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ABSTRACT

The small punch creep testing (SPCT) technique has received much attention because it can
provide information on the creep behaviour of materials with a very small specimen being
tested. However, the nature of the test is complex and several aspects of the behaviour of the

specimen, characterised by various non-linear concurrent processes, still need investigation.

This thesis reports the findings of experimental investigations and numerical analyses
of SPCT carried out with the aim of improving the understanding of various features which
characterise the behaviour of the specimen and to develop a novel technique to correlate the
SPCT experimental output with the corresponding uniaxial creep test data, which is also

presented.

The experimental programme consisted of SPCTs and pre-strained uniaxial creep
tests, all performed at 600°C on the same batch of P91 steel. The pre-strained uniaxial
creep tests have been used to evaluate the effects of large initial plasticity on the subsequent
creep behaviour of P91 steel. For different stress levels, the results of the experiments have
shown that creep was resisted for low pre-strain levels and enhanced for high pre-strains.
The SPCT specimens have been investigated by use of scanning electron microscopy (SEM)
to identify the effects of the punch load on the fracture surface of the failed specimens and
the evolution of microstructural features in the material during the test. When the punch load
was increased, the failure mechanism changed from creep-governed to plasticity-governed,
as the presence of fresh dimples in the fracture surface increased. For the low-load tests, a

macro crack was found to nucleate on the bottom surface of the specimen at approximately



20% of the failure life, and it subsequently propagated along the circumferential direction

and through the thickness of the specimen.

A modified creep constitutive model has been developed based on the results of the
pre-strained uniaxial creep tests and it has been implemented in a FE model of a SPCT
capable to take into account the effects of the large initial plasticity, generated by the load
application, on the creep response of the SPCT specimen. A global creep resistance in the
SPCT specimen, due to the combination of localised different effects in various regions of

the sample, was observed when these effects were included.

FE calculations have also been performed to investigate the effects of the eccentricity
and the misalignment of the punch loading conditions on the punch minimum displacement
rate (MDR) and on the time to failure. A correlation equation for these effects has also been
reported. When the punch load was eccentric and misaligned, the MDR decreased and the

time to rupture increased.

Further numerical analyses have been carried out to evaluate the effects of the friction
modelling procedure on the behaviour of the specimen. The results obtained using the
classical Coulomb friction theory are compared with those obtained by a more modern
friction formulation, which takes into account the dependency of the friction coefficient on

the contact pressure.

Finally, a novel interpretation technique for SPCT data has been developed using the
results of experimental tests and numerical analyses. The interpretation technique takes
into account the effects of the initial, large plasticity on the creep behaviour of the SPCT
specimen, in order to correlate the SPCT results with the corresponding uniaxial data. A
significant improvement in the accuracy of the correlation for rupture SPCT data with the

corresponding uniaxial test results has been obtained.
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CHAPTER 1

INTRODUCTION

1.1 Background

In the recent years, miniature specimens testing techniques have received increasing atten-
tion from the power generation industry in view of several situations where the amount of
material available for testing is limited [53, 91]. One of these cases is life assessment of
in-service components, where the material which can be taken without impairing the struc-
tural integrity of the analysed component is limited [11, 27, 28, 31, 57, 72, 76, 91]. This
investigation is of high importance because, when components are approaching the end of
their designed operational life, extension programmes can be more economically convenient
than their replacement [31], as they were designed by particularly conservative procedures
[47]. In view of these economical and safety reasons, the uncertainty related to life assess-
ment techniques needs to be reduced, and in-service components testing constitutes a key

approach [8, 31].

Focused analyses of critical locations of high temperature components, such as the
Heat Affected Zones (HAZ) of welds, can also be carried out by use of miniature testing
techniques [8, 34, 36, 53, 91, 111]. This is particularly useful for components made from
high chromium steel, such as P91 (9Cr-1Mo-V-Nb) steel, adopted for piping systems of
fossil fuelled power plant since the 1970s [36, 94], because of its superior properties at high

temperature compared to other materials, such as stainless steels [34]. A main concern with
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the application of these advanced high temperature steels is the creep resistance of their
welds as a major cause of failure was found to be Type IV cracking, which occurs at the
interface between the fine grain (FG) HAZ and the parent material (PM), depending on local
loading conditions [20, 111]. Blagoeva et al. [8] reported that, in a P91 steel weld tested at
600°C, the least creep resistant material region is the FG-HAZ, while the PM and the weld
metal (WM) exhibit a significantly higher creep resistance. In view of these considerations,
a conventional cross-weld specimen would not be suitable to characterise the creep material
behaviour of each region of the weld, because the FG-HAZ, where large creep deformations
occur, would be constrained by the WM and the PM [34]. Other situations where the amount
of material available for testing is small consists of the development of new alloys [42, 56,

91].

Generally, miniature specimens used for creep testing can be divided into two cate-
gories: specimens characterised by a shape and form similar to that of full size specimens
but manufactured in miniature dimensions, and specimens developed to benefit from their
small size [56]. The first category includes miniature uniaxial test specimens, which are
characterised by a total length that can reach 20 [mm]. The procedures for the manufac-
turing, handling, testing and the data interpretation of these specimens show a degree of

difficulty which increases with the decrease in specimen size [56].

In order to overcome the difficulties related to miniature uniaxial test specimens, var-
ious small specimen testing techniques have been developed. These include the impression
creep test, the small ring specimen creep test, the small punch creep test (SPCT) and the
two-bar specimen creep test [41, 42, 51-54, 56]. These specimens can be manufactured
from scoop samples, taken e.g. from in-service components without any deterioration of
their structural integrity, or from the HAZ of welds. The impression creep test and the
small ring test can be used to characterise the steady-state creep behaviour of materials,
i.e. the minimum creep strain rate, but they cannot provide the creep rupture behaviour,
as the specimen is not taken to rupture [42, 45, 46, 52, 53]. On the other hand, small two
bar creep specimens and SPCT specimens can be tested until failure, therefore they can be

used to obtain tertiary creep and rupture behaviour of materials [45, 46]. Despite of these
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advantages, which make the SPCT a very promising testing method, this technique is still
not universally accepted, due to limitations which concern the test repeatability (because
test results depend on the geometry of the experimental set-up) and the procedure used to

correlate SPCT data with the output of corresponding full size uniaxial creep tests [31].

The nature of the test is complex, as several non-linear factors, such as non-linear
contact, non-linear material behaviour, large strains and large deformations, concurrently
characterise the behaviour of the specimen [51]. In the early stages, large plastic deforma-
tions occur in localised regions of the specimen [34, 36, 91] and affect the subsequent creep
behaviour of the material and the response of the specimen. The contact conditions between
the specimen and the test rig are complicated and have a significant effect on the test output
[24, 25]. In view of the complex nature of the SPCT, there is no established, straightforward
procedure to convert the experimental results into those of conventional uniaxial creep tests
[51]. In an attempt to overcome some of the repeatability issues and propose a universally
accepted correlation technique, the European Committee for Standardisation (CEN) de-
veloped a draft code of practice (workshop agreement CWA 15627) for small punch creep
testing of metallic materials, which constitutes a key step towards a standardisation of SPCT
[1]. In the CEN draft code of practice, a specimen geometry and a test apparatus are rec-
ommended, and a procedure to correlate SPCT data with corresponding uniaxial creep test

results is also reported.

1.2 Thesis objectives

The first objective of the research is the improvement of the understanding of various fea-
tures characterising the behaviour of the SPCT specimen by using experimental investi-
gations and FE analyses. Experimental techniques have been adopted to investigate the
evolution of micro-mechanical features which characterise the behaviour of the specimen
during the test and to identify the effects of prior plastic deformation on the subsequent
creep response of a P91 steel at 600°C. The results of the experimental investigations have

been used to develop an improved constitutive model which has been adopted in FE calcu-
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lations of a SPCT in order to quantify the effects of the initial plastic deformation on the

output of the test.

The work is also aimed to investigate the effects of the procedure used to model
the friction interaction between the punch and the specimen. An axisymmetric FE model
of SPCT, capable of taking into account the variation of the friction coefficient with the
local loading conditions, has been developed and the results have been compared with those

obtained by adopting the models commonly used.

It is also aimed to investigate the effects of inaccuracies of the loading configuration
on the SPCT output by use of numerical calculations. A 3D FE model of SPCT has been

developed in order to include asymmetric loading conditions in the analyses.

The final objective of the research is to develop an improved interpretation technique
which is capable of taking into account the effects of the initial, large deformations occur-
ring in the specimen and to correlate the SPCT output with the results of corresponding

uniaxial creep tests by a physically-based approach.

1.3 Thesis outline

Chapter 2 consists of a literature review focused on plasticity and creep behaviour of metal-
lic materials (together with the effects of their interaction) and on small specimen creep test-
ing techniques, with particular attention to the SPCT method. The analytical and numerical
modelling procedures of SPCT and the techniques currently used for data interpretation are

discussed in detail.

Chapter 3 reports the results of pre-strained uniaxial creep tests (which have been
used to investigate the plasticity/creep interaction) and SPCTs carried out on a P91 steel
at 600°C. Chapter 4 reports a microscopical investigation carried out on the specimens of
the SPCTs discussed in Chapter 3. The effects of the punch load on microscopical features

in the material and the evolution of the failure and the deformation mechanisms and of
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material’s features during the test will be shown.

The results of elastic/plastic/creep FE analyses of SPCT, which have been performed
using a constitutive model able of taking into account the effects of plasticity on the creep
behaviour of the specimen, are reported in Chapter 5. These effects constitute a key factor

in the numerical modelling of SPCT.

The effects of geometrical inaccuracies of the loading procedure on the SPCT output,
investigated using 3D elastic/creep FE analyses of a SPCT, are reported in Chapter 6. Chap-
ter 7 includes the results of a numerical study focused on the friction modelling procedure
for the contact interaction between the punch and the specimen. The FE results obtained by
using the classical Coulomb’s theory are compared with those obtained by using a friction
formulation able of taking into account the effects of the local contact load, between the

punch and the specimen, on the coefficient of friction.

The numerical results discussed in Chapter 5 and the experimental findings reported
in Chapter 3 have been used to develop a new procedure for the interpretation of SPCT data.
This procedure is presented in Chapter 8. Finally, Chapter 9 reports the concluding remarks

and future work considerations.



CHAPTER 2

LITERATURE REVIEW

2.1 Materials structure and defects - an overview

On a microscopical level, crystalline materials do not always exhibit a perfect structure.
As a result their behaviour is characterised by a large number of defects of different types
[3, 12]. These defects include both irregularities of the structure of the material and the

presence of atoms of different types in the crystal.

Some defect types, encountered in crystals, are of the point defect types, i.e. vacan-
cies and impurities. A vacancy is a site in a crystal where an atom is missing. Alternatively,
it may result in atoms of a different material, i.e. the solute, dissolved in the hosting metal,
i.e. the solvent. Two types of solid solutions can be found, i.e. substitutional solutions,
where the solute atoms replace those of the host material, and interstitial solutions, where
solute atoms are located in interstices among the atoms of the host crystal. Since solute
atoms are generally of different size to those of the hosting metal, distortion occurs in the
lattice at locations close to the solute atoms. Impurities also modify the properties of ma-
terials, and, in many cases, they are added to metals, generating alloys, in order to obtain

specific characteristics, e.g. improved strength or resistance to corrosion [3, 12] etc.

In metals, linear defects, i.e. dislocations, may exist. These consist of atoms being

misplaced, and lattice distortion in the proximity of a linear path, generally referred to as
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dislocation line [3]. In Figure 2.1 an edge dislocation is schematically represented. In this
configuration, an extra semi-plane of atoms starting from the dislocation line is inserted in
the crystal, and alters the regular lattice structure. The inter-atomic bonds of the top half
of the scheme shown in Figure 2.1 are compressed, while, those of the bottom half are
stretched. The distortion of the lattice is concentrated within an area around the disloca-
tion line, while, at a distance from the dislocation line, the distribution of the atoms is not

affected [12].

Extra half-plane

Edge dislocation
line

Figure 2.1: Schematic representation of an edge dislocation. Adapted from [3], Figure 6.13

The screw dislocation is another type of linear defect. This type of defect is generated
when a part of the lattice exhibits a displacement, on the direction parallel to the disloca-
tion line, with respect to the adjacent region of the crystal. Figure 2.2 shows a schematic
representation of a screw dislocation. Also in this case, the distortion of the lattice is con-
centrated in the region close to the dislocation line, while, in the far field, the crystal is

virtually perfect.

The displacements of atoms related to dislocations are described by the Burger’s vec-
tor, b. For edge dislocations, the b vector is perpendicular to the dislocation line while, for
screw dislocations, b is parallel to the dislocation line. In crystalline materials, dislocations
generally consist of various components of different nature, i.e. edge and screw disloca-
tion segments, called mixed dislocations, for which the dislocation line is generally curved,

while b does not change orientation. For metallic materials, the b vector is always oriented
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Figure 2.2: Schematic representation of dislocations in a crystal lattice. Adapted from [12], Figure 4.4

along the direction with the highest atomic density, and it is characterised by an absolute

value equal to the inter-atomic distance [3, 12].

The presence and the motion of dislocations is the cause of plastic and creep deforma-
tion of metals and of the differences found between the theoretical and the actual strengths

of real crystalline materials [3].

In addition to point and linear defects, a crystal can also exhibit interfacial defects,
such as grain boundaries, phase boundaries or external surfaces, which are the interface
between material regions characterised by different crystalline structure or orientation [12].
In grain boundaries, crystals with different orientations, called grains, are located adjacent
to each other and, based on the angle between their crystal orientations, a distinction be-
tween low-angle and high-angle grain boundaries can be made. In fact, low angle grain
boundaries can be described by a distribution of dislocations [12]. Grains can have different
chemical compositions, as in the case of alloys, and, in the boundary regions, atoms are
organised in an intermediate orientation between those of the interfacing lattices, leading to
a higher energetic level compared to the central regions of the grain. Because of the higher
energetic content, grain boundaries are preferred locations for dislocation nucleation and
interstitial solution sites. Low-angle grain boundaries have a lower energy than high angle

grain boundaries [12].
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2.2 Elasto-plastic behaviour of materials
2.2.1 Overview

When a solid body is loaded, it initially shows a fully recoverable elastic deformation, that
is, if the load is removed, no residual deformation is found and the stress is fully determined
by the strain [35]. Many materials, such as steels, exhibit a linear relationship between loads
and deformation, and, hence, between stress and strain [55]. This is represented by Hooke’s
law, reported in equation (2.1), which relates the components of the strain and stress tensors
in a generic reference system (O,x,,z), where E is the Young’s modulus, v is the Poisson’s

ratio and o;; and ¢;; are the stress and strain tensors, respectively (see also ref. [55]).

1

Cpp = E[Ux:C —v(oyy +022)] (2.1a)
Eyy = %[Uyy — (022 + 04a)] (2.1b)
€py = %[azz — V(0ga + Oyy)] (2.1¢)

e = 1;”%-,2'7&]' 2.1d)

Figure 2.3 shows a stress/strain curve of a generic ductile material, such as a mild
steel, obtained from uniaxial tensile tests, i.e. with principal stress components o1 # 0 and
092 = o33 = 0 [35]. When the load level is increased, the behaviour of the material differs
from the linear model and the elastic limit is reached (point A in Figures 2.3(a) and (b)), i.e.

initial plastic deformation occurs in the specimen [35, 55].

The transition from elastic regime to plastic regime, which is characterised by signif-
icant plastic deformation, is referred to as yield [35, 37, 55, 88, 96]. In some materials, the
yield point can be clearly identified in the tensile curve, as shown in Figure 2.3 (a), while,
for others, the yield point is not as evident, as shown in Figure 2.3 (b). In view of this
difficulty, the yield point of a material is defined as the stress, o, at which a plastic, perma-

nent deformation equal to £,=0.002 is induced, as indicated in Figure 2.3 (b). Typically, the
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Figure 2.3: Typical tensile curves obtained from (a) a mild steel and (b) a generic ductile material

plastic behaviour of metals can be described by the perfect plastic model or the multi-linear

model, represented in Figures 2.4 (a) and (b), respectively.

0 - 0
(@ (b)

Figure 2.4: Typical tensile curves obtained from (a) a mild steel and (b) a generic ductile material

When a solid body is loaded beyond the yielding limit, i.e. beyond the point A in
Figures 2.3 (a) and (b), the unloading path does not overlap with that of loading, while it
follows a linear curve parallel to the elastic section of the tensile curve, see Figure 2.3 (b).
This leads to residual unrecoverable plastic deformation, ¢,, and the o/c relation is path

dependent.
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2.2.2 Yield criteria

In uniaxial tests, the yield stress, at which plastic deformation occurs in the specimen, can be
obtained from the tensile curve, while, in components subjected to a more complex multi-
axial stress field (such as the SPCT specimen), the yield stress cannot be directly obtained.
In these situations, a yield criterion, i.e. a mathematical representation of the stress field
under which yield occurs, needs to be identified [37]. Yield criteria are of the form of
equation (2.2), where C,, is a material constant, and they relate the stress field, o5, acting

on the real component to uniaxial stress conditions, when yielding takes place.

floij) =Cy (2.2)

Under the hypothesis of plastic isotropy, the yield criterion does not depend on the
reference system adopted, and, since plastic deformation does not involve any change in
volume, the hydrostatic (spherical) part of the stress tensor, represented by equation (2.3)
in a generic reference system (0, x,Y,z), does not have any influence on the yielding process,
while the stress deviator, S;;, defined by equation (2.4), is the component of the stress tensor
which governs the yielding behaviour of the material, with / representing the identity tensor

[5, 35, 37, 55, 87].

Oy +Oyy + 022

t?“(O‘Z‘j)

Sij = 0ij = Sph(0ij) = 0ij — —3

I (2.4)

For ductile materials, the Tresca and the von Mises yield criteria are typically adopted.
The Tresca criterion is based on the assumption that, in a generically loaded solid body, the
onset of plasticity takes place when the maximum shear stress, 7,,q., equals the maxi-

mum shear stress occurring, at yielding, in a uniaxial tensile test of the same material, i.e.

11
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N4 = 30y, where oy, is the yield stress obtained from the uniaxial curve [35, 88]. This

criterion is based on the hypothesis that plastic deformation is governed by shear defor-
mation which is related to dislocation motion in ductile materials. The Tresca criterion is

reported in equation (2.5), written in the principal reference system [35, 55].

%maw\ai —oj| = % = max|o; —oj| =0y, 1 F# J (2.5)

The von Mises yield criterion is based on the comparison of the elastic distortion en-
ergy density (related to shear strain) corresponding to a generic multi-axial stress field with
that of a uniaxial tensile test, for the same material. The elastic distortion energy density,
Usg, defined by equation (2.6), is the difference between the total elastic energy density,
Uror, and the energy density related to the volume variation, Uy ;. According to the von
Mises yield criterion, described in equation (2.7), plastic deformation takes place when the

shear strain energy density obtained in a multi-axial stress field equals that obtained during

the tensile test at the yield point [35].

Us = 22 [(01 = 02" + (02— 33)? + 05— 01)’] 2.6)
) 3
Oy = \/7—\/(01—02)2+(02—U3)2+(03_01)Z = 55”5” 2.7)

In the principal stresses space, (0, 01,09, 03), the Tresca criterion, equation (2.5),
is represented by an hexagonal prism, with its axis parallel to the hydrostatic axis, that is
equally inclined to the principal axes directions and is characterised by the relations o7 =
o9 = o3, while the von Mises criterion, equation (2.7), is represented by a cylinder, also
with its axis parallel to the hydrostatic axis, circumscribing the Tresca criterion prism, see
Figure 2.5 (a). This means that any variation of the hydrostatic stress, o,, = LW, does
not affect the yield of the material [35, 55]. When the stress field is biaxial, i.e. 01,09 # 0
and o3 = 0, the Tresca and the von Mises yield criteria are represented, on the (0, o1, 02)

plane, by an hexagon and its circumscribing ellipsoid, respectively, see Figure 2.5 (b).

12
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Figure 2.5: Graphic representation of the Tresca and von Mises yield criteria (a) in the principal stress space
and (b) in plane stress conditions. Adapted from [35], Figs. 3.9 and 3.10.

In Figures 2.5 (a) and (b), the Tresca yield surface is not smooth, but it consists of
smooth faces which intersect in edges (Figure 2.5 (a)). This creates ambiguity in the cal-
culation of the strain increment, resulting from yielding, for the stress states represented
by these edges. In view of the normality law, for an isotropic material, the plastic strain
increment, dep, resulting from a stress state (o1, 02, 03) on the yield surface, is normal
to tangent plane to the yield surface in that stress state. If the yield surface is not smooth
in o (01, 09, 03), the normal direction to the yield surface in o (o1, 02, 03) is not univocally
defined. However, a cone of normals to the yield surface in o (o1, 02, 03), in which the di-
rection of de), lies, is bounded by the normal directions to the yield surface in the proximity
of o [35, 37]. For the Tresca criterion, the normal to the yield surface is not univocally
defined on the edges of the yield surface (see Figure 2.5). The direction of dg,, for the stress
states corresponding to each of the edges of the prism lies within the cone defined by the
normals on the faces of the prism adjacent to the edge. The von Mises criterion does not

exhibit this ambiguity, since it leads to a smooth yield surface, as Figure 2.5 shows.

Both these criteria are applicable to ductile metals, and experimental evidence shows
that, for a bi-axial stress field (see Figure 2.5 (b)), the yield loci, regardless of their defini-
tion, are closer to the von Mises ellipsoid than the Tresca hexagon. However, in all cases,

the Tresca criterion is more conservative than the von Mises equation [37, 88].
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2.2.3 Plastic flow

As mentioned in Section 2.2.1, in the elastic regime, the strain field is univocally defined
by the current stress while, when plasticity takes place, the stress field depends on the cur-
rent state of the material and the loading history [35, 88, 96]. This difference is due to the
nature of the processes characterising elastic and plastic deformations. Elastic behaviour
is due to deformation of crystal lattice, and it does not involve any distortion, while plastic
deformation involves motion of dislocations on preferential sliding planes with distortion of
the crystalline lattice. Under the effects of a stress level higher than the yield strength of the
material, dislocations can move in the crystal [3]. On the other hand, atoms of dissolved so-
lutes, precipitate particles and other dislocations become obstacles to this motion and, when
the equilibrium is reached between the stress field applied to the material and the resistance
that obstacles oppose, dislocation slip stops. One of the classical theories of plasticity is
the incremental theory of Prandtl-Reuss, reported in equation (2.8), which relates the total

strain increment to the current deviatoric stress and the stress variation [88].

(1-2v)
3E

de;, = det; + dej; = dAS;; + ETel

tr(do;) I + (2.8)

In equation (2.10), the elastic strain increment, dsjj, consists of a hydrostatic and
a deviatoric contribution, while the scalar d), representing the variation of the hardening
behaviour of the material, can be obtained from an equivalent uniaxial stress field, where

0, = opg and 0, = 0, = 0, see equation (2.9).

1

Therefore, the Prandtl - Reuss plastic flow theory results in equation (2.10), where

the contributions of the plastic term is governed by the deviator stress tensor, .S;;.
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, . 3degg (1—2v)
e A T I T

2G

tr(do,) I+ (2.10)

2.3 Creep behaviour of materials
2.3.1 Overview

For temperatures above 0.3 1,;,, for metals, the deformation of the material is enhanced
because the energy associated with atomic vibration increases [55, 85]. This can cause
time dependent deformations, i.e. creep can occur. Various mechanisms govern creep de-
formation at different temperatures. Below 0.35 T}, dislocation slip processes take place,
inducing a creep deformation which is governed by the stress applied to the material. The
deformation generated by this mechanism due to dislocation motion encounters the resis-
tance of obstacles, such as solute precipitates or other dislocations [85]. At temperatures
in the range between 0.35 73, and 0.4 T, screw dislocations can move away from ob-
stacles as a consequence of the cross slip mechanism, due to their increased energy level.
When temperature is increased up to 0.6 T, diffusion is active in metallic crystals and,
as a consequence, when a dislocation subjected to a stress field encounters an obstacle to
its movement, e.g. a solute precipitate, the atoms of the dislocation in the proximity of the
obstacle diffuse away from it. In this conditions, dislocations can climb over the obstacle,
by the process called creep recovery [3, 85, 106, 107]. At temperatures above 0.8 T;,,, creep
occurs by diffusion within crystals, but this temperature range falls outside normal structural

engineering applications [85].

Diffusion and dislocation climb generate time-dependent unrecoverable deformation,
i.e. creep deformation, which represents one of the main effects of temperature increase on

the mechanical behaviour of materials [3, 55, 63, 85].

Creep tests are generally carried out by applying a constant load to a conventional
uniaxial test specimen, under high temperature conditions, and recording the variation of

deformation with time [55].
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Figure 2.6 is a typical creep curve obtained from a uniaxial creep test; it exhibits the
characteristic time-dependency of the creep strain, €, where the instantaneous deformation,
€p, is either elastic or elastic-plastic and three different regions, characterising the creep
response of the material, can be identified, i.e. primary, secondary and tertiary creep regions.
In the primary creep region, strain hardening is the governing mechanism, and it is generated
by the increase of dislocation density occurring when creep deformation takes place. At the
same time, creep recovery, governed by diffusion, generates dislocation motion. In the
secondary creep region, these two mechanisms balance each other and the creep strain rate
is constant [3, 85, 107]. In the tertiary creep region, damage occurs in the material, leading

to increasing creep strain rates and failure.

A
€
X
€o
O|Primary Secondary Tertiary t
creep creep creep t
R

Figure 2.6: Typical creep curve. Adapted from ref [63], Fig. 1.4.

Creep deformation is governed by stress (i.e. loading conditions), temperature and
time, as equation (2.11) (a) shows for a uniaxial stress field, where <€ is the creep strain, o
is the stress and 7" is temperature [55, 63, 85]. A first, generally accepted, approximation is

the separation of the three of effects, reported in equation (2.11) (b) [63, 85].

e = f(o,T,t) (2.11a)

Ec = fl(U)fQ(T)fs(t) (211]3)
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Figure 2.7: Effects of (a) temperature and (b) stress on a typical creep curve. Adapted from ref [63], Figs. 1.6
and 1.7.

Figures (2.7) (a) and (b) show the effects of temperature and stress on the plot of creep
strain versus time, respectively [63]. When o and temperature increase, the instantaneous
response of the material, £g, and the secondary creep rate increase, while the time to failure,

tgr, decreases as Figure 2.7 (a) shows.

The influence of temperature on creep deformation can be modelled by an Arrhenius-
type relation, represented by equation (2.12), where (). is the activation energy for creep

and R is the Boltzmann constant [55, 85].

fo(T) = exp [— ;gT] 2.12)

For constant temperature conditions, the dependency of creep deformation on stress
and time can be described by the well known Bailey-Norton law, reported in equation (2.13),
where B, m and n are material constants which depend on temperature. The Bailey-Norton
equation is able to describe the primary and secondary creep regimes, without taking into

account tertiary creep behaviour and creep rupture [55, 63, 85].

= Bo"t" (2.13)

For relatively high stress levels, dislocation creep governs the time-dependent re-
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sponse of the material and the stress exponent, n varies in the range from 3 to 10, while, for
lower stress levels and higher temperatures, diffusion is the governing mechanism of creep

deformation [3], and 7 is approximately 1 [3, 55, 106].

Equation (2.13) is valid for constant loads and temperature, while, under variable
loading conditions, the creep behaviour of materials depends on the current state and its
past history [55, 63]. In order to account for the effects of the past history on the creep ma-
terial behaviour, two approaches may be followed: the time hardening and strain hardening

procedures.

The time hardening formulation is obtained by differentiating equation (2.13) with
respect to time, leading to equation (2.14). With this approach, the creep strain rate, in the
primary and secondary creep regimes, is assumed to depend on temperature (through the
material constants), the stress and time. Since the stress was not differentiated with respect
to time, equation (2.14) is valid only for constant stress or step variations of the stress field

with long duration [63].

g° = Bmo"t" " (2.14)

If time is eliminated in equation (2.14) by using equation (2.13), as equation (2.15)
shows, the strain hardening formulation is obtained, reported in equation (2.16). In this
formulation, which is also valid for constant stress or step variations of stress, the creep
strain rate is taken to depend on stress, creep strain and temperature, while time does not

explicitly appear as a variable in equation (2.16) [63].

e
t= [Ban] 2.15)
e = BE) mo®) [ (") (2.16)
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The differences between the results obtained from these two approaches are due to
procedural, rather than physical, reasons and, from comparison with experimental results,

the strain hardening approach was found to be more accurate than time hardening [63].

