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Abstract

A promising method for growing functional liver tissue in vitro involves cul-

turing hepatocytes as spheroidal cell aggregates. In this thesis, we develop

mathematical models of cell aggregation, and use them to determine how hep-

atocytes’ interactions with the extracellular matrix (ECM) on which they are

seeded, and with stellate cells, affect the process.

Chapters 2-4 focus on the effect that cell-ECM coupling has on the aggre-

gation process. We use a novel formulation that couples a mechanical model

for the ECM with a two-phase model for the cell-culture region. A combina-

tion of linear stability analysis and numerical simulations are used to identify

parameter regimes in which aggregation occurs, and investigate the effect of

changing key parameters. In Chapter 2, we assume a one-dimensional geom-

etry, whereas in Chapters 3 and 4, the slender two-dimensional geometry is

exploited to obtain two alternative one-dimensional models in which the mech-

anisms dominating aggregation are chemotaxis and surface tension.

In Chapter 5, we focus on interactions between hepatocytes and stellates,

neglecting the role of the ECM. We develop new non-local models to investigate

the relative contributions of hepatocyte-heaptocyte and hepatocyte-stellate

interactions in controlling spheroid formation. Comparison with experimental

results suggests that the hepatocyte-stellate interaction is the stronger, in

which case a 1:1 seeding ratio of hepatocytes to stellates is likely to be optimal

for promoting swift aggregate formation.

vi



Chapter 1

Introduction

The possibility of growing tissues in the laboratory for use in clinical ap-

plications is an area of intense biological research interest. As the largest and

most complex organ in humans, the liver has been the focus of much of this

effort. In this thesis, we develop and analyse mathematical models for the

aggregation of liver cells in vitro. These models are motivated by the need

to understand better the formation of multicellular spheroids, which appears

to hold the key to engineering viable, functional liver tissue in the laboratory.

In this chapter, we review existing literature (biological and theoretical) that

is relevant to problem. We begin by introducing the relatively new science of

tissue engineering, and discussing the general challenges faced by researchers

aiming to grow functional tissues in vitro. We then discuss the structure and

function of the liver, and the particular issues connected with culturing liver

cells in the laboratory. Theoretical frameworks which have been proposed to

explain the ways in which tissues are formed (both in vitro and in vivo) are

then reviewed. Finally, we consider existing mathematical models, and mod-

elling approaches, on which we shall build in this thesis.

1



Chapter 1 Introduction 2

1.1 Tissue engineering

Tissue engineering might be caricatured as the ‘science of spare parts’ [100];

its aim is to grow functional tissues and organs to replace those which have be-

come defective through age, trauma or disease. Described in this way, we can

see tissue engineering as a logical extension to current transplant therapies,

motivated by a lack of donors and the difficulties caused by immunosuppres-

sive treatment.

One approach, termed ‘in vivo tissue engineering’ [138] involves introducing

a microporous, biodegradable scaffold into the damaged tissue; healthy cells

will then migrate into the scaffold and proliferate. The scaffold is gradually

degraded, leaving behind regenerated tissue. However, this technique presents

formidable challenges such as engineering biomaterials with appropriate prop-

erties for the scaffold, integrating the scaffold with the surrounding tissue in

vivo, and stimulating cell colonisation of the implant. At present, more atten-

tion is focused on growing new tissue in vitro [117]. A small sample of healthy

cells is harvested (ideally from the patient in question, so as to avoid rejection

of the engineered tissue) and cultured in the laboratory. Various techniques

are then applied to the cells to expand their number, and trigger differentiation

(specialisation to a particular function) [114]. These cells may then be seeded

into a scaffold, which can provide biomechanical support and structural cues

for the growth of the new tissue [117]. The scaffold in turn may be placed in

a bioreactor, which uses fluid flow to provide appropriate mechanical forces to

aid growth and differentiation, and to help to provide an adequate supply of

nutrients (see below). Finally, the engineered tissue is re-implanted into the

patient, replacing the defective tissue whilst avoiding the problems of rejection

inherent in current organ transplant techniques.

Whilst the concept may sound simple, tissue engineering poses numerous
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practical challenges. For example, harvesting healthy cells from the subject

can be problematic, as there may only be a small number of suitable cells avail-

able. Furthermore, their removal may result in morbidity at the donor site,

and the cells thus obtained may have only a limited ability to proliferate and

undergo differentiation [104]. One way around these difficulties, which is the

subject of increasing research interest, is to use relevant precursor cells, multi-

potent stem cells or similar, stem-like cells for tissue regeneration [80,104,109].

These cell types appear to have excellent capacity for proliferation in culture,

and can differentiate to perform multiple different functions under defined cul-

ture conditions.

Another problem arises from the fact that cells cultured under traditional

monolayer techniques frequently undergo phenotypic and functional dediffer-

entiation [9,67,104,114]. It appears that nearly all cell functions are influenced

by cell-cell and cell-extracellular matrix (ECM) interactions. As a result, the

search for appropriate biomaterials has received a new impetus [43,54]. These

materials may consist of biologically derived components found in the ECM in

vivo (e.g. collagen), or artificial substrates (often polymers) such as polylactic

acid (PLA). To encourage successful tissue growth, tissue engineering scaffolds

may also incorporate chemicals, which are released in a controlled manner over

time, mimicking the release of growth factors in vivo [133].

A variety of different culture techniques have been developed to overcome

some of the difficulties associated with tissue engineering. Cell culture within

scaffolds has already been mentioned, and it has been reported that three-

dimensional cultures exhibit improved cell functionality [55,107], as they reca-

pitulate, at least to some extent, the architecture of the tissue in vivo. Biore-

actor culture systems are also frequently employed to modulate the properties

of the engineered tissue [68, 129]. The stagnant environment experienced by

cells grown in conventional culture vessels means that, over time, the supply of
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nutrients can become depleted, and harmful waste products accumulate, lead-

ing to a loss of function [67]. Perfusion culture systems allow for the constant

supply of fresh culture medium, whilst metabolised medium is drained off,

thus helping to ensure a constant environment for the cells. A refinement of

the technique allows for media of differing compositions to be supplied to the

upper and lower portions of the tissue; this allows tissue engineers to mimic

the nutrient gradients often found across tissues in vivo, which are thought to

be important mediators of cell function [4, 67].

Mechanical forces also have an important effect on the development of

tissue [22], and other types of bioreactor have been developed with this in

mind. One example is the Rotary Cell Culture System (RCCS), which was

designed to protect tissues during space flight [102]; cells within this culture

system experience very low shear forces. By contrast, cells cultured in mixed

flasks experience much greater shear, but the turbulent flow of the medium en-

hances the uptake of nutrients [129]. However, for some cell types, particularly

bone and cartilage, culture in a stress free environment can have a negative

impact on the mechanical properties of the engineered tissue. To overcome

this problem, recently new types of bioreactor have been developed which at-

tempt to induce appropriate stresses in the cultured cells e.g. using magnetic

forces [18, 42].

1.2 The Liver

Weighing approximately 1.5 kg, the liver is the largest, and most metaboli-

cally complex, organ in humans. It receives oxygenated blood from the hepatic

artery, and also blood from the gut (via the hepatic portal vein), which fa-

cilitates the processing of the nutrients and removal of toxic byproducts from

food digestion. The liver controls carbohydrate and lipid metabolism, regula-



Chapter 1 Introduction 5

tion of the blood glucose level (by storing excess glucose as glycogen, which

is converted back into glucose when required) and also stores many vitamins

and minerals. In addition, it performs an essential role in the metabolism

of many types of drugs. Other important functions include the secretion of

bile (to aid digestion of fats), production of blood coagulation factors and

conversion of ammonia to urea. Unsurprisingly, given that the liver is esti-

mated to have around 500 different functions, at present there is no artificial

organ or medical device which is capable of replacing it. Some systems have

been designed which remove blood toxins accumulated during liver failure by

e.g. haemodialysis, haemofiltration and plasma exchange, but these have so

far shown disappointing results in terms of patient survival [48]. Thus, the

only treatment currently available for serious, end-stage liver disease is organ

transplantation.

In vivo, under non-pathological conditions, the majority of liver tissue

(around 80 % [69]) is composed of hepatocytes. These are epithelial cells

which form the liver’s basic functional units [108] and are arranged in lob-

ules (see Fig. 1.1). Blood, from branches of the hepatic artery and hepatic

portal vein, flows through the sinusoids between the plates of hepatocytes, to-

wards the terminal hepatic venule, which eventually rejoins the hepatic vein.

The endothelial cells lining the sinusoids differ from the vascular endothelium

elsewhere in the body in that they lack a basement membrane and contain

numerous fenestrae. These features give the hepatocytes ready access to the

nutrients and macromolecules in plasma, which is essential for them to carry

out many of their functions. The bile canaliculi are formed by grooves on the

contact surfaces of adjacent plates of hepatocytes. Bile produced in these tiny

channels flows into the interlobular bile ducts, which connect with the gall

bladder; this in turn drains into the intestines, where the bile is used in the

digestion of fats.
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Figure 1.1: A liver lobule (image adapted from www.biologymad.com).

In addition to hepatocytes and endothelial cells, the liver also contains

Kupffer’s cells, pit cells and stellate cells (also known as Ito cells). Kupffer’s

cells, found in the sinusoids, are tissue macrophages whose major functions are

phagocytosis of foreign particles and removal of noxious substances, whilst pit

cells form part of the lining of the sinusoid and are large granular lymphocytes,

which function as natural killer cells [137]. Stellate cells are perisinusoidal cells

which surround hepatocytes with long processes. They store vitamin A, se-

crete a number of growth factors, and produce ECM proteins [66]. In the event

of liver injury, they become activated and highly proliferative, secreting large

amounts of collagen, which contributes to liver fibrosis.

Under normal conditions, the proliferation rate of hepatocytes is low (the
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liver is replaced by standard tissue renewal about once a year, [139]) but their

capacity for regeneration after liver injury is considerable [66]. The recon-

stitution of the entire organ after partial hepatectomy (surgical removal of

up to 70% of the liver) occurs within around two weeks [139]. The factors

which orchestrate and control this process are currently an area of active ex-

perimental research. Hepatocyte growth factor (HGF) and epidermal growth

factor (EGF) are known to provoke hepatocyte proliferation, whilst many other

growth factors appear to have some role to play [66,106]. Tissue engineers as-

pire to harness this amazing regenerative capacity to produce functional liver

tissue in vitro, and hence the effects of many of these chemicals on cultured

hepatocytes are currently under study [56].

1.3 Liver cell culture in vitro

Diseases of the liver, including hepatitis and cirrhosis, were the cause of around

46,000 deaths in the USA in 1998 [19], and at present there are few successful

treatments for such conditions apart from organ transplant. Whilst waiting

lists for transplants continue to lengthen, the level of organ donation has re-

mained static [83], so interest has logically turned in recent years towards the

development of liver support devices. Passive systems to remove blood toxins

accumulated during liver failure have shown disappointing results in terms of

patient survival, and so attention has focused on cell-based liver assistance de-

vices [48]. The engineering of liver tissue for such devices, for drug testing and,

potentially, for transplantation, has stimulated new interest in understanding

the interactions amongst the various cell populations in the liver, and amongst

the cells, growth factors and ECM.

Hepatocytes cultured in vitro often form a monolayer; grown in this way,

the cells have a tendency to de-differentiate (lose their ability to function nor-
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Figure 1.2: Scanning electron micrograph of a multicellular liver spheroid

(courtesy of L. Riccalton-Banks, Tissue Engineering Group, University of

Nottingham)

mally) within hours, and to die after a few days [9, 101]. Various techniques

have been developed in an attempt to overcome this problem, including co-

culture with other types of cell, culture on polymer scaffolds and the use

of growth factors and cytokines [9]. Some of these techniques result in the

hepatocytes forming multi-cellular spheroids (see Fig. 1.2). The migratory be-

haviour of hepatocytes which leads to aggregation is described in detail in [96].

This study found that only around 6 % of observed cells exhibited ‘classical

single-cell locomotion’, defined as occurring when a cell translates at least one

body length, without contacting another cell. More frequently, cells exhibited

membrane extension, and these extensions often led to direct cell-cell coupling,

giving rise to the formation of a growing aggregate. Translation of the coupled

cells was not quantified in this study; however, many of the cells were observed

to translate more than one body length after cell-cell contact had occurred.

On suitable substrates, the cell clusters reorganise themselves into mul-

ticellular spheroids, which then detach from the surface (see Fig. 1.3). The

arrangement of the cells in spheroids appears to mimic, in some respects, that
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PSfrag replacements

A
B
C
D

Figure 1.3: Schematic representation of the process of spheroid formation

(from [102]). (A) Cell clusters form on the surface of the substrate. (B)

Clusters begin to contract (arrows indicate direction of contraction). (C)

Cell contact with the surface decreases at the centre of the aggregate and a

three-dimensional structure is formed. (D) The spheroid detaches from the

surface.

seen in vivo - for example, channels resembling bile canaliculi are seen [2].

Spheroid culture also results in prolonged expression of liver-specific functions

(commonly measured by albumin production [102]) and hepatocyte viabil-

ity [103].

A common procedure for culturing hepatocytes as spheroids involves seed-

ing the freshly isolated cells in culture wells coated with ECM and bathed in

a culture medium, which supplies them with nutrients such as oxygen. This is
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the method of culture on which we concentrate in this thesis. Hepatocytes are

anchorage-dependent cells [9, 108], and their interactions with the ECM are

believed to be of great importance, both in vivo [8] and in vitro. Significantly,

experiments have shown that the kind of ECM used affects the morphology

of the cells, the likelihood of aggregation, and the ability of the cells to sus-

tain liver specific functions [70, 97]. Tissue engineers employ a wide variety

of types of ECM. Often these are artificial substrates such as tissue culture

plastic (TCP) or polylactic acid (PLA). However, unlike the ECM in vivo,

such substrates lack specific recognition groups for cells. Matrix proteins such

as fibronectin can be employed to modify such surfaces, and provide a more

favourable environment for attachment (see [134, Ch. 5]). Another approach

is to culture the cells on natural ECM components, such as Matrigel or in a

collagen sandwich [103]. In addition to cell-ECM interactions, cell-cell con-

tacts appear to play a significant role, and studies have shown that spheroid

formation is inhibited if the initial cell plating density is either too high or

too low [93, 94]. Cell-cell interactions are also important in maintaining the

viability and functionality of the hepatocytes [71].

The role of chemical signalling in spheroid formation is another area of

considerable interest. Potentially, aggregation may be due to a chemotac-

tic response, as experimental studies have found that artificially stimulating

the hepatocytes with HGF (hepatocyte growth factor) and EGF (epidermal

growth factor) promotes aggregation [110, 113]. We develop and investigate

mathematical models based on this hypothesis in Chapters 3 and 4. Evidence

for chemical signalling between hepatocytes in vitro is provided by studies

showing that adding hepatocyte conditioned medium (i.e. medium which has

already been used in a hepatocyte culture system) to freshly isolated cells also

promotes aggregation [37].

The role of stellate cells in the aggregation process is an area of active
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research. Experimental results show that aggregation is initiated more quickly

when stellates are added to the cultured hepatocytes, but the reason for this

is not clear [102]. Cell-cell contacts may be significant, as the stellates ex-

tend long processes, contacting multiple hepatocytes [118]. However, enhanced

chemical signalling may also explain this effect, as in vivo the stellates are im-

portant producers of HGF [32,106]. Both hypotheses are investigated in more

detail in Chapter 5.

In this section, we have focused on the culture of liver cells as spheroids in

culture wells where the culture medium is not agitated (as in a bioreactor). The

models developed in this thesis are all based on this method of static culture,

and concentrate on the early stages of spheroid formation, during which the

cells aggregate to form clusters. This is because we believe it is important to

try to understand this simple system, before moving on to more complex cases.

However, it is by no means the only way of culturing hepatocytes - some groups

are investigating the efficacy of using porous scaffolds (e.g. [28]), whilst others

have constructed elaborate bioreactor systems [95]. Mathematical modelling

of these alternative types of culture system (applied to other cell types) is

currently an area of active research (see e.g. [59, 131] and references therein).

1.4 Theoretical approaches to tissue formation

At present, we still do not completely understand the processes by which tis-

sues are assembled in the body [22], and we are thus a long way away from

being able to harness and manipulate these processes in order to fabricate

functional tissues in vitro. Morphogenesis is the term used to describe that

part of embryology concerned with the development of pattern and form [76];

i.e. the processes of cell proliferation, migration and differentiation which even-

tually give rise to the different tissues, organs and body parts. In this section,
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we shall review some of the main hypotheses put forward to explain various

aspects of morphogenesis, and discuss their relevance in the field of tissue en-

gineering.

Some of the most influential ideas about the mechanisms of morphogene-

sis were presented in Turing’s famous paper of 1952 [124]. He considered the

reaction and diffusion of two chemical species, referred to as ‘morphogens’,

and showed that the uniform steady state of the governing equations may be

unstable. This instability can give rise to spatial patterning. Turing assumed

that cells can ‘read off’ this pattern by changing their behaviour according to

the local concentration of the two morphogens. For example, cells may express

a dark pigment when the concentration of morphogen X is greater than that

of Y , and remain unpigmented otherwise; this could explain the formation of

simple animal coat markings [76].

Turing’s theory is attractively simple, and was mathematically novel in

that the instability is driven by diffusion, usually considered a stabilising in-

fluence. The ideas have stimulated a great deal of research, with extensions

taking into account the effects of domain geometry, domain growth and bound-

ary conditions to name but a few [76]. Whilst in some cases (e.g. animal coat

patterns) the theory appears to reproduce observations very accurately, its

most significant weakness is that, to date, very few morphogens have been

identified in real organisms [76]. This has been a great obstacle to the theory’s

general acceptance as an explanation for pattern formation in morphogenesis,

and as a result, a number of rival hypotheses have emerged.

One of the most influential alternatives to Turing’s theory is the so-called

‘Differential Adhesion Hypothesis’ (DAH), also known as the Steinberg hy-

pothesis. This was inspired by observations of the behaviour of two initially

dissociated populations of different cells. Depending upon the two cell types
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involved, a particular final configuration of the populations would be seen; the

two cells types might intermix, one cell population might completely, or in-

completely, surround the other, or the two populations may remain separate.

Steinberg adopted a thermodynamic type approach to this problem [112]. He

postulated the collection of dissociated cells had a ‘free energy’; this could be

reduced by the formation of adhesions between individual cells. He labelled the

two cell types A and B, and showed, using simple mathematics, that the final

configuration observed would depend on the relative strengths of the A − A,

A− B and B −B adhesions.

A satisfying feature of this theory was the fact that it could be used to

make predictions (e.g. if type A cells surround type B, and type B cells sur-

round type C, then A should surround C), and these predictions agreed with

experimental results [112]. Indeed, a large volume of subsequent research is

in support of the DAH, and its ideas can be extended to deal with cell-ECM

interactions [6]. However, it does notably fail to explain why homologous ad-

hesions (i.e. those between cells of the same type) are, with a few exceptions,

established more quickly than heterologous ones, even when the DAH predicts

(from the final configuration of the cells) that the latter should be stronger.

Another weakness is the fact that the DAH can only generate a small num-

ber of configurations, which do not include tubules and epithelial structures;

however, a modified version of the hypothesis, in which cells have multiple

domains of differing adhesiveness appears to overcome this problem [6].

The two hypotheses outlined above consider the effect of diffusible chem-

icals and cell-cell and cell-ECM adhesions separately. The mechanochemical

theory of Murray and co-workers [76–78] attempts to unite a number of dif-

ferent processes within a single framework. The main tenet of the theory is

that tissue formation is a dynamic process in which cell proliferation, and cell-

cell and cell-ECM adhesions interact with environmental cues to produce cell
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movements which give rise to pattern formation. Particular consideration is

given to cell migration along concentration gradients of diffusible or bound

chemicals (termed chemotaxis and haptotaxis respectively), but other possi-

ble influences are also discussed, including applied electrical fields (galvano-

taxis). This approach underpins the models developed in the later chapters

of this thesis. Due not least to the greater number of effects included, the

mechanochemical theory appears to have greater scope for generating differ-

ent types of pattern than those previously mentioned. Mathematical models

based on these ideas have been extensively studied in connection with a wide

variety of systems, including limb-bud formation, wound healing and can-

cer [85,116,123]; however, we shall postpone discussion of such work until the

next section.

1.5 Mathematical models

Originally published in 1917, D’Arcy Thompson’s ‘On Growth and Form’ [121]

is one of the earliest, and certainly one of the most influential, works detailing

the insights into the natural world that can be gained by the application of

mathematical ideas. However, despite a few notable contributions during the

intervening period, such as that of Turing, mathematical biology is a relatively

new field, with most of the literature being less than 30 years old. In this sec-

tion, the aim is to introduce some of the more influential mathematical models

which have been proposed in connection with pattern formation in biological

systems, and to discuss some of the general issues with which the modeller

must be concerned.

1.5.1 Individual-based versus continuum models

In considering biological systems made up of interacting individuals, be they

cells or entire organisms, the modeller must make a fundamental choice of
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approach; whether to seek to determine the trajectory in space and time of

each individual making up the system, or to forgo such a detailed description

and focus on collective behaviour, by formulating equations for the density of

individuals. The latter description is termed a continuum approach, and until

recently, most models in mathematical biology have been continuum models.

The advantage of the continuum approach is that it gives rise to a model

which comprises a system of partial differential equations (PDEs); this allows

us to apply a vast range of mathematical techniques from PDE theory in the

analysis of the model, and we can often construct analytical or asymptotic,

as well as fully numerical, solutions to the governing equations. However, the

challenge then remains in relating solutions of the continuum model to exper-

imental data, which may be presented in terms of discrete individuals.

Models which allow us to follow the trajectory of each individual are termed

Lagrangian, and clearly give very detailed information about the evolution of

the biological system. However, this type of model can be difficult to analyse,

especially when large numbers of individuals are present. A recent exam-

ple of a Langrangian model, representing swarming behaviour, is presented

in [74]; under suitable assumptions concerning the interaction forces between

individuals (namely, that these be of gradient type), analytical results can

be obtained from the model, via consideration of a Lyapounov function. In

general though, analytical insights may not be available, and individual-based

models often rely heavily on numerical simulations. A particularly simple type

of individual-based computational models is termed a cellular automaton [30].

These numerical simulations are discrete in time, space and state, with a set of

rules governing the interactions between individuals. As the computing power

available to modellers continues to increase, individual-based models are be-

coming more common.
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1.5.2 Dictyostelium aggregation and the Keller-Segel

model

One of the best known examples of cell aggregation behaviour occurs in the

slime-mould Dictyostelium discoideum. In this organism, aggregation is driven

by chemotaxis - i.e. the migration of cells up spatial gradients of a chemical,

in this case cAMP. It is in connection with work on this species that Keller

and Segel’s widely-used model of chemotaxis, was derived [51,52]. The model

consists of two equations, an evolution equation for the cell density, n, with

movement due to random motion and chemotaxis, and a reaction diffusion

equation for the chemoattractant (cAMP) concentration, c

∂n

∂t
= ∇ · (µ∇n) −∇ · (χn∇c) + f(n, c), (1.5.1)

∂c

∂t
= ∇ · (D∇c) + g(n, c). (1.5.2)

Here, the constants µ and χ are the random motility and chemotactic sensitiv-

ity coefficients for the cells, D is the diffusion coefficient of the chemoattractant

and the functions f and g describe the production and degradation of the cells

and chemoattractant respectively. In many cases, the diffusion of the chemoat-

tractant will be rapid compared to the timescale of aggregation, in which case

the LHS of equation (1.5.2) can be set to zero. For simple choices of g, the

solution of the resulting equation can then be obtained in terms of n using

Green’s functions, as in e.g. [63].

The Keller-Segel model has found many applications in other biological

situations. Numerous extensions to this basic model have been considered,

including various non-constant forms for the cell motility parameters µ and χ,

and different types of cell birth/death and chemical production/degradation

terms; an excellent summary of these studies is given in [63]. However, an

unfortunate feature of the Keller-Segel model is the fact that solutions for the

cell density may become arbitrarily large [86], which is clearly unrealistic; as

a result, further modifications have been proposed, to include effects such as
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space limitation, to eliminate this feature [89].

A second strand of research has concentrated on validating continuum

models by relating the behaviour of individual cells to the population level

equations. Two types of cell movement are commonly assumed in deriving

continuum equations in this way. The mathematically simpler of the two is

known as a ‘space jump’ process, and considers cellular motion as a series of

discrete jumps in space [86, 89]. However, it has been noticed through obser-

vations of bacteria, that they tend to move in straight lines, before suddenly

stopping and reorienting themselves, a phenomenon known as ‘run and tum-

ble’. The assumption of this type of motion is described as a ‘velocity jump’

process. Under either set of assumptions, it is possible in appropriate limits to

recover population-level equations similar to the Keller-Segel model [89, 92].

We should also note some more recent work on dictyostelium aggregation,

which has taken a different approach from that of Keller and Segel. In [90,91],

an individual-based computational approach to cell aggregation and collec-

tive movement of the resulting aggregate are discussed. The model produces

good agreement with experimental results, and may also be conveniently vi-

sualised as animations, in a way which makes it easy to understand for non-

mathematicians. Collective movement of the cell aggregates is also discussed

in [126], where the cells are modelled as a viscous fluid, similar to the approach

taken in some multiphase models of tumour growth (e.g. [12]) which are dis-

cussed in §1.5.5. The type of model developed in [126] has also been extended

to describe cell sorting within aggregates [125].

1.5.3 Mechanochemical models

We have discussed in §1.4 how mechanochemical theory relates the formation

of pattern in biological tissues to interactions between the cells and their envi-
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ronment. The aim of this section is to illustrate the mathematical formulation

of the theory, through a simple example. In [78], the interactions between a

single population of cells of density n(x , t) and the ECM are considered. The

ECM has density ρ(x , t), and its displacement vector is denoted by u(x , t).

Conservation of cells leads to a general equation of the form

∂n

∂t
= −∇ · J +M, (1.5.3)

where J is the cell flux and M is the cell proliferation rate.

The flux of cells J is prescribed in terms of the cell and ECM densities, and

the ECM displacement, the aim being to represent a number of factors known

to influence cell movement, such as random dispersal, haptotaxis (movements

along gradients of a bound chemical) and so forth. When cell proliferation is

negligible, equation (1.5.3) is frequently assumed to take the form

∂n

∂t
= D1∇2n−D2∇4n
︸ ︷︷ ︸

dispersal

−∇ · (αn∇ρ)
︸ ︷︷ ︸

haptotaxis

−∇ ·
(

n
∂u

∂t

)

︸ ︷︷ ︸

advection

. (1.5.4)

The first term on the RHS represents random cell dispersion due to Fickian

diffusion, as in the Keller-Segel model. However, when cell density is high,

the cells may also be able to sense the local average cell density, and this ef-

fect is represented by the biharmonic term. (The two dispersal coefficient (D1

and D2) are generally assumed constant for simplicity.) The remaining terms

model haptotaxis (with haptotactic sensitivity α) and advection of the cells

due to ECM displacement. Additional effects, such as chemotaxis, may also

be incorporated, by the addition of appropriate terms.

Conservation of mass for the ECM leads to the following equation

∂ρ

∂t
+ ∇ ·

(

ρ
∂u

∂t

)

= 0, (1.5.5)

where we have assumed that matrix production by the cells is negligible and the

displacements of the ECM are small, so its velocity is approximately ∂u
∂t

. An
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evolution equation for u , the ECM displacement, is generated by considering

the momentum balance on the system (neglecting inertial effects, and assuming

no external forces act on the cells). This gives

∇ · (σECM + σcell) + ρF = 0, (1.5.6)

where σECM and σcell are the stress tensors for the two phases and F rep-

resents the external forces exerted on the ECM (per unit matrix density).

Constitutive relations specifying the stress tensors for the cells and extracellu-

lar matrix are hence required; however, it is not necessary to specify the nature

of the interaction forces between the cells and ECM. This is because the cell

flux is prescribed in terms of n, ρ and u, rather than being derived from a

momentum balance (as is the case for most multiphase models - see §1.5.5).

The model then consists of equations (1.5.4)-(1.5.6), together with the con-

stitutive relations and suitable boundary conditions. These are investigated

using a combination of linear stability analysis, weakly non-linear analysis and

numerical simulations [64,76]. We note that the exact form of the constitutive

relations specified can have an effect on the stability behaviour of the model,

as is shown in [14].

As was previously remarked, mechanochemical models offer enormous scope

for generating many different types of patterns, through many different types

of effect. Even a very simple case, in which cell birth and death are neglected

and cells move only by advection with the ECM, has been shown to support

rolls and hexagons as stable patterns in 2D [64]. This richness of behaviour

suggests that they will provide a fruitful area for further study in the future.

1.5.4 Non-local models

The models discussed in the preceding sections involve systems of differen-

tial equations which describe the evolution of a variety of biological species
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in terms of the values of those quantities and their derivatives at a particular

point in time and space. However, the underlying biology may often lead us

to want to include dependence on the values of the variables at other points in

space. (For example, in Chapter 5 we discuss how hepatocytes may be pulled

toward nearby stellate cells by their tentacle-like processes; the movement of

an hepatocyte thus depends on the presence of stellates in a neighbourhood

surrounding it.) We would term these models non-local. Note that we use

this term to mean a model where the non-local dependence occurs explicitly

in the governing equations (e.g. [73]). Such a model may be recovered from

the Keller-Segel model under suitable assumptions (as we explain below), but

in its original form, we would not term the Keller-Segel model non-local. The

aim of this section is to describe non-local models in greater detail, discussing

their advantages and disadvantages, and their connection with other models.

There are numerous biological situations in which non-local effects are likely

to be important. In a swarm or similar grouping, organisms are likely to

use visual, auditory or other cues to orient themselves, implying a long-range

interaction [72,73]. In cell biology, the phenomenon of contact inhibition of cell

motion suggests that short-range physical contacts between cells give rise to

changes in cell velocity [72]. These non-local interactions may be introduced

into mathematical models via integral terms, so that the model (in a one-

dimensional Cartesian geometry) typically has the following form

∂n

∂t
+

∂

∂x

(

n

∫

D

K(x− ξ)n(ξ, t)dξ

)

= Dn

∂2n

∂x2
, (1.5.7)

where K is the kernel function which represents the non-local interactions,

and we have neglected birth and death (see also [73]). Naturally, the appro-

priate form for the kernel will vary depending on the situation being modelled.

In [73] the authors show how, in the context of swarming behaviour, an odd

kernel induces organisms at the edges of the swarm to move towards its cen-

tre (i.e. the swarm becomes more dense). An even kernel results in collective

motion of the swarm.
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In mathematical ecology, models similar to those above may be used to de-

scribe the distribution of a population of organisms, with the non-local terms

representing competition for food resources. Additional terms may be included

to represent the effects of grouping, and competition for space [40]. For certain

cases in which the kernel is even, travelling wave solutions of the ecological

model may be found [10,40]. Similarly, travelling band solutions for a particu-

lar case of a swarming model are found in [73]. However, in general we should

note that the problem with non-local models is that it is much more difficult

to make any analytical progress [72]. One obvious method might be to try to

expand the solution as a Taylor series, assuming that the higher order terms

are negligible and hence reducing the integro-differential equation to a PDE.

Unfortunately, this does not always give an accurate approximation [72, 73].

Nevertheless, there are mathematical advantages in using a non-local treat-

ment when considering aggregation phenomena, as in some cases local models

may give rise to a backward heat-type equation, which is ill-posed [16].

Finally, we should remark that one of the most natural ways for non-local

models to arise is as a limiting case of a larger system of local model equations.

If we take a one-dimensional version of the standard Keller-Segel model (1.5.1)

and (1.5.2), with g(n, c) = a2(n − c), and assume that µ � D, so we can set

∂c
∂t

= 0, we find a Green’s function solution (on an infinite domain)

c =
1

2

∫ ∞

−∞

e−a|x−ξ|n(ξ)dξ. (1.5.8)

Upon substituting this solution into equation (1.5.1), we obtain an integro-

differential equation, as shown in [63].

1.5.5 Multiphase models

In a biological context, it is frequently necessary to consider the interac-

tions amongst several different types of materials; common examples are cells
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and extracellular water [12, 15], ECM [47, 62] and other cell populations e.g.

macrophages [87]. These different materials are often referred to as different

phases, and multiphase models which use the theory of mixtures have recently

emerged as a way of treating such situations. It is not our intention to enter

into a detailed discussion of the derivation of the governing equations here

(this is given in [25–27]), but rather to discuss the general issues which arise

from this approach.

The multiphase approach arrives at a macroscopic model of the behaviour

of the various phases through the averaging of the exact equations of mo-

tion (i.e. mass and momentum conservation). The details of the average used

are not of great importance; volume and ensemble averages are frequently

employed [26] (see also Appendix A for an example of the volume averaging

approach applied to a reaction-diffusion equation). The resulting momentum

equations then contain terms which represent the effects of interphase drag

and interfacial forces. We must specify the form of these terms via a consti-

tutive relation [27, 65]. Although the resulting system of equations may be

nonlinear, it nonetheless represents a significant simplification. Were we to

use the exact formulation, we would have to take into account the fact that

the interfaces between different phases represent free boundaries, the position

of which must be determined as part of the solution. The averaging procedure

‘smears out’ the interfaces, essentially by allowing more than one phase to

occupy a particular point and thus avoids this complication.

One of the differences between multiphase models and the others discussed

in this section is the need to specify not only constitutive relations for the

mechanical properties for each of the phases, but also to postulate the form

of the interaction forces between them. At present, relatively simple forms for

these interactions are usually employed e.g. drag-type terms [12, 15]. How-

ever, establishing more physically realistic constitutive relations for biological
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materials is an area of intense research interest, as we shall see below.

1.5.6 Continuum descriptions of biological materials

The mechanical response of a material to an applied force depends on its in-

ternal composition, and is described by the stress tensor. A complete and

accurate description would include the effects of small-scale structures within

the material on its behaviour - e.g. the deformation of a tissue depends upon

the behaviour of each of the different cells types of which it is composed,

the extracellular matrix, and the ways in which these components adhere to

each other. However, because in a biological context such details are often

prohibitively complex there has been a tendency instead to rely on a phe-

nomenological description, in the form of a constitutive relation for the stress

tensor, which provides a reasonably accurate representation of the material’s

overall behaviour under the particular conditions of interest [46].

In situations where we are not concerned with phenomena on sub-cellular

lengthscales, a single cell is often represented as a fluid-filled ‘bag’ [128]. In

many cases, the fluid is assumed to be Newtonian. However, a more accurate

treatment might assume the fluid is viscoplastic (only able to flow when the

stress exceeds a certain threshold) and may also include the nucleus as a sep-

arate material (viscous, elastic and viscoelastic nuclei have been assumed by

different authors [82, 128]). An alternative approach has been to consider the

cell as a viscoelastic body [41]. More recently, the contents of the cell have

been modelled as a two-phase mixture of viscous and inviscid fluid, the viscous

component representing the actin network, which is essential to cell migration,

whilst the inviscid part represents the surrounding solution [84].

Researchers have also begun to look at ways of including microscale ef-

fects when moving from a single cell to multicellular or tissue-level description.

Mixture theory, as discussed above, provides one possible mathematical frame-
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work, and has been used in the description of tumours [12,17], and engineered

cartilage tissue, which consists of cells seeded in an artificial scaffold [59]. An-

other possible approach is to use homogenisation theory [128]. This assumes

that the macroscopic material of interest(e.g. the tissue) consists of a peri-

odic array of a large number of much smaller units, usually referred to as

‘cells’(though they do not necessarily have to correspond to single biological

cells, but rather, they are the basic units of which the material is made up).

