lc. lactis subsp. lactis and P. acidilactici against food-borne 

pathogens associated with bean sprouts 

The inhibition ability of neutralised CFS of Lc. lactis subsp. lactis and P. 

acidilactici prepared as in Section 2.3.2 were evaluated against four strains of 

foodborne pathogens (L. monocytogenes 11994, L. monocytogenes 23074, Sa/. 

Typhimurium, and Sal. Enteritidis, respectively) with both agar-well diffusion 

and paper-disc assay using brain heart infusion agar plate (Section 2.3.3). The 

neutralised CFS of Lc. lactis subsp. lac/is had no antibacterial activity against 

any of the strains as no inhibition zone was observed on lawns of the strains 

after the test (Table 4.1). In contrast, the neutralised CFS from P. acidilac/ici 

showed a strong bactericidal effect against L. monocytogenes 11994 and L. 

monocytogenes 23074 by both test methods but had no activity against the 

Gram-negative strains (Table 4.1). These data suggested P. acidilactici, rather 

than Lc. lactis subsp. lac/is, as a potential protective culture and bacteriocin­

producing strain to inhibit L. monocytogenes on mung bean 
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Table 4.1: Screening of antibacterial activity of the neutralised CFS produced 
by bacteriocin-producing strains against foodborne pathogens. 

Neutralised Assay Inhibition zone (mm) observed on a bacterial lawn on BHI agar 
CFS 

Sal. Sal E. coli Listeria Listeria 
Typhimurium Enteritidis 86 monocytogenes monocytogenes 

11994 23074 

Lc. laclis Agar-well NI NT NI NI NI 
subsp. diffusion 
laclis 
Lc. lactis Paper-disc NI NI NI NI NI 
subsp. 
lactis 
P. Agar-well NI NI NI 28 26 
acidilaclici diffusion 

P. Paper-disc NI NI NI 21 23 
acidilaclici 

NI: No inhibition zone 
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seeds. This is in line with the fact that the pediocin-like bacteriocins are a 

group of class IIa bacteriocins with a strong antilisterial activity (Hugas, 1998; 

Fimland et aJ., 2000). However, the neutralised CFS could contain a range of 

antimicrobials which could be useful as antilisterial agents on seeds. 

4.3 Antibacterial activity of the neutralised CFS after freezing 

at -20°C and culture broth of P. acidilactici against L. 

monocytogenes 

Prior to using the neutralised CFS produced by P. acidilactici on pathogen 

inoculated seeds, the effect of storage at -20°C (- I week) on the stability of 

the antibacterial activity of the CFS was examined. Before testing for 

antibacterial activity against L. monocytogenes 23074 and L. monocytogenes 

11994, the neutralised CFS was thawed overnight at 4°C and then used in the 

agar-well assay. Similarly, a broth culture (pH 5.06) of P. acidilactici grown 

overnight in MRS broth at 37°C in a shaking incubator (200 rpm) was tested 

for inhibitory activity against the same test strains. The neutralised CFS had 

shown an antimicrobial activity against the test strains after freezing as we 

observed the inhibition zones produced by thawed CFS samples (25 mm in 

both cases). Similarly, unneutralised MRS broth containing P. acidilactici also 

shows antilisterial activity against the test strains (inhibition zone equals to 29 

mm and 28 mm for L. monocytogenes 11994 and L. monocytogenes 23074, 

respectively). The use of unneutralised MRS broth containing P. acidilactici 

may have higher antilisterial activity than the neutralised CFS due to the 
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synergistic effects of acid (pH 5.06) and bacteriocin-like substance in the broth 

culture, unlike the CFS, the broth was not neutralised. The specific components 

in MRS broth, which is designed to encourage the growth of the lactic acid 

bacteria due to specific ingredients it contains may have affected the growth of 

the pathogen as well. This selective medium was developed in 1960 and 

contains sodium acetate which is known to suppress the growth of many 

competing bacteria (Anonymous, 20 lOa). Growth inhibition of L. 

monocytogenes was increased in the presence of 2: 1 % propionate, 2: 3% 

acetate, and 2: 5% lactate in a defined medium during incubation at 35°C 

(Kouassi and Shelef, 1996). Therefore, the sodium acetate levels in MRS 

would have aided the suppression ofthe growth of Listeria strains. 

4.4 The effect of physicochemical and biological factors on the 

stability of neutralized CFS 

The effect of physicochemical and biological factors on the stability of 

neutralized CFS is summarized in Table 4.2. The antibacterial activity of 

neutralised CFS remained thermally stable after heating at 80°C for 20 min 

using the protocol detailed in Section 2.4.2. Moreover, the zones of inhibition 

were not due to hydrogen peroxide as neutralised CFS treated with catalase 

enzyme (Section 2.4.3) still produced zones of inhibition. The antimicrobial 

activity of neutralised CFS was however inactivated by the proteolytic enzyme 

proteinase K, which indicates the proteinaceous nature of the inhibitory factor 

against L. monocytogenes 11994 and L. monocytogenes 23074. This suggests 
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Table 4.2: Effect of physicochemical factors on the stability of the crude cell­
free supernatant. 

Antibacterial Inhibitory zone (mm) on BHI agar 
Agents 

L. monocytogenes 11994 

Neutralised CFS pH 6.5 27" 

Neutralised CFS pH 6.5 heated at 26" 
80°C 20 min 
Neutralised CFS pH 6.5 treated NI 
with proteinase K (0.5 mglml) 
Neutralised CFS pH 6.5 + 6.5b 

peroxidase enzymes .. 
NT: No inhibItion zone; NA: No applicatIOn 
a: well diameter = 15 mm 
b well diameter = 6 mm 

L. monocytogenes 23074 

27" 

25 a 

NI 

NA 
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that the antimicrobial activity obtained from the neutralised CFS is not due to 

the acidity or hydrogen peroxide, but most probably related to the activity of 

peptides or proteins produced by the bacteriocin-producing strain. This is 

consistent with the known pediocin production of the P. acidilactici strain 

used. 

4.5 Effect of neutralised CFS, unneutralised BUI broth culture, 

cell-suspension of P. acidilactici against L. monocytogenes on 

mung bean seeds 

Batches of seeds (IOOg) inoculated with L. monocytogenes at 4-5 10gIO CFU/g 

(Section 2.2.3.1) were treated with cultures of P. acidilactici to examine its 

effectiveness in controlling the pathogens. These different treatments were 

compared: cell free supernatant of P. acidilactici grown in BHI broth 

neutralised to pH 6.5, un neutralised BHI broth culture at pH 5.06, and a cell­

suspension of P. acidilactici to eliminate the effect of the growth medium 

(Section 2.4.1), by dipping an inoculated seeds into each solution for 30 min. 

Seeds treated with sterile RO water for 10 min were used as a control. Counts 

were enumerated on Listeria selective agar (Oxford fonnulation) using the 

national standard method as described in Section 2.1.2.3.1. A reduction of the 

L. monocytogenes (1.22 10gIO CFU/g) population was observed when seeds 

were treated with the unaltered BHI broth culture (Fig. 4.1). In contrast, sterile 

RO water, the neutralized CFS and the cell-suspension caused an increase in L. 
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monocytogenes population by 0.98, 0.43, and 1.29 logto CFU/g, respectively, 

after treatments. 

The sprouting process resulted in the re-growth of the pathogen populations in 

all treatments by 0.28-1.01 logtoCFU/g within 48 h (excluding the CFS treated 

seeds as the sample was lost) (Fig. 4.1). This result suggests that none of the 

bacteriocin-like substances can reduce or inhibit L. monocytogenes on mung 

bean seeds. Although the unneutralised BHI broth culture initially had a 

stronger antibacterial activity than the neutralised CFS or the cell-suspension, it 

did not successfully eliminate and cannot prevent the re-growth of L. 

monocytogenes on the mung bean seeds during the sprouting process. 

4.6 Effectiveness of a mixture of lime-juice and vinegar against 

L. monocytogenes on mung bean seeds 

The second experiment was conducted to determine the survival of L. 

monocytogenes on mung bean seeds treated with a mixture of lime juice and 

vinegar. Seeds were inoculated with L. monocytogenes using the method 

previously described in Section 2.2.4.2. Each batch of L. monocytogenes 

inoculated seeds was treated in a mixture of lime juice and vinegar (pH 2.83) 

produced by mixing fresh-lime juice (pH 2.8) prepared under sterile conditions 

with an equal volume of vinegar for 15 min. Control treatment was performed 

by dipping L. monocytogenes inoculated seeds in sterile RO water for 10 min. 

A reduction of 1.93 logto CFU/g in L. monocytogenes populations on seeds 
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Fig 4.1 The changes in L. monocytogenes population after treatment with 
neutralised cell-free supernatant (CFS), unneutralised BHI broth, and cell­
suspension of P. acidilactici in a preliminary study. 
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treated with a mixture of lime juice and vinegar was significantly higher (p < 

0.05) than the reduction of the pathogen treated with RO water (0.36 10glO 

CFU/g) under the same conditions (Fig. 4.2). A slight decrease in counts of the 

pathogen in seeds treated with RO water in this experiment was surprisingly 

different from the results obtained in the previous experiment (Fig. 4.1) in 

which an increase of pathogen populations in seeds treated with RO water was 

observed after treatment. The results obtained showed variability in using 

water to clean seeds. Sprouting the seeds treated with a mixture of lime juice 

and vinegar at 25°C for 48 h increased the L. monocytogenes populations by 

1.60 10gIO CFU/g while there was a slight reduction in the counts (0.25 10gIO 

CFU/g) on the control under the same conditions (Fig. 4.2). 

4.7 Effect of bacteriocin-like substance and a mixture of lime 

juice and vinegar on seed germination percentage 

Seeds treated with bacteriocin-like substances were used for sprouting as 

detailed in Section 2.2.5.1. This bacteriocin treated seeds had a lower 

germination percentage (reduced by 9-11%) compared to the control (Fig. 4.3). 

Similarly, an eighteen percent reduction in seed germination percentage 

(sprouting as detailed in Section 2.2.5.2) was observed in mung bean seeds 

treated with a mixture of lime juice and vinegar (Fig. 4.4). compared to the 

control group (p < 0.05). This finding is in agreement with previous findings 

(Singh et 01., 2005), showing that vinegar reduces cowpea seed germination 

percentage. 
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4.8 Discussion 

The mixture (I: I; pH 2.83) of lime juice and vinegar (5% acetic acid) and the 

bacteriocin-like substances produced by P. acidilactici consisting of cell free 

supernatant of P. acidilactici grown in BHI broth neutralised to pH 6.5, 

unneutralised BHI broth culture at pH 5.06, and a cell-suspension of P. 

acidilactici were evaluated for their effectiveness in reducing the counts of 

inoculated L. monocytogenes on mung bean seeds. A mixture of lime juice and 

vinegar had a higher efficiency in reducing L. monocytogenes populations on 

mung bean seeds (1.93 10gIO CFU/g) compared to the Pediococcus broth 

culture (1.22 10gIO CFU/g). In contrast, no pathogen reduction on inoculated 

seeds was noted after 30 min of contact with neutralised CFS or with the cell­

suspension of P. acidilactici. This phenomenon suggests that the antilisterial 

activity in broth culture may be due to the synergistic effect of low acidity and 

the bacteriocin-like substance which enhanced the activity in the broth culture 

compared to the other culture-based treatments. The failure of neutralised CFS 

to inhibit the pathogen on inoculated seeds contrast to what was seen with the 

neutralised CFS in the agar plate bioassay. Similar findings were reported by 

Bennik el al. (1999) who applied a cell suspension of a bacteriocin-producing 

strain (Entero. mundtii A T06) on mung bean sprouts to control the growth of 

L. monocytogenes by spraying 10 ml of approximately 6-8 10gIO CFUlml of 

cell suspension per kg onto produce. They found that the bacterial suspension 

did not show the same inhibitory activity on the pathogen as had been observed 

on vegetable agar. Meanwhile, the application of pure mundticin (200 AUlml) 

to the vegetable during the washing step was successful against L. 
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monocytogenes (Bennik et al., 1999). This difference may be due to an 

insufficient concentration of crude bacteriocin-like substance in the neutralised 

CFS or cell suspension used in the current study. Nielsen et al. (1990) 

mentioned that the effectiveness of bacteriocin produced by P. acidilactici 

toward L. monocytogenes in association with red meat appeared to be 

dependent on the concentrations of both bacteriocin and bacteria. The 

application of the bacteriocin-producing strain as a cell-suspension providing a 

protective culture against the pathogen on seeds, may be of limited efficacy 

due to low proliferation of the culture because of low nutrient availability and 

unsuitable growth conditions, with consequent resulting in low bacteriocin 

production. Hugas (1998) stated that the success of using a pure culture of 

viable bacteriocin-producing LAB depends on the ability of the culture to grow 

and to produce bacteriocin in the food under the environmental and 

technological conditions (temperature, pH, additives, etc.). In this study, the 

seed decontamination process was carried out at room temperature and the 

sprouting process at 25°C, while the optimum growth temperature for P. 

acidilactici is 40°C (Papagianni and Anastasiadou, 2009). Thus, the conditions 

used in both processes may have affected the growth and bacteriocin 

production of P. acidilactici, resulting in the unsuccessful decontamination 

process. Moreover, the ability of L. monocytogenes to form a biofilm on the 

seed surface may have protected the pathogen; especially those firmly attached 

in cracks and crevices, from antibacterial substances and consequently reduced 

the efficacy of the bacteriocin-like substances. In addition, the use of pure 

bacteriocin may have helped to improve antilisterial activity toward the 

pathogen on seeds. Dabour et al. (2009) demonstrated that the use of purified 
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pediocin PA-l on mice infected with L. monocytogenes had more potential as a 

strategy for inhibiting the pathogen than using the bacteriocin-producing strain. 

Therefore, replacing the crude bacteriocin-like substances with pure pediocin 

in the dipping solution may have provided higher pathogen reduction after the 

treatments. However, this was not an option available for the current study. 

The antibacterial activity of organic acid is well known and the antibacterial 

activity of organic acids against pathogens on vegetables has been reported. 

Sengun and Karapinar (2005) evaluated the efficacy of fresh lemon juice, 

vinegar, and their mixture (I: 1) in reducing the numbers of Sal. Typhimurium 

on fresh salad vegetables. They observed a maximum reduction reached by 

using a lemon juice-vinegar mixture (1: 1) for 30 min, which decreased the 

numbers of the pathogen to undetectable level (5.73 logto CFU/g reduction). 

Enache et al. (2009) stated that lemon and lime juice do not support growth of 

L. monocytogenes and will eventually kill these cells. Although the mixture of 

lime juice and vinegar used in this study achieved higher pathogen reduction 

compared with other treatments, it did not eliminate the pathogen from seeds 

and did not prevent the re-growth of the pathogen during the sprouting process. 

Moreover, both the mixture of lime and vinegar, and bacteriocin-like 

substances lowered the seed germination ratio by 11-18% compared to the 

control. Therefore would be unsuitable for commercial use. 

Overall, the treatments employed in this study lacked effectiveness in 

inhibiting the growth of L. monocytogenes on mung bean seeds. The crude 

bacteriocin-like substances had lower antibacterial activity against the 
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pathogen in the mung bean seed decontamination process compared to the 

mixture of lime juice and vinegar but neither gave an appropriate level of 

reduction to be helpful in the commercial treatment. 
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CHAPTERS 

EFFECTIVENESS OF VARIOUS DISINFECTANTS 

AGAINST LISTERIA MONOCYTOGENES AND 

SALMONELLA TYPHIMURIUM ON MUNG BEAN SEEDS 

S.l Introduction 

In the previous chapter the possibility of using natural antimicrobial agents 

such as bacteriocin-like inhibitory substances and a mixture of lime juice and 

vinegar to inhibit L. monocytogenes on mung bean seeds were examined. The 

results showed that both antimicrobial products were not effective in inhibiting 

the pathogen on seeds and were adversely affecting seed germination 

especially when using a mixture of lime juice and vinegar. 

Several researchers have investigated the efficacy of different types of sanitizer 

such as calcium hypochlorite, sodium hypochlorite, chlorine dioxide, ethanol, 

hydrogen peroxide, calcium hydroxide, trisodium phosphate, and a commercial 

fresh produce wash with active ingredients such as peroxyacetic acid to reduce 

pathogen on seeds, specifically Salmonella and E. coli 0157:H7. These 

chemical sanitizers exhibit different efficacies in inhibiting the pathogens on 

seeds (Jaquette et al., 1996; Proctor et al., 2001; Scouten and Beuchat, 2002; 

Lee et al., 2002; Singh et al., 2003; Ghandi and Matthews, 2003; Pandrangi et 

al., 2003; Montville and Schaffner, 2004; Peiias et al., 2009). The most 

common problem that occurs after treating seeds with chemicals is the 



recovery of injured bacterial cells during the sprouting process. However, there 

is also the possibility of uninjured cells being found on treated seeds. 

Therefore, the presence of both types of cells on treated seeds during the 

sprouting process, which is warm and humid, will allow the organism's growth 

up to a dangerous level prior to harvesting (Ghandi and Matthews, 2003; 

Montville and Schaffner, 2004). 

Chlorine compounds are the most popular among the sanitizers used in the 

fresh produce industry. The U.S. Food and Drug Administration recommends 

the producer to decontaminate all seeds purposely used for sprout production 

with 20,000 ppm calcium hypochlorite for at least 15 min (Rajkowski and 

Thayer, 2001; Winthrop et al., 2003). Nevertheless, some of the disadvantages 

from using chlorine compounds as a sanitizer have been reported in the 

literature. High concentrations of chlorine produce hazardous fumes and cause 

skin irritation which is harmful to the handlers (Weissinger and Beuchat, 2000; 

Olmez and Kretzschmar, 2009). Chlorine efficiency is known to be 

inconsistent as it is rapidly inactivated by organic material which is usually 

present on raw produce surfaces (Rodgers et at., 2004). The potential of active 

chlorine is quickly diminished when it comes in contact with an environment 

containing high levels of organic matter such as on alfalfa seeds (Jaquette et 

al., 1996). Several outbreaks associated with pathogen contamination of 

sprouts and fresh-cut vegetables has raised concerns about the effectiveness of 

chlorine at 20,000 ppm in assuring the safety of these products (Montville and 

Schaffner, 2005; Olmez and Kretzschmar, 2009). A multistate outbreak of 

Salmonella serovar Muenchen infection associated with eating raw alfalfa 
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sprouts pretreated with calcium hypochlorite before sprouting was identified in 

Wisconsin during September 1999 (Proctor et al., 2001). Treatment of cowpea 

with 20,000 ppm active chlorine for thor with vinegar (5% acetic acid) failed 

to eliminate Salmonella Typhimurium from seeds (Singh et al., 2005). 

Moreover, there is a tendency to eliminate chlorine from the disinfection 

process in both organic and conventional processing in the fresh-cut industry in 

parallel with finding alternative sanitizers which can assure product safety, 

good quality, and a comparable shelf-life with chlorine-treated products 

(Olmez and Kretzschmar, 2009). 

Organic acids (lactic acid, acetic acid, and peracetic acid) and hydrogen 

peroxide (H20 2) have been investigated for their efficacy to control pathogens 

on seeds at different concentrations, contact times and temperatures. Organic 

acids are generally accepted as safe and widely used as food preservatives, 

whereas hydrogen peroxide is generally recognized as a safe chemical for 

specific use in foods (Phillips, 1999; Lin et al., 2002). The use of H20 2 as a 

sanitizer in cleaning fresh produce has the benefit of a non-residue effect after 

treatment as it is decomposed into water and oxygen by the enzyme catalase 

naturally found in plants (Olmez and Kretzschmar, 2009). Peroxyacetic acid is 

sometimes preferred over chlorine and hypochlorite due to its environment­

friendly decomposition by-products (oxygen, acetic acid, water); it is 

noncorrosive, unaffected by changes in temperatures, and remains effective in 

the presence of organic matter (Hilgren and Sal verda, 2000; Rodgers et al., 

2004). It has been used extensively as a sanitizer in food processing to get rid 

ofbiofilm formation (Nascimento et al., 2003). 
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The use of combination factors/sequential washing in seed decontamination 

treatments has shown promising potential for getting higher efficiency in 

reducing and inhibiting the growth of pathogens on seeds. For example, Singh 

et al. (2003) used sequential washing treatments (thyme oil followed by 

ozonated water and aqueous chlorine dioxide) as irrigation water during the 

sprouting process and observed a lower recovery of E. coli 0157:H7 on 

sprouted alfalfa seeds than when was using other sanitizer treatments alone 

(Singh et al., 2003). Because chlorine's efficacy is not consistent and is 

affected by the organic matter present on the seeds or in washing solution, the 

use of sequential washing treatment with hypochlorite followed by other 

chemical disinfectants or combination methods between chemical disinfectants 

and natural antimicrobial products may improve the efficiency of seed 

decontamination treatments. 

The objectives of this particular study were: (I) to evaluate the efficacy of 

sequential washing using a sequence of chemical treatments (two-step 

dipping), (2) assess the combined effect of chemical and natural antimicrobial 

agents on the growth of Listeria monocytogenes and Salmonella Typhimurium 

on mung bean seeds, and (3) measure the effects of the treatments on seed 

germination ratios. 
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5.2 Inhibition of L. monocytogenes and Sal. Typhimurium on 

mung bean seeds by chemical treatment. 

