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Abstract 

Numerous endogenous retroviruses (ERVs) are found in all mammalian genomes, for 

example, they are the source of approximately 8% of all human and chimpanzee 

genetic material. These insertions represent retroviruses which have, by chance, 

integrated into the germline and so are transmitted vertically from parents to 

offspring. The human genome is rich in ERVs, which have been characterised in some 

detail. However, in many non-human primates these insertions have not been well-

studied.  

ERVs are subject to the mutation rate of their host, rather than the faster retrovirus 

mutation rate, so they change much more slowly than exogenous retroviruses. This 

means ERVs provide a snapshot of the retroviruses a host has been exposed to during 

its evolutionary history, including retroviruses which are no longer circulating and for 

which sequence information would otherwise be lost. ERVs have many effects on their 

hosts; they can be co-opted for functional roles, they provide regions of sequence 

similarity where mispairing can occur, their insertion can disrupt genes and they 

provide regulatory elements for existing genes. Accurate annotation and 

characterisation of these regions is an important step in interpreting the huge amount 

of genetic information available for increasing numbers of organisms.  

This project represents an extensive study into the diversity of ERVs in the genomes of 

primates and related ERVs in rodents. Lagomorphs (rabbits and hares) and tree 

shrews are also analysed, as the closest relatives of primates and rodents. The focus is 

on groups of ERVs for which previous analyses are patchy or outdated, particularly in 

terms of their evolutionary history and possible transmission routes. A pipeline has 

been developed to comprehensively and rapidly screen genomes for ERVs and 

phylogenetic analysis has been performed in order to characterise these ERVs. 

Almost 200,000 ERV fragments, many of which have not previously been 

characterised, were identified using this pipeline, distributed across six retroviral 

genera and 33 vertebrate genomes. These fragments were used to investigate several 

areas of interest: the potential origin of primate ERVs, in rodents or other hosts; the 

ERV content of the less well-studied primates; the endogenous lentiviruses; 

mammalian endogenous epsilonretroviruses and the origin of pathogenic gibbon ape 
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leukaemia virus. Laboratory study was used to complement the bioinformatics 

analysis where appropriate.  

This analysis had several interesting outcomes. First, a novel endogenous member of 

the lentivirus genus of retroviruses, which are rarely found in an endogenous form, 

was identified in the bushbaby Galago moholi. This ERV may represent an ancient 

ancestor of modern human immunodeficiency virus (HIV), as it is the oldest member 

of the lentivirus genus (the genus which HIV belongs to) that has been identified in a 

primate living on the African mainland, alongside the primate hosts where the HIV 

pandemic originated. This ERV appears to have been transmitted between G. moholi 

and two species of Malagasy primate in the last five million years, many millions of 

years after these species have had any contact, suggesting that the virus has been 

transmitted from one host to another via a third, vector species. (Hart et al., 1996) 

Gibbon ape leukaemia virus was responsible for leukaemia and lymphoma in several 

gibbon colonies during the 1970s and has since then been thought of as a circulating 

pathogen in this species. Using a combination of techniques we have established that 

this virus is not a common pathogen of modern gibbons and identified a route through 

which a single cross species transmission event from a rodent may have resulted in all 

known cases of this disease worldwide. 

We have also identified endogenous epsilonretroviruses, usually considered to be 

viruses of fish and amphibians, in all screened species of primates. Based on these 

results, there is an ancient evolutionary relationship between epsilonretroviruses and 

primates. As these viruses once had the potential to infect primates and are currently 

widespread in fish, this result raises questions about the pathogenic potential of these 

viruses. 

Many other ERVs were identified in primates, rodents and related species and we 

propose a classification scheme for these viruses and use this scheme as a basis to 

explore the ERV content of these hosts. Using this technique, previously unknown 

ERVs which are recombinant and which have the potential to produce active viral 

particles have been identified.
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Scope of Thesis 

Chapter 1. Introduction 

 

1. 1. Classification, Structure and Life Cycle of Exogenous Retroviruses 

1. 2. Exogenous Retroviruses, Disease and Host Defences 

1. 3. Endogenous Retroviruses 

Endogenous retroviruses (ERVs) are retroviruses which have, by chance, at 

some point in their evolutionary history, integrated into a germline cell and 

therefore become an inherited part of the host genome. ERVs usually lose their 

pathogenicity over time but fragments of ERVs can remain visible in the 

genome for many millions of years. Chapter 1 provides a review of the current 

literature on retroviruses, with a particular focus on endogenous retroviruses, 

and an outline of the aims of this thesis. 

 

Chapter 2. Materials and Methods 

 

2. 1. Genome Screening for ERVs 

2. 2. Parsing Output 

2. 3. Phylogenetic Analysis 

2. 4. Characterisation of ERVs 

2. 5. Host Phylogeny 

The first focus of this project was the development of a pipeline able to quickly 

and comprehensively characterise the ERV content of mammalian genomes. 

Various techniques used for genome-wide screening, clustering large numbers 

of sequences, identifying degenerate genetic material and characterising the 

evolutionary history of this material are reviewed in Chapter 2 and appropriate 

methodology is selected, tested and refined.  
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Chapter 3. Overview of Results 

 

3. 1. Raw Output and Quality Control 

3. 2. Clustering 

3. 3. Intact ERVs 

Using this pipeline, the 15 primate genomes which have been sequenced to 

date were screened for ERVs and their ERV content identified and 

characterised. Rodents have abundant ERVs and cross-species transmissions 

from these hosts are common, therefore rodents were also screened in order to 

identify insertions which they may have transmitted to primates. Rodents and 

primates form a phylogenetic group with the Lagomorphs (rabbits and hares) 

and the tree shrews, which were also screened to allow comparisons between 

host and ERV phylogenies. The overall distribution of ERVs in these hosts was 

then examined and is discussed in Chapter 3.  

 

Chapter 4. Genus-by-genus Analysis 

4. 1. Host Phylogeny 

4. 2. Overview 

4. 3. Gammaretroviruses 

4. 4. Epsilonretroviruses 

4. 5. Spumaviruses 

4. 6. Alpharetroviruses 

4. 7. Betaretroviruses 

4. 8. Lentiviruses 

 

Of the large number of ERVs identified in this study, several groups were of 

particular interest. These were previously unidentified ERVs, ERVs with 

distributions or phylogenetic relationships which are inconsistent with the 

literature, ERVs of less well-studied primates (new world monkeys and 

prosimians) and insertions which may perform a role in the host or have the 

potential to produce active retroviral particles. These groups are discussed in 

each retroviral genus in Chapter 4.  
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Chapter 5. Endogenous lentiviruses in mainland African bushbabies 

provide insight into the origin of SIV. 

5. 1. Introduction 

5. 2. Materials and Methods 

5. 3. Results 

5. 4. Discussion 

Chapters 5 is presented as a research article and is an analysis of the 

endogenous lentiviruses of prosimian primates. The known endogenous 

lentiviruses were considered to be unlikely to represent all of the endogenous 

lentiviruses present in mammalian genomes, as they are found in species with 

a patchy geographic and phylogenetic distribution. Therefore, this study aimed 

to investigate the distribution of these ERVs in other hosts. Firstly, as 

endogenous lentiviruses are known in two species of lemur, a laboratory based 

approach was used to screen samples from other prosimians (where a genome 

sequence is not available) and determine the presence or absence of 

endogenous lentiviruses in these hosts. Secondly, the pipeline discussed in 

Chapter 2 was used to screen the available Euarchontoglires genomes for these 

insertions.  

 

Chapter 6. The origin and proliferation of gibbon ape leukaemia virus 

6. 1. Introduction 

6. 2. Materials and Methods 

6. 3. Results 

6. 4. Discussion 

Chapter 6 is also presented as a research article and concentrates upon the 

origin of the GALV pathogen of gibbons. This virus is widely considered to 

have originated in rodents and been transmitted to gibbons shortly before the 

GALV outbreak in the 1970s. However, little is known about this outbreak and 

the virus has not been analysed in depth since the advent of modern laboratory 

and sequencing techniques. The prevalence of this pathogen in contemporary 

gibbons and the risk it poses to these primates are poorly understood. 



 
 

4 

 

Therefore, several analyses were performed with the objective of establishing 

where this virus originated, how it spread and its current prevalence. 

 

Chapter 7. Endogenous Epsilon-Like Retroviruses in Primates 

7. 1. Introduction 

7. 2. Materials and Methods 

7. 3. Results 

7. 4. Discussion 

Chapter 7 is identical to an article accepted for publication in the Journal of 

Virology. Prior analysis of the horse genome has identified epsilon-like ERVs 

in mammalian hosts (Brown et al., 2012) (Appendix A.1), despite these ERVs 

being generally considered to be exogenous fish pathogens. A small number of 

endogenous epsilon-like insertions have also previously been described in the 

human genome (Katzourakis and Tristem, 2005, Tristem, 2000, Oja et al., 

2005). However, little detailed work has been carried out to find out how 

widespread mammalian epsilonretroviruses may be. Therefore, this chapter 

provides the first detailed analysis of epsilonretrovirus-related fragments in 

primate genomes. 

 

Chapter 8. General Discussion 

8. 1  Vector Species and Cross-Species Transmissions 

8. 2  Host Range and Recombination 

8. 3  Potentially Active ERVs 

8. 4  Comparison of Genomes 

8. 5  Relationship between ERVs and XRVs 

8. 6  Defining an ERV Group 

8. 7  Predicting ERV Diversity 

8. 8  Future Work 

8. 9  Conclusions 

Chapter  8 is a general discussion of our results in the context of the literature 

and of potential future work.  
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Chapter 1. Introduction 

This chapter provides a review of the current literature on exogenous and 

endogenous retroviruses. 

Section 1. 1 provides an overview of the XRVs in terms of their classification, 

structure and life cycle. 

Section 1. 2 provides a brief summary of the effect of some of the major 

pathogenic XRVs.  

Section 1. 3 provides an introduction to ERVs, their life cycle and their 

interactions with their hosts.  

Section 1. 4 provides a more detailed review of some of the ERVs identified in 

mammalian genomes to date 

 

1. 1. Classification, Structure and Life Cycle of Exogenous 

Retroviruses 

The Retroviridae, or retroviruses, are a family of related viruses with shared 

characteristics in terms of life cycle, morphology and genetics. Retroviruses 

are enveloped viruses with a positive sense, single stranded RNA genome, 

7,000 to 11,000 nucleotides in length (International Commitee on Taxonomy 

of Viruses, 2002). All retroviral genomes include four major protein coding 

genes: group specific antigen (gag), protease (pro), polymerase (pol) and 

envelope (env) and have flanking 5’ and 3’ long terminal repeats (LTRs) (Goff, 

2007). Some also code for further accessory proteins. The life cycle of the 

retroviruses involves reverse transcription of viral RNA into double stranded 
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DNA, which is integrated into the genome of the host and transcribed by 

cellular factors (Gifford and Tristem, 2003). This section provides a general 

introduction to the exogenous retroviruses and their life cycle.  

1.1.1. Classification 

The family Retroviridae is divided into two subfamilies and seven genera. The 

Orthoretrovirinae subfamily consists of the genera alpharetrovirus, 

betaretrovirus, gammaretrovirus, deltaretrovirus, lentivirus and 

epsilonretrovirus (International Commitee on Taxonomy of Viruses, 2002). 

The Spumaretrovirinae subfamily contains one genus, spumavirus 

(International Commitee on Taxonomy of Viruses, 2002). These classifications 

are based on morphological and structural characteristics (section 1.1.2), life 

cycle (section1.1.3), accessory genes (section 1.1.4) and genetic similarity 

(Figure 1).  
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Figure 1: The phylogenetic relationships of common exogenous retroviruses. 
Phylogenetic tree rooted on the spumaviruses showing the relationship between the 
pol gene amino acid sequences of the major exogenous retroviruses listed in RefSeq 
(Pruitt et al., 2012b)and the international committee on the taxonomy of viruses 
database (ICTVdb) (International Commitee on Taxonomy of Viruses, 2002). This tree 
was generated here to incorporate specific sequences but is consistent with the 
literature [for example (Weiss, 2006, Jern et al., 2005, Han and Worobey, 2012a)]. 
Amino acid sequences were aligned under the default settings in MUSCLE (Edgar, 
2004) and the tree generated under the RtRev model in PhyML (Guindon and 
Gascuel, 2003). 
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Retroviruses were originally classified into four types – types A to D – based 

on shape of the core, as seen via electron microscopy(Goff, 2007). Briefly, A-

type particles, now considered to be immature capsids, appear as thick shelled, 

hollow intracellular structures(Goff, 2007). B-type particles have a round, 

non-central inner core(Goff, 2007). C-type particles assemble at the plasma 

membrane and have a central, spherical core(Goff, 2007). D-type particles 

assemble in the cytoplasm and have a cylindrical core(Goff, 2007). Type A is 

no longer considered to be a separate morphological type. Type C particles are 

typical of alpha-, gamma-, epsilon- and deltaretroviruses and types B and D 

are seen in betaretroviruses (Table 1). Lentiviruses and spumaviruses have 

their own unique core types, lentiviruses have cylindrical or conical cores while 

spumaviruses have a spiked surface and a central, uncondensed core (Goff, 

2007) .  
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Table 1: Core morphologies for each genus of retrovirus and electron micrographs 
of mature particles from example species.  
All images from Bannert et al. (2010). 

Genus Particle Type Example 

 

Alpha C 

 

Avian leukosis virus 

Beta B or D  

 

Mouse mammary tumour 
virus (B type) 

Gamma C 

 

Murine leukaemia virus 

Delta C  

 

Bovine leukaemia virus 

Epsilon C    

 

Lenti Lenti 

 

Simian immunodeficiency 
virus 

Spuma Spuma 

 

Simian foamy virus 
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1.1.2. Structure 

1.1.2.1. Viral Particles 

All mature exogenous retroviruses form 100 to 150nm enveloped particles 

(Bannert et al., 2010). The viral core contains two copies of the RNA genome 

of the retrovirus, which is protected from degradation by nucleocapsid (NC) 

proteins (Figure 2). The core also encloses the viral enzymes protease (PR), 

reverse transcriptase (RT) and integrase (IN) (Goff, 2007)(Figure 2). The core 

is surrounded by a protein capsid (CA) (Goff, 2007). The viral particle is 

enclosed in a host-derived lipid bilayer envelope, studded with viral 

glycoproteins with two subunits, the transmembrane (TM) and surface (SU) 

units (Bannert et al., 2010) (Figure 2).  

 

 
Figure 2: Schematic diagram showing the basic structure of a retroviral particle.  
Proteins encoded by gag are shown in red, pol green and env blue. Adapted from 
Voisset and Andrawiss (2000). 

Surface Subunit (SU) 

Transmembrane Subunit (TM) 

Matrix (MA) 

Nucleocapsid (NC) 

Capsid (CA) 

 

Protease (PR) 

Integrase (IN) 

Reverse Transcriptase (RT) 
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1.1.2.2. Genome Structure, Genes and Proteins 

The four major retroviral genes each generate proteins which play specific 

roles in either the structure of the retrovirus or its life cycle. The genome order 

5 ’LTR-gag-pro-pol-env-LTR 3’ is completely conserved amongst known 

retroviruses (Jern and Coffin, 2008) (Figure 3).  

 

 

Figure 3: The genome structure of a simple provirus.  

 

Excluding pro, these major genes encode polyproteins which are later cleaved 

into smaller subunits (Figure 2). The gag gene encodes the CA, MA and NC 

proteins(Goff, 2007). As well as forming structural components of the virion, 

these proteins are involved in assembly and packaging of newly formed 

retroviral particles(Goff, 2007). Gag ranges in length from less than 1200 bp 

(bp) to almost 2000 bp (Bannert et al., 2010). Pro encodes the viral enzyme 

PR, which is involved in cleaving viral polyproteins into their separate 

subunits and is approximately 700 bp in length(Goff, 2007). Pol encodes two 

enzymes, RT and IN. RT catalyses the transcription of viral RNA into DNA and 

IN the integration of viral cDNA into host DNA. Pol genes range in length from 

2500 to 3500 bp. Env encodes the SU and TM glycoproteins of the retroviral 

envelope and is approximately 1500 to 3000 bp in length(Goff, 2007). SU is 

involved in receptor binding and TM in membrane fusion (Goff, 2007). 

Complex retroviruses also have various accessory genes coding for additional 

proteins, the function which will be discussed in section 1.1.4.  

The strategy used to generate multiple proteins from short retroviral genomes 

depends on the genus. Gag, pro and pol, or subsets of this group, are often 

translated as single fusion proteins and later cleaved (Goff, 2007) (section 
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1.1.3.8). Multiple proteins, especially accessory proteins, are often the product 

of subsections of the same DNA sequence in different reading frames (section 

1.1.4). 

1.1.2.3. Long Terminal Repeats 

Retroviral genomes are flanked by LTRs. On integration, these regions are 

identical to each other and each LTR consists of three regions – untranslated 

3’ (U3), repeat (R) and untranslated 5’ (U5) (Lenasi et al., 2010). In an 

unintegrated RNA retrovirus U5 is found only at the 5’ end and U3 at the 3’ 

end, as these regions are duplicated during reverse transcription (section 

1.1.3.4). Many elements regulating transcription of integrated retroviruses are 

in the LTRs. The same regulatory structures are present in both LTRs but the 

majority of retroviruses use the 5’ LTR for transcription initiation and the 3’ 

LTR for termination (Bannert et al., 2010).  

After integration, the 5’ LTR has the structure 5’-U3-R-U5-3’. The U3 region 

begins with a highly conserved dinucleotide, the att site, used as an 

attachment site during integration, at the far 5’ end (Bannert et al., 2010). U3 

is the promoter region for the retrovirus, so its main role is transcription 

initiation. It incorporates the TATA box, to which cellular RNA polymerase II 

(RNAPII) binds, plus several other transcription factor binding sites (Bannert 

et al., 2010). When retroviral DNA is transcribed by the host, a 5’ cap is added 

to a specific site at the 3’ end of U3, while the remainder of the 5’ U3 is not 

transcribed . The 5’ untranslated region (UTR) runs from this point, through R 

and U5 to the AUG start codon at the 5’ end of gag (Bannert et al., 2010). The 

TATA box marks the boundary between the U3 and R regions (Bannert et al., 

2010). The region between R and the start codon of gag is known as the 5’ 

leader region and contains the majority of regulatory elements involved in 

transcription, reverse transcription and packaging (Bannert et al., 2010). The 

trans-acting responsive (TAR) element binds to accessory proteins, increasing 

the speed of RNAPII and preventing premature termination (Bannert et al., 
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2010). The polyadenylation site, usually adenylated only in the 3’ LTR, marks 

the boundary of R and U5 (Bannert et al., 2010). U5 includes the primer 

binding site (PBS), which binds to a complementary cellular transfer RNA 

(tRNA) during reverse transcription (Bannert et al., 2010) (section 1.1.3.4) and 

the packaging signal (Psi) sites, which increase the efficiency of RNA 

packaging into virions (Bannert et al., 2010) (section 1.1.3.9).  

The 3’ LTR is predominantly involved in transcription termination and has the 

same 5’-U3-R-U5-3’ structure as the 5’ LTR after integration. The transcript 

terminates with the poly(A) tail, which is added at the poly(A) loop 

downstream of the polyadenylation signal, a conserved sequence in the 3’ R 

region (Bannert et al., 2010). The terminus of the 3’ LTR is an att site, 

mirroring the 5’ LTR (Bannert et al., 2010). 
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Figure 4: The structure of the 5’ and 3’ LTRs of an integrated complex retrovirus.  
Structural components are labelled with the stage of the life cycle they are involved 
in: integration, transcription, reverse transcription or packaging. The green line 
represents the 5’ leader region, the red line the untranslated region and the blue line 
the LTR. Adapted from Balvay et al. (2007) and Bannert et al. (2010).  
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1.1.3. Life Cycle 

1.1.3.1. Receptor Binding 

The life cycle of all retroviruses begins when the SU subunit of the Env protein 

interacts with a receptor on the surface of a cell (Goff, 2007) (Figure 5A). In 

order for this to occur, the virus needs to reach the receptor. For murine 

leukaemia virus (MLV), HIV and avian leukaemia virus (ALV) this has been 

shown to involve protrusions from the cell surface called filopodia, which 

“pick” viral particles and pull them towards the cell body for fusion (Lehmann 

et al., 2005). Receptor specificity is determined by a region of the N-terminus 

of the SU. A wide range of cell surface molecules can be used as receptors 

(Goff, 2007). (Sommerfelt, 1999) 
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Figure 5: Stages of the retroviral life cycle.  
A) Receptor binding, the retrovirus particle binds to a receptor on the host cell 
surface; B) Entry, the viral and cellular membrane fuse and the retrovirus enters the 
cell; C) Transport to the nucleus and reverse transcription, the viral core is uncoated 
and its RNA genome (red) is reverse transcribed to form double stranded DNA (blue); 
D) nuclear import, the retrovirus enters the nucleus via the nuclear pore; E) 
integration, the retrovirus is incorporated into the host genome (orange); F) RNA 
synthesis, mRNA copies of the retroviral genome (purple) are generated by cellular 
factors and selectively spliced; G) translation, mRNA transcripts are translated into 
polyproteins: Gag (red), PR (pink), Pol (green) and Env (blue). Env is localised to the 
plasma membrane; H) assembly, budding and release, Gag, PR and Pol accumulate at 
the cell membrane and co-opt a host pathway to bud out as immature virions; I) 
maturation, polyproteins are cleaved by PR and the virion undergoes various 
structural changes to form a mature virus. Adapted from Goff (2007), Bannert et al. 
(2010), Engelman et al. (2010), Göttlinger and Weissenhorn (2010). 
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1.1.3.2. Entry 

In order to infect a cell, the retrovirus needs to transfer its genome across its 

own membrane and that of the cell (Blumenthal et al., 2012). This is achieved 

either by fusion of the viral and cell surface membranes as a response to 

receptor binding (the pH independent pathway), or via receptor mediated 

endocytosis (pH dependent pathway) (Goff, 2007, Mothes and Uchil, 2010) 

(Figure 5B). Receptor binding triggers disassociation of the SU and TM 

subunits of Env, bringing a region of TM known as the fusion peptide into 

contact with the host cell membrane. This peptide induces changes in the host 

cell membrane which allow it to enter the target cell (Shchelokovskyy et al., 

2011).  

Alternatively, a number of retroviruses enter the host cell by receptor-

mediated endocytosis (Mothes and Uchil, 2010). Viruses are taken into the cell 

by endocytosis and the acidic environment in the endosome triggers fusion 

between the virus and the endosome, releasing the capsid into the cell 

cytoplasm (Miyauchi et al., 2011). 

1.1.3.3. Transport to the Nucleus and Reverse Transcription 

Once the virus has fused with the host cell, a step-by-step uncoating of the 

viral core occurs and the retroviral RNA genome is reverse transcribed into 

DNA (Figure 5C). When the viral core enters the cell, it consists of at least CA, 

NC, RT, IN, PR, some MA, and, in complex retroviruses, accessory proteins 

(Warrilow et al., 2009). CA and most of RT are usually lost before the virus 

enters the nucleus. This uncoating is not well understood, but in HIV it seems 

to involve phosphorylation of MA (Peterlin, 2002). Uncoating does not seem 

to be necessary prior to nuclear import for MLV, which enters the nucleus with 

its capsid intact (Arhel, 2010). 
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1.1.3.4. Reverse Transcription 

For most retroviruses, the majority of reverse transcription occurs between 

infection and nuclear import (Hu and Hughes, 2012). Reverse transcription 

depends on reverse transcriptase and RNase H, both of which are parts of the 

RT protein (Hu and Hughes, 2012). 

Reverse transcription begins at a cellular tRNA bound to the PBS (Figure 4) 

close to the 5’ end of the viral genome (Hu and Hughes, 2012) (Figure 6A). The 

RT enzyme then proceeds towards the 5’ end, synthesising minus strand DNA 

of the U5 and R sequences (Goff, 2007) (Figure 6B). This creates a short RNA-

DNA duplex, from which RNAse H degrades the RNA, leaving only DNA (Hu 

and Hughes, 2012). The product of this process is known as the minus strand 

strong stop DNA (Goff, 2007) (Figure 6C). The exposed R region DNA in this 

intermediate is complementary to the 3’ R region of the minus strand of RNA, 

and therefore acts as a bridge to transfer the minus strand strong stop DNA to 

the 3’ end of the viral RNA (Hu and Hughes, 2012) (Figure 6D). This is known 

as the first strand transfer (Engelman, 2010). DNA synthesis then continues in 

the 3’ to 5’ direction until a complete minus strand is generated (Hu and 

Hughes, 2012) (Figure 6E). The majority of the RNA genome is then degraded 

by RNAse H (Engelman, 2010). 

The PPT, found just upstream of the 3’ LTR, is not degraded and acts as a 

primer for plus strand DNA synthesis (Engelman, 2010). 3’ to 5’ elongation 

proceeds from here until 18 nucleotides into the tRNA primer, where a 

modified adenine residue terminates elongation (Engelman, 2010) (Figure 

6F). A second RNA-DNA duplex is produced and the RNA is degraded, leaving 

a plus stand strong stop DNA (Hu and Hughes, 2012) (Figure 6G). The 

nucleotides from the tRNA primer are complementary to the nucleotides in the 

minus strand DNA which were copied from the PBS, so these regions anneal 

together in the second strand transfer (Hu and Hughes, 2012) (Figure 6F). On 

annealing, the plus strand is elongated from the 3’ to 5’ end of the genome and 

the minus strand is elongated to incorporate the sequence of the plus strand 
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strong stop DNA (Figure 6I). This produces a double stranded DNA copy of 

the viral genome (Hu and Hughes, 2012). This DNA copy is longer than the 

original retrovirus because it contains the U3-R-U5 strong stop sequence at 

either end (Figure 6J).  
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Figure 6: Stages of reverse transcription.  
RNA is shown in purple and DNA in blue. A) the cellular tRNA (orange) binds to the 
primer binding site (PBS) near the 5' end of the viral RNA genome; B) the RT enzyme 
(green) elongates towards the 5' end of the minus strand DNA; C) this generates the 
minus strand strong stop DNA; D) the strong stop DNA is transferred to the 3' end of 
viral RNA, this is the first strand transfer; E) DNA synthesis 3' to 5' generates a 
complete DNA minus strand (blue); F) complementary sequences in the polypurine 
tract (PPT) act as a primer for plus strand DNA synthesis towards the 5' end; G) this 
forms the plus strand strong stop DNA; H) this is complementary to and anneals to 
the 3' PBS on the plus strand, this is the second strand transfer; I) elongation of the 
plus strand occurs 3' to 5' and the minus strand is elongated to incorporate the plus 
strand strong stop DNA; J) a double stranded DNA copy of the viral genome is 
produced. Adapted from Engelman (2010), Hu and Hughes (2012). 
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1.1.3.5. Nuclear Import 

Prior to integration, the DNA copy of the virus forms a complex, known as the 

pre-integration complex (PIC), with the uncoated viral core and some specific 

host proteins (Bannert et al., 2010). This complex is then imported into the 

nucleus (Bannert et al., 2010). Simple retroviruses, for example MLV, enter 

the nucleus during mitosis, when the nuclear envelope breaks down, in a 

process directed by viral proteins (Suzuki and Craigie, 2007). HIV is able to 

integrate in non-dividing cells, such as macrophages (Bukrinsky, 2004). It is 

thought that HIV virus uses the cell’s nuclear import processes to enter the 

nucleus via the nuclear pore (Bukrinsky, 2004). This may be because a 

component of the PIC contains targeting signals, known as nuclear localisation 

signals, which engage with cellular transport proteins (Bukrinsky, 2004).  

1.1.3.6. Integration 

Once a retrovirus is in the nucleus, the next step is to integrate into the DNA 

sequence of the host (Figure 5G).  

Integration into the host genome has three steps, end processing, joining and 

gap repair. In the end processing step, a dinucleotide is removed from both 3’ 

ends of the double stranded viral cDNA, exposing hydroxyl groups 

(Hindmarsh and Leis, 1999) (Figure 7A). This hydroxyl ion then hydrolyses 

the phosphodiester bond on the 3’ side of a conserved CA dinucleotide (the att 

site) near the 3’ end (Figure 4), releasing the adjacent dinucleotide and 

exposing a hydroxyl group (Engelman, 2010) (Figure 7B). In the joining step, 

this hydroxyl group is used by integrase to cut the host DNA and join it to the 

viral DNA (Engelman, 2010) (Figure 7C). The hydroxyl group attacks 

phosphodiester bonds in the host DNA and a new phosphodiester bond forms 

between the 3’ end of the virus and the host DNA, displacing one of the bonds 

in the host (Goff, 2007)(Figure 7D). The gap repair step closes the gap between 

the att site at the 5’ end of the viral DNA and the host DNA (Goff, 2007). This 
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is performed by host enzymes (Engelman, 2010) (Figure 7E). The integrated 

virus is known as a provirus (Bannert et al., 2010). The CA att sites on either 

end are conserved in newly integrated proviruses (Bannert et al., 2010). 

 

Figure 7: Stages of integration.  
A) End processing. A dinucleotide is removed from both 3' ends of the viral cDNA 
(blue) through hydrolysis of the phosphodiester bond 3' to a CA dinucleotide, by a 
water molecule from which a proton is removed by an Mg2+ ion, catalysed by IN; B) 
this leaves an exposed hydroxyl group at the 3' end of each strand; C) Joining. The 
exposed hydroxyl group is used by IN to cut host DNA (orange) and join it to viral 
DNA; D) new phosphodiester bonds form between the 3' ends of the virus and the 
host DNA; E) Gap repair. Host enzymes close the gap between the 5' end of viral DNA 
and the host DNA. Adapted from Goff (2007), Hindmarsh and Leis (1999), Engelman 
(2010). 



Chapter 1:  Introduction 
Section 1.1 Classification, Structure and Life Cycle of Exogenous Retroviruses 
 
 

23 

 

1.1.3.7. RNA Synthesis 

After integration, the life cycle of the virus reaches the “late” stage, which is 

mediated by host rather than viral enzymes (Goff, 2007). Viral DNA in the 

host genome is transcribed to produce full length viral RNA genomes (Figure 

5F). 

Transcription is initiated by factors in the promoter and enhancer regions of 

the U3 region of the LTR of the provirus (Lenasi et al., 2010). First, the host 

TATA-binding protein identifies the TATA box in the promoter and recruits 

proteins, forming a transcription factor complex which associates with 

RNAPII. The promoter also binds to transcription factors involved in the 

activation of host cells (Lenasi et al., 2010). Elongation occurs until 

transcription is terminated at the polyadenylation signal (Guntaka, 1993).  

This process generates a single pre messenger RNA (mRNA) transcript for the 

whole length of the retroviral genome(Goff, 2007). There are three possible 

fates for this transcript. First, a proportion of transcripts are directly exported 

from the nucleus and serve as the genome for progeny virions(Goff, 2007). 

Others are exported to the cytoplasm but are then translated to form Gag or 

Gag-Pol polyproteins(Goff, 2007). The remainder are spliced in the nucleus 

and translated to form Env and, in complex retroviruses, accessory proteins 

(Goff, 2007). 

1.1.3.8. Translation 

With the exception of the unspliced mRNA incorporated into new virions, 

retroviral mRNAs are translated into proteins (Figure 5G). 

The Gag precursor protein is translated from full length mRNA transcripts in 

the cell cytoplasm and later cleaved by protease (Goff, 2007). Some 

retroviruses, for example MoMLV, also express a second, longer Gag protein, a 

modification which is thought to be involved in budding (Bannert et al., 2010). 
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Pro and Pol are also translated from full-length transcripts in the cytoplasm 

(except in spumaviruses, which use a spliced mRNA).  

The abundance of Gag, Pro and Pol is determined by either translational read-

through, translational frameshifting or splicing depending on the genus of 

retrovirus (Table 2). For translational read-through, gag and pro-pol are in 

the same reading frame, separated by a stop codon(Goff, 2007). Translation 

usually stops after Gag is produced, however in 5-10% of cases an amino acid 

is inserted at the position of the stop codon, allowing translation to continue 

through the pro-pol open reading frame (ORF) and form a Gag-Pro-Pol 

polyprotein. (Goff, 2007).  In translational frameshifting, the genes are 

expressed separately in different reading frames. In alpharetroviruses and 

lentiviruses, translation normally results in a Gag protein, but in 10% of cases 

the ribosome slips back one nucleotide at a specific site near the end of the gag 

ORF, meaning it passes through the stop codon out of frame and synthesises 

the Pol protein(Goff, 2007). In beta and deltaretroviruses there are two 

frameshift sites, one between gag and pro and one between pro and pol(Goff, 

2007). Each frameshift occurs approximately 30% of the time(Goff, 2007). In 

spumaviruses, gag and pro-pol are produced from separate spliced transcripts 

(Goff, 2007).  

Unlike the other major genes, env is always expressed from a separate, spliced 

mRNA, from which gag and pol are removed as an intron(Goff, 2007). 

Translation begins at a start codon at the 5’ end of the gene, except in 

alpharetroviruses, where the start codon from the gag gene is used, after being 

brought close to the env sequence by splicing (Goff, 2007).  
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Table 2: Table showing the translational strategies for gag¸pro and pol used by 
different retroviruses.  
Abbreviations: TF, translational frameshift; TR, translational readthrough. 

Genus Strategy Details 

Alpha TF Gag and pro expressed as a single protein, pol in a separate 
reading frame. 

Beta, Delta TF Gag, pro and pol in separate reading frames, separated by 
successive frameshifts. 

Gamma, 
Epsilon 

TR Gag and pro-pol fusion in the same reading frame, separated 
by a stop codon. 

Lenti TF Gag and pro-pol fusion in different reading frames, separated 
by a frameshift. 

Spuma Spliced Pro-pol fusion expressed without gag in a separate, spliced 
mRNA. 

 

1.1.3.9. Assembly, Packaging and Release 

The next step in the viral life cycle is assembly of the newly synthesised 

proteins and the RNA genome and release of immature viral particles (Figure 

5H). Assembly of new virions is co-ordinated by subunits of the Gag 

polyprotein, and the Gag polyprotein precursor is sufficient to assemble 

immature virus-like particles (Göttlinger and Weissenhorn, 2010). 

The viral particle is then released by budding through the plasma membrane 

of the cell. There are two types of retroviral budding. In gammaretroviruses, 

epsilonretroviruses, alpharetroviruses and lentiviruses the viral capsid 

assembles during budding, so is not apparent while the virion is in the cell. In 

betaretroviruses and spumaviruses the capsid assembles in the cytoplasm of 

the host cell prior to budding (Strauss and Strauss, 2008). Env is recruited 

during budding by both groups (Strauss and Strauss, 2008). The incorporation 

of the RNA genome into the retroviral particle is known as packaging and is 

co-ordinated by interactions between the Psi element in the 5’ UTR and the NC 

subunit of Gag (Goff, 2007). These interactions are highly specific and allow 

Gag to identify full length retroviral RNA when spliced transcripts are also 

present (Jouvenet et al., 2011).  



Chapter 1:  Introduction 
Section 1.1 Classification, Structure and Life Cycle of Exogenous Retroviruses 
 
 

26 

 

Release from the plasma membrane is also co-ordinated by Gag (Pincetic and 

Leis, 2009). Specific motifs in Gag recruit host cell factors involved in 

producing vesicles in normal cells and co-opt this for viral budding (Pincetic 

and Leis, 2009).  

1.1.3.10. Maturation 

Shortly after their release from the host cell, immature retroviral particles 

undergo conformational changes to produce mature particles (Bannert et al., 

2010) (Figure 5I). First, PR is activated and cleaves Gag-Pro-Pol polyproteins 

to release mature PR protein(Goff, 2007). Gag is then split by PR into MA, CA 

and NC. MA binds to the inside of the plasma membrane and the cytoplasmic 

tail of the Env protein(Goff, 2007). CA forms a shell around the inner core of 

the virus by assembling into higher order structures(Goff, 2007). NC 

associates with the viral RNA and protects it from degradation(Goff, 2007). 

Pol is also cleaved by PR into the IN and RT subunits(Goff, 2007). Env is 

already cleaved into its SU and TM subunits while it is being transported to the 

plasma membrane(Goff, 2007). The mature virus is structurally distinct and 

more stable than the immature form(Goff, 2007). After maturation, the virus 

is able to infect new cells (Goff, 2007). 

1.1.4. Accessory Proteins 

Simple retroviruses contain only gag, pro, pol and env ORFs, while complex 

retroviruses code for further accessory proteins (Goff, 2007). 

Gammaretroviruses and alpharetroviruses have no known accessory genes. 

Accessory genes for each genus of retrovirus are shown in Table 3. Proteins 

encoded by these genes can have essential or advantageous effects on the 

retroviral life cycle and many are involved in counteracting host factors which 

otherwise limit retroviral infectivity. 
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1.1.4.1. Betaretroviruses 

Betaretroviruses are generally classified as simple retroviruses, although two 

of the most widely studied families, mouse mammary tumour virus (MMTV) 

and human endogenous retrovirus (HERV) K, encode accessory genes. 

Hayward et al. (2013b) propose that ancestral betaretroviruses were complex 

and that the simple betaretroviruses are a subgroup which later lost their 

accessory genes. 

MMTV generates the superantigen (SAg) protein via alternative splicing of the 

env gene (Holt et al., 2013a). MMTV targets B-cells and SAg expressed on the 

surface of infected B-cells stimulates specific T-cells, activating them and 

leading to recruitment of further B and T cells for MMTV to infect (Holt et al., 

2013a). Another type of alternative splicing of MMTV env produces the 

protein regulatory protein of MMTV (Rem), which is related to the HIV-1 

protein “regulator of expression of virion proteins” (Rev) and is involved in 

nuclear export (Holt et al., 2013a). HERV-K can produce two alternative 

proteins from its env gene, the Rec protein, again functioning similarly to HIV-

1 Rev and the Np9 protein via a 292 base pair deletion in Rec, which interacts 

with host pathways and is involved in tumorigenesis (Ruprecht et al., 2008). 

1.1.4.2. Lentiviruses 

Lentiviruses have a particularly high number of accessory genes. All 

lentiviruses encode the regulatory proteins transactivator of transcription 

(Tat) and Rev. All except equine infectious anaemia virus (EIAV) encode viral 

infectivity factor (Vif) (Bannert et al., 2010). The simian immunodeficiency 

viruses (SIVs) (including HIVs) encode two further proteins, viral protein R 

(Vpr) and negative factor (Nef) and sometimes additionally either viral protein 

U (Vpu) or viral protein X (Vpx) (Bannert et al., 2010) (Table 3). All lentiviral 

accessory genes are translated from separate, spliced mRNAs (Bannert et al., 

2010) (Table 3).  
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The primary role of vif appears to be in counteracting the cellular 

apolipoprotein B-editing catalytic polypeptide family 3 (APOBEC3) retroviral 

restriction factors (section 1.2.3.1). APOBEC3 restriction factors cause a large 

decrease in viral reverse transcription if the viral vif is knocked out but the 

infectivity of wild-type HIV-1 is unaffected by APOBEC3G expression (Sheehy 

et al., 2002).  

Vpr seems to enhance infection of macrophages in SIVs by facilitating nuclear 

import of the virus, although the extent of this effect varies between viruses 

and hosts (Ayinde et al., 2010). Vpx is only found in certain SIVs and is 

thought to be the result of a duplication event of Vpr (Ayinde et al., 2010). Vpx 

has a better understood role in degradation of the restriction factor SAM 

domain and HD domain-containing protein 1 (SAMHD1) expressed in 

dendritic cells, in which only Vpx positive SIVs replicate (section 1.2.3.1.) 

(Ayinde et al., 2010). In some species, Vpr may also perform this function 

(Lim et al., 2012). 

Vpu, which is specific to certain subgroups of SIVs, counteracts another 

restriction factor, tetherin (Poli and Erfle, 2010). Nef may also be involved in 

this effect in some SIVs. Nef also has other known roles, for example in 

suppression of the host immune response and in apoptosis (Poli and Erfle, 

2010). 

Tat and Rev are both regulatory proteins and neither has yet been implicated 

in interaction with a restriction factor. Both are essential for viral infectivity 

(Poli and Erfle, 2010). Tat activates transcription of integrated proviruses via 

the LTR and also seems to be involved in interactions with cell surface 

receptors and in T-cell apoptosis (Poli and Erfle, 2010). Rev is involved in 

nuclear export of viral RNA, preventing excessive splicing (Poli and Erfle, 

2010, Nakano and Watanabe, 2012).  
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1.1.4.3. Deltaretroviruses 

Deltaretroviruses encode two accessory proteins, Tax and Rex, both of which 

are regulatory proteins (McGirr and Buehuring, 2006) (Table 3). As with the 

lentiviral accessory genes, both are produced from separate, spliced mRNAs 

(Nakano and Watanabe, 2012). Tax has a similar role to lentiviral Tat, in that it 

activates transcription of the integrated virus and disrupts the cell cycle 

(Nakano and Watanabe, 2012). Rex is related to lentiviral Rev in that it is 

involved in nuclear export (Nakano and Watanabe, 2012). Although Tax and 

Tat perform similar roles, they are not homologous and work via different 

mechanisms, so cannot be replaced by each other (Nakano and Watanabe, 

2012). Rev and Rex share a minimal amount of homology but have similar 

mechanisms, and HIV-1 Rev can be functionally replaced by human T-cell 

lymphotropic virus (HTLV) Rex (Nakano and Watanabe, 2012).  

1.1.4.4. Epsilonretroviruses 

The exogenous fish epsilonretrovirus walleye dermal sarcoma virus (WDSV) 

encodes three accessory proteins, Rv-cyclin (encoded by ORF a), Orf-B and 

Orf-C (Joel and Sandra, 2010) (Table 3). Rv-cyclin and Orf-B are expressed 

from spliced transcripts while Orf-C is cleaved from full length viral mRNAs 

(Joel and Sandra, 2010). Rv-cyclin and Orf-B are involved in tumour 

development while Orf-C is involved in apoptosis tumour development and 

tumour regression. These three proteins are essential for WDSV proliferation 

and dissemination (Rovnak and Quackenbush, 2010). Snakehead retrovirus, 

another fish epsilonretrovirus, also contains three potential ORFs, but these 

have not been well characterised (Hart et al., 1996). 

1.1.4.5. Spumaviruses 

Spumaviruses encode two accessory proteins, transactivator of spumaviruses 

(Tas) and Bet (Table 3). Tas acts to increase its own production and, on 
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reaching a critical level, acts on the 5’ LTR, where it activates the promoter to 

express the main retroviral genes (Bannert et al., 2010). Tat activates Bet, 

which is not well characterised but seems to encourage viral persistence in the 

host (Bannert et al., 2010). 
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Table 3: The accessory genes and genome structure of an example of each genus of 
retrovirus.  
Each row of the genome structure diagrams represents a reading frame, dotted lines 
represent the division between genes which are transcribed together. Genome 
diagrams adapted from Bannert et al. (2010). 

Genus Type Accessory 
Genes 

Example Genome Structure 

alpha simple  

 

Rous sarcoma virus 

beta simple / 
complex 

sag, rem  

 

Mouse mammary tumour virus 

gamma simple  

 

Murine leukaemia virus 

delta complex tax, rex 

 

Human T-Cell Lymphotropic Virus 1 

epsilon complex a, b, c 

 

Walleye Dermal Sarcoma Virus 

lenti complex vif, vpr, tat, 
vpu, rev, nef 

 

HIV-1 

spuma complex bet, tas 

 

Simian Foamy Virus 1 
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1. 2. Exogenous Retroviruses, Disease and Host Defences 

Several major pathogens infecting humans and animals are retroviruses. Most 

notably, HIV affects over 30 million people worldwide and is responsible for 

approximately 1.8 million deaths per year (Central Intelligence Agency, 2013). 

A similar virus, feline immunodeficiency virus (FIV), is a major cause of 

disease in domestic cats, affecting approximately 11% of cats worldwide and 

usually progressing to feline acquired immunodeficiency syndrome (feline 

AIDS), which is fatal (Richards, 2005). Many oncogenic retroviruses are also 

known. This section provides a general introduction to some of the major 

retroviral pathogens. 

1.2.1. HIV, SIV and FIV 

SIVs (including HIV) and FIVs are major pathogens infecting old world 

primates and cats respectively. Both viruses cause disease through progressive 

immunodeficiency leading to vulnerability to opportunistic infections (Vogel et 

al., 2010). 

1.2.1.1. Naturally Infected Hosts 

SIVs tend not to result in disease in their natural primate hosts. SIVs causing 

known immunodeficiency syndromes, such as HIV-1 and HIV-2, SIV 

chimpanzee (SIVcpz) and SIV macaque (SIVmac) are all the result of cross-

species transmission events (Mansfield et al., 1995, Khan et al., 1991, Hahn et 

al., 2000, Bailes et al., 2003). For FIVs this is less well characterised but not 

all cat species with FIV infections progress to feline AIDS (Pecon-Slattery et 

al., 2008). 

Several factors are thought to be responsible for the lack of progression to 

AIDS of natural SIV infections (Pandrea and Apetrei, 2010). The old world 

monkeys naturally infected with SIVs have been exposed to the viruses for at 
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least four million years, giving the hosts a lot of time to adapt and avoid the 

deleterious effects of the viruses (Gilbert et al., 2009, VandeWoude and 

Apetrei, 2006). Many cellular restriction factors have been identified in these 

species which reduce or prevent the replication of lentiviruses in certain cell 

types and certain hosts (section 1.2.3). These restriction factors are a major 

anti-lentiviral adaptation and are likely to be largely responsible for the 

differences in SIV response in different hosts. The disease-causing cross-

species transmissions of SIV which we are currently aware of are recent, for 

example the HIV-1 outbreak is estimated to have originated in around 1920 

and SIVmac outbreaks in the 1970s (Hahn et al., 2000). Therefore, these hosts 

may not have had time to develop the kind of defences seen in the original host 

species. 

1.2.1.2. Progression to AIDS 

HIV, FIV, SIVcpz and SIVmac infections cause gradual deterioration of 

immune function, eventually leading to death of the host through 

opportunistic infections (Murphy et al., 2008, Poli and Erfle, 2010, Sellon and 

Hartmann, 2006). HIV-1 and FIV are particularly widespread within their host 

populations, have serious detrimental effects and share many characteristics. 

HIV and FIV mutate rapidly while in the host, so many different variants can 

result from a single infection (Murphy et al., 2008). This allows different cell 

types to be infected and different co-receptors to be used within the same 

infection (Murphy et al., 2008). 

In humans, HIV is usually transmitted through sexual contact, as the virus is 

present in semen and mucosal surfaces (Moir et al., 2011). It can also be 

transmitted through use of needles contaminated with infected blood, blood 

transfusions from an infected to an uninfected individual, from an infected 

mother to her foetus or to young children via breast milk (Moir et al., 2011). In 

cats, FIV transmission usually occurs through bites (Voevodin and Marx, 

2009).  
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The progression of a typical, untreated HIV or FIV infection can be broadly 

divided into four stages. First, during early infection, the virus enters the body 

and makes its way to its target cells (Moir et al., 2011). HIV-1, HIV-2 and SIVs 

can only bind to cells bearing the receptor CD4 and a co-receptor, usually a 

CXCR4 or CDR5 chemokine receptor (Reitz and Gallo, 2010). CD4 receptors 

are found on immune cells, including T-cells, macrophages and dendritic cells 

(Stevenson, 2003). FIV does not use feline CD4 as a receptor, but rather 

CXCR4, which is expressed in a large number of cell types susceptible to FIV 

infection (Sellon and Hartmann, 2006). With transmission into the 

bloodstream the HIV or FIV virus comes directly into contact with immune 

cells, while with sexual transmission it crosses the mucosal surface of the 

genital or rectal tract and enters the lamina propria layer beneath the surface, 

which is rich in resting CD4+ T-cells which have not yet been activated by 

exposure to a pathogen (Haase, 2005). These cells support viral replication, so 

the virus population slowly begins to increase (Haase, 2005). This stage tends 

to last only a few days and the virus population generally remains too low to 

activate the host immune system (Haase, 2005). The host does not display 

clinical signs of the disease during this time (Haase, 2005). 

The virus replicates in these CD4+ T-cells and spreads through the lymphatic 

system until the viral population is large enough to form a reservoir in the 

lymphoid tissue (Haase, 2005). This corresponds with the acute stage of the 

disease and begins two to four weeks after infection (Moir et al., 2011). 

Lymphoid tissue is dense in CD4+ T-cells, so once this tissue is accessed the 

virus can infect many cells in a short time and replicate very quickly (Haase, 

2005, Moir et al., 2011). It is at this stage that viraemia reaches its peak (Moir 

et al., 2011). Approximately 70% of humans infected with HIV suffer from an 

influenza-like illness during this acute phase but are rarely diagnosed with 

HIV (Fauci, 1993, Murphy et al., 2008). In FIV infected cats the acute phase 

lasts from several days to a few weeks and causes mild physical symptoms 

(Sellon and Hartmann, 2006). 
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The immune system is activated by the high viral load at this stage and the 

host generates a cellular and humoral immune response (Sellon and 

Hartmann, 2006, Fauci, 1993). The humoral immune response involves 

generation of antibodies against viral proteins (Sellon and Hartmann, 2006). 

HIV-specific CD8+ T-cell mediated immunity is also activated in the host 

(Sellon and Hartmann, 2006, Murphy et al., 2008). However, this also 

supplies new CD4+ T-cells for the virus to infect, which suppresses the 

immune response to some extent (Haase, 2005). The virus evolves quickly to 

evade the specific CD8+ T-cell mediated immune response by accumulation of 

mutations in the regions recognized by the CD8+ cells, resulting in the 

development of a population of viral “quasi-species” (Moir et al., 2011). The 

virus forms large reservoirs in the gut-associated lymphoid tissue and lymph 

nodes consisting of latently infected cells and cells with low level viral 

propagation.  

The presence of these reservoirs, the rapid evolution of the virus and 

suppression of the immune system by the virus mean that the virus is never 

fully cleared by the host immune system (Moir et al., 2011). However, 

activation of the immune system does decrease the viral load and most 

leukocytes return to their normal levels, with the exception of CD4+ T-cells, 

which remain moderately reduced (Fauci, 1993). This occurs over several 

months, until the virus reaches its set point, an equilibrium at which low level 

virus replication occurs while the immune system is chronically activated, with 

a low, relatively stable virus population (Moir et al., 2011). At this equilibrium, 

the host enters the asymptomatic phase of infection and generally appears 

healthy. This phase can last between six months and twenty years in humans 

(Murphy et al., 2008, Sellon and Hartmann, 2006). 

Although the host appears healthy during this phase, it is accompanied by 

gradual progressive disruption of normal immune function (Sellon and 

Hartmann, 2006, Murphy et al., 2008). This is partly due to the ongoing 

depletion of CD4+ T-cells by the virus. The combination of gradually 



Chapter 1:  Introduction 
Section 1.2 Exogenous Retroviruses, Disease and Host Defences 
 

 

36 

 

decreasing CD4+ T-cell populations and general immune disruption continue 

until the host has few remaining CD4+ T-cells. 

At this point, the host reaches the terminal phase of infection, referred to as 

AIDS (Murphy et al., 2008, Sellon and Hartmann, 2006). At this stage, 

various opportunistic infections can occur, these can be viral, bacterial, 

protozoal and fungal (Sellon and Hartmann, 2006). These result in a wide 

range of clinical symptoms (Sellon and Hartmann, 2006).  

1.2.1.3. Treatment 

HIV infection is currently generally considered to be irreversible but can be 

managed with anti-retroviral therapy (ART). There are currently five main 

categories of ART: nucleoside/nucleotide RT inhibitors (NRTIs), non-

nucleoside RT inhibitors (NNRTIs), protease inhibitors (PIs), integrase 

inhibitors (IIs) and entry inhibitors (CCR5 agents and fusion inhibitors). 

(Kanters et al., 2014). Very briefly, NRTIs are incorporated into the viral DNA 

during reverse transcription, preventing further transcription. NNRTIs, PIs 

and IIs bind to RT, protease and integrase respectively and inhibit their 

activities in the retroviral life cycle (Michael and Moore, 1999). CCR5 

inhibitors bind CCR5 HIV coreceptors on the host cell and fusion inhibitors 

bind to Env on the HIV surface, both of which prevent the interactions 

necessary for membrane fusion (Eggink et al., 2010, Michael and Moore, 

1999). Combinations of classes of ART are often used to effectively treat HIV 

(Kanters et al., 2014). ART is currently in use by more than nine million people 

worldwide (Kanters et al., 2014). In developed countries the life expectancy of 

HIV infected patients on combined ART is near-normal (Samji et al., 2013). 

However, the high mutation rate of HIV means that drug resistance mutations 

can occur (Tang and Shafer, 2012).  

Research into ART tends to concentrate on treating HIV and the majority of 

ART has been shown to be ineffective against FIV, due to differences in 
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enzyme structure between the two viruses (Schwartz et al., 2014). However, 

NRTIs can be effective against FIV (Schwartz et al., 2014). Due to cost, side 

effects and difficulty of administration these drugs are rarely used in cats and 

instead treatment concentrates on managing secondary infections (Schwartz et 

al., 2014).  

No treatment has been developed which can completely remove HIV from an 

infected patient, but, in a few cases, functional cures (meaning the virus is not 

completely eradicated but the patient no longer needs ART) have been 

observed. Persaud et al. (2013) treated an infant with ART from 30 hours until 

18 months of age, at which point treatment was stopped. When the child was 

30 months old HIV-1 RNA, DNA and antibodies were undetectable in his 

system (Persaud et al., 2013). An adult patient in Germany who was HIV-1 

positive and suffered from acute myeloid leukaemia was treated with a stem-

cell transplant from an individual with a specific CCR5 mutation which confers 

resistance to HIV-1 and had undetectable levels of HIV 20 months later 

without ART (Hütter et al., 2009). Finally, Saéz-Cirión et al. (2013) identified 

14 patients who started ART very soon after initial infection and continued for 

an average of three years then retained very low levels of viraemia despite 

stopping therapy (Sáez-Cirión et al., 2013). The mechanism for this is not 

clear.  

1.2.2. Oncogenic Retroviruses 

Many retroviruses are oncogenic, causing cell transformation and leading to 

excessive cell proliferation and tumours. There are three main mechanisms 

through which retroviruses can cause cellular transformation – transduction, 

cis-activation of host genes and trans-activation of host genes. 
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1.2.2.1. Transducing Retroviruses 

Transduction occurs when errors in recombination lead to the replacement of 

some retroviral RNA with cellular RNA, probably as a result of errors in 

packaging and reverse transcription (Pedersen and Sørenson, 2010). If the 

acquired cellular RNA includes a proto-oncogene (a normal cellular gene 

which has the potential to transform cells when overexpressed or altered) it 

can be mutated, or overexpressed by strong viral promoters, leading to 

transformation of cells with modified virus (Burmeister, 2001, Pedersen and 

Sørenson, 2010). Transducing retroviruses are also known as “rapidly 

transforming viruses” because they only require a short incubation period 

(Burmeister, 2001).  

There are many transducing retroviruses. The first to be discovered was Rous 

sarcoma virus, in which the src gene acts as a proto-oncogene (Weiss and 

Vogt, 2011). src encodes a tyrosine kinase which affects cellular signalling and 

increases cell division, leading to transformation. In primates, woolly monkey 

sarcoma virus (WMSV) includes the transforming gene v-sis, a growth factor, 

which is constitutively expressed in its proviral form but only transiently 

expressed in normal cells and therefore leads to transformation (Doolittle et 

al., 1983). Acquired cellular genes sometimes replace an essential part of the 

viral RNA, meaning the virus is defective and co-infection with a second 

retrovirus is needed for propagation (Weiss and Vogt, 2011). 

1.2.2.2. Cis-Activating Retroviruses 

Cis-activation of host genes occurs when a retrovirus is inserted close to a 

cellular proto-oncogene, which can therefore be activated by viral promoters 

or enhancers (Burmeister, 2001). This is usually the route through which 

simple retroviruses become oncogenic (Burmeister, 2001). Cis-activating 

retroviruses are also known as non-acutely transforming retroviruses 

(Pedersen and Sørenson, 2010).  
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MMTV is an important example of a cis-acting retrovirus (Burmeister, 2001). 

It acts via activation of proto-oncogenes, particularly the fibroblast growth 

factor (Fgf) family and Wnt1, which show significant overexpression in MMTV 

tumours (Theodorou et al., 2007). Typically, both Fgf and Wnt1 are found 

close to MMTV integration sites in MMTV-infected mice (Ross, 2010). 

Enhancer sequences in the LTRs of MMTV act on the promoters of Wnt1 and 

Fgf genes, disrupting the regulatory controls normally in place during 

development and allowing transformation to occur (Callahan and Smith, 

2000, Pedersen and Sørenson, 2010). 

1.2.2.3. Trans-Activating Retroviruses 

Trans-activation of host genes occurs when complex retroviruses encode viral 

proteins which act oncogenically. One important group of trans-activating 

viruses is the deltaretroviral HTLVs (Burmeister, 2001). HTLV-1 causes adult 

T-cell leukaemia (ATL) in humans (Matsuoka and Jeang, 2007). Only 6.7% of 

male and 2.1% of female carriers of HTLV-1 develop the disease (Matsuoka 

and Jeang, 2007). HTLV-1 transforms cells via transcription of virally encoded 

Tax proteins, which prevent apoptosis in infected cells and disrupt cell cycle 

checkpoints which would otherwise detect damaged ATL cells, triggering cell 

proliferation (Matsuoka and Jeang, 2007). 

