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Abstract 

Mathematics is an important part of everyday adult life and 

requires skilled use of a variety of cognitive resources. The aim of this 

thesis was to explore the use of working memory in adult mathematics 

performance and particularly the role of visuo-spatial working memory.  

In the first study, differences in working memory capacity between 

skilled adult mathematicians and those who have less expertise in 

mathematics were investigated. This involved the use of working 

memory span tasks that included a novel processing element that was 

as neutral as possible with regard to the verbal and visuo-spatial 

storage elements. The results of this study included the novel finding 

that skilled adult mathematicians have a superior ability to store visuo-

spatial information within working memory whilst concurrent processing 

is taking place. 

In the second study, measures of basic temporary visuo-spatial 

storage and endogenous spatial attention were used to discover 

whether these abilities drive the differences in visuo-spatial working 

memory capacity between skilled mathematicians and non-

mathematicians found in Study 1. Results included the novel finding 

that capacity differences are not explained by basic temporary storage 

or endogenous spatial attention.  

The relationships of visuo-spatial item memory and order memory 

with adult mathematics were then explored in Study 3. Results showed 

the ability to order visuo-spatial information, rather than memory for 
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whether a visuo-spatial item is simply present, seems to be related to 

adult mathematics achievement. 

Working memory capacity differences were again investigated in 

Study 4, in which the processing elements within the span tasks were of 

a more traditional verbal and visuo-spatial nature. Differences between 

mathematicians and non-mathematicians for general visuo-spatial 

ability were also examined to see whether this ability drives the 

relationship between visuo-spatial working memory capacity and adult 

mathematics performance. Contrary to the results of Study 1, 

mathematicians did not have superior working memory capacity to non-

mathematicians in any combination of verbal and visuo-spatial storage 

and processing. Mathematicians therefore only seem to have superior 

visuo-spatial working memory capacity when the executive resources 

used during processing are comparatively low, as in Study 1. Adult 

mathematicians were also found to have superior general visuo-spatial 

ability to non-mathematicians, but this did not explain observed working 

memory capacity differences. 

Finally, Study 5 explored the relative roles of the visuo-spatial 

sketchpad and central executive components of visuo-spatial working 

memory when adults solve arithmetic using different strategies. Whilst 

both the central executive and visuo-spatial sketchpad are used in adult 

arithmetic, the former was found to be used to a greater extent and 

particularly when counting was used to solve problems. 
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Chapter 1: Introduction      

1.1 General Introduction 

Mathematics is an important part of everyday adult life. Its use 

ranges from basic arithmetic, such as calculating change in a shop, 

through to the more complex mathematics involved in balancing the 

household budget and assessing different financial products, and the 

advanced mathematics involved in, for example, accountancy, 

engineering and physics. Geary (2004) highlighted that mathematics 

achievement has been shown to affect employability and earning levels 

over and above the effects of literacy and general intelligence. 

However, it is estimated that around a quarter of UK adults have poor 

mathematics skills (Department for Business, Innovation & Skills, 2011), 

equating to over 8 million adults with mathematics skills below those 

expected of children aged between 9 and 11 years of age. Whilst many 

different factors may contribute to an adult’s mathematics achievement, 

this thesis will examine the cognitive processes involved in mathematics 

and particularly the role of visuo-spatial working memory.  

Any theoretical model attempting to explain the processes 

involved in mathematical cognition needs to be able to accommodate 

the initial sensing and encoding of information from a variety of sources, 

the retrieval of previously stored number facts, the selection and 

execution of available procedures for solving a problem, the combining 

of information, the temporary storage of interim calculations for later use 

and the output of answers. This chapter will firstly consider three 

existing models of mathematical cognition (section 1.2) and show that 

they are inadequate for explaining the complex cognitive processes 

involved in performing mathematics, particularly due to the absence 

within them of any role for working memory. Section 1.3 will then 

consider four prominent models of working memory. Section 1.4 will 

introduce the literature surrounding mathematics and working memory 

in both adults and children. Finally, section 1.5 outlines the aims and 
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structure of this thesis and includes an introduction to the methods and 

analyses used throughout the following chapters. 

1.2 Models of Mathematical Cognition 

Several models of mathematical cognition exist that attempt to 

explain the cognitive processes involved in performing mathematics. 

They address issues such as the extent to which processes involved 

are independent or interact and whether processes are additive (for 

example, encoding of information is completed before calculation 

commences) or integrated (Campbell & Epp, 2005). Three models of 

mathematical cognition will now be discussed, in turn, before discussing 

their overall limitations. 

1.2.1 Abstract Code Model 

When adults attempt to solve a mathematical problem, they 

commonly see the initial problem in either digit form (e.g. 2 + 4 = ?) or 

written form (e.g. two add four = ?) or hear the information (Campbell & 

Epp, 2005). The abstract code model (McCloskey & Carmazza, 1985), 

depicted in Figure 1.1, states that this initial information is then encoded 

into an abstract quantity code for use by three distinct cognitive 

systems: comprehension; calculation; and response. The 

comprehension system is responsible for converting the initial input into 

this abstract code. The calculation system then uses an individual’s 

memory for number facts and rules to calculate the correct answer to a 

problem, using the abstract code, before the response system converts 

the abstract code into an appropriate output format, such as digit, 

written word or oral form (Campbell & Epp, 2005). The model assumes 

that, as an abstract code is used, performance should be no different 

for any of the initial input forms. It also assumes independence of the 

three cognitive systems and that they are additive in nature. In other 

words, calculation only takes place once encoding into the abstract 

code has been completed and output only occurs after completion of 

calculation.  
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Support for this model arises from research involving brain-

damaged patients and the manipulation of the format of presentation of 

mathematical problems. For example, patient P.S., who had difficulty in 

retrieving arithmetic facts from long-term memory (a permanent store of 

information: Craik & Lockhart, 1972; Shiffrin & Atkinson, 1969), showed 

no difference in the comprehension or solving of basic arithmetic 

problems whether sums were presented or answers given using Arabic 

numerals, written words or strips of paper with dots printed on them 

(Sokol, McCloskey, Cohen & Aliminosa, 1991). This finding was 

interpreted as indicating that an internal abstract code is used to 

represent numbers and perform calculations. According to the abstract 

code model, if mathematical cognition involves format-specific codes 

and processes, rather than an abstract code, different presentation and 

answering formats should illicit different amounts of errors (McCloskey, 

1992). P.S. produced the same amount of errors across all formats, 

suggesting the use of a single abstract code. 

The model does not adequately explain, however, how the 

calculation system actually combines rules and procedures in this 

abstract code to produce answers to different types of mathematical 

problems. For example, McNeil & Warrington (1994) investigated a 

patient, H.A.R., who could perform simple additions and subtractions 

when problems were presented orally, but when presented with written 

problems his performance on additions was impaired whilst his 

performance on subtractions was not. Therefore, McNeil & Warrington 

argued that the abstract code model could not adequately explain the 

calculation process because of the dissociation between different types 

of arithmetic. The model predicts that any deficits in performance 

should be consistent across modality of input and arithmetic type. Also, 

the finding that number words are named faster than digits, yet 

numerical magnitude judgements are faster for digits than for number 

words (Damian, 2004) also contradicts the model’s assumption that 

different input formats map onto a common abstract format. The model 

would predict that if number words are named faster, they are therefore 



  Chapter 1: Introduction 

4 
 

converted to abstract code faster and therefore numerical judgements 

presented in word format should be solved faster.  

 

Figure 1.1: Abstract Code Model. Adapted from “Architectures for arithmetic” by J. I. 
Campbell & L. J. Epp, 2005, Handbook of Mathematical Cognition, p. 348. Copyright 

2005 by Psychology Press. 

 

1.2.2 Triple Code Model 

As discussed above, McCloskey’s abstract code model has been 

criticised for its use of an abstract code (e.g. Damian, 2004; McNeil & 

Warrington, 1994). Dehaene (1992) then created the triple code model, 

which assumes there is no need to convert information into an abstract 

code and that mathematical cognition uses three different types of 

code: visual-Arabic numbers; auditory-verbal code; and analogue 

magnitude representation. The model is depicted in Figure 1.2 and 

does not assume any interaction between the three different codes. 

Input is converted into the appropriate code required for the specific 

type of processing involved in a given mathematical problem rather than 

the codes all working together (Campbell & Epp, 2005).  
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The triple code model specifies roles for both verbal and spatial 

codes (Dehaene & Cohen, 1995). Arabic-number code is believed to 

support the input and output of digit information. The auditory-verbal 

code provides a representation of arithmetic facts and supports the 

retrieval of number facts from long-term memory. There is a direct link 

between Arabic numbers and verbal codes, which supports the fast 

retrieval of number facts from memory. This model therefore assumes 

that verbal, language-based representations are important for 

mathematics (Dehaene, 2001).  

The spatial magnitude code is believed to have a role in 

estimation, approximate calculation and in comparing the size of 

numbers and is thought to give meaning to a number in relation to other 

numbers (Dehaene & Cohen, 1995). Numbers are situated along a 

number line where quantities are represented by the distribution of 

activations of memory. Relationships between numbers are then 

represented by the overlap between these activations. The magnitude 

code is not thought to be precise and so can be used only for 

approximations. If precision is required, the magnitude code must be 

converted into an appropriate verbal or Arabic code. Similarly, if two 

numbers are to be compared, the verbal or Arabic code must first be 

converted into a magnitude code to enable the comparison to take 

place. Dissociation between verbal and magnitude codes has been 

supported through research with patients who were able to perform 

approximations but were impaired on performing precise calculations 

(Lemer, Dehaene, Spelke & Cohen, 2003). 
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Figure 1.2: Triple Code Model. Adapted from “Architectures for arithmetic” by J. I. 
Campbell & L. J. Epp, 2005, Handbook of Mathematical Cognition, p. 349. Copyright 

2005 by Psychology Press. 

 

1.2.3 Encoding-Complex Hypothesis 

The abstract code model and the triple code model have been 

criticised for being too simplistic as they deal mainly with retrieving 

arithmetic facts and do not explain the processes involved in more 

complex calculation (Campbell, 1994). Campbell also argued that there 

is evidence that the processing of number magnitude, the production of 

numbers verbally and the solving of simple arithmetic problems all 

involve formats specific to the processes required rather than an 

independent code proposed by the abstract code model. For example, 

he argued there is evidence that multiplication involves non-abstract 

and format specific representations (Clark & Campbell, 1991). This is 

supported by Noёl & Seron (1993) who found that different tasks 

involve different representations of numbers and that these 

representations may also differ from individual to individual. Campbell 

also argued that both of the preceding models are wrong to assume 

that mathematical processes are additive, as there is evidence that the 

various processes interact rather than acting independently (Campbell 

& Epp, 2005).  
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Campbell’s encoding-complex hypothesis assumes that both 

verbal and visuo-spatial codes are involved in mathematics (Clark & 

Campbell, 1991). Systems representing both verbal and visuo-spatial 

information interact whilst solving mathematical problems through an 

associative memory network which involves the excitation and inhibition 

of information, within and between these systems (Campbell & Epp, 

2005). Previous robust findings in the mathematical cognition literature 

of magnitude effects for latencies and accuracy in adults solving 

arithmetic problems suggest that magnitude information is accessed 

when retrieving number facts (e.g. Dehaene, 1989; Dehaene, Bossini & 

Giraux, 1993; Fias, Brysbaert, Geypens & d’Ydewalle, 1996). This 

suggests an interaction between verbal and visuo-spatial information 

(Gallistel & Gelman, 2005). Campbell (1995) suggested that activating 

magnitude information may assist the retrieval of number facts from 

long-term memory through the priming of numbers that are 

approximately the correct size. Following examination of number fact 

naming and arithmetic performance in bilinguals, Campbell & Epp 

(2004) concluded that the efficiency of the interaction between verbal 

and visuo-spatial codes depends upon the amount of previous practice 

using a number fact and therefore how strongly it is represented within 

long-term memory. 

Finally, the encoding-complex hypothesis includes a role for 

attention, which was not included in the two preceding models. 

Campbell (1994) suggested that attention, defined as the “goal-directed 

focus on one aspect of the environment, while ignoring irrelevant 

aspects” (Gazzaley & Nobre 2012, p.129), is required to solve 

mathematics problems. The level of attention required is assumed to be 

dependent on the format of presentation of a problem (e.g. written word 

or Arabic numeral). Problems involving larger numbers and the 

calculation of answers may require more attention than simple 

arithmetic fact retrieval. However, these assumptions are yet to be 

systematically tested within the mathematical cognition literature. 
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1.2.4 Limitations of the Models of Mathematical Cognition 

The abstract code model has been widely criticised for its 

assumption that, when solving a mathematical problem, initial 

information is converted into an abstract code (Campbell & Epp, 2005). 

Dehaene’s triple code model acknowledged this and incorporated the 

importance of both verbal and visuo-spatial codes in performing 

mathematics. However, like the abstract code model, the triple code 

model is additive and assumes that the domain-specific verbal and 

visuo-spatial codes do not interact. As discussed in section 1.2.3, 

evidence suggests that both domains are required for retrieving number 

facts from long-term memory (Dehaene, 1989; Dehaene et al., 1993; 

Fias et al., 1996; Gallistel & Gelman, 2005) and the encoding-complex 

hypothesis model assumes that the two domains interact through 

excitatory and inhibitory networks. This model is more detailed in how it 

incorporates the various types of information needed to solve problems, 

but, in common with the other two models, it only really attempts to 

explain how basic number facts are accessed in memory rather than 

how complex calculations are performed. Whilst a basic calculation, 

such as 2 + 4 = ? can be solved by quickly accessing a well-rehearsed 

number fact from long-term memory, solving more complex problems is 

not so straight forward.  

Consider the sum 34 + 57 = ? This sum cannot be solved, by the 

majority of adults, through immediate access of a stored number fact 

held in memory. If adults are not able to simply answer a problem via 

fact retrieval, they will employ procedural strategies to break down the 

problem into smaller stages. The most common procedural methods 

used by adults are counting and decomposition (Geary, Frensch & 

Wiley, 1993; Hecht, 1999). In order to solve the sum 34 + 57 = ?, a form 

of decomposition might be used, as follows. An individual might first add 

the tens 30 and 50 together and retrieve the answer 80 from long-term 

memory. This interim result will then be held in mind temporarily. They 

might then add the unit 7 to the interim result (80 + 7) and then hold 87 

in mind before adding the unit 4 to reach the result of 91. Whilst the 



  Chapter 1: Introduction 

9 
 

calculation is performed, it is also necessary to remember the initial 

problem, so that constituent parts can be accessed, if it is not available 

in written form. Therefore, even a relatively simple problem such as an 

addition involving double digits requires the remembering and encoding 

of initial information, the ordering and performing of several steps, the 

accessing of number facts from long-term memory and the 

remembering and updating of interim calculations before outputting the 

final answer. Calculation requires both the storage and processing of 

information as well as the retrieval of learnt number facts (Adams & 

Hitch, 1997; Trbovich & LeFevre, 2003).  

Whilst the triple code model and encoding-complex hypothesis 

state that verbal and spatial codes are used in mathematics, neither 

model adequately describes how these codes are used and combined 

to perform calculations or how initial information and interim calculations 

are stored for further use. Hitch (1978) found that forgetting interim 

information and details of the original problem contribute to 

mathematical errors and expert calculators state the importance of 

being able to hold interim information in mind (Butterworth, 2006). None 

of the models of mathematical cognition described above can account 

for performing a calculation that doesn’t simply require the direct 

retrieval of an answer from memory. A more complex cognitive model is 

required to accommodate all of the factors involved in solving these 

types of problems.  

McCloskey (1992) suggested that further research was required 

regarding the importance of verbal and spatial systems and the 

complex cognitive system, working memory, for performing more 

detailed calculations. In the years since he introduced his abstract code 

model, research has shown that working memory is indeed involved in 

performing mathematics (Raghubar, Barnes & Hecht, 2010).  

1.3 Models of Working Memory 

The term working memory is used to refer to the complex cognitive 

system that both maintains and manipulates information in order to 



  Chapter 1: Introduction 

10 
 

complete a task (Bayliss, Jarrold, Baddeley & Gunn, 2005), such as the 

double-digit addition described above. Baddeley (2003, p. 829) also 

states that working memory “supports human thought processes by 

providing an interface between perception, long-term memory and 

action”. Working memory involves both the storage and processing of 

information, and is therefore regarded in the literature as being distinct 

from short-term memory which simply refers to the temporary storage of 

information in mind without the involvement of any processing 

(Baddeley, 2000). The term working memory capacity is used to refer to 

the amount of information that can be held within working memory 

whilst processing is carried out (Conway & Engle, 1996) and this 

capacity is generally believed to be limited (Baddeley, 2003). Short-term 

memory capacity is viewed as the amount of information that can be 

stored when no processing is involved (Bayliss, Jarrold, Gunn & 

Baddeley, 2003). Short-term memory performance has been found to 

be linked to complex cognitive tasks, but performance on working 

memory tasks is generally more predictive (Bayliss et al., 2003; St. 

Clair-Thompson & Sykes, 2010). Whether working memory capacity is 

limited by the actual number of items that can be stored or by 

attentional control is debated within the literature.  

The sections that follow will discuss four alternative models of 

working memory. They are not intended to provide an exhaustive 

discussion of all of the available models of working memory but are 

intended to reflect the models most referred to within the mathematical 

cognition literature. The following sections will discuss Cowan’s 

embedded-process model (section 1.3.1), Barrouillet’s time-based 

resource-sharing model (section 1.3.2), Engle’s controlled-attention 

model (section 1.3.3) and the Baddeley and Hitch multi-component 

model (section 1.3.4). These models reflect differing views as to the 

relative importance of domain-general elements (such as controlled 

attention) and domain-specific elements (such as temporary stores) 

within working memory. 
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1.3.1 Embedded-Process Model 

Cowan’s embedded-process model (shown in Figure 1.3) has 

been used within the mathematical cognition literature to refer to how 

number facts may be retrieved from long-term memory (e.g. Imbo & 

Vandierendonck, 2007b & 2008) but has not been used to explain how 

more complex calculations are performed. Within this model, working 

memory is viewed as a subset of long-term memory. Working memory 

includes items activated within long-term memory and currently within 

the focus of attention plus items in the short-term store that are 

activated but not currently within the focus of attention (Cowan, 1999).  

 

 

Figure 1.3: Embedded-Process Model. Adapted from “An embedded-process model of 
working memory” by N. Cowan, 1999, Models of working memory: Mechanisms of 
active maintenance and executive control, p. 64. Copyright by Cambridge University 

Press. 

 

According to this model, information can enter working memory 

through sensory stores or via the central executive (the control 

processes within working memory: Cowan, 1988). An external stimulus 
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enters a brief sensory store, where it can remain for several hundred 

milliseconds (e.g. auditory storage: Darwin, Turvey & Crowder, 1972), 

and involuntarily activates representations previously stored in long-

term memory. These activated representations remain outside of 

awareness, in the temporary store, unless they are sufficiently different 

to previous stimuli or are regarded as important for the current task and 

then enter the focus of attention. The central executive also controls 

voluntary attention by activating items in long-term memory that are 

considered relevant for the task. This allows the individual to retrieve, 

think about and process information. Therefore, during a task such as a 

mathematical calculation, the information being attended to is a subset 

of the activated portion of long-term memory (Cowan, 1988). Only 

information currently within the focus of attention is available to 

conscious awareness (Cowan, 2000), but activated items not currently 

being attended to, regarded as being in the short-term store, can still be 

retrieved and become part of the focus of attention with a time delay. 

However, information in this short-term store will decay over time unless 

reactivated through rehearsal via the refocussing of attention. 

Processing, such as combining the units of a sum to give an interim 

total, result in the creation of new representations in long-term memory 

which can then be recalled when needed (Cowan, 1999). 

Working memory within this model is seen as domain-general and 

capacity-limited. Items from various modalities, such as verbal, visuo-

spatial, haptic and olfactory, are viewed as being processed in the 

same way and within the same system. Limits in working memory 

capacity are caused by limits in the capacity of the domain-general 

focus of attention and also the time limits on items remaining activated 

within the short-term store before they decay (Cowan, 1999).  

The focus of attention is viewed as being limited to three to five 

unconnected items in adults, but this can be increased through using 

structure and ‘chunks’. Chunks are defined by Cowan as being “a 

collection of concepts that have strong associations to one another and 

much weaker associations to other chunks concurrently in use” (2000, 
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p. 89). Evidence for the capacity to attend to three to five chunks has 

been provided by several researchers. For example, Chen & Cowan 

(2009) examined adult participants’ recall of word lists when items were 

presented singularly or in pairs, whilst the ability to rehearse items was 

prevented via articulatory suppression. They found that around three 

chunks of information could be recalled regardless of whether items 

were presented on their own or within the pairs. Within the visuo-spatial 

domain, stable recall performance across varying delays between 

presentation and recall of items indicated attentional capacity of around 

four items (Jones, Farrand, Stuart & Morris,1995).  Sϋß, Wilhelm & 

Sander (2007) argued that it is the ability to combine these chunks to 

form new representations that is important for working memory 

processing and an individual’s working memory capacity limits this 

ability to form new representations. Interference occurs between similar 

activated representations and the ability to inhibit distracting information 

is thought to also use attentional resources (Engle, Kane & Tuholski 

(1999). 

To summarise, the embedded-process model assumes that 

working memory is the currently activated portion of long-term memory. 

To solve a mathematical problem through the direct retrieval of number 

facts held within long-term memory, controlled attention focuses on and 

retrieves the number fact most strongly activated whilst inhibiting other 

number facts that are activated more weakly. Where procedural 

methods, containing more than one step, are required, relevant long-

term memory representations are activated and become part of the 

temporary store. Attentional resources are then used to combine these 

representations and create new items in long-term memory which can 

then be retrieved and combined with others. Working memory capacity 

is constrained by the capacity of the focus of attention and the amount 

of time representations can remain in the temporary store before they 

decay.  

It should be noted however that, following a series of nine dual-

task experiments investigating memory for domain-specific items and 
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items that required some form of binding, Cowan has recently 

questioned whether the idea of a central store of information is too 

simplistic (Cowan, Saults & Blume, 2014). Cowan and colleagues have 

proposed that, as well as domain-general controlled attention being 

important in working memory, there is also a need to store information 

within domain-specific peripheral stores.  

1.3.2 Time-Based Resource-Sharing Model 

The time-based resource-sharing model assumes that working 

memory is a domain-general resource responsible for both processing 

and storing information, which compete for resources (Barrouillet, 

Bernardin & Camos, 2004).  

Previously, Towse & Hitch (1995) formulated a task-switching 

model of working memory. This was based on their manipulation of the 

difficulty of and time spent on a counting task carried out by children. 

They found that the difficulty of the counting task did not affect the 

amount of information that could be stored in working memory, but the 

amount of time spent on the task did. The longer items had been stored 

in memory while processing was carried out, the worse the children’s 

ability to recall the stored items. Towse, Hitch & Hutton (2000) also 

found that recall of stored items by adults was affected by the amount of 

time they had to be retained in memory. Barrouillet & Camos (2001) 

subsequently argued that by manipulating the duration of the 

processing tasks, Towse & Hitch had not only affected the time for 

which stored items had to be retained, but had also affected the 

cognitive difficulty of the task.  

Consequently, Barrouillet & Camos (2001) proposed their time-

based resource-sharing model, which incorporated both time and 

resource-switching. In seven experiments that manipulated both time 

and cognitive load in working memory span tasks involving both 

processing and storage, Barrouillet et al. (2004) deduced that working 

memory performance can be limited by the amount of attention 

available, the ability to switch between processing and storage of 
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information and the time taken for items currently stored in working 

memory to decay. Working memory performance can also be hampered 

by interference caused when stored items are similar to representations 

created during processing (Barrouillet, Bernardin, Portrat, Vergauwe & 

Camos, 2007). 

Within the time-based resource-sharing model, resources are 

viewed as domain-general because items from different modalities can 

disrupt each other within working memory (Barrouillet et al., 2007). This 

model supports the embedded-process model view that working 

memory is an activated portion of long-term memory, but also attempts 

to explain further how constraints on working memory can occur. The 

model includes four basic assumptions: firstly, processing and storage 

both require attention, which is limited; secondly, once attention has 

been switched away from storage to facilitate processing, stored items 

start to decay; thirdly, a central bottleneck affects retrieval of items as 

processing requires retrieval of facts from long-term memory and only 

one fact can be retrieved at a time; and fourthly, sharing of resources 

occurs through the rapid switching of attention between processing and 

storage. Barrouillet and colleagues argued that processing does not 

need to be difficult for it to have an impact on the ability to store 

information as even a simple processing task requires use of shared 

attentional resources. 

A link between processing speed, working memory capacity and 

mathematics has been found in a study with children. Barrouillet & 

Lépine (2005) found that answering addition problems involved fast 

access to a large number of stored facts, complex procedures and 

demand on cognitive resources. The study involved children answering 

40 single-digit addition sums and also completing tasks designed to 

measure verbal working memory capacity. The purpose was to 

investigate whether those with greater verbal working memory capacity 

were able to solve more problems through direct retrieval of number 

facts as opposed to more procedural methods. The authors found that 

working memory capacity affected the strategies that individuals chose 
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to answer problems, with direct retrieval used more by those with 

greater capacity. Individuals with greater working memory capacity 

were also faster to answer problems through both retrieval and 

procedural methods. They also found that retrieving number facts from 

long-term memory was prone to interference from competing answers 

and suggested those with greater working memory capacity are better 

able to inhibit incorrect answers.   

In terms of the use of procedural strategies, Barrouillet & Lépine 

argued that, based on the time-based resource-sharing model, a faster 

processing speed assists the maintenance of initial problems in memory 

whilst calculation occurs and also assists the holding in mind of interim 

calculations. With a faster processing speed, exhibited by the children 

with greater working memory capacity, less time was taken between 

encoding of the initial problem and production of an answer. For the 

direct retrieval of answers, they argued a greater working memory 

capacity might reflect stronger associations in long-term memory, which 

aids faster and more accurate retrieval. This argument was based on 

Siegler’s (1996) theory that those with greater working memory capacity 

are able to form stronger associations between problems and their 

answers and therefore search long-term memory and retrieve 

appropriate facts more efficiently. However, they stated their results 

could also support views that individual differences in working memory 

are due to differences in the ability to activate information in long-term 

memory (e.g. embedded-process model: Cowan, 1995) or to control 

attention (e.g. controlled-attention model: Engle et al., 1999). The 

controlled-attention model will now be discussed in the following 

section. 

1.3.3 Controlled-Attention Model 

There is an assumption within the controlled-attention model 

(shown in figure 1.4), as within the embedded-process model and time-

based resource-sharing model, that items in working memory represent 

the currently activated elements within long-term memory (Engle, 

Cantor & Carullo, 1992). It also assumes an important role for domain-
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general attention (Engle et al., 1999). According to this model, items 

currently within working memory have either been activated through 

external stimuli or produced internally through the processing of 

information (Engle et al., 1992).  

 

Figure 1.4: Controlled-Attention Model. Adapted from “Individual differences in working 
memory capacity and what they tell us about controlled attention, general fluid 
intelligence, and functions of the prefrontal cortex” by R. W. Engle, M. J. Kane & S. W. 
Tuholski, 1999, Models of working memory: Mechanisms of active maintenance and 
executive control,  p. 106. Copyright 1999 by Cambridge University Press. 

 

There is an assumption within the controlled-attention model, as 

with the embedded-process model, that working memory capacity is 

limited by the ability to use attention to maintain items in an activated 

state. However the controlled-attention model places greater emphasis 

on the importance of using attention to inhibit competing information 

(Engle, 2002; Kane, Conway, Hambrick & Engle, 2007). Kane & Engle 

(2000) investigated proactive interference in individuals with high and 

low working memory capacity. Proactive interference refers to how an 

item in memory can suffer interference from an item coded earlier 

(Underwood, 1957). Kane & Engle’s 192 adult participants were initially 
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allocated to groups of high and low capacity based on upper and lower 

quartile performance of a larger pool of participants on an operation 

span task that measured the ability to store and recall words that were 

interleaved with mathematical problems. They found that those with 

greater working memory capacity were better able to reduce the effect 

of proactive interference when remembering lists of words. This was 

particularly important at the points where items were encoded to or 

retrieved from memory. The controlled-attention model also differs from 

the embedded-process model in that it highlights the role of domain-

specific coding, strategies and procedures for maintaining activation of 

items within working memory (Engle et al., 1999). 

As discussed in section 1.3, working memory is viewed as the 

combination of storage and processing whereas short-term memory is 

viewed as simply temporary storage of information (Baddeley, 2000). 

Within the controlled-attention model, short-term memory is seen as a 

subset of working memory (Engle et al., 1992) and reflects the ability to 

store chunks of information (Engle, 2002).  