Each batch of surface-disinfected mung bean seeds (IOOg) was prepared as 

previously described (Section 2.2.2.2). Each pathogen was inoculated onto 

surface-disinfected mung bean seeds at population levels of approximately 6-7 

logto CFU/g (Section 2.2.4.2). Antimicrobial treatments were applied to 

inoculated seeds by dipping seeds into different antimicrobial agents. Survival 

of the pathogens on treated and sprouted seeds was determined; when the 

counts were below the level of detection by direct plating, the presence of the 

pathogens was established by an enrichment process as before (Section 2.1.2.1, 

2.1.2.2, and 2.2.2.3). After the treatments, mung bean seeds were sprouted and 

the germination percentage was calculated as before (Section 2.2.5.2). 

Pathogen population changes and seed germination percentages in response to 

treatment were subjected to statistical analysis (All experiments were carried 

out three times and the graphs represent mean values ± SDs). 

5.2.1 Effectiveness of chemical disinfectants in reducing L. monocytogenes 

on mung bean seeds and on the re-growth of the pathogen during the 

sprouting process 

The first trial examined the effect of various disinfectants against L. 

monocytogenes populations on mung bean seeds, in comparison with the 

control. Each batch of inoculated mung bean seeds (50 g) was submerged in 

400 ml of different chemical disinfectants as follows: (1) 2% (v/v) sodium 
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hypochlorite for 10 min followed by 5% (v/v) lactic acid, pH 2.54 for 5 min 

(2% NaOCl/5%LA); (2) 2% (v/v) sodium hypochlorite for 10 min followed by 

5% (v/v) Peroxyclenz pH 2.50 (a commercial detergent for sanitizing salad 

vegetables with peroxyacetic acid as active ingredient) for 5 min (2% 

NaOCI/5%PC); (3) 5% (v/v) hydrogen peroxide (H202) solution for 10 min 

(5% H20 2); (4) 5% (v/v) H20 2 for 5 min followed by 5% (v/v) acetic acid, pH 

2.61 for 5 min (5% H202/5% AA). Sterile RO water was used as the control 

treatment. 

The results of the treatments are summarized in Fig. 5.1. There was a 

significant reduction (p < 0.05) observed in the pathogen populations after the 

treatments. The two-step dipping treatment with 2% NaOCI/ 5% LA showed 

the greatest reductions of the L. monocytogenes population (2.92 10glO CFU/g) 

compared with the other treatments (0.36-1.88 10glO CFU/g). The next most 

effective treatment was the use of 2%NaOCI/5%PC (1.88 loglO CFU/g). 

However. the mean pathogen reductions of this treatment were not 

significantly different from the use of 5% H20 2 either alone or followed with 

5% acetic acid (1.55-1.64 logto CFU/g). The highest recovery of injured 

pathogen cells on sprouted seeds was found in treatments that used 5% H20 2 

either alone or followed with 5% AA (1.62 10gIO CFU/g and 1.44 logto CFU/g) 

(Fig. 5.1). This may be due to the antimicrobial activity ofH20 2 and acetic acid 

affecting the growth of native microtlora on seeds. This would lead to fewer 

available competitors for nutrients during the sprouting process leading to a 

high level of recovery of the pathogen. In contrast, seeds treated with 2% 

NaOCl/5%LA showed a higher lethality than other treatments as the pathogen 
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population continued to reduce on sprouted seeds to below the detection limit 

« 50 CFU/g) before being detected in the enrichment step. Meanwhile, there 

was a slight reduction of the pathogen in control samples (0.25 10glO CFU/g), 

and with sprouted seeds treated with 2% NaOCI/5%PC (0.23 10glO CFU/g), in 

the same period (Fig. 5.1). The viability of seeds was affected (p < 0.05) after 

treatment with 5% H20 21 5% AA as this treatment had the lowest germination 

percentage (94%) compared to other treatments (99%-100%) (Fig. 5.2). From 

the data obtained, 2% NaOCII5%LA treatment was the most effective and was 

examined in a further trial. 

5.2.2 Effectiveness of chemical disinfectants in reducing Sal. Typhimurium 

on mung bean seeds and on the re-growth of the pathogen during the 

sprouting process 

Due to time limitations during the study, the effect of 2% NaOCI/5%PC, 5% 

H202, and 5% H202/5% AA were not tested against Sal. Typhimurium in mung 

bean seeds. Only the most successful treatment against L. monocytogenes in 

seeds from the previous study, which was 2% NaOCl1 5% LA treatment, was 

continued fortesting against Sal. Typhimurium artificially inoculated on mung 

bean seeds. This was compared to sterile RO water as a control and a new 

treatment based on the mixture of 2% lactic acid and 0.5% vinegar for 5 min 

(2% LA+0.5% vinegar) in the second trial. A similar response for 2% NaOCI/ 

5% LA treatment as was observed for L. monocytogenes was found as this 

treatment also significantly reduced Salmonella populations (p < 0.05) 

compared to control treatment. The treatment with 2% NaOCl1 5% LA was 
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found to be the most effective, reducing the Salmonella population by 3.30 

10gJO CFU/g, with the next most effective being the mixture of 2% LA+0.5% 

vinegar (2.57 10gJO CFU/g) (Fig. 5.3). Moreover, the former treatment reduced 

the Salmonella counts to below the detection limit «50 CFU/g) by direct 

plating but was detected by the enrichment process. In contrast, there was a 

slight increase of Salmonella cells in the control sample (0.24 10gJO CFU/g) 

after treatment. 

There was an increase in the pathogen populations in control samples and seeds 

treated with the mixture of 2% LA/0.5% vinegar during the sprouting process. 

Seeds treated with the mixture of lactic acid and vinegar had the highest 

recovery of Salmonella populations (2.35 10gJO CFU/g) and counts were higher 

than the water control (1.97 10g\O CFU/g). In contrast, treatment with 2% 

NaOCI/ 5% LA maintained the Salmonella population on sprouted seeds below 

the level of detection «50 CFU/g) and were not recovered when the 

enrichment step was performed (Fig. 5.3). 

The combination of 2% LAlO.scYo vinegar had the lowest germination ratio 

(90.33%) compared with other chemical treatments (Fig. 5.4). This indicates 

that the use of acetic acid either in the natural or artificial forms (vinegar/acetic 

acid) in the seed sanitizing solution with concentrations between 0.5-5% 

adversely affects mung bean seed germination. In addition, the results obtained 

in this study were similar to the previous findings in Chapter 4 where seed 

germination rate was reduced by more than 20% when the mixture of lime 

juice and vinegar (1: I) was used as a dipping solution. However, it has been 
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Fig. 5.3 Changes in Sal. Typhimurium population after treatment with various 
disinfectants and during the sprouting process. 
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min 

149 



110 

100 

r; 
~ 90 
" ... 
CI 
~ 

~ 
~ 

Q., 
80 CI 

.S! ... 
" CI 

! 70 ~ 

~ 

60 

50..L....---

Control 2%NaOCI/5% LA 2%LA+0.5%vinegar 

Fig. 5.4 Germination percentages of Sal. Typhimurium inoculated seeds after 
treatment with various disinfectants. 
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seen that exposing pathogen-inoculated mung bean seeds to gaseous acetic acid 

in an aluminum fumigation chamber did not significantly reduce seed 

germination rates, although mean rates were slightly lower in fumigated seeds 

(Delaquis et al., 1999). This suggests that acetic acid is not suitable for use as a 

disinfecting solution but works better as a fumigant in seed decontamination 

processes. 

5.2.3 Effect of chemical treatments on native microflora of mung bean 

seeds 

The changes in native microflora populations on seeds before and after 

treatment with chemical disinfectants were carried out in parallel with 

Salmonella populations in the second experiment. Initial populations of native 

microflora on mung bean seeds before treatment with chemical disinfectants 

was higher than the Salmonella counts in all treatments (Fig. 5.5a). Dipping 

inoculated seeds in sterile RO water did not cause significant reductions in the 

number of native microorganisms or Salmonella (Fig. 5.5b). Meanwhile, 

treating seeds with chemical disinfectants significantly (p < 0.05) reduced the 

populations of seed total flora compared to the controls (Fig 5.5b). Treating 

Salmonella inoculated seeds with 2% NaOCI/S% LA was the most lethal as it 

reduced the counts of Salmonella on XLD agar from disinfected seeds (Fig 

S.Sb), and normal flora and Salmonella counts on sprouted seeds on both PCA 

and XLD agar (Fig. 5.5c) to below the detection limit « SO CFU/g). This 

suggests that this treatment effectively killed the Salmonella inoculum as no 

normal flora or Salmonella from sprouted seeds grow on PCA and XLD agar. 
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5.3 Discussion 

The experiments were conducted to compare the capacity of various 

disinfectants to reduce numbers of L. monocytogenes and Sal. Typhimurium 

inoculated on mung bean seeds. Washing inoculated seed with water did not 

reduce pathogens or native microflora on seed. Meanwhile, the application of 

chemical disinfectants showed a significant reduction (p < 0.05) of pathogens 

on seed. These differences were observed for both L. monocytogenes and 

Salmonella inoculated seeds. Dipping inoculated seeds in 2% NaOCI/5% LA at 

ambient temperature was the most effective treatment in reducing L. 

monocytogenes, Salmonella spp., and the native micro flora populations. This 

may be due to the synergistic effect on bacterial cell membranes and metabolic 

activity caused by chlorine and organic acid in the first and second wash, 

respectively. The high pH of sodium hypochlorite (pH over 11) interferes with 

the cytoplasmic membrane's integrity with an irreversible enzymatic 

inhibition, biosynthetic alterations in cellular metabolism and phospholipid 

degradation observed in lipid peroxidation (Estrela et al., 2002). Chlorine in 

bactericidal amounts inhibits various sulfhydryl enzymes and other enzymes 

sensitive to oxidation which leads to death of the bacterial cells (Knox et al., 

1948). The bactericidal effect of lactic acid is due to the ability of the 

undissociated acid to penetrate the bacterial cell membrane (Greer and Dilts, 

1995). The undissociated acid permeates freely across the cytoplasmic 

membrane by diffusion, dissociates inside the cytoplasm, thus accumulating 

protons and anions within the cell, lowering the intracellular pH, inhibiting 

enzyme activity and finally stopping cell function (Ariyapitipun, 1999; Lado, 
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2003). Gragg and Brashers (2010) observed the improvement in the 

antimicrobial activity with the use of a multi-hurdle intervention of lactic acid 

bacteria and chlorine in reducing Escherichia coli 0157:H7 in fresh spinach 

due to cell injury caused by the chorine in the first wash, which consequently 

increased susceptibility of injured cells to the inhibitory action of the LAB. 

This phenomenon may explain the greatest antimicrobial activity of 2% 

NaOCII5% LA found in this study, as the first wash with 2% NaOCI can cause 

the cell injury and this enhances the antimicrobial activity of 5% LA to kill the 

injured normal flora and pathogen cells in the second wash. 

The application of 5% H202 solution either alone or followed with 5% acetic 

acid had lower antibacterial activity against L. monocytogenes on seeds 

compared with other chemical treatments. This may be partially due to the 

oxidizing activity of the H202 which can be neutralized upon contact with seed 

tissue, thereby losing effectiveness to injure the pathogen cells on seed surfaces 

(Scouten and Beuchat, 2002). Salmonella tended to have higher sensitivity to 

the chemical treatments than L. monocytogenes which is similar to the findings 

reported by other researchers. Lee et al. (2002) observed that the treatment of 

the pathogen inoculated on mung bean sprouts with 2% lactic acid resulted in a 

3 log reduction with further reduction in the number of Sal. Typhimurium cells 

to undetectable levels after 3 days. Meanwhile, the same treatment resulted in a 

2 log reduction of L. monocytogenes on mung bean sprouts and the organisms 

became undetectable after 9 days. Lin et al. (2002) observed the higher 

sensitivity of Salmonella cells than L. monocytogenes on inoculated lettuce 

leaves treated with a combination of lactic acid and hydrogen peroxide. Yang 
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et al. (2009) noted the sensitivity of tested pathogens to organic acid (vinegar 

and acetic acid) and hydrogen peroxide treatment at 25°C for I min was Sal. 

Typhimurium > E. coli 0157:H7 > L. monocytogenes. Alakomi et al. (2000) 

stated that the antimicrobial action of lactic acid is largely, but not totally 

assigned to its ability on the undissociated form to penetrate the cytoplasmic 

membrane. This small water-soluble molecule can access to the periplasm 

through the water-filled porin proteins of the outer membrane of Gram-

negative bacteria, and this can benefit the antimicrobial activity of lactic acid 

against Gram-negative bacteria. 

The two-step dipping treatment in 2% sodium hypochlorite for 10 min 

followed by 5% lactic acid for 5 min at ambient temperature is likely to 

produce chemical residues which have an effect throughout the sprouting 

process. There was a continuing reduction of L. monocytogenes and native 

microflora after treatment and no viable counts of pathogen cells were detected 

on sprouted seeds. Higher efficiency of this treatment was found on Salmonella 

inoculated seeds because the counts of Salmonella were below the detection 

limit on both treated and sprouted seeds. In contrast, there was an increase in 

the pathogen populations on sprouted seeds treated with other chemical 

disinfectants. Apart from the synergistic effects from sodium hypochlorite and 

organic acid used in the decontamination process, the acidification of the 

homogenate of treated seeds may result in low recovery of injured pathogen 

cells and native microflora. This is because the treated seeds were not 

neutralized before mixing the samples with the diluents (MRD) in performing 

microbial analysis. Kumar et al. (2006) mentioned that the disadvantage of 
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using a chemical-based sanitizer is the risk of chemical residues being retained 

on the sprouts at the end of the sprouting process. Residual levels of lactic acid, 

chlorinated water and hydrogen peroxide in fruits after treatments could 

partially be transferred to the peptone water (diluent), which could reduce the 

recovery of sub-lethally injured cells of the pathogens (Venkitanarayanan et 

al., 2002; Materon, 2003). Weissinger and Beuchat (2000) investigated the 

lethal effects of treatment with organic acids on the population of Salmonella 

on alfalfa seeds by measuring the pH of DeylEngley (DIE) wash broth from 

seed treated with 5% acetic acid, citric, and lactic acid which were pH 4.0 to 

4.5 after incubation for 24 h at 37°C. This pH was in the range that could be 

lethal to Salmonella and may have inhibited resuscitation or growth of the 

organism. On the other hand, Lee et al. (2002) observed the chemical residues 

effect after treating Sal. Typhimurium and L. monocytogenes inoculated mung 

bean sprouts with 2% lactic acid and chlorous acid. The chemical residues 

produced a preservative effect during refrigeration as it continued to reduce the 

levels of total mesophilic microorganisms during this period. Therefore. the 

chemical residues effect found in this study seems to have both positive and 

negative effects on treated seeds. The positive effect was shown in the 

continuing reductions of pathogen popUlations during the sprouting process, 

whereas the negative effect may be that the high acidity of the diluents, caused 

by the acid residues on treated seeds, will lower the recovery of injured 

bacterial cells and cause lower counts on both non-selective and selective agar 

than the true values. This will therefore underestimate pathogen survival and 

the potential risk. 
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Total aerobic counts (T AC) of inoculated seeds, treated seeds, and sprouts 

cultivated on non-selective agar (PCA) was higher than Salmonella counts on 

selective media agar (XLD) in the second experiment. The higher recovery of 

T AC found on non-selective agar compared to selective agar after the seed and 

sprout decontamination process was similar with other studies 

(Venkitanarayanan et al., 2002; Lin et al., 2002; Lee et al., 2002; Singh et al., 

2003; Pandrangi et al., 2003; Derrickson-Tharrington et al. 2005). This may be 

because PCA is a non-selective medium which allows both injured and non-

injured cells to grow. Meanwhile, the selective media such as XLD agar for 

Sal. Typhimurium and Oxford agar for L. monocytogenes contain agents that 

can inhibit injured target microorganisms by causing difficulty for them to 

grow in highly selective conditions (Lee et al., 2002; Derrickson-Tharrington 

et al. 2005). Selective agents used in the formulation of selective media may be 

inhibitory to the target organisms (Sheridan et al., 1994), especially injured 

bacterial cells where their metabolisms have been altered in some way (Nelson, 

1943; Hartsett, 1951). Thus, non-selective media such as PCA can support a 

better growth and recovery for injured bacterial cells than selective media. 

Variation in seed germination ratio after treatment with different disinfectants 

was observed in this study. The dipping solution containing either acetic acid 

or vinegar tended to have the most adverse effect on seed viability followed by 

two-step dipping treatment with 2% NaOCI/5% LA. In contrast, the 

commercial washing solution (Peroxyclenz) containing peroxyacetic acid and 

hydrogen peroxide allowed seeds to fully germinate. These findings are quite 

similar to those results reported by Weissinger and Beuchat (2000) as they 
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observed a substantial reduction of alfalfa seed viability after treatment with 

5% acetic, lactic, or citric acids. This may be because organic acid is known as 

one of the chemicals that inhibit the germination of the embryo, whereas H20 2 

and hypochlorite are chemicals which stimulate germination or break 

dormancy of seeds (Black et al., 2006). 

The overall results obtained in this study indicate a treatment of dipping 

inoculated seeds in 2% NaOCII 5% LA was the most lethal to pathogens on 

mung bean seeds. However, its efficacy did not meet the recommendation by 

the National Advisory Committee on Microbiology Criteria for Food (5-log 

pathogen reductions after treatment) (Montville and Schaffner, 2005). The 

chemical residues on seed and sprout surfaces may prevent regrowth but also 

interfere with microbial analysis by reducing the pH of the diluents and 

preventing recovery of injured pathogen cells, resulting in lower bacterial 

counts than the actual values. Further study is therefore needed to find a 

suitable decontamination treatment which has a consistent activity, no adverse 

effect on seed viability, which is health and environment friendly, and easy to 

use, with a reasonable cost to improve the safety and quality of raw sprouts. 

The desirable impact is the lowered risks of foodbome pathogens through 

consumption of healthy and safe foods by the consumers. 
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5.4 Conclusion 

A two-step dipping treatment in a solution containing 2% sodium hypochlorite 

for 10 min followed by immersion in 5% lactic acid solution for 5 min was the 

most effective treatment. It exhibited the highest reduction in L. 

monocytogenes and Sal. Typhimurium populations (2.91 10glO CFU/g and 3.20 

10gIO CFU/g, respectively) after treatment. This treatment is likely to have a 

chemical residues effect on treated seeds through the sprouting process as 

shown by the reduction of the pathogens and native m icroflora on seeds to 

below the limits of detection «50 CFU/g) by direct plating. The germination 

of seeds treated with this treatment was slightly lower but not significantly 

different (p > 0.05) compared to the control with sterile RO water as dipping 

solution and therefore would not have a major commercial impact on sprout 

production. 
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CHAPTER 6 

EFFECT OF THERMAL TREATMENTS ON THE 

DEACTIVATION OF LISTERIA MONOCYTOGENES, 

SALMONELLA TYPHIMURIUM AND NATIVE 

MICROFLORA ON MUNG BEAN SEEDS 

6.1 Introduction 

The application of physical decontamination on fresh produce has less severe 

effects and legal restrictions than chemical decontamination (Smelt et al., 

2002). Moreover, strong chemicals are not preferred on sprouted vegetables 

because these are often eaten fresh or lightly cooked after a short period of 

cultivation and some chemical residues may remain in the sprouts (Enomoto et 

al., 2002). A wide range of physical decontamination methods such as heat, 

gamma-irradiation, ultrasound, high-pressure, and supercritical carbon dioxide 

have been used to evaluate their efficacy to reduce and inhibit the pathogens on 

seeds (Jaquette el al., 1996; Clear el al., 2002; Enomoto et al., 2002; Scouten 

and Beuchat, 2002; Kikuchi et al., 2003; Weiss and Hammes, 2005; AI-Bachir 

2007; Blaszczak et al., 2007; Bari el al., 2008; Jung el al., 2009). Among all 

these techniques, heat treatment is the most popular method for several 

researchers (Jaquette el al., 1996; Clear el al., 2002; Enomoto et al., 2002; 

Weiss and Hammes, 2005; Bari el al., 2008). This may be because it is easy to 
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implement and it allows sprout producers to avoid the use of chemical 

disinfectants (8ari el al., 2008). Heat treatments are usually applied as hot 

water dips, vapour heat, or hot air treatments and have been demonstrated to be 

effective as a non-chemical means of improving postharvest quality of 

horticultural products (Lurie, 1998; Cantwell el al., 200 I). Weiss and Hammes 

(2005) applied hot-water treatment as an alternative to chemicals in reducing 

the numbers of pathogens on seeds. The group observed 5-log reductions for 

salmonellae and E. coli 0157 H- on alfalfa, mung bean and radish seeds with 

hot-water treatment as the sole decontamination step. Nevertheless, most of 

the previous studies were usually carried out with a small amount of seed 

samples (5g), thus, further study with larger amount of seeds is necessary in 

order to determine the possibility of applying this method at the industrial 

processing scale processing. 