1.2.3. Restriction Factors 

As retroviruses evolve they are constantly working against host mechanisms to 

minimise the damage caused by retroviral infection. One key route through 

which this is achieved is via retroviral restriction factors: proteins encoded by 

host genes which block or slow the spread of retroviral infection (Luban, 

2010). Restriction factors have been identified which act to disrupt almost 

every stage of the retroviral life cycle. The majority of research into restriction 

factor function has concentrated on HIV-1, however, it is likely that in many 



Chapter 1:  Introduction 
Section 1.2 Exogenous Retroviruses, Disease and Host Defences 
 

 

40 

 

cases these restriction factors are the product of past selection pressure from 

historical infection with other retroviruses and possibly also non-retroviruses. 

1.2.3.1. Uncoating and Reverse Transcription 

The most well-characterised and specific retroviral restriction factors appear 

to act once the virus has entered the cell but before integration can occur, 

during the uncoating and reverse transcription stages of the life cycle. Three of 

these restriction factors – the APOBECs, tripartite motif containing protein 5 

alpha (TRIM5α) and SAMHD1 appear to have played a particularly major role 

in the host specificity of retroviruses and in the evolution of viral accessory 

genes. 

The APOBEC family of genes, APOBEC1, APOBEC2, APOBEC3A to 

APOBEC3H and APOBEC4, code for proteins catalysing the deamination of 

cytosine (C) to uracil (U) in DNA and RNA (Sawyer et al., 2004, Jarmuz et al., 

2002). Several of these proteins have been shown to reduce the infectivity of 

HIV-1 and several other retroviruses when the viral vif accessory gene is either 

removed or is not present. Notably, only one human protein, APOBEC3B, 

restricts wild-type HIV-1, however this protein is not expressed in the T-cells 

and macrophages targeted by HIV-1 (Chiu and Greene, 2008). When exposed 

to HIV-1 strains lacking vif (Δvif HIV-1), there is strong restriction of 

infectivity in the presence of two human proteins, APOBEC3G and 

APOBEC3F, plus moderate restriction in the presence of APOBEC3B, 

APOBEC3C and APOBEC3DE. APOBEC3G and APOBEC3F are expressed in 

T-cells and macrophages and are thought to be the major APOBECs affecting 

HIV-1 host range and cell tropism (Chiu and Greene, 2008). 

APOBEC3G and APOBEC3F use the minus strand of retroviral DNA as a 

substrate for C to U deamination. Accordingly, MLV produced in cells 

expressing APOBEC3G has been shown to have a much higher level of plus 

strand guanine (G) to adenine (A) mutations than MLV produced in cells 

without APOBEC3G, the result of deamination from C to U in the minus 
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strand (Conticello et al., 2003) . The restriction of reverse transcription by 

these proteins has two stages (Chiu and Greene, 2008). Mariani et al. (2003) 

demonstrated that in cells expressing APOBEC3G, newly synthesised reverse 

transcripts are degraded as their APOBEC3G induced mutations reduce 

stability, which greatly reduces integration (Mariani et al., 2003). This 

instability seems to be the result of N-glycosylase activity, which removes 

uracil residues from the DNA (Zhang and Webb, 2004) (Figure 8). Secondly, 

any uracil residues which evade this degradation become G to A mutations in 

the plus strand, often resulting in inability of these transcripts to produce 

functional proteins (Zhang and Webb, 2004, Chiu and Greene, 2008) (Figure 

8).  

Given that APOBEC3 proteins cause such a severe decrease in HIV-1 

infectivity and are expressed in T-cells and macrophages, the primary targets 

of HIV-1, it is surprising that HIV-1 is able to infect humans so effectively. This 

appears to be the result of the vif accessory protein (Mariani et al., 2003) (see 

section 1.1.4.2). Cells expressing APOBEC3G infected with Δvif HIV-1 show 

minimal levels of infection, while the infectivity of wild-type HIV-1 is 

unaffected by APOBEC3G expression (Sheehy et al., 2002). Mariani et al. 

(2003) hypothesised that Vif binds to the APOBEC3G protein, forming a 

complex which prevents APOBEC3G incorporation into virions, where it 

would normally induce cytidine deamination. They found that APOBEC3G 

incorporation in virions is greatly decreased in the presence of Vif (Figure 8). 

Vif also appears to counteract APOBEC3G by triggering its degradation 

through a proteasome-dependent pathway (Conticello et al., 2003).  
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Figure 8: The impact of APOBEC3G on cells without Vif.  
Without Vif (Δvif) APOBEC3 induces C to U hypermutation in the minus strand of 
retroviral DNA. This leads to A) G to A hypermutation in the plus strand, leading to 
translation of non-functional viral proteins or B) N-glycosylase degradation of U 
residues leading to instability and degradation of reverse transcripts. In the presence 
of Vif, Vif binds to APOBEC3G and prevents its incorporation into virions, preventing 
its action on viral DNA. 

SAMHD1 is a phosphohydrolase enzyme responsible for converting 

deoxynucleoside triphosphates (dNTPs) into deoxynucleosides and inorganic 

triphosphate (Goldstone et al., 2011). Deficiencies in this gene can result in 

Aicardi-Goutieres syndrome, which results in inappropriate activation of the 

immune system (Laguette et al., 2011). The gene is highly expressed in 

dendritic and other myeloid cells, which are known to be resistant to HIV-1 

replication (Laguette et al., 2011). If SAMHD1 is silenced in these resistant cell 

lines they become susceptible to HIV-1 and accumulate viral DNA (Laguette et 

al., 2011).  

The restrictive ability of SAMHD1 appears to be partly the result of its ability 

to hydrolyse cellular dNTPs (Goldstone et al., 2011). In the presence of 

SAMHD1, the pool of dNTPs available in a cell is greatly reduced (Goldstone et 

al., 2011). As dNTPs are required for reverse transcriptase to convert RNA to 

DNA, this provides a feasible route for SAMHD1 to limit reverse transcription 

(Goldstone et al., 2011). However, SAMHD1 is only able to restrict HIV-1 if it is 

unphosphorylated at a specific residue, T592, but phosphorylation of this 

residue does not affect dNTP depletion by SAMHD1 (White et al., 2013). 
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Therefore, another mechanism must be limiting reverse transcription in this 

case, possibly direct targeting of viral RNA by SAMHD1 (White et al., 2013). 

Although HIV-1 is effectively restricted by SAMHD1, SIVs with the vpx 

accessory gene are able to replicate in dendritic cells and primary 

macrophages (White et al., 2013). This appears to be the result of the binding 

of Vpx protein to SAMHD1, which targets the protein for proteasomic 

degradation (Goldstone et al., 2011). If a dendritic cell is infected with HIV-1 

and vpx positive SIV sooty mangabey (SIVsm) the HIV-1 becomes replication 

competent, presumably as a result of the presence of Vpx (Hrecka et al., 2011). 

In some SIV strains lacking vpx, the product of the vpr gene is able to target 

SAMHD1 for degradation, however this is not the case for HIV-1 vpr (Lim et 

al., 2012). SAMHD1 is found in all primates and the proteins from different 

primates are degraded with various degrees of specificity by Vpx and Vpr 

proteins from different SIV strains (Lim et al., 2012).  

TRIM5α is a member of the tripartite motif family, a group of more than 50 

proteins containing RING domains, zinc binding domains which are typically 

involved in protein-protein interactions (Towers, 2007). The macaque version 

of this protein is thought to be responsible for a 100-fold reduction in HIV-1 

replication in macaque cells compared to human cells (Himathongkham and 

Luciw, 1996). Introduction of rhesus TRIM5α into human cells also leads to 

resistance to SIV and MLV (Stremlau et al., 2004). TRIM5α proteins seem to 

be a major determinant of the ability of the host species to restrict certain 

retroviruses and prevent their replication (Keckesova et al., 2004).  

TRIM5α acts after the virus has entered the cell but before integration 

(Towers, 2007, Gong et al., 2011). The protein binds directly to the capsid of 

the retrovirus, which accelerates uncoating and targets it for degradation 

(Kaiser et al., 2007, Stremlau et al., 2004). This involves degradation of CA 

domain of the Gag protein, which results in disassembly of the virion, reducing 

the availability of virions for subsequent stages of the viral life cycle (Sakuma 

et al., 2007, Takeuchi et al., 2013). This degradation appears to involve 
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interaction with the proteasome, as when the proteasome is inhibited, viruses 

which are otherwise blocked by TRIM5α are able to reverse transcribe, 

although they remain uninfectious (Towers, 2007). The exact mechanism of 

this interaction is not yet well understood. The interaction between CA and 

TRIM5α also appears to trigger a signalling pathway which produces a 

generalised antiviral state in the host via activation of the innate immune 

system (Pertel et al., 2011). 

Different primate species encode TRIM5α proteins with different species 

specificities, for example human TRIM5α will not restrict HIV-1 in rhesus 

macaques, but rhesus macaque TRIM5α will (Kaiser et al., 2007). HIV-2 is 

moderately restricted by human TRIM5α, which may explain its reduced 

infectivity in humans compared to HIV-1 (Takeuchi et al., 2013). This may be 

because HIV-2 was transmitted to humans from sooty mangabeys, a fairly 

distantly related primate species, while HIV-1 was transmitted from 

chimpanzees, which are much closer relatives of humans (Takeuchi et al., 

2013). This means that HIV-1 may have evolved the ability to evade the 

relatively similar chimpanzee TRIM5α in its previous host, while HIV-2 was 

only exposed to the more distantly related sooty mangabey TRIM5α (Takeuchi 

et al., 2013).  

1.2.3.2. Translation 

The Schlafen genes are a type of interferon-stimulated early response gene 

which are induced by pathogens, either directly or via interferon (Li et al., 

2012). At least one of these genes, Schlafen11, has been shown to restrict HIV-1 

(Li et al., 2012). In the presence of Schlafen11 there is a reduction in the level 

of viral proteins expressed by cells but no generalised reduction in cellular 

protein expression (Li et al., 2012). 

The restriction on HIV-1 replication by Schlafen11 appears not to affect entry 

or reverse transcription but to reduce the formation of viral particles via 

inhibition of the production of viral proteins (Li et al., 2012). The limitation of 
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this effect to viral proteins seems to be the result of exploitation of the codon 

usage bias in viral, compared to host proteins (Li et al., 2012). Normally, HIV-1 

will alter the tRNA concentrations in cells to promote viral synthesis, however, 

Schlafen11 interacts with tRNAs and prevents this, via a currently unknown 

mechanism (Li et al., 2012). 

1.2.3.3. Release 

Tetherin (encoded by the bone marrow stromal antigen-2 gene) is a 

transmembrane glycoprotein which is induced by interferon (Le Tortorec et 

al., 2011). The protein is unusual in that it is anchored to the cell membrane at 

either end, with the anchored regions connected by an extracellular domain 

(Le Tortorec et al., 2011). When expressed on the cell surface, Tetherin greatly 

reduces replication of lentiviruses lacking the vpu accessory gene, a gene only 

seen in HIV-1, SIVcpz, SIV gorilla (SIVgor) and some old world monkey SIV 

strains. Replication of HIV-1 lacking vpu in cells where this protein is stably 

expressed can be 80 to 100 fold lower than in cells not expressing the protein 

(Neil et al., 2008). This effect appears not to be specific to retroviruses, as vpu, 

an antagonist of Tetherin, also increases the release of particles of other 

viruses, such as the Ebola virus (Neil et al., 2008). 

In the presence of tetherin, particles of HIV-1 lacking vpu are synthesised as 

normal but then accumulate at the surface of host cells, due to the “tethering” 

activity of the protein (Neil et al., 2008). These virions are then internalised 

into endosome and degraded (Neil et al., 2008). The effect of Tetherin appears 

to be physical anchoring of the virion to the plasma membrane, with Tetherin 

forming cross-links between the virion and the membrane (Le Tortorec et al., 

2011). This effect depends on the topology, rather than the amino acid 

sequence of the protein (Le Tortorec et al., 2011). 

The ability of HIV-1 to replicate in human cells expressing Tetherin is the 

result of its vpu accessory gene (Le Tortorec et al., 2011). For other SIVs the 

nef and env genes are also involved (Le Tortorec et al., 2011). The interaction 
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between Vpu and Tetherin is not completely understood but appears be a 

physical interaction between the transmembrane domains of the two proteins 

(Le Tortorec et al., 2011) Vpu expression also targets Tetherin for degradation 

using ubiquitination and prevents trafficking of Tetherin to the cell membrane 

(Le Tortorec et al., 2011). In HIV-2, the Env protein antagonises Tetherin in 

much the same way as HIV-1 Vpu (Le Tortorec et al., 2011). In SIVs lacking 

vpu, the nef protein seems to reduce the availability of Tetherin at the host cell 

surface (Le Tortorec et al., 2011).

 

1. 3. Endogenous Retroviruses 

When, by chance, a retrovirus integrates into a germline, rather than a somatic 

cell, it has the potential to become an ERV (Bannert and Kurth, 2006). Any 

offspring from the cell will have the ERV as part of their genome. Once a 

retrovirus has endogenised it is subject to selection, mutation and genetic drift 

like any other genetic element and can spread through the host population to 

fixation, or be eliminated from the population entirely (Jern and Coffin, 

2008). An insertion which is deleterious to the host is unlikely to persist, but a 

neutral or advantageous insertion can increase in frequency in the population 

over time, through natural selection and random genetic drift (Bannert and 

Kurth, 2006). ERVs also have the potential to proliferate within a genome, 

through reinfection, retrotransposition in cis and complementation in trans. 

This section will describe the life cycle of ERVs, how they are controlled by the 

host and examples of ERVs which are beneficial and detrimental to the host. 
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1.3.1. Life Cycle and Evolution 

1.3.1.1. Integration 

The distribution of integration sites of ERVs is different to that of XRVs, 

probably as a result of selection against ERVs which have a strongly 

detrimental effect on the host genome (Brady et al., 2009). XRVs have various 

integration patterns, but often have an increased frequency within 

transcriptional units, while ERVs tend to be located outside of transcriptional 

units (Nellaker et al., 2012, Brady et al., 2009). This is indicative of strong 

negative selection against insertions in transcriptional units preventing their 

spread through the population (Nellaker et al., 2012). Accordingly, Brady et al. 

(2009) found that HERV-Ks in the human genome are more likely to be found 

outside of genes, while a resurrected exogenous HERV-K was more likely to 

integrate into transcriptional units, gene dense regions and regions associated 

with gene activity (Brady et al., 2009). When ERVs are found within introns, 

there tends to be a bias towards those integrated antisense to the gene 

(Nellaker et al., 2012). In mice (and most likely in other mammals) this is less 

pronounced for more recent integrations (Nellaker et al., 2012). Together, 

these results show that retroviruses which become endogenous have the same 

integration site preferences as other XRVs but that integration into non-coding 

regions confers a selective advantage (Nellaker et al., 2012).  

1.3.1.2. Proliferation 

It is advantageous for an ERV to generate as many copies of itself in the 

germline as possible (Bannert and Kurth, 2006). There are three main routes 

through which copy number can increase.  

Replication competent ERVs, retroviruses which have integrated into somatic 

cells and other XRVs can all produce active viral particles, leading to further 

integrations into the germline. This is known as reinfection. Reinfection 
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requires a fully functional virus, so there is purifying selection for all the genes 

to maintain their ORFs (Bannert and Kurth, 2006). Many families of ERV 

show evidence of consistent purifying selection on all three genes, suggesting 

that they have predominantly spread via reinfection (Bannert and Kurth, 

2006). Mutations causing stop codons cannot be transmitted via this route 

(Belshaw et al., 2004). Belshaw et al. (2004) found few shared stop codons in 

members of the HERV-K human mouse mammary tumour virus like (HML) 2 

family, which suggests that transmission of this group has been predominantly 

via reinfection. Purifying selection can also be detected by comparing the 

proportion of synonymous mutations (mutations not changing the amino acid 

sequence) and non-synonymous mutations (mutations changing the amino 

acid sequence) in a gene, as non-synonymous mutations are more likely to be 

selected against in a functioning gene (Belshaw et al., 2004). HERV-K (HML-

2) elements have an excess of synonymous mutations in all of their genes, 

including env, which again suggests that they have predominantly proliferated 

via reinfection (Belshaw et al., 2004).  

The second route through which copy number can increase is 

retrotransposition in cis (Belshaw et al., 2005b). Here, the virus uses its own 

gag and pol proteins to copy itself and invade new areas of the genome within 

the same cell (Belshaw et al., 2005b). These ERVs function in the same way as 

LTR retrotransposons. There is purifying selection on gag and pol but none on 

env, as this strategy does not require entry into new cells. Therefore the env 

gene can degenerate while gag and pol are constrained to remain intact 

(Bannert and Kurth, 2006, Belshaw et al., 2005b). Based on analysis of 31 

families of HERVs, it has been demonstrated that elements using 

retrotransposition in cis can reach substantially higher copy numbers than 

those using reinfection (Belshaw et al., 2005b). All families of HERVs with 

copy numbers greater than 200 have ratios of synonymous to non-

synonymous mutation which were inconsistent with reinfection (Belshaw et 

al., 2005b). One of these, the HERV-K (HML-3) group, showed a far higher 

proportion of non-synonymous mutations on its env gene than on gag and 
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pol, a pattern which suggests retrotransposition in cis (Belshaw et al., 2005b). 

Magiorkinis et al. (2012)looked at the relationship between the size of an ERV 

lineage (in terms of copy number) and its proliferation mechanism by detailed 

analysis of the intracisternal A-type particle (IAP) group of ERVs, found in 

basal primates, rodents and lagomorphs (rabbits and hares)(Magiorkinis et al., 

2012). The extent to which an IAP lineage has proliferated showed a 

significant positive correlation with the extent of env degradation, with most 

of the largest expansions lacking an env gene (Magiorkinis et al., 2012). The 

extent of env degeneration was not related to the age of the 

lineage(Magiorkinis et al., 2012). Magiorkinis et al. (2012)also compared 

unusually abundant lineages of ERVs in each of 38 mammalian genomes, 

described as “megafamilies”, with smaller lineages in the same genome . These 

megafamilies were responsible for an average of 80% of insertions and all but 

one appeared to have proliferated via retrotransposition in cis, as their env 

genes were highly degraded (Magiorkinis et al., 2012). Gag genes in the 

megafamilies and env genes in smaller families were not similarly 

degraded(Magiorkinis et al., 2012). These results suggest that ERV families 

tend to initially spread via reinfection but the most successful families later 

adapt and become intracellular retrotransposons(Magiorkinis et al., 2012). It 

is not clear whether the increased success of retrotransposing lineages is due 

to retrotransposition being a more efficient way to proliferate than reinfection, 

if the lack of env on the cell surface prevents activation of the host immune 

system or if loss of env, preventing reinfection, decreases the fitness cost of 

ERV proliferation, either by direct harm caused by Env protein or through 

increased insertional mutagenesis in somatic cells with a reinfection strategy 

(Magiorkinis et al., 2012). 

Finally, copy number can increase via complementation in trans, with viruses 

“hitchhiking” by using transcripts from intact proviruses or other transposons 

to provide the proteins they need to replicate (Magiorkinis et al., 2012, 

Belshaw et al., 2005b). This does not introduce purifying selection on any gene 

in the hitchhiking virus (Belshaw et al., 2005b). However, certain regulatory 
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motifs within the LTR are required for viral packaging (Belshaw et al., 2004). 

This route is less common than the other two proliferation mechanisms, 

possibly because it requires two related insertions to be expressed 

simultaneously in the same cell (Magiorkinis et al., 2012, Belshaw et al., 

2005b). The most abundant subgroup of the HERV-H family of ERVs appears 

to have proliferated via complementation in trans (Belshaw et al., 2005b). 

Members of this subgroup share several large deletions and seem to have used 

proteins from related, intact HERV-H elements to proliferate through the 

genome (Belshaw et al., 2005b).  

1.3.1.3. Degeneration 

Unless there is purifying selection maintaining the function of a proviral gene, 

it will lose its ability to produce active proteins over time, accumulating 

mutations at the host mutation rate (Katzourakis et al., 2005). Almost every 

ERV in the human genome has inactivating mutations (Belshaw et al., 2004). 

Mutations are also acquired during the reverse transcription process in 

reinfection and retrotransposition (Katzourakis et al., 2005) and induced by 

host restriction factors such as APOBEC3G (section 1.2.3).  

ERV coding sequences can also be lost by recombinational deletion (Belshaw 

et al., 2007). LTRs provide regions of high sequence similarity within the host 

genome , which can lead to recombination between these regions, removing 

the central coding region (Belshaw et al., 2007). The remaining sequence is 

known as a solo-LTR. Recombinational deletion of ERVs is common and solo-

LTRs are far more numerous in host genomes than intact sequences (Belshaw 

et al., 2007).  



Chapter 1:  Introduction 
Section 1.3 Endogenous Retroviruses 
 
 

51 

 

1.3.2. Host Control of ERVs 

1.3.2.1. Control of Transcription 

Despite their degeneration, ERVs often continue to be transcribed by cellular 

factors in the host. As for XRVs, the transcription of ERVs is initially 

controlled by regulatory sequences in the U3 region of the 5’ LTR (see 

section1.1.2.3) (Schön et al., 2001). However, Nellaker et al. (2006) observed 

transcription of HERV-W elements with absent or truncated 5’ LTRs in cell 

lines and in vivo, suggesting that promoters outside the 5’ LTR must direct 

expression of these elements. The transcribed elements were more likely than 

other HERV-Ws to be found within intronic regions of host genes, so may be 

transcribed by host regulatory promoters (Nellaker et al., 2006). Horse ERVs 

have also been shown to be more likely to be transcribed if they fall within 

introns (Brown et al., 2012). 

Over time, depending on the position of the ERV and its effect on host fitness, 

the host can prevent transcription of the ERV using epigenetic modifications, 

such as DNA methylation and histone acetylation, of the 5’ LTR. A selectively 

neutral insertion is likely to assume into the epigenetic state of the 

surrounding sequence over time (Reiss and Mager, 2007). If the insertion has 

a positive or negative effect this changes, for example the LTR of syncytin-1, an 

ERV env gene which has taken on a role in host placental development 

(section 1.3.3.1), has lower levels of DNA methylation in placenta-derived cell 

lines (Reiss and Mager, 2007). Rebollo et al. (2012) found a higher incidence 

of hypermethylation in the 5’ LTRs and hypomethylation in the 3’ LTRs of 

mouse ERVs and Laska et al.(2013) found that the transcription of HERV-Fc1 

was greatly increased on treatment with a demethylating agent and decreased 

by remethylation. Histone acetylation was also shown to be involved, with 

induced hyperacetylation causing increased HERV-Fc1 expression (Laska et 

al., 2013). As the host controls epigenetic modifications, changes in the cell can 

result in changes in these modifications which alter ERV transcription (Laska 
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et al., 2012). DNA from tumour cells often has altered DNA methylation 

(Ehrlich, 2002), which may partly explain the differences in ERV transcription 

profiles between normal and cancer cells (Stauffer et al., 2004).  

ERVs transcription can also be affected by the activity of other transposable 

elements. For example, integrated HERV-W “pseudogenes” have been 

identified, which are structurally similar to retroviral mRNA, with a polyA tail, 

but lack normal retroviral structure and do not have intact LTRs (Pavlíček et 

al., 2002). As LTRs regenerate during normal retroviral reverse transcription 

(section 1.1.3.4) these are proposed to be generated by reverse transcriptase 

from LINE elements (Pavlíček et al., 2002). This hypothesis is strengthened by 

the presence of direct repeats of variable length around the insertions, which is 

characteristic of LINE activity (Pavlíček et al., 2002).  

As well as internal factors, the transcription of ERVs is controlled to some 

extent by external stressors, such as infection. Some of the pathogenic effects 

of ERVs may result from activation of ERVs by microorganisms. Young et al. 

(2012) investigated the role of immunity in control of ERVs by comparing ERV 

expression in wild-type mice with B and T-cell deficient mice and found that 

increased bacterial colonisation in immunocompromised mice resulted in 

increased ERV transcription (Young et al., 2012). One ecotropic MLV locus, 

Emv2, showed particularly elevated expression, shown to be the result of 

repair to a mutation in the pol region which inactivates this MLV locus in wild-

type mice, by recombination with another ERV locus with a functional pol 

gene (Young et al., 2012). This suggests that antibodies are involved in 

preventing the emergence of infectious eMLV recombinants when ERVs are 

induced by microbial products (Young et al., 2012). 

Nellaker et al. (2006) investigated the impact of viral infections, specifically 

herpes simplex virus I and influenza A, on expression of the HERV-W family. 

After infection with either virus there was a relative increase in gag and env 

related transcripts in some cell types (Nellaker et al., 2006). Herpesviridae are 

the viruses most commonly shown to be associated with ERV activation and 
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with multiple sclerosis (MS) (Perron et al., 2009). Therefore, it is possible that 

activation of ERVs by herpesviruses could be involved in MS pathogenesis 

(Perron et al., 2009). 

Infection with exogenous retroviruses has also been shown to affect ERV 

transcription. For example, blood plasma from HIV-1 patients contains 

significantly more HERV-K transcripts, mainly from the HML-2 group (van 

der Kuyl, 2012, Contreras-Galindo et al., 2012). There is no significant 

difference in HERV-H transcription in plasma from infected and control 

patients, so the increase in transcription does not appear to be universal across 

all HERV groups (van der Kuyl, 2012). HML-2 transcripts from a few specific 

loci predominate (van der Kuyl, 2012, Contreras-Galindo et al., 2012). There 

are several hypotheses as to how the increase in transcription at these loci may 

occur (van der Kuyl, 2012). For example, HIV-1 accessory proteins or cellular 

proteins upregulated by HIV-1 infection may specifically activate some HERV 

loci (van der Kuyl, 2012). Opportunistic infections by other pathogens as a 

result of HIV-1 induced immunosuppression may also alter HERV 

transcription (van der Kuyl, 2012).  

Parasites may also play a role in ERV activation. Frank et al. (2006) looked at 

the HERV expression profiles of cells infected with Toxoplasma gondii, the 

protozoan involved in toxoplasmosis. Transcriptional activation of members of 

various HERV families was observed (Frank et al., 2006). Again, this 

correlation suggests that HERVs are activated by T. gondii infection but could 

be the result of other factors, such as stress affecting the availability of 

transcription factors (Frank et al., 2006).  

1.3.2.2. Innate Immunity 

If ERVs retain their ability to produce active viral particles, the innate immune 

system of the host may be responsible for limiting their detrimental effect (Yu 

et al., 2012a). In mice, which have several families of active ERVs, three 
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nucleic acid recognising Toll-like receptors (TLRs) have been identified which 

are involved in ERV viraemia (Yu et al., 2012a). Loss of these genes led to high 

retroviral viraemia and the appearance of T-cell lymphoblastic leukaemia (Yu 

et al., 2012a). Experimental infection of mice with ERV-derived MLV leads to 

a TLR-dependent response (Yu et al., 2012a). These results suggest that innate 

immunity is involved in reducing the pathogenic effect of active ERVs in mice, 

a result which may also apply to other hosts with active ERV insertions. 

1.3.2.3. Restriction Factors 

Finally, the restriction factors which inhibit various stages of the exogenous 

retroviral life cycle (section 1.2.3), plus other specific restriction factors often 

show activity against ERVs and prevention of ERV activity may have played a 

part in their evolution (Stoye, 2012). It is not clear if restriction factors evolved 

predominantly to control ERVs or to control exogenous viruses which then 

became endogenous (Yap and Stoye, 2013) If restriction factors evolved as a 

consequence of ERV activity, the ERV should still be found in the host where 

the restriction factor is active, whereas if they evolved as a response to an 

exogenous virus, this virus may no longer be circulating, either in this host or 

at all (Yap and Stoye, 2013).  

Several ERVs show evidence of inactivation by the APOBEC family of proteins. 

Esnault et al. (2008) found that human APOBEC3G results in a decrease in the 

number of transposed copies of IAP and MusD elements in a human cell line. 

This appears to be due to degradation of reverse transcripts, as seen for 

exogenous viruses in the presence of APOBEC3G. Integrated copies of IAP and 

MusD also contain evidence of G to A editing by APOBEC3G, leaving mutation 

insertions which are less likely to produce functional proteins (Esnault et al., 

2008). Reconstituted HERV-K (HML-2) elements are sensitive to human 

APOBEC3F but resistant to human APOBEC3G and TRIM5α (Lee and 

Bieniasz, 2007). Relics of APOBEC3 activity are also present in endogenous 

gammaretroviruses of chimpanzees and macaques and the mutation patterns 



Chapter 1:  Introduction 
Section 1.3 Endogenous Retroviruses 
 
 

55 

 

present are consistent with the types of APOBEC which are active in each host 

(Perez-Caballero et al., 2008). Many of the stop codons in these ERVs appear 

to be the result of APOBEC activity, suggesting that APOBECs were 

responsible for their inactivation (Perez-Caballero et al., 2008). Polytrophic 

and modified polytrophic endogenous MLVs in mice also have a high 

proportion of G to A mutations, which seem to have appeared between reverse 

transcription and integration (Jern et al., 2007). This suggests that APOBEC 

proteins played a part in the inactivation of these ERVs (Jern et al., 2007). 

These results together demonstrate that APOBEC proteins can be an effective 

defence against pathogenic activity of existing ERVs.  

TRIM5α may also play a role in defence against ERV activity. The European 

rabbit (Oryctolagus cuniculus) has several copies of the endogenous lentivirus 

rabbit endogenous lentivirus type K (RELIK) in its genome, while its relative 

the pika (Ochotona princeps) does not (Yap and Stoye, 2013). Both species 

encode TRIM5α proteins but the rabbit protein is considerably more active 

against RELIK (Yap and Stoye, 2013). There is evidence of strong positive 

selection acting on the part of TRIM5α which interacts with the lentiviral 

capsid (Lemos de Matos et al., 2011). It is possible that the presence of 

endogenous RELIK in the rabbit genome provided the selection pressure to 

maintain or increase TRIM5α activity against RELIK (Yap and Stoye, 2013). 

However, the differences in activity may also indicate either that the pika was 

not exposed to exogenous RELIK or that the pika successfully defended itself 

against ancient exogenous RELIK then lost its restriction ability against this 

virus due to a lack of ongoing selection pressure (Yap and Stoye, 2013).  

1.3.3. Benefits of ERVs 

ERVs can have beneficial, detrimental or neutral effects on host fitness.  
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1.3.3.1. Capture of ERV Genes by the Host 

Genes which entered the host genome within ERVs sometimes take on an 

essential role in the biology of their host. This is probably most well-

documented in the case of “syncytin” proteins captured by placental mammals. 

Env proteins expressed on the surface of infected host cells can allow them to 

fuse with nearby cells with the right receptors and form large, multinucleated 

cells known as “syncytia” (Lavialle et al., 2013). This fusogenic function has 

allowed retroviral env genes to be co-opted on several independent occasions 

by mammalian hosts for a role in cell-to-cell fusion in formation of the 

syncytiotrophoblast, the multinucleated syncytial layer which separates 

maternal and foetal tissues in pregnancy (Palmarini et al., 2004, Lavialle et al., 

2013).  

It has been hypothesised that this capture of env genes was essential for the 

transition between egg-laying and placental mammals during vertebrate 

evolution (Lavialle et al., 2013). Placentas have convergently evolved 

frequently in different groups of organisms and appear to have originated 

more times than any other organ, with independently acquired ERVs selected 

for convergent roles in placental development (Palmarini et al., 2004, Dunlap 

et al., 2006). Env proteins are required for placental development in at least 

some members of the primates (Cáceres et al., 2006), rodents (Dupressoir et 

al., 2005), lagomorphs (Heidmann et al., 2009), carnivores (Cornelis et al., 

2012) and ruminants (Cornelis et al., 2013) (see section 1.4.3.9 for discussion 

of origins of syncytins in different hosts). However, these syncytins appear to 

have originated considerably more recently than the appearance of placental 

mammals, approximately 170 million years ago (Lavialle et al., 2013). It has 

been proposed that placental mammals emerged as the result of capture of a 

syncytin from an ancient ERV but that the function of this syncytin has been 

repeatedly replaced throughout the mammalian lineage with new envs from 

more modern ERVs (Lavialle et al., 2013). If this is the case, syncytins should 

be present in all placental mammals and, accordingly, candidate syncytin 
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genes had been identified in at least all mammals screened prior to 2012 (data 

is unavailable after this date) (Cornelis et al., 2012). The hypothesis predicts 

that “lost syncytins” will be present in mammalian genomes, env genes which 

used to encode syncytins but were replaced (Lavialle et al., 2013). This 

hypothesis is consistent with the wide diversity of placental structures seen in 

placental mammals, as these could be the result of novel syncytin acquisitions 

(Lavialle et al., 2013).  

1.3.3.2. Protection Against Other Retroviruses 

It is also possible for hosts to protect themselves against retroviral attack using 

existing endogenous insertions (Jern and Coffin, 2008).  

One mechanism through which this can occur is the expression of endogenous 

retroviral Env proteins on the cell surface, which block receptors which would 

otherwise allow related exogenous viruses to enter (Ikeda and Sugimura, 

1989). This mechanism is seen with the murine Fv4 gene, a truncated 

endogenous MLV which expresses Env, which binds to receptors and blocks 

ecotropic MLV infection (Ikeda and Sugimura, 1989). Two other env genes 

have been similarly adopted by mice, the Rmcf and Rmcf2 Env proteins block 

entry by polytrophic MLVs (Wu et al., 2005). This mechanism is also seen in 

chickens, in which the Env protein expressed by endogenous ALV can block 

receptors and prevent binding of exogenous Rous sarcoma virus (Palmarini et 

al., 2004). In sheep, receptor interference is one route through which 

endogenous Jaagsiekte sheep retrovirus (JSRV) restricts exogenous JSRV 

(Palmarini et al., 2004).  

Proteins derived from ERVs can also block invading retroviruses later in the 

retroviral life cycle as demonstrated by the Fv1 gene of mice, which is derived 

from an ERV-L gag (Pincus et al., 1971, Best et al., 1996). This gene can 

restrict various exogenous retroviruses, including foamy viruses, EIAV and 

HIV-1 (Yap et al., 2014). Fv1 protein binds to CA of invading retroviruses after 
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entry and prevents nuclear entry (Yap et al., 2014).  In sheep, enJSRV restricts 

exogenous JSRV after integration and transcription but before release of viral 

particles (Palmarini et al., 2004). The mechanisms through which these 

ancient ERV proteins block exogenous retrovirus infection are not well 

understood.  

Finally, ERVs have been demonstrated to protect against exogenous 

retroviruses through disruption of the host immune system. The MMTV sag 

gene (section 1.1.4.1) provides an example of this mechanism. MMTV requires 

a pool of B-cells and of T-cells with an appropriate receptor to proliferate in 

the host (Holt et al., 2013a). Mice with an active endogenous MMTV SAg 

during embryonic development will delete these T-cells during their deletion 

of “self” antigens as the immune system develops (Holt et al., 2013a). This 

means the reactive pool of these T-cells required for successful exogenous 

MMTV infection is not present, so these mice are less vulnerable to exogenous 

MMTV (Holt et al., 2013a).  

1.3.3.3. Gene Regulation 

Retroviral promoters can have powerful effects on the expression levels of 

nearby genes. For example, the expression level of the agouti coat colour gene 

in mice is governed by the degree of methylation of the LTR of an upstream 

retroviral insertion (Reiss and Mager, 2007). Depending on the expression 

level of the insertion, mouse coat colour can vary from yellow through 

intermediate colours to wild-type (Reiss and Mager, 2007). In general, the 

regulatory effects of retroviruses seem to be detrimental to their hosts, as 

Rebollo et al. (2012) looked at the location of ERVs in relation to host genes 

and found evidence of negative selection pressure against ERVs close to the 5’ 

and 3’ ends of genes.  

However, there are examples of regulation of host genes by ERV promoters 

having beneficial effects for the host. For example, ERV insertions provide the 
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initiation sites for transcription of salivary amylase genes in humans and other 

apes (Meisler and Ting, 1993, Stoye, 2012, Breslin 2013). Without these ERV 

insertions, it appears that these genes would only be expressed in the pancreas 

and not the saliva (Meisler and Ting, 1993, Stoye, 2012). Production of salivary 

amylase allows “predigestion” of starch in the diet and is advantageous for 

species with high starch diets (Breslin). This gene is present in a high copy 

number in humans and may have contributed to the move from a hunter-

gatherer lifestyle to development of agriculture (Breslin). 

  

1.3.4. ERVs and Disease 

ERVs also have detrimental effects on their hosts and roles have been 

proposed for ERVs in many human and veterinary diseases.  

1.3.4.1. Active ERVs 

The most obvious mechanism through which an ERV can cause disease is 

through the production of active viral particles. However, any insertion which 

is detrimental to the host is subject to strong negative selection so there are 

few ERVs which consistently produce pathogenic viral particles. 

The exceptions to this are very new insertions and recombinant viruses, which 

have not been subject to selection over an extended period. For example, in the 

AKR strain of mice, a high incidence of thymomas is linked to the presence of 

an endogenous ecotropic MLV (Stoye et al., 1991). The disease causing agents 

in these mice are viruses formed by recombination between these ecotropic 

MLVs and endogenous polytrophic MLVs (Stoye et al., 1991). The recently 

integrated koala retrovirus (KoRV) appears to be active and to be associated 

with neoplastic disease (Tarlinton et al., 2005). 
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1.3.4.2. Transcription and Expression 

ERVs which are not actively producing new viral particles can still be involved 

in disease in their host. Many studies have demonstrated correlations between 

transcription and translation of HERV sequences and human disease, some of 

the most significant of these will be discussed here. 

Stauffer et al. (2004) analysed the transcription patterns of intact ORFs in 

several families of HERV in normal and cancerous human tissue. HERVs were 

shown to be expressed in both tissue types, but with a significant difference in 

expression pattern (Stauffer et al., 2004). Many studies have found significant 

increases in the transcription of specific HERV groups in cancerous tissue 

compared to normal tissue. A small sample of these studies, covering 15 of the 

20 most common types of cancer diagnosed in England in 2011 (Office for 

National Statistics) are listed in Table 4. Clearly, transcriptional differences in 

HERVs exist between cancerous and normal tissue and are widespread 

amongst different types of cancer and different HERVs. However, various 

factors interacting with HERV transcription (section 1.3.2.1) may be 

responsible for these differences, for example general hypomethylation of 

cancerous tissue or differences in exposure or vulnerability to other 

microorganisms. The transcriptome of cancerous tissue is also generally very 

different to that of normal tissue, so differences in HERV transcription are not 

unexpected (Rhodes and Chinnaiyan, 2005). 

  



Chapter 1:  Introduction 
Section 1.3 Endogenous Retroviruses 
 
 

61 

 

Table 4: Common types of cancer with a reported significant increase in 
transcription of at least one HERV family. 
Cancer HERV References 

Breast HERV-K (HML-2) Wang-Johanning et al., 2001, 
Contreras-Galindo et al., 2008 

Ovarian HERV-K (HML-2), HERV-E, ERV3 Wang-Johanning et al., 2007 

Prostate HERV-E, HERV-K (HML-2), HERV-H Wang-Johanning et al., 2003, Goering 
et al., 2011, Stauffer et al., 2004 

Colon HERV-H Liang et al., 2012, Wentzensen et al., 
2007 

Lung HERV-R Andersson et al., 1998 

Melanoma HERV-K (HML-2) Schmitt et al., 2013, Singh et al., 2013 

Lymphoma HERV-K (HML-2) Contreras-Galindo et al., 2008 

Bladder HERV-H Wang et al., 2006, Stauffer et al., 2004 

Kidney HERV-E Cherkasova et al., 2011 

Brain HERV-K, HERV-H, HERV-W Balaj et al., 2011 

Pancreas HERV-H Wentzensen et al., 2007 

Leukaemia HERV-K (HML-2) Depil et al., 2002 

Uterine HERV-K(HML-2) Wang-Johanning et al., 2007 

Stomach HERV-H Stauffer et al., 2004, Wentzensen et 
al., 2007 

Oral HERV-K (HML-2) Stauffer et al., 2004 
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The presence of ERV proteins can provide a more convincing link between 

ERVs and cancer. HERV proteins have been detected in tissue from germ cell 

tumours, melanoma, breast cancer, ovarian cancer, endometrial carcinoma 

and neuroblastoma, amongst others (Ruprecht et al., 2008). These cancers all 

also show significantly increased HERV transcription (Table 4). 

Testicular germ cell tumours show increased HERV-K (HML-2) transcription, 

express HERV-K (HML-2) proteins and sometimes release defective viral 

particles (Moyes et al., 2007, Ruprecht et al., 2008). Patients with these 

tumours have a specific immune response against HERV-K (HML-2) proteins 

(Moyes et al., 2007, Ruprecht et al., 2008). HERV-K Rec can induce testicular 

carcinoma in mice and Np9 interacts with the Notch signalling pathway, which 

is involved in cancer (Kaufmann et al., 2010). Rec and Np9 proteins of HERV-

K have been shown to bind to the promyelocytic zinc finger, a protein which 

acts as a transcriptional repressor in spermatogenesis (Moyes et al., 2007). 

This binding may impair the function of the protein and promote cell 

proliferation, forming tumours (Moyes et al., 2007, Kaufmann et al., 2010). 

Together, these results suggest that HERV-K may be directly involved in 

tumorigensis for this particular type of cancer. 

Syncytin-1, one of the ERV Env proteins involved in placental development in 

humans (section 1.3.3) is overexpressed in tissue from breast and endometrial 

cancer (Ruprecht et al., 2008). Fusion between cancer cells and endothelial 

cells is common and can alter the behaviour of tumours and the fusogenic 

activity of Syncytin may play a role in this (Bjerregaard et al., 2006). A 

proportion of breast cancer patients present the receptor required for Syncytin 

mediated fusion on cell surfaces and inhibition of Syncytin prevents cancer-

endothelial cell fusions in breast cancer tissues (Bjerregaard et al., 2006). 

Knockout of Syncytin in endometrial cancer reduces proliferation of cells and 

cell to cell fusion (Strick et al., 2007).  

There is also debate about the role of ERV transcription in autoimmune 

disease, particularly MS (Moyes et al., 2007). Several HERVs are upregulated 
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at the site of inflammation in MS, including HERV-W, HERV-K and HERV-H 

(Moyes et al., 2007, Garcia-Montojo et al., 2013). The Env protein of a 

particular HERV-W locus, multiple sclerosis associated retrovirus (MSRV) has 

known inflammatory properties (Moyes et al., 2007, Garcia-Montojo et al., 

2013). Demyelinated lesions in MS patients show overexpression of MSRV env 

transcripts (Perron and Lang, 2010). Garcia-Montojo et al. (2013) found an 

elevated copy number of MSRV-like HERV-Ws in peripheral blood 

mononuclear cells in MS cases compared to controls. The proviral load was 

higher in more clinically severe cases (Garcia-Montojo et al., 2013). This 

suggests that MSRVs may continue to transcribe, integrate and retrotranspose 

in MS (Garcia-Montojo et al., 2013). Activation of MSRV env by herpesviruses 

may be involved in MS onset or progression (Perron et al., 2009) (see section 

1.3.2.1). 

Schizophrenia and bipolar disorder have also been hypothesised to involve 

ERVs. There have been several studies into the potential role of ERVs in 

linking environmental factors with onset of schizophrenia; environmental 

factors such as infection can induce ERV transcription (section 1.3.2.1), which 

could then activate further factors involved directly in the pathogenesis of 

schizophrenia. Perron et al. (2012) found significantly elevated HERV-W 

transcription in peripheral blood mononuclear cells from schizophrenia and 

bipolar disorder patients compared to controls. Similarly, Huang et al. (2011) 

found HERV-W env transcripts and high HERV-W reverse transcriptase 

activity in schizophrenia patients. The effect of HERV-W Env protein on the 

expression of three genes known to be associated with schizophrenia was also 

examined (Huang et al., 2011). All three of these genes produced higher mRNA 

levels in the presence of HERV-W Env. Therefore, it was proposed that 

external factors inducing HERV-W expression could activate these genes and 

allow them to express proteins involved in schizophrenia pathogenesis (Huang 

et al., 2011). Deb-Rinker et al. (1999) found an MSRV-like transcript in the 

placenta in the affected members of three pairs of monozygotic twins 

discordant for schizophrenia. Previous work suggested that schizophrenia may 
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be associated with disrupted foetal development, so the expression of this 

sequence in the placenta could potentially explain this disruption (Deb-Rinker 

et al., 1999). Also, MS, schizophrenia and bipolar disorder have all been shown 

to involve myelin impairment or inflammation, although in different areas of 

the brain, so, as all three disorders have elevated MSRV env transcription it is 

possible these transcripts play a role in this degeneration (Perron et al., 2012). 

1.3.4.3. Chromosome Disruption 

Endogenous retroviruses can also affect the host genome by providing regions 

of similar or identical genetic sequence in different areas, allowing mispairing 

and unequal crossing over to occur (Deb-Rinker et al., 1999). Kamp et al. 

(2000) demonstrated that this phenomenon may cause a microdeletion, 

known as AZoopermia factor a, on the human Y chromosome which causes 

male infertility, as the deleted region is flanked by identical retroviral 

insertions. 

 

1. 4. Endogenous retroviruses in vertebrate genomes. 

1.4.1. Overview 

Endogenisation is almost ubiquitous amongst the retroviruses, with 

endogenous examples found in six out of seven retroviral genera (only 

endogenous deltaretroviruses have not been identified). Endogenous 

retroviruses have been found in every vertebrate genome screened to date, 

including mammals, birds, reptiles, amphibians and fish. Figure 9 gives a 

broad overview of the diversity of ERVs in vertebrate genomes.  

The retroviruses are traditionally divided into classes based on sequence 

similarity, with gamma- and epsilon- retroviruses as class I, alpha- and beta- 

retroviruses as class II and spumaviruses as class III. Spumaviruses are 
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generally considered to be found in all classes of vertebrates (Kambol and 

Tristem, 2005, Herniou et al., 1998, Chong et al., 2012, Bolisetty et al., 2012). 

For the class I retroviruses, gammaretroviruses are likely to be limited to 

mammals, reptiles and birds (2009, Niewiadomska and Gifford, 2013) and 

epsilonretroviruses are generally considered to be viruses of fish and 

amphibians (Herniou et al., 1998). Class II retroviruses are divided into the 

betaretroviruses, infecting mammals, and the alpharetroviruses, infecting 

birds (Bolisetty et al., 2012). Lentiviruses have, to date, only been identified in 

mammals (Gifford et al., 2008, Gilbert et al., 2009).  

 

 

Figure 9: Pol gene phylogeny of the retroviruses showing the seven retroviral 
genera and their hosts. 
From Jern et al. (2005). 
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1.4.2. Vertebrate Evolution 

 

 

Figure 10: Overview of vertebrate phylogeny.  
Tree adapted from Meyer and Zardoya (2003), node timepoints represent the 
approximate date of the split in millions of years since the present, from Kumar and 
Hedges (1998), geologic time scale is from Walker et al. (Walker et al., 2012) using 
the standard geologic time scale colour code (Walker et al., 2012). Notable 
monophyletic groups of vertebrates are marked and labelled in blue. 

A brief overview of vertebrate evolutionary history is needed in order to 

understand retroviral evolution (Figure 10). Traditionally, vertebrates have 

been divided into mammals, birds, reptiles, amphibians and fish, based on 

similarities in morphology and lifestyle. However, this categorisation is not 

consistent with the accepted evolutionary history of these species, which is 

shown in Figure 10. The earliest major split in vertebrate evolution is believed 
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to be the division between the lineages leading to the jawless fish, hagfish and 

lampreys, and the jawed vertebrates, approximately 564 million years ago 

(Kumar and Hedges, 1998, Meyer and Zardoya, 2003) (Figure 10). The next 

split, divided the cartilaginous fish (sharks, skates and chimaeras) from other 

vertebrates (Kumar and Hedges, 1998) (Figure 10). This means the fish form a 

paraphyletic group, as there is no ancestor shared by all fish but no other class 

of vertebrates. The ray finned fish then split from the lobe-finned fish 

(coelacanths and lungfish) and tetrapods (amphibians, reptiles, mammals and 

birds) (Kumar and Hedges, 1998) (Figure 10). The earliest split within the 

tetrapods was between the amphibians and the amniotes, approximately 360 

million years ago. Within the amniotes, the reptiles are again paraphyletic, as 

the most recent common ancestor of all reptiles is shared with birds.  

 

 

Figure 11: Overview of mammalian phylogeny.  
Tree adapted from Meredith et al. (2011), node timepoints represent the 
approximate date of the split in millions of years since the present. Geologic time 
scale is from Walker et al. (Walker et al., 2012) using the standard geologic time scale 
colour code (Walker et al., 2012).  

Figure 11 provides a similar overview of phylogeny within the mammals, 

divided into five major monophyletic groups. Mammals first divided into 

marsupials, monotremes and placental mammals, then, within the placental 
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mammals, into three groups, the Afrotheria, Xenarthra and Boreoeutheria 

(Figure 11) (Meredith et al., 2011). The majority of modern mammals are 

Boreoeutheria, which split into two groups approximately 87 million years ago, 

the Euarchontoglires and the Laurasiatheria (Figure 11) (Meredith et al., 2011). 

This project concentrates on the Euarchontoglires: primates, rodents, 

lagomorphs (rabbits and hares) and tree shrews. Colugos (flying lemurs) are 

also in this superorder but no colugo has been sequenced to date. Figure 11 

includes an overview of the phylogeny of this group, with two major clades, 

containing primates and the other lagomorphs and rodents (Meredith et al., 

2011). The tree shrews are phylogenetically ambiguous and are sometimes 

considered to be closer to the rodents and sometimes to be closer to the 

primates (Martin, 2008).  
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Figure 12: Phylogeny of the major groups of primates. 
Nodes represent the age of the split in millions of years. Tree data from Arnold et al. 
(2010), dates from Perelman et al. (2011). 
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A primate phylogenetic tree is shown in Figure 12. The first division in this 

family was between the prosimian primates (lemurs, lorises, tarsiers and 

bushbabies) and the simian primates, 87 million years ago (Perelman et al., 

2011). Lemurs, living on Madagascar, form a unique group, separate from the 

other prosimians, living in mainland Africa (Perelman et al., 2011). Within the 

simian primates, the major division is between the new world primates (native 

to the Americas) and old world primates (native to Africa and Asia), around 43 

million years ago (Perelman et al., 2011). The old world primates are usually 

further divided into the apes, consisting of humans, chimpanzees, gorillas, 

orangutans and gibbons and the old world monkeys (Perelman et al., 2011). 

 

 

Figure 13: Phylogeny of the major groups of rodents and lagomorphs.  
Nodes represent the age of the split in millions of years. Tree adapted from Blanga-
Kanfi (2009), dates from Hedges et al. (2006).  
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Figure 13 shows an overview of the phylogeny of rodents and lagomorphs. 

Rodents fall into five fairly clear, monophyletic suborders (Blanga-Kanfi et al., 

2009) (Figure 13). The Scuiromorpha (squirrels and relatives) are considered 

to be the most basal group, however all five major groups seem to have 

appeared at approximately the same time (Blanga-Kanfi et al., 2009, Hedges 

et al., 2006). The Hystricomorpha can also be referred to as the “new world” 

rodents, as these species are native to south America. The lagomorphs 

(rabbits, hares, pikas) are a distinct order to the rodents (Blanga-Kanfi et al., 

2009). 

1.4.3. Gammaretroviruses 

The gammaretroviruses have predominantly been identified in mammals, with 

a few exceptions in reptiles, amphibians, birds and fish. 

Figure 14 shows some of the key groups of gammaretroviruses and how they 

relate to each other. 

 

Figure 14: The relationship between the pol genes of the major groups of 
gammaretroviruses. 
Sequences listed in Appendix B.1. Aligned using MAFFT localpair with 1000 iterations, 
tree built using PhyML under the GTR model. 
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1.4.3.1. HERV-I Group 

HERV-I elements are found in old world monkeys, apes and possibly new 

world monkeys (Perelman et al., 2011, Lee and Kim, 2006, Seifarth et al., 

2000). HERV-I-like elements appear to be unusually widely distributed 

amongst the vertebrates compared to other gammaretroviruses. Two lineages 

of HERV-I, one of which includes a full-length insertion, have been identified 

in the chicken genome (Borysenko et al., 2008, Niewiadomska and Gifford, 

2013) and related fragments isolated from the budgerigar (Melopsittacus 

undulatus) and house sparrow (Passer domestius) (Figure 14)(Martin et al., 

1997, Niewiadomska and Gifford, 2013). The two chicken gammaretroviruses 

appear to have diverged in an ancestor to modern chickens, while the 

budgerigar and house sparrow ERVs are almost certainly the result of separate 

integration events (Figure 14). The only published ERV fragment from 

cartilaginous fish (from the lemon shark Negaprion brevirostris) is also 

HERV-I-like (Martin et al., 1997, Herniou et al., 1998) (Figure 14). Similarly, 

the only known gammaretrovirus of an anapsid (lizard, snake or tuatara) 

reptile is a HERV-I like insertion in the komodo dragon, Varanus 

komodoensis (Martin et al., 1997) (Figure 14). All current estimates (e.g. (Cui 

et al., 2012, Polavarapu et al., 2006b, Polavarapu et al., 2006a, Garcia-

Etxebarria and Jugo, 2010, Lee and Kim, 2006) suggest that 

gammaretroviruses emerged well within the timescale of mammalian 

evolution and several hundred million years after the cartilaginous fish, 

reptiles and birds split from the lineage leading to humans. This means the 

HERV-I-like elements shown in Figure 14, with the exception of the two 

chicken insertions, are almost certainly each the result of independent 

transmission events from a group of retroviruses with a broad host range (Lee 

and Kim, 2006).  
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Figure 15: The phylogeny of HERV-I-like elements from birds, reptiles, cartilaginous 
fish and humans. 
Adapted from Niewiadomska and Gifford (2013). 

1.4.3.2. HERV-F/H Group and HERV-W 

 

Figure 16: The relationship between the pol genes of HERV-H and HERV-F lineages 
of HERV.  
Sequences listed in Appendix B.1. Aligned using MAFFT localpair with 1000 iterations, 
tree built using PhyML under the GTR model. 

The largest group of HERVs is the gammaretroviral HERV-H / HERV-F 

superfamily (Bannert and Kurth, 2006) (Figure 16). Jern et al. (2004) found 

that HERV-H and HERV-F are not phylogenetically distinct from each other 

and identified 926 HERV-H and 198 HERV-F insertions in the human 
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genome. HERV-H elements are subdivided into two groups, RGH2-like and 

RTVLH2-like, while HERV-F elements are divided into HERV-F, HERV-FXA, 

HERV-Fb, HERV-Fc1, HERV-Fc2 and HERV-FRD groups (Bénit et al., 2003).  

This group includes the provirus HERV-Fc1, which has highly divergent LTRs 

but intact ORFs for pro and env and only minor defects in the pol and gag 

ORFs (Jern et al., 2004). Contrary to the usual pattern, the RGH2-like HERV-

H group appears to be older than the RTVLH2-like HERV-H group according 

to its LTR divergence, but has more intact ORFs (Jern et al., 2004). The 

“midwife” hypothesis is an attempt to explain this discrepancy. This 

hypothesis states that during divergence of the HERV-H group, intact 

elements (possibly HERV-Fc1), provided functions and proteins in trans, 

allowing older, less intact RTVLH2 like groups to reintegrate, renewing their 

LTRs and making them appear to be more modern (Jern et al., 2004). This 

model could apply to other primate ERVs, so it is useful to characterise the 

degree of gene sequence degradation alongside LTR divergence. 

Elements related to the HERV-H/F group have been found in apes, old world 

monkeys, new world monkeys and prosimians (Bénit et al., 2003, Bannert and 

Kurth, 2006). This is generally assumed to mean that they entered the 

germline prior to the division of prosimians and simians, 87 million years ago 

(Bénit et al., 2003, Bannert and Kurth, 2006, Perelman et al., 2011). However, 

no analysis to date has confirmed shared integration sites between the 

different primate groups, so it is possible that the HERV-H/F retroviruses 

were widespread at some more recent point and integrated separately into 

various primate lineages.  

The HERV-H/F group seems to be the origin of one of the syncytin genes co-

opted by primates for an essential role in placental morphogenesis (Blaise et 

al., 2003) (section 1.3.3.1). Blaise et al. (2003) identified HERV-FRD Env as a 

fusogenic protein, expressed in the placenta, with an intact coding sequence 

and named it Syncytin-2. Closely related, intact env sequences were found to 
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be conserved in apes, old world monkeys and new world monkeys but not 

present in prosimians (Blaise et al., 2003).  

The HERV-W lineage of ERVs is thought to be considerably more modern 

than the HERV F/W group, having entered the germline between the comm0n 

ancestor of the old world monkeys and apes, 32 million years ago, and the 

ancestor of the new and old world monkeys, 43 million years ago (Bannert and 

Kurth, 2006, Perelman et al., 2011). Similarly to HERV-FRD, a HERV-W Env 

protein, Syncytin-1, has been co-opted by primate hosts to act in placental 

development (Cáceres et al., 2006). HERV-W like insertions are common to all 

old world monkeys and apes but Syncytin-1 in old world monkeys is inactive, 

with multiple mutations (Cáceres et al., 2006). Only apes have an intact 

syncytin gene capable of producing a functional protein (Cáceres et al., 2006). 