Through a latent variable analysis, Kane et al. (2004) found 

common variance between short-term memory and working memory 

performance, which represented this storage ability, and that working 

memory’s additional, unique variance represented executive controlled 

attention. Verbal and visuo-spatial working memory shared between 70-

85% of their variance compared to only 40% for domain-specific 

storage (pp. 202-203).  In this study, 236 adult participants completed a 

battery of verbal and visuo-spatial short-term memory, working memory 

and reasoning tasks as well as measures of general fluid intelligence. 

Although the authors found controlled attention to be domain-general, 

their results supported a more domain-specific view of short-term 

storage than that found in the original embedded-process model.  

Overall, the results from Kane et al. (2004) suggested the most 

important working memory factor was that of controlled attention: for the 

fast retrieval of information from long-term memory and for inhibiting 
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distracting information. This conclusion was based on the greater 

shared variance between verbal and visuo-spatial working memory 

compared to that of short-term memory. Domain-specific short-term 

storage and rehearsal of items was therefore found to be of secondary 

importance. 

In terms of performing mathematics, this model has been applied 

to support the view that controlled attention is important for retrieving 

number facts from long-term memory (Barrouillet & Lépine, 2005, 

section 1.3.2). The model has not, however, been used to explain the 

use of procedural methods to solve mathematics problems. Use of 

procedural methods would be supported by storage of chunks of 

information, such as interim answers and the initial problem, within 

short-term memory and accessing number facts from long-term 

memory. However, whereas the previous two models have assumed 

that storage and processing of items is wholly domain-general, the 

controlled attention model includes a domain-specific element. The 

storage and rehearsal of items in short-term memory is believed to rely 

on domain-specific codes and processes, which could be, for example, 

verbal, visual, spatial or auditory. 

1.3.4 Multi-Component Model 

In contrast to the previous three models which assume working 

memory to be an activated subset of long-term memory, the multi-

component model (shown in Figure 1.5) views working memory and 

long-term memory as separate cognitive systems (Baddeley & Logie, 

1999). Models that base working memory on an activated subset of 

long-term memory have been criticised for not adequately explaining 

how tasks requiring the use of working memory are actually carried out 

(Cornoldi & Vecchi, 2003). The multi-component model views working 

memory as a system for both storing and manipulating information, with 

the outcomes of manipulations then encoded into long-term memory 

(Baddeley & Logie, 1999).  
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Baddeley & Hitch originally proposed a three-component model of 

working memory in 1974, comprising a central executive, and two 

information stores: the phonological loop and visuo-spatial sketchpad. A 

fourth component, the episodic buffer, has been added more recently 

(Baddeley, 2000). Each of these components will be described in turn 

below. 

 

Figure 1.5: Multi-Component Model of Working Memory. Adapted from “Is working 
memory still working?” by A. D. Baddeley, 2002, European Psychologist, 7(2), p. 93. 

Copyright 2002 by Hogrefe Publishing. 

 

1.3.4.1 Phonological Loop 

The phonological loop has been investigated more thoroughly than 

the other working memory components and is believed to have evolved 

to enable the acquisition of language (Baddeley, 2003). It comprises a 

domain-specific phonological store for verbal and acoustic information 

and a rehearsal mechanism for refreshing and maintaining information 

within the store and maintaining its serial order (Baddeley, 1996). Items 

enter the loop either from sensory input or via the central executive 

(Baddeley, 2000). Phonological items have been found to decay within 
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two to three seconds of entering the store and the rehearsal mechanism 

acts to keep the items refreshed through sub vocal articulation 

(Baddeley 1992). Capacity of the phonological loop is reached when the 

first item held in the store fades before the last item within the store can 

be rehearsed. The rehearsal mechanism has been evidenced through 

the word length effect, which finds that memory for words containing a 

greater number of syllables is poorer than for those containing fewer 

syllables and that this difference disappears when sub vocal rehearsal 

is prevented (Baddeley, Thomson & Buchanan, 1975). Support for a 

temporary store for phonological information, as opposed to the 

activation of representations in long-term memory, comes from 

neuropsychological evidence showing that patients with verbal short-

term memory deficits can also have intact language and verbal long-

term memory functions (e.g. Vallar & Baddeley, 1984). 

1.3.4.2 Visuo-Spatial Sketchpad 

The visuo-spatial sketchpad is domain-specific and has been 

described as a “mental blackboard” (Heathcote, 1994, p.27) used for 

temporarily storing and manipulating visual and spatial information. It is 

thought to be limited to three or four items (e.g. Luck & Vogel, 1997). 

Following criticism of the multi-component model’s inability to 

incorporate items other than those that are verbal, visual or spatial in 

nature, the theory around the visuo-spatial sketchpad has been 

amended to also include haptic and motor information (Baddeley, 

2002). As is the case with the phonological loop, items can enter the 

visuo-spatial sketchpad via sensory information or via the central 

executive (Baddeley, 2000). 

It has been proposed that the visuo-spatial sketchpad can be 

fractionated into two interconnected subsystems (Darling, Sala & Logie, 

2009; Duff & Logie, 1999; Logie, Gilhooly & Wynn 1994): one for the 

storage of static visual material such as shape and colour, sometimes 

referred to as the inner eye; and one for dynamic spatial information 

such as movement and location, sometimes referred to as the inner 

scribe. For example, Darling et al. (2009) found a dissociation between 
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memory for appearance and memory for location through loading both 

with static (viewing a display of dots on screen) and dynamic (spatial 

tapping) tasks during the interval between presentation and recall of 

items. The static secondary task interfered with memory for appearance 

whilst the dynamic task interfered with memory for location.  

In later models of the visuo-spatial sketchpad, Logie has proposed 

that the inner eye can be further fractionated into a visual cache for the 

temporary storage of visual information and a visual buffer for the 

representation of visual material, whilst the inner scribe encodes spatial 

locations and movement (Pearson, 2001). This version of the visuo-

spatial sketchpad is shown in Figure 1.6. The buffer is supported by the 

cache, which acts as a temporary backup store for representations no 

longer maintained as a conscious mental image. Maintenance of 

conscious images relies on attentional resources via the central 

executive and the inner scribe can operate independently of the visual 

cache and buffer or can interact with them if, for example, locations are 

remembered via a visual image. Whereas the phonological loop has a 

clear mechanism for the rehearsal and ordering of verbal items via sub 

vocal articulation, the mechanism for visuo-spatial rehearsal and 

ordering is still not clear, although Baddeley (2000) has speculated that 

this may occur via some form of attentional refreshing. Logie (1995), 

however, suggested spatial rehearsal may be performed by the inner 

scribe. 
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Figure 1.6: Fractionation of the visuo-spatial sketchpad and its relationship with the 
central executive. Adapted from “Imagery and the visuo-spatial sketchpad” by  D. G. 
Pearson, 2001, Working memory in perspective, p. 52. Copyright 2001 by Psychology 

Press. 

 

1.3.4.3 Central Executive 

The central executive is thought to control working memory. It was 

originally proposed as a general pool of processing resources, with no 

storage capacity, and was based on the earlier supervisory activating 

system (SAS) of Norman and Shallice which proposed a system for 

applying attentional control over the processing of information 

(Baddeley, 2003). The SAS was assumed to be limited in terms of 

attentional capacity and capable of combining information from long-

term memory with novel information currently held within working 

memory (Baddeley, 2002). However, this early view of the central 

executive was criticised for being ”little more than a homunculus, the 

little man taking all the important decisions” (Baddeley, 2003, p. 835).  

Subsequent research has attempted to fractionate the central 

executive into more specific functions. It is still assumed to control 

working memory and this is achieved through switching attention from 

one task to another, monitoring and updating representations within 
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working memory and inhibiting activated but irrelevant information (e.g. 

Miyake, Friedman, Emerson, Witzski & Howerter, 2000) as well as 

focusing attentional resources (Baddeley, 2002) and manipulating 

information held within the other components of working memory 

(Repovš & Baddeley, 2006). The visuo-spatial sketchpad is thought to 

be more strongly connected to the central executive than is the 

phonological loop (Miyake, Friedman, Rettinger, Shah & Hegarty 

(2001). This is argued because, whilst articulatory suppression can be 

used to disrupt only the phonological loop, secondary tasks designed to 

disrupt the visuo-spatial sketchpad also disrupt the central executive 

(e.g. Hegarty, Shah & Miyake, 2000). 

1.3.4.4 Episodic Buffer 

The episodic buffer was added to the multi-component model as a 

limited-capacity, domain-general store capable of integrating, or 

binding, information from the other components via the central 

executive (Baddeley, 2000). The central executive can access and 

manipulate the buffer’s content through conscious awareness. The 

buffer is assumed to use multiple types of code to enable the binding of 

different types of information from across the whole system (Baddeley, 

2003) and acts as an interface between the other working memory 

components and long-term memory (Baddeley, 2000).  

Examination of the episodic buffer is beyond the scope of this 

thesis. 

1.3.5 Comparison of the Models of Working Memory 

Whilst the four theoretical models of working memory discussed in 

the sections above all include a role for domain-general controlled 

attention and the accessing of facts from long-term memory, there are 

fundamental differences in the way they conceptualise working 

memory.  

The embedded-process model, time-based resource-sharing 

model and controlled-attention model all contain the view that working 
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memory is an activated subset of long-term memory with capacity 

differences between individuals caused by attentional ability. The multi-

component model, however, views working memory as a separate 

system to long-term memory, although it has links with long-term 

memory via the central executive and episodic buffer. Also, whilst the 

embedded-process model and time-based resource-sharing model both 

regard working memory as completely domain-general, the controlled-

attention and multi-component models both include elements of 

domain-specific storage and rehearsal. The controlled-attention model 

assumes that items are maintained within working memory through the 

use of domain-specific processes and codes, dependent upon the 

original nature of the items. The multi-component model assumes that 

the short-term stores (the phonological loop and visuo-spatial 

sketchpad) within working memory are domain-specific and that 

domain-specific storage and domain-general attention are responsible 

for individual differences in working memory capacity (Towse & Hitch, 

2007). Also, Cowan et al. (2014) now suggest that domain-specific 

storage, as well as domain-general attention, plays a role in working 

memory within the embedded-process model. 

There is evidence within the working memory and mathematical 

cognition literature that the storage of verbal and visuo-spatial 

information is in fact domain-specific as assumed within the multi-

component model (e.g. Bayliss et al., 2003; Jarrold & Towse, 2006; 

Noёl, Désert, Aubrun & Seron, 2001; Shah & Miyake, 1996; Trbovich & 

LeFevre, 2003). For example, Shah & Miyake (1996) found that the 

relationship between the amount of information adults could store and 

recall (when storage was interleaved with processing) and performance 

on tests of language processing and spatial thinking varied depending 

upon whether verbal or visuo-spatial information was being stored. 

Bayliss et al. (2003) measured children’s performance on working 

memory span tasks involving different combinations of verbal and 

visuo-spatial processing and storage. The patterns of correlations 

between performances on these different combinations led the authors 
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to conclude that working memory consists of general resources for 

processing but that resources for the storage of verbal and visuo-spatial 

information are domain-specific.  

The multi-component model also conceptualises working memory 

as a “cognitive workspace” (Pearson, 2001, p. 41), and is therefore 

perhaps better able to accommodate the storage and manipulation of 

numbers during the solving of mathematical problems. This model has 

also been extensively used in previous studies of mathematical 

cognition. The following section (section 1.4) will now discuss evidence 

for the involvement of the different components of the multi-component 

model of working memory in mathematics. 

1.4 The Multi-Component Model of Working Memory and 
Mathematics 

1.4.1 Overview of the Previous Literature 

Previous literature examining the relationship between working 

memory and mathematics will be reviewed in this section. The 

involvement in mathematics of the central executive, phonological loop 

and visuo-spatial sketchpad components of working memory will be 

discussed. As the episodic buffer is a relatively recent introduction to 

the multi-component model of working memory, it has not yet been 

investigated in relation to mathematics. The relationship between 

working memory and mathematics in adults has been previously 

examined, but has not received as much attention as the relationship 

between mathematics and working memory in children. Therefore, in 

addition to discussing the literature involving adults, previous research 

considering the relationship between working memory and mathematics 

in children will also be considered. Examining research involving 

children will help inform whether any working memory elements are 

consistently implicated in mathematics achievement and may also shed 

light on resources used when adults who are less mathematically skilled 

perform calculations.  
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Research examining working memory and mathematics in children 

is plentiful, but largely examines performance when solving arithmetic 

as opposed to more complex forms of mathematics. The literature has 

also largely examined verbal working memory and visuo-spatial working 

memory, consisting of both storage and processing, rather than the 

individual components of the multi-component model of working 

memory: the central executive, phonological loop and visuospatial 

sketchpad. Where studies have attempted to isolate the individual 

components, they have largely investigated the central executive and 

phonological loop. The visuo-spatial sketchpad has been examined 

separately in children, but not in adults, although it is difficult to 

separate it from the central executive (Hegarty et al., 2000). 

In the following sections, correlational studies (section 1.4.2), 

experimental studies (section 1.4.3) and studies involving those who 

are excellent at mathematics and those who are poor at mathematics 

(section 1.4.4) will be discussed. 

1.4.2 Correlational Studies 

Several studies have used a correlational design to explore the 

relationships between working memory and mathematics. Correlational 

studies involve participants performing tasks designed to assess 

working memory ability and then measure the relationship with either 

concurrent or future performance on standardised mathematics tests or 

school mathematics achievement. The majority of correlational studies 

have investigated verbal working memory rather than visuo-spatial 

working memory. They have also largely examined working memory, 

involving both storage and processing, rather than examining the 

storage and central executive elements separately. 

Evidence within the literature for a relationship between verbal 

working memory and mathematics is mixed and, as mentioned above, 

largely involves research with children. Several studies have found that 

verbal working memory ability correlates with mathematics ability. 

Purpura & Ganley (2014) found that verbal working memory capacity 
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was related to cardinality, subitizing, set comparison and number order 

in 6 year olds. Cardinality reflected the children’s ability to count out a 

smaller set of items from a larger set. Subitizing referred to the ability to 

recognise the number of dots presented in a series of quickly presented 

pictures. Number order reflected ability to state which number comes 

before or after another given number.  

Verbal working memory performance at 6 years of age has also 

been found to predict mathematics performance six months later, over 

and above the contribution of verbal short-term memory (Passolunghi, 

Vercelloni & Schadee, 2007). A relationship has also been found 

between verbal working memory and performing subtractions in 7 to 11 

year olds (Adams & Hitch 1997) and performance on National 

Curriculum Assessments in 7 and 14 year olds (Gathercole, Pickering, 

Knight & Stegmann, 2004). Verbal and non-verbal working memory 

have also predicted mathematics performance at 11 and 14 years 

(Jarvis & Gathercole 2003). The studies mentioned so far therefore 

contain evidence for a relationship between verbal working memory and 

mathematics. However, some studies have not contained evidence of 

such a relationship. 

Verbal working memory has not always been found to be directly 

related to mathematics achievement. Following a longitudinal study of 

children from pre-school age to age 7, Östergeren & Träff (2013) 

reported that measures of verbal working memory were only indirectly 

related to arithmetic performance through number knowledge. Pre-

school measures of verbal working memory and number knowledge 

(including number naming and counting) were administered and 

structural equation modelling used to explore their relationships with 

arithmetic achievement at age 7. Only pre-school number knowledge 

directly predicted arithmetic ability. In another study, no predictive 

relationship was found for verbal working memory at age 8 when other 

measures such as attention, processing speed and non-verbal problem 

solving were taken into account (Fuchs et al. 2006).  
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Studies involving children therefore contain mixed evidence for a 

relationship between verbal working memory and mathematics. Only 

one correlational study has been found that examines this relationship 

in adults. Wilson & Swanson (2001) examined verbal and visuo-spatial 

working memory in both adults and children and found that performance 

on both types of working memory predicted mathematics performance, 

irrespective of age.  

Although verbal working memory may be required for performing 

mathematics, these correlational studies do not tell us whether it is 

simply the storage of verbal information or storage while concurrently 

carrying out processing that is important for successfully solving 

mathematics problems. The studies highlighted above have examined 

verbal working memory rather than its constituent parts. Where the 

central executive and phonological loop have been explored separately, 

both the central executive and phonological loop components were 

related to arithmetic performance in 8 year olds (Holmes & Adams 

2006). The authors suggested that the phonological loop may be used 

in the sub vocal rehearsal of stored information and for retrieving 

number facts. They also suggested that, as the central executive 

significantly predicted unique variance in performance across a wide 

range of curriculum subjects in their study, it may be associated with 

general intelligence rather than specifically with mathematics. 

Correlational studies involving mathematics and visuo-spatial 

working memory in adults are also sparse. The Wilson & Swanson 

(2001) study above contained evidence that visuo-spatial working 

memory may be important for mathematics in adults. One further 

correlational study has been identified in which visuo-spatial working 

memory and mathematics in adults has been examined. Wei, Yuan, 

Chen & Zhou (2012) correlated the mathematics performance of 80 

Chinese undergraduates with performance on a battery of cognitive 

tests. Their advanced mathematics test included algebra, statistics, 

functions theory, graph theory, geometry. Their cognitive battery 

included visuo-spatial working memory as well as other measures of 
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visuo-spatial ability and they found performance on the working memory 

task correlated with ability at advanced mathematics. When results for 

the battery of tests were entered into a regression, visuo-spatial ability, 

including visuo-spatial working memory, predicted mathematics 

performance over and above the contribution of verbal and domain-

general measures. This suggests that visuo-spatial working memory is 

implicated more than verbal working memory when adults perform 

mathematics.  

There are, however, two main issues with the Wei et al. (2012) 

study. Firstly, whilst the authors claimed visuo-spatial working memory 

scores significantly correlated with mathematics performance, their 

working memory task did not actually include a processing element. 

Therefore, what they had actually measured was temporary storage in 

short-term memory rather than working memory capacity. Secondly, 

having established that when all of the visuo-spatial measures were 

grouped together they predicted mathematics performance, they did not 

go on to establish the relative importance of each of these elements 

separately. Therefore the unique contribution of the ability to store 

visuo-spatial information was not established. There is therefore some 

evidence within the literature involving adults that visuo-spatial working 

memory performance is related to mathematics performance, but, as 

with verbal working memory, research has largely been carried out with 

children.  

The literature involving children consistently shows that visuo-

spatial working memory and its components are implicated in 

mathematics. For example, Bull, Espy & Wiebe (2008) measured pre-

school children’s visuo-spatial short-term memory and working memory 

abilities and both predicted later mathematics ability at age 7. 

Dummontheil & Klingberg (2012) also found that non-verbal reasoning 

and visuo-spatial working memory measures, rather than verbal 

measures, predicted arithmetic ability in 6, 10, 12 and 16 year olds after 

two years. In terms of the visuo-spatial sketchpad and central executive 

components of visuo-spatial working memory, both appear to be 
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involved in mathematics in children. Whilst Holmes & Adams (2006) 

found that both central executive and phonological loop ability are 

related to the arithmetic ability of children, the link between arithmetic 

and the visuo-spatial sketchpad was found to be stronger. In a 5-year 

longitudinal study involving children who were six years old at the start, 

measures of the central executive and visuo-spatial sketchpad 

predicted mathematics achievement, but the phonological loop did not 

(Geary 2011). These results therefore suggest that visuo-spatial 

working memory may be more important than verbal working memory 

for successfully performing mathematics.  

It is suggested that the visuo-spatial sketchpad is used to hold and 

manipulate numbers (Logie et al., 1994) and for visualising numbers 

involved in arithmetic calculations (Seron, Pesenti, Noёl, Deloche & 

Cornet, 1992). The visuo-spatial sketchpad is also important for 

representing information such as number magnitudes (Geary, 2004), 

which are believed to be a basis for more advanced maths skills 

(Holloway & Ansari, 2009).  

There is also evidence from studies with children that the visuo-

spatial sketchpad is split into static and dynamic components, as 

proposed by Darling, Sala & Logie, 2009; Duff & Logie, 1999; and 

Logie, Gilhooly & Wynn 1994 (section 1.3.4.2). Pickering, Gathercole, 

Hall & Lloyd (2001) discovered a developmental dissociation for 

performance on tasks that measured static and dynamic visuo-spatial 

storage capacity.  Performance overall was superior for the storage of 

static information. Holmes, Adams & Hamilton (2008) examined 

performance, in 7-8 and 9-10 year olds, for visual and spatial storage. 

Dynamic, spatial storage predicted mathematics ability in the younger 

group, whilst static, visual storage predicted mathematics ability in the 

older children. The authors suggested this may reflect older children’s 

greater number of available strategies, including the use of verbal 

resources to solve problems. They may only need to maintain a visual 

image of the initial problem, whilst the younger children may still rely 

more on procedural methods and need to both store and manipulate the 
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problem. Reuhkala (2001) had previously found that the ability to store 

static visuo-spatial information predicted the mathematics scores of 17 

year olds. 

Despite the evidence above for a link between visuo-spatial 

working memory and mathematics in childhood, it appears this may 

depend upon the type of mathematics and the age of the children 

solving the problems. Bull, Johnston & Roy (1999) investigated the use 

of the central executive and visuo-spatial sketchpad in arithmetic and 

concluded that the visuo-spatial sketchpad may be used more by 

younger children for counting, but is used less by older children who are 

able to access information directly from long-term memory. They 

proposed that the central executive is used more in middle stages of 

development where a choice of strategies has to be made from those 

available or when older children solve more complex sums. They also 

highlighted the use of visual imagery, stored in the visuo-spatial 

sketchpad, as a strategy for solving problems. Simmons, Willis & 

Adams (2012) concluded the visuo-spatial sketchpad was related to 

number writing and magnitude judgements in 5-6 and 7-8 year olds, 

whilst the central executive was related to addition performance in the 

younger group.  

This variation with age and type of mathematics problem is 

important in the context of investigating the role of visuo-spatial working 

memory in mathematics performance by adults. Adults generally 

perform more complex mathematics than children and may use different 

strategies than children to solve problems and these strategies may 

vary depending on the type of problem. For example, adults mainly 

solve addition and multiplication problems via direct retrieval of number 

facts stored in long-term memory (Kirk & Ashcraft 2001), while 

subtraction relies more on procedural methods (Seyler, Kirk & Ashcraft, 

2003) such as decomposition or counting down. Older children also 

seem to use more direct retrieval and more efficient strategies to solve 

problems (Imbo, Vandierendonck & Rosseel, 2007). The link between 

working memory and arithmetic seems to become weaker with age and 
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the greater use of retrieval (Imbo & Vandierendonck 2008). This may be 

because working memory is used by younger children as they achieve 

representations of number facts in long-term memory, which is required 

until the accessing of the number facts becomes automatic.  

The use of visuo-spatial working memory resources may then 

depend upon the type of mathematics being performed and the strategy 

being employed. However, it should be borne in mind that the 

involvement of working memory in mathematics may be different for 

adults and children, especially younger children, due to developmental 

trajectories of working memory and executive function. Also, greater 

use of retrieval strategies and more efficient use of procedural 

strategies are evident in adults solving mathematical problems (Imbo & 

Vandierendonck, 2008), which affects the comparability of findings from 

adults and children. Moreover, the mathematics carried out by adults 

tends to be more complex than that carried out by children and may 

therefore involve the use of different types of resources. 

Therefore, when examining the link between mathematics 

performance in adults and working memory, it is important to consider 

the type of mathematics actually being performed. 

In summary, there is mixed evidence from the correlational 

literature for a link between verbal working memory and mathematics. A 

link between visuo-spatial working memory and mathematics has been 

consistently found. However, the vast majority of studies discussed 

within this section have involved children performing arithmetic rather 

than the different types of mathematics performed by proficient adults. 

Although correlational studies can highlight whether verbal and visuo-

spatial working memory capacity is related to mathematics 

achievement, they do not tell us whether it is the storage or processing 

elements of working memory, or both, that are important. Very few 

studies have looked separately at the central executive, phonological 

loop and visuo-spatial sketchpad components and this is particularly 

true for studies involving adults and the components of visuo-spatial 
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working memory. The following section will now examine experimental 

studies within the mathematical cognition literature, which have 

attempted to differentiate the involvement of these components in 

mathematics. 

1.4.3 Experimental Studies 

Experimental studies used to examine working memory and 

mathematics largely involve dual-task studies that require participants 

to perform arithmetic while completing a secondary task at the same 

time. These secondary tasks are designed to use central executive, 

phonological loop or visuo-spatial sketchpad resources. If the 

simultaneous performance of a particular secondary task adversely 

affects performance on the arithmetic task, it can be deduced that the 

particular type of working memory resource being loaded by the 

secondary task was being used when answering the arithmetic 

problems. However, the majority of studies using dual-task methods 

have involved loading the central executive or phonological loop with a 

concurrent secondary task. Far fewer studies have involved loading the 

visuo-spatial sketchpad. Also, none of the studies examining the visuo-

spatial sketchpad have looked at its use during the execution of 

different strategies to solve mathematical problems. 

The central executive and the phonological loop seem to play 

different roles depending on the types of sums being answered. For 

example, when verifying whether additions statements, such as 6 + 3 = 

7, are true or false, De Rammelaere, Stuyven & Vandierendonck (1999) 

and Lemaire (1996) found that the central executive is involved in the 

verification of both true and false sums, whereas the phonological loop 

is only involved in verifying true sums. When actually solving addition 

problems rather than verifying answers, the phonological loop appears 

to be involved in storing interim sums, and maintaining accuracy, whilst 

the central executive is involved in performing carry overs and retrieving 

number facts from long-term memory (Fϋrst & Hitch, 2000; Imbo, De 

Rammelaere & Vandierendonck, 2005; Imbo & Vandierendonck, 2007a; 

Imbo, Vandierendonck & De Rammelaere, 2007; Logie et al., 1994). 
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Imbo, Vandierendonck & Vergauwe (2007) also found that, for 

subtraction and multiplication problems, there was greater use of 

central executive and phonological resources as the number of carry 

overs and their value increased.  

The phonological loop may also be used to temporarily store the 

initial addends within sums. Noёl et al. (2001) manipulated the 

phonological and visual similarity of two numbers to be added together. 

Phonological similarity affected accuracy and latencies for answering 

the sums, whilst visual similarity of the numbers had no impact. This 

suggested that the phonological loop rather than the visuo-spatial 

sketchpad is used to store this information. The central executive may 

also be involved in strategy selection and execution (Imbo & 

Vandierendonck, 2010). As discussed in section 1.2.4, adults use a 

variety of strategies to solve mathematical problems if they are unable 

to simply retrieve the answers from long-term memory. The most 

common procedural methods used are decomposition and counting 

(Geary et al., 1993; Hecht, 1999). For example, Imbo, Duverne & 

Lemaire (2007) required participants to solve complex multiplications 

using two strategies of different difficulty whilst under no load and a 

central executive load. They found that central executive load led to 

both poorer strategy execution and the selection of the simpler strategy.  

There is therefore evidence within the experimental literature that 

the central executive and phonological loop elements of verbal working 

memory are used in different types of arithmetic performed by adults 

and have different roles. However, in a review of the literature 

surrounding carrying and borrowing for complex multiplications and 

additions, Imbo et al. (2005) concluded that evidence for use of the 

visuo-spatial sketchpad was too sparse to enable conclusions to be 

drawn regarding its involvement and role. There is therefore a need to 

investigate the relative roles of the central executive and visuo-spatial 

sketchpad elements of visuo-spatial working memory when using 

different strategies to solve mathematical problems. 
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There is recent evidence that visuo-spatial working memory 

resources are used for solving additions. Cragg, Richardson, Hubber, 

Keeble & Gilmore (2014) examined 9-11 and 12-14 year old children as 

well as adults and found that all groups used working memory to solve 

arithmetic problems whether using direct retrieval or procedural 

strategies. Also, verbal and visuo-spatial secondary loads affected 

arithmetic performance to a similar degree. Visuo-spatial working 

memory also seems to be particularly important when adults use 

counting to solve problems (Hubber, Gilmore & Cragg: Experiment 1, 

2014)1, although this study did not separate out the relative roles of the 

central executive and visuo-spatial sketchpad. It involved use of an n-

back task to load visuo-spatial working memory and it is not clear 

whether the detrimental effect the load had on arithmetic performance 

was due to the visuo-spatial nature of the secondary task or due to the 

need for the central executive to constantly monitor and update 

information. There is therefore a need to better establish the relative 

contributions of the central executive and visuo-spatial sketchpad when 

adults solve mathematics problems, although the visuo-spatial 

sketchpad seems to be used in solving subtractions, but not 

multiplications (Lee and Kang, 2002) and Logie et al. (1994) found it to 

be used in approximations. 