Microwave heating is a volumetric heating method which can heat the volume 

of material, ideally at substantially the same rate, and energy is transferred 

through the material electro-magnetically, not as a thermal heat flux (Meredith, 

1998; Anonymous, 20 I Ob). Heating times of microwave heated samples can 

often be reduced to less than 1 % of that required using conventional methods, 

with effective energy variation within the workload less than 10% (Meredith, 

1998). On the other hand, the process time in conventional heating, better 

known as surface heating, is limited by rate of heat flow into the body of 

material from the surface, which is determined by its specific heat, thermal 

conductivity, density, and viscosity (lwaguch el al., 2002; Anonymous, 2010). 

Hong el al. (2004) reported that microwave irradiation was more effective in 

163 



destroying pathogens in sewage (biosolid) than external heating by convection. 

Therefore, microwave heating may provide more effective results in reducing 

and inhibiting the microorganisms in seeds compared to conventional heating. 

It also offers an alternative method to replace the use of chemical disinfectants. 

To date, there is no publication reporting the use of microwave heating as a 

decontamination method. Therefore, it may be useful to investigate the 

possibility of using this powerful heating process to improve the safety of seeds 

and sprouts. 

This study aimed to evaluate the efficacy of thermal treatments in reducing and 

inhibiting L. monocytogenes, Sal. Typhimurium, and native microflora on 

mung bean seeds and the effect of these treatments on seed viability. 

6.2 Effect of hot and cold water dipping treatments on mung 

bean seeds inoculated with L. monocytogenes 

Hot water treatments can control seed-borne disease by using temperatures 

which is hot enough to kill the organisms but not hot enough to kill the seeds, 

thus, it must be carefully and accurately done (Kaufman, 2010). After 

treatment, dipping treated seeds in cold water is recommended in order to stop 

heating action which can reduce the damage by hot water (Kaufman, 2010). 

Moreover, exposing an injured pathogen cells survived after thermal treatment 

to sudden downshifts in temperature may increase the cell death from the effect 

of cold shock. In the study, the application of hot water temperatures followed 
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by ice-cold water dipping treatments to reduce L. monocytogenes on mung 

bean seeds was examined. Each batch of L. monocytogenes inoculated seeds 

(25g) was wrapped in sterile cotton cloth (15cm x 15cm) before dipping into 

200 ml of hot and cold water at different temperatures and times as described 

below. Inoculated seeds (25g) dipped in sterile RO water (200 ml) was used as 

a control treatment. 

In the first trial, the test was carried out by dipping L. monocytogenes 

inoculated mung bean seeds in hot water at 50°C and 60°C for 1 min followed 

by ice-cold water (5°C) for I min (50°C I min/5°C 1 min; 60°C 1 mini 5°C I 

min) and this was compared with the control treatment (sterile RO water for 10 

min). After the treatment, microbiological analysis and assessment of the 

reduction of L. monocytogenes on treated seeds and sprouts were carried out 

using the National Standard Methods as previously described in Section 2.1.2.3 

(HPA, 2007). 

The results (Fig. 6.1) showed that hot and cold water dipping treatments at 

50°C I min/5°C 1 min and 60°C 1 min/5°C 1 min were not effective in 

reducing the population of L. monocytogenes compared to control (p < 0.05). 

Dipping L. monocytogenes inoculated seeds in sterile RO water for 10 min 

reduced L. monocytogenes popUlations by 0.36 10gIOCFU/g, while the counts of 

L. monocytogenes on seeds treated with hot and cold water dipping treatments 

at 50°C 1 min/5°C I min and 60°C I min/5°C 1 min increased by 0.80 

10gtoCFU/g and 0.30 10gtoCFU/g, respectively (Fig 6.1). However. when this 

set of seeds was germinated at 25°C for 48 h, no significant difference (p > 
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Fig. 6.1 The changes in L. monocytogenes counts on Oxford agar after mung 
bean seeds were treated with hot and cold water at 50°C I m in/SoC I m in and 
60°C 1 min/SoC 1 min and during sprouting process. Values represent mean ± 
S.D. from three separate experiments. 
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O.OS) was found among treatments with regards to the counts of L. 

monocytogenes increasing on sprouted seeds during the sprouting process. In 

the second trial, the temperature of hot water was increased to 8SoC and 92°C 

for 1 min followed by ice-cold water for 30 sec (8S0C I minI SoC 30 sec and 

92°C 1 mini SoC 30 sec, respectively). The dipping time in ice-cold water was 

reduced from 1 min to 30 sec because the water temperature usually increased 

approximately 4-SoC after dipping the hot water treated seeds in ice-cold 

water. Therefore, extending the exposure time to dip hot water-treated seeds in 

ice-cold water may not be useful in terms of maintaining the low temperature 

to generate the cold shock activity against the pathogen. 

The results showed that dipping L. monocytogenes contaminated seeds in hot 

and cold water at 92°C 1 min/SoC 30 sec significantly (p < O.OS) reduced the 

pathogen population on seeds by S.29 10glO CFU/g. Meanwhile, treatment with 

hot and cold water at 8SoC Imin/SoC 30 sec produced a 3.41 10gIOCFU/g 

reduction and control treatment had no real change (0.36 10gIOCFU/g) (Fig. 

6.2). However, there was a recovery of the pathogen during the sprouting 

process. Seeds treated with hot and cold water at 8SOC I min/SoC 30 sec had 

the highest recovery of L. monocytogenes on sprouted seeds (2.S6 10gIOCFUlg), 

almost to the same level as control samples where L. monocytogenes 

populations were further reduced by 0.2S 10glO CFU/g. In contrast, only a small 

increase of L. monocytogenes populations was seen in sprouts germinated from 

seeds treated with hot and cold water at 92°C 1 min/SoC 30 sec (O.SO 10glO 

CFU/g). 
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Fig. 6.2 The changes in L. monocytogenes counts on Oxford agar after mung 
bean seeds were treated with hot and cold water at 85°C 1 min/5°C 30 sec and 
92°C 1 min/5°C 30 sec and during sprouting process. Values represent mean ± 
S.D. from three separate experiments. 
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6.3 Effect of hot and cold water dipping treatments on mung 

bean seeds inoculated with Sal. Typhimurium 

The results obtained in the previous two trials (Fig. 6.1 and 6.2) suggested that 

treating L. monocytogenes contaminated seeds with hot water at 50°C and 

60°C was not effective in reducing the pathogen in seeds. Seeds treated under 

these conditions were germinated the same way as the control samples. In 

contrast, when the temperature of hot water shifted to 85°C and 92°C, a 

significant (p < 0.05) reductions of pathogen counts (3.41 and 5.29 logto 

CFU/g) was observed after treatments. However, the high temperature of hot 

water used in the experiment adversely affected seed viability especially at 

92°C. Therefore, in the next trial the temperatures of hot water used to disinfect 

the seeds were kept in the range between the temperatures used in the previous 

two studies. 

Each batch of Sal. Typhimurium inoculated seeds (25g) was wrapped in sterile 

cotton cloth (15cm x 15cm) before dipping into 200 ml of hot water at different 

temperatures (70°C, 80°C, and 85°C) for 30 sec followed by dipping into ice­

cold water (5°C) for 30 sec (70°C 30 sec/5°C 30 sec; 80°C 30 sec/5°C 30 sec; 

85°C 30 sec/5°C 30 sec) . Inoculated seeds (25g) dipped in sterile RO water 

(200 ml) was used as the control treatment. After the treatments, 

microbiological analysis and evaluation of the reduction of Sal. Typhimurium 

and total aerobic counts on treated and sprouted seeds were carried out using 

the National Standard Methods (FlO, and F13) as previously described in 

Sections 2.1.2.1 and 2.1.2.2, respectively (HPA, 2007). 
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The changes in Salmonella populations after hot and cold water treatment were 

similar to the changes of L. monocytogenes populations on mung bean seeds. 

Hot water treatments at 70°C, 80°C and 85°C for 1 min followed by dipping in 

cold water for 30 sec showed better pathogen reductions compared to the 

control treatment (p < 0.05). Highest pathogen reduction was found when seeds 

were treated with hot and cold water at 85°C 30 sec/5°C 30 sec (4.50 

logIOCFU/g) compared with hot and cold water at 80°C 30 sec/5°C 30 sec 

(3.04 10gtoCFU/g), and 70°C 30 sec/SoC 30 sec (1.73 10gtoCFU/g). Meanwhile, 

the population of Sal. Typhimurium in control treatment increased by 0.24 

logto CFU/g (Fig. 6.3). Moreover, Salmonella populations were reduced to 

below the detection limit «50 CFU/g) after treatment with hot and cold water 

at 80°C 30 sec/5°C 30 sec; 85°C 30 sec/5°C 30 sec but were detected in 24 h 

enrichment cultures except two samples (replicates) of seeds treated at 80°C 30 

sec/5°C 30 sec that were negative after the enrichment step. 

Significant statistical differences (p < 0.05) were noted in the rates of recovery 

of Salmonella population after the germination process. The control treatment 

had the lowest recovery of pathogen population (1.97 logtoCFU/g) compared 

with hot and cold water dipping treatments (4.39 10gtoCFU/g - 5.36 

10gtoCFU/g) (Fig. 6.3). Meanwhile, variation of hot and cold water 

temperatures used in the experiment (70°C 30 sec/SOC 30 sec; 80°C 30 sec/5°C 

30 sec; 85°C 30 sec/5°C 30 sec) had no significant difference on the recovery 

of the pathogen population. These results demonstrated that hot and cold water 
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Fig. 6.3 The changes in Sal. Typhimurium populations on XLD agar after 
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dipping treatments were able to reduce the pathogens on mung bean seeds but 

failed to eliminate the pathogens from the seeds and levels on sprouted seeds 

were not significantly different from the control. 

6.4 Effect of hot and cold water dipping treatments on total 

aerobic counts (TAC) on mung bean seeds 

Changes of total aerobic counts (TAC) on seeds treated with hot and cold water 

dipping treatments were examined in parallel with the counts of L. 

monocytogenes (only with selected treatment at 50°C 1 min/5°C I min and 

60°C I min/5°C I min) and Sal. Typhimurium on treated and sprouted seeds. 

The changes of T AC after treatments had a similar pattern with pathogenic 

bacteria on treated seeds. As observed, the application of hot and cold water at 

50°C 1 min/5°C 1 min and 60°C 1 min/5°C 1 min to L. monocytogenes 

inoculated seeds was not effective in reducing the pathogen on seeds (Fig. 6.1) 

and it failed to reduce the TAC after treatment (Table 6.1). Similarly, dipping 

Salmonella inoculated seeds in sterile RO water for 10 min increased Sal. 

Typhimurium populations and T AC by 0.24 logto CFU/g and 0.1 logto CFU/g, 

respectively (Fig. 6.3). Meanwhile, dipping seeds in hot and cold water at 70°C 

30 sec/SoC 30 sec, 80°C 30 sec/SoC 30 sec or 8SoC 30 sec/SoC 30 sec acted 

significantly in reducing both Sal. Typhimurium and T AC on treated seeds but 

failed to inhibit the recovery of injured pathogen and native microflora cells 

during the sprouting process (Table 6.2). 
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Table 6.1: Total aerobic counts (T AC) (IOglO CFU/g) on PCA agar of L. 
monocytogenes inoculated seeds at different stages in decontamination process 
(mean ± SO). 

Treatment TAC TAC TAC 
(log1oCFU/g) (log1o CFU/g) (log1o CFU/g) 
on inoculated on treated seeds on sprouted 

seeds seeds 

50°C 1 min/5°C 1 min 6.06±0.39 6.84±0.34 6.75±0.23 

60°C 1 min/5°C 1 min 6.06±0.39 6.50±0.42 6.75±1.l4 

Table 6.2 Total aerobic counts (IOglO CFU/g) on PCA of Sal. Typhimurium 
inoculated seeds at different stages in decontamination process (mean ± SD). 

Treatment TAC TAC TAC 
(loglO CFU/g) (IoglO CFU/g) (loglO CFU/g) 

. on inoculated seeds on treated seeds on sprouted seeds 

Control (RO H20 10 min) 5.75±O.67 5.85±0.62 7.48±0.64 

70°C 30 sec/5°C 30 sec 5.87±0,42 4,42±0.43 7.92±0.lS 

80°C 30 sec/5°C 30 sec 5.S7±O.42 3.33±0.30 7.62±O.35 

85°C 30 sec/5°C 30 sec 6.76±O.12 1.80±0.17 7.68±O.28 
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6.5 Effect of microwave heating compared to hot and cold water 

dipping treatments on the changes of normal flora on mung 

bean seeds 

Comparative assessments between the effect of hot and cold water dipping 

versus the use of microwave heating in reducing total aerobic bacteria on mung 

bean seeds was examined. It was not possible to perform the experiment with 

pathogen inoculated seeds because the treatment was performed at the Faculty 

of Chemical and Environmental Engineering, University of Nottingham, UK 

which did not have the facilities to do the test with pathogen inoculated seeds. 

In this study, a 6 kW, 2.45 GHz industrial microwave system connected to a 

single-mode cavity was used to evaluate the effect of heating irradiation in 

reducing native microflora on mung bean seeds. Each batch of seeds (30g) was 

treated at different power levels and exposure times. Non-treated seeds were 

used as control treatment. All treatments were carried out at least in triplicate. 

6.5.1 Treatment with different power levels 

In the first trial, each batch of commercial mung bean seeds (30g) was heated 

at four different microwave power levels (l kW, 2 kW, 3 kW, and 4 kW) for 1 

sec and compared this with dipping in hot water at 80°C for 30 sec followed by 

ice-cold water for 30 sec (80°C 30 sec/5°C 30 sec). During microwave heating, 

the energy absorbed by the seeds was found to be lower than the total applied 

energy as some of the microwave energy is not absorbed and is reflected 

during processing. The average actual power absorbed by the seeds after 
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operating the system at I kW, 2 kW, 3 kW and 4 kW were then equalled to 

300W, 770W, 806W, and I 794W, respectively. 

Overall, the results (Fig. 6.4) showed that the hot and cold water dipping 

treatments was more effective in reducing native microflora on seeds than 

microwave heating, yielding the lowest TAC on treated seeds (2.9 logto CFU/g) 

(p < 0.05). The T AC of microwave treated seeds at I, 2, 3 and 4 kW for I sec 

were 3.6 10glO CFU/g to 5.2 logto CFU/g which either no different or higher 

than the control (4.6 10gIO CFU/g). In addition, a variation and inconsistent of 

the changes in T AC counts were found on seed treated with microwaves. For 

example, the application of higher power levels at 3 and 4 kW increased the 

T AC by 0.3 and 0.6 logto CFU/g, whereas seeds treated with lower power 

levels at I and 2 kW produced the reduction of T AC by 0.02 and 1.0 logto 

CFU/g compared to non-treated seeds. 

The increase of T AC on sprouted seeds was observed in all treatments (Fig. 

6.4). The lowest recovery of native microflora on sprout (0.9 logto CFU/g) was 

found in seeds treated with hot and cold water dipping treatment compared to 

other treatments (2.55 - 4.10 10gIO CFU/g). This indicates that the hot and cold 

water treatment was more effective in reducing and inhibiting the growth of 

microorganisms on mung bean seeds compared to the microwave heating 

process. 
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Fig. 6.4 Total aerobic counts on PCA agar of mung bean seeds after treatment 
with various microwave power levels (1-4 kW) compared with hot and cold 
water (80°C 30 sec/5°C 30 sec) dipping treatments and after the sprouting 
process. Values represent mean ± S.D. from at least three separate experiments. 
Means with the same lowercase or uppercase letter are not significantly 
different (p > 0.05). 
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6.5.2 Treatment at 2 kW with different exposure times 

The results obtained from the first study showed that microwave heated seeds 

at 2 kW for 1 sec achieved the best reduction of total aerobic bacteria on 

treated seeds (1.0 logto CFU/g). Therefore, the effect of microwave heating at 2 

kW with different exposure times varying between I, 2, and 3 sec on the 

changes of T AC was investigated. Although, there was no significant 

difference (p > 0.05) between the T AC counts on microwave treated seeds and 

the control but the results (Fig. 6.5) showed that seed treated with microwave 

heating at 2 kW for 2 sec was more effective in reducing T AC on seeds (2.57 

logto CFU/g) compared with other treatments (0.98 logto CFU/g - 2.18 10gIQ 

CFU/g). Similarly, there was no significant difference of the recovery of TAC 

on sprouted seeds among all treatments (p > 0.05). 

6.6 Effect of bot and cold water dipping and microwave beating 

treatments on seed viability 

After the thermal treatments, all treated seeds were used for sprouting by using 

the protocol previously described in Section 2.2.5.2. Mung bean seeds treated 

with hot and cold water dipping treatments had better germination percentages 

than seeds treated with microwave heating process. In hot and cold water 

dipping treatments, the higher the temperature of hot water used, the lower was 

the seed viability (Fig. 6.6, and Fig. 6.7, respectively). There was no significant 

difference (p> 0.05) in germination percentages between seeds treated with hot 

and cold water at 50°C I min/5°C 1 min and 60°C 1 min/5°C 1 min compared 
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Fig. 6.5 Total aerobic counts on peA agar of mung bean seeds after treatment 
with microwave at 2 kW with different exposure times compared to non­
treated seeds, and after the sprouting process. Values represent mean ± S.D. 
from three separate experiments. Means with the same lowercase letter are not 
significantly different (p > 0.05). 
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to the control samples (Fig. 6.6). When the temperature of hot water was 

increased to 85°C and 92°C, the gennination rate was reduced to 99% and 89% 

respectively (Fig. 6.6). This phenomenon was similar to Sal. Typhimurium 

inoculated seeds as the reduction of gennination percentages was from 98% to 

97.6% and 91.3% when the temperatures of hot water used to treat the seeds 

increased from 70°C to 80°C and 85°C, respectively (Fig. 6.7). 

The application of microwave heating on mung bean seeds severely affected 

seed viability compared with using hot and cold water dipping treatments. This 

is clearly seen with lower gennination percentages when treated seeds with 

different power levels (lkW - 4kW) (93.3 -98.3%) compared to dipping seeds 

in hot and cold water at 80°C f 30 sec/5°C 30 sec (99%) as shown in Fig 6.8. 

Moreover, higher microwave power levels tended to reduce seed viability as 

the lowest gennination percentage (p < 0.05) was observed in seeds treated at 4 

kW (93.3%). In addition, extending the exposure times significantly reduced 

the seed viability. Exposure times of I sec to 3 sec reduced the gennination 

percentage from 96.3% to 45.8%. (Fig. 6.9). 

6.7 Discussion 

The effectiveness of hot and cold water dipping treatments in reducing the 

pathogens on mung bean seeds depend on the temperature of hot water used in 

the experiment. It was found that dipping seeds inoculated with L. 

monocytogenes in hot and cold water at 50°C I min/SoC I min and 60°C Imin/ 
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Fig. 6.8 Germination percentages of mung bean seeds after treatment with 
microwave heating at different power levels. Values represent mean ± S.D. 
from three separate experiments. Means with the same lowercase letter are not 
significantly different (p > 0.05). 
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Fig. 6.9 Germination percentages of mung bean seeds after treatment with 
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ISOC I min failed to reduce the pathogen. In contrast, the used of hot water at 

92°C resulted in a significant reduction of the pathogen by S.3 10gIOCFU/g. 

Similarly, raising the temperature to treat Salmonella inoculated seeds to 85°C 

for 30 sec achieved a reduction of 4.5 10gIO CFU/g. Heat has been reported to 

damage different structures, including damage to cell membranes, ribosomes, 

DNA, RNA, and enzymes in vegetative cells but the key lethal target is DNA 

damage which is the prime cause of heat inactivation (Gould, 1989; Sala el al., 

1995). Meanwhile, the effects identified as 'injury' could probably involve 

other components of the cells such as membranes, RNA, ribosomes and 

damage of specific enzymes (Gould, 1989). Moreover, high temperature heat 

treatments can affect the inside of seed coat to some extent and can destroy the 

inoculated bacteria that exist inside the seed coats (Enomoto et al., 2002). 

Thus, it would be expected that increasing the temperature of hot water in the 

treatment would increase the lethal effect on microorganisms especially those 

on the seed surface. 

A complete elimination of Salmonella populations on mung bean seeds was 

observed when treating 5g of inoculated seeds in 300 ml of hot water at 90°C 

for 60 sec followed with chilled water for 30 sec (Bari et al., 2008). No 

pathogen was detected in 24 h enrichment cultures and after 72 h of 

germination as well. The germination yield of the seed treated with this 

treatment was not affected significantly. The high efficiency of hot water 

treatment in the study of Bari et al. (2008) may be due to higher thermal 

uniformity and lethality effect caused by the use of a smaller amount of 

pathogen-inoculated seeds (Sg) treated in a larger volume of hot water (300 ml) 
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at a higher temperature. According to Buck et al. (2003) large batches of seed 

can cause difficulty in ensuring uniformity of temperature throughout the water 

bath as a portion of seeds may receive the appropriate temperature-time 

exposure, but some will still contain viable bacteria after treatment. 