The key assumption is that the ratio of the microscopic ‘cell’ lengthscale to the

macroscopic ‘tissue’ lengthscale, ε, is extremely small, as this permits the use

of a multiple scales expansion for the spatial gradients in the relevant govern-

ing equations. The dependent variables are then likewise expanded as power

series in the small parameter ε, and perturbation solutions sought in the usual

way.

We illustrate the procedure by giving a simple example of a biological

application of the technique from Chapter 7 of Keener and Sneyd [50]. It

concerns the diffusion of a chemical signal through a line ofN cells (where N �
1) separated by gap junctions. We assume that the chemical concentration u

obeys

∂u

∂t
=

∂

∂x

(

1

R
(

x
ε

)
∂u

∂x

)

, (1.5.9)

where ε = 1/N is the ratio of the lengthscale of a single unit (cell plus gap

junction) to the lengthscale of the tissue. The resistance R thus varies over

the short lengthscale. We then introduce two independent spatial variables

y = x and z = x/ε, in terms of which equation (1.5.9) becomes

∂u

∂t
=

(
∂

∂y
+

1

ε

∂

∂z

)(
1

R(z)

(
∂u

∂y
+

1

ε

∂u

∂z

))

. (1.5.10)

We expand the solution as

u(x, t) = u0(y, t) + εu1(y, z, t) + ε2u2(y, z, t) + ... (1.5.11)

and thus obtain equations for u0, u1 and u2 from equation (1.5.10). After some
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manipulation, we can eliminate u1 and u2, and obtain the following for u0

∂u0

∂t
= De

∂2u0

∂y2
, (1.5.12)

where De = 1/R̄ and R̄ is the resistance averaged over a unit - i.e.

R̄ =

∫ 1

0

R(z)dz. (1.5.13)

The result of homogenisation is thus a macroscopic equation (or set of

equations) which contain information about the microstructure through the

values of the coefficients. The mass and momentum conservation equations

for an elastic solid containing fluid-filled pores were derived using this method

by Burridge and Keller [13]. These results were exploited, and extended to the

case of a viscoelastic solid, by Owen and Lewis in a model of the mechanics of

lung tissue (where the ‘cells’ were the alveoli) [88]. However, the assumption

of the periodicity of the material on the microscale limits the usefulness of

the technique, as, for example, situations in which the arrangements of cells

change over time cannot be accommodated.

1.6 Thesis overview

As we have seen, the formation of spheroidal liver cell aggregates appears to

hold the key to growing functional liver tissue which will remain viable for

prolonged periods, in vitro. In this thesis, we concern ourselves only with the

initial stages of spheroid formation, in which cell clusters are formed on the

surface of the culture well, rather than on the subsequent reorganisation of

the cells into a spheroid, which is followed by detachment from the surface.

Our aim is then to use mathematical models to understand the dynamics of

cell aggregation, and in particular, the roles of cell-ECM adhesion, chemical

cues which regulate cell movement (chemotaxis) and cell-cell interactions in

co-culture.
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In Chapter 2, we focus on the question of how cell-ECM adhesion affects

the aggregation process. We derive a new model for cell aggregation, based

on the principles of the mechanochemical theory, but employing a multiphase

modelling framework as described in §1.5.5. The two-phase approach allows

us to couple the motion of the cells with that of the culture medium in which

they are grown, the two phases being treated as viscous and inviscid fluids

respectively. In an extension of previous multiphase models (e.g. [12]), cell

movement is also coupled to the deformations of the ECM (which coats the

base of the culture well) which is assumed to be a Voigt viscoelastic material.

In order to render the model tractable, an idealised one-dimensional slab ge-

ometry is assumed, and we neglect any chemical signals which might affect

cell movement, instead prescribing the forces generated by the cells as a func-

tion of cell density. We use linear stability analysis to determine the parameter

regimes in which we can expect to observe aggregation. Numerical simulations

are then employed to determine the effect of varying certain key parameters.

We find that the cell seeding density and degree of cell-ECM adhesion are the

most important factors influencing aggregation.

In Chapter 3, the two-phase model developed in Chapter 2 is extended

and refined. Cell movement is taken to depend upon the concentration of a

chemoattractant in the surrounding culture medium, and a two-dimensional

geometry - representing a section through the culture well - is assumed. This

extends the earlier two-phase model of chemotaxis by Byrne and Owen [16],

who consider a one-dimensional geometry and neglected cell viscosity and cell-

ECM adhesion. Following King and Oliver [53], we then consider the limit in

which the depth of the layer containing the cells is small compared to its

length. We find there are two scaling regimes (which, borrowing terminol-

ogy from fluid mechanics, we call ‘extensional’ and ‘lubrication’) in which

the two-dimensional governing equations may be reduced to one-dimensional

form. The reduced models are investigated using a combination of linear sta-
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bility analysis and numerical simulations in Chapter 4. In both regimes, we

find that the cell seeding density determines the number of aggregates formed,

and the rate of aggregation. In the extensional regime, cell-ECM adhesion

has little effect on cell behaviour, whilst in the lubrication regime, increased

cell adhesion reduces the rate of aggregation. As in Chapter 2, the mechani-

cal properties of the ECM have negligible effect on the formation of aggregates.

The interactions of hepatocytes and hepatic stellate cells in co-culture

are considered in Chapter 5. Here, we adopt a different modelling frame-

work, based on the non-local approach described in §1.5.4. Earlier work by

Mogilner and Edelstein-Keshet [73], who considered a swarm consisting of a

single species, is extended to the case of two interacting populations. We for-

mulate two models, based on alternative experimental hypotheses about how

these two cell types affect each other. The first is that the interaction occurs

via chemical signals; the second, based on time-lapse video taken during co-

culture, is that the stellates put out long tentacle-like protrusions which, when

they contact hepatocytes, physically pull the cells into an aggregate. The mod-

els neglect interactions between the cells and the ECM and culture medium, in

order to focus on the cell-cell interactions, and once again, assume an idealised

one-dimensional geometry. For both hypotheses, if the hepatocyte-stellate in-

teraction is stronger than the hepatocyte-hepatocyte interaction, we observe

the formation of aggregates in which both cells types are evenly distributed.

Conversely, if the hepatocyte-hepatocyte interaction is the stronger, stellates

are relegated to the edges of the aggregates. Comparison with experimental

results suggests that the hepatocyte-stellate attraction is strongest in practice,

in which case our model results suggest aggregation may occur most swiftly

when the cell types are seeded in a 1:1 ratio.

The thesis concludes in Chapter 6, where we summarise our main results,

and offer suggestions for further work.



Chapter 2

A one–dimensional two-phase

model of hepatocyte

aggregation in vitro

2.1 Introduction

As described in the previous chapter, when seeded onto suitable substrates and

cultured under appropriate conditions, hepatocytes form cell clusters or aggre-

gates, which eventually reorganise themselves into spheroids. In this chapter,

we develop a simple mathematical model of hepatocyte aggregation. Our aim

is to use the insights gained from our model to suggest ways in which tissue

engineers may be able to improve their culture technique in order to speed

up aggregation. We use a multiphase framework, similar to that adopted by

Breward et al. [12], which allows us to couple the motion of the cells and the

culture medium in which they are grown. However, our model extends this

work by coupling the movement of the cells with the deformations of a layer of

ECM which occupies the base of the culture well. Our model is thus similar to

28
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the mechanochemical models of Murray and co-workers described in Chapter

1. However, instead of prescribing the cell flux as in equation (1.5.4), we derive

it from a momentum balance.

Previous modelling work on this problem appears limited. Glicklis et

al. [39] assumed the diameter of individual spheroids undergoes logistic growth,

and determined the values of the relevant parameters by fitting to experimental

data. They then used this solution to determine the rate of albumin produc-

tion. To the best of our knowledge, ours is the first mechanical model of the

aggregation process. We consider hepatocytes plated onto a layer of ECM

and bathed in culture medium (see Fig. 2.1). In formulating our model, we

shall make two important assumptions. Firstly, we do not explicitly include

the effects of chemotaxis. Although this is a potential mechanism for hepato-

cyte aggregation, for simplicity we omit consideration of chemical factors in

this chapter. Instead we relate the forces generated by the cells directly to

the cell volume fraction. This allows us to concentrate on the effect of cell-

ECM adhesion on aggregate formation. Secondly, we assume that the cells are

well nourished and hence neglect nutrient transport. We remark that, in the

absence of a complete set of data for hepatocytes, some of our modelling as-

sumptions are speculative, so we do not attempt to recreate the full complexity

of the biological system. Our aim instead is to gain insight into the dynamics

of the aggregation process and provide a starting point for further experimen-

tal research by suggesting which variables may have the most significant effect.

The remainder of this chapter is structured as follows. In §2.2, we derive

mass and momentum balances for the cellular and culture medium phases

(hereafter referred to collectively as the cell culture region) and the ECM. In

§2.2.1, we close the model by introducing constitutive laws for the mechanical

properties of the cells, culture medium and ECM. Interaction forces are also

specified as drag-type terms, being proportional to the difference in velocity



Chapter 2 A one–dimensional two-phase model of

hepatocyte aggregation in vitro 30

of the two phases in question. Suitable boundary and initial conditions are

specified in §2.2.2 and the model reduced to a system of four coupled PDEs in

§2.2.3. In §2.3 we consider the linear stability of the spatially uniform steady

state solution of the reduced model, to determine the parameter regimes in

which we can expect to observe aggregation. This is followed by consideration

of the long-time behaviour of the model in §2.4. Numerical simulations are

presented in §2.5. The chapter concludes in §2.6 with a discussion of our main

results, and suggestions for future work.

2.2 Model formulation
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Figure 2.1: Definition sketch

For simplicity, an idealised one-dimensional slab geometry is adopted. We take

the culture well to occupy the region −L ≤ x ≤ L, and assume that its upper

and lower boundaries are impermeable, so no cells or culture medium can enter

or leave. We denote the local volume fractions of the cells and culture medium

by n(x, t) and w(x, t) respectively and their horizontal velocities by vn(x, t)

and vw(x, t). We assume there are no voids, so

n+ w = 1. (2.2.1)
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As cells consist predominantly of water, we assume both phases have an equal,

constant density and without loss of generality exclude this (non-zero) common

factor from the mass balance equations. We assume that the proliferation and

death rates of hepatocytes are negligible on the timescales of interest, and

thus obtain the following mass conservation equation for the cells and culture

medium respectively

∂n

∂t
+

∂

∂x
(nvn) = 0, (2.2.2a)

∂w

∂t
+

∂

∂x
(wvw) = 0. (2.2.2b)

We let σn and σw be the Cauchy stresses in the cells and culture medium

respectively. Neglecting inertial effects, the momentum balance in each phase

is given by

∂

∂x
(nσn) + Fn = 0, (2.2.3a)

∂

∂x
(wσw) + Fw = 0, (2.2.3b)

where Fn and Fw represent the net sources of momentum in each phase, the

precise forms of which will be discussed in §2.2.1.

The ECM density and displacement are given by ρ(x, t) and s(x, t) respec-

tively. Mass conservation for the ECM gives the following equation

∂ρ

∂t
+

∂

∂x
(ρvE) = 0, (2.2.4)

where vE is the ECM velocity. For simplicity, we consider only small ECM dis-

placements, so that the application of linear theory is valid, and vE ≈ ∂s/∂t.

(We remark that this small displacement approximation is consistent with the

numerical results of §2.5, for the parameter values considered.)

The Cauchy stress in the ECM is denoted by σρ; we again neglect inertial

effects, so that the ECM momentum balance is

∂σρ

∂x
+ Fρ = 0, (2.2.5)
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where Fρ is the force acting on the ECM due to interactions with the cell

culture region.

2.2.1 Constitutive relations

We now introduce constitutive laws for the physical properties of each mate-

rial, and specify the interaction forces between them.

We model the culture medium as a fluid, the viscosity of which is negligible

on the macroscopic scale. Hence

σw = −p, (2.2.6)

where p is the fluid pressure.

We model the cells as an incompressible viscous fluid with constant vis-

cosity µn. The viscous effects are intended to capture the tendency of cells

to align and match their velocities with the local average cell velocity [7]. In

the context of liver cell aggregation, the viscous term represents the way hep-

atocytes migrate as coupled pairs or groups [96]. Obviously, cells differ from

viscous fluids in that they are able to generate forces in response to cues from

their environment, such as variations in the local cell density. We assume these

forces manifest themselves in the cellular phase as an additional pressure term,

Σn, and following Breward et al. [12] we write

σn = −p− Σn + 2µn

∂vn

∂x
. (2.2.7)

Note that we have assumed that the pressures in the cells and culture medium

are the same, and hence p is as in equation (2.2.6).

In general, the function Σn may depend upon such factors as ECM density

or the concentration of a diffusible chemical [16]. However, for simplicity we
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follow [12] by writing

Σn = Γ1
(n− n∗)

(1 − n)2
H(n− nmin), (2.2.8)

where H is the Heaviside function. When Σ′
n(n) < 0 (i.e. for nmin < n <

2n∗− 1), this term tends to drive cells up gradients of n, and hence represents

a tendency for cells to aggregate at low densities. For 1 > n > 2n∗ − 1,

Σ′
n(n) > 0 which corresponds to cell diffusion at high cell density. However,

these are local phenomena, and if the cells are too sparsely populated (i.e. if

n < nmin for some constant nmin) they will experience no cell-cell interactions.

For simplicity, we fix nmin = 0. Following Breward et al., we term the constant

n∗ ∈ (0, 1) in equation (2.2.8) the cells’ close-packing density and Γ1 is the

tension constant which describes the strength of the cell-generated forces. A

graph of Σn(n) is plotted in Fig. 2.2.
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Figure 2.2: Σn against n (n∗=0.8, Γ1 = 1, nmin = 0).

We believe the form chosen for Σn is consistent with the type of interactions

required to form aggregates of bounded cell density. However, in the absence

of experimental validation, other choices with the same qualitative behaviour

could be considered.

We model the ECM as an isotropic, viscoelastic material, which forms a

base layer over which the cells move (see Fig. 2.1). It should be noted that, in
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general, mechanochemical models are sensitive to the particular constitutive

laws adopted [14]. However, in the absence of appropriate experimental data,

we use the Voigt model of viscoelasticity (see e.g. [41]) to describe the me-

chanical properties of the ECM. This model exhibits viscous behaviour over

short timescales, and elastic behaviour at long times. Accordingly, the stress

and displacement in the ECM are related by

σρ =
∂

∂x
(µE

∂s

∂t
+ E ′s), (2.2.9)

where µE and E ′ are the viscous and elastic constants for the material. (In fact,

µE is the sum of the bulk and shear viscosities of the material, and E ′ is related

to the Young’s modulus E and Poisson ratio ν via: E ′ = E(1−2ν)(1−ν)/(1+ν)

[76]).

Turning to the momentum source terms, Fn and Fw in equations (2.2.3).

We assume that the culture medium and the ECM exert drag forces on the

cells (and vice versa), but neglect any drag between the ECM and the cul-

ture medium (as the latter has negligible viscosity). Our choice of cell-ECM

interaction term differs from that used in [76], where a ‘tethering’ force pro-

portional to the ECM displacement, s is postulated. We denote the drag

coefficients between the cells and culture medium and cells and ECM by knw

and knρ respectively. Following [12] these are specified as

knw = k1nw, knρ = k2nρ, (2.2.10)

(where k1, k2 are non-negative constants). Consequently, there is no drag

if either of the two species is not present. While other empirically deter-

mined forms for the drag coefficients may be more physically realistic (e.g. the

Carman-Kozeny relation described in [35]), the form we have adopted has the

virtue of simplicity.
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Combining the information above, we thus have

Fn = −knρ(n, ρ)

(

vn − ∂s

∂t

)

− knw(n)(vn − vw) + p
∂n

∂x
, (2.2.11)

Fw = −knw(n)(vw − vn) + p
∂w

∂x
. (2.2.12)

Fρ = k2nρ

(

vn − ∂s

∂t

)

. (2.2.13)

We remark that the last term in equations (2.2.11) and (2.2.12) represents the

contribution of interfacial forces (see [26, 27] for a detailed derivation).

2.2.2 Initial and boundary conditions

Our model now comprises equations (2.2.2)-(2.2.5), together with the consti-

tutive relations (2.2.6)-(2.2.13). We close the model by specifying appropriate

boundary and initial conditions. The initial distribution of cells is given by

n(x, 0) = n0(x). (2.2.14)

We assume that the solution is symmetric about the origin, so that we may

restrict attention to 0 ≤ x ≤ L and impose

vn(0, t) = vw(0, t) = 0. (2.2.15)

We also impose a no-flux boundary condition at the edge of the domain

vn(L, t) = 0. (2.2.16)

We assume that initially there is a uniform layer of undeformed ECM with

constant density ρ0, and, hence, we impose

ρ(x, 0) = ρ0, s(x, 0) = 0. (2.2.17)

Finally, we assume that the ECM is attached at the ends of the culture well,

so that

s(0, t) = s(L, t) = 0. (2.2.18)
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2.2.3 Model reduction

We now show how we may reduce the model to a coupled system of four PDEs

for n, ρ, vn and s. This allows us to focus on the four physical quantities which

are most relevant to tissue engineers. Although we eliminate the variables w,

vw and p, these quantities may be determined, if required, from the reduced

model (see below).

Given (2.2.10) and the definitions of σn, σw, Fn, Fw and Fρ from §2.2.1,

the momentum balance equations (2.2.3) become

∂

∂x

(

2µnn
∂vn

∂x
− nΣn

)

− n
∂p

∂x
− k2nρ

(

vn − ∂s

∂t

)

− k1nw(vn − vw) = 0,

(2.2.19)

w
∂p

∂x
+ k1nw(vw − vn) = 0, (2.2.20)

∂2

∂x2

(

µE

∂s

∂t
+ E ′s

)

+ k2nρ

(

vn − ∂s

∂t

)

= 0. (2.2.21)

Summing equations (2.2.2) leads to the incompressibility relation

∂

∂x
(nvn + wvw) = 0, (2.2.22)

which, following integration and imposition of (2.2.15), yields

vw =
−nvn

w
, (2.2.23)

(assuming w 6= 0). If we use (2.2.23) to eliminate vw and (2.2.1) to eliminate

w = 1 − n then (2.2.20) gives

∂p

∂x
=

k1n

(1 − n)
vn. (2.2.24)

Using (2.2.24) in equation (2.2.19) gives

k1n

(1 − n)
vn + k2nρ

(

vn − ∂s

∂t

)

+
∂

∂x
(nΣn) − 2µn

∂

∂x

(

n
∂vn

∂x

)

= 0. (2.2.25)

The reduced model thus comprises equations (2.2.2a), (2.2.4), (2.2.21) and

(2.2.25) for n, ρ, s and vn respectively, together with the boundary and initial

conditions specified by equation (2.2.14), the first of (2.2.15), and (2.2.16)-

(2.2.18).



Chapter 2 A one–dimensional two-phase model of

hepatocyte aggregation in vitro 37

2.2.4 Parameters

To gain quantitative insight from our model, we require parameter estimates.

A representative lengthscale for a liver cell spheroid is λ ∼ 200 µm (see Figure

1.2); we assume this to be a reasonable estimate for the lengthscale over which

aggregation occurs. By comparison, the half-length of the culture well, L, is

large ∼ 1 cm. In vitro the timescale, T ∗, over which aggregation occurs is

about one day [102]. The close-packing density of the cells, n∗, is thought to

be about 0.75 (or slightly greater for liver tissue) [95]; we shall henceforth set

n∗ = 0.8.

The types of ECM commonly used in liver tissue engineering include col-

lagen gels and PLA (see Chapter 1); for the former, µE ∼ 105 kgm−1s−1 and

E ′ ∼ 100 − 101 Pa [127], whilst for the latter, µE ∼ 105 − 108 kgm−1s−1

and E ′ ∼ 106 − 109 Pa [20, 43, 81]. We shall thus consider a range of val-

ues for these parameters in the model. The values of the cell viscosity µn,

cell-culture medium drag constant k1 and the initial ECM density ρ0 have not

been measured for the experimental system considered here. Hence, we turn

to the literature to obtain estimated parameters from similar experiments.

The resulting parameter estimates, together with supporting references, are

summarised in Table 2.1.

At present, values for the cell-ECM drag constant, k2, and the tension

constant Γ1 cannot be determined from the literature and so must be esti-

mated. We assume that k2 ≥ k1, since on some substrates, e.g. tissue culture

plastic (TCP), cells adhere sufficiently strongly almost to eliminate cell ag-

gregation [102]. We take 2µn/Γ1 to give a timescale for aggregation in the

absence of drag effects (i.e. we set T ∗ ∼ 2µn/Γ1), and use this to estimate Γ1.

Given T ∗ ∼ 105 s and using the range for µn stated in Table 2.1, we predict

O(10−1) < Γ1 < O(10) .
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Parameter Symbol Units Value Source

Spheroid diameter λ m 10−4
estimated

from Fig. 1.2a

Domain half-length L m 10−2 [102]

Cell close-packing density n∗ none 0.8 [95]

Aggregation timescale T ∗ s 105
estimated

from [102]

ECM density ρ0 kg m−3 0.5-8
[81] and refs.

therein

Cell-water dragb k1 kg m−3 s−1 107-1011 [62, 115]

Cell viscosityc µn kg m−1 s−1 104-106 [33, 62]

a image provided by L. Riccalton-Banks, Tissue Engineering Group, Univer-

sity of Nottingham.

b measurements in [115] relate to hepatoma.

c measurements in [33] are for spherical aggregates of embryonic chick liver cells

Table 2.1: Summary of dimensional parameter estimates and the corre-

sponding references

2.2.5 Nondimensionalisation

We non-dimensionalise the governing equations as follows, using tildes to de-

note dimensionless quantities

x̃ =
x

λ
, t̃ =

t

T
, ρ̃ =

ρ

ρ0

, ṽn =
vnT

λ
, s̃ =

s

λ
. (2.2.26)

Here T is a general timescale, representing the period over which the culture

well is being observed. Since we are primarily interested in the aggregation

process, we generally set T = T ∗ (except in §2.4, where we rescale T to deter-

mine the long-time behaviour of the model).
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The dimensionless equations are then (dropping tildes for convenience)

∂n

∂t
+

∂

∂x
(nvn) = 0, (2.2.27)

∂ρ

∂t
+

∂

∂x

(

ρ
∂s

∂t

)

= 0, (2.2.28)

k̂1n

(1 − n)
vn + k̂2nρ

(

vn − ∂s

∂t

)

+ τ1
∂

∂x

(
n(n− n∗)

(1 − n)2

)

− ∂

∂x

(

n
∂vn

∂x

)

= 0,

(2.2.29)

−k̂2nρ

(

vn − ∂s

∂t

)

= µ̂E

∂2

∂x2

(
∂s

∂t
+ τ2s

)

, (2.2.30)

where

k̂1 =
k1λ

2

2µn

, k̂2 =
k2λ

2ρ0

2µn

, τ1 =
Γ1T

2µn

, µ̂E =
µE

2µn

, τ2 =
E ′T

µE

, ε =
λ

L
.

(2.2.31)

The physical interpretation of the dimensionless parameters is as follows: k̂1

and k̂2 are the ratios of cell-culture medium and cell-ECM drag to viscous

forces; τ1 is the ratio of the observation timescale to the aggregation timescale;

µ̂E is the ratio of the ECM and cell viscosities; and τ2 is the ratio of the ob-

servation timescale to the ECM relaxation time, TR = µE/E
′ (i.e. TR is the

time taken for an initially applied deformation of the ECM to decrease by a

factor e−1 in the absence of external forces).

The initial conditions are now applied to the large domain [0, ε−1]; given

the lengthscales stated in §2.2.4, ε−1 ≈ 50. The boundary conditions for vn

and s at x = 0 now become

vn(0, t) = vn(ε−1, t) = 0, (2.2.32)

s(0, t) = s(ε−1, t) = 0. (2.2.33)

2.3 Linear stability analysis

Equations (2.2.27)-(2.2.30) have a spatially homogeneous steady state solution

n = n0 (where 0 < n0 < 1 is a constant), ρ = 1, vn = 0 and s = 0. This steady
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state approximates the conditions immediately after the liver cells have been

seeded in the culture wells. We now perform a linear stability analysis [63]

of this steady state to determine the parameter ranges in which aggregation

might occur.

We consider small amplitude perturbations to the steady state of the fol-

lowing form (where it is to be understood that the real part is implied)

n ∼ n0 + n̂eiqx+ωt, ρ ∼ 1 + ρ̂eiqx+ωt, vn ∼ v̂ne
iqx+ωt, s ∼ ŝeiqx+ωt.

(2.3.1)

Here, q is the wavenumber, ω = ω(q) is the growth rate of the perturbation

and |n̂|, |ρ̂|, |v̂n| and |ŝ| � 1. We remark that the no-flux boundary conditions

impose the constraint q = mπε, where m is an integer.

If there exists a pair (q, ω(q)) for which R(ω) > 0, then the steady state

is linearly unstable; if R(ω) < 0 for all q, then the spatially uniform steady

state is linearly stable with respect to perturbations of the form (2.3.1). We

expect aggregation to occur in parameter regimes in which the steady state is

linearly unstable.

We substitute the above forms (2.3.1) into equations (2.2.27)-(2.2.30) and

linearise to obtain

ωn̂+ iqn0v̂n = 0, (2.3.2)

ω (ρ̂+ iqŝ) = 0, (2.3.3)

k̂1n0

(1 − n0)
v̂n + k̂2n0(v̂n − ωŝ) + iq

τ1n̂β(n0)

(1 − n0)3
+ q2v̂nn0 = 0, (2.3.4)

k̂2n0(v̂n − ωŝ) = q2µ̂E ŝ(ω + τ2), (2.3.5)

where β(n0) = 2n0 − n∗(1 + n0).

For a non-trivial solution, it is straightforward to show that ω = ω(q2)

satisfies
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A(q2)ω2 +B(q2)ω + C(q2) = 0, (2.3.6)

where

A = k̂2n0

(

k̂1

(1 − n0)
+ q2

)

+ q2µ̂E

(

k̂1

(1 − n0)
+ k̂2 + q2

)

, (2.3.7)

B = q2µ̂Eτ2

(

k̂1

(1 − n0)
+ q2

)

+ q2τ1β(n0)
(k̂2n0 + q2µ̂E)

(1 − n0)3
, (2.3.8)

C =
q4τ1τ2µ̂Eβ(n0)

(1 − n0)3
. (2.3.9)

Since all model parameters, except β, are positive; we deduce that A > 0

and hence that the behaviour depends upon the signs of B and C. When

B > 0 and C > 0 both roots have negative real part, and the system is lin-

early stable to perturbations of the form (2.3.1). This situation arises when

β(n0) > 0, i.e. when the cells are seeded at a density higher than a critical

density, nc = n∗/(2 − n∗). We remark that the case B < 0 < C cannot oc-

cur since the latter condition requires β(n0) > 0, whereas the former requires

β(n0) < 0. The other possibility, where both roots are real and of opposite

sign, occurs when β(n0) < 0. We note that equation (2.3.6) has no purely

imaginary roots.

The above analysis shows that the stability of the system depends only on

the initial cell seeding density. If β(n0) > 0, (i.e. n0 > nc = n∗/(2− n∗)) then

the cell-cell interaction force is repulsive and so the uniform steady state is

stable. When β(n0) < 0 (i.e. n0 < nc) the cells achieve their preferred density

by redistributing themselves over the domain. We note from equation (2.3.6)

that ω is bounded (but may be positive) as q → ∞, since the highest power

of q is the same in A, B and C. As a result a large number of modes grow at

almost equal rates. In order to determine which modes are observed in prac-

tice, nonlinear effects need to be considered. This is undertaken via numerical

simulations in §2.5. First, however, we investigate the long-time behaviour of

the model, as this gives some qualitative insights into the ultimate distribution
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of the cells.

2.4 Long-time behaviour

We consider the long-time behaviour of the model, by adopting the timescale

T = δ−1T ∗ (where δ � 1). Equations (2.2.27) and (2.2.28) are unchanged

under this rescaling, whilst at leading order (2.2.29) and (2.2.30) give

∂

∂x

(
n(n− n∗)

(1 − n)2

)

= 0, (2.4.1)

∂2s

∂x2
= 0, (2.4.2)

where we have assumed k̂1, k̂2 ∼ O(1) and TR ∼ O(T ∗). Hence, at long times,

the movement of the cells and the displacement of the ECM are independent.

The only solution of equation (2.4.2) which satisfies s = 0 at x = 0, 1/ε is

s ≡ 0; thus at long times, the ECM returns to its undeformed configuration,

and has uniform density (by equation (2.2.28)).

We observe from (2.4.1) that two types of behaviour are possible at long

times. We may have

n = N(t), (2.4.3)

in which case equation (2.2.27) can be integrated, subject to vn = 0 at

x = 0, 1/ε, to give vn ≡ 0 and hence n is constant. However, as we have

seen in §2.3, the spatially uniform state is unstable for n < nc, so we would

not expect to observe this solution if at any time n < nc anywhere in the

domain.

The second possibility is that n is piecewise constant, taking the values 0 and

n∗ in different regions. This corresponds to having aggregates, within which

the cells achieve their close-packing density, alternating with regions devoid
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of cells. This solution satisfies equation (2.4.1), since then throughout the

domain
n(n− n∗)

(1 − n)2
= 0. (2.4.4)

In regions in which n = 0, vn is undefined, whilst in regions where n = n∗

equation (2.2.27) implies vn is a function of time only. If the region includes

the edges of the domain, then vn = 0 by the boundary conditions; otherwise,

it is necessary to assume that the long-time solution is steady (which is con-

sistent with the numerical simulations in §2.5).

Since the role of cell-ECM adhesion is of particular interest, we also briefly

consider the long-time behaviour in the limit of large k̂2. We write k̂2 = k̂∗2/δ,

in which case, equations (2.2.29) and (2.2.30) become

k̂∗2nρ

(

vn − ∂s

∂t

)

+ τ1
∂

∂x

(
n(n− n∗)

(1 − n)2

)

= 0, (2.4.5)

−k̂∗2nρ
(

vn − ∂s

∂t

)

= µ̂Eτ2
∂2s

∂x2
(2.4.6)

Combining equations (2.4.5) and (2.2.27) gives the following nonlinear diffusion

equation for n

∂n

∂t
+

∂

∂x

(
1

k̂2ρ

(
∂s

∂t
− τ1

∂

∂x

(
n(n− n∗)

(1 − n)2

)))

= 0. (2.4.7)

We note that vn now includes a term representing advection of the cells with

the ECM as it is deformed. The form of this term is similar to that prescribed

by [76], though we have derived it here from a momentum balance. We also

note that equation (2.4.7) is ill-posed when n < nc = n∗/2 − n∗; this would

suggest the formation of localised regions of high or low cell density [84]. This

is indeed what is seen numerically, with the formation of extremely small ‘ag-

gregates’ (see §2.5.2, especially Fig. 2.8). (We remark that, although the above

equation is ill-posed, retention of a small viscous term in the full system ren-

ders it well-posed.)
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The type of solution described in this section, in which shocks form, is simi-

lar to those described in [17] for a two-phase model of tumour growth (in which

the cell viscosity is neglected), or in [136] for the one-dimensional Cahn-Hilliard

equation. In the latter case, a similarity solution for the time-dependent prob-

lem is found in which the small interfacial energy term uniquely determines

the position of the shocks. Whilst the above analysis provides useful quali-

tative information on the long-time behaviour of our model, it crucially does

not tell us the positions at which the solution ‘jumps’, and hence the number

of aggregates we can expect to observe. This will depend on the initial con-

ditions, and the evolution of the model over O(1) timescales, and must hence

be investigated numerically. This is undertaken in the following section.

2.5 Numerical simulations

2.5.1 Numerical methods

The governing equations were discretised using finite difference methods, and

simulations were performed in MATLAB as follows. Firstly, we solve equa-

tions (2.2.29) and (2.2.30) for vn and ∂s/∂t by matrix inversion, using the

initial conditions for n, ρ and s. These solutions are then used to calculate

n and ρ (from equations (2.2.27) and (2.2.28)) at the next timestep using an

explicit first-order upwinding scheme [75]. The code verifies that the Courant-

Freidrichs-Lewy (CFL) condition (a necessary condition for the convergence

of the finite difference approximation [75]) is satisfied at each grid point. We

found it convenient to include a small stabilising diffusion term on the RHS of

equation (2.2.27) (with diffusion coefficient 10−4), as this reduces the number

of grid-points required to obtain satisfactorily smooth solutions. This means

an additional numerical boundary condition, ∂n/∂x = 0 at x = 1/ε, must be

imposed. (This did not affect the qualitative behaviour of the solutions, as

expected, given the length of the domain.) The solution for s is then updated,
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using the calculated value of ∂s/∂t. We then use the solutions for n, ρ and s

to obtain vn, ∂s/∂t at the new timestep and repeat the process as required.

As a check on the accuracy of the numerical method, mass conservation of

cells was verified at each timestep. We used a spatial step size ∆x = 1/800 for

the simulations presented in this section; this gave a 0.7% error in the mass at

t = 20 for the parameter values in Fig. 2.3. Repeating the simulations with

∆x = 1/1600 reduced the error to 0.5%, although there was no discernible

change in the results. The error in mass conservation at the final time point

was less than 2% for all the simulations presented below. For convenience,

the domain was truncated to 0 ≤ x ≤ 10 (numerical experiments with longer

domains (e.g. 0 ≤ x ≤ 50) gave the same qualitative results; results not pre-

sented).

2.5.2 Numerical results
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Figure 2.3: Numerical solution for cell volume fraction, n, at times t = 0

(line close to n = 0.5) and t = 10 (k̂1 = k̂2 = τ1 = µ̂E = τ2 = 1 ).

Unless otherwise stated we fix k̂1 = k̂2 = τ1 = µ̂E = τ2 = 1, which is reason-

able given the ranges suggested in §2.2.4. We impose initial conditions where

the value of n(x, 0) at each gridpoint is uniformly distributed on [0.50, 0.51].
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Figure 2.4: Numerical solution for cell velocity, vn at: (a) t = 2 (solid)

and t = 4 (dashed); (b) t = 6 (dashed) and t = 10 (solid). Parameter values

as for Fig. 2.3.
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Figure 2.5: Numerical solution for n (solid) and vn (dashed) at t = 10.

Parameter values as for Fig. 2.3.

The corresponding numerical simulations show the formation of aggregates

which have sharply defined edges, and uniform cell density (equal to n∗ = 0.8)

on the interior (Fig. 2.3).

In the early stages of aggregation, cell movement is slow (Fig. 2.4a shows

vn ∼ O(10−3) for 0 ≤ t ≤ 4 ). Thereafter, the cell velocity increases and
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Figure 2.6: (a) Numerical solution for ECM density, ρ, at t = 0 (dotted),

t = 4 (dashed), t = 10 (dot-dashed) and t = 20 (solid). (b) Numerical

solution for ECM deformation, s, at t = 0 (dotted), t = 4 (dashed), t = 10

(dot-dashed) and t = 20 (solid). Parameter values as for Fig. 2.3.

aggregation proceeds relatively quickly (see Fig. 2.4b). After t = 10, there is

little noticeable change in n, and we observe that vn = 0 within aggregates (see

Fig. 2.5), whilst elsewhere it is non-zero, with the few remaining cells moving

towards their nearest cluster. The ECM density is redistributed as the cells

move over its surface (see Fig. 2.6a), but at later times, when aggregation is

essentially complete, elastic forces begin to act and deformation of the ECM

decreases (see Fig. 2.6b) until its distribution becomes approximately uniform

once again.