In summary, researchers using dual-task studies have identified 

specific roles for the central executive and phonological loop in adults’ 

mathematics performance although these experiments have only 

involved arithmetic rather than other forms of mathematics. The central 

executive seems to be involved in selecting and executing appropriate 

strategies for solving problems, for performing carry overs and for 

retrieving number facts from long-term memory. The phonological loop 

seems to be involved in storing initial problem information and interim 

totals. The role of the visuo-spatial sketchpad is, however, poorly 

understood. Although there is evidence for the use of visuo-spatial 

                                            
1
 Hubber, Gilmore & Cragg: Experiment 1, 2014 has previously been examined 

because it was my MSc. thesis. 
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working memory by adults when solving arithmetic, the relative roles of 

the central executive and visuo-spatial sketchpad are not yet known 

and require further research 

1.4.4 Studies involving those who are Excellent or Low Achieving 
at Mathematics 

The research described so far has involved individuals with a 

range of mathematics ability. Another approach has been to examine 

groups of individuals who are either excellent or low achieving at 

mathematics. Examining studies involving those with mathematics 

difficulties will indicate whether deficits within working memory underpin 

mathematical problems. Examining those who excel at mathematics will 

show which elements of working memory are linked to greater 

mathematical proficiency. Several studies have included groups of 

individuals with mathematics difficulties (MD), although these have 

involved children rather than adults. Very few studies have examined 

those who excel at mathematics and none of these have examined 

working memory capacity in skilled adults. 

Studies examining MD in children have largely concluded that MD 

has a relationship with poor visuo-spatial working memory. For 

example, Kyttälä (2008) measured static and dynamic visuo-spatial 

storage in MD children and children with both maths and reading 

difficulties (RD) and visuo-spatial working memory to also tap into 

executive processes. Performance, compared to those of typically 

developing children (TD), showed that the MD group were able to store 

less passive visuo-spatial information and that both MD and RD 

children had domain-general executive deficits, including difficulty with 

inhibiting irrelevant information. The presence of an executive 

component to MD problems is supported by Passolunghi & Siegel’s 

(2004) findings that MD children have problems with inhibiting 

information. They also found no issue with temporary verbal storage 

ability. In contrast to this, however, it should be noted that at least one 

study has found that verbal storage is implicated in MD (Hitch & 

McCauley, 1991). In a meta-analysis of 18 studies comparing MD 



  Chapter 1: Introduction 

38 
 

children with TD aged-matched children aged 8 to 19 years, David 

(2012) concluded that there is a moderate effect size for the 

phonological loop, but larger effect sizes for the involvement of the 

central executive and visuo-spatial sketchpad in mathematics. Visuo-

spatial sketchpad storage seems to be more important at a younger age 

and a deficit in visuo-spatial working memory is linked to MD across all 

ages. 

The few studies involving those who excel at mathematics have, 

however, provided mixed evidence regarding which elements of 

working memory are implicated in mathematics. As mentioned above, 

those examining working memory capacity have not involved adults. 

Child mathematics prodigies, defined as children who “reach a 

professional level of achievement before the age of 10 or adolescence” 

(Ruthsatz, Ruthsatz-Stephens & Ruthsatz 2014, p.11), have been 

shown to have superior visuo-spatial working memory and general 

visuo-spatial skills to prodigies in art. Leikin, Paz-Baruch & Leikin 

(2013) also found a relationship between visuo-spatial working memory 

and mathematics in mathematically gifted adolescents. Also, a series of 

studies by Dark & Benbow (1990, 1991, and 1994) compared groups of 

adolescents who were gifted at mathematics to other groups on several 

short-term memory and working memory tasks. They found mixed 

results for the relationships between verbal and visuo-spatial working 

memory and mathematics.  

Dark & Benbow (1990) compared groups of 12-13 year old 

children who were mathematically gifted, verbally gifted, average for 

their age and college students. Giftedness was judged based on scores 

for National Curriculum standardised tests (SAT-M and SAT-V) in the 

United States. They examined the groups’ performance on short-term 

memory and working memory tasks in both the verbal and visuo-spatial 

domains. Their verbal tasks involved digit stimuli rather than words. 

They concluded that mathematically gifted children have better verbal 

short-term memory than average and verbally gifted children, but are no 
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different in this respect to college students. They suggested that this 

result may be due to the mathematically gifted being more familiar and 

experienced with digits. Results for visuo-spatial short-term memory 

found the mathematically gifted to have similar temporary storage 

capacity to the verbally gifted, worse capacity than the college students 

and only better capacity than average children of the same age. For 

working memory, measured by a continuous-paired association task, 

the mathematically gifted group performed better for recalling verbal 

items than all of the other groups. For visuo-spatial items, they 

performed better than the average and verbally gifted groups, but the 

same as the college students. Therefore, results suggested that both 

verbal working memory and visuo-spatial working memory may be 

implicated in mathematics achievement. 

Although Dark & Benbow’s 1990 study found the mathematically 

gifted had superior verbal working memory to other groups, their 1991 

study produced different results. In the 1991 study, they compared a 

group of mathematically gifted children with a group who were verbally 

gifted and a group who were both mathematically and verbally gifted at 

ages 13-14 years. They expanded the number of types of stimuli used 

in their short-term and working memory tasks to include digits, words 

and letters in the verbal domain as well as spatial locations in the visuo-

spatial domain. As in their 1990 study, results found that those who 

were gifted at mathematics had greater short-term memory digit spans 

than those who were only verbally gifted. However, the mathematically 

gifted were worse than the verbally gifted for the word span task and 

there was no difference between the groups for letter span. This 

suggested that, in the verbal domain, short-term memory differences 

depended upon the type of stimuli being remembered. For visuo-spatial 

short-term memory, unlike in the 1990 study, those who were 

mathematically gifted had greater capacities than those solely verbally 

gifted. For the working memory tasks, the mathematically gifted 

performed better for digit and letter stimuli, but no better than the 

verbally gifted for visuo-spatial or word stimuli. 
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In their 1994 study, Dark & Benbow investigated how memory for 

different types of verbal stimuli was related to mathematical and verbal 

giftedness in groups of 11-14 year old children. They again found that 

performance on a continuous-paired association working memory task 

involving remembering and recalling digits was related to mathematical 

giftedness. Performance for remembering and recalling words was 

related to both verbal and mathematical giftedness.  

The three Dark & Benbow studies therefore consistently found that 

the ability to store numbers within working memory was related to 

mathematics achievement. However, results were inconclusive for the 

relationships between storing word and visuo-spatial items and 

mathematics. These studies did indicate though that different types of 

stimuli within the verbal domain may have different relationships with 

mathematics. However, results from the Dark & Benbow studies should 

be interpreted with caution. Those classified as mathematically gifted 

also generally performed at above average levels on measures of 

verbal ability and this may have affected comparisons between the 

mathematically gifted and other groups. Also, although their continuous-

paired association task was used as a measure of working memory, it 

did not measure capacity in the same way as the studies discussed in 

section 1.4.2. Rather than simply measuring the number of items that 

could be stored within working memory, the continuous-paired 

association task measured ability to recall a fixed number of items over 

varying time delays. It was therefore likely to have been measuring the 

decay of items rather than the number of items.  

A further two relevant studies have been identified involving the 

skills involved in advanced mathematics, although they did not measure 

working memory capacity. These have examined the strategies that 

mathematics experts employ to solve problems. Dowker (1992) 

investigated strategy use for solving complex multiplication estimations 

in 44 mathematics academics and found that they used a large variety 

of different strategies to solve problems. Dowker, Flood, Griffiths, 

Harriss & Hook (1996) compared these mathematicians to groups of 
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accountants, Psychology students and English students. They found 

that, whilst all groups used diverse strategies to solve problems, the 

mathematicians and accountants used a larger number of different 

strategies, with the mathematicians solving problems the most 

accurately and using the most appropriate strategies.  As discussed in 

section 1.4.3, strategy selection and execution have been found to 

involve the central executive (Imbo et al., 2007). Therefore, Dowker and 

colleagues’ findings that mathematicians are better able to select and to 

execute appropriate strategies implicates central executive resources. 

There is therefore a paucity of research involving adults who excel 

at mathematics. There is a need to investigate differences in working 

memory capacity between those adults who are excellent at 

mathematics and those who are less skilled to better understand which 

working memory resources are linked with mathematics proficiency. 

Section 1.4.3 contains evidence that the central executive, phonological 

loop and visuo-spatial sketchpad are all involved in performing 

mathematics, although the extent of the use of the latter by adults is not 

clear.  

In summary, the research within this section includes evidence 

that there is a link between MD and deficits in visuo-spatial working 

memory. Relationships between verbal and visuo-spatial working 

memory and high mathematics achievement are unclear and also 

require investigation in adults. One element of working memory that 

may be implicated in mathematics achievement is the central executive, 

as it has been found to be involved in strategy selection and execution 

and adult mathematicians have been found to have superior strategy 

skills. 

1.4.5 Aims of the Thesis 

Taken as a whole, the previous research discussed throughout 

section 1.4 contains extensive evidence that working memory is 

involved when mathematics is performed by children and adults. There 

is therefore a need for a more comprehensive model of mathematical 
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cognition that can incorporate the involvement of working memory 

(Raghubar et al., 2010). 

Whilst there has been much research into the link between 

working memory and mathematics performance in children, research 

involving adults is sparse. Studies involving adults have also mainly 

involved the investigation of arithmetic as opposed to more varied, 

complex mathematics. Children are also in the process of learning 

mathematics so any involvement of working memory in mathematics in 

children may reflect the ability to learn mathematics rather than to 

actually perform it. It is therefore also necessary to examine individuals 

who are proficient at mathematics and are also performing different 

mathematics to basic arithmetic to gain a greater understanding of the 

link between working memory and mathematics. 

Whilst a few studies have examined working memory in children 

who are gifted at mathematics, none have so far examined skilled adult 

mathematicians and working memory. Adults who are excellent at 

mathematics will be performing calculations in an optimal manner 

through the efficient execution of strategies (Dowker et al,, 1996). 

Comparison of adults who are excellent at mathematics to those who 

are less proficient will therefore give a clearer indication of which 

working memory resources are involved in the proficient solving of 

mathematical problems.  

The literature involving adults, whilst providing evidence that both 

verbal and visuo-spatial working memory are involved in mathematics, 

has so far not addressed whether mathematicians have superior ability 

to non-mathematicians to hold verbal or visuo-spatial information, or 

both, within working memory whilst processing is carried out. Just 

because a component of working memory is used in mathematics does 

not necessarily mean that it significantly contributes to individual 

differences in mathematics ability. For example, the phonological loop 

has been found to be involved in holding interim sums in mind whilst 

performing additions (section 1.4.2) but this may be a function that 
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adults generally perform to the same level of ability. Other elements 

may therefore contribute to individual differences in mathematics and 

they may vary depending upon the type of mathematics being 

performed. Examination of verbal and visuo-spatial working memory 

capacity differences between skilled adult mathematicians and non-

mathematicians will help inform whether verbal storage, visuo-spatial 

storage or both within working memory contribute to mathematics 

achievement. Also, it is important to consider whether any superior 

cognitive abilities of mathematicians have developed as a result of 

performing more complex mathematics and more mathematics over 

time or whether their superior cognitive abilities enable them to be 

better at mathematics than the general population. 

There is also a need to further understand how having good visuo-

spatial working memory can assist adults when they solve mathematics 

problems. Within verbal working memory, the phonological loop seems 

to be involved in storing numerical information whilst processing is 

carried out (e.g. Fϋrst & Hitch, 2000). The central executive appears to 

be involved in direct retrieval and more so in procedural methods 

involving carry overs and in the selection and execution of appropriate 

strategies (e.g. Imbo & Vandierendonck, 2010). The research that 

exists regarding the use of visuo-spatial working memory has not 

adequately addressed the separation of the use of domain-general 

executive and domain-specific resources when performing 

mathematics. Visuo-spatial working memory resources have been 

implicated in mathematics performance by adults (e.g. Hubber et al., 

Experiment 1: 2014; Raghubar et al., 2010). However, it is not yet clear 

whether it is storage by the visuo-spatial sketchpad or domain-general 

elements controlled by the central executive or both, that drive this 

relationship. For example, in a review of the literature surrounding the 

relationship between working memory and mathematics in children and 

adults, Raghubar et al. (2010) highlighted the need to investigate the 

overlap between attention and working memory in relation to 

performance at mathematics. It may well be that the central executive 
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and visuo-spatial sketchpad are not equally important for the proficient 

solving of mathematical problems. 

It is also not yet clear how visuo-spatial working memory 

involvement may vary with the use of different types of mathematical 

strategies. The relative involvement of the central executive and 

phonological loop within verbal working memory has been examined in 

terms of the use of direct retrieval of answers and procedural methods 

such as counting and decomposition for solving problems (e.g. Fϋrst & 

Hitch, 2000; Imbo et al., 2005). However, the relative involvement of the 

central executive and visuo-spatial sketchpad elements of visuo-spatial 

working memory has not been examined in a similar way. This should 

be investigated to aid our understanding of how use of these 

components varies with different types of problem solving. 

In summary, previous studies with adults have largely 

concentrated on arithmetic rather than the wider range of mathematical 

processes associated with the more varied mathematics often carried 

out by adults. Also, no one has previously compared the working 

memory capacity of adult mathematicians to that of non-mathematicians 

to gain insight into whether verbal or visuo-spatial working memory 

differences or both might contribute to individual differences in 

mathematical achievement. Whilst specific roles of the central executive 

and phonological loop within verbal working memory have been 

highlighted, the involvement of the visuo-spatial sketchpad within visuo-

spatial working memory is rather vague. There is a need to further 

investigate the relative strengths of the association between visuo-

spatial storage (visuo-spatial sketchpad) and executive resources 

(central executive) and mathematics performance in adults, to discover 

which elements drive any links between working memory and 

mathematics achievement. It is also necessary to investigate whether 

these relationships vary with the use of direct retrieval or different 

procedural methods for solving problems. Finally, there is need for a 

model of mathematical cognition that incorporates working memory. I 
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will therefore investigate the following main research questions 

throughout this thesis: 

 

1) Are there any working memory capacity differences 

between adult mathematicians and non-mathematicians? 

 

2) What drives the relationship between visuo-spatial 

working memory and mathematics achievement? 

 

3) How does having good visuo-spatial working memory 

assist the proficient solving of mathematical problems? 

 

4) How can working memory be incorporated within a model 

of mathematical cognition? 

 

Section 1.5 will now give an overview of the current thesis and explain 

how these questions will be examined. 

 

1.5 The Current Thesis 

1.5.1 Overview of the Current Thesis 

This thesis contains five experimental chapters, reporting a total of 

six experiments. Relationships between the components of working 

memory and both arithmetic and more advanced calculation are 

examined. After initially investigating verbal and visuo-spatial working 

memory capacity differences between adult mathematicians and non-

mathematicians, I will then concentrate on obtaining a better 

understanding of the role of visuo-spatial working memory in 

mathematics and of the relative roles of domain-general storage and 

domain-general executive processes in the calculation and retrieval of 

answers to mathematical problems.  
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Chapter 2 contains the first two experiments. I investigate whether 

mathematicians have a superior ability to non-mathematicians for 

storing verbal or visuo-spatial information, or both, in working memory 

whilst processing is taking place. Both experiments employ working 

memory span tasks that contain a processing element that is as neutral 

as possible with regard to the items to be stored. These experiments 

will also inform whether capacities for storing verbal and visuo-spatial 

information within working memory are related to mathematics 

achievement in adults.  

In Chapter 3, I investigate, in the third experiment, whether more 

basic processes drive the link between visuo-spatial working memory 

and mathematics. I compare the performance of a group of 

mathematicians and a group of non-mathematicians on a visuo-spatial 

short-term memory and a controlled spatial attention task. I then 

examine whether the ability to store visuo-spatial information in working 

memory is still able to predict adult performance in mathematics 

calculation and arithmetic fluency when the ability to temporarily hold 

visuo-spatial information in short-term memory (with no processing) and 

controlled spatial attention are taken into account.  

In Chapter 4, I report the fourth experiment. I again examine 

whether the link between visuo-spatial working memory and 

mathematics is driven by a more basic process. I investigate whether 

memory for visuo-spatial items or memory for their order correlate with 

calculation and arithmetic performance. This experiment employs a 

correlational design with adults of varying mathematics and arithmetic 

ability rather than employing a between-group design. 

Chapter 5, I report the fifth experiment. As in Chapter 2, I 

investigate whether mathematicians have a superior ability to non-

mathematicians for storing verbal or visuo-spatial information, or both, 

in working memory whilst processing is taking place. Within this 

experiment, however, I manipulate the type of processing task used 

within the working memory span tasks to see whether verbal and visuo-
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spatial processing impact on the ability to store verbal and visuo-spatial 

information within working memory. I also examine differences between 

the mathematicians and non-mathematicians in performing visuo-spatial 

mental rotation, as a measure of general visuo-spatial ability. Finally 

performance for visuo-spatial processing, general visuo-spatial ability 

and storage of visuo-spatial information within working memory is used 

to predict mathematics calculation ability to see whether the storage 

element can still uniquely predict calculation when the other two visuo-

spatial elements are taken into account. 

In Chapter 6, I employ a within-participant design using a dual task 

experiment with adults of differing mathematics ability. In this sixth 

experiment, I attempt to assess the relative roles of the visuo-spatial 

sketchpad and central executive components of visuo-spatial working 

memory whilst adults perform addition sums using direct retrieval and 

more procedural strategies.  

A general discussion of the findings of the experimental chapters 

is found in Chapter 7. New knowledge, arising from the experimental 

chapters, is assessed in conjunction with the previous literature to 

further define the role of visuo-spatial working memory in mathematics 

and to consider how the various elements of the multi-component 

model of working memory are involved in mathematics. 

To summarise, this thesis investigates working memory 

differences between skilled adult mathematicians and adults who are 

less skilled at mathematics. Evidence has been presented within 

section 1.4 that both verbal and visuo-spatial working memory are 

involved in mathematics performed by adults. Examining differences 

between skilled mathematicians and non-mathematicians will advance 

our understanding of which of these types of working memory has the 

strongest association with mathematics achievement. It also examines 

whether differences in visuo-spatial working memory capacity and the 

link between visuo-spatial working memory and mathematics is due to 

more basic domain-specific storage or more domain-general elements 
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such as controlled attention. It builds on the previous literature to further 

understand the relationship between visuo-spatial working memory and 

mathematics and the relative contributions of visuo-spatial storage 

performed by the visuo-spatial sketchpad and domain-general functions 

performed by the central executive. Finally, it combines evidence from 

the experimental chapters and the previous literature to consider how 

the multi-component model of working memory can be used to explain 

mathematical cognition in adults. 

1.5.2 Methods 

The experimental chapters within this thesis contain a mixture of 

between-group, within-group, dual task and correlational designs.  

In Chapters 2, 3 and 5, I compare performance of groups of skilled 

adult mathematicians with groups of adults who are less skilled at 

mathematics on working memory span tasks designed to measure 

working memory capacity. Although, within the literature reviewed in 

section 1.4, there is an indication that the storage of both verbal and 

visuo-spatial information within working memory play a part in 

mathematics, comparison of skilled and unskilled mathematicians helps 

inform which type of storage is most important for proficient 

mathematics performance. Also, whilst several previous studies have 

examined the relationship between working memory and mathematics 

in individuals with mathematical difficulties (Hitch & McCauley, 1991; 

Kyttälä, 2008; Passolunghi & Siegel, 2004), none has compared 

differences in working memory between adult mathematicians and non-

mathematicians. Comparison of these different groups aids our 

understanding of to what extent verbal and visuo-spatial working 

memory are involved when adults perform complex mathematical 

problems.  

In Chapter 4, I investigate whether memory for item and order are 

related to mathematics performance, using a correlational design, in 

participants with a range of mathematical ability. In Chapter 6, I 

investigate the relative roles of the central executive and visuo-spatial 
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sketchpad in a dual-task experiment with members of the general 

population. 

Statistical analyses throughout this thesis employ Analysis of 

Variance (ANOVA), Analysis of Covariance (ANCOVA), correlations 

and regressions. For all analyses other than ANCOVA or correlations 

involving non-normal distributions, Pearson’s correlations coefficient, r, 

is used as a measure of effect size. This measure is preferred to other 

measures of effect sizes, such as Cohen’s d, as it is easily interpreted 

because its value ranges from 0 to 1. Values for r are widely interpreted 

as follows: r = .10 (small effect); r = .30 (medium effect); r = .50 (large 

effect) (Field, 2009, p.57). For ANCOVA, effect sizes are reported using 

partial η2 (Field, 2009). For correlations involving data with non-normal 

distributions, Spearman’s rho (Field, 2009) is used to calculate effect 

size.          
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Chapter 2: Working Memory Storage Capacity 

2.1 Introduction 

This chapter investigates differences in the capacity to store 

information within working memory between adult mathematicians and 

adult non-mathematicians. A group of undergraduates studying 

mathematics are compared to a group of undergraduates who are not 

studying mathematics for their performance on working memory span 

tasks in the verbal and visuo-spatial domains. 

As discussed in Chapter 1, individual differences in working 

memory, the ability to temporarily store and manipulate information in 

mind (Baddeley, 1992), have been shown to be linked to mathematics 

performance (e.g. Gathercole et al., 2004; Holmes & Adams, 2006; 

Imbo & LeFevre, 2010; Leikin et al., 2013; Wilson & Swanson, 2001). 

Also, Butterworth (2006) stated that expert calculators emphasise the 

importance of being able to hold interim information in mind whilst 

performing calculations and Hitch (1978) showed that both forgetting 

this interim information and also forgetting initial information about sums 

causes errors in mental arithmetic. Short-term memory performance 

has also been found to be linked to complex cognitive tasks, but 

performance on working memory tasks is generally more predictive 

(Bayliss, Jarrold, Gunn & Baddeley, 2003; St. Clair-Thompson & Sykes, 

2010).  

As discussed in Chapter 1, in terms of the specific storage 

components of the multi-component model of working memory (e.g. 

Baddeley, 2003); the phonological loop and the visuo-spatial sketchpad, 

research suggests that both are used in mathematics to varying 

degrees and for various functions. There is evidence for the use of the 

phonological loop in counting, fact retrieval, and the storage of 

intermediate results (e.g. Fϋrst & Hitch, 2000; Geary, 2011; Imbo & 

Vandierendonck, 2007a; Logie et al., 1994). Also, number facts are 

believed to be stored using a verbal code (Dehaene, 1992).  



  Chapter 2: WM storage capacity 

51 
 

The majority of studies have concentrated on the use of the two 

storage components in basic arithmetic rather than the more advanced 

mathematics commonly used by older children, adults and expert 

mathematicians. Previous research has suggested that both verbal and 

visuo-spatial working memory are used in mathematics. As there is a 

paucity of research into their use in mathematics by adults, research 

with both children and adults is considered here. However, as 

highlighted in Chapter 1, it should be borne in mind that relationships 

with working memory and mathematics may be different for adults and 

children, especially younger children, due to developmental trajectories 

of working memory and executive function. Also, greater use of retrieval 

strategies and more efficient use of procedural strategies are evident in 

adults solving mathematical problems (Imbo & Vandierendonck, 2008), 

which will affect comparability between different age groups.  

Correlational studies have shown links between working memory 

performance and mathematics in children (e.g. Holmes & Adams, 2006; 

Gathercole et al., 2004). Wei et al. (2012) reported a correlation 

between visuo-spatial working memory and mathematics in adult 

college students, but their working memory task did not include a 

processing element, so should really be classed as a short-term 

memory task. Their study also did not include a verbal working memory 

measure and Östergren & Träf (2013) have shown verbal working 

memory to be important for early childhood arithmetic ability. In the 

visuo-spatial domain, Leikin et al. (2013) showed adolescents gifted at 

mathematics have superior visuo-spatial working memory and Hubber 

et al. (2014: Experiment 1) found visuo-spatial working memory to be 

important when adults solve arithmetic problems. A meta-analysis 

carried out by David (2012) concluded that mathematics difficulties in 

children were attributable to visuo-spatial, not verbal, working memory 

deficits. Imbo & LeFevre (2010) found both phonological and visuo-

spatial working memory resources were used when solving subtraction 

and multiplication problems.  
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The majority of the evidence for a link between working memory 

capacity and mathematics achievement has originated from research 

involving children rather than adults. This research might therefore 

reflect the importance of working memory for learning mathematics 

rather than the proficient performance of mathematics. As highlighted in 

Chapter 1, sections 1.4.4 and 1.4.5, it will be beneficial to examine the 

working memory performance of skilled adult mathematicians, because 

this will inform which working memory resources are associated with 

the proficient solving of mathematical problems. 

It is yet to be shown whether adult mathematicians have superior 

working memory capacity to those who are less skilled at mathematics, 

and if so, whether this depends on the type of material to be stored. 

Examining differences in working memory capacity of mathematicians 

compared to non-mathematicians will help to inform whether capacity 

for remembering verbal or visuo-spatial information or both is related to 

mathematics performance in adults. Experiment 1 therefore examines 

differences in the working memory storage capacity of adult 

mathematicians and adult non-mathematicians in both the verbal and 

visuo-spatial domains. 

The most relevant studies for examining the working memory storage 

capacity of mathematicians compared to non-mathematicians appear to 

be those of Dark & Benbow (1990, 1991, 1994), described in Chapter1, 

section 1.4.4. Dark & Benbow examined differences in the short-term 

memory and working memory capacity of groups of adolescents who 

were classed as mathematically gifted and groups who were verbally 

gifted, mathematically and verbally gifted, of average ability and college 

students. Their results were mixed in that the ability of the 

mathematically gifted to remember numerical stimuli was consistently 

superior to that of the other groups, but the group differences with 

regard to remembering visuo-spatial and word stimuli were mixed 

across their experiments. Their working memory tasks also employed a 

continuous paired-associates task that always involved the pairing of 

the storage stimuli with a letter. This meant that in their verbal storage 
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conditions, storage of items may have been impaired by the verbal 

processing. Their mathematically gifted participants also had high 

verbal ability too. Although the Dark & Benbow studies involved 

adolescents rather than adults and have methodological issues, they do 

indicate that the mathematically talented may have superior working 

memory capacity dependent upon the type of stimuli being stored. 

In summary, comparing groups of adult mathematics experts and 

non-experts should help us gain a better understanding of the nature of 

the relationships between the verbal and visuo-spatial domains and 

mathematics and help inform which components of working memory are 

important for mathematics rather than more simple arithmetic. The two 

experiments within this chapter investigate whether adult 

mathematicians have greater working memory storage capacity than 

adult non-mathematicians and whether any advantage is in general or 

specific only to the verbal or visuo-spatial domain. 

2.2 EXPERIMENT 1 

Experiment 1 investigated whether mathematicians have superior 

working memory storage capacity for words, numbers or visuo-spatial 

information by comparing the performance of mathematics 

undergraduates and non-mathematics undergraduates on working 

memory span tasks, which used to-be-remembered stimuli from each of 

these three categories. Words and numbers were both included in the 

verbal domain, as Dark & Benbow (1990, 1991, 1994) had consistently 

found that the mathematically gifted have superior memory for 

numerical items, but their results were mixed for word items. Their 

results may indicate that, whilst number and word items are both 

believed to be processed verbally, mathematicians are better able to 

store numerical information. 

Traditionally, tasks used to measure working memory capacity 

have included a processing element, such as reading, performing 

arithmetic or judging the symmetry of pairs of objects, interweaved with 

to-be-remembered storage items, such as numbers, words, letters or 
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orientation of arrows (Friedman & Miyake, 2004; Unsworth & Engle, 

2007). At the end of each set, the to-be-remembered items have to be 

recalled, in correct serial order. Working memory tasks include  a 

processing element as opposed to short-term memory tasks, which 

simply involve recalling lists of to-be-remembered items without carrying 

out any processing (St. Clair-Thompson & Sykes, 2010).  

Shah and Miyake (1996) highlighted the relative importance of the 

processing and storage elements of working memory tasks. They found 

that the storage element is crucial to the correlation of a span task with 

measures of spatial or language ability, although the type of processing 

element is also significant. Jarrold, Tam, Baddeley & Harvey (2011) 

found that whether the processing element is verbal or non-verbal 

affects performance on the storage element. Therefore, the inclusion of 

a processing element, such as the traditional reading, arithmetic or 

object symmetry, may well impact on performance on the storage of 

word, numerical and visuo-spatial information. Jarrold et al. (2011) also 

noted that processing tasks used to investigate storage in the verbal 

and visuo-spatial domains usually involve different task formats for 

processing stimuli. One can therefore not be sure that any differences 

found for storage performance are definitely due to differences in 

storage ability rather than being caused by differences in the cognitive 

load of the processing elements. Therefore, choice of the type and 

format of the processing element for inclusion in a working memory 

span task is extremely important. 

Because of the potential impact of the processing element on the 

storage element, this study used the same novel face-matching task 

(Burton, White & McNeill 2010) for the processing element in all 

conditions. This task required participants to make same or different 

judgements for pairs of unfamiliar faces. The nature of this task is a 

basic visual comparison involving no spatial transformation (Miyake et 

al., 2001) and containing no verbal processing and was chosen for the 

current study as being as neutral a processing task as possible with 

regard to the storage stimuli used. Face processing has been 
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previously used in studies investigating proactive interference 

(Pimperton & Nation, 2010) and although face matching would seem to 

be a simple task, Burton, White and McNeill have shown that it is not 

trivially easy, with their 2010 study showing an average of 89.9% 

accuracy for their sample of 300 adults who completed the task. 1 in 10 

trials resulted in error, despite the fact that participants were completing 

this task alone rather than it being embedded in a working memory 

task. 