It is not clear if the gene acquired its function in placental development before 

the split between old world monkeys and apes and later lost this function in 

old world monkeys or if the function was acquired after the split and the old 

world monkey copies degraded due to lack of purifying selection (Cáceres et 

al., 2006). 

1.4.3.3. Crocodile Group 

Jaratlerdsiri et al. (2009) identified a novel lineage of ERVs, the crocodile 

ERVs (CrERVs). Divergent CrERV insertions are found within the same or 

closely related species (Jaratlerdsiri et al., 2009, 2012). This suggests that 

numerous retroviruses of this type were circulating amongst Crocodylus at 

some point and endogenisation was widespread. 

1.4.3.4. REV Group 

Birds have an unambiguous group of pathogenic exogenous 

gammaretroviruses: reticuloendotheliosis virus (REV), duck infectious 

anaemia virus (DIAV) and spleen necrosis virus (SNV) (Niewiadomska and 
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Gifford, 2013). These viruses are thought to be recombinant, as their gag and 

pol genes cluster with the gammaretroviruses but their env genes with the 

betaretroviruses (Niewiadomska and Gifford, 2013). The closest known 

endogenous relatives to REV are found in two species of Malagasy mongoose 

(Galidiinae spp.) and in the echidna Tachyglossus aculeatus, these are also 

recombinant viruses and all three genes cluster similarly to REV 

(Niewiadomska and Gifford, 2013). Closely related ERVs have not been found 

in birds (Niewiadomska and Gifford, 2013). The mongoose ERVs are 

orthologous, so they inserted prior to the divergence of these two species 

approximately eight million years ago (Niewiadomska and Gifford, 2013). 

They are not found in the fossa (Cryptoprocta ferox), a more distantly related 

species which diverged approximately 20 million years ago, placing the 

common ancestor of the Malagasy mongoose ERVs between these two dates 

(Niewiadomska and Gifford, 2013, Yoder et al., 2003). The echidna is a 

monotreme found in Australia and, as REV-related ERVs have not been found 

in other mammals, it is unlikely that their integration predates the 

monotreme-marsupial-placental mammal split, so instead REV-like viruses 

may have been widespread worldwide over a period encompassing the 

divergence of the two mongoose genera or may have entered the echidna after 

human colonisation of Australia (Niewiadomska and Gifford, 2013).  

Due to the lack of diversity of the strains of REV, SNV and DIAV isolated from 

birds, Niewiadomska et al. concluded that these viruses entered birds very 

recently via a single founder and proposed the evolutionary history shown in 

Figure 17. The founder event is suggested to have been via stocks of 

contaminated Plasmodium lophurae parasites used to experimentally infect 

birds between the 1930s and 1980s, the period during which DIAV and SNV 

were circulating. These parasites were cultured from a single isolate from a 

pheasant in a zoo in New York, therefore it is possible that the original stock 

was contaminated with a retrovirus from an exotic animal. Two lineages of 

viruses are thought to have originated from this contaminant. The first 

diverged in culture into the similar SNV and DIAV strains and resulted in 
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outbreaks of disease through repeated experimental infection of ducks with P. 

lophurae (Niewiadomska and Gifford, 2013) (Figure 17). Unusually, the 

second lineage, leading to REV, appears to have emerged at around the same 

time but via integration into the genome of two larger viruses infecting birds, 

fowlpox virus (FWPV) and gallid herpesvirus 2 (GHV-2) (Marek’s disease 

virus), both of which cause disease in chickens (Niewiadomska and Gifford, 

2013) (Figure 17). The spread of REV through birds was partially due to use of 

attenuated GHV-2 with REV insertions in avian vaccines (Niewiadomska and 

Gifford, 2013). REV now circulates in birds using these FWPW and GHV-2 

viruses as vectors (Niewiadomska and Gifford, 2013). 

 

Figure 17: The proposed evolutionary history of SNV, DIAV and RSV. 
From Niewiadomska et al. (2013). Numbers refer to individual cases. 
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The cetacea (whales in Figure 11) have a family of gammaretroviruses which 

are clearly distinct from REV but form a sister group to the REV lineage (Wang 

et al., 2013). This group is estimated to have integrated 10 to 19 million years 

ago and has been found in all cetacea tested to date (Wang et al., 2013). 

1.4.3.5. GALV Group 

The group of gammaretroviruses surrounding gibbon ape leukaemia virus 

(GALV) in the gammaretroviral phylogeny (Figure 14, Figure 18) again 

includes several examples of cross-species transmissions and retroviruses 

isolated from primates and rodents but also Australian marsupials, whales and 

even-toed ungulates. These mammals are found in diverse geographic 

locations and cover over 170 million years of mammalian evolution (Figure 11). 

Figure 18 shows an overview of the major groups of retroviruses within this 

group. 

 

 

Figure 18: The relationship between the pol genes of members of the GALV group 
of gammaretroviruses. 
Red: Rodents, Blue: Primates. Sequences listed in Appendix B.1. Aligned using MAFFT 
localpair with 1000 iterations, tree built using PhyML under the GTR model. 

GALV is an exogenous pathogenic gammaretrovirus which was identified as 

causing haematopoietic neoplasias in captive white handed gibbons 
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(Hylobates lar) in the 1970s (Kawakami et al., 1972). A related retrovirus, 

woolly monkey sarcoma virus (WMSV) was identified at around the same 

time, causing sarcoma in a single woolly monkey (Lagothrix spp.) (Theilen et 

al., 1971). Over the next five years, related viruses were identified in several 

other gibbon colonies in the USA (Todaro et al., 1975), Thailand (Kawakami et 

al., 1975) and Bermuda (Krakower et al., 1978, Reitz et al., 1979). Later, GALV 

was found to be expressed in various cell lines (Okabe et al., 1976, Chan et al., 

1976, Burtonboy et al., 1993). GALV is still considered to be a circulating 

pathogen of gibbons although no outbreaks have been described since the 

1970s. 

There is no evidence that GALV has ever become endogenous in gibbons and 

no close relatives of GALV have been identified in primates. The closest known 

relative of GALV is koala retrovirus (KoRV), an ERV of koalas (Phascolarctos 

cinereus) (Tarlinton et al., 2006) (Figure 18). Endogenous KoRV is 

polymorphic between koala populations and appears to be in transition 

between an exogenous and endogenous form, having entered the koala 

population within the last 200 years (Tarlinton et al., 2006).  

Gibbons and koalas are distant from each other both evolutionarily and 

geographically, so it is generally considered that the virus was transmitted 

between the two groups via a vector species, most likely a rodent (Hayward et 

al., 2013a, Tarlinton et al., 2006, Tarlinton et al., 2008). However, this vector 

has not been identified to date. Several groups of endogenous murine 

retroviruses (Figure 18) form the closest phylogenetic group to GALV and 

KoRV. The most likely candidates as the origins of GALV and KoRV are 

thought to be retroviruses of Asian mice, related to a degenerate ERV in the 

Asian Ryukyu mouse (Mus caroli) and an intact virus in the Asian Earth 

coloured mouse (Mus terricolor, previously Mus dunni) (Lieber et al., 1975, 

Stocking and Kozak, 2008, Tarlinton et al., 2008). However, Hayward et al. 

(2013a) found endogenous insertions in the house mouse (Mus musculus) 

which were as close to GALV and KoRV as Mus dunni ERV (MDERV). 
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Figure 19: The species of Mus in which MuRRS, MuRV-Y, GLN and MmERV have 
been detected. 
Adapted from Stocking and Kozak (2008). 

Several groups of murine ERVs surround GALV and KoRV in phylogenetic 

analysis, falling between Mus caroli ERV and GALV-KoRV (Stocking and 

Kozak, 2008) (Figure 18). Besides MDERV, these are the mouse retrovirus 

related sequence (MuRRS), murine ERV C (MuERV-C), Mus musculus ERV 

(MmERV), murine repeated virus on the Y-chromosome (MuRV-Y), and 

murine retrovirus using tRNAGln (GLN) groups. Figure 19 shows the species of 

mouse in which these groups have been detected (the remaining species have 

not been screened so may also contain these ERVs). The MuRRS group was 

one of the first groups of murine ERVs to be detected (Schmidt et al., 1985, 

Stocking and Kozak, 2008). This group is thought to have entered the mouse 

genome within the last 9 million years and, as many copies of MuRRS share 

the same pol gene defects, to have spread through the genome with the aid of 

an intact “helper” virus (Stocking and Kozak, 2008). There are 30-50 MuRRS 

copies in the mouse genome and these are highly degraded but have 

recognisable gag, pol and env genes. MuERVC group is similarly degenerate 

and is found in 10-20 copies in the mouse genome (Stocking and Kozak, 
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2008). 10 copies are clustered on the X chromosome (Stocking and Kozak, 

2008). MuRRS insertions have only been detected in the Mus subgenus of 

mice to date (Figure 19) and MuERV-C only in Mus musculus (Stocking and 

Kozak, 2008). The MmERV group contains close relatives of MDERV. 

Therefore, the MDERV was possibly part of a much wider circulating group 

found in mice or rodents worldwide (Stocking and Kozak, 2008). MuRV-Y is 

unusual in that almost 500 copies are found on the Y-chromosome of some 

Mus species (Stocking and Kozak, 2008) (Figure 19). Finally, the GLN group of 

murine ERVs has also been found all screened subgenera of Mus and is 

present in about 80 copies in the Mus musculus genome, including a fully 

replication competent copy (Ribet et al., 2008).  

Unexpectedly, three groups of pig ERVs which produce replication competent 

particles, porcine ERV (PERV)-A, PERV-B and PERV-C, also fall into this 

group of gammaretroviruses, close to Mus caroli ERV (Figure 19). PERV-A 

and PERV-B are present in all pig breeds and have been shown to be capable 

of infecting human cells, while PERV-C is absent in some breeds and cannot 

infect human cells (Yu et al., 2012b). There is evidence of some past 

recombination between the three groups. None of the three groups are found 

in peccaries, the closest relatives of pigs, which separated from the pig lineage 

approximately 7.5 million years ago (Tönjes and Niebert, 2003) Therefore, 

these retroviruses must have circulated since this time and their phylogenetic 

relationships again suggest a rodent origin (Yu et al., 2012b) (Figure 19).  

A final member of this group is found in the killer whale (Orcinus orca) a 

member of another mammalian order, the cetacea. Killer whale ERV 

(KWERV) was first isolated by LaMere et al. (2009) and falls between the MLV 

group and the GALV group in the gammaretroviral phylogeny (Figure 18). 

Related cetaceans and even-toed ungulates (hippopotamus, pig, beluga whale, 

fin whale) are negative for KWERV but it is found in at least partially in 

bottlenose dolphins, dwarf whales, pygmy sperm whales and harbour 

porpoises (LaMere et al., 2009). Therefore, KWERV-like insertions may be 
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ubiquitous in the dolphin family (Delphinidae) (which includes the killer 

whale) and possibly the porpoises (Phocoenidae) (LaMere et al., 2009). There 

are only two to four copies of the virus in the killer whale genome, so it may 

have become replication deficient fairly soon after integration (LaMere et al., 

2009). The most intact insertions in the dolphin are considerably more 

degenerate than those in the killer whale, so while the initial integration of 

KWERV into the Delphinidae may predate their divergence 12 million years 

ago, some of the killer whale insertions appear to be considerably more recent 

than this (LaMere et al., 2009).  

1.4.3.6. MLV Group 

The MLV group of gammaretroviruses is one of the most widely studied 

groups. The term “MLV-like” is often used to refer to all gammaretroviruses 

[e.g. (Tristem et al., 1996)], however here the term refers only to the 

phylogenetic group clustering most closely around MLV (Figure 14).  

 

Figure 20: The relationship between the pol genes of members of the MLV group of 
gammaretroviruses. 
Red: Rodents, Blue: Primates. Sequences listed in Appendix B.1. Aligned using MAFFT 
localpair with 1000 iterations, tree built using PhyML under the GTR model. 
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The MLV lineage is thought to have entered the murine genome recently 

(within the last 1.5 million years), is insertionally polymorphic between mouse 

strains and includes some replication competent members (Stocking and 

Kozak, 2008, Jern et al., 2007). Most MLVs fall into one of four groups, the 

ecotropic, xenotropic, polytropic and modified polytropic groups, all of which 

have endogenous members (Stoye and Coffin, 1987). The categorisation of 

MLVs into these groups depends on their ability to replicate in cells from 

different hosts: ecotropic MLVs can only replicate in murine cells, xenotrophic 

MLVs only in non-murine cells (due to loss of the appropriate receptor after 

endogenisation) and polytropic and modified polytropic MLVs in murine and 

non-murine cells (the two polytropic groups differ in the structure of their env 

gene). Polytropic, modified polytropic and xenotropic MLVs are more closely 

related to each other in terms of their env gene sequence, which determines 

receptor specificity, than they are to ecotropic MLVs (Stoye and Coffin, 1987). 

Xenotropic MLVs are not monophyletic (Cingöz and Coffin, 2011). MLVs are 

only found in members of the Mus genus, with polytropic and modified 

polytropic MLVs identified in wild Mus domesticus and xenotropic MLVs in 

Mus musculus and Mus castaneus (Dudley et al., 2011). Inbred laboratory 

mice contain variable numbers of each group of MLVs (Dudley et al., 2011). 

Proliferative diseases in mice resulting from these ERVs are usually the result 

of recombination between different insertions or between ERVs and XRVs 

(Dudley et al., 2011). Rats do not have endogenous MLV but do have an ERV 

which falls somewhere between the FeLVs and MLVs phylogenetically, known 

as rat leukaemia virus (Lee et al., 1998).  

A retrovirus closely related to the xenotropic MLVs, known as xenotropic 

murine leukaemia related virus (XMRV), also falls into this phylogenetic 

group. The virus was first identified as a novel gammaretrovirus in prostate 

tumour samples in 2006 (Urisman et al., 2006) and was later associated with, 

and proposed to be a causative agent for, chronic fatigue syndrome (CFS) 

(Lombardi et al., 2009, Mikovits et al., 2010) (Lo et al., 2010). The results of 

these studies had a large impact on both the research community and the 
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community of CFS patients. XMRV screening was made commercially 

available, anti-retroviral therapy was considered as a potential CFS treatment 

and blood donation by CFS patients was banned in many countries worldwide 

(Wainberg and Jeang, 2011). However, the results of many other studies 

contradicted any association between this virus and either prostate cancer or 

CFS [for example (Erlwein et al., 2010) (Hohn et al., 2009, van Kuppeveld et 

al., 2010, Switzer et al., 2010)]. A number of studies published in the same 

issue of Retrovirology demonstrated the high likelihood mouse contamination 

of laboratory samples being responsible for the XMRV findings, with mouse 

contamination identified in human tissue samples (Robinson et al., 2010, 

Oakes et al., 2010), laboratory reagents (Sato et al., 2010) and cell lines (Hue 

et al., 2010, Smith, 2010) in quantities sufficient for XMRV to be detected. 

Later studies confirmed the absence of XMRV in either CFS (Alter et al., 2012, 

Simmons et al., 2011) or prostate cancer (Lee et al., 2012) and on the basis of 

these studies the original papers describing the association were retracted. 

XMRV has since been shown to be a recombinant between xenotropic and 

polytropic MLVs found in laboratory mice, known as pre-XMRV-1 and pre-

XMRV-2, produced by a common laboratory cell line (Cingöz and Coffin, 

2011). Therefore, it appears that XMRV in human samples was the result of 

laboratory contamination resulting from this or a related cell line (Cingöz and 

Coffin, 2011).  

Domestic cats and other members of the Felis genus have endogenous versions 

of FeLVs which do not code for infectious virus (Polani et al., 2010). Other 

members of the cat family (Felidae) appear not to have FeLVs (Polani et al., 

2010). FeLVs appear to have invaded the germline more than once in the 

evolutionary history of the Felis lineage, as some lineages show evidence of 

integration before the lineage diverged while others appear to have 

proliferated in some species but not others (Polani et al., 2010). There are no 

FeLV ERVs in the domestic cat that are not also found in the wild cat (Polani 

et al., 2010). 
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Two recombinant ERVs also cluster within this group in analysis of the pol 

gene, baboon endogenous retrovirus (BaEV) and RD114 virus. These viruses 

have gammaretroviral gag and pol genes but betaretroviral env genes and are 

discussed in depth in section 1.4.7.2. 

1.4.3.7. HERV-E Group 

The HERV-E family of retroviruses initially entered primate genomes between 

the divergence between prosimians and simians, 87 million years ago, and the 

divergence between old and new world primates, 43 million years ago (Figure 

12) (Yi and Kim, 2006). These ERVs are not replication competent. There are 

35-50 HERV-E copies in the human genome and HERV-E LTRs are known 

regulatory elements for human genes (Yi and Kim, 2006). There is a large 

increase in HERV-E copy number in apes compared to old and new world 

monkeys and it is thought that a proliferation of this lineage occurred between 

6 and 14 million years ago (Yi and Kim, 2006).  

1.4.3.8. Rabbit ERV H Group 

The first reported rabbit ERV lineage was identified by Griffiths et al. (2002). 

This lineage is unusual in that it was originally identified as a human XRV 

associated with disease (Griffiths et al., 2002, Griffiths et al., 1997). The 

human isolate, known as human retrovirus 5 (HRV-5), was thought to be 

associated with inflammatory disease and non-Hodgkins lymphoma (Griffiths 

et al., 1997, Kozireva et al., 2001). However, the retrovirus was later shown 

unambiguously to be a rabbit ERV and its appearance in human samples to be 

the result of either laboratory contamination or human interactions with 

rabbits (Griffiths et al., 2002).  
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1.4.3.9. Syncytins 

Syncytins found in different orders of mammals are all derived from 

gammaretroviral env genes and have closely related functional properties but 

have distinct evolutionary origins (Cornelis et al., 2013) (Figure 21). This 

seems to be the result of convergent evolution leading to independent capture 

of separate gammaretrovirus env genes (Cornelis et al., 2013, Cornelis et al., 

2012). 

 

 
Figure 21: The relationship between syncytins and other gammaretroviral env 
genes. 
Red: Rodents, Blue: Primates. Sequences listed in Appendix B.1. Aligned using MAFFT 
localpair with 1000 iterations, tree built using PhyML under the GTR model. 
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Primate Syncytin-1 and Syncytin-2 are unambiguously derived from the 

HERV-W and HERV-FRD lineages respectively (Dupressoir et al., 2005). 

Syncytin proteins have also been identified in rodents, lagomorphs, carnivores 

and ruminants and the phylogenetic relationships of these proteins are more 

ambiguous. The mouse family of rodents (Muridae) share two syncytin genes, 

coding for the Syncytin-A and Syncytin-B proteins (Dupressoir et al., 2005). 

Both seem to have circulated before the Muridae appeared approximately 20 

million years ago (Dupressoir et al., 2005). Both of these genes code for 

functional proteins and show evidence of purifying selection (Dupressoir et al., 

2005). Like the human syncytins, syncytins A and B have a fusogenic effect 

and are specifically expressed in the placenta (Dupressoir et al., 2005). 

Rodents within and outside of the Muridae have physiological differences in 

placental structure, possibly due to the presence and absence of these proteins 

(Dupressoir et al., 2005). Syncytins A and B fall either within the HERV F/H 

superfamily or closer to HERV-W in the gammaretroviral phylogeny 

(Redelsperger et al., 2014, Cornelis et al., 2013). Syncytin-A and Syncytin-B 

form distinct phylogenetic clusters (Dupressoir et al., 2005) (Figure 21). 

Within these clusters there is evidence of host tracking, with branching order 

of mouse, rat, hamster and gerbil and vole syncytins in both groups matching 

the branching order of the hosts (Figure 13, Figure 21).  

A third lineage of rodent syncytins is found in the Caviomorpha, the South 

American parvorder of Hystricomorpha (Figure 13) (Vernochet et al., 2011). 

This lineage, known as Cav1, is very distinct to Syncytin-A and Syncytin-B and 

likely to have originated separately (Figure 21) (Vernochet et al., 2011). Like 

the other rodent syncytins, Cav1 shows evidence of host tracking (Figure 13, 

Figure 21), which suggests it integrated before the diversification of the 

Caviomorpha 30 million years ago (Vernochet et al., 2011). There is no 

evidence that Cav1 is fusogenic, but it is expressed specifically in the placenta 

and has intact ORFs in all hosts (Vernochet et al., 2011). Therefore, Cav1 is 

likely to have a physiological role in placentation (Vernochet et al., 2011).  
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A syncytin lineage has been very recently identified in the Marmotini, a group 

of rodents consisting of marmots and their relatives (Figure 21) (Redelsperger 

et al., 2014). This lineage is known as Mar1. Sequence information is not yet 

publicly available for this group, but it is phylogenetically similar to the Cav1 

lineage (Redelsperger et al., 2014). Mar1 is at least 25 million years old and 

meets all the criteria for a genuine syncytin gene. 

Rabbits also have a unique family of syncytins, the Ory1 family (Heidmann et 

al., 2009). This group is part of a family of rabbit ERVs related to GALV 

(Heidmann et al., 2009). The gene appears to have integrated between 12 and 

30 million years ago and is found in all members of the Leporidae (rabbits and 

hares) but none of the Ochotonidae (pikas) (Heidmann et al., 2009). Again, 

Ory1 genes are fusogenic, placenta specific and intact (Heidmann et al., 2009). 

Ruminants also have a unique syncytin gene, known as Rum1 and estimated to 

have integrated at least 30 million years ago (Cornelis et al., 2013). The closest 

known primate relative of Rum1 is HERV-Rb (Cornelis et al., 2013) (Figure 

21). Rum1 is present in all higher ruminants (part of the “even-toed ungulates” 

group in Figure 11) and shows evidence of fusogenic activity and intact ORFs 

in all species tested to date (Cornelis et al., 2013). A close relative of Rum1, 

also similar to HERV-Rb, is found in all Carnivora and is known as Car1 

(Cornelis et al., 2012) (Figure 21). Car1 seems to predate the diversification of 

the Carnivora, meaning it is at least 65 million years old, the oldest of the 

known syncytin genes (Cornelis et al., 2012).  

Given the recent discovery of syncytins and their presence in diverse 

mammals, especially within the Laurasiatheria and Euchontoglires, it is very 

likely that there are further members of this group which are yet to be 

discovered.  
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1.4.4. Epsilonretroviruses 

1.4.4.1. Fish epsilonretroviruses 

The epsilonretroviruses are traditionally considered to be viruses of teleost 

fish, as four proliferative diseases in these fish have been confirmed to be 

epsilonretroviral and to be transmissible via cell-free tumour filtrates. These 

are walleye dermal sarcoma, associated with WDSV; walleye epidermal 

hyperplasia, associated with walleye epidermal hyperplasia viruses (WEHVs) 

one and two; muskellunge and northern pike lymphosarcoma and chinook 

salmon plasmacytoid leukaemia (Coffee et al., 2013, Bowser and Casey, 1993) 

(Table 5). A fifth, white sucker epidermal papilloma, has been tentatively 

confirmed to be associated with a retrovirus, as transmission studies have 

shown conflicting results (Coffee et al., 2013) (Table 5). Tumours from seven 

other fish diseases, listed in Table 5, also contain retroviral type-C particles but 

the link between the retrovirus and the disease has not been confirmed (Coffee 

et al., 2013, Bowser and Casey, 1993). The fish affected by these diseases are 

distributed throughout the teleost fish phylogenetic tree in species with no 

apparent genetic or morphological connections. However, these fish species 

are all important in the food, recreational fishing or diving industries or as 

aquarium fish, with the exception of the hooknose, in which tumours were 

identified during a large-scale survey of a fish population (Bowser and Casey, 

1993). Therefore, it is likely that with more widespread screening similar 

retroviral pathologies would be observed in other species less commonly 

encountered by humans. 
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Table 5: Diseases of fish either confirmed to be or provisionally associated with 
retroviruses. 

 

Another exogenous retrovirus, snakehead retrovirus (SNRV) has been 

confirmed to infect fish, but this virus has not been associated with disease 

(Hart et al., 1996). This virus is sometimes considered to be an intermediate 

between the epsilonretroviruses and the foamy viruses (Jern et al., 2005, Hart 

et al., 1996). However, more recent work, incorporating more fish viruses, 

places SNRV more firmly amongst the epsilonretroviruses (Basta et al., 2009).  

There are also endogenous epsilonretroviruses in fish. Full genome sequences 

are available for eight species of fish, (Flicek et al., 2012). Of these, screening 

studies including epsilonretroviruses have been published for four species: 

zebrafish (Danio rerio), puffer fish (Tetraodon nigroviridis), medaka (Oryzias 

latipes) and stickleback (Gadus aculeatus). In the context of the wider teleost 

fish phylogeny these species are reasonably divergent, in particular D. rerio is 

very distinct and split from the other species approximately 265.5 million 

Disease Host (common name) Host (scientific name) Confirmed Sequenced Complex/Simple

Walleye Dermal Sarcoma Walleye Sander vitreus y NC_001867 Complex

Walleye Discrete Epidermal 

Hyperplasia 1 Walleye Sander vitreus y AF133051 Complex

Walleye Discrete Epidermal 

Hyperplasia 2 Walleye Sander vitreus y AF133052 Complex

Atlantic Salmon Swim 

Bladder Sarcoma Virus Atlantic Salmon Salmo salar n NC_007654 Simple

Yellow Perch Discrete 

Epidermal Hyperplasia 1 Yellow Perch Perca flavescens n n ?

Yellow Perch Discrete 

Epidermal Hyperplasia 2 Yellow Perch Perca flavescens n n ?

Chinook Salmon 

Plasmacytoid Leukemia Chinook Salmon

Oncorhynchus 

tshawytscha y n ?

Muskellunge and Northern 

Pike Lymphosarcoma

Northern Pike, 

Muskellunge

Esox lucius, Esox 

masquinongy y n ?

Atlantic Salmon Epidermal 

Papillomatosis Atlantic Salmon Salmo salar n n ?

Muskellunge and Northern 

Pike Smooth Type Epidermal 

Hyperplasia

Northern Pike, 

Muskellunge

Esox lucius, Esox 

masquinongy n n ?

Hooknose Cutaneous 

Fibroma/Fibrosarcoma Hooknose Agonus cataphractus n n ?

White Sucker Epidermal 

Papilloma White Sucker

Catostomus 

commersoni p n ?

Angelfish Lip Fibroma Angelfish Pterophyllum scalare n n ?

European Smelt Spawning 

Papillomatosis European Smelt Osmerus eperlanus n n ?

Bicolor Damselfish 

Neurofibromatosis Bicolour Damselfish Stegastes partitus n n ?
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years ago (Hedges et al., 2006). Compared to mammalian genomes, all four of 

the screened fish genomes contain relatively few ERVs with low copy numbers 

(Basta et al., 2009). The ERVs are also very recent, based on LTR divergence 

none entered the genome more than four million years ago (Basta et al., 

2009). None of the fish ERVs are known to cause disease but zebrafish ERV 

(ZFERV) has been shown to be transcribed in the zebrafish thymus (Shen and 

Steiner, 2004). Fish epsilon-like ERVs do not cluster phylogenetically in any 

way which mirrors the host phylogeny (Basta et al., 2009). The viruses are also 

thought to have diverged considerably more recently than their hosts, 

therefore epsilon like ERVs must have invaded fish genomes multiple times. 

As with the exogenously infected species, given that the species containing 

these ERVs are not apparently correlated in terms of phylogeny, morphology 

or distribution, epsilonretroviruses are almost certainly present in many other 

teleost fish species. 

1.4.4.2. Amphibian epsilonretroviruses 

Exogenous epsilonretroviruses have not been confirmed in amphibians. 

However, epsilon ERVs have been confirmed in three families of frog - the 

tongueless frogs (Pipidae), poison dart frogs (Dendrobatidae) and true frogs 

(Ranidae) – and in the caecilian (Epicrionops marmoratus) and two 

salamanders (the palmate newt Triturus helveticus and tiger salamander 

Ambystoma tigrinum) (Herniou et al., 1998). These families make up 

reasonably divergent branches of the amphibian phylogeny. These amphibian 

viruses consistently fall into the epsilonretrovirus clade, but within this clade 

they are interspersed with several endogenous and exogenous fish and reptile 

retroviruses, as shown in Figure 22. Therefore, these lineages appear to be 

recent integrations and it is unlikely that they predate the divergence of the 

amphibians from the amniotes or the bony fish. However, some do show a 

degree of host tracking (Herniou et al., 1998) (Figure 22A), for example the 

three viruses found in the true frogs are more similar to each other than to any 
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of the other viruses analysed and the salamander sequences cluster together 

and by genus (Herniou et al., 1998). Therefore, it is possible these ERVs either 

predate the radiation of these families into separate species or have coevolved 

with their hosts. Only one amphibian retrovirus currently has an estimated 

integration date, the oldest insertion in Xenopus tropicalis is thought to have 

integrated approximately 41 million years ago (Sinzelle et al., 2011). If it is 

assumed that other epsilonretroviruses were circulating in frogs during this 

period, it is feasible that these ERVs integrated into a common ancestor of 

their hosts. Overall, it appears that epsilonretroviruses were present during 

the diversification of some frog species, but more information is needed to 

state definitively whether their ERVs predate this diversification. 

 

 
Figure 22: Two phylogenetic trees showing the amphibian ERVs and their 
relationship with other epsilonretroviruses.  
Host species are labelled according to their order (frogs, salamanders, caecilians) and 
coloured by genus and species. Unlabelled symbols are ERVs which have not been 
assigned specific names. Non-amphibian ERVs have no symbols. Adapted from 
Herniou et al. (1998) (A) and Sinzelle et al.(2011) (B). 

1.4.4.3. Reptile Epsilonretroviruses 

Fewer well-supported epsilonretroviruses have been found in reptiles than in 

amphibians and fish but screening attempts have been limited. Therefore, it is 
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not possible to say if epsilon ERVs are less common in reptiles. The higher 

density of gammaretroviruses in reptiles may also overshadow the presence of 

epsilonretroviruses. Epsilonretroviruses have been identified in the saltwater 

crocodile Crocodylus porosus, gharial (Gavialis gangeticus), tuatara 

(Sphenodon spp.), pit viper (Bothrops jararaca) and slider turtle (Chrysemys 

scripta), five species representing the four orders of extant non-avian reptiles 

(Herniou et al., 1998). These ERVs cluster together phylogenetically (Figure 

23) but the branching pattern of the retroviruses is not consistent with the 

sauropsid phylogeny, so it is unlikely that these insertions predate the 

diversification of the reptiles (Herniou et al., 1998). 

 

Figure 23: Phylogenetic tree showing reptile ERVs and their relationship with other 
epsilonretroviruses.  
Host species are labelled according to their order (Testudines, Sphenodontia, 
Squamata and Crocodilia) and coloured by genus and species. Unlabelled symbols are 
ERVs which have not been assigned specific names. Adapted from Herniou et al. 
(1998). 

Overall, the results of these studies suggest that epsilonretroviruses in fish and 

reptiles are not particularly ancient. Fish epsilonretroviruses seem to be 

especially modern, with none dated at more than four million years old (Basta 

et al., 2009). This is unexpected, since modern epsilonretroviruses are most 

commonly associated with fish. There is more evidence of an ancient origin in 



Chapter 1: Introduction 
Section 1.4 Endogenous retroviruses in vertebrate genomes. 
 
 

94 

 

the amphibian epsilonretroviruses, which show some evidence of host 

tracking. However, further work is needed to establish the diversity and age of 

epsilon ERVs in these hosts.  

1.4.5. Spumaviruses  

1.4.5.1. ERV-L Elements 

Of all the retroviruses, the most ancient group is thought to have been the 

group that led to the ERV-L elements, part of the spumavirus genus. Some 

ERV-L elements are orthologous throughout the placental mammals, with 

insertions predating the divergence of this group and dated as 104 to 110 

million years old (Lee et al., 2013). It is possible that ERV-L like elements 

entered genomes even earlier than this, as the integration of these viruses is 

described as nearing the “maximum achievable lookback time” with the 

limitations of sequence deterioration and the difficulty in identifying 

orthologous sites in distantly related genomes (Lee et al., 2013). Although it 

may not be possible to look for orthology between ERV-Ls in more distantly 

related species, it does appear that ERV-L like elements are ubiquitous in 

vertebrates, as, besides mammals, ERV-L like fragments have been described 

in bony and cartilaginous fish (Kambol and Tristem, 2005), amphibians 

(Herniou et al., 1998), reptiles (Chong et al., 2012) and birds (Bolisetty et al., 

2012). 

1.4.5.2. Foamy viruses 

Foamy viruses infect various mammals exogenously but are only known to 

have become endogenous in three species: the coelacanth fish (Latimeria 

chalumnae), the sloth (Choloepus hoffmanni) and the aye-aye (Daubentonia 

madagascariensis) (Han and Worobey, 2012a). The phylogenetic tree for the 

known hosts of exogenous foamy viruses and the tree for the viruses 
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themselves share a very similar topology and the branch lengths of the virus 

tree are highly significantly correlated with the host divergence times (Han 

and Worobey, 2012a). This provides strong evidence for codivergence of the 

viruses and their hosts, suggesting that foamy viruses were circulating 

approximately 400 million years ago and diversified within different host 

species as they diverged from each other (Han and Worobey, 2012a). This 

suggests that at least the foamy viruses have been active throughout the 

evolution of the tetrapods and that the association between vertebrates and 

their retroviruses is extremely ancient.  

1.4.6. Alpharetroviruses  

The alpharetroviruses are a large, diverse, relatively well-studied group of 

avian retroviruses. A major group of avian pathogens, the avian leukosis 

viruses (ALVs) are oncogenic exogenous alpharetroviruses (Payne and Nair, 

2012). These viruses are unusual in that, depending on their subgroup, they 

are transferred horizontally between animals, from mother to offspring via 

infection and genetically from mother to offspring in the form of ERVs (Payne 

and Nair, 2012). These diseases are commonly considered to be diseases of 

chickens, but can infect other species of fowl including turkeys and ducks 

(Payne and Nair, 2012).  

There is some ambiguity as to where the alpharetroviruses end and the 

betaretroviruses begin. Bolisetty et al. (2012) concluded that the 

betaretroviruses are ancestral to the alpharetroviruses, betaretroviruses are 

widespread in birds and the “true” alpharetroviruses are only a subsection of 

this group, originating in Galliform birds (Bolisetty et al., 2012). However, in 

the majority of retroviral literature this system is not used, as class II 

retroviruses isolated from mammals and birds tend to fall into separate, 

unambiguous monophyletic clusters (Gifford et al., 2005). Therefore, all class 

II avian retroviruses are generally considered to be alpharetroviruses, and this 

is the classification which will be used here. 
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Gifford et al. (2005) identified alpharetroviruses in at least 15 orders of birds 

using degenerate polymerase chain reaction (PCR). There are very likely other 

alpharetroviruses in these hosts which were not identified (Gifford et al., 

2005). The chicken genome has been analysed in more detail and 

approximately 2% of the genome appears to be derived from a diverse range of 

alpharetroviral lineages (Huda et al., 2008). There does not appear to be any 

correspondence between the phylogeny of the alpharetroviruses from diverse 

hosts and the host phylogeny (Gifford et al., 2005). Dimcheff et al. (2000) 

identified ALV-like gag genes in 26 species of Galliformes and significant 

host-tracking at a genus level within parts of this group, with congruence 

between the host and gag phylogenies in the Gallus (chicken) and Perdix 

(partridge). Given these two datasets, it seems like most alpharetroviruses 

invaded avian genomes less than 66 million years ago, when the majority of 

bird orders and superorders began to diverge but before the radiation of the 

avian families, genera and species (Brown et al., 2008). This fits well with the 

estimated age of chicken alpha ERVs based on LTR similarity calculated by 

Huda et al. (2008), which has a mean of 58 million years. These dates have a 

wide range from 1.5 million years ago to 140 million years ago, which would 

explain the inconsistency of host tracking in different clades of the 

alpharetrovirus tree (Dimcheff et al., 2000, Huda et al., 2008, Gifford et al., 

2005). 

1.4.7. Betaretroviruses 

The betaretroviruses have only been identified in mammals. Figure 24 shows 

some of the key groups of gammaretroviruses in rodents and primates and 

how they relate to each other. 
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Figure 24: Pol gene phylogeny of primate and rodent betaretroviruses and their 
relatives. Adapted from Baillie et al. 2004. 
Sequences from primates are shown in blue, sequences from rodents are shown in 
red. 

1.4.7.1. HERV-K and β1 

Human endogenous betaretroviruses form the HERV-K group, which is 

probably the most widely studied group of ERVs. There are at least 550 HERV-

K elements in the human genome (Bannert and Kurth, 2006). The group is 

subdivided into 10 families: human mouse mammary tumour virus like 1 to 8 

(HML-1-8), HERV-K(C4) and HERV-K(14C) (Bannert and Kurth, 2006). The 

HERV-K group appears to be unique to primates, with no close relatives 

known in other taxa (Baillie et al., 2004). 

The majority of known HERV-K like betaretroviruses integrated into the 

common ancestor of all old world primates at least 32 million years ago 

(Bannert and Kurth, 2006, Perelman et al., 2011, Greenwood et al., 2005). 

HERV-K HML-5 seems to be the oldest group, as HERV-K HML-5 proviruses 

are found at common sites in new world and old world monkeys, so integrated 

at least 43 million years ago (Bannert and Kurth, 2006, Perelman et al., 2011, 
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Greenwood et al., 2005). HML-5 proviruses in the human genome are highly 

degraded, which fits with their ancient origin (Lavie et al., 2004).  

The HERV-K HML-2 group is unusual in that although it was circulating at 

least 32 million years ago, the most recent integrations appear to have become 

fixed after the human and chimpanzee lineages diverged approximately six 

million years ago, with at least 29 insertions unique to humans (Shin et al., 

2013, Bannert and Kurth, 2006, Mayer et al., 1999, Reus et al., 2001). At least 

six HERV-K HML-2 loci are polymorphic within the modern human 

population, with the proviruses present in 15-50% of humans and an empty 

insertion site in others (Turner et al., 2001, Shin et al., 2013). Therefore, 

genetic differences both between humans and chimpanzees and within the 

human population may be partly due to HERV-K HML-2 ERVs. The HERV-K 

HML-2 group also includes at least 17 full-length betaretroviruses, of which 

three are known to contain full ORFs for gag, pro, pol and env: HERV-K113, 

HERV-K115 and HERV-K119 (Shin et al., 2013, Subramanian et al., 2011). 

HERV-K113 and HERV-K115 are truly polymorphic and HERV-K119 is present 

only as a solo-LTR in some individuals (Shin et al., 2013, Subramanian et al., 

2011). 23 HERV-K loci, including HERV-K115 but not HERV-K113 or HERV-

K119, have been shown to be transcriptionally active (Flockerzi et al., 2008). 

An increase in expression at one HERV-K (HML-2) locus was shown to occur 

in malignant testicular tissue (Flockerzi et al., 2008), however HERV-K 

expression has not been definitively shown to be associated with any disease. 

The sequence of the theoretical ancestral progenitor to HML-2 has been 

deduced in silico and constructed, producing an intact element, known as 

Phoenix, which can generate structurally intact viral particles (Dewannieux et 

al., 2006). These particles are able to infect human and other mammalian cells 

and have an integration pattern consistent with that of other HERV-Ks. 

Existing HERV-K (HML-2) ERVs in the human genome have the potential to 

recombine to produce these infectious viral particles, although they currently 

appear not to do so (Dewannieux et al., 2006).  
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The widespread presence of recently integrated HERV-K loci seems to be 

unique to humans, while in chimpanzees gammaretroviruses have undergone 

recent expansion (Jern et al., 2006). Jern et al. (2006) examined ERV loci 

with less than 2% LTR divergence (estimated to have integrated less than five 

million years ago) and found seven loci unique to the human genome, all 

HML-2, and 24 loci unique to the chimpanzee genome - one HERV-K and 23 

gammaretroviruses. HERV-K appears to have proliferated in the human 

genome predominantly via reinfection rather than retrotransposition or 

complementation (Belshaw et al., 2004). These results together suggest that 

HML-2 viruses have been continuously active in the human lineage since they 

first entered the common ancestor of the old world primates and that they may 

still be circulating. 

The β1 group of ERVs found in mice and rats clusters close to HERV-K, 

although the two clusters are distinct (Baillie et al., 2004), β1 ERVs are non-

recombinant betaretroviruses. 

1.4.7.2.  SERV, SRV, BaEV, RD114, MusD and TvERV 

Outside of humans, primate betaretroviruses have not been widely studied. 

With the exception of the newest HML-2 insertions, the betaretrovirus 

complement of the chimpanzee is very similar to that of humans and all known 

chimpanzee betaretroviruses have human orthologues (Polavarapu et al., 

2006a). In other primates, most work has focussed on the phylogenetic group 

which contains the simian ERVs (SERVs), simian retroviruses (SRVs), baboon 

endogenous virus (BaEV) and feline RD-114 ERV. This group is more closely 

related to MMTV, MusD and other rodent retroviruses than the HERV-K 

group (Baillie et al., 2004).  

SERVs are a group of ancient endogenous simian betaretroviruses found in the 

Papionini and Cercopithecini tribes of old world monkey, estimated to have 

entered the germline between 12 and 18 million years ago (van der Kuyl et al., 
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1997, Perelman et al., 2011). SERVs appear to be responsible for an unusually 

high number of recombination events and cross-species transmissions. 

SRVs are a group of exogenous retroviruses with betaretroviral gag and pol 

genes but gammaretroviral env genes which frequently cause disease in 

captive macaques (van der Kuyl et al., 1997). These retroviruses cause an 

AIDS-like immunodeficiency syndrome in several species of macaque and 

have often been used as a model of AIDS for this reason (van der Kuyl et al., 

1997). SRVs are common in laboratory populations of rhesus macaques, with a 

prevalence exceeding 50% in some populations and are thought to be a 

potential confounding variable in any study involving these animals (Lerche 

and Osborn, 2003). These viruses have also been detected in humans working 

closely with non-human primates and in wild macaques, baboons and langurs 

(Lerche et al., 2001, Grant et al., 1995, Nandi et al., 2003, Sommerfelt et al., 

2003). Exogenous SRVS are thought to be derived from recombination 

between the gag-pol region of an SERV and the env gene of a gammaretrovirus 

(Sonigo et al., 1986, van der Kuyl et al., 1997) (Figure 25). Therefore, SRVs 

present an atypical case, in that they appear to be the result of recombination 

of an ancient ERV with another retrovirus resulting in an active pathogen. 

SERV is also thought to be the parent of another recombinant virus, BaEV, 

which has a gammaretroviral gag-pol region from Papio cynocephalus 

endogenous retrovirus (PcEV) and an env from an SERV (Mang et al., 1999) 

(Figure 25). BaEV-like sequences are only seen in members of the Papionini 

tribe and in Chlorocebus species (previously known as Cercopithecus 

aethiops) (van der Kuyl et al., 1995). Viruses from the Papionini group form a 

phylogenetic cluster, as do the Chlorocebus viruses (van der Kuyl et al., 1995). 

BaEV appears have entered the germline between 24,000 and 400,000 years 

ago, and is likely to have integrated separately into the Chlorocebus and 

Papionini germlines, rather than into a common ancestor, as the last common 

ancestor of these groups lived approximately 11.5 million years ago (Perelman 

et al., 2011, van der Kuyl et al., 1997). The recombination event which led to 
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this virus must have occurred in a species which harboured both SERV and 

PcEV (van der Kuyl et al., 1997, Mang et al., 1999). 

RD-114 ERV has a betaretroviral env gene but gammaretroviral gag and pol 

genes and is found in the genome of all cats. It was recently identified in an 

infectious form in several live attenuated animal vaccines, probably due to 

culture of vaccines and seed viruses in feline cell lines (Miyazawa et al., 2010, 

Yoshikawa et al., 2010, Yoshikawa et al., 2011b, Yoshikawa et al., 2011a). 

Although RD-114 is not known to be associated with disease it has pathogenic 

potential and replicates in at least human, feline and canine cells (Yoshikawa 

et al., 2012). RD114 has a recombinant genome structure involving SERV – the 

env gene appears to be derived from BaEV, while the remainder of the genome 

is derived from the cat gammaretrovirus Felis catus endogenous retrovirus 

(FcEV) (van der Kuyl et al., 1999) (Figure 25). This suggests a cross species 

transmission of BaEV from primates to cats (van der Kuyl et al., 1999). At 

some point, an ancestor of the cat lineage must have harboured both BaEV and 

FcEV for a recombination event to have occurred (van der Kuyl et al., 1999). 

 

Figure 25: The relationship between the gag, pol and env genes of SERVs, SRVs, 
BaEV and RD114. 
Colours show the transmission of genes between retroviruses. 

Two other retroviruses form an unexpected clade with the SERVS: possum 

(Trichosurus vulpecula) ERV (TvERV) and squirrel monkey endogenous 

retrovirus (SMRV). These insertions are non-recombinant betaretroviruses 

but are unusual in that they are from geographically distant regions to the 

other viruses in the clade, which predominantly affect old world monkeys 
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living in Africa and Asia (Baillie and Wilkins, 2001). SMRV is one of very few 

known ERVs in new world primates, infecting a group of species found only in 

South America. TvERV infects possums, which are very distinct from primates 

evolutionarily, geographically and biologically (Baillie and Wilkins, 2001). 

These viruses not only reveal the potential for transmission of SRV-like 

retroviruses to very distinct species, but also raise questions as to how the 

viruses have been transmitted between such distant areas. 

The pol gene of the β4 group of rodent betaretroviruses clusters closely with 

TvERV, β5 with SMRV and β6 with SERV (Figure 24) (Baillie et al., 2004). 

However, like the SRVs, some of these insertions appear to be recombinant, as 

the β5 and β6 groups have gammaretrovirus like env-genes (Baillie et al., 

2004). Within the β4 group, some insertions with a β4 like pol have a beta-like 

env while others have a gamma-like env. It appears that the tendency for this 

phylogenetic group to recombine extends into the rodents.  

The β7 group of mouse and rat retroviruses consists of the MusD elements 

(Baillie et al., 2004). These appear as an outgroup to the rest of the SERV-like 

group and usually lack env genes (Gifford et al., 2005, Baillie et al., 2004). 

MusD elements are numerous compared to other betaretroviruses, with 

around 100 copies in the mouse genome (Ribet et al., 2007). Only three of 

these copies are capable of retrotransposition (Ribet et al., 2007). The wide 

distribution of these elements seems to be the result of their intracellular 

lifestyle, as they lack part of the gag sequence which should target them to the 

plasma membrane (Ribet et al., 2007). Instead, the MusD elements can 

directly reintegrate within the same cell after reverse transcription, which is 

more efficient (Ribet et al., 2007).  

1.4.7.3. Mouse Mammary Tumour Virus 

MMTV is an exogenous pathogen causing mammary carcinomas in laboratory 

mice (Holt et al., 2013b). Two to eight endogenous copies are also found in a 
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typical inbred mouse genome (Holt et al., 2013b). Baillie et al. (2004) 

identified MMTV-like endogenous insertions in published mouse and rat 

genomes, designated as the β2 group of rodent betaretroviruses, plus a similar 

insertion in the cow, and Garcia-Etxebarria and Jugo (2010) identified nine 

MMTV-like insertions in the cow genome. MMTV like insertions are also 

found in at least the horse (Brown et al., 2012, van der Kuyl, 2011) giraffe, 

bison and musk-ox [all Gifford et al. (2005)] but none in the human (Bannert 

et al., 2010) or chimpanzee (Polavarapu et al., 2006a) genomes. Therefore, it 

is possible that primates lack insertions in this group. 

1.4.7.4. Jaagsieke Sheep Retrovirus and Enzootic Nasal Tumour Virus 

JSRV is a major betaretroviral pathogen of sheep, causing infectious 

pulmonary carcinoma (Palmarini et al., 2004). Enzootic nasal tumour virus 

(ENTV) is closely related to JSRV and has a similar pathogenic effect 

(Palmarini et al., 2004). There are around 20 endogenous copies of 

JSRV/ENTV viruses in the genomes of sheep and goats, the majority of which 

appear to have integrated after these species diverged four to 10 million years 

ago (Palmarini et al., 2004). Two of these insertions appear to predate the split 

between sheep and goats and could possibly be up to 18 million years old, 

which would also result in their presence in Bovidae (cows) and Cervidae 

(deer) (Palmarini et al., 2004). Accordingly, close relatives of JSRV/ENTV 

appear to be present in cows but not in pigs (Garcia-Etxebarria and Jugo, 

2010) and in the caribou and white-tailed deer (Gifford et al., 2005), both 

Cervidae. Baillie et al. (2004) found the β3 group of retroviruses in mice and 

rats, which is related to JSRV/ENTV. This relationship appears to be more 

distant than the relationship between the ovine, cervid and bovine JSRVs, 

however further analysis is needed to confirm this (Baillie et al., 2004).  
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1.4.8. Lentiviruses 

1.4.8.1. RELIK 

Until recently, it was thought that lentiviruses were unable to become 

endogenous, as no endogenous examples had been found (Katzourakis et al., 

2007). This was hypothesised to be either because lentiviruses emerged too 

recently to have had time to become endogenous, or because of a biological 

barrier to germline invasion by lentiviruses (Katzourakis et al., 2007). 

However, Katzourakis et al. (2007) discovered the first example of an 

endogenous lentivirus in the European rabbit (Oryctolagus cuniculus). 

Around 25 full-length copies of RELIK and 150 solo LTRs were found in the 

rabbit genome (Katzourakis et al., 2007). RELIK clusters with EIAV in the 

lentivirus phylogenetic tree (Katzourakis et al., 2007). EIAV and RELIK also 

have similar genomic organisation, simpler than that of other lentiviruses, and 

both lack a vif gene, which suggests that these viruses are more similar to the 

unknown precursor of modern lentiviruses, thought to have a simpler genomic 

organisation (Katzourakis et al., 2007). Keckesova et al. (2009) found related 

insertions in the European brown hare (Lepus europaeus) which are 

orthologous to the rabbit insertions. The presence of these orthologues implies 

that RELIK entered the genome of a common ancestor of L. europaeus and O. 

cuniculus, providing a minimum integration date of 12 million years ago 

(Keckesova et al., 2009).  

1.4.8.2. pSIVgml and pSIVfdl 

Gifford et al. (2008) screened genome data from 21 primate species for further 

endogenous lentiviruses and found several regions with significant homology 

to lentiviruses in the genome of the grey mouse lemur ( Microcebus murinus). 

Three regions contained the 5’ and 3’ LTR sequences and nearly complete gag 

and pol coding sequences of an endogenous lentivirus (Gifford et al., 2008). 

This virus was named grey mouse lemur prosimian immunodeficiency virus 
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(pSIVgml). The M. murinus genome was shown to contain at least 10 distinct 

pSIVgml insertions, including 2 full-length insertions and 8 solo-LTRs, so, as 

the published M. murinus genome has 30% coverage, the full genome is 

estimated to contain around six full-length insertions and 24 solo-LTRs 

(Gifford et al., 2008). The sequence was amplified and a consensus pSIVgml 

genome generated, containing four in-frame stop codons and one 

frameshifting indel (Gifford et al., 2008). Phylogenetically, pSIVgml falls 

between the primate and feline lentiviruses (Gifford et al., 2008). The 

structure of the pSIVgml genome is also transitional between these two groups 

(Gifford et al., 2008). The integration date of the insertion was estimated at 1.9 

– 3.8 million years ago (Gifford et al., 2008).  

Gilbert et al. (2009) characterised a second prosimian lentivirus , prosimian 

immunodeficiency virus fat-tailed dwarf lemur (pSIVfdl) in the genome of 

Cheirogaelus medius. This virus has 93 to 96% sequence similarity to pSIVgml 

(Gilbert et al., 2009). Southern hybridisation was used to look for proviruses 

related to pSIVgml in nine species of Malagasy lemur and was successful in C. 

medius, M. murinus and at a low copy number in M. grisorufus (Gilbert et al., 

2009). C. medius was shown to contain at least four potentially full-length 

insertions (Gilbert et al., 2009). All pSIVgml and pSIVfdl sequences were used 

to generate a more intact consensus sequence, without stop codons or 

frameshifts (Gilbert et al., 2009). There were no shared orthologous insertions 

between M. murinus and C. medius and the total genetic distance between 

pSIVfdl and pSIVgml copies gave an estimated integration date of 3.75 – 18.75 

million years ago (Gilbert et al., 2009). As pSIVgml and pSIVfdl are estimated 

to have integrated no more than 18.75 million years ago but are found in 

species which diverged 24 million years ago, and are found at different 

positions in the two hosts, it seems that the species were colonised separately 

by circulating pSIVs (Gilbert et al., 2009).  

Exogenous SIVs have only been identified to date in mainland African 

primates, so if pSIV is the ancestor of modern SIVs the viruses must somehow 
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have been transferred between Madagascar and the mainland. Gifford et al. 

(2009) proposed two potential routes through which this could have occurred. 

First, the SIVs may have diverged into prosimian and simian lineages during 

the divergence of their hosts (Gifford et al., 2008). The most recent common 

ancestor of the simian and prosimian primates is estimated to have lived 87 

million years ago (Perelman et al., 2011)(Figure 12). If SIVs and primates did 

codiverge, all simian primates, including new world primates, would either 

have SIVs or have independently lost their SIV lineage (Gifford et al., 2008). A 

second option is that species migrating between Madagascar and the mainland 

transmitted the virus. Lemur ancestors migrated to Madagascar on mats of 

vegetation from eastern Africa 50 to 54 million years ago and are not known to 

have been in contact with mainland African primates since this time. However, 

other species have crossed this divide considerably more recently and may 

have acted as vectors for the virus (Gifford et al., 2008). Finally, the virus may 

have been transferred even more recently via an aerial vector, such as a bird or 

bat (Gifford et al., 2008).  

1.4.8.3. MELVs 

Endogenous lentiviruses have also been identified in the genomes of members 

of the weasel family, the Mustelidae (Cui and Holmes, 2012, Han and 

Worobey, 2012b). These are known as the Mustelidae endogenous lentiviruses 

(MELVs). MELVs have been found in all the members of the Mustelinae and 

Lutrinae subfamilies tested to date but in none of the Martinnae, giving an 

estimated integration date of nine to 11 million years ago (Han and Worobey, 

2012b). This is consistent with the date estimated using LTR divergence (Han 

and Worobey, 2012b). The phylogenetic position of the MELVs is inconsistent, 

as they have been variously placed as an outgroup to the primate lentiviruses, 

the feline lentiviruses and to all the non-primate lentiviruses (Cui and Holmes, 

2012). Weasels are a member of the Carnivora order of mammals (Figure 11) 
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so it is feasible that MELVs are an ancestor of modern FIVs, however more 

work is needed to show if this is the case. 

1.4.9. Gypsy Elements and Errantiviruses 

No retroviruses have been classified which predate the appearance of the first 

vertebrates. The genome of one species of amphioxus, the non-vertebrate 

species thought to be the most closely related to the vertebrates, has been 

sequenced and 0.5% of its genome were classified as ERV-like LTR 

retrotransposons, however no further detail is available about these insertions 

(Putnam et al., 2008).  

Gypsy elements, a class of LTR retrotransposon, are found throughout the 

eukaryotes, including in invertebrates (Terzian et al., 2001). These elements 

resemble retroviruses in structure, as they have a gag-like region, encode 

integrase and reverse transcriptase enzymes and a proportion also encode an 

env like ORF (Terzian et al., 2001). The gag sequences of these elements do 

not share structural characteristics with retroviral gag. The RT protein of 

Gypsy elements is distinct from retroviral RT but the two are thought to share 

a common ancestor and the Gypsy RT is more similar to retroviral RT than to 

the RT of other retrotransposons (Xiong and Eickbush, 1990). Similarly, the 

IN protein of the Gypsy elements is distinct from, but shares a common 

ancestor with, the IN protein of retroviruses (Malik and Eickbush, 1999). The 

relationship between the Env protein of Gypsy elements and retroviruses is 

more ambiguous, however in some insects there is homology between the 

protein encoded by the gypsy env ORF and the envelope protein of the 

baculoviruses and structural similarities to retroviral Env proteins (Terzian et 

al., 2001, Malik et al., 2000). Gypsy elements in insects which encode Env 

have sometimes been described as insect ERVs or as the insect errantiviruses 

(Terzian et al., 2001). These have been identified in four species of Drosophila, 

plus Trichoplusia ni (the cabbage looper moth) and Ceratitis capitata (the 

Mediterranean fruit fly) (Terzian et al., 2001). These viruses form a single, 
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monophyletic group distinct from the vertebrate retroviruses regardless of 

which gene is used to build the phylogeny (Terzian et al., 2001). Although 

there is some shared ancestry, the insect errantiviruses are not thought to be 

direct precursors to the retroviruses (Terzian et al., 2001). Instead, it is 

proposed that both the insect errantiviruses and the vertebrate retroviruses 

are the result of separate acquisitions of env genes by retrotransposons (Kim 

et al., 2004). Malik et al. (2000) discussed two other env acquisition events by 

LTR retrotransposons. Caenorhabditis elegans have a group of LTR 

retrotransposons called “Cer” elements which have env genes (Malik et al., 

2000). These are glycoproteins acquired from an ancestor resembling the 

modern Phleboviruses, most likely acquired during coinfection of a host cell. 

Similarly, env genes in Tas elements in another nematode, Ascaris 

lumricoides, strongly resemble the gB glycoprotein of the Herpesviridae.  
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Chapter 2. Materials and Methods 

This chapter will review methods previously used to identify and characterise 

ERVs and describe the pipeline developed here. 