We now investigate the effect of varying key model parameters on the be-

haviour of the system, and thus suggest ways in which experimentalists may

optimise their culture technique. The parameters over which tissue engineers

have most control include the initial cell seeding density, represented by n(x, 0);

the physical properties of the ECM, represented by µE and τ2; the strength of

cell-ECM adhesion k̂2, which can be changed, for example, by surface modifi-

cation of the substrate with various proteins, and the degree of drag between
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the cells and the culture medium k̂1, which will depend on the viscosity of the

culture medium.

Reducing the cell seeding density (so n(x, 0) is distributed on [0.30, 0.31])

leads to the formation of slightly smaller aggregates, but does not otherwise

affect the qualitative behaviour (compare Figs. 2.3 and 2.7). If we increase the

cell seeding density above nc = 2/3 (for n∗ = 0.8), so the initial condition is

uniformly distributed on [0.7, 0.71], the cells distribute themselves uniformly

throughout the culture well, as predicted by the linear stability analysis (re-

sults not shown).
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Figure 2.7: Numerical solution for n at t = 0 and t = 10. Reduced cell

seeding density leads to the formation of smaller aggregates. Parameter

values as for Fig. 2.3.

Repeated simulations suggest that altering the ECM properties (by chang-

ing the parameters µE and τ2 whilst holding the other parameters fixed) does

not affect the qualitative nature of the cells’ aggregation (results not pre-

sented). We do, however, see a change in ECM behaviour, with deformation

almost eliminated for stiff substrates (large µE, τ2), whilst reducing these pa-

rameters leads to increased deformation.
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Figure 2.8: (a) Effect of increasing k̂2 on number of aggregates formed.

(Best fit line is given by y = 0.18k̂2 + 14.63.) (b) Effect of increasing k̂2 on

mean length of aggregates formed. Parameter values: k̂1 = τ1 = µ̂E = τ2 =

1.
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Figure 2.9: (a) Effect of increasing k̂1 on number of aggregates formed.

(Best fit line is given by: y = 5.48k̂1 + 6.71.) (b) Effect of increasing k̂1 on

mean length of aggregates formed. Parameter values: k̂2 = τ1 = µ̂E = τ2 =

1.

Varying the cell-ECM drag parameter k̂2 has a more dramatic effect on

cell aggregation than varying the ECM parameters. In particular, increasing

k̂2 increases the number of aggregates formed, but they are correspondingly of
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smaller size. We quantify this effect in Fig. 2.8 where we plot the number and

mean length of cellular aggregates at t = 10 for different values of k̂2. Here, an

aggregate is defined to be a continuous region throughout which n > 0.79. The

simulation is run three times for identically-distributed initial conditions, and

an average is then taken. It appears that increasing cell-ECM adhesion reduces

the cells’ mobility, thereby leading to smaller aggregates. At extremely large

values of k̂2 (e.g. k̂2 = 10000), cell movement is almost completely eliminated

(results not presented). Increasing the cell-culture medium drag parameter, k̂1,

has a similar effect on the number and size of aggregates formed (see Fig. 2.9).

(Where we have taken k̂2 = τ1 = µ̂E = τ2 = 1, and used values of k̂1 between 0

and 1, the upper limit being suggested by the parameter values given in §2.2.4.)

2.6 Discussion

In this chapter we have used a multiphase approach to develop a new model of

liver cell aggregation in vitro. The model extends previous work by Breward

et al. [12] to include coupling between the cells and a deformable substrate,

and may also be viewed as an alternative formulation of the mechanochemical

theory of Murray and co-workers [76] using a multiphase framework.

Our simulations show the formation of ‘aggregates’ with clearly defined

outer boundaries, and uniform cell density in the interior. This is consistent

with the long-time behaviour predicted in §2.4, and in qualitative agreement

with images of aggregates cultured in vitro [101]. Our most significant result

is that strong cell-ECM adhesion inhibits the formation of large-scale aggre-

gates. For extremely strong cell-ECM adhesion, the cells are effectively immo-

bilised, and remain in their initial configuration. At more moderate adhesion

strengths, they undergo short-range movements, and our simulations show the

formation of small aggregates. (Note that, if the size of these aggregates ap-
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proaches that of a single cell, the validity of using a continuum model becomes

an issue.) Our results agree with experimental findings reported in [96], that

strong cell-substrate adhesion inhibits migration, and are consistent with the

hypothesis that aggregates do not form when cell-ECM adhesions are stronger

than cell contractile forces. When cell-ECM adhesion is extremely strong, we

found cell movement was almost completely eliminated, which reproduces the

experimental findings of [102] for cells seeded on TCP (tissue culture plas-

tic). On the basis of these results we predict that reducing the strength of

cell-substrate adhesion may promote the formation of large aggregates. In

practice, this can be achieved by surface modification of the substrate as de-

scribed earlier. However, our model does not account for the fact that some

degree of cell-substrate adhesion may be necessary for cell locomotion, which

would make the elimination of this effect undesirable.

Our results also suggest that the cell seeding density may be important. In

section §2.3, we showed that if the cells are seeded too densely (i.e. n > nc),

then aggregation will not occur. To our knowledge, this phenomenon has

not been reported of hepatocytes in the experimental literature; this may be

because, in practice, it is difficult to achieve a sufficiently high cell seeding

density. However, Peshwa et al. [93] report that, at high hepatocyte seed-

ing densities, multilayers rather than spheroidal aggregates are formed. Our

numerical results also suggest that reducing the cell seeding density leads to

the formation of smaller aggregates. This agrees with experimental results

reported by Tong et al. [122].

In our model, the physical properties of the ECM (i.e. its viscosity and

elastic modulus) do not have a significant effect on cell aggregation. However,

this may be because we have assumed that the strength of cell-ECM adhesion

(characterised by the drag coefficient knρ) is independent of the ECM prop-

erties (characterised by µE and E ′). Evidence already exists that some cell
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types form weaker adhesions to compliant substrates [41], suggesting a more

complex relation between the physical properties of the ECM and the strength

of cell-ECM adhesion than has been assumed in this chapter. We could extend

our model by replacing the knρ with a more complex function involving µE and

E ′. However, although the current experimental literature contains a number

of studies of spheroid formation on a variety of substrates, the mechanical

properties of the substrates are not well characterised. We would suggest that

further experimental investigation of the impact of the material properties of

the substrate on cell adhesion may prove fruitful, and might allow us to postu-

late an improved functional form for knρ. Furthermore, our use of a drag term

to model cell adhesion is also an idealisation of the biological situation. An

alternative approach has been taken by Preziosi and Astanin [98], who, when

modelling the formation of capillaries, distinguished between a ‘viscous’ cell-

ECM interaction force (equivalent to our cell-ECM drag term) and an ‘elastic’

force, which acts if the cells have had sufficient time to anchor to the ECM

(or alternatively, if cells are moving sufficiently slowly), and is proportional to

their relative displacement. We also remark that the motility of hepatocytes

may depend on ECM properties, as other cell types such as fibroblasts are

known to be able to sense and respond to the stiffness of the substrate on

which they are seeded [23, 61]. A recent model of cell crawling [120] suggests

that cells move with maximum speed on rigid substrates: on compliant ma-

terials the ECM may deform preferentially relative to the cell, retarding cell

motion. We could incorporate these effect by making the function Σn depen-

dent upon ρ and the ECM properties.

Perhaps the most natural extension of our model would be to formulate it in

a more realistic geometry i.e. two or three dimensions. One obvious deficiency

of this 1D model is the fact that the cell-ECM drag force acts throughout

the region occupied by the cells and culture medium, when it would be more

realistic for it to act as a traction at the cell-ECM interface. Furthermore,
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although we have not considered chemical signalling explicitly, aggregation is

almost certainly influenced by chemical factors. For example, when hepato-

cyte conditioned medium (culture medium in which hepatocytes have previ-

ously been grown) is added to freshly isolated cells, their rate of aggregation

increases [37]. This suggests that the hepatocytes produce a chemical signal

which enhances their motility. Moreover, hepatocytes are known to respond

chemotactically to hepatocyte growth factor (HGF) and epidermal growth fac-

tor (EGF) in vitro [113]. Extending our model to investigate the impact of

chemical signalling on cell aggregation would require us to augment our system

of equations with an equation describing the evolution of the concentration of

the chemical species of interest, and incorporate dependence upon the chem-

ical concentration into the function Σn. An example of such a model has

recently been described by Byrne and Owen [16]. We pursue these extensions

in the following chapter, where we develop a two-dimensional model for cell

aggregation, incorporating chemotaxis.

As it is known that the stability properties of standard mechanochemical

models are influenced by the constitutive relations adopted for the ECM [14],

it would interesting to determine if this is also true of our two-phase model.

This would entail introducing different constitutive laws for the ECM in §2.2.1,

and repeating the linear stability analysis of §2.3. Alternatively, by extend-

ing our model to allow for multiple cell populations, we could investigate the

impact of cellular heterogeneity on the rate of aggregation and the size of ag-

gregates formed. Recent experimental research has looked at the effect of co-

culturing hepatocytes with other cell types, such as hepatic stellate cells [101],

fibroblasts [9] and pancreatic islet cells [58]. Under such conditions, spheroids

appear to form more quickly, and may also be larger than those which arise

in hepatocyte-only cultures. These cell types could be included as additional

phases within the multiphase framework. It would be interesting to compare

the results of such modelling with those obtained using the non-local models
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in Chapter 5.



Chapter 3

Modelling of chemotactic cell

aggregation in vitro. Part I:

Model derivation and thin film

limits

3.1 Introduction

In Chapter 2, we derived a simple, one-dimensional model for the aggregation

of liver cells in vitro. Aggregation was driven by intercellular forces modelled

through a prescribed function (Σn) of the cell volume fraction n. We did not

consider explicitly the possibility that chemical signalling between the cells was

responsible for aggregation. Experiments have shown that when hepatocyte

conditioned medium (culture medium in which hepatocytes have previously

been grown) is added to freshly isolated hepatocytes, their rate of aggregation

is increased [37]. This suggests that the hepatocytes express some chemi-

cal signal which affects their motility. It has previously been observed that

55
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hepatocytes respond chemotactically to hepatocyte growth factor (HGF) and

epidermal growth factor (EGF) in vitro [113]; however these do not appear to

be produced by hepatocytes themselves in vivo [32]. In vitro behaviour may

be different, as a recent study found evidence of increased HGF production

in spheroids containing hepatocytes co-cultured with stellate cells [119] (al-

though we note that stellate cells are also known to produce HGF [111]). In

this chapter, we postulate the existence of a generic chemoattractant produced

by the hepatocytes in vitro, and show that this provides a possible explanation

for their aggregation.

A second departure from the modelling approach of Chapter 2, is that we

consider a two-dimensional geometry, representing a vertical section through

the culture well. We assume that the inverse aspect ratio of the problem (the

ratio of typical vertical to horizontal lengthscales) is small. We then exploit

the geometry by making a thin-film approximation, which in two particular

scaling regimes (both corresponding to strong chemotaxis, but with differing

assumptions made about the magnitude of the pressure in the culture medium,

the extent of cell-ECM adhesion, cell-culture medium drag and surface ten-

sion) allows us to simplify the governing equations to a one-dimensional form.

These equations are compared with the model developed in the previous chap-

ter, and are investigated both analytically and numerically in Chapter 4.

This chapter is organised as follows. In §3.2, we survey existing mathe-

matical models of the dynamics of thin films. As the literature is extensive,

we confine our attention to a small number of papers of particular relevance

to the model developed here. Our two-dimensional model is developed in §3.3,

where we introduce equations for the dynamics of the ECM, cells, culture

medium and chemoattractant. Assuming that the Péclet number (ratio of

advection to diffusion) for the chemoattractant is small, we exploit the thin

geometry of the problem in §3.4 to obtain a one-dimensional equation gov-
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erning the leading-order distribution of chemoattractant. We then consider

two scaling regimes which, borrowing terminology from fluid mechanics, we

term ‘extensional’ (§3.5) and ‘lubrication’ (§3.6). In both cases, when the thin

film limit is taken the governing equations for the ECM and the cells reduce

to one-dimensional form. This chapter concludes with a discussion of the two

reduced models and their relationship to the one-dimensional model developed

in Chapter 2. In Chapter 4, we investigate the two reduced models using a

combination of linear stability analysis and numerical simulations.

3.2 Review of mathematical modelling of thin

films

Mathematical modelling of thin films is an area of intense research activity

in fluid mechanics, particularly in relation to coating flows in industrial prob-

lems [79]. Frequently, the films consist of incompressible Newtonian fluid, and

hence their dynamics are governed by the Navier-Stokes and continuity equa-

tions. Such a case was considered by Howell [44, 45], who used systematic

asymptotic methods to derive the leading-order equations describing the be-

haviour of a two-dimensional sheet of viscous fluid.
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Figure 3.1: Geometry of the two-dimensional fluid sheet
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The geometry of the situation considered by Howell is displayed in Fig. 3.1.

Inertial effects and surface tension are taken to be negligible, and the sheet is

assumed nearly flat with two, stress-free, free boundaries at y = ± 1
2
h(x, t) (the

sheet’s centreline can, without loss of generality, be taken to lie at y = 0). The

governing equations are the two-dimensional Stokes equations, which, together

with appropriate boundary and initial conditions, are expanded in powers of

the small parameter ε2 (where ε is the inverse aspect ratio of the sheet - i.e. the

ratio of the sheet’s vertical and horizontal lengthscales). The Trouton model,

which consists of the following hyperbolic system for the leading-order film

thickness, h0 and axial velocity, u0, is then obtained

∂h0

∂t
+

∂

∂x
(u0h0) = 0, (3.2.1a)

∂

∂x

(

4h0
∂u0

∂x

)

= 0. (3.2.1b)

The factor of 4 in equation (3.2.1b) is known as the Trouton ratio, and is

dependent on the geometry of the problem (e.g. the corresponding value is 3

for an axisymmetric fibre).

We remark that in this case, the axial velocity u0 depends only on x and t

at leading order; flows of this type are termed extensional, in contrast to the

usual ‘lubrication’ limit for a thin film of viscous fluid, where the presence of

a no-slip condition on at least one boundary leads to a velocity profile which

is parabolic in y (the depth co-ordinate) [79]. The Trouton model is adequate

for studying the behaviour of a sheet under tension, but breaks down when the

ends of the sheet are pushed together, as ‘buckling’ will then occur, and the

assumption that the sheet is nearly flat is violated. The model (3.2.1) may,

however, be extended to encompass cases where surface tension or inertial ef-

fects are significant [45], as well as to three-dimensional geometries, including

those in which both bending and stretching of the sheet occur [45, 99].

Another much-studied situation is the surface tension-dominated flow of
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a thin fluid film over a solid surface [79]. This gives rise to a fourth-order

nonlinear parabolic equation of the form

∂h

∂t
+

∂

∂x

(

C
h3

3

∂3h

∂x3
+ f

(

h,
∂h

∂x
,
∂2h

∂x2

))

= 0, (3.2.2)

where C is the inverse capillary number (ratio of surface tension to viscous

forces), and the function f includes terms due to gravity, inclination of the

surface, and so on. The related ‘generalised lubrication equation’

∂h

∂t
+

∂

∂x

(

hn∂
3h

∂x3

)

= 0, (3.2.3)

has been the subject of many analytical studies [79]. Equation (3.2.3) is a

nonlinear parabolic equation. It is degenerate, as the coefficient of the highest

derivative tends to zero as h → 0. The case n = 3 is obviously of greatest

relevance to surface tension-driven flows. Analysis of equation (3.2.3) has in-

volved performing linear stability analysis, and constructing travelling wave

and similarity solutions [79].

In a biological context, thin film models have been developed to describe

a number of situations. Recent examples include work by Weekley [132], who

studied the transport of particles in the lungs, treating the mucus lining of

the airway as a viscous sheet, and Franks and King [36] who investigated a

thin-film model of tumour growth, treating the cells and extracellular water

as a Stokes fluid.

Both of the models (3.2.1) and (3.2.2) have recently been generalised by

King and Oliver to the case of a fluid mixture, consisting of viscous and inviscid

components [53]. The theory is applied as a ‘minimal model’ for cell motion,

with additional biological detail being introduced in another paper [84]. In

both cases, the cell is assumed well-spread (and hence thin). The cell interior

is treated as a mixture of viscous, polymerised actin and an inviscid solution,

enveloped by a membrane under tension. Actin is postulated to polymerise
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(or depolymerise) at the contact line (where the cell edge meets the substrate),

hence conversion of mass between the two phases occurs there. In [53], it is

assumed that the mass transfer rate between the two phases depends only on

the velocity of the contact line. It is then shown, using asymptotic analysis in

the limit corresponding to strong cell-substrate adhesion, that a novel class of

multi-valued contact line laws arise. Qualitative analysis of these laws reveals

a variety of possible behaviours, including ‘pulsation’ (periodic expansion and

contraction of the cell), in addition to steady cell translocation.

3.3 Model formulation
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Figure 3.2: Simplified representation of a vertical slice through a culture

well.

3.3.1 Preamble

We consider a system consisting of a population of a single type of cells (hep-

atocytes), plated onto a thin layer of ECM and bathed in culture medium,

a simplified representation of which is presented in Fig. 3.2. As in Chapter

2, we adopt a continuum modelling approach in which the cells and culture

medium are treated as a two-phase fluid mixture. A definition sketch is given

in Fig. 3.3. A two-dimensional Cartesian coordinate system x = (x, y) is em-

ployed, with t used to denote time. The culture well is taken to occupy the
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region −L ≤ x ≤ L, the lower part of which (0 ≤ y ≤ g(x, t)) contains a thin

layer of ECM. Cells and culture medium occupy the region g(x, t) < y ≤ h(x, t)

(thus the boundaries y = g(x, t) and y = h(x, t) delineate the region in which

the volume fraction of cells, n, is non-zero). The region y > h is assumed to

be empty space. The impermeable interfaces between the cell-fluid mixture

and ECM, and the cell-fluid mixture and free space are free boundaries, which

must be determined as part of the solution.
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Figure 3.3: Definition sketch.

In addition to the dependent variables specified in Fig. 3.3 we introduce a

generic hepatocyte-derived chemoattractant, and denote its concentration per

unit volume of culture medium by c(x, t). We assume that all cells are well

nourished, as under co-culture conditions at least, the number of viable cells

remains approximately constant for up to ten days [9]; it thus appears that

nutrient availability is unlikely to be limiting during aggregation.

The formulation of the model falls naturally into two parts: in §3.3.2, we

derive equations describing the behaviour of the ECM, whilst equations for

the cells and culture medium are stated in §3.3.3. Deformation of the ECM

is coupled to the movement of the cells via boundary conditions on the upper

surface of the ECM. The governing equation for the chemoattractant concen-

tration is derived in §3.3.4 and the complete model rendered dimensionless in
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§3.3.5.

3.3.2 Extracellular matrix model

We model the ECM as an isotropic, viscoelastic material, which forms a

base layer to which the cells may adhere (see Fig. 3.3). In previous stud-

ies [78, 85, 123], the ECM has been treated as a Voigt viscoelastic solid. It

should be noted that, in general, mechanochemical models are sensitive to the

particular constitutive laws adopted [14]. However, given a lack of experimen-

tal data on the behaviour of the ECM considered here, we also use the Voigt

constitutive law, as in Chapter 2.

The ECM density and displacement vector are denoted by ρ(x, t) and

U(x, t) respectively. We assume that ECM displacements are small, so that

we can apply linear theory. Then, neglecting inertial effects, and assuming no

body forces act within the ECM, the momentum balance equation is

∇ · σρ = 0, (3.3.1)

where σρ is the stress tensor for the ECM. The stress-strain relation is given

by [76]

σρ = 2µ1
∂ε

∂t
+ µ2

∂Θ

∂t
I + E ′(2ε + ν ′ΘI), (3.3.2)

where

Θ = ∇ · U, ε =
1

2

(
∇U + ∇UT

)
, E ′ =

E

1 + ν
, ν ′ =

ν

1 − 2ν
.

(3.3.3)

In (3.3.2) µ1 and µ2 are the shear and bulk viscosities, and E ′ and ν ′ are re-

lated to the Young’s modulus E and Poisson ratio ν as indicated above. Thus,

Θ represents the dilation of the material, and ε the elastic strain tensor .

For simplicity, we assume that the ECM is incompressible, with density

ρ0. We let the velocity of the ECM be vE, and since we have made the linear
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approximation, vE ≈ ∂U

∂t
. Writing U = (U, V ), conservation of mass gives

∂U

∂x
+
∂V

∂y
= 0, (3.3.4)

(i.e. zero dilation of the material). In this incompressible limit, the Poisson

ratio ν → 1
2
. However, the product E ′ν ′Θ remains finite, and is associated

with a pressure, PE, such that E ′ν ′Θ → −PE as ν ′ → ∞ (see Ch. 9 of [29]).

Applying equations (3.3.2) and (3.3.4), equations (3.3.1) yield the following

momentum balances in the x and y directions respectively

−∂PE

∂x
+

∂2

∂x2

(

µ1
∂U

∂t
+ E ′U

)

+
∂2

∂y2

(

µ1
∂U

∂t
+ E ′U

)

= 0, (3.3.5)

−∂PE

∂y
+

∂2

∂x2

(

µ1
∂V

∂t
+ E ′V

)

+
∂2

∂y2

(

µ1
∂V

∂t
+ E ′V

)

= 0. (3.3.6)

Equations (3.3.4)-(3.3.6) specify the dependent variables in the ECM (U ,

V and PE), and are closed by imposing the following boundary and initial

conditions

U(x, y, 0) = 0, (3.3.7)

U(x, 0, t) = 0, (3.3.8)

U(0, y, t) = U(L, y, t) = 0, (3.3.9)

n̂ · (σρ · n̂)|y=g = n̂ · (σ · n̂)|y=g, (3.3.10)

t̂ · (σρ · n̂)|y=g = t̂ · (σ · n̂)|y=g, (3.3.11)

where σ is the stress tensor for the mixture of cells and culture medium (see

equation (3.3.23)), and n̂ and t̂ are the unit normal and tangent vectors to

the surface of the ECM, given by

n̂ =
1

√

1 +
(

∂g

∂x

)2

(

−∂g
∂x
, 1

)

, t̂ =
1

√

1 +
(

∂g

∂x

)2

(

1,
∂g

∂x

)

. (3.3.12)

The physical interpretations of these boundary and initial conditions are

as follows. We assume that initially, there is no displacement of the ECM

(3.3.7), and that the ECM layer is anchored to the bottom and sides of the
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culture well, so that there is no ECM displacement on y = 0 and x = 0, L

(see equations (3.3.8) and (3.3.9)). Equations (3.3.10) and (3.3.11) represent

continuity of normal and tangential stress respectively at the interface between

the ECM and the cell and culture medium mixture.

Finally, the kinematic condition at the interface between the ECM and the

cells and culture medium gives

∂V

∂t
=
∂g

∂t
+
∂U

∂t

∂g

∂x
on y = g. (3.3.13)

This equation is used to determine g, given U and V , and is subject to the

condition that the interface is initially flat - i.e.

g(x, 0) = gi, (constant). (3.3.14)

3.3.3 Cell culture model

Mass balance

We denote the local volume fractions of the cells and culture medium by

n(x, t) and w(x, t) respectively and their velocities by vn(x, t) = (un, vn) and

vw(x, t) = (uw, vw). We assume there are no voids, so

n+ w = 1. (3.3.15)

As cells consist predominantly of water, we assume both phases have an equal,

constant density: we can then exclude this common factor from the mass

balance equations. As in Chapter 2, we assume that the proliferation and

death rates of the hepatocytes are negligible (see also comment in §3.3.1), and

thus obtain the following mass conservation equation for the cells and culture

medium respectively

∂n

∂t
+

∂

∂x
(nun) +

∂

∂y
(nvn) = 0, (3.3.16)

∂w

∂t
+

∂

∂x
(wuw) +

∂

∂y
(wvw) = 0. (3.3.17)
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We impose the following kinematic boundary conditions on the interfaces

y = g, h

vn =
∂g

∂t
+ un

∂g

∂x
, vw =

∂g

∂t
+ uw

∂g

∂x
, on y = g, (3.3.18)

vn =
∂h

∂t
+ un

∂h

∂x
, vw =

∂h

∂t
+ uw

∂h

∂x
, on y = h, (3.3.19)

and state that cells and culture medium which begin on the free boundaries

remain upon them. Note that conditions (3.3.13) and (3.3.18) imply continuity

of normal velocity at the interface y = g.

.

As in the previous section, the following initial and boundary conditions

are imposed on h

h(x, 0) = gi + hi, (constant) (3.3.20)

∂h

∂x

∣
∣
∣
∣
x=0

= 0, (3.3.21)

i.e. the interface is initially flat, and h is symmetric about x = 0.

Momentum balance

We assume that inertial effects may be neglected and, hence, that the momen-

tum balance for each phase is given by

∇ · (nσn) + F n = 0, ∇ · (wσw) + F w = 0, (3.3.22)

where σn and σw are the stress tensors for the cells and culture medium re-

spectively, and F n and F w represent the net sources of momentum in each

phase. We assume that F n = −F w.

For subsequent convenience, we now introduce the stress tensor for the

cell-culture medium mixture, given by

σ = nσn + wσw, (3.3.23)

and thus the overall momentum balance for the mixture is

∇ · σ = 0. (3.3.24)
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Constitutive relations

We model the culture medium as a fluid, the viscosity of which is negligible

compared to that of the cells. Hence

σw = −pI, (3.3.25)

where p is the fluid pressure and I the identity tensor.

As in Chapter 2, we model the cells as an incompressible fluid, with con-

stant viscosity µn. Cells differ from ordinary viscous fluids, however, in that

they are assumed to be able to generate forces in response to cues from their

environment, such as variations in the local cell density or chemical concentra-

tions. We assume these forces manifest themselves in the form of an additional

pressure, Σn, in the cellular phase. We thus write

σn = −(p + Σn(n, c))I + µn(∇vn + ∇v
T
n ), (3.3.26)

where we have assumed that the pressures in the cells and culture medium are

equal, so p is as in equation (3.3.25). We remark that (3.3.26) generalises to

two or three dimensions the constitutive law adopted in Chapter 2. However,

we note that Σn may now also depend upon c (the concentration of chemoat-

tractant in the culture medium), as well as n.

For simplicity, we shall assume that Σn depends only upon the concentra-

tion of the chemoattractant in the water phase, c, though at present there is

no experimental verification that this is the case. Likewise, there is no widely

accepted functional form for the relationship between c and the stress gen-

erated by the cells, other than the fact that as we expect cells to move up

chemoattractant gradients, Σn should be a decreasing function of c. On that

basis, we adopt the following simple linear form for Σn

Σn = Γ1(1 − τc)H(cmax − c), (3.3.27)
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where Γ1 gives a measure of the strength of the forces generated by the

cells, and τ describes the cells’ sensitivity to the chemoattractant. The factor

H(cmax − c) (where H is the Heaviside function) switches off chemotaxis when

the chemical concentration exceeds the upper bound cmax. We might interpret

this biologically as the cells’ chemoreceptors being ‘swamped’ when c > cmax,

leaving the cell unable to determine the direction in which it should move.

(Note that we have assumed that cells are sensitive to low levels of chemoat-

tractant, since we have not imposed a lower threshold which c must exceed

for the cells to detect it.) The constraint cmax < 1/τ prevents ill-posedness

(which would occur for Σn < 0) in the thin film limits of the model with which

we shall subsequently be concerned (see §3.5.1).

We remark that alternative functional forms for Σn were adopted in [16],

of exponential and rational type, which included a constant term representing

a ‘background potential’. However, the basic assumption (that Σn is a de-

creasing function of the concentration of the chemoattractant in water) was

retained.

We assume that the culture medium exerts a drag force on the cells, and

let the drag coefficient be knw. We hence write

F n = −knw(vn − vw) + p∇n, (3.3.28)

F w = −knw(vw − vn) + p∇w, (3.3.29)

noting that the last term in equations (3.3.28) and (3.3.29) represents the con-

tribution of interfacial forces (see [26, 27] for a detailed derivation).

As in the previous chapter, we specify the drag coefficient, knw as follows

knw = k1nw, (3.3.30)

(where k1 is a non-negative constant) so there is no drag if either of the two

phases is not present. While other, empirically determined, forms for the drag
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coefficient may be more physically realistic (e.g. the Carman-Kozeny relation

described in [35]), the form we have adopted has the virtue of greater simplicity.

Adopting these constitutive relations, equation (3.3.24) gives the follow-

ing momentum balances for the two-phase mixture in the x and y-directions

respectively

∂

∂x

(

−p− nΣn + 2µnn
∂un

∂x

)

+ µn

∂

∂y

(

n
∂un

∂y
+ n

∂vn

∂x

)

= 0,(3.3.31)

∂

∂y

(

−p− nΣn + 2µnn
∂vn

∂y

)

+ µn

∂

∂x

(

n
∂un

∂y
+ n

∂vn

∂x

)

= 0.(3.3.32)

Similarly, from equations (3.3.22) and (3.3.29), we now have the following for

the culture medium

∂

∂x
(−wp) − k1nw(uw − un) + p

∂w

∂x
= 0, (3.3.33)

∂

∂y
(−wp) − k1nw(vw − vn) + p

∂w

∂y
= 0. (3.3.34)

These equations are subject to the following boundary and initial condi-

tions. At t = 0 we must specify the distribution of the cells (which automat-

ically specifies the distribution of the culture medium via w = 1 − n). We

restrict our attention to initial conditions for which n is independent of y (this

is required for consistency in the thin film limits we shall consider later). We

thus set

n(x, y, 0) = ni(x). (3.3.35)

At x = 0, L we assume there is zero flux of cells and culture medium out

of the domain, which gives

un(0, y, t) = uw(0, y, t) = un(L, y, t) = uw(L, y, t) = 0. (3.3.36)

Cell aggregates have a measurable surface tension, due to the fact that cell-

cell adhesion within the aggregate means than the pressure within it need not

equal that in the surrounding culture medium. In fact, the aggregate surface

tension has recently been shown to be proportional to the level of expression
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of cadherin (a cell adhesion molecule) [34]. The normal stress condition at

y = h is thus given by

n̂ · (σ · n̂)|y=h = −γcΥ(n)∇ · n̂. (3.3.37)

The term on the RHS represents surface tension with coefficient γcΥ(n), where

γc is a typical value of the surface tension and Υ(n) is a dimensionless func-

tion. The dependence of Υ on n in our model is essential, as in the absence

of cells, there is no distinction between the regions g < y ≤ h and y > h, and

thus Υ(0) = 0. (Note that, within the two-phase mixture, we have already

accounted for the fact that the pressures in the cells and culture medium differ.)

In the tangential direction, we assume there is no stress at y = h which

gives

t̂ · (σ · n̂)|y=h = 0, (3.3.38)

whilst at y = g cell-ECM adhesion results in drag, with coefficient k2nρ0

t̂ · (σ · n̂)|y=g = k2nρ0

(

vn − ∂U

∂t

)

· t̂. (3.3.39)

In addition we have the kinematic conditions at y = g, h, (3.3.18) and (3.3.19),

and the stress conditions at the cell-ECM interface, y = g, (3.3.10) and

(3.3.11).

3.3.4 Chemoattractant concentration

We assume that the chemoattractant disperses through the culture medium by

a combination of advection and diffusion, with diffusion coefficient D. Its dis-

tribution thus evolves according to the following reaction-advection-diffusion

equation

∂

∂t
(cw) + ∇ · (cwvw) = D∇ · (w∇c) + P (n, c) − S(n, c), (3.3.40)
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where P (n, c) represents production of chemoattractant by the cells, and S(n, c)

is the rate at which the chemical decays and is consumed. (A detailed deriva-

tion of this equation, using the volume averaging technique, is given in Ap-

pendix A.)

We assume that the chemoattractant is produced by the cells at a rate α0,

and then released into the culture medium. The source term P is thus assumed

to be proportional to the product of the volume fractions of the two phases,

since there must be contact between the them in order for the the chemical to

enter the culture medium. Natural decay of the chemoattractant is assumed

to occur at a rate α1, and (as in a number of other models [63]) we neglect the

amount consumed by the cells when sensing concentrations, so

P (n, c) = α0n(1 − n), S(n, c) = α1(1 − n)c, (3.3.41)

where we have used the fact that w = 1 − n. We remark that the factor of

1−n in S arises as a result of the volume averaging process (see Appendix A).

Equation (3.3.40) will be subject to an initial condition for the distribution of

chemoattractant - i.e.

c(x, y, 0) = ci(x, y), (3.3.42)

and no-flux conditions at the boundaries

cwuw −Dw
∂c

∂x
= 0 at x = 0, L, (3.3.43)

n̂ · (cwvw −Dw∇c) = 0 at y = g, h. (3.3.44)

3.3.5 Nondimensionalisation

We now nondimensionalise the governing equations, initial and boundary con-

ditions, making the additional assumption that the depth of the cell culture

layer is of the same order as that of the ECM.
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We denote dimensionless variables by tildes, and nondimensionalise the inde-

pendent variables as follows

x̃ =
x

λ
, ỹ =

y

gi

, t̃ =
t

T
, (3.3.45)

where gi is the depth of the undisturbed ECM layer, λ is the lengthscale of an

aggregate, and T is the timescale of interest (i.e. the aggregation timescale),

the latter two of which will be determined subsequently.

In the ECM, we nondimensionalise the dependent variables U , V , PE and g

as follows

Ũ =
U

κλ
, Ṽ =

V

κgi

, P̃ =
PET

κµn

, g̃ =
g

gi

, (3.3.46)

where κ is the ratio of the ECM deformation lengthscale to that of an aggregate

(which is to be determined) and the scaling for PE has been chosen to match

with the pressure in the overlying two-phase mixture, as a result of continuity

of normal stress at the interface. In the cell culture layer, we set

ũn =
unT

λ
, ṽn =

vnT

gi

, ũw =
uwT

λ
, ṽw =

vwT

gi

, h̃ =
h

gi

. (3.3.47)

Governing equations for the extracellular matrix

The dimensionless form of equation (3.3.4) is unchanged, whilst the momentum

equations (3.3.5) and (3.3.6) now become (dropping tildes)

−η2µ̂n

∂P

∂x
+ η2 ∂

2

∂x2

(
∂U

∂t
+ ÊU

)

+
∂2

∂y2

(
∂U

∂t
+ ÊU

)

= 0, (3.3.48)

−µ̂n

∂P

∂y
+

∂2

∂y2

(
∂V

∂t
+ ÊV

)

+ η2 ∂
2

∂x2

(
∂V

∂t
+ ÊV

)

= 0, (3.3.49)

where we have introduced the following dimensionless parameters

η =
gi

λ
, µ̂n =

µn

µ1
, Ê =

E ′T

µ1
. (3.3.50)

Physically, η is the inverse aspect ratio, µ̂n is the ratio of the viscosities of

the cells and ECM, and Ê the ratio of the timescale of interest to the ECM
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relaxation timescale.

The dimensionless forms of equations (3.3.7) and (3.3.8) are unchanged.

The boundary conditions (3.3.9) become

U(0, y, t) = U(1/ε, y, t) = 0, (3.3.51)

where ε = λ/L, the ratio of the aggregate lengthscale to that of the culture

well, is observed to be small.