To summarise, Experiment 1 investigated differences between the 

working memory storage capacity for number, word and visuo-spatial 

stimuli of adult mathematicians and non-mathematicians, using working 

memory span tasks that utilised a consistent and as-neutral-as-possible 

processing element.  

As Dark & Benbow (1990, 1991, 1994) consistently showed the 

mathematically gifted to have superior working memory capacity for 

numbers, mathematics undergraduates were expected to have greater 

working memory capacity for numerical stimuli than non-mathematics 

undergraduates. As mathematics has been previously shown to rely on 

the spatial relations of numbers and Hubber et al. (2014: Experiment 1) 

found visuo-spatial working memory to be important for arithmetic in 

adults, mathematics undergraduates were expected to have greater 

working memory capacity for visuo-spatial information than non-

mathematics undergraduates. These hypotheses are supported 

theoretically by the fact that all four models of working memory 

discussed in Chapter 1, section 1.3, include the assumption that central 

executive resources are important for the efficient performance of 

working memory and the central executive has also been consistently 

found to be implicated in mathematics (section 1.4). For this reason, it 

was also expected that mathematicians would have superior working 

memory capacity in the word condition. 
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2.2.1 Method 

2.2.1.1 Participants 

G*Power 3 (Faul, Erdfelder, Lang & Buchner, 2007) suggested 

that a minimum sample size of 44 participants was required to detect an 

interaction, for two groups with three measures, with an effect size of 

.25. This effect size was chosen as being a medium effect size per Faul 

et al. (2007). This is a conservative effect size compared to the .30 

medium effect size proposed by Field (2009), referred to in section 

1.5.2. Throughout this thesis, statements regarding power calculations 

represent the power required to detect interactions. It should be noted 

that the power calculations give less power to detect main effects. 55 

participants were recruited from undergraduates at the University of 

Nottingham: 27 (10 male) to a mathematics group and 28 (8 male) to a 

non-mathematics group. All participants received an inconvenience 

allowance of £6.  

The mathematics group comprised 19 Mathematics and 8 

Economics students. Their ages ranged from 18.33 to 30.58 years (M = 

20.43; SD = 2.29). Economics students were included because degree 

modules for this subject contain substantial mathematics elements and 

all economics undergraduates had studied maths at A level. 

The non-mathematics group comprised English, History and 

Sociology students, who were not studying mathematics modules at 

University. Their ages ranged from 18.67 to 28.92 years (M = 20.72; SD 

= 2.35). Five of the non-mathematics group were later discovered to 

have studied maths at A level and their data was therefore discarded. 

The remaining participants in the non-mathematics group had not 

studied mathematics for a mean of 4.29 years (SD = 2.71). 

2.2.1.2 Equipment 

A Viglen Pentium D computer, running Windows XP and 

PsychoPy 2 version 1.73.06 (Peirce, 2007), was used to present stimuli 

and record latencies and accuracy. Participants’ responses were 
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collected via keyboard, numeric keypad or USB mouse. Further details 

about response collection are given in section 2.2.1.3 below.  

2.2.1.3 Working Memory Tasks 

There were three working memory span tasks which had the same 

processing element and different storage elements, with the processing 

and storage elements interleaved. 

For the processing element, participants were presented with two 

photographs of faces side by side on screen and had to make a 

judgement as to whether the two faces shown were different pictures of 

the same person or not. They pressed the ‘y’ key on the keyboard if the 

faces were the same person and the ‘n’ key if they were different 

people. Each picture was 8.5 cm wide and 9.5 cm high. The left picture 

was positioned -7 cm left of centre and the right positioned +7 cm right 

of centre. The pictures of faces were all taken from the Glasgow 

Unfamiliar Face Database, which shows a high internal reliability when 

used in a face-matching task (Burton et al., 2010). Faces presented 

were all white, Western, with neutral expressions and matching pairs 

were presented in approximately 50% of the trials. Examples of same 

and different pairs are included in Appendix A. 

The storage element of each span task consisted of numerical, 

word or visuo-spatial items presented in the centre of the screen. To 

ensure consistency across the three storage types (Kane et al., 2004), 

items in each span set were taken from a group of nine possible stimuli 

in each condition: 

Number span:       Digits 1 to 9 (size 2cm, arial font, colour white on 

dark grey background) 

Word span: Nine animal words (fly, cow, dog, bat, ape, fox, 

elk, hen, ram), each containing 3 letters and 1 

syllable (size 2cm, arial font, colour white on dark 

grey background)  
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Visuo-spatial span:   Black 3 x 3 grid in the centre of the screen (each 

square was 6cm wide x 6cm high) with a red dot 

(size 3 cm wide x 3cm high) placed in one of nine 

possible locations on the grid (see Figure 2.1) 

 

Figure 2.1: Example of storage item presentation during the visuo-spatial span task. 

 

Each trial comprised an interleaved series of processing elements 

and storage items. Each pair of faces (processing element) was 

presented on screen for 3 seconds, although participants were still able 

to respond after this time, and the storage items were presented for 500 

milliseconds(ms), commencing 500ms after a response had been given 

to the preceding pair of faces (following Kane et al., 2004). The next 

pair of faces was presented 500ms after the storage item disappeared 

from screen. At the end of each span set, once all storage items had 

been presented, a “ ? ” appeared in the centre of the screen that 

prompted the participants to recall the storage items, in their order of 

presentation. In the number condition, participants said the numbers 

aloud and the experimenter keyed the response into the USB numeric 

keypad. In the word condition, participants said the words out loud, the 

experimenter coded them and then entered them via the USB numeric 

keypad.  In the visuo-spatial condition, a black 3 x 3 grid appeared on 

screen immediately after the “ ? “ and participants recalled the serial 

order of the red dot by clicking on the grid, using the USB mouse. Once 

recall was completed, the participant pressed the space bar to begin the 

next trial (see Figure 2.2 for an example trial sequence). 

Each trial was largely experimenter-paced, rather than participant-

paced, to reduce the ability of participants to utilise different strategies, 
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such as chunking, for remembering items (Engle et al., 1992; Friedman 

& Miyake, 2004). The exception to this was that participants could still 

respond to the pairs of faces after they had disappeared from screen so 

that they were still able to give a response to the processing element. In 

practice, as will be seen in section 2.2.2.3.1, they took far less, on 

average, to respond to the faces than the 3 seconds allowed and there 

were no significant differences in response times between the two 

groups. 

 

Figure 2.2: Example of a trial sequence (2 span) in the numerical condition. 

 

Working memory span studies have traditionally presented span 

sets in ascending order of length (St Clair-Thompson, 2012), but Lustig, 

May and Hasher (2001) found that order of presentation can have an 

impact on span scores, suggesting that later sets are affected by 

interference from earlier presentations. Therefore if the longest sets, 

which are most important for determining a participant’s span score, are 

presented later they are the most affected by this proactive interference. 

To minimise this issue (Conway et al., 2005) and also prevent 

participants from anticipating which span size they would have to 



  Chapter 2: WM storage capacity 

60 
 

remember next (Engle et al., 1992; Unsworth, Heitz, Schrock & Engle, 

2005), span sets were presented in a random order in Experiment 1. 

Each of span lengths 2 to 7 was presented three times, giving 18 span 

sets (trials) in each of the three conditions (included in Appendix B). 

Each of the nine possible items within each set was presented 

approximately equally. 

2.2.1.4 Additional Materials 

Two standardised tests from the Wechsler Abbreviated Scale of 

Intelligence (WASI; Psychological Corporation, 1999) were 

administered, using the standard procedures and scores, to enable 

comparison of the IQ of the two groups –  

WASI Matrix Reasoning (non-verbal IQ):  For each item, participants 

were shown a matrix of coloured figures with one piece missing and 

had to select the missing piece from five alternatives shown below the 

matrix. There was no time limit for completion of the 29 items. Under 

the standard procedure, the test was stopped if participants scored zero 

on four consecutive items or scored zero on four out of five consecutive 

items. 

WASI Vocabulary (verbal IQ):  For each item, the experimenter read a 

word out aloud and participants had to give the meaning of the word. 

There was no time limit for completion of the 34 items. Under the 

standard procedure, the test was stopped if participants scored zero for 

five consecutive items. 

The Woodcock-Johnson Calculation Test (Woodcock, McGrew & 

Mather, 2001) was administered, commencing with item 14, using the 

standard procedure, to ensure there was a difference in the maths 

ability of the two groups. Raw scores are reported for this test. Using 

pen and paper and no calculator, participants had to solve a series of 

mathematics calculations of increasing difficulty, which ranged from 

simple arithmetic, fractions and long division through to items such as 

matrices, integration and trigonometrical ratios. There was no time limit 
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for completion of the 32 items. Under the standard procedure, the test 

was stopped if participants scored zero on six consecutive items.  

2.2.1.5 Procedure 

All participants were tested individually by the same experimenter 

and each session lasted around one hour. All participants in both 

groups completed the three working memory span conditions on the 

computer. The order in which the three conditions were presented was 

counterbalanced across participants and the order of presentation of 

span sets and the presentation of items within each set was 

randomized.  

After initial instructions, participants practised the face-matching 

task, comprising same or different judgements for six pairs of faces, so 

they could familiarise themselves with the processing task. They then 

began the experiment. All three conditions that followed commenced 

with a practice of one 2-span set and one 3-span set comprising both 

processing and storage tasks, before the 18 experimental sets were 

administered. Participants then completed the WASI Matrix Reasoning 

and WASI Vocabulary tests, the order of which was counterbalanced 

across participants. Finally, participants completed the Woodcock-

Johnson Calculation Test. 

2.2.1.6 Span Scoring Method 

The traditional method of scoring working memory span tasks 

involves assigning an absolute score (e.g. Daneman & Carpenter, 

1980; Conway, Cowan, Bunting, Therriault & Minkoff, 2002). 

Participants are tested at ascending span lengths and their span score 

is taken as the span length at which they succeed a predetermined 

number of times, such as on 2 out of 3 attempts, before failing to meet 

this threshold on the next span size up. Testing usually ceases once 

this point has been reached. This method of scoring was considered 

inappropriate for the current study because it is believed to be too 

insensitive a measure (St. Clair-Thompson & Sykes, 2010; Unsworth & 

Engle, 2007). 
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 Conway et al. (2005) evaluated four alternative methods of 

scoring working memory span performance: Partial Credit Unit, the 

mean proportion of elements recalled in the correct serial position; All-

or-Nothing Unit, the proportion of sets in which all items are recalled in 

the correct serial position; All-or-Nothing Load, the sum of wholly 

recalled correct spans (e.g. recalling 4 span correctly 3 times gives a 

score of 12); Partial Credit Load, the sum of all items recalled correctly 

regardless of serial position.  

     Whilst load scoring is commonly used within psychology, it is rarely 

used in psychometrics due to its tendency for positive skews and 

assigning greater weight to longer lists (Conway et al., 2005). Load 

scoring was therefore discounted for the current study, leaving a choice 

between Partial Credit Unit (more commonly called Proportion Correct 

scoring and this term will be used going forward) and All-or-Nothing 

Unit.  

     Proportion Correct scoring showed greater reliability when Conway 

et al. (2005) reanalysed data from the Kane et al. (2004) study, in which 

236 participants performed an operation span, reading span and 

counting span. St. Clair-Thompson & Sykes (2010) compared national 

curriculum scores for reading, writing, mathematics and science with 

performance on a series of short-term and working memory tasks using 

both absolute and proportion correct scoring methods. They found that, 

whilst the scoring methods were highly correlated and had similar 

reliability, Proportion Correct scoring provided a better predictor of 

ability and the authors recommended use of this method. Similarly, 

Friedman & Miyake (2005) recommended using Proportion Correct 

scoring following their comparison of four scoring methods which found 

this method to have greatest reliability, the best correlation with reading 

comprehension and verbal SAT, fewer outliers and a more normal 

distribution of data. Also, because it is a more continuous scoring 

method, Proportion Correct is more sensitive to individual differences. 

Finally, Unsworth & Engle (2007) reported switching to using Proportion 

Correct scoring, having previously used an All-or-Nothing method, due 
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to superior psychometric properties and greater sensitivity through 

using information from lists that were not perfectly recalled. The current 

study therefore used the Proportion Correct scoring method. 

2.2.1 Results 

Seven participants (3 mathematics group; 4 non-mathematics 

group) were excluded from the analyses for having an unacceptably 

high (>15%) error rate in the processing task (mathematics: 1 visuo-

spatial condition, 2 word condition; non-mathematics: 2 visuo-spatial 

condition, 1 visuo-spatial & word conditions, 1 word condition). 

Omission of participants scoring < 85% on the processing element in 

this way is recommended (Conway et al., 2005; Unsworth et al., 2005) 

to ensure that unfair advantage has not been gained on the storage 

element through paying insufficient attention to the processing element.  

A Cook’s Distance score was calculated initially for each 

participant in each condition within the Analysis of Variance (ANOVA) 

described in section 2.2.2.2 to discover whether there were any 

influential cases that could affect the results of the ANOVA. A Cook’s 

distance score was also calculated in a regression using storage 

accuracy in the three conditions to predict mathematics scores, to 

discover whether influential cases could affect any of the correlations 

reported below. One influential outlier was detected in the non-

mathematics group in the visuo-spatial condition, with a Cook’s 

Distance score >1 (Field, 2009) and this male participant’s data was 

discarded for analysis purposes. 

This left data for 24 (10 male) participants in the mathematics 

group and 18 (7 male) in the non-mathematics group available for 

analysis. This totalled 42 participants overall, which was just below the 

recommended minimum of 44, suggested by G-Power (Faul et al., 

2007) on the basis of a small-medium effect size. However, the sections 

below show that 42 participants was still sufficient to detect group 

differences. 
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Controlling for gender had no significant impact on analyses and 

gender was therefore not controlled for in any analyses reported below. 

Degrees of freedom were corrected using Greenhouse-Geisser 

estimates of spherity where necessary. 

In the sections below, results for standardised tests will be firstly 

reported (section 2.2.2.1), followed by results for the storage element of 

the working memory tasks (section 2.2.2.2), results for the processing 

element of the working memory tasks (section 2.2.2.3), then finally the 

relationship between the storage element and mathematics scores 

(section 2.2.2.4). 

2.2.2.1 Standardised Tests 

Performance of the two groups on the standardised tests was 

initially compared to confirm that the mathematicians were better at 

mathematics than the non-mathematicians and to confirm that the 

groups were matched for verbal and non-verbal IQ. 

An independent t-test to compare the two groups’ Woodcock-

Johnson Calculation Test scores confirmed that the mathematics group 

(M = 25.83, SD = 2.91) were significantly better at mathematics than the 

non-mathematics group (M = 13.61, SD = 3.57), t(40) = 12.22, p < .001, 

r = .89. Scores for the mathematics group represented a median 

percentile rank compared to age norms (Woodcock, McGrew & Mather, 

2001) of 93.00 (min = 81.00; max = 99.80). Scores for the non-

mathematics group represented a median percentile rank compared to 

age norms of 45.00 (min = 7.00; max = 73.00). 

Independent t-tests also showed that there was no significant 

difference between the two groups for WASI Matrix Reasoning non-

verbal IQ (mathematics: M = 29.42, SD = 2.47; non-mathematics: M = 

28.72, SD = 2.78), t(40) = .86, p = .398, r = .13 or for WASI Vocabulary, 

verbal IQ (mathematics: M = 61.83, SD = 6.27; non-mathematics: M = 

65.17, SD = 5.73), t(40) = -1.77, p = .085, r = .27. Although the latter 

was approaching significance, controlling for verbal or non-verbal IQ 
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made no significant difference to results or conclusions and results 

reported below are without controlling for IQ. 

2.2.2.2 Storage Element 

Proportion correct scores were first calculated for each participant 

for the number of storage items recalled in their correct serial position. 

Descriptive statistics by group are shown in Figure 3. 

A 2(group: mathematics, non-mathematics) x 3(working memory 

storage type: number, visuo-spatial, word) mixed Analysis of Variance 

(ANOVA) was then performed on these scores. Results of the ANOVA 

showed no main effect of studying or not studying mathematics, F(1,40) 

= 3.57, p = .066, r = .29, although this was approaching significance. 

There was a significant main effect of storage type, F(1.57,62.93) = 

51.01, p < .001, r = .67. Contrasts showed that scores in the number 

condition were significantly greater than those in the visuo-spatial 

condition, F(1,40) = 51.27, p < .001, r = .75, and the word condition, 

F(1,40) = 117.45, p < .001, r = .86. Scores in the visuo-spatial condition 

were also significantly greater than those in the word condition, F(1,40) 

= 12.73, p = .001, r = .20. 

There was a significant group x working memory storage type 

interaction (see Figure 3), F(1.57,62.93) = 6.01, p = .007, r = .30. Tests 

of Bonferroni-corrected simple main effects showed that the 

mathematics group had significantly greater scores than the non-

mathematics group in the visuo-spatial condition, F(1,40) = 19.10, p < 

.001, r = .57, but there was no significant difference in performance 

between the two groups in the verbal domain: word span F(1,40) = .01, 

p = .921, r = .02; number span F(1,40) = .08, p = .583, r = .04.2 

                                            
2
 ANOVAs were also run using both the All-or-Nothing Unit and All-or-Nothing Load 

methods, which did not result in any significant changes to results or conclusions. 
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Figure 2.3: Accuracy of storage type for each participant group with S.E.M. error bars.  

 

Word span and number span scores correlated, r = .59, p < .001, 

but neither storage type in the verbal domain correlated with visuo-

spatial span scores: word span rs = .16, p = .312; number span rs = .12, 

p = .434. 

2.2.2.3 Processing Element 

Initially, mean accuracy and median RT were calculated for each 

participant in each of the three working memory span conditions. 

Separate 2(group: mathematics, non-mathematics) x 3(working 

memory storage type: number, visuo-spatial, word) mixed ANOVAs 

were performed for each of face-matching accuracy and face-matching 

latencies to examine performance of the two groups on the processing 

element under each storage condition. Mean accuracy, mean RT and 

standard error by group and span type are shown in Table 2.1. 

 

 

 

 

** 
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Table 2.1 

Mean (M) and standard error (SE) for accuracy and reaction time in the face matching 

task by group in each storage type condition 

 

Condition 

     Accuracy    Reaction Time(Ms) 

Groups     M  SE     M  SE 

Number Mathematics 

Non-Mathematics 

 .94 

.95 

.01 

.01 

 1264 

1326 

 63 

 72 

Visuo-spatial Mathematics 

Non-Mathematics 

 .94 

.96 

.01 

.01 

 1287 

1421 

 50 

 86 

Word Mathematics 

Non-Mathematics 

 .93 

.93 

.01 

.01 

 1323 

1403 

 63 

 76 

 

2.2.2.3.1 Accuracy 

Results showed no main effect of studying or not studying 

mathematics for accuracy on the face-matching task, F(1,40) = 2.47, p 

= .124, r = .24. There was a significant main effect of storage type, 

F(2,80) = 5.57, p = .005, r = .42. Contrasts showed that there was no 

significant difference in accuracy on the processing element between 

the number and visuo-spatial storage conditions, F(1,40) = .34, p = 

.565, r = .09, but that face-matching was more accurate in both the 

number (F(1,40) = 7.03, p = .011, r = .39) and visuo-spatial (F(1,40) = 

8.65, p = .005, r = .42) storage conditions than the word storage 

condition. There was no group x span type interaction, F(2,80) = .34, p 

= .716, r = .09. 

2.2.2.3.1 Latencies 

Results for face matching latencies showed no main effect of 

studying or not studying mathematics, F(1,40) = 1.03, p = .316, r = .16. 

There was a significant main effect of storage type. F(2,80) = 3.52, p = 

.034, r = .21, with simple main effects revealing latencies in the number 

condition were faster than those in the visuo-spatial condition F(1,40) = 

4.87, p = .033, r = .33 and those in the word condition F(1,40) = 7.01, p 

= .012, r = .39. There was no significant difference for latencies 

between the visuo-spatial and word conditions F(1,40) = .08, p = .774, r 
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= .05. Finally, there was no group x storage type interaction, F(2,80) = 

.90, p = .411, r = .15. 

2.2.2.4 Relationship of Storage Element with Mathematics Scores 

There was a significant relationship between participants’ 

Woodcock-Johnson Calculation scores and their visuo-spatial span 

performance, rs = .56, p < .001, but neither storage types in the verbal 

domain correlated with mathematics scores: word span rs = .18, p = 

.264; number span rs = .07, p = .681.  

2.2.3 Discussion 

Experiment 1 investigated whether adult mathematicians have superior 

working memory storage capacity to adult non-mathematicians and if so 

whether this is in general or just specifically for number, visuo-spatial or 

word information, in order to discover which types of information 

storage within working memory have important links with mathematics. 

Through the use of a consistent processing task across conditions, 

which was as neutral as possible with regards to the storage elements, 

this experiment has provided evidence that mathematicians have 

superior working memory capacity for the storage of items in the visuo-

spatial domain, but that there is no significant difference between adult 

mathematicians and non-mathematicians in the verbal domain for word 

or numerical information. This suggests that, in terms of mathematical 

cognition, visuo-spatial working memory storage capacity has a 

significant association with mathematics. This will be considered further 

in the general discussion (section 2.4). 

The first hypothesis was not supported because, unlike in the Dark 

& Benbow (1990, 1991, 1994) studies, mathematicians did not have 

superior working memory capacity for numerical stimuli. Dark & Benbow 

argued that their mathematically gifted participants may have performed 

better in their numerical conditions as they were more familiar with the 

numerical stimuli than were their other participant groups, but, as the 

stimuli used were basic digits, this seems unlikely. Also, their working 

memory task did not involve recall at varying span lengths, but 
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measured either recall of a stimuli pairing at varying time lags between 

presentation and recall or simply their performance at a fixed set size of 

five items. Therefore, their task measured the amount of time an item 

could be retained or sustained performance at a fixed span length 

rather than measuring actual item capacity. It should also be 

remembered that their studies involved adolescents rather than adults, 

which may also account for differences between their findings for 

numerical storage and those of Experiment 1 in this chapter. 

The most striking finding of the current study was that the group of 

mathematics undergraduates had significantly greater working memory 

capacity for visuo-spatial information than the non-mathematics group, 

supporting the second hypothesis. This intergroup difference was 

underlined by the strong correlation between participants’ Woodcock-

Johnson mathematics scores and visuo-spatial span proportion correct 

scores, which was not affected by controlling for verbal IQ, non-verbal 

IQ or gender. Results for the visuo-spatial condition in Experiment 1 

support the findings of Wei et al. (2012) who found a correlation 

between visuo-spatial memory and mathematics, although they used a 

short-term memory task rather than a working memory task. The fact 

that visuo-spatial span scores correlated with mathematics scores, 

whereas the two verbal span scores did not, and the two verbal spans 

correlated with each other but neither correlated with visuo-spatial span 

also supports the Baddeley & Hitch multi-component model of working 

memory (Baddeley, 2000) which identifies the phonological loop and 

visuo-spatial sketchpad as separate verbal and visuo-spatial stores.  

The third hypothesis was not supported in that there was no 

significant difference between the two groups for performance in the 

word condition of Experiment 1. However, this helps to make sense of 

the findings in the numerical condition if they are viewed within the 

framework of the multi-component model of working memory 

(Baddeley, 2000). Span tasks involving digits are generally viewed as 

being verbal in nature (e.g. Dark & Benbow, 1990; Baddeley, 1992), 

because digits are given verbal labels when stored in memory. The 
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finding that digit span scores were greater than word span scores is 

consistent with previous research and likely due to word-frequency 

effects (Unsworth & Engle, 2007). The Experiment 1 findings that there 

were no differences between the two groups for storage in either the 

numerical or word conditions indicates no difference in phonological 

loop capacity for adult mathematicians and non-mathematicians.  

As can be seen from Table 1, participants in both groups 

performed at greater accuracy levels than in Burton et al.’s (2010) study 

for the face-matching processing task. Burton and colleagues’ 

participant sample comprised adults recruited from the general 

population, whereas the current study comprised undergraduate 

students, which may account for the difference in performance. Their 

study also included several non-white faces, whereas the current study 

only used white, Western faces from the database. Both accuracy and 

latencies were similar for mathematicians and non-mathematicians 

across all three storage conditions, allowing for a meaningful 

comparison across the storage elements. This processing task could 

also be readily manipulated in future research if greater difficulty was 

required, by, for example, increasing the number of faces presented to 

three or requiring matching after a delay. Overall accuracy on the face-

matching task was slightly worse in the word condition than in the 

number and visuo-spatial conditions. This is consistent with previous 

findings that performance on the processing element of a working 

memory span task usually positively correlates with performance on the 

storage element (Conway et al., 2005) and performance for word 

storage was worse than for numbers and visuo-spatial storage, as 

shown in Figure 3. Similarly, processing latencies were faster in the 

number condition than in the word and visuo-spatial conditions, 

reflecting the greater performance for number storage items. 

To conclude, Experiment 1 found that undergraduates studying 

mathematics had superior working memory storage capacity to 

undergraduates not studying mathematics, but that there was no 

significant difference between the two groups for working memory 
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storage capacity for verbal information, as shown by results for number 

and word spans. These findings support the theory of separate domain-

specific resources for the storage of visuo-spatial and verbal 

information, in line with the phonological loop and visuo-spatial 

sketchpad elements of the multi-component model of working memory. 

However, Experiment 1 used span lengths 2 to 7 across all conditions 

and, on examining data for the numerical condition, it was found that 

participants in both the mathematics and non-mathematics groups were 

performing at around ceiling. Whilst both groups appeared to have the 

same storage capacity in the numerical condition, testing at greater 

span lengths may have resulted in a divergence of their scores 

indicating a difference in capacity. Experiment 2, reported below, was 

therefore run using span lengths 3 to 8 in the numerical condition, to 

examine whether ceiling effects contributed to the results in Experiment 

1. 

Results therefore provide evidence for an important link between 

visuo-spatial working memory capacity and mathematics. Experiment 2 

attempted to replicate the group difference in the visuo-spatial domain 

and also investigated whether potential ceiling effects had an impact in 

the numerical condition of Experiment 1. 

2.3 EXPERIMENT 2 

Experiment 2 again compared the working memory storage 

capacity of a group of undergraduate mathematicians and 

undergraduate non-mathematicians for verbal and visuo-spatial 

information. Only the number condition was used in the verbal domain 

as, in Experiment 1, the number and word conditions had shown similar 

patterns of association with mathematics scores and with the visuo-

spatial condition. The visuo-spatial condition in Experiment 2 was 

identical to that used in Experiment 1 to see whether the results that 

mathematicians have superior visuo-spatial working memory storage 

capacity could be replicated. In the number condition, the span lengths 

used were increased to spans 3 to 8 to investigate whether ceiling 
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effects present in the number condition had impacted the results of 

Experiment 1. 

2.3.1 Method 

2.3.1.1 Participants 

54 participants were recruited from undergraduates at the 

university of Nottingham: 27 (9 male) to a mathematics group and 27 (9 

male) to a non-mathematics group. None of the participants had taken 

part in Experiment 1 and all participants received an inconvenience 

allowance of £6. 

The mathematics group comprised 15 mathematics students and 

12 economics students who had studied mathematics at A level. Their 

ages ranged from 18.66 to 36.89 years (M = 20.88, SD = 3.53). The 

non-mathematics group comprised English, History, Philosophy and 

Sociology students who had not studied mathematics at A level. Their 

ages ranged from 18.78 to 22.68 years (M = 20.33, SD = .99). On 

average, participants in the non-mathematics group had not studied 

maths for 4.18 years (SD = 1.16). 

2.3.1.2 Equipment 

Equipment was identical to that used in Experiment 1 (section 

2.2.1.2). 

2.3.1.3 Working Memory Tasks 

The working memory tasks in Experiment 2 were identical to those 

used in the number and visuo-spatial conditions of Experiment 1 

(section 2.2.1.3), with the exception of span lengths 3 to 8 being used 

for the number condition. Span lengths 2 to 7 were again used in the 

visuo-spatial condition. The full list of trials used in the number condition 

is included in Appendix C.  

2.3.1.4 Additional Materials 

WASI Matrix Reasoning (WASI; Psychological Corporation, 1999) 

and the Woodcock-Johnson Calculation Test (Woodcock, McGrew & 
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Mather, 2001) used in Experiment 1 (section 2.2.1.4) were also 

administered in Experiment 2. 

The Woodcock-Johnson Math Fluency Test (Woodcock, McGrew 

& Mather, 2001) was also administered as an additional mathematics 

assessment, using the standard procedure. Using pen and paper and 

no calculator, participants had to solve as many simple arithmetic 

problems as possible within three minutes.  

 WASI Vocabulary was not administered in this experiment as 

there was no word condition. 