2.3.2 Secondary creep approximation

In many industrial situations, components may be designed so that they do not exhibit ex-
cessive creep deformation, in order to avoid undesired interferences, such as in the case
of gas turbine blades, where clearances are particularly critical [3]. For these scenarios, a
useful assumption is provided by the secondary creep approximation, which takes the creep
material behaviour to be governed by the constant creep strain rate regime (secondary creep
region of Figure 2.6) [63]. Under this hypothesis, the strain is described by equation (2.17),
where £¢_ is the steady-state creep strain rate while ¢,, approximates the instantaneous
response, and it is obtained by extrapolating the constant creep strain rate curve to ¢ = 0.
Figure 2.8 is a schematic representation of the secondary creep approximation.
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Figure 2.8: Secondary creep approximation. Adapted from [63], Fig. 2.6

e(o,T,t) =cin(o,T,t) +5_g(o, T)t (2.17)

If a power law is chosen for the dependency of the secondary creep strain rate on the
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stress level, the Norton law, reported in equation (2.18) in uniaxial form, is obtained, where

B and n are material constants depending on temperature, as in equations (2.13)-(2.17).

e® = Bo™ (2.18)

When a solid body experiences creep deformation under a multiaxial stress condition,
the formulation used to describe the dependency of the secondary creep strain rate on the

stress must satisfy some conditions observed in experimental testing [63]:

* During creep deformation, the volume of the solid body is constant.

* The multiaxial model must reduce to the uniaxial equivalent formulation when a uni-

axial stress field is described.

* The hydrostatic component of the stress tensor does not affect creep deformation.

* For isotropic materials, the principal directions of the creep strain and the stress are

coincident.

In view of these requirements, equation (2.19), which is written in terms of creep
strain rates in order to also account for the dependency of the creep response on the loading
history, can be used for the multiaxial creep formulation. This equation is analogous to the

plastic flow relation, see equation (2.10).

e 3€50 o 3 n S
Eij — io'EQbij = §BO'EQ ( J > (219)

2.3.3 Creep damage models

For those situations where the requirements of components are that rupture must be avoided
during the operational life, such as high temperature pipework [3, 26, 47, 74], more sophis-

ticated constitutive models, capable of predicting the behaviour of the material in tertiary
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creep regime up to failure, should be adopted for modelling purposes [55, 71, 73, 81, 85].

During tertiary creep, the material undergoes deterioration processes, which are char-
acterised by temperature and the stress field acting on the component. For relatively low
temperatures (I' < 0.3 T},) and high stress levels (near the yield stress), ductile creep
rupture is the mechanism governing failure. In this situation, the deformation is mainly ho-
mogeneous, i.e. no significant strain concentration appears, and failure occurs by necking,
similarly to the case of low temperature plasticity [85]. Ductile rupture is related to the
changes of the global shape of the solid body because, under the effects of stress, disloca-
tion glide causes distortion of the crystal, while the entropy (i.e. disorder) related to grain

boundaries provides obstacles to dislocation motion [85].

When temperature increases (0.4 1, < T < 0.6 T;,) and the stress is reduced,
intergranular cavitation becomes the governing creep rupture process [71, 85]. In these
conditions, diffusion has an important role in mass transportation, also by activating creep
recovery deformation and vacancy migration [3, 85]. In this scenario, the higher entropy
of grain boundaries generated by a less regular structure compared to that of the central
regions of grains, enhances mass and vacancies transportation induced by diffusion. This
generates high local stresses at grain boundaries, which become preferential sites for va-
cancies (as grains exhibit an approximately rigid body relative motion) producing micro
voids nucleation, growth and their coalescence into macro-cracks [85]. When rupture is
governed by intergranular cavitation, the component shows lower ductility than in the case
of the of ductile creep rupture [85]. For temperatures higher than 0.6 7},,, mass transport by
diffusion within grains is the governing deformation mechanism, and vacancies can move
within grains as well. Furthermore, in this temperature range, ductile creep rupture becomes

significant again [85].

Creep damage leads to a decrease of carrying load capability of the component or the
tested specimen. As a consequence, under constant loading conditions, the stress acting on

the undamaged ligament increases and, therefore, the creep strain rate increases.

Continuum damage mechanics (CDM) constitutive models take into account the evo-
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lution and the effects of damage accumulation in the materials, in order to describe the ter-
tiary creep regime and failure [71, 73, 85]. The material is assumed to be homogeneous, and
its degradation is modelled by use of internal variables, w; (which cannot be directly mea-
sured), affecting the creep strain rate, as well as stress and temperature, see equation (2.20)
[71, 73, 85]. Also, the evolution equations of the internal variables is specified in equa-

tion (2.21).

¢ =¢%o0,T,e% wi,wa, ..., wn..) (2.20)

w; :(,Ji(0'7T7€C,wl,WQ,...,wn..) (2.21)

Equations (2.20) and (2.21) provide measures of micro-mechanical quantities related
to material degradation, but they also show their effects on the macro-mechanical response
of materials [71, 85, 95]. Furthermore, these models do not specifically describe a partic-
ular damaging mechanism and are not based on direct micro-mechanical observations, but
they predict the effects of the global damage accumulation on the bulk creep response and
are obtained by a phenomenological approach, fitting experimental results [71]. However,
in more recent, mechanism-oriented, multivariable CDM models, each internal variable is

related to a damage micromechanism [71].

The first creep damage model was proposed by Kachanov (1958) and Rabotnov
(1969), to predict the rupture behaviour of metals for high temperature applications, and it
was extended to a multiaxial formulation by Leckie and Hayhrust (1977) [71, 73, 85]. The
model is reported in equations (2.23)-(2.25), where the damaged internal variable, w, rep-
resents the damaged material fraction. This variable is defined by equation (2.22), where {2
and {2y are the undamaged area of material and the initial section, respectively, and it ranges
from 0, for undamaged material, to its critical value, w,,,x = 1, for the completely dam-
aged configuration; o g p is the rupture stress and Ay g, Bir X, f, ne and o are material

constants, with ap taking into account the effects of the stress multiaxiality [55, 71, 73, 85].
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w=1- TZ (2.22)

£ = gBm (ffi})m 57; (2.23)
W= AKR% (2.24)
Orup = apoy + (1 —ap)ogg (2.25)

In the Kachanov-Rabotnov (KR) damage model, since the damaged material does
not carry any load, the effective stress oz, acting on the undamaged ligament, is given by
equation (2.26), where o is the nominal stress (in uniaxial conditions). The strain generated
by the effective stress on the effective configuration (which does not exhibit any voids or
cracks) is the same as that generated by homogenised stresses on the damaged configuration

[85, 95].

(2.26)

Applications of the KR constitutive model show that it is capable of accurately pre-
dicting the secondary and tertiary creep response of metals and it has been successfully
adopted in numerical finite element (FE) calculations for component assessment and mate-
rial characterisation [50, 51, 56, 68, 71-73]. Despite of the capabilities of predicting tertiary
creep and rupture, during FE analyses, difficulties in the convergence process were found
when the damage variable approaches unity [50]. The difficulties are caused by the singular
behaviour of £, and w when w — 1, as equations (2.23) and (2.24) show, which is also

related to the high stress sensitivity of this constitutive model [49-51, 68, 73].
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In order to overcome the convergence problems encountered in numerical analyses,
especially for the local approach in fracture mechanics investigations, Liu & Murakami
[50, 73] proposed a constitutive model which eliminates the singularities characterising
the KR equations when the damage variable approaches its critical value. Their model is
reported in equations (2.27) and (2.28), with oy p defined by equation (2.25) [55, 73] and

Ay, B, ns and x, material properties.

3 S, 2 1 2
e S [ 200 (2] am
OEQ . 1 + nig OgpqQ
. 1— exp|l—
PR P ER—— (2.28)

q>

Equations (2.27) and (2.28) were obtained by extending the constitutive model pro-
posed by Hutchinson (1983) [39, 73] for dilute cracks concentration to the non-dilute case,
by using the self-consistent method [90]. This led to the use of the exponential function
in equation (2.27), which generates a finite creep strain rate when w — 1. Furthermore,
equation (2.28) shows that, when the damage parameter approaches its upper bound, also

the damage rate is finite.

It should be noted that, for the undamaged material, i.e. with w = 0, equations (2.23)
and (2.27) lead to the secondary creep strain rate, therefore the coefficients By, and By,
are equal to the strain multiplier, B, of Norton’s creep law, while ny and n3 are equal to the

Norton stress exponent, n, see equation (2.19).

Furthermore, when equations (2.24) and (2.28) are integrated between the beginning
of the analysis, ¢ = 0, corresponding to w = 0, and and failure, t = tp, corresponding to
w = 1, equations (2.29) and (2.30) are obtained, respectively. These equations show that,

in equations (2.24) and (2.28) A, equals Az (f + 1) and x, = .
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1 tr 1
1 —w)dw= Agpol / dt = t, = : 2.29
/0 ( w) w KRORUP . AKR(f T 1)U§UP ( )
! AL vOrup tr
/ erpl—qow]dw = ————[1 — e:l;p(—qQ)]/ dt = t, = o (2.30)
0 q2 0 ALJWO-RUP

2.4 Effects of plasticity on creep behaviour of metals

Many components and structures, operating at high temperature, are subjected to plastic
deformations, caused by the loading conditions, together with creep. Examples of these
situations can be found in power plants, where high temperature components can be in
pre-strained conditions, or they can be subjected to plastic strains under low temperature
operational conditions and creep at high temperature. Also, components of aero engine
turbines experience thermal and mechanical loading cycles, which can induced plastic de-
formations, due to the stress field, and creep [66]. In addition, local plastic strains can also
be caused by welding processes carried out on thick-section components because of the
constraint effects caused by the material surrounding the weld [107]. Small punch creep
test specimens provide another example of structures where plasticity takes place together

with creep deformation.

The effects of plastic deformation (taking place either at low or high temperature)
on creep properties of materials are of practical and theoretical interest, as they can lead
to improvements in the performances of power plants, by the development of an optimised
pre-straining procedure, and they can provide information about the mechanisms governing
deformation and damaging processes during high temperature creep. Several experimental
studies have been carried out on steels and non-ferrous materials, and different effects of
prior inelastic deformation on subsequent creep properties of materials were reported in the

open literature [66].
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Willis et al. [104, 107] investigated the effects of pre-straining on the creep response
of 316H stainless steel in partially-solution treated (PST) and fully-solution treated (FST)
conditions, and of FST 316L stainless steel, at 575°C [104, 107]. The 316H specimens were
machined from an in-service power plant component. Standard uniaxial creep tests were
carried out, with a stress, o, of 450 [MPa] on as-received specimens and room temperature
pre-strained specimens, with pre strain level, € p, ranging from O to 0.39 for PST material

and from O to 0.20 for FST material.

Figure 2.9 is the plot of the initial strain versus pre-straining level for FST and PST

316H stainless steel [107].
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Figure 2.9: Initial strain plotted versus pre-strain level for (a) PST 316H stainless steel, with 0=450 [MPa] (ref.

[104], Fig. 1) and (b) and FST 316H stainless steel with 0=360 [MPa] (ref. [107], Fig. 4(a)), both
tested at 575°C.

Plastic deformation, prior to the constant-stress creep tests, increased the dislocation
density within the material, generating barriers to further dislocation motion and plastic
flow. The first effect of the dislocation density increase is the reduction of the strain level

obtained by applying the test load, i.e. the loading strain, as Figure 2.9 shows [104, 107].

For constant stress creep tests, when the loading strain had no plastic component
as a consequence of room temperature pre-straining, the creep behaviour of 316 stainless
steel was found to be remarkably modified [104, 107]. A drastic reduction in the creep
ductility and the minimum creep rate, was observed for both PST and FST 316 stainless

steels, while the failure time was found to decrease for PST conditions and to increase for
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the fully treated material [104, 107]. Figure 2.10 shows the creep curves of PST and FST

316H stainless steel with different pre-strain levels [66, 104, 107].

A similar variation of the creep curve, after room temperature pre-straining, was also

observed by Wilshire and Palmer for polycrystalline copper [105, 107].
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Figure 2.10: Creep curves for room temperature pre-strained (a) PST 316H stainless steel, with a stress of
450 [MPa] and (b) FST 316H stainless steel with =360 [MPa], both tested at 575°C. Ref. [107],
Figs. 1 and 2, respectively.

Wilshire and Willis [107] also reported the effects of high temperature pre-straining
on the subsequent creep behaviour of 316L stainless steel at 575°C. An initial stress of
360 [MPa] was applied for 15 [sec] and, subsequently, the test was continued until rupture
with a stress of 340 [MPa]. Immediately after the load reduction, the creep rate became
extremely low and, after that, it increased to a value similar to the minimum creep strain rate
observed during a constant stress creep test at 340 [MPa]. This indicates that, when prior
creep deformation was applied at high temperature, the primary creep region was replaced
by an ’inverse creep’ behaviour, i.e. the creep strain rate increased instead of decreasing
to its minimum value, in contrast with the behaviour observed when room temperature
pre-straining was carried out. Inverse creep immediately after the load reduction was also
observed when the stress of 360 [MPa] was hold until the minimum creep strain rate was
reached [107]. Figure 2.11 shows the plots of the creep strain rate versus creep strain for a
FST 316L stainless steel at 575°C, with the two of creep pre-straining procedures adopted

by Wilshire and Willis [107].

For not pre-strained material, in the testing conditions reported in ref. [107], the pri-
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Figure 2.11: Creep rate plotted versus creep strain for a FST 316L stainless steel, tested at 575°C with a stress
of 340 [MPa] after creep pre-straining at 360 [MPa] for (a) 15 [sec] and (b) for the time to reach
the minimum creep rate. Ref. [107], Figs. 9 and 11, respectively.

mary creep region, characterised by strain rate decrease, is mainly governed by strain hard-
ening caused by the dislocation density increase with creep strain. Creep recovery also

takes place, and dislocations can rearrange into a lower energy configuration, see also Sec-

tion 2.3.1 [3, 85, 107].

In the case of a pre-crept material, immediately after the stress reduction from 360
to 340 [MPa], dislocations encounter obstacles created at a stress of 360 [MPa], which are
stronger barriers than those obtained with a stress of 340 [MPa]. This causes a sudden drop
of the creep rate, as shown in Figure 2.11. The creep rate then increases as a consequence
of creep recovery, which gradually removes the effects of the previous higher stress state,
i.e. the stronger barriers to dislocation motion and creep deformation. As a result, the creep

strain rate approaches that obtained with a stress of 340 [MPa] without pre-straining [107].

In contrast, when the material is pre-strained at room temperature, the main disloca-
tion mechanisms are not influenced by pre-strain for all of the tests. The barriers to dislo-
cation motion are stronger than in the case of as-received material, and, as a consequence
of strain hardening and creep recovery, the typical primary creep region, with a decreasing

creep strain rate, takes place [107].

Mehmanparast et al. reported the effects of a plastic pre-compression €, = —0.08,

carried out at room temperature, on the creep response of 316H stainless steel removed
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from ex-service power station steam header components manufactured from different casts
of material and exposed to different previous service conditions [79]. Mehmanparast and co-
workers showed that, as a consequence of pre-compression, the yield stress of 316H stain-
less steel increased and, for a constant stress level, the loading strain decreased with pre-
compression, similarly to the effects of room temperature pre-tension reported in refs. [104,
107]. The results of uniaxial creep tests, performed at 550°C with stress ranging between
257 and 335 [MPa], showed that the minimum creep rate was not remarkably affected by
the amount of pre-compression, while the creep ductility of pre-compressed material, mea-
sured by the axial creep strain at failure and by the reduction of the cross sectional area at
the failure location, significantly decreased [79]. Also, the average creep strain rate, did not
considerably change with pre-compression. Figure 2.12 shows the plots of the engineering
strain, at failure, versus the stress and of the average creep strain rate versus the stress (both

on logarithmic scales) for two casts of material taken from different components, [79].
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Figure 2.12: Effects of pre-compression on 316H stainless steel. Plots of (a) axial strain at failure versus
stress and of (b) average creep strain rate versus stress for pre-compressed (PC) and as-received
(AR) material taken from different components (Header A and C). Ref. [79], Figs. 3a and 4,
respectively.

The behavoiur of 316 stainless steel was also investigated by Hyde [43] who reported
the results of plasticity/creep tests performed at 550°C by applying a creep load to the
specimens and overloading for 3 [sec] at regular time intervals of 168 [h]. Plastic strain was
accumulated during the short overloading periods while creep deformation increased during
the constant load intervals between the overloads [43]. An anomalous creep behaviour was

observed for the tests performed at 550°C with constant stresses lower than 320 [MPa], i.e.
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without overloading, which exhibited renewed primary and secondary creep regions (with
an increased minimum creep rate). Hyde suggested that the anomalous behaviour can be
related to creep recovery [43, 44]. The results of plasticity/creep tests showed standard creep
curves, with primary, secondary and tertiary regions, for any base creep stress, because of
the increase of dislocation density, induced by the overloads, inhibiting recovery processes

and the anomalous behaviour [43].

During plasticity/creep tests, the primary creep region was not sensibly affected by
high stress overloads, while creep ductility, represented by the creep strain at failure, de-
creased because high dislocation density, generated by the overloads, increased the strength
of the barriers to dislocation motion [43]. The failure time was not remarkably affected
by the overloads when the increase in stress, produced by overloading, was of 100 [MPa]
or less, while, it significantly decreased when an overload stress increase of 140 [MPa], or
more, was applied. Furthermore, Hyde reported that failure occurred during the creep strain
accumulation periods for low overload levels and during one of the short overload periods

for relatively high overloads [43].

Kikuchi and Ilschner [58] reported the effects of high temperature pre-straining on
primary and steady-state creep behaviour of AISI 304 stainless steel at 600°C. Uniaxial
specimens were pre-strained up to a 4.5% elongation at different temperatures, i.e. 650, 700
and 750°C, with a normalised stress equal to o /G = 4.1 x 1073 (where G is the shear mod-
ulus) and, then, they were cooled to 600°C to be creep-tested at the same normalised stress
used for pre-straining. A creep resistance behaviour was found for all of the pre-straining
conditions, and the secondary creep rate was reduced by about 50% when a prior deforma-
tion of 4.5% at 700°C was applied. In the primary creep region, the creep rate decreased
when the pre-strain level increased, while the duration of the primary creep regime was
shortened. The inverse primary creep region produced by stress reduction at high temper-
ature, reported in ref. [107], was not observed for AISI 304 steel [58], and typical primary
creep region, characterised by decreasing creep rate, was found. The normalised stress used
for pre-straining is the same as that of creep testing, therefore the strength of the barriers to

dislocation motion generated during pre-straining is not higher than that of creep tests.
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The creep resistance effects of high temperature pre-strain, observed for AISI 304
stainless steel, are due to changes in the dislocation substructure generated by prior de-
formation and carbide precipitation enhancement (caused by thermal ageing) [58]. The
material did not show a variation of sub-grain size, but the dislocation structure of the pre
strained specimens was found to be more regular than that of as-received specimens, causing
a reduction of the primary creep strain and of the secondary creep rate. Figure 2.13 shows

the effects of high temperature pre-straining on the creep response of AISI 304 stainless

steel [58, 66].
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Figure 2.13: Effects of high temperature pre-straining on (a) the variation of creep strain versus time (ref. [66],
Fig. 3) and (b) the variation of creep strain rate versus creep strain (ref. [66], Fig. 4).

Under different pre-straining conditions, a creep enhancement effect, i.e. an increase
of creep strain rate, was observed for various materials. Tai and Endo [66, 101] investigated
the creep behaviour of 2.25Cr-1Mo steel at 600°C after creep pre-straining at high temper-
ature. The effects of pre-straining on the minimum strain rate were quantified, by Tai and
Endo, by using the degradation parameter, ¢, defined by equation (2.31), where €7, is

the minimum creep strain rate of pre-strained material, ¢, , is the minimum creep rate

of the as-received material [101]. When the material exhibits creep enhancement after pre-

straining, ¢ os grater than 1, as in the results reported in ref. [101], while for creep resistance

effects, ¢ is less than 1 [101].

[N
¢="" (2.31)

~“min,0
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For 2.25Cr-1Mo steel, the deterioration of the material was shown to be dependent on
the stress and the pre-strain level [101]. The creep pre-strain applied to the material ranged
between 0.14 % and 19.4 %, with a stress level between 78.4 and 127.4 [MPa]. After creep
pre-straining, the load was released for 1 [h] and, then, a stress of 98 [MPa] was applied
to perform the creep tests [101]. A creep enhancement effect was observed for all of pre-
straining conditions, i.e. the creep strain rate of pre-crept material was found to be higher
than that of the as-received material. Tai and Endo also suggested a relation between the
deterioration parameter, ¢, and the pre strain level, ¢, reported in equation (2.32), where
Ly and My are constants determined by the best fitting of experimental data [66, 101].
Figure 2.14 is the plot of the variation of the degradation parameter, ¢, versus the creep

pre-strain level, for different pre-straining stresses [66, 101].

¢ = Ly(s, + )M (2.32)
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Figure 2.14: Variation of ¢ versus creep pre-strain level for a 2.25Cr-1Mo steel at 600°C. Ref. [66], Fig. 10.

When the stress applied during creep pre-straining was the same as that of creep tests,

i.e. an interrupted test was performed, and the prior creep deformation is approximately 1%,
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the creep rate obtained for pre-strained specimens was found to be approximately twice than

that of the as-received material [101].

The influence of the creep test stress on ¢ was investigated by Tai and Endo and the
dependency of the degradation factor on the normalised creep stress is given by a power
law, reported in equation (2.33), where o is a reference creep stress, ¢g is the degradation

parameter, corresponding to o4, Arp and k., are material constants [101].

o\ Fre
¢ = Arpdo <a_¢) (2.33)
Chanduri and Ghosh [15] analysed the effects of room temperature plastic pre-straining
on the subsequent creep behaviour of 2.25Cr-1Mo steel tested at temperatures ranging be-
tween 500 and 600°C. They observed that room temperature pre-straining induced a reduc-
tion of the minimum creep strain rate (creep resistance behaviour), because of dislocation
density increase [15]. Figure 2.15 is the plot of creep strain versus time for a 2.25Cr-1Mo
steel at 550°C, with different levels of room temperature pre-strain and it shows the decrease

in the minimum creep rate and the increase in failure time with a pre-straining level increase

[15].
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Figure 2.15: Effects of room temperature plastic pre-straining on the creep behaviour of 2.25Cr-1Mo steel at
550°C. Ref. [15], Fig. 5.

The effects of room temperature pre-straining on the creep behaviour of Ti834 tita-
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nium alloy were investigated by Whittaker et al. [103]. The Ti834 alloy is a near « titanium
alloy which exhibits remarkable material properties up to 630°C, and it is used for gas tur-
bine applications [103]. Whittaker et al. reported that, when this alloy was pre-strained,
a creep enhancement effect was observed, since the minimum creep rate increased, while
the time to failure and the strain at failure decreased [103]. Figure 2.16 is the plot of creep
strain versus time for a Ti834 titanium alloy tested at 600°C with a stress of 400 [MPa], for
different pre-strain levels [103]. Furthermore, the effects of a compressive pre-straining of
-1.25%, on the minimum creep strain rate are similar to those obtained by applying a tensile
pre-straining of 1.25%, but the onset of tertiary creep is delayed for the case of compressive

pre-strain (see figure 2.16).
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Figure 2.16: Effects of pre-straining on the creep behaviour of Ti834 titanium alloy at a temperature of 600°C
with 0=400 [MPa]. Ref. [103], Fig. 7.

Creep enhancement effects were reported by Loveday and Dyson [66, 75] for IN597
nickel based super-alloy at 800°C and by Pandey et al. [66, 83] for Inconel alloy X-750 at
750°C.

The viscoplastic behaviour (with small plastic strains) of P91 and P92 steels, has been
investigated by Saad et al., and the material constants for the Chaboche unified viscoplas-
ticity model were obtained, for thermo-mechanical fatigue applications [92]. However, in
the open literature, studies on the effects of plastic pre-strain, applied at high stress levels

and high temperature, on the creep response of 9Cr steels, such as P91 steel, are rare.
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2.5 Small specimen testing techniques
2.5.1 Overview

As reported in Chapter 1, the need for material creep testing has become of high importance
over the last few decades [42, 56]. These needs have been driven by the aerospace and power
generation industries. An aspect is the need for material testing where only small amounts
of material are available for assessment [42, 52, 53, 91, 97, 98, 108]. This includes non-
destructive evaluation of in-service components, especially when the removal of material
could significantly impair the structural integrity of the component [21], the characterisation
of the HAZ of welds [34, 111], the development of new alloys [91] and, in the nuclear
industry, problems related to the handling of active materials [56]. In these situations, it
may not be possible to use conventional full-size specimens, and innovative techniques,
adopting miniature specimens, have been developed [42, 46, 52, 53, 55, 56]. Two main

categories of miniature specimens have been developed to date [56]:

* Miniature samples which are similar in shape similar to conventional specimens, but

smaller in sizes.

* Miniature samples specifically designed to benefit from their reduced dimensions.

For creep testing, the first category of miniature specimens (those with shapes similar
to those of conventional samples) generally includes uniaxially loaded samples with a total
length of approximately 50 [mm], a gauge length of 25 [mm] and a diameter of 8 [mm)]
[56]. The experimental results obtained from small sized uniaxial specimen tests can be
easily compared with results obtained from conventional creep test specimens including
rupture data e.g. [42]. Alternatively, in cases where the material available is limited in size,
single sections of the specimen can be separately manufactured and subsequently joined
together by use of electron beam welding, causing a relatively expensive and not trivial

manufacturing process [42, 56].

35



CHAPTER 2

The second category of specimens includes samples characterised by a variety of
shapes. These are designed so that they require relatively simple and economic manufac-
turing processes. These specimens can be manufactured from scoop samples, usually with
approximate dimensions of 30x20x3 [mm)], as shown in Figure 2.17, [41, 42, 98], which

can be taken from in-service components [42].

Small sample testing techniques currently used include:

* Impression creep testing

* Small ring specimen creep testing

* Two bar specimen creep testing

* Small punch creep testing

—* 4 ~3mm
— X
. ~30mm _ ~20mm
1< > % >
(@ (b)

Figure 2.17: (a) Scoop sample taken from an in-service power plant component (ref. [42], Fig. 2 (b)) and (b)
its dimensions (ref. [42], Figs. 2 (c) and (d)).

These techniques have the advantage of requiring the testing of very small samples.
However, conversion procedures to relate the output from experimental tests to that of the

more useful standard uniaxial creep tests are needed [45, 55, 56].

A technique which may be used to convert the results of non-conventional testing
to those of standard full size uniaxial tests is the inverse reference stress method (RSM)
[51-55]. By using this approach, the deformation rate due to creep of a specific point of a

structure, or a specimen, can be related to the creep strain rate of a uniaxial creep test carried
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out at a reference stress, oppr [51, 55, 85]. For a material which obeys the Norton creep law,
with stress exponent and multiplier represented by n and B, respectively, the displacement
rate, A, of the point of interest can be related to the creep material properties, the geometry
of the structure (through the dimensions) and a suitably defined nominal stress, oo, DY

equation (2.34) [51].

A= f1(n) f2(dimensions) B(c o )" (2.34)

A constant, 7, can be defined such that f1(n)/(n") does not vary with n. Therefore,
the deformation rate can be related to the creep strain rate of the reference uniaxial test by
use of equation (2.35), where o,y is the reference stress defined by equation (2.36), s is a
characteristic dimension of the structure analysed and the D constant is the equivalent gauge

length of the structure [51].

A= DB(0ypr)" = BsBolpp = 56 (0rur) (2.35)

Orer — NNONOM (2.36)

Since D = fi(n) f2(dimensions)/(n)™ is, by its definition, independent of n, then
also 8 = D/s, defined by equation (2.37), does not depend on the material properties.
When an analytical expression is available for A, the value of the stress multiplier «, for
which the normalised displacement rate reported in the left hand side of equation (2.37) is
practically independent of n, is the reference stress parameter 7. Once 7 is obtained, the
B parameter is obtained by equation (2.37) the and the deformation of the structure can be

converted into the corresponding uniaxial creep test data e.g. [52].

A

———— = constant = (2.37)
sB(aoyon)" p
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In those situations where an analytical solution is not available, the conversion pa-
rameters can be obtained by use of numerical techniques, such as the finite element (FE)

method.

2.5.2 Impression Creep Test

Use of the impression creep test method was first reported in 1977, by Chu and Li [17], for
testing of a molecular crystal which exhibited creep behaviour at room temperature, and,
then, it was used for testing of several materials, such as the HAZ of P91 welds [53], 316
stainless steel, 0.5Cr-Mo-V steel [52], magnesium alloys [86] or solid fuel for the nuclear
industry [64]. Impression creep testing was also used under stepped load or stepped tem-
perature conditions, in order to investigate the creep response of the material, at different

stresses or temperatures, using a single specimen in each case [98].

The test is performed by applying a constant load to a flat-ended indenter in contact
with the specimen. The variation of the punch displacement with time is recorded and it
constitutes the experimental output of the test. It exhibits an initial deformation, related to
the loading level, followed by the time dependent behaviour caused by creep. The impres-
sion creep curve is characterised by a decreasing deformation rate region and a stationary
region, where the deformation rate is constant [53, 54, 67, 97, 98]. Figure 2.18 shows a plot
of indenter displacement versus time for impression creep tests performed on a P91 steel at

650°C and on a molecular crystal at 37°C.