We now introduce the dimensionless version of the stress tensor σρ, which

is scaled with κµ1/T

σρ = −µ̂nPI +
∂ε

∂t
+ Êε, (3.3.52)

where

ε =




2∂U

∂x
1
η

∂U
∂y

+ η ∂V
∂x

1
η

∂U
∂y

+ η ∂V
∂x

2∂V
∂y



 . (3.3.53)

The continuity of normal stress condition, (3.3.10) becomes

n̂ · (σρ · n̂)|y=g =
µ̂n

κ
n̂ · (σ · n̂)|y=g, (3.3.54)

whilst the nondimensional tangential stress condition (3.3.11) gives

t̂ · (σρ · n̂)|y=g =
µ̂n

κ
t̂ · (σ · n̂)|y=g. (3.3.55)

Here, σ is the dimensionless stress tensor for the cell and culture medium

mixture (scaled with µn/T ). We note that choosing µ̂n/κ = 1 sets the ratio

of the deformation and aggregate lengthscales; thus, when the ECM is very

viscous compared to the cells, we expect deformations to be small.

The unit normal and tangent vectors to the surface y = g are given by

n̂ =
1

√

1 + η2
(

∂g

∂x

)2

(

−η ∂g
∂x
, 1

)

, t̂ =
1

√

1 + η2
(

∂g

∂x

)2

(

1, η
∂g

∂x

)

.

(3.3.56)
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The dimensionless form of the kinematic boundary condition (3.3.13) is

κ
∂V

∂t
=
∂g

∂t
+ κ

∂U

∂t

∂g

∂x
, (3.3.57)

and is subject to the initial condition

g(x, 0) = 1. (3.3.58)

Governing equations for the cells and culture medium

Following nondimensionalisation, the forms of the mass conservation equations

for the cells and the culture medium, (3.3.16) and (3.3.17) and the kinematic

conditions (3.3.18) and (3.3.19) remain unchanged. We now introduce pT =

p + nΣn which appears as the ‘total’ pressure in σ (the stress tensor for the

two phase mixture), and the following scalings

p̃T =
pTT

µn

, Σ̃n =
Σn

Γ1
. (3.3.59)

Scaling the chemoattractant concentration with α0λ
2/D (see below for details),

we thus see from equation (3.3.27) that the nondimensional form of Σn is

Σ̃n = (1 − τ̂ c̃)H(ĉmax − c̃), (3.3.60)

where τ̂ = τα0λ
2/D and ĉmax = cmaxD/α0λ

2, with the constraint becoming

ĉmax < 1/τ̂ .

The nondimensional versions of equations (3.3.31) and (3.3.32) are then

−∂pT

∂x
+ 2

∂

∂x

(

n
∂un

∂x

)

+
∂

∂y

(

n
∂vn

∂x

)

+ η−2 ∂

∂y

(

n
∂un

∂y

)

= 0, (3.3.61)

−∂pT

∂y
+ 2

∂

∂y

(

n
∂vn

∂y

)

+
∂

∂x

(

n
∂un

∂y

)

+ η2 ∂

∂x

(

n
∂vn

∂x

)

= 0, (3.3.62)

while equations (3.3.33) and (3.3.34) become

−∂pT

∂x
+ Γ̂1

∂

∂x
(nΣn) − k̂1n(uw − un) = 0, (3.3.63)

η−2

(

−∂pT

∂y
+ Γ̂1

∂

∂y
(nΣn)

)

− k̂1n(vw − vn) = 0. (3.3.64)
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The dimensionless parameters Γ̂1 and k̂1 represent respectively the relative

strengths of chemotaxis and cell-culture medium drag compared to viscous

effects, such that

Γ̂1 =
Γ1T

µn

, k̂1 =
k1λ

2

µn

. (3.3.65)

We now specify the dimensionless boundary and initial conditions. Conti-

nuity of normal stress at y = g then gives

µ̂n

κ
n̂ · (σ · n̂)|y=g = n̂ · (σρ · n̂)|y=g, (3.3.66)

where

σ = pT I + ne, (3.3.67)

and

e =
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 . (3.3.68)

Continuity of tangential stress at y = g, combined with the cell-ECM adhesion

condition (3.3.39), gives

t̂ · (σ · n̂)|y=g =
κ

µ̂n

t̂ · (σρ · n̂)|y=g (3.3.69)

=
k̂2n

η

(

vn − κ
∂U

∂t

)

· t̂|y=g, (3.3.70)

where k̂2 = k2ρ0gi/µn is the ratio of cell-ECM drag to cell viscosity.

At y = h, the normal and tangential stress conditions are, respectively

n̂ · (σ · n̂|y=h) = −CΥ(n)
∂

∂x




1

√

1 + η2 ∂h
∂x

2

∂h

∂x



 . (3.3.71)

where C is the inverse capillary number given by C = γcηT/µnλ, and

t̂ · (σ · n̂|y=h) = 0. (3.3.72)

The unit normal and tangent to y = h are given by

n̂ =
1
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∂h
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−η∂h
∂x
, 1

)
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(3.3.73)
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These are supplemented by the rescaled no-flux boundary conditions on

x = 0, 1/ε

un(0, y, t) = un(1/ε, y, t) = uw(1/ε, y, t) = 0. (3.3.74)

The initial condition for n becomes

n(x, y, 0) = ni(x), 0 ≤ x ≤ 1/ε, g ≤ y ≤ h. (3.3.75)

Governing equation for the chemoattractant

In (3.3.40) we scale c with α0λ
2/D, which gives an estimate of the amount

of chemoattractant produced on the timescale for diffusion, Tdiff = λ2/D. In

nondimensional variables, the governing equation is then

P
[
∂

∂t
(cw) +

∂

∂x
(cwuw) +

∂

∂y
(cwvw)

]

=
∂

∂x

(

w
∂c

∂x

)

+η−2 ∂

∂y

(

w
∂c

∂y

)

+nw−αcw,
(3.3.76)

where P = λ2/DT is the Péclet number (ratio of diffusive and advective

timescales), and α = α1λ
2/D is the dimensionless decay rate of the chemical.

The dimensionless boundary and initial conditions are

c(x, y, 0) = ci(x, y), (3.3.77)

Pcwuw − w
∂c

∂x
= 0 at x = 0,

1

ε
, (3.3.78)

n̂ · (Pcwvw − w∇c) = 0 at y = g, h. (3.3.79)

We have now developed our two-dimensional model of cell aggregation in

vitro. In the early stages of the process, the cell clusters remain well spread

on the surface of the ECM (see Chapter 1), so the inverse aspect ratio of the

aggregates η will be small. (Note that this assumption is violated during the

later stages, when the clusters contract and detach from the ECM to form

spheroids.) Following King and Oliver [53], in the remainder of this chapter,

we exploit the thin geometry of the problem to reduce our two dimensional

model to a simpler, one-dimensional form. We begin in §3.4 by considering

the evolution of the chemoattractant concentration .
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3.4 Chemoattractant concentration: rapid dif-

fusion limit

We consider the limit in which diffusion of the chemoattractant occurs almost

instantaneously, compared to the timescale for cell movement i.e. the Péclet

number, P � 1. Formally setting P = 0 in equation (3.3.76), we obtain the

following
∂

∂x

(

w
∂c

∂x

)

+ η−2 ∂

∂y

(

w
∂c

∂y

)

+ nw − αcw = 0. (3.4.1)

Note that an initial condition for c is no longer required. We exploit the thin

geometry of the problem, by assuming η = gi/λ � 1 and seeking a regular

power series expansion for c in terms of the small parameter η2

c = c0 + η2c1 + ... . (3.4.2)

At O(η−2) we thus have

∂

∂y

(

w0
∂c0
∂y

)

= 0 ⇒ w0
∂c0
∂y

= f(x, t), (3.4.3)

where w0 = 1− n0 is the leading order solution for w and f(x, t) is a function

to be determined by imposing the boundary conditions. At leading order,

equation (3.3.79) gives

w0
∂c0
∂y

= 0 at y = g0, h0. (3.4.4)

Hence applying this condition at either g0 or h0 implies that f(x, t) ≡ 0. We

thus find that c0 depends only on x and t (since c is the concentration of the

chemoattractant in water, it is not defined for w = 0).

At next order we have

∂

∂x

(

w0
∂c0
∂x

)

+
∂

∂y

(

w0
∂c1
∂y

)

+ n0w0 − αc0w0 = 0. (3.4.5)

The boundary conditions (3.3.79) become, at this order

w0
∂c1
∂y

− w0
∂g0

∂x

∂c0
∂x

= 0, on y = g0 (3.4.6)
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w0
∂c1
∂y

− w0
∂h0

∂x

∂c0
∂x

= 0, on y = h0 (3.4.7)

Integrating equation (3.4.5) with respect to y between y = g0 and y = h0

and applying boundary conditions (3.4.6) and (3.4.7), we obtain

1

h0 − g0

∂

∂x

(

(h0 − g0)w0
∂c0
∂x

)

+ (w0n0) − αw0c0 = 0, (3.4.8)

where depth averages are denoted by overbars so that

F (x, t) =
1

(h0 − g0)

∫ h0

g0

F (x, y, t)dy. (3.4.9)

Hence, in this section, we have reduced the two dimensional, time-dependent

equation (3.3.76) to a much simpler one dimensional, quasi-steady formulation

(3.4.8), subject to the boundary conditions (3.3.78).

3.5 Extensional regime

In this section, we continue to exploit the fact that η = gi/λ � 1 to simplify

the equations for the ECM, cells and culture medium developed in §3.3.5. By

introducing new scalings for the additional pressure or ‘chemotaxis’ term, Σn,

and the cell-culture medium drag k̂1, we reduce our two-dimensional model to

a one-dimensional system. In the particular regime studied in this section, we

find that the horizontal cell velocity, un, is independent of y. Borrowing termi-

nology from fluid dynamics [45], we therefore refer to this as the ‘extensional

regime’.

We consider a regime in which the scaling for the total pressure in the

two-phase mixture (pT ) is as in §3.3.5; however, Σn is assumed to be large so

that

Γ̂1 = η−2Γ̂∗
1, (3.5.1)

(stars denote rescaled quantities). Thus the forces generated by the cells in

response to the chemoattractant are assumed large, whilst the overall mixture
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pressure is assumed O(1) (the latter being equivalent to the scaling adopted

by Howell in the one-phase case [45]). We also rescale the coefficient of drag

between cells and culture medium as follows:

k̂1 = η−2k̂∗1, (3.5.2)

so there is strong coupling between the movement of the cells and the culture

medium; this allows us to obtain a non-trivial relationship between Σn, un and

uw in equation (3.5.4) below. Finally, we rescale the cell-ECM drag parameter

k̂2 to be O(η2) - i.e.

k̂2 = η2k̂∗2, (3.5.3)

so cell adhesion to the ECM is weak. This scaling is introduced, as for

k̂2 ∼ O(1) we find that we have a trivial situation in which un ≡ 0 at leading

order (see Appendix B). In this regime, there is no ECM deformation at lead-

ing order, so the cell-ECM interface is fixed at y = gi ≡ 1.

The mass conservation equations (3.3.16) and (3.3.17) are unchanged as

a result of the rescalings above. However, the momentum equations and dy-

namic boundary conditions for the cells and culture medium are modified as

set out below.

Following the rescalings, equations (3.3.63), (3.3.64), (3.3.61) and (3.3.62) be-

come

−η2∂pT

∂x
+ Γ̂∗

1

∂

∂x
(nΣn) − k̂∗1n(uw − un) = 0, (3.5.4)

−η2∂pT

∂y
+ Γ̂∗

1

∂

∂y
(nΣn) − η2k̂∗1n(vw − vn) = 0, (3.5.5)

−η2∂pT

∂x
+ 2η2 ∂

∂x

(

n
∂un

∂x

)

+ η2 ∂

∂y

(

n
∂vn

∂x

)

+
∂

∂y

(

n
∂un

∂y

)

= 0, (3.5.6)

−∂pT

∂y
+ 2

∂

∂y

(

n
∂vn

∂y

)

+
∂

∂x

(

n
∂un

∂y

)

+ η2 ∂

∂x

(

n
∂vn

∂x

)

= 0. (3.5.7)

Henceforth we shall drop the stars when referring to rescaled parameters.
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We seek solutions of the governing equations in the form of regular power

series expansions in the small parameter η2 so that

n = n0 + η2n1 + ...,

with similar expressions for pT , un, vn and h.

The leading order boundary conditions become

vn0 =
∂g0

∂t
+ un0

∂g0

∂x
, vw0 =

∂g0

∂t
+ uw0

∂g0

∂x
on y = g0, (3.5.8)

vn0 =
∂h0

∂t
+ un0

∂h0

∂x
, vw0 =

∂h0

∂t
+ uw0

∂h0

∂x
on y = h0, (3.5.9)

n0
∂un0

∂y
= 0 on y = 1, h0, (3.5.10)

−pT0 + 2n0
∂vn0

∂y
= CΥ(n0)

∂2h0

∂x2
+ n0

∂h0

∂x

∂un0

∂y
on y = h0. (3.5.11)

Note that we have omitted the continuity of normal stress boundary condition

at y = g0. This condition is used to determine the leading-order pressure P0 in

the ECM, but since this does not produce an O(1) deformation of the ECM it

is omitted here and instead appears in Appendix B. Our aim in the remainder

of this section is to manipulate the rescaled equations (subject to the bound-

ary conditions above) to obtain an equivalent one-dimensional model.

At leading order equation (3.5.5) supplies

∂

∂y
(n0Σn0) = 0 ⇒ n0 = n0(x, t), (3.5.12)

since nΣn is a function of n and c, and we have shown in §3.4 that, at leading

order, c is independent of y. The leading order balance in equation (3.5.6)

then gives
∂

∂y

(

n0
∂un0

∂y

)

= 0. (3.5.13)

Integrating with respect to y and imposing the zero tangential stress boundary

condition on either y = 1 or y = h0 (3.5.10) yields

n0
∂un0

∂y
= 0 ⇒ un0 = un0(x, t), (3.5.14)
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assuming, for a non-trivial solution, that n0 6= 0.

Having established that n0 and un0 are independent of y, we proceed as fol-

lows. Firstly, we obtain an equation for un0 by integration of equation (3.5.6),

considered at O(η2). We then determine pT0, vn0 and uw0 in terms of n0, un0

and h0 using equations (3.3.16), (3.5.4) and (3.5.7) and associated boundary

conditions. (We find it is not necessary to solve for vw0.) By integrating equa-

tions (3.3.16) and (3.3.17) between y = 1 and y = h0, we obtain equations for

n0 and h0, and complete our derivation of the reduced model.

To obtain an equation for un0, it is necessary to consider equation (3.5.6)

at O(η2). This gives the following

−∂pT0

∂x
+ 2

∂

∂x

(

n0
∂un0

∂x

)

+
∂

∂y

(

n0
∂vn0

∂x

)

+
∂

∂y

(

n0
∂un1

∂y

)

= 0. (3.5.15)

Integrating equation (3.5.15) between y = g0 ≡ 1 and y = h0 yields

−
∫ h0

1

∂pT0

∂x
dy + 2(h0 − 1)

∂

∂x

(

n0
∂un0

∂x

)

= −
[

n0
∂un1

∂y
+ n0

∂vn0

∂x

]y=h0

y=1

.

(3.5.16)

We note that at O(η2) the tangential stress boundary conditions at y = 1, h0

(3.5.10) give

n0
∂un1

∂y
+ n0

∂vn0

∂x
+ 2n0

∂vn0

∂y

∂h0

∂x
− 2n0

∂un0

∂x

∂h0

∂x
= 0, on y = h0 (3.5.17)

n0
∂un1

∂y
+ n0

∂vn0

∂x
= k̂2n0un0 on y = 1, (3.5.18)

so that

−
[

n0
∂un1

∂y
+ n0

∂vn0

∂x

]h0

1

= 2n0
∂vn0

∂y

∂h0

∂x
− 2n0

∂un0

∂x

∂h0

∂x
+ k̂2n0un0. (3.5.19)

We thus obtain the following equation for the leading-order cell velocity

−
∫ h0

1

∂pT0

∂x
dy+2(h0−1)

∂

∂x

(

n0
∂un0

∂x

)

= 2n0
∂vn0

∂y

∂h0

∂x
−2n0

∂un0

∂x

∂h0

∂x
+k̂2n0un0.

(3.5.20)
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Using Leibniz integral rule, we can re-write the above as

− ∂

∂x

∫ h0

1

pT0dy+2
∂

∂x

(

n0(h0 − 1)
∂un0

∂x

)

= −pT0

∣
∣
∣
∣
y=h0

∂h0

∂x
+2n0

∂vn0

∂y

∂h0

∂x
+k̂2n0un0.

(3.5.21)

To eliminate the pT0 term in equation (3.5.20), we now consider equation

(3.5.7) at leading order. We note that since un0 = un0(x, t), the leading order

term involving ∂un/∂y in (3.5.7) vanishes, to give

−∂pT0

∂y
+ 2

∂

∂y

(

n0
∂vn0

∂y

)

= 0. (3.5.22)

Integrating equation (3.5.22), and imposing the normal stress boundary con-

dition at y = h0 (3.5.11) gives

−pT0 + 2n0
∂vn0

∂y
= CΥ(n0)

∂2h0

∂x2
, (3.5.23)

since un0 is independent of y. This expression can be used to eliminate the first

two terms on the RHS of equation (3.5.21). However, in order to eliminate the

pT0 term from the LHS of equation (3.5.21), we return to the conservation of

mass equation (3.3.16), which gives

∂

∂y
(n0vn0) = −

(
∂n0

∂t
+

∂

∂x
(n0un0)

)

. (3.5.24)

Since the RHS is a function of x and t only, we can simply integrate to deter-

mine n0vn0 as a function of n0 and un0. We impose the kinematic boundary

condition on y = 1 to obtain the following

vn0 = −(y − 1)

n0

(
∂n0

∂t
+

∂

∂x
(n0un0)

)

. (3.5.25)

Equation (3.5.23) then gives, at leading order

pT0 = −2

(
∂n0

∂t
+

∂

∂x
(n0un0)

)

− CΥ(n0)
∂2h0

∂x2
. (3.5.26)

Since we have now established that pT0 is independent of y, the integral in

equation (3.5.21) can be performed, giving the following equation for un0 in

terms of n0 and h0

2
∂

∂x

[

(h0 − 1)

(
∂n0

∂t
+ un0

∂n0

∂x
+ 2n0

∂un0

∂x

)]

+ (h0 − 1)
∂

∂x

(

CΥ(n0)
∂2h0

∂x2

)

= k̂2n0un0. (3.5.27)
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We derive equations for n0 and h0 as follows. Integrating equation (3.3.16)

between y = 1 and y = h0 yields

∂

∂t
[n0(h0 − 1)] +

∂

∂x
[n0un0(h0 − 1)] = 0. (3.5.28)

We remark that this equation can also be derived by setting y = h0 on the

RHS of equation (3.5.25), and using the kinematic boundary condition (3.5.9)

to eliminate vn0 . This provides a simple check on the consistency of our for-

mulation.

Similarly, integration of equation (3.3.17) between y = 1 and y = h0 gives

∂

∂t
[w0(h0 − 1)] +

∂

∂x
[w0uw0(h0 − 1)] = 0. (3.5.29)

We eliminate w0 in equation (3.5.29) above using the no voids condition, and

then by taking linear combinations of equations (3.5.28) and (3.5.29) we obtain

the following evolution equations for n0 and h0

∂

∂t
(h0 − 1) +

∂

∂x
[(h0 − 1)(n0un0 + (1 − n0)uw0)] = 0, (3.5.30)

∂n0

∂t
+ un0

∂n0

∂x
− n0

(h0 − 1)

∂

∂x
[(h0 − 1)(1 − n0)(uw0 − un0)] = 0, (3.5.31)

wherein, from equation (3.5.4),

uw0 = un0 +
Γ̂1

k̂1n0

∂

∂x
(n0Σn0). (3.5.32)

In this regime, since there is no ECM deformation at leading order, the

model simplifies greatly; we no longer need to solve for P , U , V or g, and

the values of the dimensionless parameters µ̂n and Ê, which are related to

the ECM’s mechanical properties, are not required. Using a thin-film ap-

proximation, we have reduced our two-dimensional model for the cells and

culture medium to a one-dimensional problem at leading order. The reduced

model consists of three coupled partial differential equations for n0, un0 and

h0, supplemented by equation (3.4.8) for the chemoattractant and associated

boundary conditions.
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3.5.1 Summary of governing equations

For clarity, we now summarise the reduced model which, in this case, consists

of four coupled PDEs for n0, un0, h0 and c0.

The leading-order volume fraction of cells, n0 is given by

∂n0

∂t
+ un0

∂n0

∂x
− Γ̂1n0

k̂1(h0 − 1)

∂

∂x

[
(h0 − 1)(1 − n0)

n0

∂

∂x
(n0Σn0)

]

= 0, (3.5.33)

where we have substituted for uw0 using equation (3.5.32).

Eliminating ∂n0/∂t between equations (3.5.33) and equation (3.5.27) we

deduce that un0 satisfies

2
∂

∂x

[

(h0 − 1)

(

2n0
∂un0

∂x
+

Γ̂1n0

k̂1(h0 − 1)

∂

∂x

[
(h0 − 1)(1 − n0)

n0

∂

∂x
(n0Σn0)

])]

= k̂2n0un0 − (h0 − 1)
∂

∂x

(

CΥ(n0)
∂2h0

∂x2

)

. (3.5.34)

The evolution of h0 is then governed by

∂

∂t
(h0 − 1) +

∂

∂x

[

(h0 − 1)

(

un0 +
Γ̂1(1 − n0)

k̂1n0

∂

∂x
(n0Σn0)

)]

= 0. (3.5.35)

Finally, the chemoattractant concentration evolves as follows

1

h0 − 1

∂

∂x

(

(h0 − 1)(1 − n0)
∂c0
∂x

)

+ n0(1 − n0) − α(1 − n0)c0 = 0, (3.5.36)

where we have dropped the overbars which appeared in equation (3.4.8), as n0

is independent of y in this scaling regime.

In summary, our reduced model comprises equations (3.5.33)-(3.5.36), which

contain the dimensionless parameters Γ̂1/k̂1, k̂2, C , α, τ̂ and ĉmax (the lat-

ter two arising in our chosen form for Σn). They are solved subject to the

following boundary and initial conditions

n0(x, 0) = ni(x), (3.5.37)
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∂n0

∂x
= 0 at x = 0, 1/ε, (3.5.38)

un0 = 0 at x = 0, 1/ε, (3.5.39)

h0(x, 0) = 1 + hi, (3.5.40)

∂c0
∂x

= 0 at x = 0, 1/ε. (3.5.41)

A notable feature of equations (3.5.33)-(3.5.35) is that the parameters Γ̂1 and

k̂1 appear only in the combination Γ̂1/k̂1 = Γ1T/k1λ
2. Further, if we fix

Γ̂1/k̂1 = α = 1 then we are effectively selecting the time and length scales of

interest (T and λ) on the basis of chemotactic cell movement.

Before continuing, we pause to point out a number of features of our re-

duced model. We note that equations (3.5.33), (3.5.34) and (3.5.35) are the

one-dimensional analogues of those presented in Appendix 1 of [53] (where a

underlying 3D model is reduced to 2D form by use of the thin film approxima-

tion). Furthermore, in the limit where n0 → 1, Γ̂1 , k̂2 and C → 0 (correspond-

ing to a one phase model without chemotaxis, and where surface tension and

ECM adhesion effects are negligible), equations (3.5.34) and (3.5.35) reduce to

the Trouton model (3.2.1). We also note that equations (3.5.28) and (3.5.29)

are the analogues of (2.2.2a) and (2.2.2b), representing conservation of cells

and culture medium within the mixture layer. In the limit where C = 0, the

viscous and cell-ECM drag terms in equation (3.5.34) take the same form as

in equation (2.2.29) (provided ECM deformation is negligible in the latter).

However, there is no correspondence between the Σn and k̂1 terms in the two

models, due to the fact that the thin film model assumes the Σn term to be

large.

We remark that the term in equation (3.5.33) involving Σn0 may be split

into ‘diffusive’ and ‘chemotactic’ components via:

∂

∂x
(n0Σn0) =

∂

∂n0
(n0Σn0)

∂n0

∂x
+ n0

∂Σn0

∂c0

∂c0
∂x

. (3.5.42)
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From this decomposition it is clear that we require ∂/∂n0(n0Σn0) > 0; oth-

erwise equation (3.5.33) becomes the backward heat equation. Since we have

assumed that Σn0 = Σn0(c0), this condition reduces to Σn0 > 0. We also

remark that the condition that ∂Σn0/∂c0 < 0 (required so that c acts as a

chemoattractant) implies that diffusion is reduced as c0 increases, since the

effective diffusion coefficient depends on Σn0, which is a decreasing function of

c0. The biological significance of this fact is discussed in §3.7. Furthermore, the

appearance of Σn0 in the evolution equation for n0 (contrast equation (2.2.2a))

means that the approach we adopted in Chapter 2 (where we neglected the

chemoattractant and specified Σn in terms of n) cannot be adopted here, as

the model would then be ill posed in the case of aggregation.

Another interesting feature of equation (3.5.33) is that we observe there are

two mechanisms by which the cell volume fraction n0 can change. The most

obvious is by cell migration (represented by the un0 term), but n0 may also

change due to movement of the culture medium, since cell-culture medium

drag gives rise to the Σn0 term in equation (3.5.33) (see equation (3.5.32)

above).

3.6 Lubrication regime

In this section, we consider an alternative thin film reduction of our model.

We retain the scalings of §3.5 for the additional pressure or ‘chemotaxis’ term,

Σn, and the cell-culture medium drag, k̂1, but now assume that the mixture

pressure and surface tension are large, as is conventional in lubrication theory

[79]. Specifically, the dimensionless governing equations of §3.3.5 are rescaled

in the following manner

pT = η−2p∗T , Γ∗
1 = η−2Γ∗

1, P = η−2P ∗, C = η−2C∗, (3.6.1)
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where the stars denote rescaled quantities. These scalings imply that both the

pressure generated in response to the chemoattractant (Σn) and the overall

pressure in the two-phase mixture of cells and culture medium (pT ) are large.

This, in turn, means that surface tension effects (C) must be stronger to ac-

commodate the larger pressure jump between the mixture and free space, and

that the pressure in the underlying ECM layer (P ) must also be large, in order

to guarantee continuity of normal stress.

In the ensuing analysis, we drop the stars for notational convenience.

3.6.1 ECM equations

As in §3.5, we expand the dependent variables as power series in the small pa-

rameter η2 � 1, and thence reduce the governing equations to one-dimensional

form at leading order. By making a suitable ansatz for the horizontal dis-

placements of the ECM, we are able to solve for U0, V0, P0 and g0 in terms

of quantities associated with the cells and culture medium (n0, un0 and pT0)

and two new functions φ(x, t) and ψ(x, t), equations for which are derived here.

The leading-order version of equation (3.3.49) gives

∂P0

∂y
= 0 ⇒ P0 = P0(x, t). (3.6.2)

To determine P0, we impose the normal stress boundary condition on y = g0

(3.3.54), which gives:

κP0 = pT0. (3.6.3)

In the x-direction, the leading order balance in (3.3.48) is now

∂2

∂y2

(
∂U0

∂t
+ ÊU0

)

= µ̂n

∂P0

∂x
. (3.6.4)

We seek a solution of the form

U0(x, y, t) = yφ(x, t) + y2ψ(x, t), (3.6.5)



Chapter 3 Modelling of chemotactic cell aggregation in
vitro. Part I: Model derivation and thin film limits 87

which automatically satisfies the zero-displacement boundary condition on y =

0. We note that the condition U(x, y, 0) = 0 implies that φ(x, 0) = ψ(x, 0) = 0.

Equation (3.6.4) then gives

∂ψ

∂t
+ Êψ =

µ̂n

2

∂P0

∂x
=
µ̂n

2κ

∂pT0

∂x
. (3.6.6)

Imposition of the tangential stress boundary condition on y = g0 (3.3.55) then

gives an equation for φ

∂φ

∂t
+ Êφ =

µ̂nk̂2n0

κ

(

un0|y=g0
− κg0

∂φ

∂t
− κg2

0

∂ψ

∂t

)

− 2κg0

(
∂ψ

∂t
+ Êψ

)

.

(3.6.7)

The leading order vertical displacement V0 is now determined from the ECM

incompressibility condition (3.3.4) as

V0 = −y2

(
1

2

∂φ

∂x
+
y

3

∂ψ

∂x

)

, (3.6.8)

where we have applied V0|y=0 = 0.

Imposing the kinematic condition on y = g0 (3.3.57) yields the following

equation for the position of the interface, g0

∂g0

∂t
+ κ

∂

∂x

(
g2
0

2

∂φ

∂t
+
g3
0

3

∂ψ

∂t

)

= 0. (3.6.9)

In contrast to the extensional flow regime, in this case coupling of the cells

and ECM is non-trivial. By introducing the two new functions φ(x, t) and

ψ(x, t), and making a thin film approximation, we have reduced the leading-

order problem for the ECM displacements U0 and V0 to one-dimensional form.

A 1D partial differential equation for the interface position g0 (3.6.9) has also

been derived and the pressure P0 specified in terms of the pressure in the

mixture of cells and culture medium, pT0. The functions ψ(x, t) and φ(x, t) are

determined by equations (3.6.6) and (3.6.7) and depend on variables associated

with the cells and culture medium (pT0 and un0), which will be determined in

the next section. The two-dimensional ECM model has thus been reduced to

three coupled one-dimensional equations - namely (3.6.6), (3.6.7) and (3.6.9).



Chapter 3 Modelling of chemotactic cell aggregation in
vitro. Part I: Model derivation and thin film limits 88

3.6.2 Cell and culture medium equations

In this section, we determine the leading-order solution of the 2D model for the

mixture of cells and culture medium, using the same approach as in §3.5. Fol-

lowing the rescalings presented in equation (3.6.1), the momentum equations

for the culture medium, (3.3.33) and (3.3.34), become

−∂pT

∂x
+ Γ̂1

∂

∂x
(nΣn) − k̂1n(uw − un) = 0, (3.6.10)

−∂pT

∂y
+ Γ̂1

∂

∂y
(nΣn) − η2k̂1n(vw − vn) = 0, (3.6.11)

whilst those for the two-phase mixture, (3.3.31) and (3.3.32), give

−∂pT

∂x
+ 2η2 ∂

∂x

(

n
∂un

∂x

)

+ η2 ∂

∂y

(

n
∂vn

∂x

)

+
∂

∂y

(

n
∂un

∂y

)

= 0, (3.6.12)

−∂pT

∂y
+ 2η2 ∂

∂y

(

n
∂vn

∂y

)

+ η2 ∂

∂x

(

n
∂un

∂y

)

+ η4 ∂

∂x

(

n
∂vn

∂x

)

= 0. (3.6.13)

As in §3.5, we expand the dependent variables in powers of the small pa-

rameter η2. At leading order the boundary conditions are as follows

κP0 = pT0 on y = g0, (3.6.14)

n0
∂un0

∂y
= k̂2n0

(

un0 − κ
∂U0

∂t

)

on y = g0, (3.6.15)

vn0 =
∂g0

∂t
+ un0

∂g0

∂x
, vw0 =

∂g0

∂t
+ uw0

∂g0

∂x
on y = g0 (3.6.16)

vn0 =
∂h0

∂t
+ un0

∂h0

∂x
, vw0 =

∂h0

∂t
+ uw0

∂h0

∂x
on y = h0 (3.6.17)

n0
∂un0

∂y
= 0 on y = h0, (3.6.18)

−pT0 = CΥ(n0)
∂2h0

∂x2
on y = h0. (3.6.19)

At leading order equation (3.6.13) supplies

∂pT0

∂y
= 0 ⇒ pT0 = −CΥ(n0)

∂2h0

∂x2
, (3.6.20)

where we have applied the normal stress boundary condition (3.6.19).
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As in §3.5, equation (3.6.11) gives

∂

∂y
(n0Σn0) = 0 ⇒ n0 = n0(x, t). (3.6.21)

Integration of equation (3.6.12) thus yields

un0
= κg0

∂φ

∂t
+κg2

0

∂ψ

∂t
+
C

2n0

(
2(h0 − g0)

k̂2

+ (h0 − g0)
2 − (h0 − y)2

)
∂

∂x

(

Υ(n0)
∂2h0

∂x2

)

,

(3.6.22)

where we have substituted for pT0 from equation (3.6.20), for ∂U0

∂t
|y=g0

from

equation (3.6.5) and applied conditions (3.6.18) and (3.6.15).

In order to obtain equations for n0 and h0, we integrate equations (3.3.16)

and (3.3.17) between y = g0 and y = h0 and apply the kinematic boundary

conditions (3.6.16)-(3.6.17), to get

∂

∂t
[n0(h0 − g0)] +

∂

∂x
[n0(h0 − g0)ūn0] = 0, (3.6.23)

∂

∂t
[w0(h0 − g0)] +

∂

∂x
[w0(h0 − g0)ūw0] = 0, (3.6.24)

where, as in §3.4, we have defined

F̄ =
1

(h0 − g0)

∫ h0

g0

Fdy. (3.6.25)

From equation (3.6.22) we hence obtain

ūn0 = κg0
∂φ

∂t
+ κg2

0

∂ψ

∂t
+
C(h0 − g0)

n0

(
1

k̂2

+
(h0 − g0)

3

)
∂

∂x

(

Υ(n0)
∂2h0

∂x2

)

.

(3.6.26)

Equation (3.6.10) gives

uw0 = un0 +
1

k̂1n0

∂

∂x

[

Γ̂1n0Σn0 + CΥ(n0)
∂2h0

∂x2

]

, (3.6.27)

and thus

ūw0 = ūn0 +
1

k̂1n0

∂

∂x

[

Γ̂1n0Σn0 + CΥ(n0)
∂2h0

∂x2

]

. (3.6.28)

By taking linear combinations of equations (3.6.23) and (3.6.24) we arrive at

the following system of equations for h0 and n0 which are similar to those
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presented in [53]

∂(h0 − g0)

∂t
+

∂

∂x
((h0 − g0)(n0ūn0

+ (1 − n0)ūw0)) = 0, (3.6.29)

∂n0

∂t
+ ūn0

∂n0

∂x
+

n0

(h0 − g0)

∂

∂x
((1 − n0)(h0 − g0)(ūn0 − ūw0)) = 0. (3.6.30)

In this section, we began with partial differential equations for the physical

variables n, un, uw, vn, vw, pT and h. Using the thin-film approximation, we

have reduced the system to two PDEs for n0 and h0 (the leading-order expres-

sion for h and n. All other variables have been specified in terms of h0 and

n0, and quantities associated with the ECM (φ, ψ and g0).

3.6.3 Summary of governing equations

For clarity, we now summarise the governing equations, boundary and initial

conditions for the reduced model. In this regime, the coupling between the

cells and the ECM is non-trivial. The horizontal deformation of the ECM

is determined by the relation U(x, y, t) = y (φ(x, t) + yψ(x, t)) with the two

functions φ and ψ, given by

∂φ

∂t
+ Êφ =

µ̂nC

κ
h0

∂

∂x

(

Υ(n0)
∂2h0

∂x2

)

, (3.6.31)

∂ψ

∂t
+ Êψ = − µ̂nC

2κ

∂

∂x

(

Υ(n0)
∂2h0

∂x2

)

. (3.6.32)

Equations (3.6.31) and (3.6.32) are subject to the initial condition φ = ψ = 0

at t = 0, which guarantees that the initial displacement of the ECM is zero.

The leading-order volume fraction of the cells is given by

∂n0

∂t
+ ūn0

∂n0

∂x

− n

k̂1(h0 − g0)

∂

∂x

[
(1 − n0)(h0 − g0)

n0

∂

∂x

(

Γ̂1n0Σn0 + CΥ(n0)
∂2h0

∂x2

)]

= 0,

(3.6.33)
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which is similar to its equivalent in the extensional regime (equation (3.5.33)),

except for the inclusion of the surface tension term. Hence the comments re-

garding Σn and the possibility of ill-posedness also apply here.