2.3.1.5 Procedure 

All participants completed the working memory span tasks as part 

of an approximately hour long session with the same experimenter. The 

session also involved the completion of two short-term memory tasks 

and an attention task that will be discussed in Chapter 3. 

Procedures and timings for the two working memory span 

conditions were identical to those in Experiment 1 (section 2.2.1.5). 

After completion of the working memory span tasks, participants then 

completed the short-term memory tasks followed by the attention task 

(both reported in Chapter 3) and then WASI Matrix Reasoning. Finally 

they completed the Woodcock-Johnson Calculation Test and 

Woodcock-Johnson Math Fluency Test, the order of which was 

counterbalanced. 

2.3.2 Results 

Three participants (2 mathematics group; 1 non-mathematics 

group) were later excluded from the analyses for having an 

unacceptably high (>15%) error rate in the processing task 

(mathematics: 1 number condition, 1 number & visuo-spatial conditions; 

non-mathematics: 1 number condition) leaving data for 25 (9 male) 

participants in the mathematics group and 26 (9 male) in the non-

mathematics group available for analysis. 
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No influential outliers with a Cook’s Distance score >1 (Field, 

2009) were detected in either group, using the same analyses as in 

Experiment 1 (described in section 2.2.1). As in Experiment 1, 

controlling for gender had no significant impact on analyses and gender 

was therefore not controlled for in any analyses reported below. 

Degrees of freedom were corrected using Greenhouse-Geisser 

estimates of spherity where necessary. 

In the sections below, results for standardised tests will be firstly 

reported (section 2.3.2.1), followed by results for the storage element of 

the working memory tasks (section 2.3.2.2), results for the processing 

element of the working memory tasks (section 2.3.2.3), then finally the 

association between the storage element and mathematics scores 

(section 2.3.2.4). 

2.3.2.1 Standardised Tests 

An independent t-test to compare the two groups’ Woodcock-

Johnson Calculation Test scores confirmed that the mathematics group 

(M = 24.80, SD = 3.50) were significantly better at mathematics than the 

non-mathematics group (M = 12.15, SD = 3.46), t(49) = 12.97, p < .001, 

r = .88. Scores for the mathematics group represented a median 

percentile rank compared to age norms (Woodcock, McGrew & Mather, 

2001) of 92.00 (min = 64.00; max = 99.00). Scores for the non-

mathematics group represented a median percentile rank compared to 

age norms of 34.00 (min = 5.00; max = 67.00). 

 A non-parametric Mann-Whitney test was performed to compare 

the two groups’ Woodcock-Johnson Math Fluency scores, because the 

mathematics group’s scores showed significant negative skew at the p 

< .05 level (Field, 2009). This showed a significantly higher performance 

for the mathematicians (M = 144.68, SD = 20.72) compared to the non-

mathematicians (M = 113.46, SD = 16.87), U = 90.00, Z = -4.43, p < 

.001, r = .63. Scores for the mathematics group represented a median 

percentile rank compared to age norms of 89.00 (min = 21.00; max = 

99.90). Scores for the non-mathematics group represented a median 
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percentile rank compared to age norms of 43.50 (min = 3.00; max = 

83.00). 

An independent t-test showed that the mathematics group (M = 

28.92, SD = 3.46) had significantly greater non-verbal IQ than the non-

mathematics group (M = 26.88, SD = 3.25) when comparing their 

scores for WASI Matrix Reasoning. All analyses were therefore initially 

run controlling for WASI Matrix Reasoning scores, but this made no 

difference to main effects or interactions. Therefore, results reported 

below do not control for non-verbal IQ. 

2.3.2.2 Storage Element 

As in Experiment 1, proportion correct scores were first calculated 

for each participant for the number of storage items recalled in their 

correct serial position.  

Before conducting the main ANOVA, scores were examined for 

the two groups in the number span condition for span lengths 3 to 8, to 

check for ceiling effects. Mean proportion correct scores (mathematics: 

M = .88, SD= .08; non-mathematics: M = .87, SD = .05) clearly showed 

that neither group was performing at ceiling and a non-parametric 

Mann-Whitney test showed no significant difference in proportion 

correct scores between the two groups, U = 323.00, z = -.04, p = .974. 

A non-parametric test was used here as the non-mathematics group’s 

scores showed significant negative skew at the p < .05 level (Field, 

2009).  

Although a non-parametric test was used above, a parametric 

ANOVA is used below to examine differences in storage capacity 

between groups and conditions. ANOVA has frequently been found to 

be robust to skew in data and it has been shown that lack of normality is 

only problematic for the F-test in ANOVA in sample sizes below 40 

(Field, 2009). Garcia-Marques, Garcia-Marques & Brauer (2014) also 

showed that transforming non-normal data for use in a 2 x 2 ANOVA 

renders the smallest of the main effects and interactions 

uninterpretable. For these reasons, a parametric ANOVA was used. 
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This treatment is also consistent with the previous working memory 

span task literature. 

A 2(group: mathematics, non-mathematics) x 2(working memory 

storage type: number, visuo-spatial) mixed ANOVA was then performed 

on the proportion correct scores using span lengths 3 to 7 for both 

conditions, to ensure the same span lengths were being compared 

across conditions. Descriptive statistics for spans 3 to 7, by group, are 

shown in Figure 2.4.3  

 

Figure 2.4: Accuracy of storage type for each participant group with S.E.M. error bars.  

 

Results of the ANOVA showed a main effect of group, with 

mathematicians scoring higher overall, F(1,49) = 8.90, p = .004, r = .39. 

There was also a main effect of storage type, with performance for 

number span greater than that for visuo-spatial span, F(1,49) = 29.50, p 

< .001, r = .61. There was a group x storage type interaction, F(1,49) = 

24.09, p < .001, r = .57. Tests of Bonferroni-corrected simple main 

effects showed that the mathematics group had significantly greater 

                                            
3
 Because of the intention to exactly replicate the visuo-spatial condition and the need 

to increase span lengths to 3 to 8 to check for ceiling effects in the numerical 
condition, the fact that the span lengths across the two conditions were not 
comparable was overlooked at the design stage. This is why span lengths 3 to 8 were 
initially checked for ceiling effects in the numerical condition, before spans 3 to 7 were 
analysed for both conditions in the ANOVA. 

** 
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visuo-spatial span scores than the non-mathematics group, F(1,40) = 

19.94, p < .001, r = .54, but there was no significant difference in 

performance between the two groups for number span F(1,49) = .07, p 

= .788, r = .04.4 

Visuo-spatial span scores also did not correlate with number span 

scores, rs = .17, p = .245. 

2.3.2.3 Processing Element 

Initially, mean accuracy and median RT were calculated for each 

participant in each of the two working memory span conditions over 

span lengths 3 to 7, to be consistent with the storage task analysis. 

A 2(group: mathematics, non-mathematics) x 2(working memory 

storage type: number, visuo-spatial) mixed ANOVA was performed for 

each of face matching accuracy and face matching latencies to 

examine performance of the two groups on the processing element 

under each storage condition. Mean accuracy, mean RT and standard 

error by group and span type are shown in Table 2.2. 

Table 2.2 

Mean (M) and standard error (SE) for accuracy and reaction time in the 
face matching task by group in each storage type condition 

 

Condition 

       Accuracy    Reaction Time(Ms) 

Groups     M  SE     M  SE 

Number Mathematics 

Non-Mathematics 

 .95 

.94 

.01 

.01 

 1304 

1252 

 56 

 59 

Visuo-spatial Mathematics 

Non-Mathematics 

 .95 

.95 

.01 

.01 

 1311 

1292 

 50 

 48 

 

2.3.2.3.1 Accuracy 

Results showed no significant difference in accuracy on the face 

matching task between groups or across the different storage 

conditions. There was no main effect of studying or not studying 

mathematics, F(1,49) = .20, p = .655, r = .06, no main effect of storage 

                                            
4
 ANOVAs were also run using both the All-or-Nothing Unit and All-or-Nothing Load 

methods, which did not result in any significant changes to results or conclusions. 
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type, F(1,49) = .03, p = .863, r = .22 and no group x storage type 

interaction, F(1,49) = .01, p = .933, r = .01. 

2.3.2.3.2 Latencies 

Results showed no significant difference in RT on the face 

matching task between groups or across the different storage 

conditions. There was no main effect of studying or not studying 

mathematics, F(1,49) = .24, p = .627, r = .07, no main effect of storage 

type, F(1,49) = 1.23, p = .273, r = .16 and no group x storage type 

interaction, F(1,49) = .58, p = .451, r = .11. 

2.3.2.4 Relationship of Storage Element with Mathematics Scores 

There was a significant correlation between participants’ visuo-

spatial span performance and their Woodcock-Johnson Calculation 

scores rs = .57, p < .001 and Woodcock-Johnson Math Fluency scores 

rs = .30, p = .031. Calculation and Fluency scores correlated with each 

other rs = .69, p < .001. Number span did not correlate significantly with 

either Calculation rs = .04, p = .763 or with Fluency rs = -.17, p = .240.  

2.3.2.5 Serial Position Curves 

The serial position curves for recall accuracy in the visuo-spatial 

conditions of Experiments 1 & 2 were examined, by group, to 

investigate whether mathematicians displayed any differences in 

patterns of serial recall accuracy to the non-mathematicians. Discovery 

of different recall patterns between the two groups may suggest that 

mathematicians were using different strategies for remembering the 

visuo-spatial locations, such as grouping items together into chunks 

(Engle et al., 1992; Friedman & Miyake, 2004). Only the visuo-spatial 

condition was examined in this way, as results for the verbal domain in 

Experiment 1 and Experiment 2 had shown no significant difference in 

capacity between the mathematicians and non-mathematicians. 

Serial position curves are commonly used to examine the 

accuracy of recall of items in their various serial positions within a given 

span length. Forward recall of verbal items and visuo-spatial locations 

have been previously found to display a primacy effect, which is a 
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reduction in recall accuracy after the first item in a list, and a recency 

effect, which is an improvement in recall for the final item, although 

there has been far less investigation of serial order in the visuo-spatial 

domain than in the verbal domain (Hurlstone, Hitch & Baddeley, 2013).  

 Accuracy scores from Experiments 1 and 2 were initially 

combined for each serial position within each span length to produce 

average curves across spans 2 to 7 and these are shown in Figure 2.5. 

Separate 2(group: mathematics, non-mathematics) x n(number of serial 

positions) mixed ANOVAs were then performed for accuracy at each 

visuo-spatial span length. Results showed that, whilst mathematicians 

generally displayed greater overall accuracy across the different span 

lengths, there were no significant differences in the patterns of the 

curves of the two groups, with all p’s for interactions at the various span 

lengths > .05. All comparisons reported below are Bonferroni-corrected. 
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Figure 2.5: Experiments 1 & 2 combined serial position curves for each of spans 2 to 7 

in the visuo-spatial span condition with S.E.M. error bars.  

 

At span length 2, there was no significant difference between the 

performance of the 2 groups, F(1,91) = 3.55, p = .114, r = .17, but, 

overall, final position 2 was more accurately recalled than position 1 

F(1,91) = 6.59, p = .012, r = .26.  

Differences between the performance of the two groups began to 

emerge as early as span length 3, with the mathematicians showing 

greater accuracy overall, F(1,91) = 5.91, p = .017, r = .25. The recency 
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effect also began to emerge at span length 3. There was a main effect 

of position, F(1.65,150.05) = 4.23, p = .023, r = .17, with no significant 

difference between positions 1 & 2 or 2 & 3 (all p’s > .05), but with final 

position 3 more accurate than position 1 (p  = .046).  

At span length 4, mathematicians were more accurate than non-

mathematicians, F(1,91) = 12.82, p = .001, r = .35 and there was a main 

effect of position, F(1.68,153.14) = 6.59, p = .011, r = .18. Position 1 

was no different to positions 2 & 3 and 2 was no different to 3 (all p’s > 

.05). Final position 4 was more accurate than position 1 (p = .048) but 

no more accurate than positions 2 & 3 (p’s > .05). 

At span length 5, mathematicians were again more accurate, 

F(1,91) = 4.15, p = .045, r = .21 and there was again a main effect of 

position, F(3.31,301.11) = 7.77, p = < .001, r = .16. Here, the primacy 

effect emerged, with the first position being more accurate than the 

second (p = .021). There was no significant difference between 

positions 2 & 3 or 3 & 4 (all p’s > .05), but 2 was worse than 4 (p = 

.041). In terms of the recency effect, position 5 was no different to 

position 4 (p = .303), but 5 was better than 2 & 3 (p’s < .05). The 

difference between positions 1 & 5 approached significance (p = .066). 

The differences between the two groups became more apparent at 

span lengths 6 & 7. Span 6 showed a main effect of group, F(1,91) = 

33.49, p < .001, r = .52 and a main effect of position, F(3.68,334.54) = 

4.33, p = .003, r = .11. Position 1 was no different to positions 2, 5 or 6 

(all p’s > .05) but was more accurate than positions 3 & 4 (p’s < .05). 

There were no significant differences between 2 & 3, 3 & 4, 4 & 5 or 5 & 

6 (all p’s > .05), but 4 was less accurate than 6 (p = .038). 

Finally, span 7 again showed a main effect of group, F(1,91) = 

32.66, p < .001, r = .51 and a main effect of position, F(5.08,462.33) = 

15.24, p < .001, r = .18. Position 1 was no more accurate than positions 

2 or 7 (both p > .999), but more accurate than positions 3, 4, 5 & 6 (all 

p’s < .001). Position 2 was also more accurate than positions 3 (p = 

.006), 4, 5 & 6 (all p’s < .001), but no different to 7 (p = > .999). 
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Positions 4 & 5 were no different to each other (p > .999) or to position 

6 (4 & 6 p >.999; 5 & 6 p > .999), but both were less accurate than 

position 7 (both p’s <.05). Position 7 was more accurate than position 6 

(p > .001). 

In summary then, mathematicians were more accurate overall 

than non-mathematicians from span 3 upwards, but the patterns of the 

serial position curves were no different between the two groups at each 

span length, with no significant interactions. The recency effect first 

emerged at span length 3, but for span lengths 3, 4, 5 & 6 it was evident 

through a significant difference between the final position and the 

position two before last, with the final and penultimate positions not 

significantly different. It was only at span 7 where the traditional recency 

effect was seen between the final & penultimate positions. The primacy 

effect did not appear until span 5, with the traditional difference between 

positions 1 & 2 apparent. However, for spans 6 & 7, the primacy effect 

was evident through significant differences between the first and third 

items, rather than the first and second. 

2.3.3 Discussion 

Experiment 2 attempted to replicate the Experiment 1 finding that 

adult mathematicians have superior visuo-spatial working memory 

storage capacity to adult non-mathematicians. It also investigated 

potential ceiling effects in the number condition of Experiment 1. 

The difference in visuo-spatial working memory storage capacity 

replicated and visuo-spatial storage scores again correlated strongly 

with Woodcock-Johnson Calculations scores. They also correlated 

moderately with Woodcock-Johnson Math Fluency scores, which 

measured fluency for basic arithmetic. The results of both Experiments 

1 and 2 suggest that visuo-spatial working memory storage capacity 

has a relationship with both basic arithmetic and more complex 

mathematics. This will be considered further in the general discussion 

(section 2.4). 
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In the verbal domain, the finding from Experiment 1 that there was 

no difference between mathematicians and non-mathematicians for 

memory of numerical stimuli also replicated. Importantly, the initial 

comparison of scores across spans 3 to 8 showed no ceiling effects and 

there was still no difference between the two groups at these greater 

span levels. The conclusion from Experiment 1 that there is no 

difference between adult mathematicians and non-mathematicians for 

working memory storage capacity in the verbal domain was supported. 

As in Experiment 1, correlations involving the verbal domain showed no 

relatedness to the visuo-spatial domain or to mathematics scores, again 

supporting the dissociation of verbal and visuo-spatial storage within 

working memory. 

 Serial position curves for both groups were examined to explore 

the nature of the group difference in the visuo-spatial condition. This 

analysis used combined scores of Experiments 1 and 2 and showed 

that differences between the two groups’ visuo-spatial working memory 

performance was not due to different profiles of the curves. The 

mathematicians simply remembered more items in their correct serial 

positions for span lengths 3 to 7 rather than showing a different pattern 

of memory. Chapter 4 will explore the relative contributions of item and 

order memory to their superior visuo-spatial working memory. 

In terms of the processing task, there was again no significant 

difference between the two groups in either storage domain condition. 

There was also no significant difference between the two conditions for 

processing task accuracy or latencies. 

Experiment 2, then, confirmed the findings of Experiment 1 that, 

when using a consistent and as neutral as possible processing task 

across conditions, adult mathematicians have superior working memory 

storage capacity in the visuo-spatial domain but that there is no 

difference in storage capacity in the verbal domain. Analysis of visuo-

spatial serial position curves indicated that mathematicians simply have 
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a greater capacity to remember items in their correct order rather than 

displaying different patterns of remembering the information. 

2.4 General Discussion 

Chapter 2 investigated whether adult mathematicians have greater 

working memory storage capacity than adult non-mathematicians and 

whether any capacity advantage is general, or just specific to the verbal 

or visuo-spatial domain. Results of both Experiments 1 and 2 suggest 

that adult mathematicians have superior working memory storage 

capacity only in the visuo-spatial domain. The findings in this chapter 

also support the view of separable phonological and visuo-spatial 

resources in line with the multi-component model of working memory 

(Baddeley, 2000; Shah & Miyake, 1996). 

The finding of a superior visuo-spatial capacity for mathematicians 

seems unsurprising in view of the roles of the visuo-spatial sketchpad 

and visuo-spatial working memory for mathematics, highlighted in the 

previous research discussed in Chapter 1. The correlation between 

visuo-spatial working memory storage capacity and Math Fluency 

scores (section 2.2.2.4) supports the findings of Hubber et al. (2014: 

Experiment 1) and Imbo & LeFevre (2010) that visuo-spatial working 

memory is important for basic arithmetic in adults. Lee and Kang (2002) 

also found that use of visuo-spatial working memory is required for 

performing subtractions. Despite the fact that adults solve many basic 

arithmetic problems using direct retrieval of answers (Imbo & 

Vandierendonck, 2008), Hubber et al. (2014: Experiment 1) still found 

that visuo-spatial working memory was used for direct retrieval. 

The finding that visuo-spatial working memory storage capacity is 

related to more complex mathematical calculation also supports 

previous findings that visuo-spatial working memory seems important 

for procedural strategies and for the manipulation of information in mind 

whilst solving mathematical problems. As well as finding a role for 

visuo-spatial working memory in retrieval, Hubber et al. (2014: 

Experiment 1) also found it to be involved in the more complex 
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procedural strategies of counting and decomposition. Previous research 

has also highlighted the importance of the visuo-spatial nature of initial 

information of calculations. For example, Landy, Brookes & Smout 

(2014) found that the visuo-spatial structure of algebra problems was 

important for their successful interpretation and Jiang, Cooper & Alibali 

(2014) found that spatial manipulation of the minus sign in subtraction 

problems affected interpretation and problem solving. Logie et al. 

(1994) and Seron et al. (1992) highlighted the importance of visuo-

spatial working memory for visualising information about calculations 

and manipulating numbers in mind. 

The description of the visuo-spatial sketchpad as a “mental 

blackboard” (Heathcote, 1994, p.27) describes its use in mathematics 

for the storing of visual information about a calculation and its 

subsequent manipulation. Indeed, Hegarty & Waller (2005) state that 

those with greater ability for visuo-spatial visualisation also have greater 

ability for problem solving, particularly for interpreting graphical 

representations. With the importance of visuo-spatial working memory 

for the holding and manipulation of information during calculation then, 

a greater capacity for storing visuo-spatial information would seem 

advantageous for performance in mathematics. 

Although verbal working memory has previously been shown to be 

involved in counting, fact retrieval and the storing of intermediate results 

(e.g. Fϋrst & Hitch, 2000; Geary, 2011; Logie et al. 1994), the studies 

included in this chapter showed no advantage for mathematicians in the 

verbal domain. Mathematicians only appear to have an advantage in 

the visuo-spatial domain which is responsible for the visualisation and 

manipulation of material: skills which intuitively seem more required 

more for complex mathematics as opposed to more basic arithmetic.  

Although these results indicate a visuo-spatial advantage for 

mathematicians, they tell us nothing about causality: that is, whether 

having a greater visuo-spatial working memory capacity aids the 

learning and performing of mathematics, or whether learning and 
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performing mathematics leads to an advantage in developing this 

capacity. Previous research discussed above highlights how having 

superior visuo-spatial working memory storage capacity may support 

superior performance in mathematics, through a greater ability to 

represent initial calculation information and then hold and manipulate 

this information in mind. However, it could be possible that studying and 

performing mathematics for a longer period of time or at a more 

advanced level helps to increase visuo-spatial capacity. Future research 

should examine this issue. Interestingly, four out of five participants in 

the non-mathematics group who were discounted from the analyses in 

Experiment 1, because they were later found to have studied 

mathematics at A level, achieved visuo-spatial span scores very similar 

to those of the mathematics group. Although only a small number of 

participants, this suggests that the advantage for visuo-spatial capacity 

in mathematicians may be present earlier than at undergraduate study 

level. This and the nature of causality effects could be investigated by 

measuring visuo-spatial working memory span pre- and post- A level in 

those who study mathematics at A level and those who don’t.  

Finally, Experiments 1 and 2 showed mathematicians have 

superior visuo-spatial storage capacity using a working memory task 

that employed a novel, neutral processing element not previously used 

in this context within the literature. Chapter 5 will investigate whether 

this visuo-spatial advantage still exists when the processing element 

has a more traditional verbal or visuo-spatial format. 

2.5 Conclusion 

Chapter 2 used working memory span tasks, including a novel 

processing element, to investigate whether adult mathematicians have 

superior working memory capacity to adult non-mathematicians and 

whether any advantage is a general one or specific to the verbal or 

visuo-spatial domain. Results showed an advantage in the visuo-spatial 

domain only, suggesting visuo-spatial storage in working memory has 

an important relationship with mathematics. Results suggested that this 
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advantage is related to both basic arithmetic and more complex 

calculations. Results also supported the view of separable visuo-spatial 

and verbal storage resources. Analysis of serial position curves in the 

visuo-spatial domain showed there were no significant differences in the 

patterns of the curves of the two groups and that mathematicians were 

simply better overall at remembering the items in the correct order. 

Whether this ability is due to superior item memory, order memory or a 

combination of both will be investigated in Chapter 4.
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Chapter 3: Short-Term Memory and Endogenous 

Spatial Attention 

3.1 Introduction  

Chapter 2 found that mathematicians have greater working 

memory storage capacity than non-mathematicians in the visuo-spatial 

domain, but not the verbal domain. However, it is possible that this 

could be due to group differences at a more basic level below that of 

working memory. This chapter investigates whether mathematicians still 

have an advantage for storing visuo-spatial information in working 

memory when ability for storing visuo-spatial information in short-term 

memory (with no processing) and controlled spatial attention are taken 

into account. Differences between adult mathematicians and non-

mathematicians are examined for performance on a visuo-spatial short-

term memory span task and a controlled spatial attention task before 

comparing group differences for visuo-spatial working memory with 

these two items as covariates. Analyses are also performed to discover 

whether visuo-spatial working memory can predict mathematics 

calculation and arithmetic fluency ability over and above the 

contributions of short-term memory and attention. This will inform 

whether it is the ability to hold visuo-spatial information in mind when 

both storage and processing are required that drives the link between 

visuo-spatial working memory capacity and mathematics. 

There are a number of possible explanations for the superior 

visuo-spatial working memory performance shown by mathematicians. 

The working memory span tasks used throughout Chapter 2 included 

both processing and storage elements.  It is therefore possible that the 

mathematicians’ advantage was the result of superior processing of 

information, superior capacity to temporarily store information in the 

visuo-spatial sketchpad or the ability to combine processing and 

storage. It seems unlikely that the mathematicians’ advantage was as a 

result of superior processing. The processing element used in the span 

tasks was as neutral as possible with regard to the verbal and visuo-
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spatial storage elements and was the same across all conditions. There 

was no significant difference between mathematicians and non-

mathematicians for accuracy or RT for this processing element. This 

indicated that mathematicians’ superior visuo-spatial working memory 

capacity was not due to differences in processing ability.  

Mathematicians’ superior visuo-spatial working memory capacity 

could therefore be driven by an advantage in the short-term storage of 

information in the visuo-spatial sketchpad during working memory use. 

Research has previously found that the storage of information within 

working memory, during processing, is required when solving 

mathematical problems (Adams & Hitch, 1997; Trbovich & LeFevre, 

2003).   There is also evidence that adults use the sketchpad to store 

information during calculation (Lee & Kang, 2002; Logie et al., 1994; 

Trbovich & LeFevre, 2003). Visuo-spatial short-term memory 

performance, with no processing element present, has also been found 

to be linked to mathematics in adults. Wei et al. (2012) found that 

performance on a visuo-spatial span task, containing only storage 

elements, correlated with mathematics ability in an adult college student 

sample. Although this indicates that the temporary storage of visuo-

spatial information plays a role in mathematics, performance on working 

memory tasks, containing processing as well as storage, is generally 

regarded as more predictive than performance on short-term memory 

tasks (Bayliss et al., 2003; St. Clair-Thompson & Sykes, 2010).  

No previous research has been identified that compares the 

relative contributions of short-term memory and working memory 

capacity with mathematics performance in adults. However, Bayliss et 

al. (2005) have found that, in children, in both the verbal and visuo-

spatial domains, working memory spans were no better at predicting 

mathematics ability than were short-term memory spans. They also 

found that independently measured storage, but not processing, 

contributed to working memory span performance. It may therefore be 

that mathematicians’ superior visuo-spatial working memory capacity is 



                                                Chapter 3: Short-term memory & attention 

90 
 

a result of a superior ability to store information within the sketchpad 

whilst processing is being carried out.  

In the current chapter, performance of a group of adult 

mathematicians and a group of adult non-mathematicians will be 

compared on a visuo-spatial short-term memory span task to see 

whether mathematicians have an advantage for temporarily storing 

information within the sketchpad. Whether the mathematicians still 

retain their visuo-spatial working memory advantage over non-

mathematicians when short-term visuo-spatial storage capacity is taken 

into account will also be examined to discover whether their working 

memory advantage is driven by an advantage in sketchpad capacity. 

A further possible explanation for mathematicians’ superior 

visuo-spatial working memory capacity could be endogenous spatial 

attention. Whilst exogenous attention is viewed as stimulus-directed, 

with attention being directed into an area by the stimulus, endogenous 

(controlled) attention is viewed as top-down and under an individual’s 

control (Spence & Driver, 1994). Endogenous attention is believed to be 

important for refreshing items in memory and for ensuring that items 

remain available for further processing and/or recall (e.g. Barrouillet et 

al., 2007; Cowan, 2000; Engle, 2002).  

Previous experimental research has suggested an overlap 

between endogenous attention and visuo-spatial working memory. 

Gazzaley & Nobre (2012) found the top-down ability to attend to and 

inhibit irrelevant information to be important. They highlighted evidence 

from fMRI studies that the prefrontal cortex (PFC) plays an important 

role in this. Limitations in PFC attention may affect the amount of 

information encoded and PFC and parietal areas may direct attention 

during the use of visual working memory. Attention and working 

memory are believed to be interdependent because working memory 

has a limited capacity and attention therefore regulates which items are 

encoded for storage (Chun & Turk-Browne, 2007). In their review paper, 

Awh, Vogel & Oh (2006) describe an overlap between neural systems 
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for spatial attention & visuo-spatial working memory. Using a visuo-

spatial working memory task, Awh, Jonides & Reuter-Lorenz (1998) 

found that when participants’ ability to attend was hindered, their ability 

to memorise locations of stimuli was adversely affected. Their results 

suggest that spatial attention is the mechanism for maintaining 

information in visuo-spatial working memory. A review of the links 

between attentional control and visual memory (Astle & Scerif, 2011) 

also highlighted the importance of top-down attention for the 

development and performance of visual short-term memory as well as 

visual working memory. 