The impression creep deformation curve is related to the primary and secondary creep
properties of the tested material in the vicinity of the contact region between the specimen
and the indenter. Due to the compressive stress field which is produced in the specimen
during the test, the material does not exhibit creep damage, and therefore, tertiary creep
behaviour cannot be investigated by using this testing technique [86, 98]. However, Rashno
et al. [86] reported that magnesium alloy MRI153 exhibited an increase of the displacement
rate curve when impression creep tested at 217°C and they related this behaviour to carbide

coarsening or precipitate dissolution.
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Figure 2.18: Impression creep curves for (a) the HAZ of a P91 steel weld tested at 650°C with different stress
levels, ranging from 70 to 93 [MPa], (adapted from ref. [52], Fig.2(a)) and (b) the molecular
crystal reported by Chu and Li in ref. [17] (adapted from ref. [67], Fig.3).

The localised nature of deformation which occurs in an impression creep test is appar-
ent from the microscope images shown in Figure 2.19. The microstructural configuration,
after impression creep testing, of two different specimens made of MRI153 magnesium al-
loy and 316LN stainless steel, respectively, are shown [82, 86]. In these two specimens,
three regions can be identified. The region closest to the indenter, indicated in Figure 2.19
(a) as zone 1, is characterised by a hydrostatic stress field as it shows no significant distor-
tion of grains. In the region close to the edge of the indenter, i.e. zone 2 of Figure 2.19 (a),
there is significant shear deformation which causes distinct grain distortion. The test loading
conditions did not affect the shape of grains in both of the specimens in the remote region
(zone 3 of Figure 2.19 (a)), indicating that no significant plastic deformation occurred at

that location [82].

It is generally considered that the contact area between the indenter and the spec-
imen must be relatively large compared to metallurgical features, in order to obtain bulk
creep properties of the material investigated and to avoid size effects which can affect the
experimental results when less than 6-10 grains are covered by the effective section of the
specimen, i.e. the contact area with the indenter [52, 54]. In view of this requirement, Hyde
et al. recommended the use of rectangular indenters for impression creep tests in order to
increase the contact area, and also the load level, with respect to the case of a cylindrical

indenter [52, 54]. Figure 2.20 shows the configuration of an impression creep test with a
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(b)

Figure 2.19: Microstructure of impression creep specimens near the contact region with the indenter. The
materials tested are (a) a magnesium alloy (adapted from ref. [86], Fig.4) and (b) a 316LN stainless
steel (adapted from ref. [82], Fig.10 (b)).

rectangular indenter and the geometry and of a square specimen, used in the work reported
inrefs. [52, 54], where w;, b;, h;, are the width, the length and the thickness of the specimen,
respectively, and d; is the thickness of the indenter, while p is the average contact pressure
between the indenter and the specimen, defined in equation (2.38), with P representing the

indentation load.

Test material D Indenter

(@ (b)

Figure 2.20: Geometry recommended by Hyde et al. with (a) rectangular indenter(adapted from ref. [52], Fig.1
(a)) and (b) square specimen (adapted from ref. [52], Fig.1 (c)).

(2.38)

3
Il
o

The geometry of the test set-up represented in Figure 2.20 is defined by the 15—;, 1;;—; and
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Z—;ﬁ' ratios, with w; = b; =10 [mm], d; =1 [mm] and h; =2.5 [mm] for the configuration used
in refs. [52, 54]. The square specimen can be manufactured from a scoop sample, similar to
that shown in Figure 2.17, and it is large enough to ensure that full contact with the punch
and the support is maintained during the creep test [52]. This prevents significant bending
deformation of the specimen and therefore the displacement of the indenter is caused only

by creep occurring in the localised region of the specimen close to the area of contact with

the indenter [98].

If the material is assumed to obey Norton’s creep law (equation (2.18)), the conver-
sion relationships between impression creep test output and uniaxial creep test data can be
obtained by use of the reference stress method, which is briefly described in Section 2.5.1.
The reference stress, orzr, is related to the mean pressure, p, by equation (2.39) while
the steady-state displacement rate, A,_ is related to the strain rate of the corresponding

uniaxial creep test, £°(0rpr), by equation (2.40).

As_s = DB(np)" = Bd;B(0rur)" (2.40)

Since an analytical solution is not available for Ay, a series of FE analyses is
needed to obtain the displacement rate for various values of the stress multiplier, n. The
7) parameter is then calculated by plotting the normalised displacement rate W versus
n, as shown in Figure 2.21, and the value of the stress multiplier « for which the normalised
displacement rate is constant is the 7 parameter. The  parameter is calculated by extrapo-

lating the intercept of the normalised A for n=0.

The reference stress parameters depend on the geometry of the experimental set-up
and are independent of material properties. The correlation between impression creep test

results and secondary creep uniaxial data, i.e. minimum creep strain rate, was found to

41



CHAPTER 2

_2||||I||||I||||I||||I||||

0 2 4 6 8 10
n

Figure 2.21: Variation of normalised A versus n (adapted from ref. [52], Fig.5 (a)).

be accurate when the displacement of the indenter is small compared to the the specimen

thickness or indenter width [52].

A limitation of this technique is represented by the range of materials that can be
tested, because, in order to avoid excessive deformations of the indenter, its creep resistance
needs to be two to three orders of magnitude higher than that of the specimen. Therefore,
steels for high temperature applications, such as P91 or 0.5Cr-Mo-V steels, can be tested
[52], while materials with higher creep strengths, such as nickel-based superalloys, cannot
be tested [42]. Also, the displacement of the indenter during the test is in the order of
magnitude of 0.1 [mm], see Figure 2.18, hence accurate measurement systems need to be
used because experimental noise, due for example to temperature fluctuations during the

test, is likely to affect the test results [42, 98].

2.5.3 Small Ring Creep Test

Small ring creep testing is a relatively new miniature testing technique in which a small
circular or elliptical ring is diametrically loaded at high temperature by the use of two pins
[42] and the variation of the load-line displacement with time is measured and recorded. The

specimens are relatively easy to manufacture [53] and they can be obtained from a scoop
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sample similar to that shown in Figure 2.17. Figure 2.22 shows a schematic representation
of a small ring specimen and the experimental set-up used by Hyde et al. for small ring
creep testing of a nickel-based superalloy [42]. The experimental output is able to provide
information about the primary and secondary creep behaviour of the investigated material
[42, 53]; Hyde and Sun [53] proposed an analytical solution for the load-line displacement
rate of an elliptical ring in the steady-state creep regime, where the effects of shear stresses
are neglected and only bending deformation is taken to influence the results. The solution is
given in equation (2.41a), where P is the load applied to the ring specimen, a, is the semi-
axis of the specimen perpendicular to the loading direction, b, is the semi-axis parallel to the
loading direction, d, is the width of the cross section of the specimen, b, f is the thickness
of the specimen, n and B are the Norton creep law material constants and Int,, defined by
equation (2.41b), is a term which depends on the geometry of the specimen and the Norton

stress exponent, 7, with 0, representing the angular coordinate of the small ring specimen.

. 2n +1\" 4a,b, Pa, \"
A-( - > Ints(n, a,/b,) 7 B(%,ME) (2.41a)

(cosB, —cos )" (1 — cos¥,) \/< T) sin® 6, + cos? 6, db,+

o) -

/ (cos 0 — cosh,)" (1 — cos®, \/ Z— sm2 0, + cos? 0, db,

(2.41b)

Figure 2.23 shows the small ring creep test results obtained by Hyde et al. [42] for a

nickel-based super alloy tested at 800°C.

Similarly to the impression creep test, see Section 2.5.2, the experimental output can
be related to conventional creep data as well, by use of the reference stress method. The
relations between the constant load applied in a small ring test and the reference stress is
given in equation (2.43), while equation (2.44) relates the displacement rate, A, to the creep
strain rate €°. The 1 and 3 values can be calculated by using a procedure similar to that

described in Sections 2.5.1 and 2.5.2 using the relation, given by equation (2.42), of A with
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Figure 2.22: (a) Schematic representation of the small ring specimen (adapted from ref [53], Fig.5) and (b)
experimental set-up used by Hyde et al. (adapted from ref [53], Fig.7).

the material properties and the geometry of the specimen. Also in this case, these parameters
are material independent and vary with the geometry of the specimen. During the test, they

are practically constant [42, 53].

. 2n + 1\" Inty(n, a,/b,) 4a,b, Pa, \"
A= i B 242
( n ) ar 4, \“bypd2 (242)
Pa
- 2.4
OREF Ubodeg (2.43)
¢(oREF) = A4 (2.44)
REF) = 1a.b.B .

During the test, the transverse semi-axis, a,, decreases and, as a consequence, the
reference stress decreases also, see equation (2.43) [53]. The variation of the reference
stress with time during the test is also reflected in the results shown in Figure 2.23, where

the primary region of the displacement curve, characterised by a decreasing rate, is followed
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Figure 2.23: Variation of the load-line displacement versus time of small ring creep tests performed on an
Inconel 738 nickel-based superalloy at 800°C (adapted from ref [53], Fig.7)

by a secondary region where the deformation rate is not quite constant but rather exhibits a
finite curvature [42]. Hyde et al. obtained the minimum creep strain rate data from the small
ring creep test results plotted in Figure 2.23 by using the data in the region where the rate
is almost constant and taking specific values of A at regular time intervals. The averages of
the values of the reference stress and the corresponding creep strain rates calculated at these
time intervals were then used to obtain the final values [42]. Figure 2.24 shows the variation
of the minimum strain rate, obtained from small ring creep tests, plotted versus the stress
on logarithmic scales, together with corresponding uniaxial creep results for an Inconel 738

superalloy and a P91 steel [42, 53].

The experimental results reported in Figure 2.24, show that the correlation between
small ring test data and conventional creep data is excellent [42, 53], therefore this testing
technique is capable of providing secondary creep data. Furthermore, the small ring creep
test method is a high sensitivity test because of the high flexibility of the specimen and
the large equivalent gauge length obtained for this testing method, EG Ly, reported in
equation (2.45). Also in view of the large equivalent gauge lengths which are obtained
with this these tests, relatively large deformations are obtained with good accuracy and
these are related to small strains. Thermal fluctuations and other forms of experimental

noise experienced during tests do not significantly affect the testing results, in view of the
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Figure 2.24: Variation of the minimum creep strain rate versus stress obtained from small ring creep tests per-
formed on (a) an Inconel 738 nickel-based superalloy at 800°C (adapted from ref. [42], Fig.12),
and (b) a P91 steel at 650°C (adapted from ref. [53], Fig.12). The results are compared to corre-
sponding uniaxial data.

relatively large overall deformations involved.

EGLSRT - - / (2.45)

The stresses and the temperatures at which the specimen can be tested are close to
practical operational conditions, whereas, for the indentation creep test method, the testing
stresses are usually significantly higher [42, 53]. This constitutes a major advantage of the
small ring testing technique because the materials of the specimen and of the loading pin
can have similar creep resistance. As a consequence, if the pins are manufactured from the
same material as the specimen, then high creep resistance materials, such as nickel-based

superalloys, can be tested [53].

2.5.4 Small Two-Bar Creep Test

Impression creep and small ring creep tests provide information about primary and sec-
ondary creep regions only, as specimens are not taken to rupture during tests. In order to
investigate the creep rupture behaviour from a small volume of material, Hyde et al. [45, 46]

developed a small two-bar specimen testing technique, in which a small specimen is creep
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tested with a constant load applied by two pins characterised by a higher creep resistance
than the specimen’s material. The geometry of the specimen is shown in Figure 2.25 (a),
where L, , is the distance between the axes of the pins, &, is the length of the supporting
end, D, 1 is the diameter of the loading pins and b, and d are the dimensions of the bars
cross section, while the experimental set-up is represented in Figure 2.25 (b) [45]. Typi-
cal dimensions of the specimen are L, =13 [mm], b;=2 [mm], k; ,=6.5 [mm] and D, =5
[mm], which allow the specimen to be manufactured from a sample of material of the type

shown in Figure 2.17 [55].

Maoving part

Loading pins

Loading pin holders

The TBS

Dir cons training
in -
P Constrained
part

(a) b)

Figure 2.25: (a) Two bar creep test specimen and (b) experimental set-up, adapted from ref. [45], Fig 5.

The displacement of the movable pin is recorder with time to provide the experimen-
tal output of the test, as well as the failure time of the specimen. Hyde et al. used the
reference stress method, see equations (2.35) and (2.36), to relate the experimental output
of two-bar creep tests with uniaxial creep tests data. Equation (2.46) is the mathematical
link between the minimum deformation rate obtained from two-bar creep tests, AS_ s, and
the minimum creep strain rate, £5,, ,, of the reference uniaxial test, while equation (2.47) re-
lates the reference stress to the loading conditions and the geometry of the two-bar specimen

[45].

As-s = BLO,TE‘?\/[[N(UREF) (2.46)
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P
Orpr = N0ONoM = 772b d (2.47)
TdT

In the work by Hyde et al. [45], the values of the reference stress parameters, for the
two-bar specimen with typical dimensions, were obtained by an FE-based procedure, simi-
lar to that used in the case of impression creep test, see Section 2.5.2. The values 1=0.987
and 5=1.456 were obtained. As for the impression creep and the small ring creep tests,
these parameters are material independent and they take into account the stress conditions
and the geometry of the specimen tested. The 7 parameter is close to unity because the
mechanism governing creep deformation and rupture of the plain bars is mainly stretching
under uniaxial stress. Bending deformation occurs in the ends of the specimen and local
contact forces act between the pins and the specimen. However, the deformation of the ends
of the specimen was found to have a relatively insignificant effect on the experimental data
[45]. Figure 2.26 shows the results of the numerical procedure used to obtain the » and
B parameters, where the steady-state displacement rate is normalised and plotted against n
on logarithmic scales. The « value for which the normalised Ag_g is independent of n is
chosen as the 7) parameter. Similarly to the cases of the impression creep and the small ring

testing methods, the logarithm of /3 is the intercept on Figure 2.26 for n=0.

25 = -a=06
2 | - —&- a=0.75
L5 —— a=11=0.9866 5]
P --%-a=12 _-m-
1 |--o-a=15 g-" A A
. P B k- -
log% 0.5 WA
L“B[aBﬁj 0 %—0—0—0—4—0
NE
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Dl N
-1 \.\ X~*
-15 “\‘
-2 \‘
2.5
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Figure 2.26: Variation of the normalised As_s versus 1, on logarithmic scales, for different values of the a
scaling factor, obtained from FE analyses of a two-bar specimen test. Adapted from ref. [45],
Fig 9.

48



CHAPTER 2

40
Uniaxial-Exp
35 FI e TBS_Exp
o in [MPa]

30 F| 170 150

25
S 180 160 140
= 20 r
W

0 200 400 600 800 1000 1200 1400
Time (h)

Figure 2.27: Plot of the converted creep strain versus time for two-bar creep tests of a P91 steel at 600°C
compared with corresponding uniaxial data. Adapted from ref. [45], Fig 18.

Figure 2.27 is a plot of the creep strain versus time obtained, by Hyde et al. [45],
by converting the experimental results of two-bar creep tests for a P91 steel at 600°C. The

corresponding uniaxial creep results are also included for comparison [45].

Figure 2.28 shows the variations of the converted minimum strain rate and of the
rupture time with stress, on logarithmic scales [45, 46]. The results reported in Figures 2.27
and 2.28 show a good degree of correlation between two-bar output and uniaxial creep test
data. Furthermore, the curves shown for two-bar creep strain versus time exhibit primary,
secondary and tertiary creep regions, leading to failure. However, since the reference stress
parameters were obtained by using a Norton’s creep law, they accurately describe the steady-
state creep behaviour but further investigation is needed for their application to tertiary creep

regime [45].

Hyde et al. [46] also used the notched two-bar specimens, shown in Figure 2.29, to
determine the stress multi-axiality material constant, v, of the Kachanov and the Liu&Murakami
creep damage models, see equations (2.23)-(2.28), for a P91 steel at 600 and 650°C. They

obtained results which are very consistent with those of traditional notched specimen tests
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Figure 2.28: (a) Variation of the converted minimum creep strain rate and (b) of the time to failure versus stress
for a P91 steel at 600°C, on logarithmic scales. Corresponding uniaxial creep test results are
included for comparison. Adapted from ref. [45], Figs. 17 and 19.

Figure 2.29: Two bar notched specimen of a P91 steel used by Hyde and co-workers. Adapted from ref. [46],
Fig. 20.
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[46].

2.6 Small punch creep testing
2.6.1 Overview

The small punch creep testing (SPCT) method is a miniature testing technique which has
been used to predict the full creep curve of a material, from a very small disc specimen
[25, 31, 51, 56, 80, 91]. The test consists of a hemispherical indenter, or a ceramic sphere,
which is pushed into a disc specimen with a diameter generally ranging between 3 and 10
[mm] and a thickness of approximately 0.2-0.5 [mm], usually clamped between an upper
and a lower die containing the receiving hole [1, 31, 51, 56, 80, 91]. Figure 2.30 shows a

schematic diagram of a typical experimental set-up used for SPCTs [48].

l Load
Puncher

P

Upper
die

Lower
die

Figure 2.30: Typical SPCT experimental set-up. Adapted from ref. [48], Fig. 1 (a).

The small punch testing technique was first developed in the early 1980s by Manaham
et al. [78] at M.I.T., and, since then, it has received much attention from researchers [56, 91].
The first application of this technique was the determination of mechanical properties of
irradiated materials from nuclear reactor pressure vessels [78] and, in the early 1990s, Parker

et al. [84] reported its use to obtain the creep properties of materials operating at high
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temperature.

Two different types of SPCT exist, i.e. the test can be carried out with either a con-
stant load (the variation of the punch displacement versus time is recorded), or a constant
deflection rate(the experimental output consists of the variation of the punch load versus
punch displacement) [24, 80, 91]. The constant load SPCT is similar to a standard uniax-
ial creep tests, while the constant displacement rate test is similar to a tensile test with a

constant strain rate [80, 91].

2.6.2 Mechanisms involved in the SPCT

The typical experimental output of a constant force SPCT is the variation of the load-line
displacement versus time and it can be divided into three regions, as shown in Figure 2.31
[8, 51, 56, 91]. A primary region, characterised by a decreasing deflection rate, is followed
by a secondary (or steady-state) region, with a constant deflection rate, and by a tertiary

stage with an increasing displacement rate leading to failure, see refs. [31, 72, 80].

: -

Fracture

Ai

-
>

t

Figure 2.31: Typical SPCT output. Adapted from ref. [51], Fig. 3 (b).

When the specimen is loaded, the head of the indenter applies a contact load over
a very small area of the disc specimen. In view of the highly localised contact loading,
the stress field in the proximity of the punch/specimen contact area is characterised by re-

markably high stresses and strains which will most likely be higher than the yield stress of
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the tested material [31]. This generates local plasticity and an initial, large deformation of
the specimen. In view of the effects discussed in Section 2.4, the large plastic deformation
occurring at the beginning of the test, in localised regions of the specimen, can signifi-
cantly modify the creep response of the material in those locations. When the deformation
of the specimen progresses, the flat disc specimen turns into a conical sample and, as a
consequence, the main deformation mechanism, governing the structural behaviour of the
specimen, changes from bending to membrane stretching [56]. Furthermore, at this stage of
the test, the displacement rate is approximately at its minimum, see Figure 2.31. Kobayashi
et al. defined the secondary SPCT region as the time interval in which the deflection rate
is less than twice the minimum deflection rate and they reported that this region constitutes

most of the test duration [59, 60, 91].

Some authors argued that the secondary SPCT region is characterised by similar
mechanisms to those of the steady-state region of a uniaxial creep test curve [16, 76, 91].
However, investigations on interrupted tests, such as that by Kobayashi et al. on super du-
ralumin (A2024B) [59], revealed that circumferential cracks start to nucleate during the
primary stage of the test, near the contact edge between the specimen and the punch. The
nucleation of these cracks is related to the ductility of the material, and it suggests that the
primary and secondary regions of the SPCT curve are not only due to the mechanisms in-
volved in steady-state creep, such as strain hardening and creep recovery (see Section 2.3.1),
but they are rather the result of concurrent mechanisms which take place in the specimen,
such as geometric stiffening, as the sample undergoes a drastic change in shape from a flat
disc to a cone, dislocation creep together with material degradation and crack nucleation

and propagation.

In the final stages of the test, the SPCT curve exhibits an increase of displacement
rate, which leads to the failure of the specimen [91]. In a standard uniaxial creep test, tertiary
creep, characterised by an increasing strain rate, is commonly attributed to the formation and
coalescence of voids and intergranular cavitation, that is, material deterioration processes,
see Section 2.3, which cause a reduction of the load carrying section and, eventually, rupture

of the specimen [6, 91]. In an SPCT, the tertiary region of the deformation curve is related
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to several factors, such as material deterioration, macro-cracks propagation in the through-

thickness direction and specimen’s necking (i.e. geometrical softening) [91].

2.6.3 Analytical modelling procedures of SPCT

The Chakrabarty theory for stretch forming of a rigid-plastic circular blank over a rigid
hemispherical punch [13] is the most relevant theoretical study to model the SPCT problem

[51,91].

In Chakrabarty’s theory, a thin blank is stretched over a static hemispherical punch
and the material of the blank is taken to be isotropic rigid/plastic, in view of the large
deformations involved in the problem [13]. The stress and strain fields are influenced by the
friction conditions between the punch and the blank, since the maximum thinning location
in the membrane moves away from the punch axis of symmetry when friction increases
[13]. The punch is assumed to be well lubricated so that friction can be neglected. In
contrast to the simpler case of hydrostatic bulging of circular diaphragms, in the stretch
forming problem, the boundary conditions are not constant during the process, since the
contact edge between the blank and the punch, i.e. the boundary between the supported and

the unsupported regions of the blank, changes with the deformation of the blank [13].

Figure 2.32 shows a schematic representation of Chakrabarty’s model, where R, is
the punch head radius, a, is the receiving hole radius, ¢, -, and ¢, -, indicate the angle
between the direction normal to the blank and the axial direction (defined as the normal
angle) for the supported and the unsupported regions, respectively, 1 and ro represent the
radial position of a generic point of the blank for the supported and the unsupported re-
gions, respectively, 0, is the normal angle at the clamped edge of the blank, 0, ¢ is the
normal angle at the contact boundary between the membrane and the punch, z and / are the
axial position of a generic point of the blank in the unsupported and the supported regions,
respectively [13, 91]. For the geometry shown in Figure 2.32, when the thickness of the
blank is much smaller than the punch radius, the deformation mechanism of the blank can

be considered as purely membrane stretching governed [13].
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Figure 2.32: Schematic representation of Chakrabarty’s model. Adapted from ref. [91], Fig. 3.

The main radii of curvature in the radial and circumferential directions are given in
equations (2.48) (a) and (b), respectively [13] and, for the supported region, they degenerate

into equation (2.49) [13].

ri

= 5——secphi; i =1,2 2.48
Prii 8(251-,0;, secphi;,t , ( a)
Peji = TiCSC P on, = 1,2 (2.48b)
pe=pr = Rs (2.49)

Equations (2.50) (a) and (b) represent the equilibrium in the normal direction in the
supported and unsupported regions, respectively, where o, and o, are radial and circum-
ferential stresses, respectively, and ¢ is the thickness of the blank, while equation (2.51)

represents the meridional equilibrium (in both regions of the blank) [13].

th(oc + or) = pRs (2.50a)
Je L Tr (2.50b)
Pc Pr
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Equation (2.50) shows that the radii of curvature, p, and p., have opposite signs in
the unsupported region, since o, and o, are both positive. However, in the supported region,
both radii are positive, see equation (2.49), therefore one of them discontinuously changes
sign at the edge of contact between the blank and the punch. In view of equation (2.48) (b),
pc 1s continuous over the blank, since ¢, ¢;, and ¢, ¢, exhibit the same value at the contact
edge, while p, has a discontinuous variation from R, to a negative value, at the contact

boundary [13, 91].

In Chakrabarty’s work, the solutions for the strain field in the supported and the un-
supported regions of the blank are provided [13]. In the unsupported region, balanced biax-
ial tension occurs because of the membrane stretching deformation mode and the circum-
ferential and radial stress components, o. and o, are equal, as indicated in equation (2.52),
where H(e) is a strain hardening function. Furthermore, the circumferential and radial
strain components, €. and &,, are equal and are reported in equation (2.53) (a), while the
through-thickness strain component, £, is the sum of €. and ¢,., as equation (2.53) (b) shows

[13,91].

o.=o0, = H(e) (2.52)
7'2 1 + COS 60}1
c=¢,=In|—=|=In | ———" 2.53a
c c n |:7’2,0:| |:1 + COS ¢2,Ch:| ( )
tho 1+ cos B, ]
gg=In|—)=¢.+e,=2In | ———m— 2.53b
' n<th ) : : n[1+cos¢2,oh ( )

In the Chakrabarty solution, friction in the contact region is neglected and the stress
field can be considered as balanced biaxial (as in the unsupported region), see equation (2.52),

and, also in this case €.=¢, and ¢, is their sum [13]. Equation (2.54) (a) and (b) report the
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solutions for the strain components in the supported region of the blank, where ¢, , is initial

thickness.

1 (1 4+ cos ey cn)(1 4 cosbey)
e=¢c,=In|[— ) =1 d 2.54
c ¢ i <7A170> n |: (1 + COS 60‘0}7‘)2 ( 5 a)

tho (1 + cos ¢y cn) (1 + cosbey)
— — l s = ¢, e 21 2 2. 4b
€t €rQ n < th_> Ecte n |: (1 + cos 90,Ch)2 (2.54b)

The maximum value for the through-thickness strain component, €, 5,1 x, was found
at the centre of the blank [13], and it is shown in equation (2.55), which was obtained by
replacing ¢, =0 in equation (2.54) (b), while, equation (2.56) shows the through-thickness

strain component at the contact edge, €, xper, Where @, o, = @o.cn = 0o cn-

2(1 + cos By
Ly [0+ cos0en) 2.55
€4 MAX n [(1 + cos Oy cn)? -
1+ cos Oqy,
gy [ cosbon 2.
€4,EDGE n |:1 + cos eo,c'h:| -

From the relationship between 6, .;, and 0., reported in equation (2.57), the central
displacement, h,,,.;, can be calculated by equation (2.58), while equation (2.59) represents
the mathematical link between the punch load and the deformation of the blank, where
0gper and t, ppe e are the radial (or circumferential) stress component and the thickness,

respectively, at the contact edge [13, 91].

R
sinfc;, = — sin” 6, ¢, (2.57)
P

bo,ch
tan (g2

Och
2

+ Rs (1 —cosbycn) (2.58)

hpunch — ap Sin GCh ln
tan
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P = 277Rsth,EDGEUEDGE Sin2 90,(,7h (2'59)

Chakrabarty’s theory was formulated by using an exponential hardening law, from
which the relation of o5 With 04, and 6, ¢, reported in equation (2.60), where A, and
mey, are material constants, was obtained. This plastic constitutive model does not reflect
the behaviour of any real material, but it can be considered an acceptable approximation to

describe the response of metallic materials exhibiting various hardening properties [13, 91].

(2.60)

1 4 cos 6, mch
oppce = Ach |:2 In (_m)]

14 cosby.cn

The Chakrabarty model can be used to describe the deformation of a SPCT specimen
in the advanced stages of the test, that is, when the disc specimen has turned into a conical
shape and its deformation can be assumed to be governed by membrane stretching, see also
Section 2.6.2 [91]. Yang and Wang [109] compared the results obtained from an FE model
of a SPCT with those of Chakrabarty’s theory and they showed that the variation of the
central strains versus the central displacement of the specimen, obtained by FE analyses,
are in good agreement with the membrane stretching results [91, 109]. Yang and Wang also
proposed a polynomial fitting, reported in equation (2.61) between the central displacement,
Rpunen» and the central through-thickness strain component, €; 5, 4x, derived from the mem-
brane stretching theory for a small punch test set-up with a,=2.5 [mm] and Rs=1.2 [mm]
(see Figure 2.30). Also in the calculations by Yang and Wang, the maximum thinning of
the specimen is located at the centre, as friction between the punch and the sample was

neglected [109].

Ermax = 0.211142 + 0.3299h,,ncn (2.61)

punch

However, several authors have shown that, when friction between the punch and the

specimen is accounted for, the critical location of a SPCT specimen is the edge of contact
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between the punch and the specimen, where the maximum necking and material damage
occurs [24, 51, 59, 72, 91]. In view of these observations, Li and Sturm [69] derived a third
order polynomial relation, reported in equation (2.62), between h,,,.,.., and the equivalent
strain at the contact edge between the punch and the specimen, for an experimental set-up

with a,=2 [mm] and R,=1.25 [mm] [48, 69, 91].

p0.pcE = 0.17959N, 40, + 0.09357h2, . + 0.0044R° (2.62)

punc punch

It should be noted that equations (2.61) and (2.62) were obtained by applying the
membrane stretching theory and they are not valid at the beginning of the test, when this

deformation mode does not govern the response of the specimen [1, 69, 109].