The use of microwave heating had a lower efficiency in reducing and inhibiting 

the growth of T AC on seeds compared to the hot and cold water dipping 

treatment. There was no significant difference (p > 0.05) among T AC of seeds 

treated with different microwave power levels and control samples. The higher 

thermal lethality seen with hot water treatment may be due to the difficulties in 

tuning of microwaves to seeds within a very short exposure time, which can 

cause wide variations of absorbed power among seeds. The ranges of actual 

absorbed power when operates the system at 1, 2, 3, and 4 kW were 279-339 

W, 751-795 W, 769-841 Wand 815-1806 W, respectively. This inconsistent 

absorbed power may affect the microbial inactivation, causing inconsistent and 

lower T AC reduction compared to hot and cold water treatment. Moreover, the 

heat flow in conventional heating, which is also known as surface heating starts 

from the surface and go into the body of the material (Anonymous, 20tOb). 

This may account for better bacterial reductions in the seed decontamination 

process because most of the bacteria are mainly located on the seed surface. In 

contrast, microwaves generate heat within the material and not on the surface, 

by stimulating water molecules to vibrate within the materials. Heat generated 

by these vibrations may reduce the microbial popUlation which would be more 

effective if the target microorganisms were located inside the seeds. This may 

explain the unsuccessful decontamination process found using microwaves 
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within a short exposure time in reducing microorganisms on the seed surface. It 

also explains the negative effect on seed viability due to the heat that has been 

generated inside the seeds. 

Despite the greatest reductions in counts achieved by the hot and cold water 

dipping treatments, counts on sprouted seeds were not different than the 

control. This suggests that the surviving population proliferated during the 

sprouting process and may have grown faster due to lower competitor levels. 

Only on seeds treated with very hot water (92°C) were levels on sprouted seeds 

reduced. This suggests that the surviving organisms had been sub-lethally 

injured through the process which delayed their recovery and growth on 

sprouted seeds. Similarly, treatment of Salmonella inoculated seeds with hot 

water at 85°e for 30 sec showed a lower level of recovery than lower 

temperatures. Therefore, the increase of temperature of hot water treatment 

can improve the lethality effect on bacterial population after treatment and 

caused more severe injury on target cells which produced more difficulty of 

injured cells to recovery during the sprouting process. 

On the other hand, thermal treatment clearly demonstrated a negative effect on 

seed viability especially for microwave heated seeds. We observed that 

treatment of L. monocytogenes inoculated seeds at 92°e for 1 min followed by 

ice-cold water for 30 sec leads to a significant (p < 0.05) reduction in 

germination rate (89%). Meanwhile, seeds treated with hot water at 85°e or 

lower for 1 min followed by ice-cold water for 30 sec (99%) had a similar 

germination percentage to control samples (100%). The same effect was not 
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found in those heated at 50°C (100%) and 60°C (100%), respectively. Jaquette 

et al. (1996) treated alfalfa seeds at 54°C, 57°C, and 60°C for 10 min and 

observed a reduction of seed viability from 96% (control) to 88%, 84%, and 

42%, respectively. This may be due to the lack of cold water dipping step 

which can help to minimize the damge of seed viability caused by heat 

treatment in their study. These authors also suggested that heat treatment 

appeared to be effective in killing Salmonella stanley on alfalfa seeds and the 

range of temperatures that can be used should be between 57°C to 60°C and 

not longer than 10 min. This is because lower temperature may not kill the 

pathogen and perhaps other Salmonellae, and higher temperatures or longer 

exposure time (l0 min) decrease germination rate. Meanwhile, water 

adsorption rate was found to affect the seed viability and longer presoaking 

significantly reduced the germination percentage of alfalfa seeds (Enomoto et 

al., 2002). 

Microwave heating severely affected seed viability more than the hot and cold 

water dipping treatment especially when the exposure time was longer than 1 

sec. Seeds treated with microwave at 2 kW for more than 1 sec had low 

viability (45.8- 70.5%). It is possible that the volumetric heating generated by 

microwaves inside the seeds caused the severe reduction of seed viability by 

destroying the life functions of seed embryo. Heat can damage seed structures, 

and reducing moisture content necessary for metabolic activities needed in the 

germination process (Derek Bewley, 1997). 
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From all the results obtained, the study has shown that both thermal processes 

used in this study were not successful in eliminating and inhibiting the growth 

of bacterial populations on seeds. Moreover, seed viability was also affected by 

thermal treatments which make these interventions difficult to apply at the 

industrial scale. 

6.8 Conclusion 

Overall, the application of thermal processes based on a hot and cold water 

dipping treatment was more effective in reducing and controlling the bacterial 

populations on mung bean seeds than microwave heating treatments. There 

also had less effect on seed viability compared with seeds treated with 

microwaves. The greatest pathogen reduction (> 5 10glO CFU/g) was observed 

when seeds inoculated with L. monocytogenes were immersed in hot water at 

92°C for 1 min followed by dipping in ice-cold water for 30 sec. Meanwhile, 

microwave heating at 2 kW for 2 sec was the most effective in reducing the 

total aerobic counts among all microwave treatments. However, germination 

percentage was affected by both thermal treatments. Hot water treatment at 

92°C for 1 min reduced the germination rate to 89%, while a germination rate 

of70.5% was obtained in seeds treated with microwaves at 2 kW for 2 sec. The 

recovery of bacterial popUlations on sprouted seeds was found in all treatments, 

which indicate an unsuccessful decontamination process using thermal 

treatments. 
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CHAPTER 7 

GENERAL DISCUSSION 

The use of cultivation methods is the most common and simple approach to 

study microbial quality and to identify the microorganisms in food samples. 

However, this method does not provide a clear understanding of the bacterial 

diversity in the sample because of the lack of uncultivable microorganisms in 

the analysis. There is also the lack of isolation media which would allow all the 

different microorganisms to be distinguished. In the study, using the 

conventional method, high counts of total aerobic bacteria (6.35-7.86 10glO 

CFU/g) and total coliforms (5.15-6.63 10glO CFU/g) were found on 'use-by 

date' raw bean sprouts. This information however is not sufficient to clarify the 

quality or safety of the samples as high levels of T AC and total coli forms are 

normally found in fresh vegetables (Arrow, 2002). Total Listeria counts in 

samples which were above the limit allowed in fresh fruits and vegetables 

based on the PHLS guidelines, classified the 'use-by date' mung bean sprouts 

into the "unsatisfactory" category. Nevertheless, it was not possible to identify 

any Listeria species by DGGE band analysis which means that the typical 

colonies observed on the selective medium could belong to other species but 

were able to grow on this selective medium. In addition, it is possible that the 

low number of the organism presence in the sample may influence detection as 

DGGE may not pick up low population levels obtained from either bean sprout 

pellets or cultured cells in the analysis. The soil bacteria consisted of Bacillus 

pumilus, CUriO bacterium citreum, and Sino rhizobium fredii were identified by 
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using PCR-DGGE techniques from the amplimers of bulk cells' DNA collected 

from Oxford agar plates. A good growth and similar appearance of the colony 

of these soil bacteria with L. monocytogenes (brown coloured colonies with 

black zones around the colonies) may explain the incorrect conclusion about 

the total Listeria spp. counts of 'use-by date' mung bean sprouts. This indicates 

the requirement of further biochemical tests or molecular analysis. The 

identification of microorganisms based on biochemical tests is time consuming 

and sometimes not accurate. For example, when L. monocytogenes inoculated 

seeds were used, the confirmation of L. monocytogenes which were isolated 

from disinfected seeds following different treatments using morphological and 

some biochemical tests showed that all isolates were Gram-positive, short-rods, 

non-spore forming, catalase positive, oxidase negative, motile at 25Co , and 13-

haemolytic. However, confirmation often representative isolates using the API 

Listeria system wrongly identified all isolates as L. innocua. Meanwhile, 

confirmation using the PCR assay which amplified a fragment of the locus 

coding for the listeriolysin regulatory protein (prfA gene) of L. monocytogenes 

confirmed that all the isolates belonged to L. monocytogenes. This finding 

suggests that using both conventional and molecular method produced more 

accurate information to determine the safety and quality of bean sprout samples 

than using each method separately. 

The combination of methods between cultivation and PCR-DGGE provided a 

better understanding of microbial quality and community of 'use-by date' 

mung bean sprouts than by using each method separately. The study of 

microbial quality using conventional methods found the highest counts of total 
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LAB, yeasts and moulds, T AC, and total coliforms in shop D samples. PCR-

DGGE analysis showed highly complex eukaryote communities and a major 

population of LAB were identified from shop D samples compared with other 

sources. Therefore, the details obtained from both analyses suggest poor 

quality and a condition of spoilage of shop D samples. This reflected the 

observed level of cold storage at the shop and highlighted the need for food 

products to be stored appropriately. 

PCR-DGGE analysis revealed that the microbiota of 'use-by date' mung bean 

sprouts mainly consisted of Enterobacteriaceae, soil bacteria, lactic acid 

bacteria, yeast, Pseudomonas spp., and Flavobacterium. This finding is slightly 

different from the previous study by Weiss et al. (2007). The investigators 

studied the microbiota of ten seed types and ready-to-eat sprouts by 

bacteriological culture and PCR-DGGE analysis, amplifying the V2-V3 region 

of the 16S rRNA gene using primers HDAI-GC and HDA2 with the DNA 

isolated from resuspended bacterial biomass (RBB) obtained from plate count 

(PC) and PseudomonaslAeromonas selective (GSP) agar plates. They observed 

that the profiles obtained from hydroponically grown mung bean sprouts were 

less complex compared to those grown in soil, and the predominant bacterial 

biota in the sample mainly consisted of enterobacteria, Pseudomonas spp. and 

lactic acid bacteria, while the dominating microbiota changed from 

enterobacteria to Pseudomonas sp. when sprouting in soil. These authors also 

observed that the complexity of the microbiota between the DGGE profiles 

obtained from RBB decreased during germination from 24 to 48 h. Similar 

groups of the organisms were found in the current study except several soil 
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bacteria and yeast species were found in 'use-by date' mung bean sprouts. The 

slight difference in the identified microorganisms between these two studies 

may be due to different seeds used for sprouting which can carry different 

types of organisms, different selective media used to cultivate a specific group 

of microorganisms, and different primer set used in each study. 

The application of a culture-independent technique to study the microbial 

community in a highly diverse habitat seemed to be appropriate in exploring 

and in revealing the constitution of bacterial communities in the sample. 

Moreover, the cluster analysis of the DGGE patterns revealed highly diverse 

microbial communities with low similarity between sampling locations and 

sample batches. According to Andreote et al. (2009) a wide diversity of 

bacteria that can interact with plants and bacterial populations are distributed in 

the rhizosphere (soil portion), epiphytic (colonizes the surface of plants). and 

endophytic (colonizes the inner tissues of plants) communities. The sprout 

production process is quite simple as it requires neither sunlight nor soil, only 

mung bean seeds, sprouting containers and water as inputs (Anonymous, 

2010c). However, growing, harvesting, processing, mixing, and shipping of 

seeds, followed by sprouting, harvesting, packing, and distribution of the 

finished product, provide multiple points for different types of microorganism 

to be introduced or amplified in the products (Taormina et al., 1999; Procter et 

al., 2001). Therefore, a large diversity of microorganisms may be present in the 

final product which may explain the low similarity of the DGGE profiles 

obtained from different sources and batches in this study. 

191 



It has been shown here and in other studies that contaminated seed produces 

contaminated sprouts. Seed contamination poses a health risk and a 

decontamination process is necessary to apply on seeds before sprouting in 

order to prevent the risk from food borne pathogens. In this study, comparative 

assessment between the use of chemical disinfectants, natural antimicrobial 

substances and thermal treatment as seed decontamination process was carried 

out to find a suitable method to use for decontaminate mung bean seeds. The 

study started with the examination of natural antimicrobial products from 

bacteriocin-like substances (cell-free supernatant, cell-suspension, and broth 

culture produced by P. acidilacticl) compared to a mixture of lime juice and 

vinegar (I: I) to inactivate the growth of L. monocytogenes on mung bean 

seeds. The use of natural antimicrobial products can satisfy the consumer 

demands for less use of chemical preservatives on food products especially on 

minimally processed fruits and vegetables as these are normally consumed 

fresh or slightly cooked. Unfortunately, none of the natural antimicrobial 

substances used in this study successfully reduced or inhibited the growth of 

the pathogen on seeds and sprouts. No pathogen reduction on inoculated seeds 

was noted after 30 min of contact with neutralised CFS or with the cell­

suspension of P. acidilactici. Although, a mixture of lime juice and vinegar had 

a higher efficiency in reducing L. monocytogenes populations on seeds (1.93 

10glO CFU/g) compared to the Pediococcus broth culture (1.22 10glO CFU/g), 

the former solution still failed to eliminate the pathogen from seeds, could not 

prevent its growth during the sprouting process and also reduced seed 

germination ratio by 11-18% which would not be acceptable from sprout 

growers. 
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Bennik et al. (1999) observed that pure bacteriocin (mundticin 200 AU/ml) 

had a higher potential as a strategy for inhibiting L. monocytogenes on mung 

bean sprouts than using a cell suspension of the bacteriocin-producing strain 

(Entero. mundtii A T06). However, there is substantial reluctance from the 

industry to invest on the development of commercial bacteriocin preparations 

because of the cost of production (low production rates, unstable products and 

expensive downstream processing) and of the difficulties that can arise from 

legislation which can be different in each country (Papagianni and 

Anastasiadou, 2009). Cleveland et al. (200 I) stated that a bacteriocin should 

not be used alone as a food preservative in foods but rather as a part of a 

system with multiple hurdle methods. During the use of a bacteriocin in a 

washing treatment, its concentration in samples decreased after treatment, 

limiting the protection of samples during storage (Cobo Molinos el al., 2008). 

The combination of a bacteriocin with other antimicrobial substances has 

shown better antibacterial activity. Washing treatments containing enterocin 

AS-48, which is produced by Enterococcus jaeca/is, to decontaminate Bacillus 

spp. inoculated on alfalfa, soybean sprouts, and green asparagus in 

combination with several other antimicrobials and sanitizers (cinnamic and 

hydrocinnamic acids, carvacrol, polyphosphoric acid, peracetic acid, 

hexadecylpyridinium chloride and sodium hypochlorite) greatly enhanced the 

bactericidal effects (Cobo Molinos et al., 2008). Therefore, the use of pure 

bacteriocin in presoaking or washing solutions together with other biocontrol 

agents such as bacteriophage, applying a sequential washing with organic acid 

and bacteriocins, or a combination between high hydrostatic pressures with 

presoaking seeds in bacteriocin solution, may offer more promising 
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antimicrobial activity than using bacteriocin individually. The combination of 

other biocontrol products such as antagonistic bacteria isolated from mung 

bean sprouts (Enterobacter asburiae JX 1) and lytic bacteriophage against 

Salmonella isolated from pig or cattle manure represents a promising, 

chemical-free approach for controlling the growth of Salmonella on sprouting 

mung bean and alfalfa seeds as the pathogen was only detected by enrichment 

(Ye et al., 20 I 0). 

Several chemical disinfectants such as calcium hypochlorite, sodium 

hypochlorite, hydrogen peroxide, ethanol, organic acids, trisodium phosphate, 

calcium hydroxide, ozone and a commercial formulation containing an 

antimicrobial agent at different concentrations, exposure times, and 

temperatures have exhibited a range of efficacies in killing pathogenic bacteria 

on seeds intended for sprout production (Thompson and Powell, 2000; Scouten 

and Beuchat, 2002). Most of the studies have reported substantial reductions in 

specific pathogens but were not able to completely eliminate such organisms 

(Thompson and Powell, 2000). In this study, the application of chemical 

disinfectants to decontaminate the pathogens on mung bean seeds mainly relied 

on two-step dipping treatments which may have enhanced the antimicrobial 

activity as compared to just using each disinfectant separately. The results 

showed that chemical disinfectants significantly reduced (p < 0.05) the 

pathogens on seeds compared to the control treatment. The use of a two-step 

dipping treatment with 2% sodium hypochlorite for 10 min followed by 5% 

lactic acid for 5 min was the most effective in reducing L. monocytogenes (2.91 

logto CFU/g), and Sal. Typhimurium (to below the detection limit), and 
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preventing the recovery of the pathogens during the sprouting process. This 

could be due to the synergistic effect of hypochlorite and lactic acid solutions 

and also chemical residues on treated seeds which enhance the antimicrobial 

efficiency on both treated and sprouted seeds. Lang el al. (2000) found that the 

combined lactic acid! hypochlorite treatment increased the lethality to 

Salmonella populations inoculated on mung bean seeds compared with lactic 

acid alone. This combination also reduced the numbers of E. coli 0157:H7 

inoculum by about 6.0 10glO CFU/g, although it did not prevent re-growth of 

surviving organisms during sprouting (Lang et al., 2000). According to Parish 

et al. (2003), the combination between organic acid and chlorine compounds 

tends to have stronger antagonistic activity against the pathogens than using 

either organic acid or chlorine compound alone. This might be due to an 

additive effect of the combined compounds or due to an increase in 

hypochlorous acid at the reduced pH levels of the acid combinations (Parish el 

aI., 2003). However, in a sequential washing treatment, the application of acid 

wash solution to seeds followed by hypochlorite solution may reduce the 

effectiveness of chlorine compounds. Pandrangi el al. (2003) stated that small 

amounts of residual acid from a chemical scarification process (0.5 N H2S04, 

10 min) may still be present within the seed tissue and that it may decrease 

chlorine activity and partially neutralize the alkaline sanitizers, thus decreasing 

their effectiveness. Therefore, the use of hypochlorite solution in the first wash 

followed by organic acid solution in the second wash may prevent the loss of 

antimicrobial efficacy of chlorine solutions as shown by a very effective seed 

decontamination treatment after using a hypochlorite treatment followed by a 

treatment with lactic acid solution in this study. 
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In general, dipping contaminated mung bean seeds in chemical disinfectants 

solutions reduced the pathogen by 0.56 - 3.30 10glO CFU/g and the recovery 

of the injured pathogen cells during the sprouting process was found on most 

of the treated seeds in this study. A 1-2 10gIO CFU/g reduction in pathogens 

after seed disinfection treatments has little practical significance since 

uninjured and injured cells of pathogens surviving on seeds pose as much 

danger as fully viable ones do as they can recover under suitable conditions 

and can grow exponentially during the sprouting process (Singh et al., 2003; 

Ariefdjohan el al., 2004; Waje el al., 2009). According to Cobo Molinos et al. 

(2008), the recovery of injured pathogen cells is one of the main problems of 

seed decontamination treatments because the reductions of viable cell counts 

obtained may not be sufficient to avoid the growth of injured pathogen cells 

during storage. In this study, seeds were inoculated by soaking in the pathogen 

inocula, which possibly enabled the pathogen to be imbibed in the seeds, 

subsequently making some of them inaccessible to chemical bactericidal 

actions (Ariefdjohan et al., 2004). Interestingly, successful mung bean seed 

decontamination was reported by Oelaquis et al. (1999) after Sal. 

Typhimurium and E. coli 0157:H7 were not detected by enrichment of mung 

bean seeds treated with 242 ,.d of acetic per liter of air in an aluminum 

fumigation chamber for 12 h at 45°C. Although there was the recovery of 

viable L. monocylogenes in some trials, which suggests that susceptibility to 

gaseous acetic acid, varies between species. A completed eradication of 

Salmonella and E. coli 0157:H7 in this study is thought to be due to a better 

contact between gaseous with microorganisms on seed surface compared to 

chemical disinfectants due to the complexity of mung bean seed surface (a 
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deep cleft associated with the stem scar, the stem remnant comprise of thick, 

highly porous matrix), and the hydrophobic nature of the seed coat which was 

unlikely wet effectively with the aqueous solution (Delaquis et al., 1999). It 

has also been suggested that the barrier to disinfecting seeds is not in the 

lethality of the treatment but is due to the inability of disinfectants to access 

the locations within structures and tissues in the seeds that harbor pathogens, 

creating their particular resistance to chemical rinse treatments, and thus 

allowing these entrapped cells to be able to multiply during seed germination 

(Thompson and Powell, 2000; Lang et al., 2000; Buck and Walcott, 2003; Bari 

et al., 2009; Rajkowski, 2009). Sharma and Demirci (2003) have also 

suggested that the complete elimination of E. coli 0157:H7 on alfalfa seeds 

and sprouts treated with electrolyzed oxidizing water could not be achieved as 

cracks and crevices in seeds or sprouts protect the pathogen cells by not 

allowing the sanitizer into them. 

Gomez-Lopez et al. (2008) suggested that the contact between the 

microorganisms and the sanitizer is necessary in order to obtain an effective 

sanitizing protocol. This is because seeds imbibe more water as they are soaked 

longer, which helps the seed coat releases bacteria that may have been more 

strongly attached to the seed surface and not removed during shorter treatments 

(Weissinger and Beuchat, 2000; Montville and Schaffner, 2004). Kumar et al. 