The positions of the interfaces, g0 and h0 obey

∂g0

∂t
+ κ

∂

∂x

(
g2
0

2

∂φ

∂t
+
g3
0

3

∂ψ

∂t

)

= 0, (3.6.34)

∂(h0 − g0)

∂t
+
∂

∂x

(

(h0 − g0)(ūn0 +
(1 − n0)

k̂1n0

∂

∂x

[

Γ̂1n0Σn0 + CΥ(n0)
∂2h0

∂x2

])

= 0,

(3.6.35)

where the depth-averaged, leading-order horizontal velocity of the cells is given

by

ūn0 = κg0
∂φ

∂t
+ κg2

0

∂ψ

∂t
+
C(h0 − g0)

n0

(
1

k̂2

+
(h0 − g0)

3

)
∂

∂x

(

Υ(n0)
∂2h0

∂x2

)

.

(3.6.36)

In the case of h0, we once again note the close correspondence between

equations (3.6.35) and (3.5.35), with the exception of the surface tension term

in the former. However, as there is now non-zero deformation of the ECM, we

have coupling between g0 and h0.

Finally, the chemoattractant concentration satisfies

1

(h0 − g0)

∂

∂x

(

(1 − n0)(h0 − g0)
∂c0
∂x

)

+n0(1−n0)−α(1−n0)c0 = 0, (3.6.37)

where we have dropped the overbars which appeared in equation (3.4.8), as n0

is independent of y in this scaling regime.

Our reduced model comprises equations (3.6.31)-(3.6.37), which contain the

dimensionless parameters µ̂n, Ê, Γ̂1, k̂1, k̂2, C , α, τ̂ and ĉmax (the latter two

arising in our chosen form for Σn). Initial conditions for equations for (3.6.31)

and (3.6.32) have already been stated, whilst equations (3.6.33)-(3.6.37) are

subject to the following boundary and initial conditions

n0(x, 0) = ni(x), (3.6.38)
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∂n0

∂x
= 0 at x = 0, 1/ε, (3.6.39)

∂

∂x

(

Υ(n0)
∂2h0

∂x2

)

= 0 at x = 0, 1/ε, (3.6.40)

g0(x, 0) = 1, (3.6.41)

h0(x, 0) = 1 + hi, (3.6.42)

∂h0

∂x
= 0 at x = 0, 1/ε, (3.6.43)

∂c0
∂x

= 0 at x = 0, 1/ε. (3.6.44)

We remark that we can recover the thin film equation (3.2.2) of [79] in the

limit µ̂n = 0, n = 1, Γ̂1 = 0 and k̂2 → ∞. The condition on µ̂n implies that

the ECM is effectively rigid; equations (3.6.32) and (3.6.31) give φ = ψ = 0

on applying the initial condition, and hence g ≡ 1 by equation (3.6.34). The

remaining conditions correspond to the limit of a one-phase model with no

chemotaxis and a no-slip boundary condition on y = g ≡ 1. Equation (3.6.36)

then becomes

ūn =
C(h0 − 1)2

3

∂3h0

∂x3
, (3.6.45)

where we have assumed, without loss of generality, that Υ(1) = 1. Substituting

this into equation (3.6.35), we obtain (3.2.2) with f ≡ 0 (as we have neglected

gravity and other effects).

3.7 Discussion

In this chapter, we have generalised the two-phase model of cell aggregation

introduced in the previous chapter by adopting a two-dimensional Cartesian

geometry (representing a vertical slice through the culture well), and includ-

ing the effect of a chemoattractant produced by the cells. Our model thus

extends previous work by Byrne and Owen [16], who also developed a two-

phase cell aggregation model, but considered only the one-dimensional case,

and neglected the viscosity of the cells and their interaction with the under-

lying substrate. We identified two scaling regimes (termed ‘extensional’ and
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‘lubrication’) in which we could exploit the thin geometry of the problem to

reduce the governing equations to a one-dimensional form. In the use of thin

film approximations, our model most closely resembles that derived by King

and Oliver [53], who used a mixture theory framework to model cell migration

on a rigid surface. Although the applications are rather different, the result-

ing models are similar, and our work might thus be extended to examine the

migration of a single cell on a deformable substrate. An important applica-

tion of such work would be to quantify the relationship between the migration

behaviour of the cell and the mechanical properties of the substrate, as exper-

imental studies have demonstrated that average cell speeds are lower on more

compliant substrates [120].

One noteworthy feature of the multiphase approach to modelling chemo-

taxis is the fact that the random motility and chemotaxis coefficients - which

are usually represented via independent constants in the Keller-Segel model -

are related, both deriving from the Σn term [16]. Given the restrictions Σn > 0,

∂Σn/∂c < 0 (which are required to ensure well-posedness of the model, and

that c acts as a chemoattractant), it is then apparent from equations (3.5.33)

and (3.6.33) that random cell motility must decline as c increases. Although

it may appear biologically plausible that at low chemical concentrations cells

move mainly at random, whilst at higher levels of chemoattractant directed

movement comes to dominate, at present there is no evidence of this being true

for hepatocytes. However, recent research by Lin et al. involving neutrophils

shows that their diffusion coefficient initially increases and then decreases, as

the concentration of a chemoattractant (interleukin 8 or IL-8) increases [60].

In addition, this paper also suggests that ‘the effective chemotaxis is possibly

strongly influenced by the mean IL-8 concentration of the stable linear gradi-

ent’. These results imply a relationship between c and the motility coefficients,

and given appropriate experimental data could be fitted to the function Σn. An

alternative approach would be to use a version of the Keller-Segel model with
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non-constant coefficients (as has been proposed, for example, in [24] where the

chemotaxis coefficient depends linearly on the cell density). This would also

require validation against experiment for each combination of cell type and

chemical.

In contrast with the 1D model in Chapter 2, for the thin film geometry

considered here it is not possible to ignore the existence of the chemoattrac-

tant (and specify Σn as a function of n alone); doing so would result in a

model that is ill-posed in the case of aggregation. Another difference is the

role of cell-culture medium drag in the models. In the 1D model, even in the

absence of cell-culture medium drag (k̂1 → 0), mass conservation requires that

culture medium move to fill any void left by migrating cells, and so the two

velocities are always coupled. In the thin film model, however, in the absence

of drag there would be no coupling between the cells and culture medium -

cell movement need only result in a movement of the interface h. This fact is

particularly obvious in the extensional regime, where Γ̂1 and k̂1 appear only

as the combination Γ̂1/k̂1, whereas in the model of Chapter 2, the equivalent

parameters appear independently.

In the extensional regime, we found that ECM deformations can be ne-

glected (providing a considerable simplification of the model), and significant

cell-ECM adhesion inhibits cell movement. This is in qualitative agreement

with the results of the previous chapter, and with experimental evidence.

When cell-ECM adhesion is weaker (k̂2 ∼ O(η2)) cell movement is possible,

and at leading order the cell velocity is given by equation (3.5.34). However,

we note from equation (3.5.33) that even if we ignore cell migration (un0), the

local volume fraction of cells, n0, can change due to movement of the culture

medium. This is discussed further in Chapter 4.

In the lubrication regime, coupling between cell movement and ECM defor-
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mation is non-trivial. Further surface tension at y = h0 plays a more important

role than in the extensional regime, since it determines un0 and thus also drives

the ECM deformations. Comparing the two regimes we noted a close corre-

spondence between equations (3.5.33) and (3.6.33), and (3.5.35) and (3.6.35)

- the correspondence being exact in the limit C → 0, g0 → 1. However, the

velocity equations, (3.5.34) and (3.6.36), obviously differ significantly as a re-

sult of the differing balances between surface tension, chemotactic and viscous

effects. Both regimes are investigated using a combination of linear stability

analysis and numerical simulations in the following chapter.

The reduced thin-film models we have developed in this chapter represent

significant simplifications of the original system of two-dimensional equations.

An improvement would be to extend our model to three spatial dimensions and

once again use the thin-film approximation to reduce the governing equations

to two-dimensional form, as in [53, 84]. We suspect that the latter refinement

would be necessary before any detailed comparison between the model predic-

tions and experimental results could be made. Furthermore, we would need

to use the fully two-dimensional version of our model (or a three-dimensional

extension of it) if we wished to consider the later stages of spheroid formation

in which the cells begin to detach from the surface of the ECM, as in that case

our assumption that n is independent of y is clearly violated. Our investiga-

tions of the simpler, one-dimensional thin-film models in the following chapter

can thus be seen as providing a starting point for future work.



Chapter 4

Modelling of chemotactic cell

aggregation in vitro. Part II:

Analysis and numerical

simulations

4.1 Introduction

In the previous chapter, we presented a new model for the chemotactic aggre-

gation of cells seeded onto a viscoelastic substrate. We considered two scaling

regimes (which we termed extensional and lubrication), and exploited the thin

geometry of the problem to reduce our original two-dimensional system of

governing equations to one-dimensional systems at leading order. Two-phase,

thin-film models similar to ours have previously been derived by King and

Oliver [53] (see also [84]), who used them to study the motility of individual

cells on a rigid substrate. They investigated their models using a combina-

tion of linear stability analysis and asymptotic methods, revealing a number

96



Chapter 4 Modelling of chemotactic cell aggregation in
vitro. Part II: Analysis and numerical simulations 97

of possible behaviours of the model (see §3.2 for details). However, due to

a number of differences in the details of the modelling (e.g. King and Oliver

include mass exchange between the two phases at the contact line) their re-

sults are not relevant to our models. To the best of our knowledge, numerical

simulations of such two-phase thin film models have not yet been presented in

the literature, most existing work on models similar to ours having focused on

the case of a one-dimensional geometry (e.g. [16]).

In this chapter, we aim to investigate the behaviour of the two thin-film

models in greater detail. We begin in §4.2 by performing a linear stability

analysis of each model, in order to determine the parameter regimes in which

we might expect to observe aggregation. We then present numerical simu-

lations in §4.3 − 4.4. The chapter concludes with a discussion of our main

findings, and suggestions for further future work.

4.2 Linear stability analysis

In this section, we perform a linear stability analysis of the two thin-film mod-

els derived in Chapter 3, in order to determine the regimes in which we may

expect to observe aggregation. As, in this chapter, we are concerned only with

the reduced models, whose governing equations are given in §3.5.1 and §3.6.3
we shall henceforth, for the sake of clarity, drop the zero-subscript when refer-

ring to the dependent variables n0, h0 etc..

4.2.1 Extensional regime

In this regime, the governing equations are

∂n

∂t
+ un

∂n

∂x
− Γ̂1n

k̂1(h− 1)

∂

∂x

[
(h− 1)(1 − n)

n

∂

∂x
(nΣn)

]

= 0, (4.2.1)
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2
∂

∂x

[

(h− 1)

(

2n
∂un

∂x
+

Γ̂1n

k̂1(h− 1)

∂

∂x

[
(h− 1)(1 − n)

n

∂

∂x
(nΣn)

])]

= k̂2nun − (h− 1)
∂

∂x

(

CΥ(n)
∂2h

∂x2

)

, (4.2.2)

∂

∂t
(h− 1) +

∂

∂x

[

(h− 1)

(

un +
Γ̂1(1 − n)

k̂1n

∂

∂x
(nΣn)

)]

= 0, (4.2.3)

1

h− 1

∂

∂x

(

(h− 1)(1 − n)
∂c

∂x

)

+ n(1 − n) − α(1 − n)c = 0. (4.2.4)

These are solved subject to the following boundary and initial conditions

n(x, 0) = ni(x), (4.2.5)

∂n

∂x
= 0 at x = 0, 1/ε, (4.2.6)

un = 0 at x = 0, 1/ε, (4.2.7)

h(x, 0) = 1 + hi, (4.2.8)

∂c

∂x
= 0 at x = 0, 1/ε. (4.2.9)

We consider the spatially homogeneous steady state of equations (4.2.1)-

(4.2.4), given by h = 1 + hs, n = ns, un = 0 and c = cs = ns/α (where

the final constraint applies because cs must satisfy equation (4.2.4)). We then

introduce small amplitude perturbations of the following form

n ∼ ns + n̂eiqx+ωt, un ∼ ûne
iqx+ωt, (4.2.10a)

h ∼ 1 + hs + ĥeiqx+ωt, c ∼ cs + ĉeiqx+ωt. (4.2.10b)

where q is the wavenumber, ω is the growth rate of the perturbation and |ĥ|,
|n̂|, |ûn|, |ĉ| � 1.

Substituting (4.2.10) into equations (4.2.1)-(4.2.4) and linearising, we ob-

tain the following

ωn̂+
q2Γ̂1(1 − ns)

k̂1

(β1n̂+ β2ĉ) = 0, (4.2.11)



Chapter 4 Modelling of chemotactic cell aggregation in
vitro. Part II: Analysis and numerical simulations 99

−4q2hsnsûn − 2iq3 Γ̂1hs

k̂1

(1 − ns) (β1n̂+ β2ĉ) = k̂2nsûn + iq3hsCΥ(ns)ĥ,

(4.2.12)

ωĥ+ iqhsûn − q2hsΓ̂1(1 − ns)

k̂1ns

(β1n̂+ β2ĉ) = 0, (4.2.13)

n̂− (α + q2)ĉ = 0, (4.2.14)

where β1 = ∂
∂n

(nΣn)|n=ns,c=cs
and β2 = ∂

∂c
(nΣn)|n=ns,c=cs

. Note that we as-

sumed only that the combination nΣn depends upon n and c - we have not

yet made any assumption about the functional form of Σn.

We then observe that a dispersion relation for ω = ω(q2) may be obtained

from equations (4.2.11) and (4.2.14), since they contain only n̂ and ĉ. (Equa-

tions (4.2.12) and (4.2.13) can then be used to determine ûn and ĥ in terms

of n̂.) This gives

ω +
q2Γ̂1(1 − ns)

k̂1

(

β1 +
β2

(α + q2)

)

= 0. (4.2.15)

A necessary condition for instability to occur is thus

β1 + β2/α < 0. (4.2.16)

For the simple linear choice of Σn proposed in equation (3.3.27), this reduces

to the constraint
α

τ̂
> ns >

α

2τ̂
. (4.2.17)

(Note that the upper bound comes from the constraint that cs = ns/α <

ĉmax < 1/τ̂ .) We also require β1 > 0, to avoid ill-posedness. In contrast with

the 1D model of Chapter 2, ns must now exceed a lower bound for instability

to occur. We interpret the instability condition (4.2.17) as follows. For aggre-

gation to occur, the cell density must be sufficient to produce a concentration

of chemoattractant high enough that chemotaxis dominates random cell move-

ment. However, if the cell density if too high, the chemoattractant level will

be too high (c > ĉmax), the cells receptors will be swamped and aggregation
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Figure 4.1: Plot of the square of the most unstable wavenumber, q2
c for

given seeding density ns (α = 1.4, τ̂ = 2.5, ĉmax = 1/τ̂ )

will not occur.

From equation (4.2.15) it is clear that if (4.2.16) is satisfied, the range of

unstable wavenumbers must be finite (since the β2 term vanishes as q → ∞).

Hence, we can determine the wavenumbers qc with the highest growth rates

as being the roots of ∂ω/∂q = 0, which gives

q2
c = −α±

√

−αβ2

β1

. (4.2.18)

Note that q2
c > 0 provided the instability criterion (4.2.16) is fulfilled. A graph

of q2
c is plotted in Fig. 4.1. The domain size constrains the wavenumbers which

can be selected: they must be multiples of πε in order to obey the boundary

conditions. In practice we would expect to observe the mode q for which |q−qc|
is smallest.

4.2.2 Lubrication regime

In this regime, the governing equations are

∂φ

∂t
+ Êφ = µ̂nCh

∂

∂x

(

Υ(n)
∂2h

∂x2

)

, (4.2.19)
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∂ψ

∂t
+ Êψ = −1

2
µ̂nC

∂

∂x

(

Υ(n)
∂2h

∂x2

)

, (4.2.20)

∂n

∂t
+ ūn

∂n

∂x

− n

k̂1(h− g)

∂

∂x

[
(1 − n)(h− g)

n

∂

∂x

(

Γ̂1nΣn + CΥ(n)
∂2h

∂x2

)]

= 0, (4.2.21)

∂g

∂t
+

∂

∂x

(
g2

2

∂φ

∂t
+
g3

3

∂ψ

∂t

)

= 0, (4.2.22)

∂(h− g)

∂t
+

∂

∂x

(

(h− g)(ūn +
(1 − n)

k̂1n

∂

∂x

[

Γ̂1nΣn + CΥ(n)
∂2h

∂x2

])

= 0,

(4.2.23)

ūn = g
∂φ

∂t
+ g2∂ψ

∂t
+
C(h− g)

n

(
1

k̂2

+
(h− g)

3

)
∂

∂x

(

Υ(n)
∂2h

∂x2

)

, (4.2.24)

1

(h− g)

∂

∂x

(

(1 − n)(h− g)
∂c

∂x

)

+ n(1 − n) − α(1 − n)c = 0, (4.2.25)

which are solved subject to the following boundary and initial conditions

n(x, 0) = ni(x), (4.2.26)

∂n

∂x
= 0 at x = 0, 1/ε, (4.2.27)

∂

∂x

(

Υ(n)
∂2h

∂x2

)

= 0 at x = 0, 1/ε, (4.2.28)

g(x, 0) = 1, (4.2.29)

h(x, 0) = 1 + hi, (4.2.30)

∂h

∂x
= 0 at x = 0, 1/ε, (4.2.31)

∂c

∂x
= 0 at x = 0, 1/ε. (4.2.32)

Note that throughout this chapter, we have set κ = 1 (where κ is the ratio of

the ECM deformation lengthscale to that of an aggregate).

We now consider the spatially homogeneous steady states of equations

(4.2.19)-(4.2.25), given by n = ns, φ = ψ = 0, g = gi = 1, h = 1 + hs and
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c = cs = ns/α. Small amplitude perturbations of the following form are then

introduced

φ ∼ φ̂eiqx+ωt, ψ ∼ ψ̂eiqx+ωt, (4.2.33a)

g ∼ 1 + ĝeiqx+ωt, h ∼ 1 + hs + ĥeiqx+ωt, (4.2.33b)

n ∼ ns + n̂eiqx+ωt, un ∼ ûne
iqx+ωt, c ∼ cs + ĉeiqx+ωt. (4.2.33c)

where q is the wavenumber, ω is the growth rate of the perturbation and |φ̂|,
|ψ̂|, |ĝ|, |ĥ|, |n̂|, |ûn|, |ĉ| � 1.

Substituting (4.2.33) into equations (4.2.19)-(4.2.25) and linearising, we

obtain the following

(ω + Ê)φ̂ = −iq3µ̂nCΥ(ns)(1 + hs)ĥ, (4.2.34)

(ω + Ê)ψ̂ =
iq3µ̂nΥ(n)

2
ĥ, (4.2.35)

ωn̂+
q2(1 − ns)

k̂1

[

Γ̂1(β1n̂ + β2ĉ) − q2CΥ(ns)ĥ
]

= 0, (4.2.36)

ĝ + iq

(

φ̂

2
+
ψ̂

3

)

= 0, (4.2.37)

ω(ĥ− ĝ) + iq2hs

[

ûn + iq
(1 − ns)

k̂1ns

(

Γ̂1(β1n̂+ β2ĉ) − q2CΥ(n)ĥ
)]

= 0,

(4.2.38)

ûn = ω(φ̂+ ψ̂) − iq3CΥ(ns)hs

ns

(
1

k̂2

+
hs

3

)

ĥ (4.2.39)

n̂− (α + q2)ĉ = 0, (4.2.40)

where β1 = ∂
∂n

(nΣn)|n=ns,c=cs
and β2 = ∂

∂c
(nΣn)|n=n−s,c=cs

, and we have taken

nΣn to be a general function of n and c.

Eliminating the perturbation amplitudes between equations (4.2.34)-(4.2.40),

we obtain a dispersion relation which is a cubic in ω, and takes the form

ω3 +Bω2 + Cω +D = 0, (4.2.41)

where
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B = Ê +
q2Γ̂1(1 − ns)

k̂1

(

β1 +
β2

α + q2

)

+ q4µ̂nCΥ(ns)

(

h2
s + hs +

1

3

)

+
q4h2

sCΥ(ns)

ns

(
1

k̂2

+
hs

3

)

+
q4hs(1 − ns)CΥ(ns)

k̂1ns

(4.2.42)

C =
q2Γ̂1Ê(1 − ns)

k̂1

(

β1 +
β2

α + q2

)

+
q4Êhs(1 − ns)CΥ(ns)

k̂1ns

+
q6(1 − ns)µ̂nΓ̂1CΥ(ns)

k̂1

(

h2
s + hs +

1

3

)(

β1 +
β2

α + q2

)

+
q6h2

s(1 − ns)Γ̂1CΥ(ns)

k̂1ns

(
1

k̂2

+
hs

3

)(

β1 +
β2

α + q2

)

+
q4h2

sCΥ(ns)Ê

ns

(
1

k̂2

+
hs

3

)

(4.2.43)

D =
q6h2

s(1 − ns)CΥ(ns)Γ̂1Ê

k̂1ns

(

β1 +
β2

α+ q2

)(
1

k̂2

+
hs

3

)

. (4.2.44)

In order to analyse the cubic dispersion relation, we shall need to make

use of the following fact: the roots, ω1, ω2, ω3 of equation (4.2.41) satisfy the

following

ω1 + ω2 + ω3 = −B, (4.2.45)

ω1ω2ω3 = −D, (4.2.46)

ω1ω2 + ω2ω3 + ω1ω3 = C. (4.2.47)

The system can only be linearly stable if all three roots of equation (4.2.41)

have negative real part. A necessary and sufficient condition for stability is

thus that B, C and D are simultaneously positive. Thus instability can occur

in each of the following cases: (i) D < 0; (ii) B < 0 < D; (iii) B,C < 0 < D.

However, since all the parameters which appear in equations (4.2.42)-(4.2.44)

are assumed positive, except for β2, we note that only (i) can arise in practice

(since if D > 0, then B,C > 0).
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In order to have D < 0, we require

β1 +
β2

α + q2
< 0, (4.2.48)

and hence a sufficient condition for instability to occur is (4.2.16). The same

comments thus apply as for the extensional regime.

4.3 Numerical simulations - Extensional regime

4.3.1 Numerical methods

The governing equations (4.2.1)-(4.2.4) were solved in MATLAB, using a semi-

implicit method, details of which are given in Appendix C. Upwind differenc-

ing was used for the advection terms in equations(3.5.33) and (3.5.35), and the

code verifies that the Courant-Freidrichs-Lewy (CFL) condition (a necessary

condition for the convergence of the finite difference approximation [75]) is

satisfied at each grid point. The scheme is thus only first-order accurate.

The initial conditions for n and h are used to determine the solutions for c

and un at t = 0 using equations (3.5.34) and (3.5.36). We then update n and h

using equations (3.5.33) and (3.5.35), and the values of c and un we have just

obtained. The process is repeated until the desired end time is reached. For

the sake of numerical convenience, the code incorporates an additional small

diffusion term (with coefficient 10−4) on the RHS of equation (3.5.35), and the

additional boundary conditions ∂h/∂x = 0 are imposed at x = 0, 1/ε.

The code was validated by comparing the growth rates of small sinusoidal

perturbations to the uniform steady state obtained by running the numerical

simulations to short times (tend < 0.1) with those obtained from the linear
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stability analysis; good agreement was obtained for a range of parameter val-

ues (results not shown). An additional check on the solution is provided by

verifying that mass is conserved at each time point. This is the case (to within

a 3% tolerance) for all of the simulations presented here.

Unless stated otherwise, the simulations shown below use 1001 grid points

and timestep ∆t = 10−4. Increasing the number of grid points N to 2001 re-

sulted in a reduction in the mass conservation error by approximately half (as

would be expected) in simulations run up to t = 1, but there was no change in

the qualitative behaviour of the solutions (i.e. a similar number of aggregates

with similar densities were formed). In common with the previous chapter, we

have taken ε = 0.1 here; simulations using longer domains reveal no qualitative

differences in the results. Throughout, we take cmax = 1/τ .

4.3.2 Numerical results

For the growth rate of the instability to be large, we observe from equation

(4.2.15) that we require β2 to be as large in magnitude as possible, and hence

τ/α should be large. However, this would tend to give rather a low upper

bound on ns (see equation (4.2.17)), which although not a problem in itself,

would mean we were less likely to observe the aggregation behaviour in which

we are interested. As a compromise, we take α = 1.4 and τ = 2.5 in the follow-

ing simulations (unless otherwise stated), which gives a growth rate ω ≈ 1/5

for ns = 0.5, Γ̂1/k̂1 = 1 and q = 1 (note from equation (4.2.17) that we require

0.28 < ns < 0.56 for instability to occur). For these values of α, τ we have

q2
c ≈ 1.6, and so we would expect to observe three aggregates in our domain

length of 10 units (corresponding to the permissible wavenumber of 0.5π).

We begin by setting Γ̂1/k̂1 = k̂2 = 1 and neglect the effects of surface

tension by setting C = 0. We take the value of n(x, 0) at each grid point
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to be normally distributed with mean 0.5 and standard deviation 0.01. The

derivative of n is thus not properly defined. However, diffusive effects will

tend to give a smooth n after the code has run for a few timesteps. We set

n(0, t) = n(∆x, t) and n(1/ε − ∆x, t) = n(1 ε, t) so the boundary condition

(4.2.6) is satisfied at first order, and the condition ∂h/∂x = 0 is imposed in

the same way. Initially, we take h(x, 0) = 2.

Figure 4.2 shows the development over time of three aggregates, in line

with the prediction of the linear stability analysis. The simulation is run until

t = 26, when we see that in the centre of the aggregate on the extreme right,

the cell volume fraction approaches unity - i.e. the cells reach their maximum

possible packing density. Since c, the concentration of chemoattractant in

the culture medium, is not defined where n = 1, it is not possible to con-

tinue the simulation to longer times without more careful consideration of the

chemical distribution in this region. (This is left for future work.) Figure 4.2

also shows the corresponding evolution of the height of the cell and culture

medium layer, h. From being flat initially, it bulges to become higher between

the developing clusters, as the aggregating cells force out the culture medium;

correspondingly, h decreases within the developing aggregates. (We note that

the derivative of h is quite large close to the boundary, which we believe to be

an artifact of the numerical scheme.)

In the regions between aggregates, the chemoattractant concentration in

the culture medium c, decreases throughout the period of the simulation; as

the cells aggregate, there is reduced production of chemoattractant in these

regions. Within the developing aggregates, c initially rises (since there are

more cells in those regions to produce the chemical), but begins to fall at later

times. This is because we assumed the production of chemoattractant to de-

pend on the product n(1 − n) - hence production falls in regions devoid of

culture medium (see Figure 4.3). The cell velocity un at three time points is
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Figure 4.2: Numerical solution for n (left) and h (right). Results displayed

at intervals of 2 time units from t = 0 to t = 26 - arrow indicates increasing

time. Parameter values Γ̂1/k̂1 = k̂2 = 1, C = 0

also plotted in Figure 4.3. At early times, there is little cell movement, but

un then increases as the cells migrate towards the developing aggregates. At

later times, when the aggregates are more clearly formed, un again decreases.
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Figure 4.3: Left: numerical solution for c at t = 0,2,... 26 - arrow indicates

increasing time. Right: numerical solution for un at t = 2 (dash-dot), t = 18

(dash) and t = 26 (solid). Parameter values as for Fig. 4.2

The simulation was repeated for a smooth initial condition, which con-
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tained a range of modes. Specifically, we set

n(x, 0) = 0.5 + 0.002 [cos(0.2πx) + cos(0.3πx) + cos(0.5πx) + cos(0.6πx)+

cos(0.7πx) − cos(0.8πx) − cos(πx) + cos(1.5πx) + cos(2πx)] . (4.3.1)

Comparing Figs. 4.2 and 4.4, we can see that this gave a qualitatively simi-

lar distribution of aggregates (though on this occasion n approached unity by

t = 18, at which point the simulation was stopped). Although in this case

we found four, rather than three aggregates were formed, we note that the

two aggregates on the right appear to be merging, as their centres move closer

together over time. Once again, this is broadly in agreement with the linear

stability analysis.
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Figure 4.4: Numerical solution for n (left) and h (right) at t = 0, 2...18.

Parameter values as for Fig. 4.2

We now repeat the simulation of Fig. 4.2 with k̂2 = 50, in order to con-

sider the effect of increased cell-ECM adhesion on the aggregation process. In

this case, we found n reached unity within one of the aggregates by t = 28.

Comparing Figs. 4.2 and 4.5, we observe that the cell distributions are al-

most identical. This is in sharp contrast to the results of Chapter 2, where

increased cell adhesion considerably reduced the size of the aggregates which

formed. However, this result is unsurprising, as the wavenumber of the pertur-

bation to which the system is most unstable is not influenced by k̂2 (see §4.2.1).
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The cell velocity un is now much smaller (O(10−3) as opposed to O(10−2)).

By contrast, if the simulation is repeated with k̂2 = 0.1, then not only is there

little effect on the formation of aggregates, but the difference in un from the

k̂2 = 1 case is also small (O(10−3) - results not shown). This suggests that

in this regime cell migration is of less importance, and redistribution of cells

is occurring mainly due to movement of the culture medium. Supporting this

hypothesis, the variation in the layer height h is greater when k̂2 = 50 (see

Fig. 4.5), consistent with culture medium being forced out of the developing

aggregates, leading to an overall loss of volume in those regions (hence reduced

layer height, and increased cell volume fraction n).

It is obvious from equation (3.5.32) that the cell-generated pressures rep-

resented by the Σn term can cause movement of the culture medium, even if

there is no cell movement (un = 0). This is a result of our choice of scalings

in §3.5: to maintain an overall pressure pT ∼ O(1), there must be a large

pressure in the culture medium to balance that generated by the cells. The

challenge is to provide a physical interpretation of how the cells can (in re-

sponse to the chemoattractant) generate an effective pressure in the culture

medium which causes it to flow, whilst not moving a great deal themselves. We

offer the following scenario as one possible explanation. Suppose we consider

two nearby, initially spherical cells. Under the influence of the chemoattrac-

tant, they may change shape, deforming so that their cell membranes come

into contact, and thus forcing out the culture medium originally in the region

between them. The degree of movement of the cells’ centre of mass may be

relatively small; the essential feature is the change of shape. Such a scenario

has obvious limitations. Firstly, the cells must be quite close together for this

to occur. Secondly, the volume of water displaced in each interaction must be

relatively small. This would suggest it is only really plausible as a mechanism

for aggregation (if at all) at high cell seeding densities, where there are large

numbers of cells in sufficient proximity. However, our supposition is at least
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partly supported by the observations described in [96] (discussed in detail in

Chapter 1), in which it was observed that hepatocytes frequently exhibited

membrane extension, leading to cell-cell coupling.
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Figure 4.5: Numerical solution for n (left) and h (right) at t = 0,2 ...28.

Parameter values:k̂2 = 50, otherwise as for Fig. 4.2
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Figure 4.6: Numerical solution for un at t = 2 (dash-dot), t = 18 (dash)

and t = 28 (solid). Parameter values as for Fig. 4.5

We now consider the effect of changing the cell seeding density. We re-

peat the simulation shown in Fig. 4.2, changing the mean of the distribution

for n(x, 0) from 0.5 to 0.4. Equation (4.2.18) then gives the most unstable

wavenumber as qc ≈ 0.9, so we expect to see two aggregates (corresponding

to the permissible wavenumber 0.3π); this prediction is confirmed by the re-

sults shown in Fig. 4.7. This contrasts with the results of Chapter 2, where
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reduced cell seeding density did not significantly affect the number of aggre-

gates formed (although the aggregates were smaller). Note that aggregate

growth is much slower than in Fig. 4.2 (the amplitude of the variation in n is

only O(10−3) by t = 40) and the velocity of the cells is also reduced to O(10−4).
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Figure 4.7: Numerical solution for n (left) and un (right). Results dis-

played at intervals of 2 time units from t = 2 to t = 40 (results at t = 0

omitted for clarity) - arrow indicates increasing time. Parameter values as

for Fig. 4.2

We now investigate the effect of surface tension on the aggregation process.

In the following simulations, we set Υ(n) = n, so surface tension increases with

the cell volume fraction. This is also the simplest form for Υ consistent with

our comments in §3.3.3. To give a comparison of the rates of aggregation in

each case, we set n(x, 0) = 0.5+0.05 cos(0.6πx) (so as to eliminate the possible

effect of random variations in the normally-distributed initial condition on

aggregation rates) . When we compare simulations with C = 0 and C = 0.5

(other parameters as for Fig. 4.2), we observe that the effect of surface tension

is to retard slightly the aggregation process (at t = 20, the maximum values

of n are 0.93 and 0.90 respectively) - see Fig. 4.8.

A similar comparison for the layer height h is shown in Fig. 4.9 - although

we have shown the output only at t = 0, t = 10 and t = 20 for the sake of

clarity. In the absence of surface tension, movement of the culture medium out

of the developing aggregates causes the interface to deform from its initially
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Figure 4.8: Numerical solution for n with C = 0 (left) and C = 0.5 (right)

up to t = 20. Other parameter values as for Fig. 4.2

flat profile, as described above. The deformation increases as aggregation

progresses (though, in fact the increase between t = 10 and t = 20 is quite

small). When C = 0.5, we see that although there is an initial deformation

of the interface as before, at later times surface tension acts to flatten the

interface. This restricts movement of the culture medium out of the aggregates,

which explains the retarding effect on aggregation.
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Figure 4.9: Numerical solution for h with C = 0 (left) and C = 0.5 (right)

at t = 0 (dotted), t = 10 (dashed) and t = 20 (solid). Other parameter

values as for Fig. 4.2
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4.4 Numerical simulations - Lubrication regime

4.4.1 Numerical methods

The numerical simulations in this section were performed using a modified

version of the code described in §4.3 (full details are given in Appendix C).

The initial conditions for n, g, φ, ψ and h are used to determine the solutions

at t = 0 for c and un. These are then used to update n, g, φ, ψ and h. Since

equation (3.6.35) is now fourth-order in h, there is no longer any need to in-

clude a small diffusion term on the RHS, as in the previous regime. However,

a small diffusion term is added to the RHS of (3.6.34) for the reasons discussed

in §4.3. The code was validated in the manner previously described.

4.4.2 Numerical results

We begin by taking α = 1.4, τ = 2.5 and Υ(n) = n, as in §4.3. Initial con-

ditions are φ(x, 0) = ψ(x, 0) = 0, g(x, 0) = 1, h(x, 0) = 2, and the value of

n(x, 0) at each grid point is normally distributed with mean 0.5 and standard

deviation 0.01. We then set Γ̂1 = k̂1 = k̂2 = C = µ̂n = Ê = 1. In the resulting

simulation, we observe the formation of three aggregates, as for the first simu-

lation in §4.3.2. Throughout the domain n < 1 up to t = 40. The interface at

y = h is higher in the regions between aggregates, and lower in the aggregate

regions. As discussed in §4.3.2, we believe this is due to culture medium being

pushed out from between the cells as the aggregates form. The amplitude of

the disturbances to the interface grow until about t = 34, and then begin to

diminish due to surface tension forces, as cell movement decreases. Note that

the simulations show that, overall, h moves downwards over time. This is an

artefact of the numerical scheme, resulting in a small percentage mass loss

over the period for which the simulation is run. Whilst we believe that this is
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acceptable in the present context (in which we are mainly concerned with the

qualitative behaviour of solutions), it would obviously be desirable to develop

a more sophisticated code to eliminate this problem before undertaking a more

in-depth investigation.
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Figure 4.10: Left: numerical solution for n. Results displayed at intervals

of 2 time units from t = 0 to t = 40 - arrow indicates increasing time. Right:

numerical solution for h at t = 10 (solid), t = 20 (dashed), t = 34 (dash-dot)

and t = 40 (dotted). Parameter values Γ̂1 = k̂1 = k̂2 = C = µ̂n = Ê = 1.