2.6.4 Finite element modelling of SPCT

During SPCT, various interacting non-linear mechanisms govern the deformation of the
specimen, such as non-linear material behaviour, non-linear contact conditions between
the specimen and the test rig components, large deformations and large strains [51, 91].
Therefore, in view of the complexity characterising the test, the finite element (FE) method
has proved to be a useful tool for the investigation of the mechanisms which take place
during the test. In view of the axial symmetry of the problem, the models reported for SPCT
are mostly 2D with axisymmetric elements, adopted for computational cost efficiency with

respect to 3D models [31, 51, 91, 109, 113].

Different meshes have been developed for FE models of SPCT specimens and the
simplest one consists of a uniform distribution of elements, and nodes, over the specimen,
such as that reported by Dymacek et al. in ref. [24]. Also, refined meshes have also been
reported in the literature with higher node densities in critical areas of the specimen such
as, for example, the expected location for the edge of contact between the specimen and the
punch or the regions where bending mainly occurs at the beginning of the test [91]. Ma

et al. [76] developed an ‘optimised’ mesh for SPCT finite element modelling, obtained by

59



CHAPTER 2

elastic/plastic FE analyses, which consists of four node (linear shape function) axisymmetric
elements. They suggested that a relatively large element size can be used in the clamped
region of the specimen, in the region under the punch and in the unsupported region [76].
A finer mesh was implemented at the contact boundary between the the punch and the
specimen which was identified as a critical location. Experiments also showed that the
punch/specimen contact edge is the location where necking usually takes place, therefore,
in this region, the highest deformation is expected and smaller elements are required in
order to avoid numerical inaccuracies [76, 91]. Figure 2.33 shows the finite element mesh
developed by Ma et al. [76]. The use of refined meshes just in specific locations of the
specimen (with a coarser element distribution in the remaining regions of the specimen)
leads to computational costs reduction, with an increase in the accuracy of the numerical

solution for the critical locations of the specimen [91].

:1—Tlle center of specimen

0 05 1.0 25 Region [ 5.0
(mm) | (mm) (mm) (The clamped part) (mm)
Region 111
Region 11

Figure 2.33: Mesh proposed by Ma et al. in ref. [76]. Ref. [76], Fig. 3.

Another critical feature of SPCT FE modelling is the contact interaction between the
specimen and the components of the test rig, that is, the punch and the dies. In the FE
models reported in the literature, the interactions between the specimen and the compo-
nents of the test rig have been modelled by using two different approaches. The first is the
use a surface-to-surface contact formulation between a deformable specimen and rigid test
rig components; the second consists of applying a pressure loads, boundary condition and
constraints to the degrees of freedom of the nodes on the expected contact surfaces between

the specimen and the components of the test rig [23, 24, 27, 31, 72, 109, 113].

Dymacek et al. investigated the effects of the contact modelling procedure by using
two different FE models of a SPCT, similar to those reported in Figure 2.34 [24, 91]. In

the first model, see Figure 2.34 (a), the punch/specimen interaction was approximated by a
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uniform pressure load applied on the expected contact surface, while the contact between
the specimen and the dies was modelled by applying suitable kinematic constraints, i.e.
boundary conditions, to the degrees of freedom of the relevent nodes of the specimen [24].
This model is not capable of reproducing the variation of the contact pressure between the
punch and the specimen, therefore, the loading conditions applied to the specimen cannot

be considered as accurate [24, 91].

In another model developed by Dymacek et al. [24], similar to Figure 2.34 (b), all of
the test rig components were modelled as elastic parts interacting with the specimen by a

surface-to-surface contact with classic Coulomb’s friction formulation.

(a) b)

Figure 2.34: (a) View of the FE meshes based on those developed by Dymacek et al. Adapted from ref. [91],
Fig. 6.

The size and the computational costs of the numerical analyses were significantly
reduced by the first, more approximate, approach but the second FE model can predict the
primary, secondary and tertiary regions of the SPCT output, i.e. the punch displacement
versus time curve, even if just the secondary creep behaviour is modelled and no material
deterioration is accounted for [91]. This indicates that the numerical results are governed by
the change in geometrical stiffness of the specimen, i.e. necking, which cannot be modelled
with the first FE model proposed by Dymacek et al. because the constant pressure load
applied to the specimen cannot accurately model the contact forces distribution generated
by the punch on the surface of the specimen and, in turn, the strain and stress fields in the

sample [91].
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Another source of inaccuracy in the first model is given by the constraints replacing
the contact of the specimen with the support. The round radius of the support influences the
strain and stress fields in the specimen and, when boundary conditions are used instead of a
contact interaction, those distributions are not accurate. Generally, this approximation leads
to a reduction in the estimated time to rupture with respect to that obtained when surface-to-
surface contact is used [91]. Also, Dymacek et al. [24] reported that the test rig components
are generally not deformed during the test, therefore, in order to reduce the computational

costs, they can be modelled as rigid bodies [91].

The work reported by Dymacek et al. also showed that friction between the punch and
the specimen strongly influences the numerical results [91]. The stress and strain fields in
the specimen are directly influenced by the loading conditions, including the friction forces
which act on the contact surfaces. As a consequence, the thickness variation and, generally,

the deformed shape of the specimen, is influenced by friction [24, 25].

The use of a frictionless contact model was found to generate an almost constant
thickness of the specimen during the analyses and a drastic reduction in the estimation of
the rupture time [24, 91]. When the value of the friction coefficient is increased to 0.5, a
more realistic variation of the thickness is obtained, but the accuracy of the time to rupture
decreases. A friction coefficient of 0.1 was found to be suitable for room temperature cases,
but it is not accurate when temperature is increased, therefore, Dymacek et al. [24], adopted

a friction coefficient of 0.3 [91].

In view of these effects on the deformed shape of the specimen, Dymacek et al. [24]
proposed a method to estimate the friction coefficient by comparing the thickness variation
obtained by numerical analyses with the corresponding experimental observations. How-
ever, this procedure is not completely accurate, because the friction coefficient is assumed
to be constant over the punch/specimen contact surface during the test. That is not neces-
sarily the case because its value also depends on several factors which change during the
test, such as the local loading conditions, i.e. the contact pressure and the properties of the

interacting surfaces, such as the surface roughness [2, 61, 65, 99, 100].
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Guan et al. reported the use of 3D FE models of small punch specimens to investigate
the effect of voids, directly modelled into the mesh, during testing by use of elastic/plastic
FE analyses [33, 91]. Failure ductility and ultimate tensile stress appeared to be dependent
on the defect size, while the initial elastic deformation was generally identical for all cases.
The location of failure in the specimen was found to be strongly influenced by defects

inclusion [33].

Several authors used secondary creep constitutive models, see Section 2.3.2, in the
finite element analyses of SPCT [91]. These models have the advantage that they can be
implemented as standard creep constitutive models which exist in commercial FE software.
Therefore, there is no need to develop a user subroutine for example. However, as men-
tioned in Section 2.3.2, the use of just the secondary creep region can be modelled, by
neglecting the tertiary creep and material deterioration which occur. The steady-state creep
approximation can be useful in some practical situations where creep deformations are not
excessive but it can introduce large inaccuracies for those cases where large creep strains

and material damage are expected, as for SPCT [91].

Ma et al. used a Norton’s creep law, see equation (2.18), for elastic/plastic/secondary
creep FE analyses of a SPCT for a Gr91 steel [76]. The contact formulation used by Ma et
al. is similar to that shown in Figure 2.34 (b), with a friction coefficient of 0.2. The weakest
section of the SPCT specimen was identified as the maximum thinning region, located in
the annular region at approximately 0.7 [mm] from the axis of the specimen in the deformed
configuration. The critical region also corresponds to the peak equivalent stress and the peak
equivalent creep strain location and it is in agreement with the location of creep cracking

initiation observed from experiments [16, 59, 76, 91].

Dymacek and Milicka compared the results of FE analyses of a SPCT for a low alloy
steel, obtained by using the exponential creep law reported in equation (2.63), where C, and

k. are material constants, and a Norton’s power law, equation (2.18) [23, 24, 91].
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Figure 2.35: Critical region of the SPCT specimen identified by Ma et al. Ref. [76], Fig. 5.

é¢ = Cleap [ki] (2.63)

The results obtained by both these constitutive models were not accurate with high
load levels, while, for lower loads, Norton’s law led to acceptable results for the failure time,
assumed to take place when the tertiary region of the SPCT displacement curve is reached,

while equation (2.63) led to conservative results [24, 91].

Dymacek et al. identified three possible sources of inaccuracy for the SPCT FE model
proposed in ref. [24], i.e. the constant friction formulation, the neglect of plasticity in the
constitutive model which causes an overestimation of the stress field for high loads, and the

use of the secondary creep approximations [91].

Norton’s creep law was also used by Yang and Wang [109] to developed an SPCT
elastic/plastic/creep finite element model and investigate the relationship between the cen-

tral displacement in the specimen and the central strain described in Section 2.6.3 [91].

The steady-state creep approximation, used in the models reported in refs. [16, 23, 24,
76, 110] leads to unavoidable inaccuracy generated by neglecting the effects of large plastic
deformations, observed at the beginning of the test, and creep damage on the subsequent

creep behaviour of the specimen [34, 36, 91].
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Figure 2.36: (a) Damage contour plot obtained from an SPCT FE analysis based on the work by Ling et al [72].
Ref. [91], Fig. 9 (a).

An FE model of SPCT in which a creep damage constitutive model is used was
developed by Ling et al. [72]. They used a single internal variable Kachanov-Rabotnov
constitutive model, reported in equations (2.23)-(2.25). Figure 2.36 is a contour plot of
the damage variable, defined by equation (2.22), obtained from FE analyses with the same

constitutive model as that used by Ling et al. [72, 91]

The final deformed shape obtained by damage FE analyses agrees with experimental
evidence, as localised necking is also evident in Figure 2.36 [91]. The peak damage location
is close to the lower surface of the specimen at about 0.8 [mm] from the central axis and
it corresponds approximately to the critical location, characterised by the maximum creep
strain, found by Ma et al. and by Dymacek et al. [24, 76, 91]. Also, the location where

cracks initiate in experiments [59] was found to agree well with that shown in Figure 2.36.

Zhou et al. used continuum damage mechanics FE analyses to investigated the effects
of test parameters such as the specimen thickness, the punch load, the diameter of the punch
head and the specimen’s diameter on the experimental output of SPCT [113]. Predicted
failure life and punch displacement versus time curves were significantly influenced by
the specimen thickness and the load level, as Figure 2.37 shows [91, 113]. Zhou et al.
also reported that the specimen diameter does not significantly influence the SPCT output

because, for a constant receiving hole diameter, a variation in the specimen diameter affects
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the response of the clamped region, which was found to not largely influence the output of

the test [113].
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Figure 2.37: (a) Effects of the thickness of the specimen and (b) of the punch load on the SPCT output.
Ref. [113], Figs. 4 and 8, respectively.

A different investigation by Zhuang et al. pointed out that the friction formulation
highly influences the tertiary SPCT region obtained from damage mechanics FE analyses
[114]. This effect indicates the importance of the inclusion of friction modelling for showing

the interaction which occurs between the punch and the specimen [91].

Hyde et al. [51] reported the results of finite element elastic/creep analyses of a SPCT
and they compared two different material creep models, i.e. steady-state creep Norton’s
law, equation (2.18), and Kachanov’s creep damage mechanics model, equations (2.23) and
(2.24). When Norton’s law was used, the plot of the minimum displacement rate versus
the load showed an almost constant slope for different displacement levels. These gradients
varied for different displacement values when the KR damage mechanics model was used.
Hyde et al. used the FE calculations to obtain the reference stress method parameters [51].
These were found to vary considerably during the test, due to the significant change in shape

of the specimen, therefore their application to SPCT was revealed to be not convenient.

A phenomenological creep constitutive model (the 8-projection method) was used
by Evans and Evans to develop a finite element model of SPCT [27, 29-31]. By use of a
stochastic approach, the authors obtained confidence intervals for the SPCT output and the

material properties calculated by using it. Figure 2.38 shows the variation of the failure
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time versus the punch load obtained by using the 8-projection constitutive model with the

relevant confidence intervals, compared with the relevant experimental results [29, 91].
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Figure 2.38: Variation of SPCT time to failure versus punch load obtained by FE calculations with correspond-
ing confidence intervals and experimental results. Ref. [29], Fig 3.

2.6.5 CEN code of practice for SPCT for metallic materials

With the aim of developing a universally accepted testing procedure and a technique to con-
vert SPCT output into conventional uniaxial creep test results, in 2006, the European Com-
mittee for Standardisation (CEN) published the CWA 15627 Workshop agreement: Small
Punch Test Method for Metallic Materials [1]. This draft code of practice is the result of an
inter-laboratory experimental programme agreed in the framework of a collaborative project
involving different institutions, that is, JRC (in the Netherlands), CESI (in Italy), and the
University of Swansea (in the UK) [91]. A recommended geometry range for the speci-
men and the test apparatus was also proposed, in order to improve the reproducibility of the
technique [1]. The recommended specimen is a small disc with a thickness of 0.5 [mm], the
receiving hole radius is 2 [mm] with a 45° chamfer (0.2 x 0.2 [mm]), while the punch head

radius ranges between 1 and 1.25 [mm] [1].

The interpretation technique reported in the CEN draft code of practice [1] is based
on Chakrabarty’s analysis described in Section 2.6.3 [1, 13, 91]. A method to relate the
punch load, P, used in a SPCT to the equivalent uniaxial stress, agg I that is, the stress
applied during a uniaxial creep test leading to the same time to rupture, was developed
and is reported in equation (2.64), where by, by and b are parameters depending on the

experimental set-up geometry [1, 7].
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Py = b1a)? Rt (2.64)

Alternatively, when uniaxial creep data is available, the load to be applied during a
small punch creep test, in order to obtain the same rupture time as in the uniaxial tests, can
be calculated by this correlation method [91]. In ref. [1], a fitting of equation (2.64) to the

recommended geometry is presented, see equation (2.65), where Ksp is a constant which

depends on temperature and on the ductility of the material [1].

- 3332 KSP (L;O'2Ri'2th (2.65)

apy!

When the K ¢p factor is not known and uniaxial creep data is available, a first SPCT

is performed with a load calculated by assuming Kgp=1 and, then, at least 5 additional
tests are performed and the rupture behaviour of the material is compared to uniaxial creep
test results [1]. It should be noted that equation (2.65) refers to the unclamped disc condi-
tion and, when the disc is clamped in the testing rig, the ?];W ratio should be reduced by

approximately 20% [1].

The draft code of practice also provides a relation, reported in equation (2.66), be-
tween the punch load and the meridional stress component, o,,, at the punch/specimen
contact edge, with the punch displacement, h,,,.,. The minimum value of the meridional

stress can be used as an approximation of o ;5" [1, 7, 38, 91].

—0.177h3

punch

P
= 1.725R, e — 0.056R2

punch

(2.66)

It should be noted that equations (2.65) and (2.66) were obtained by use of the mem-
brane stretching theory [1, 13]. Therefore they are valid after the initial, bending-governed,
stages of the test. In the draft code of practice, use of equations (2.65) and (2.66) is rec-

ommended for punch displacements larger than 20% of the receiving hole diameter, i.e.
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the maximum structural dimension [1, 7, 38]. Furthermore, equation 2.66 is valid for the

European Round Robin geometry, i.e. R, = 1.25 [mm], a, = 2 [mm] and ?,,.
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EXPERIMENTAL INVESTIGATIONS

3.1 Introduction

In Chapter 2, the effects of plastic deformation on the subsequent creep behaviour of various
metallic materials is discussed. However, no investigation on the effects of large plastic pre-

straining on the creep response of a P91 steel is reported in the open literature.

In this chapter, the results of uniaxial creep tests performed on a P91 steel at 600°C

after high temperature tensile pre-straining are reported.

Furthermore, SPCTs were performed on the same material at the same temperature of
the pre-strained creep tests, and the results were used to calculate the empirical parameters

proposed in the CEN draft code of practice [1].
3.2 Uniaxial pre-strained creep tests of P91 steel at 600°C

3.2.1 Tested material and experimental procedures

Conventional uniaxial specimens were machined from a P91 power plant steam pipe section,
with an outer diameter of 298.5 [mm] and a wall thickness of 55 [mm], with the axes of the

specimens parallel to the axial direction of the pipe section. Table 3.1 shows the chemical
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composition of the P91 steel used [92].

P91 steel is a 9Cr ferritic-martensitic steel modified by the addition of Nb and V (see
Table 3.1). These two elements form precipitates that increase the creep properties of the
material by opposing dislocation and grain motion and delaying the beginning of tertiary
creep [4, 94]. Ferritic-martensitic steels were developed in the 1960s [94], while P91 steel
has been used for fossile fuelled power plant components in the USA since the 1970s and it

was introduced in the UK power plants in the 1990s [50].

In view of the requirement for improved power plant efficiencies, that is, higher oper-
ating temperatures and pressures, P91 has become a potential material for GEN IV nuclear
reactor components [8], because, compared to stainless steels, it presents higher resistance
to creep and radiation swelling and higher stress corrosion resistance in aqueous environ-

ments [94].

Figure 3.1 contains the conventional specimen adopted, together with dimensions in
[mm]. The length of the effective section of the specimen, that is, the gauge length, is
50 [mm], with a diameter of 10 [mm]. Two ridges are located at the end of the effective
section of the specimen where the extensometer is attached. Hyde [44] reported that the

presence of the ridges does not significantly alter the creep response of the specimen.

Before manufacturing the specimens, the blanks, from which the specimens were ma-
chined, were tempered at 760°C for 3 [h] and, then, they were cooled to room temperature

at a rate of 0.8 [°C/min].

Table 3.1: Chemical composition [wt %] of P91 steel [92].

Cr Mo C Si S P Al Vv Nb N W FE

8.60 1.02 0.12 0.34 <0.002 0.017 0.007 0.24 0.070 0.060 0.030 Bal

A Mayes EN250 machine was used for all of the pre-strained creep tests. The defor-
mation of the specimen was monitored by use of an extensometer with a gauge length of 50
[mm], while the temperature was kept constant to within +1°C by the furnace controller of

the machine. For each test, the specimen was plastically pre-strained under displacement
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control conditions. Subsequently, the configuration of the machine was changed to load
control and constant load creep tests were carried out. The load levels used during the creep
tests were corrected in order to account for the reduction of the cross sectional area due to
plastic pre-straining. When plastic deformation takes place, the volume of the specimen is
constant, see Section 2.2, therefore, equation (3.1) holds, where (2,,. and L, are the cross
section area and the length of the specimen at the end of pre-straining, while {2,,.,, and

L,;..4 are the cross section area and the specimen length at yielding.

2

preLp're = ‘QyieldLy'icld (31)

The load, P, applied to the specimen is then obtained by equation (3.2) where o is
the stress applied, d, is the initial diameter of the specimen’s effective section, €; , .14 1S the

elastic engineering strain at yielding and ¢, is the plastic pre-strain.

A2 ey
_ _ 0 el,yield 2
P=0Qy. =m0 (1= ey ) (3.2)
gp + 6eLyield

R5
25 -
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Figure 3.1: Conventional uniaxial creep test specimen adopted for pre-strained creep tests.

The stress levels used for the creep tests are 150, 160 and 170 [MPa]. For the 150
[MPa] tests, the engineering pre-strain levels were 5, 10 and 20%, while, for the other two
stress levels, the pre-strain levels were 0.5, 5, 10 and 20%. Uniaxial creep data at 600°C

was also available for the P91 steel and was used to provide 0% pre-strain creep results [92].
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3.2.2 Experimental results

Figure 3.2 shows the variation of the creep strain versus time obtained from the pre-strained
creep tests performed at 150, 160 and 170 [MPa], where ¢,,. is the total engineering pre-
strain. All of the plots exhibit the typical three regions of creep curves, i.e. primary, sec-
ondary and tertiary regions, see Section 2.3, and the experimental output was found to be

significantly influenced by the plastic pre-straining carried out before creep testing.
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Figure 3.2: Results of pre-strained creep tests at (a) 150 [MPa], (b) 160 [MPa] and (c) 170 [MPa].

The results of the tests performed at 150 [MPa] (Figure 3.2 (a)), show that the material
exhibited a creep resistance effect, i.e. the minimum creep strain rate decreases and the
time to failure increases, for pre-strain levels of 5 and 10%, while, with a pre-strain level
of 20%, a creep enhancement effect was found (i.e. the minimum creep rate increased and
the time to rupture decreased). When the stress level was 160 [MPa], see Figure 3.2 (b),

creep resistance effects were found for pre-strains of 0.5 and 5%, and creep enhancement
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was observed for 10 and 20% pre-straining. For the tests at 170 [MPa], the material showed
creep resistance effects for 0.5% pre-strain only, while, for all of the other cases, creep

enhancement occurred, as reported in Figure 3.2 (c).

In view of the results shown in Figure 3.2, the effects of high temperature plastic
pre-strain on creep response of P91 steel can be quantified by two parameters, that is, ¢ and
1, which take into account the variation of the minimum creep strain rate and the time to
failure, respectively, after applying a total engineering pre-strain level, £,. Equations (2.31)
[101] and (3.3) define the ¢ and ¢ parameters, respectively, where €7 . . and ¢, _,, are the

minimum creep strain rate and the failure time of material in a O pre-strain condition, while

6‘(;

min,p

and {; , refer to the material after pre-straining.

Lo
¢ = L2 (3.3)
tf»P
In ref. [101], Tai and Endo used the ¢ parameter in order to model the variation
of the minimum strain rate after pre-creep deformation was performed on a 2.25Cr-1Mo
steel. However, in the present work, prior deformation is due to plasticity only because time

dependent creep deformation is negligible during pre-straining.

For each stress level, the variation of the ¢ parameter with the plastic pre strain,
€,.0rc €Xpressed as a percentage, was fitted by an equation of the form of equation (3.4).
The values of each fitting coefficient, obtained for each stress level, were averaged over the
three stress levels, in order to obtain an average fitting surface. Table 3.2 lists the average

coefficients of equation (3.4) for the P91 steel results.

e

E’m’in D 2 3 4
¢ = é" = eXp I:a’d) 6;0,107‘6] + b¢€p,pre + C¢€p,pre + dd)gp,pre (3‘4)
min,0

Figure 3.3 shows the variation of the ¢ parameter versus the engineering plastic pre-

strain and the stress obtained from the experiments, together with the average fitting surface
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Table 3.2: Fitting coefficients for equation (3.4).

Qg by Cq dy
—-5.9534 6.690 x 1072 —8.800 x 1073 3.236 x 10~

represented by equation (3.4).
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Figure 3.3: Variation of the ¢ parameter with the engineering plastic pre-strain, expressed in percentage, and
the stress level, in [MPa], with an average fitted surface to the experimental data.

Similarly, the rupture data for the pre-strained creep tests was used to investigate the
variation of the ¢ parameter. Equation (3.5) is the fitting equation used to model the 1)
variation versus ¢, for each stress level, and Table 3.3 lists the coefficients of the average

fitting.

Y =explay €,] + bye,” + ¢y’ (3.5)

Table 3.3: Fitting coefficients for equation (3.5).

Qay by Cy
—3.241 2.610 x 1072 —4.763 x 10~*

Figure 3.4 shows the variation of the vy parameter with the engineering plastic pre-
strain and stress obtained from the experiments, and the average surface fitted to the exper-

imental results (equation 3.5).
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Figure 3.4: Variation of the 1) parameter with the engineering plastic pre-strain, expressed in percentage, and
the stress level, in [MPa], with an average fitted surface to the experimental data.

When ¢>1, the material shows an increase of the minimum creep strain rate when
compared with the 0% pre-strained condition (hence it exhibits a creep enhancement effect).
When ¢<1, a creep resistance effect occurs. Similarly, when <1 the failure life of the
specimen increases (creep resistance effect) while, for ¢/>1, the failure time decreases (creep
enhancement effect). Both equations (3.5) and (3.4) lead to ¢=1=1 when the plastic pre-

strain equals 0, i.e. for the 0% pre-strained condition.

3.3 Small Punch Creep Tests
3.3.1 Tested material and experimental procedure

The small disc specimens were machined from the same section of P91 steel used for power
plant steam pipes, as described in Section 3.2.2. Also in this case, several blanks were
machined from the pipe section, with the largest size parallel to the axis of the pipe, and
they have been tempered at 760°C for 3 [h] and cooled down to room temperature at a rate
of 0.8 [°C/min]. Cylindrical bars, with their axis parallel to the axial direction of the pipe
and a diameter of 8 [mm], were manufactured from the heat treated blanks. Disc specimens
with a thickness of 0.540 [mm] were machined from the bars by using wire cutting, and

these were then polished and lapped to the final thickness of 0.5004+0.001 [mm] and a
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surface roughness R,=0.202 [um] by using 1000 grit and, subsequently, 1500 grit abrasive
paper. Figure 3.5 is a schematic representation of the procedure adopted to remove the bars

from the pipe section.

Sample bar

Figure 3.5: Schematic representation of the specimens manufacturing from the P91 steel pipe.

A dead-weight machine, developed by Eo.N., was used for the SPCTs. Figure 3.6
is a schematic cross section of the experimental set-up and of the specimen location, with
the corresponding dimensions. The testing assembly consists of the specimen, the punch,
the insert tube, a clamping ring and an outer tube. The material used to manufacture the
punch and the clamping set-up is a high temperature resistant steel. The outer tube and the
clamping ring have holes for the top thermocouple to be inserted. In Figure 3.6, the relevant

dimensions of the testing set-up, expressed in [mm] are also shown.

op Thermocouple
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Figure 3.6: Cross section of the experimental set-up used for the SPCTs with dimensions in [mm].
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The specimen was clamped by applying a clamping torque to a metric M25 thread,
with a pitch of 1.5 [mm], connecting the outer tube and the insert tube. The value of the
clamping force was controlled by monitoring the applied torque and setting it to 10 [Nm]

for all of the tests, in order to obtain consistent experimental conditions.

The set-up represented in Figure 3.6 was located in a furnace with a single-zone
temperature controller. During the tests, the temperature was kept constant to 600+1°C
by use of the controller of the furnace. Furthermore, two thermocouples were inserted in
the testing set-up, these being located at the top surface of the specimen and approximately
10 [mm] below the specimen, respectively, in order to record any temperature fluctuations,

in the proximity of the specimen, using a data acquisition system.

The central deformation of the specimen was monitored by use of a linear variable
differential transducer (LVDT), which measures the displacement of the punch indenter
during the test. The variation of displacement with testing time was also recorded using the

data acquisition system.

3.3.2 Experimental results

The SPCTs of P91 steel were performed at a temperature of 600°C with punch loads of 25,
28, 30, 34 and 40 [kg], respectively. Figure 3.7 shows the experimental output of the tests

carried out, that is, the variation of the central displacement of the specimen versus time.

Figure 3.8 shows the variation of the minimum displacement rate (MDR) versus the

load level, P, on logarithmic scales.
A power law correlation relating MDR and the load level, P, was found and it is

represented by equation (3.6), where MDR is expressed in [mm/h] and P in [kg].

MDR = 6.457 x 107" x P"™° (3.6)
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Figure 3.7: Variation of the central specimen deformation versus time for a P91 steel at 600°C with different
load levels.

Figure 3.9 shows the variation of the failure time, ¢y, versus load level using loga-
rithmic scales. A power law correlation of ¢y with load level, given by equation (3.7), was

obtained.

t; =1.995 x 10" x P10 (3.7)

The load level, P, was correlated with the equivalent uniaxial stress, agg I defined
in Section 2.6.5. The dimensions of the testing set-up, i.e. Ry=1.04 [mm], a,=2 [mm]
and tp=0.5 [mm], were replaced in equation (2.65), and the multiplication factor of 0.8 was
included because the disc specimens were clamped into the experimental set-up, see ref.
[1]. The K5p parameter was then calculated for each load level and it was found to increase

with the load, in agreement with the results of ref. [34], and the average K, for the load

range used in the investigation, is K sp=1.353.

Interrupted tests were also performed using a load of 25 [kg], in order to investigate
the evolution of microscopical features in the specimen during the test. Figure 3.10 is a plot

of the output of the 25 [kg] completed and interrupted tests. As with previous investigations,
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in Chapter 6.

10

35 40
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Figure 3.8: Variation of the central specimen deformation versus time for a P91 steel at 600°C with different
load levels.

a significant amount of data scatter in the experimental results was found to exist [31].
In the present investigation, the scatter appeared to be related to the characteristics of the
testing machine, and to slight misalignment of the loading punch with respect to the axial

direction of the test rig. Detailed numerical investigations of this misalignment are reported
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Figure 3.9: Variation of the time to failure (¢ ) versus load level, plotted on logarithmic scales.
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Figure 3.10: Variation of the central deformation of the specimen versus time for the interrupted tests. The
punch load is 25 [kg] for all of the tests.
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MICROSCOPICAL INVESTIGATIONS

4.1 Introduction

The complex behaviour of a SPCT specimen, as described in Chapter 2, has an influence on

the failure mechanisms governing the rupture of the specimen.