(2006) found that the decontamination efficacy of a stabilized oxychloro-based 

food grade which is composed of a stabilizing agent and traces of chlorate, 

with chlorite constituting the primary antimicrobial agents to decontaminate E. 

coli 0157:H7 and Salmonella on mung bean seeds was dependent on 
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treatment time (> 8 h) and the seed-to-sanitizer ratio (> 1:4 optimal). This is 

because the sanitizer absorption rates may vary among seeds within the same 

batch, thus a long contact time can ensure that all pathogens are released from 

the protective sites on the seed coat and subsequently inactivated. On the other 

hand, enhancing the efficiency of disinfectants by extending the contact times 

tends to depend on the type of disinfectants used and did not appear to have a 

clear advantage over non-extended contact time treatment in some studies. For 

example, presoaking alfalfa seeds for 30 min in water or chemical solutions (1 

or 2% lactic acid) did not substantially influence the efficacy of subsequent 

chemical treatment (2,000 ppm chlorine) to eliminate Salmonella on alfalfa 

seeds (Weissinger and Beuchat, 2000). In this study, immersing L. 

monocytogenes inoculated mung bean seeds in unaltered broth culture of P. 

acidilactici for 30 min reduced the pathogen on seeds by 1.22 10glO CFU/g 

compared to the control that used sterile RO water for 10 min which increased 

the pathogen on treated seeds by 0.98 10glO CFU/g. However, when cell-free 

supernatant and cell-suspension were applied on contaminated seeds for 30 

min, the increase of the pathogen on treated seeds by 0.43 and 1.29 10glO 

CFU/g has occurred instead. This suggests that the efficiency of bacteriocin-

like substances solutions depends on the antimicrobial agent in each solution, 

rather than the contact time between seeds and antimicrobial solutions. 

Moreover, some of antimicrobial agents used in this study such as acetic acid 

and vinegar had shown adverse effect on seed viability. Black et al. (2006) 

stated that gases (H2S, NH3, Cb, S02), heterosides (allyl-isothiocyanate), 

aldehydes (acetaldehyde, benzaldehyde), organic acids, aromatic acids 

(cinnamic acid, phenolic acids), essential oils, tannin, and fatty acids (short-
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chain) inhibit seed germination (Black et al., 2006). Therefore, extending the 

contact time between seeds and antimicrobial solutions is not suitable to apply 

with those solutions that affecting seed viability and may vary for each type of 

seeds. 

The ability of bacteria to form biofilms on sprout surface or becoming 

internalized in sprout structures can protect the pathogens from being killed or 

injured by the antimicrobial agents, and thus reducing the efficiency of 

disinfectants. Warriner et al. (2003) observed numerous biofilms between the 

grooves of epidermal cells and across the waxy cuticle layers after a 4 day 

sprouting period of bean sprouts inoculated with E. coli P36 and Salmonella 

P2. It is possible that these two bacteria became established both externally and 

internally within mung bean sprouts during the early stages of sprouting and 

subsequently became distributed throughout the plant. It was confirmed for E. 

coli where the GUS strain (based on the cleavage of a chromogenic substrate 

e.g. 5-bromo-4chloro-3indoyl-~-D-glucoronide, X-GLUe that can be directly 

visualized as a dark blue precipitate within the plant tissue) was visualized 

within the hypocotyls of sprouts. Thus, the difficulty of the antimicrobial 

agents to reach the pathogen cells, the ability of biofilms formation and to 

become internalized within the sprout structure of the pathogens seems to be 

the major problems to finding the effective antimicrobial agents to use for seed 

decontamination process. 

Nevertheless, pre-soaking prior to hot-water treatments was found to be very 

effective in disinfecting seeds. Enomoto et al. (2002a) reported that soaking E. 
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coli ATCC 25922 inoculated alfalfa seeds (5 g) in 3 liters of water at 15°C for 

30 or 60 min prior to heat treatment (3 liters of hot water at 85°C for 9 sec) 

achieved greater microbial reduction (4 10glO CFU/g) than without presoaking 

(2 10glO CFU/g). When presoaked, the plate counts was also concluded to be 

negative when presoaking was longer (lSoC for 60 min) and the pre-soaking 

temperature was higher (25°C) (Enomoto et al., 2002a). This is because pre-

soaking seeds makes the shells swollen which improved the heat transfer to the 

shell interiors and also removed bubbles existing between the shells and the 

embryos, thereby the heat of the subsequent high temperature treatment 

encroaches from damaged portions of the shells and the pathogens existing 

inside of the shells can be efficiently destroyed by the heat (Enomoto el al., 

2002b). On the other hand, it has been shown that presoaking alfalfa seeds for 

30 min at lSoC and 25°C before heat treatments lowered the seed germination 

and longer presoaking for 60 min at 15°C significantly reduced the germination 

percentage to 73%. In addition, the water absorption rate was found to be a 

major reason for this evident rather than the temperature of hot water (Enomoto 

el al., 2002a). It is possible that high water absorption in seeds can improve the 

heat transfer to the seed interiors, damaged the life functions of seeds' embryos 

and subsequently destroys seed viability. 

The application of hot and cold water dipping on contaminated mung bean 

seeds without pre-soaking step was also found to be effective in eliminating 

Salmonella from mung bean seeds without significantly affecting seed 

viability. This complete elimination was reported by Sari et al. (2008) by 

dipping 5g of E. coli 0157:H7 and Salmonella contaminated seeds in 300 ml of 
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hot water at 90°C for 90 sec with shaking and then immediately into 300 ml of 

chilled water (O°C) for 30 sec. The other studies treated 300g of E. coli 

0157:H7 and Salmonella contaminated seeds with the combination methods of 

hot (85°C for 40 sec) and cold water (30 sec) with soaking in hypochlorite 

solution (2,000 ppm) for 2 h and found that this method reduced the pathogens 

to undetectable levels and no viable bacteria were found in the enrichment and 

during the sprouting process (Bari et al., 20 I 0). 

The application of thermal treatment using a hot and cold water dipping 

compared to microwave heating was investigated in this study. The greatest 

pathogen reduction (> 5 log\O CFU/g) was seen when L. monocytogenes 

inoculated seeds were immersed in hot water at 92°C for 1 min followed by 

ice-cold water for 30 sec. However, there was a recovery of the pathogen 

during sprouting process. Similarly, Salmonella populations were reduced to 

below the detection limit «50 CFU/g) after treatment with hot and cold water 

at 80°C 30 sec/5°C 30 sec; 85°C 30 sec/5°C 30 sec but were detected in 24 h 

enrichment cultures and the reduction of seed germination percentage occurred 

in sprouted seeds. The lower efficiency of hot and cold water treatment 

observed in this study compared to the other studies may be due to a few 

reasons. The lack of pre-soaking stage, lower ratio between seed to water (25 

g: 200 ml water), and absence of shaking during the heating process may have 

minimized the heat uniformity among seeds and reduced the chance for a 

proper exposure of seeds to hot water. 
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The application of dry heat such as hot air as seeds sterilization process has a 

benefit in seed preservation over using wet heat such as hot water since there is 

no increase in seed humidity, and this prevents seeds from deterioration and 

putrefaction (Suzuki et al., 1997). However, the application of dry heat from 

microwaves as a sterilizing seed treatment had low antimicrobial efficiency and 

adversely affected seed viability more than using hot water does. This may be 

explained by the non-uniformity within the electromagnetic field that caused 

non-uniform heating as the heated material often undergoes physical and 

structural transformations, affecting its dielectric properties (Thostenson and 

Chou, 1999). In this study, difficulties in tuning the microwave power level 

within a very short exposure time (I sec) caused wide variation in 

antimicrobial efficacy to reduce the natural microflora on seeds. Moreover, the 

higher the microwave power levels and exposure times, the lower was the seed 

viability, which may be due to the excessive heat generated inside the seed, 

leading to the damage of seed embryos and resulting in the destruction of seed 

germination ability. The exposure of microwave heated seeds to cold water or 

cold air after treatment may have minimized the damage caused by the heat 

and may have enhanced the efficiency in reducing the microorganism on seed 

due to cold shock activity. 

Promising result in reducing the pathogens on seeds has been reported by using 

the combination treatments. The combination factors/sequential washing are 

becoming popular as food preservation techniques providing sufficient 

cumulative reduction to meet safety goals and achieve a complete elimination 

of pathogens (Singh et al., 2003; Waje et aI., 2009). It is believed that different 
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hurdle methods such as pH, antimicrobials, water activity (aw), and modified 

atmosphere in foods might act synergistically, i.e. if two hurdles are applied to 

one food (A and B), the antimicrobial effect is not simply A+B, but each 

element could be powered by the other (Corbo et al., 2009). The multi-target 

preservation approach is based on the idea that many elements or hurdles could 

result in multi-target disturbance of homeostasis (e.g. cell membrane, enzyme 

systems, DNA, inner pH, redox potential), thus rendering more difficulty for 

the microorganisms to repair damage and the inactivation of shock proteins 

(Corbo el al., 2009). Several researchers applied the combined methods to 

inhibit the growth of pathogen on seeds as summarized in Table 7.1. Thus, 

further study about seed decontamination method should be focused on the 

combination methods which seem to be more preferable than single method as 

they provide greater antimicrobial activity. Moreover, the increase in interest 

on the use of natural antimicrobial products in food preservation to meet 

consumers demand for natural, high quality and fresh products with low levels 

or no chemical preservatives at all. Thus, the combination between physical 

decontamination methods with the use of natural antimicrobial substances is 

likely to provide an option that suit the consumer needs for chemical-free of 

minimally processed vegetables and fruits. The application of physical methods 

based on thermal treatment needs to be accurately and precisely performed to 

prevent the negative effect of heat on seed viability. Moreover, new methods 

which can enhance the ability of antimicrobial solutions to reach the pathogen 

cells and to prevent bioftlms formation would be ideal method to use for seed 

decontamination process. 
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Table 7.1 Combined methods used for seed decontamination process. 

N 
o 
~ 

Methods 

Organic acid! 
hypochlorite 

High hydrostatic 
pressure (HHP) + 
pre-soaking seeds 

High pressure + 
hypochlorite 

Dry heat (SO°C for 
17 h) + Irradiation 
(21.6°C ± 2.8°C, 1.0 
kGy at 1.4 kGylh, 
with a 14,841 Ci 
cobalt-60 gamma 
S<>llI"ce) 

~- -

Seed types/Initial inocula Efficiency 

Alfalfa (5%lactic or acetic Reduced E. coli 0157:H7 by 
acid followed by calcium 3.4-6.9 10glO CFUlg 
hypochlorite at 200, 2000 and 
20,000 ppm, respectively 

Crimson clover, red clover, Reduced Salmonella by 1.9-
radish, broccoli/ Salmonella 3.610g 1O CFU/g 
and E. coli 0157:H7 5 10glO 
CFUlg Reduced E. coli 0157:H7 by 

2.S- 3.0 10glOCFU/g 

Alfalfa Reduced the populations of 
aerobic mesophilic bacteria, 
faecal coliforms, moulds and 
yeasts by 4.5-S log 10 CFUlg. 

Mung bean, radish, broccoli, Eliminate the pathogen in 
and alfalfa seeds! E. coli mung bean seeds and the 
0157:H75 10glO CFU/g. sprouted seeds. 

------

Negative effects References 

Recovery of the pathogen during Lang el al., 2000. 
sprouting process 

Differs in pressure tolerance for Neetoo and Chen, 2010. 
seed viability 

Pressure ~ 250 MPa, reduced the Peiias el al., 2009. 
germination rate. 

Radish, broccoli, andalfalfa Bari el al., 2009. 
sprout length remained 
acceptable after a dose of 1.0 
kGy, but mung beansprouts were 
sensitive to irradiation, and their 
length decreased by SO%. 

-



Table 7.1 Combined methods used for seed decontamination process (Cont'd) 

N 
o 
VI 

Methods 

Hot water (85°C; 40 

sec)! cold water 30 
sec/ chlorine water 
(2,000 ppm; 2 h) 

Antagonistic 
bacteria 

( Enlerobacler 
asburiae strain JXI) 

+ Lytic 

bacteriophages 

Seed typesl Initial inocula 

Mung bean 

Mung bean, alfalfa! 
Salmonella cocktail 6 loglO 
CFUlg CFU/ml 

Efficiency Negative effects 

Reduced E. coli 0 157:H7 and Recovery of the pathogen in enrichment 

Salmonella Enteritidis to and during sprouting in pilot-scale study 

undetectable level 

No recovery of the pathogens 5% decrease of harvest yield 

in enrichment and sprouting 
process in scale-up experiment 

Reduce Salmonella to Recovery of the pathogen was detected 

undetectable by enrichment of mung bean seed 

No recovery of the pathogen sample 
in enrichment for alfalfa seeds 

--- - ---

References 

Bari et al .. 2010. 

Ye et 01.,2010. 

--- -



Overall, the findings in this study were similar with other studies where most 

of the sprout seed decontamination approaches reduced, but failed to 

completely eliminate the pathogens in seeds. However, these decontamination 

methods could provide more promising results when applied on naturally 

contaminated seeds as it usually contain lower number of pathogen as shown 

by the difficulties in detecting the pathogens from seeds involved in most of 

sprout-related outbreaks. According to Fett (2002a), elimination of bacterial 

human pathogens from laboratory-inoculated alfalfa seed appears to be more 

problematic than elimination of pathogens from naturally contaminated seed in 

the laboratory which may be due to differing populations and/or location of the 

contaminants. The typical inoculation method used (submerging seed in an 

aqueous bacterial suspension) might result in the deposition of bacterial cells 

deep into natural openings such as the hilum or micropyle or cracks in the seed 

coat where they are protected from aqueous sanitizers (Fett, 2002a). 

Although two-step washing with 2% sodium hypochlorite followed by 5% 

lactic acid seemed to be effective in reducing and inhibiting the recovery 

during sprouting process in this study, there was still a problem of chemical 

residues effects which may not be preferred by the health-conscious 

consumers, and the negative observation of slightly lower germination rate 

compared to control. The best method to eliminate pathogens from produce is 

to prevent contamination in the first place, but this does not seem to be possible 

and, thus, washing and sanitizing produce remain an important concern 

consideration in preventing disease outbreaks (Parish et al., 2003). Therefore, 
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combining different seed decontamination methods to enhance higher 

antimicrobial activity without affecting seed viability or physiology and 

following the recommended guidelines for sprout production are the most 

promising means to provide safer sprouts. 
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FUTURE STUDIES 

Several areas of research carried out within this thesis would warrant future 

study: 

1. In chapter 3 the study on retail sprouts showed the lowest quality of raw 

bean sprouts was found in Shop D and it was suggested that this was 

due to 'abuse storage temperature'. To clarify this hypothesis, samples 

of the commercial ready-stir-fry bean sprouts from the other two 

sources, where the samples are usually stored under appropriate 

refrigerated condition, could be kept at room temperature for 24-48 h 

and carry out their microbial analysis compared with equivalent 

samples from the same sources which had been stored under proper 

refrigeration conditions. This would establish whether the levels and 

type of flora associated with shop D arose from solely temperature 

abuse. However, as the nature of the flora would be dictated by the 

individual growing conditions of the sprouts, the nature of the flora that 

develops under temperature abuse may reflect more the sprout source, 

although increased levels would demonstrate the potential for this flora 

to increase under temperature abuse and would thus explain the higher 

levels seen in shop D samples. 

2. In Chapter 4, comparison assessment between bacteriocin-like 

substances consisted of cell-free supernatant (CFS), unneutralised BHI 

broth culture, and cell-suspension of P. acidi/actici showed no effect in 
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reducing L. monocytogenes on mung bean seeds. This was suggested to 

be due to an insufficient concentration of crude bacteriocin-like 

substances in the neutralized CFS and cells suspension of P. acidilactici 

used in the treatment. It would be interesting to apply a commercial 

bacteriocin product in order to clarify this hypothesis. In addition, the 

use of mutant strain which lacking of bacteriocin producing gene as a 

negative control in parallel with bacteriocin-producing strain may be 

useful to address the efficiency of treatment was due to bacteriocin 

production 

3. Mode of action of natural antimicrobial substances, chemical 

disinfectants, heat treatment on microbial cell membranes and cell 

functions should also be investigated in order to fully understand the 

mechanisms of inhibiting and killing the microorganism in seeds. This 

could be tested by the study of membrane fluidity, ATPase activity, and 

internal pH changes upon acid exposure. 

4. The efficacy of the disinfectants used in the two-step dipping treatment 

should be evaluated in order to clarify whether the antimicrobial 

activity efficiency is caused by the synergistic effects of both 

disinfectants or is from the individual disinfectants used in the 

treatment. This could be tested by repeating the two-step dipping 

treatment using the same disinfectants twice compared to a two-step 

treatment with the two different disinfectants. If there are no statistical 

significant differences in term of the pathogen reductions between 
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treatments, it means that there is no the synergistic effect which caused 

the pathogen reductions on seed, but it is because an individual 

disinfectant used in the treatment. 
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APPENDICES 

Appendix A: Statistical analysis of pathogen population's data 

on mung bean sprouts from different retail shops and DGGE 

images 

Table A 1. Total aerobic counts on peA of mung bean sprouts from three retail 
shops. 

Shops Rep TAC 
(\oglo CFU~ 

Shop A I 6.38 
Shop A 2 4.70 
Shop A 3 7.50 
Sh~A 4 6.82 
Sh~C I 7.10 
Sh~C 2 6.90 
Sho2..C 3 7.80 
ShopC 4 7.51 
Shop 0 I 7.00 
Shop 0 2 8.10 
Shop 0 3 7.89 
Sh~O 4 8.45 
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Table A2: ANOV A of total aerobic counts of mung bean sprouts from three 
retail shops 

Sum of Squares df Mean Square F Sig. 

Between Groups 4.688 2 2.344 3.576 .072 

Within Groups 5.899 9 .655 

Total 10.586 II 

Table A3: Homogeneous subsets of total aerobic counts of mung bean sprouts 
from three retail shops. 

Shop N Subset for alpha 
1 

A 4 6.3499 

C 4 7.3263 
D 4 7.8593 

Sig. .064 

Means for groups in homogeneous subsets are displayed. 
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Table A4. Yeast and mould counts on DRBC agar of mung bean sprouts from 
three retail shops; 

Shops Rep Yeast and mould counts 
(Ioglo CFU/g) 

Shop A I 4.54 
Shop A 2 4.07 
Shop A 3 4.40 
Shop A 4 5.80 
Shope I 5.50 
Shope 2 5.80 
Shope 3 6.08 
Shope 4 6.04 
Shop 0 I 6.90 
Shop 0 2 7.00 
Shop 0 3 6.70 
ShopD 4 7.38 

Table A5: ANOVA of yeast and mould counts of mung bean sprouts from three retail shops 

ANOVA 

counts 

Sum of Squares df Mean Square F Sig. 

Between Groups 10.511 2 5.256 21.686 .000 

Within Groups 2.181 9 .242 

Total 12.692 II 

Table A6: Homogeneous subsets of yeast and mould counts of mung bean 
sprouts from three retail shops 
Tukey HSD 

Subset for alpha = 0.05 

shop N I 2 3 

A 4 4.7025 

C 4 5.8553 

D 4 6.9950 

Sig. 1.000 1.000 1.000 

Means for groups In homogeneous subsets are dIsplayed. 
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Table A7: Total Listeria sp. counts on Oxford agar of mung bean sprouts from 
three retail shops. 

Shops Rep Total Listeria counts 
(loglO CFU/g) 

Shop A I 4.20 
Shop A 2 2.76 
Shop A 3 3.29 
Shop A 4 3.70 
ShopC I 4.80 
ShopC 2 4.40 
ShopC 3 4.20 
ShopC 4 3.51 
Shop 0 I 5.50 
Shop 0 2 5.10 
Shop 0 3 4.60 
Shop 0 4 5.82 

Table A8: ANOV A of total Listeria sp. counts on Oxford agar of mung bean 
sprouts from three retail shops 
ANOVA 

counts 

Sum of Squares df Mean Square F Sig. 

Between Groups 6.304 2 3.152 10.012 .005 
Within Groups 2.833 9 .315 

Total 9.138 II 

Table A9: Homogeneous subset of total Listeria sp. counts on Oxford agar of 
mung bean sprouts from three retail shops 

Tukey HSD 

Subset for alpha = 0.05 

shop N 1 2 

A 4 3.4875 

C 4 4.2263 4.2263 

0 4 5.2550 

Sig. .205 .068 

Means for groups In homogeneous subsets are 
displayed. 
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Table Al 0: Total counts of Bacillus cereus of mung bean sprouts from three 
retail shops. 

Shops Rep Total counts of B. cereus 
(lOglO CFU/g) 

Shop A 1 3.00 
Shop A 2 3.50 
Shop A 3 4.60 
Shop A 4 missing data 
ShopC 1 4.90 
ShopC 2 3.90 
ShopC 3 4.00 
ShopC 4 4.00 
Shop 0 1 5.50 
Shop 0 2 4.00 
Shop 0 3 4.70 
Shop 0 4 4.00 

Table All: ANOV A of total counts of B. cereus of mung bean sprouts from 
three retail shops 
ANOVA 

counts 

Sum of Squares df Mean Square F Sig. 

Between Groups 1.238 2 .619 1.403 .300 

Within Groups 3.530 8 .441 

Total 4.768 10 

Table A 12: Homogeneous subset of total counts of B. cereus of mung bean 
sprouts from three retail shops 
Tukey HSD 

Subset for alpha = 
0.05 

shop N 1 

A 3 3.7000 

C 4 4.2000 

D 4 4.5497 

Sig. .257 

Means for groups m homogeneous subsets are 
displayed. 
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Table Al3: Total coliforms counts on MacConkey No.3 agar of mung bean 
sprouts from three retail shops. 