2. 1. Genome Screening for ERVs 

The first step in this analysis was to identify candidate ERV-like regions in the 

genomes of interest. Section 2.1.1 briefly outlines the various genome 

screening techniques available. The technique selected for this project is 

described in more depth in sections 2.1.2 and 2.1.3. Details of how this 

technique was adapted and used are provided in sections 2.1.4 to 2.1.6. 

2.1.1. Genome Screening: Techniques 

Various computational techniques have been used to identify retroviral 

fragments in different mammalian genomes. ERVs can be difficult to detect as 

they are often very degenerate, so it is important to select a technique which 

takes this into account. Different techniques have different advantages and 

disadvantages and the optimum method depends on how the result will be 

used. A brief summary of the most commonly used bioinformatics-based 

methods for ERV detection is provided in this section. 

2.1.1.1. BLAST and BLAT 

The majority of ERV screening attempts to date have used BLAST (Altschul et 

al., 1990) or related algorithms [for example (Tristem, 2000, Villesen et al., 

2004, Polavarapu et al., 2006a, Baillie et al., 2004, Pontius et al., 2007)]. In a 

BLAST-based genome screen, query sequences are compared to known 

retroviral sequences and the regions of the genome demonstrating the highest 
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similarity to these sequences are analysed (Altschul et al., 1990). The selection 

of appropriate input sequences is necessary for BLAST results to be 

comprehensive. TBLASTN, which compares translated nucleotide queries to a 

translated nucleotide database, is probably the most commonly used BLAST 

algorithm for locating ERVs. BLAT (Kent, 2002) is an algorithm related to 

BLAST, but is designed only to search target genomes for highly similar 

matches.  

2.1.1.2. Retrotector 

Recently, screening techniques based on conserved retroviral motifs have been 

developed and can be used as an alternative to sequence based screening. 

Retrotector is a software tool developed to detect retroviral sequences based 

on conserved motifs, the distances between these motifs and codon usage 

(Sperber et al., 2009, Garcia-Etxebarria and Jugo, 2010). The detection of 

conserved motifs uses codon-by-codon comparison with a consensus amino 

acid sequence (Sperber et al., 2009). LTRs are detected, then the regions 

between LTRS are searched for other conserved retroviral motifs (Sperber et 

al., 2009). The program then attempts to reconstruct the gag, pro, pol and env 

proteins (Sperber et al., 2009). Retrotector favours longer sequences, as 

several retroviral fragments need to be present in the right order (Sperber et 

al., 2009). This increases accuracy but means shorter regions could be missed 

(Sperber et al., 2009). Retrotector is not useful for detecting solo-LTRs 

(Benachenhou et al., 2009). Many genomes have been screened for ERVs 

using Retrotector, including human (Sperber et al., 2007), chimpanzee 

(Sperber et al., 2007), rhesus macaque (Sperber et al., 2007), cow (Garcia-

Etxebarria and Jugo, 2010), horse (Garcia-Etxebarria and Jugo, 2012), dog 

(Martínez Barrio et al., 2011), mouse (Sperber et al., 2007) and three avian 

genomes (chicken, turkey and zebra finch) (Bolisetty et al., 2012). 
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2.1.1.3. LTR_STRUC 

Another widely used tool in searching for ERVs is LTR_STRUC. This program 

scans the genome to find pairs of regions which are similar to each other, 

within the length range of typical LTRs and within the length of a typical full-

length ERV or LTR retrotransposon (Polavarapu et al., 2006a). These regions 

are then scanned for regions resembling primer binding sites, polypurine 

tracts and target site repeats (Polavarapu et al., 2006a). LTR_STRUC cannot 

locate solo-LTRs (Benachenhou et al., 2009). As LTR_STRUC only searches 

for LTRs, it may be able to detect elements with more variable genomic 

structures than other methods (Garcia-Etxebarria and Jugo, 2010). The mouse 

(McCarthy and McDonald, 2004), cow (Garcia-Etxebarria and Jugo, 2010), 

horse (Garcia-Etxebarria and Jugo, 2012) and chicken (Huda et al., 2008) 

genomes, amongst others, have been screened using this technique. 

2.1.1.4. RepeatMasker and Repbase 

The majority of published genomes are available pre-screened for repetitive 

elements, including ERVs, as it is often useful to mask these elements when 

analysing the genome, for example if only protein coding regions are of 

interest (Smit, 1996). The majority of repeat screening techniques identify 

multiple types of interspersed repeat, not just LTRs (Smit, 1996). This analysis 

is often performed using RepeatMasker (Smit, 1996). The program annotates 

the repeats and classifies them as LTR elements, short interspersed nuclear 

elements (SINEs), long interspersed nuclear elements (LINEs) and DNA 

elements (Smit, 1996). The LTR elements are subdivided into retroviruses, 

mammalian LTR retrotransposons and MER4 LTRs (Smit, 1996). This 

classification depends on their similarity to known elements in the 

RepeatMasker database, which is based on the Repbase dataset (Jurka et al., 

2005). The algorithm used for this comparison can be selected by the user, 

commonly used algorithms include BLAST (Altschul et al., 1990) and 

cross_match (Green, 1996).  
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The success of RepeatMasker in detecting LTRs depends on its sequence 

libraries. The Repbase database aims to include “representative eukaryotic 

repetitive sequences and other biologically relevant information derived from 

printed journal articles, electronic journals, and public databases” (Jurka et 

al., 2005). Baillie et al. (2004) found that RepeatMasker was more successful 

in identifying groups of repeats within a species when there are large numbers 

of closely related members of that group in the host (Baillie et al., 2004). Low 

copy number repeats are less likely to be identified and ERVs can be 

mislabelled as other types of repeat (Benachenhou et al., 2009).  

2.1.1.5. Comparison of Techniques 

Direct comparison of genome screening techniques is difficult, because ERV 

content varies dramatically between genomes. The various techniques are also 

designed with different goals, for example to identify modern, intact ERVs, 

ancient degenerate insertions or solo-LTRs. Using the results of existing 

studies for comparative purposes is especially problematic, given the 

differences which exist between input sequence databases, genome builds and 

versions of the screening software. 

Garcia-Etxebarria et al. (2010, 2012) attempted a direct comparison of three 

methods of ERV screening in the cow and horse genomes: LTR_STRUC, 

Retrotector and TBLASTN. In the cow genome, 4,487 elements were identified 

using LTR_STRUC, 9,698 using Retrotector and 928 using TBLASTN (Garcia-

Etxebarria and Jugo, 2010) (Figure 26). In the horse genome, 291 elements 

were identified using LTR_STRUC, 1,615 using Retrotector and 378 using 

TBLASTN. Insertions identified using Retrotector were more likely to include 

all three major retroviral genes (gag, pol and env) and so were more intact 

(Garcia-Etxebarria and Jugo, 2010). As more sequences were identified using 

Retrotector and they were of higher quality, this appears to be the most 

efficient of these three ERV detection methods.  
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These comparisons of techniques have several limitations. First of all, all 

results are considered to be legitimate ERVs, when in reality all three 

techniques are likely to detect some false positives. As Figure 26 demonstrates, 

there was relatively little overlap between the regions identified in the cow 

genome using LTR_STRUC and the other two methods and in the horse 

genome only 31 ERVs were common to all three methods (Garcia-Etxebarria 

and Jugo, 2010, Garcia-Etxebarria and Jugo, 2012). The different techniques 

appear to be detecting different subsets of a larger overall ERV content, the 

size of which is unknown. BLAST results are also highly sensitive to the 

database of sequences used as an input and these studies both used a relatively 

small input of 12 sequences. 

 

Figure 26: Comparision of the ERV sequences identified in the cow genome using 
LTR_STRUC, Retrotector and BLAST.  
From Garcia-Etxebarria et al. (2010). 

A more robust comparison between genome screening algorithms may be to 

generate a pseudo-genome with a similar structure to the genome of interest 

and insert a known number of ERVs or ERV-like sequences with a range of 

properties at specific locations. This test genome could then be used to directly 
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compare the ability of the different genome screening algorithms to detect 

ERVs.  

2.1.2. Exonerate  

The sequence alignment algorithm selected for ERV screening in this study is 

part of the Exonerate package (Slater and Birney, 2005). This section 

describes how this algorithm works and how it was used here. 

The Exonerate algorithm (Slater and Birney, 2005) was developed to allow 

“rapid approximation of exhaustive sequence alignment”. Exhaustive 

alignment models, such as the Smith-Waterman algorithm (Smith and 

Waterman, 1981) identify the optimum alignment of two sequences while 

heuristic strategies, such as BLAST (Altschul et al., 1990) generate valid 

alignments which are not necessarily the optimum. Heuristic strategies are 

significantly faster than exhaustive strategies (Slater and Birney, 2005). 

Exonerate is a heuristic method but approximates the alignment which would 

be produced using a user-specified exhaustive model (Slater and Birney, 

2005).  

The protein2genome model in Exonerate is a complex model built from 

components of other models (Slater and Birney, 2005). The model is used to 

map a protein onto genomic DNA (Slater and Birney, 2005). It begins with the 

Smith-Waterman algorithm, which compares two sequences by looking for the 

pair of segments from those sequences which have the highest degree of 

similarity, allowing for insertions and deletions (Smith and Waterman, 1981). 

The Smith-Waterman-Gotoh model builds upon this, reducing the amount of 

computational power required to run the model by using “affine gap penalties” 

(Gotoh, 1982). This means that while under the Smith-Waterman model, the 

costs of opening a gap and extending a gap are the same and gaps of all 

possible lengths need to be tested, under the Smith-Waterman-Gotoh model 

gap opening has a higher cost than gap extension, as fewer, longer gaps are 
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biologically more likely (Gotoh, 1982). The protein2genome model includes 

this change. Next, translation is incorporated into the protein2genome model, 

testing all possible translations and frameshifts (Slater and Birney, 2005). 

Finally, the model is altered so that introns can be present in the alignment 

(Slater and Birney, 2005). Using the Exonerate algorithm allows this complex 

model to be applied without using excessive computational resources. 

2.1.3. Exonerate Pipeline 

Exonerate has previously been incorporated into a pipeline to screen genomes 

for candidate ERV sequences. This pipeline has been used successfully to 

screen the horse (Appendix A.1) (Brown et al., 2012) and dog (Appendix A.2) 

(Tarlinton et al., 2012) genomes for ERVs. This pipeline is available at 

https://github.com/ADAC-UoN/predict.genes.by.exonerate.pipeline. This 

pipeline consists of five Perl scripts. The interactions between these scripts and 

their functions are summarised in Figure 27. The pipeline uses Exonerate to 

find candidate regions of similarity between a series of protein sequences and 

a genome sequence, then selects the highest quality result for each region and 

outputs these to the user in various formats suitable for further analysis. The 

input for the pipeline is a FASTA file containing protein sequences from 

known retroviruses and a genome sequence divided into FASTA files by 

chromosome (or sequences of similar length to chromosomes). It requires five 

user-specified options to run: the path to the file containing the protein 

sequences, the path to the directory where the chromosomes are stored, a 

prefix for the output sequence titles, the minimum allowable length of the hits 

(in amino acids) and number of introns to allow in a hit. These parameters are 

passed to a Perl script, “predict.genes.by.exonerate.pl”, a wrapper script which 

co-ordinates the other four scripts (Figure 27). The output is a table of non-

overlapping candidate ERV regions which meet the requirements specified by 

the user and a FASTA file of these sequences. The intermediate output files 

produced by the pipeline are also stored. 



Chapter 2: Materials and Methods 
Section 2.1: Genome Screening for ERVs 
 
 

116 

 

 

 

Figure 27: Flow chart representing the Exonerate pipeline used to detect candidate 
ERVs. 
Arrows are colour-coded according to the Perl script which performs the task. The 
script “predict.genes.by.exonerate” co-ordinates this by activating the scripts one by 
one and passing the input and output files between them. 
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As Exonerate has previously been used to detect ERVs in the horse genome, it 

is possible to compare its performance in ERV detection to the other 

algorithms described in section 2.1.1. 

 

Table 6: Comparison of the number of pol genes and of Class I pol genes identified 
in the horse genome with Exonerate, Retrotector, LTR_STRUC and TBLASTN. 
Algorithm N pol genes N Class I Reference 

Retrotector 1,575 998 (Garcia-Etxebarria and Jugo, 2012) 

LTR_STRUC 41 - (Garcia-Etxebarria and Jugo, 2012) 

TBLASTN 262 183 (Garcia-Etxebarria and Jugo, 2012) 

Exonerate 813 768 (Brown et al., 2012) 

 

Table 6 is a comparison between Exonerate, Retrotector, LTR_STRUC and 

TBLASTN in terms of how many ERV pol genes were detected in the horse 

genome. Pol genes were selected because these are the most useful for 

retroviral phylogeny and, as the longest gene, pol is easiest to detect. The horse 

study using Exonerate (Brown et al., 2012) was focussed on Class I sequences 

and used a single gammaretroviral query sequence, Moloney MLV. The 

number of Class I sequences identified was comparable with the number 

detected using Retrotector, which is usually found to identify the most ERVs 

(Garcia-Etxebarria and Jugo, 2012, Garcia-Etxebarria and Jugo, 2010). 

Despite the similarity between the algorithms, significantly more ERVs are 

detected using Exonerate protein2genome than TBLASTN, suggesting this 

algorithm is more appropriate for ERVs. This is especially apparent because 

Exonerate was used here with a single query sequence while Garcia-Etxebarria 

et al. used 12 sequences as a BLAST input. Increasing the size of the Exonerate 

input database may allow it to overtake other methods in terms of pol gene 

detection. However, this comparison of approaches is subject to the limitations 

discussed in section 2.1.1.5 and again may be improved by generation of an 

artificial dataset. 
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To verify that the insertions identified using Exonerate are genuine ERVs, a 

comparison between the proportion of insertions identified on each horse 

chromosome with each screening technique was performed. The results of this 

analysis are shown in Figure 28. There was a strong and highly significant 

(p<0.001) positive correlation between the proportion of ERVs identified on 

each chromosome using Exonerate and each of the other three methods. The 

correlation with Retrotector was particularly high, which suggests that 

Retrotector and Exonerate detect a similar subset of ERV insertions. 

 

 

Figure 28: Scatter graph showing the proportion of ERVs identified on each 
chromosome of the horse genome using Exonerate compared to BLAST, LTR_STRUC 
and Exonerate and the Pearson’s correlation coefficient for each comparison. 

 

Finally, the horse ERVs identified using Exonerate were verified using BLAST. 

Each pol gene Exonerate hit from the horse genome was tested against the 

translated database of known retrovirus sequences described in section 2.1.4 

using BLASTX. The output of this analysis was parsed to remove hits less than 

75 nucleotides in length and with less than 30% identity to part of a known 

retrovirus. 791 out of 813 Exonerate sequences generated BLASTX hits which 
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exceeded these criteria. This shows that pol sequences identified by Exonerate 

are good candidates as ERVs. 

2.1.4. Input Dataset 

The size and quality of the input dataset used with Exonerate is expected to 

have a significant impact on the comprehensiveness of the output, as the 

algorithm can only identify regions matching sequences in the input dataset. A 

larger, more diverse input dataset should lead to a larger, more diverse output 

dataset. Phylogenetic analyses also require a comprehensive set of known 

sequences to provide reliable results. Therefore, an input dataset was built to 

encompass, as far as possible, the diversity of known exogenous and 

endogenous gag, pol and env sequences at the time of compilation. 

106 journal articles providing or referring to sequences for endogenous or 

exogenous retroviruses were identified. Full references for these articles are 

listed in Appendix B.1. Sequences were either downloaded from Genbank or 

Repbase, copied directly from the manuscript or extracted from the 

appropriate region of the host chromosome between 02-Jun-2012 and 30-Jul-

2012. Genome regions were downloaded from the UCSC genome browser 

using the genome build described in the original paper (Kent et al., 2002). 

Where sequences were copied directly from the manuscript, their genome 

position was identified using UCSC BLAT (Kent, 2002). The journal articles 

used included several genome-wide bioinformatics based ERV screens, in the 

human (Romano et al., 2006), baboon (Yohn et al., 2005), chimpanzee 

(Polavarapu et al., 2006a, Jern et al., 2006, Yohn et al., 2005), gorilla (Yohn et 

al., 2005), macaque (Yohn et al., 2005), mouse (Jern et al., 2007, McCarthy 

and McDonald, 2004), chicken (Huda et al., 2008), cow (Garcia-Etxebarria 

and Jugo, 2010), dog (Tarlinton et al., 2012) and pig (Yu et al., 2012b). Other 

groups of XRVs and ERVs described in the literature based on laboratory 

screening were also added. 651 sequences from different HIV strains were 

extracted from the National Institute of Health (NIH) HIV sequence database 
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(Antony et al., 2004). 96 human ERV strains were extracted from Repbase. 

Genbank was also extensively searched for sequences from other ERVs, 

including unpublished sequences. 

The final nucleotide database is available as a MS Excel spreadsheet (Appendix 

B.1). The database has 4124 retroviral sequences from 321 host species, 

including mammals, birds, fish, amphibians and reptiles. 1119 sequences are 

full or partial gag genes, 1607 are pol genes and 1398 are env genes. 

Sequences have a mean length of 1310 bp. This dataset will be referred to from 

this point forward as the full previously known retrovirus 

(FULL_PREVKNOWN) dataset. 

The FULL_PREVKNOWN dataset is of an unrealistic size to use as an 

Exonerate input and many of the sequences are redundant. The 

protein2genome model also requires amino acid, rather than nucleotide 

sequences as an input. Therefore representative nucleotide and amino acid 

datasets were created. Sequences in the FULL_PREVKNOWN dataset were 

placed into approximate groups by hand, according to their description (for 

example, HIV sequences were divided by group, sequences from whole 

genome screens were divided by host and viral genus). The longest sequence in 

each group was then selected as a potential “representative sequence”. Each 

sequence in the group was individually aligned to this representative using 

MUSCLE (Edgar, 2004) and its percentage identity to the representative 

sequence calculated. Sequences with less than 85% identity to the 

representative sequence were incorporated into the parsed dataset 

individually, otherwise only the representative sequence was added. This left 

1590 sequences, described from here forward as the parsed untranslated 

previously known retrovirus (PARSED_UT_PREVKNOWN) dataset . This 

dataset is available as a FASTA file in AppendixC.2.  

This dataset was then translated in all six reading frames using the seqinr 

package in R, in order to generate the amino acid sequences needed for the 

protein2genome Exonerate model (R Core Team, 2014) and the translation 
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with the least stop codons was added to an amino acid sequence dataset. 155 

sequences were too degenerate to translate, with four or more stop codons in 

all reading frames, these were removed from the dataset. Sequences less than 

200 nucleotides in length were also removed. A BLASTP search was 

performed against the Uniprot database for each of the remaining sequences 

and any sequence not generating a significant match (as defined by BLASTP) 

against a retroviral gag, pol or env gene was removed. The final Exonerate 

input dataset consists of 1361 amino acid sequences (367 Gag, 655 Pol and 339 

Env) which represent 89.48% of the original nucleotide dataset. This dataset is 

available as a FASTA file in Appendix C.3 and will henceforth be referred to as 

the parsed translated previously known retrovirus 

(PARSED_T_PREVKNOWN) dataset. The mean similarity between each 

sequence in the FULL_PREVKNOWN dataset and the sequence by which it is 

represented in the PARSED_T_PREVKNOWN dataset is 96.3%.  

To test the PARSED_T_PREVKNOWN dataset as an Exonerate input, three 

analyses were performed on the human genome. The first used only the gag, 

pol and env genes of Moloney MLV as an input. The protein2genome model 

was run on the GRCh37.p10 version of the human genome with 0 introns and 

a minimum overlap of 200 amino acids. This analysis identified 1439 ERV-like 

fragments (82 gag, 1327 pol, 30 env). The second analysis used the same 

settings with the RefSeq retroviral gag, pol and env genes as an input, as listed 

in Appendix B.3. RefSeq is a curated database of annotated reference 

sequences which included 33 members of the Retroviridae, amounting to 99 

gene sequences, when this analysis was carried out (Pruitt et al., 2012a). This 

analysis identified 3602 ERV-like fragments (442 gag, 2792 pol, 368 env). The 

same analysis was then performed with the PARSED_T_PREVKNOWN input 

dataset. This resulted in 8945 ERV-like fragments (1709 gag, 6171 pol, 1065 

env). The fragments from all three analyses were verified using BLASTX 

against PARSED_T_PREVKNOWN with a threshold of 40% identity over 100 

bp. With MLV only as an input, 98.3% of hits pass this test, with the RefSeq 

sequences 98.1% pass and with the full input 93.3% pass. There is a 5% 
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decrease in quality in the hits with the full input dataset compared to the MLV-

only input, however only 16% of the high quality hits identified with the full 

dataset are identified with only MLV as a query. Therefore, using the full input 

dataset leads to a considerably more comprehensive output.  

2.1.4.1. Categorisation of Reference Sequences 

The 1590 known retrovirus sequences in the untranslated 

PARSED_UT_PREVKNOWN were combined into 242 approximate groups of 

interest using a combination of prior knowledge about the retroviruses and 

sequence similarity. This grouped dataset was used later to provide closely 

related genetic groups for phylogenetic analyses (section 2.2.3). Of the 1590 

sequences, 1205 were already members of well-characterised groups and had 

been subject to previous informative phylogenetic analyses. These were 

divided accordingly into 203 groups. The remainder were less well-

characterised and so were compared sequence by sequence to each of the 1205 

well-characterised sequences.  

This comparison, and subsequent sequence-by-sequence comparisons used to 

identify ERVs, used the water function of EMBOSS, which is based upon the 

Smith-Waterman algorithm (Rice et al., 2000, Smith and Waterman, 1981). 

This function aligns two sequences, finds regions of local similarity and 

assigns a score based on the quality of the alignment of these regions (based 

on length and sequence similarity). The uncharacterised known sequences 

were assigned to groups based upon their highest score after comparison with 

each of the 1205 well-characterised sequences. New groups were created for 

sequences or groups of sequences which did not reach a threshold score (here 

a score of 300 was used after testing using sequences from well-characterised 

categories). This led to creation of 36 additional groups. The groups into which 

each previously known retrovirus sequence was placed are listed in Appendix 

B.4. The grouped dataset of known sequences from 
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PARSED_UT_PREVKNOWN is referred to as the grouped previously known 

retrovirus (GROUPED_PREVKNOWN) dataset. 

2.1.5. Input Genomes 

Genome sequences were downloaded for 33 species of vertebrate. Species 

details are listed in Table 7. 30 species are members of the Euarchontoglires, 

the taxonomic superorder which includes all known primates, rodents, 

lagomorphs, tree shrews and colugos (flying lemurs). 15 species of primate, 11 

species of rodent, 2 species of lagomorph and 2 species of tree shrew had been 

sequenced on the date this analysis was performed (08-Mar-2013) (Table 7). 

Three species outside of the Euarchontoglires were also screened: the ferret 

genome was screened due to the presence of known endogenous lentiviruses in 

its genome and the chicken and turkey genomes to investigate the possibility 

of amniote-specific retroviruses. 

All genomes were downloaded on 08-Mar-2013 from one of the following 

sources, in this order of preference: RefSeq release 57 

(http://www.ncbi.nlm.nih.gov/refseq/) (Pruitt et al., 2012b), National Center 

for Biotechnology Information (NCBI) Genome 

(http://www.ncbi.nlm.nih.gov/genome/ , Ensembl release 70 

(http://www.ensembl.org/) (Flicek et al., 2012), NCBI Whole Genome 

Shotgun (WGS) (http://www.ncbi.nlm.nih.gov/genbank/wgs). Full details of 

the genome builds used are listed in Table 8. Genome quality was variable 

between hosts, with some genomes, for example human and mouse, sequenced 

to a high quality and others in an early draft stage of sequencing. 
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 Table 7: Taxonomic details of the 33 vertebrate genomes screened using 
Exonerate. 

Scientific Name Common Name Abbreviated Name Prefix 
Taxonomic 

Group 

Callithrix jacchus Common marmoset Marmoset Cjac Primate 

Daubentonia 
madagascariensis 

Aye-aye Aye-aye Dmad Primate 

Gorilla gorilla Western gorilla Gorilla Ggor Primate 

Homo sapiens Human Human Hsap Primate 

Macaca fascicularis Crab-eating macaque Crab Eating Macaque Mfas Primate 

Macaca mulatta Rhesus macaque Rhesus Macaque Mmul Primate 

Microcebus murinus Gray mouse lemur Lemur Mmur Primate 

Nomascus leucogenys 
Northern white-
cheeked gibbon 

Gibbon Nleu Primate 

Otolemur garnettii 
Northern greater 

galago 
Bushbaby Ogar Primate 

Pan paniscus Bonobo Bonobo Ppan Primate 

Pan troglodytes Common chimpanzee Chimpanzee Ptro Primate 

Papio anubis Olive baboon Baboon Panu Primate 

Pongo abelii Sumatran orangutan Orangutan Pabe Primate 

Saimiri boliviensis 
Black-capped squirrel 

monkey 
Squirrel Monkey Sbol Primate 

Tarsius syrichta Tarsier Tarsier Tsyr Primate 

Tupaia belangeri Northern Treeshrew Northern Treeshrew Tbel Tree Shrew 

Tupaia chinensis Chinese Treeshrew Chinese Treeshrew Tchin Tree Shrew 

Cavia porcellus Guinea Pig Guinea Pig Cpor Rodent 

Chinchilla lanigera Long-tailed chinchilla Chinchilla Clan Rodent 

Cricetulus griseus Chinese hamster Hamster Cgri Rodent 

Dipodomys ordii Ord's kangaroo rat Kangaroo Rat Dord Rodent 

Heterocephalus 
glaber 

Naked mole rat Naked Mole Rat Hgla Rodent 

Ictidomys 
tridecemlineatus 

Thirteen-lined ground 
squirrel 

Ground Squirrel Itri Rodent 

Jaculus jaculus Lesser Egyptian jerboa Jerboa Jjac Rodent 

Microtus ochrogaster Prairie vole Vole Moch Rodent 

Mus musculus House mouse Mouse Mmus Rodent 

Octodon degus Degu Degu Odeg Rodent 

Rattus norvegicus Brown rat Rat Rnor Rodent 

Ochotona princeps American pika Pika Opri Lagomorph 

Oryctolagus cuniculus European rabbit Rabbit Ocun Lagomorph 

Gallus gallus Domestic chicken Chicken Ggal Bird 

Meleagris gallopavo  Domestic turkey Turkey Mgal Bird 

Mustela putorius Domestic Ferret Ferret Mput Carnivore 

  



Chapter 2: Materials and Methods 
Section 2.1: Genome Screening for ERVs 
 
 

125 

 

Table 8: Assemblies and source databases for the 33 vertebrate genomes screened 
using Exonerate. 
 

Abbreviated Name Assembly Assembly ID Source 
Assembly 

Level 

Marmoset Callithrix jacchus-3.2 GCF_000004665.1  RefSeq chromosome 

Aye-aye DauMad_1.0 GCA_000241425.1 WGS contig 

Gorilla gorGor3.1 GCF_000151905.1 RefSeq chromosome 

Human GRCh37.p10 GCF_000001405.22 RefSeq chromosome 

Crab Eating Macaque MacFas_Jun2011 GCA_000222185.1 NCBI chromosome 

Rhesus Macaque Mmul_051212 GCF_000002255.3 RefSeq chromosome 

Lemur micMur1 micMur1 Ensembl scaffold 

Gibbon Nleu_3.0 GCF_000146795.2 RefSeq chromosome 

Bushbaby OtoGar3 GCF_000181295.1  NCBI scaffold 

Bonobo panpan1 GCF_000258655.1  RefSeq scaffold 

Chimpanzee Pan_troglodytes-2.1.4 GCA_000001515.4  RefSeq chromosome 

Baboon Panu_2.0 GCF_000264685.1  RefSeq chromosome 

Orangutan P_pygmaeus_2.0.2 GCF_000001545.4  RefSeq chromosome 

Squirrel Monkey SaiBol1.0 GCF_000235385.1  RefSeq scaffold 

Tarsier tarSyr1 GCA_000164805.1  Ensembl scaffold 

Northern Treeshrew ASM18137v1 GCA_000181375.1  WGS contig 

Chinese Treeshrew TupChi_1.0 GCA_000334495.1  NCBI scaffold 

Guinea Pig Cavpor3.0 GCF_000151735.1 RefSeq scaffold 

Chinchilla ChiLan1.0 GCA_000276665.1 NCBI scaffold 

Hamster CriGri_1.0 GCF_000223135.1 RefSeq scaffold 

Kangaroo Rat dipOrd1 dipOrd1 Ensembl scaffold 

Naked Mole Rat HetGla_female_1.0 GCA_000247695.1 NCBI scaffold 

Ground Squirrel SpeTri2.0 GCA_000236235.1 NCBI scaffold 

Jerboa JacJac1.0 GCA_000280705.1 NCBI scaffold 

Vole MicOch1.0 GCA_000317375.1 NCBI chromosome 

Mouse GRCm38.p1 GCF_000001635.21 NCBI chromosome 

Degu OctDeg1.0 GCA_000260255.1  NCBI scaffold 

Rat Rnor_5.0 GCF_000001895.4  RefSeq chromosome 

Pika OchPri3.0 GCA_000292845.1  NCBI scaffold 

Rabbit OryCun2.0 GCF_000003625.2  RefSeq chromosome 

Chicken WASHUC2 WASHUC2 Ensembl chromosome 

Turkey Turkey_2.01 GCF_000146605.1 RefSeq chromosome 

Ferret MusPutFur1.0 GCA_000215625.1 NCBI scaffold 
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2.1.5.1. Pre-processing 

Of the 33 genomes listed in Table 8, to date, 15 have been assembled into 

chromosomes. The others are at various stages of assembly into scaffolds and 

contigs. The length of these scaffolds and contigs affects the probability of 

detecting intact ERVs (ERVs with a recognisable LTR-gag-pol-env-LTR 

structure, typically 7,000 to 10,000 bp in length) and the length of the gene 

fragments identified. With decreasing contig length there is an increased 

probability that ERVs or ERV genes will be broken across more than one 

contig.  

 

Table 9 shows the probability of a 10,000 base pair intact ERV and of a 1,100 

base pair gene fragment (the mean fragment length identified in the human 

genome) being split across more than one contig for two measures of average 

contig length: mean contig length and N50. N50 (provided by the source 

genome browser) is identified by sorting contigs by length, starting with the 

longest, then counting the bases in each contig until half the total genome 

length is reached (Yandell and Ence, 2012). The length of the contig in which 

this number is reached is the N50 length (Yandell and Ence, 2012). N50 tends 

to overestimate contig length while mean length does not take into account 

that, by definition, more of the genome will be contained in the longer contigs 

(Yandell and Ence, 2012). Therefore the real “middle point” of contig length is 

likely to fall between these two measurements. 

For some genomes – aye-aye, hamster, kangaroo rat, lemur, northern tree 

shrew and tarsier - regardless of the measure of mean contig length used, full-

length ERVs are unlikely to be identified and gene fragments are likely to be 

shorter than for more complete assemblies. The Chinese tree shrew and 

ground squirrel genomes are likely to have a reduced number of detectable 

full-length ERVs but fragment length should be mostly unaffected. For the 

remaining nine species assembled at a scaffold level there should be little 
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change in the probability of finding full-length ERVs or the length of ERV 

fragments compared to the genomes assembled to chromosome level. 

 

Table 9: The probability that an average ERV (10,000 bp) and an average Exonerate 
ERV fragment (1100 bp) would span more than one contig or scaffold in each 
screened genome based on mean segment (contig or scaffold) length and on N50.  
Green, probability less than or equal to 1%; yellow, probability less than or equal to 
5%; red, probability greater than or equal to 5%. Scaffold or contig N50 are provided 
depending on the “Assembly Level” given in Table 8. 

Abbreviated 
Name 

Mean Segment Length N50 

Length 
Expected 
% Overlap 
10,000 bp 

Expected 
% Overlap 
1110 bp 

Length 
Expected 
% Overlap 
10,000 bp 

Expected 
% Overlap 
1110 bp 

Aye-aye 884 100.00% 100.00% 3653 100.00% 30.39% 

Bonobo 264,002 3.79% 0.42% 10,124,892 0.10% 0.01% 

Bushbaby 323,332 3.09% 0.34% 13,852,661 0.07% 0.01% 

Chinchilla 842,443 1.19% 0.13% 21,893,125 0.05% 0.01% 

Chinese Tree 
shrew 

56,090 17.83% 1.98% 3,670,124 0.27% 0.03% 

Degu 419,943 2.38% 0.26% 12,091,372 0.08% 0.01% 

Ground 
Squirrel 

198,542 5.04% 0.56% 8,192,786 0.12% 0.01% 

Guinea Pig 866,164 1.15% 0.13% 27,942,054 0.04% 0.00% 

Hamster 21,986 45.48% 5.05% 156,635 6.38% 0.71% 

Jerboa 260,185 3.84% 0.43% 22,080,993 0.05% 0.01% 

Kangaroo 
Rat 

11,048 90.51% 10.05% 36,427 27.45% 3.02% 

Lemur 16,828 59.42% 6.60% 140,884 7.10% 0.78% 

Naked Mole 
Rat 

619,250 1.61% 0.18% 20,532,749 0.05% 0.01% 

Northern 
Tree shrew 

2,541 100.00% 43.68% 2,974 100.00% 37.32% 

Pika 213,995 4.67% 0.52% 26,863,993 0.04% 0.00% 

Squirrel 
Monkey 

971,180 1.03% 0.11% 18,744,880 0.05% 0.01% 

Tarsier 5,049 100.00% 21.98% 12,214 81.87% 9.01% 
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The Exonerate pipeline runs more efficiently against fewer, longer sequences. 

For the less assembled genomes, sequences were therefore concatenated into 

“artificial chromosomes”: sequences approximately the same length as a 

typical mammalian chromosome consisting of contig or scaffold sequences 

joined end to end. This is achieved using the Python script 

make_chromosomes.py, available in Appendix D.1. Briefly, this script divides 

the length of the genome by a user-specified number of chromosomes to give 

an approximate “chromosome length”. Contig sequences are then 

concatenated into strings of approximately this length, which are stored as 

FASTA files, with the position of each contig in each “chromosome” recorded 

in a text file.  

 

2.1.6. Screening 

The Exonerate pipeline was run for the full input database described in section 

2.1.4 against each of the genomes listed in Table 8 with the following settings: 

model protein2genome; number of introns 0; minimum overlap 200 amino 

acids. The number of introns was set to 0 as ERV sequences should not 

contain true introns and the protein2genome model already allows for gaps in 

the region matching the query sequence. This analysis generates three FASTA 

files and three tables of candidate ERV sequences for each genome, one for 

each gene. These analyses were performed on the University of Nottingham 

high performance computing cluster. The set of putative ERV fragments 

produced by this analysis will be referred to from this point forward as the raw 

Exonerate output (RAW_EXO_OUT) dataset.

2. 2. Parsing Output 

Once the raw Exonerate output files had been generated, the output was 

parsed in various ways. First, poor quality results were removed using the 

method described in section 2.2.1. The high copy number of some ERVs and 
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the abundance of ERVs in the genome means that it was also usually necessary 

to group elements into families and represent each family with a 

representative or consensus sequence, as this minimises redundancy in the 

dataset and reduces the amount of computational power needed for further 

analysis. Various techniques have previously been used to cluster ERV 

sequences and these are reviewed here (section 2.2.2.1), and the technique 

selected discussed (section 2.2.2.2). Finally, the method used to identify ERV 

fragments is described in section 2.3.3.3. 

2.2.1. Quality Control 

To ensure that only genuine ERV sequences were passed to the next stage, all 

fragments in the RAW_EXO_OUT dataset were verified using BLASTX 

against the PARSED_T_PREVKNOWN dataset. Only sequences sharing at 

least 40% sequence identity over 100 bp with a PARSED_T_PREVKNOWN 

sequence were kept in the dataset. This edited dataset is referred to as the 

parsed Exonerate output (PARSED_EXO_OUT) dataset. Each sequence in 

PARSED_EXO_OUT was also assigned approximately to a genus using this 

technique. Sequences were first assigned to the genus against which they had 

the highest number of significant BLAST hits. If there was the same number of 

BLAST hits against two genera, the genus with the highest scoring hit was 

used. 

New, parsed FASTA files and tables were generated from PARSED_EXO_OUT 

for each combination of host, genus and gene. 

2.2.2. Clustering 

2.2.2.1. Clustering Sequences: Techniques 

The technique used for clustering depends on how related the input sequences 

are to each other and how much detail is required in the final analysis.  
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The simplest technique is to eliminate sequences which are very similar to 

each other. Bailie et al. (2004) examined a small section of the pol gene of 

related betaretroviruses, and all sequences with less than 95% sequence 

identity were kept in the analysis. Similarly, Bénit et al. (2001)and Han et al. 

(2007) excluded sequences with greater than 90% sequence identity. 

Gentles et al. (2007) used a slightly more complex approach with the opossum 

genome, grouping sequences with more than 75% similarity over at least 50% 

of their length. Consensus sequences were then generated for each of these 

groups (Gentles et al., 2007). For more divergent sequences, this was carried 

out using a variation of the SWAT algorithm (Green, 1996). Each sequence was 

taken as a seed to which all others were aligned, then a majority-rule 

consensus sequence was built for each alignment (Gentles et al., 2007). Each 

of these consensus sequences was aligned in turn to each transposable element 

using SWAT, and the sequence with the highest overall alignment score was 

selected (Gentles et al., 2007).  

Branch support in phylogenetic trees is often used to determine which groups 

are most likely to be legitimate families and can be represented by single 

sequences. In Polavarapu et al.’s analysis of the chimpanzee genome a 

neighbour joining phylogenetic tree was generated and for groups with high 

bootstrap support, the most recent intact element was taken as a 

representative (Polavarapu et al., 2006a). This gave one representative 

sequence for each ERV family. Tristem (2000) used a similar approach with 

the human genome, generating a neighbour-joining tree and removing all but 

three sequences from clusters with bootstrapping values over 95%. Garcia-

Etxebarria and Jugo (2010) determined which species to include in their 

phylogeny of cow ERVs by comparing their results from neighbour-joining, 

maximum likelihood and Bayesian analysis. Clusters were selected which were 

significant in at least two analyses, significant groups had bootstrap values 

over 70% in neighbour joining and maximum likelihood analysis and posterior 
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probabilities of at least 95% in Bayesian analysis (Garcia-Etxebarria and Jugo, 

2010).  

A combination of techniques may be the most appropriate clustering 

methodology for ERVs. Approximate phylogenies describing a group of 

sequences can be generated quickly using hierarchical clustering techniques 

(Corpet, 1988). Sequence similarity within clusters can then be determined 

and sequences showing insufficient similarity to the rest of the cluster 

excluded. Hierarchical clustering relies on a distance matrix, first taking each 

item in the matrix as a single cluster then continuing to join the most similar 

clusters until one cluster remains. 

2.2.2.2. Clustering Analysis 

Here, for each of the FASTA files representing a host, gene and genus 

combination in PARSED_EXO_OUT, a clustering process was carried out in 

order to form reliable groups of ERVs. This process is described in Figure 29. 
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Figure 29: The process used to cluster candidate ERV sequences.  
Grey and blue boxes represent tasks performed by the scripts reciprocal_blast.py 
(Appendix D.2) and distance.R (Appendix D.3) respectively. Numbers and sequence 
names are for illustration only. 
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The input files for the clustering process were the PARSED_EXO_OUT FASTA 

files, each of which represents a host, gene and genus combination. First, the 

similarity between sequence fragments was approximately established by 

using BLASTN searches to compare each pair of fragments in the file, via the 

Python script reciprocal_BLAST.py (Appendix D.2) (Figure 29.2). The results 

of these BLAST searches were combined into a matrix for each gene, genus 

and host combination showing the percentage identity of the most significant 

BLAST hit between each pair of sequences (Figure 29.3). Only pairs with over 

100 identical bases were included, if there were no matches meeting this 

criterion a default value of 0% identity was assigned. 

Based upon these matrices, the “hclust” function in R (R Core Team, 2014) was 

used to construct putative groups. This process is illustrated in Figure 29.4 

and Figure 29.5 and the R script is available in Appendix D.3. This function 

produces a tree or dendrogram describing the clusters identified. A cut-off can 

then be specified below which clusters are isolated, using the R function 

rect.hclust (R Core Team, 2014) (Figure 29.6). A threshold of 35% similarity 

was selected, this is low but allows putative clusters to be identified which can 

then be checked by eye. 

The FASTA files produced for each cluster by this process were aligned using 

MUSCLE (Edgar, 2004) under the default settings (Figure 29.7) and the 

percentage identity between each pair of sequences in the cluster (excluding 

gaps) calculated based on this alignment and combined into a matrix (Figure 

29.8). Several rounds of checks were then carried out based on these matrices 

(Figure 29.8 - Figure 29.11). If all sequences in the matrix had a mean identity 

of at least 75% with the other sequences in the matrix the cluster was 

considered to be reliable. Otherwise, the alignments which formed the basis 

for each matrix were examined by eye. In some cases, there was a clear 

division within the alignment into two or three distinct groups, these groups 

were therefore split into subgroups accordingly. Single sequences which were 

noticeably poorly aligned were excluded. The new groups created at this stage 
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were realigned and new alignment matrices were generated. If all sequences in 

the matrix still did not have a mean identity of greater than 75% with all other 

sequences in the matrix the process was repeated. Groups which could not be 

resolved in this manner were split back into the original sequences. 

A consensus sequence was built for each cluster using the Python script 

make_cons.py, available in Appendix D.4. This script uses a combination of 

the EMBOSS (Rice et al., 2000) functions CONS and CONSAMBIG, which 

generate standard and ambiguous consensus sequences respectively, to 

generate a final consensus without ambiguous characters which represents the 

input as closely as possible.  

First, for each aligned FASTA file, both types of consensus sequence are 

created. For the standard consensus, the CONS plurality was set to 0.5, 

meaning a base present in more than half the sequences is used in the 

consensus. If no base is present in more than half the sequences, an “N” is 

added to the consensus at this position. For the ambiguous consensus, 

CONSAMBIG uses an IUPAC ambiguity code (Tipton, 1994) to describe sites 

where no base is present in more than half the sequences. If all bases are 

present at equal frequencies an “N” is added. Therefore, for each position 

where an “N” is present in the standard consensus, either an “N” or an IUPAC 

ambiguity code (Tipton, 1994) will be present in the ambiguous consensus. 

The Python script make_cons.py (Appendix D.4) was written to represent 

these sites without the use of ambiguity codes. This script deletes sites with an 

“N” in both the ambiguous and standard consensus. Where an ambiguity code 

is present, one of the bases the code can represent is added to the final 

consensus, with all possible bases added at equal frequencies.  

If the final consensus sequence produced by this process contained more than 

10% “N”s, it was checked by eye and if necessary the alignment was split until 

a more reliable consensus could be produced. Each sequence in each cluster 

was then aligned to its consensus and their percentage identity calculated. The 
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minimum identity accepted was 70%, however mean identity between each 

sequence and its consensus was 96%. 

The final parsed output dataset consists of these consensus sequences plus all 

sequences which were not sufficiently similar to another sequence to be 

incorporated into a consensus. This dataset is referred to as the clustered 

Exonerate output (CLU_EXO_OUT) dataset. 

2.2.3. Identification of Output Sequences 

Sequences in CLU_EXO_OUT were identified and categorised according to 

their similarity to previously known retroviruses. 

First, newly identified sequences were divided by gene (gag, pol or env) and 

into three “classes”, gamma and epsilon-like retroviruses, alpha, beta, lenti 

and delta-like retroviruses and spuma-like retroviruses. This categorisation is 

based on the previously used classification system for HERVs into class I, class 

II and class III (Gifford and Tristem, 2003), which is consistent with the 

phylogeny of ERVs (Jern et al., 2005) but is broader than the genus 

categorisation. This was used to allow sequences originally classified as the 

wrong genus (in section 2.2.1) to move into the appropriate group but avoid 

time-consuming comparison of distant sequences. 

Each sequence in CLU_EXO_OUT was aligned to each sequence in the 

untranslated parsed dataset of previously known ERVs 

(PARSED_UT_PREVKNOWN) of the same gene and type, using the Smith-

Waterman algorithm (Smith and Waterman, 1981) via EMBOSS water (Rice et 

al., 2000) as described in section 2.1.4.1. The CLU_EXO_OUT sequences were 

grouped with the PARSED_UT_PREVKNOWN sequences with which they 

had the highest alignment score. These groups were then merged based on the 

categories in GROUPED_PREVKNOWN, described in 2.1.4.1. This generated 

120 groups of sequences (as not all categories contained any newly identified 

sequences). These 120 groups are referred to as the GROUPED_EXO dataset. 
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2. 3. Phylogenetic Analysis 

The next step was to generate representative phylogenetic trees for groups of 

interest. This section contains a review of alignment (section 2.3.1) and tree-

building techniques (section 2.3.2) and a description of the techniques used 

here (section 2.3.3). 

2.3.1. Aligning Retroviral Sequences: Techniques 

As retroviral sequences are so degenerate and divergent, they can be difficult 

to align. Alignments are often performed using either Clustal (Larkin et al., 

2007) or MUSCLE (Edgar, 2004) and adjusted by hand. It is unclear whether 

nucleotide or amino acid sequences are preferable for this purpose, as amino 

acids generate less ambiguous alignments but the degeneracy of ERV 

sequences means that amino acid sequences are often short and contain 

multiple stop codons (Polavarapu et al., 2006a). Additionally, as ERV 

sequences are not usually subject to selection to conserve protein function, 

amino acid alignments are not always meaningful. Baillie et al. (2004) used 

both techniques and minor differences can be seen between the two trees, 

however it is not clear which technique is more accurate. Clustal and MUSCLE 

are generally used interchangeably, but MUSCLE has been shown in some 

circumstances to run more quickly and have higher accuracy than Clustal 

(Edgar, 2004).  

The MAFFT “L-INS-I” alignment technique has been shown to be more 

accurate than MUSCLE or Clustal in analysis of datasets of both similar and 

diverse sequences (Ahola et al., 2006, Katoh et al., 2002). This is a local, 

rather than global, alignment technique, so the first stage of the alignment 

process, pairwise comparison of the sequences, looks for regions of similarity 

in sequences rather than attempting to align every base in each sequence. As 

the Exonerate ERV fragments are often partial, a local alignment technique 
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may be preferable. The L-INS-I technique is iterative, meaning subsets of the 

initial alignment are realigned in an attempt to improve the alignment score. 

Alignment techniques using iteration have been shown to represent a 

significant improvement on non-iterative techniques, including for divergent 

and difficult datasets (Wallace et al., 2005). The L-INS-I technique is slow 

compared to other methods, so is more suitable for alignments with fewer than 

200 sequences than for larger alignments (Katoh et al., 2002). The technique 

is also likely to be unnecessarily stringent for alignment of small groups of 

highly similar sequences, such as the alignments used for clustering in section 

2.2.2.2. However, for the majority of ERV alignments, made up of partial, 

sometimes degraded and divergent sequences, this technique may be the most 

appropriate. 

2.3.2. Building Trees: Techniques 

Once sequences have been successfully aligned, they can be combined into 

phylogenetic trees. Various factors need to be considered in generating a 

robust phylogeny. 

2.3.2.1. Choosing a Gene 

Trees can be built based on LTRs, gag, pol, env or any combination of these. 

The type of element selected depends on the data available and the purpose of 

the tree. The pol gene has the longest retroviral ORF and its sequence is 

relatively conserved, so it is often used for phylogenetic analysis (Jern et al., 

2005). Reverse transcriptase is present in a diverse range of non-retroviral 

elements, so it is useful in comparisons with these groups (Benit et al., 2001). 

The higher variability of the env gene means it is useful for distinguishing 

more closely related sequences, for example HIV sequences within an 

individual (Andréoletti et al., 2007). Multiple genes are often examined, this is 

particularly useful when looking for recombination events (Benit et al., 2001). 

In particular, env trees tend not to be identical to those generated using gag 
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and pol (Benit et al., 2001). LTR sequences are often used to differentiate 

between closely related sequences. For example Polvarapu et al. (2006) used 

this technique to show the relatedness of different members of the same family 

of retroviruses in chimpanzees. Belshaw et al. (2005) used LTR sequences to 

generate a phylogenetic tree of human HERV-K like insertions (Belshaw et al., 

2005b). 

2.3.2.2. Model Selection 

In order to build a phylogenetic tree, a substitution model is usually needed, 

showing the probability of each possible mutation (Posada and Crandall, 

2001). Neighbour-joining, maximum likelihood and Bayesian analyses all 

require a model to be selected before building a tree (Posada and Crandall, 

2001). A maximum of ten parameters can be incorporated into a nucleotide 

substitution model – the frequency of each of the four nucleotides and the 

probability of each type of mutation (assuming mutation rates between two 

bases are equal in both directions) (Posada and Crandall, 2001). Parameter-

rich models take longer to run and require more computational power (Posada 

and Crandall, 2001). Each parameter which is estimated introduces error, so it 

is ideal to use the model which incorporates as much complexity as needed but 

no more (Posada and Crandall, 2001).  

The Jukes-Cantor (JC) model (Jukes and Cantor, 1969) is the simplest, 

assuming equal frequencies of all bases and equal probability of all mutations. 

This model is often used as it is less computationally demanding than more 

complex models and it is sufficient for many datasets. However, in general all 

bases and mutations are not equally probable. For example, for ERV 

sequences it is known that guanine to adenine mutations can be induced by 

the APOBEC family of restriction factors (section 1.2.3.1), so may be present in 

excess and Zsíros et al. (1999) found this was the case in HERV-K-like ERVs. 

Phylogenetic trees based on the chimpanzee genome screen were generated 

under the JC model (Polavarapu et al., 2006a).  
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The Kimura (K80) model, which incorporates differences in the rates of 

transisions and transversions, is also commonly used, for example by 

Andersson et al. (1998) in characterising ERV-3 and HERV-E like sequences. 

These simple models may be insufficient to represent complex retroviral 

datasets (Posada and Crandall, 2001). Posada and Crandall (2001) tested 56 

models on various HIV-1 datasets, covering different genes and taxonomic 

levels. The JC and K80 models were never optimal and different models were 

optimal for different datasets (Posada and Crandall, 2001). 

The RtRev amino acid substitution matrix was developed based on retroviral 

reverse transcriptase genes and has been shown to be the most appropriate for 

pol gene phylogenetic analysis of amino acid alignments (Dimmic et al., 2002). 

The JTT model (Jones et al., 1992) was shown in this study to be more 

appropriate for non-pol retroviral data (Dimmic et al., 2002). However, this 

result may not apply to all lineages or all regions of the pol gene and is not 

applicable to DNA alignments (Posada and Crandall, 2001).  

Various statistical tests can be used to select an appropriate model for a 

particular dataset. One of the most common is the hierarchical likelihood ratio 

test (Posada and Crandall, 2001). Using this technique, a simple neighbour-

joining Jukes-Cantor tree is constructed for the dataset and likelihood scores 

are calculated for each model, then each level is compared to the previous level 

of complexity using a likelihood ratio test (Posada and Crandall, 2001). The 

most complex test which is significantly more likely than the previous level of 

complexity is selected as the optimum (Posada and Crandall, 2001). 

2.3.2.3. Tree Building Algorithm 

Neighbour-joining techniques are most commonly used to build retroviral 

trees, as they are less computationally demanding and allow trees to be built 

quickly. Sequences are used to generate a distance matrix showing the 

estimated number of changes between each pair of sequences and a tree is 
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generated based on this matrix (Holder and Lewis, 2003). This is similar to 

the clustering technique used here to group related ERVs within a genome 

(section 2.2.2.2). When multiple substitutions occur at the same site, 

evolutionary distance will be underestimated, so a correction for multiple hits 

needs to be incorporated (Holder and Lewis, 2003). This technique is very fast 

and works well for simple datasets, but is less effective with complex 

relationships and older, more degraded sequences (Holder and Lewis, 2003). 

Therefore it is more appropriate for determining relationships between related 

exogenous retroviral sequences within genera and less appropriate for distant 

relationships and older, degraded endogenous sequences. Trees representing 

multiple genera or more than one type of repeat element, such as Han et al. 

(2007) and van der Kuyl et al. (2011), are often produced using this method 

because of the computational power required for more complex methods. 

Neighbour joining trees are also often used as a starting point for more 

complex methods (Holder and Lewis, 2003). 

Maximum parsimony analysis generates trees based on the route through 

which the least mutations need to have occurred (Holder and Lewis, 2003). 

However, there is often more than one equally parsimonious route to the same 

tree (Holder and Lewis, 2003). Trees which can be generated through more 

pathways are more likely, but this is not recognised by the maximum 

parsimony technique (Holder and Lewis, 2003). Maximum parsimony analysis 

is also susceptible to “long branch attraction”, with unusually long branches 

tending to group together regardless of their relatedness (Holder and Lewis, 

2003). Parsimony analysis is more useful when there has not been a large 

amount of convergent evolution (Holder and Lewis, 2003). Bénit et al. (2001) 

found very similar results for retroviral data using maximum parsimony and 

neighbour joining techniques. Maximum parsimony analysis was also used in 

identifying the feline ERV families located by Pontius et al. (2007).  

Maximum likelihood analysis generates the tree with the highest probability of 

producing the observed data (Holder and Lewis, 2003). The substitution 
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model provides the probability of each sequence change and these are 

combined to generate the probability of a particular sequence (Holder and 

Lewis, 2003). Multiple substitutions at the same site are corrected for (Holder 

and Lewis, 2003). This technique is much slower than maximum parsimony or 

neighbour joining techniques but generally more accurate (Holder and Lewis, 

2003). Maximum likelihood analysis is often carried out using PhyML 

(Guindon and Gascuel, 2003), for example this technique was used by Belshaw 

et al. (2005b) and Garcia-Etxebarria and Jugo (2010). 

Neighbour joining, maximum parsimony and maximum likelihood trees all 

require bootstrapping to show the strength of the relationships within the tree 

(Holder and Lewis, 2003). This involves generating “pseudo-replicates” of the 

data based on sites from the original dataset and repeating the tree-building 

analysis on these (Holder and Lewis, 2003). The proportion of replicates 

which contain a particular grouping shows how likely this group would be to 

recur if more data was collected (Holder and Lewis, 2003). If an inappropriate 

method of data analysis has been used, the results of bootstrapping can be 

misleading, as repeating the analysis is likely to lead to the same result (Holder 

and Lewis, 2003). Bootstrapping is very time-consuming and computationally 

intensive, so various alternatives have been proposed. One of the most widely 

used of these is the approximate likelihood ratio test based method proposed 

by Anisimova et al. (2006). This technique is considerably faster than 

conventional bootstrapping and is thought to be similarly robust (Anisimova 

and Gascuel, 2006). 

Bayesian analysis is closely related to maximum likelihood analysis, but 

produces a tree and a measure of the robustness of each group simultaneously 

(Holder and Lewis, 2003). Bayesian analysis relies on prior and posterior 

probabilities (Holder and Lewis, 2003). The prior probability of a dataset is 

the probability of an event before the dataset is taken into account, usually in 

Bayesian phylogenetics this means that every possible value of a parameter has 

the same prior probability (Holder and Lewis, 2003). The posterior probability 
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is proportional to this prior probability multiplied by the likelihood of each 

parameter value given the data and model (Holder and Lewis, 2003). The 

optimal tree has the highest posterior probability (Holder and Lewis, 2003). 

Maximum likelihood involves estimation of parameter values, while Bayesian 

analysis tests all possible parameter values (Holder and Lewis, 2003). The 

Markov chain Monte Carlo algorithm is used for this analysis (Altschul et al., 

1990).  

Although Bayesian analysis is usually more robust than maximum likelihood 

analysis, the degenerate nature of ERV sequences means that unrealistic levels 

of time and computational power are often required to resolve a phylogeny, 

especially for a large number of sequences. PhyML maximum likelihood 

analysis with aLRT-like branch support was therefore selected as the most 

appropriate technique which can be realistically used with the ERV datasets 

generated for this project. 

2.3.3. Phylogenetic Analysis of Exonerate Output 

2.3.3.1. Phylogenetic Test Datasets 

For larger retroviral genera, it was not feasible to incorporate all of the known 

retroviral sequences of that gene and genus into every phylogenetic analysis. 

Therefore, basic test datasets were generated for these combinations of genes 

and genera, namely betaretrovirus gag, pol and env, gammaretrovirus gag, 

pol and env and spumavirus pol. Details of the sequences in these test datasets 

are provided in Appendix B.5 . These datasets were designed to be combined 

with more detailed datasets representing known members of the specific group 

being analysed. This strategy helps ensure that sequences have been assigned 

to the right group.  
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2.3.3.2. Model Selection 

As a large majority of PARSED_EXO_OUT sequences fell into the groups 

represented by the test datasets, these datasets were used to select a 

substitution model for phylogenetic analysis. The datasets were aligned using 

MAFFT under the L-INS-I model with 1000 iterations. JModelTest version 

2.1.6 (Darriba et al., 2012), which tests multiple nucleotide models and 

chooses the most appropriate for the data, was used on these alignments with 

a maximum likelihood starting tree, heuristic model filtering and model 

selection using the Akaike information criterion. Models allowing for a 

proportion of invariable sites were not tested, as ERV sequences are generally 

not subject to purifying selection to the same extent as gene sequences so there 

is no biological reason for sites to be invariable.  