Each of the models of working memory discussed in section 1.3 of 

Chapter 1 includes a role for endogenous attention. The Baddeley & 

Hitch multi-component model of working memory (Baddeley, 2000) 

proposes that maintenance of visuo-spatial items in memory occurs as 

a result of refreshing via endogenous attention. It is also viewed as part 

of the mechanism for retrieving information from long-term memory 

(Baddeley, 1996). The embedded-process model (Cowan, 2000) 

proposes that a central executive controls the focus of attention so that 

relevant activated items within long-term memory remain available for 

recall or processing. The controlled-attention model (Engle 2002) states 

that working memory capacity is not based on how much information 

can be stored, but the ability to control attention or suppress irrelevant 

information. Finally, the time-based-resource-sharing model (Barrouillet 

et al., 2004) also emphasises the importance of attention for working 

memory span task performance. This model states that attention has 

limited capacity and must be shared between processing and storage 

within working memory. As soon as attention is removed from an item, 

its representation suffers from decay over time. Refreshing a decaying 

item then relies upon its retrieval from memory through renewed 

attentional focussing. Therefore, despite the fact that these various 

models of working memory differ in terms of their structure, all include 

an important role for endogenous attention. 
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In summary, several prominent theories of working memory 

therefore include a role for endogenous attention (e.g. Baddeley, 2000; 

Barrouillet et al., 2004; Cowan, 2000; Engle, 2002) and there is 

experimental and fMRI evidence that endogenous spatial attention 

plays an important role in visuo-spatial working memory (Astle & Scerif, 

2011; Awh et al., 1998; Awh et al., 2006; Gazzaley & Nobre 2012). With 

this in mind, it was decided to compare the endogenous spatial 

attention ability of a group of adult mathematicians and a group of adult 

non-mathematicians using performance on a basic Posner (1980) 

endogenous spatial attention task. Mathematicians were expected to 

have superior endogenous attention ability compared with non-

mathematicians in light of the evidence outlined above demonstrating 

its role in visuo-spatial working memory and the fact that Chapter 2 

found mathematicians to have better visuo-spatial working memory 

capacity. Also, according to the theoretical models of working memory 

discussed in Chapter 1, section 1.3, attention, controlled by the central 

executive, is assumed to be important for retrieving number facts stored 

in long-term memory. This measure of endogenous spatial attention 

was also used to examine whether mathematicians retain their visuo-

spatial working memory capacity advantage when their spatial attention 

ability is controlled for. It was expected that the mathematicians’ greater 

working memory capacity would remain when endogenous attention 

was controlled for. This was due to working memory performance being 

consistently found to have greater predictive ability than more basic 

measures (Bayliss et al. 2003). 

In endogenous spatial attention tasks, attention is commonly 

measured in terms of the time taken to respond to the appearance of a 

target stimulus that is preceded by a central cue. This cue either 

indicates the position of the target (valid cue) or directs controlled 

attention in the opposite direction (invalid cue) (Doricchi, Macci, Silvetti 

& Macaluso, 2010). Participants are instructed to keep their gaze fixed 

on the central cue and are usually faster to respond to cues that have 

been validly cued than those invalidly cued. The difference in RTs 
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between responses to targets preceded by valid cues and those 

preceded by invalid cues is then taken as a measure of endogenous 

spatial attention. A smaller difference would infer greater attentional 

control, as invalid cues would have caused less distraction of attention. 

In summary then, this chapter investigates whether adult 

mathematicians still have superior visuo-spatial working memory 

capacity to non-mathematicians when performance on a visuo-spatial 

short-term memory task and an endogenous spatial attention task is 

taken into account. As Wei et al. (2012) had previously found a 

relationship between visuo-spatial short-term memory and mathematics 

performance in adults, it was predicted that visuo-spatial short-term 

memory capacity would correlate with calculation ability in the current 

study and that mathematicians would have greater visuo-spatial short-

term memory capacity than non-mathematicians. It was, however, 

predicted that short-term capacity would not be related to arithmetic 

fluency scores because the direct retrieval of number facts from long-

term memory does not require the temporary storage of information. 

Mathematicians were also predicted to have superior endogenous 

spatial attention due to previous indications in the literature that this is 

important for visuo-spatial working memory performance (Astle & Scerif, 

2011; Awh et al., 1998; Awh et al., 2006; Gazzaley & Nobre, 2012). 

Endogenous spatial attention ability was expected to show a 

relationship with both calculation and arithmetic fluency due to several 

theoretical models of working memory highlighting its role in activating 

number facts held in long-term memory and the refreshing of 

information within working memory. Finally, as working memory 

measures are generally deemed better predictors of mathematics ability 

than more basic measures, it was expected that mathematicians would 

still have greater visuo-spatial working memory capacity when short-

term memory and endogenous attention ability were controlled for. 
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3.2 Method 

3.2.1 Participants 

As mentioned in Chapter 2, section 2.3.1.5, data for the current 

chapter was collected in the same experimental sessions as data for 

Experiment 2 of Chapter 2. Details of the participants are therefore 

identical to those in Experiment 2 of Chapter 2 (section 2.3.1.1), but are 

repeated here for ease of reference. 

54 participants were recruited from undergraduates at the 

University of Nottingham: 27 (9 male) to a mathematics group and 27 (9 

male) to a non-mathematics group. All participants received an 

inconvenience allowance of £6. 

The mathematics group comprised 15 mathematics students and 

12 economics students who had studied mathematics at A level. Their 

ages ranged from 18.66 to 36.89 years (M = 20.88, SD = 3.53). The 

non-mathematics group comprised English, History, Philosophy and 

Sociology students who had not studied mathematics at A level. Their 

ages ranged from 18.78 to 22.68 years (M = 20.33, SD = .99). On 

average, participants in the non-mathematics group had not studied 

maths for 4.18 years (SD = 1.16). 

3.2.2 Equipment 

A Viglen Pentium D computer, running Windows XP and 

PsychoPy version 1.73.06 (Peirce, 2007), was used to present stimuli 

and record latencies and accuracy.  

3.2.3 Experimental Tasks 

3.2.3.1 Short-Term Memory Task 

This task consisted of a series of sequentially presented visuo-

spatial storage elements. The format of the span task was identical to 

those of the working memory experiments in Chapter 2, except that it 

consisted solely of to-be-remembered storage items, with no processing 

element present. 
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 A black 3 x 3 grid was presented in the centre of the screen 

(each square was 6cm wide x 6cm high) with a red dot (size 3 cm wide 

x 3cm high) placed in one of nine possible locations on the grid. Each 

storage item was presented on screen for 500 milliseconds, 

commencing 500 milliseconds after the previous item had disappeared. 

At the end of each span set, once all storage items had been 

presented, a “ ? ” appeared in the centre of the screen that prompted 

the participants to recall the storage items, in their order of presentation. 

A black 3 x 3 grid appeared on screen immediately after the “ ? “ and 

participants recalled the serial order of the red dot by clicking on the 

grid, using the USB mouse. Once recall was completed, the participant 

pressed the space bar to begin the next trial. Span sets, and items 

within each span set, were presented in a random order. Each of span 

lengths 3 to 8 was presented three times, giving 18 trials in each of the 

three conditions. Trials are included in Appendix D. Each of the nine 

possible items was presented approximately equally across trials. 

3.2.3.2 Endogenous Spatial Attention Task 

As explained in section 3.1, endogenous spatial attention was 

measured via a basic Posner task (Posner, 1980).  It examined the time 

taken to respond to the appearance of a target stimulus that was 

preceded by a central cue. This cue either indicated the position of the 

target (valid cue) or directed controlled attention in the opposite 

direction (invalid cue) (Doricchi et al., 2010). Participants are usually 

faster to respond to cues that have been validly cued than those 

invalidly cued. The difference in RTs between responses to targets 

preceded by valid cues and those preceded by invalid cues is then 

taken as a measure of endogenous spatial attention. 

For the endogenous spatial attention task, participants were sat 

60cm away from the computer screen. The on-screen display (see 

Figure 3.1) consisted of a central cueing stimulus (a diamond shape, 

1.3º wide) and peripheral squares to the left and right (1º wide), centred 

at 7º eccentricity, inside which a target ‘x’ appeared. The target ‘x’ was 

1º in size. Initial instructions told participants to stare only at the central 
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cue and not to move their eyes, and to respond to the appearance of 

target stimuli, in the peripheral squares, as quickly and accurately as 

possible. A response was given by pressing the space bar on the 

keyboard using their right index finger whenever they saw a peripheral 

target stimulus. In valid trials, one side of the central cue lit up, 

indicating that the target would appear in the square on the same side. 

In invalid trials, the target appeared in the square on the opposite side 

to the side of the cue that lit up. In neutral trials, both sides of the 

central cue lit up, giving no indication of whether the target would follow 

to the left or right. Targets appeared on the right 50% of the time for 

each cue type (as per Coull & Nobre, 1998; Engbert & Kliegl, 2003; 

Gitelman et al., 1999; Kim et al., 1999; Nobre et al., 1997). A total of 36 

neutral trials, 36 invalid trials and 144 valid trials were used. This gave a 

total of 216 trials split into 3 identical blocks of 72 trials each. The order 

of trials was random within each block and across participants. All cues 

lit up for 100ms and targets followed cue offsets at stimulus-onset 

asynchronies (SOA) of 200, 400 or 800ms (Gitelman et al., 1999; Kim 

et al., 1999; Nobre et al., 1997). Targets were also displayed for 100ms. 

Each of the three SOAs was used in equal proportions within the 

neutral, valid and invalid trial types. All trials had a duration of two 

seconds, so there was a variable delay between a target appearing and 

the cue of the next trial. Participants could therefore not predict exactly 

when a cue would appear. A list of the 72 trials used in each block is 

included in Appendix E. 
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Figure 3.1: Example of screen during a valid trial in the endogenous spatial attention 

task. 

 

3.2.4 Additional Materials 

The Woodcock-Johnson Calculation Test & Math Fluency Test 

(Woodcock, McGrew & Mather, 2001) and WASI Matrix Reasoning 

(WASI; Psychological Corporation, 1999), as described in Chapter 2 

(sections 2.2.1.4 & 2.3.1.4), were administered using the standard 

procedures to measure mathematics ability and non-verbal IQ. 

3.2.5 Procedure 

As mentioned in section 2.3.1.5 of Chapter 2, data for the short-

term memory task, the endogenous spatial attention task and the 

standard mathematics tests were collected during an hour long session 

that also involved completion of the working memory tasks included in 

Experiment 2 of Chapter 2. All participants were tested individually by 

the same experimenter. After completion of the working memory span 

tasks, participants then completed the short-term memory task, followed 

by the attention task.  

For the short-term memory task, after reading initial instructions, 

participants completed a practice of one 2-span set and one 3-span set, 

before the test sets were presented.  
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For the endogenous spatial attention task, after initial instructions, 

participants practised the task for 22 randomly presented trials. They 

then viewed a screen which repeated the initial instructions, before 

commencing the three blocks of experimental trials. A short break was 

allowed between blocks, if required. At the end of the task, participants 

were asked to self-rate for what extent of the time they had kept their 

gaze fixed on the central cue as instructed, using the numeric keypad, 

on a scale of 1 to 5, where 1 was ‘hardly any’ and 5 was ‘almost all’.  

Next, participants completed WASI Matrix Reasoning. They then 

completed the Woodcock-Johnson Calculation Test and Woodcock-

Johnson Math Fluency Test, the order of which was counterbalanced. 

3.3 Results 

As described in section 2.3.2 of Chapter 2, three participants (2 

mathematics group; 1 non-mathematics group) were later excluded 

from the analyses for having an unacceptably high (>15%) error rate in 

the processing element of the working memory task (mathematics: 1 

number condition, 1 number & spatial conditions; non-mathematics: 1 

number condition) leaving data for 25 (9 male) participants in the 

mathematics group and 26 (9 male) in the non-mathematics group 

available for analysis. Although this chapter examines short-term 

memory and endogenous spatial attention tasks where no processing 

elements were present, these participants were removed for 

consistency with Chapter 2 analyses. This was important for the 

correlations with working memory and regressions involving working 

memory reported below. 

 A Cook’s Distance score was calculated in a regression using 

storage accuracy in the working memory and short-term memory tasks 

and RTs in the Posner task to predict mathematics scores, to discover 

whether influential cases could affect any of the analyses reported 

below. No influential outliers with a Cook’s Distance score >1 (Field, 

2009) were detected. Controlling for gender had no significant impact 

on analyses and results reported below are without controlling for 
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gender. Degrees of freedom were corrected using Greenhouse-Geisser 

estimates of spherity where necessary. 

In the sections below, results for standardised tests will be firstly 

reported (section 3.3.1), followed by results for the short-term memory 

task (section 3.3.2.1) and for the endogenous spatial attention task 

(section 3.3.2.2). Section 3.3.3 will report correlations for visuo-spatial 

short-term memory and spatial attention with working memory. Section 

3.3.4 will report results for an Analysis of Covariance (ANCOVA) where 

group scores for visuo-spatial working memory were compared, with 

visuo-spatial short-term memory and spatial attention entered as 

covariates. Section 3.3.5 will report relationships of visuo-spatial short-

term memory and attention with mathematics scores. Finally, regression 

analyses to examine to what extent short-term memory, working 

memory and attention predicted mathematics scores are included in 

section 3.3.6. 

 3.3.1 Standardised Tests 

Results for the standardised tests were reported in section 2.3.2.1 

of Chapter 2, but are repeated here for ease of reference. 

An independent t-test to compare the two groups’ Woodcock-

Johnson Calculation Test scores confirmed that the mathematics group 

(M = 24.80, SD = 3.50) were significantly better at mathematics than the 

non-mathematics group (M = 12.15, SD = 3.46), t(49) = 12.97, p < .001, 

r = .88. Scores for the mathematics group represented a median 

percentile rank compared to age norms (Woodcock, McGrew & Mather, 

2001) of 92.00 (min = 64.00; max = 99.00). Scores for the non-

mathematics group represented a median percentile rank compared to 

age norms of 34.00 (min = 5.00; max = 67.00). 

 A non-parametric Mann-Whitney test was performed to compare 

the two groups’ Woodcock-Johnson Math Fluency scores, as the 

mathematics group’s scores showed significant negative skew at the p 

< .05 level (Field, 2009). This showed significantly greater scores for the 

mathematicians (M = 144.68, SD = 20.72) compared to the non-
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mathematicians (M = 113.46, SD = 16.87), U = 90.00, Z = -4.43, p < 

.001, r = .63. Scores for the mathematics group represented a median 

percentile rank compared to age norms of 89.00 (min = 21.00; max = 

99.90). Scores for the non-mathematics group represented a median 

percentile rank compared to age norms of 43.50 (min = 3.00; max = 

83.00). 

An independent t-test showed that the mathematics group (M = 

28.92, SD = 3.46) had significantly greater non-verbal IQ than the non-

mathematics group (M = 26.88, SD = 3.25) when comparing their 

scores for WASI Matrix Reasoning. All analyses were therefore initially 

run controlling for WASI Matrix Reasoning scores, but this made no 

difference to main effects or interactions, so results reported below do 

not control for non-verbal IQ. 

3.3.2 Experimental Tasks 

3.3.2.1 Short-Term Memory Task 

Proportion correct scores were first calculated for each participant 

for the number of storage items recalled in their correct serial position 

(see section 2.2.1.6 of Chapter 2). 

A non-parametric Mann-Whitney test was performed to compare 

the two groups’ visuo-spatial short-term memory scores, because both 

group’s scores showed significant negative skew at the p < .05 level 

(Field, 2009). This showed no significant difference in performance 

between the mathematicians (M = .88, SD = .06) and the non-

mathematicians (M = .85, SD = .08), U = 234.00, Z = -1.72, p = .086, r = 

.25.5   

 3.3.2.2 Endogenous Spatial Attention Task 

Median RTs were calculated for each participant for each 

category of neutral, valid and invalid trials, before calculating their 

Posner difference (invalid RTs minus valid RTs). A total of two 

                                            
5
 Parametric independent t-tests were also run using both the All-or-Nothing Unit and 

All-or-Nothing Load methods, which did not result in any significant changes to results 
or conclusions. 
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participants in the mathematics group and three participants in the non-

mathematics group failed to show a Posner difference (their valid times 

were longer than their invalid times), but inclusion of their reaction times 

made no difference to results or conclusions and they are therefore 

included in the analyses that follow. Mean reaction times and standard 

errors for all participants are shown, by group, in Table 3.1. Participants 

reported that they had kept their gaze fixed centrally, as required, on 

the majority of trials (mathematics group: M = 4.63, SD = 0 .74; non-

mathematics group: M = 4.70, SD = 0.67). 

 

Table 3.1 

Descriptive statistics (mean (M) and standard error (SE)) for reaction times, in 
milliseconds, in the endogenous spatial attention task 

 

 

Group 

 

 

Neutral  

 

Cue Validity Type 

Valid  

 

 

Invalid  

 
 

Invalid minus  
Valid  

 

Mathematics 

 

348  (38) 

 

326 (40) 

 

351  (39) 

 

25  (24) 

Non-Mathematics 337  (41) 316 (38) 344  (43) 28  (23) 

 

A non-parametric Mann-Whitney test showed no significant 

difference between the mathematicians and non-mathematicians for 

reaction times to respond to valid trials, U = 25.50, z = -.74, p = .463. A 

non-parametric test was used here as the mathematics group’s reaction 

times showed significant positive skew at the p < .05 level (Field, 2009).  

An independent t-test was then used to compare reaction times 

between the two groups for the Posner difference (invalid minus valid) 

and, again, no significant difference was found, t(49) = .91, p = .367, r = 

.13. 

Posner difference scores (endogenous spatial attention) did not 

correlate with visuo-spatial short-term memory storage scores (Table 

3.2). 



                                                Chapter 3: Short-term memory & attention 

102 
 

3.3.3 Relationship of Storage & Attention with Visuo-spatial 

Working Memory Scores 

Correlations with visuo-spatial working memory scores are 

reported in Table 3.2. (Working memory scores were reported in section 

2.3.2.2 of Chapter 2.) 

Visuo-spatial short-term memory scores correlated moderately 

with visuo-spatial working memory scores but Posner difference scores 

(endogenous spatial attention) did not. 

 

Table 3.2 

Correlations among visuo-spatial short-term memory, spatial attention, visuo-spatial 
working memory, mathematics calculation and mathematics fluency 

  
Visuo-
spatial STM 

 
Spatial 
attention 

 
Visuo-
spatial WM 

 
Mathematics 
Calculation 

 
Mathematics 
Fluency 

Visuo-
spatial STM 
 

     

Spatial 
attention 
 

 -.17     

Visuo-
spatial WM 
 

  .38**   -.21    

Mathematics 
Calculation 
 

  .34*   -.20   .57***   

Mathematics 
Fluency 

  .09   -.36*   .30*  .69***  

Note. STM = short-term memory; WM = working memory. *p < .05; **p < .01; ***p < .001 

                                                                                                         

3.3.4 Group Differences in Visuo-Spatial Working Memory when 

controlling for Short-Term Memory and Attention Ability 

An ANCOVA was run to investigate whether mathematicians 

would still have greater visuo-spatial working memory storage capacity 

when short-term memory performance and endogenous spatial 

attention were taken into account. Working memory proportion correct 

score was entered as the dependent variable, with short-term memory 

and endogenous spatial attention (Posner difference) scores entered as 

covariates. Group (mathematicians; non-mathematicians) was entered 
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as a fixed factor. The result showed that the covariate visuo-spatial 

short-term memory was significantly related to visuo-spatial working 

memory F(1,47) =13.58, p = .001. The covariate endogenous spatial 

attention was not significantly related to visuo-spatial working memory, 

F(1,47) = 1.61, p = .210. When controlling for visuo-spatial short-term 

memory and endogenous spatial attention, the mathematicians still had 

significantly greater visuo-spatial working memory scores than the non-

mathematicians, F(1, 47) = 15.54, p < .001, η2
p = .25. 

3.3.5 Relationship of Storage & Attention with Mathematics Scores 

Correlations with mathematics scores are reported in Table 3.2. 

Scores for visuo-spatial working memory correlated strongly with 

Woodcock-Johnson Calculation scores and moderately with Woodcock-

Johnson Math Fluency scores. Participants’ visuo-spatial short-term 

memory scores correlated moderately with calculation, but did not 

correlate with fluency scores.  

Posner difference scores (endogenous spatial attention) did not 

correlate with calculation scores, but did correlate moderately with 

fluency scores.  

3.3.6 Regression Analyses to predict Mathematics Scores 

Results for the visuo-spatial short-term memory and endogenous 

spatial attention tasks were entered into regression models with the 

scores for visuo-spatial working memory.  This would inform whether 

visuo-spatial working memory storage capacity would still predict 

mathematics scores over and above the contributions of short-term 

memory and spatial attention. In both of the models, visuo-spatial short-

term memory storage accuracy and Posner difference RTs 

(endogenous spatial attention measure) were added at step 1 and 

visuo-spatial working memory storage accuracy was added at step 2. 

Table 3.3 shows results with calculation as the dependent variable and 

Table 3.4 shows results with fluency as the dependent variable. 



                                                Chapter 3: Short-term memory & attention 

104 
 

For calculation (Table 3.3), visuo-spatial short-term memory, but 

not endogenous spatial attention, predicted calculation score at step 1. 

However, once visuo-spatial working memory was added to the model 

at step 2, only this significantly and uniquely predicted calculation score. 

For fluency (Table 3.4), endogenous spatial attention, but not visuo-

spatial short-term memory, predicted fluency at step 1. The addition of 

visuo-spatial working memory at step 2 did not significantly improve the 

model. 

 

Table 3.3 

Regression analysis: visuo-spatial short-term memory, endogenous spatial attention 
and visuo-spatial working memory predicting Woodcock-Johnson Calculation score 

 
DV: calculation score 

 
B 

 
SEB 

 
β 

 

Step 1 

   

   Constant  -7.81 12.00  

     Visuo-spatial short-term memory  32.39 13.85 .32* 

     Endogenous spatial attention -74.00 42.08      -.24 

Step 2    

   Constant -11.55 10.65  

      Visuo-spatial short-term memory    4.63 14.24       .05 

      Endogenous spatial attention -43.41 38.02     -.14 

      Visuo-spatial working memory   32.27   8.57   .53** 

Note. R
2 

= .14 for Step 1 (p = .028), Δ R
2
 = .20 for Step 2 (p < .001).   *p < .05, **p < .001. 
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Table 3.4 

Regression analysis: visuo-spatial short-term memory, endogenous spatial attention 
and visuo-spatial working memory predicting Woodcock-Johnson Math Fluency score 

 
DV: fluency score 

 
B 

 
SEB 

 
β 

 

Step 1 

   

   Constant  98.21   40.91  

     Visuo-spatial short-term memory   45.91   47.22 .13 

     Endogenous spatial attention      -348.33 143.43 -.33* 

Step 2    

   Constant   91.91    40.31  

      Visuo-spatial short-term memory     -.84    53.91 -.00 

      Endogenous spatial attention      -296.82 143.95 -.28* 

      Visuo-spatial working memory    54.34   32.05 .27 

Note. R
2
 = .12 for Step 1 (p = .050), Δ R

2
 = .05 for Step 2 (p = .097),   *p < .05. 

3.4 Discussion 

This chapter investigated whether adult mathematicians retained 

their superior visuo-spatial working memory capacity over non-

mathematicians when the more basic abilities of visuo-spatial short-

term memory storage and controlled spatial attention were taken into 

account. It also examined whether the link between visuo-spatial 

working memory capacity and mathematics still remained when short-

term storage capacity and controlled attention were controlled for. 

As predicted, results of the ANCOVA (section 3.3.4) showed that, 

when controlling for visuo-spatial short-term memory scores and 

endogenous spatial attention performance on the Posner task, 

mathematicians still had significantly greater ability to store visuo-spatial 

information in working memory. This therefore suggests that visuo-

spatial short-term memory storage and endogenous spatial attention 

are not important factors in the differences between the visuo-spatial 

working memory capacity of mathematicians and non-mathematicians. 
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It also suggests that it is the ability to hold visuo-spatial information in 

mind whilst carrying out processing, rather than more simple storage or 

controlled attention, that underlies the relationship with mathematics, 

This pattern of results supports the general finding in the literature that 

working memory ability is more predictive than short-term memory 

ability of more complex cognitive processes (Bayliss et al., 2003; St. 

Clair-Thompson & Sykes, 2010). The relationship between visuo-spatial 

working memory capacity and calculation will be explored further in 

Chapter 5. 

Contrary to initial predictions, comparison of the performance of 

the mathematicians and non-mathematicians showed no significant 

difference between the two groups for either endogenous spatial 

attention or for visuo-spatial short-term memory storage capacity. The 

results for the short-term memory task in this chapter appear to differ 

from those of the working memory task in Chapter 2.6  For working 

memory, when the task involved both processing and storage elements, 

mathematicians showed superior storage of visuo-spatial information. 

However, they were not significantly better than the non-

mathematicians for the storage of visuo-spatial information in the short-

term memory task which contained no processing element, although 

this difference between the two groups did approach significance. 

Mathematicians seem to only have superior capacity for storing visuo-

spatial information when working memory is used and therefore storage 

is required at the same time as processing is undertaken. Results for 

dual tasks requiring the retention of passive and active sets of 

information in memory (Oberauer 2002), found that it took around two 

seconds for information to be ordered sufficiently. The difference in 

findings between visuo-spatial short-term memory and working memory 

could therefore be possibly due to the inclusion of the processing 

element in the working memory task allowing greater time for the 

ordering of information before storage items were recalled. It may be 

                                            
6
 It should be noted that this difference has not been tested for significance. 
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that mathematicians are better able to order visuo-spatial information. 

This will be investigated in Chapter 4. 

Results for the Posner task showed no difference between 

mathematicians and non-mathematicians for endogenous spatial 

attention. Also, Posner difference scores, which reflected the slowing of 

RTs when targets were preceded by invalid cues as opposed to valid 

cues, showed no correlation with Woodcock-Johnson Calculation 

scores. This does not necessarily mean that endogenous spatial 

attention is not part of the refreshing mechanism for stored visuo-spatial 

items as proposed in previous literature (Astle & Scerif, 2011; Awh et 

al., 1998; Awh et al., 2006; Gazzaley & Nobre, 2012). It suggests rather 

that this type of attention does not contribute to differences in visuo-

spatial working memory capacity and calculation ability between 

mathematicians and non-mathematicians. It may also be that the 

Posner task employed did not adequately measure the type of attention 

discussed in section 3.1. The four working memory models discussed in 

section 3.1 include the importance of endogenous attention for the 

refreshing of visuo-spatial items within working memory and also for 

focussing on relevant items whilst inhibiting competing information. The 

Posner task measured participants’ ability to maintain controlled 

attention whilst inhibiting external, distracting visual information given by 

the invalid cues. This does not necessarily mimic the attentional and 

inhibition processes that occur for representations held internally within 

working memory. However, as will be discussed below, performance on 

the Posner task did predict ability for arithmetic fluency which, in adults, 

largely requires the direct accessing of facts from long-term memory. 

As predicted, visuo-spatial short-term memory capacity correlated 

with calculations scores, but not with scores for arithmetic fluency 

(Table 3.2). The finding that adults’ visuo-spatial short-term memory 

capacity correlated with calculation ability supports the previous findings 

of Wei et al. (2012) and also evidence that the visuo-spatial sketchpad 

is involved in holding information during calculation (Lee & Kang, 2002; 

Logie et al., 1994; Trbovich & LeFevre, 2003). Visuo-spatial short-term 
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memory and working memory scores also correlated moderately. 

Although visuo-spatial short-term memory scores correlated with both 

calculation and visuo-spatial working memory scores, when entered into 

a regression model (Table 3.3) short-term memory did not significantly 

and uniquely predict calculations scores, but working memory did. 

Results therefore indicated that visuo-spatial working memory has a 

stronger relationship with calculation than does visuo-spatial short-term 

memory. As discussed in section 3.1, mathematics involves both the 

storage and processing of information (Adams & Hitch, 1997; Trbovich 

& LeFevre, 2003). Results of the regression suggest that it is the ability 

to store visuo-spatial information whilst processing is also taking place 

that drives the important relationship with calculation rather than simply 

the ability to temporarily store information in the visuo-spatial 

sketchpad.  

As expected, endogenous spatial attention correlated with 

arithmetic fluency, but, contrary to initial predictions, there was no 

relationship between attention and calculation. There was also no 

relationship between attention and either short-term memory or working 

memory (Table 3.2). It therefore appears that differences in spatial 

endogenous attention are not important regarding the ability to 

manipulate or store information during calculation, but may be for 

retrieving answers from long-term memory.  

Endogenous spatial attention was also the only element that 

significantly and uniquely predicted fluency scores when included in a 

regression model with visuo-spatial short-term memory and visuo-

spatial working memory (Table 3.4). Fluency for arithmetic should 

largely depend on the direct retrieval of answers from memory in adults 

and the finding that endogenous spatial attention may be related to 

retrieving number facts from memory supports Campbell & Clark’s 

Encoding-Complex Hypothesis model of numerical cognition (Campbell 

& Epp, 2005). This model states that number processing activates 

information in a variety of codes, such as verbal and visuo-spatial. 

Different mathematics notations may affect strategies, processes and 
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codes utilised and fact retrieval may also involve different codes. 

Attention is required for both the initial encoding of numerical problems 

and the retrieval of answers from long-term memory (Campbell, 1994). 

Inhibition of alternative responses to sums within the selective attention 

of associative memory networks is also important for retrieving answers 

(Clark & Campbell, 1991). Geary & Hoard (1995) stated that individuals 

with mathematical deficits often have difficulty in retrieving numerical 

facts from long-term memory and that poor attentional control and 

inhibition often contribute to this problem. The relationship between 

inhibition and controlled attention should be investigated further to 

examine the role it plays in numeric fact retrieval. Results for the current 

study also support theories of working memory that suggest controlled 

attention is important for retrieval of information from long-term memory 

(Baddeley, 2000; Barrouillet et al., 2004; Cowan 2000, Engle, 2002).  