Shops Rep Total coliforms counts 
(Joglo CFUlg) 

Shop A 1 5.28 
Shop A 2 6.00 
Shop A 3 4.00 
Shop A 4 6.00 
ShopC 1 5.80 
ShopC 2 4.10 
ShopC 3 5.50 
ShopC 4 5.18 
ShopD 1 7.50 
ShopD 2 4.60 
ShopD 3 6.80 
ShopD 4 7.60 

Table A14: ANOVA of total coliforms counts on MacConkey No.3 agar of 
mung bean sprouts from three retail shops. 

ANOVA 

counts 

Sum of Squares df Mean Square F Sig. 

Between Groups 5.236 2 2.618 2.318 .154 
Within Groups 10.164 9 1.129 

Total 15.401 II 

Table A 15: Homogeneous subset of total coliforms counts on MacConkey No. 
3 agar of mung bean sprouts from three retail shops. 

Tukey HSD 

Subset for alpha = 0.05 

shop N 1 

C 4 5.1440 

A 4 5.3200 

D 4 6.6250 

Sig. .175 

Means for groups In homogeneous subsets are displayed. 
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Table A 16: Total counts on M 17 agar (incubating at 30°C under aerobic 
condition) of mung bean sprouts from three retail shops. 

Shops R~ Total counts (10...&10 CFU/g) 
ShogA 1 6.30 
Shop A 2 5.90 
Shop A 3 7.20 
Shop A 4 6.85 
ShopC 1 7.10 
ShoQC 2 6.60 
Sho~C 3 7.80 
Sh~C 4 7.56 
ShopD 1 8.30 
ShopD 2 7.10 
ShopD 3 7.90 
Shop_D 4 7.70 

Table A 17: ANOV A of total counts on M 17 agar (incubating at 30°C under 
aerobic condition) of mung bean sprouts from three retail shops. 

ANOVA 

COUNTS 

Sum of Squares df Mean Square F Sig. 

Between 
2.850 2 1.425 4.955 .035 Groups 

Within 
2.588 9 .288 

Groups 

Total 5.438 II 

Table A 18: Homogeneous subset of total counts on M 17 agar (incubating at 
30°C under aerobic condition) of mung bean sprouts from three retail shops. 

Tukey HSD 

Subset for alpha = 0.05 

shop N I 2 

A 4 6.5628 

C 4 7.2641 7.2641 

D 4 7.7500 

Sig. .209 .439 

Means for groups In homogeneous subsets are 
displayed. 

246 



Table A19: Total counts on M17 agar (incubating at 30°C under 5% CO2 

condition) of mung bean sprouts from three retail shops. 

Shops Rep Total counts 
(ioglo CFU/g) 

Shop A I 5048 
Shop A 2 7040 
Shop A 3 6.93 
Shop A 4 6.15 
ShopC I 6.60 
ShopC 2 6.30 
ShopC 3 7.90 
ShopC 4 7.75 
Shop 0 I 8.00 
Shop 0 2 7.00 
Shop 0 3 8.00 
Shop 0 4 7.70 

Table A20: ANOV A of total counts on M 17 agar (incubating at 30°C under 
5% C02 condition) of mung bean sprouts from three retail shops. 

ANOVA 

COUNTS 

Sum of Squares df Mean Square F Sig. 

Between Groups 2.811 2 lAOS 2.650 .124 

Within Groups 4.774 9 .530 

Total 7.584 II 

Table A21: Homogeneous subset of total counts on M 17 agar (incubating at 
30°C under 5% C02 condition) of mung bean sprouts from three retail shops. 

Tukey HSD 

Subset for alpha = 

0.05 

shop N I 

A 4 6.4911 

C 4 7.1370 

0 4 7.6750 

Sig. .107 

Means for groups In homogeneous subsets are displayed. 
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Table A22: Total counts on M 17 agar (incubating at 42°C under aerobic 
condition) of mung bean sprouts from three retail shops. 

Shops Rep Total counts 
(10"'10 CFUI",) 

Shop A 1 6.08 
Shop A 2 4.00 
Shop A 3 7.40 
Shop A 4 6.72 
ShopC 1 6.50 
ShopC 2 6.70 
ShopC 3 7.80 
ShopC 4 7.51 
ShopD 1 7.00 
Shop D 2 5.70 
Shop D 3 7.00 
Shop D 4 7.00 

Table A23: ANOVA of total counts on MI7 agar (incubating at 42°C under 
aerobic condition) of mung bean sprouts from three retail shops. 
ANOVA 

COUNTS 

Sum of Squares df Mean Square F Sig. 

Between Groups 2.341 2 1.171 1.183 .350 

Within Groups 8.908 9 .990 

Total 11.250 11 

Table A24: Homogeneous subset of total counts on M17 agar (incubating at 
42°C under aerobic condition) of mung bean sprouts from three retail shops. 

Tukey HSD 

Subset for alpha = 0.05 

shop N 1 

A 4 6.0490 

D 4 6.6750 

C 4 7.1263 

Sig. .322 

Means for groups In homogeneous subsets are displayed. 
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Table A25: Total counts on Ml7 agar (incubating at 42°C under 5% C02 
condition) of mung bean sprouts from three retail shops. 

Shops Rep Total counts 
(log I 0 CFU/g) 

Shop A I 6.08 
Shop A 2 7.40 
Shop A 3 6.58 
Shop A 4 -
Shope I 6.40 
Shope 2 6.60 
Shope 3 8.10 
Shope 4 7.65 
Shop D 1 6.90 
Shop D 2 5.70 
ShopD 3 6.40 
ShopD 4 6.80 

Table A26: ANOV A of total counts on M 17 agar (incubating at 42°C under 
5% C02 condition) of mung bean sprouts from three retail shops. 

ANOVA 
COUNTS 

Sum of Squares df Mean Square F Sig. 

Between Groups 1.129 2 .564 1.190 .353 

Within Groups 3.793 8 .474 

Total 4.922 10 

Table A27: Homogeneous subset of total counts on MI7 agar (incubating at 
42°C under 5% CO2 condition) of mung bean sprouts from three retail shops. 

Tukey HSD 

Subset for alpha = 0.05 

shop N I 

D 4 6.4500 

A 3 6.6866 

C 4 7.1883 

Sig. .368 

Means for groups In homogeneous subsets are dIsplayed. 
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Table A28: Total lactic acid bacteria on MRS agar (incubating at 30°C under 
aerobic condition) of mung bean sprouts from three retail shops. 

Shops Rep Total LAB counts 
(\~loCFU~ 

Shop A 1 2.65 
Shop A 2 4.40 
Shop A 3 3.70 
Shop A 4 3.60 
ShopC 1 3.60 
ShopC 2 4.90 
ShopC 3 5.50 
ShopC 4 3.11 
ShopD 1 6.00 
ShopD 2 5.70 
ShopD 3 1.70 
ShopD 4 5.94 

Table A29: ANOV A of total lactic acid bacteria on MRS agar (incubating at 
30°C under aerobic condition) of mung bean sprouts from three retail shops. 

ANOVA 

COUNTS 

Sum of Squares df Mean Square F Sig. 

Between Groups 3.126 2 1.563 .764 .494 
Within Groups 18.418 9 2.046 

Total 21.544 11 

Table A30: Homogeneous subset of total lactic acid bacteria on MRS agar 
(incubating at 30°C under aerobic condition) of mung bean sprouts from three 
retail shops. 
Tukey HSD 

Subset for alpha = 0.05 

shop N 1 

A 4 3.5880 

C 4 4.2785 

D 4 4.8359 

Sig. .464 

Means for groups In homogeneous subsets are displayed. 
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Table A31: Total lactic acid bacteria on MRS agar (incubating at 30°C under 
5% C02 condition) of mung bean sprouts from three retail shops. 

Shops Rep Total LAB counts 
(loglo CFU/g) 

Shop A 1 3.95 
Shop A 2 2.45 
Shop A 3 4.48 
Shop A 4 3.80 
ShopC I 3.60 
ShopC 2 4.90 
ShopC 3 5.40 
Sho~C 4 3.11 
ShopD I 6.60 
Shop D 2 6.80 
Shop D 3 5.30 
Shop D 4 6.26 

Table A32: ANOV A of total lactic acid bacteria on MRS agar (incubating at 
30°C under 5% CO2 condition) of mung bean sprouts from three retail shops. 
ANOVA 

COUNTS 

Sum of Squares df Mean Square F Sig. 

Between Groups 14.508 2 7.254 9.293 .006 
Within Groups 7.025 9 .781 

Total 21.533 11 

Table A33: Homogeneous subset of total lactic acid bacteria on MRS agar 
(incubating at 30°C under 5% CO2 condition) of mung bean sprouts from three 
retail shops. 

Tukey HSD 

Subset for alpha = 0.05 

shop N 1 2 

A 4 3.6700 

C 4 4.2535 

D 4 6.2388 

Sig. .634 1.000 

Means for groups In homogeneous subsets are 
displayed. 
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Table A34: Total lactic acid bacteria on MRS agar (incubating at 42°C under 
aerobic condition) of mung bean sprouts from three retail shops. 

Shops Rep Total LAB counts 
~lo...&!o CFU{g) 

Shop A 1 2.24 
Shop A 2 3.44 
Shop A 3 1.50 
Shop A 4 1.70 
ShopC 1 1.80 
ShopC 2 3.20 
ShopC 3 5.50 
ShopC 4 1.70 
ShopD 1 1.70 
ShopD 2 3.70 
Shop D 3 2.80 
ShopD 4 1.80 

Table A35: ANOV A of total lactic acid bacteria on MRS agar (incubating at 
42°C under aerobic condition) of mung bean sprouts from three retail shops. 
ANOVA 

COUNTS 

Sum of Squares df Mean Square F Sig. 

Between Groups 1.426 2 .713 .447 .653 

Within Groups 14.353 9 1.595 

Total 15.779 11 

Table A36: Homogeneous subset of total lactic acid bacteria on MRS agar 
(incubating at 42°C under aerobic condition) of mung bean sprouts from three 
retail shops. 
TukeyHSD 

Subset for alpha = 0.05 

shop N 1 

A 4 2.2197 

D 4 2.4998 

C 4 3.0497 

Sig. .636 

Means for groups In homogeneous subsets are displayed. 
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Table A37: Total lactic acid bacteria on MRS agar (incubating at 42°C under 
5% C02 condition) of mung bean sprouts from three retail shops. 

Shops Rep Total LAB counts 
(loglo CFUlg) 

Shop A 1 2.24 
Shop A 2 3.30 
Shop A 3 1.30 
Shop A 4 1.70 
ShopC 1 1.70 
ShopC 2 3.20 
ShopC 3 5.20 
ShopC 4 1.70 
Shop D 1 1.70 
ShopD 2 1.70 
ShopD 3 3.90 
ShopD 4 2.90 

Table A38: ANOV A of total lactic acid bacteria on MRS agar (incubating at 
42°C under 5% CO2 condition) of mung bean sprouts from three retail shops. 

ANOVA 
COUNTS 

Sum of Squares df Mean Square F Sig. 

Between Groups 1.328 2 .664 .430 .663 

Within Groups 13.904 9 1.545 

Total 15.232 II 

Table A39: Homogeneous subset of total lactic acid bacteria on MRS agar 
(incubating at 42°C under 5% C02 condition) of mung bean sprouts from three 
retail shops. 

Tukey HSD 

Subset for alpha = 0.05 

shop N 1 

A 4 2.1347 

D 4 2.5495 

C 4 2.9495 

Sig. .638 

Means for groups 10 homogeneous subsets are displayed. 

253 



18S 16S 
+-------~. +,----~~------~------------~----------+il 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Fig. AI: DGGE fingerprints of the 16S and 18S rDNA amplified products from 
shop C (sample C2). 

Lane I: Blank 

Lane 2: 
Lane 3: 
Lane 4: 

Lane 5: 
Lane 6: 
Lane 7: 
Lane 8: 
Lane 9: 
Lane 10: 
Lane 11 : 
Lane 12: 
Lane 13 : 
Lane 14: 
Lane 15: 
Lane 16: 
Lane 17: 
Lane 18: 
Lane 19: 
Lane 20: 

18 rD amplimers from: 
bulk cells collected from PCA plate 
bulk cells collected from DRBC plate 
bean sprout sample 
16S rD A amplimers from: 
bulk cells collected from Bacillus cereus selective agar plate 
bulk cells collected from MacConkey No.3 plate 
bulk cells collected from Pseudomonas selective agar plate 
bulk cells collected from PCA plate 
bulk cells collected from Listeria selective agar plate 
bean sprout sample 
bulk cells collected from XLD plate 
bulk cells collected from M 17 plate incubated at 30°C + 5%C02 

bulk cells collected from M 17 plate incubated at 30°C 
bulk cells collected from M 17 plate incubated at 42°C + 5% CO2 

bulk cells collected from M 17 plate incubated at 42°C 
bulk cells collected from MRS plate incubated at 30°C 
bulk cells collected from MRS plate incubated at 30°C + 5%C02 
bulk cells collected from MRS plate incubated at 42°C 
bulk cells collected from MRS plate incubated at 42°C + CO2 

Blank 
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ISS 16S 
+---~----+. +.-----------------------------------+ 

1 2 3 4 S 6 7 S 9 10 11 12 13 14 IS 16 

Fig. A2 OGGE fingerpri nts of the 16S and 18S rONA amplified products from 
shop 0 (sample Dl). 

Lane I: 

Lane 2: 
Lane 3: 
Lane 4: 

Lane 5: 
Lane 6: 
Lane 7: 
Lane 8: 
Lane 9: 
Lane 10: 
Lane II : 
Lane 12: 
Lane 13 : 
Lane 14: 
Lane 15: 
Lane 16: 

Blank 
18S rD A amplimers from: 
bulk cells collected from DRBC plate 
bulk cells collected from PCA plate 
bean sprout sample 
16S rD A amplimers from: 
bulk cells collected from M 17 plate incubated at 42°C + 5% CO2 
bulk cells collected from M 17 plate incubated at 30°C + 5% CO2 

bulk cells collected from MI7 plate incubated at 30°C 
bulk cells collected from MRS plate incubated at 30° + 5% O2 
bulk cells collected from MRS plate incubated at 30°C 
bulk cells collected from MacConkey No.3 plate 
bulk cells collected from Listeria selective agar plate 
bulk cells collected from B. cereus selective agar plate 
bulk cells collected from MacConkey No.3 (-4 di lution) plate 
bulk cells collected from MacConkey No.3 (- I d ilution) plate 
bulk cells collected from PCA plate 
bean sprout sample 
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18S 16S 
+--+ +.----------------------------------------------. -

1 2 3 4 6 7 B 10 ~1 

Fig. A3 DGGE fingerprints of the I6S and I8S rDNA amplified products from 
shop 0 (sample B I is theonly sample packed in polystyrene foam tray and 
collected from this shop while the other samples used in this study were 
bagged samples). 

Lane I: 

Lane 2: 
Lane 3: 
Lane 4: 
Lane 5: 
Lane 6: 
Lane 7: 
Lane 8: 
Lane 9: 
Lane 10: 
Lane II: 

18S rONA amplimers from bean sprout sample 
16 rONA amplimers from : 
bulk cells collected from M 17 plate incubated at 42°C 
bulk cells collected from M 17 plate incubated at 42°C + CO2 

bulk cells collected from M 17 plate incubated at 37°C 
bulk cells collected from Ml7 plate incubated at 30°C + O2 

bulk cells collected from M 17 plate incubated at 30°C 
bulk cells collected from BGA plate 
bulk cells collected from XLO plate 
bulk cells collected from MacConkey NO. 3 plate 
bulk cells collected from PCA plate 
bean sprout sample 
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Appendix B: Statistical analysis of pathogen population's data 

changes and seed germination ratio in response to natural 

antimicrobial products 

Table B 1: L. monocytogenes counts on mung bean seeds treated with the 
mixture of lime juice and vinegar compared to RO water 

L L. I. Reduction of Increasing of 
monocylogenes rnonocytogenes monocytogenes 1_ L. 
(IogJOCFU/g) (IogJOCFU/g) (log,oCFU/g) monocytogtnts monocyfogene,f 
on inoculated on treated seeds on sprouted after treatment during 

seeds seeds (loglOCFU/gl sprouting 
process 

Treatment Rep lIog lOCFU/g) 

RO 10 min 
(control) I 6.43 6.18 6.26 0.26 0.08 
RO 10 min 
(control) 2 6.57 6.46 5.40 0.11 -1.06 
RO 10 min 
(control) 3 6.96 6.26 6.48 0.71 0.22 
Lime + Vinegar 
(I: I) I 6.75 4.81 6.28 1.94 1.47 
Lime + Vinegar 
(1:1) 2 6.26 4.49 6.23 1.76 1.74 
Lime + Vinegar 
(I: I) 3 6.54 4.45 missing 2.\0 missing 

Table B2: T -test of the reduction of L. monocytogenes on mung bean seeds 
treated with the mixture of lime juice and vinegar compared to RO water 

Independent Samples Test 

Levene's 
Test for 

Equality of 
Variances t-test for Equality of Means 

95% Confidence 
Interval of the 

Sig. Mean Std. Error Difference 

F Sig. t df (2-tailed) Difference Difference Lower Upper 

Counts Equal variances 1.818 .249 -7.680 4 .002 -1.57550 .20513 -2.14503 -1.00597 
assumed 

Equal variances 
-7.680 3.043 004 -\ 57550 20513 -2.22309 -.9279\ 

not assumed 
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Table B3: T-test of the increase of L. monocytogenes on mung bean seeds 
treated with the mixture of lime juice and vinegar compared to RO water 
during the sprouting process 

Independent Samples Test 

Levene's 
Test for 

Equality of 
Variances t-test for Equality of Means 

95% Confiden~e 
Interval of the 

Sig. Mean Std. Error Difference 

F Sig. t df (2-tailed) Difference Difference Lower Upper 

Counts Equal varian~es 
.118 .748 -2.218 4 .091 -1.38672 .62521 -3.12257 .34912 assumed 

Equal variances 
-2.218 3.923 .092 -1.38672 .62521 -3.13615 .36271 not assumed 

Table B4: Germination percentages of mung bean seeds treated with the 
mixture 0 f rd' d RO water ImeJUlce an vmegar compare to 

Germination 
Treatment Rep J>..ercentages 

RO 10 minJ.control) 1 100 
RO 10 min (control) 2 100 
RO 10 min (control) 3 100 
Lime + Vinegar ( 1 : 1 ) 1 80 
Lime + Vinegar (1: I) 2 84 
Lime + Vin~ (1: 1 ) 3 missing 

Table B5: Germination percentages of L. monocytogenes inoculated seeds 
treated with the mixture of lime juice and vinegar compared to RO water. 
Independent Samples Test 

Levene's Test 
for Equality 
of Variances t-test for Equality of Means 

95% Confidence 
Interval of the 

Difference 

Sig. Mean Std. Error 
F Sig t df (2-tailed) Difference Difference Lower Upper 

Counts Equal variance 11.647 .027 4.092 4 .015 23.66667 578312 7.61016 39.72317 assumed 

Equal variancCl 4092 2.000 .055 23.66667 578312 -1.21608 4854941 not assumed 
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Appendix C: Statistical analysis of pathogen population's data 

changes and seed germination ratio in response to chemical 

disinfectants 

Table C 1. L. monocytogenes counts on mung bean seeds treated with various 
disinfectants 

L. L. L Reduction of Increasing of 
monocytogenes monocylogenes monocytogenes I. I. 
(logiOCFU/g) (logwCFU/g) (IogIUCFU/g) monocylogenr.f monoc.vllJllene,f 
on inoculated on disinfected on sprouted after treatment during 

seeds seeds seeds (loI!IDCFU/I!) sprouting 
process 

Treatment Rep (lo/t",CFU//t) 
RO 10 min (control) I 6.43 6.18 6.26 0.26 0.08 
RO 10 min (control) 2 6.57 6.46 5.40 0.11 -106 
RO 10 min (control) 3 6.96 6.26 6.49 0.71 0.24 
2% NaOCU 5% LA I 6.76 4.20 170 2.55 -2.51 
2% NaOCI/ 5% LA 2 6.58 3.76 170 2.82 -206 
2% NaOCIl 5% LA 3 6.61 3.23 170 3.38 -1.53 
2% NaOCU 5%PC I 7.04 5.30 5.84 1.74 0.54 
2% NaOCU 5%PC 2 7.28 5.30 4.43 198 -087 
2% NaOCU 5%PC 3 7.38 5.46 5.11 192 -0.35 
5 %H1Ol I 6.84 5.30 6.45 154 115 
5 % H202 2 6.30 4.93 6.62 1.37 169 
5%H102 3 6.23 4.20 5.69 2.03 149 
5 % H20,/ 5%AA I 6.48 4.56 6.67 192 2.12 
5 % H202i 5%AA 2 6.51 5.34 - 1.\6 -
5 % H10,i 5%AA 3 6.79 5.20 6.32 1.59 112 

Table C2: ANOV A of the reduction of L. monocytogenes on mung bean seeds 
treated with various disinfectants. 

Counts 

Sum of Squares df Mean Square F Sig. 

Between Groups 10.029 4 2.507 22.602 .000 

Within Groups 1.109 10 .111 

Total 1l.l38 14 
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Table C3: Homogeneous subsets of the reduction of L. monocytogenes on 
mung bean seeds treated with various disinfectants. 