We can interpret φ as the component of ECM displacement arising from

cell-ECM drag (see equation (3.6.7)) (whilst ψ is the displacement due to

pressure gradients in the ECM - see equation (3.6.6)). We see that φ initially

increases in the direction representing movement towards each aggregate, as

the ECM is pulled along with the migrating cells. However, at later times, φ

decreases, as cell speed un is reduced, and elastic forces act within the ECM

to restore the undeformed configuration (Fig. 4.11).

By contrast, ψ represents displacements in the opposite direction to φ,

though their amplitude is much smaller (O(10−3)). As a result, movements

of the initially flat cell-ECM interface g are dominated by φ. As a result, g

begins to increase within the forming aggregates, but at later times flattens as

deformation decreases (see Fig. 4.12).
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Figure 4.11: Numerical solution for φ (left) and un (right) at t = 10

(dotted), t = 20 (dashed), t = 34 (dash-dot) and t = 40 (solid). Parameter

values as for Fig. 4.10 .
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Figure 4.12: Numerical solution for ψ (left) and g (right) at t = 10

(dotted), t = 20 (dashed), t = 34 (dash-dot) and t = 40 (solid). Parameter

values as for Fig. 4.10 .

We now investigate the effect of increasing cell-ECM adhesion, by increas-

ing k̂2 from k̂2 = 1 to k̂2 = 10. We see that this results in a reduction in the

rate of aggregation (compare the cell densities in Figs. 4.13 and 4.10). The

solution for h is qualitatively similar to the previous case, with its height in-

creasing in the regions between aggregates (results not shown). The expected

reduction in cell velocity is apparent from contrasting Figs. 4.11 and 4.14, but

there is no corresponding reduction in φ (ECM deformation due to cell-ECM

drag), probably due to the compensating effect of stronger adhesion. (Note

that the maximum values of un and φ are attained at t = 36 and t = 38 in



Chapter 4 Modelling of chemotactic cell aggregation in
vitro. Part II: Analysis and numerical simulations 116

this case, with a decrease in amplitudes thereafter. The solutions at these

times are not shown in Fig. 4.14 to facilitate comparison with Fig. 4.11.) As

previously, the maximum amplitude of ψ is approximately 8× 10−3. Thus the

position of the cell-ECM interface g depends mainly on φ, and is qualitatively

similar to the previous simulation (results not shown).
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Figure 4.13: Numerical solution for n. Results displayed at intervals of 2

time units from t = 0 to t = 40 - arrow indicates increasing time. Parameter

values: k̂2 = 10, other parameters as for Fig. 4.10.
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Figure 4.14: Numerical solution for φ (left) and un (right) at t = 10

(dotted), t = 20 (dashed), t = 34 (dash-dot) and t = 40 (solid). Parameter

values: k̂2 = 10, other parameters as for Fig. 4.11.

We now consider the effect of reducing the cell seeding density, so the mean

of the normal distribution for n(x, 0) is set at 0.4 rather than 0.5, with other
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parameters as for Fig. 4.10. This has a very noticeable effect, as only one

aggregate is now formed (see Fig. 4.15). This fact, together with the much

slower rate of aggregation is very similar to the equivalent case described in

§4.3.2 (see Fig. 4.7).
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Figure 4.15: Numerical solution for n - effect of lower cell seeding density.

Results displayed at intervals of 2 time units from t = 2 to t = 40 - arrow

indicates increasing time (plot at t = 0 omitted for clarity). Parameter

values as for Fig. 4.10.

In contrast to the extensional regime, surface tension does not appear to

affect the rate of aggregation in this regime. We once again set n(x, 0) =

0.5 + 0.05 cos(0.6πx) (so as to eliminate the possible effect of random varia-

tions in the normally-distributed initial condition on aggregation rates), and

compare simulations with C = 0.1, C = 1 and C = 5 (other parameter val-

ues being as for Fig. 4.10). The magnitude of the perturbation to h becomes

smaller as the value of C is increased; when C = 0.1 the maximum amplitude

of the perturbation is 0.02, whilst for C = 5 it is 4× 10−4. However, this vari-

ation is apparently too small to have any noticeable effect on the the results

for n, un, g, φ and ψ (results not shown). Repeating the simulations with

the normally-distributed initial conditions, we find that three aggregates are

formed in each case, suggesting that surface tension also does not affect the

most unstable wavenumber, at least over this range of values of C (results not



Chapter 4 Modelling of chemotactic cell aggregation in
vitro. Part II: Analysis and numerical simulations 118

shown).

We now examine the effects of changing the ECM properties on the forma-

tion of aggregates. We first increased the viscosity of the ECM relative to that

of the cells (i.e. by decreasing µ̂n from 1 to 0.1), leaving all other parameters

as in Fig. 4.10. For some simulation runs this resulted in the formation of four

aggregates rather than three, but in others only three aggregates were formed

(as in Fig. 4.16), and we hence concluded that this was due to random vari-

ations in the initial conditions, rather than as a result of changing the ECM

viscosity. (Supporting this, further simulations with µ̂n = 5 and µ̂n = 0.01

also resulted in the formation of three aggregates - results not shown.) The

increased stiffness of the ECM results, as would be expected, in a significant

reduction in ECM deformation; φ is now O(10−3) at most and ψ ∼ O(10−4)

(see Fig. 4.17). Hence the amplitude of the disturbance to g is O(10−3) (re-

sults not shown). Similar results are obtained if we set m̂un = 1, and decrease

the ECM relaxation time, by increasing Ê from 1 to 10 (results not shown).

Changing the relaxation time of the ECM also did not appear to affect the

number of aggregates formed.

Although the maximum values of n reached in Fig. 4.16 appear slightly

less than those in Fig. 4.10, repeating the simulations with the sinusoidal ini-

tial conditions used above did not show any noticeable difference in the rate

of aggregation between the cases µ̂n = 0.1, µ̂n = 1 and µ̂n = 5 (results not

shown).

4.5 Discussion

In this chapter, we have explored the behaviour of the two thin-film models

of cell aggregation developed in Chapter 3. Our investigations suggest that
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Figure 4.16: Numerical solution for n. Results displayed at intervals of 2

time units from t = 0 to t = 40 - arrow indicates increasing time. Parameter

values: µ̂n = 0.1, other parameters as for Fig. 4.10.

in both the extensional and lubrication regimes, the cell seeding density is

an important factor influencing aggregate formation. Using linear stability

analysis, we showed that in both regimes, the cell seeding density ns must lie

within certain limits for instability (aggregation) to occur. The precise values

of these limits depend upon the decay rate of the chemoattractant α and the

cells’ sensitivity to it, τ , for our particular choice of additional pressure term

Σn. This behaviour is in qualitative agreement with some of the experimental

results reported by Peshwa et al. [93]. They found that when hepatocytes are

seeded at densities lower than 3.1 × 104 cells cm−2, no spheroids are formed.

However, cells formed clumps for all seeding densities above this, although for

densities above 8.4 × 104 cells cm−2, the cells form multilayers, rather than

spheroids. For the model developed in Chapter 2, aggregation was predicted

for n < nc (i.e. there was no lower bound on the range of seeding densities for

which instability could occur); however, if we had chosen a non-zero value for

nmin, a lower bound would have been introduced.

Within the range of values for which instability occurs, cell seeding density

influences the number of aggregates eventually formed. For the extensional
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Figure 4.17: Numerical solution for φ (left) and ψ (right) at t = 10

(dotted), t = 24 (dashed), t = 34 (dash-dot) and t = 40 (solid). Parameter

values as for Fig. 4.16.

regime, this value can easily be predicted from the linear stability analysis

(see Fig. 4.1), and the prediction was found to agree with the results of the

numerical simulations. In particular, we saw that reducing the cell seeding

density from n0 = 0.5 to n0 = 0.4 resulted in a reduction in the number of

aggregates formed (from three to two) in both regimes, and the rate of ag-

gregation was considerably reduced. Due to conservation of mass, a reduction

in the number of aggregates formed will tend to imply an increase in the size

of the resulting aggregates (since the changes in total cell mass being consid-

ered here are quite small). By contrast, numerical simulations of the model in

Chapter 2 suggested that reducing the cell seeding density did not affect the

number of aggregates formed, or the rate of aggregation, but the size of the

aggregates was reduced. Experimental results seem to suggest that decreased

cell seeding density leads to the formation of smaller aggregates [122], which

favours the predictions of the Chapter 2 model.

In both regimes increasing the cell-substrate adhesion coefficient k̂2 results

in the expected reduction in the cells’ speed. However, in contrast with the

model of Chapter 2, the degree of cell-ECM adhesion has no effect on the

number or size of the aggregates formed in either regime. In the extensional
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regime the reduction in the cells’ speed has, perhaps counter-intuitively, almost

no effect on the formation of cell aggregates. This is because cell velocities are

small in the extensional regime, and we believe it represents cell aggregation

predominantly by the expulsion of culture medium from the aggregates, with

negligible migration of the cells. The idea that the pressures generated by the

cells can cause movement of the culture medium, whilst the cells themselves

move very little appears paradoxical. We suggested that it may occur through

cell membrane extension and cell-cell coupling. This interpretation is at least

partly supported by experimental observations of hepatocytes [96], but since

the same study also remarked that significant translations frequently occurred

following cell-cell coupling, we consider it unlikely that this mechanism can be

solely responsible for the formation of liver cell spheroids.

In the lubrication regime, increased cell-ECM adhesion does result in a de-

creased rate of aggregation, which is in line with experimental results showing

that spheroid formation is inhibited on adhesive substrates [102]. This fact

suggests the lubrication regime is the more relevant biologically. However, it

may be appropriate to view the two regimes as representing two different stages

in the formation of cell clusters. We might postulate that, immediately after

the cells are seeded in the culture wells, there has not been sufficient time for

them to develop strong cell-ECM or intercellular adhesions (hence we would

expect k̂2 and C to be small, as in the extensional regime). Small clumps of

cells might form as a result membrane extension by neighbouring cells. After

a few hours in culture, cells have time to develop stronger adhesions to the

ECM, and each other, and so the assumptions of lubrication regime (larger k̂2

and C, compared to the extensional regime) may then be more appropriate.

Coupled pairs or small clumps of cells migrate, leading to the formation of

larger aggregates. This scenario appears consistent with the findings of Pow-

ers et al. [96], who describe initial cell-cell contacts being made by membrane

extension, with migration by more than one body length more common after
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cell-cell contact had occurred. However, it is of course highly speculative, and

lacks experimental verification.

The effect of varying the strength of surface tension appears rather limited.

In both regimes, increasing surface tension reduced the amplitude of the dis-

turbance to h, as would be expected. In the extensional regime, this appeared

to slow aggregation slightly, probably due to impeding the flow of culture

medium out of the aggregates. However, in the lubrication regime, there was

no noticeable effect on the rate of aggregation for values of c between 0.1 and 5.

Deformations of the ECM are negligible in the extensional regime, which

means that the physical properties of the ECM represented by µ̂n and Ê are

irrelevant. However, in the lubrication regime, coupling between the cells and

the ECM is non-trivial. As the aggregates develop, the ECM is pulled into

them by the migrating cells, causing the cell-ECM interface to increase in

height slightly, under the aggregates. However, as we found in Chapter 2,

changing the mechanical properties of the ECM has a negligible effect on the

behaviour of the cells (although it does change the degree of deformation of

the ECM). This is probably due to the fact that our model assumes that the

forces generated by the cells (represented by Σn) and the degree of cell-ECM

adhesion are independent of the properties and deformation of the ECM. In

practice, the inter-relationship between cell-ECM adhesion, cell velocity and

the mechanical properties of the ECM is likely to be very complex. Recent

studies e.g. [23] have shown that cells can respond to the stiffness of the sub-

strate to which they are adhered in various ways. Lo et al [61] reported a

number of effects on the migration of 3T3 fibroblast cells. At low seeding den-

sities, cells migrate preferentially towards stiff substrates, a behaviour they

term ‘durotaxis’. Cells generate stronger traction forces on stiff, compared to

soft substrates, and there are also differences in cell speed. Finally, movement

of the cells can be directed by stretching the substrate; pushing the substrate
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towards the leading edge of a migrating cell causes it to retract, and the cell

reverses its direction of migration; when the substrate is pulled away from

the trailing edge of the cell, a similar reversal occurs. The topography of the

surface on which cells are seeded has also been shown to affect their migration

behaviour [49], and thus changes in the ECM layer height, g, may also have

an effect.

The main limitation of the modelling presented in this chapter is the lack of

validation against experimental data. As a result, the model contains a num-

ber of speculative forms for the constitutive relations which describe e.g. the

response of the cells to the chemoattractant and the interaction forces between

the cells and the culture medium, and the cells and the ECM. Our aim was

to try to use the model to gain some generic insights into the qualitative ef-

fects on cell aggregation of varying certain parameters. The two parameters

which appear to have the greatest effect are the cell seeding density, and the

cell-ECM adhesion strength, both of which can be manipulated relatively eas-

ily experimentally (the latter can be changed by surface modification of the

ECM). In both regimes, cell seeding density affects whether aggregation oc-

curs, the number of aggregates formed and their rate of formation. We would

therefore suggest that quantitative experimental investigations of the effect of

varying the cell seeding density and cell-ECM adhesion strength may prove to

be valuable in helping to optimise the process of spheroid formation.

The thin-film limits we have considered in this chapter represent only a

small region of the parameter space of the original two-dimensional model

developed in Chapter 3. Simulations of the full 2D model would allow us

to better understand the relevance of the regimes we have explored here (in

which reductions to a one-dimensional form are possible) and the physical sit-

uations in which they may arise. Further extension of our work, to include

simulations of the two-dimensional thin-film approximations of an underlying
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three-dimensional model (along the lines of [53, 84]) would also be beneficial,

as this represents more accurately the true geometry of the biological problem.

This extension would almost certainly be required for quantitative validation

of the model against experimental data. However, it would require a much

more sophisticated numerical code, which is beyond the scope of this thesis.



Chapter 5

Non-local models for the

interactions of hepatocytes and

stellate cells

5.1 Introduction

In previous chapters, we have investigated the aggregation of a single popula-

tion of hepatocytes and the influence of the extracellular matrix and culture

medium on their behaviour. In this chapter, we focus on the interactions be-

tween hepatocytes and stellate cells in vitro. Recent experimental evidence

has shown that when these two cell types are cultured together, cell aggre-

gates form more rapidly, and remain functional for a longer period than when

the hepatocytes are cultured alone [101, 102].

One explanation for the improved rate of aggregation is that it may be due

to an enhanced chemotactic effect. Studies have shown that, when stimulated

with hepatocyte-conditioned medium, stellate cells from rats produce hepato-

125
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cyte growth factor (HGF) [111]. Furthermore, insulin-like growth factor-1, a

component of the hepatocyte-conditioned medium, was able to produce this

effect when administered in isolation. As discussed in Chapter 3, hepatocytes

are known to respond chemotactically to HGF in vitro [113]. In a recent pa-

per, Gentilini et al. reported that insulin-like growth factor-1 can produce

a chemotactic response in human hepatic stellate cells placed in a modified

Boyden chamber system [38]. Hence there may be a feedback loop between

the two cell types: the hepatocytes produce insulin-like growth factor-1 which

attracts the stellates, causing them to produce more HGF. This, in turn, acts

on the hepatocytes as a chemoattractant, resulting in the formation of hetero-

geneous cell aggregates.

However, recent work in the Tissue Engineering Group at the University of

Nottingham has suggested an alternative hypothesis [118]. Time-lapse video

footage, taken during the aggregation process, shows the stellates extending

long processes, which, when they contact an hepatocyte, appear to pull the

cell into the nascent aggregate (Fig. 5.1). This leads to the hypothesis that

it is the physical contact between the two cells types which promotes the for-

mation of aggregates. It is possible that the retraction of these processes by

the stellates is provoked by some chemical factor secreted by the hepatocytes,

as mono-cultured stellates stimulated with hepatocyte-conditioned medium

retracted their processes, whilst when the conditioned medium was absent,

they did not. Note that stellates appear to have low motility in mono-culture,

so we assume that they do not produce a chemoattractant which acts upon

themselves. Furthermore, aggregates formed more slowly, and were less well

defined, when the stellates were co-cultured with cells of the Hep G2 cell line

(hepatocellular carcinoma cells), rather than hepatocytes, suggesting an in-

teraction specific to these two particular cell types. However, the stellates

exhibited the same contractile response to hepatocyte fragments as to whole

cells, which might suggest the retraction of the processes is not wholly due to
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the secretion of chemical factors by hepatocytes.

Figure 5.1: Snapshots from time-lapse video of an hepatocyte-stellate cell

co-culture during aggregation. The hepatocytes appear yellow, and have a

rounded morphology. Stellates appear grey, but their long cellular processes

are clearly distinguishable. Total time elapsed: approx. 21 hours. (Images

courtesy of Robert Thomas, Tissue Engineering Group. Similar images also

appear in [118].)

The results of Thomas et al. [118] suggest that there is very little, or no

attraction between stellate cells. Stellates cells in monoculture were found to

have relatively low cell motility compared to those in co-culture over similar
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period, and no aggregates were observed to form (see Fig. 5.2). Accordingly,

we assume there is no stellate-stellate attraction throughout this chapter.

Figure 5.2: Stellate cells in monoculture (from [118]). Note there is little

cell motility, especially compared with Fig. 5.1 over a similar timescale.

Whilst multiphase models, such as those considered in Chapters 2-4 pro-

vide one, physically-based, approach to describing the interactions between
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cell populations, Painter and Sherratt [89] have extended the Keller-Segel type

modelling framework to the case of two cell populations. An important fea-

ture of their model is that limitations of space mean that the random motion

and chemotaxis coefficients for each cell type will depend upon the densities

of both cell types. They specialise their model to the case of cell movements

by chemotaxis, showing that a number of different patterns can be generated,

depending upon the types of interaction assumed. The equilibrium solutions

for a model of two cell populations subject to chemotaxis were also considered

by Fasano et al [31], in the case where the random motility coefficients for the

two cell populations are constants.

In this chapter, we investigate the two hypotheses of hepatocyte-stellate in-

teractions described above, with the aim of generating experimentally testable

predictions, which will allow tissue engineers to distinguish between the two

possible mechanisms of aggregation. To do this, we develop a continuum model

to describe the interactions between hepatocytes and stellate cells, which in-

corporates non-local effects explicitly through an integral term. This allows

us to consider cell-cell interactions by direct physical contact, as well as by

chemical signalling. Our approach will be, in some ways, more simplistic than

that adopted in earlier chapters as we shall neglect the effect of the ECM and

culture medium in order to focus specifically on cell-cell interactions. A further

departure from the previous chapters is that the multiphase modelling frame-

work is not used, and we instead develop our model along the lines described

in §1.5.4. We begin in §5.2 by describing our modelling framework in general

terms, extending previous work (which considered the case of a single popu-

lation) to incorporate non-local interactions between the two cell populations

in §5.3. We then customise this generic two-population formulation, as appro-

priate to the two hypotheses described above, in §5.4 and §5.5 respectively.

The behaviour of the two models is then investigated using a combination of

linear stability analysis (§5.6) and numerical simulations (§5.7) The chapter
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concludes in §5.8 with a comparison of our model predictions and recent ex-

perimental results, and suggestions for further work.

5.2 Review of non-local modelling framework

Our approach builds on a model due to Mogilner and Edelstein-Keshet [73],

which describes non-local interactions within a social aggregate (such as a

swarm) consisting of a single type of organism, when inertial effects are negli-

gible. The governing equation, which for simplicity is derived in a one dimen-

sional geometry, takes the form

∂C

∂t
+

∂

∂x
(vC) = D

∂2C

∂x2
, (5.2.1)

where C is the swarm density, D is the random motility coefficient, and v is

the density-dependent velocity of the swarm, given by the convolution integral

v(x, t) =

∫

Ω

K(x− y)C(y, t)dy. (5.2.2)

Hence, the velocity of the swarm at a point x depends upon the density of

individuals in a neighbourhood Ω surrounding x. The function K is called the

kernel, and weights the effect of interactions according to distance (usually,

interactions between nearby individuals are assumed to have greater effect).

K(x − y) is usually interpreted as being proportional to the force exerted on

an individual at x by another at y [72]. (However, an explicit momentum bal-

ance is usually not written down in this type of model.) The model has been

used to describe the aggregation behaviour of Myxobacteria [72], and similar

models have been derived in an ecological context [10, 40] (see §1.5.4).

The choice of kernel function is key to determining the behaviour of the

swarm; an even kernel gives rise to collective movement, whilst an odd kernel
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describes aggregation in a swarm whose centre of mass is stationary [73]. When

the kernel includes an even part, travelling wave solutions of the model can be

found, provided the odd part of the kernel is sufficiently small [72, 73]. For a

particular choice of odd kernel, the bifurcation structure of the model is stud-

ied in [72], revealing that both large scale aggregations (having wavenumbers

close to zero) and periodic patterns may arise, depending on the parameters

representing the strengths and ranges of attraction and repulsion. In the lat-

ter case, the onset of patterning close to bifurcation is studied using a weakly

nonlinear analysis (in the former case, where the critical wavenumber is close

to zero, the nonlinear analysis is not pursued, as it is non-trivial).

5.2.1 Relation to individual-based models

An alternative model for inter-individual interactions in a social aggregate is

presented in [74]. In this paper, a Lagrangian (individual-based) approach

is adopted, with each member of the swarm treated as a point mass whose

movements are governed by the pairwise sum of its interactions with the other

swarm members. The model is written as

dxi

dt
=
∑

i6=j

F (xi − xj), (5.2.3)

where xi is the position of the ith member of the swarm, F is the interaction

force and i, j = 1, 2...N (N being the number of members of the swarm). Note

that, once again, inertial effects are assumed negligible, and the units are so

chosen that the constant of proportionality (i.e. drag coefficient) is unity.

In a recent paper, Bodnar and Velazquez [11] have formally established

that, in the one-dimensional case, models of the form (5.2.1) can be derived

as macroscopic limits of Lagrangian models such as (5.2.3), provided the in-

teraction force F is of gradient type (i.e. F = −∇W ). The basic thrust of the

argument is as follows. We define the velocity of the ith cell, vi, from equation
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(5.2.3), to be

vi = − 1

N

(
∑

i6=j

W ′(xi − xj)

)

, (5.2.4)

where we have inserted the factor 1/N for subsequent notational convenience,

and assumed vi remains finite as N → ∞. Now, provided the lengthscale over

which interactions take place (i.e. the lengthscale over which W undergoes

O(1) variations) is much greater than the typical distance between cells, we

can approximate vi by the following, as N → ∞

v(xi) = −
∫

Ω

W ′(xi − y)C(y)dy, (5.2.5)

where C is the swarm density, as in equation (5.2.1), and Ω is the domain in

which W ′(xi − y) is non-zero. Given that the density of the swarm obeys the

equation
∂C

∂t
+

∂

∂x
(vC) = 0, (5.2.6)

we hence obtain

∂C(x, t)

∂t
=

∂

∂x

(

C(x, t)

∫

Ω

W ′(x− y)C(y, t)dy

)

, (5.2.7)

which is equivalent to equation (5.2.1) when W ′ = −K and D = 0.

In the case of the potential W being repulsive, Bodnar and Velazquez show

that the addition of ‘white noise’ terms ξi to the RHS of equation (5.2.3) gives

rise, in the continuum limit, to a diffusion term on the RHS of equation (5.2.7)

(making it equivalent to (5.2.1)) - although the diffusion coefficient may de-

pend on C for certain choices of W .

The usefulness of this connection between the individual-based and contin-

uum models is clear. From the interactions between a pair of cells, we can infer

the correct form for the interaction kernel in the continuum model, subject to

the assumptions about cell spacing and pairwise interactions stated above.
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5.3 Model formulation

5.3.1 Modelling aims

We wish to explore two hypotheses regarding the interactions of hepatocytes

and stellate cells. The first is that stellates and hepatocytes are attracted to

each other by chemical signals; the second, that the attraction is due to the stel-

lates extending processes, which physically contact the hepatocytes and pull

them into the growing aggregates. In both hypotheses, we assume hepatocytes

are attracted to other hepatocytes by a chemical signal (as in Chapter 3), and

that cells repel each other if they come too close together (irrespective of cell

type). For each hypothesis, we first use our models to predict the distribution

of cells within aggregates for different parameter values. Current experimental

research in the Tissue Engineering Group at Nottingham involves the exam-

ination of histological sections through fully formed spheroids to determine

the distribution of the two cell types within the spheroid. Comparing these

results with the model predictions can give us information about the relative

strengths of hepatocyte-hepatocyte, hepatocyte-stellate and stellate-stellate

interactions (c.f. the Steinberg hypothesis [112], as discussed in Chapter 1.

The possibility of segregation of the two cell types within an aggregate due

to chemical signals has also been shown recently by Painter and Sherratt [89].)

Once the relative strengths of the interactions between the two cells types

have been established, we wish to predict the optimum seeding ratio of hep-

atocytes to stellate cells to achieve swift aggregate formation. Experimental

research carried out by Riccalton-Banks [102] found that a 2:1 ratio of hepa-

tocytes to stellates resulted in the formation of greater numbers of aggregates

than did ratios of 5:1, 10:1, or hepatocyte-only cultures. However, using our

models we can investigate other ratios, the 1:1 ratio being of particular inter-

est, since the trend in the experiments appears to favour increasing the number

of stellates.
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5.3.2 Governing equations

We begin by extending the model of Mogilner and Edelstein-Keshet [73] to

describe the non-local interactions between two cell populations. As in [73],

for simplicity, we restrict attention to a one-dimensional geometry and neglect

inertia. We also assume that both populations undergo a small amount of

random motion.

We let n(x, t) be the density of hepatocytes, and m(x, t) the density of

stellate cells. We propose governing equations for the densities of each species

of the following form
∂n

∂t
+

∂

∂x
(nvn) = D∗

n

∂2n

∂x2
, (5.3.1)

∂m

∂t
+

∂

∂x
(mvm) = D∗

m

∂2m

∂x2
, (5.3.2)

where vn and vm are the advective velocities of the two species and D∗
n and

D∗
m are the corresponding random motility coefficients. Note that asterisks

are used henceforth to distinguish dimensional parameters from their (unas-

terisked) dimensionless equivalents.

The dependence of the velocities upon non-local effects are prescribed

through the following convolution integral terms

vn = Knm ∗m +Kn ∗ n =

∫

Ω

(Knm(x− ξ)m(ξ, t) +Kn(x− ξ)n(ξ, t))dξ,

(5.3.3)

vm = Kmn ∗ n+Km ∗m =

∫

Ω

(Kmn(x− ξ)n(ξ, t) +Km(x− ξ)m(ξ, t)) dξ,

(5.3.4)

where Ω is the domain within which interactions are assumed to take place.

In (5.3.3) and (5.3.4), the kernel functions describe the interactions between

the different populations; Knm represents the effect of stellates (m) on hepato-
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Figure 5.3: Forces F1 and F2 acting on a cell at x0 due to attraction to

cells at x1 and x2 respectively. When the cells are evenly spaced (x0 −x1 =

x2 − x0),the magnitudes of the forces are equal (F1 = F2).

cytes (n); conversely, Kmn represents the effect of hepatocytes on stellates; Kn

and Km represent the interactions between members of the same population.

The kernels are prescribed functions of the independent spatial variable, and

must be odd functions of their argument because we expect individuals to the

right of x to induce a velocity of the opposite sign (but equal magnitude) to

that induced by individuals to the left of x (as illustrated in Fig. 5.3).

In Appendix D, we demonstrate that equations (5.3.1) and (5.3.2) can sup-

port the existence of travelling wave solutions in simple special cases. Similar

analysis has been undertaken for one-species non-local models [10,72,73], but

in those cases, the existence of the travelling waves relies on the kernel function

being even (or having an even part) which represents some bias in the exter-

nal environment causing collective ‘drift’ of the group [73]. In the case of the

two-species model considered here, travelling wave solutions are possible even

though all the kernel functions involved are assumed to be odd. Such models

may be appropriate for describing the interactions of groupings of e.g. preda-

tors and prey. To our knowledge, travelling wave solutions are not possible

for a one-species model with an odd kernel, and hence represent an emergent

property of the system.
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5.4 Hypothesis 1: Hepatocyte-stellate inter-

actions through chemotaxis

In this section, we develop a model based on the hypothesis that the interac-

tions between hepatocytes and stellate cells are mediated by diffusible chemi-

cals. We use the familiar Keller-Segel framework to describe the cells’ motion

up chemical gradients, and discuss its relation to the non-local form for the cell

velocities described above. We also use the non-local formulation to include

the effect of space limitation (i.e. the fact that there is a maximum number of

cells that can occupy a particular region of space).

As in Chapter 3, we assume that hepatocytes secrete a chemical (whose

concentration is denoted by c1) to which they are attracted; this causes their

aggregation in the absence of the stellates. We assume that stellates are also at-

tracted to this chemical. Stellates are assumed to produce a different chemical,

possibly HGF, the concentration of which is denoted by c2. This is attractive

to hepatocytes, but does not affect the stellates. We assume, as in [72], that

the timescale for diffusion of both chemicals is short compared to that for cell

movement, and hence that the quasi-steady approximation for the concentra-

tions is valid. We thus obtain the following dimensional governing equations

∂n

∂t
+ χ∗

1

∂

∂x

(

n
∂c1
∂x

)

+ χ∗
2

∂

∂x

(

n
∂c2
∂x

)

+
∂

∂x
(nK∗

R ∗ (n+m)) = D∗
n

∂2n

∂x2
,

(5.4.1a)
∂m

∂t
+ φ∗ ∂

∂x

(

m
∂c1
∂x

)

+
∂

∂x
(mK∗

R ∗ (n+m)) = D∗
m

∂2m

∂x2
, (5.4.1b)

D∗
1

∂2c1
∂x2

+ α∗
1n− γ∗1c1 = 0, (5.4.1c)

D∗
2

∂2c2
∂x2

+ α∗
2m− γ∗2c2 = 0. (5.4.1d)

Here, D∗
n and D∗

m are the random motility coefficients for the two cell types,

whilst K∗
R is the repulsion kernel, which describes the fact that, when two cells

come close enough to touch, they experience a repulsive force (see below). The
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constants χ∗
1 and χ∗

2 represent the sensitivity of the hepatocytes to gradients

of c1 and c2, and φ∗ similarly gives the sensitivity of the stellates to gradients

of c1. We denote the diffusion coefficients of the two chemicals by D∗
1 and D∗

2

respectively. We assume they are produced at rates α∗
1 and α∗

2, and decay with

coefficients γ∗1 and γ∗2 . If we wish to identify c2 with HGF, we note from [111]

that we should make α∗
2 dependent on the density of hepatocytes, n. However,

for the sake of simplicity, we assume here that α∗
2 is constant.

The repulsion kernel is assumed to take the form

K∗
R(x) =







R∗
(

r∗

x
− 1
)

if 0 < x ≤ r∗,

R∗
(

r∗

x
+ 1
)

if − r∗ ≤ x < 0,

0 otherwise

(5.4.2)

Thus, the repulsive force has a strength R∗, and is felt only when cells come

within a range r∗ of each other (measured as the distance between their cen-

tres). As the distance between the cells tends to zero, the repulsive force be-

comes arbitrarily large. A plot of the form of this function is given in Fig. 5.4.

We refer to this repulsive interaction as ‘space-limitation’. Note that in this

chapter, we assume the strength of repulsive interactions is always the same,

no matter which types of cells are involved. This may not be true in practice,

due to differences in cell size or strength of cell-substrate adhesion between the

two cell types, but given the current limited state of the experimental data,

we postpone such considerations for future work.

The effect of space-limitation is important for the following reason. If our

hypothesis is correct, both stellates and other hepatocytes will be attracted

towards hepatocyte aggregates. Without the repulsion terms included, the

densities of both cell types will tend to sharp peaks with coincident centres.

However, physically, we expect competition for space, which should prevent

the density of an aggregate becoming very large, and may result in the segre-

gation of the two cell types (with the most powerfully attracted cell types in
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Figure 5.4: Repulsion kernel K∗
R(x) (with R∗ = r∗ = 1).

proximity to each other and the other cells relegated to the margins) as in [89].

5.4.1 Boundary and initial conditions

We assume that the cell densities are symmetric about x = 0, and are spa-

tially periodic functions, with period 2L. The latter condition is essentially

a mathematical artifice which causes the convolution integral terms to van-

ish at the edges of the domain, and thus the no flux conditions for the cells

and chemoattractants at x = −L, L then take their familiar forms. A possible,

more physical, alternative to the assumption of periodicity would be to include

repulsive effects between cells and the walls of the culture well, though we do

not pursue such a formulation here, as we believe it would add unnecessary

complication to the model. The boundary and initial conditions thus read

n(x, 0) = n0(x), (5.4.3)

m(x, 0) = m0(x), (5.4.4)

∂n

∂x

∣
∣
∣
∣
x=−L

=
∂n

∂x

∣
∣
∣
∣
x=L

= 0, (5.4.5)

∂m

∂x

∣
∣
∣
∣
x=−L

=
∂m

∂x

∣
∣
∣
∣
x=L

= 0, (5.4.6)
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∂c1
∂x

∣
∣
∣
∣
x=−L

=
∂c1
∂x

∣
∣
∣
∣
x=L

= 0,
∂c2
∂x

∣
∣
∣
∣
x=−L

=
∂c2
∂x

∣
∣
∣
∣
x=L

= 0. (5.4.7)

5.4.2 Nondimensionalisation

We now nondimensionalise our model (5.4.1) in the following manner

x̃ =
x

λ
, t̃ =

t

T
, ñ =

n

n̄
, m̃ =

m

n̄
, c̃1 =

c1D
∗
1

α∗
1λ

2n̄
, c̃2 =

c1D
∗
2

α∗
2λ

2n̄
. (5.4.8)

Here, as in previous chapter, λ is the lengthscale over which cell aggregates

form, T is the aggregation timescale (with λ and T to be determined) and

n̄ is a typical overall cell seeding density. The dimensionless system is then

(dropping tildes)

∂n

∂t
+ χ1

∂

∂x

(

n
∂c1
∂x

)

+ χ2
∂

∂x

(

n
∂c2
∂x

)

+
∂

∂x
(n(KR ∗ (n+m))) = Dn

∂2n

∂x2
,

(5.4.9a)
∂m

∂t
+ φ

∂

∂x

(

n
∂c1
∂x

)

+
∂

∂x
(m(KR ∗ (n+m))) = Dm

∂2m

∂x2
, (5.4.9b)

∂2c1
∂x2

+ n− γ1c1 = 0, (5.4.9c)

∂2c2
∂x2

+m− γ2c2 = 0. (5.4.9d)

where we have introduced the following dimensionless parameters

χ1 =
χ∗

1α
∗
1n̄T

D∗
1

, χ2 =
χ∗

2α
∗
2n̄T

D∗
2

, φ =
φ∗α∗

1n̄T

D∗
1

, Dn =
D∗

nT

λ2
, (5.4.10)

Dm =
D∗

mT

λ2
, γ1 =

γ∗1λ
2

D∗
1

, γ2 =
γ∗2λ

2

D∗
2

, r =
r∗

λ
, R = R∗T n̄. (5.4.11)

χ1, χ2 and φ thus represent the dimensionless strengths of the chemotaxis, Dn

and Dm are ratios of the aggregation timescale to the timescale for random

movement of the two cell types; γ1 and γ2 are the squares of the ratios of the

aggregate lengthscale to the diffusion lengthscale of the two chemicals and R

and r are the dimensionless strength and range of repulsion respectively. In

the above equations KR is the dimensionless repulsion kernel, defined as

KR(x) =







R
(

r
x
− 1
)

if 0 < x ≤ r

R
(

r
x

+ 1
)

if − r ≤ x < 0

0 otherwise

(5.4.12)
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The boundary conditions now become

∂n

∂x

∣
∣
∣
∣
x=− 1

ε

=
∂n

∂x

∣
∣
∣
∣
x= 1

ε

= 0, (5.4.13)

∂m

∂x

∣
∣
∣
∣
x=− 1

ε

=
∂m

∂x

∣
∣
∣
∣
x= 1

ε

= 0, (5.4.14)

∂c1
∂x

∣
∣
∣
∣
x=− 1

ε

=
∂c1
∂x

∣
∣
∣
∣
x= 1

ε

= 0,
∂c2
∂x

∣
∣
∣
∣
x=− 1

ε

=
∂c2
∂x

∣
∣
∣
∣
x= 1

ε

= 0, (5.4.15)

where ε = λ/L, and the period of n and m is now 2/ε .