3.5 Conclusion 

Chapter 3 examined whether adult mathematicians still had 

superior visuo-spatial working memory capacity compared with adult 

non-mathematicians when more basic short-term memory storage and 

controlled spatial attention were taken into account. When visuo-spatial 

working memory scores for the two groups (from Chapter 2) were 

compared whilst controlling for performance on a visuo-spatial short-

term memory span task and a basic Posner task, the mathematicians’ 

working memory scores were still significantly greater than those of the 

non-mathematicians. Simple short-term memory storage and controlled 

spatial attention do not therefore seem to account for differences 

between the working memory capacity of adult mathematicians and 

non-mathematicians. Results from regression analyses showed that it is 

the ability to hold visuo-spatial information in mind whilst both storage 

and processing are required that is related to the ability to perform 

mathematics calculation. On the other hand, fluently retrieving 

arithmetic facts from long-term memory seems to rely on controlled 

spatial attention. 
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Chapter 4 will investigate whether superior memory for the 

ordering of visuo-spatial information contributes to mathematicians’ 

greater visuo-spatial working memory capacity. Both Chapter 2 and the 

current chapter have found a link between visuo-spatial working 

memory and mathematics calculation, therefore this will be explored 

further in Chapters 5 and 6. 
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Chapter 4: Item Memory and Order Memory in the 
Visuo-Spatial Domain      

4.1 Introduction 

This chapter investigates whether visuo-spatial item memory or 

order memory or both are important for mathematics. Additional 

analysis of data from Chapter 2 will be discussed, together with a 

further experiment that was conducted. In this experiment, 

undergraduate students, across a range of different subjects completed 

two computerised tasks for visuo-spatial item memory and order 

memory to see whether results correlated with performance on two 

standard mathematics tests. 

Item memory is defined by Nairne & Kelley (2004) as the ability to 

recognise or recall whether a specific item was present in an 

experimental trial. They define order memory as the ability to recognise 

or recall the item’s position in the trial sequence. The two experiments 

within Chapter 2 found that mathematicians have superior working 

memory storage capacity in the visuo-spatial domain, but Chapter 3 

discovered that this advantage for storing visuo-spatial information is 

not explained by short-term memory storage performance or the ability 

to control spatial attention. The scoring method used for the span tasks 

included in Chapter 2 was based on participants remembering items in 

their correct order, as is usual with traditional span tasks. Serial position 

curves, for recall accuracy in the visuo-spatial condition, showed there 

was no difference in the patterns of recall between the groups of adult 

mathematicians and non-mathematicians. However, mathematicians 

were better overall than non-mathematicians at the combination of 

remembering whether a visuo-spatial item was present in a list (item 

memory) and the position of that item within the list (order memory). 

 There is evidence that, at least in the verbal domain, memory for 

item and order are the result of separate cognitive processes (Majerus, 

Poncelet, Greffe & Van der Linden, 2006). It may be that memory for 
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item and order are dissociated within the visuo-spatial domain and hold 

different importance for mathematics performance. 

As with the use of working memory, there is little previous 

research into the use of item memory and order memory when adults 

perform mathematics. However, as discussed in Chapter 1, holding 

items in memory (item memory) is important for mathematics, with 

expert calculators stressing the need to hold interim calculations in mind 

(Butterworth, 2006) and that both forgetting these interim calculations, 

as well as forgetting initial information about the original calculation to 

be performed, contribute to errors (Hitch, 1978). Although holding 

interim calculations in mind is thought to involve the phonological loop 

(Fϋrst & Hitch, 2000), with the visuo-spatial sketchpad thought to be 

important for visualising and manipulating mathematical information 

(Logie et al., 1994) it seems intuitive that those more proficient at maths 

will have an advantage for item memory and order memory in the visuo-

spatial domain. Items need to be held in memory so they can then be 

manipulated. Order memory seems to be important too. 

In terms of order memory, Hitch (1978) found that when a problem 

needs to be broken down into stages, there are large individual 

differences in the order in which these stages are executed and that 

forgetting increases with the number of calculation processes involved. 

Pesenti (2005) reported that the knowledge of algorithms (the steps 

necessary to find a solution to a problem) is a major advantage for 

calculating prodigies over non-experts. They have greater knowledge of 

starting points and order of steps required for completion of a problem. 

They do not necessarily use different algorithms to non-experts, but find 

them more readily accessible. They also seem to have a superior ability 

for applying algorithms for one type of problem to other types of 

problem. Dowker et al. (1996) found that mathematicians used a larger 

number of appropriate strategies for solving estimation problems than 

did non-mathematicians and that they carried out these strategies more 

accurately. Montello (2005) also discussed the visuo-spatial ability of 

navigation as being the ability to move in a co-ordinated way, whilst 
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keeping the initial goal in mind, not only through the environment but 

also with regard to non-physical problems such as ‘”navigating” through 

a math problem’ (2005, p.262). Therefore order memory seems to be 

implicated when adults solve mathematical problems. 

Both item memory and order memory in the visuo-spatial domain 

therefore seem potentially important for mathematics performance. With 

this in mind, further analyses were carried out on the results for the 

storage element of the visuo-spatial working memory conditions of both 

Experiments in Chapter 2. An additional experiment, comprising two 

tasks, was also conducted to further investigate the importance of 

visuo-spatial item memory and order memory for mathematics. Rather 

than comparing performance of a group of mathematicians and a group 

of non-mathematicians as in the previous two chapters, these tasks 

used a correlational design with undergraduates across a wide range of 

subjects. Having discovered, in Chapter 2, that mathematicians have 

superior visuo-spatial working memory storage capacity, use of the 

correlational design allowed examination of the importance of visuo-

spatial item memory and order memory across a wider range of 

mathematical ability. 

The first task that participants undertook was a process 

dissociation task, previously used by Nairne & Kelley (2004) and Smith 

& Jarrold (2013) to investigate phonological item and order within the 

verbal domain. It is described in detail in section 4.2.3.1. The task is 

based on Estes’ (Lee & Estes, 1981) perturbation model. This states 

that when items are encoded to their positions in a list, an order error 

will occur when an item drifts along a list to a different position. An item 

error will occur when an item drifts to a different list, leading to its 

omission at recall or the inclusion of an item from a different list at 

recall. The task (Nairne & Kelley, 2004) has two blocked conditions: an 

inclusion condition, where participants have to recall all items presented 

in their correct serial position; an exclusion condition, where participants 

recall items present in any order (free recall) except for one item which 

they are told to exclude. The inclusion condition measures the number 
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of items recalled in their correct serial position. The exclusion condition 

measures how many items across the block are erroneously recalled 

when instructed not to be recalled. This indicates an item was 

remembered as being present, but its order position was remembered 

incorrectly. Scores for the inclusion and exclusion conditions are then 

used to calculate item and order memory (scoring is explained in 

section 4.2.6.1). 

The second task was a forced-choice recognition task (based on 

Cabeza, Anderson, Houle, Mangels & Nyberg, 2000; Kesner, Hopkins & 

Fineman, 1994) and is described in detail in section 4.2.3.2. 

Participants saw trials of six items followed by a pair of test items. For 

item memory they had to indicate which of the test items was present in 

the original set and for order memory they had to indicate which of the 

two items had been presented earliest in the original set. As this was a 

recognition task, it did not require participants to recall items in serial 

order. 

These two tasks sought to discover whether item memory or order 

memory in the visuo-spatial domain, or both, are important for 

mathematics in adults, through investigating their relationships with 

scores on two standard mathematics tests. This would also inform the 

relative importance of item memory and order memory in the superior 

visuo-spatial working memory storage capacity of adult mathematicians 

discovered in Chapter 2. Inclusion of both tasks also allowed for a 

comparison of the suitably of the two methods for assessing item 

memory and order memory. 

4.1.1 Further Analysis of Previous Data 

Initially, for each of the two experiments reported in Chapter 2, an 

Analysis of Covariance (ANCOVA) was carried out to discover whether 

the mathematicians’ superior visuo-spatial working memory storage 

capacity was due to this group simply being able to remember more 

visuo-spatial items, regardless of their order (item memory) or whether 
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it was due to a greater ability to place recalled items in the correct order 

(order memory). 

Firstly, for Experiment 1 of Chapter 2, participants’ scores for the 

visuo-spatial storage condition were calculated for the correct recall of 

items in any order (item memory). Mean item memory score for the 

maths group was .95 (SD = .03) and mean for the non-maths group was 

.93 (SD = .04). A non-parametric Mann-Whitney test was performed to 

compare the two groups’ item memory scores, because the non-

mathematics group’s scores showed significant negative skew and 

positive kurtosis at the p < .05 level (Field, 2009). This showed a 

significantly greater performance for the mathematicians, U = 138.50, Z 

= -1.97, p = .049, r = .30. An ANCOVA was then run with the original 

proportion correct score as the dependent variable, but with item 

memory controlled for. The result showed that the covariate item 

memory was significantly related to the original proportion correct score 

F(1,39) = 27.28, p < .001. When controlling for item memory, the 

mathematicians’ ability to place items in the correct order (original 

proportion correct score) was still significantly better than that of the 

non-mathematicians, F(1, 39) = 12.94, p = .001, partial η2 = .24. In other 

words, item memory was important for the mathematicians’ superior 

performance, but recalling the items in the correct order was even more 

important. 

The same analysis was then carried out for Experiment 2 of 

Chapter 2. Participants’ scores for the visuo-spatial storage condition 

were calculated for correct recall of items but in any order (item 

memory). Mean item memory scores for the maths group were .96 (SD 

= .02) and mean for the non-maths group was .89 (SD = .08).  A non-

parametric Mann-Whitney test was performed to compare the two 

groups’ item memory scores, because the non-mathematics group’s 

scores showed significant negative skew and positive kurtosis at the p < 

.05 level (Field, 2009). This showed a significantly greater performance 

for the mathematicians, U = 118.00, Z = -3.90, p < .001, r = .55. An 

ANCOVA was then run with the original proportion correct score as the 
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dependent variable, but with item memory controlled for. The result 

showed that the covariate item memory was significantly related to the 

original proportion correct score F(1,48) = 84.30, p < .001. When 

controlling for item memory, the mathematicians’ greater ability to place 

items in the correct order (original proportion correct score) was 

approaching significance, F(1, 48) = 2.84, p = .098, partial η2 = .06. 

The two ANCOVAs reported above therefore indicated that whilst 

the amount of items of visuo-spatial information held in working memory 

is related to mathematics performance, the ability to sequence these 

items may have an even greater relationship with mathematics.  

However, the data included in these analyses are from the results 

of a working memory span task and span tasks are not the best way of 

investigating item memory and order memory. Both ANCOVAS showed 

a significant relationship between item memory and proportion correct 

scores, suggesting ability to remember item and order were not 

independent of each other in the span task. Span tasks of this nature 

rely on participants recalling items in their correct serial order, so item 

memory and order memory are not really separable, which Nairne & 

Kelley describe as the ‘process purity problem’ (2004, p.114). Also, 

mean scores for item memory above show that participants’ scores 

were approaching ceiling. The span tasks used involved recalling nine 

possible locations on a 3 x 3 grid, so it was possible for participants to 

perform well on item memory at the greater span lengths simply through 

guessing, if required. It was therefore decided to run an experiment to 

investigate the importance of visuo-spatial item memory and order 

memory using the process dissociation task and the forced-choice 

recognition task. These tasks attempted to separate visuo-spatial item 

memory and order memory and reduce the effectiveness of guessing as 

a strategy. Both tasks also used a correlational design, rather than the 

between-groups design used in Chapters 2 and 3, to allow examination 

of the importance of visuo-spatial item memory and order memory 

across a wider range of mathematical ability. 
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As previous research has highlighted the importance of 

sequencing information for adult expert mathematicians, it was 

predicted that item memory would correlate significantly with 

mathematics scores but that order memory would provide a stronger 

correlation.  

4.2 Method 

4.2.1 Participants 

As the two experiments in Chapter 2 showed sample sizes of 43 

and 51 participants respectively were sufficient to detect correlations 

with mathematics scores, 51 participants (11 male) were recruited from 

undergraduates at the University of Nottingham. As discussed above, 

participants were recruited across a range of mathematical abilities to 

investigate correlations between mathematics scores and visuo-spatial 

item memory and order memory. Psychology undergraduates received 

a participation credit as part of their course and undergraduates from all 

other disciplines received an inconvenience allowance of £6 for 

participation.  

Participants were recruited from a variety of disciplines (30 

Psychology; 8 Geography; 4 Economics; 2 Pharmacy; 1 Physics; 1 

English; 1 Agriculture; 1 Law; 1 Astronomy; 1 Business Studies & 

French; 1 Chinese & German). Their ages ranged from 18.47 to 33.08 

years (M = 20.07; SD = 2.52). On average, participants had not studied 

maths for 2.32 years (SD = 2.02).  

4.2.2 Equipment 

An Acer Aspire 5736Z laptop computer, running Windows 7 and 

PsychoPy version 1.77.01 (Peirce, 2007), was used to present stimuli 

and record accuracy. Participants used a USB mouse with their right 

hand to respond. 
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4.2.3 Item and Order Tasks 

4.2.3.1 Process Dissociation Task 

 There were two conditions: an inclusion condition and an 

exclusion condition. 

In the inclusion condition, participants had to recall the positions 

that a red frog (size 4cm wide by 4cm high) jumped around a blue 4 x 4 

grid, positioned in the centre of the screen (each square was 6cm wide 

x 6cm high), and each trial consisted of 5 jumps. An example of a trial 

screen is shown in Figure 4.1.  

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Example of a trial screen showing 5 jumps around the 4 x 4 grid, in the 

inclusion condition of the process dissociation task. 

 

At the start of each trial, the frog was seen sat on a lily pad to the 

top left of the grid (size 6cm wide by 6cm high). The word ‘READY’ 

(colour red, size of 3cm, arial font) flashed on the screen twice, for 

500ms with a 500ms gap in between, to indicate it was about to jump. 

The frog then appeared in five locations in succession on the grid. It 

appeared in each location for one second, with a 500ms gap between 

jumps. After the fifth jump, the grid disappeared and, after 500 ms, a ‘?’ 

 

500 ms 

1000 ms 
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appeared on screen for one second. Finally, a blank, blue 4 x 4 grid 

appeared and the participants were required to use the USB mouse to 

click on the positions that the frog had jumped to, in the same order that 

it had jumped. After a square had been clicked on by the participant 

during recall, it reduced in size to 5cm wide by 5cm high, to indicate that 

that square had been selected. This was done based on prior use of 

this task with children. 

Trials in the Exclusion condition were identical to those in the 

Inclusion condition, except that, instead of seeing the ‘?’ between 

presentation and recall, they saw a full-screen picture, for three 

seconds, indicating which jump to omit during recall (see example in 

Figure 4.2). Participants then clicked where the frog had jumped, in any 

order, but omitting the jump shown in the picture. Again, after a square 

had been clicked on by the participant during recall, it reduced in size to 

5cm wide by 5cm high, to indicate that that square had been selected. 

 

Figure 4.2: Example screen showing the second jump should be excluded from recall 

during a trial in the exclusion condition of the process dissociation task. 

 

There were 15 trials in both the inclusion and exclusion conditions of 

the process dissociation task (included at Appendix F), with each 

location presented an approximately equal number of times.  
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4.2.3.2 Forced-Choice Recognition Task 

The forced-choice recognition task included two conditions: an 

item memory condition and an order memory condition. In the item 

memory condition, participants saw a black 4 x 4 grid in the centre of 

the screen (each square was 6cm wide x 6cm high) and a red dot (size 

3cm wide by 3cm high) was presented in different positions on the grid 

six times, sequentially. Each dot presentation was for 500ms with a 

500ms gap between each. After the sixth presentation, there was a one 

second delay, before a blank 4 x 4 black grid was presented on screen 

with two red dots presented simultaneously on it. One red dot was 

present in the original 6 trial locations and one was absent from the 

original six. Using the USB mouse, participants had to click on the dot 

that was present in the trial set. The test dots remained on screen until 

one was selected and, after the participant had clicked on one of them, 

there was a one second delay before presentation of the next trial. The 

distance between each present and absent location was controlled to 

be consistent across trials, because spatial distance effects have been 

shown to be important in performance for recall of visuo-spatial items, 

with locations closer together being harder to discriminate (e.g. Awh et 

al., 1998). Three of the trials had a distance that was smaller than the 

others by one square, which was necessary to ensure each pair of 

present and absent items was not duplicated. 

Presentation of trials in the order memory condition was identical 

to that in the item memory condition, except that, at test, the two red 

dots presented on the grid were both present in the original six trial 

locations and had been temporally adjacent to each other. Participants 

had to click on the red dot location they had seen presented earliest in 

the trial set.  

In the forced-choice recognition task, participants completed 24 

trials in the item memory condition and 20 trials in the order memory 

condition (included at Appendix G). For item memory, each location 1 to 

16 was presented nine times within the 24 trial sets and no location was 

duplicated within an individual trial. At test, each serial position 1 to 6 
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was included as the present item four times. Locations were used as 

absent items approximately equal numbers of times. For order memory, 

each location 1 to 16 was presented an approximately equal number of 

times within the 20 trial sets and no location was duplicated within an 

individual trial. At test, each serial position pairing of 1 & 2, 2 & 3, 3 & 4, 

4 & 5 and 5 & 6 was presented four times. Across each serial position 

pairing, test items were also spatially adjacent or not adjacent to each 

other an approximately equal number of times. 

 4.2.4 Additional Materials 

The Woodcock-Johnson Calculation Test & Math Fluency Test 

(Woodcock, McGrew & Mather, 2001), as described in Chapter 2 

(sections 2.2.1.4 & 2.3.1.4), were administered using the standard 

procedures to measure mathematics ability. 

4.2.5 Procedure 

All participants were tested individually by the same experimenter 

and each session lasted around forty-five minutes. All participants first 

completed the two computerised tasks, the order of which was 

counterbalanced across participants. 

 For the process dissociation task, participants initially read 

instructions for their first condition and then completed two practice 

trials. They then completed the experimental trials for that condition 

before completion of their second condition, which also included two 

practice trials. The order that participants completed the two conditions 

was counterbalanced. The order of trials and presentation of items 

within each trial was randomised. 

For the forced-choice recognition task participants initially read 

instructions for their first condition and then completed two practice 

trials. They then completed the experimental trials before completion of 

their second condition, which also included two practice trials. The order 

that participants completed the two conditions was counterbalanced. In 

both conditions, the order of trials was randomised, but the items within 

each trial were presented in the same sequential order for each 
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participant, to enable control over the equal presentation of adjacent 

serial positions, locations used and spatial proximity in test pairs of both 

conditions (Smyth, 1996).  

Following completion of the two computerised tasks, participants 

then completed the Woodcock-Johnson Calculation Test and Math 

Fluency Test, the order of which was counterbalanced across 

participants. 

4.2.6 Item and Order Scoring Methods 

4.2.6.1 Process Dissociation Task 

This paradigm used measures of item and order memory previously 

utilised by Nairne & Kelley (2004) and Smith & Jarrold (2013). They are 

considered to be purer measures of item and order memory than those 

involved in the more usual working memory span tasks, as they rely on 

dissociation between item and order. A fuller background to the scoring 

method used is provided in Nairne & Kelley (2004), but a summary is 

included below. 

With traditional memory measures such as span tasks and free 

recall, performance is related to set sizes and materials used. It is also 

related to the successful combination of remembering whether each 

item was present (item memory) together with its position in the list 

(order memory) (Jarrold et al., 2011; Nairne & Kelley, 2004). Estes’ 

(Lee & Estes, 1981) perturbation model states that items are encoded 

to their positions in a list. An order error will occur when an item drifts 

along a list to a different position and an item error will occur when an 

item drifts to a different list, leading to its omission at recall or the 

inclusion of an item from a different list at recall. The scoring method 

begins by calculating scores for each participant in the inclusion and 

exclusion conditions. The calculations apply to the retention of a 

particular item at position “x” within a list. 

In the inclusion condition, which required recall of jumps in the 

order they were presented, the number of trials was calculated in which 
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the item in position “x” was correctly recalled. Thus a greater inclusion 

score indicates better performance.  

The exclusion condition required recall of presented items in any 

order (free recall), but omitting position “x”. An error occurs if the item in 

position “x” drifts in memory to a different position and is then recalled 

(Nairne & Kelley, 2004). This means the participant has remembered 

the item was present, but order memory has failed. For each 

participant, the number of trials in which the to-be-excluded item was 

erroneously recalled was calculated. Thus a greater exclusion score 

indicates poorer performance.  

Scores for item and order memory were then calculated for each 

participant using these inclusion and exclusion scores. Nairne & Kelley 

(2004) explain that for the inclusion condition, remembering an item in 

its correct position is the probability of remembering the item was 

present (Item memory) multiplied by the probability of remembering its 

position in the list (𝑂𝑟𝑑𝑒𝑟 𝑚𝑒𝑚𝑜𝑟𝑦). For the exclusion condition, 

participants will erroneously recall the to-be-excluded item if they 

remember the item was present (Item memory) but don’t remember its 

position in the list correctly (1 −  𝑂𝑟𝑑𝑒𝑟 𝑚𝑒𝑚𝑜𝑟𝑦). This gives the 

following formulae: 

         𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 = 𝐼𝑡𝑒𝑚 𝑚𝑒𝑚𝑜𝑟𝑦 𝑥 𝑂𝑟𝑑𝑒𝑟 𝑚𝑒𝑚𝑜𝑟𝑦 

𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 = 𝐼𝑡𝑒𝑚 𝑚𝑒𝑚𝑜𝑟𝑦(1 − 𝑂𝑟𝑑𝑒𝑟 𝑚𝑒𝑚𝑜𝑟𝑦) 

These formulae can be converted, using algebra, to calculate item 

memory and order memory scores: 

          𝐼𝑡𝑒𝑚 𝑚𝑒𝑚𝑜𝑟𝑦 =     𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 + 𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒  

                       𝑂𝑟𝑑𝑒𝑟 𝑚𝑒𝑚𝑜𝑟𝑦 =    
𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒

𝐼𝑡𝑒𝑚 𝑚𝑒𝑚𝑜𝑟𝑦
 

These two formulae were therefore applied to the scores initially 

calculated for the inclusion and exclusion conditions, to arrive at a score 
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for item memory and order memory for each participant. Greater scores 

for both item and order memory reflected better performance. 

3.2.6.2 Forced-Choice Recognition Task 

In both the item memory and order memory conditions, proportion 

correct scores were calculated for each participant for the total number 

of items correctly selected from the recall test pairs. 

4.3 Results 

A Cook’s Distance score was calculated for each participant in 

each task, through regressions using item and order scores to predict 

mathematics scores, to discover whether influential cases could affect 

any of the analyses reported below. No influential outliers with a Cook’s 

Distance score >1 (Field, 2009) were detected when using item memory 

and order memory scores to predict either mathematics scores. 

Controlling for gender had no significant impact on analyses and results 

reported below are without controlling for gender. 

In the sections below, results for standardised tests will be firstly 

reported (section 4.3.1), followed by results for the process dissociation 

task (section 4.3.2.1) and results for the forced-choice recognition task 

(section 4.3.2.2). Finally, regression analyses will examine to what 

extent item memory and order memory predicted mathematics scores 

(section 4.3.3). 

 4.3.1 Standardised Tests 

Mean score across participants for the Woodcock-Johnson 

Calculation test was 17.08 (SD = 6.04). This represented a median 

percentile rank compared to age norms (Woodcock, McGrew & Mather, 

2001) of 62.00 (min = 3.00; max = 97.00). Mean score across 

participants for the Woodcock-Johnson Math Fluency test was 120.37 

(SD = 23.83). This represented a median percentile rank compared to 

age norms of 47.00 (min = 2.00; max = 99.50). Scores for the two 

maths tests significantly correlated with each other, r = .63, p < .001. 
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4.3.2 Item and Order Tasks 

4.3.2.1 Process Dissociation Task 

Initially, data from the inclusion and exclusion conditions were 

used to calculate item memory and order memory scores for each 

participant, as described in section 4.2.6.1. Mean score in the inclusion 

condition was 13.08 (SD = 2.51) and mean number of items recalled 

erroneously in the exclusion condition was 1.96 (SD = 2.19). Calculated 

mean item memory was therefore 1.01 (SD = .17) and calculated mean 

order memory .87 (SD = .13).  

Scores for item memory and order memory were then correlated 

with the two mathematics scores to discover whether performance for 

either type of memory was related to mathematics performance. 

Correlations involving order memory were carried out using Spearman’s 

rho, as scores for order memory showed significant positive skew at the 

p > .05 level (Field, 2009). Neither item memory, r = .22, p = .126 nor 

order memory, rs = .23, p = .106 significantly correlated with Woodcock-

Johnson Calculation scores. Similarly, neither item memory, r = .08, p = 

.577 nor order memory, rs = .24, p = .096 significantly correlated with 

Woodcock-Johnson Math Fluency. Item memory and order memory did 

not significantly correlate with each other, rs = -.26, p = .069, suggesting 

dissociation of item and order memory within this task. 

The exclusion condition allowed participants to recall items in any 

order. However, it is possible that participants still attempted to recall 

the items in the order in which they were presented. The data was 

examined to see on what proportion of trials free recall had been used 

and on what proportion of trials participants had still chosen to recall in 

serial order. It was found that the mean number of trials in which 

participants had used free recall was only .39 (SD = .21). The 

proportion of trials that participants recalled using free recall 

significantly negatively correlated with their order memory, rs = -.53, p < 

.001. In other words, participants who used a serial recall strategy 

obtained greater order memory scores than those who used free recall. 
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The correlation between use of free recall and item memory was not 

significant, r = .22, p = .117.  Use of free recall did not significantly 

correlate with calculation scores, r = .07, p = .592, or fluency scores, r = 

-.04, p = .785.  

4.3.2.2 Forced-Choice Recognition Task 

The proportion of items correctly selected from the test pairs was 

first calculated for each participant in each of the item memory and 

order memory conditions. Mean item memory was .79 (SD = .29) and 

mean order memory was .75 (SD = .15).  

Scores for item memory and order memory were then correlated 

with the two mathematics scores to discover whether either was related 

to mathematics performance. Correlations involving item memory were 

carried out using Spearman’s rho, as scores for item memory showed 

significant positive skew at the p > .05 level (Field, 2009). Item memory 

did not significantly correlate with either Woodcock-Johnson 

Calculation, rs = .08, p = .583 or Woodcock-Johnson Math Fluency, rs = 

.10, p = .490. However, order memory correlated with Woodcock-

Johnson Calculation, r = .34, p = .016, although not with Woodcock-

Johnson Math Fluency, r = .20, p = .198. The correlation between item 

memory and order memory was small but significant, rs = .28, p = .048. 

Item memory and order memory were then compared across the 

two tasks to assess whether they were measuring the same things. 

Item memory in the two tasks did not significantly correlate with each 

other, rs = .04, p = .803, but order memory in the two tasks did, rs = .32, 

p = .022. Item memory in the process dissociation task did not 

significantly correlate with order memory in the forced-choice 

recognition task, r = -.07, p = .638, but order memory in the process 

dissociation task did significantly correlate with item memory in the 

forced-choice recognition task, rs = .41, p = .003.  

4.3.3 Regression Analyses 

Regression analyses were performed for the forced-choice 

recognition task, to see whether item memory and order memory could 
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uniquely predict mathematics scores. No regressions were performed 

for the process dissociation task because neither type of memory 

correlated with either calculation or fluency. 

The first regression analysis was performed for the forced-choice 

recognition task with scores for the Woodcock-Johnson Calculation test 

as the dependent variable. Table 3.1 shows the model where item 

memory was entered in the model first at step 1, before order memory 

was added at step 2. Table 3.2 shows the model where order memory 

was entered first at step 1, before item memory was added at step 2. 

Only order memory significantly predicted calculation score, regardless 

of the order that item memory and order memory were entered into the 

model. 

Table 4.1 

Regression analysis for item and order memory in the forced-choice recognition task 
predicting Woodcock-Johnson Calculation score with item memory at step 1 

 

DV: calculation score 

 
B 

 
SEB 

 
β 

 

Step 1 

   

   Constant 18.06 2.52  

 Item Memory  -1.25 3.01 -.06 

Step 2    

   Constant    8.21 4.55  

   Item Memory   -1.94 2.87 -.09 

   Order Memory  13.92 5.47   .35* 

Note. R
2
 = .00 for Step 1 (p = .681), Δ R

2
 = .12 for Step 2 (p = .014).   *p < .05. 
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Table 4.2 

Regression analysis for item and order memory in the forced-choice recognition task 
predicting Woodcock-Johnson Calculation score with order memory at step 1 

 
DV: calculation score 

 
B 

 
SEB 

 
β 

 

Step 1 

   

   Constant   6.95 4.12  

   Order Memory 13.56 5.41  .34* 

Step 2    

   Constant   8.21 4.55  

   Item Memory  -1.94 2.87 -.09 

   Order Memory 13.92 5.47   .35* 

Note. R
2
 = .11 for Step 1 (p = .016), Δ R

2
 = .01 for Step 2 (p = .502).   *p < .05. 