Subset for alpha = 0.05 

Treatments N 1 2 3 

RO 10 min 3 .35653 

5% H20 21 5% AA 3 1.55727 

5% H20 2 3 1.64356 

2% NAOClI 5% PA 3 1.87863 

2% NaOCII 5% LA 3 2.91933 

Sig. 1.000 .761 1.000 

Means for groups In homogeneous subsets are displayed. 
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Table C4: ANOV A of the increase of L. monocytogenes total Listeria sp. 
counts on mung bean seed treated with various disinfectants during the 
sprouting process 
ANOVA 

Counts 

Sum of Squares df Mean Square F Sig. 

Between Groups 24.171 4 6.043 17.299 .000 

Within Groups 3.144 9 .349 

Total 27.315 13 

Table C5: Homogeneous subsets of the increase of L. monocytogenes on mung 
bean seed treated with various disinfectants during the sprouting process. 

Counts 

TukeyHSD 

Treatments 

2% NaOCl1 5% LA 

RO 10 min (control) 

2% NAOCII5% PA 

5% H20 2 

5% H20i5%AA 

Sig. 

Subset for alpha = 0.05 

N I 2 

3 -2.03118 

3 -.24973 

3 -.22677 

3 1.44032 

2 

1.000 .052 

Means for groups In homogeneous subsets are dIsplayed. 

3 

1.44032 

1.61695 

.996 
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Table C6: Germination percentages of L. monocytogenes inoculated mung bean 
seed treated with various disinfectants. 

Treatment Rep Germination percentages 
RO 10 min (control) 1 100 
RO 10 min (control) 2 100 
RO 10 min (control) 3 100 
2% NaOCl1 5% LA 1 99 
2% NaOCl1 5% LA 2 99 
2% NaOCll 5% LA 3 100 
2% NaOCll 5% PC 1 100 
2% NaOCll 5% PC 2 100 
2% NaOCII 5% PC 3 100 
5% H20 2 1 100 
5% H20 2 2 99 
5% H20 2 3 99 
5%H20i 5%AA 1 92 
5% H20 2/ 5% AA 2 96 
5% H20 2/ 5% AA 3 94 

Table C7: ANOY A for germination percentages of L. monocytogenes 
inoculated seeds treated with various chemical disinfectants. 

ANOYA 
Germination 

Sum of Squares df Mean Square F Sig. 

Between Groups 78.400 4 19.600 21.000 .000 

Within Groups 9.333 10 .933 

Total 87.733 14 

Table C8: Homogeneous subsets of germination percentages of L. 
monocytogenes inoculated seeds treated with various chemical disinfectants. 

Germination 

Tukey HSD 

Treatments 

5% H20 2/ 5% AA 

2% NaOCI/5% LA 

5% H20 2 

RO 10 min (control) 

2% NaOCl1 5% PA 

Sig. 

N 

3 

3 

3 

3 

3 

Subset for alpha = 0.05 

1 2 

94.00000 

99.33333 

99.33333 

1.00000E2 

1.00OOOE2 

1.000 .910 

Means for groups to homogeneous subsets are dIsplayed. 
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Table C9. Sal. Typhimurium counts on mung bean seeds treated with various 
disinfectants. 

Sol. Sol. Sol. Reduction of IncreaJlng of 
Typbinwrium Typhimurium Typhimurium Sal. Sui. 
01\ inoculated on disinfected on sprouted Typhimunum TyphlRNnUm 

seeds seeds seeds after treatment dunns 
(logIOCFU/g) (logIOCFU/g) (IOhCFU/g) (log",CFU/g) "",oulong 

procell 
Treatment Reo !Ioa,.CFU/a) 

RO 10 min (control) 1 4.70 5.53 6.S3 -0.83 100 
RO 10 min (control) 2 4.00 4.43 6.81 -0.43 2.37 
RO 10 min (control) 3 5.00 4.46 7.00 0.54 2.54 

(NO) (NO) 
2% NaOCl1 5% LA 1 5.30 +enrichment -enrichment 3.60 000 

(NO) (NO) 
2% NaOCII 5% LA 2 4.70 +enrichment -enrichment 3.00 000 

(NO) (NO) 
2% NaOCII 5% LA 3 5.00 +enrichment -enrichment 3.30 000 
2%LA + 5% vinegar 1 5.45 2.78 5.48 2.67 2.70 
2%LA + 5% vinegar 2 5.23 3.23 5.64 2.00 2.41 
2%LA + 5% vinc2ar 3 6.57 3.53 5.48 3.04 1.95 

Table CIO: ANOVA of the reduction of Sal. Typhimurium on mung bean 
seeds treated with various disinfectants. 

ANOVA 

Counts 

Sum of Squares df Mean Square F Sig. 

Between Groups 24.776 2 12.388 50.143 .000 

Within Groups 1.729 7 .247 

Total 26.506 9 

Table Cll: Homogeneous subsets for the reduction of Sal. Typhimurium on 
mung bean seeds treated with various disinfectants. 

Counts 

Tukey HSD 

Treatments 

RO 10 min (control) 

2% LA + 0.5% vinegar 

2% NaOCI/ 5% LA 

Sig. 

N 

4 

3 

3 

Subset for alpha = 0.05 

I 2 

-.22559 

2.56858 

3.30103 

1.000 .213 

Means for groups 10 homogeneous subsets are dIsplayed. 
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Table C12: ANOVA of the increase of Sal. Typhimurium on mung bean seed 
treated with various disinfectants during the sprouting process. 

ANOVA 

Counts 

Sum of 
Squares Df Mean Square F Sig. 

Between Groups 9.420 2 4.710 17.662 .002 

Within Groups 1.867 7 .267 

Total 11.286 9 

Table C13: Homogeneous subsets of the increase of Sal. Typhimurium on 
mung bean seed treated with various disinfectants during the sprouting process. 

Counts 

Tukey HSD 

Treatments 

2% NaOCII 5% LA 

RO 10 min (control) 

2% LA + 0.5% vinegar 

Sig. 

N 

3 

4 

3 

Subset for alpha = 0.05 

1 2 

.00000 

1.97801 

2.35254 

1.000 .478 

Means for groups In homogeneous subsets are displayed. 
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Table Cf4: Germination percentages of Sal. Typhimurium inoculated mung 
bean seed treated with various disinfectants 

Germination percentages 
Treatment Rep 
RO 10 min (control) 1 100 
RO 10 min (control) 2 99 
RO 10 min (control) 3 99 
2% NaOCI/ 5% LA 1 99 
2% NaOCII 5% LA 2 97 
2% NaOCI/ 5% LA 3 100 
2%LA + 5% vinegar 1 83 
2%LA + 5% vinegar 2 97 
2%LA +5 % vinegar 3 91 

Table C 15: ANOV A of germination percentages of Sal. Typhimurium 
inoculated seeds treated with various chemical disinfectants. 

ANOVA 

germination 
Sum of Squares df Mean Square F Sig. 

Between Groups 150.889 2 75.444 4.353 .068 

Within Groups 104.000 6 17.333 

Total 254.889 8 

Table Cf6: Homogeneous subsets of germination percentages of Sal. 
Typhimurium inoculated seeds treated with various chemical disinfectants. 

germination 

Tukey HSD 

treatment 

2% LA + 0.5% vinegar 

2% NaOCI/ 5% LA 

RO 10 min (control) 

Sig. 

N 

3 

3 

3 

Subset for alpha 
=0.05 

1 

90.33 

98.67 

99.33 

.085 

Means for groups In homogeneous subsets are dIsplayed. 
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Table C 17: Total aerobic counts (TAC) of mung bean seeds treated with 
various disinfectants. 

TAC TAC TAC Reduction of Increasing of 
(logIOCFU/g) (log,uCFU/gl (log,uCFU/g) TAC aft .. TAC during 
on inoculated on on sprouted treatment sprouting 

seeds disinfected seeds (log,oCFU/gl prOCell 

Treaunent Rep seeds (IoRIOCFU/a) 

RO IOmin 1 5.85 6.26 7.30 5.85 6.26 
RO IOmin 2 4.95 5.32 6.81 4.95 5.32 
RO IOmin 3 5.62 5.32 7.48 5.62 5.32 
RO IOmin 4 6.59 6.52 8.34 6.59 6.52 

1.70 
2% NaOCl1 5% LA 1 5.95 4.87 (ND) 5.95 4.87 
2% NaOCIl5% LA 1.70 

2 6.26 5.08 (ND) 6.26 5.08 
2% NaOCIl5% LA 3 5.81 - - - -
2% LA + 0 5% Vinegar 1 6.36 4.18 7.59 6.36 4.18 
2% LA + 0.5% Vinegar 2 6.54 4.67 7.48 6.54 4.67 
2% LA + 0.5% Vinegar 3 6.46 5.15 7.59 6.46 5.15 

Table C 18: ANOV A of the reduction of total aerobic counts (T AC) on Sa/. 
Typhimurium inoculated mung bean seeds treated with various disinfectants. 

ANOVA 
counts 

Sum of Squares df Mean Square F Sig. 

Between Groups 6.403 2 3.202 25.729 .001 

Within Groups .747 6 .124 

Total 7.150 8 

Table C 19: Homogeneous subsets of the reduction of total aerobic counts 
(T AC) on Sal. Typhimurium inoculated mung bean seeds treated with various 
disinfectants 

counts 

Tukey HSD 

treatment 

RO 10 min (control) 

2% NaOe11 5% LA 

2% LA + 0.5% vinegar 

Sig. 

N 

4 

2 

3 

Subset for alpha = 0.05 

1 2 

-.0996 

1.1306 

1.7913 

1.000 .149 

Means for groups In homogeneous subsets are displayed. 
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Table C20: ANOV A of the increase of total aerobic counts (TAC) on Sal. 
Typhimurium inoculated mung bean seeds treated with various disinfectants 
during the sprouting process. 

ANOVA 

counts 

Sum of Squares Of Mean Square F Sig. 

Between Groups 48.810 2 24.405 124.231 .000 

Within Groups 1.179 6 .196 

Total 49.989 8 

Table C21: Homogeneous subsets of the increase of total aerobic counts (TAC) 
on Sa/. Typhimurium inoculated mung bean seeds treated with various 
disinfectants during the sprouting process. 

Tukey HSD 

Subset for alpha = 0.05 

treatment N I 2 3 

2% NaOCI / 5% LA 2 -3.2752 

RO 10 min 4 1.6271 

2% LA + 0.5% Vinegar 3 2.8883 

Sig. 1.000 1.000 1.000 

Means for groups in homogeneous subsets are displayed. 
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Appendix D: Statistical analysis of pathogen population '5 data 

cbanges and seed germination ratio in response to tbermal 

treatments 

Table 01. L. monocylogenes counts on mung bean seeds treated with hot and 
cold water (SO°C I min/SOC I min and 60°C I min/SOC I mil!) treatments. 

L L L Reduction of Increased of 
->,/~II'" IIIOIIOC)'logrnes monocy,ogenes L L. 
(los,oCFU/g) (log,oCFU/g) (logIOCFU/g) mOilocylogenes monocylOSlcnes 
on inoculMed on disinfected on sprouted after treatment during 

seeds seeds seeds (Iol!,.CFU/g) sprouting 
process 

Rep 
(log,oCFU/g) 

Truomeul 

RO H,o 10 nun I 6.40 6.92 6.56 -0.53 -0.37 
RO H,o 10 nun 2 5.98 7.11 6.61 -1.14 -0.50 
RO H,o 10 nun 3 5.85 6.59 6.51 -0.75 -0.09 
sooc I nun S'C I man I 6.40 6.66 3.89 -0.26 -2.77 
sOGC lnun S'(" I man 2 5.98 6.34 5.74 -0.36 -0.60 
sO"(' Invn soc I IIIIn 3 5.85 6.11 6.11 -0.27 0.00 
60°(' I nun S"C I IIIIn I 6.43 6.18 6.26 0.26 0.08 
600C I nun soc I IIIIn 2 6.57 6.46 5.40 0.11 -1.06 
60°(' lnun S'C I man 3 6.96 6.26 6.49 0.71 0.24 

Table 02: ANOV A of the reduction of L. monocylogenes on mung bean seeds 
treated with hot and cold water (SO°C 1 min/SOC 1 min and 60°C 1 min/SOC 
I min) treatments. 
ANOVA 

Reductions 

Sum of Squares df Mean Square F Sig. 

Between Groups 2.028 2 1.014 15.431 .004 

Within Groups .394 6 .066 

trotal 2.422 8 

Table 03: Homogeneous subsets for the reduction of L. monocytogenes on 
mung bean seeds treated with hot and water (SO°C 1 min/SOC 1 min and 60°C 
I min/SOC I min) treatments. 
Reductions 

Tukcv HSD . 
Subset for alpha = 0.05 

Treatment N I 2 

50°C I minWC I min 3 -.8028 

60°C 1 min/5°C 1 min 3 -.2995 

Control (RO 10 min) 3 .3565 

Sig. .115 1.000 

Means for groups tn homogeneous subsets are displayed. 
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Table 04: ANOV A of the increase of L. monocytogenes on mung bean seed 
treated with hot and cold water (SO°C 1 min/SoC 1 min and 60°C 1 min/SoC 
1 min) treatments at during the sprouting process 

ANOVA 

Increasing 

Sum of Squares df Mean Square F Sig . 

Between Groups 1.419 2 . 709 .796 .493 

Within Groups 5.345 6 .891 

Total 6.764 8 

Table OS: Homogeneous subsets for the increase of L. monocytogenes on 
mung bean seeds treated with hot and cold water treatments (SO°C 1 min/SOC I 
min and 60°C I min/SOC 1 min) during sprouting process. 

Increasing 

Tukey HSD 

Treatment 

60°C 1 min/SOC 1 min 

50°C 1 min/SOC 1 min 

Control (RO 10 min) 

Sig. 

N 

3 

3 

3 

Subset for alpha 
=0.05 

1 

-1.1242 

-.3184 

-.2497 

.530 

Means for groups In homogeneous subsets are 
displayed. 

269 



Table 06: L. monocytogenes counts on mung bean seeds treated with hot and 
cold water treatments (85°C I min/5°C I min and 92°C I min/5°e I min) 
treatments. 

L. L L Reduction of Increuins of 
monocytugeM' monocytogenes munocytogen I. I. monu,yt"ll,nrs 
(log,.CFU/g) (log,oCFU/g) .. monocylogeM., during Iprouting 
OIl inocubotcd OIl disinlCctcd (Iog lOCFU/g) after treatment proc:CII 
seeds seeds on sprouted (Iog,oCFU/g) (logl<,CFU/g) 

Trearmcnl Rep seeds 

ROHOIOmin I 6.43 6.18 6.26 0.26 0.08 
ROH,O 10 min 2 6.57 6.46 5.40 0.11 ·106 
ROHP 10 min 3 6.96 6.26 6.49 0.71 0.24 
85°C lmin! SOC 30 5C<: I 6.48 2.81 5.73 3.66 2.92 
85°C I mini SOC 30 5C<: 2 6.41 3.08 4.98 3.34 190 
85°C I min' SOC 30 5C<: 3 6.38 3.15 6.00 3.23 2.85 
92°C I rrunl SOC 30 se<: I 6.83 1.70 3.20 5.\3 151 
920C IIIIlJI; SOC 30 5C<: 2 6.88 1.70 170 5.18 0.00 
'l2OC I mini SOC 30 5C<: 3 7.26 1.70 170 5.56 0.00 

Table 07: ANOV A ofthe reduction of L. monocytogenes on mung bean seeds 
treated with hot and cold water treatments (85°C Iminl 5°C 30 sec and 92°C 
Iminl5°e 30 sec). 
ANOVA 

Reductions 

Sum of Squares df Mean Square F Sig. 

Between Groups 37.153 2 18.576 272.867 .000 

Within Groups .408 6 .068 

Total 37.561 8 

Table 08: Homogeneous subsets of the reduction of L. monocytogenes on 
mung bean seeds treated with hot and cold water treatments (85°C 1 mini 5°C 
30 sec and 92°C Iminl 5°C 30 sec). 

Reductions 

Tukey HSO 

Treatment 

Control (RO \0 min) 

85°C I minI 5°C 30 sec 

92°C I mini 5°C 30 sec 

Sig. 

N 

3 

3 

3 

Subset for alpha = 0.05 

I 2 3 

.3565 

3.4114 

5.2865 

1.000 1.000 1.000 

Means for groups \0 homogeneous subsets are dIsplayed. 
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Table 09: ANOVA of the increase of L. monocytogenes on mung bean seed 
treated with hot and cold water treatments (85°C Iminl 5°C 30 sec and 92°C 
Iminl5°C 30 sec) during the sprouting process. 

ANOVA 

Increasing 

Sum of Squares df Mean Square F Sig. 

Between Groups 12.684 2 6.342 12.021 .008 

Within Groups 3.165 6 .528 

Total 15.850 8 

Table 010: Homogeneous subsets of the increase of L. monocytogenes on 
mung bean seeds treated with hot and water treatments (85°C Iminl 5°C 30 sec 
and 92°C I mini SoC 30 sec) during the sprouting process. 

Homogeneous Subsets 

Increasing 

Tukey HSD 

Treatment 

Control (RO 10 min) 

92°C I mini SOC 30 sec 

85°C I mini SoC 30 sec 

Sig. 

N 

3 

3 

3 

Subset for alpha = 0.05 

I 2 

-.2497 

.5017 

2.5588 

.461 1.000 

Means for groups In homogeneous subsets are displayed. 
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Table DII: Germination percentages of L. monocytogenes inoculated mung 
bean seed treated with hot and cold water treatments 

Treatment Rep Germination percentages 
85°C I mini SoC 30 sec I 99 
85°C Iminl SoC 30 sec 2 100 
85°C I mini 5°C 30 sec 3 98 
92°C I mini 5°C 30 sec I 85 
9rc I mini SoC 30 sec 2 95 
92°C I mini 5°C 30 sec 3 88 
RO H20 10 min I 100 
RO H20 10min 2 100 
RO H20 10min 3 100 
SO°C I min! 5°C I min I 100 
50°C Iminl 5°C I min 2 100 
50°C I mini 5°C I min 3 100 
60°C I mini SoC I min I 100 
60°C I min! 5°C I min 2 100 
60°C I mini 5°C I min 3 100 

Table D12: ANOVA of germination percentages of L. monocytogenes 
inoculated seeds treated with cold water treatments 

ANOVA 

Germination 

Sum of Squares df Mean Square F Sig. 

Between Groups 262.667 4 65.667 12.012 .001 

Within Groups 54.667 10 5.467 

Total 317.333 14 

Table DI3: Homogeneous subsets of germination percentages of L. 
monocytogenes inoculated seeds treated with hot and cold water treatments. 
Germination 

Tukey HSD 

Subset for alpha = 0.05 

Treatments N I 2 

92°C I min 15°C 30 sec 3 89.33 

85 °c I min 15°C 30 sec 3 99.00 

RO 10 min (control) 3 100.00 

SO °C I min 15°C I min 3 100.00 

60 °C I min 15°C I min 3 100.00 

Sig. 1.000 .983 

Means for groups In homogeneous subsets are displayed. 
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Table D14. Sal. Typhimurium counts on mung bean seeds treated with hot and 
cold water treatments (70,80 and 85°C 30 sec/5°C 30 sec) 

Sal. Sal. Sol. Reduc:tion of Inc",uing of 
Typhimurium Typhimurium Typhimurium Sol. Sal. 
(log,,,CFU/g) (log",CFU/g) (logICICFU/g) Typhimurium Typhlmurium 
on inoculated on disinfccled 01\ sprouted after treatment during the 
seeds seeds seeds (IOSIDCFU/g) sprouting 

procell 
(Io8,nCFU/g) 

Treatment Reo 

70·C 30scc1 S·C 30 ICC t 5.04 3.23 7.23 1.81 4.00 
70·C 30scc1 SOC 30 ICC 2 4.40 3.38 7.30 1.02 3.92 
70·C 30scc1 SOC 30 ICC ] 4.78 2.40 7.65 2.38 5.26 
80·C 30 sec! S·C 30 sec t 5.04 1.70 7.26 3.34 5.56 
80·(" 30 sec! SOC 30 sec 2 4.40 1.70 7.43 2.70 5.73 
80·(" 30 sec! SoC 30 sec ] 4.78 1.70 6.48 3.08 4.78 
8S·C 30 sec! S·C 30 sec t 6.04 1.70 5.80 4.34 4.10 
8S·C 30 scci S·C 30 sec 2 6.11 1.70 6.68 4.41 4.98 
8S·(" 30 scci S·(" 30 sec ] 6.45 1.70 6.76 4.75 5.06 
RO (0 min I 4.70 5.53 6.53 -0.83 1.00 
RO 10 nun 2 4.00 4.43 6.81 -0.43 2.37 
RO (0 min ] 5.00 4.46 7.00 0.54 2.54 

Table 015: ANOVA of the reduction of Sal. Typhimurium on mung bean 
seeds treated with hot and cold water treatments (70, 80 and 85°C 30 sec/SOC 
30 sec). 
ANOVA 

Reduction 

Sum of Squares df Mean Square F Sig. 

Between Groups 36.508 3 12.169 43.621 .000 

Within Groups 2.232 8 .279 

Total 38.740 11 

Table 016: Homogeneous subsets of the reduction of Sal. Typhimurium on 
mung bean seeds treated with hot and cold water treatments (70, 80 and 85°C 
30 sec/5°C 30 sec). 