We note here that it is possible to solve for c1 and c2 in terms of n and m

using Green’s functions. The method is demonstrated in [57] for a domain of

infinite spatial extent, which gives

c1(x) =
1

2
√
γ1

∫ ∞

−∞

n(y) exp (−√
γ1|x− y|)dy, (5.4.16)

c2(x) =
1

2
√
γ2

∫ ∞

−∞

m(y) exp (−√
γ2|x− y|)dy. (5.4.17)

Given our assumption of the periodicity of n and m, we could extend them

to an infinite spatial domain and use the above approach without introducing

any error. We exploit this fact to simplify our linear stability analysis in §5.6.

5.5 Hypothesis 2: Hepatocyte-stellate inter-

actions through direct physical contact

We now formulate a model based on our second hypotheses: that hepatocyte-

stellate interactions occur through direct physical contact. Hepatocytes are

again assumed to exert attractive forces on other hepatocytes due to chemo-

taxis. However, from the time lapse video, it appears that stellate cells exert

attractive forces on hepatocytes if the latter come within range of their pro-

cesses. The hepatocyte-stellate and stellate-hepatocyte interaction forces are

thus of the same form. For simplicity, we shall assume they are also of the
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Figure 5.5: Hepatocyte-stellate attraction kernel K ∗
A(x) (with A∗

2 = a∗2 =

1, r∗ = 0.1).

same magnitude, and hence write Kmn = Knm. (This assumption neglects the

possibility that one of the cell types may be larger or more strongly adherent

to the ECM than the other. However, it is consistent with our earlier assump-

tion concerning the strength of the repulsive force.) We assume that the force

on the hepatocytes due to the cellular processes of the stellates is constant,

provided that the two cells are sufficiently close for contact to occur, but sep-

arated by sufficient distance that the two cells do not repel each other. For

simplicity, we have ignored the potential dependence of the force on a chemical

signal derived from the hepatocytes, as there is currently no data as to the

form of such a dependence. We hence assume the following decomposition for

our kernel function

Knm(x) = K∗
R(x) +K∗

A(x) (5.5.1)

where:

K∗
A(x) =







−A∗
2 if r∗ ≤ x ≤ a∗2,

A∗
2 if − a∗2 ≤ x ≤ −r∗,

0 otherwise.

(5.5.2)

The function K∗
A is plotted in Fig. 5.5. The constant A∗

2 represents the strength

of the attraction, whilst a∗2 is the average length of a stellate cellular process
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(hence representing the typical range of attraction) and r∗ is the range of re-

pulsion, as defined earlier.

As before, we assume that the hepatocyte-hepatocyte interaction force is

due to a chemoattractant, and that stellates are not attracted to other stellates.

The governing equations thus take the following dimensional form

∂n

∂t
+ χ∗

1

∂

∂x

(

n
∂c1
∂x

)

+
∂

∂x
(n(KR ∗ n+Knm ∗m)) = D∗

n

∂2n

∂x2
, (5.5.3a)

∂m

∂t
+

∂

∂x
(m(KR ∗m+Kmn ∗ n)) = D∗

m

∂2m

∂x2
, (5.5.3b)

D∗
1

∂2c1
∂x2

+ α∗
1n− γ∗1c1 = 0, (5.5.3c)

The boundary and initial conditions are as in equations (5.4.3)-(5.4.7), with

the exception that c2 no longer appears in our system of equations.

5.5.1 Nondimensionalisation

We now render the governing equations dimensionless, using the scalings stated

in equation (5.4.8). The governing equations then become

∂n

∂t
+ χ1

∂

∂x

(

n
∂c1
∂x

)

+
∂

∂x
(n(KR ∗ n+Knm ∗m)) = Dn

∂2n

∂x2
, (5.5.4a)

∂m

∂t
+

∂

∂x
(m(KR ∗m+Kmn ∗ n)) = Dm

∂2m

∂x2
, (5.5.4b)

∂2c1
∂x2

+ n− γ1c1 = 0, (5.5.4c)

where the kernel functions now take their dimensionless form, and the di-

mensionless parameters and KR are the same as those specified in equations

(5.4.10)-(5.4.12), with the following additions

A2 = A∗
2T n̄, a2 =

a∗2
λ
, (5.5.5)

Knm(x) = KR(x) +







−A2 if r ≤ x ≤ a2,

A2 if − a2 ≤ x ≤ −r,
0 otherwise,

(5.5.6)
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Kmn = Knm. (5.5.7)

The boundary conditions are specified as in (5.4.13)-(5.4.15), once again with

the exception that c2 no longer appears in our system of equations.

5.6 Linear stability analysis

We now examine the linear stability of our two models to determine the pa-

rameter regimes in which we may expect to see aggregation. We take the limit

of a large domain (ε→ 0) so that we can exploit the Green’s function solutions

for c1 and c2 (given in equations (5.4.16) and (5.4.17)) to include the chemo-

taxis terms within the non-local framework [72]. We then need only consider

the stability of the dimensionless version of the non-local model (5.3.1)-(5.3.2),

with the appropriate kernel functions for each model (which are modified to

include the chemotaxis terms where appropriate - e.g. see equation ( 5.6.14)).

This provides some simplification of notation in the analysis.

We consider the spatially homogeneous steady state, n = n0, m = m0

which approximates the conditions immediately after the cells are seeded in

the culture wells, and introduce small perturbations of the form

n = n0 + n̂(x, t), m = m0 + m̂(x, t), (5.6.1)

where |n̂|, |m̂| � 1. We substitute these forms into the governing equations,

(5.3.1) and (5.3.2), and linearise to obtain

∂n̂

∂t
= Dn

∂2n̂

∂x2
− n0

∂

∂x
(Knm ∗ m̂ +Kn ∗ n̂) , (5.6.2)

∂m̂

∂t
= Dm

∂2m̂

∂x2
−m0

∂

∂x
(Kmn ∗ n̂+Km ∗ m̂) . (5.6.3)

We remark that terms containing convolutions with constant densities, e.g.Knm∗
m0 vanish, since the kernels are assumed to be odd.
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We now set

n̂ = n1e
(iqx+ωt), m̂ = m1e

(iqx+ωt), (5.6.4)

where q and ω are, respectively, the wavenumber and growth rate of the per-

turbation, and |n1|, |m1| � 1. We note that, including the forms of the

perturbations assumed in (5.6.4), the convolution terms give e.g.

Kn ∗ n̂ = n1

∫ ∞

−∞

Kn(x− y)e(iqy+ωt)dy

= n1e
(iqx+ωt)

∫ ∞

−∞

Kn(ζ)e−iqζdζ

= n1e
(iqx+ωt)K̃n(q). (5.6.5)

where henceforth tildes denote Fourier transforms, so that

f̃(q) =

∫ ∞

−∞

f(x)e−iqxdx. (5.6.6)

Substituting (5.6.4) into equations (5.6.2) and (5.6.2), we hence obtain

n1ω = −Dnq
2n1 − iqn0(m1K̃nm(q) + n1K̃n(q)), (5.6.7)

m1ω = −Dmq
2m1 − iqm0(n1K̃mn(q) +m1K̃m(q)), (5.6.8)

We remark that since the kernels are odd, their Fourier transforms are purely

imaginary.

We can re-write equations (5.6.7) and (5.6.8) in the form

J(n1, m1) = 0, (5.6.9)

where J is the matrix:

J =




ω +Dnq

2 + iqn0K̃n iqn0K̃nm

iqm0K̃mn ω +Dmq
2 + iqm0K̃m



 (5.6.10)

For nontrivial solutions, (n1, m1) 6= 0, and we require det(J) = 0. This leads

to a quadratic dispersion relation of the form

ω2(q) +B(q)ω + C(q) = 0, (5.6.11)
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where

B(q) = q2(Dn +Dm) + iq(n0K̃n +m0K̃m), (5.6.12)

C(q) = (Dnq
2 + iqn0K̃n)(Dmq

2 + iqm0K̃m) + q2n0m0K̃nmK̃mn. (5.6.13)

We now analyse the dispersion relation for the two models derived above.

5.6.1 Model 1: Chemotaxis

We incorporate the chemotaxis terms in the convolution integrals by exploiting

the Green’s function solutions for c1 and c2. This gives rise to additional terms

in the kernel functions, which are now given by

Kn(x) = −sign(x)
χ1

2
exp

(

−|x|
an

)

+KR(x), (5.6.14)

Knm(x) = −sign(x)
χ2

2
exp

(

−|x|
a

)

+KR(x), (5.6.15)

Kmn(x) = −sign(x)
φ

2
exp

(

−|x|
an

)

+KR(x), (5.6.16)

Km(x) = KR(x), (5.6.17)

where:

an =
1√
γ1

, a =
1√
γ2

. (5.6.18)

Hence, an and a represent the ranges of attraction over which the chemicals

c1 and c2 act, relative to the aggregation lengthscale λ.

The Fourier transforms of the above are given by

K̃n(x) =
iqχ1a

2
n

a2
nq

2 + 1
− 2iRrΨ(qr), (5.6.19a)

K̃m(x) = −2iRrΨ(qr), (5.6.19b)

K̃nm(x) =
iqχ2a

2

a2q2 + 1
− 2iRrΨ(qr), (5.6.19c)

K̃mn(x) =
iqφa2

n

a2
nq

2 + 1
− 2iRrΨ(qr), (5.6.19d)
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The function Ψ denotes the Fourier transform of the repulsion kernel (5.4.12)

and is defined as

Ψ(x) = Si(x) +
1

x
(cos x− 1), (5.6.20)

where Si(x) is the sine integral [1]

Si(x) =

∫ x

0

sin t

t
dt. (5.6.21)

For simplicity, we first consider the case R = 0, so repulsion effects vanish.

The coefficients in dispersion relation (5.6.11) then become

B(q) = q2

(

Dn +Dm − n0χ1a
2
n

a2
nq

2 + 1

)

, (5.6.22)

C(q) = q4Dm

(

Dn − n0χ1a
2
n

a2
nq

2 + 1

)

− q4n0m0χ2φa
2
na

2

(a2
nq

2 + 1)(a2q2 + 1)
. (5.6.23)

A sufficient condition for instability to occur is C < 0. This implies

Dm

(

Dn − n0χ1a
2
n

a2
nq

2 + 1

)

<
n0m0χ2φa

2
na

2

(a2
nq

2 + 1)(a2q2 + 1)
. (5.6.24)

An interpretation of this relation is that, in order for instability to arise, ran-

dom motion of the two cell populations (characterised by Dn and Dm), which

tends to spread the cells uniformly over the domain, must be dominated by

chemotaxis. As q → ∞, the RHS of inequality (5.6.24) tends to zero, so the

model is linearly stable to perturbations of very high wavenumber. We remark

that ω(0) = 0, and that the LHS of equation (5.6.24) is minimised, and the

RHS maximised, for q = 0 (with other parameters regarded as fixed). This im-

plies that instability will occur for a finite range of wavenumbers 0 < q2 < q2
max,

where q2
max is the positive root of

q4DnDma
2
na

2 + q2Dm(Dna
2
n +Dna

2 − n0χ1a
2
na

2)

+DnDm − n0Dmχ1a
2
n − n0m0χ2φa

2
na

2 = 0. (5.6.25)

When there is no hepatocyte-hepatocyte attraction (χ1 = 0), it is easy to

determine the way in which the cell seeding densities n0 and m0 can affect

whether or not instability occurs. We assume that n0 + m0 ≤ 1, and regard
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Figure 5.6: An illustration of the inequality (5.6.24), with χ1 = 0, Dn =

Dm = 0.4, χ2 = φ = an = a = 1 . The dotted line ( y = DnDm = 0.16 )

represents the LHS. The RHS, with m0 = 1 − n0, (i.e. y = n0(1−n0)
(q2+1)(q2+1)

) is

plotted for n0 = 0.5 (solid) and n0 = 0.1 (dashed). Hence, when n0 = 0.5,

instability occurs for 0 < q < qmax, with qmax ≈ 0.5, whilst for n0 = 0.1,

the system is linearly stable.

the parameters Dn, Dm, an, a, χ2 and φ as fixed, since these are intrinsic to

the cells (and hence difficult to control experimentally). Instability is then

most likely to occur when n0 = m0 = 1/2 (i.e. instability may occur for this

cell seeding ratio, but not for others, for given parameter values), since this

maximises the term on the RHS of (5.6.24). This is illustrated in Fig. 5.6.

Hence, in this case, aggregates are most likely to form if the cells are seeded

at a 1:1 hepatocyte to stellate ratio, at the maximum possible seeding density.

We remark that while, in general, the case B < 0 < C could give rise to

instability, in practice it cannot occur in this model for the following reason.

If B < 0, then
n0χ1a

2
n

a2
nq

2 + 1
> Dn +Dm ≥ Dn, (5.6.26)

which in turn implies that the first term of equation (5.6.23) is non-positive,



Chapter 5 Non-local models for the interactions of

hepatocytes and stellate cells 148

and hence we cannot have C > 0. Thus, equation (5.6.24) is both a necessary

and sufficient condition for instability to occur.

We now consider the more general case where R 6= 0, in which case the

sufficient condition for instability, C < 0, becomes

(
q2Dm + 2qm0RrΨ(qr)

)
(

q2Dn + 2qn0RrΨ(qr) − q2n0χ1a
2
n

a2
nq

2 + 1

)

< q2n0m0

(
qχ2a

2

a2q2 + 1
− 2RrΨ(qr)

)(
qφa2

n

a2
nq

2 + 1
− 2RrΨ(qr)

)

. (5.6.27)

We now note the following features. Firstly, when χ1 = χ2 = φ = 0 (i.e. there

are no attractive interactions), we have C > 0 and B > 0, so the uniform

steady state is stable. Secondly, for non-negligible attractions, as q → ∞,

we always have B and C becoming positive, since the χ1, χ2 and φ terms

remain O(1), whilst other terms are at least O(q) (since Ψ(qr) → π/2 as

q → ∞ -see [1]). Hence the model remains stable to perturbations of very

high wavenumber. Thirdly, for q � 1, Ψ(qr) tends to qr(1− r); the condition

(5.6.27) then reads

(Dm + 2m0Rr(1 − r))
(
Dn + 2n0Rr(1 − r) − n0χ1a

2
n

)
<

n0m0

(
χ2a

2 − 2Rr(1 − r)
) (
φa2

n − 2Rr(1 − r)
)
. (5.6.28)

Once again, we must now consider the case B < 0, C > 0, which represents

an alternative sufficient condition for instability. Writing out C in full we have

C =
(
q2Dm + 2qm0RrΨ(qr)

)
(

q2Dn + 2qn0RrΨ(qr) − q2n0χ1a
2
n

a2
nq

2 + 1

)

−

q2n0m0

(
qχ2a

2

a2q2 + 1
− 2RrΨ(qr)

)(
qφa2

n

a2
nq

2 + 1
− 2RrΨ(qr)

)

. (5.6.29)

Firstly, we note that since Ψ(x) is an odd function of its argument, C is an odd

function of q (and hence it suffices to consider positive q). Secondly, Ψ(0) = 0;

and, since Ψ′(x) = (1 − cos(x))/x2 ≥ 0, it follows that Ψ(x) > 0 for x > 0.

We can then say that, since B < 0, the second bracket of the first term above
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is negative. Hence, for C > 0 it is necessary that the second term be negative

- i.e.
(

qχ2a
2

a2q2 + 1
− 2RrΨ(qr)

)(
qφa2

n

a2
nq

2 + 1
− 2RrΨ(qr)

)

< 0, (5.6.30)

i.e. we require the net hepatocyte-stellate interaction to be repulsive, with the

stellate-hepatocyte interaction attractive, or vice versa. This type of behaviour

is not the same as that considered in Appendix D, in which the heterogeneous

attraction-repulsion relationship between the two species leads to travelling

wave solutions. In that case there is no growth of the instability (the ini-

tial form of groupings of each species persists, they merely undergo a spatial

translation). By contrast, to observe the type of behaviour considered here it

is essential that one of the species is attracted to itself, otherwise we cannot

satisfy the condition B < 0.

5.6.2 Model 2: Physical contact

Once again, we begin by considering the simpler case, in which R = 0. The

Fourier transform of the hepatocyte-stellate interaction kernel, K̃nm, is then

given by

K̃nm = −2iFs(Knm) = −2i

∫ ∞

0

Knm(x) sin(qx)dx

= 2i

∫ a2

r

A2 sin(qx)dx

= 2i
A2

q
(cos(qr) − cos(qa2)).

The Fourier transform of Kn is given by equation (5.6.19b).

Upon substituting these forms into the dispersion relation (5.6.11), we find

the coefficients are given by

B(q) = q2

(

Dn +Dm − n0χ1a
2
n

a2
nq

2 + 1

)

, (5.6.31)

C(q) = q4Dm

(

Dn − n0χ1a
2
n

a2
nq

2 + 1

)

− 4n0m0A
2
2 (cos(qr) − cos(qa2))

2 . (5.6.32)
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By the same reasoning used in §5.6.1, a necessary and sufficient condition

for instability is that C < 0, and hence

q4Dm

(

Dn − n0χ1a
2
n

a2
nq

2 + 1

)

< 4n0m0A
2
2 (cos(qr) − cos(qa2))

2 . (5.6.33)
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Figure 5.7: An illustration of the inequality (5.6.33), with n0 = m0 =

0.5, Dn = Dm = 0.04, χ1 = A2 = a2 = 1, r = 0.1. The dotted line (

y = 0.04q4(0.04 − 1/2(q2 + 1))) represents the LHS, the solid line (y =

(cos(0.1q) − cos(q))2) the RHS. Hence instability occur for these parameter

values for 0 < q < qmax, with qmax ≈ 5.

For the purposes of illustration, the above inequality is plotted in Fig. 5.7

for a particular choice of parameter values. We observe once again, that the

model is linearly stable to perturbation of large wavenumber (q → ∞), as in

this limit the first term of equation (5.6.32) dominates, and so the inequality

(5.6.33) cannot hold. Using the same reasoning as for Model 1, when there

is no hepatocyte-hepatocyte attraction (χ1 = 0), instability is most likely to

occur if the cells are seeded in a 1:1 ratio (i.e. n0 = m0 = 1/2).

For small wavenumbers (q � 1), we can expand the cosine terms as a

power series, and equation (5.6.33) is modified to

Dm

(
Dn − n0χ1a

2
n

)
< n0m0A

2
2

(
a2

2 − r2
)2
. (5.6.34)
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Hence instability is more likely to occur if the ranges of of attraction a and an

are increased or the range of repulsion r decreased.

Now considering the more general case, R 6= 0, we obtain

B(q) = q2

(

Dn +Dm − n0χ1a
2
n

a2
nq

2 + 1
+ 2q(n0 +m0)RrΨ(qr)

)

, (5.6.35)

C(q) =
(
q2Dm + 2qm0RrΨ(qr)

)
(

q2Dn + 2qn0RrΨ(qr) − q2n0χ1a
2
n

a2
nq

2 + 1

)

− 4q2n0m0

(
A2

q
(cos(qr) − cos(qa2)) −RrΨ(qr)

)2

. (5.6.36)

For instability, we require either C < 0 or B < 0 and C > 0. The first

condition can once again simply be interpreted as stating that attractive inter-

actions must be strong enough to over come diffusion and now also repulsion.

The second condition cannot occur in this model, since B < 0 implies the first

term of C is negative, and hence C < 0.

5.7 Numerical simulations

5.7.1 Numerical methods

The numerical simulations in this chapter were, once again, performed using

MATLAB. For Model 1, we begin by calculating the chemical concentrations

c1 and c2, given the initial conditions for n and m, from equations (5.4.9c)

and (5.4.9d) using matrix inversion. (For Model 2, we need solve only for c1

using (5.5.4c). ) We then calculate the convolution terms (i.e. those terms

involving KR and KA), using the trapezium rule. We thus obtain the overall

velocities (Vn and Vm) for the two cell types, which include contributions from

chemotaxis and non-local terms - e.g. for Model 1 (5.4.9), we have

Vn = χ1
∂c1
∂x

+ χ2
∂c2
∂x

+KR ∗ (n+m), (5.7.1)

Vm = φ
∂c1
∂x

+KR ∗ (n +m). (5.7.2)
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The conservation equations for each cell type are then written in terms of these

velocities - e.g. equation (5.4.9a) becomes

∂n

∂t
+

∂

∂x
(nVn) = Dn

∂2n

∂x2
. (5.7.3)

These equations allow us to update the cell densities, using the explicit up-

winding routine described in detail in Chapter 2. The velocities are then, in

turn, updated, and the process repeated until the desired end time is reached.

The code for the convolution integrals was validated by checking that it

correctly calculated the convolution of the kernel functions with prescribed

profiles for n and m. Similar verification was carried out on the solutions

for the chemical concentrations, and the standard grid refinement checks were

made. Mass conservation for the two cell species is verified at each time-point,

and was found not to exceed 3% for the simulations shown here.

5.7.2 Model 1

For the simulations in this section, we adopt a timestep ∆t = 0.0001, with

1000 grid points in the domain, taken to be [−10, 10] (except for Figs. 5.8

and 5.9 which required 2000 grid points to obtain acceptable resolution). We

assume that the cells undergo relatively little random motion, and hence set

Dn = Dm = 0.001. Repulsion is assumed to be strong and short-ranged, and

so we set R = 100, r = 0.1. The diffusion lengthscale for c1 must set the

lengthscale of the aggregates, λ in the absence of stellates; we assume that the

diffusion lengthscale of c2 is similar, and hence set γ1 = γ2 = 1. Our initial

conditions are n0 = 0.5 + 0.05 cos(πx/5), with m0 = 0.5 + 0.05 cos(πx/10),

so the stellates are most densely seeded in the centre of the domain. The

chemotactic affinities of the cells determine the aggregation timescale, T . We

assume that the interactions between hepatocytes are stronger than those be-

tween hepatocytes and stellates and hence set χ1 = 5, χ2 = 1, φ = 1. The
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results show that the hepatocytes form a core within the aggregates, which is

flanked by stellates (see Fig. 5.8). The total cell density (n + m) is shown in

Fig. 5.9. It was not possible to run this simulation for longer times, as the

gradients of m become large close to the core of the aggregates (increasing

the number of grid points improves the resolution, at the expense of consid-

erably increasing the time taken to run a simulation - as we felt our results

adequately illustrated the cell distribution within the developing aggregate,

we did not pursue this issue further) .
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Figure 5.8: Numerical solution for cell densities: (a) n; (b) m at intervals

of 0.5 time units, between t = 0 and t = 3.5 (arrow indicates increasing

time). Parameter values: χ1 = 5, χ2 = 1, φ = 1, R = 100, r = 0.1,

γ1 = γ2 = 1, Dn = Dm = 0.001.

Keeping the same initial conditions, we now assume that it is the hepatocyte-

stellate attraction that is strongest, and so set χ1 = 1, χ2 = 5, φ = 5. We now

observe that both cell types are mixed together within the aggregates - there

is no segregation into a core of hepatocytes and an outer layer of stellates as

previously (compare Figs. 5.10 and 5.8). The overall distribution of cell den-

sity has the same profile as that the the two cell types individually (Fig. 5.11).

Comparing our results with experimental observations (see §5.8), we believe

that it is most likely that the hepatocyte-stellate attraction is strongest in



Chapter 5 Non-local models for the interactions of

hepatocytes and stellate cells 154

−10 −8 −6 −4 −2 0 2 4 6 8 10
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

PSfrag replacements

n
+
m

x

Figure 5.9: Numerical solution for total cell density n+m at intervals of

0.5 time units, between t = 0 and t = 3.5 (arrow indicates increasing time).

Parameters as for Fig. 5.8.

practice, and we therefore now fix these values of χ1, χ2 and φ, and look at

the influence of other factors on the aggregation process.
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Figure 5.10: Numerical solution for cell densities: (a) n; (b) m at intervals

of 0.5 time units, between t = 0 and t = 5 (arrow indicates increasing time).

Parameter values: χ1 = 1, χ2 = 5, φ = 5, other parameters as for Fig. 5.8.

We now repeat the simulation described above, with the new initial con-

ditions n0 = 2/3 + 0.05 cos(πx/5), with m0 = 1/3 + 0.05 cos(πx/10), so the

hepatocyte to stellate ratio is now approximately 2:1, instead of 1:1 as previ-

ously. We then compare Figs. 5.11 and 5.13, and note that at t = 5, the overall
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Figure 5.11: Numerical solution for total cell density n+m at intervals of

0.5 time units, between t = 0 and t = 5 (arrow indicates increasing time).

Parameters as for Fig. 5.10

cell density (n+m) within the aggregates is greater for the 1:1 ratio (taking a

maximum value of 2.2) compared to the 2:1 ratio (where the maximum value

is 2.0). This suggests the aggregation is proceeding more quickly, and that it

is thus more advantageous to seed hepatocytes and stellates in a 1:1 than a

2:1 ratio to promote aggregate formation. This is because a 1:1 ratio tends

to maximise the amount of contact between the two cell types which have the

strongest attraction. However, comparing Figs. 5.10 and 5.12, we note that at

the same time point, the maximum density of hepatocytes in the aggregates is

greater for the 2:1 ratio, whilst for stellates, the maximum density is greater

for the 1:1 ratio. This reflects the relative abundance of the two cell types

upon seeding. If factors other than the speed of aggregate formation need to

be taken into account experimentally, such as functionality of the engineered

tissue (since most of the functions of the liver are performed by hepatocytes),

it may thus not be optimal to seed the cells in a 1:1 ratio. We discuss this

issue more fully in §5.8.

We now consider the effect of changing relative decay rates of the two

chemoattractants, so we set γ2 = 0.5, keeping all other parameters the same.

This effectively means the stellate-hepatocyte attraction range is a factor of
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Figure 5.12: Numerical solution for cell densities: (a) n; (b) m at intervals

of 0.5 time units, between t = 0 and t = 5 (arrow indicates increasing time).

Hepatocyte:stellate seeding ratio of 2:1; parameters as for Fig. 5.10.
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Figure 5.13: Numerical solution for total cell density n+m at intervals of

0.5 time units, between t = 0 and t = 5 (arrow indicates increasing time).

Parameters as for Fig. 5.12

√
2 greater than that between hepatocytes. We notice, comparing Fig. 5.14

with Fig. 5.10, that this gives rise to taller peaks in the distributions of both

cell types. This is because the growing aggregates now influence more distant

cells.

Repeating the above with γ2 = 2 (i.e. reducing the range of hepatocyte-

stellate attraction compared to that between hepatocytes) we find the con-

verse effect (see Fig. 5.16) - the peaks in the cell distributions are now less
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Figure 5.14: Numerical solution for cell densities: (a) n; (b) m at unit

time intervals, between t = 0 and t = 5 (arrow indicates increasing time).

γ2 = 0.5, other parameters as for Fig. 5.10
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Figure 5.15: Numerical solution for total cell density n+m at unit time

intervals, between t = 0 and t = 5 (arrow indicates increasing time). Pa-

rameters as for Fig. 5.14

pronounced, since the growing aggregates’ effective influence only extends to

nearby cells.

5.7.3 Model 2

We now repeat the above investigations for the second model, in which the

hepatocyte-stellate interaction is assumed to be via physical contact. The

simulations in this section again use a timestep dt = 0.0001, but to obtain
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Figure 5.16: Numerical solution for cell densities: (a) n; (b) m at unit

time intervals, between t = 0 and t = 5 (arrow indicates increasing time).

γ2 = 2, other parameters as for Fig. 5.10.

acceptably smooth, well resolved solutions we now use 2000 grid points and

set Dn = Dm = 0.1. We begin by setting χ1 = 5, A2 = a2 = α = 1, with

initial conditions and other parameter values as for the simulations in Fig. 5.8.

Since the hepatocyte-hepatocyte attraction is now strongest, we again observe

the segregation of the two cell types within the aggregates, with hepatocytes

in the centre and stellates at the edges, as for Model 1. The results are shown

in Figs. 5.17 and 5.18.

If we now reverse the relative strengths of the two interactions, setting

A2 = 5, χ1 = 1, we then observe a uniform mix of the two cell types within

aggregates, again as for Model 1 (see Fig. 5.19). An obvious difference here is

that in this case there are a larger number of smaller aggregates.

Taking the same parameter values as above, we now seed the cells in a 2:1

hepatocyte:stellate ratio as in Fig. 5.12. The result is again the same as for

Model 1, that the overall cell density within the aggregates is higher when the

1:1 seeding ratio is used, as opposed to the 2:1 ratio (the maximum densities

reached in the two cases being 4.5 and 4.3 respectively - see Figs. 5.20 and
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Figure 5.17: Numerical solution for cell densities: (a) n; (b) m at intervals

of 0.25 time units, between t = 0 and t = 5 (arrow indicates increasing

time). Parameters: Dn = Dm = 0.1, R = 100, r = 0.1, γ1 = 1 A2 = a2 = 1,

χ1 = 5 .
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Figure 5.18: Numerical solution for total cell density n+m at intervals of

0.25 time units, between t = 0 and t = 5 (arrow indicates increasing time).

Parameter values as for Fig. 5.17.

5.22). In this model the maximum value of n reached is also greater for the

1:1 ratio (the values begin 2.3 and 2.2 for the 1:1 and 2:1 ratios respectively),

despite the greater relative abundance of hepatocytes in the case of the 2:1

ratio, contrasting with the case for Model 1. However, for the stellates, the

maximum of m is greatest in the 1:1 case, as we would expect from the relative

abundances of the two cell types (see Fig. 5.23). As for Model 1, we believe

that the 1:1 seeding ratio increases the rate of aggregation because it tends to
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Figure 5.19: Numerical solution for cell densities: (a) n; (b) m at intervals

of 0.15 time units from t = 0 to t = 3 (arrow indicates increasing time).

Parameter values: A2 = 5, χ1 = 1 (other parameters as for Fig. 5.17).
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Figure 5.20: Numerical solution for total cell density n+m, at intervals

of 0.15 time units from t = 0 to t = 3 (arrow indicates increasing time).

Parameters as for Fig. 5.19.

maximise the degree of contact between the cell types which are most power-

fully attracted to each other.

We now increase the range of attraction so that a2 = 2. By comparison

with Fig. 5.19, we see from Fig. 5.23 that this results in a smaller number of

aggregates, in which the cell density is higher. As for Model 1, this is because

the growing aggregates can now pull in more distant cells.
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Figure 5.21: Numerical solution for cell densities: (a) n; (b) m, at inter-

vals of 0.15 time units from t = 0 to t = 3 (arrow indicates increasing time).

Cell seeding ratio of 2:1; parameters as for Fig. 5.19.
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Figure 5.22: Numerical solution for total cell density n+m, at intervals

of 0.15 time units from t = 0 to t = 3 (arrow indicates increasing time).

Parameters as for Fig. 5.21.

By contrast, when we reduce the range of attraction so a2 = 0.5, aggrega-

tion no longer takes place (results not shown). Quite simply, the range of the

stellate cells’ processes is too small to be able to counter the spreading effects

of cell-cell repulsion and random movement.

In summary, our numerical results suggest that when the hepatocyte-

stellate attraction is stronger than the hepatocyte-hepatocyte attraction (which,

from experimental observations, we believe to be most likely - see §5.8), it may
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Figure 5.23: Numerical solution for cell densities: (a) n; (b) m at intervals

of 0.15 time units from t = 0 to t = 3 (arrow indicates increasing time).

a2 = 2, other parameters as for Fig. 5.19.

be advantageous to seed the two cell types in a 1:1 ratio to promote swift ag-

gregation. This is true for both mechanisms hypothesised for the hepatocyte-

stellate interaction - i.e. chemical (Model 1) or physical (Model 2). Of lesser

significance (due to the fact that it cannot be modified experimentally) is the

fact that a longer range of attraction gives rise to denser aggregates. Con-

versely, if attraction is too short ranged, aggregation may not take place.

5.8 Discussion

In this chapter, we have derived new non-local models for the interactions

between hepatocytes and stellate cells, extending an earlier one-species model

by Mogilner and Edelstein-Keshet [74]. Two hypotheses were investigated: in

the first, stellates and hepatocytes were attracted to each other by chemical

signals; in the second, the attraction was assumed to be due to the stellates

putting out processes, which physically contacted the hepatocytes. In both

hypotheses, hepatocytes were attracted to other hepatocytes by a chemical

signal (as in Chapter 3), and the effects of space limitation were incorporated

through the non-local repulsion terms.
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Under both hypotheses, we found that the final distribution of the cells

within the aggregates depended upon the relative strength of the attraction

between hepatocytes and stellates. When this was weaker than the attraction

hepatocytes have for each other, aggregates had a core consisting of hepato-

cytes, with stellates relegated to the edges of the cluster. Conversely, when

the hepatocyte-stellate attraction was the strongest, the two cell types were

evenly mixed within the aggregates. These results are in agreement with those

of Painter and Sherratt [89], who studied the interactions of two cell popula-

tions using a Keller-Segel type model, where the diffusion and chemotaxis

coefficients were functions of the cell densities (this allowed the effect of space

limitation to be included by making the coefficients vanish at a critical cell

density). A limitation of their model was that it only considered the situation

in which one of the two cell populations produced a chemoattractant.

Our results also echo those of the Steinberg hypothesis (or differential ad-

hesion hypothesis (DAH) - see Chapter 1), where the distribution of cells in

aggregates depends upon the relative strengths of the adhesions formed be-

tween cells of each type [112]. Steinberg postulated the existence of a ‘free

energy’ function; cells can reduce their free energy by the formation of adhe-

sions, and the arrangement of the cells in an aggregate then corresponds to

a minimum of the free energy of the system. His predictions have recently

been validated experimentally, using detailed measurements of cadherin (a

cell adhesion molecule) levels [34]. A continuum model of this phenomenon

has recently been put forward by Armstrong et al [5]. They applied a non-

local framework similar to that used in this chapter, with the non-local terms

modelling adhesion forces. However, we also note that both our Model 1 and

the model of Painter and Sherratt [89] display similar cell sorting, based on

the cells having different affinities for chemoattractants, together with space

limitation. This suggests that it may be of interest to explore (both experimen-
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tally and through modelling) the relationship between the relative adhesion

strengths and chemotactic affinities of two cell types, and their distribution

within aggregates.

There was no obvious qualitative feature which differentiated the results

of Model 1 from those of Model 2, since although Model 2 tended to produce

smaller aggregates in our simulations, similar results could occur for Model 1

if we used different initial conditions or parameter values, so we are not able

to suggest an experimental observation which would distinguish between the

mechanisms of aggregation hypothesised here. However, the evidence of the

time-lapse video does seem to suggest quite clearly that physical contact be-

tween the cells is an important factor, and our results agree with the assertion

in Thomas et al [118] that aggregation need not involve cross talk between

the two cell types (i.e. physical contact alone can account for aggregation).