Various authors have investigated the failure mechanisms which characterise the be-
haviour of small disc specimens when tested with constant displacement rate (CDR). Madia
et al. [77], studied the failure mechanisms of constant deflection rate (CDR) small punch
test specimens for as-received and service-aged 1Cr-Mo-V steel at room temperature. By
use of fractographic analyses, they identified ductile failure fracture surfaces on the small
punch specimens; there was no evidence of brittle failure and no difference in the failure
modes of new and service-aged material. The results shown by Madia et al. agree with those
published by Bulloch in refs. [10, 11], where small punch test data, obtained from various
turbine components, were reviewed and a detailed fractographic study is reported. A fully
through-thickness ductile crack growth failure was found for bainitic and ferritic steels in
the upper shelf energy region [10]. Furthermore, Guan et al. investigated the fracture modes
of low alloy Cr-Mo steels by fracture toughness tests and CDR small punch tests carried out
in air at room temperature [32]. They also pointed out that the fracture surfaces of the small
punch specimens showed ductile fracture features, with dimples distributed throughout the

whole thickness of the specimen and a circumferential macro crack at the punch/specimen
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contact edge, whereas fracture toughness tests exhibited a mixed (ductile/brittle) mode of

fracture [32].

However, by contrast, only a limited amount of work has been published for SPCT
with constant loading conditions. The deformation and fracture evolutions for SPCT of
superduralumin alloy were investigated by Kobayashi et al. [59]. Their work highlighted
the presence of micro voids and a circular crack at approximately 20% of the time to rupture,
i.e. at the end of the primary region of a SPCT curve, described in Section 2.6.2. In view
of Kobayashi’s findings, the fracture mode and the evolution of the deformation and of
microscopical features characterising the specimen’s behaviour need accurate investigation,

in order to take them into account when the experimental output is analysed.

No investigations have been reported in the open literature on the failure behaviour
of constant force SPCT specimens of P91 steel. In this chapter, the results of a study of
the fracture surfaces of P91 steel SPCT specimens tested with the experimental conditions
reported in Section 3.3.1, are included. A scanning electron microscope (SEM) was used
to analyse the effects of the load on microstructural features. By the use of the interrupted
tests described in Section 3.3.2, the evolution of the deformation and of the microstructural

features during the tests are identified.

4.2 Effects of load level on fracture surface features

The punch load, ranging between 25 and 40 [kg] (see Section 3.3), governs the amount of
initial plastic deformation occurring in the specimen, the creep rate and the duration of the

tests. It also influences the failure mode of the specimen.

Figure 4.1 shows the fracture surface of the specimen tested with a load of 25 [kg].
The test failed after 1066 [h] and, since all of the SPCTs were carried out in air, the fracture
surface shows evidence of oxidisation, as Figure 4.1 (a) shows. In Figures 4.1 (a) and (c),
a circumferential macro-crack is visible at some distance from the centre of the specimen.

Tertiary creep features such as creep voids and intergranular separation were observed on the
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fracture surface of this specimen, as shown in Figure 4.1 (d). Also, secondary microcracks,
propagating in the radial direction on the bottom surface of the specimen, were found. In
Figure 4.1 (b), the location of final fracture is shown. This region is less than 5% of the total
fracture surface and it is characterised by the presence of fresh dimples, indicating the onset

of large plastic deformation.

-

(d)
Figure 4.1: SEM images of the fracture surface of an SPCT specimen tested with a 25 [kg] punch load:(a)

a global view, details of (b) final fracture region, (c) circular micro-crack and (d) tertiary creep
features.

Figure 4.2 shows the fracture surface of the specimen tested with a load of 30 [kg].
The duration of the test was 173 [h] and the presence of oxide on the fracture surface was
found to be greatly reduced. A circumferential crack is still visible in Figure 4.2 but the
presence of dimples, indicating large initial plastic deformations in the specimen, is, as

expected, larger than in the case of the 25 [kg] test.

With load levels of 34 and 40 [kg], the durations of the tests were 27 and 9.8 [h],
respectively. The presence of oxidisation on the fracture surface was further decreased for

higher load levels, and almost no oxide was found on the specimen tested at 40 [kg], as a
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Figure 4.2: SEM images of the fracture surface of an SPCT specimen tested with a 30 [kg] punch load:(a)
global view and (b)-(c) details.

result of the shorter test duration. In Figures 4.3 and 4.4, details of the fracture surfaces of
the specimens tested at 34 and 40 [kg], respectively, are reported. Similarly to the tests with
the lower load levels, a circular macrocrack was found in these specimens, as Figures 4.3 (a)
4.4 (a) show. Also, on the bottom surfaces of the specimens, secondary microcracks were

observed.

Figures 4.1-4.4 show that the presence of dimples increases as the load is increased
from 25 to 40 [kg]. This indicates that, when the load level increases, the fracture mech-
anism changes from intergranular cavitation-dominant to dimple-dominant, as fracture is
mainly governed by plastic deformation, rather than creep. The fracture surfaces of the high
load level tests show ductile fracture features, which are also in agreement with the findings

reported in refs. [10, 32, 77].
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Figure 4.3: SEM images of the fracture surface of an SPCT specimen tested with a 34 [kg] punch load.
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Figure 4.4: SEM images of the fracture surface of an SPCT specimen tested with a 40 [kg] punch load.

4.3 Effects of load level on specimen deformation and material

characteristics

Microstructural investigations of the cross sections of small punch creep test specimens
were also performed by use of SEM and the effects of the loading level on microscopical

features of the specimens have been studied.

Figure 4.5 shows the cross section microstructure of the failed specimens tested with
loads of 25 and 40 [kg]. In Figure 4.5 (a), which shows the microstructure of the 25 [kg]
test specimen, the subgrains near the fracture surface location appear elongated. Since
large creep deformation occurs, voids and microcracks were found along grain or subgrain
boundaries, as Figure 4.5 (b) shows. Microcracks were found near the fracture surface,

propagating in the material, and in the unsupported region, where membrane stretching is

86



CHAPTER 4

dominant (see Figure 4.5 (b)). Oxidisation was found on most of the fracture surface, with
the largest oxide thickness being near to the top surface of the specimen, where severe

contact loading conditions between the punch and the specimen occur.

AccV SpotMagn Det WD —————— | 20um
200KV 55 4000x SE 117

AccV SpatMagn Det WD —— 2um
200KV 40 20000x SE 117

(b)

Figure 4.5: SEM images for (a) subgrain deformation, micro voids and (b) microcrack along subgrain boundary
with a load of 25 [kg] and (c) subgrain deformation with a load of 40 [kg].

During the 40 [kg] test, the elongation and the rotation of subgrains are more signif-
icant than in the 25 [kg] test, as shown in Figure 4.5 (c¢), and voids and microcracks hardly

occurred, because plasticity governs the deformation and the failure of the specimen.

The large subgrain rotation found in the 40 [kg] test, which is in agreement with the
findings reported in ref. [32], is related to the high initial plastic deformation, since, for the

25 [kg] test, characterised by smaller plastic deformations, such rotation is smaller.
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4.4 Evolution of the specimen deformation and material features

during the test

A microscopical investigation was also carried out on the 25 [kg] interrupted test specimens
(see Section 3.3.2), in order to establish the microstructural evolution of the material during
the test. Figure 4.6 shows the microstructure of the heat-treated virgin P91 steel, which
consists of homogeneous tempered martensite lathes with a number of finely distributed
carbides, nitrides or carbo-nitrides along grain and subgrain boundaries. The virgin material
structure was obtained from the clamped, undamaged, region of the 40 [kg] test specimen.
This can also be used as the reference material for the interrupted tests because the clamping
load is the same for all of the performed tests and the deformation of the material in the

clamped region of the specimen is assumed to be negligible in all of the tests.

AccV  Spot Magn Det WD ————— 10pum
200kV 50 6000x SE 116 )

Figure 4.6: Microstructure of virgin P91 steel, taken from the undamaged region of the 40 [kg] test specimen.

Figure 4.7 shows the cross section SEM images, with relevant detailed pictures, of
the specimens for the tests interrupted at 2, 200 and 669 [h]. As discussed in Section 4.3,
for the 25 kg tests the fracture mechanism is intergranular cavitation and void formation.
The specimen fails because a circumferential macro crack, starting from the bottom surface
of the specimen (visible in Figures 4.7 (c) and (d)), propagates through the thickness with a
direction following the maximum shear stress, i.e. at 45° with respect to the symmetry axis

of the specimen (Figures 4.7 (c)-(f)).
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Figure 4.7: SEM images of 25 [kg] interrupted test specimens after (a)-(b) 2 [h], (c)-(d) 200 [h] and(e)-(f)
669 [h].
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For the 2 [h] interrupted test, the deformation of the specimen mainly occurred in its
central region (Figure 4.7 (a)). In the cross section there is no trace of any macro or micro
cracks, but metal solution started to develop along the carbide boundary, as Figure 4.7(b),
showing the details of the region close to the bottom surface of specimen highlighted in

Figure 4.7 (a), indicates.

For the test interrupted at 200 [h], the deformation of the specimen is larger and a
macro crack initiated at the peak stress location, that is, on the bottom surface of the speci-
men (see Figures 4.7 (c) and (d)).The macro crack is still not completely circumferential, as
Figure 4.7 (c) shows. After 669 [h], the macro crack has propagated around a circumference
on the bottom surface of the specimen, and its growth in the through-thickness direction is
also significant (see Figure 4.7 (e)). Furthermore, microcracks can be observed at the tip of

the macrocrack (Figure 4.7 (f)).

4.5 Conclusions

In this Chapter, a microscopical investigation of SPCTs of a P91 steel at 600°C has been
reported. The study was mainly concerned with the determination of the influence of the
punch load on the fracture mechanism of the specimen and the evolution of microstructural

features during the test.

When the load was increased from 25 [kg] to 40 [kg], the fracture mechanism changed
from intergranular cavitation to dimple governed rupture, because, for a load of 40 [kg], fail-
ure is mainly controlled by plasticity rather than creep (as also the short duration of the high
load tests shows). Furthermore, in the region adjacent to fracture, the subgrain rotation

increases with the increase of load level.

From the interrupted test results, it was observed that a macrocrack initiated at the
bottom surface of the specimen, at about 20% of the failure time. The crack then propagates
through the thickness of the specimen, leading to failure. After 669 [h], micro cracks were

also found at the tip of the circumferential macro crack.

90



CHAPTER 4

In the present investigation, the tests were performed in air, without the use of a
protective atmosphere, e.g. argon. Dymacek and Dobes investigated the influence that the
atmosphere has on SPCT output and reported that, for P91 steel at 600°C, when the rupture
time is within about 500 [h], the atmosphere does not have a very significant effect on the

experimental results [22].

For P91 specimens, in the present study, different degrees of oxidisation were ob-
served for the various load levels adopted and, for the longest creep test (25 [kg] punch
load), extensive oxidisation was found on the fracture surface. As the load was increased,

the oxide presence on the fracture surface decreases.
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EFFECTS OF INITIAL PLASTIC

DEFORMATION ON SPCT OoUTPUT

5.1 Introduction

The experimental results reported in Section 3.2, showed that prior plastic deformation can
significantly alter the subsequent creep behaviour of a P91 steel at 600°C. Also, the mi-
croscopical investigations included in Chapter 4 indicated that, in a SPCT specimen, large
plastic deformations occur at the beginning of the test, especially for higher load levels
which induce large grain rotations in the material. Therefore, the effects of large plasticity
on the output of the test need to be investigated in order to improve the understanding of the

behaviour of the specimen.

In this Chapter, the results of the uniaxial pre-strained creep tests discussed in Sec-
tion 3.2 will be used to develop a modified creep damage constitutive model that will be
implemented in a FE model of a SPCT capable of accounting for the effects of initial plas-
tic deformations on the subsequent creep response of the material. Finally, the numerical
results obtained by use of the modified constitutive model will be compared with those

obtained without the modification in the constitutive equations.
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5.2 Small punch creep test FE modelling

5.2.1 Material constitutive model

As mentioned in Section 5.1, an elastic/plastic/creep constitutive model, capable of account-

ing for the effects of plastic deformations on subsequent creep material behaviour, was used

for the FE analyses.

The true stress/strain curve was approximated from the engineering tensile curve ob-

tained using a stress/strain test of a P91 steel at 600 °C, and it was implemented, in a tabular

form, in the FE solver (ABAQUS). Table 5.1 reports the true stress/strain curve implemented

in the FE calculations.

Table 5.1: Tabular form of the true stress/strain curve, for a P91 steel at 600 °C, implemented in ABAQUS.
The stresses are expressed in [MPa] while the plastic strains are given in percentage.

o [MPa] ¢, [%]
275.0 0.00
275.9 0.63
281.2 0.65
283.9 0.67
288.4 0.78
297.0 0.95
294.5 1.13
292.9 1.29
296.1 1.63
301.9 3.22
299.3 4.25
298.5 5.44
300.0 8.24
305.0 11.58
340.0 29.29
365.0 40.00
390.0 52.03

The creep behaviour of the material was modelled by use of a modified Liu & Mu-

rakami constitutive model, which was implemented by use of a CREEP User Subroutine to

be linked to ABAQUS for the analyses [19, 73]. The modified constitutive equations allow

the effects of plastic pre-strain on the minimum creep rate and the failure life to be included

and they were obtained by modifying the Liu&Murakami constitutive model, represented
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by equations (2.27) and (2.28), by use of the ¢ and «) parameters defined in Chapters 2 and 3
by equations (2.31) and (3.3), respectively. Equations (5.1) and (5.2) show the evolutions of
creep strain rate (in multiaxial form) and of damage rate, respectively, of the creep constitu-
tive model adopted for the FE calculations, where and oz, p is the rupture stress, defined by
equation (2.25) in Chapter 2. In order to include the variations of ¢ and ) with the plastic
strain, equations (3.4) and (3.5) were also implemented in the constitutive model, while the
maximum damage value was limited to w,, , x=0.9901, in order to avoid numerical problems
which arise when w,, , x approaches unity. This value was chosen as a compromise between
the accuracy of the solution, which is be optimised when w,,,x=1, and the numerical costs

of the analyses, which increase when and wy,;4x — 1.

’ 2(n+ 1 2
€, = g(bBagQ S exp (n——i- ) < o1 > w? (5.1
. 1 —exp|—
w= Q/JAMfwaﬁemp[qgw] (5.2)

In order to account for the loss of load carrying capability, due to material creep de-
terioration, the creep constitutive model is fully coupled with the elastic material properties
[73]. The decrease of the stiffness of damaged elements with the increase of w is governed
by equation (5.3), where Ej is the Young’s modulus of undamaged material, and £ is the

instantaneous modulus corresponding to a damaged element.

E = Eo(l — w) (53)

Table 5.2 lists the elastic properties and the material constants for the Liu & Mu-
rakami creep constitutive model obtained from tests of a P91 steel at 600°C, in a none
pre-strained condition, for the same composition and the same heat treatment used for the

present study [92].
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Table 5.2: Material constants for a P91 steel at 600°C, with stress [MPa] and time [h] [92].

Ey [MPa] v B n Apm X Q@ Qg
1.500 x 10> 0.3 1.510 x 1073 11.795 2.120 x 10~ 10.953 5.3 0.3

The correlations between the pre-strain levels and the ¢ and @ parameters (given by
equations (3.4) and (3.5), respectively) were obtained by using the experimental results,
where strain levels were given by the engineering total strain for the specimen. In reality
however, local strains (particularly in the necked regions) can be far greater than the average
engineering strain of the uniaxial specimens discussed in Chapter 3. This is especially true
for the high pre-strain level tests, therefore, in order to account for this mismatch and to
implement a correlation between the true strains and the pre-strain parameters (i.e. ¢ and
1) in the SPCT model, an additional FE calculation of a uniaxial tensile test of a P91 steel at
600°C was carried out by use of the tensile curve reported in Table 5.1. The model used for
the additional FE calculation is shown in Figure 5.1, and it consists of 2974 axisymmetric
quadrilateral elements. In view of the symmetry of the uniaxial creep test specimen (see
Figure 3.1) just a half of its section was modelled. By using the geometry non-linear ap-
proach which updates the stiffness matrix of the structure at each time increment during the
analysis, the uniaxial specimen FE model can take into account the large deformations and
the necking occurring for large engineering strains. Figure 5.2 is a contour plot of the plastic

equivalent strain, expressed in absolute value, for an engineering strain level of 0.122.

Figure 5.1: FE mesh used for the additional calculation of a uniaxial tensile test for a P91 steel at 600°C.

From the results of the additional FE analysis, the variation of the total engineering
strain, €, .,,,, was related to that of the true equivalent plastic strain, €, .., in the necked
section of the uniaxial specimen. Equation (5.4), was fitted to the FE results, with both
Et,eng and €, 4., €xpressed in absolute value, and the fitting constants are listed in Table 5.3.
Figure 5.3 (a) shows the comparison of the experimental engineering stress/strain curve,

obtained from a tensile test of a P91 steel at 600°C, with the corresponding numerical re-
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Figure 5.2: Contour plot of the equivalent plastic strain expressed in absolute value for an engineering strain of
0.122.

sults, while Figure 5.3 (b) shows the variation of the engineering total strain, ¢, .,,,, with the
plastic true strain, €,, ;,,., obtained from the additional FE analysis, together with the plot of

equation (5.4) with the fitting parameters of Table 5.3.

<€t,eng = a’coTTEp,t’rue + bcorTEmCOTT (54)

p,true

Table 5.3: Fitting constants for equation (5.4).

aCOTT bCOT‘T mCOTT
0.052 0.118 0.508

—FE results
— Experimental results

Engineering stress [MPa]

0 5 10 15 20 25 30
Engineering strain [%]

(a) b)

Figure 5.3: Experimental and numerical engineering stress/strain curves (a) and variation of the engineering
strain versus the true strain, in absolute value, obtained from the additional FE analysis of a tensile
test for a P91 steel at 600°C (b).
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5.2.2 Geometry, loads and boundary conditions of the SPCT FE model

In view of the symmetry of the problem, a 2D axisymmetric FE model was developed for
the analyses, where the specimen was modelled as a deformable part while the punch, the

support and the upper clamp were modelled as rigid bodies.

The geometry of the model conforms with the range of geometries recommended in
the CWA 15627 draft code of practice by CEN [1] on small punch testing of metallic mate-
rials, with a specimen thickness, t5, and diameter, Dspr, of 0.5 and 8 [mm], respectively,
punch radius, R, of 1.04 [mm], receiving hole radius, a,, of 2 [mm] and lower clamp radius
of 0.25 [mm)]. Figure 5.4 (a) shows the solid model of a quarter section of the test rig, while

Figure 5.4 (b) is the corresponding section with dimensions.

(@ (b)

Figure 5.4: SPCT configuration: (a) rendering of the section of the solid model; (b) dimensions of the test rig
in [mm].

Three load levels, of 25, 28 and 30 [kg] respectively, were applied to the punch in the
analyses and suitable boundary conditions were imposed to the degrees of freedom of the
rigid bodies which model the components of the test rig. The radial and axial translations
and the rotation around the axis of symmetry of the support were blocked. The horizontal
translation and the rotation of the punch and of the upper clamp were also constrained. A
load of 500 [kg] was applied to the point identifying the displacements of the rigid holder,
in order to clamp the specimen between the two dies. Figure 5.5 schematically shows the

loads and the boundary conditions applied to the model.
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Figure 5.5: Loads and boundary conditions applied to the FE model of SPCT.

5.2.3 Element choice and meshing

Since the behaviour of the specimen is characterised by large incompressible deformations,
due to creep, and by severe local loading conditions at the contact edge between the punch
and the specimen, the FE mesh adopted to model the SPCT specimen consists of 883 nodes
and 790 bilinear axisymmetric 4-node elements. Figure 5.6 shows the mesh used for the FE

analyses.

Figure 5.6: FE mesh used fotr the numerical calculations.

Quadratic elements (second order formulation) were avoided because, for the present
work, they lead to a larger computational cost without producing any increase in the ac-
curacy of the FE solutions as significant plastic deformations occur in the model. The
reduced integration formulation was used, in order to avoid "locking" problems and conver-

gence difficulties encountered when "fully integrated" linear elements were adopted. These
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problems are due to a non-physical increase of the stiffness of the elements ("parasitic stiff-
ness components” [19]) when bending deformation occurs, such as at the beginning of the
creep step in the SPCT analyses, and generate the non-convergence of the solution. Hybrid
formulation elements were adopted in order to avoid numerical singularities, which can
occur when standard constant strain elements (such as the 4-node axis symmetric bilinear
elements) are used with incompressible deformation fields. The hybrid formulation pro-
cesses the pressure stress as an independently interpolated solution variable, coupled with
the displacement solution [19]. Thus, unstable solutions for the displacement field after an
infinitesimal increase of the pressure stress are avoided. In view of these requirements, the
CAX4HR element type, available in ABAQUS, was used. The elements are refined near
the edge of the unsupported region of the specimen, where significant bending deformation
take place, and in the region close to the contact edge between the punch and the specimen,

which was identified as the most critical location in the specimen [24, 72, 76].

5.2.4 Modelling procedure of the contact interaction

Surface-to-surface contact interactions have been used for all of the contacting pairs. The
contact elements were automatically generated by the solver and consist of stiff springs
which, once activated, apply the contact forces to the contact nodes on master and slave
surfaces (see also ref. [70]). The activation of contact elements occurs when the interference
between the contact nodes is less than the specified tolerance (0 in the present analyses). The
stiffness of the contact elements varies non-linearly with the contact penetration, i.e. the
non-linear penalty contact formulation was used, and it was found to be a critical feature of
the FE analyses when material flow, due to plasticity and/or creep, is included, as it directly
influences the convergence rate and the accuracy of the solution. Also the slip tolerance
under stick conditions (identifying the stiffness of tangential contact elements) significantly
affects the convergence rate of both the elastic/plastic and creep steps of the FE analysis.
The Coulomb classical friction formulation was used and the friction coefficients were 0.3

and 0.8 for the punch/specimen and the punch/clamps interactions, respectively.

Furthermore, during the test, the small disc specimen undergoes severe changes in its
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shape, since it gradually turns into a conical shape. In order to account for large deformation,
the geometrical non-linearity formulation (GNL in ABAQUS) has been used for all of the

analyses.

5.3 FE results and discussion

As mentioned in Section 5.2.2, elastic/plastic/creep damage FE analyses of SPCT were
performed with three different punch loads, i.e. 25, 28 and 30 [kg]. The results obtained
by using the modified Liu & Murakami constitutive model, reported in equations (5.1) and
(5.2), were compared with those obtained without including the pre-straining effects, i.e.

with ¢p=1=1 during the whole creep calculation.

Figure 5.7 shows the contour plots of the equivalent plastic strain at the beginning of
the creep step. The peak plastic strains ranged from about 23%, for a punch load of 25 [kg],
to about 29%, when the punch load was 30 [kg]. Therefore, the initial plastic strains are
significant in the specimen for all of the load levels used in the calculations. When the
load increases from 25 to 30 [kg], the location of the peak equivalent plastic strain moves
from the region close to the punch/specimen contact interface to the bottom surface of the

specimen, at approximately 0.5 [mm] from the axis of symmetry (see Figure 5.7).

The effects of initial plastic deformations on the creep behaviour of the material are
shown in Figures 5.8 and 5.9, showing the contour plots of the ¢ and v parameters at the

beginning of the creep step, respectively.

In the region close to the punch/specimen contact edge, which is characterised by
the peak plastic deformation, the ¢ parameter is 1 when the punch load is 25 [kg], while it
is larger than unity for higher load levels. Therefore, a creep enhancement of the material
occurs in that region for loads of 28 and 30 [kg]. The region on the middle plane of the
specimen, close to the clamps, exhibits ¢=1 for all of loads levels used in the calculations
because it corresponds to the neutral plane of bending deformation, where the material is

not plastically deformed at the beginning of the test for any of the load levels adopted (see
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resistance effects (¢<1) for all of the load levels.

Figure 5.7: Contour plots of the initial equivalent plastic strains for punch loads of (a) 25, (b) 28 and (c) 30 [kg].

also Figure 5.7 for comparison), and, for €, ,,.=0, equation (3.4) leads to ¢=1. The material

surrounding this area of the specimen exhibits relatively small plastic strains, showing creep

The variation of ¢/ shows that, due to plastic strains, the creep damage rate is en-
hanced in the area close to the punch/specimen contact edge (¥>1). A resistance effect
is observed in the unsupported region, between the punch and the clamps (¢<1). In Fig-
ure 5.9, the region of material on the middle plane of the specimen, close to the clamps, is
characterised by =1 for all of load levels because, in this region, £,=0 (see Figure 5.7), and

equation (3.5) leads to =1 for £,=0. In the clamped region of the specimen the material
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does not experience any significant plastic deformation, therefore ¢p=1=1.

Figure 5.8: Contour plots of the ¢ parameter for punch loads of (a) 25, (b) 28 and (c) 30 [kg].

Figure 5.10 shows the punch displacement variation versus time obtained, for the
three load levels, by use of the modified constitutive model. The results are also compared

with the analogous FE analyses performed without including any pre-straining effect.

From the results reported in Figure 5.10, when the effects of initial plastic deforma-
tion on the creep response of the specimen are taken into account, a global creep resistance
effect can be observed, with a significant decrease of the minimum displacement rate and an
increase of the time to failure, compared to the results of the analyses obtained without the

inclusion of pre-straining effects. The global creep resistance of the specimen is related to

102



CHAPTER 5

PSI

+1.922e+00
+1.612e+00
+1.301e+00
+9.907e-01
+6.801e-01
+3.695e-01
+5.893e-02

PSI

+2.057e+00
+1.724e+00
+1.391e+00
+1.058e+00
+7.249e-01
+3.919e-01
+5.887e-02

(@)

(b)

PSI

+2.125e+00
+1.781e+00

+1.437e+00 g

+1.093e+00
+7.485e-01
+4.045e-01
+6.055e-02

©)

Figure 5.9: Contour plots of the ¢ parameter for punch loads of (a) 25, (b) 28 and (c) 30 [kg].

the fields of the ¢ and i) parameters, which show values less than 1 in most of the specimen,

except from the region close to the contact edge between the punch and the specimen.

Figure 5.11 shows a comparison of contour plots of creep damage for a punch load
of 25 [kg]. These plots show the results obtained with the modified constitutive model at
25% of the failure life (i.e. 462 [h]) and those of the FE analysis without the inclusion of

the plastic deformation effects at the same failure life fraction, which is 42 [h] in this case.

It should be noted that the high damage locations indicated in Figure 5.11 are com-
patible with the region of the specimen where crack initiation and propagation was found

during the interrupted tests discussed in Chapter 4, see Figure 4.7.
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Figure 5.10: Variation of the punch displacement versus time with punch loads of (a) 25, (b) 28 and (c) 30 [kg].
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Figure 5.11: Contour plots of creep damage at 25% of the failure life for a load of 25 [kg] (a) with and (b)
without including the effects of initial plastic deformations on material creep behaviour.

The results of the FE calculations show that the peak damage location is, in both
cases, near the bottom surface of the specimen, near the contact edge between the punch
and the specimen, similarly to the results reported in refs. [29, 72]. The region where peak
damage is located, defined in refs. [24, 76] as the most critical location of the specimen,
exhibits a global creep enhancement, and the region where the elements are fully damaged
is larger when the plastic deformation effects are considered. The propagation of the high
damage region is not identical in both cases, as a result of different creep damage evolution
properties, generated by plastic deformation, in the various elements of the model when

initial plasticity effects are included.

When the effects of pre-straining are taken into account, the damage level in the re-
gion close to the clamps is lower than that obtained from the non-modified Liu & Murakami
constitutive model, since the elements in that area exhibit a creep resistance effect and the

damage rate evolution process becomes slower.

In spite of the larger high damaged region found at 25% of the failure time, the anal-

yses with the inclusion of the plastic deformation effects show a global creep resistance,
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because the global behaviour of the specimen is governed by the combination of creep
resistance effects, occurring in most of the specimen for this load level, and creep enhance-
ment effects, found in the critical region of the specimen. For the loads of 28 and 30 [kg], a
creep resistance effect was also observed because ¢ and ¢ are less than unity in the majority

of the specimen, as Figures 5.8 and 5.9 show.

Tables 5.4 and 5.5 show the comparison between the numerical results obtained by
the FE analyses, performed with and without pre-straining effects, and the corresponding

experimental results, discussed in Chapter 3.
Table 5.4: Comparison of the minimum displacement rates (MDR), expressed in [mm/h], obtained from the

FE analyses with and without pre-straining effects included and experimental results reported in
Chapter 3.

Load [kg] FE MDR no pre-straining FE MDR with pre-straining Experimental MDR

25 3.621 x 107? 3.214 x 10~* 4.638 x 10~*
28 1.032 x 1072 9.643 x 10~* 1.160 x 1072
30 1.736 x 1072 2.057 x 107? 2.150 x 107

Table 5.5: Comparison of the times to failure, expressed in [h], obtained from the FE analyses with and without
pre-straining effects included and experimental results reported in Chapter 3.

Load [kg] FE t; no pre-straining FE ¢; with pre-straining Experimental ¢;

25 169.0 1848.3 1066.0
28 50.4 499.8 278.7
30 29.0 233.8 173.7
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EFFECTS OF GEOMETRICAL
INACCURACIES OF THE
EXPERIMENTAL SET-UP ON SMALL

PUNCH CREEP TEST RESULTS

6.1 Introduction

One of the limitations discussed in Chapter 2 concerns the test repeatability, as the experi-
mental results are geometry dependent and a significant amount of scatter was found in the

experimental results [27-29].