For five of the seven datasets, the general time reversible (GTR) model, which 

allows all ten parameters (the frequency of each nucleotide and the probability 

of each type of mutation) to vary, was the optimum (Figure 30.A). Figure 30.B 

and Figure 30.C demonstrate that all ten of these parameters do vary 

considerably for these datasets. For the remaining two datasets (betaretrovirus 

env and gag) the transversion model (TVM), which allows the four nucleotide 

frequencies and the probability of each transversion to vary but not the 

probability of each transition, was the optimum, as rates of A<>G and C<>T 

transitions were almost the same (Figure 30.C). However, the likelihood of the 

GTR model for these two datasets was almost identical to the likelihood of the 

TVM model (Figure 30.A) so this model is likely to be adequate to describe 

these datasets. Therefore, the GTR model was used for all subsequent 

phylogenetic analysis of all datasets.  

Incorporating the gamma shape parameter into the model allows substitution 

rate to vary between sites. Guindon et al. (2010) propose that a shape 

parameter of less than 0.7 suggests high rate variation, 0.7 to 1.5 moderate 

variation and more than 1.5 low variation. Five of the seven datasets tested 
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here had moderate or high variation (Figure 30.A) and adding this parameter 

always improved the model, so an optimised shape parameter was 

incorporated into all subsequent phylogenetic analysis.  
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Figure 30: Results of model testing using the JModelTest software. 
A) The negative log likelihood (-lnL) of the GTR+G model for each of the phylogenetic 
test datasets, the frequency of each nucleotide, the relative number of substitutions 
of each type, the calculated gamma shape parameter and the degree of variation this 
indicates according to Guindon et al. (2010). For the beta_gag and beta_env datasets 
the –lnL for the TVM+G model is also provided for comparison. B) Bar chart of 
relative nucleotide frequencies for each dataset. C) Bar chart of the frequency of 
each type of substitution. Transitions are highlighted in pink. 
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2.3.3.3. Alignment and Phylogenetic Analysis 

Sequences were selected for phylogenetic analysis based on their 

categorisation in the GROUPED_EXO dataset.  

Selected sequences were aligned with the appropriate test dataset (section 

2.3.3.1) and sequences from the GROUPED_PREVKNOWN dataset 

corresponding with their group in the GROUPED_EXO dataset. Alignments 

were generated using the L-INS-I model in MAFFT, with 1000 iterations 

(unless otherwise specified).  

All phylogenetic trees were constructed using PhyML (Guindon and Gascuel, 

2003). Trees were built under the GTR model with no invariable sites and 

optimised across site variation. NNI tree-searching, optimised across site 

variation, a BioNJ starting tree and optimised tree topology were selected. 

Branch support was calculated using the aLRT method (Guindon and Gascuel, 

2003).  

2. 4. Characterisation of ERVs 

The next stage in this analysis of the Exonerate output dataset was to 

characterise groups of ERVs of interest in more detail. To do this, several 

analyses were performed, as appropriate.  

Phylogenetic analysis was used to determine if a particular lineage of ERVs is 

present or absent in a particular host (section 2.4.1) and how many copies are 

present (section 2.4.2). Another important feature of an ERV is whether it has 

retained the potential to produce functional viral particles. To produce these 

particles, the ERV needs a conserved LTR-gag-pol-env-LTR structure. The 

methodology used to identify regions with this structure is described in 

sections 2.4.3 and 2.4.4. Intact ORFs are needed to produce functional viral 

proteins, so these need to be detected in candidate regions, as described in 

section 2.4.5. Finally, the age of the ERV is important in determining its 
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evolutionary history. Several techniques were combined to approximate ERV 

age, these are described in section 2.4.6. 

2.4.1. Determining Presence or Absence 

In some cases, it was necessary to determine if a particular ERV was present or 

absent in each host. To do this, the EMBOSS water score for every candidate 

ERV sequence of a particular gene and genus against the ERV of interest was 

determined as described in section 2.1.4.1. The sequence with the highest score 

in each host was selected and these sequences for all hosts combined into a 

FASTA file. The ERV of interest and closely related retroviruses were 

appended to this file. These sequences were aligned and a PhyML phylogeny 

constructed. If the highest scoring sequence from a particular host clustered 

more closely with the ERV of interest than with any other retrovirus it was 

considered to be present in that host. If the highest scoring sequence clustered 

elsewhere in the phylogeny it was considered to be absent. 

2.4.2. Determining Copy Number  

Copy number was taken to be the number of Exonerate fragments in a 

particular host with a higher EMBOSS water alignment score against the ERV 

of interest than against any other retrovirus in the 

PARSED_UT_PREVKNOWN dataset for a particular gene and genus. 

2.4.3. ERVs with Multiple Genes 

To detect ERVs with more than one recognisable gene, sequences in the 

PARSED_EXO_OUT dataset were mapped back to their original chromosome 

positions. A map was constructed showing all the putative ERV fragments on 

each chromosome from each host, sorted by start position. The Exonerate 

pipeline occasionally detects two fragments of the same gene close together, 

these are likely to represent different parts of the same gene. Therefore, where 
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two sequences from the same gene were found separated by less than 1,500 bp 

they were merged to give a sequence encompassing both fragments. 

The Python script “classify_sets.py” was used to identify and characterise 

regions of the genome containing fragments of more than one retroviral gene. 

This script is available in Appendix D.5. This program uses the chromosome 

maps described above to identify regions where the end of one ERV gene 

fragment falls within 5,000 bp of the beginning of another gene fragment. This 

distance was selected because the maximum length of a retroviral gene is 

approximately 3,000 bp and the threshold length for Exonerate hits used was 

600 bp. Therefore, a 5,000 base pair gap should allow for hits from opposite 

ends of two neighbouring genes. A longer gap length increases the probability 

of ERV fragments resulting from different integration events being detected.  

The output from this program was parsed to generate a table showing “ERV 

regions” in each chromosome - regions containing one or more ERV-like 

fragments – and the start and end positions of these regions.  

2.4.4. LTRs 

To characterise an intact retrovirus, LTR sequences also need to be identified. 

To isolate LTRs, 8,000 bp on either side of the identified ERV region were 

extracted from the original chromosome FASTA file. This distance was 

selected to encompass the maximum distance between the end of the retroviral 

gene detected and the end of the LTR. 

Pairs from either side of each ERV region were aligned to each other using the 

Smith-Waterman algorithm (Smith and Waterman, 1981) via EMBOSS water 

(Rice et al., 2000). This software provides the co-ordinates of the section 

within the aligned sequences which aligns most closely, a FASTA file of these 

regions and an alignment quality score. The highest scoring sections of each 

pair of sequences were isolated. Sections which shared 75% sequence identity, 

were between 6,000 and 15,000 bp apart and between 300 and 1,500 bp in 
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length were considered to be candidate LTRs. These thresholds are based on 

the range of retroviral genome sizes and LTR lengths listed in Bannert and 

Kurth (2010). These candidate regions were classified using CENSOR and 

regions classified as ERV LTRs were considered to be LTR sequences (Jurka et 

al., 1996). 

2.4.5. Identification of Open Reading Frames 

To identify ORFs, the full span of the ERV was extracted from the original 

chromosome FASTA file. These regions were translated in all six reading 

frames using the seqinr package in R (R Core Team, 2014). The longest 

distance between two stop codons was recorded. Where this distance was long 

enough to potentially encode a full-length protein, the translated sequences 

were examined to identify further long ORFs which could represent the other 

genes. Each gene was confirmed using a BLASTP search against the UniProt 

database.  

2.4.6. Determining Age 

Several types of analysis can be performed to establish the approximate age of 

an ERV insertion.  

2.4.6.1. LTRs and Degeneration  

When an ERV has integrated into a host, assuming no selection, it will 

accumulate mutations at the host mutation rate. As the LTRs flanking an ERV 

are identical at integration, the number of differences which have been 

accumulated between these LTRs can be used to approximate an integration 

date, assuming the host mutation rate is known (Bannert and Kurth, 2006). 

This date is calculated using the equation t = k/2N, where t is time, k is 

divergence (number of sites at which the LTRs differ over LTR alignment 

length), and N is the neutral substitution rate of the host, assumed here to be 
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the human neutral substitution rate of 4.5 x 10-9 substitutions per site per year 

(Gifford et al., 2008). This is a common ERV dating technique [used for 

example in (Sinzelle et al., 2011), (Polavarapu et al., 2006a), (Gifford et al., 

2008)]. 

The general degree of degeneration of an ERV also gives some clue as to its 

age. ERVs with identical LTRs, intact ORFs and with a recognisable structure, 

lacking large gaps between detectable gene fragments are likely to be more 

modern. However, as well as age, the degree to which an ERV is intact depends 

on selection acting to preserve or prevent gene function, which is variable 

between hosts and depends on the replication strategy of the ERV (Bannert 

and Kurth, 2006) (section 1.3.1.2). 

2.4.6.2. Host Tracking and Locus-by-Locus Analysis 

If an ERV entered the germline of the common ancestor of two hosts before 

the hosts diverged from each other, at this locus the divergence between the 

ERVs should parallel the divergence between the hosts, so the phylogeny of the 

hosts and the ERVs should be similar. This relationship becomes less clear if 

the ERV is present at multiple loci, as integration events at different sites may 

not have occurred at the same time.  

In general, if an ERV entered the ancestor of two hosts and proliferated in this 

ancestor before host divergence, we would expect to see a similar copy number 

of the ERV in the two hosts and the evolutionary distance between the ERVs to 

be consistent with the evolutionary distance between the hosts. All or almost 

all integration sites will be shared between hosts. If the ERV entered the 

common ancestor of the hosts but also proliferated after their divergence later 

then there may be host tracking at some sites but not others and copy number 

will vary widely between hosts. Some integration sites will be shared and 

others will not. If the ERV entered both hosts after they diverged, the copy 
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number will be variable, host tracking is unlikely to be evident and no 

integration sites will be shared.  

2.4.6.3. Locus-by-locus Analysis 

It is not always feasible to trace if the locus at which an ERV appears is 

orthologous between hosts, as the data required is only available for some 

hosts, is variable in quality and the analysis requires a large amount of 

computational power. However, the Compara EPO six primate alignment 

(C6P) (Ensembl release 74), an alignment of the DNA sequence of human, 

chimpanzee, gorilla, orangutan, rhesus macaque and marmoset genomes, 

provides information which can be useful for these hosts.  

Where this alignment was used, the positions of the ERVs were identified in 

the alignment and the corresponding positions from other genomes extracted. 

The positions in this alignment provide a fairly large orthologous region 

(usually approximately 50,000 bp) rather than an exact position. For detailed 

analyses (used for the epsilon-like ERVs in 0) the exact position of the ERV 

was detected in the alignment and the sequence for each host extracted from 

this position. Sequences from this region were then aligned to the original ERV 

sequence and if there was at least 75% sequence identity between the ERV 

sequence and the sequence of any host within the ERV region, excluding gaps, 

the ERV was considered to be present in this host. Sequences from all hosts at 

each locus were aligned and PHYML phylogenetic trees were built for each 

locus.  

For larger groups, such as HERV-K-like ERVs (section 4.6.1) all ERV-like 

sequences in PARSED_EXO_OUT from the larger region identified as 

orthologous to the region containing the ERV were extracted from all hosts. 

These sequences were aligned and phylogenetic trees built and any ERVs with 

a tree topology exactly matching that of the hosts were assumed to be the 

result of inheritance from a common ancestor.  
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2.4.7. Identifying Selection 

A common technique to identify selection is to compare the number of 

synonymous substitutions (substitutions not affecting the amino acid 

sequence) (Ks) and non-synonymous substitutions (substitutions changing the 

amino acid sequence) (KA) between two nucleotide sequences. An excess of 

synonymous mutations suggests that there is selection against change, or 

purifying selection, meaning the sequence is likely to be beneficial to the host. 

In this case the KA/KS ratio will be less than one. An excess of non-synonymous 

mutations suggests selection for change, or positive selection, which is often 

the result of an antagonistic interaction between a virus and its host (Sawyer et 

al., 2005). In this case the KA/KS ratio will be greater than one. This method 

has been used to detect selection in several previous studies into ERVs [e.g. 

(Dupressoir et al., 2005, Sawyer et al., 2005, Carre-Eusebe et al., 2009)]. 

Here, this analysis was performed using the software package DNASP version 

5.10.01 (Rozas and Rozas, 1995). This type of analysis requires a very precise 

alignment with a reliable translation, so it was not appropriate for all ERVs.

2. 5. Host Phylogeny 

A phylogenetic method which is appropriate for all Euarchontoglires and 

allows relationships to be established from species to order level was required 

to build a robust phylogenetic tree of the Euarchontoglires species screened 

here. This tree is needed for comparison of the phylogenetic relationships 

among the ERVs with the phylogenetic relationships among the hosts 

described in section 2.4.6.2. 

Sixteen genes were selected for this purpose from Hovarth et al. (2008). These 

genes are widely sequenced and have been shown to be appropriate for family 

to species level primate phylogenetics (Horvath et al., 2008). Genes are listed 

in Table 10. Appropriate gene fragments were identified using sequences from 

Hovarth et al. (2008) as probes for a BLASTN search against the nr database, 
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limited to sequences from appropriate members of the Euarchontoglires. One 

sequence each was taken from each species with a significant hit covering the 

majority of the query site. Accession numbers for all hosts for the genes in 

Table 7 are available in Appendix B.6. Sequences for each gene were aligned 

using MAFFT under the L-INS-I model with 1000 iterations. Aligned 

sequences for all genes were combined into a single matrix, with missing 

segments replaced by gaps. A phylogenetic tree was built to represent this 

alignment using PhyML (Guindon and Gascuel, 2003), under the settings 

described above (section 2.3.3). 
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Table 10: Genes used for host phylogeny. 
Gene Abbreviation Gene Description 

ABC1 ATP binding cassette protein 1 

ADORA3 adenosine A3 receptor  

AXIN1 axin 1 

CFTR cystic fibrosis transmembrane conductance regulator 

ERC2 ELKS/RAB6-interacting/CAST family member 2  

FRMD5 FERM domain containing 5  

FGA fibrinogen alpha chain  

LLPPRC leucine-rich pentatricopeptide repeat containing  

LUC7L LUC7-like 

SLC11A1 solute carrier family 11 

RAG1 recombination activating gene 1  

RBP3 retinol binding protein 3 

TTR transthyretin  

VWF von Willebrand factor 

ZNF202 zinc finger protein 202  
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Chapter 3. Overview of Results 

This chapter provides an overview of the output from the methodology at each 

stage described in Chapter 2. 

3. 1. Raw Output and Quality Control 

Using the Exonerate pipeline, a total of 190,196 partial ERV gene sequences 

were identified across the 33 genomes screened. Of these, 40,627 were gag-

like, 124,187 were pol like and 25,382 were env like. The mean length of these 

fragments was 1049.53 bp. This figure refers to individual gene fragments, so 

separate gag, pol and env fragments were often counted at single ERV loci. 

This is the RAW_EXO_OUT dataset (Figure 31). This dataset is available as a 

FASTA file in Appendix C.4 and details of each sequence are provided as an 

MS Excel spreadsheet in Appendix B.7. 

A quality control step was carried out (as described in section 2.2.1), removing 

sequences which could not be verified by a highly significant match in a 

BLASTX search against the PARSED_UT_PREVKNOWN dataset. After this 

verification, 169,424 sequences remained. Of these, 35,223 were gag like, 

111,711 were pol like and 22,490 were env like. This is the 

PARSED_EXO_OUT dataset, available as a FASTA file in Appendix C.5 and 

described in Appendix B.7 . Figure 31 shows the number of fragments which 

did not meet the quality control threshold for each gene. The proportion of 

sequences which were parsed out at this stage was approximately the same for 

each gene. 

In 21,929 cases, it appeared that two partial gene sequences identified were 

likely to be from different regions of the same integrated gene, as two 

fragments of the same gene were identified less than 5,000 base pairs apart. 

These fragments are marked in Appendix B.7. The vast majority of these cases 
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(20,532) were pol genes, as these are the longest ERV genes and many 

sequences representing different segments of the pol gene were included in the 

Exonerate input (Figure 31). Taking into account these fragments, 147,496 

may be a more accurate assessment of the total number of ERV genes (not 

ERV loci) detected across all genomes. Of these potential genes, 34,629 were 

gag, 91,179 pol and 20,532 env (Figure 31). The number of unique, BLAST-

verified gag, pol and env genes identified is compared to the number of 

fragments in the raw Exonerate output in Figure 31. 

Count data from this point forward refers to the number of gene fragments 

identified and, for the pol gene, is an average of 13% higher than the number of 

unique genes identified. Fragments of the same gene were merged when 

looking for intact loci. 

 

 
Figure 31: Graph showing the total number of candidate gag, pol and env ERV 
fragments identified and the proportions of these fragments which were both 
verified by BLAST and appeared to represent unique genes.  
The number of fragments of each gene in the raw Exonerate output are shown in 
blue and the number of these fragments which passed the BLAST quality control step 
and were not duplicates representing different parts of the same gene are shown in 
pink.  
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The ERV fragments identified are not evenly distributed between the different 

host genomes (Figure 32). Noticeably more fragments were identified in 

several hosts, particularly the mouse, guinea pig and tarsier. These species 

have no particular phylogenetic or geographical connection. Fewer ERV 

fragments were detected in avian genomes than in those of the 

Euarchontoglires. The number of fragments meeting the quality control 

threshold ranged from 71.7% (vole) to 95.1% (mouse). Primates tended to have 

more fragments in this category than rodents.  

 

 

Figure 32: Graph showing the number of unique, BLAST-verified gag, pol and env 
genes identified using Exonerate in each host. 
gag is represented in red, pol in green and env in blue. 

Various metrics about each host genome (total length, total assembly gap 

length, number of scaffolds, scaffold N50, number of contigs, contig N50) were 

downloaded from NCBI Assembly (http://www.ncbi.nlm.nih.gov/assembly). 

These were then compared to the number of fragments identified using 
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Exonerate and the mean length of these fragments for each host to establish 

the extent to which genome size and quality affect the output of the Exonerate 

pipeline (Table 11). Pearson’s correlation coefficient was calculated for each 

genome statistic compared to number of fragments in PARSED_EXO_OUT 

and mean length of fragments in PARSED_EXO_OUT for each 

Euarchontoglires host. Only one relationship showed a statistically significant 

(p < 0.05) correlation, a moderate positive correlation (r = 0.444) between 

number of scaffolds and number of fragments identified. This relationship is 

shown in Figure 33 and suggests that more fragments were identified in the 

species with less assembled genomes but that they were not significantly 

shorter than the fragments identified in other genomes. However, this 

relationship is completely dependent upon the tarsier genome, which has a 

very large number of scaffolds and contained a very large number of 

fragments. Excluding this unusual value, there is no significant correlation 

between these variables and the slope of the graph is very different (r=-0.30, 

p=0.137) (Figure 33).  
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Figure 33: The relationship between number of scaffolds and number of ERV 
fragments identified using Exonerate, including and excluding results from the 
tarsier genome.  
r is Pearson’s correlation coefficient.

 

Table 11: Statistical comparison between the number of fragments and mean 
fragment length for each host in PARSED_EXO_OUT and various genome metrics. 
Pearson refers to Pearson’s correlation coefficient (r).  

Genome Statistic 
Number of Fragments Mean Fragment Length 

Pearson P-value Pearson P-value 

Total sequence length 0.335 0.071 -0.024 0.905 

Total assembly gap length 0.154 0.435 -0.026 0.897 

Number of scaffolds 0.444 0.020 -0.141 0.482 

Scaffold N50 0.133 0.507 0.254 0.201 

Number of contigs 0.059 0.756 -0.085 0.675 

Contig N50 0.264 0.159 0.002 0.993 
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3. 2. Clustering 

The PARSED_EXO_OUT dataset was clustered into groups and consensus 

sequences built to represent these groups (section 2.2.2). In total, across all 

genomes, 17,185 clusters were identified, representing 138,713 sequences. The 

remaining 30,711 sequences were left in the dataset individually, so the total 

size of the CLU_EXO_OUT dataset is 47,896 sequences, 28.3% of the size of 

PARSED_EXO_OUT. Groups ranged in size from two to 1,374 sequences but 

large groups were relatively uncommon, with a mean group size of 8.07 

sequences and a median group size of four sequences. Consensus sequences 

were named as “prefix_gene_genus_nseqs_seqs” where nseqs is the number 

of sequences represented by the consensus. The CLU_EXO_OUT dataset is 

available as a FASTA file in Appendix C.6 and the sequences which make up 

each consensus are listed in Appendix B.7. 

The majority of fragments were represented by a consensus which is a good 

reflection of their original sequence. 6,018 of the sequences in 

PARSED_EXO_OUT were identical to the consensus sequence representing 

their group. The remaining sequences had a mean identity to their 

representative consensus of 94.7%, with the distribution shown in Figure 34.  
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Figure 34: The distribution of the similarity of sequences in PARSED_EXO_OUT to 
the group consensus sequence by which they were represented in CLU_EXO_OUT, 
in cases where the group consensus and the original sequence are not identical. 
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3. 3. Intact ERVs 

To identify potentially intact ERVs, regions resembling more than one ERV 

gene less than 5,000 bp apart were isolated. Across the 33 genomes, one or 

more genes were identified in 113,395 regions. Of these, 6,348 contained all 

three genes (gag, pol and env), 24,842 contained two of these genes and the 

remaining 82,205 contained only gag, pol or env. Details of these regions are 

provided in Appendix B.8. There are four potential locus types for regions with 

more than one gene, gag-pol, pol-env, gag-env and gag-pol-env. The ratio of 

these types across all genomes is shown in Figure 35 and the number of gag-

pol-env insertions in each genome is shown in  

Figure 36. Gag-pol insertions were the most common and gag-env insertions 

relatively rare (Figure 35). In general, genomes assembled into chromosomes 

or with fewer contigs or scaffolds contained a higher number of more intact 

insertions. It was rare to find more than 200 gag-pol-env insertions in a 

genome not assembled at the chromosome level, with the exception of the 

bonobo, guinea pig and naked mole rat. The majority of scaffold-assembled 

genomes had 10-200 gag-pol-env insertions. Only the aye-aye, which has a 

very large number of contigs, had less than 10 gag-pol-env insertions.  
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Figure 35: The number of regions with each possible combination of multiple ERV 
gene fragments across all hosts. 

 

Figure 36: The number of gag-pol-env regions identified in each host. 
Bars are coloured according to the number of contigs in the genome, genomes with 
the most contigs are blue and genomes assembled into chromosomes are red.
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3. 4. Host Phylogeny 

A host phylogeny for the sequenced genomes was generated using the 

methodology outlined in section 2. 5 for comparison with the phylogeny of the 

various groups of retroviruses in these genomes and is shown in Figure 37. The 

relationships in this tree are consistent with the literature (Perelman et al., 

2011, Arnold et al., 2010, Blanga-Kanfi et al., 2009, Meredith et al., 2011).  

 

 

Figure 37: Phylogenetic tree based on 15 nuclear genes showing the relationships 
between the sequences of primates, rodents, lagomorphs and tree shrews. 
Rodents are shown in red, primates in blue, tree shrews in purple and lagomorphs in 
green. Black text tip labels represent abbreviated host names. Black node labels 
denote branch support, pink node labels approximate number of years since 
divergence [based on Perelman et al. (2011) and Hedges et al. (2006)]. 
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Chapter 4. Genus-by-genus Analysis 

This chapter provides an in-depth analysis of the ERVs identified in each 

genus. 

4. 1. Overview 

Sequences were assigned to a genus according to the sequence in 

PARSED_UT_PREVKNOWN with which they formed the highest scoring 

alignment. The distribution of sequences between the six genera (no 

deltaretroviruses were identified) for each gene is shown in Figure 38. 

Gammaretroviruses were always the most common, followed by 

betaretroviruses. A significant number of spuma-like gag and pol regions were 

identified but very few spuma-like envs. This is likely to be because ERV-L 

elements, the most common endogenous spuma-like insertions, lack env 

(Benit et al., 1999). 0.74% of pol gene insertions identified were 

epsilonretrovirus-like but no gag or env genes of this type were identified. 

Alpharetroviruses are generally considered to be avian retroviruses and, as 

only two of the host species screened were birds, a low overall proportion of 

alpharetroviruses is to be expected. Endogenous lentiviruses are known to be 

rare, however a few representatives of each gene were identified. 



Chapter 4: Genus-by-genus Analysis 
Section 4.1: Overview 
 
 

166 

 

 

 

Figure 38: The distribution of gag, pol and env insertions identified in each host 
between genera. 
Gammaretroviruses are shown in yellow, betaretroviruses in purple, spumaviruses in 
blue, alpharetroviruses in pink, lentiviruses in green and epsilonretroviruses in 
orange. Rectangular charts are expansions of the smallest segments of the pie charts.
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4. 2. Gammaretroviruses 

86,628 (19,363 gag, 51,417 pol, 15,848 env) gammaretrovirus like ERV 

fragments were identified across the 33 hosts screened. These were distributed 

between hosts as shown in Figure 39.  

 

Figure 39: The distribution of ERV fragments between genomes for the 
gammaretrovirus genus. 
gag fragments are represented in red, pol in green and env in blue. 

Hayward et al. (2013a) carried out a similar analysis on 22 of these 33 

genomes using Retrotector. As demonstrated by Figure 40, the proportion of 

gammaretrovirus-like ERVs (referred to as Class I ERVs by Hayward et al. but 

not incorporating the epsilonretroviruses) identified in each genome using 

these two types of analysis was similar. There were three noticeable exceptions 

to this. Hayward et al. identified a very large number of insertions in the 

human and mouse genomes compared to related hosts, while our analysis did 
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not. Conversely, our pipeline identified a large number of insertions in the 

tarsier and lemur compared to other hosts, while Hayward et al.’s did not. This 

corresponds to genome quality, as, based on the genome metrics discussed in 

section 3. 1 the human and mouse genomes are the highest quality sequences, 

especially in terms of contig N50, for which mouse and human have scores of 

over 30 million, compared to approximately 80,000 for the next highest 

scoring genome (NCBI Assembly, 2014). The tarsier and lemur genomes are of 

the lowest quality based on this metric, with scores of less than 4,000 (NCBI 

Assembly, 2014). Given this data, the Exonerate pipeline used here seems to 

be more appropriate for identification of gammaretroviruses in poor quality 

genomes. The algorithm used by Retrotector is more dependent on an intact 

ERV structure than the Exonerate algorithm (as discussed in section 2.1.1.2), 

so this result is not unexpected. Based on our results, the excess of 

gammaretroviruses in humans compared to other apes and in mice compared 

to other old world rodents identified by Hayward et al. (2013a) appears to be 

an artefact of their analysis method, rather than reflecting the true ERV 

complement of these species. 

 
Figure 40: The proportion of gammaretroviruses identified in each host here 
(green) and by Hayward et al. (2013a) (pink). 
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Hayward et al. (2013a) divide the gammaretroviruses into five groups based on 

their phylogenetic analysis. These groups are described in Table 12. In their 

analysis, a subset of previously known retroviruses fell into each of these 

groups, along with a large number of newly identified sequences. Primate 

ERVs were especially abundant in groups II and III and rodent ERVs in group 

V.  

 

Table 12: The gammaretrovirus groups identified by Hayward et al. (2013a) . 
Examples are provided of well-known previously classified sequences which were 
assigned to each group. Counts are the number of ERV regions detected in each type 
of host in each group. 

 
ERV Group 

 
I II III IV V 

Example Known 
Sequences 

HERV-I 

HERV-ADP 

 

HERV-W 

HERV-FRD 

HERV-Rb 

HERV-F 

HERV-Fc 

HERV-H 

HERV-R 

HERV-E 

MLV 

FeLV 

GALV 

Host Group Count 

Bird 28 0 0 0 0 

Rodent 2 68 530 137 1931 

Lagomorph 2 19 22 1 53 

Tree Shrew 0 1 0 26 51 

Primate 389 1888 1309 776 681 

TOTAL 421 1976 1861 940 2716 

 

We propose a slightly different classification scheme, into the six groups 

outlined in Figure 41. 99.98% of the gammaretroviral pol gene fragments 

identified here fell into 22 groups in the GROUPED_EXO dataset. A single 

previously known sequence from each of these groups was analysed 

phylogenetically and six clusters were identified (Figure 41). A second 

phylogenetic analysis was performed to clarify relationships in Hayward et 

al.’s groups II and III (Figure 42). There are several differences between our 

classification scheme and that of Hayward et al. First, we did not find that 
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HERV-R and HERV-E form a monophyletic group, so propose splitting this 

category into HERV-R-like and HERV-E-like groups. Secondly, there was no 

distinction in our analysis between the ERVs classified as group II and group 

III by Hayward et al. (Figure 42), instead we propose combining these two 

groups. Finally, the REV-like group was distinct from the MLV-like group 

phylogenetically and in terms of host distribution, so division of these two 

groups may be more representative. The six clusters identified here will 

provisionally be referred to according to a well-characterised previously 

known sequence within the cluster: HERV-I like (equivalent to group I), 

HERV-F-like (groups II and III) HERV-R-like (group IV), HERV-E-like (group 

IV), REV-like and MLV-like (both parts of group V) (Figure 41). 

The majority of groups of gammaretroviral pol gene sequences (319/398) 

identified in the previous screening projects listed in section 2.1.4.1 fell into 

one of these six groups when characterised by sequence similarity (section 

2.4.5). Almost all of the sequences falling outside of these groups were from 

amphibians or reptiles. Therefore, these six groups represent a large majority 

of the gammaretroviral diversity in the Euarchontoglires and most likely the 

mammals. This grouping is much more representative of the 

gammaretroviruses than the subset of these viruses which is often used in 

phylogenetic analysis, which tends to be biased towards MLV-like insertions 

[for example (Elleder et al., 2012, Cui et al., 2012)] and may limit the ability to 

fully characterise the evolutionary relationships of newly discovered 

gammaretroviruses.  

We have identified novel endogenous gammaretroviruses in each of the six 

groups outlined in Figure 41, each group will be discussed below.  
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Figure 41: Pol gene phylogeny showing the seven proposed groups of 
gammaretroviruses in the Euarchontoglires. 
Groups in the phylogeny are highlighted in grey. Pink circles are sized according to 
and labelled with the total number of new pol gene fragments identified in this 
group. Pie charts show the proportion of these fragments found in primates (blue), 
rodents (red), lagomorphs (green), tree shrews (purple), birds (orange) and ferrets 
(yellow). Details of previously known sequences are provided in Appendix B.2. 
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Figure 42: Pol gene phylogeny showing the HERV sequences classified as class ii 
(red) and class iii (blue) by Hayward et al. (2013a).  
Details of previously known sequences are provided in Appendix B.2. 
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4.2.1. HERV-I Group 

The HERV-I like group of gammaretroviruses is known to include three 

groups of HERVs: HERV-I (Maeda and Kim, 1990), HERV-ADP (Lyn et al., 

1993) and HERV-IP10 (Seifarth et al., 2000). A chicken gammaretrovirus, 

ChiRV1 (Borysenko et al., 2008), several other avian ERVs (Niewiadomska 

and Gifford, 2013) and ERVs from the lemon shark, komodo dragon and 

wallaby (Martin et al., 1997) are also known to cluster close to HERV-I. 

Several other previously characterised sequences fell into this group in the 

analysis in section 2.4.5. These were a subset of avian gammaretroviruses, 

characterised by Martin et al. (1999), chimpanzee endogenous 

gammaretrovirus groups 20 to 28 from Polavarapu et al. (Polavarapu et al., 

2006a) and bovine ERV 5 from Garcia-Etxebarria et al. (2010). 

Using Exonerate, 4,454 HERV-I like fragments were identified across the 33 

genomes screened. The majority of these fragments were identified in 

primates (4,199 fragments) and birds (140 fragments). Details of the 

fragments are shown in Table 13. 
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Table 13: The number of HERV-I-like ERV fragments identified in each host type. 
All: all 33 genomes. Blue rows labelled “T” represent total counts, yellow rows 
labelled “PG” represent the mean number of fragments per genome of this type. 

  
All Gag Pol Env 

All 
T 4454 1200 2497 757 

PG 135 36 76 23 

Primates 
T 4199 1158 2296 745 

PG 280 77 153 50 

Rodents 
T 72 15 51 6 

PG 7 1 5 1 

Lagomorphs 
T 25 4 19 2 

PG 13 2 10 1 

Tree Shrews 
T 17 4 11 2 

PG 9 2 6 1 

Birds 
T 140 19 119 2 

PG 70 10 60 1 

Ferret 
T 1 0 1 0 

PG 1 0 1 0 

 

There has previously been some ambiguity about the integration date of the 

HERV-I lineage into primate genomes. All previous studies have identified 

HERV-I like insertions in apes and old world monkeys, but Seifarth et al. 

(2000) and Greenwood et al. (2005) found evidence of HERV-I like insertions 

in new world monkeys while Lee et al. (2006) did not. Hayward et al. (2013a) 

did identify insertions in this group in new world monkeys, plus 13 insertions 

in prosimians.  

Here, all apes and old world monkeys had approximately 200 HERV-I like pol 

gene fragments. New world monkeys had somewhat less, an average of 119 per 

genome. 190 chromosome regions were identified with consecutive HERV-I 

like gag, pol and env fragments. These were found in all apes, old world 

monkeys and new world monkeys screened and in no other hosts. Potential 

LTRs were identified flanking 111 of these regions, again distributed across all 
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simian hosts. Using the LTR dating approach described in section 2.4.6.1, 

these LTRs gave a range of potential of integration dates for the HERV-I like 

group of between three and 61 million years. Only seven loci gave a date 

greater than 43 million years, the estimated date of the divergence between old 

and new world primates (Figure 37). This may indicate that HERV-I entered 

the genomes of new and old world primates before this date but diversified 

separately in the two host groups. 

HERV-I like regions with a gag-pol-env structure were screened for ORFs as 

described in section 2.4.5 to establish if any loci have the potential to produce 

functional viruses. No loci were found with gag or pol ORFs long enough to 

produce functional viral proteins. However, a conserved 662 to 675 amino acid 

env ORF was identified in nine simian primates: human, chimpanzee, bonobo, 

gorilla, orangutan, crab-eating macaque, rhesus macaque, baboon and 

marmoset. The positions of these fragments in each genome are listed in Table 

14. These ORFs represent the ERV-Pb env gene first described by Aagaard et 

al. (2005), who identified this ORF in all old world primates. Aagaard et al. 

also found a fragment of this gene in the owl monkey (a new world monkey) 

but were unable to assign this to a locus or identify the rest of the gene. The 

position of this locus in the chimpanzee genome was identified in the Compara 

six primate alignment as described in section 2.4.6.3, which gave co-ordinates 

for the orthologous position in five other primates: human, gorilla, orang-utan, 

rhesus macaque and marmoset. These positions corresponded to the positions 

containing the env ORF in all six genomes. Therefore, we have found an 

unambiguous, full-length copy of this gene in the marmoset, a new world 

primate, at an orthologous position to the old world primate gene. The nine 

env ORF sequences from this locus were analysed phylogenetically with other 

known gammaretroviral env genes and formed a monophyletic group with a 

branching pattern identical to the host phylogeny (Figure 37). DNA sequences 

for this ORF from these nine hosts were aligned and the Ka/Ks ratio calculated 

to look for evidence of selection (as described in section 2.4.7). The mean value 

for this ratio was 0.68, with a range from 0.06 to 0.93, which is consistent 
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with purifying selection. These results combined suggest that this ORF has 

been conserved and capable of producing active protein for at least 43 million 

years and that it has been subject to selection in the host to confirm its 

function. This gene is phylogenetically distinct from all known syncytins 

(Figure 43) and has been shown to be poorly expressed in all human tissues 

tested to date (21 tissues) and not overexpressed in the placenta (Blaise et al., 

2005). However, the protein has been shown to be fusogenic (Blaise et al., 

2005). Further work is needed to establish how this protein benefits its 

primate hosts. 

 
Table 14: The position of the HERV-I env ORF in various simian hosts. 
 

Host Chromosome Start Position End Position Strand 

Baboon 7 148757927 148759949 - 

Bonobo scaffold 1120388623549 9008405 9006426 - 

Chimpanzee 14 92184238 92186257 - 

Crab-eating Macaque 7 157604564 157606587 - 

Gorilla 14 74409054 74411075  - 

Human 14 93089235 93091254 - 

Marmoset 10 118228238 118230221 - 

Orangutan 14 93952896 93954917 - 

Rhesus Macaque 7 156359342 156361366 - 

 



Chapter 4: Results by Genus 
Section 4.2: Gammaretroviruses 
 
 

177 

 

 

Figure 43: Phylogenetic comparison between the nucleotide sequences of the env 
ORFs identified in HERV-I related insertions and of other known gammaretroviral 
syncytin proteins and env genes. 
Newly identified sequences are in the shaded region with sequences from apes in 
pink, old world monkeys in yellow and new world monkeys in blue. Known syncytins 
are shown in green. Branches leading to primate syncytins one and two and rodent 
syncytins A and B have been collapsed. Details of previously known sequences are 
provided in Appendix B.2. 
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A few scattered HERV-I like insertions were identified in lemurs, aye-ayes and 

rodents. These were analysed phylogenetically and the result of this analysis is 

shown in Figure 44. In order to represent the simian HERV-I insertions 

discussed above in this tree, a phylogeny was built for representative pol genes 

(genes from the most intact loci were used) and one sequence from each 

cluster selected, these are sequences g_1 to g_10 in this phylogeny. Two well 

supported clusters of prosimian and rodent HERV-I like insertions were 

found, the first consisting of insertions from the two species of lemur (aye-aye 

and mouse lemur) and from chinchilla, naked mole rat and hamster. The 

lemur insertions are more closely related to each other than to insertions from 

any other host, which may be indicative of a small group of HERV-I like 

insertions limited to Malagasy lemurs, however further work would be needed 

to confirm this. The second group consists of only sequences from rodents 

(naked mole rat, ground squirrel, jerboa and chinchilla) however again these 

are not closely related species. The rodent insertions are very scattered and 

show no particular correspondence to the phylogenetic or geographical 

relationships between the hosts. 
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Figure 44: Pol gene phylogeny showing the relationship between the HERV-I like 
insertions identified in prosimians and rodents with those found in mammals. 
Prosimians are shown in blue, rodents in purple, representative sequences for the 
simian HERV-I clusters in pink and previously described HERV-I like proviruses in 
green. This tree is rooted on the basic gammaretrovirus dataset, however this group 
has been cropped for better visualisation. Details of previously known sequences are 
provided in Appendix B.2. 
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All HERV-I like pol gene sequences identified in birds were also combined 

with the gammaretrovirus test dataset and the previously defined HERV-I like 

sequences in the analysis shown in Figure 45. Bird HERV-I like sequences 

clustered robustly with marsupial and non-mammalian insertions, separately 

to the HERV-I like insertions identified in placental mammals. There are three 

strongly supported groups of avian HERV-I like insertions on this tree. Two 

contained only avian sequences, however the third contains 

gammaretroviruses from very diverse hosts (Figure 45). Sequences in this 

group have previously been identified in cartilaginous fish (Martin et al., 1997, 

Herniou et al., 1998), birds (Borysenko et al., 2008, Niewiadomska and 

Gifford, 2013), lizards (Martin et al., 1997), marsupials (Martin et al., 1997) 

and monotremes (Martin et al., 1997). HERV-ADP, first described by Lyn et al. 

(1993), inconsistently falls into this group. HERV-ADP was not identified 

using our pipeline, probably due to its degeneration through integration of 

other retroelements, as described in the original paper. No insertions 

clustering in this group were identified in mammals. This suggests some 

barrier to their integration, such as a restriction factor. The lineage appears to 

have proliferated considerably more successfully in birds (Figure 45), with 

diverse members of this group found in the chicken and turkey genomes. This 

result points to birds as a potential vector and reservoir host for these viruses, 

which may then have been transmitted to other hosts. This would explain the 

wide geographical distribution of their non-avian host species.  

  



Chapter 4: Results by Genus 
Section 4.2: Gammaretroviruses 
 
 

181 

 

 

Figure 45: Pol gene phylogeny showing the relationship between the HERV-I like 
insertions identified in birds and those found in mammals. 
Chicken insertions are shown in orange, turkey in purple, the sequences representing 
simian HERV-Is in pink and previously described HERV-I like proviruses in green. This 
tree is rooted on the basic gammaretrovirus dataset, however this group has been 
cropped for better visualisation. In dense regions red arrows connect the node being 
described with its branch support value. Details of previously known sequences are 
provided in Appendix B.2. 
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4.2.2. HERV-F Group 

There are 10 subgroups in the HERV-F group: HERV-F, HERV-FRD, HERV-

FXA, HERV-Fc1, HERV-Fc2, HERV-Fb, HERV-W, HERV-P, HERV-H RGH2 

and HERV-H RTVLH2. These have been characterised in some detail in old 

world primates and apes [for example (Bénit et al., 2003, Kim et al., 1999, 

Seifarth et al., 1995, Jern et al., 2004)] and reviewed by Bannert and Kurth 

(2006). This group includes many of the syncytin proteins discussed in section 

1.4.3.9: primate syncytin 1 is related to HERV-W Env (Cáceres et al., 2006), 

primate syncytin 2 to HERV-FRD (Blaise et al., 2003), rodent syncytins A and 

B to HERV-F (Dupressoir et al., 2005) and the new world rodent syncytins to 

HERV-Fb (Vernochet et al., 2011).  

A number of sequences from previous genome screens were found to be 

members of this group. These were Polavarapu et al.’s (2006a) chimpanzee 

gammaretroviruses 9 to 18 and 29, ERV-9 (La Mantia et al., 1991), HERV-4 

(Taruscio and Mantovani, 1996), Garcia-Etxebarria et al.’s bovine ERVs 1 to 4 

and 6 to 10(2010), Benit et al.’s (2003) HERV-F-like elements from apes, old 

world monkeys, new world monkeys and lemurs, Huda et al.’s (2008) chicken 

ERV 21 and McCarthy et al.’s (2004) murine ERV-7 and murine ERV-9. 

Here, 37,311 HERV-F like fragments were identified. Details of these 

fragments are provided in Table 15. These insertions were especially abundant 

in primates but were also identified in all other host groups. 
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Table 15: The number of HERV-F-like ERV fragments identified in each host type. 
All: all 33 genomes. Blue rows labelled “T” represent total counts, yellow rows 
labelled “PG” represent the mean number of fragments per genome of this type. 

 

  
All Gag Pol Env 

All 
T 37311 5193 25698 6420 

PG 1131 157 779 195 

Primates 
T 27391 3594 18829 4968 

PG 1826 240 1255 331 

Rodents 
T 8062 1220 5821 1021 

PG 733 111 529 93 

Lagomorphs 
T 983 217 674 92 

PG 492 109 337 46 

Tree Shrews 
T 598 110 193 295 

PG 299 55 97 148 

Birds 
T 37 0 37 0 

PG 19 0 19 0 

Ferret 
T 240 52 144 44 

PG 240 52 144 44 

 

The presence or absence of each of the 10 HERV-F-like lineages and its 

approximate copy number was established for each host (as described in 

sections 2.4.1 and 2.4.2). The results of these analyses are shown in Figure 46 

and Figure 47.  
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Figure 46: The pol gene phylogenetic relationships between each lineage of HERV-
H, HERV-F, HERV-W and HERV-P and the closest matching sequence from each host 
species, where a sequence was present in the host.  
Sequences from apes are shown in pink, old world monkeys in yellow, new world 
monkeys in blue, prosimians in green, tree shrews in brown, lagomorphs in grey, 
rodents in purple. Reference sequences are shown in black. Details of previously 
known sequences are provided in Appendix B.2. 
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Figure 47: The copy number and estimated integration dates of the HERV-F/H/W 
family of ERVs. 
Arrows represent estimated integration dates (million years ago). X’s represent loss 
of an ERV from a lineage. Arrows and bars are colour coded according to the key and 
represent different ERV lineages. Orange numbers are estimated node ages in 
millions of years. 



Chapter 4: Results by Genus 
Section 4.2: Gammaretroviruses 
 
 

186 

 

Our results suggest that the HERV-P group is more ancient than the other 

ERVs in this group, appearing for the first time at least 81 million years ago in 

an ancestor of tarsiers and simian primates. HERV-P-like pol gene fragments 

were identified at a moderate copy number (approximately 200 to 300 copies) 

in all new and old world primates and in tarsiers, the prosimian which shared 

the most recent common ancestor with the simians. The consistent copy 

number of this group and the phylogenetic relationships of shown in Figure 47 

fit with the hypothesis that HERV-P entered this ancestor. Previously, Yi et al. 

(2007) identified HERV-P like pol gene fragments in a lemur species (Lemur 

catta) while our screen of the grey mouse lemur (Microcebus murinus) was 

negative. Hayward et al. (2013a) did not include HERV-P in their analysis.  

HERV-P-like insertions were also identified in the new world rodents 

(chinchilla, guinea pig, naked mole rat and degu). These fragments cluster 

together within the HERV-P family, have a fairly consistent copy number and 

the naked mole rat insertion is more distantly related than those in the other 

hosts, which suggests that the integration event was prior to the divergence of 

these species(43 million years ago) but after their divergence from the 

kangaroo rat (78 million years ago). New world rodents arrived in south 

America from Africa approximately 41 million years ago and primates 

approximately 26 million years ago (Antoine et al., 2012). Therefore, the cross-

species transmission leading to colonisation of these two groups by HERV-P-

like ERVs must have occurred in Africa more than 41 million years ago.  

As new world rodent HERV-P-like insertions have not been characterised 

previously, regions flanking the pol genes in this group were screened for gag 

and env genes. 11 loci were identified with all three genes: six in chinchilla, one 

in guinea pig, two in naked mole rat and two in degu. Separate gag and env 

phylogenies were generated for these sequences. The phylogeny for gag was 

consistent with Figure 47 (data not shown), however the env gene phylogeny 

showed an unexpected relationship, clustering with a carnivore syncytin gene 

in the group described by Cornelis et al. (2012). A more detailed env gene 
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phylogeny was therefore created including all known sequences in this group 

and the related ruminant syncytin group identified by Cornelis et al. (2013) 

and is shown in Figure 48. Env genes from the primate HERV-P-like group 

usually had clustering patterns matching their gag and pol phylogenies (data 

not shown). There were five exceptions to this. A single env gene neighbouring 

a HERV-P like pol but clustering with the carnivore syncytins was identified in 

each the two genomes of Pan species: chimpanzee and bonobo. Another 

insertion of this type was identified in the aye-aye. A single env gene 

neighbouring a HERV-P like pol but clustering with the HERV-R env was 

identified in each new world monkey genome: marmoset and squirrel monkey. 

These relationships are shown in Figure 48. 

The newly identified new world rodent env sequences form a monophyletic, 

well supported group which is close to but distinct from the carnivore 

syncytins. This group is not closely related to the known new world rodent 

syncytins described by Vernochet et al. (2011). The aye-aye and Pan env genes 

are even more similar to the carnivore syncytins. The env regions of members 

of this group were screened for ORFs, however, no sequence longer than 384 

nucleotides was identified, so these loci are not capable of generating a 

functional syncytin protein. The evolutionary distance between aye-ayes and 

Pan species, between these primates and the new world rodents and between 

the Euarchontoglires hosts of these newly identified env genes and the 

carnivores which harbour the Car1 syncytin gene are strongly indicative of 

cross-species transmission events. Transmission via bites from rodents or 

primates to carnivores while these recombinant viruses were active is a 

feasible transmission route. The gene may then have been co-opted for 

placental development in carnivores but allowed to degrade in the new world 

rodents and primates.  
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Figure 48: Env gene phylogeny showing the relationship between known carnivore, 
new world rodent and ruminant syncytins and the HERV-P env genes identified 
here. 
Newly identified sequences are shown in red capitals, known carnivore syncytins in 
blue, known ruminant syncytins in green and known new world rodent syncytins in 
purple. Details of previously known sequences are provided in Appendix B.2. 
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Pol genes belonging to the HERV-W lineage, which is closely related to the 

HERV-P lineage, have only been described in detail in old world monkeys and 

apes to date, however HERV-W like LTRs have previously been detected in 

new world monkeys (Kim et al., 1999) and phylogenetic analysis by Hayward 

et al. (2013a) shows a very similar pattern to our Figure 46. We have identified 

insertions clustering with HERV-W in high copy numbers in all simian 

genomes screened, including new world monkeys. However, the intact env 

ORF encoding syncytin was only found in apes, as described by Caceres et al. 

(2006). As in Hayward et al.’s (2013a) phylogeny, the new world monkey 

HERV-W like pol fragments were relatively distant from those found in old 

world monkeys and apes and this, combined with the general lack of 

comprehensive previous screening attempts in new world monkeys, may 

explain why these have not generally been detected previously. This genetic 

distance, combined with the copy number increase in old world monkeys and 

apes compared to new world primates and the high similarity between old 

world monkey and ape HERV-W like insertions, suggests that HERV-W 

integrated into a common ancestor of new and old world primates but that it 

has also been more recently active in primates.  

A number of HERV-W-like insertions were also identified in bushbabies but 

not in other prosimians, again this is consistent with Hayward et al.’s (2013a) 

phylogeny. The relationship between these insertions and the HERV-W like 

insertions of other primates is shown in Figure 49. Unless these insertions 

have been deleted in all other prosimian primates, these are likely to have an 

origin in the last 69 million years in the lineage leading to the bushbabies 

(Figure 47). Therefore, it is likely that a bushbaby ancestor was infected 

horizontally by another primate at some point in their evolutionary history. 

Bushbabies are widespread in the savannahs of southern Africa, a habitat 

shared with several other primate species, so a cross-species transmission 

would be possible. 
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Figure 49: Pol gene phylogeny showing the relationship between the bushbaby 
HERV-W-like insertions and those of other primates. Details of previously known 
sequences are provided in Appendix B.2. 

HERV-F, HERV-Fb and HERV-H RTVLH2 were detected in all simian 

primates but not tarsiers. Therefore, they are likely to have integrated between 

the tarsier-simian (81 million years ago) and new world primate – old world 

primate (43 million years ago) divergence events (Figure 37). These dates are 

consistent with those reviewed by Bannert and Kurth (2006) and the 

phylogenies for these sequences shown in Figure 46 are consistent with those 

in Hayward et al.’s (2013a) phylogenetic analysis. HERV-H-RGH2 appears to 

be more modern, as insertions were only identified in apes and old world 

monkeys, which points to an origin of this group 43 to 32 million years ago. 

This contradicts the results of Jern et al. (2004) who considered HERV-H 

RTVLH2 to be more modern than HERV-H RGH2.  

We identified a particularly high copy number of both HERV-H lineages 

(RGH2 and RTLVH2) in humans and bonobos compared to other apes. The 

most recent common ancestor of humans and bonobos is shared with the 

chimpanzee but humans and bonobos have a two-fold increase in RGH2 and a 

three-fold increase in copy number of RTLVH2 compared to chimpanzees. 

There is no clear phylogenetic distinction between the human, bonobo and 

chimpanzee insertions, as Figure 50 demonstrates, so the reason for the 
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success of these retroviruses in humans and bonobos but not chimpanzees is 

unclear. Jern et al. (2006) also noted the recent expansion of HERV-H 

insertions in the human but not the chimpanzee genome and proposed the 

“midwife” hypothesis to explain this, with HERV-H co-opting proteins from 

another more intact provirus to allow reintegration (section 1.4.3.2). This 

would be consistent with our results and a similar phenomenon may have 

occurred in the bonobo, which has not previously been extensively screened 

for ERVs. 

 

 

Figure 50: Pol gene phylogeny showing the relationship between HERV-H like 
clusters identified in humans (green), bonobos (pink) and chimpanzees (blue). 

 

Outside of the primates, HERV-F like insertions were identified in the aye-aye 

and rabbit and RTVLH2-like insertions in some new world rodents: naked 

mole rat, chinchilla and degu. Hayward et al. (2013a) identified the same 
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naked mole rat and rabbit insertions. Four of the HERV-F like insertions in 

the rabbit and two of the insertions in the aye-aye had a gag-pol-env structure, 

so an env gene phylogeny was constructed to look for recombination (data not 

shown). Both env genes were somewhat similar to the syncytin 1 group in 

primates but contained many stop codons. Although RTVLH2 was present in 

new world rodents it was absent in guinea pig, which limits its integration date 

to less than 36 million years ago, which is more recent than its estimated 

integration date in primates. However, copy number in rodents is very low 

(less than 10 copies per genome) and insertions in the other new world rodents 

were very degraded, so it is possible that guinea pig insertions exist but were 

not detected. Alternatively, RTVLH2 may have circulated twice.  

Rodent syncytins A and B are similar to HERV-F env. Outside of the env ORF, 

these insertions are known to be very degenerate (Dupressoir et al., 2005). 

Accordingly, the env genes resembling syncytins A and B identified here were 

found in isolation, not close to any other ERV fragments. We detected syncytin 

A ORFs in mouse, rat and vole and syncytin B ORFs in mouse, rat, vole and 

hamster. This is consistent with the literature (Dupressoir et al., 2005). No 

non-rodent hosts had similar ORFs. 

Our results for HERV-Fc1 were consistent with those of Benit et al. (2003) in 

the identification of low copy numbers of HERV-Fc1 in the human, 

chimpanzee, gorilla and baboon genomes but not in the orangutan or gibbon 

genomes. However, Benit et al. did not identify HERV-Fc1 in the macaque, 

whereas here it was found in both macaque species screened. As the copy 

number of HERV-Fc1 is low, it may have been absent in the sequence data 

available for rhesus macaque when the Benit et al. paper was published but it 

is identifiable in the 2010 RheMac3 genome build used here. Like the 

previously identified human and baboon HERV-Fc env genes, one rhesus 

macaque ERV-Fc locus encoded a full length env ORF. The sequence of this 

ORF was very close to that of the baboon env ORF, as shown in Figure 51. 

Chimpanzees, bonobos and gorillas had degraded copies of the same gene 



Chapter 4: Results by Genus 
Section 4.2: Gammaretroviruses 
 
 

193 

 

while no HERV-Fc-like env fragments were detected in the crab-eating 

macaque. The absence of HERV-Fc1 in orangutan and gibbon suggests that it 

was circulating less than 17 million years ago, when orangutans diverged from 

the other great apes and more than 8 million years ago, when gorillas diverged 

from the ancestor of humans, chimpanzees and bonobos. The env gene of this 

lineage appears to have been subject to selection to remain intact in humans. 

baboon and macaques but this is not apparent in chimpanzees, gorillas or 

bonobos. This suggests that this gene has been co-opted for a functional role 

more than once or that its function has been replaced by another factor in 

some hosts. 

HERV-Fc2 also had a low copy number in primates, with less than 100 copies 

per genome, with the exception of the squirrel monkey, where it is very 

abundant with more than 400 copies. A previously undescribed HERV-Fc2 

env ORF was identified in the bonobo (Figure 51). The highly similar human 

and bonobo sequences were aligned and a Ka/Ks ratio of 0.767 was calculated 

using the methodology described in section 2.4.7. This value indicates weak 

purifying selection. The presence of an Fc2 env ORF in bonobo and human 

suggests that the gene was once present in chimpanzees, however, it was not 

detected here and Benit et al. (2003) only found a very degraded copy. Gorillas 

contained a recognisable Fc2 but with multiple stop codons. This is similar to 

the pattern detected for HERV-Fc1 and again suggest that either this protein 

has been co-opted for a functional role twice, once in bonobos and once in 

humans, or that is has lost its function in some hosts.  
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Figure 51: Env gene phylogeny showing the regions identified with ORFs 
corresponding to HERV Fc1 and HERV Fc2. 
Newly identified sequences are shown in purple.  

Fragments resembling HERV-Fc2 were also identified in the lemur, Chinese 

tree shrew, rabbit, ground squirrel, jerboa and vole (Figure 47). None of these 

species share a common ancestor which is not also shared with other hosts 

lacking these fragments (Figure 37). Insertions from these hosts form a 

separate, monophyletic cluster to those identified in simian primates and are 

likely to represent a distinct lineage of ERVs to the HERV-Fc2 lineage. 

A consistent but low number of copies of HERV-FXA, ranging from 3 to 24, 

was found in all simians and all new world rodents. No HERV-FRD like pol 

genes were detected here. This is not unexpected, as only a single copy of 

HERV-FRD is found in the human genome and the pol gene is known to be 

degenerate. The HERV-FRD env ORF gene which has been co-opted to as 

primate syncytin 2 was detected in all simian primates, as described by Blaise 

et al. (2003). Hayward et al. (2013a) did identify HERV-FRD-like pol gene 
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fragments in all simian primates, however as sequence details are not provided 

in this paper it is not possible to compare these to our results. 

4.2.3. HERV-E Group and HERV-R Group 

The HERV-E group was built around one known HERV: HERV-E (Taruscio 

and Manuelidis, 1991). Several previously known retroviruses clustered with 

HERV-E in the analysis discussed in section 2.1.4.1. These were Polavarapu et 

al.’s (2006a) chimpanzee ERVs four to eight, HERV-1 and HERV-33 (both 

uncharacterised to our knowledge but available via Repbase), Tristem et al.’s 

(1996) American mink, grey seal, Mexican bat, cow and sheep ERVs and 

Garcia-Etxebarria et al.’s (2010) bovine ERVs 14, 15, 17 and 18. 

Using Exonerate, we have identified 8,349 fragments in this group. Primate 

and tree shrew genomes had a higher HERV-E content than other host groups. 

Details of the fragments identified are provided in Table 16. 