Chemical signalling of the type hypothesised in Model 1 cannot be ruled out

though, and also provides a possible explanation. In practice, it is probable

that both mechanisms contribute to the formation of aggregates.

One of the main aims in this chapter was to compare the predictions of our

models with experimental results, particularly in relation to the distribution

of hepatocytes and stellates within spheroids. This type of data has recently

become available thanks to experiments carried out in the Tissue Engineer-

ing Group at the University of Nottingham. Figure 5.24 shows the location

of the stellate cells (stained green) within five different aggregates. Compar-

ison of these images with our theoretical results leads us to believe that the

hepatocyte-stellate attraction is the strongest. The bottom left image is per-

haps the most supportive of this conclusion, as we can see traces of the green

stain in most areas of the spheroid, although perhaps most concentrated at

the lower edge. In the upper three images, we see stellates located both at

the centre and the edges of the aggregates, whilst the lower right image shows
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Figure 5.24: Sections through hepatocyte-stellate cell spheroids (from

[118]). Stellate cells appear green.

stellates located just at the left-hand edge. Hence, although the experimental

evidence does not entirely agree with either of the theoretical scenarios we

have considered (i.e. either hepatocytes and stellates intermixing, or hepato-

cytes in the centre of aggregates and stellates on the edge), we believe it is

most likely that hepatocyte-stellate interactions are the strongest, and that

the discrepancies may be explained by the fact that our model is continuous,

whilst the real cells are discrete, and so we could not expect a completely even

intermixing of the two types. The fact that stellate cells are found both at the
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centre and edges of aggregates [118] appears to rule out the possibility that

the hepatocyte-hepatocyte interaction is strongest.

Intuitively, we would expect the hepatocyte-stellate interaction to be strongest,

as there would otherwise be little reason to add the stellates (replacing them

with more hepatocytes would have a greater effect). Our results suggest the

optimal ratio of the seeding densities of the two cell types to promote swift

aggregation is 1:1, since this maximises the amount of contact between the

cells which attract each other most strongly. However, we remark that in the

liver in vivo the ratio is approximately 20:1, and thus if considerations other

than promoting swift aggregation are taken into account (e.g. optimising the

functionality of the spheroids produced) there may be good reasons to opt

for a higher ratio. At present, there is little experimental evidence on how

the numbers of stellates within a spheroid affects its functionality or viability,

although Riccalton-Banks has compared the functionality of hepatocyte-only

and hepatocyte-stellate (2:1 ratio) spheroids [102]. She found that the co-

cultured spheroids remained functional (in terms of albumin secretion and

cytochrome P-450 enzyme activity) for nearly two months, compared to just

over one month for the hepatocyte-only spheroids. This suggests that the

presence of the stellate cells has, in fact, a positive impact on the functionality

of the engineered tissue, and we thus recommend that the efficacy of culturing

hepatocytes and stellates in a 1:1 ratio be tested experimentally.

The work presented here has been preliminary in nature and we have ex-

plored only a small region of each model’s parameter space, corresponding to

the types of behaviour we thought most applicable to the aggregation of hepa-

tocytes and stellate cells. Further investigation of the behaviour of the model

would be interesting mathematically, and might also yield further biological

insights into the interactions of two cell populations. However, such work re-

quires a more sophisticated numerical code - ideally one which is less computa-
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tionally expensive, facilitating simulations to longer times whilst maintaining

adequate resolution.

The results we have obtained here are only qualitative, and a great deal

of further experimental data is required before the model predictions could

be relied on quantitatively. In particular, the correct functional forms for the

kernel functions describing the interactions between cells need to be deter-

mined. This could be done by measuring the forces acting between two cells,

and utilising the connection between the individual cell- and continuum-level

descriptions discussed in §5.2.1. Another interesting approach would be to

compare the results of our continuum model with those of an individual-based

model along the lines of that described in [74]. The latter might provide better

agreement with the experimental results, as we suggested above.

The most obvious improvement to the model would be to extend it to more

physically realistic two- and three-dimensional geometries and determine the

types of patterns which may arise in such cases. We might incorporate the

effects of cell adhesion to the ECM, as we have done in Chapters 2 and 3. More

generally, for two species non-local models of the type introduced here, there

is considerable scope for profitable future study, as interest in modelling the

interactions between cell populations is increasing. Furthermore, in ecology,

the interactions of two groups of different species (e.g. predators and prey)

might be described using such a formulation. A more complete description

of types of possible travelling wave solutions to the model might be of rele-

vance in the latter context. Of more abstract mathematical interest, questions

concerning the proof of existence and uniqueness of the solutions remain open.



Chapter 6

Discussion

The formation of clusters of liver cells takes place during the early stages of

spheroid formation, which, in turn, appears key to the growth of viable, func-

tional liver tissue in the laboratory. In this thesis, we have used mathematical

modelling to gain insight into the factors which may prevent or hinder the

aggregation process. This work provides a starting point for future experi-

mental and theoretical studies, which may ultimately enable tissue engineers

to optimise their culture technique.

In the first part of the thesis, we considered the aggregation of a single

cell population, plated on a layer of viscoelastic ECM. We developed models

in Chapters 2 and 3 based on the principles of the mechanochemical theory

of Murray [76], although our models were formulated using a different mathe-

matical framework. We adopted a two-phase, mixture theory approach, which

coupled the motion of the cells with that of the surrounding culture medium,

which was not included in previous models. Another significant difference was

that we derived the velocities of the cells, culture medium and ECM from

momentum balances, whereas in [76], only the ECM velocity is determined in

this way, the cell velocity being prescribed in terms of the other dependent

variables.

168
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The two-phase approach has a number a number of advantages over the

formulation presented in [76]. The first is that, since n represents the volume

fraction of cells, rather than the number density, there is a constraint that

n ≤ 1, so the effect of space limitation is automatically included. This is

not the case for e.g. the standard form of the Keller-Segel model (where the

diffusion and chemotaxis coefficients are constants), in which the cell density

n can become very large. The second is that the mixture theory framework

can accommodate an arbitrary number of phases in a consistent manner (see

e.g. [59]). This is likely to become of greater significance in the future, as

interest in understanding the interactions between different cell populations,

and between cells and other materials (such as artificial scaffolds) increases.

However, there are also a number of disadvantages to using this framework.

The most obvious is that, by including a momentum balance on the cells, we

increase the size of the system of model equations by at least one, compared

to Murray’s formulation. There is also the need to introduce constitutive re-

lations, both for the stress tensors for each phase, and the interaction forces

between them. The choices made for these constitutive relations are essen-

tially arbitrary, in that they are not derived in a rational manner from ‘micro-

scopic’ equations (as is the case in homogenisation theory - see Chapter 1). A

strong justification for a particular choice of constitutive law can hence only

be made by comparing the model predictions with quantitative experimental

data. However, we remark that the models of Murray and co-workers [76] also

introduce a number of constitutive laws (for stress tensors, ECM ‘tethering’

force, and the cell flux) and so this feature is not unique to our modelling ap-

proach, though our exposition perhaps gives greater prominence to the number

of such assumptions made.

The model developed in Chapter 2 assumed a one-dimensional geometry,

and prescribed the extra pressure generated by the cells in response to their
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surroundings as a function of the cell volume fraction n (i.e. Σn = Σn(n)). As

a result of the simplified geometry adopted, cell-ECM drag was included as

a body force acting on the cells, when, physically, it should be included as a

boundary condition at the interface between the ECM and the cell / culture

medium mixture. Using linear stability analysis, we determined that, for our

choice of function for Σn, aggregates would form when the cell seeding den-

sity was less than a critical value (n0 < nc). Numerical simulations showed

the aggregates to have sharply defined boundaries and a constant cell density

in the interior, which is qualitatively consistent with experimental observa-

tions. Reducing the cell seeding density appeared to reduce the size (but not

the number) of aggregates, again in line with experimental observations [122].

Increasing cell-ECM or cell-culture medium drag resulted in the formation

of smaller aggregates, but the properties of the ECM (viscosity and Young’s

modulus) had negligible effect.

In Chapter 3, the model developed in Chapter 2 was extended to a more

realistic 2D geometry (representing a vertical section through the culture well),

and chemotaxis was included by making Σn dependent on the concentration c

of a chemical secreted by the cells. An interesting feature of the model is the

fact that the diffusion and chemotaxis coefficients (which are usually assumed

to be independent constants in the Keller-Segel model) are then related to Σn.

We identified two scaling regimes (which we termed ‘extensional’ and ‘lubrica-

tion’) in which we could exploit the thin geometry of the problem to reduce the

model equations to one-dimensional form at leading order. The two reduced

models were then investigated, using a combination of linear stability analysis

and numerical simulations, in Chapter 4. We showed that aggregation will oc-

cur in both models, provided the cell seeding density lies between upper and

lower bounds. The cell seeding density appeared to have a much greater effect

in these models compared to Chapter 2, since it affected the number and size

of aggregates formed, and also their rate of growth. In the extensional regime,
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the degree of cell-ECM adhesion had little effect on the aggregation process;

this appears to be because, in this regime, aggregation occurs mainly by the

expulsion of culture medium from between the cells, without significant cell

migration. However, in the lubrication regime, increased cell-ECM adhesion

did slow the formation of aggregates.

As in Chapter 2, the viscosity and Young’s modulus of the ECM had little

noticeable effect on aggregation in the lubrication regime. This is probably be-

cause we assumed there was no inter-relationship between the cell-generated

stresses (represented by Σn), the degree of cell-ECM adhesion and the me-

chanical properties of the substrate. However, recent studies e.g. [23] have

shown that cells can respond to the stiffness of the substrate to which they

are adhered in various ways. Lo et al [61] reported a number of effects on the

migration of 3T3 fibroblast cells. At low seeding densities, cells migrate pref-

erentially towards stiff substrates, a behaviour they term ‘durotaxis’. Cells

generate stronger traction forces on stiff, compared to soft substrates, and

there are also differences in cell speed. Finally, movement of the cells can

be directed by stretching the substrate; pushing the substrate towards the

leading edge of a migrating cell causes it to retract, and the cell reverses its

direction of migration; when the substrate is pulled away from the trailing

edge of the cell, a similar reversal occurs. This latter fact suggests that Σn

should include dependence on the displacement of the ECM. However, to our

knowledge, mathematical models of these substrate-related phenomena have

not yet been formulated.

The overall results from our modelling in Chapters 2-4 thus suggest that

the two most important factors influencing aggregation are the cell seeding

density and the degree of cell-ECM adhesion. The models do not agree on the

effect of changing these factors, which provides a means for assessing which

of them is most appropriate, by comparing their predictions with experimen-
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tal results. Unfortunately, the current lack of quantitative experimental data

means that at present it is not entirely clear which scenario is most realistic.

However, given that the models we have developed in Chapters 2-4 make unre-

alistic assumptions concerning the geometry of the culture well, it is probable

that they will need to be extended to more biologically relevant geometries

- e.g. 2D (representing a plan view of the culture well) or 3D - before such

validation could be undertaken. It is hence probably most sensible to view

them as providing a starting point for future modelling work.

In Chapter 5, we turned to the problem of modelling the interactions of

hepatocytes and stellate cells in co-culture. We considered two hypotheses:

firstly, that chemical signalling takes place between two cell populations, lead-

ing to an improved rate of aggregation due to an enhanced chemotactic effect;

secondly, that the hepatocytes and stellates interact through direct physical

contact, the stellates putting out long, tentacle-like cellular processes, which

pull hepatocytes into the growing aggregates. In this case, we adopted a

modelling framework based on a one-population non-local model by Mogilner

and Edelstein-Keshet [73], which we extended to the case of two interacting

populations. Chemotaxis was also included (using the standard Keller-Segel

type formulation) but the ECM and culture medium were neglected, so as

to focus on cell-cell interactions. Under each hypothesis, we determined how

the relative strengths of hepatocyte-hepatocyte and hepatocyte-stellate inter-

actions affected the distribution of the two cell types within the aggregates.

In both cases, we found that when the hepatocyte-stellate interaction was

the stronger, the two cell types were evenly distributed within the aggregates;

when the hepatocyte-hepatocyte interaction was the stronger, the hepatocytes

formed a ‘core’, with the stellates relegated to the edges. Our model predic-

tions were then compared with images of sections through spheroids produced

experimentally, which suggested that the hepatocyte-stellate interaction was

the stronger in practice. Given this information, we then looked at the effect
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of changing the seeding ratios of the two cell types on the rate of aggregation.

Our results suggested a 1:1 ratio of hepatocytes to stellates ought to be best

for promoting swift aggregate formation, as it tends to maximise the degree of

contact between cells which attract each other most strongly. Our prediction

is in line with the experimental results of Riccalton-Banks, who reported that

a 2:1 ratio of hepatocytes to stellates led to swifter spheroid formation than

ratios of 5:1, 10:1 and 20:1 [102].

Once again, the main limitation of our model is the assumption of an un-

realistic geometry. In order to validate the predictions quantitatively against

experiment, we believe it would be necessary to consider at least a two-

dimensional geometry, representing a plan view of the culture well, such as

was considered in [5]. A weakness of the work presented in Chapter 5 is the

use of an unsophisticated numerical method for producing simulations. Al-

though our results were sufficient to determine the distribution of cells within

aggregates as they developed, which was the main aim of the study, it was not

been possible to run simulations for long times, as it would be very computa-

tionally expensive to obtain reasonable resolution. In their study of a similar

non-local model, Armstrong et al [5] used a finite volume method which was

capable of running to much longer times. They found that aggregates begin

to merge at long times.

Our results concerning the distribution of the two cell types within the ag-

gregates echo those of the Steinberg hypothesis (see Chapter 1), which predicts

the cell distribution based on the relative strengths of the adhesions between

cells of different types. Indeed, a continuum model based on the Steinberg

hypothesis has recently been put forward, in which the cell adhesion forces

are modelled using a non-local framework similar to the one we presented in

Chapter 5 [5]. However, our model has shown that the same cell distribu-

tions may arise as a result of the two cell types having different affinities for
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chemoattractants, together with space limitation. The effect was also found

by Painter and Sherratt [89], who employed a slightly different model in which

space limitation is included by having the diffusion and chemotaxis coefficients

vanish when the cell densities reach a sufficiently high value. This suggests

an interesting question: Can cell adhesion forces and chemotaxis interact to

produce cell distribution patterns in tissues which could not be predicted by

either mechanism alone? We could investigate this possibility theoretically by

combining the two models we developed in Chapter 5, and extending them to

a more biologically relevant 2- or 3D geometry.

The models we have presented here have all been macroscopic, continuum

models, which by their nature omit the detail of processes taking place at

individual-cell or subcellular scales. As both computing power and our knowl-

edge of the pathways by which individual cells sense and respond to external

cues (such as chemical gradients, or substrate displacements) increase, it may

become feasible to undertake very detailed multi-scale computations, includ-

ing both cell and subcellular scale processes. This type of modelling approach

is currently still in its infancy, but an example is provided by a recent model

of vascular tumour growth [3] in which PDEs for nutrient (oxygen) and angio-

genic factor (VEGF) distributions are coupled to a cellular automaton model

for the cell distribution (cells may proliferate, filling empty space, or die creat-

ing a void) which is in turn coupled to ODE models for sub-cellular processes

(the cell cycle). In the context of cell movement by chemotaxis, it may be

possible to extend recent agent-based models of cell proliferation and move-

ment in a monolayer [130] to include the distribution of chemoattractant, and

the sub-cellular processes by which chemical gradients are sensed and acted

upon. Whilst such models would make the fullest possible use of experimental

data and offer the potential to recreate biological systems in great detail, they

represent a huge increase in complexity compared to the continuum models

considered here, and will be extremely difficult to analyse.



Appendix A

Diffusion in a multiphase

mixture

In this appendix, we present a derivation of the volume-averaged equations de-

scribing the diffusion of a passive solute through a multi-phase material, using

the indicator function approach adopted by Drew (amongst others) [26].

A.1 Basic notions

We assume there are N different phases, or components of the mixture under

consideration, and introduce an indicator function for each phase, defined as

Iβ(x, t) =







1 if x is in phase β at time t

0 otherwise,
(A.1.1)

where β = 1...N .

We then associate with every point in space an averaging volume, VA. This

averaging volume must be both large enough to give rise to well-behaved aver-

ages, and small enough to accurately represent the variations in the quantities

of interest. It has been shown that the averaging procedure yields meaning-

ful results provided that the characteristic lengths: d (distance over which
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variations in exact quantities occur), l (characteristic length for the averaging

procedure), L (characteristic length for the process) obey d � l � L [135].

The volume average of the exact microscopic field f(x, t) is hence defined as

< f > (x, t) =
1

VA

∫

VA

fdV. (A.1.2)

We now define the volume fraction φβ of phase β to be

φβ(x, t) =< Iβ > . (A.1.3)

Using the above, we define the ‘phase-weighted’ or ‘phasic average’ [26] of an

exact field f in phase β (denoted by f̄β) to be

f̄β =
< Iβf >

φβ

, (A.1.4)

so that < f >=
∑

β φβf̄β.

A.2 Reaction-diffusion equation for a solute in

an mixture

We assume that the exact concentration of the solute is C(x, t). It diffuses

with constant diffusivity, D = IβDβ and decays at the constant rate, α = Iβαβ

in each phase of the material. The exact governing equation is hence

∂C

∂t
+ ∇ · (uC) = ∇ · (D∇C) − αC. (A.2.1)

Multiplying this equation by the indicator function Iβ, we obtain

∂

∂t
(IβC) − C

∂Iβ
∂t

+ ∇ · (IβuC) − uC∇Iβ

= ∇ · (IβDβ∇C) −Dβ∇C · ∇Iβ − IβαβC, (A.2.2)

where we have used the fact that I2
β = Iβ.
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From the definition of Iβ, we observe that ∇Iβ acts rather like a Dirac

δ-function, picking out the interfaces between phases. It can be shown [26]

that

∂Iβ
∂t

+ ui · ∇Iβ = 0 (A.2.3)

where ui is the velocity of the interface. We note that when there is no inter-

change of mass between phases, as is the case for the models of Chapters 2-4,

then the second and fourth terms of the LHS of equation (A.2.2) cancel. Upon

making this assumption and integrating equation (A.2.2) over the averaging

volume, we then obtain

∂

∂t
< IβC > +∇· < IβuC >

= ∇· < IβDβ∇C > − < Dβ∇C · ∇Iβ > − < αβIβC > . (A.2.4)

Noting that the quantities Dβ and αβ are constants in each phase and using

the definition (A.1.4) yields

∂

∂t
(φβC̄β) + ∇· < IβuC >

= Dβ∇ · (φβ∇C̄β)− < Dβ∇C · ∇Iβ > −αβφβC̄β. (A.2.5)

where the first term on the RHS derives from Dβ∇· < Iβ∇C >. The term

which follows it may be interpreted as an interfacial diffusive flux, whilst the

second term on the LHS of equation (A.2.5) is the averaged convective flux.

The form of the latter two terms is not immediately obvious from the defi-

nitions of averaged quantities given earlier, and we hence require constitutive

laws for them in terms of the quantities C̄β and ūβ.

In Chapter 3, we propose a very simple form for the advective flux, tak-

ing it to be given by φβuβC̄β, in common with the form chosen by Roose et
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al [105], Cogan and Keener [21] and Byrne and Owen [16] (although we sub-

sequently discard the terms on the LHS of equation (A.2.5)). Our form of

the diffusion term in equation (A.2.5) also agrees with that of [21], but differs

from those used in [16, 105]; we believe these differences may be ascribed to

differances of interpretation, as to which terms represent diffusive fluxes, and

which interfacial or advective fluxes.



Appendix B

ECM equations in the

extensional regime

In this appendix, we present the solution of the ECM equations in the

extensional regime described in Chapter 3. In fact, in this regime it turns out

that there is no O(1) deformation of the ECM, and for k̂2 ∼ O(1), un0 ≡ 0.

This is not obvious from the form of the governing equations, and so we give

the calculation here.

B.1 ECM equations

We seek solutions of the governing equations (3.3.4), (3.3.48) and (3.3.49) in

the form of regular power series expansions in the small parameter η2, so that

U = U0 + η2U1 + ... V = V0 + η2V1 + ... P = P0 + η2P1 + ...

Now, assuming that µ̂n ∼ O(1), at leading order equation (3.3.48) gives

∂2

∂y2

(
∂U0

∂t

)

+ Ê
∂2U0

∂y2
= 0, (B.1.1)

We seek a solution of equation (B.1.1) of the form

U0(x, y, t) = r(x, t) + ys(x, t). (B.1.2)
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From (3.3.8) we see that U0 = 0 on y = 0 so that r(x, t) ≡ 0. Since equation

(3.3.51) gives U0(0, y, t) = U0(1/ε, y, t) = 0, s obeys the following boundary

conditions

s(0, t) = s

(
1

ε
, t

)

= 0. (B.1.3)

By conservation of mass (3.3.4), we observe that

∂V0

∂y
= −y ∂s

∂x
. (B.1.4)

Integrating, and imposing V0 = 0 on y = 0, (equation (3.3.8)) we determine

that

V0 =
−y2

2

∂s

∂x
. (B.1.5)

At O(1), equation (3.3.49) gives

−µ̂n

∂P0

∂y
+

∂2

∂y2

(
∂V0

∂t
+ ÊV0

)

= 0. (B.1.6)

Substituting for U0 and V0 in terms of s, we obtain

∂P0

∂y
= − 1

µ̂n

∂

∂x

(
∂s

∂t
+ Ês

)

. (B.1.7)

Integration thus gives

P0 = F (x, t) − y

µ̂n

∂

∂x

(
∂s

∂t
+ Ês

)

, (B.1.8)

where F (x, t) will be determined below by imposing the normal stress bound-

ary condition at y = g0 (see equation (B.1.13)).

Taking k̂2 ∼ O(1) for the moment, the tangential stress boundary condi-

tions (3.3.55) and (3.3.70) now give

(
∂s

∂t
+ Ês

)

= n0
∂un0

∂y
= µ̂nk̂2n0

(

un0 − g0
∂s

∂t

)

on y = g0. (B.1.9)

Since(in §3.5) we have applied (3.5.10) on y = h0, and thereby established that

un0 is independent of y in this regime, we see from the first part of equation

(B.1.9) that
∂s

∂t
+ Ês = 0, (B.1.10)
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(the above clearly also applies when k̂2 ∼ O(η2)). On integrating, and ap-

plying the initial condition, we thus obtain the trivial solution s ≡ 0. Hence

U0 = V0 = 0, and on integrating (3.3.13) and applying (3.3.58) we further

obtain g0 ≡ 1.

The second part of equation (B.1.9) implies that

un0 = g0
∂s

∂t
, (B.1.11)

and therefore un0 ≡ 0. (Note that un0 would be undetermined for k̂2 ∼ O(η2)

- hence the need to consider higher-order terms to determine un0 in §3.5.)

It only remains to determine the pressure P0, for which we require the

normal stress boundary condition (3.3.54), which at leading order gives

− µ̂nP0 + 2
∂

∂y

(
∂V0

∂t
+ ÊV0

)

− ∂

∂y

(
∂U0

∂t
+ ÊU0

)
∂g0

∂x

= µ̂n

(

−pT0 + 2n0
∂vn0

∂y
− n0

∂g0

∂x

∂un0

∂y

)

on y = g0. (B.1.12)

Substituting for U0, V0 and g0 from above, and using (3.5.14) and (3.5.23) we

find

F (x, t) = −
(

CΥ(n0)
∂2h0

∂x2

)

. (B.1.13)

However, as we have seen, this pressure is not sufficient to generate an O(1)

displacement of the ECM, and so at leading order the ECM can be taken as

rigid in this regime.



Appendix C

Numerical schemes for the

thin-film models

In this Appendix, we give details of the numerical schemes used to produce

the simulations of the thin film models, which are presented in Chapter 4.

Throughout, we use the notation

f(j∆x, i∆t) = f i
j ,

where ∆x is the spatial step size and ∆t is the timestep.

C.1 Extensional regime

The governing equations are discretised as follows. Equation (4.2.1):

ni+1
j − ni

j

∆t
+
ui

nj

∆x







(ni+1
j+1 − ni+1

j ) if ui
nj < 0,

(ni+1
j − ni+1

j−1) if ui
nj ≥ 0,

−
Γ̂1n

i
j

(∆x)2k̂1(h
i
j − 1)

[

Qi
j+ 1

2

(Σi
nj+1n

i+1
j+1 − Σi

njn
i+1
j ) −Qi

j− 1

2

(Σi
njn

i+1
j − Σi

nj−1n
i+1
j−1)

]

= 0,

(C.1.1)
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where

Qi
j =

(hi
j − 1)(1 − ni

j)

ni
j

, and Qi
j+ 1

2

=
Qi

j+1 + Qi
j

2
. (C.1.2)

Equation (4.2.2):

4

(∆x)2

[

Ri
j+ 1

2

(ui+1
nj+1 − ui+1

nj ) −Ri
j− 1

2

(ui+1
nj − ui+1

nj−1)
]

+
2Γ̂1

k̂1(∆x)2

[

ni
j+ 1

2

(Si
j+1 − Si

j) − ni
j− 1

2

(Si
j − Si

j−1)
]

= k̂2n
i
ju

i+1
nj − C

(hi
j − 1)

2∆x

[
Υi

j+1Hi
j+1 − Υi

j−1Hi
j−1

]
, (C.1.3)

where

Ri
j = (hi

j − 1)ni
j, Hi

j =
hi

j+1 − 2hi
j + hi

j−1

(∆x)2
, (C.1.4)

Si
j =

(hi
j − 1)(1 − ni

j)

2ni
j(∆x)

(ni
j+1Σ

i
nj+1 − ni

j−1Σ
i
nj−1). (C.1.5)

Equation (4.2.3):

hi+1
j − hi

j

∆t
+

1

∆x







(ui
hj+1h

i+1
j+1 − ui

hjh
i+1
j )if ui

hj < 0,

(ui
hjh

i+1
j − ui

hj−1h
i+1
j−1) if ui

hj ≥ 0,

=
ui

hj+1 − ui
hj−1

2∆x
+D

(hi+1
j+1 − 2hi+1

j + hi+1
j−1)

(∆x)2
, (C.1.6)

where:

ui
hj = ui

nj +
Γ̂1(1 − ni

j)

2(∆x)k̂1ni
j

(ni
j+1Σ

i
nj+1 − ni

j−1Σ
i
nj−1) (C.1.7)

and D is the small diffusion coefficient (see Chapter 4 for details).

Equation (4.2.4):

1

(∆x)2(hi
j − 1)

[

T i
j+ 1

2

(ci+1
j+1 − ci+1

j ) − T i
j− 1

2

(ci+1
j − ci+1

j−1)
]

− α(1 − ni
j)c

i+1
j + ni

j(1 − ni
j) = 0, (C.1.8)

where T i
j = (hi

j − 1)(1 − ni
j).



Appendix C Numerical schemes for the thin-film models 184

C.2 Lubrication regime

In this regime, the governing equations are discretised in the following way.

Equation (4.2.19)

φi+1
j − φi

j

∆t
+ Êφi+1

j =
µ̂nCh

i
j

2∆x

[
Υi

j+1Hi
j+1 − Υi

j−1Hi
j−1

]
. (C.2.1)

where Hi
j is given in equation (C.1.4).

Equation (4.2.20):

ψi+1
j − ψi

j

∆t
+ Êψi+1

j = − µ̂nC

4∆x

[
Υi

j+1Hi
j+1 − Υi

j−1Hi
j−1

]
. (C.2.2)

Equation (4.2.21):

ni+1
j − ni

j

∆t
+
ūi

nj

∆x







(ni+1
j+1 − ni+1

j ) if ūi
nj < 0,

(ni+1
j − ni+1

j−1) if ūi
nj ≥ 0,

−
Γ̂1n

i
j

(∆x)2k̂1(h
i
j − gi

j)

[

Ai
j+ 1

2

(Σi
nj+1n

i+1
j+1 − Σi

njn
i+1
j ) −Ai

j− 1

2

(Σi
njn

i+1
j − Σi

nj−1n
i+1
j−1)

]

=
Cni

j

(∆x)2k̂1(hi
j − gi

j)

[

Ai
j+ 1

2

(Υi
j+1Hi

j+1 − Υi
jHi

j) −Ai
j− 1

2

(Υi
jHi

j − Υi
j−1Hi

j−1)
]

,

(C.2.3)

where:

Ai
j =

(hi
j − gi

j)(1 − ni
j)

ni
j

. (C.2.4)

Equation (4.2.22):

gi+1
j − gi

j

∆t
+

1

∆x







(ui
gj+1g

i+1
j+1 − ui

gjg
i+1
j )if ui

gj < 0,

(ui
gjg

i+1
j − ui

gj−1g
i+1
j−1) if ui

gj ≥ 0,

= D
(gi+1

j+1 − 2gi+1
j + gi+1

j−1)

(∆x)2
, (C.2.5)

where we have eliminated time derivatives of φ and ψ using equations (4.2.19)

and (4.2.20) to obtain:

ui
gj = −

Êgi
jφ

i
j

2
−
Êgi2

j ψ
i
j

3

+

(
hi

jg
i
j

2
−
gi2

j

6

)
µ̂nC

2∆x

[
Υi

j+1Hi
j+1 − Υi

j−1Hi
j−1

]
, (C.2.6)
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and D is, once again,the small diffusion coefficient.

Equation (4.2.23):

hi+1
j − hi

j

∆t
+

1

∆x







(U i
j+1h

i+1
j+1 − U i

jh
i+1
j )if U i

j < 0,

(U i
jh

i+1
j − U i

j−1h
i+1
j−1) if U i

j ≥ 0,

+
1

(∆x)4

[

Bi
j+ 1

2

(
Υi

j+1

[
hi+1

j+2 − 2hi+1
j+1 + hi+1

j

]
− Υi

j

[
hi+1

j+1 − 2hi+1
j + hi+1

j−1

])

−Bi
j− 1

2

(
Υi

j

[
hi+1

j+1 − 2hi+1
j + hi−1

j

]
− Υi

j−1

[
hi+1

j − 2hi+1
j−1 + hi+1

j−2

])]

=
Gi

j+1 − Gi
j−1

2∆x
, (C.2.7)

where we have used equations (4.2.19), (4.2.20), (4.2.22) and (4.2.24) to en-

sure all the fourth-order surface tension terms appear explicitly above. The

quantities Bi
j, U i

j and Gi
j are given by:

Bi
j =

C(hi
j − gi

j)(1 − ni
j)

k̂1n
i
j

+
C(hi

j − gi
j)

2

ni
j

(
1

k̂2

+
(hi

j − gi
j)

3

)

+ µ̂nC(hi
j − gi

j)

(

hi
jg

i
j −

gi2
j

2

)

+
1

2
µ̂nCh

i
jg

i2
j − 1

6
µ̂nCg

i3
j , (C.2.8)

U i
j = −Êgi

jφ
i
j − Êgi2

j ψ
i
j +

Γ̂1(1 − ni
j)

2(∆x)k̂1n
i
j

[
ni

j+1Σ
i
nj+1 − ni

j−1Σ
i
nj−1

]
(C.2.9)

Gi
j = gi

jU +
1

2
Êgi2

j φ
i
j +

1

3
Êgi3

j ψ
i
j. (C.2.10)

Equation (4.2.24):

ūi
nj =

[

µ̂nCg
i
jh

i
j −

µ̂nCg
i2
j

2
+
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− Ê(gi
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i
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j ψ
i
j), (C.2.11)

(where we have again eliminated time derivatives of φ and ψ using equations

(4.2.19) and (4.2.20)).

Equation (4.2.25):

1

(∆x)2(hi
j − gi

j)

[

Ki
j+ 1

2

(ci+1
j+1 − ci+1

j ) −Ki
j− 1

2

(ci+1
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j−1)
]

− α(1 − ni
j)c

i+1
j + ni

j(1 − ni
j) = 0, (C.2.12)

where Ki
j = (hi

j − gi
j)(1 − ni

j).



Appendix D

Travelling wave solutions of the

two-species non-local model

In this appendix, we demonstrate that equations (5.3.1) and (5.3.2) can

support the existence of travelling wave solutions in simple special cases. Sim-

ilar analysis has been undertaken for one-species non-local models [10,72,73],

but in those cases, the existence of the travelling waves relies on the kernel

function being even (or having an even part) which represents some bias in

the external environment causing collective ‘drift’ of the group [73]. In the

case of the two-species model considered here, travelling wave solutions are

possible even though all the kernel functions involved are assumed to be odd.

Such models may be appropriate for describing the interactions of groupings

of e.g. predators and prey. To our knowledge, such solutions are not possible

for a one-species model with an odd kernel, and hence represent an emergent

property of the system.

We consider the highly simplified case in which there is no random motion

and cells have no net interaction with others of the same population - i.e.D∗
n =

D∗
m = Kn = Km ≡ 0. We introduce the travelling wave co-ordinate z = x−vt,

186
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where v is the (constant) travelling wave velocity, and assume the existence of

solutions of the following form

n = NHL(z − d), m = MHL(z), (D.0.1)

where

HL(x) =







1 if 0 ≤ x ≤ L

0 otherwise

These solutions represent two compact groups of length, L - one of each species

- with uniform densities N and M respectively. At t = 0, the n species occupy

the region d ≤ x ≤ d+L, whilst the m species occupy 0 ≤ x ≤ L. Substituting

into equations (5.3.1) and (5.3.2) gives

−vn′ + (n(Knm ∗m))′ = 0, (D.0.2)

−vm′ + (m(Kmn ∗ n))′ = 0, (D.0.3)

where primes denote a derivative with respect to z. The kernel functions are

assumed to take the form

Knm(x) =







Asign(x) if − r ≤ x ≤ r

0 otherwise

with Kmn = −αKnm. Thus, the n species (‘prey’) is repelled by m (‘preda-

tors’) within a distance r of them, whilst predators (m) are attracted to prey

(n).

Noting that vn = Knm ∗m is defined only in the region d ≤ z ≤ d+L, the

convolution term in equation (D.0.2) gives

vn = M

∫ L

0

Knm(z − y)dy (D.0.4)

= AM

∫ min(L,z+r)

max(0,z−r)

signz − ydy. (D.0.5)

We assume that r > d + L (i.e. all the prey are within the sensing range of

of the predators), then, given the restrictions on z stated above, the limits on



Appendix D Travelling wave solutions of the two-species

non-local model 188

the integral will be 0 and L. For d > L (which is necessary to ensure that the

two groups of cells do not overlap), we find sign(z− y) = 1 for d ≤ z ≤ d+L,

and so

vn = AML. (D.0.6)

Similarly, vm which is defined on the region 0 ≤ z ≤ L is given by

vm = N

∫ d+L

d

Kmn(z − y)dy (D.0.7)

= −αAN
∫ min(d+L,z+r)

max(d,z−r)

signz − ydy. (D.0.8)

Assuming, as before, the restrictions r > d+ L and d > L, we find that

vm = αANL (D.0.9)

Returning to our travelling wave equations (D.0.2) and (D.0.3), it is thus

clear that we require

M = αN, (D.0.10)

and the travelling wave velocity is

v = αNAL. (D.0.11)

The above analysis describes the case of a ‘fruitless chase’ between a group

of predators and a group of prey. As the two species move with the same

velocity, the prey are never caught. Of course, this is an excessively simplified

example, since we have chosen particularly simple forms for the interaction

kernels, ignored interactions between members of the same species and further

assumed that the two groups are the same size.
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