In this Chapter, the results of elastic/creep finite element analyses for the SPCT ge-
ometry, using two different creep constitutive models, i.e. a Norton’s law and the Liu &
Murakami creep damage model, are reported. The results have been used to investigate the
effects of inaccuracies in the initial position of the punch and in the loading direction, both

of which can affect the overall response of the SPCT, and therefore, the test repeatability.
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6.2 Finite element model used for the analyses

In contrast to the model described in Chapter 5, the problem discussed in this Chapter
includes situations in which the loading conditions are not axisymmetric, therefore, a 3D
FE model of a small punch creep test is needed for the numerical calculations. The test rig
components, i.e. the punch, the upper clamp and the support, were modelled as rigid bodies,

while the specimen is allowed to deform as an elastic/creep part.

6.2.1 Material behaviour model, loading and boundary conditions

The Norton creep law used in the present analyses is represented in Chapter 2 by equa-

tion (2.19), in the multi-axial form.

Although a constitutive model which was capable of taking into account creep dam-
age, plastic deformations and their effects on the creep behaviour of the material (as that
used in the simulations discussed in Chapter 5) would be more accurate for the SPCT FE
modelling, the Norton creep approximation is acceptable for the present investigation, since
only the relative effects of different loading conditions and geometrical configurations, on

the behaviour of the specimen, are analysed in this case.

Furthermore, in order to evaluate the application of the secondary-creep approxi-
mation, an additional set of FE analyses was performed using the Liu & Murakami creep
damage model, which is reported in in Chapter 2 by equations (2.25) and (2.27), (2.28) [73].
Also in these calculations, in order to avoid possible computational problems, the maximum
damage value was limited to w,,; ,x=0.9901. The reduction of the load carrying capability

of damaged elements is represented by equation (5.3), also reported below.

FE = Eo(l—w)

Table 6.1 shows the Poisson’s ratio, v, the Young’s modulus for undamaged mate-
rial, Ey, and the material creep constants for the Norton and Liu & Murakami constitutive

models, obtained for a P91 steel at 650°C, with the stress in [MPa] and time in [h] [68].
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Figure 6.1: (a) Meridional section of the test set-up with the x-z cutting plane and (b) geometric dimensions
in [mml].

The non-linear geometry formulation was used because the specimen exhibits large

deformations and a significant shape change during the creep analyses.

Table 6.1: Material constants for a P91 steel at 650°C, with stress [MPa] and time [h] [68].

Ey [MPa] 14 B n A X q2 Qg
1.500 x 10> 0.3 1.092 x 10°2° 8.462 2.952x 10" ¢ 6.789 3.2 0.215

In Figure 6.1, the section of the test set up and the relevant dimensions are shown; the
x-z plane is the cutting plane. Also in this case, the dimensions of the test set-up conform
with the CEN draft code of practice CWA 15627 [1], with a punch radius, R, of 1.25 [mm],
areceiving hole radius, a,, of 2 [mm], a specimen thickness, t;,, of 0.5 [mm] and a specimen

diameter, Dgpr, of 8 [mm)].

The initial position of the punch has been varied for each analysis. The distance, 9,
of the initial punch/specimen contact point from the symmetry axis of the test set-up ranges
from 0 to 0.3 [mm] (see Figure 6.1). Figure 6.2 shows the loads and the boundary conditions
applied to the model on the x-z plane. The axis of the punch is in the x-z plane in all of
the analyses and this was rotated, with respect to the axis of symmetry of the test rig, by
varying the angle, 6, from 0 to -3°. The  angle has been shown as a negative value, being
opposite to the positive direction of the y-axis (see Figures 6.1 and 6.2). The punch was

constrained so that it can only translate along the direction of its axis by blocking all three
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of the rotational degrees of freedom and the translation in the y-direction.
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Figure 6.2: Schematic diagram showing the loads and boundary conditions in the x-z plane.

For 6<0 (see Figure 6.2), the constraint represented by equation (6.1) has also been
applied to the punch. It relates the horizontal and vertical displacements of the punch, u,
and wu,, respectively, to the § angle. For the case with §=0, the horizontal translation of the

punch, u,, has been constrained by equation (6.2).

uz—tan<g—9>um:0, <0 6.1)

uy =0, tan(d) =0 (6.2)

A constant load has been applied to the punch during the creep analyses. In all cases,
the load direction is coincident with the axis of the punch and the magnitude of the load is

220 [N].

The components of the punch load in the x- and z- directions, P, and P,, are given

by equations (6.3) and (6.4), respectively.

P, = —Psinf (6.3)
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P, =—Pcosf (6.4)

Surface-to-surface contact boundary conditions were used to model the interactions
of the specimen with the punch, the support and the holder were modelled. Similarly to the
model reported in Chapter 5, a non-linear penalty formulation was chosen for the normal be-
haviour of all of the interactions, while, for the tangential behaviour, the classical Coulomb
friction theory was adopted. The friction coefficient of the punch/specimen interaction was
assumed to be 0.3, while, for the support/specimen and the holder/specimen interactions,
the friction coefficient was taken to be 0.8. As discussed in Chapter 2, this model is an
approximation to the actual behaviour because the friction coefficient depends on various
factors which characterise the local loading conditions, the status of the contact surfaces,
and the material properties of the contacting bodies. However, for the analyses reported in
this Chapter, the classical Coulomb theory can be considered to be acceptable because it is
the relative results, corresponding to various loading conditions that are under investigation,

and not the absolute values.

6.2.2 Choice of the element type and meshes

As mentioned in Chapters 2 and 5, the behaviour of the specimen is characterised by large
incompressible deformations, in this case due to only creep, and severe local loading condi-
tions at the contact edge between the punch and the specimen. When complicated loading
conditions are present, especially with load singularities such as those induced by contact
loads, first order elements (characterised by a constant strain), rather than quadratic ele-
ments, are generally recommended, see e.g. ref. [19]. If quadratic elements are used with
a complicated stress field within the model, the linear approximation of stresses and strains
within a single element can generate convergence difficulties or inaccuracies in the solu-
tion in correspondence to the loading singularities [19]. Alternatively, if linear elements
are adopted, these problems can be avoided because of the constant stress formulation [19].

Generally, quadratic elements are preferred with bending dominant loading modes, or where
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the stress field varies ‘smoothly’ in the model [19]. In view of the complexity of the loading
conditions acting on the small disc specimen, 3D 8-nodes hexahedral first order elements
were chosen with a reduced integration formulation, which was used to avoid ’locking’
problems and convergence difficulties which may be encountered when ’fully integrated’

linear elements are adopted.

For the 3D FE calculations, hybrid element formulation were chosen because nu-
merical singularities can occur when constant strain elements are used with incompressible
deformation fields (see also Section 5.2.3). In view of these requirements, the C3D8RH

element type, available in ABAQUS, was chosen.

The FE results were found to be sensitive to the element size in the critical regions of
the specimen, i.e. the punch/specimen contact edge and the zone adjacent to the clamped

region.

Different meshes were studied, and the solution obtained with the 3D model, with
0=0=0, was compared with that of a corresponding 2D axisymmetric model. The element
sizes of the critical regions were chosen so that, between the 2D and the 3D solutions,
the location of the peak levels of the von Mises equivalent stress were consistent and their

difference was within a few percentage points.

The FE mesh developed for the numerical analyses is focused in the region of the
initial contact point between the punch and the specimen, thus slightly different meshes
have been adopted for various punch misalignments, 6. The number of elements are similar
for all of the analyses, ranging from 111,675 for 6=0 to 111,630 for 6=0.3 [mm]. Figure 6.3

shows the meshes adopted for §=0 and 6=0.3 [mm].
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Figure 6.3: Meshes adopted for 0=0 (a) and 9=0.3 [mm] (b).

6.3 Results and discussion

6.3.1 Illustrative behaviour

Elastic/secondary creep FE analyses of a SPCT specimen were performed taking into ac-
count the various loading conditions. Figure 6.4 shows a plot of the punch displacement
versus time, for the case in which the punch is centred on the surface of the specimen (i.e.

0=0) with its axis parallel to that of the test set-up (i.e. 6=0°).
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Figure 6.4: Plot of the punch displacement versus time obtained with §=0 and 6=0°.

Also the plot shown in Figure 6.4 can be divided into three typical SPCT regions, after
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the relatively large initial deformation, in agreement with the results of Chapter 5 and those
of experimental and numerical investigations reported in the literature (see Section 2.6.4).
However, in the model discussed in this Chapter, no initial plasticity is accounted for and

the initial response of the specimen is taken to be purely elastic.

6.3.2 Effects of punch positioning and concentricity

FE analyses were performed with various configurations of the punch load. They are defined
by the distance, J, between the initial punch/specimen contact point and the specimen’s
centre, and the angle, 6, between the axis of the punch and the axis of the test set rig (see
also Section 6.2). Figure 6.5 contains plots of the punch displacement versus time, for
various values of 9, with the axis of symmetry of the punch being parallel to that of the test

set-up (i.e. 6=0°).
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Figure 6.5: Punch displacement versus time for various values of ¢, with #=0°.

From Figure 6.5, it can be seen that, the minimum displacement rate (MDR) decreases
and the failure time ( y) increases as the load eccentricity is increased. This is a result of the
change in stiffness at various load points of the specimen, related to the bending and mem-
brane stretching deformation modes. The central region of the specimen is characterised by
the minimum bending stiffness, because the centre of the disc, where §=0, is at the maxi-
mum distance from the supports. Since bending deformation governs the initial stages of

the SPCT, when the punch load, acting in the through-thickness direction, is applied in this
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position, it generates the maximum initial central deflection in the specimen. As a conse-
quence, when the loading eccentricity increases, i.e. §>0, the deformation of the specimen

becomes smaller.

As creep proceeds, the specimen becomes approximately conical in shape, and mem-
brane stretching of the annular region close to the punch/specimen contact edge becomes
the governing mechanism. Bending also occurs in the region near the supports but, at this
stage of the test, it has a much smaller effect than that of the membrane stretching which

occurs at the contact edge on the global deformation of the specimen.

When the punch is in the centred configuration (§=0), the annular region undergoing
membrane stretching has a uniform meridional length over the circumferential direction,
while, for the eccentric loading configurations (6>0), the distance between the loading re-
gion and the supports is not constant. In view of the material continuity conditions, the
region of the specimen where the punch is closest to the supports, characterised by the min-
imum meridional length, governs the global creep deformation of the specimen. Therefore,
in view of the geometry of the problem, when § increases, the size of the region governing

creep deformation is smaller than that corresponding to the axisymmetric case with 6=0.

Figure 6.6 shows the contour plots of the maximum principal stress, o1, on a section
of the specimen (where the cutting plane is x-z), with =0, for (a) =0 and (b) §=0.3 [mm]
at creep times of 278.5 and 407.9 [h], respectively. In the annular region around the
punch/specimen contact area, o1 is predominantly that of a meridional membrane stress
situation. The two loading configurations of Figure 6.6 exhibit similar peak values of o
during the secondary region of the SPCT curve. The location where the stress field is most
severe is on the bottom surface of the specimen, near the specimen/punch contact edge, in

the critical region which was also pointed out in Chapters 2-5.

Since Norton’s constitutive model is used, the creep strain rate is governed by the
stress state. The local creep strain rate field is similar for the two configurations of Fig-
ure 6.6, but, when =0, the global creep deformation is larger, because the region of the

specimen which governs the creep deformation, i.e. the annular region where membrane
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Figure 6.6: Contour plots of the maximum principal stress (a) =0 and t=278.5 [h]; and (b) 6=0.3 [mm] and
t=407.9 [h], with 6=0°.

stretching takes place, is larger than in the asymmetric load case. Also the time to failure,
defined in this Section as the creep step time at which the solution did not converge, is af-
fected by § (see Figure 6.5). When the effects of material creep damage are not included in
the SPCT FE model, the stage of the punch displacement curve characterised by increasing
deformation rate is governed by geometrical softening only, that is, necking in the critical
region of the specimen. When § increases from 0 to 0.3 [mm], the global creep deformation,

and necking, of the specimen exhibits a lower rate, hence the time to failure increases.

Figure 6.7 shows the variations of the punch displacement with time for different
values of 8, with §=0 and §=0.3 [mm]. For a given value of J, the test output changes with
0 because the stiffness of the specimen increases when the load is not parallel to the axis

of the test rig, i.e. when 6 #0. For =0, the 6 angle does not significantly affect the SPCT
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output, as shown in Figure 6.7 (a), while, when 0 increases, the effect of § becomes more

marked (see Figure 6.7 (b)).
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Figure 6.7: Plot of the punch displacement versus time for different 0 values, with (a) §=0 and (b) 6=0.3 [mm].

Figure 6.8 represents the contour plots of o; on a cross section of the specimen, where
the cutting plane is x-z. Also for Figure 6.8, o1 can be considered as a close approxima-
tion of the meridional membrane stress component in the proximity of the punch/specimen

contact edge.

When the loading direction is not parallel to the axis of the test rig, i.e. 6 # 0, the
component of the load that generates the increase of the global deformation of the specimen,

i.e. P., decreases, while P, increases (see equations (6.3) and (6.4)). When Figure 6.6
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Figure 6.8: Contour plot of the maximum principal stress for §=-3° with (a) §=0 and (b) 6=0.3 [mm], at creep
times of 217.6 and 378.6 [h], respectively.

(a) is compared with Figure 6.8 (a) (i.e. for 6=0), it can be observed that, when § # 0
the level of o7 slightly reduces in the region close to the punch/specimen contact edge,
although the peak values exhibits a small increase. By comparing Figures 6.6 and 6.8 (b)
(i.e. for 6=0.3 [mm)]) it can be seen that, when the punch is in a non-centred position, the
variation of the loading direction produces a more significant decrease of the level of o
in the critical region of the specimen. The reduction of the stress level in the vicinity of
the punch/specimen contact edge affects the test output, by reducing the creep rate and, in
turn, the MDR and by increasing the time to failure of the specimen. Since the stress level
reduction is larger when §=0.3 [mm)], the effects of the variation of 6 on the test output are

more significant.

When the punch is eccentric with respect to the specimen centre and the load does

not act along the z-direction, i.e. & #0 and 6 #0, the effects of 4 and §, on SPCT output,
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are combined (as Figure 6.7 (b) shows).

In order to investigate these effects, the minimum displacement rate obtained from the
FE analyses, with € ranging from O to -3° and  from O to 0.3 [mm], was normalised with
respect to M D Ry, that is the minimum displacement rate corresponding to the configuration
with #=0° and 0=0 [mm]. The variation of (M DR/M DRy) versus 6 and (d/t}), where
tp, is the specimen thickness, is plotted in Figure 6.9. A third order polynomial surface,
represented by equation (6.5), which is also plotted in Figure 6.9, has been fitted to the FE
results and it has a correlation factor of R2=0.994. The dimensionless fitting constants, p,;,

with i=0,1,2,3 and j=0,1,2, used in equation (6.5), are listed in Table 6.2.

MDR

) B 5\? ,
WRO =1+ piof +p01a +p2092 ‘|‘p1195 + Po2 (a) ‘|‘p30‘95+

5 5\ 2 (6.5)
p2192_ + D120 <_>
th th

Table 6.2: Dimensionless constants used in equation (6.5) for the normalised MDR surface fitting.

P1o Po1 P20 P11
2254 x 1072 —2.003x 1072 1.678 x 1072 0.151

Doz Pso D21 P12
—0.764 3.808 x 1072 —1.344x 102 —0.276

Figure 6.9 shows that the effect of 8 on the test output increases when § increases.

The failure time is also influenced by the loading configuration (see Figure 6.7). Fig-
ure 6.10 plots the variation of the normalised time to failure (¢, /¢,,) where ¢, is the failure

time corresponding to the "base configuration" (i.e. #=0° and §=0), versus 6 and (6 /ty).

Also in this case, a third order polynomial surface has been fitted to the FE results.
The surface is represented by equation (6.6) and it is also plotted in Figure 6.10. The

correlation factor for the fitting of (¢;/t,) is R*=0.9998, while the dimensionless constants,
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Figure 6.9: Variation of the normalised MDR versus  and normalised ¢.

q:;> with i=0,1,2,3 and j=0,1,2, used in equation (6.6), are listed in Table 6.3.

t 5 ) b 5\? 5
r:1+Q109+QO1_+Q209 ‘I’(hlga“‘%z E + g500°+

f0 th
5 5\
02 — 0 —
q21 i + 12 <th>

(6.6)

Table 6.3: Dimensionless constants used in equation (6.6) for the normalised ¢ surface fitting.

10 o1 20 qi1
—8.540 x 1073 —8.653 x 1073 —4.435 x 107> —6.929 x 102

o2 Q30 21 412
0.738 —1.630 x 1072  8.621 x 1073  —2.921 x 102

When the loading configuration corresponding to the "least accurate" test setting, i.e.
0=0.3 [mm] and 0=-3°, is compared with the "base configuration", the minimum displace-
ment rate is reduced by almost 40%, while the failure time increases by approximately 50%.
However, Figures 6.9 and 6.10 also show that the effects of the punch positioning and load-
ing direction are not significant for smaller magnitudes of ¢ and 6, since the reduction of

MDR and the increase of t; are less than 10% for § <0.2 [mm] and |#|<2°. This means
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Figure 6.10: Variation of the normalised time to failure versus 6 and normalised ¢.

that any inaccuracies related to likely punch loading positions will not significantly affect
the experimental results for the majority of the range investigated, but can lead to major

deviations when ¢ and || are on the bounds of the ranges adopted in these calculations.

6.3.3 Additional damage FE calculations

Additional FE analyses have been carried out by using the Liu & Murakami creep consti-
tutive model (see Chapter 2, equations (2.25) and (2.27)-(2.28)) with the material constants
reported in Table 6.1. For computational cost reduction, a relatively coarse mesh has been
adopted for damage FE analyses, consisting of 30,525 elements of the same type as that
used for Norton’s creep law analyses, and 33,219 nodes. This mesh leads to stress fields
comparable with those of the steady-state analyses reported in Section 6.3.2 and the peak

damage location matches the experimental findings discussed in Chapter 4.

The results obtained by using the symmetric loading conditions, i.e. with =0 [mm]
and #=0°, were compared with those obtained by adopting the maximum punch eccentric-
ity and misalignment, i.e. 0=0.3 [mm] and 6=-3°. Figure 6.11 is the plot of the punch
displacement versus time, for the two loading configurations adopted in the damage me-

chanics FEAs. The effects of the punch eccentricity and misalignment obtained by using
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the Liu & Murakami constitutive model are comparable with those obtained by steady-state
creep calculations. When the punch load is not axisymmetric, the deformation rate of the
specimen decreases and the failure time increases with respect to the axisymmetric loading
conditions. In the damage mechanics analyses, the time to failure is defined as the creep
time when the damage variable, w, at the integration points of all of the elements on a
through-thickness path, equals wj;4x. The failure times corresponding to the centred and
the asymmetric (0=0.3 [mm] and #=-3°) configurations are ¢;,=43.41 [h] and ¢;,=54.60 [h],

respectively.

no
N w0
—— — — —]

—_

Punch displacement [mm]
(S}

0.5 — 5=0 [mm], &=0°
== 5=0.3 [mm], &=-3°
0 20 40 60 80
Time [h]

Figure 6.11: Variation of the punch displacement versus time for damage calculations.

When the Liu & Murakami model is used, the ratio between the minimum displace-
ment rates corresponding to the two loading configurations is (M DR, /M D R,|,,,,)=0.718.
This value is slightly higher than the corresponding ratio obtained by using Norton’s creep

law, i.e. (MDR,/MDR,|s_s)=0.618.

The ratio between the failure times obtained with 6=6=0 and §=0.3 [mm], 6=-3° is
(ta/ts0lar)=1.258, while, when Norton’s law is adopted, the failure time ratio, ¢, /% |s_s,
is 1.491. The discrepancy between the values of the (¢;,/t,,) ratio, obtained when the two
different constitutive models are used, can also be explained by the different definitions of
failure time adopted with the two approaches. In the steady-state creep analyses, failure is
assumed to occur when specimen’s necking (i.e. geometrical softening) does not allow an
equilibrium configuration to be computed by the solver, while, when the Liu & Murakami

model is used, failure is due to creep material deterioration and damage.
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Contour plots of the damage variable, w, at the failure time, are shown in Figure 6.12

for the two loading configurations investigated, respectively.

Damage

+9.901e-01
+9.900e-01
+8.500e-01
+7.000e-01

+5.000e-01
+2.000e-01
+0.000e+00

(@

L7777

Damage
+9.901e-01

+9.900e-01
+8.500e-01
+7.000e-01
+5.000e-01

+2.000e-01
+0.000e+00

(b)

Figure 6.12: Contour plot of the damage variable at failure for (a) §=6=0 at t ;o0=43.41 [h], and (b) §=0.3 [mm]
and 0=-3°, at t;,=54.60 [h].

In both cases, the peak value of damage occurs at the bottom surface of the speci-
men, at some distance from the geometrical axis of symmetry. The contour plot shown in
Figure 6.12 (a) exhibits an axisymmetric damage distribution, while Figure 6.12 (b) reflects
the eccentricity and the misalignment of the punch load applied. The peak damage loca-
tions shown in Figure 6.12 match the peak stress regions reported in Figures 6.6 (a) and 6.8
(b) for the centred and the asymmetric conditions, respectively. Also, the damage field of
Figure 6.12 agrees well with the location of the circumferential cracks found in the tested

specimens and reported in Chapter 4 (see Figure 4.7).

Norton’s law and the Liu & Murakami constitutive model lead to comparable effects
of ¢ and # on the minimum displacement rate. This suggests that the creep constitutive

model adopted for the numerical analyses does not drastically influence the relative be-
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haviour of the specimen for various ¢ and 6 values in terms of MDR, while more significant

discrepancies were found for the failure time.

Figure 6.13 shows the error bars, obtained by the continuum damage investigations
presented in this Chapter, applied to the MDR and the time to failure obtained by the nu-
merical analyses discussed in Chapter 5, which include the effects of pre-straining on the

response of the SPCT specimen.
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Figure 6.13: Error bars, obtained by the present study, applied to the MDR (a) and to the time to failure (b)
obtained by the pre-strain FE calculations discussed in Chapter 5.

6.4 Conclusions

The main aim of this Chapter was to investigate the effects of geometrical inaccuracies on

the output of a SPCT, by use of FE modelling. Various steady-state creep FE analyses have
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been carried out with different loading configurations, taking into account the initial position
of the punch, by the ¢ parameter, and the direction of the punch load, by the 6 parameter.
Both ¢ and 6 are shown to have an effect on the SPCT output. When ¢ and |6 increase, the

minimum displacement rate, MDR, decreases, while the failure time, ¢y, increases.

For -2° < § <0°and § < 0.2 [mm], the variations of MDR and ¢ are less than 10%,
while, for #=-3° and §=0.3 [mm] they are found to significantly increase. The calculations
also showed that the effects of 6 are not large when § < 0.2 [mm], and become more
remarkable when 6=0.3 [mm]. The effects of § are significant for the whole range of 6-

values investigated.

The influence of § and € on the response of the specimen correlates with the variation
of its stiffness at different points and along various directions, and to the size of the region

governing creep membrane stretching during the test.

In order to evaluate the accuracy of Norton’s creep law in the FE calculations, ad-
ditional FE analyses were carried out by using the Liu & Murakami creep damage model.
The results of damage calculations show that the effects of 6 and # on MDR are comparable
to those obtained by using the steady-state creep assumption. More significant differences
were found when the effects of these two parameters on the failure behaviour of the spec-
imen were investigated. This is because different definitions of failure time were adopted

for the calculations with Norton’s creep law and the Liu & Murakami constitutive model.

The results reported in the present Chapter are useful for the interpretation of practical
tests, as significant experimental scatter can be found in the output of SPCTs, as indicated

in Chapter 3. However, the real magnitudes of § and 6 during SPCTs are usually unknown.
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EFFECTS OF FRICTION MODELLING

ON THE SPCT OUTPUT

7.1 Introduction-friction modelling overview

A critical aspect of the analysis of SPCT behaviour is the friction interaction between the
punch and the specimen. As mentioned in Chapter 2, this has been investigated by Dy-
macek et al. who showed that the chosen friction coefficient is a key factor in SPCT finite
element modelling [24, 25]. However, in all of the FE models of SPCT reported in the open
literature, the "classical" Coulomb’s friction model was used. Typical values of p assumed,

for the high temperature, in the range between 0.1 and 0.5.

The "classical" Coulomb friction theory has significant limitations, and its application
is bound to induce some degree of inaccuracy in the results obtained using SPCT finite

element models.

Several researchers have shown that the interaction of two contacting rough surfaces
cannot be described as an intrinsic property of the interface, as assumed in the Coulomb’s
model [2, 18, 61, 62]. Tabor pointed out that the friction conditions between two rough
contacting bodies depends on the real area of contact and the size of the asperities (related

to the local stress conditions), the nature and the strength of the bond generated at the
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interface (related to the characteristics of the contacting surfaces) and the deformation and
rupture modes of the material in the region in the vicinity of the contact, which is related to

the local material properties [2, 62, 99, 100, 112].

Leu modified the Tabor friction model and proposed a dry friction formulation for
metal forming based on a 3D stress element under a contaminant film, taking into account
the real contact area, the surface roughness, the contact conditions and the contact pressure
[65]. The condition under which global sliding occurs between the contacting surfaces was

described as being similar to the von-Mises failure criterion.

Chang et al. developed a multi-asperities static friction model (hereafter, referred to
as the CEB model) [14] for metallic rough surfaces. Spherical contacting asperities were
assumed to have the same radii and randomly distributed heights (a Gaussian probability
density function was used). The interface was assumed to be capable of transmitting tan-
gential load until yield occurs in a single asperity (yielding inception), leading to global
sliding (sliding inception). Kogut and Etsion [61, 62] pointed out that tangential load can
also be transmitted after the inception of the yielding of the asperities, since a yielded as-
perity is surrounded by asperities which are subjected to elastic deformation and can still
carry tangential load. In view of this, they introduced an improved multi-asperities static
friction model (hereafter, referred to as the KE model) [62] for elastic-plastic contact of
rough surfaces, by using finite element analysis results, and showed that the CEB model
underestimates the friction coefficient. Both the CEB and KE models are multi-asperities
models, and are based on different assumptions from those of Leu’s formulation, i.e. the

loss of tangential load carrying capability due to plastic yield of asperities.

Accurate contact modelling is of vital importance for any friction model [2]. When
the "first body" approach is used, i.e. when the interacting bodies are of primary interest
and are modelled without a detailed description of the interacting surfaces considered as
separate bodies, finite element analysis is a useful tool for improving the understanding of

the contact problem between two rough surfaces [89].

In view of the limitations of the Coulomb theory and the effects of the friction co-
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efficient on the results of SPCT finite element analyses [25], more accurate procedures for

friction modelling are needed for application in SPCT numerical analyses.

7.2 Leu’s Friction model

In the classical Coulomb’s friction model, used in all of the finite element models reported in
the open literature for the small punch creep test (see Chapter 2), the interacting bodies are
assumed to be in sticking conditions until the ratio of the transmitted shear stress to contact
pressure equals the friction coefficient, i, and the inception of global sliding occurs. The
friction coefficient is often assumed to be constant over the interface between the contacting

bodies and it is taken to be an intrinsic characteristic of the interacting surfaces.

An explanation of the friction interaction between two contacting surfaces was pro-
posed by Bowden and Tabor [9]. They argue that, when two surfaces are in contact under
normal load, the pressure at the tips of contacting asperities is, generally, high enough for
plastic flow to take place. The friction between two interacting surfaces can be related to
the adhesion of strong junctions which are generated at the points of real contact and must
be sheared for sliding to occur [99]. The frictional force (i.e. the force needed to produce
surface sliding) can be decomposed into two contributions, i.e. the shear and the ploughing
components. For metal surfaces, the ploughing component is generally smaller than that

related to shear and, hereafter, it will be neglected [99, 102].

Tabor pointed out that relative sliding of two contacting surfaces is related to the
combination of normal and frictional stresses and, for a 2D stress element, it takes place
when equation (7.1) is satisfied, where p represents the contact pressure, 7 is the frictional
stress (tangential stress at the interface due to interaction under incipient sliding conditions)

and K is the shear strength of the softer material [65, 99].

P’ +37; = 3K] (7.1)
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Equation (7.1) represents the condition of the sliding inception and does not represent
the condition for an asperity to yield, as the term on the right side, K, is not the von Mises

equivalent yield stress.

The relation between the frictional stress, 7, and the shear strength, K, is given by
equation (7.2), where o, = {25 /12,4, ranges from O to 1, and is the ratio between the real and
the apparent contact areas, 25, and {2,, respectively [65]. The condition «,=0 represents the
"free contact state”, where the real contact area is zero and, as a consequence, no frictional
force is transferred between the contacting bodies and therefore 7¢=0, while the condition
a.=1 represents the "fully contact state”, i.e. the real and apparent contact areas are equal,

and the frictional stress needed for sliding to occur is maximum.