 
Table 16: The number of HERV-E-like ERV fragments identified in each host type. 
All: all 33 genomes. Blue rows labelled “T” represent total counts, yellow rows 
labelled “PG” represent the mean number of fragments per genome of this type. 

  
All Gag Pol Env 

All 
T 8349 2070 6279 0 

PG 253 63 190 0 

Primates 
T 5818 1628 4190 0 

PG 388 109 279 0 

Rodents 
T 1721 263 1458 0 

PG 156 24 133 0 

Lagomorphs 
T 41 7 34 0 

PG 21 4 17 0 

Tree Shrews 
T 660 152 508 0 

PG 330 76 254 0 

Birds 
T 33 0 33 0 

PG 17 0 17 0 

Ferret 
T 76 20 56 0 

PG 76 20 56 0 
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Similarly, the HERV-R group was built around one known HERV: HERV-R 

(Andersson et al., 1998). No other sequences in the 

PARSED_UT_PREVKNOWN dataset were assigned to this group. 

3,528 fragments were identified in this group. The majority of these were 

found in primate hosts. Details of these fragments are provided in Table 17. 

 

Table 17: The number of HERV-R-like ERV fragments identified in each host type. 
All: all 33 genomes. Blue rows labelled “T” represent total counts, yellow rows 
labelled “PG” represent the mean number of fragments per genome of this type. 

  
All Gag Pol Env 

All 
T 3528 176 960 2392 

PG 107 5 29 72 

Primates 
T 2975 160 791 2024 

PG 198 11 53 135 

Rodents 
T 438 2 116 320 

PG 40 0 11 29 

Lagomorphs 
T 12 0 11 1 

PG 6 0 6 1 

Tree Shrews 
T 47 13 32 2 

PG 24 7 16 1 

Birds 
T 8 0 3 5 

PG 4 0 2 3 

Ferret 
T 48 1 7 40 

PG 48 1 7 40 

 

The HERV-E and HERV-R groups were not selected for detailed analysis, as 

preliminary testing did not identify any important differences from the 

literature. However, a presence / absence analysis was performed as described 

in section 2.4.1 to establish if sequences clustering closer to HERV-E/R than to 

any of the other known retrovirus sequences assigned to these groups were 
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present or absent in each host. The results of this analysis are shown in Figure 

52. 

HERV-E was found in all simian primates plus bushbabies. Yi et al. (2006) 

also found this ERV in all simians but found it to be absent in two prosimians, 

the bushbaby Otolemur crassicaudatus and the lemur Lemur catta. We also 

found this ERV group to be absent in lemur, aye-aye and tarsier, therefore 

these results combine to suggest that the O. garnettii insertions are the result 

of a late cross-species transmission into this host. Hayward et al. (2013a) 

found a very similar phylogeny to for HERV-E to Figure 52, including these 

insertions in O. garnettii. HERV-R-like fragments were identified in all simian 

primates, tarsier, all new world rodents, rabbit and jerboa. The old world 

monkey and ape HERV-R pol fragments were very similar to each other and 

probably represent the group described by Kim et al. (2006). The remaining 

HERV-R-like fragments are much more distinct, which may be why they were 

not detected in this earlier study. All except the jerboa insertions were detected 

and characterised phylogenetically by Hayward et al. (Hayward et al., 2013a) 

(jerboa was not screened in this study) and showed relationships very similar 

to those shown in Figure 52. An in depth analysis of these groups would be a 

worthwhile extension of this work. 
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Figure 52: Pol gene phylogeny for the closest sequence identified in each host to 
HERV E (left) and HERV R (right). 
Sequences which clustered more closely to another retrovirus in the group are not 
shown. Details of previously known sequences are provided in Appendix B.2. 

4.2.4. REV-Like Group 

The REV group was built based upon the exogenous REV viruses which are 

pathogenic in birds (REV, DIAV and SNV), their endogenous relatives in 

mongoose and echidna (Niewiadomska and Gifford, 2013) and the closely 

related HERV-T lineage found in all simian primates (Yi and Kim, 2007). Only 

one further previously known virus was added to this group, Polavarapu et al.’s 

(2006a) chimpanzee ERV 3.  

5,409 REV-like fragments were identified in total, with approximately the 

same number in primates and rodents. Details of these fragments are provided 

in Table 18. 
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Table 18: The number of REV-like ERV fragments identified in each host type. 
All: all 33 genomes. Blue rows labelled “T” represent total counts, yellow rows 
labelled “PG” represent the mean number of fragments per genome of this type. 

  
All Gag Pol Env 

All 
T 5409 1516 2990 903 

PG 164 46 91 27 

Primates 
T 2690 675 1415 600 

PG 179 45 94 40 

Rodents 
T 2575 798 1507 270 

PG 234 73 137 25 

Lagomorphs 
T 32 8 16 8 

PG 16 4 8 4 

Tree Shrews 
T 105 35 52 18 

PG 53 18 26 9 

Birds 
T 0 0 0 0 

PG 0 0 0 0 

Ferret 
T 7 0 0 7 

PG 5409 1516 2990 903 

 

These results are consistent with the literature in that no ERVs were found 

clustering closely with REV across all three genes. Instead, a series of ERVs 

were identified clustering with HERV-T and between REV and HERV-T, 

including several which have not previously been described in detail. 

Considerably more insertions in this group were identified in the guinea pig 

and tarsier than in any other host, as shown in Figure 53.  
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Figure 53: The number of REV/HERV-T like pol gene insertions identified in each 
host. 

As REV is a recombinant virus, endogenous REV insertions would be expected 

to have gag and pol genes clustering with the gammaretroviruses but env 

genes clustering with the betaretroviruses. HERV-T like ERVs have 

gammaretroviral gag, pol and env genes. Therefore, all pol gene sequences 

were screened for neighbouring env genes similar to HERV-T env and 

neighbouring env genes in the betaretrovirus dataset. 

400 non-recombinant full-length loci (loci with HERV-T like gag, pol and env) 

were identified. These were much more numerous in guinea pigs but were 

widespread amongst different hosts, with gag-pol-env regions identified in all 

species of ape, old world monkey, new world monkey and new world rodent, 

plus jerboa and bushbaby. Pol genes were clustered using a phylogenetic tree 

for each host and a single representative sequence selected for each cluster. A 

phylogenetic analysis was then performed on these representative sequences, 
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shown in Figure 54. ERVs closely related to HERV-T were found in all apes 

screened here. A second group of closely related viruses spanned old world 

monkeys and apes and a third group was found only in new world monkeys. 

This is consistent with the results of Yi et al. (2007), who suggested that the 

lineage leading to HERV-T integrated before the divergence of new and old 

world monkeys then proliferated 56, 47 and 31 million years ago.  
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Figure 54: Phylogeny showing the relationships between the pol gene at selected 
REV-like non-recombinant loci and known gammaretroviruses. 
Sequences from apes are shown in pink, old world monkeys yellow, new world 
monkeys blue, prosimians green, Hystricomorpha rodents purple, Myomorpha 
rodents grey, known gammaretroviruses orange. Bars represent the relative size of 
each group. Triangles on branches represent copy number increases. Black border 
indicates the potentially intact cluster described below. Details of previously known 
sequences are provided in Appendix B.2. 
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Non-recombinant HERV-T like loci were screened for ORFs (as described in 

section 2.4.5) and two guinea pig loci, one on scaffold_9 and one on 

scaffold_13, were potentially intact (scaffold names from the Cavpor3.0 

genome build on the UCSC genome browser), with full-length ORFs for gag, 

pol and env. A full length pol ORF was identified at six other guinea pig loci, 

however these all had stop codons or frameshifts in either gag or env. The 

positions of ORFs within scaffold_11 and scaffold_9 the loci are shown in 

Table 19, along with the positions of putative conserved domains (identified 

using the NCBI conserved domain search at 

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). The layouts of the 

two loci are depicted in Figure 55. The scaffold_9 locus has sufficiently long 

gag, pol and env ORFs to potentially code for functional proteins and contains 

the majority of conserved domains expected in a retrovirus. The LTRs of this 

locus differ by 4 bp out of 328, giving an estimated age of 678,000 years. 

However, in gammaretroviruses gag and pro are usually separated by a stop 

codon and at this locus they are not (Goff, 2007). There is also a gap between 

the stop codon at the end of pol and the beginning of env, which is not typical 

of an active retrovirus. This appears to be the result of a truncated pol protein. 

The scaffold_13 locus has a more typical structure, with gag and pro separated 

by a stop codon and pol and env separated by a stop codon and frameshift. The 

LTRs differ by four bases out of 1044, giving an estimated age of 213,000 

years. These dates are very recent compared to most ERVs and these 

insertions could have the potential to produce functional viral particles and to 

propagate within the genome.  

As six loci in guinea pig had the same pol gene ORF, the Ka/Ks ratio was 

calculated for these sequences across this gene, to establish if it may have been 

co-opted for a function in the host. The mean Ka/KS over all six loci was 0.543, 

which suggests purifying selection preventing changes to this gene over time. 

Ka/Ks was lowest for the intact scaffold_13 locus. This suggests selection to 

maintain viral function and may mean that the divergence between these loci 
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occurred while the virus was circulating exogenously and that there has been 

little time for the host to counteract the viral activity.  

The pol genes from both these loci cluster within the south American rodent 

group in Figure 54, close to each other and to CporP.1908. Guinea pigs have a 

considerably higher copy number of ERVs in this phylogenetic group than 

other rodents. Where LTRs could be identified flanking these insertions and 

those of other new world rodents in this phylogenetic group, these were used 

to date the insertions, as described in section 2.4.6.1. 17 guinea pig loci had 

estimated integration dates of less than one million years, which was not the 

case for any members of this group from other new world rodents. Several 

guinea pig loci had identical LTRs. This evidence combines to suggest that the 

chinchilla and degu insertions are degraded to some extent but that this virus 

remains active or was active very recently in guinea pigs. No endogenous 

guinea pig gammaretrovirus has been described in depth, however there are 

occasional references in the literature to “guinea pig leukaemia virus” and 

“guinea pig type C oncovirus”, which is also classified as a gammaretrovirus by 

the ICTV but does not appear to have been sequenced (Nadel et al., 1967, 

Opler, 1967, Davis and Nayak, 1977, International Commitee on Taxonomy of 

Viruses, 2002). An updated analysis of this retrovirus is likely to be 

worthwhile, especially given the widespread use of guinea pigs and guinea pig 

cells in laboratory work, which could be contaminated by the release of active 

viral particles. Guinea pigs are also important as a food source and as pets and 

are often kept alongside other animals, so an understanding of their retroviral 

activity would be beneficial to assess cross species transmission risks as well as 

the impacts of any exogenous viruses on the species. 
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Table 19: Table showing the details of the potentially intact loci in the guinea pig 
genome. 

 
Scaffold_9 Scaffold_13 

Name 
Start 

Position 
End 

Position 

Relative 
Start 

Position 

Relative 
End 

Position 
Length 

Start 
Position 

End 
Position 

Relative 
Start 

Position 

Relative 
End 

Position 
Length 

Total 29570779 29561579 1 9201 9200 13958978 13968902 1 9925 9924 

5' LTR 29570779 29570451 1 329 328 13958978 13960022 1 1045 1044 

gag-pol 29569402 29564805 1378 5975 4597 13960633 13962134 1656 3157 1501 

MA 29569347 29568991 1433 1789 356 13960688 13961044 1710 2066 356 

CA 29568759 29568130 2021 2650 629 13961276 13961905 2298 2927 629 

pol 

     

13962133 13965788 3156 6811 3655 

PR 29567871 29567596 2909 3184 275 13962170 13962415 3192 3437 245 

RT 29567325 29566687 3455 4093 638 13962839 13963351 3861 4373 512 

RNAseH 29565933 29565499 4847 5281 434 13964117 13964533 5139 5555 416 

IN 29565135 29564863 5645 5917 272 13964900 13965253 5922 6275 353 

env 29564237 29562253 6543 8527 1984 13965788 13967792 6811 8815 2004 

TM 29562736 29562503 8044 8277 233 13967313 13967540 8335 8562 227 

3' LTR 29561907 29561579 8873 9201 328 13967858 13968902 8881 9925 1044 

 

Figure 55: The structure of the two potentially intact gammaretroviral loci 
identified in the guinea pig genome. 
LTRs are shown in yellow, gag in green, pol in red and env in blue. Grey boxes 
represent conserved domains. Vertical lines represent stop codons. Actual positions 
in the scaffold are shown vertically and relative positions within the locus are shown 
horizontally.  

17 recombinant loci were identified, with gag and pol clustering with REV and 

HERV-T and env clustering with the betaretroviruses. Sixteen of these loci 
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were identified in guinea pigs and one in chinchillas. Separate phylogenetic 

analyses were performed for the gag, pol and env genes of these 17 loci (Figure 

56). In the gag and pol gene analyses, the guinea pig and chinchilla sequences 

formed a clear, robustly supported phylogenetic cluster, with HERV-T as the 

most closely related known virus. The chinchilla sequences clustered outside 

of the guinea pig group. Guinea pig sequences fell into two well supported 

groups, marked as group 1 and group 2 in Figure 56. The env gene analysis 

also contained a cluster of guinea pig and chinchilla sequences with the 

chinchilla sequence as an outgroup, but one guinea pig sequence fell elsewhere 

in the tree. Guinea pig group one was still apparent but group two was not.  

Potential LTRs were identified flanking all 17 of these recombinant loci. These 

were used to approximately date the insertions and gave dates ranging from 

four to 15 million years ago. These loci were screened for ORFs and the longest 

was a 442 amino acid gag gene fragment found at one locus in guinea pig. 

There is no evidence that these recombinant ERVs could produce functional 

viral particles. The estimate of four to 15 million years ago overlaps with the 

period during which the guinea pig genus (Cavia) diverged into the modern 

guinea pig species, which occurred between 6.2 and 0.4 million years ago 

(Dunnum and Salazar-Bravo, 2010). Therefore, these insertions may be 

present in all species of Cavia or in a subset of these species, depending on the 

exact integration dates.  
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Figure 56: Gag, pol and env gene phylogenies of the REV/HERV-T like full length 
recombinant insertions identified in the guinea pig and chinchilla genomes.  
REV is shown in pink, HERV-T in purple, guinea pig in blue and chinchilla in green. In 
dense regions red arrows connect the node being described with its branch support 
value. Groups are shaded in grey. Details of previously known sequences are 
provided in Appendix B.2. 



Chapter 4: Results by Genus 
Section 4.2: Gammaretroviruses 
 
 

208 

 

Although tarsier insertions were abundant in this group, they were not 

analysed in depth due to the short contig length of the currently available 

tarsier genome build, which rarely allows more than one ERV gene to be 

identified at a locus. As recombination is fundamental to this group, it is not 

possible to fully characterise the tarsier insertions at this point. 

4.2.5. MLV-Like Group 

The insertions identified using Exonerate in the MLV-like group are described 

in Table 20. This group is discussed in depth in Chapter 6. 

 

Table 20: The number of MLV-like ERV fragments identified in each host type. 
All: all 33 genomes. Blue rows labelled “T” represent total counts, yellow rows 
labelled “PG” represent the mean number of fragments per genome of this type. 

  
All Gag Pol Env 

All 
T 24177 9207 11450 3520 

PG 733 279 347 107 

Primates 
T 9029 5611 2885 533 

PG 602 374 192 36 

Rodents 
T 14115 3409 7867 2839 

PG 1283 310 715 258 

Lagomorphs 
T 237 54 126 57 

PG 119 27 63 29 

Tree Shrews 
T 492 73 345 74 

PG 246 37 173 37 

Birds 
T 4 1 2 1 

PG 2 1 1 1 

Ferret 
T 300 59 225 16 

PG 300 59 225 16 
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4. 3. Epsilonretroviruses 

Unexpectedly, epsilon-like pol genes were relatively abundant in primates, 

with 821 insertions identified, distributed across all primate and tree shrew 

genomes screened (Figure 57). Nine insertions were identified outside the 

primates: one in the ground squirrel and eight in the ferret. The ground 

squirrel insertion clustered with the gammaretroviruses on further analysis. 

Ferret insertions were not analysed in detail as they are outside the focus of 

this project. The 821 epsilon-like pol gene fragments are discussed in depth in 

0. 

 

Figure 57 The distribution of ERV fragments between genomes for the 
epsilonretrovirus genus. 
gag fragments are represented in red, pol in green and env in blue. 
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4. 4. Spumaviruses 

Spumavirus-like gag and pol genes were found in all hosts. The vast majority 

of these (29096 out of 29109) were ERV-L like elements, which are known to 

lack env (Benit et al., 1999). ERV-L insertions are known to be degenerate and 

inactive, so were not characterised in detail. However, several details about 

this group were noteworthy. First, there was a noticeable lack of ERV-L like 

elements in some species, particularly the kangaroo rat (3 elements) and pika 

(13 elements) (Figure 58). Secondly, the number of ERV-L elements in new 

world monkeys, old world monkeys and apes was much higher and more 

consistent than suggested in Benit et al. (1999). 

 
Figure 58: The distribution of ERV fragments between genomes for the spumavirus 
genus. 
gag fragments are represented in red and pol in green.
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4. 5. Alpharetroviruses 

308 alpharetrovirus-like fragments were identified in preliminary analysis, 

287 of which were in birds (Figure 59). The non-bird fragments clustered with 

the betaretroviruses in more detailed analyses (data not shown) so were not 

considered in depth. Avian alpharetroviruses have been well characterised by 

other groups [e.g. (Bolisetty et al., 2012)] so will not be considered here. 

 

 

Figure 59: The distribution of ERV fragments between genomes for the 
alpharetrovirus genus. 
gag fragments are represented in red, pol in green and env in blue.  
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4. 6. Betaretroviruses 

In total, 52,415 betaretrovirus-like fragments were identified across the 33 

genomes, 12,911 gag, 32,957 pol and 6,547 env. Figure 60 shows the 

distribution of these fragments between hosts. Primate betaretroviruses were 

somewhat less abundant than gammaretroviruses (except in the tarsier) and 

38% of the betaretrovirus insertions were in primates, compared to 62% of 

gammaretroviruses.  

 

Figure 60: The distribution of ERV fragments between genomes for the 
betaretrovirus genus. 
gag fragments are represented in red, pol in green and env in blue.  

To our knowledge, no comprehensive genome scale analysis of mammalian 

betaretroviruses has been performed to date. 99.99% of betaretroviral pol 

genes identified using Exonerate fell into seven groups in the GROUPED_EXO 
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dataset: simian retrovirus (SRV)-like, simian endogenous retrovirus (SERV)-

like, MusD-like, HERV-K-like, JSRV-like, hedgehog ERV-like and IAP-like. 

These betaretroviruses are described in section 1.4.7. One sequence from each 

of these groups was combined into the phylogeny shown in Figure 61. The 

sequences can be divided into four groups, outlined in Figure 61. Of the 194 

previously known betaretroviral pol gene sequences in the 

FULL_PREVKNOWN dataset, 179 fell into one of these four groups. Eleven of 

the remaining 15 sequences were from marsupials, which may therefore 

harbour a fifth group of endogenous betaretroviruses, however this falls 

outside of the scope of this thesis. These four groups provide a good 

representation of the diversity of the betaretroviruses in the placental 

mammals.  

We therefore propose classifying the betaretroviruses of these hosts into these 

groups, provisionally named according to a well-characterised sequence within 

the group: HERV-K like, SERV-like, JSRV-like and IAP-like. New sequences 

have been identified in each of these groups and each group will be discussed 

below. 

 

Figure 61: Pol gene phylogeny showing the four proposed groups of 
betaretroviruses in the Euarchontoglires. 
Groups in the phylogeny are highlighted in grey. Purple circles are sized according to, 
and labelled with, the total number of new pol gene fragments identified in this 
group. Pie charts show the proportion of these fragments found in primates (blue), 
rodents (red), lagomorphs (green), tree shrews (purple), birds (orange) and ferrets 
(yellow). 
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4.6.1. HERV-K-Like Group 

The HERV-K like group consists of the subgroups of known HERV-K 

insertions in the human genome, of which eight have previously been 

described in detail and Baillie et al.’s (2004) β1 group of mouse and rat 

betaretroviruses. HERV-K like ERVs have previously been characterised 

extensively in the human genome but have often not been examined in detail 

in other hosts. 

Besides the known human ERVs, several other previously described ERVs fell 

into this group in the analysis described in section 2.1.4.1. These were 

Polavarapu et al.’s (2006a) chimpanzee ERVs 30 to 39, all of Romano et al.’s 

(2006) chimpanzee HERV-Ks, Garcia-Etxebarria et al.’s (2010) bovine ERVs 

21 to 24, Gifford et al.’s (2005) rice rat and shrew mouse ERVs, McCarthy et 

al.’s (2004) murine ERVs 13, 15, 17 and 18 and Wang et al.’s (2010) rat ERV K.  

Using our pipeline, 22,506 HERV-K like ERV fragments were identified and 

are detailed in Table 21. 82% of primate insertions could be unambiguously 

assigned to one of the eight HERV-K groups. Rodent sequences formed a 

separate cluster, distinct from the primate HERV-Ks. 
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Table 21: The number of HERV-K-Like ERV fragments identified in each host type. 
All: all 33 genomes. Blue rows labelled “T” represent total counts, yellow rows 
labelled “PG” represent the mean number of fragments per genome of this type. 

  
All Gag Pol Env 

All 
T 22506 5821 12514 4171 

PG 1500 388 834 278 

Primates 
T 12050 3112 6418 2520 

PG 803 207 428 168 

Rodents 
T 9846 2546 5725 1575 

PG 895 231 520 143 

Lagomorphs 
T 239 43 178 18 

PG 120 22 89 9 

Tree Shrews 
T 192 88 81 23 

PG 96 44 41 12 

Birds 
T 76 1 75 0 

PG 38 1 38 0 

Ferret 
T 103 31 37 35 

PG 103 31 37 35 

 

For primates, a presence/absence analysis (section 2.4.1) was performed for 

each of the eight lineages of HERV-K: HML-1 to HML-8 (section 1.4.7.1). The 

results of this analysis are summarised in Table 22 and the phylogenies 

resulting from the analysis are shown in Figure 62. Figure 62 provides pol 

gene phylogenies for the most similar sequence found in each host to each 

HERV-K reference sequence, where are related sequence was present, 

generated using the technique described in section 2.4.1. Figure 63 shows how 

the HERV-K lineages were distributed amongst primate hosts, their estimated 

integration dates based on this distribution and their approximate copy 

number in each primate.  
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Table 22: The presence or absence of each HERV-K lineage (HML-1 to HML-8) in 
each primate group.  
Fully shaded cells signify that the lineage is present in all hosts in the group, half 
shaded cells signify that the lineage is present in some hosts in the group and absent 
in others. 

 1 2 3 4 5 6 7 8 

Apes         

Old World Monkeys         

New World Monkeys            

Prosimians           
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Figure 62: Pol gene phylogenies of the most similar insertion to each HML type 
sequence identified in each host where an insertion clustering with the type 
sequence was identified. 
Apes are shown in pink, old world monkeys in yellow, new world monkeys in blue, 
prosimians in green. 
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Figure 63: The copy number and estimated integration dates of the HERV-K family 
of ERVs in primates. 
Arrows represent estimated integration dates (million years ago). X’s represent loss 
of an ERV from a lineage. Arrows and bars are colour coded according to the key and 
represent different lineages in this family. Orange numbers are estimated node ages 
in millions of years. 
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The only HERV lineage which has previously been identified in new world 

monkeys is the HML-5 group. (Greenwood et al., 2005). However, here 

representatives of HML-2, HML-3, HML-4, HML-5, HML-6 and HML-8 were 

identified in new world monkeys.  

In order to clarify the evolutionary history of these ERVs, the Compara six 

primate alignment was used to trace the orthologous positions of insertions in 

marmoset (a new world primate) with those in old world primates (rhesus 

macaque, orangutan, gorilla, chimpanzee and human) using the less 

computationally intensive locus-by-locus technique described in section 

2.4.6.3. Sixteen of the marmoset insertions (out of 179 candidates) were found 

in regions covered by the Compara alignment and with an ERV in at least one 

other host. For each of these regions, the ERV sequences identified were 

aligned to the marmoset sequence from that locus and to the type sequences 

for HML-1 to HML-8 and phylogenetic trees were generated. At two loci, both 

HML-5, there was evidence that the insertion was orthologous in marmoset 

and in old world primates, as the phylogeny was consistent with that of the 

host species and all ERV sequences fell within a single, strongly supported 

phylogenetic cluster. Phylogenies for these loci are shown in Figure 64. This 

result suggests that at least some HML-5 loci appeared before the divergence 

of new and old world primates. No similar relationships were found for HERV-

K lineages other than HML-5.  
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Figure 64: Pol gene phylogenetic trees for the two HML-5 loci which appear to 
predate the divergence of new and old world primates. 
Apes are shown in pink, old world monkeys in yellow, new world monkeys in blue, 
type sequences for HERV-K lineages in black. Details of previously known sequences 
are provided in Appendix B.2. 

No orthologous insertion sites were apparent for HML-2, HML-3, HML-4, 

HML-6 or HML-8. However, as Figure 63 demonstrates, there appears to have 

been a very significant copy number increase in all of these lineages in the old 

world primates compared to the new world primates, so a small number of 

shared loci could be present which have not been detected, especially given 

that the Compara alignment does not cover all of the marmoset genome. 

Conversely, HML-5 has a large number of insertions in the new world 

primates.  

HML-3 and HML-6 were both detected in all simian primates (Table 22) at a 

low copy number. However, their phylogeny shows inconsistent host tracking, 

which suggests they are more modern than the common ancestor of the simian 

primates (estimated at 43 million years ago). Mayer and Meese characterised 
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HML-3 in humans and found that the virus appears to have been active 

approximately 36 million years ago, which is close to the date of the divergence 

of new and old world primates. Combining this results with our phylogenetic 

analysis, a small number of insertions may predate the old world monkey – 

new world monkey divergence but there has also been substantial activity 

since then in the old world primates. HML-6 shows very similar patterns. 

HML-6 insertions in old world primates have been shown to be at least 30 

million years old (Medstrand et al., 1997) but our phylogeny suggests that 

members of this lineage have been active more recently.  

HML-2, HML-4 and HML-8 were each identified in one of the two species of 

new world monkey screened here but not the other. As these two species share 

a common ancestor with each other more recently than with any of the other 

screened species, this suggests that either these integration events occurred 

after squirrel monkey and marmoset diverged approximately 20 million years 

ago or that the lineage has become unrecognisable in one of its new world 

monkey hosts.  

HML-2 is considered to be ancient, having entered primate genomes 

approximately 35 million years ago, before the divergence of old world 

monkeys and apes (Bannert and Kurth, 2006). However, the structure of the 

HML-2 tree in Figure 62 suggests these viruses have also been active more 

recently, as no host tracking is evident. These viruses are known to have been 

active recently in the human genome (Shin et al., 2013). We have identified 

novel HML-2 like insertions in the marmoset and the aye-aye. The absence of 

these insertions in squirrel monkey, tarsier, lemur and bushbaby means the 

most parsimonious explanation is integration into the marmoset and aye-aye 

genomes after their divergence from ancestors shared with the other hosts 

screened here. Marmoset HML-2 like insertions were very distinct from those 

in old world monkeys and apes and are much less numerous. One marmoset 

locus had recognisable flanking LTRs, which gave an approximate integration 

date of 26 million years ago, consistent with a separate integration event to the 
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HML-2 loci shared between the old world primates, although possibly within a 

similar time period. The aye-aye insertion is seemingly modern and is very 

similar to those found in apes. None of the aye-aye loci had recognisable LTRs, 

so their age could not be estimated using this method.  

Three copies of HML-4 were identified in the squirrel monkey but none in 

marmoset. The phylogeny of HML-4 shows strong evidence of host tracking, 

with relationships identical to those seen in the host, including for the 

bushbabies insertions, suggesting an ancient origin. However, the most recent 

common ancestor of bushbabies and the other hosts with HML-4 is shared 

with the other prosimians, which lack HML-4. The most parsimonious 

explanation is that HML-4 circulated 43 to 69 million years ago and entered 

the common ancestor of the old and new world primates and the ancestor of 

bushbabies and the low copy number insertions in marmoset are no longer 

recognisable. However, Seifarth et al. (1998) used Southern blotting to identify 

HML-4 in apes and old world monkeys but not new world monkeys. Only one 

species was sceened, an Aotes night monkey. Night monkeys are closely 

related to marmosets (Figure 12), which also lacked HML-4 in our analysis. 

Therefore, this lineage could have been lost in the ancestor of the night 

monkey/marmoset/tamarin clade in the primate phylogeny but maintained in 

the lineage leading to squirrel monkeys and capuchins.  

HML-8 has not been discussed in detail previously, however it is generally 

cited as having appeared in old world monkeys and apes after their divergence 

from new world monkeys (Bannert and Kurth, 2006). Here, one HML-8 like 

insertion was identified in squirrel monkeys and none in marmosets. The 

phylogeny of the HML-8 like insertions identified here is very similar to that of 

HML-2, suggesting an ancient integration into an ancestor of the new world 

and old world primates but also more recent activity in old world monkeys and 

apes. The single HML-8 insertion identified in the squirrel monkey is very 

degraded, with pol and env fragments but no recognisable LTRs or ORFs, 

suggesting an ancient origin. As only one insertion was identified and it was so 
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degenerate, it is very possible that the corresponding insertion in marmoset 

has deteriorated and that this integration event predates the common ancestor 

of the old and new world monkeys. However, this lineage also appears to have 

circulated more recently in old world monkeys and apes.  

For HML-1 and HML-7, our results were consistent with the literature in that 

insertions were identified in old world monkeys and apes but not new world 

monkeys. The results in Figure 62 provide evidence that HML-7 circulated 

once, before old world monkeys and apes diverged, integrated into an ancestor 

of these species and then accumulated mutations at the host mutation rate. 

HML-1 appears to have circulated more recently, given its random distribution 

amongst hosts (Figure 62). 

Clearly, rodents also have a large group of HERV-K like ERVs (Table 21). 

However, none of these ERVs clustered closely with any of the eight HERV-K 

HML lineages. Instead, there appears to be a cluster of ERVs in rodents which 

is not found in primates. This lineage is particularly abundant in hamsters and 

in voles, with 2,384 and 1,545 of the 5,725 rodent HERV-K like insertions 

identified in these hosts respectively. These hosts share a common ancestor 

approximately 18 million years ago (Figure 37) which is not shared with any of 

the other hosts screened here, so the expansion is likely to have occurred in 

this ancestor.  

This rodent lineage is an interesting candidate for further analysis, as it has 

not been characterised in detail before. However, given that no insertions of 

this type were identified in primates, it is outside the scope of this thesis.  
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4.6.2. SERV-Like Group 

The SERV-like group of ERVs is characterised by recombination between 

genes. Three “types” of retrovirus are present in this group. SERV, SMRV and 

TvERV are true endogenous betaretroviruses, with betaretrovirus-like gag, pol 

and env genes. BaEV and RD114 have gammaretrovirus-like gag and pol genes 

and betaretrovirus-like env genes. SRVs have betaretrovirus-like gag and pol 

genes and gammaretrovirus-like env genes. A diverse range of mouse and rat 

non-recombinant betaretroviruses are also present in this group, namely 

MMTV and the β4, β5, β6 and β7 groups characterised by Baillie et al. (2004).  

Several further previously known retrovirus sequences were assigned to this 

group in the analysis described in section 2.1.4.1. These were Gifford et al.’s 

(2005) small mongoose ERVs, bison ERV, giraffe ERV, slow loris ERV, 

colobus ERV and musk ox ERV, Garcia-Etxebarria et al.’s (2010) bovine ERV 8 

and bovine ERV 20 and McCarthy et al.’s (2004) murine ERV 12. 

Table 23 describes the 12,836 SERV-like fragments identified here. For the 

purposes of this table, only betaretrovirus-like fragments are counted.  

  



Chapter 4: Results by Genus 
Section 4.6: Betaretroviruses 
 
 

225 

 

Table 23: The number of SERV-like ERV fragments identified in each host type. 
All: all 33 genomes. Blue rows labelled “T” represent total counts, yellow rows 
labelled “PG” represent the mean number of fragments per genome of this type. 

  
All Gag Pol Env 

All 
T 12836 3323 8438 1075 

PG 856 222 563 72 

Primates 
T 4118 627 3158 333 

PG 275 42 211 22 

Rodents 
T 7055 2032 4285 738 

PG 641 185 390 67 

Lagomorphs 
T 419 117 301 1 

PG 210 59 151 1 

Tree Shrews 
T 1075 507 567 1 

PG 538 254 284 1 

Birds 
T 52 0 52 0 

PG 26 0 26 0 

Ferret 
T 117 40 75 2 

PG 117 40 75 2 

 

The regions surrounding the ERV fragments listed in Table 23 were screened 

for any gene of any genus using the methodology described in section 2.4.3.  

Non-recombinant SERV-like betaretroviruses were detected in all old world 

monkeys and in no other hosts, which is consistent with the literature (van der 

Kuyl et al., 1997). A strongly supported cluster of sequences was identified in 

these hosts with gag and pol genes related to the exogenous simian 

retroviruses and env genes clustering with SERV, possum TvERV and SMRV 

(Figure 65). The sequences were indistinguishable from the SERV reference 

sequence. Many of the other hosts analysed here have not previously been 

screened for these insertions but our results confirm that they are likely to be 

unique to old world monkeys. 
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Figure 65: Gag, pol and env gene phylogenies of the SERV-like betaretroviruses 
identified in old world monkeys and reference betaretroviruses. 
Old world monkey sequences are shown in yellow and have been collapsed. These 
trees are rooted on the appropriate betaretroviral test datasets, which has been 
cropped for better visualisation. Details of previously known sequences are provided 
in Appendix B.2. 

SRV-like regions with a betaretroviral gag-pol and gammaretroviral env were 

also identified in several hosts. Gag, pol and env gene phylogenies for these 

regions are shown in Figure 66.  
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Figure 66: Gag, pol and env gene phylogenies of the SRV-like recombinants with 
betaretrovirus-like gag and pol genes and gammaretrovirus-like env genes with 
reference gamma- and betaretroviruses. 
Each host is shown in a different colour. Clusters with more than one sequence from 
the same host have been collapsed. Gag and pol trees are rooted on the basic 
betaretrovirus datasets and the env tree on the basic gammaretrovirus dataset, 
these have been cropped for better visualisation. Details of previously known 
sequences are provided in Appendix B.2. 

The betaretroviral gag and pol genes for these sequences cluster either with 

TvERV/SMRV, SRV/ SERV or MusD. The gammaretroviral env genes cluster 
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with MLV or SRV. For clarity, these sequences were divided into the five 

subcategories described in Table 24, referred to here as type I to type V.  

 

Table 24: The four subcategories of SERV-like insertions with betaretroviral gag-pol 
regions and gammaretroviral env regions. 

Type Gag-pol (gamma) Env (beta) 

I TvERV / SMRV MLV  

II TvERV / SMRV SRV 

III SRV / SERV MLV 

IV SRV / SERV SRV 

V MusD MLV 

 

Table 25 lists the number of regions of each type identified in each host and 

any previous description of these regions. 

All of these insertions were screened for flanking LTRs and LTR pairs were 

identified around 38 of the 100 loci, encompassing all types except type IV. 

Using the methodology described in section 2.4.6.1, these LTRs gave the range 

of potential integration dates listed in Table 25. The majority of insertions 

were estimated at six to eight million years old. The rat type I insertions were 

somewhat more modern, approximately 3 million years old, and the pika type 

I insertions more ancient, approximately 15 million years old. The pika date is 

based on a single LTR pair so may not be reliable. All of these integration dates 

are after the host species diverged from each other, so integration into each 

host is likely to have been independent. Accordingly, the presence and absence 

of these insertions is not consistent with the phylogeny of their hosts, for 

example insertions were found in rat, mouse, hamster and jerboa but not vole, 

which contradicts the phylogeny shown Figure 37. 

All 100 insertions were also screened for ORFs and potentially intact ORFs 

were identified in lemur type I, rat type I, guinea pig type III and mouse type 

IV insertions (Table 25). Figure 67 shows the structure of the most intact of 
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each of these insertion types and Table 26 provides details of their location. All 

except the mouse type IV insertion are sufficiently intact that they may have 

the potential to encode active viruses. In particular, the guinea pig and rat 

insertions have few defects, although the gaps between pro and pol may be the 

result of deterioration.  

 

Table 25: The number of SRV-like insertions of each type identified in each host 
with gag and pol genes clustering with the betaretroviruses and env genes with the 
gammaretroviruses, any previous references to these insertions, the estimated age 
of the insertions and the length of the longest ORF. 

Host Type Previous Description Count LTRs Min Age Max Age Mean Age 
Longest 

ORF 

lemur I 
M. murinus_ERV-β4 
(Baillie et al., 2004) 32 7  768,049   16,697,025   6,687,968  878 

mouse I 
MmERV β4, MmERV β5 
(Baillie et al., 2004) 1 0 

   

682 

hamster I  4 3  3,035,823   8,318,479   6,104,953  567 

rat I 
RnERV β4, RnERV β5 
(Baillie et al., 2004)  7 6  214,087   9,841,270   2,950,730  936 

pika I  3 1  15,772,871   15,772,871   15,772,871  338 

jerboa II  19 1  6,880,734   6,880,734   6,880,734  456 

guinea 
pig III 

 
32 19  500,501   15,799,016   6,657,738  875 

rat IV RnERV β6 1 0       302 

mouse V MmERV β7 1 1  7,335,491   7,335,491   7,335,491  868 
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Figure 67: The structure of the most intact SRV-like insertions indentified with 
betaretrovirus-like gag and pol genes and gammaretrovirus-like env genes. 
Numbers above diagrams represent the relative position of each part of the genome 
and numbers below the absolute position in the genome. Numbers on the diagrams 
represent reading frames, if the first base of the 5’ LTR were in the +1 frame. 
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Table 26: The position of the most intact SRV-like insertions with betaretroviral gag 
and pol genes and gammaretroviral env genes in their host genomes. Scaffold 
numbers are from the genome builds listed in Table 8. 

 

The type I lemur group was previously identified by Baillie et al. (2004) as a 

single insertion in Microcebus murinus. Our results confirm this and show 

that at least 30 copies of this ERV are present in this host. These insertions are 

not shared by the closest host to the lemur screened here, the aye-aye, so are 

unlikely to be more than 59 million years old. Judging by the LTR divergence 

Host Region 
Chromosome / 
Scaffold 

Strand 
Absolute 
Start 

Absolute 
End 

Relative 
Start 

Relative 
End 

Length 

Guinea Pig All scaffold_120 + 1407753 1416501 
  

8748 

 
LTR 

  
1407753 1408154 0 401 401 

 
gag 

  
1408314 1410650 561 2897 2336 

 
pro 

  
1410596 1411342 2663 3409 746 

 
pol 

  
1411660 1414017 3907 6264 2357 

 
env 

  
1414058 1415899 6305 8146 1841 

 
LTR 

  
1416100 1416501 8347 8748 401 

Lemur All scaffold_406 - 517942 526860 
  

8918 

 
LTR 

  
526860 526426 0 434 434 

 
gag 

  
525822 524098 1038 2762 1724 

 
pro 

  
523567 522857 2822 3532 710 

 
pol 

  
523082 520734 3778 6126 2348 

 
env 

  
519603 518671 7257 8189 932 

 
LTR 

  
518375 517942 8485 8918 433 

Mouse All chr_9 + 11817788 11825936 
  

8148 

 
gag 

  
11817788 11818423 0 635 635 

 
pol 

  
11819556 11821889 1768 4101 2333 

 
env 

  
11823908 11824825 6120 7037 917 

 
env 

  
11824938 11825936 7150 8148 998 

Rat  chr_9 - 7166339 7175923 
  

9584 

 
LTR 

  
7175923 7175404 0 519 519 

 
gag 

  
7175015 7173528 908 2395 1487 

 
pro 

  
7173392 7172832 2289 2849 560 

 
pol 

  
7172286 7169557 3637 6366 2729 

 
env 

  
7169642 7167579 6281 8344 2063 

 
LTR 

  
7166858 7166339 9065 9584 519 
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and the degree to which the ORFs are intact in the lemur group, they may be 

considerably more modern than this, having appeared in the last 7 million 

years. However, only one insertion, the scaffold_406 insertion described in 

Figure 67, showed any potential to produce active virus. Screening of further 

species of lemur would clarify the integration date of this ERV, as an insertion 

occurring 15 to two million years ago would be shared amongst Microcebus 

lemurs while a more modern insertion would be unique to M. murinus 

(Perelman et al., 2011) . The date at which non-native rodents reached 

Madagascar, the only geographical region where M. murinus is present, is 

currently unclear (Samonds et al., 2013). A more precise integration date of 

this rodent-like virus in a Malagasy lemur may help clarify this. The type I 

hamster and pika ERVs have not been characterised previously to our 

knowledge, while the mouse and rat insertions were also listed by Baillie et al. 

(2004). 

The type III jerboa insertions identified here have not been characterised 

previously and appear to be unique in the relationship of their gag, pol and 

env genes, with gag and pol clustering with SMRV/TvERV and env with SRV. 

Therefore, a member of the gammaretrovirus group which recombined with 

SERV to produced the env genes of SRV has also recombined with an SMRV 

like betaretrovirus to produce these insertions. 

Only guinea pig ERVs were identified as type III with SRV/SERV like gag and 

pol genes but env genes clustering closely with the MLV clade. As discussed in 

section 4.2.4, guinea pigs are known to produce defective viral particles, and 

these relatively intact insertions could again be responsible. As guinea pigs 

appear to contain diverse recombinant ERVs, it is also possible that these 

particles are produced by more than one type of ERV.  

The rat type IV and mouse type V insertions have previously been described in 

detail (Baillie et al., 2004) so will not be characterised further here. 
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The diversity of these SRV like insertions in rodents in particular and the 

relatively modern origin of these insertions suggests that rodents may have 

been involved in the appearance of exogenous SRV and of endogenous SERV. 

SERV is not considered to be particularly ancient, estimated at 12 to 18 million 

years old (van der Kuyl et al., 1997), which overlaps with the range of 

estimated integration dates of the rodent insertions shown in Table 25. 

Therefore, these viruses may have been circulating simultaneously. These 

rodent SRV-like ERVs are found in hosts which are geographically widespread 

and often coexist with other species and, as the lemur insertions demonstrate, 

are able to survive and proliferate in primates, so rodent SRVs as 

intermediates in the SRV-SERV-BaEV evolutionary history are likely. 

BaEV/RD114 like insertions, with betaretroviral SERV-like env genes but 

gammaretroviral MLV-like gag and pol genes were less widespread. Sequences 

clustering closely with BaEV in all three genes were only identified in baboons 

(Figure 68). This is as expected, as BaEV has only previously been detected in 

baboons, geladas, mangabeys, mandrills and African green monkeys (van der 

Kuyl et al., 1995), and baboons are the only species in this group for which a 

full-genome sequence is currently available. This result confirms the absence 

of BaEV in their closest sequenced relatives, the macaques, as discussed by van 

der Kuyl et al. (1995). 

Recombinant viruses with SMRV-like env genes were also detected in guinea 

pigs (Figure 68). These insertions had ML V-like gag and pol genes clustering 

separately to BaEV. Preliminary analysis also showed candidate recombinant 

sequences in the marmoset and bushbaby. However, the env gene of the 

bushbaby sequence did not consistently cluster as betaretroviral (Figure 68). 

Similarly, the gag and pol genes of the marmoset insertion could not be 

robustly classified as gammaretrovirus-like. These two insertions were 

therefore excluded from further analysis.  
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Figure 68: Gag, pol and env gene phylogenies of the BaEV-like recombinants with 
gammaretrovirus-like gag and pol genes and betaretrovirus-like env genes with 
reference gamma- and betaretroviruses. 
Each host is shown in a different colour. Clusters with more than one sequence from 
the same host have been collapsed. Gag and pol trees are rooted on the basic 
gammaretrovirus datasets and the env tree on the basic betaretrovirus dataset, 
these have been cropped for better visualisation. Details of previously known 
sequences are provided in Appendix B.2. 

These baboon insertions are already well known but the guinea pig ERVs are 

not, so they were again screened for LTRs and ORFs. No recognisable LTR 

sequences were identified flanking these sequences and the longest ORF was 

424 amino acids in length. Therefore, these insertions are likely to be ancient.  
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4.6.3. IAP-Like Group 

The IAP like group is based upon the murine IAP elements, a large group of 

murine endogenous betaretroviruses which lack env. Sequences clustering 

with Gifford et al.’s (2005) hedgehog ERV also fell within this group. No 

further previously known sequences in our input dataset were assigned to the 

IAP-like group. 

Table 27 provides the details of the 10,408 IAP-like elements identified here. 

Table 27: The number of IAP-like ERV fragments identified in each host type. 
All: all 33 genomes. Blue rows labelled “T” represent total counts, yellow rows 
labelled “PG” represent the mean number of fragments per genome of this type. 

  
All Gag Pol Env 

All 
T 10408 2600 7808 0 

PG 315 79 237 0 

Primates 
T 290 29 261 0 

PG 19 2 17 0 

Rodents 
T 9868 2569 7299 0 

PG 897 234 664 0 

Lagomorphs 
T 81 2 79 0 

PG 41 1 40 0 

Tree Shrews 
T 108 0 108 0 

PG 54 0 54 0 

Birds 
T 37 0 37 0 

PG 19 0 19 0 

Ferret 
T 24 0 24 0 

PG 24 0 24 0 

As expected, a large majority of the insertions in this group were identified in 

rodents. All sequenced rodents are known to have IAPs (Magiorkinis et al., 

2012), which was consistent with our results. 85% all IAP like pol genes were 

identified in the mouse, rat and guinea pig genomes and all primate insertions 

were in tarsier and lemur, again this is consistent with Magiorkinis et al. 

(2012).  
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4.6.4. JSRV-Like Group 

The JSRV group is built around the exogenous and endogenous JSRV and 

ENTV retroviruses affecting ruminants (Palmarini et al., 2004) and the related 

β3 group of ERVs found in rodents (Baillie et al., 2004).  

In the analysis described in section 2.1.4.1 several other previously known 

sequences were assigned to this group: Garcia-Etxebarria et al.’s (2010) bovine 

ERVs 19, 20 and 23, Baba et al.’s (2011) bovine ERVs K1 and K2, Klymiuk et 

al.’s (2003) sheep ERVs one to three and Gifford et al.’s (2005) Risso’s dolphin 

ERV, white-fronted deer ERV and caribou ERVs. 

The 7,593 ERV fragments identified in this group using our Exonerate pipeline 

are described in Table 28. 

Table 28: The number of JSRV-like ERV fragments identified in each host type. 
All: all 33 genomes. Blue rows labelled “T” represent total counts, yellow rows 
labelled “PG” represent the mean number of fragments per genome of this type. 

  
All Gag Pol Env 

All 
T 7593 1167 4190 2236 

PG 506 78 279 149 

Primates 
T 3866 782 1373 1711 

PG 258 52 92 114 

Rodents 
T 3211 323 2422 466 

PG 292 29 220 42 

Lagomorphs 
T 237 17 213 7 

PG 119 9 107 4 

Tree Shrews 
T 228 41 142 45 

PG 114 21 71 23 

Birds 
T 0 0 0 0 

PG 0 0 0 0 

Ferret 
T 51 4 40 7 

PG 51 4 40 7 
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Relatively few JSRV-like insertions were identified in primates, with the 

exception of the marmoset and the tarsier, in both of which this group appears 

to have undergone a recent expansion. A monophyletic group of JSRV-like 

insertions was identified in marmoset (Figure 69), clustering close to the JSRV 

group but distinct enough from this group that it is unlikely that this 

represents a cross-species transmission. Instead, these ERVs are likely to be 

part of a larger group of JSRV-like retroviruses. Two groups of tarsier JSRV-

like ERVs were identified, one clustering similarly to the marmoset group and 

the other clustering with the Risso’s dolphin JSRV-like ERV. Tarsiers and 

marmosets do not share a common ancestor which is not also shared with all 

other simian primates, so these ERVs are likely to have circulated since these 

hosts diverged from their closest screened ancestors. 

A moderate number of rodent ERVs was also identified in this group. The copy 

number of these ERVs was fairly consistent across all rodent hosts, with 95 to 

268 pol gene fragments identified, with the exception of the ground squirrel, 

which had a fourfold increase in copy number. These insertions represent the 

previously characterised β3 group of rodent ERVs (Baillie et al., 2004), which 

we can confirm is ubiquitous in the rodents. Baillie et al. found LTR similarity 

of 84.3% for a single rat insertion and 98% for a single mouse insertion. The 

higher degree of divergence gives an estimated integration date of 17 million 

years (using the methodology described in section 2.4.6.1). This date is later 

than any pair of rodent hosts screened here diverged, so even if this group of 

ERVs entered the common ancestor of the rodents it has also been active much 

more recently. The increased copy number in ground squirrels also suggests 

recent activity. 
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Figure 69: Pol gene phylogenies showing the relationships between the JSRV-like 
ERVs in the marmoset (blue, left) and the tarsier (green, right) and known members 
of this group.  
Trees are rooted on the basic betaretrovirus dataset but this group has been cropped 
for better visualisation. Details of previously known sequences are provided in 
Appendix B.2.
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4. 7. Lentiviruses 

Lentiviruses were identified in the hosts in which endogenous lentiviruses 

have been previously described – the ferret (Han and Worobey, 2012b), the 

lemur (Gifford et al., 2008) and the rabbit (Katzourakis et al., 2007) (Figure 

70). Copy number was noticeably higher in rabbit than in the other two hosts. 

A few scattered insertions were identified in other hosts in preliminary 

analyses, however in phylogenetic analyses these clustered with the 

betaretroviruses (data not shown). 

A laboratory based technique was also used to identify endogenous 

lentiviruses, the results of this analysis are discussed in Chapter 5. 

 

 

Figure 70: The distribution of ERV fragments between genomes for the lentivirus 
genus. 
gag fragments are represented in red, pol in green and env in blue.  
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Chapter 5. Endogenous lentiviruses in mainland African 

bushbabies provide insight into the origin of SIV. 

Abstract 

Simian immunodeficiency viruses are widespread in mainland African primates and 

cross-species transmission of one of these lentiviruses to humans led to the HIV-1 

pandemic. The origin of SIVs in primates is not well understood. Endogenous 

lentiviral ancestors of SIVs have previously been found in two species of lemur living 

in Madagascar, raising questions about how these viruses passed from Madagascar to 

the mainland. We have identified and characterised the first endogenous lentivirus in 

a mainland African primate, the Mohol bushbaby, which appears to be another 

ancestor of modern SIVs. We therefore propose that SIVs in old world monkeys are 

the result of a direct transmission from other mainland African primates. The Mohol 

bushbaby lentivirus is extremely similar to the lemur lentiviruses, so we also propose 

routes through which lentiviruses circulating in mainland primates may have reached 

Madagascar.  

5. 1. Introduction 

HIVs are known to be the result of cross-species transmissions from a group of 

viruses which are widespread in monkeys and apes in mainland Africa, the 

SIVs. The origin of SIVs and their relationship to other retroviruses is 

ambiguous. Two recently identified ancient retroviruses of Malagasy lemurs 

seem to be predecessors to modern SIVs, giving some insights into the origin 

of SIVs, but leading to questions about how these viruses jumped between 

primates on Madagascar and those on mainland Africa (Gifford et al., 2008, 

Gilbert et al., 2009). We have identified a third ancient retrovirus in a 

mainland African primate, the Mohol bushbaby (Galago moholi), adding 

another piece to this puzzle and providing new information about the 
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evolutionary history of retroviruses and the potential transmission patterns of 

modern pathogens such as HIV. 

The ancient lentiviruses identified in prosimians are ERVs. Until recently, it 

was thought that lentiviruses were unable to become endogenous, however, 

Katzourakis et al. (2007) discovered the first endogenous lentivirus in the 

European rabbit (Oryctolagus cuniculus). The two lemur endogenous 

lentiviruses were identified soon afterwards (Gifford et al., 2008, Gilbert et al., 

2009). Lemurs are members of the “prosimian” group of primates, consisting 

of lemurs, lorises and bushbabies, so their retroviruses are known as 

prosimian immunodeficiency viruses (pSIVs). These viruses were found in the 

gray mouse lemur, Microcebus murinus (pSIVgml) (Gifford et al., 2008) and 

the fat tailed dwarf lemur, Cheirogaleus medius (pSIVfdl) (Gilbert et al., 

2009). Endogenous lentiviruses have also been identified in the European 

brown hare (Lepus europaeus) and in several members of the weasel 

(Mustelidae) family (Cui and Holmes, 2012, Han and Worobey, 2012b). The 

known endogenous lentiviruses are discussed in detail in section 1.4.8.  

pSIVfdl and pSIVgml entered the genomes of these lemurs three to five million 

years ago (Gifford et al., 2008, Gilbert et al., 2009). However, lemur ancestors 

migrated to Madagascar on mats of vegetation from eastern Africa 50 to 54 

million years ago and are not known to have been in contact with mainland 

African primates since this time (Ali and Huber, 2010, Samonds et al., 2013). 

Therefore it is not clear how and when lentiviruses were transferred between 

Madagascar and the mainland. By screening prosimian samples for 

endogenous lentiviruses and identifying an insertion in a mainland species we 

have identified a possible route through which this could have occurred.  

5. 2. Materials and Methods 

15 species of prosimian primate were screened for endogenous lentiviruses. 

This project was approved by the University of Nottingham School of 
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Veterinary Medicine and Science Non-ASPA (animals scientific procedures 

act) Ethics Committee. DNA derived from archived fecal samples was kindly 

provided by Dr Christian Roos (Deutsches Primatenzentrum) for Mohol 

bushbaby (Galago moholi), potto (Perodicticus potto), red slender loris (Loris 

tardigradus), fat tailed dwarf lemur (Cheirogaleus medius), ring tailed lemur 

(Lemur catta), Verreaux's sifaka (Propithecus verreauxi), aye-aye 

(Daubentonia madagascariensis) and gray mouse lemur (Microcebus 

murinus). Archived tissue samples were kindly provided by the Zoological 

Society of London (ZSL) for pygmy slow loris (Nycticebus pygmaeus), greater 

galago (Otolemur crassicaudatus), gray slender loris (Loris lydekkerianus), 

common brown lemur (Eulemur fulvus), red bellied lemur (Eulemur 

rubriventer), red ruffed lemur (Varecia rubra) and black and white ruffed 

lemur (Varecia variegata). Surplus blood samples from veterinary procedures 

were kindly provided by Copenhagen Zoo for two further G. moholi 

individuals. 

DNA was extracted from blood and tissue samples using the appropriate 

Nucleospin extraction kits (Machery-Nagel). Sample quality and species of 

origin were confirmed using PCR with cytochrome oxidase I primers COIbF 

and COIbR (Bitanyi et al., 2011). Three species could not be amplified using 

these primers (Daubentonia madagascariensis, Varecia variegata, 

Microcebus murinus).  

Samples were screened for lentiviruses using the primer pairs FR (5’ 

CCAAGAGTTAAAACAGTGGCC 3’) (Gelman et al., 1992)– RR (5’ 

ATGGTATGGTAAAATAAGCATC 3’) (Gelman et al., 1992) and FG (5’ 

GGGCAAGAACTTGGTATATCG 3’) (Gifford et al., 2008) - Pol R2 (5’ 

CCAAAACCACTTTGTTGGCT 3’) with 2 minutes at 94oC, 40 cycles of 30s 

94oC, 20s 58oC, 60s 72oC , 2 minutes at 72oC in 25ul reactions with 2X MgCl2 

free buffer (NEB), 2μM (FR-RR) or 3μM (FG – Pol R2) MgCl2 (NEB), 10pmol 

each primer (FR-RR Invitrogen, FG – Pol R2 Sigma-Aldrich), 200μM each 

dNTP (NEB) and 2.5 units Taq DNA polymerase (NEB). All successfully 
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amplified PCR products were Sanger sequenced by Source Bioscience and 

aligned using CAP3 (Huang and Madan, 1999).  

Assembled PCR fragments were aligned with sequences from representative 

known lentiviruses using the localpair setting of MAFFT (Katoh et al. 2002) 

with 1000 iterations. Lentiviruses included in this alignment are listed in 

Appendix B.9. A PhyML phylogenetic tree was built based on this alignment 

under the GTR model with aLRT branch support, no invariable sites, 

optimized across site rate variation and optimized tree topology. The host 

phylogenetic tree is from the 10K trees project (Arnold et al., 2010) 

incorporating all available genes. 

Integration dates were estimated using the equation t = k/2N, where t is time, 

k is divergence (number of sites at which the sequences differ over alignment 

length), and N is the neutral substitution rate of the host, assumed to be 

between 4.5 x 10-9 substitutions per site per year (Gifford et al., 2008) and the 

mean prosimian rate of 7.17 x 10-10 substitutions per site per year (Perelman et 

al., 2011). 

33 genomes were screened for pSIVs using the Exonerate algorithm (Slater 

and Birney, 2005) as described in section 2. 1. Query sequences were the two 

pSIVmb fragments identified here and pSIVgml and pSIVfdl consensus pol 

gene sequences (Gifford et al., 2008, Gilbert et al., 2009). Each candidate 

sequence identified was aligned to each of these using the Smith-Waterman 

algorithm via EMBOSS water (Smith and Waterman, 1981, Rice et al., 2000). 

High scoring sequences were verified using BLASTX against the NCBI nr 

database.