Reduction 

Tukey HSD 

Subset for alpha = 0.05 

Treatment N 1 2 3 

Control (RO 10 min) 3 -.2421 

70°C 30secl SOC 30 sec 3 1.7363 

80°C 30 sect SoC 30 sec 3 3.0402 

85°C 30 sec! SoC 30 sec 3 4.5019 

Sig. 1.000 .064 1.000 

Means for groups In homogeneous subsets are dIsplayed. 
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Table 017: ANOV A of the increase of Sal. Typhimurium on mung bean seeds 
treated with hot and cold water treatments (70, 80 and 85°C 30 sec/5°C 30 sec) 
during the sprouting process. 

ANOYA 

Increasing 

Sum of Squares df Mean Square F Sig. 

Between Groups 19.713 3 6.571 14.483 .001 

Within Groups 3.630 8 .454 

Total 23.343 11 

Table 018: Homogeneous Subsets of the increase of Sal. Typhimurium on 
mung bean seeds treated with hot and cold water treatments (70, 80 and 85°C 
30 sec/SoC 30 sec) during the sprouting process. 

Tukey HSD 

Subset for alpha = 0.05 

Treatment N 1 2 

Control (RO 10 min) 3 1.9708 

70°C 30secl SoC 30 sec 3 4.3920 

8SoC 30 sec/ SoC 30 sec 3 4.7132 

80°C 30 sect SoC 30 sec 3 5.3556 

Sig. 1.000 .360 

Means for groups In homogeneous subsets are dIsplayed. 
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Table 019: Total aerobic counts (TAC) on Sal. Typhimurium inoculated seeds 
treated with hot and cold water treatments (70, 80 and 8SoC 30 sec/SoC 30 
sec). 

TAC TAC TAC Reduction Increased of 
(logIOCFU/g) (logIOCFU/g) (log,oCFUI of TAC during 
on inoculated on disinfected g) on TAC after sprouting 

seeds seeds sprouted treatment process 
seeds (log,oCFUI (loglOCFU/g) 

Treatment Rep . a) 

70·C 30secl S·C 30 sec I 6.08 4.85 7.95 1.23 3.11 
70·C 30secl S·C 30 sec 2 5.38 4.46 8.08 0.92 3.62 
70·C 30secl S·C 30 sec 3 6.15 3.98 7.73 2.16 3.75 
800r 30 secI S·C 30 sec I 6.08 3.00 7.S9 3.08 4.S9 
SO·C 30 secI S·C 30 sec 2 5.38 3.59 7.75 1.79 4.16 
800r 30 secI S·C 30 sec 3 6.15 3.40 7.23 2.75 3.83 
85·C 30 secI S·C 30 sec I 6.69 NO 7.36 4.99 5.66 
85·C 30 secI S·C 30 sec 2 6.69 2.00 7.88 4.69 5.88 
85·C 30 secI S·C 30 sec 3 6.90 NO 7.81 5.20 6.11 
RO 10mm I 5.85 6.26 7.30 -0.40 1.05 
RO 10min 2 4.95 5.32 6.81 -0.37 1.48 
RO IOmm 3 5.62 5.32 7.48 0.30 2.15 
RO 10mm 4 6.59 6.51 8.34 0.07 1.82 

Table 020: ANOV A of the reduction of total aerobic counts (TAC) on Sal. 
Typhimurium inoculated seeds treated with hot and cold water treatments (70, 
80 and 8S0C 30 sec/soC 30 sec). 
ANOVA 
Reduction 

Sum of Squares df Mean Square F Sig. 

Between Groups 45.754 3 15.251 61.689 .000 

Within Groups 2.225 9 .247 

Total 47.979 12 

Table 021: Homogeneous subsets of the reduction of TAC on Sal. 
Typhimurium inoculated seeds treated with hot and cold water treatments (70, 
80 and 8SoC 30 sec/soC 30 sec). 

Reduction 
Tukey HSO 

Subset for alpha = 0.05 

Treatment N I 2 3 

Control (RO 10 min) 4 -.0996 

70°C 30sec/ 5°C 30 sec 3 1.4386 

80°C 30 sec/5°C 30 sec 3 2.5388 

8SoC 30 sec/ SoC 30 sec 3 4.9618 

Sig. 1.000 .081 1.000 

Means for groups In homogeneous subsets are dIsplayed. 
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Table 022: ANOV A of the increase of total aerobic counts (T AC) on Sal. 
Typhimurium inoculated seeds treated with hot and cold water treatments (70, 
80 and 8SoC 30 sec/SoC 30 sec) during the sprouting process. 

ANOVA 

Increasin& 

Sum of Squares df Mean Square F Sig. 

Between Groups 32.646 3 10.882 61.749 .000 

Within Groups 1.586 9 .176 

lTotal 34.232 12 

Table 023: Homogeneous subsets of the increase of TAC on Sal. 
Typhimurium inoculated seeds treated with hot and cold water treatments (70, 
80 and 8SoC 30 sec/SoC 30 sec) during the sprouting process. 

Increasing 

Tukey HSO 

Treatment 

Control (RO 10 min) 

70°C 30secl 5°C 30 sec 

80°C 30 sec/5°C 30 sec 

85°C 30 sec/5°C 30 sec 

Sig. 

N 

4 

3 

3 

3 

Subset for alpha = 0.05 

I 2 3 

1.6271 

3.4920 

4.2920 

5.8836 

1.000 .144 1.000 

Means for groups 10 homogeneous subsets are dIsplayed. 
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Table 024: Germination percentages of Sal. Typhimurium inoculated mung 
bean seed treated with hot and cold water treatments (70, 80 and 85°C 30 
sec/SoC 30 sec) 

Treatment Rep Germination Percentages 
70°C 30sec! 5°C 30 sec 1 99 
70°C 30sec! SoC 30 sec 2 98 
70°C 30sec/ SoC 30 sec 3 97 
80°C 30 sec! 5°C 30 sec 1 97 
80°C 30 sec! 5°C 30 sec 2 98 
80°C 30 sec! 5°C 30 sec 3 98 
85°C 30 sec! 5°C 30 sec 1 92 
85°C 30 sec! 5°C 30 sec 2 91 
85°C 30 sec! 5°C 30 sec 3 91 
RO 10 min 1 100 
RO 10 min 2 99 
RO 10 min 3 99 

Table 025: ANOVA of germination percentages of Sal. Typhimurium 
inoculated seeds treated with hot and cold water treatments (70, 80 and 85°C 
30 sec/5°C 30 sec). 
ANOVA 
Germination 

Sum of Squares df Mean Square F Sig. 

Between Groups 114.917 3 38.306 76.611 .000 

Within Groups 4.000 8 .500 

Total 118.917 11 

Table 026: Homogeneous subsets of germination percentages of Sal. 
Typhimurium inoculated seeds treated with hot and cold water treatments (70, 
80 and 85°C 30 sec/5°C 30 sec). 

Germination 

Tukey HSD 

Treatment 

85°C 30 sec/5°C 30 sec 

80°C 30 sec/5°C 30 sec 

70°C 30sec! SoC 30 sec 

Control (RO 10 min) 

Sig. 

N 

3 

3 

3 

3 

Subset for alpha = 0.05 

1 2 

91.3333 

97.6667 

98.0000 

99.3333 

1.000 .078 

Means for groups In homogeneous subsets are displayed. 
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Table D27: Total aerobic counts (TAC) on mung bean seeds treated with 
different microwaves power levels (1-4 kW) compared with hot and cold water 
treatment (80 30 sec/SoC 30 sec 

TAC TAe Increasing of 
(log",CFU/g) (Iog lOCFUI TAC during 

on g) on sprouting 
microwaves sprouted process 

Treatment Reo treated seeds seeds (IoRIOCFUlg) 
Non-treated seeds I 4.53 8.00 3.47 
N on-treated seeds 2 3.93 7.72 3.79 
Non-treated seeds 3 5.23 7.96 2.73 
I kW (actual power 299.7 W) I sec I 3.70 8.00 4.30 
I kW (actual power 299 7 W) I sec 2 4.79 7.88 3.08 
I kW (actual DOwer 2997 W) 0 9 sec 3 5.15 6.99 1.84 
:! kW (actual power 770.7 W) 0 9 sec I 3.64 7.74 4.10 
2 kW (actual power 770 7 W) 0 9 sec 2 4.32 7.23 2.91 
2 kW lactual power 770.7 W) 0 9 sec 3 2.70 8.00 5.30 
3 kW (actual power 805 7 W) 0 9 sec 1 4.58 7.71 3.\3 
3 kW (actual power 8057 W) 0 9 sec 2 5.11 7.52 2.40 
3 kW (actual power 805.7 W) 0.9 sec 3 4.87 7.00 2.13 
4 kW (actual power 1794 W) 0 8 sec 1 4.38 8.08 370 
4 kW (actual power 1794 W) 0 8 sec 2 5.30 7.89 2.59 
4 kW (actual power 1794 W) 08 sec 3 5.80 7.84 204 
80°C 30 secWC 30 sec 1 2.74 4.64 1.90 
800C 30 secl50C 30 sec 2 3.18 3.08 -0.\0 

Table D28: ANOV A of total aerobic counts (TAC) on mung bean seeds 
treated with microwave heating at different power levels (1-4 kW) compared 
to a hot and water dipping treatment (80°C 30 sec/5°C 30 sec). 
ANOVA 

TAC 

Sum of Squares df Mean Square F Sig. 

Between Groups 8.755 5 1.751 4.196 .022 

Within Groups 4.590 II .417 

!rotal 13.345 16 

Table D29: Homogeneous subsets of total aerobic counts (TAC) of mung bean 
seeds treated with different microwave power levels (1-4 kW) compared to a 
hot and water dipping treatment (80°C 30 sec/5°C 30 sec) 

Tukey HSD 

Subset for alpha = 0.05 

Treatment N 1 2 

80°C-30 sec/5°C-30 sec 2 2.9582 

2 kW (actual power770.7 W)/ 0.9sec 3 3.5549 3.5549 

I kW (actual power 299.7 W)/ I sec 3 4.5458 4.5458 

lNon-treated seeds (control) 3 4.5638 4.5638 

3kW (actual power 805.7 W)I 0.9 sec 3 4.8543 

4 kW (actual power 1794 W)/ 0.8sec 3 5.1602 

Sig. .\08 .108 

Means for groups In homogeneous subsets are dtsplayed. 
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Table D30: ANOV A of total aerobic counts (T AC) of mung bean seeds treated 
with microwave heating at different power levels (1-4 k W) compared to a hot 
and water dipping treatment (80°C 30 sec/SoC 30 sec) after the sprouting 
process. 

ANOVA 

TAe 

Sum of Squares df Mean Square F Sig. 

Between Groups 26.597 5 5.319 23.548 .000 

Within Groups 2.485 11 .226 

Total 29.082 16 

Table D31: Homogeneous subsets of total aerobic counts (T AC) of mung bean 
seeds treated with di fferent microwave power levels (1-4 k W) com pared to a 
hot and water dipping treatment (80°C 30 sec/SOC 30 sec) after the sprouting 
process. 

rAC 
Tukey HSD 

Subset for alpha = 0.05 

Treatment N 1 2 

80°C-30 sec/5°C-30 sec 2 3.8613 

3 kW (actual power 805.7 W)/ 0.9 sec 3 7.4087 

I kW (actual power 299.7 W)/ 1 sec 3 7.6206 

2 kW (actual power770.7 W)/ 0.9 sec 3 7.6555 

Non-treated seeds (control) 3 7.8917 

4 kW (actual power 1794 W)/ 0.8 sec 3 7.9367 

Sig. 1.000 .776 

Means for groups 10 homogeneous subsets are displayed. 
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Table 032: ANOV A of the increase of total aerobic counts (T AC) on mung 
bean seeds treated with microwave heating at different power levels (1-4 kW) 
compared to a hot and water dipping treatment (80°C 30 sec/SoC 30 sec) 
during the sprouting process. 

ANOVA 

TAC 

Sum of Squares Df Mean Square F Sig. 

Between Groups 13.345 5 2.669 2.815 .071 

Within Groups 10.428 II .948 

Total 23.772 16 

Table 033: Homogeneous subsets ofthe increase of total aerobic counts (TAC) 
on mung bean seeds treated with different microwave power levels (1-4 k W) 
compared to a hot and water dipping treatment (80°C 30 sec/5°C 30 sec) 
during the sprouting process. 

TAC 

Tukey HSO 
Subset for alpha = 0.05 

Treatment N 1 2 

80°C-30 sec/5°C-30 sec 2 .9031 

3 kW (actual power 805.7 W)/ 0.9 sec 3 2.5544 2.5544 

4 kW (actual power 1794 W)/ 0.8 sec 3 2.7765 2.7765 

1 kW (actual power 299.7 W)/ 1 sec 3 3.0748 3.0748 

[Non-treated seeds (control) 3 3.3279 3.3279 

2 kW (actual power770.7 W)/ 0.9 sec 3 4.1006 

Sig. .107 .466 

Means for groups In homogeneous subsets are dIsplayed. 
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Table D34: Germination percentages of mung bean seeds treated with different 
microwaves power levels (1-4 kW) compared with hot and cold water 
treatment (80 30 sec/SoC 30 sec). 

Germination percentages 
Treatment Rep 

Non-treated seeds 1 99 
Non-treated seeds 2 98 
Non-treated seeds 3 99 
1 kW (actual DOwer 299.7 W) 1 sec I 96 
I kW (actual DOwer 299.7 W) 1 sec 2 99 
1 kW (actual power 299.7 W) 0.9 sec 3 98 
2 kW (actual power 770.7 W) 0.9 sec 1 95 
2 kW (actual DOwer 770.7 W) 0.9 sec 2 97 
2 kW (actual power 770.7 W) 0.9 sec 3 97 
3 kW (actual power 805.7 W) 0.9 sec I 99 
3 kW (actual power 805.7 W) 0.9 sec 2 97 
3 kW (actual power 805.7 W) 0.9 sec 3 99 
4 kW (actual power 1794 W) 0.8 sec I 91 
4 kW (actual power 1794 W) 0.8 sec 2 92 
4 kW (actual DOwer 1794 W) 0.8 sec 3 97 
80°C 30 sec/5°C 30 sec I 99 
80°C 30 sec/5°C 30 sec 2 98 

Table 03S: ANOV A of germination percentages of mung bean seeds treated 
with microwave heating at different power levels (1-4 kW) compared to a hot 
and water dipping treatment (80°C 30 sec/SoC 30 sec). 

Germination 

Sum of Squares df Mean Square F Sig. 

Between Groups 61.108 5 12.222 4.223 .022 

Within Groups 31.833 11 2.894 

Total 92.941 16 

Table D36: Homogeneous subsets of germination percentages of mung bean 
seeds treated with microwave heating at different power levels (1-4 kW) 
compared to a hot and water dipping treatment (80°C 30 sec/SoC 30 sec). 

Subset for alpha = 0.05 

Treatment N 1 2 

4 kW (actual power 1794 W)/ 0.8 sec 3 93.33 

2 kW (actual power770.7 W)/ 0.9 sec 3 96.33 96.33 

I kW (actual power 299.7 W)/ 1 sec 3 97.67 97.67 

3 kW (actual power 805.7W)/ 0.9 sec 3 98.33 

80°C-30 sec/5°C-30 sec 2 98.50 

Non-treated seeds (control) 3 98.67 

Sig. .096 .607 

Means for groups to homogeneous subsets are dIsplayed. 
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Table 037: Total aerobic counts (TAC) on mung bean seeds treated with 
microwaves heating at 2 kW with different exposure times (l to 3 sec) 
compared with non-treated seeds. 

T AC (IogIOCFU/g) T AC (IogroCFU/g) Increaseing of T AC 
on microwaves on sprouted seeds during sprouting 
treated seeds process 

Treatment R~ -.ill!&!oCFU{gl 
Non-treated seeds I 5.32 8.28 2.96 
Non-treated seeds 2 4.53 8.00 347 
N on-treated seeds 3 3.93 7.72 3.79 
Non-treated seeds 4 5.23 7.96 2.73 
2 kW I sec I 3.15 8.04 4.90 
2 kW I sec 2 3.20 7.56 4.35 
2 kW I sec 3 4.95 7.15 2.20 
2 kW 2 sec I 1.70 8.36 6.66 
2 kW 2 sec 2 170 6.52 4.82 
2 kW 2 sec 3 3.61 5.08 1.47 
2 kW 2 sec 4 170 5.81 4.11 
2 kW 3 sec 1 1.70 6.23 4.53 
2 kW 3 sec 2 3.85 6.93 3.09 
2 kW 3 sec 3 2.00 6.48 4.48 
2 kW 3 sec 4 2.74 6.91 4.17 

Table 038: ANOVA of total aerobic counts (TAC) on mung bean seeds treated 
with microwaves heating at 2 kW with different exposure times (1-3 sec) 
compared to non-treated seeds. 
ANOVA 

TAC 

Sum of Squares df Mean Square F Sig. 

Between Groups 16.266 3 5.422 6.728 .008 

Within Groups 8.865 11 .806 

Total 25.131 14 

Table 039: Homogeneous subsets of total aerobic counts (TAC) of mung bean 
seeds treated with microwaves heating at 2 kW with different exposure times 
(1-3 sec) compared to non-treated seeds. 

Tukey HSD 

Subset for alpha = 0.05 

Treatment N 1 2 

2kw2sec 4 2.1774 

2kw3sec 4 2.5711 

2 kw 1 Sec 3 3.7665 3.7665 

~on-treated seeds (control) 4 4.7534 

Sig. .133 .473 

Means for groups to homogeneous subsets are dIsplayed. 
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Table 040: ANOVA of total aerobic counts (TAC) on mung bean seeds treated 
with microwaves heating at 2 kW with different exposure times (1-3 sec) 
compared to non-treated seeds on sprouted seeds. 
ANOVA 

TACsprouts 

Sum of Squares df Mean Square F Sig. 

Between Groups 6.419 3 2.140 3.426 .056 

Within Groups 6.870 II .625 

Total 13.289 14 

Table 041: Homogeneous subsets of total aerobic counts (T AC) of mung bean 
seeds treated with microwaves heating at 2 kW with different exposure times 
(1-3 sec) compared to non-treated seeds on sprouted seeds. 

Tukey HSD 

Subset for alpha = 0.05 

Treatment N 1 

2kw2 sec 4 6.4414 

2kw 3sec 4 6.6390 

2kw ISec 3 7.5813 

Control 4 7.9884 

Sig. .089 

Means for groups In homogeneous subsets are dIsplayed. 
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Table 042: ANOV A of the increase of total aerobic counts (T AC) on mung 
bean seeds treated with microwaves heating at 2 kW with different exposure 
times (1-3 sec) compared to non-treated seeds. 
ANOVA 
Increasing 

Sum of Squares df Mean Square F Sig. 

Between Groups 2.392 3 .797 .438 .730 

Within Groups 20.032 11 1.821 

Total 22.423 14 

Table D43: Homogeneous subsets ofthe increase of total aerobic counts (TAC) 
of mung bean seeds treated with microwaves heating at 2 kW with different 
exposure times (1-3 sec) compared to non-treated seeds. 
Increasing 

Tukey HSD 

Subset for alpha = 0.05 

Treatment N 1 

Non-treated seeds (control) 4 3.2351 

2kw I Sec 3 3.8147 

2kw 3sec 4 4.0679 

2kw 2 sec 4 4.2640 

Sig. .733 

Means for groups In homogeneous subsets are dIsplayed. 
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Table 044: Germination percentages of mung bean seeds treated with 
microwaves heating at 2 kW with different exposure times (1-3 sec) compared 
to non-treated seeds. 

Treatment Rep Germination percenta2ft 
Non-treated seeds 1 98 
Non-treated seeds 2 99 
Non-treated seeds 3 98 
Non-treated seeds 4 99 
2 kW 1 sec 1 91 
2 kW 1 sec 2 100 
2 kW I sec 3 98 
2 kW 2 sec I 52 
2 kW 2 sec 2 53 
2 kW 2 sec 3 87 
2 kW 2 sec 4 90 
2 kW 3 sec I 51 
2 kW 3 sec 2 43 
2 kW 3 sec 3 44 
2 kW 3 sec 4 45 

Table 045: ANOV A of germination percentages of mung bean seeds treated 
with microwaves heating at 2 kW with different exposure times (1-3 sec) 
compared to non-treated seeds. 
ANOVA 

GERMINATION 

Sum of Squares df Mean Square F Sig. 

Between Groups 7042.317 3 2347.439 18.638 .000 

Within Groups 1385.417 11 125.947 

Total 8427.733 14 

Table 046: Homogeneous subsets of germination percentages of mung bean 
seeds treated with microwaves heating at 2 kW with different exposure times 
( 1-3 sec) compared to non-treated seeds. 

GERM INA TION 
Tukey HSD 

Treatment 

2kw3sec 

2 kw 2 sec 

2 kw I Sec 

Non-treated seeds (control) 

Sig. 

N 

4 

4 

3 

4 

Subset for alpha = 0.05 

I 2 

45.75 

70.50 

96.33 

98.50 

.051 .993 

Means for groups In homogeneous subsets are dIsplayed. 
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