The real contact area between two interacting surfaces is influenced by the deforma-
tion mode of the contacting asperities (hence the loading conditions and the material prop-
erties of the interacting bodies) and the surfaces topography (i.e. the surfaces roughness)
[100]. However, in many practical applications for metals, plastic deformation of asperities
occurs even when the contact pressure, p, is an order of magnitude less than the yielding

pressure, pg, of the material [100].

In ref. [65], Leu reported a hyperbolic tangent function to relate «, to p, given by
equation (7.3), where C, is a factor used to control the value of the hyperbolic function

(assumed to be equal to 3 in ref. [65]) and o, is the ultimate stress of the softer material.

a, = tanh <Ca£> (7.3)

Oy

The C, parameter can include the effects of eventual contaminant layers that may

be present between the two contacting bodies (which can change the material plasticity
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properties of the underlying metal [100]) and of the local distribution of dislocations in the

metal on the real contact area ratio, «. [65]. It needs to be accurately evaluated.

When the contact pressure increases, more asperities come into contact, and the real
contact area ratio increases. Figure 7.1 shows the variation of «, with contact pressure for

a material with a nominal ultimate strength of 310 [MPa], and several values of C,,.
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0.4}

0.2
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Figure 7.1: Variation of «. with contact pressure, obtained by using equation (7.3) for a material with
0,=310 [MPa] and different values for Cj,.

In ref. [65], Leu reported an expression for the friction coefficient, i, given in equa-
tion (7.4), obtained by using Tabor’s theory. It is valid for constant friction coefficient con-
ditions but it can be localised when the contact interface is divided into several sub-regions

each one characterised by a contact pressure value.

/
I 7.4
=N 74)

Equation (7.4) shows the dependency of 1+ on the real contact area, hence on local
loading conditions and plastic material properties and surface topography, by the C,, coef-
ficient. Leu pointed out that, in "fully contact" conditions (a,.=1), the friction coefficient
defined by equation (7.4) approaches infinity. This unbounded behaviour contradicts ex-

perimental evidence and, for contacting metals, the friction coefficient should be less than
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0.577, if equation (7.1) is valid [65]. Furthermore, Tabor pointed out that the friction coeffi-
cient reaches values close to unity when the contacting surfaces are not placed in a vacuum

and a contaminant layer is found between the contacting surfaces [99].

In order to overcome this contradiction, Leu proposed a formulation based on a 3D
material element, leading to the sliding condition given in equation (7.5), where p,=p,=p,

is the lateral pressure acting on the material element [65].

(p—p)* + 377 = 3K} (7.5)

Based on equation (7.5), a modified expression for the friction coefficient was ob-

tained by Leu [65], given in equation (7.6).

aC

7.6
3(1—043)4-1% 79

p=

For a material with a power law strain hardening behaviour given by equation (7.7)
in uniaxial form, where o is the stress, ¢, is the effective strain for plastic deformation and
A, and n,, are material constants, Leu obtained a relation between 1, the real contact area

ratio, «,, and the strain hardening exponent, n, represented by equation (7.8) [65, 88].

o= A (1.7)

(2

= (7.8)
V3 [(1-a2)" 4 a2"?]

Figure 7.2 is a plot of the variation of friction coefficient with contact pressure ob-
tained by using equations (7.8) and (7.3), for a metallic material, with strain hardening

exponent n, = 8.693 x 10~* and ¢,=310 [MPa], for various values of C,.
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Figure 7.2: Variation of the friction coefficient with contact pressure for material with ¢,,=310 [MPa], n, =
8.693 x 1072 for different values for C,.

When the real contact area ratio approaches unity, the friction coefficient, plotted in
Figure 7.2, approaches the limiting value 1¢;;,,=0.577. When the contact pressure increases,
also a, increases (see Figure 7.1), as well as the number of contacting asperities, leading
to an increase of friction coefficient. The limit represented by py;,, is in agreement with
practical evidence [65, 99] and has been adopted in the FE analyses presented in this Chap-
ter. The increase of the friction coefficient with the normal load for dry contact has been
related also by Hwang and Gahr to the increase of the real contact area and of the number

of contacting asperities [40].

7.3 Numerical modelling of Small Punch Creep Test
7.3.1 Material constitutive model(s) used for the analyses

Elastic/plastic/creep analyses have been carried out with the time independent material be-
haviour being modelled as linear elastic/exponential plastic with isotropic hardening, based

on equation (7.7) [65].

The creep behaviour of the material has been modelled by using the well-known

Norton law (secondary creep approximation), represented by equation (2.18), Chapter 2
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in uniaxial form. The material constants used for the creep and the plasticity models are

reported in Table 7.1.

Table 7.1: Material constants used for the elastic/creep analyses, with stress expressed in [MPa] and time in

[h].

Ey [MPa] v B n A, n, o,
1.492 x 10° 0.3 9.795 x 10732 12.342 4554 8.693 x 1072 280

7.3.2 Geometry, loads and boundary conditions

Similarly to the analyses discussed in Chapter 5, a 2D axis symmetric FE model has been
adopted for the calculations because of the symmetry of the problem. The specimen has
been modelled as a deformable part, while the punch, the support and the upper clamp have

been modelled as rigid bodies.

The geometry of the FE model, represented in Figure 7.3, has the same dimensions
as that used in Chapter 6 (in the symmetric loading configuration), i.e. the punch radius
is R,=1.25 [mml], the receiving hole radius is a,=2 [mm], the thickness of the specimen is
t,=0.5 [mm] and the diameter of the specimen is Dgp,=8 [mm].

Vo
(L
&

1]

0.5

D4
@8

Figure 7.3: Geometry used for the FE analyses with dimensions in [mm)].

Various load levels, ranging between 34 and 42 [kg], have been applied to the punch
in the analyses and appropriate boundary conditions have been imposed to the rigid bodies

to model the test rig.
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As for the model of Chapter 5, the radial and axial translations and the rotation of the
support have been constrained. The horizontal translation and the rotation of the punch and

of the upper clamp have also been blocked.

The clamping load has been applied by imposing a vertical displacement of 3.419 x
107° [mm)] to the upper clamp. Figure 7.4 schematically shows the loads and the boundary

conditions applied to the FE model.

P Aucia mp

<
Y
> <

\ A 4

Figure 7.4: Loads and boundary conditions applied to the FE model of SPCT.

7.3.3 Meshing and element choice

The FE mesh adopted in the analyses has been developed taking into account the differ-
ent stress and strain fields in various regions of the specimen and at various stages of the
specimen deformation. A mesh sensitivity analysis was conducted in order to minimise nu-
merically induced fluctuations of the contact pressure in the creep solution over the expected
contact area between the punch and the specimen; this has led to an "optimised" element
size equal to 0.0024 times the punch radius. As discussed in Chapter 2, accurate modelling
of the region close to the edge of contact between the specimen and the punch is of critical
importance in predicting SPCT behaviour [76], as well as that close to the clamps, where
initial bending deformation occurs. These two regions in the specimen have relatively small

element sizes, while a coarser mesh has been adopted for the other regions.

Figure 7.5 is a swept representation of the mesh used for the FE analyses. It consists
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of 15,253 nodes and 14,892 quadrilateral, 2D axisymmetric, linear elements. The hybrid
elements formulation has been adopted, in order to avoid the numerical difficulties which
are generated when incompressible deformations occur, as for the analyses of Chapters 5
and 6. A reduced integration scheme was used in order to overcome problems related to
locking of elements. As for the calculations of Chapter 5, the CAX4HR element type,

available in ABAQUS, was used.

(b)

Figure 7.5: (a) Swept representation of the 2D axisymmetric mesh adopted in the FE analyses and (b) detailed
view of the mesh in the unsupported region of the specimen.

7.3.4 Modelling of the variable coefficient of friction

The friction interaction for the contact between the punch and the specimen has been as-
sumed to vary with local loading conditions, according to Leu’s model, equation (7.8). A
FRIC_COEF user subroutine has been implemented in order to include this friction for-
mulation into the numerical solver. The subroutine is called at each contact point and can
calculate the value of y as a continuous function of contact pressure. The FRIC_COEF sub-
routine has also the capability to describe the variation of the friction coefficient with the
temperature and the sliding rate. In the present investigation, the temperature is assumed to
be constant and the sliding rate is low, thus only the dependency of p on the contact pressure
(see equation (7.8)) has been modelled, i.e. it neglects the dependency on temperature and

sliding rate.

In order for the calculation to be performed, also the derivatives of ;4 with respect to
these three quantities (i.e. contact pressure, sliding rate and temperature) need to be input
into the subroutine. The effects of eventual field variables, defined by the user, could also

be taken into account.

135



CHAPTER 7

In the present calculations, the friction coefficient between the clamps and the spec-
imen has been assumed to be constant, because only the effects of the friction formulation
between the punch and the specimen are investigated. The upper bound of equation (7.8),
i.e. a constant coefficient of friction of i ;,,=0.577, is used for the coefficient of friction

between the specimen and the dies.

7.4 Numerical results and discussion

Several elastic/plastic/creep analyses have been carried out using the FE model described in
Section 7.3, using both variable friction formulation (equation (7.8)) and classical Coulomb’s
theory, with u ranging between 0.1 and 0.5, for the punch/specimen interaction. As men-
tioned in Section 7.3.4, the contact between the specimen and the clamps is assumed to
exhibit a constant coefficient of friction, equal to p;,,, in all of the FE analyses discussed

in this Chapter.

At the beginning of the creep step (elastic/plastic FE solution), the elastic and plastic
deformations, occurring under the contact surface, affect the local loading conditions (i.e.
the variation of contact pressure with radial position) in the contact area. These local con-
ditions govern the value of the coefficient of friction (see equations (7.3) and (7.8)) and, in

turn, the stress and strain fields resulting in the specimen.

Figure 7.6 shows contour plots of the von Mises equivalent plastic strains at the be-
ginning of the creep step for three different load cases, with punch loads ranging from 34
to 42 [kg]. In the region close to the interface between the punch and the specimen, the
plastic strains are predicted to be larger than 10% for all of the load levels, hence the effect

of plasticity on the variation of the contact pressure is significant.

The maximum von-Mises equivalent plastic strain is located at the bottom surface of
the specimen in an annular region approximately 0.5 [mm] away from the symmetry axis,
similar to the critical region identified by Dymacek et al. for SPCT specimen [24]. In view

of its magnitude, the plastic flow in the critical region of the specimen is not negligible for
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all of loads used in the analyses. From Figure 7.6, it can be observed that plastic deformation
influences the response of the specimen for all of the load levels, hence it is important to

take it into account.
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Figure 7.6: Swept view of the 2D contour plot of the von-Mises equivalent plastic strain, expressed in absolute
value, at the beginning of the creep step with load levels of (a) 34, (b) 38 and (c) 42 [kg].

Figure 7.7 shows the contour plots of the von-Mises equivalent stress at the beginning

of the creep step with the load ranging between 34 and 42 [kg].
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Figure 7.7: Swept view of the 2D contour plot of the von-Mises equivalent stress, expressed in [MPa], at the
beginning of the creep step with load levels of (a) 34, (b) 38 and (c) 42 [kg].
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During the small punch creep test, the specimen undergoes large global deformation
which, indirectly, affects the local contact loading conditions, i.e. the variation of the local
contact pressure, p, with radial position and time. An increase of p on an element of the
contact surface brings more asperities into dry contact, thus the friction coefficient, p, in-
creases on that element and, hence, more tangential load can be carried before global sliding

occurs [40].

Figure 7.8 shows the plots of the punch displacement versus creep time for the three
load levels (34, 38 and 42 [kg]) used in the numerical analyses. The cases include both
variable and constant friction coefficient conditions. C,=3 has been used in the cases with

variable friction coefficient (see equation (7.3)) for consistency with ref. [65].

From Figure 7.8, the effect of the coefficient of friction formulation on the results of
SPCT FE analyses can be observed and, for the test cases with constant u, agreement with
the results reported in ref. [25] is found. For a given load level, when the coefficient of
friction increases, the minimum displacement rate decreases and the failure time increases.
In this Chapter, as Norton’s law was used, the failure time has been defined as the creep step

time when the solution did not converge.

The influence of ;1 on SPCT output can be explained by considering the effect of the
distributed forces, generated by friction, on the stress field of the specimen. Friction forces
induce a local stress field that opposes the relative global motion (sliding) of the interacting
bodies (in this case, the specimen and the punch). Consequently, a bending moment, which
contrasts the global deformation of the specimen, is generated in the sample because of the

equilibrium of the region of the specimen in the vicinity of the contact area.

For a given punch load level, when the friction coefficient increases, the magnitude
of the friction forces increases as well. In turn, the magnitude of the bending moment
contrasting the global deformation of the specimen increases. This causes a decrease in the

minimum displacement rate and an increase in the failure time.
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Figure 7.8: Plot of the punch displacement versus time for a load of (a) 34, (b) 38 and (c) 42 [kg]. C,=3 for
the variable friction coefficient test cases.
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In order to evaluate the effects of the C,, parameter (see equation (7.3)) on the nu-
merical results, FE analyses have been performed using the variable friction formulation,
equation (7.8), with C, ranging from 1 to 20. The results of the analyses (i.e. the variation

of the punch displacement with time) are shown in Figure 7.9 for a load of 38 [kg].

3
FaN
=25 A °
A b
E A @
= 2} A o ¢
£ s °
8 ]
@15
o
w
g ! Load of 38 kg ||
g 1 O Ca=1
S ¢ Ca=3
o 0 O Ca=5
& Ca=10
¢ Ca=20
0 A A A 1 1
0 500 1000 1500 2000 2500 3000

Time [h]

Figure 7.9: Plot of the punch displacement versus time for a load of 38 [kg] and different values of Cj,.

The minimum displacement rate and the failure time were found to be sensitive to
the C, parameter, especially in the range between C,=1 and C;=10. When C, increases,
the failure time increases and the minimum displacement rate decreases. This behaviour
is due to the effect of C, on the real contact area ratio, «., (equation (7.3)), and, in turn,
on the coefficient of friction (equation (7.8)). In view of the results shown in Figure 7.9,
an accurate estimation of C,, taking into account the surface roughness and the material

properties of the specimen, is needed in order to obtain accurate estimations of p [65].

The variation of the coefficient of friction on the contact surface, over the creep step,
has been evaluated from the FE results performed by using Leu’s friction formulation (equa-
tion (7.8)). Figure 7.10 is a plot of the coefficient of friction over a quarter of the contact
region for a punch load of 34 [kg] at different creep times, while Figure 7.11 shows the
variation of the friction coefficient with creep step time and the radial coordinate normalised

with respect to the current contact edge radius, 7., for C;=3.

141



CHAPTER 7

The coefficient of friction was found to vary significantly over the area of contact and,
during most of the creep step, its maximum value has been found to occur at the contact
edge (see Figures 7.10 and 7.11). This variation is related to the mode of deformation of the
specimen, which is characterised by the effects of material non-linearities (such as plasticity
and creep), varying geometrical stiffness of the specimen (effects of large deformations
and necking), and the severe loading conditions (peak contact pressure) which occur at the

contact edge.

During creep deformation, at the centre of the specimen, a minimum cusp point can
be observed in the distribution of w (see Figures 7.10 and 7.11). This can be related to the
global response of the small disc specimen, caused by the axisymmetric geometry and the

plastic/creep material constitutive model.
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Figure 7.10: Swept plot of the distribution of the coefficient of friction, x, at creep step time fractions of (a)
1=0.25 ty, (b) t=0.5 t, (c) t=0.75 t ¢, (d) t=0.99 L, for a load level of 34 [kg], over a quarter of
the contact surface.
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As creep proceeds in the specimen, the loading mode progressively changes from
bending dominant to "membrane stretching” dominant and the stress field redistributes
within the specimen. The effects of the transition are visible also in Figures 7.10 and 7.11.
Furthermore, the average magnitude of p decreases with time, since the apparent contact

area progressively increases under a constant punch load.

The stress redistribution, occurring during the test and related to creep deformation,
modifies the shape of u=p(r) (see Figure 7.10). After a creep step time of approximately
0.5 ty, the friction coefficient remains almost constant at its minimum value in the annular
region between 0.4 r,,,,, and 0.7 r,,,, Where r_,,,, is the radial position of the contact edge.
This region expands when the creep step proceeds. The distribution of the coefficient of
friction is then drastically modified when the failure time is approached and the maximum

value of p is at the radial position 7/7.,,, = 0.9 (see Figures 7.10 and 7.11).

The punch load does not affect the variation of pu=p(r) to a large extent during creep

analyses, as the governing deformation modes are the same for all three load levels adopted.

In Figure 7.8, the displacement curves obtained from the cases with the variable fric-
tion formulation were found to be similar to those calculated by using a constant "equiva-
lent" coefficient of friction. In order to investigate the possibility to identify an "equivalent
friction coefficient", some additional FE analyses were performed using Coulomb’s theory,
with a coefficient of friction of 0.22 (for a load of 34 [kg]), 0.24 (for a load of 38 [kg]) and
0.26 (for a load of 42 [kg]). The values of minimum displacement rate and failure time ob-
tained by these three analyses were similar to those obtained by using the variable friction
formulation of equation (7.8) with the respective loads. This shows that a load-independent
value of the coefficient of friction, capable of including the effects of the contact pressure
on FE results, cannot be identified, as different load levels led to different values of the

"equivalent friction coefficient", which was found to increase with the load.

In the regions of the specimen far from the interface with the punch, use of con-
stant "equivalent" values of the coefficient of friction lead to stress and strain distributions

similar to those obtained from the variable friction cases. However, in the vicinity of the
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punch/specimen interface, the stress and strain fields differ.

Furthermore, the "equivalent" friction coefficient is not equal to the average value of
the coefficient of friction, ji, obtained from Leu’s formulation. The average values range
from 0.19 to 0.21 for the three load levels used (see Figure 7.10). This discrepancy between
the average and the "equivalent” values is related to the highly non-linear response of the
specimen. It suggests that different regions of the punch/specimen contact surface have dif-
ferent effects on the stress and strain fields, affecting the bending and membrane stretching
response. For example, the peak of the friction coefficient occurs at the contact edge and it
shows there to be a higher influence on the test output than other regions of the contact area,

as the "equivalent" value of y is always higher than f.

In the present Chapter, since Norton’s creep law (steady-state creep approximation)
has been used, material creep damage and deterioration are not taken into account. There-
fore, the "tertiary SPCT region", i.e. the region where the punch displacement rate drasti-
cally increases (see Figures 7.8 and 7.9), is caused by progressive necking of the critical an-
nular region of the specimen (i.e. geometrical softening, see also refs. [24, 76]), accounted
for by the non-linear geometry formulation. This assumption was used because just the

relative behaviour of the specimen with different friction formulation was investigated.

Figure 7.12 is an SEM image of the top surface of the specimen of a SPCT interrupted
after 669 [h]. Although the load level and the geometry of the experimental apparatus used
to test the specimen of Figure 7.12 (reported in Chapter 3) are different from those of the
calculations discussed in this Chapter, it is visible that the location of the punch/specimen
contact surface where the friction conditions are most severe is the annular region near the
contact edge. These findings are in agreement with the friction coefficient maps shown in
Figures 7.10 and 7.11 and confirm that the variation of 4 obtained by the present calculations

18 accurate.
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Figure 7.12: SEM image of the top surface of the specimen of an SPCT with a punch load of 25 [kg] interrupted
after 669 [h] (see also Chapter 4)

7.5 Concluding remarks

Elastic/plastic/creep FE analyses of a small punch creep test specimen were carried out
with the aim of investigating the effects of local loading conditions, i.e. contact pressure,
on the distribution of the coefficient of friction. A variable friction coefficient formulation,
developed for metal forming by Leu [65], linking the real contact area, thus contact pressure,
the material properties and contact surfaces characteristics to the coefficient of friction, was

adopted to model the tangential behaviour of the specimen/punch interaction.

The results of the analyses showed that the friction coefficient varies over the contact
surface during the creep step. The large deformation of the specimen and the plastic and
creep material flows govern the local contact loading conditions and, in turn, the variation
of the coefficient of friction, which was found to significantly influence the variation of
the punch displacement versus time. Although the variation of p has been identified, an
accurate estimation of its value is still not possible because the numerical results are af-
fected by the C, parameter, which is used to identify the real contact area and is related to
material properties and surface characteristics of the specimen. A procedure to accurately
identify this parameter is still not available; this would enable an important improvement
over present FE models. The friction formulation could be improved by also taking into

account the "thermally activated adhesion" and investigating its effects on FE results [93].
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At the present, a definitive validation of numerical results is not possible but qualitative

agreement was found with the experimental findings on an interrupted test specimen.
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NOVEL INTERPRETATION TECHNIQUE

8.1 Introduction

As mentioned in Chapters 1 and 2, one of the main limitations related to the application of
the small punch creep testing technique is the absence of an established technique to convert

the experimental output into that of corresponding conventional uniaxial creep tests.

The SPCT output, consisting of the variation of the punch displacement and the fail-
ure time, does not provide direct information about the creep properties of the tested mate-
rial. The punch load (which has the dimensions of a force) must be related to a ‘represen-
tative’ stress level, while the punch displacement (having the dimensions of a length) must
be converted into the creep strain (dimensionless quantity) of a conventional uniaxial creep
test carried out at a stress level equivalent to the stress field acting in the small punch test

specimen.

The CEN draft code of practice [1] reports an equation relating the load, applied to
the SPCT disc, and the ‘equivalent’ stress, of a uniaxial creep test which leads to the same
failure time as that of the SPCT. This equation is reported in Chapter 2, equation (2.65), for

the range of geometries recommended in ref. [1], see also below.

P _ —-0.2 p1.2
SUNT — 3.33 Kgp ap Rs th
EQ
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The use of this equation, however, requires the uniaxial data for the tested material
to be available in order to identify the Ksp parameter which depends on the ductility of
the material at the testing temperature. An alternative to equation (2.65) is provided by
equation (2.66), relating the punch load, P, to the meridional component of the membrane
stress for the European Round Robin geometry, i.e. R, = 1.25 [mm], a, = 2 [mm] and

t, = 0.5 [mm)].

No correlation of the punch displacement, with a creep strain level is reported in
the CEN draft code of practice. Li et al. [69] obtained a third-order polynomial correla-
tion, reported in equation (2.62), between the equivalent strain €, zpe e, calculated at the
punch/specimen contact edge, and the punch displacement, h,,,,., for the European Round
Robin geometry. This correlation, also shown below, is based on the Chakrabarty theory for
membrane stretching over a hemispherical rigid punch, which is discussed in Section 2.6.3
of the literature review (Chapter 2). It was obtained by fitting € pg pper With hy,,., for
different values of the contact angle, 0, ,, in equations (2.56), (2.57) and (2.58), which are

also shown below.

14cosfcp :|

€EQ,EDGE — 2In |:1+C0596’h,0

sinfq, = % sin® Ocho

%,ch
an( < )

t
hpunch = ap Sin 90h ln [ tan GCTh + Rs (1 — COS OO,C’h)

epq.epce = 0.17959R,p0, + 0.09357R2 ., + 0.0044R3 .,

The conversion techniques reported in the open literature, however, do not take into
account the effects of the large initial plastic deformations on the following creep behaviour
of the specimen which, in view of the findings reported in Chapters 3 and 5, have remarkable
effects on the SPCT output. Also, the distribution of plastic deformation in the specimen is
not uniform (see Chapter 5, Figure 5.7), therefore, the effects it has on the creep response

of the specimen are not homogeneous, as Figures 5.8 and 5.9 show.
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In this Chapter, a procedure to convert the displacement rates of a SPCT into the
creep strain rate of a corresponding uniaxial creep test, and the punch load to a stress level
representative of the behaviour of the SPCT is presented. This technique, which is capable
of accounting for the effects of initial plastic deformation and the actual stress field acting
in the specimen, was obtained by using the results of the numerical calculations discussed

in Chapter 5 and it was adopted to convert the SPCT data reported in Chapter 3.

8.2 Conversion methodology
8.2.1 Conversion of the punch displacement rate to strain rate

The procedure developed to correlate the punch displacement, h,,,.,, to the equivalent
creep strain was obtained by using the well established Chakrabarty theory, which is the
most relevant analytical model for SPCT. Similarly to the fitting of equation (2.62), this
technique is valid when the punch displacement is larger than 20% of the receiving hole
diameter, which is the largest structural dimension of the test rig, i.e. A, > 0.8 [mm] for

the geometry used in the present work.

By using a procedure similar to that adopted by Li and Sturm [69] and by Yang and
Wang [109], equations (2.57), (2.58) and (2.56), also reported in Section 8.1, were used to
fit a third order polynomial function of the form of equation (8.1) to the variation of the
equivalent strain at the contact edge, €z zpcr, versus the punch displacement, 5., for
the experimental set-up used for the SPCTs reported in Chapter 3, i.e. Rs = 1.04 [mm]
and a, = 2 [mm]. Table 8.1 lists the fitting constants for equation (8.1), with the test set-
up geometry used in Chapter3. Figure 8.1 shows the variation of €zg gpor Versus hyunen

together with the plot of equation (8.1) (with the coefficients of Table 8.1).

£5Q.upce = Dilyypen + P2l + DsPpuncr + Pa 8.1)
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Table 8.1: Fitting constants for equation (8.1).

D1 D2 D3 D4
6.224 x 10=* 0.1186 0.2202 7.873 x 103
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Figure 8.1: Variation of €5, rpcr Versus hp..cn, Obtained by equations (2.56)-(2.58), with the plot of equa-
tion (8.1).

Along with a component generated by creep deformation, €zg zper also includes
the initial deformation taking place in the specimen when the punch load is applied. The
strain due to the initial deformation, 3, ,,,;» must be therefore subtracted from the total
equivalent strain, since it is not negligible, to obtain the creep equivalent strain at the contact

edge, €54 ppap- @s shown in equation (8.2).

c — in
€8QEpcE = €EQEDGE ~ €EQEDGE (8.2)

In the present calculations, the initial strain, £}, , ., Was taken to be equal to the
value obtained by equation (8.1) for the initial non-zero value of the punch displacement.
This approach is not completely accurate, as equation (8.1) is only valid for A, ... >
0.8 [mm] because, at the beginning of the test, the governing deformation mechanism is
bending. No other analytical methods to convert the central displacement to equivalent

strain at the contact edge are currently available for this stage of the test.
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By using the same FE model as that of the calculations discussed in Chapter 5, addi-

tional numerical analyses of SPCT were carried out with a load of 40 [kg].

Figure 8.2 shows the plot of € ;5 pa s, Obtained by use of the FE results, versus time,

for the 4 load levels adopted in the calculations.
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Figure 8.2: Time variation of €z, e pcr, converted from SPCT punch displacement FE results by use of equa-
tions (8.1)-(8.2).

8.2.2 Conversion of the punch load to the stress level

The punch load, P, can be correlated to a characteristic stress level acting during SPCTs
by using a physically-based approach. However, this correlation is also not straightfor-
ward because the stress field acting in the specimen is multi-axial and not homogeneous,
furthermore, it changes over the test duration. On the other hand, the stress level of a stan-
dard uniaxial creep test is uniform and constant over time. The correlation established by
the CEN draft code of practice, reported in equation (2.65), between the load level and the
‘equivalent uniaxial stress’ is based on the equality of the time to failure of SPCT and equiv-
alent uniaxial test, but the FE calculations discussed in Chapter 5 show that the real stress

field acting in the specimen is higher than the stress calculated by using equation (2.65).

In the calculations presented in this Chapter, the load level of SPCTs was correlated

to the minimum value of the peak rupture stress, o5, >, see equation (2.25) and below. The
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rupture stress is capable of taking into account the effects of the stress multi-axiality in the
structure and its peak value obtained when the punch displacement is larger than 0.8 [mm]
(i.e. when membrane stretching becomes the governing deformation mechanism) can be
assumed to characterise the multi-axial stress field acting in the specimen over the majority

of the test duration.

Orup = Qp0y + (1 - OKD)UEQ

By using the results of the FE analyses of Chapter 5,in which the effects of initial
plastic deformation were taken into account, the punch load level was then related to the
minimum value of the peak rupture stress (obtained when membrane stress becomes pre-
dominant) by a linear fitting, reported in equation (8.3). Figure 8.3 shows the variation of

o'y p versus the punch load with a plot of equation (8.3).

ol p = 6.135 P 4 21.61 (8.3)
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Figure 8.3: Variation of o}, 5, obtained by FE analyses of SPCT, versus the punch load, together with the
fitting represented by equation (8.3).

This correlation is also applicable to the experimental SPCT results discussed in
Chapter 3, as the geometry of the experimental set-up is the same as that used for the calcu-

lations reported in Chapter 5.
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8.2.3 Inclusion of pre-straining effects - minimum strain rate correction

In the FE analyses reported in Chapter 5, a significant effect of material pre-straining on the
SPCT output was observed. This effect can be used to investigate the equivalent minimum
strain versus time, obtained by converting the punch displacement, h,,,,.s, into the equiv-
alent strain at the punch/specimen contact edge, € g, xpcr, by use of equations (8.1) and

(8.2).