5. 3. Results 

We screened samples from 15 species of prosimian primate (Figure 71) for 

strains of pSIV. DNA barcoding primers were used to confirm sample quality 
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and species of origin for the primate samples (these sequences were deposited 

in Genbank under accessions KJ543729 to KJ543742). Samples were then 

screened by PCR using two primer pairs designed against the pSIV pol gene. 

Only the bushbaby G. moholi and the two lemur species with known pSIV 

insertions (M. murinus and C. medius) gave positive results (Figure 71, Figure 

72). Sequencing these fragments from all three hosts confirmed that they 

originated from the pSIV pol gene, with a total of 1190 bp identified in G. 

moholi. G. moholi pSIV will be provisionally referred to as pSIV Mohol 

bushbaby (pSIVmb). The pSIVmb fragments were deposited to Genbank 

(accessions KJ563276 and KJ563277). A second sample of G. moholi from a 

different individual also contained these two pSIV fragments. The two pSIVmb 

fragments fall at positions 2203 to 2503 and 3514 to 4403 of the pSIV 

consensus sequence (Gilbert et al., 2009). These fragments represent part of 

reverse transcriptase, RNaseH, dUTPase and part of integrase. The presence of 

dUTPase is consistent with pSIVgml and pSIVfdl (Gifford et al., 2008, Gilbert 

et al., 2009) and distinguishes pSIVs from SIVs. Attempts to amplify further 

regions of the pSIVmb genome have so far been unsuccessful. Southern 

blotting was not attempted due to the low volume and relatively poor quality of 

the primate DNA samples. 
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Figure 71: The phylogenetic relationships between the prosimian primates.  
Species marked with circles were tested for prosimian immunodeficiency virus (pSIV). 
Blue text indicates species which tested positive for pSIV. Black node labels indicate 
branch support, orange node labels indicate approximate divergence dates in 
millions of years. Tree data from the 10k trees project (Arnold et al. 2010), dates 
from Perelman et al. 2011. 

 

Figure 72: Gel electrophoresis photograph showing the 300bp band identified using 
the FR-RR primer pair in M. murinus, C. medius and G. moholi. 



Chapter 5: Endogenous lentiviruses in mainland African bushbabies. 
Section 5.3: Results 
 
 

246 

 

In silico screening for endogenous lentiviruses in 32 mammalian genomes, 

including three prosimian primates, identified all known endogenous 

lentiviruses but no novel endogenous lentiviruses in any host. 

A phylogeny comparing pSIVmb with representative lentiviruses [selected 

based on(Gifford et al., 2008) and (Gilbert et al., 2009)] is shown in Figure 2. 

pSIVmb is clearly a member of the pSIV family. Over the two fragments the 

percentage identity between the sequences is as follows: pSIVmb–pSIVgml 

98.15%, pSIVmb–pSIVfdl 95.46%, pSIVgml-pSIVfdl 95.63%. The divergence 

between pSIVmb and pSIVgml suggest that these viruses diverged between 

2.05 and 12.95 million years ago, very similar to the dates estimated for the 

lemur pSIVs (Gifford et al., 2008, Gilbert et al., 2009). The divergence 

between pSIVgml and pSIVmb gives an earlier estimate of 5.04 to 31.79 

million years ago. 
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Figure 73: Maximum likelihood phylogenetic tree showing the phylogenetic 
relationship between pSIVmb (marked in yellow) and other lentiviruses.  
Stars indicate endogenous lentiviruses, all others are exogenous. Host taxonomic 
groups are indicated as follows: black, primates; blue, carnivores; green, lagomorphs; 
red, bovids; grey, equids. Node labels indicate branch support. Abbreviations: equine 
infectious anemia virus, EIAV; feline immunodeficiency virus, FIV; simian 
immunodeficiency virus, SIV; prosimian immunodeficiency virus, pSIV; Mohol 
bushbaby, mb; gray mouse lemur, gml; fat-tailed dwarf lemur, fdl
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5. 4. Discussion 

These results confirm the presence of a pSIV strain in the Mohol bushbaby. 

Endogenous lentiviruses have now been identified in four families of 

mammals: bushbabies (Galagidae), mouse/dwarf lemurs (Cheirogaleidae), 

rabbits/hares (Leporidae) and weasels (Mustelidae). pSIV appears to be 

absent in all other lemurs, bushbabies and lorises screened here.  

We propose that SIVs in old world monkeys result from a direct transmission 

from mainland African prosimians. G. moholi is widespread in the savannahs 

of southern Africa (Figure 74) a habitat shared with several SIV hosts. The 

phylogenetic analysis of pSIV here and previous phylogenetic analyses (Gifford 

et al., 2008, Gilbert et al., 2009) show pSIV to be closest to SIVcol, found in 

the mantled guereza (Colobus guereza), SIVsun, found in the sun-tailed 

monkey(Cercopithecus solatus) and SIVlhoest, found in the L’hoest’s monkey 

(Cercopithecus lhoesti), compared to other SIVs. The geographical ranges of 

these three species overlap with that of G. moholi, so cross-species 

transmissions are feasible. There may also be unknown intermediate pSIVs or 

SIVs in other primates. 

Our results are consistent with G. moholi, M. murinus and C. medius having 

contracted the same strain of pSIV at approximately the same time, two to five 

million years ago. M. murinus and C. medius are relatively close genetic 

relatives which diverged from a common ancestor approximately 25 million 

years ago, while lemurs diverged from bushbabies and lorises approximately 

69 million years ago (Figure 71) (Perelman et al., 2011). M. murinus and C. 

medius also share a habitat (Figure 74) so the presence of pSIV in both of 

these species is less surprising than in G. moholi, which was not in contact 

with Malagasy primates during this period. If pSIVs had been circulating 

exogenously for 25 million years, they would be considerably more divergent 

from each other than they are. Therefore, assuming no contact between lemurs 
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and bushbabies since the migration of lemurs from the mainland, a vector 

species must have transmitted the virus between hosts.  

 

 

Figure 74: The geographical distribution of Galago moholi (yellow) and Microcebus 
murinus / Cheirogaleus medius (blue).  
All data from IUCN (2013). 

Only three groups of mammals migrated to Madagascar between 13 million 

years ago (the earliest possible divergence date calculated for pSIVmb and 

pSIVfdl) and human colonization: bats, hippopotamuses and possibly rodents 

(Samonds et al., 2013), all of which provide potential transmission routes. Bats 

are particularly effective at hosting and transferring viral pathogens and many 

bats colonized Madagascar in the last five million years ago (Calisher et al., 

2006, Samonds et al., 2013). Native Malagasy rodents have lived on 

Madagascar for 20 to 24 my, but it is not clear when non-native rats and 

shrews reached the island (Samonds et al., 2013). Rodents seem to be 

particularly susceptible to retroviruses (Baillie et al., 2004, McCarthy and 

McDonald, 2004, Stocking and Kozak, 2008) and their wide distribution in 

different habitats makes them another attractive candidate as a vector species. 

Hippopotamuses have not been screened for retroviruses but do share habitats 

with bushbabies and potentially lemurs (the distribution of extinct Malagasy 

hippopotamuses is not known) so may have potential as a vector.  
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Another possibility is that the vector species here was an insect, rather than a 

mammal. Lentiviruses have diverse transmission routes and EIAV is usually 

spread mechanically via biting insects (Issel et al., 1988). Insect vectors also 

have the capability to mechanically transmit Jembrana disease virus 

(Soeharsono et al., 1995), bovine immunodeficiency virus (St.Cyr Coats et al., 

1994) and small ruminant lentiviruses (Murphy et al., 1999), although these 

are generally transmitted via other routes. Malagasy invertebrates are not well 

studied, but there is evidence of recent dispersal across the ocean between 

mainland Africa and Madagascar of several insect families, including the small 

mayflies (Baetidae) (Monaghan et al., 2005), Braunsapis bees (Fuller et al., 

2005) and Papiliodemoleus butterflies (Zakharov et al., 2004). Therefore, it is 

feasible that a vector insect crossed this divide approximately five million 

years ago. 

The presence of a pSIV strain, circulating within the last five million years, in 

mainland African primates is an important step in establishing the 

evolutionary history of the lentiviruses and suggests that several potential 

cross-species transmission events between diverse hosts have occurred. If a 

mammalian or insect vector species was able to transfer these ancient 

lentiviruses between primate hosts in different geographical regions, this 

needs to be considered when modelling the transmission of modern lentiviral 

pathogens, including HIV.  
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Chapter 6. The origin and proliferation of gibbon ape 

leukaemia virus 

Abstract 

Gibbon ape leukaemia virus (GALV) is an exogenous gammaretrovirus causing 

haemopoetic neoplasias in gibbons. Several strains of this virus were identified in 

gibbons in southeast Asia, the USA and Bermuda during the 1970’s and the virus is 

still widely considered to be an active pathogen with a high prevalence in gibbons. 

Here, through screening of tissue samples, genome screening, analysis of veterinary 

records and a review of documentation concerning this outbreak, we conclude that 

GALV is unlikely to be a currently circulating pathogen in gibbons. We have also 

identified additional relatives of GALV in the sequenced mouse, rat and hamster 

genomes, strengthening the hypothesis of the rodent origin of this group of viruses. 

Finally, we propose a route through which all known GALV outbreaks may be linked 

and therefore present the hypothesis that a single spill-over event from a rodent in 

south east Asia in the late 1960s may have been the origin of all known GALV isolates.  

6. 1. Introduction 

6.1.1. History of GALV 

The first published report of haemopoetic neoplasia in a gibbon was malignant 

lymphoma in a male Hylobates gibbon in 1960 (Newberne and Robinson, 

1960). This was a followed by a case of malignant lymphoma, with an 

appearance similar to Burkitt’s lymphoma, identified in 1966 in a white-

handed gibbon (Hylobates lar). This gibbon was imported from South-East 

Asia to the University of Chicago in 1964. The causes of these two cases are not 

known. 
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The first outbreak of disease which is attributed to GALV was described by 

Johnsen et al. (1969). This paper describes four white-handed gibbons 

(Hylobates lar) in the Southeast Asia Treaty Organization (SEATO) medical 

research laboratory colony in Thailand which died of generalised malignant 

lymphoma between 1966 and 1968. At this time, no infectious agent could be 

isolated from these gibbons (Johnsen et al., 1969). However, in 1971, five 

further gibbons in this colony were identified with granulocytic leukaemia and 

a type-C (gammaretrovirus-like) retrovirus was identified in one of these cases 

as a possible causative agent (De Paoli et al., 1971). This virus was identified at 

the University of California at Davis (UC Davis) School of Veterinary Medicine 

Comparative Oncology Laboratory (COL), which also had a gibbon colony (De 

Paoli et al., 1971).  

Soon afterwards, in 1971, a type C (gammaretrovirus like) exogenous 

retrovirus was identified in a woolly monkey (Lagothrix lagotricha) which was 

diagnosed with fibrosarcoma (Eiden and Taliaferro, 2011, Theilen et al., 1971). 

This monkey was kept as a pet in an apartment in San Francisco, alongside a 

lar gibbon (Hylobates lar) (Eiden and Taliaferro, 2011). Less than a year later, 

this gibbon was diagnosed with lymphosarcoma and another strain of the 

same retrovirus was identified as the cause (Kawakami et al., 1972). These 

strains were named WMSV and GALV San Francisco (GALV-SF) respectively. 

Both were diagnosed at the San Francisco Medical Center (SFMC) and 

identified at the UC Davis School of Veterinary Medicine.  

GALV was soon reported in several other locations. Kawakami et al. (1973) 

looked for antibodies to GALV in sera of gibbons in various locations and 

found a high prevalence of these antibodies in the SEATO gibbons, SFMC 

gibbons and COL gibbons but none in gibbons from other US locations. The 

virus was then identified in frozen brain samples from gibbons imported from 

south east Asia in 1968 and stored in Louisiana at the Gulf South Primate 

Center. This strain is known as GALV brain (GALV-Br). In the late 1970’s, a 

strain of GALV was also identified in a gibbon colony on Hall’s island in 
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Bermuda, this is the GALV-Hall’s island (GALV-H) strain (Krakower et al., 

1978, Reitz et al., 1979). GALV was thought to be a widespread veterinary 

pathogen during this period and was described as infecting 11% of captive 

gibbons (Kawakami et al., 1975). 

During this period, GALV also appeared as a cell line contaminant on several 

occasions. Okabe et al. (1976) and Chan et al. (1976) reported the strain GALV-

X, similar to WMSV, in cells cultured from a single patient with acute 

myelogenous leukaemia. These studies were performed at the National Cancer 

Institute (NCI) in Maryland, USA. Later, in the 1990’s, this strain was 

identified in HUT78 cells infected with HIV-1 strain ARV-2 at the University of 

Louvain in Belgium (Burtonboy et al., 1993, Parent et al., 1998).  

No haemopoetic neoplasias in gibbons have been attributed to GALV since the 

1970’s. However, GALV it is still often cited as a pathogen of gibbons, a risk to 

humans handling primates and a potential confounding factor in primate 

based research (Voevodin and Marx, 2009, Lerche and Osborn, 2003, Murphy 

et al., 2006, Fowler and Miller, 2008). 

 

6.1.2.  GALV Phylogeny 

GALV falls into the MLV-like clade of retroviruses, as discussed in section 

1.4.3.6. The closest known relatives of GALV are predominantly 

gammaretroviruses identified in species of mouse (Figure 75). The exception 

to this is KoRV, the most similar known retrovirus to GALV (Figure 75). KoRV 

is an active pathogen in koalas and entered the koala population within the 

last 100 years (Tarlinton et al., 2006). As gibbons and koalas are distant both 

evolutionarily and geographically, it is generally considered that the virus 

originated separately in both groups via another host, most likely a rodent 

(Eiden and Taliaferro, 2011). Asian mice share a habitat with gibbons and 

harbor GALV-like gammaretroviruses. In particular, the Asian mouse 
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retroviruses Mus caroli ERV (McERV) and Mus dunni ERV (MDERV) are 

known to be close relatives of GALV and KoRV (Lieber et al., 1975, Wolgamot 

et al., 1998, Martin et al., 1999) (Figure 75). Hayward et al. (2013) also 

identified GALV-like insertions in the house mouse (Hayward et al., 2013a). 

Simmons et al. (2014) screened bats and rodents which are either found in 

both Australia and southeast Asia, transit between these regions or which may 

otherwise be in contact with both gibbons and koalas for GALV-like ERVs. One 

of the species screened, the Grassland mosaic-tailed rat Melomys burtoni, 

contained pol and env gene fragments clustering between GALV and KoRV 

(Simmons et al., 2014). M. burtoni is an Australian native rodent also found in 

Papua New Guinea so provides an attractive possible vector species for 

GALV/KoRV. This ERV, known as Melomys burtoni ERV (MbERV) is more 

similar to GALV and KoRV than any other known rodent ERV. However, this 

species is not present on mainland southeast Asia and does not share a 

geographical range with gibbons, so a further vector species must also have 

been involved in this transmission (Simmons et al., 2014). 

 

Figure 75: The relationship between the pol genes of GALV and the sequences 
described as its closest genetic relatives. 
GALV sequences are shown in red, rodent sequences in yellow and KoRV in green.  
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6. 2. Materials and Methods 

DNA was extracted from 23 blood samples from the following seven species: 

white-handed gibbon (Hylobates lar, 6 samples), siamang (Symphalangus 

syndactylus, 3 samples), red-cheeked gibbon (Nomascus gabriellae, 2 

samples), southern white-cheeked gibbon (Nomascus siki, 2 samples), 

northern white-cheeked gibbon (Nomascus leucogenys, 6 samples), Bornean 

gibbon (Hylobates muelleri, 1 sample), agile gibbon (Hylobates agilis, 3 

samples). All samples were sourced from the Deutsches Primatenzentrum, 

Goettingen, Germany. These samples are from primates confiscated for 

various reasons throughout the EU and so are of diverse origins. 

All samples were screened via PCR using four primer pairs designed against 

the pol genes of GALV and KoRV. These analyses were performed prior to the 

commencement of this PhD project by Dr. Rachael Tarlinton using the primer 

pairs KoRV-pol-F to KoRV-pol-R and KoRVmgbf to KoRVmgbr designed 

against the KoRV pol gene, sequences and conditions described in Tarlinton et 

al. (2006), the primer pair ERV1 (5’ TGG GCC GAG AAG GCA CCT AT 3’) to 

ERVR1 (5’ CCA TTC AAA CGC GAA CAA TG 3’) designed against MLV, under 

the same conditions and the primer pair GALV-pol-F (5’ AGA TCG ACC CGG 

CGT GTA CT 3’) to GALV-pol-R (5’ CCA TTC AAA CGC GAA CAA TG 3’) 

designed against the GALV pol gene, again under the same conditions. During 

this PhD project, one sample from each species was also screened using the 

degenerate gammaretrovirus primer pair PRO (5’ GTK TTI KTI GAY ACI GGI 

KC 3’) to CT (5’ AGI AGG TCR TCI ACR TAS TG 3’) [from Martin et al. (1999)], 

which were designed to amplify MLV-related ERVs . These analyses were 

performed in 50µl reactions with 2x MgCl2-free buffer, 20 pmol each primer, 

3µM MgCl2, 100µM each dNTP, 2.5 Units Taq polymerase with 2 minutes at 

95oC, 40 cycles of 94oC for 20 seconds, 44.8oC for 30 seconds, 72oC for 60 

seconds, followed by 2 minutes at 72oC. 
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DNA quality was confirmed for all samples using primers based on the β-actin 

gene as described in Tarlinton et al. (2006). 

For in silico analysis, all available sequenced primate, lagomorph and rodent 

genomes were screened for candidate ERVs as described in section 2.1.6. Each 

candidate ERV identified was then aligned to the appropriate gene from the 

GALV reference sequence (Genbank NC_001885) using EMBOSS water. A 

BLAT search of the remaining sequenced mammalian genomes available via 

the UCSC genome browser on 18/04/14 was also performed under the default 

settings with the GALV reference sequence as a query. The highest scoring 

sequence from each genome was then aligned to the basic gammaretrovirus 

pol gene, with an epsilonretrovirus, WDSV, as an outgroup. A phylogenetic 

tree was built of this alignment as described in section 2.3.3.3. 

Zoological records dating from 1964 to 2008 were obtained from the animal 

record keeping software (ARKS) records held at Twycross Zoo, Warwickshire, 

UK. 48 gibbons and 20 woolly monkeys died during this period. These animals 

included 11 white-handed gibbons, 19 siamangs, 10 pileated gibbons 

(Hylobates pileatus), one black-crested gibbon (Hylobates concolor), three 

agile gibbons (Hylobates agilis), one white-cheeked gibbon (Nomascus 

leucogenys) and one dwarf siamang (Hylobates klossii). All woolly monkeys 

were brown woolly monkeys (Lagothrix lagotrichta).  

The following documents were reviewed to trace the origin and epidemiology 

of GALV: scientific publications concerning GALV, 1963 to 1983 SEATO 

Medical Research Laboratory Annual Progress reports 

(http://www.afrims.org/weblib/apr/aprF.shtml), archived documentation 

from the US Department of State concerning gibbon transportation 

(documents 1974BANGKO17800, 1974STATE260768_b, 

1974BANGKO17734_b,1974STATE260770_b, 1974TAIPEI06749_b, 

1974STATE244644_b, 1974BANGKO19028_b, 1975BANGKO15111_b, 

available in Appendix E) and scanned documents from this period available 
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via archived International Primate Protection League newsletters 

(http://www.ippl.org/gibbon/current-news/newsletters-1970s).

6. 3. Results 

Despite being subjected to multiple PCR screens, none of the contemporary 

gibbon samples tested positive for GALV or KoRV in any analysis. These 

samples were all of sufficient quality for PCR amplification, as the control PCR 

using β-actin primers demonstrated. These primers and conditions have 

previously been used successfully to amplify these and other 

gammaretroviruses. Therefore it appears that GALV and KoRV are absent in 

the blood of these gibbons. The samples were from unlinked gibbons either 

from zoological collections or confiscated at various timepoints throughout 

Europe.  

Veterinary records showed no confirmed cases of GALV in 48 captive UK 

gibbons and 20 captive UK woolly monkeys over a 44 year period. However, 

one pileated gibbon had clinical signs consistent with GALV at post-mortem, 

listed as “mediastinal and intestinal lymphadenopathy, lymphatic enlargement 

of spleen, liver and kidney and gastric ulceration”.  

The phylogenetic tree in Figure 76 shows the closest relatives to GALV 

identified through in silico screening of 31 species of primate, rodent, 

lagomorph and tree shrew. No sequences clustering close to GALV were 

present in any primate genomes, including that of the gibbon Nomascus 

leucogenys. No new sequences were identified in any host falling within the 

GALV-KoRV-MbRV clade. The closest group to this clade was unique to old 

world rodents, specifically the Myomorpha. MDERV and the mouse MuRV-Y 

group (Stocking and Kozak, 2008) fell within this group. More distant 

relatives of GALV and KoRV are found in rodents, bats and pigs. The closest 

endogenous sequence found in a primate is a lemur ERV clustering with one of 

the bat ERVs identified by Cui et al. (2012) and red squirrel ERV 1A1, 
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discussed in section 1.4.3.5, however these are relatively distinct from GALV. 

The closest gibbon ERV is very distant from GALV and resembles HERV-T. 

 

Figure 76: Pol gene phylogenetic tree showing the phylogenetic relationship 
between GALV and its closest relative in each host genome screened. 
Sequences identified here are shown in pink, GALV strains in red, MbRV in yellow, 
KoRV in green. Grey squares mark the closest relatives of GALV. Details of previously 
known sequences are provided in Appendix B.2. 
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As for GALV-BR, GALV-H and GALV-SEATO only the env gene has been 

sequenced, an env phylogeny was built to compare the strains of GALV with 

their closest relatives identified in Figure 76 (where an env sequence was 

available). This tree is shown in Figure 77. All GALV strains and WMSV form a 

highly supported monophyletic group and are very similar to each other. KoRV 

is only slightly distinct from this group. Again, GALV and KoRV are more 

similar to rodent sequences than to their nearest primate relative, from the 

lemur.  

 

Figure 77: Env gene phylogeny showing the relationship between the GALV strains 
and related sequences from rodents, primates and tree shrews. 
New world rodents are shown in red, tree shrews in orange, prosimians in green. 
Newly identified sequences are coloured by host, previously known sequences are 
shown in black. 

A review of the literature about GALV and of documentation archived during 

the 1960s and 1970s demonstrated that all of the confirmed cases of GALV 

were in gibbons which were either in southeast Asia in the mid-1960s or were 

in contact with gibbons which were in southeast Asia at the time (Table 29). 
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The exception to this may be the gibbons at COL, however, as the background 

of these gibbons has not been reported this cannot be confirmed. Although the 

COL gibbon colony is seemingly distinct from the SFMC colony, a significant 

portion of the work on GALV had been performed at COL, using gibbons from 

both SFMC and SEATO, when GALV was identified in this colony in 1973 

(Snyder et al., 1973, Kawakami et al., 1972, Kawakami et al., 1973). 

Cell lines contaminated with GALV were also traced back to laboratories where 

significant amounts of work on GALV have been carried out. For example, 

Okabe et al. (1976) and Chan et al. (1976) included authors at the NIH 

National Cancer Institute in Maryland, USA, where Lieber et al. (1975) and 

Todaro et al. (1975) cultured GALV. Burtonboy et al. (1993) and Parent et al. 

(1998) worked at the University of Louvain, Belgium but the HIV-1 infected 

cell line from which they isolated GALV was established at the University of 

California, and some reagents used in this process were obtained from GALV 

researchers at the NIH National Cancer Institute (Levy et al., 1984). According 

to the phylogeny in Figure 77, the GALV-X strain appears to be simply be 

GALV-SF preserved in a cell line and shipped to another laboratory.  
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Table 29: The gibbon colonies in which GALV was identified, the date the colony 
was started (where available) and the source and import date of the gibbons in 
which GALV was isolated. 
Colony Source 

SEATO ~80 gibbons purchased in southeast Asia in 
1966 (Morris et al., 1966) 

San Francisco Medical Center Colony initiated in the mid-1960s. 6 gibbons 
purchased together, 2 developed GALV. 
(Kawakami et al., 1972, Snyder et al., 1973) 

Gulf South Primate Center 5 gibbons imported together from southeast 
Asia in 1968, three tested positive for GALV 
in 1975 (Todaro et al., 1975).  

Comparative Oncology Laboratory Colony initiated with gibbons from “various 
sources” with unknown histories. GALV in 
2/13 gibbons. (Kawakami et al., 1973) 

Hall’s Island Colony originated with gibbons imported 
from Thailand in 1970 (IPPL, 1976) 

 

Archived documents from the SEATO medical research laboratory provided 

further information about the SEATO gibbon colony. The colony was 

established in 1966 with 71 gibbons (most likely Hylobates lar) purchased in 

Thailand (Morris et al., 1966). SEATO gibbons were used as models for human 

disease pathogenesis and transmission and were inoculated frequently with 

blood and tissue from humans, rodents and other gibbons (e.g. (Cadigan et al., 

1967, Smith et al., 1968, Bancroft et al., 1975) ). A large collection of Asian 

rodents was held at this facility and also used in these disease studies 

(Marshall, 1974, Marshall, 1975). SEATO established a free-ranging gibbon 

colony using some of their laboratory gibbons but all the gibbons had died or 

were returned to the laboratory by 1975 (Brockelman, 1969). Rats (Rattus 

rattus and Bandicota indica) were native to the island where this colony was 

established (Berkson, 1968). Both of these rat species were screened in the 

study by Simmons et al. (2014) but did not show any indication of GALV.  
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6. 4. Discussion 

PCR screening of 23 unlinked contemporary captive gibbons in Europe 

showed no evidence of exogenous or endogenous GALV in these animals. 

Similarly, veterinary records showed no confirmed deaths from GALV in UK 

gibbons or woolly monkeys over a period of 44 years, encompassing the period 

when all confirmed cases of GALV occurred. Gibbons which died of other 

causes and were examined post-mortem did not show evidence of 

haemopoetic neoplasm, with the exception of a single gibbon which died in 

2006. This gibbon had clinical signs consistent with GALV but was not tested 

for GALV and, as there has never been a documented case of GALV in Europe 

and the last documented cases elsewhere were in the 1970s, other causes of 

lymphadenopathy are likely. These results together suggest that GALV never 

reached the UK and that the documented prevalence of 11% in the USA. which 

is still cited today [e.g. (Voevodin and Marx, 2009)] , originally from 

Kawakami et al. (1973) and Kawakami et al. (1975), was never the case 

worldwide. The two studies which provide this statistic of 11% were based on 

133 gibbons from five US colonies, of which 15 had antibodies reactive to a 

GALV antigen. However, breaking down this statistic, the 15 gibbons with 

these antibodies were all from the COL, SEATO and SFMC research colonies, 

where the prevalence was approximately 15%. None of the remaining 31 

gibbons, from colonies elsewhere in the USA, had these antibodies. 

As several previous studies have proposed [e.g. (Hayward et al., 2013a, Lieber 

et al., 1975, Eiden and Taliaferro, 2011, Tarlinton et al., 2008)] , we 

hypothesise that GALV in gibbons originated as a cross-species transmission 

from rodents. The presence of a GALV/KoRV like ERV in an Australian rodent 

(Simmons et al., personal communication) adds strength to this hypothesis. 

Screening of primates, rodents, lagomorphs and tree shrews confirmed that 

GALV is more similar to several rodent ERVs than to any ERV found in 
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primates and that GALV is not endogenous in gibbons. GALV strains are 

extremely similar to each other genetically and not all strains have been fully 

sequenced. The divergence of the env gene between strains of GALV, which 

ranges from 85% to 99%, is no greater than the divergence of env genes in the 

viral population within a single HIV-1 infected individual, so they may 

represent different isolates from a single outbreak (Andréoletti et al., 2007). 

The SEATO gibbon colony in the mid-1960s provides an attractive candidate 

for the location of the overspill event from rodents to gibbons, either through 

laboratory work or direct contact between animals. The earliest identification 

of GALV was in four gibbons in this colony which had all been part of the 

malaria or dengue virus studies at the centre. Both of these studies were long-

term, involved many gibbons and used transfusion of blood between gibbons 

and from humans to gibbons, viruses grown in live rodents and rodent tissues 

and transmission experiments using mosquitoes fed on infected blood from 

rodents and gibbons (Johnsen et al., 1969, Halstead, 1964, Diggs and 

Pavanand, 1969, Muangman, 1971). At least two of the gibbons with confirmed 

GALV at this colony (identified as gibbons S-76 and S-77) were involved in the 

same malaria study (De Paoli et al., 1971, Cadigan et al., 1967). The 

identification numbers of gibbons involved in studies were only sporadically 

reported, so the exact transmission path of the disease cannot be tracked.  

The only confirmed cases of GALV in live gibbons outside of SEATO occurred 

in the COL and SFMC research colonies and the Hall’s Island colony. The 

SFMC gibbons are known to have been exported from southeast Asia during 

the period in which GALV was circulating, while the origin of the COL gibbons 

is less clear. However, De Paoli et al. (1971) reported in 1971 that GALV virus 

isolation from SEATO gibbons was performed at COL. The Hall’s island 

gibbon from which GALV was isolated were shipped from southeast Asia in 

1968. Although we cannot confirm that any of these gibbons originated at 

SEATO, or were in contact with SEATO gibbons, SEATO gibbons appear to 

have been exported to US primate laboratories at UC Davis and the NIH 
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National Cancer Institute on at least two occasions during the 1960s and 1970s 

(U.S. Fish and Wildlife Service, 1974, U.S. Fish and Wildlife Service, 1975, 

IPPL, 1978). During this period the origin and movement of primates was not 

well tracked and, as primate dealing was lucrative in Thailand at this time, 

capture of gibbons from the free ranging SEATO colony for export is also not 

unlikely.  

The GALV-Br strain also identified in gibbons exported from southeast Asia 

during this period, which may have originated at SEATO. Alternatively, the cell 

lines with which the gibbon brain tissue was co-cultured may have been 

contaminated with GALV, as this work was again carried out at the NIH 

National Cancer Institute (Todaro et al., 1975). Similarly, the GALV-X strains 

expressed by cultured cells have links to this institute, where GALV has 

repeatedly been isolated and cultured [e.g. by Lieber et al. (1975)]. The XMRV 

controversy discussed in section 1.4.3.6 demonstrated the propensity of MLV-

like retroviruses to become laboratory contaminants, including cell culture 

contaminants, so it is feasible that cells could become infected through this 

route.  

These results together suggest that the outbreak of GALV was a single spillover 

event from rodents in the 1960s. Phylogenetic analysis confirms the absence of 

endogenous GALV in gibbons or any other primate. Laboratory analysis 

confirms the absence of GALV in contemporary European gibbons and 

analysis of veterinary records suggest it was absent in the UK when the virus 

was circulating elsewhere. The closest endogenous relatives to GALV are 

rodent ERVs, particularly an ERV in a rodent native to Australia and Papua 

New Guinea.  

We propose that the spillover event from rodents to gibbons occurred either at 

the SEATO research colony or elsewhere in southeast Asia during the mid to 

late 1960’s. Gibbons from this region were exported to a few gibbon colonies, 

at COL, SFMC and Hall’s Island, where GALV was again detected. GALV 

became a common cell culture contaminant in the laboratories where this 
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work was carried out, so was later detected in cell lines linked to these 

laboratories. The lack of documented cases of GALV worldwide since 1978, 

along with these results, suggest that this virus is no longer an active pathogen 

of gibbons and that it was never widespread amongst the gibbon population. 
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Chapter 7. Endogenous Epsilon-Like Retroviruses in 

Primates 

Please note this chapter is identical to the following publication: 

Brown, K., Emes, R. E., Tarlinton, R. E. (2014). Endogenous 

epsilon-like retroviruses in primates. Journal of Virology. In press. 

Abstract 

Several types of cancer in fish are caused by retroviruses, including those responsible 

for major outbreaks of disease, such as walleye dermal sarcoma virus and salmon 

swim bladder sarcoma virus. These viruses form a phylogenetic group often described 

as the “epsilonretrovirus” genus. Epsilon-like retroviruses have become endogenous 

retroviruses (ERVs) on several occasions, integrating into germline cells to become 

part of the host genome, and sections of fish and amphibian genomes are derived from 

epsilon-like retroviruses. However, epsilon-like ERVs have been identified in very few 

mammals. 

We have developed a pipeline to screen full genomes for ERVs and using this pipeline, 

we have located over 800 endogenous epsilon-like ERV fragments in primate 

genomes. Genomes from 32 species of mammals and birds were screened and epsilon-

like ERV fragments were found in all primate and tree shrew genomes but no others. 

These viruses appear to have entered the genome of a common ancestor of old and 

new world monkeys between 42 million and 65 million years ago. 

Based on these results, there is an ancient evolutionary relationship between epsilon-

like retroviruses and primates. Clearly, these viruses had the potential to infect the 

ancestors of primates and were at some point a common pathogen in these hosts. 

Therefore, this result raises questions about the potential of epsilonretroviruses to 

infect humans and other primates and about the evolutionary history of these 

retroviruses.
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7. 1. Introduction 

Epsilonretroviruses are a genus of retrovirus usually associated with fish 

(Sinzelle et al., 2011). Several common proliferative diseases in commercially 

important fish species are caused by these viruses. In the walleye (Sander 

vitreus), a species of perch which is an important source of sport fishing 

revenue in Canada and the northern United States (VanDeValk et al., 2002), 

up to 30% of some populations are affected annually by skin lesions resulting 

from the epsilonretrovirus walleye dermal sarcoma virus (WDSV) and up to 

10% by skin lesions resulting from the epsilonretrovirus walleye epidermal 

hyperplasia virus (WEHV) (Rovnak and Quackenbush, 2010). Outbreaks of 

sarcoma in the Atlantic salmon (Salmo salar), a species which makes up 

almost 2.5% of worldwide aquaculture production, have been attributed to 

Atlantic salmon swim bladder sarcoma virus (SSSV), which is genetically 

similar to the epsilonretroviruses (Statistics and Information Service of the 

Fisheries and Aquaculture Department, 2012, Paul et al., 2006). Other 

diseases in fish and amphibians have also been provisionally linked to epsilon-

like retroviruses (Lepa and Siwicki, 2011, Masahito et al., 1995). However, no 

epsilon-like retroviruses causing disease in mammals or birds have been 

identified. 

To date, evidence from ERVs has confirmed these viruses as primarily 

infections of fish. ERVs are retroviruses which have integrated into germline, 

rather than somatic, cells and are therefore transmitted vertically from parents 

to offspring and can become a permanent part of the genome of their host. 

ERVs are degraded over time by mutation and become inactive, but remain 

detectable in their host genome millions of years after integration. This means 

they provide valuable insight into the retroviruses a species has been exposed 

to, deep in its evolutionary history. Epsilon-like ERVs have been found in a 

diverse range of fish and amphibian genomes, suggesting a long-standing 

relationship with both these groups (Basta et al., 2009, Betancur et al., 2013, 
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Herniou et al., 1998). These retroviruses are thought to be the result of 

multiple integration events taking place over many millions of years, including 

several relatively recent insertions (Basta et al., 2009, Betancur et al., 2013, 

Herniou et al., 1998).  

Genome-wide screening for all genera of retroviruses has been performed in 

many species of mammals and birds (Polavarapu et al., 2006b, Stocking and 

Kozak, 2008, Nellaker et al., 2006) revealing a rich diversity of 

gammaretroviruses, a genus closely related to epsilonretroviruses. However, 

epsilon-like ERVs have not been identified in most mammals. Some epsilon-

like insertions have previously been found in the human genome. Tristem 

(2000) identified a group of approximately 70 highly degenerate sequences 

clustering with non-mammalian retroviruses in the human genome, named as 

the HERV.HS49C23 group and later subdivided into the HERV-L(b), HERV-

R(c), HERV(AC0956774) and ERV(AC018462) families (Katzourakis and 

Tristem, 2005). These insertions were described as being more closely related 

to WDSV than to the gammaretroviruses. Oja et al. (2005) identified twelve 

epsilon-like insertions in the human genome and in our previous work (Brown 

et al., 2012) we characterised a group of epsilon-like ERVs in the horse 

genome, using a newly developed bioinformatics pipeline.  

We have now screened 32 species of primates, rodents, lagomorphs (rabbits 

and pikas) and birds for epsilon-like ERVs using this pipeline and, 

unexpectedly, we have identified several groups of epsilon-like ERVs which 

appear to be ubiquitous in primates. The integration patterns and phylogeny 

of these primate epsilon-like (PE) ERVs suggest that they entered the genome 

of a common ancestor of old and new world monkeys at least 40 million years 

ago. These results raise several important questions about the origin and 

evolutionary history of the epsilonretroviruses and their relatives, their 

relationship with gammaretroviruses and their potential for cross species 

transmission. 
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7. 2. Materials and Methods 

7.2.1. Genome Screening 

A database of 382 gag, 670 pol and 356 env amino acid sequences was built to 

represent the diversity of known exogenous and ERVs. The viruses included in 

this dataset are listed in full in Appendix B.10. Details of the genomes screened 

in this analysis are listed in Table 8. All genomes were downloaded on 08-

Mar-2013 from RefSeq release 57, NCBI Genome or Ensembl release 70. For 

genomes not assembled into chromosomes, scaffolds were concatenated into 

approximately chromosome-length strings for ease of analysis and later traced 

back to their original scaffold. Candidate ERV regions were identified using 

the Exonerate algorithm (Slater and Birney, 2005) and formatted using the 

Perl pipeline available at https://github.com/ADAC-

UoN/predict.genes.by.exonerate.pipeline, under the protein2genome model 

with a minimum hit length of 200 amino acids without introns. When 

predicted genes overlapped, the gene with the highest Exonerate score was 

selected.  

ERV DNA fragments predicted by Exonerate were verified using a TBLASTX 

(Altschul et al., 1990) search of the untranslated version of the input database 

described above. Sequences producing an alignment greater than 100 amino 

acids in length and with greater than 40% amino acid identity with a sequence 

in the input database [thresholds based on(Coffin JM et al., 1997)] were 

classified as ERVs. These sequences were aligned individually to each of the 

original untranslated input sequences listed in Appendix B.10 using EMBOSS 

water (Rice et al., 2000) which is based on the Smith-Waterman algorithm 

(Smith and Waterman, 1981) and finds regions of local similarity amongst 

otherwise dissimilar sequences. Sequences were categorised into genera 

according to their highest alignment score. Sequences which showed highest 

similarity to the epsilon and epsilon-like retroviruses were assigned to a 
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provisional epsilon-like dataset. All sequences in this dataset were divided by 

host and their nucleotide sequences were aligned to those of 34 known epsilon 

and epsilon-like retroviruses and 41 diverse gammaretroviruses using the 

localpair setting of MAFFT (Katoh et al., 2002) with 1000 iterations (these 

sequences are highlighted in Appendix B.10). This alignment technique and 

settings were also used for all subsequent multiple sequence alignments. 

Maximum likelihood phylogenetic trees were built for these alignments using 

PHYML (Guindon and Gascuel, 2003) under the GTR model with aLRT 

branch support, no invariable sites, optimised across site rate variation and 

optimised tree topology. PHYML and these settings were also used for all 

subsequent tree building. Only sequences clustering within a monophyletic 

group of epsilon and epsilon-like retroviruses, distinct from the 

gammaretroviruses, with branch support greater than 75%, were kept in the 

dataset.  

 

7.2.2. Comparison between Primate Genomes 

The Compara EPO six primate alignment (C6P) (Ensembl release 74), an 

alignment of the DNA sequence of human, chimpanzee, gorilla, orangutan, 

rhesus macaque and marmoset genomes, was screened for loci containing an 

epsilon-like ERV pol fragment in at least one host and sequences from these 

loci were extracted. If there was at least 75% sequence identity between the 

ERV sequence and the sequence of any host within the ERV region, excluding 

gaps, the ERV was considered to be present in this host. All ERV sequences for 

each locus were extracted to form a dataset of epsilon-like ERV fragments in 

these six primates. Sequences from all hosts at each locus were aligned and 

PHYML phylogenetic trees were built for each locus. A consensus supertree 

representing all loci was built using CLANN (Creevey and McInerney, 2005). 

This analysis was repeated with loci divided according to the families 

described below. 
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Consensus nucleotide sequences for each locus from the C6P were generated 

using the alignments above and the ambigcons function of EMBOSS (21). 

Ambiguous characters were then replaced in equal proportions with each of 

the bases represented by the character. Sites with gaps in the majority of 

sequences were excluded from the consensus. This method was also used to 

build all subsequent consensus sequences. All consensus sequences were 

combined into a 7426 base pair multiple DNA alignment (including multiple 

gaps due to the degeneracy of the sequences). This alignment was used to 

build a phylogenetic tree and sequences were grouped according to this 

phylogeny. Each group was aligned and used to build a group consensus 

sequence. All group consensus DNA sequences were aligned with 38 known 

epsilon and epsilon-like retroviruses, with human ERV I, the closest known 

gammaretrovirus to the epsilonretroviruses (Herniou et al., 1998) as the 

outgroup, forming a 5510 base pair multiple alignment. A phylogeny was built 

from this alignment. 

Candidate Exonerate sequences from species outside of the six primate species 

in the Compara six primate alignment were aligned one by one to these group 

consensus sequences using EMBOSS water and assigned to a group according 

to their highest alignment score.  

7.2.3. Genome Characterisation 

To isolate LTRs, 8000 bp on either side of the pol gene region from each host 

at each locus was extracted. The regions from the two sides were then aligned 

to each other using EMBOSS water (Rice et al., 2000) which was then used to 

identify the subsection of this alignment with the highest alignment score. 

Sequences within this subsection from either side of the pol gene which shared 

75% sequence similarity, were between 6000 and 15000 bp apart and were 

between 300 and 1500 bp in length were isolated as candidate LTRs. These 

thresholds are based on the range of retroviral genome sizes and LTR lengths 

listed in Bannert et al. (2010). These candidate regions were classified using 



Chapter 7: Endogenous epsilon-like retroviruses in primates. 
Section 7.2: Materials and Methods 
 
 

272 

 

CENSOR (Jurka et al., 1996). Sequence pairs classified as ERV LTRs were then 

used as query sequences and aligned back to all the 8000 base pair regions 

flanking pol genes, again using EMBOSS water, and any new sequences 

identified were added to the dataset. Loci were dated using the equation t = 

k/2N, where t is time, k is divergence (number of sites at which the LTRs differ 

over LTR alignment length), and N is the neutral substitution rate of the host, 

assumed here to be the human neutral substitution rate of 4.5 x 10-9 

substitutions per site per year. This is a common ERV dating technique (used 

for example in Sinzelle et al., 2011, Polavarapu et al., 2006a, Gifford et al., 

2008). For loci with recognisable LTRs, human sequences were extracted and 

aligned to each other and clustered using a PHYML phylogenetic tree. The 

human LTRs identified here were used as probes for a genome-wide BLAT 

search (Kent, 2002) of the human genome, using the UCSC server and a 

threshold of greater than or equal to 75% sequence identity and 300 base pair 

length (as above). 

For the loci with recognisable LTRs, the 5’ and 3’ limits of the LTR provide the 

full span of the ERV, meaning other features of the ERVs could be identified 

and characterised. The regions between the LTRs were translated in all six 

reading frames to identify any potential open reading frames (ORFs). The 

regions between the LTRs and the pol regions were also compared using 

BLASTX (Altschul et al., 1990) to the UNIPROT database to identify any 

candidate gag or env genes and to a local database containing the WSDV 

accessory gene sequences (from GenBank accession NC_001867) to identify 

sequences resembling these genes. All regions showing significant similarity to 

any Gag, Env or accessory gene sequences were examined individually, aligned 

to the appropriate gene from WDSV and aligned to each other to establish if 

any degenerate ERV derived sequences were present.  
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7.2.4. Comparison with Other Mammals 

The pol gene locations in humans and chimpanzees of loci with recognisable 

LTRs identified in all six primate species were compared to the Compara 37 

mammalian genome alignment (C37M) (Ensembl release 74) to ascertain if 

these loci were conserved in non-simian primates or outside the primates (as 

described above for the C6P alignment). The regions of all genomes aligning to 

the human and chimpanzee epsilon-like pol gene fragments were extracted. 

For each host, the percentage of sites in each genome with an identical base to 

the ERV was calculated. For each species where no ERV was apparent, a 

16,000 base pair fragment of the alignment was isolated from each locus, 

encompassing the site where the ERV was expected and the flanking sequence. 

A TBLASTN analysis was performed on these fragments using the consensus 

LTR sequences, pol gene sequences and env sequence as probes, to identify 

solo-LTRs or any other ERV fragments which may suggest deletion of the 

ERV. 

7. 3. Results 

Our analysis identified 854 pol gene sequences (821 using the Exonerate 

pipeline and 33 more in the locus-by-locus analysis) which form a reliable 

phylogenetic cluster within the epsilon and epsilon-like retroviruses. The 

sequences ranged from 568 to 2798 nucleotides in length, with a mean of 993 

bp. These sequences were all found in primates and tree shrews (Table 30). 

Primates are generally divided into four major groups as follows: apes 

(humans, chimpanzees, gorillas, orangutans and gibbons), old world monkeys 

(monkeys native to Africa and Asia), new world monkeys (monkeys native to 

central and south America) and prosimians (tarsiers, lemurs, bushbabies and 

lorises) (Perelman et al., 2011). Tree shrews are the closest living relatives to 

modern primates (Perelman et al., 2011). Epsilon-like insertions were 

identified in all of these groups (Table 30). No epsilon-like insertions were 

found in rodents, lagomorphs or birds. 
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Table 30: The number of epsilon-like ERVs of each type (primate epsilon 1 to 
primate epsilon 3, PE1 to PE3) identified in each host species.  
Details of hosts and genome builds can be found in Table 8. Highlighted species are 
those included in the Compara 6 Primate alignment. 

Species Group PE1 PE2 PE3 Total 

Human Ape 50 25 6 81 

Bonobo Ape 33 26 4 63 

Chimpanzee Ape 45 23 6 74 

Gorilla Ape 46 22 5 73 

Orangutan Ape 38 20 6 64 

Gibbon Ape 19 26 4 49 

Baboon Old World Monkey 29 26 2 57 

Crab-Eating Macaque Old World Monkey 21 23 3 47 

Rhesus Macaque Old World Monkey 39 20 6 65 

Marmoset New World Monkey 31 15 4 50 

Squirrel Monkey New World Monkey 21 13 2 36 

Tarsier Prosimian 1 8 0 9 

Aye-aye Prosimian 39 49 25 113 

Lemur Prosimian 16 15 8 39 

Bushbaby Prosimian 0 3 3 6 

Chinese Treeshrew Tree Shrew 5 11 0 16 

Northern Treeshrew Tree Shrew 8 4 0 12 

TOTAL - 441 329 84 854 
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The C6P alignment allows comparison between specific loci in the genomes of 

six of the 15 species of primate screened here: four apes, one old world monkey 

and one new world monkey. The 407 epsilon-like ERV sequences we identified 

in these six species fell at 87 loci. The retrovirus was found at same position in 

all six C6P species at 36 of these loci and in three or more species at 75 loci. 

For the remainder, some species had the retrovirus and some did not, however 

there was insufficient information to distinguish between empty ERV insertion 

sites, solo-LTRs and a lack of sequence data, due to poor alignment quality at 

and around the locus.  

For each of the 87 loci identified in the C6P analysis, a consensus sequence 

representing the locus was produced. Phylogenetic analysis showed that these 

consensus sequences fall into three clear families, provisionally named 

primate epsilon-like one to primate epsilon-like three (PE1 to PE3) (Figure 

78). A consensus sequence was generated for each family based on this 

information, then sequences from the non-C6P species were assigned to these 

families using sequence similarity to this consensus. PE1, PE2 and PE3 were 

all present in all the major primate groups (Table 30). PE3 was not identified 

in tree shrews, however the total number of ERVs found in tree shrews was 

relatively small. 
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Figure 78: PhyML phylogenetic tree based on a 7426 nucleotide multiple alignment 
of the consensus sequences for 87 epsilon-like pol gene fragments found in 
primates, showing the clustering of primate epsilonretroviral loci into three major 
phylogenetic groups.  
PE1 is shown in green, PE2 in blue, PE3 in red. Numbers represent locus numbers, 
which were assigned arbitrarily. The 11 sequences with recognisable LTRs are 
labelled with hash symbols (#) and the six sequences with recognisable LTRs which 
are conserved in the Compara six primate alignment species are labelled with dollar 
symbols ($). Walleye dermal sarcoma virus and walleye epidermal sarcoma viruses 
one and two were used as an outgroup. Details of each locus are provided in 
Supplementary Table 3. Branch support values are aLRT values calculated in PHYML. 
Branch support values are only shown for the three major clades. 
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The majority of previously described epsilon-like ERVs in the human genome 

were identified using our pipeline and are labelled in Appendix B.11. We 

identified a total of 81 insertions in the human genome, consistent with the 70 

ERVs clustering with non-mammalian ERVs identified by Tristem (2000). Our 

PE2 group appears to encompass Oja et al.’s (2005) “upper” group of epsilon-

like ERVs and our PE1 group their “lower” group. Katzourakis and Tristem’s 

(2005) HERV-AC018462 and HERV-L(b) groups fell into our PE1 group and 

their HERV-R(c) group into our PE2 group. Three previously described 

sequences were not identified in our study, the type member of the HERV-

AC096774 group described by Katzourakis and Tristem (2005) and the 

chr1_684233 and chr17_47535521 groups described by Oja et al. (2005) 5000 

bp from either side of human chr1_684233 (which corresponds to chr1 594413 

in the most recent genome build) were analysed using BLASTX against the nr 

database and by alignment with known epsilonretroviral pol genes but nothing 

resembling a pol gene could be identified. Oja et al’s chr17_47535521 was in 

the raw output from Exonerate but fell short of the quality threshold during 

our BLAST verification step, with the closest match to a known ERV a 64 

amino acid segment sharing 54% identity with WDSV. HERV-AC096774 was 

not identified using Exonerate, however, as stated in Katzourakis and Tristem 

(2005) this sequence is very degenerate. Both of these sequences are most 

similar to our PE1 group. 

The consensus sequences of PE1, PE2 and PE3 were incorporated into a 

phylogeny of known epsilon and epsilon-like retroviruses (Figure 79). 

Mammalian epsilon-like pol insertions in this phylogeny are the PE1, PE2 and 

PE3 consensus sequences, horse epsilon-like ERV fragments from our 

previous work (Brown et al., 2012), an example epsilon-like virus from Oja et 

al. and one chimpanzee ERV lineage previously categorised only as “Class I” 

(Polavarapu et al., 2006a). PE1, PE2 and PE3 form a moderately supported 

potential phylogenetic cluster with these known mammalian ERVs and the 
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reptilian epsilon-like ERVs. PE3 seems to be more closely related to the reptile 

epsilon-like ERVs than to the other mammalian insertions. 

 
 

 
Figure 79: PhyML phylogenetic tree based on a 5510 base pair multiple alignment 
of the consensus sequences of three phylogenetic groups of primate epsilon-like 
pol gene fragments and known epsilon and epsilon-like retroviruses.  
Mammalian epsilonretroviruses are shown in red, amphibians in blue, reptiles in 
green and fish in yellow. Newly identified sequences are highlighted. Full details of 
known epsilonretroviruses in this tree are provided in Appendix B.1. HERV-I is human 
endogenous retrovirus I, a gammaretrovirus. Branch support values are aLRT values 
calculated in PHYML, values below 0.5 are not shown. 
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Potential LTRs were identified flanking 11 of the 87 PE loci, the remainder 

were too degenerate for reliable LTR sequences to be detected. Dating based 

on LTR similarity at these loci gave a mean integration date of 34.43 million 

years ago, with values ranging from 16.48 to 90.49 million years. LTRs 

clustered into four types, designated type_1 to type_4. PE2 loci had type_1 or 

type_4 LTRs and PE1 loci type_2 or type_3. No LTRs were identifiable at PE3 

loci. These results are summarised in Table 2. Type_4 LTRs were only 

identified at loci with a median age greater than 34 million years. 

 

Table 31: The phylogenetic group, LTR_type, proportion of sites at which LTRs are 
not identical to each other and median age of each of the 11 epsilon-like ERV loci 
flanked by two recognisable LTRs. 
 

Locus Group LTR_Type LTR_Divergence Median_Age 

loc_18 PE1 type_3 0.078 17,319,367 

loc_10 PE1 type_1 0.088 19,586,308 

loc_81 PE1 type_2 0.100 22,173,007 

loc_44 PE2 type_1 0.104 23,052,162 

loc_69 PE2 type_1 0.107 23,772,610 

loc_48 PE2 type_1 0.117 26,073,350 

loc_84 PE1 type_2 0.139 30,939,030 

loc_55 PE2 type_4 0.155 34,500,254 

loc_21 PE2 type_4 0.176 39,089,995 

loc_32 PE1 type_3 0.181 40,322,514 

loc_40 PE2 type_4 0.185 41,044,747 

 

Six loci had recognisable LTRs and were identified in all six C6P species. The 

C37M alignment was used to establish if these specific loci are found in all 

primates and if they are found outside the primates. The sequences were 

identifiable at the same positions in all apes, old world monkeys and new 

world monkeys in the alignment. However, at these positions no ERV 

sequences were identifiable in prosimian primates or any non-primates, 

including tree shrews. The C37M alignment is of poor quality for some species 



Chapter 7: Endogenous epsilon-like retroviruses in primates. 
Section 7.3: Results 
 
 

280 

 

for some regions of the genome, so it is not possible to definitively state that 

these insertions were absent, but there was no evidence of these insertions at 

any of the six loci in any of the three prosimian species or one tree shrew 

species in the alignment. TBLASTN analysis also did not identify any retroviral 

LTRs, pol or env gene fragments in these regions or the surrounding sequence 

in prosimians or non-primates. Therefore, it appears that the insertion of 

epsilon-like ERVs at these specific sites occurred after the split between 

tarsiers and old/new world primate ancestors (65 million years ago) but before 

the split between the ancestors of old and new world monkeys (42 million 

years ago) (Perelman et al., 2011). These dates are broadly consistent with the 

estimates above based on LTR divergence. Given that epsilon-like ERV 

fragments were absent at these loci in prosimians and tree shrews, the 

prosimian and tree shrew epsilon-like ERV fragments we identified appear to 

be the result of separate integration events at different integration sites to 

those in apes, old world monkeys and new world monkeys.  

Using the human LTR sequences identified here as probes against the human 

genome, 777 further potential LTRs were identified. 14 pairs were identified 

between 8,000 and 15,000 bp apart, suggesting that the ERV sequence 

between the LTRs has not been deleted but is too degenerate to recognise. The 

remaining 749 are likely to be solo-LTRs, the result of recombination between 

the two LTRs flanking an ERV sequence. This gives a ratio of 749 solo-LTRs to 

95 ERV sites which have not recombined in the human genome (including the 

81 identified with Exonerate and the 14 pairs encompassing unrecognisable 

ERVs). In mice, the half life for an ERV to recombine and form a solo-LTR is 

estimated at 0.8 million years (Nellaker et al., 2012). The recombination rate 

of mice is around half that of humans per generation (Jensen-Seaman et al., 

2004) but the mouse generation time is around one fiftieth of that of humans 

(Keightley and Eyre-Walker, 2000), giving an estimated ERV to solo-LTR half 

life of 20 million years in humans. At this rate it would take approximately 60 

million years to go from 844 ERV sites to 95 ERV sites and 749 solo LTRs, 

which is within our predicted range of insertion dates. 
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For the 11 loci with recognisable LTRs, the 5’ and 3’ limits of the LTR provided 

the full span of the ERV, meaning other features of the ERVs could be 

identified and characterised (Appendix B.12). WDSV is the type species for the 

epsilonretroviruses (International Commitee on Taxonomy of Viruses, 2002) 

and the only epsilonretrovirus with a reference sequence (Genbank accession 

NC_001867) and so was used for comparisons. Apart from two endonuclease 

gene insertions, likely to be the result of later retrotransposition events by 

non-LTR retrotransposons, in humans at locus 84 and chimpanzees at locus 

48, the longest ORF was a 296 amino acid, or 888 base pair fragment at locus 

32, starting within the 5’LTR and ending within the region where gag would 

be expected. The protein encoded by this ORF shares no homology to any 

known retroviral protein (determined using BLASTP) and is considerably 

shorter than any major retroviral protein (WDSV has a 582 amino acid Gag, 

1171 amino acid Pro-Pol and 1225 amino acid Env). Therefore, it is very 

unlikely that any of these ORFs could produce functional viral proteins. 

BLAST searching identified small gag fragments (less than 400 bp) with 

homology to WDSV between pol and the 5’ LTR of loci 18, 21 and 44 and env 

fragments sufficient to combine into a 1330 base pair consensus at loci 10 and 

81 (Appendix B.12). These gag and env sequences were however too 

degenerate for meaningful phylogenetic analysis. No sequences with homology 

to the three WDSV accessory genes, orf-A, orf-B and orf-C were identified. A 

partial genome structure for the PE group was deduced from these results and 

is shown in Figure 80. If accessory genes are excluded, the length of the PE 

genome and the position of the pol gene and env fragment are consistent with 

WDSV and the gaps between these regions are sufficient for the remainder of a 

functional epsilon-like ERV to have been present at some point in the 

evolutionary history of the host.  
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Figure 80: A comparison of identified regions of the PE genome (A) and the 
reference genome of WDSV (GenBank Accession NC_001867) with orf-a, orf-b and 
orf-c excluded (B) and included (C) in the genome length and gene position 
calculations.  
Positions for PE are means across all loci with identifiable LTRs. 