The ratio between the minimum strain rate calculated by converting the punch dis-
placement curves obtained by FE analyses with pre-strain effects included (M SRspcr pri)
to the MSR obtained from FE results without including these effects (M SRspcr n—prE), 1S

defined as the ~ parameter, reported in equation (8.4).

_ MSRSPCT,PRE _ MSRgxp
MSRSPCT,N—PRE MSRcorr

v (8.4)

The variation of « with the load level, P, used in the FE calculations, was also fitted

by using a polynomial relation, reported in equation (8.5).

v =2485x 107* P? — 0.1325 P + 1.853 (8.5)

Figure 8.4 shows the plot of -, obtained from the creep strain plotted in Figure 8.2,

versus the load level together with the plot of equation (8.5).

Several sources of uncertainty, such as the friction contact conditions (see Chapter 7),
should be taken into account when comparing the FE results obtained without pre-straining
effects to the experimental results, and the identification of initial plastic deformation would
not be possible without the use of FE results obtained by a constitutive model capable to

take into account pre-strain effects.

In the present Chapter, since testing results were available, the variation of h,,,.x
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Figure 8.4: Variation of the v and )y parameters with the punch load, obtained by FE analyses results.

obtained by experimental data was converted to € ¢ zpcr. The corresponding experimen-
tal minimum strain rate, M S Rz p, corresponds to the minimum strain rate obtained from
SPCT FE calculations with the pre-straining effects accounted for, i.e. MSRrg pre. In
order to isolate the effects pre-straining induces on the material, and to obtain an indication
of the creep behaviour of not pre-strained material, a ‘modified minimum strain rate’, i.e.
MSRcogrr, Was obtained by dividing M SRy p by the v parameter, as shown in equa-
tion (8.4). MSRcopry corresponds to the minimum strain rate, M SR n_ prg, Obtained
by FE calculations of SPCT without accounting for the pre-straining effects and it can be
then compared with the MSR of a standard uniaxial creep test carried out at the peak rup-
ture stress obtained by SPCT FE analyses when membrane stretching takes over bending

deformation because, for a uniaxial creep test, 0 = b p.

8.2.4 Inclusion of pre-straining effects - time to failure correction

Similarly to the approach discussed in Section 8.2.3 for the minimum strain rate, the rupture

behaviour of SPCTs, was also investigated by use of the numerical results of Chapter 5.

The A\, parameter, defined by equation (8.6) is the ratio of the failure time obtained by

FE analyses of SPCT performed without including the pre-straining effects, ¢z v prp, tO
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that obtained with these effects included, ¢ ;x5 pre. As for the case of -, if an overall creep
resistance effect was found for SPCT FE results when pre-straining effects were included
(with respect to the results obtained without accounting for pre-straining effects) A; is less
than unity, while, when A; > 1, overall creep enhancement was observed in FE analyses

results.

\ = tyreN-rre _ trconrr (8.6)

thE,PRE tf,E‘XP

The variation of A\; versus P was also investigated and, similarly to the case of the
minimum strain rate correction, a quadratic polynomial fitting to the corresponding FE re-

sults, reported in equation (8.7), was obtained.

A; =2.521x107° P? —0.1319 P + 1.814 8.7

Figure 8.5 shows the plot of )\, versus the load level obtained from the FE rupture

results together with the plot of equation (8.7).
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Figure 8.5: Variation of the v and )y parameters with the punch load, obtained by FE analyses results.

Similarly to the case of the MSR correlation, this parameter was used to calculate a
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‘modified” failure time, ¢; corr from the experimental results, ¢; xp, in order to isolate
the effects of pre-straining. The ‘modified’ failure time, ¢;5pcr corr, can be compared to
the failure time of a standard uniaxial creep test performed at a stress level, o, equal to the
minimum value of the peak rupture stress, 0%, » obtained by FE analyses under membrane

stretching-dominant regime (i.e. /., larger than 0.8 [mm]).

8.3 Conversion of SPCT results for a P91 steel at 600°C

The correlation procedure to relate SPCT output with corresponding uniaxial data described
in Section 8.2 was used to convert the experimental results of the SPCTs of P91 steel at
600°C, discussed in Chapter 3, to corresponding uniaxial MSR and time to rupture. The
effects of initial plastic deformation on the output of SPCTs were taken into account by
using the v and Ay parameters, obtained by the FE calculations reported in Chapter 5, which

were presented in Sections 8.2.3 and 8.2.4, respectively.

The equivalent strain at the punch/specimen contact edge, assumed to be the strain
characterising the behaviour of the specimen during the test because it is calculated at the
critical location, was obtained by use of equations (8.1) and (8.2). Figure 8.6 shows the
variation of the equivalent creep strain versus time obtained from SPCT experimental dis-

placement curves.

According to equations (8.1) and (8.2), the creep strain plotted in Figure 8.6 depends
on Ay, and onits value when ¢ = 0, i.e. b7, .. When the load level decreases, k., and

€o.upar decrease as well, therefore, at a constant punch displacement level, for example

Rpuncn = 1.0 [mm], the creep strain increases.

From the results reported in Chapter 3, the Ksp parameter was found to be 1.353.
This value led to ‘equivalent uniaxial stresses’, o};5’, significantly lower than the stress

levels obtained in the specimen by use of FE analyses for all of load levels.
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Figure 8.6: Variation of the egq rpcr, converted from SPCT punch displacement, versus time [h] obtained
by equations (8.1)-(8.2).

The punch load used for the experiments were converted into the corresponding val-

ues of the peak rupture stress (in the membrane stretching regime) by using equation (8.3),

and Table 8.2 compares these values with the ‘equivalent uniaxial stress’, o', obtained

by using the procedure reported in the draft CEN code of practice, for all of the load levels.

Table 8.2: "Equivalent uniaxial stress’, o35, and minimum peak rupture stress, ok, », obtained by using

equation (8.3), for the various loads used for SPCTs.

P [kg] Uggl OrUP
25 143.704 174.985
28 162.417 193.390
30 169.574 205.660
34 200.992  230.200
40 220.371 267.010

UNI

The discrepancies between o,

and 0%, » shown in Table 8.2 indicate that the stress
field in the SPCT specimen is higher than that of a uniaxial test characterised by the same
failure time. In view of these observations, the corrections described in Sections 8.2.3 and
8.2.4 for the MSR and ¢, respectively, were applied to the results obtained from the SPCT
data shown in Figure 8.6. Also, the uniaxial data, calculated for stress levels equal to the

values of o%,; », corresponding to each load level, were compared with the modified SPCT

results.
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From Figure 8.6, the experimental minimum strain rate, M S Ry p, was calculated.
As discussed in Section 8.2.3, this strain rate corresponds to the minimum strain rate,
M S Rpr, obtained from FE calculations of SPCT with the pre-straining effects accounted
for. In order to obtain the minimum creep rate of not pre-strained material, the ‘corrected’
minimum strain rate, M S Roorr, Was calculated by dividing M SRy p by v which is ob-

tained by equation (8.5) for each load level.

Figure 8.7 shows the variation of M SRsorr versus onyp. Also, the variation of
MSRgxp versus oy, is shown in Figure 8.7 with the corresponding uniaxial secondary
creep data, obtained by using Norton’s law, equation (2.18) with the stress equal to the
values of 0%, of Table 8.2 (for uniaxial tests, o is equal to o, p = const) and the material

constants B = 1.510 x 1073° and n = 11.795 (with the stress in [MPa] and time in [h]).

1
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Figure 8.7: Variation of M SRcorr and M SRgxp versus oh p, together with corresponding uniaxial re-
sults.

The failure time was modified by using the procedure described in Section 8.2.4.
The experimental time to failure, ¢;5pcr gxp, 1S shown in Chapter 3, see Figure 3.9, and,
for each load level, the *corrected’ time to failure, t; corr, Was calculated by multiplying
t: zxp by A, calculated for each load level by use of equation (8.7). Figure 8.8 shows
the plots of ¢; pxp and t; corr Vversus oy, p for all of load levels used in the SPCTs, with
the corresponding uniaxial rupture data, obtained by using the stress levels indicated in Ta-

ble 8.2, with ¢ = oy p, and the rupture material properties, A, ,, and x listed in Table 5.2,
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ie. Ay = 2.120 x 1072 and y = 10.953 (with the stress in [MPa] and time in [h]).
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Figure 8.8: Variation of t; corr and t; g xp versus o, p, together with corresponding uniaxial results.

The results of Figure 8.7 show that the estimations of the minimum strain rate do not
exhibit a significant improvement by use of the v parameter, and they lead to an overesti-
mation of the minimum strain rate for all of load levels except from the case with 40 [kg].
When the effects of pre-straining are not considered in the correlation, the minimum strain

rate is underestimated for all of the stress range, with respect to the uniaxial data available.

Figure 8.8 shows that there is a significant improvement in the failure time estima-
tions when the effects of pre-straining are taken into account by use of the \; parameter for

all of the load levels adopted for testing except from the 40 [kg] case.

Discrepancies between the results corresponding to the lower load levels and those
obtained from the 40 [kg] test were found in both Figure 8.7 and 8.8 because, in Chapter 5,
the functions which take into account the effects of pre-straining on the creep behaviour of
P91 steel at 600°C, i.e. ¢ and ), were assumed not to vary for the range of stress adopted
in the uniaxial pre-strained creep tests (see equations (3.4) and (3.5)). As a consequence,
the accuracy of ¢ and ¢ is not constant when different stress levels, and different SPCT
loads, are considered. This leads to a decrease in the accuracy of the FE results reported
in Chapter 5 for higher load levels (for which the behaviour of the specimen was found to

be mainly governed by plasticity, as observed in Chapter 4) and, in turn, a decrease in the
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accuracy of  and Ay for the high loads.

The source of inaccuracy of the MSR estimations reported in Figure 8.7 can be related
to the use of Chakrabarty’s solution for the conversion of h,,,ch, t0 €0 zpcr- This solution
does not take into account several factors, such as bending deformation, friction and material

deterioration. Therefore, a more accurate conversion technique for strain is needed.

On the other hand, it should be noted that the results of Figure 8.8, based on the
results of the FE analyses of Chapter 5, were not obtained by using the membrane stretching
Chakrabarty theory. Therefore, in view of the findings of Figure 8.8, the FE results obtained
by using the modified creep damage model, capable of taking into account the effects of
initial plasticity occurring at the beginning of the test, can provide accurate results for 4 of

the 5 load levels.

8.4 Conclusions

The correlation procedure reported in this Chapter leads to estimations of MSR and ¢y of
‘equivalent’ uniaxial creep tests by use of FE analyses capable of accounting for the effects
of large initial plastic deformations which occur in the specimen. The procedure to convert

experimental SPCT data consists of the following steps:

* Conversion of the punch displacement to creep strain, by use of equation (8.1) and

calculation of the experimental minimum strain rate M SRz

* Conversion of the punch load to minimum value of the peak rupture stress (in mem-

brane stretching regime), %, » by using equation (8.3)
* Calculation of v and \; by using equations (8.5) and (8.7), respectively
* Calculation of MSRoorr = MSRpxp/~ for each load level

* Calculation of ¢4 corr = t; mxpA; for each load level
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The procedure to calculate the ‘modified” minimum strain rate was found to be af-
fected by the inaccuracies due to the application of the Chakrabarty model, while the time
to failure modification produced a significant improvement of the results for the majority of

the punch load range investigated.

The results for the highest load level, i.e. 40 [kg], show a decrease in accuracy be-
cause the parameters which take into account the effects of pre-straining on the creep be-
haviour of P91 steel, defined in Chapter 3, are averaged over the stress range used for the
tests, and therefore, their accuracy is not constant in the stress range and, in the case of

SPCTs, in the load range.
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CONCLUSIONS AND FUTURE WORK

9.1 Concluding remarks

The research reported and discussed in this thesis was aimed to improve the understanding
of different features which characterise the behaviour of the SPCT specimen and to develop

an improved interpretation technique of the experimental results.

The experimental investigations, discussed in Chapter 3, consist of two testing pro-
grammes, i.e. pre-strained uniaxial creep tests and SPCTs. All of the tests reported in this
work were carried out on the same batch of P91 steel at 600°. The pre-strained creep tests
were carried out at stresses of 150, 160 and 170 [MPa], and different pre-strain levels were
used for them. These tests showed that the plastic deformation generated by loading uni-
axial creep specimens at high temperature has a very significant effect on the subsequent
creep behaviour of P91 steel. This effect is generated by the modification of the density and
mobility of dislocations in the material and it varies with the amount of pre-straining and
the creep test stress level. This is an important feature to be considered in the modelling
and interpretation procedures of SPCT, as large initial plastic deformation is generated in

the specimen by the punch load.

The output of the SPCTs, which were carried out with a load ranging between 25

and 40 [kg], shows the typical three regions of SPCT curves. SEM investigations (reported
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in Chapter 4) of the fracture surface of failed specimens revealed that the failure mecha-
nism changed from creep governed (characterised by intergranular separation) to plasticity
governed (characterised by the presence of fresh dimples) when the load was increased.
Furthermore, subgrain rotation near the fracture location increased when the load was in-
creased. A reduction of oxide in the fracture surface was also found when the load was
increased, as all of the tests were performed in air and the shorter test duration of high-load
tests did not allow for extensive oxidisation to take place in the specimens. The investiga-
tion of interrupted test specimens pointed out that a macro-crack starts to nucleate at about
20 % of the failure time and it propagates in the circumferential direction and through the
thickness of the specimen. After 669 [h], the macro-crack had propagated around the whole

specimen and secondary micro-cracks were found at the tip of the macro-crack.

Finite element (FE) calculations of small punch creep tests were carried out by using
a modified creep constitutive model capable of taking into account the effects of the initial
plastic deformation generated by the test load on the subsequent creep behaviour of the
small disc specimen. The model was developed by using the results of pre-strained uniaxial
creep tests. These analyses, reported in Chapter 5, showed that initial plasticity led to a
significant resistance in the global creep response of specimen, compared to the calculations
performed by using a conventional creep damage constitutive model. The global behaviour
of the specimen is characterised by the combination of local creep enhancement occurring in
the region of the specimen near the edge of contact between the punch and the specimen, and
local creep resistance which takes place in the unsupported region of the sample. The peak
damage location did not change when the effects of initial loading plasticity were accounted
for, but the propagation direction of the high damage region in the specimen changed as a

result of the local modification of the creep response of the material in the specimen.

The FE calculations reported in Chapter 6 were performed to investigate the effects
of inaccuracies in the punch loading procedures. The analyses were carried out with dif-
ferent initial positions of the punch and different loading directions, and the effects of the
load misalignment and eccentricity on the minimum displacement rate, MDR, and the time

to failure, ¢7, were investigated. When the punch load misalignement and eccentricity in-
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creased, the MDR was found to decrease, while ¢ increased. These effects were particularly
markable when the punch eccentricity was larger than 0.2 [mm] and the misalignment was
larger than 2°. In these analyses, an elastic/steady-state creep constitutive model was used
and the results were compared with those of an additional set of FE calculations performed
by using the Liu & Murakami creep damage model. The effects of geometrical inaccuracies
obtained by using the secondary creep constitutive model were found to be similar to those

obtained by creep damage calculations.

In this thesis, also the effects of non-linear friction, characterising the interaction
between the punch and the specimen, were investigated and the results were reported in
Chapter 7. A modern friction formulation, proposed by Leu and also used for metal form-
ing, was implemented in an SPCT FE model to describe the variation of the coefficient of
friction, i, with the local loading conditions, that is, the contact pressure, p. These FE cal-
culations showed that the coefficient of friction varied considerably over the contact surface
with a distribution that changes during the creep step duration. The peak value of © was
found at the edge of contact for the majority of creep step, and its variation influences the

test output.

The experimental studies and the numerical investigations discussed in Chapters 3
and 5, respectively, were used to develop a novel technique for the interpretation of SPCT
output and the correlation with corresponding uniaxial data. This technique was reported
in Chapter 8 and correlates the punch load, P, with the minimum value of the peak rupture
stress, oh;» (calculated from FE analyses results when membrane stretching governs the
deformation of the specimen) and the punch displacement, h,,,.,, with the equivalent creep
strain at the punch/specimen contact edge, calculated by using the Chakrabarty’s membrane
stretching theory. The minimum displacement rate and the time to failure obtained for
various load levels were modified by use of two parameters, v and Ay, which were obtained
from the FE results of Chapter 5 and take into account the effects of the loading plasticity
on the global creep response of the SPCT specimen. By use of v and Ay, the effects of
pre-straining were ‘isolated’ and the creep response of the not pre-strained material was

identified by use of SPCT results. The estimations of the modified minimum strain rate
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and of and time to failure were compared with corresponding uniaxial creep test data. A
significant improvement in the accuracy of the time to rupture estimations was obtained
when the effects of pre-straining were taken into account in the interpretation technique,
while the correlation of the MSR showed a lower degree of accuracy, which can be due to

the use of Chakrabarty’s theory of membrane stretching.

9.2 Future work

This thesis was aimed to improve the understanding of different features governing the re-
sponse of the SPCT specimen, but several issues still remain open. Further development
of some of the aspects of the work reported in the present thesis can lead to an improve-
ment of the accuracy of the numerical models and the completeness of the experimental

investigations.

The pre-strained uniaxial creep testing programme, reported in Chapter 3, should
include more pre-straining levels and more creep test stresses. This will lead to a more
accurate fitting function of the pre-strain parameters, i.e. ¢ and 1), in the pre-strain range
adopted. Furthermore, by use of a wider experimental stress range, the variation of the pre-
strain parameters with stress can be modelled, in order to replace the average of the fittings
over different stresses, and to have a more accurate modelling procedure for the effects of
initial plasticity on the subsequent creep response of the material. The improvements in
the accuracy of the ¢ and v parameters will, in turn, improve the accuracy of the modified

constitutive model and of the FE results of SPCT.

The experimental data correlation procedure should also be improved in order to
increase the accuracy of the estimations of corresponding uniaxial data. The improvement of
the fitting functions for ¢ and ¢/ will also be reflected into an improvement of the estimations

of the SPCT parameters, v and Ay.

Further improvements are also possible for the modelling procedure of the variation

of the coefficient of friction, u, with the local loading conditions. This model should also
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account for the effects of thermal adhesion which can be significant at high temperature
and, in addition, an experimental procedure to validate the numerical results should also be

developed.

A further investigation could include small punch creep testing under different clamp-
ing forces, correlated with corresponding numerical calculations in order to also investigate
the effects of this factor which can potentially influence the experimental results. In a long
term SPCT, the clamping force, applied to the outer annular region of the specimen, can
increase the creep deformation in the ring of material that, in view of the constant volume
condition valid during creep deformation, modifies the response of the unsupported region

of the specimen
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SUBROUTINE FOR THE MODIFIED

CONSTITUTIVE MODEL

SUBROUTINE CREEP(DECRA,DESWA,STATEV,SERD,ECO,ESWO,P,QTILD,
| TEMP,DTEMP PREDEF,DPRED, TIME,.DTIME,CMNAME,LEXIMP,LEND,
2 COORDS,NSTATV,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

INCLUDE ‘ABA_PARAM.INC’
CHARACTER*80 CMNAME
INTEGER [, FLAG

INTEGER, PARAMETER :: DBL=8§

INTEGER, PARAMETER :: SINGLE=4

REAL(KIND=DBL) A, B, LA, LB, W, DW, SRUP, PHI, PSI
REAL(KIND=SINGLE) N, M, X, ALPHA, QPR, TT, SI, WMAX
REAL(KIND=DBL) PRE_STRAIN

REAL(KIND=SINGLE) phi_a, phi_b, phi_c, phi_d
REAL(KIND=SINGLE) psi_a, psi_b, psi_c, psi_d
REAL(KIND=SINGLE) as, bs, cs, ms

DIMENSION DECRA(5),DESWA(5),STATEV (*),PREDEF(*), DPRED(*),
1 TIME(2),COORDS(*),EC(2),ESW(2)
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DO I=1,5
DECRA)=0.0D0
DESWA(I)=0.0D0

ENDDO

C VALUE FOR THE FLAG VARIABLE

C — 1: PRESTRAIN EFFECTS=ON —
C — 0: PRESTRAIN EFFECTS=0OFF —
FLAG=1

C
C
C FITTING CONSTANTS FOR THE CORRELATION
C OF TRUE STRAIN AND ENGINEERING STRAIN
as=.05199

bs=.1181

ms=.5083

C

C

C NOT PRE-STRAINED MATERIAL PROPERTIES
A=1.51e-30

N=11.795

X=10.953

B=2.120e-27
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ALPHA=0.3
QPR=5.3
M=-4.754E-4

C  PHI PARAMETER FITTING CONSTANTS - AVERAGED
phi_a=-5.9534

phi_b=0.0669

phi_c=-0.0088

phi_d=3.2360e-04

C  PSIPARAMETER FITTING CONSTANTS — AVERAGED
psi_a=-3.2409

psi_b=0.0261

psi_c=4.7633e-04

C INITIALISATION OF MATERIAL CONSTANTS
C AND SOLUTION DEPENDENT VARIABLES
C Limitation for maximum damage value

WMAX=0.9901

C LEGEND FOR SOLUTION DEPENDENT VARIABLES:

C 1. STATEV(1) IS THE CREEP DAMAGE
C 2. STATEV(2) IS THE MAXIMUM PRINCIPAL STRESS
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7. STATEV(7) IS THE PHI VARIABLE
8. STATEV(8) IS THE PSI VARIABLE

IF (KINC.EQ.1.AND.KSTEP.EQ.2) THEN
STATEV(1)=0.0
STATEV(4)=0.0

ENDIF

W=STATEV(1)
SI=STATEV(2)

IF (W.GE.WMAX) THEN

W=WMAX

ENDIF

TT=TIME(2)

IF (LEND.EQ.0) THEN

TT=TIME(2)-DTIME

ENDIF

C Rupture stress definition

SRUP=ALPHA*SI+(1.0-ALPHA)*QTILD

3. STATEV(3) IS THE RUPTURE STRESS
4. STATEV(4) IS THE CREEP STRAIN RATE

5. STATEV(5), DEFINED IN USDFLD, IS THE DAMAGE TAKEN FROM FIELD(1)
6. STATEV(6), DEFINED IN USDFLD, IS THE TRUE PRE-STRAIN VALUE
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IF (TT.EQ.0.0) THEN
TT=TT+1.0e-6
ENDIF

C MATERIAL CREEP BEHAVIOUR MODIFICATION
IF (FLAG.EQ.1) THEN

PRE_STRAIN=100.0*(as*STATEV (6)+bs*STATEV(6)**ms)
ENDIF

C DEFINITION OF CREEP STRAIN RATE

C AND CREEP DAMAGE RATE

PHI=exp(phi_a*PRE_STRAIN)+phi_b*PRE_STRAIN**2.0+phi_c*

2PRE_STRAIN**3.0+phi_d*PRE_STRAIN**4.0

PSI=exp(psi_a*PRE_STRAIN)+psi_b*PRE_STRAIN**2.0+
2psi_c*PRE_STRAIN**3.0

IF (LEND.EQ.0) THEN

IF (LEXIMP.EQ.1) THEN

DECRA(5)=PHI*A*N*QTILD**(N-1.0)*exp(2.0*(N+1.0)/(3.1416%

2sqrt(1.04+3.0/N))*W**1.5)*DTIME

ENDIF

DECRA(1)=PHI*A*QTILD**N*exp((2.0*(N+1.0))/
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2(3.1416*sqrt(1.0+3.0/N))*W**1.5)*DTIME

C THE DAMAGE PARAMETER INCREASES AT THE END OF THE

INCREMENT ONLY

DW=0.0

IF (W.GE.WMAX) THEN
W=WMAX
ENDIF

ENDIF

IF (LEND.EQ.1) THEN

IF (LEXIMPEQ.1) THEN
DECRA(5)=PHI*A*N*QTILD**(N-1.0)*exp(2.0*(N+1.0)/(3.1416*
2sqrt(1.0+3.0/N))*W*1.5)*DTIME

ENDIF

DECRA(1)=PHI*A*QTILD**N*exp((2.0*(N+1.0))/
2(3.1416*sqrt(1.0+3.0/N))*W**1.5)*DTIME

IF (SRUP.GE.0.0) THEN
DW=PSI*B*(1.0-exp(-QPR))*(SRUP**X)*((exp(QPR*W))/QPR)*DTIME

W=W+DW

IF (W.GE.WMAX) THEN
W=WMAX

ENDIF
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ENDIF

ENDIF

STATEV(1)=W
STATEV(2)=SI
STATEV(4)=DECRA(1)
STATEV(3)=SRUP
STATEV(7)=PHI
STATEV(8)=PSI

RETURN
END

C skokskskskosksksksko sk skskskskskskskskk

ksksksksksksksksk

skskskskoskskskskskk

stesesie sk s s sk feofeokok

skokskskcksksk

SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT,
1 TIME,DTIME,CMNAME,ORNAME,NFIELD ,NSTATV,NOEL,NPT,LAYER,
2 KSPT,KSTEP,KINC,NDLNSHR,COORD,JMAC,JMATYP,
3 MATLAYO,LACCFLA)

INCLUDE ‘ABA_PARAM.INC’

CHARACTER*80 CMNAME

CHARACTER*3 FLGRAY(15)

DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3),

1 T(3,3),TIME(2)

DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*),COORD(*)
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CALL GETVRM( ' PE’,ARRAY,JARRAY,FLGRAY,JRCD,JMAC,IMATYP,

| MATLAYO,LACCFLA)

C THE PLASTIC PRE-STRAIN, IN ABSOLUTE VALUE IS THE SOLUTION

DEPENDENT VARIABLE STATEV(6)

STATEV(6)=ARRAY (7)

IF (KSTEP.LT.2) THEN
FIELD(1)=0.0
ENDIF

IF (KSTEP.EQ.2) THEN
IF (KINC.EQ.1) THEN
FIELD(1)=0.0
ENDIF
IF (KINC.GT.1) THEN
IF (STATEV(1).GE.0.0) THEN
FIELD(1)=STATEV(1)
ELSE
FIELD(1)=0.0
ENDIF
ENDIF
ENDIF

CALL GETVRM(’SP’,ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,
| MATLAYO,LACCFLA)
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STATEV(2)=ARRAY(3)
STATEV(5)=FIELD(1)

RETURN
END
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SUBROUTINE FOR LEU’S FRICTION

FORMULATION

SUBROUTINE fric_coef(fCoef, fCoefDeriv, nBlock, nProps,

* nTemp, nFields, jFlags, rData, surfInt, surfSlv, surfMst,

b3

include ‘aba_param.INC’

props, slipRate, pressure, tempAvg, fieldAvg )

parameter( jKStep = 1,

ES

b3

S

jKInc =2,
nFlags =2,
jTimStep = 1,
jTimGlIb = 2,
JDTimCur = 3,
nData = 3,
idfdSlipRate =1,
idfdPressure = 2,

idfdtemperature = 3)
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dimension fCoef(nBlock), fCoefDeriv(nBLock,3),
*  props(nProps),slipRate(nBlock),pressure(nBlock),
*  tempAvg(nBlock), fieldAvg(nBlock,nFields),

*  jFlags(nFlags), rData(nData)

character*80 surflnt, surfSlv, surfMst

real*8 s_u, n, mi, p, pmax, alphal, alpha, den,

*  dalpha_dp, dden, dmi_dalpha, dmi_dp

n=0

s_u=2310

varl = nBlock
var3 = jFlags(2)
var4 = props(1)
kl=1
pmax=3200

do k1=1,nBlock
p = pressure(k1)
ca=3.0
alphal = ca*p/s_u
alpha = TANH(alphal)
den = sqrt(3.0)*((1-alpha**2)** S+alpha**
o (2)

mi = alpha/den

190



APPENDIX B

if (p.eq.0.0) then
p=.0001
dalpha_dp = 12/s_u*exp(6*p/s_u)/
*(exp(12*p/s_u)+2*exp(6*p/s_u)+1)
dden = sqrt(3.0)*(.5*%(1-alpha**2)**(-.5)*
*(-2*alpha)+alpha**(n/2-1)*.5%n)
p=0

elseif (alpha.ge.0.999) then

alpha=0.999

if (p.gt.pmax) then
p=pmax

endif

dalpha_dp = 12/s_u*exp(6*p/s_u)/
*(exp(12*p/s_u)+2*exp(6*p/s_u)+1)
dden = sqrt(3.0)*(.5*(1-alpha**2)**(-.5)*
*(-2*alpha)+alpha**(n/2-1)*.5%n)
else

dalpha_dp = 12/s_u*exp(6*p/s_u)/

% (eXp( 1 2*p/s_u)+2*exp(6*p/s_u)+ 1)

dden = sqrt(3.0)*(.5*(1-alpha**2)**(-.5)*
*(-2*alpha)+alpha**(n/2-1)*.5%n)
endif

dmi_dalpha = (den-alpha*dden)/
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APPENDIX B

*(den**2)

dmi_dp = dmi_dalpha*dalpha_dp
fCoef(k1) = mi

fCoefDeriv(nBlock,1) =0

fCoefDeriv(nBlock,2) = dmi_dp
fCoefDeriv(nBlock,3) =0
enddo
return

end
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