A supertree representing the evolutionary relationships between sequences 

from each host at each locus was generated (data not shown). This tree is 

identical to the consensus host phylogeny, based on 17 host genes, available 

through the 10k trees project (Arnold et al., 2010). If the loci are divided by 

family, PE1 and PE2 show this relationship with 100% support for all 

branches, while PE3 shows ambiguity in the relationship between human, 

gorilla and chimpanzee, a relationship which is also sometimes ambiguous in 

evolutionary analyses of the host (Chen and Li, 2001). 

7. 4. Discussion 

These results confirm the presence of a group of endogenous epsilon-like 

ERVs in these fourteen primate species and in two species of tree shrew, the 

closest living relatives of the primates. The sequenced primates are from 

diverse geographical regions and represent all major primate taxonomic 

groups, so the identification of PE insertions in all of these hosts suggests that 

PE is found in all primates. By looking at individual PE loci in six primate 

species, we have confirmed that PE is likely to have entered the genome of a 

common ancestor of apes, old world monkeys and new world monkeys, while 

PE insertions in prosimian primates and tree shrews are likely to represent 
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separate integration events in ancestors of these species. Many of these ERVs 

have not been identified previously. This is most likely due to the degree of 

degeneration of these sequences and the diversity of our input dataset of 

known retroviruses, which is considerably more comprehensive that those 

which are generally used. 

Mammals, reptiles and birds make up a distinct group in vertebrate phylogeny 

known as amniotes (Meredith et al., 2011). The phylogenetic tree shown in 

Figure 79 suggests that all three families of PE insertion may form part of a 

group of epsilon-like ERVs unique to the amniotes, along with several 

previously characterised mammalian and reptilian epsilon-like ERVs. The 

known human epsilon-like ERVs (Katzourakis and Tristem, 2005, Tristem, 

2000, Oja et al., 2005) seem to represent members of our PE1 and PE2 

families and chimpanzee endogenous retrovirus lineage 13 (Polavarapu et al., 

2006a) appears to be a member of PE1. PE3 clusters robustly with a group of 

reptilian ERVs. Our previously identified horse epsilon-like ERVs (Brown et 

al., 2012) fall within this provisional amniote ERV group.  

The shared insertion sites in new and old world monkeys provide a minimum 

age for circulation of the exogenous versions of these epsilon-like ERVs of 42 

million years ago, and the absence of these shared insertion sites with tarsiers 

provides a maximum age of 65 million years (Perelman et al., 2011). All known 

endogenous fish epsilon-like ERVs are considerably more modern than this, 

with the oldest estimated at 3.79 million years old (Basta et al., 2009). Only 

one amphibian epsilon-like ERV currently has an estimated integration date, 

an insertion in Xenopus tropicalis dated at 41 million years old (Sinzelle et al., 

2011). This date is consistent with the relationships between amphibian 

retroviruses shown in Figure 80. Therefore, amniote and amphibian 

retroviruses appear to have been circulating during approximately the same 

time period while fish endogenous epsilon-like retroviruses are much more 

recent. The structure of the epsilon-like ERV phylogeny is best explained by a 

member of a group of circulating amphibian retroviruses 40 to 60 million 
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years ago entering amphibian genomes multiple times and forming two 

distinct phylogenetic groups, and a single strain crossing into amniotes and 

then diversifying to infect different amniote species.  

This long gap between the ancient amphibian / amniote viruses and the 

modern fish viruses raises questions about the evolution of epsilon-like ERVs. 

The degeneration seen in amphibian and primate endogenous epsilon-like 

ERVs means they are unlikely to have had the potential to produce functional 

viral particles recently enough to be responsible for these integrations into 

fish. If exogenous members of the PE or horse epsilon-like ERV families had 

remained infectious through this period, there would most likely be more 

modern integrations detectable in our genome screens, though the possibility 

remains that other mammals have as yet unidentified epsilon-like ERVs, 

particularly as horses and primates are quite divergent host species. The 

remaining explanation is that exogenous epsilon-like retroviruses have been 

circulating throughout this period in another host or group of hosts and later 

crossed into fish. Significantly more screening would be needed to identify this 

host. The three distinct groups of fish/amphibian insertions in Figure 79 

suggest that cross-species transmissions into fish have occurred at least three 

times. As all three phylogenetic groups of fish epsilon and epsilon-like 

retroviruses are more similar to amphibian ERVs than amniote ERVs, then 

amphibians could be a candidate. Screening of amphibians for ERVs to date 

has also been minimal. It is also possible that epsilon-like retroviruses have 

been circulating amongst fish throughout this time and that there are 

considerably more epsilon-like ERVs in fish which are yet to be discovered.  

The exogenous fish epsilonretroviruses WDSV and WEHV encode three 

accessory proteins, Rv-cyclin (encoded by orf a), Orf-B and Orf-C (Rovnak and 

Quackenbush, 2010) (Figure 80). We did not identify the genes encoding these 

proteins at any PE locus or in the horse epsilon-like ERVs. Rv-cyclin and Orf-B 

are involved in tumour development while Orf-C is involved in apoptosis and 

tumour regression and tumour development (Rovnak and Quackenbush, 
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2010). These genes are essential for WDSV proliferation and dissemination 

(Rovnak and Quackenbush, 2010). However, these genes are not universal in 

fish retroviruses, for example, they are absent in zebrafish ERV (Shen and 

Steiner, 2004) and Atlantic salmon swim bladder sarcoma virus (Paul et al., 

2006) so they are likely to represent a later acquisition in the lineage leading 

to WDSV and the WEHVs. 

We did not identify any epsilon-like ERVs in any of the 11 rodent species or 

two lagomorphs we screened. Rodents and lagomorphs are known to carry 

many endogenous and exogenous gammaretroviruses and appear to have a 

high vulnerability to retroviral infection (Stocking and Kozak, 2008, Baillie et 

al., 2004, McCarthy and McDonald, 2004) so it is surprising that their closest 

sequenced relatives have endogenous epsilon-like ERVs but they do not. One 

possible explanation for this is that one of the diverse gammaretroviruses 

infecting rodents offered a protective effect against epsilon-like retroviruses. 

The use of ERVs as restriction factors against exogenous pathogens is a known 

mechanism used by some hosts (Arnaud et al., 2007). Alternatively, epsilon-

like retroviral host range may depend on a combination of host restriction 

factors and viral accessory genes in a fashion similar to simian 

immunodeficiency viruses (SIVs). Finally, it is possible that rodents and 

lagomorphs lack a receptor which epsilon-like retroviruses require and which 

is present in primates and horses. The two bird species screened here also 

lacked epsilon-like ERVs. Birds have an unusual complement of ERVs 

compared to mammals, which again might have acted as a barrier to epsilon-

like retrovirus infection. It is also possible that there are epsilon-like ERVs in 

other bird species which were not analysed here. 

As fish still have active epsilonretroviruses and primate ancestors have clearly 

been susceptible to epsilon-like retroviruses in the past, it is not inconceivable 

that fish epsilonretroviruses could enter the human genome again. Further 

research is needed to establish if the lack of modern infections in mammals is 

due to a restriction factor or if mammals remain vulnerable to epsilon or 
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epsilon-like retroviruses. Any restriction factor identified may be of interest to 

the aquaculture industry in terms of its potential in the control of WDSV and 

WEHV. The degree to which all the identified PE insertions have degenerated 

and the lack of functional gag and env genes make it very improbable that 

these loci could generate an active epsilon-like retrovirus even by 

recombination.  

In conclusion, epsilon-like ERVs appear to be common to all primate genomes 

and are likely to be widespread amongst mammals, although they are absent 

in rodents and lagomorphs. Amniote epsilon-like ERVs may form a distinct 

group within the epsilon and epsilon-like retrovirus phylogeny and are most 

likely to be the result of diversification of a cross-species transmissions of 

viruses circulating 40 to 65 million years ago. Epsilon-like retroviruses appear 

to have continued to circulate since this time and have most recently invaded 

the genomes of fish but further research is needed to establish whether these 

viruses originated in fish or other hosts. 
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Chapter 8. General Discussion 

This study into the ERV content of the Euarchontoglires using a novel analysis 

pipeline has yielded several important results.  

The Exonerate pipeline described in Chapter 2 is clearly an appropriate tool 

for ERV characterisation and analysis. Numerous ERVs were identified in all 

genomes screened, including those which have been identified previously and 

many novel insertions. This approach allows ERVs to be identified quickly and 

characterised in some depth and methodologies for detecting other key 

features of ERVs which may be of interest have been successfully used. Using 

this pipeline, almost 200,000 ERV-like fragments have been identified. This 

represents one of the most detailed studies into the ERVs of primates and 

related species to date.  

Several themes became apparent when reviewing these results as a whole, 

which will be discussed in this chapter. 

 

8. 1. Vector Species and Cross-Species Transmissions 

One of the most notable properties of the ERVs identified here was the degree 

to which vector species appear to have been involved in the movement of 

retroviruses. The transmission of a retrovirus from one host to another via a 

third species has never been confirmed to occur in nature. However, it has 

been demonstrated via human intervention, as the two lineages of avian REV 

in ducks and chickens are closely related to ERVs found in Malagasy 

carnivores (Niewiadomska and Gifford, 2013). This transmission is thought to 

be the result of experimental infection with parasites cultured at a zoo where 

an infected exotic animal was present (Niewiadomska and Gifford, 2013). In 
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other cases, a vector species cannot be confirmed but is the most feasible 

explanation for transmission of a retrovirus. For example, the transmission of 

GALV to koalas must have occurred via at least one intermediate host and one 

of these hosts has now been potentially identified (Simmons et al., 2014).  

Here, a similar case was identified for the primate lentiviruses discussed in 

Chapter 5. The newly identified endogenous lentivirus in the bushbaby G. 

moholi is almost identical to the endogenous lentiviruses previously identified 

in lemurs, but these lemurs have not been in contact with G. moholi for at least 

50 million years. Unless the virus has remained almost unchanged throughout 

this time and yet not entered any of the 12 other prosimian primate species 

screened, or all copies in these species have been independently deleted, a 

vector species provides the only remaining explanation for this transmission. 

The nature of this vector species is not yet known, however, as is the case for 

many ERVs, rodents and bats are amongst the most likely candidates for this 

transmission. In the HERV-F like group, members of the HERV-H-RTVLH2 

and HERV-F subfamilies were identified in aye-ayes but in no other 

prosimians (Figure 46, Figure 47), despite the fact that aye-ayes are only found 

in Madagascar, where none of the other hosts are present, suggesting a similar 

vector-species transmission to the hypothesised event leading to pSIVgml and 

pSIVfdl. This may also be the case for the betaretroviral HERV-K(HML-2), as 

the aye-aye has recent HML-2 insertions transmitted from another 

geographically distant host, probably the baboon. Together, these results 

suggest that transmission of retroviruses across the Mozambique channel 

between Madagascar and the mainland may have been more common that was 

previously thought. As discussed in Chapter 5, waves of migration across this 

channel have occurred throughout history and aerial vectors such as bats, 

insects and birds still provide a link between Madagascar and mainland Africa. 

Madagascar is not the only region subject to this type of vector transmission 

events. Primate ERVs in the gammaretroviral HERV-I group showed host 

tracking but their rodent counterparts and those in reptiles, marsupials and 
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fish have a very scattered distribution both phylogenetically and 

geographically, indicative of sporadic cross-over events from another host. 

Birds are a likely candidate for a vector species here, since avian HERV-I-like 

ERVs are considerably more numerous and diverse (Figure 15) and birds often 

have a much wider geographic distribution than mammals. 

Cross species transmission events not involving an intermediate host have also 

occurred. One of the clearest examples discussed here is the transmission of 

GALV to gibbons (Chapter 6). Despite examining tissue samples from 

numerous gibbon species, veterinary records and the sequenced gibbon 

genome, there was no evidence that this virus is established in gibbon 

populations. Instead, it appears that this virus was transferred to a single 

gibbon, probably from a rodent vector, then to a limited population of other 

primates directly in contact with this gibbon. As the SEATO gibbons were 

regularly experimentally challenged with potential rodent and primate 

pathogens, a scenario similar to that described for REV, involving a 

contaminated experimental treatment, is possible. The initial GALV outbreak 

was widely reported when it occurred, with significant resources devoted to its 

identification and analysis. GALV is still commonly listed as a threat to 

gibbons today. This demonstrates the importance of analysis of potential 

vector species and reservoir hosts during retroviral outbreaks. 

 

8. 2. Host Range and Recombination 

Cross-species transmission events can only occur if the retrovirus can replicate 

in both hosts. Factors determining retroviral host range include its receptor, 

any restriction factors in the host and the lifestyle and geographic range of any 

susceptible hosts. If multiple retroviruses are able to enter the same type of 

cell, this provides an opportunity for recombination events, potentially 
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opening up a new host range for the virus by circumventing restrictions on 

viral entry and replication in the new host. 

The host range of different ERV groups is highly variable. For example, within 

the larger HERV-F-like group, the HERV-Fc1 like group was identified in 

seven hosts, all apes and new world monkeys, while the HERV-Fc2 group was 

identified in 18 hosts, including apes, old and new world monkeys, prosimians, 

tree shrews, lagomorphs, old and new world rodents and ferrets. The most 

dramatic examples of recombination events across multiple hosts were seen in 

the SERV-like group. The phylogeny shown in Figure 66 demonstrates this 

clearly, with closely related sequences identified here in many pairs of 

distantly related hosts. The reason why some retroviruses show a stronger 

tendency towards recombination and cross-species transmission than others is 

not well known. Interestingly, the SRVs, BaEV, REV and RD114 viruses in this 

group all share a receptor (Overbaugh et al., 2001, Koo et al., 1992), despite 

SRVs having a gammaretroviral env gene and REV, BaEV and RD114 a 

betaretroviral env gene (the env gene is responsible for receptor interaction). 

This potentially explains the high recombination frequency in this group as the 

result of gamma and betaretroviral activity within the same cells. The 

receptors for SERV, TvERV, SMRV and MusD, or ERVs we have identified in 

this group in lemurs, guinea pigs, rats and mice are not known but would be of 

interest in further analysis of this group in the light of this potential 

mechanism and the tendency for this group to swap genes and hosts so readily. 

 

8. 3. Potentially Active ERVs 

A number of ERVs were identified which may have the potential to produce 

active viral particles. Unexpectedly, the majority of these were found in guinea 

pigs (Chapter 4). As Figure 36 demonstrates, guinea pigs did not have an 

unusually high number of regions with recognisable gag, pol and env 
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fragments, although an above average number were detected for a genome 

only assembled to a scaffold level. However, where these regions were present 

they were more likely to contain intact ORFs than those in other hosts. 

Two loci were identified in guinea pigs in the REV-like group of non-

recombinant gammaretroviruses with full-length ORFs for gag, pol and env 

(Figure 55). These loci showed evidence of selection to maintain viral function, 

which suggests they entered the genome relatively recently. The pol genes of 

these loci clustered with approximately 70 other, less intact members of the 

same group in guinea pigs and with pol genes from ERVs in related new world 

rodents (Figure 54). 17 of the guinea pig loci but none of the loci in related 

rodents were estimated to be less than one million years old. This suggests a 

recent burst of activity of members of this group in guinea pig hosts.  

Another group of potentially intact ERVs was also identified in guinea pigs in 

the SERV-like group, with betaretroviral SRV/SERV-like gag and pol ORFs 

and gammaretroviral MLV-like env ORFs (section 4.6.2). 31 other loci were 

found in this group in guinea pigs, although these were less intact. Only guinea 

pigs had this particular pattern of recombination, with other recombinants in 

this family tending to have gag and pol genes more similar to SMRV and 

MusD.  

Guinea pigs are not currently known to have active endogenous retroviruses 

but little research has been carried out on this topic. However, guinea pigs are 

widespread as pets, food and laboratory subjects, so a thorough understanding 

of their ERVs is important. Guinea pig cells used in culture are known to 

release retrovirus-like particles (Dahlberg et al., 1980) and these may stem 

from one or more of these newly identified loci. It would be worthwhile to 

analyse these particles using updated methodology and to screen multiple 

guinea pigs or related hosts for these insertions to see if they are polymorphic, 

which would suggest that these viruses are still spreading through the guinea 

pig population and may pose a risk for cross-species transmission. 
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8. 4. Comparison of Genomes 

During this analysis it became apparent that even genomes which have been 

extensively studied in the past, for example the human genome, contain ERVs 

which are very poorly known. The epsilon-like retroviruses discussed in 

Chapter 7 provide the clearest example of this. Although there have been 

scattered reports of human ERVs clustering with “non-mammalian” 

retroviruses in the past (Tristem, 2000, Katzourakis and Tristem, 2005) , 

these retroviruses have never been discussed in any detail and have not been 

characterised in non-human primates. These ERVs are numerous, ubiquitous 

in primate genomes and provide important clues as to the evolutionary history 

of the epsilonretroviruses and of retroviruses in general.  

Another recurring theme was the presence of diverse and numerous ERVs in 

the genomes of primates which are usually not analysed in depth, specifically 

the new world monkeys and prosimians. The most noteworthy result of this 

project was probably from a prosimian host, with the identification of 

bushbabies, specifically G. moholi, as candidates for the original hosts of SIV 

in primates and therefore, indirectly, of HIV in humans (Chapter 5). pSIVmb 

is the oldest known lentivirus of a mainland African primate, estimated to have 

circulated two to five million years ago. As G. moholi has a range which 

overlaps with that of known SIV reservoirs, it is feasible that this was one of 

the earliest primate lentivirus hosts and was involved in the transmission of 

these viruses to the simian primates. Many other groups of prosimian ERVs 

were identified, including endogenous epsilon-like fragments (Chapter 7), 

recombinant SRV related ERVs in lemurs (Chapter 4) and a large HERV-W 

like group in bushbabies (Chapter 4). The ERV content of new world primates 

was more similar to that of old world primates than has previously been 

established, for example ERVs clustering with some of the HERV-K lineages 

were identified in new world primates for the first time. Several groups of 

HERVs could be traced back to an ancestor prior to the divergence of old and 
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new world primates. These ERV discoveries highlight the limitations of many 

ERV studies where only humans and other great apes are considered in 

searching for potentially conserved functions of ERVs or examining structural 

differences in genome architecture with respect to repetitive elements like 

ERVs.

 

8. 5. Relationship between ERVs and XRVs 

This study provides some insight into the relationship between ERVs and 

XRVs. While it may seem counterintuitive to include slowly evolving genomic 

“fossil” elements such as ERVS in the same phylogenetic analysis as very 

rapidly mutating XRVs there are a number of lines of reasoning that justify 

this. 

The basic mutation rate of HIV-1 is estimated at over 1 x 10-3 mutations per 

site per year (Jenkins et al., 2002) while the human mutation rate is estimated 

at 2.5 x 10-8
 mutations per site per year (Nachman and Crowell, 2000). This is 

a difference of over five orders of magnitude. Despite this, ERVs which 

integrated millions of years ago and modern XRVs maintain sufficient 

sequence similarity to be incorporated into the same phylogenetic analyses.  

There are several possible reasons for this. The first is selection, although 

XRVs evolve extremely quickly, they are still subject to evolutionary 

constraint. Viruses with mutations which inactivate their progeny will not be 

able to reproduce successfully, so clearly only certain mutations can be passed 

through the population. Evolutionary constraint is highly variable for different 

parts of the genome (Overbaugh and Bangham, 2001). Despite the high 

genomic plasticity of a typical retrovirus, the proportion of the genome 

required for the retrovirus to function is likely to be sufficient for at least part 

of an XRV to remain recognisable over periods of time consistent with the gaps 

between ERV endogenisation events.  
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Secondly, the mutation rate of XRVs is often considered to be that of HIV, as it 

is by far the most studied retrovirus. However, other XRVs change 

considerably more slowly, for example the receptor binding protein encoded 

by the env genes of FeLV strains isolated on different continents more 10 years 

apart has been shown to be 98% identical (Overbaugh and Bangham, 2001). 

Although this is still extremely fast by mammalian standards, given that a 

similarity level of 25% is not unusually in retroviral phylogenetics, this already 

allows almost 1000 years of evolution without the env gene becoming 

unrecognisable. Li et al. (1999) found traces of HTLV-I in mummies estimated 

at 1,500 years old with only a one to two percent sequence divergence from 

modern HTLV-I in an LTR / accessory gene fragment, suggesting an even 

lower evolutionary rate in this virus. As ancient exogenous retroviral 

sequences are unavailable, it is not possible to know how rapidly sequence 

evolution has really occurred in XRVs beyond very recent history. 

Finally, it is possible that switching between an endogenous and exogenous 

form has been more common in retrovirus evolution than is currently known. 

Recently integrated ERVs have been demonstrated to sometimes have the 

potential to become reactivated, either by back mutation or recombination, 

and resume an exogenous lifestyle. Young et al. (2012) demonstrated the 

emergence of a replication competent ecotropic MLV strain in immune-

deficient mice via recombination between a replication-deficient ERV and a 

replication-competent ERV unable to replicate in murine cells. Retroviruses 

undergoing an endogenous period would have a reduced substitution rate, so 

on becoming exogenous would have greater sequence similarity to ancient 

retroviruses than their contemporary XRV counterparts. However, the ability 

to become reactivated is highly dependent on the number of mutations 

acquired during the endogenous period, meaning that very ancient ERVs are 

extremely unlikely to be able to become active again. 
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8. 6. Defining an ERV Group 

This study provides some insight into the naming conventions of ERVs, which 

varies greatly in the literature. Currently, ERVs are often categorised based 

upon related XRVs, but the degree of relatedness is often not specified, for 

example Borysenko et al.’s (2008) “MLV-like” chicken ERV is quite distantly 

related to MLV (Figure 41) and was classified here as HERV-I-Like. Using host 

name to categorise ERVs is also common, for example Tristem et al. (1996) , 

Martin et al. (1999) and Gifford et al. (2005) defined large numbers of 

retroviruses based only on their host and genus, the majority of which have 

never been examined in further detail. If a large number of ERVs are identified 

in a single host they are usually given the name of the host and a number [e.g. 

Polavarapu et al. (2006a), Huda et al. (2008), Garcia-Etxebarria et al. (2010)]. 

MLVs are named as ecotropic, polytropic, modified polytropic or xenotropic 

according to the types of cells in which they can replicate (section 1.4.3.6). 

HERVs are traditionally named using the single letter code according to the 

amino acid specificity of the tRNA to which they bind, so, for example, HERV-

Ks bind to a lysine tRNA (Bannert and Kurth, 2006). Even newly discovered 

ERV groups are not named according to a consistent convention, for example 

prosimian endogenous lentiviruses are named as pSIV plus the initials of the 

common name of their host (e.g. pSIVgml in the grey mouse lemur) (Gifford et 

al., 2008), carnivore endogenous lentiviruses as either Mustelidae endogenous 

lentivirus (MELV) or endogenous lentivirus (ELV) plus the initials of the 

scientific name of their host (e.g. MELV/ELVmpf in Mustela putorius furo) 

(Han and Worobey, 2012b, Cui and Holmes, 2012), and the two Lagomorph 

endogenous lentiviruses as rabbit endogenous lentivirus type K (RELIK) and 

“hare RELIK” (Katzourakis et al., 2007, Keckesova et al., 2009). 

The levels of classification of ERVs are also ambiguous. At the broadest 

classification level, the majority of older studies and many modern studies use 

the Class I to Class III system described in section 1.4.1, although classification 
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according to genus is becoming more common. Some authors discuss 

ambiguities in the genus-level classification system, describing a continuum 

between the gammaretroviruses and epsilonretroviruses (Jern et al., 2005) 

and between the alpharetroviruses and betaretroviruses (Bolisetty et al., 2012). 

For more specific classifications, the definition of a an ERV “lineage” as all the 

products of a particular integration event (Gifford and Tristem, 2003) is 

probably the least ambiguous, however, as demonstrated here it can be 

extremely difficult or impossible to distinguish the products of a single 

integration event followed by retrotransposition from the products of multiple 

integration events. This lack of specificity can lead to ambiguity about the 

particular ERV being discussed. The same ERV may also be described on 

several occasions under a different naming convention. Phylogenetic analyses 

are often uninformative due to a lack of understanding of the diversity of 

known ERVs.  

Based on our results, we propose a provisional, modified ERV classification 

scheme, as outlined in Figure 81. Our results suggest that there is no evidence 

for ambiguity of ERVs on a genus level. For the alpharetroviruses and 

betaretroviruses, the distinction was clear in terms of host range, as 93% of 

alpharetrovirus-like fragments were avian, while 99% of betaretrovirus-like 

fragments were mammalian. Phylogenetically, the alpharetroviruses and 

betaretroviruses have been shown to form unambiguous, monophyletic groups 

[for example by Gifford et al. (2005) and Jern et al. (2005)]. In the publication 

which discusses these two groups as ambiguous (Bolisetty et al., 2012), no 

overlap between the groups is evident. Therefore, for the currently known 

ERVs, the alpha-beta distinction appears to be sufficient. The other two genera 

which have been referred to as ambiguous are the epsilonretroviruses and 

gammaretroviruses. However, we did not find any real overlap between these 

groups. The epsilonretroviruses defined in Chapter 7 were those which 

clustered unambiguously with the epsilonretroviruses when tested against a 

mixed epsilon and gamma dataset. Previous work [for example Jern et al. 

(2005) and Herniou et al. (1998)] has also identified these groups as distinct. 
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Given these results, the current genus level classifications appear to be 

adequate.  

Below the genus level, division of the gammaretroviruses and betaretroviruses 

into the broad groups discussed in Chapter 4 is sufficient, at least for pol gene 

based classification of the currently known mammalian and avian retroviruses, 

as it distinguishes between and yet accounts for 80% of the gammaretroviral 

pol gene sequences in the input dataset and 92% of the betaretroviruses. 76 of 

the 79 undefined gammaretroviral sequences are from reptiles, amphibians or 

fish and 11 of the 15 undefined betaretroviruses from marsupials, so hosts 

which have not been examined in detail are likely to yield further groups. 

However, all of the new gammaretroviruses and betaretroviruses identified in 

the Euarchontoglires fall securely into the groups described in Chapter 4 

(Figure 81).  

This classification system proposed here requires a comprehensive test dataset 

containing a single, well-defined ERV sequence for each known ERV “type”, 

with types based on the well-supported, monophyletic groups of ERVs within 

each genus. These types will be referred to provisionally as ERV supergroups. 

A newly identified ERV is assigned to an existing supergroup if it is more 

closely related to the type sequence of that group than to members of any other 

group and if it falls into the group in phylogenetic analysis, with strong branch 

support. If a newly identified ERV does not meet these criteria for any existing 

supergroup a new supergroup can be defined. A third level has been defined 

which is only appropriate for very large supergroups, such as the HERV-F-like 

group of gammaretroviruses and the HERV-K-like group of betaretroviruses, 

provisionally referred to as “subgroup” level classification (Figure 81). This is 

defined in the same way as a supergroup but using a test dataset containing 

more closely related sequences from within a single supergroup.  

The next level of classification which has been used in this study is that of a 

“cluster” of ERVs. This refers to monophyletic groups of ERVs from the same 

host, excluding those from other hosts, within a subgroup. These are 
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synonymous with the clusters defined in section 3.2. Some of the ERVs 

identified are the only member of their cluster, while others are members of 

very large groups (the largest is a cluster of 1374 IAP-like elements in the 

mouse genome) (Figure 81). 

Finally, ERVs can be defined individually by their position in the genome, as a 

single locus (Figure 81). This is important and differs from the classifications 

commonly used in the literature, which often define a group of ERVs but not 

the specific locus being examined. Particularly with the advent of next 

generation sequencing techniques, the genomic location of ERVs is important 

as other genomic features, for example epigenetic modifications, 

transcriptome data and SNP data, are defined by in this way and this 

consistency allows ERVs analysis to be integrated into other genomic studies.  

 

Figure 81: The classification scheme proposed for newly identified ERVs, using the 
16 HERV-Fc1 like loci as an example. 

 

This classification scheme is not complete, as many hosts have not been 

screened comprehensively for ERVs so many new supergroups, subgroups and 

possibly genera are likely to become apparent in the future. It is also not ideal, 

as it is still dependent on the quality and size of the test dataset, allowing the 

user to establish the level of similarity they consider to be acceptable for ERVs 

to be classified into a single group. It relies upon the existing names of XRVs 
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and ERVs, despite their inconsistencies. An ideal classification scheme would 

involve a publicly available, curated, well-designed group of test sequences 

derived from as many genomes as possible and named using a consistent 

convention, however this is not currently realistic. 

 

8. 7. Predicting ERV Diversity 

Completing this large scale study into the ERV content of various mammalian 

genomes allows us to examine the evolutionary forces which come into play in 

determining the outcome of the integration of a retrovirus into the germline 

and to test various hypotheses about the factors affecting the success of an 

ERV group. 

The two ERV groups whose subgroups were most comprehensively 

characterised in this study were the eight HERV-K-like and nine HERV-F-like 

supergroups. All of these subgroups are present in consistent numbers in the 

genomes of humans, chimpanzees, bonobos and gorillas, have a reliable 

estimated integration date range in these hosts and are thought to have 

entered these genomes before they diverged from their last common ancestor. 

Therefore, these 17 subgroups in these four hosts were used as a test dataset 

for models predicting ERV diversity. 

Firstly, these results show no particular relationship between ERV count and 

time. The mean ERV count in each subgroup per host in the test dataset and 

the mean estimated age of each subgroup (Figure 82) provide evidence for 

this. Pearson’s correlation coefficient was calculated for this dataset and 

showed no significant relationship (r2 = 0.183, p = 0.497). 
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Figure 82: Scatterplot showing the relationship between the estimated integration 
date of a subgroup of ERVs and the number of ERVs in the subgroup, based on the 
HERV-F-Like and HERV-K-Like subgroups in chimpanzees, bonobos, humans and 
gorillas.  

 

This is consistent with the model described by Katzourakis et al. (2005), who 

demonstrated that even a selectively neutral ERV integration event can have 

an unpredictable fate in its host genome. In this model, the fate of a neutral 

ERV depends on three factors (Katzourakis et al., 2005). These are integration 

rate, recombination rate and rate of inactivating mutations. By incorporating 

realistic values into this model, the fate of a novel ERV integration over time 

can be predicted. The integration rate and rate of recombinational deletion 

have been estimated previously as 3.8 x 10-4
 integrations per host per 

generation (Belshaw et al., 2005a) and 1 x 10-5 recombinational deletions per 

host per generation (Belshaw et al., 2007) respectively. The probability of an 

inactivating mutation per ERV insertion can be estimated as the human 

mutation rate of 2.5 x 10-8 (Nachman and Crowell, 2000), multiplied by the 

proportion of all mutations which are non-synonymous (76.04%) and the 

number of bases in the average ERV sequence (8,000) (Bannert et al., 2010). 

This gives an estimated inactivating mutation rate of 1.52 x 10-4 mutations per 

ERV per generation. 
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These values were incorporated into the stochastic model proposed by 

Katzourakis et al. (2005), implemented in R (R Core Team, 2014) over 

100,000 generations (equivalent to two million years with a generation time of 

20 years). The results of repeating this simulation 10 times are shown in 

Figure 83. All of these runs result in exponential growth. The early stages of 

ERV integration under this model demonstrate a highly variable number of 

active and inactive ERVs per genome, so for novel integrations this model may 

be realistic. However, with these parameter values it was not possible to 

predict ERV families of the age and size found in the test dataset and the 

predicted rate at which the ERV would spread through the genome would not 

be sustainable. 

In order to account for dynamics of the older ERV lineages, another parameter 

needs to be incorporated. Therefore, a proportion of integration events 

eliminated by restriction factors was added, as discussed but not implemented 

by Katzourakis et al. (2005). Active integration events can be assumed to be 

considerably more deleterious than inactive integration events, so a 10-fold 

difference in probability of restriction factor elimination was incorporated. 

Figure 84 shows the impact of adding a probability of restriction factor 

elimination per generation ranging from 0.001 to 1. This model generates 

considerably more realistic dynamics. The test dataset has a median ERV 

count for a single subfamily of 56 insertions and a range from one to 882 

copies. All but the highest of these counts are consistent with some value for 

the probability of elimination from 0.005 to 0.04 and 56 insertions is most 

similar to the prediction with a value of 0.02, meaning each active ERV has a 

2% probability of restriction factor removal per generation and each inactive 

ERV a 0.2% probability (Figure 84). This model is much more consistent with 

the data generated in our study and although it is oversimplified, provides 

some insight into the many factors and high degree of randomness affecting 

ERV count at any particular time. The model predicts a large amount of 

variation in ERV count over time, particularly in the number of inactive ERVs 

(Figure 84). This mechanism only takes into account reinfection as a 
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proliferation mechanism, however the most successful groups of ERVs are 

thought to replicate primarily through retrotransposition in cis. The few very 

large groups of ERVs found in our study, such as the HERV-W subgroup with 

a median of 584.5 insertions per genome, may be better explained by a model 

incorporating this factor. 

 

Figure 83: Ten example runs of Katzourakis et al.’s stochastic model of ERV 
integration rate showing the estimated number of active integrated ERVs (blue) 
and inactive integrated ERVs (red) over time. 
The x-axis denotes time in millions of years and the y-axis predicted ERV count.  
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Figure 84: Ten example runs of Katzourakis et al.’s stochastic model of ERV 
integration rate with varying values of parameter s (top-left of each graph) showing 
the estimated number of active integrated ERVs (blue) and inactive integrated ERVs 
(red) over time. 
The x-axis denotes time in millions of years and the y-axis predicted ERV count.  

Besides these evolutionary factors, other factors have been proposed to affect 

the diversity of ERVs in the genome, in particular life history traits of the host. 

Katzourakis et al. (2014) found that host body size explains 37% of variance in 

ERV integration rate in different hosts and 68% of variance in ERV integration 

rate. To investigate this relationship, the ERV counts per host identified here 

were compared to a dataset of 22 life history traits from PanTHERIA (Jones et 

al., 2009). All traits with data available for at least 14 of the 28 species 

Euarchontoglires species analysed (no life history data was available for 

hamster or Chinese tree shrew) were compared to the number of gag, pol and 



Chapter 8: General Discussion 
 
 

304 

 

env fragments from gamma, beta and spumaviruses, the total number of gag, 

pol and env fragments and the total number of ERV regions identified in each 

host using Spearman’s rank correlation coefficient.  

Several strong positive and negative correlations were identified (Table 32). 

Most notably, the number of spumavirus-like pol gene fragments correlated 

strongly with 13 life history traits. Almost all retroviral fragment counts 

correlated with inter-birth interval and home range size. However, although 

these results appear significant, there are several confounding factors.  

In particular, our dataset is not a random selection of hosts, instead almost all 

hosts are either primates or rodents. As we have demonstrated, primates and 

rodents have very different retroviral profiles. Primates and rodents also have 

very different life histories, in that primates tend to be larger, live longer, 

mature and undergo life events later, give birth to fewer offspring, disperse 

over larger areas and live in larger groups. These differences are somewhat 

accounted for by the distinction between K-selected organisms and r-selected 

organisms, a common concept in ecology (Pianka, 1970). Briefly, K-selected 

organisms live in populations close to the carrying capacity of their 

environment and produce small numbers of large offspring, maximising the 

probability the offspring will survive (Pianka, 1970). R-selected organisms live 

close to their maximum reproductive capacity and produce many, smaller 

offspring, of which relatively few will reach maturity (Pianka, 1970). Primates 

are largely K-selected and rodents largely r-selected (Pianka, 1970). This leads 

to a strong correlation between the traits which are consistent with these 

lifestyles and strong relationships between K-selected traits, primates and 

primate retroviruses and r-selected traits, rodents and rodent retroviruses. 

These correlations are therefore not necessarily biologically meaningful.  

A second confounding factor is the phylogenetic relatedness of the host 

species, meaning presence of a particular trait in multiple hosts is not 

necessarily the result of independent acquisition events. For example, all great 

apes are large, but it is unlikely that each great ape species independently 

evolved the trait of being large, instead, all great apes are descendants of a 
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large common ancestor. This effect also confounds retrovirus count, as some 

retroviral acquisition events will have occurred in a common ancestor while 

others have occurred independently. 

To attempt to account for these factors, the analysis was repeated with 

primates excluded. Within the primates there is also a gradient in the degree of 

K-selection from the prosimians to the great apes, concurrent with the 

variation in ERV profile. This is less apparent within the rodents and 

lagomorphs, so these were kept in the dataset. After making this correction, 

considerably fewer strongly correlated traits were observed, with 8 strong 

correlations identified (compared to 39 with primates included) (Table 33). 

These eight values had a mean p-value of 0.0181. As 422 comparisons were 

made, approximately eight significant correlations (422 * 0.0181) would be 

expected by chance at this p-value level, so these are unlikely to be meaningful.  

These results contrast with those of Katzourakis et al. (2014), who used a more 

complex model based on multiple regression, taking into account phylogeny. 

However, given the negative result of this preliminary study, implementation 

of a more complex model is unlikely to yield more significant results. The 

limited power of a small dataset of highly correlated traits in a group of highly 

related hosts may explain the correlation between body size and ERV count 

identified by Katzourakis et al. 
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Table 32: Spearman’s rank correlation coefficient for the relationship between 
various life history traits and number of ERV fragments per host. 
Correlations greater than or equal to 0.5 are highlighted in pink, correlations less 
than or equal to -0.5 are shown in blue. Coefficients with a p-value greater than 0.05 
have been replaced with zero. Columns and rows with no strong positive or negative 
correlations have been excluded. 

 
γ gag γ pol γ env β gag β env 

Spuma 
gag 

Spuma 
pol 

Total 
gag 

Total 
pol 

Total 
regions 

Activity cycle 0.492 0.000 0.000 0.000 0.000 0.659 0.600 0.461 0.000 0.000 

Adult body 
mass 0.418 0.423 0.000 0.000 0.000 0.493 0.698 0.000 0.000 0.000 

Adult body 
length 0.000 0.000 0.000 0.000 0.000 0.642 0.769 0.000 0.000 0.000 

Age at first 
litter 0.000 0.564 0.000 0.000 0.000 0.000 0.804 0.000 0.000 0.000 

Gestation 
Length 0.513 0.523 0.462 0.000 0.000 0.428 0.722 0.000 0.000 0.000 

Home range 
size 0.611 0.576 0.611 0.000 0.000 0.589 0.757 0.544 0.558 0.538 

Inter birth 
interval 0.642 0.696 0.652 0.529 0.620 0.654 0.836 0.620 0.713 0.681 

OS per female 0.000 0.000 0.000 0.000 0.000 0.000 -0.553 0.000 0.000 0.000 

Max adult age 0.441 0.000 0.000 0.000 0.000 0.000 0.674 0.000 0.000 0.000 

Neonate body 
mass 0.409 0.445 0.000 0.000 0.000 0.432 0.668 0.000 0.000 0.000 

Population 
density 0.000 0.000 0.000 0.000 0.000 0.000 -0.556 0.000 0.000 0.000 

Age sexual 
maturity 0.442 0.000 0.000 0.000 0.000 0.000 0.668 0.000 0.000 0.000 

Social group 
size 0.599 0.000 0.521 0.000 0.000 0.679 0.668 0.000 0.000 0.000 

Weaning age 0.446 0.000 0.000 0.000 0.000 0.000 0.696 0.000 0.000 0.000 

Weaning body 
mass 0.000 0.000 0.000 0.000 0.000 0.000 0.745 0.000 0.000 0.000 

 
Table 33: Spearman’s rank correlation coefficient for the relationship between 
various life history traits and number of ERV fragments per host, excluding 
primates. 
Correlations greater than or equal to 0.5 are highlighted in pink, correlations less 
than or equal to -0.5 are shown in blue. Coefficients with a p-value greater than 0.05 
have been replaced with zero. Columns and rows with no strong positive or negative 
correlations have been excluded. 

 
β pol β env 

Spuma 
gag 

Spuma 
pol 

Total 
gag 

Total 
pol 

Adult head body length 0.000 -0.750 0.000 0.000 0.000 0.000 

Gestation Length -0.624 0.000 0.000 0.000 0.000 0.000 

Population density 0.000 0.000 0.894 0.733 0.783 0.783 

Age sexual maturity -0.691 0.000 0.000 0.000 0.000 0.000 

Weaning age -0.695 0.000 0.000 0.000 0.000 0.000 
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8. 8. Future Work 

Given the volume of data produced by this study, detailed analysis of every 

ERV fragment identified was unrealistic. Therefore, many results which 

warrant further study were identified. Several improvements and expansions 

of this study would also be worthwhile in the future. 

In terms of further investigation of the existing results, several hosts had 

unusual ERV complements which warrant further study. In particular, guinea 

pigs contained several surprising ERVs, present in very large numbers, and 

several potentially intact ERVs, as discussed in section 8. 3. A laboratory study 

is needed to characterise these in depth. If these integrations are modern, they 

may be polymorphic between populations of guinea pigs. To test this 

hypothesis a number of samples from guinea pigs from a wide geographic area 

would be required, plus a samples from a second group of rodents, preferably 

new world rodents, as a control. The PCR based screening approach described 

for GALV in Chapter 6, using degenerate gammaretroviral primers, may be 

sufficient to identify these retroviruses, or a set of specific primers may be 

needed. It would also be of interest to establish if the retroviral particles 

released by guinea pig cells in culture originate from these loci and whether 

these particles are infectious. 

For several of the hosts screened here, the currently available genome builds 

were insufficient for in depth ERV analysis. In particular, tarsiers and aye-ayes 

had unusual ERV complements which could not be characterised in depth 

because of the very fragmented quality of the currently available genome 

sequences. As more data become available it would be worthwhile to rescreen 

these species and look for intact retroviruses, LTR sequences and 

recombination events.  

In terms of the endogenous lentiviruses and GALV, screening of more host 

species would be the most productive further study. As of yet, no rodent with a 
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range overlapping with gibbons has been identified with a virus close enough 

to GALV to be the source of this outbreak. The only way to identify this virus 

would be to screen more hosts. For lentiviruses, it is unlikely that G. moholi is 

unique, instead other bushbabies not screened here may harbour this 

lentivirus. Further characterisation of this lentivirus would also be beneficial, 

as only a fairly short fragment could be identified here. A full length sequence 

would provide considerably more information about the origin and age of this 

ERV. It is possible that this lentivirus is also endogenous in whichever vector 

host transmitted it from the mainland to Madagascar (or vice versa), so 

screening the species which are known to have passed between these regions 

during an appropriate time period would be ideal (although may not be 

feasible for species which are now extinct). 

A simple, logical extension to our study would be to screen more genomes for 

ERVs. Currently, Ensembl lists 85 available vertebrate full genome sequences. 

Several of these are of particular interest. For our epsilonretrovirus study, 

screening fish, reptiles and amphibians would be worthwhile and may help 

establish the origin of the mammalian epsilonretrovirus-like sequences. 

Screening marine mammals would also be interesting in detecting the link 

between epsilonretroviruses currently detected in fish and land mammals. For 

the GALV study, marsupials are of particular interest due to the presence of 

the GALV-like KoRV ERV in koalas. The possum sequence in the SRV-like 

group and echidna sequence in the REV-like group also suggest that the 

marsupial ERV complement may be worth investigating further. However, as 

our study has demonstrated, the ERV content of vertebrate genomes is often 

surprising, so screening any available genome would be worthwhile. 

Alongside these specific examples, some recent advances in methodology 

could be applied to enhance the results. The major drawback of the 

methodology used in this study is that it is limited by the currently available 

data, meaning only ERVs with a reasonable degree of similarity to a known 

retrovirus can be identified. A de novo approach to ERV detection would 
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overcome this limitation but would be difficult to implement given the 

degraded nature of many ERVs. A supervised machine learning approach may 

overcome this obstacle to some extent. This would involve providing a training 

dataset which allows the learning algorithm to identify the link between the 

input dataset and the desired output. A simulated ERV dataset, containing 

realistic but hypothetical ERV sequences, would allow such an algorithm to be 

trained. However, such an approach would be considerably more 

computationally challenging than the approach described here, and may have 

little impact on the quality of the results. 

Locus-by-locus analysis proved to be a powerful technique in identifying 

ancient ERVs in this study and this method could be applied across many 

more loci. Ideally, for each locus in a particular host the orthologues in all 

other sequenced genomes could be identified, allowing the exact spread of the 

virus through the genome to be traced. This approach requires high quality 

whole genome alignments and a large amount of computational power, 

however this is becoming more and more feasible given the advent of modern 

sequencing techniques and the availability of high performance parallel 

computing facilities. Whole genome sequencing of multiple individuals of the 

same species is also becoming common, with data already available for 2577 

humans via the 1000 genomes project (2010) and for at least 10 chimpanzees 

(Leffler et al., 2013) and 17 gorillas (McManus et al., 2014). Even on a small 

scale, locus-by-locus analysis within a specific group, for example within the 

widely studied HERV-K(HML-2) group, within these datasets could answer 

many of the important questions about their evolution. Shin et al. (2013) 

discuss 29 human-specific HERV-K(HML-2) loci and identify these as a source 

of genetic variation between humans and chimpanzees. An approach similar to 

our locus-by-locus analysis of endogenous epsilonretroviruses (Chapter 7) but 

using multiple genomes from the same species would help clarify this 

relationship. 
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Tools developed for high-throughput genomics may allow further insights 

from our ERV dataset. For example, as longer reads become available from 

next generation sequencing technologies, the development of alignment and 

phylogenetic tools for very large numbers of longer sequences is becoming 

more popular (Warnow, 2013). Therefore, generation of accurate phylogenetic 

trees representing a whole genus of retroviruses is becoming more feasible. 

This would remove the need for the clustering stage of our analysis, which is 

computationally expensive and involves loss of sequence information. It would 

also allow large numbers of ERVs from multiple hosts to be directly compared. 

Finally, next generation sequencing datasets have an enormous amount of 

potential in the analysis of ERVs. As we now have considerable information 

about the ERV content of many genomes, including the positions in the 

genome at which the ERVs are found, the next step would be to compare this 

data to that about other genomic features. For example, the DNA methylation 

level and transcription level of ERVs is of interest in understanding their 

expression, and MEDip-seq and RNAseq datasets are already available for at 

least the human and mouse genomes. Comparison of cases and controls for 

disease phenotypes, especially those thought to be associated with 

retroviruses, such as schizophrenia, bipolar disorder and MS, in terms of ERV 

transcription or methylation would be worthwhile and would provide more 

definitive information about the link between these diseases and ERV 

expression. As more and more data becomes available, comprehensive 

understanding of the ERV content of all hosts and the effect of ERVs on host 

phenotype should become realistic. 
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8. 9.  Conclusions 

In conclusion, the pipeline developed during this project provides the means 

to identify a very large amount of ERV data. Using this pipeline, many of the 

evolutionary relationships between ERVs in the Euarchontoglires have been 

elucidated, including those which have been controversial in the past. 

Previously neglected host species have been demonstrated to harbour a wide 

range of ERVs, providing information about viral and host evolution. Rodents 

and other non-primate hosts have been shown to play a major role in shaping 

the primate genome through their ability to transfer retroviruses between 

hosts. 
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Chapter 9. Appendices 

Please note: All Appendices are provided on the attached USB flash drive. 

Appendix A. Prior publications 

A.1 Characterisation of retroviruses in the horse genome and 

their transcriptional activity via transcriptome sequencing. 

Brown K, Moreton J, Malla S, Aboobaker AA, Emes RD, Tarlinton RE. 2012. 

Characterisation of retroviruses in the horse genome and their transcriptional 

activity via transcriptome sequencing. Virology 433(1):55-63. 

 

A.2 Characterisation of a group of endogenous 

gammaretroviruses in the canine genome. 

Tarlinton RE, Barfoot HKR, Allen CE, Brown K, Gifford RJ, Emes RD. 2013. 

Characterisation of a group of endogenous gammaretroviruses in the canine 

genome. The Veterinary Journal 196(1):28-33. 
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Appendix B. Supplementary Tables 

B.1 Figure_sequences.xlsx 

The names and accession numbers, Repbase IDs or genome positions (as 

genomebuild_chromosome_start_end_strand) of the previously known 

retrovirus sequences used to generate the phylogenetic trees shown in the 

figures in Chapter 1. 

B.2 Full_ERV_Nucleotide_Database.xlsx  

The full unparsed untranslated dataset of 4124 retrovirus sequences, including 

name, accession number, ID (Genbank Accession, Repbase ID or chromosome 

position), gene, genus, sequence and host. Unique names (column H) are used 

in subsequent tables to allow unambiguous identification of these sequences. 

Short names are the names used in the phylogenetic analyses in Chapter 4 and 

Chapter 6. Sequences in these phylogenies which were not in the original input 

dataset are provided in the Sheet "Additional Tree Sequences". 

B.3 Refseq_Retrovirus_Sequences.xlsx 

The retrovirus sequences downloaded from RefSeq to test the Exonerate input 

dataset. 

B.4 GROUPED_PREVKNOWN_groups.xlsx 

The group in the GROUPED_PREVKNOWN dataset to which each sequence 

in the PARSED_UT_PREVKNOWN dataset was assigned.  

B.5 Test_datasets.xlsx 

The abbreviated name (displayed in phylogenetic trees) and full unique name 

(from Appendix B.2) of the sequences included in the basic phylogenetic test 
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datasets for betaretrovirus gag, betaretrovirus pol, betaretrovirus env, 

gammaretrovirus gag, gammaretrovirus pol, gammaretrovirus env, 

spumavirus gag and spumavirus pol. Each sheet contains details of one 

dataset. Sequences not in the FULL_UT_PREVKNOWN dataset (usually 

sequences described after this dataset was created) are highlighted in grey. 

B.6 Euarchontoglires_accessions.xlsx 

Accession numbers for 15 nuclear genes for the screened Euarchontoglires 

used to build the host phylogeny. 

B.7 Output_db.xls 

Details of each sequence in the RAW_EXO_OUT, PARSED_EXO_OUT, 

CLU_EXO_OUT and GROUPED_EXO datasets, including ID, chromosome or 

scaffold name, start and end positions within that chromosome/scaffold, 

fragment length, strand, whether the sequence passed the quality control 

check to be incorporated into the PARSED_EXO_OUT dataset, the 

representative in CLU_EXO_OUT for each sequence, the most similar 

previously known sequence in PARSED_UT_PREVKNOWN to the sequence 

and the group the representative sequence from CLU_EXO_OUT was placed 

into in the GROUPED_EXO dataset. 

B.8 ERV_Regions.xlsx 

Details of the genome regions identified with fragments of one or more ERV 

genes, including the IDs of the ERV fragments (as listed in Appendix B.7), the 

genes identified, the number of different genes identified, chromosome / 

scaffold and start and end positions of the ERV region, region length and 

strand.  
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B.9 Lemur_Tree.xlsx 

Sequences included in the lentiviral phylogeny. IDs are Genbank accessions 

unless otherwise specified. 

 

B.10 Epsilonretrovirus_Input.xlsx 

Database of known ERVs. Sequences highlighted in pink were included as 

gammaretroviruses and sequences highlighted in green as epsilonretroviruses 

in phylogenetic analysis. Where genome positions are given they are in format 

Genome_chr[chromosome number]_[start position]_[end position], Repbase 

IDs 6 are given as Repbase_[Repbase_ID]_[start position]_[end position], 

otherwise Genbank accessions are provided. Where amino acid sequences 

were required sequences were translated in each reading frame and the 

reading frame with the least stop codons was used, sequences with >5 stop 

codons were excluded. 

B.11 Epsilonretrovirus_loci.xlsx 

Details of the 87 PE loci identified here including locus ID, details of any 

previous description of the locus, family, and position in the genome of each 

host. 

B.12 Epsilonretrovirus_positions.xlsx 

PE genome details in all hosts for the 11 loci with LTRs, including estimated 

ages, positions in the genome and the actual and relative start and end 

positions of the identified LTRs, pol and env genes. 
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Appendix C. Fasta files 

C.1 FULL_PREVKNOWN.fas 

The full unparsed untranslated dataset of 4124 previously known retrovirus 

sequences, as described in Appendix B.1. 

C.2 PARSED_UT_PREVKNOWN.fas 

The parsed, untranslated version of the database of previously known 

retroviruses, consisting of 1590 nucleotide sequences, as described in 

Appendix B.1. 

C.3 PARSED_T_PREVKNOWN.fas 

The parsed, translated version of the database of previously known 

retroviruses used as an input to the Exonerate pipeline, consisting of 1361 

amino acid sequences, as described in Appendix B.1. 

C.4 RAW_EXO_OUT.fas 

The raw output from the Exonerate algorithm for all host genomes, containing 

190,196 candidate ERV fragments. Details of these sequences, including their 

chromosome locations, are provided in Appendix B.7. 

C.5 PARSED_EXO_OUT.fas 

The parsed output from the Exonerate algorithm for all host genomes, 

containing only the 169,424 sequences which passed the quality control step 

described in section 2.2.1. Sequence names are prefixed as described in the 

“prefix” column of Table 7. Details of these sequences, including their 

chromosome locations, are provided in Appendix B.7. 
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C.6 CLU_EXO_OUT.fas 

The clustered output from the Exonerate algorithm for all host genomes, 

consisting of 47,896 sequences with consensus sequences representing highly 

similar sequences from the same host. Sequence names are prefixed as 

described in the “prefix” column of Table 7. The sequences which make up 

each consensus are listed in Appendix B.7. 
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Appendix D. Python and R scripts 

D.1 make_chromosomes.py 

Python script to generate artificial chromosomes from unassembled contigs or 

scaffolds.  

Runs as: python make_chromosomes.py genome_fasta n_chromosomes 

prefix 

Genome_fasta: path to fasta file containing the contigs or scaffolds 

n_chromosomes: number of artificial chromosomes required 

prefix: prefix for the chromosome files 

Input 

Genome fasta file 

Output 

“chroms” directory containing the chromosome fasta files 

“lists” directory containing the positions of each scaffold or contig in each 

chromosome. 

D.2 reciprocal_blast.py 

Python script to perform a BLASTN comparison between each pair of 

sequences in a multiple FASTA file. This script requires blastall (Altschul et al., 

1990) to run. 

Runs as: python reciprocal_blast.py fasta 

fasta: Multiple sequence FASTA file of candidate ERV fragments 
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Input 

Multiple FASTA file 

Output 

Directory containing a BLAST output file for each input sequence. 

D.3 distance.R 

R script to cluster sequences based on a distance matrix.  

Runs as: distance.R in the same directory as the input directories 

Input 

Directory “fastas” of FASTA files and directory “matrices” of distance matrices 

for these FASTA files. 

Output 

Directory of FASTA files containing all the sequences in each cluster. 

 

D.4 make_cons.py 

Python script for generating a consensus sequence for each file in a directory 

of aligned input FASTA files. The FASTA file must have each sequence on a 

single line. This code requires EMBOSS (Rice et al., 2000) to run. 

Runs as: python make_cons.py alignment_dir 

Alignment_dir: the directory containing the alignments 

Input 

A directory of aligned FASTA files. 
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Output 

A directory, “consensus”, of consensus sequences for these alignments. 

D.5 classify_sets.py 

Python script generating lists of regions of chromosomes containing at least 2 

different genes no more than 5,000 bp apart. 

Runs as: python classify_sets.py dir 

dir: directory of chromosome maps 

Input 

Chromosome maps sorted by start position, listing the ID, gene, start position, 

end position and strand of each ERV fragment in PARSED_EXO. 

Output 

Directory for each chromosome containing lists of fragments from different 

genes found within 5,000 bp of each other and a list of fragments not within 

5,000 bp of another fragment. 
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Appendix E. Documents concerning gibbon transportation 

E.1 1974BANGKO17800.pdf 

Correspondence between the American Embassy in Bangkok and the US 

Secretary of State entitled SEATO: ALLEGED SMUGGLING OF GIBBONS, 

dated November 1974. 

 

E.2 1975BANGKO15111_b.pdf 

Correspondence between the American Embassy in Bangkok and the US 

Secretary of State entitled ENFORCEMENT OF U.S. WILDLIFE LAWS, dated 

July 1975. 

 

E.3 1974BANGKO19028_b.pdf 

Correspondence between the American Embassy in Bangkok and the US 

Secretary of State entitled ENFORCEMENT OF WILDLIFE LAWS, dated 

December 1974. 

 

E.4 1974STATE244644_b.pdf 

Correspondence between the American Embassy in Bangkok, the American 

Embassy in Taipei and the US Secretary of State entitled ALLEGED 

SMUGGLING OF MONKEYS, dated November 1974. 
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E.5 1974TAIPEI06749_b.pdf 

Correspondence between the American Embassy in Bangkok and the US 

Secretary of State entitled ALLEGED SMUGGLING OF MONKEYS, dated 

November 1974. 

 

E.6 1974STATE260770_b.pdf 

Correspondence between the American Consulate in Melbourne and the US 

Secretary of State entitled ENFORCEMENT OF WILDLIFE LAWS - 

GIBBONS, dated November 1974. 

 

E.7 1974BANGKO17734_b.pdf 

Correspondence between the American Embassy in Bangkok, the American 

Embassy in Taipei and the US Secretary of State entitled ALLEGED 

SMUGGLING OF GIBBONS, dated November 1974. 

 

E.8 1974STATE260768_b.pdf 

Correspondence between the American Embassy in Bangkok and the US 

Secretary of State entitled ENFORCEMENT OF WILDLIFE LAWS - 

GIBBONS, dated November 1974. 
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