 

Similar regression models were run using Woodcock-Johnson 

Math Fluency scores as the dependent variable, but neither model was 

significant (all p’s > .05). 

4.4 Discussion 

This chapter investigated the relative importance of item memory 

and order memory, in the visuo-spatial domain, for mathematics. 

Initially, further analysis of results from both experiments in Chapter 2 

suggested that, although item memory was related to mathematics, 

order memory was more important. This was then investigated further, 

through the use of a process dissociation task and a forced-choice 

recognition task designed to provide greater separability of these two 

types of memory. Neither task found a relationship between item 

memory and mathematics. However, the forced-choice recognition task 

found a relationship between order memory and mathematics 

calculation. This supported the initial prediction that visuo-spatial order 

memory would be more important for mathematics, but did not support 

the prediction that visuo-spatial item memory would be important. 
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For the process dissociation task, neither type of memory 

significantly correlated with mathematical performance. Correlations 

with both calculation and fluency scores were non-significant. However, 

analysis of data from the process dissociation task highlighted issues 

with this method of measuring item memory and order memory. Errors 

in the exclusion condition, used to calculate scores for both item and 

order memory, were low at only 13%, indicating that the task may not 

have been sufficiently difficult. Also, although the process dissociation 

task is designed to enable calculation of independent scores for item 

and order memory, around 2/3rds of trials in the exclusion condition 

resulted in participants using a serial recall strategy as opposed to free 

recall. The use of serial recall appeared to have impacted on their ability 

to exclude the correct item at test, as use of free recall negatively 

correlated with order memory score. In other words, the greater the use 

of serial recall, the greater was a participant’s order memory score. The 

correlation between using free recall and item memory also approached 

significance. Item memory and order memory also moderately 

correlated with each other. This suggests that item and order memory 

may not have been truly dissociated within this task.  

In summary then, the process dissociation task found that neither 

visuo-spatial item memory nor order memory were important for 

mathematical calculation or fluency in adults. However, results for both 

types of memory may have been affected by a lack of difficulty and the 

high levels of serial recall used by participants in the exclusion 

condition.  

For the forced-choice recognition task, which was designed not to 

rely on the serial recall of items, item memory did not correlate with 

scores for either mathematics measure, but order memory correlated 

with calculation scores. Also, results of the regressions found that order 

memory significantly and uniquely predicted calculations scores, but 

there was no predictive relationship for item memory. Neither item 

memory nor order memory predicted fluency in mathematics. This 

corresponds with adults largely using direct retrieval of answers to solve 
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the arithmetic included in the fluency test, rather than using procedural 

methods, such as decomposition or counting, that rely to a greater 

extent on working memory resources. Also, if some participants needed 

to use procedural strategies, (e.g. counting down to solve subtractions) 

the basic nature of the arithmetic included in the test would not require 

much ordering of information. Results for the forced-choice recognition 

task therefore indicate that it is visuo-spatial order memory, not item 

memory, which is important for mathematical calculation.  

When looking at relationships between scores across the two 

tasks, it was found that the two item memory scores did not correlate, 

but the two order memory scores did. This implies that the two tasks 

were tapping into different processes for item memory. This may well 

reflect the difference between recall and recognition at test and 

suggests that, whilst the data indicated serial recall was largely utilised 

in the process dissociation task, serial order was not used for 

maintenance of items in memory in the forced-choice recognition task.  

However, an interesting pattern of results emerged when 

comparing the item scores of one task with the order scores of the 

other. Item memory in the process dissociation task did not correlate 

with order memory in the forced-choice recognition task, but order 

memory in the former did correlate with item memory in the latter. Also, 

item and order memory correlated with each other within the forced-

choice recognition task, although this was only just significant. This 

suggests that item memory may have been maintained serially in the 

forced-choice recognition task to some degree after all. However, even 

if this was the case, item memory still did not correlate with either 

calculation or fluency. It therefore appears that there were issues, to 

varying degrees, with both tasks regarding the dissociation of item 

memory and order memory and this could be due to the fact that items 

were presented serially in both tasks. 

This pattern of results supports previous evidence that there is a 

preference for remembering items serially even when this is not 
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required (e.g. Batarah, Ward, Smith, & Hayes, 2009). Whilst the verbal 

domain is believed by many to have separate storage and rehearsal 

mechanisms within the phonological loop (Baddeley, 2000) the visuo-

spatial domain is less well understood in this respect. The nature of 

rehearsal within the visuo-spatial domain and whether it sits with the 

visuo-spatial sketchpad or central executive is unclear, although 

Baddeley (2000) suggests some form of general sequential attention 

may assist in maintaining serial position in memory across both 

domains. Rather than trying to dissociate item memory from order 

memory in tasks where items are presented in a serial, dynamic 

manner, it may be better to examine item memory by comparing 

performance when items are presented both serially and 

simultaneously. Simultaneous presentation does not readily lend itself 

to memory through maintaining serial order but does allow examination 

of whether an item is held in memory. This would also enable 

examination of the importance of static versus dynamic visuo-spatial 

working memory for mathematics (Logie et al., 1994). The role of these 

two types of visuo-spatial working memory for basic arithmetic are 

examined through use of a dual-task in Chapter 6. 

Item memory then does not appear to be an important factor in 

mathematicians’ superior visuo-spatial working memory storage 

capacity. Performance in the forced-choice recognition task, which did 

not require the recall of items in serial order, found no predictive 

relationship of item memory for either mathematical calculation or 

fluency. Results, however, suggested that order memory has a 

relationship with calculation and suggested that order memory 

contributes to mathematicians’ superior visuo-spatial working memory 

storage capacity.  

As highlighted in the introduction to this chapter, the importance of 

order memory for mathematics is consistent with research stating that 

there are individual differences in the order in which stages of solving a 

problem are executed (Hitch 1978). It is also consistent with Pesenti’s 

(2005) finding that expert calculators have a greater knowledge for the 
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order of these steps and Dowker et al.’s (1996) finding that 

mathematicians carry out the steps more accurately. Therefore, a 

greater ability for ordering information should enable better 

remembering of steps involved in calculation procedures and also more 

efficient strategy execution when solving mathematical problems. 

Chapter 2 discussed how visuo-spatial working memory is important for 

the manipulation of mathematical information and it would make sense 

that the ordering of information is important for this manipulation. 

Although these results suggest the importance of visuo-spatial 

order memory for calculation, they do not tell us about the underlying 

mechanisms of ordering information or why mathematicians seem to 

have a greater ability for order memory in the visuo-spatial domain.  

4.5 Conclusion 

Results from working memory span tasks in Chapter 2 and a 

forced-choice recognition task in the current chapter have consistently 

indicated that those proficient at mathematics have superior ability to 

remember the order of information in the visuo-spatial domain. This 

appears to be particularly important when working memory is being 

used, since Chapter 3 found no difference between adult 

mathematicians and non-mathematicians for the storage of visuo-

spatial information when short-term memory tasks, with no processing 

element, were employed. The ordering of visuo-spatial information also 

appears to be related to mathematicians’ greater ability to execute 

ordered strategies and manipulate information when solving 

mathematical problems.  

The working memory tasks employed so far have used processing 

elements that were as neutral as possible with regard to the storage 

elements. Chapter 5 will investigate whether mathematicians still have 

superior storage capacity for visuo-spatial information during working 

memory use when the processing elements included are verbal or 

visuo-spatial. 
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Chapter 5: Working Memory Storage Capacity: 

Verbal & Visuo-Spatial Processing 

5.1 Introduction 

This chapter examines whether the type of processing involved in 

working memory affects the ability of adult mathematicians and non-

mathematicians to store verbal and visuo-spatial material. It also 

examines whether mathematicians’ apparent superior capacity for 

storing visuo-spatial information in working memory is simply due to a 

greater ability to deal with visuo-spatial information. 

Chapter 2 found that adult mathematicians have superior ability to 

store visuo-spatial, but not verbal, information when using working 

memory. Use of a short-term memory span task, with no processing 

element, in Chapter 3 found that adult mathematicians do not have 

superior short-term memory storage capacity in the visuo-spatial 

domain. Also, when short-term memory and controlled spatial attention 

were included as covariates in an ANCOVA, the mathematicians still 

retained superior visuo-spatial working memory storage capacity to the 

non-mathematicians. Chapter 4 found that visuo-spatial order memory, 

but not item memory, contributes to this superior visuo-spatial storage 

capacity. Moreover, both visuo-spatial working memory storage 

capacity and visuo-spatial order memory correlated with performance 

on the Woodcock-Johnson Calculation Test. It therefore seems that 

adult mathematicians have a greater ability to store visuo-spatial 

information than adult non-mathematicians when they are required to 

hold information in mind whilst carrying out processing. It also seems 

that both the ability to hold visuo-spatial information in mind whilst 

processing and to order visuo-spatial information are related to 

calculation ability.  

The working memory tasks employed so far, however, have 

included a novel processing element: a face-matching task that was 

designed to be as neutral as possible with regard to the domains of the 

storage items. This enabled the examination of capacity for the verbal 



                                  Chapter 5: WMC: verbal & visuo-spatial processing 

134 
 

and visuo-spatial storage elements using a consistent processing 

element across the tasks in both domains. It also ensured that, as far as 

possible, the processing element did not interfere with storage in one 

domain more than in the other. However, previous research with adults 

has shown that the amount of verbal or visuo-spatial items stored within 

working memory varies with regard to the domain of the processing 

involved.  

Storage of items in working memory appears to be more difficult 

when processing items are from the same domain. Jarrold et al. (2011) 

found that both verbal and visuo-spatial processing adversely affected 

the storage of single-syllable words, but the impact of verbal processing 

was greatest. It has been argued that verbal processing has a greater 

effect than does visuo-spatial processing on the storage of verbal items 

(Vergauwe, Barrouillet & Camos, 2010), because it blocks the rehearsal 

of verbal storage items through demands on the phonological loop. 

Vergauwe and colleagues did not find the same type of interference in 

the visuo-spatial domain, where both verbal and visuo-spatial 

processing produced the same level of interference for storing visuo-

spatial items.  

Shah & Miyake (1996) also showed that the type of processing in 

working memory span tasks affected storage in both the verbal and 

visuo-spatial domains. Visuo-spatial storage was greater when 

combined with verbal processing than with visuo-spatial processing and 

verbal storage was greater when combined with visuo-spatial 

processing than with verbal processing. They also found that 

correlations with higher level cognition tasks were greater when the 

working memory span tasks involved processing and storage from the 

same domains. Storage scores for their span task involving both visuo-

spatial processing and storage were more strongly related to measures 

of complex spatial thinking than were scores for the span task 

combining verbal processing and visuo-spatial storage. Similarly, their 

span task involving both verbal processing and storage had a stronger 

relationship with language comprehension than when verbal storage 
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was combined with visuo-spatial processing. They suggested this was 

due to the requirement to process and store information in the same 

domain within the working memory span tasks reflecting the resources 

required in complex cognitive tasks. For example, language 

comprehension predominantly requires both the processing and storage 

of verbal information rather than a mixture of verbal and visuo-spatial.  

It may therefore be that measuring verbal and visuo-spatial 

storage ability when using processing tasks from the same domain will 

give a better indication of the relationship between mathematics and 

holding verbal and visuo-spatial information in mind during processing. 

It may also be that using working memory span tasks with verbal and 

visuo-spatial processing elements will produce a different pattern of 

results to that found in Chapter 2. The use of verbal and visuo-spatial 

processing elements within the span tasks employed in the current 

chapter will inform whether mathematicians always have superior visuo-

spatial storage ability while using working memory or whether their 

relative ability depends upon the type of processing being carried out. 

Use of a neutral processing task that does not involve verbal or 

visuo-spatial skills also does not perhaps truly reflect the type of 

processing being undertaken whilst people use working memory to 

solve mathematical problems. For example, Logie et al., 1994 and 

Hubber et al. (Experiment 1: 2014) found visuo-spatial resources are 

used when adults perform additions. Imbo & LeFevre (2010) found 

working memory resources in both the verbal and visuo-spatial domains 

are used when adults solve subtraction and multiplication problems. 

Use of verbal and visuo-spatial processing elements in the span tasks 

employed in the current chapter will better reflect the types of 

processing undertaken when adults solve mathematical problems. 

5.1.1 The Current Experiment 

Previous research has shown the type of processing element 

included in a working memory span task affects both storage 

performance and the link between storage and higher level cognition 
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(Jarrold et al., 2011; Shah & Miyake, 1996; Vergauwe et al., 2010). The 

current chapter therefore employs working memory span tasks with 

both verbal and visuo-spatial processing elements. It includes the four 

possible combinations of verbal and visuo-spatial processing and 

storage.  Use of these processing elements in the current chapter 

allows examination of whether mathematicians still have superior 

capacity in the visuo-spatial domain when verbal or visuo-spatial 

processing is involved, as in ‘real life’ calculations. It will also inform 

whether there is still no difference between mathematicians and non-

mathematicians for verbal working memory storage when the 

processing element is no longer neutral.  

The format of the span tasks used were the same as those 

employed in Chapter 2, except for the type of processing elements. The 

verbal and visuo-spatial processing elements retained the requirement 

for a ‘yes’ or ‘no’ response, used in Chapter 2, to ensure the same task 

formats across conditions (Jarrold et al., 2011) and to ensure 

comparability with the Chapter 2 tasks. Each possible combination of 

verbal and visuo-spatial processing and storage was examined, giving 

four conditions: verbal processing & verbal storage; verbal processing & 

visuo-spatial storage; visuo-spatial processing & verbal storage; visuo-

spatial processing & visuo-spatial storage. The tasks are described in 

detail in section 5.2.3. 

The second issue examined in the current chapter is whether the 

apparent advantage that mathematicians have for storing visuo-spatial 

information while using working memory can be explained by them 

simply having better general ability for dealing with visuo-spatial 

information. Wei et al. (2012) previously found that both visuo-spatial 

storage capacity and general visuo-spatial ability, measured by a 3-

dimensional spatial rotation task, correlated with mathematics 

performance in Chinese college students. However, they did not 

examine whether the relationship between visuo-spatial storage ability 

and mathematics could be explained by general visuo-spatial ability.  
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Previous research has implicated the use of general visuo-spatial 

resources in the interpretation of initial information contained in 

mathematical problems. Varying the spacing of operands (+, x and – 

signs) and the first operator (initial digit) (Jiang et al., 2014) affected the 

interpretation of questions and the processing of the symbols. The 

spatial proximity of words within algebra word problems also affects the 

interpretation of questions and the formulation of appropriate formulae 

to solve the problems (Landy et al., 2014). Pinhas, Shaki & Fischer 

(2014) also argued that plus and minus operands have spatial 

associations. Their participants had to answer simple additions and 

subtractions by pointing to answers along a number line presented on 

screen. Adults were faster to respond when additions involved 

responding on the right side of the number line or when subtractions 

involved responding to the left. When Marghetis, Nύῆez & Bergen 

(2014) measured the movement of the computer mouse as their 

participants selected answers to addition and subtraction problems 

shown on screen, they found a similar addition-right and subtraction-left 

bias. Wiemers, Bekkering & Lindemann (2014) also concluded that 

spatial magnitude is important when solving arithmetic. They found that 

spatial arm movements affected addition and subtraction differently 

dependent on the direction of the movements. A meta-analysis 

(Friedman, 1995) also found moderate correlations between 

mathematics and general visuo-spatial ability.  

For the current chapter, the performance of mathematicians and 

non-mathematicians was compared on the Revised Vandenberg & 

Kuse Mental Rotations Test: MRT-A (Peters et al., 1995), a test of 

general visuo-spatial ability involving visuo-spatial rotation. This test has 

been used previously across a range of subject literature as a measure 

of general visuo-spatial processing ability (e.g. Hausmann, 

Slabbekoorn, Van Goozen, Cohen-Kettenis & Gϋntϋrkϋn, 2000; 

Hedman et al., 2006; Langlois et al., 2009; Peters, Chisholm & Laeng, 

1995). Delgado & Prieto (2004) also used the MRT-A to discover that 

visuo-spatial rotation ability predicted performance on geometry and 
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mathematical word problems. The task is described in detail in section 

5.2.4. Performance of the mathematicians and non-mathematicians will 

also be compared for the processing elements of the working memory 

span tasks.  

In summary, the current chapter investigates differences between 

adult mathematicians and non-mathematicians in working memory 

storage capacity when the processing element of the span tasks used 

involves either visuo-spatial items or verbal items. It also examines 

differences between the two groups for performance on the verbal and 

visuo-spatial processing elements and for general visuo-spatial ability. 

As Chapter 2 found that mathematicians have superior visuo-spatial 

working memory storage capacity, it was expected that mathematicians 

would remember more items in their correct serial position in the two 

working memory span task conditions involving visuo-spatial storage: 

verbal processing & visuo-spatial storage and visuo-spatial processing 

& visuo-spatial storage. In other words, it was expected that 

mathematicians would have better visuo-spatial storage than the non-

mathematicians whatever the domain of the processing. It was 

predicted that there would be no difference between the performance of 

the two groups in the verbal processing & verbal storage condition, as 

Chapter 2 found no differences in the verbal domain.  

No firm prediction was made regarding differences in the visuo-

spatial processing & verbal storage condition. It could be argued that 

there should be no difference between the two groups as it involved 

verbal storage. However, as it also involved visuo-spatial processing, it 

might be expected that the mathematicians would perform at a greater 

level than the non-mathematicians in this condition. This is because if 

the non-mathematicians find the visuo-spatial processing task harder, 

they may use more working memory resources to solve the processing 

problems leaving fewer resources available to successfully perform the 

verbal storage. Finally, it was expected that mathematicians would 

perform better than non-mathematicians for general visuo-spatial ability 

as measured by scores for the MRT-A. This was due to previous 
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literature suggesting that general visuo-spatial ability may be related to 

mathematics (Delgado & Prieto, 2004; Friedman, 1995). The previous 

findings of Wei et al (2012) have also suggested that general visuo-

spatial ability correlates with mathematics performance in adults. For 

this reason, it was also expected that mathematicians would be faster 

and more accurate for the visuo-spatial processing elements of the 

span tasks. It was expected there would be no differences between the 

two groups for verbal processing, as Chapter 2 found no differences in 

ability for verbal material.  

Visuo-spatial working memory storage capacity was found to 

predict calculation performance in Chapter 3. As it was predicted that 

mathematicians would perform better than non-mathematicians for 

visuo-spatial working memory storage capacity, visuo-spatial 

processing and general visuo-spatial ability in the current chapter, these 

elements will be entered into a regression to see whether visuo-spatial 

working memory storage capacity can predict mathematics scores over 

and above the contribution of general visuo-spatial ability and 

processing. 

5.2 Method 

5.2.1 Participants 

57 participants were recruited from the undergraduate population 

at the University of Nottingham: 28 (11 male) to a mathematics group 

and 29 (7 male) to a non-mathematics group. All participants received 

an inconvenience allowance of £9. None of the participants in the 

current chapter had taken part in the experiments included in Chapters 

2 and 3. 

The mathematics group comprised 20 mathematics students and 

8 economics students who had studied mathematics at A level. Their 

ages ranged from 18.68 to 32.56 years (M = 20.83, SD = 2.68). The 

non-mathematics group comprised English, History, and Sociology 

students who had not studied mathematics at A level. Their ages 

ranged from 18.76 to 31.70 years (M = 20.63, SD = 2.51). On average, 
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participants in the non-mathematics group had not studied maths for 

4.22 years (SD = 1.39). 

5.2.2 Equipment 

An Acer Aspire 5736Z laptop computer, running Windows 7 and 

PsychoPy version 1.77.01 (Peirce, 2007), was used to present stimuli 

and record latencies and accuracy.  

5.2.3 Working Memory Tasks 

There were four span tasks. Each had a different combination of 

processing elements and storage elements, with the processing and 

storage elements interleaved. The four different combinations were 

verbal processing & verbal storage; verbal processing & visuo-spatial 

storage; visuo-spatial processing & verbal storage; visuo-spatial 

processing & visuo-spatial storage. The timings used during all four 

span tasks were identical to those used in the working memory span 

tasks of the two experiments in Chapter 2. 

The visuo-spatial processing task employed spatial visualisation. It 

was adapted from a task used by Miyake et al. (2001). Participants saw 

two pictures on screen, side by side (see example in Figure 5.1). The 

picture on the left of each pair represented a piece of paper folded in 

half with a hole punched in it. Participants had to imagine opening out 

this piece of paper towards the dotted lines. They then had to indicate 

whether or not the unfolded paper would look like the picture on the 

right of the pair. They did this by pressing the ‘y’ key on the laptop’s 

keyboard for yes or the ‘n’ key for no. Figure 5.1 shows an example of a 

trial where the correct answer was ‘yes’. The full list of visuo-spatial 

processing pictures used is included in Appendix H. 
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Figure 5.1: Example of a visuo-spatial processing item in the working memory span   
tasks. 

 

The verbal processing task was a word rhyming judgement task, 

previously used in the working memory literature (e.g. Baldo & 

Dronkers, 2006; Gathercole, Alloway, Willis & Adams, 2006). 

Participants saw two English words on screen, side by side. They had 

to indicate whether or not the two words rhymed. They did this by 

pressing the ‘y’ key on the laptop’s keyboard for yes or the ‘n’ key for 

no. The full list of verbal processing word pairings used is included in 

Appendix I.  

As the visuo-spatial and verbal processing items were each used 

in two of the conditions, two separate blocks were constructed for each 

processing type. No individual processing item was repeated either 

within or across blocks. To ensure equal difficulty of the four blocks, a 

pilot study was initially conducted. In this pilot study, five postgraduate 

Psychology students had to indicate yes or no, as described above, to 

each processing item within each of the four blocks. This pilot involved 

the processing items only, with no storage items presented. Latencies 

and accuracy were recorded and averaged for each block. Examination 

of the data from this pilot study indicated that three of the blocks were 

comparable for RT and accuracy, but that one of the visuo-spatial 
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blocks was more difficult in terms of accuracy. Examination of individual 

items within this block indicated that four items had greater error rates 

than the other items and these were replaced. Also, one item within one 

of the two verbal blocks was replaced as it had a greater number of 

errors than did other items. Finally, each processing block was 

assigned to one of the working memory span task conditions listed in 

the first paragraph of the current section. 

The storage items of each span task consisted either of numerical 

items in the verbal domain or of visuo-spatial items. The same storage 

items were presented as in Experiment 2 of Chapter 2. These consisted 

of numerical or visuo-spatial items presented in the centre of the 

screen. Items in each span set were taken from a group of nine 

possible stimuli in each condition: 

Number span:         Digits 1 to 9 (size 2cm, arial font, colour white on 

dark grey background) 

Visuo-spatial span: Black 3 x 3 grid in the centre of the screen (each 

square was 6cm wide x 6cm high) with a red dot 

(size 3 cm wide x 3cm high) placed in one of nine 

possible locations on the grid  

Each trial comprised an interleaved series of processing elements 

and storage items. Each processing element was presented on screen 

for 3 seconds, although participants were still able to respond after this 

time. The storage items were presented for 500 milliseconds (ms), 

commencing 500ms after a response had been given to the preceding 

processing element. The next processing element was presented 

500ms after the storage item disappeared from screen. At the end of 

each span set, once all storage items had been presented, a “ ? ” 

appeared in the centre of the screen that prompted the participants to 

recall the storage items, in their order of presentation. In the number 

condition, participants said the numbers aloud and the experimenter 

keyed the response into the USB numeric keypad, In the visuo-spatial 

condition, a black 3 x 3 grid appeared on screen immediately after the “ 
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? ” and participants recalled the serial order of the red dot by clicking on 

the grid, using the USB mouse. Once recall was completed, the 

participant pressed the space bar to begin the next trial. 

 Span sets, and items within each span set, were presented in a 

random order, as in the working memory span tasks in Chapter 2. In all 

four conditions, each span length from 3 to 8 was presented three 

times, giving 18 trials. Details of trials for all conditions are included in 

Appendix J. Each of the nine possible storage items within each 

condition was presented approximately equally.  

5.2.4 Additional Materials 

The Woodcock-Johnson Calculation Test (Woodcock, McGrew & 

Mather, 2001) and WASI Matrix Reasoning (WASI; Psychological 

Corporation, 1999), as described in Chapter 2 (section 2.2.1.4), were 

administered using the standard procedures to measure mathematics 

ability and non-verbal IQ. The Woodcock-Johnson Math Fluency Test 

was not administered because Chapter 3 found that working memory 

performance predicted calculation ability but not fluency. 

Participants also completed the Revised Vandenberg & Kuse 

Mental Rotations Test: MRT-A (Peters et al., 1995). This was 

administered as a measure of general visuo-spatial ability. The MRT-A 

was administered using a pencil and test booklet and using the test’s 

standard procedure. Participants initially worked through instructions 

containing four practice items. They then completed 24 test items, split 

into two blocks, with three minutes allowed for the completion of each 

block. Each test item was presented horizontally, with one target item 

on the left and four stimulus figures on the right. All five figures 

consisted of 3-dimensional shapes comprising ten individual cubes. 

Two of the stimulus figures were rotated versions of the target figure. 

The other two stimulus figures were similar to the target figure, but, if 

rotated, could not match the target figure. Participants had to identify 

the two stimulus figures that could match the target figure by marking 

them with a cross in pencil. An answer to a test item was scored as 
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correct, and received a score of one point, if both correct stimulus 

figures were identified. No marks were given for a partially correct 

answer if only one of the two correct items was indicated. 

 It is not possible to include examples of the MRT-A test items 

within this thesis as use of this standard test includes agreement not to 

reproduce it in any way. The authors do not wish test items to get into 

general circulation, as prior exposure to items has been found to affect 

test results. 

5.2.5 Procedure 

All participants were tested individually by the same experimenter 

and each session lasted around 90 minutes. All participants in both 

groups completed the four working memory span tasks on the 

computer, for each span length 3 to 8. The order in which the four 

conditions were presented was counterbalanced across participants. 

Within this counterbalancing, it was ensured that the same processing 

task was not presented in consecutive tasks. In other words, a task 

involving visuo-spatial processing was always followed by a task 

involving verbal processing and vice versa. The order of presentation of 

span sets within each task and the presentation of items within each set 

was randomised.  

For their first and second span tasks, each participant initially 

practised the relevant processing task. After initial instructions, 

participants made yes or no judgements for six items, so they could 

familiarise themselves with the processing task. They then began the 

experiment. They commenced with a practice of one 2-span set and 

one 3-span set comprising both processing and storage tasks, before 

the 18 test sets were administered. For their third and fourth span tasks, 

participants followed the same procedure as described for the first and 

second span tasks, but omitting the initial practice of the processing 

element as they were already familiar with it.  

After completing all four span tasks, participants then completed 

the WASI Matrix Reasoning and MRT-A tests, the order of which was 
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counterbalanced across participants. Finally, participants completed the 

Woodcock-Johnson Calculation Test. 

5.3 Results 

One female participant in the non-mathematics group was 

excluded from the following analyses due to software failure that meant 

that data were not collected in the visuo-spatial processing & verbal 

storage condition. Six participants (1 mathematics group; 5 non-

mathematics group) were also excluded for having an unacceptably 

high (>15%) error rate in the processing task (mathematics: 1 verbal 

processing & verbal storage condition; non-mathematics: 5 visuo-spatial 

processing & visuo-spatial storage condition) leaving data for 27 (10 

male) participants in the mathematics group and 23 (7 male) in the non-

mathematics group available for analysis. 

 A Cook’s Distance score was calculated initially for each 

participant in each condition within the working memory ANOVAs to 

discover whether there were any influential cases that could affect the 

results of the ANOVAs. A Cook’s Distance score was also calculated in 

a regression using storage accuracy and processing task performance 

in the working memory tasks and performance on the MRT-A standard 

test to predict mathematics scores, to discover whether influential cases 

could affect any of the correlations reported below. No influential 

outliers with a Cook’s Distance score >1 (Field, 2009) were detected. 

Controlling for gender had no significant impact on analyses and results 

reported below are without controlling for gender. Degrees of freedom 

were corrected using Greenhouse-Geisser estimates of spherity where 

necessary. 

In the sections below, results for standardised tests will be 

reported first (section 5.3.1), followed by results for the storage element 

of the working memory tasks (section 5.3.2) and for the processing 

element (section 5.3.3). A regression analysis to examine to what 

extent the working memory tasks and general visuo-spatial ability 

predicted mathematics scores are included in section 5.3.4. Finally, 
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section 5.3.5 will compare performance on the working memory tasks in 

this chapter to those in Experiment 2 of Chapter 2. 

 5.3.1 Standardised Tests 

An independent t-test to compare the two groups’ Woodcock-

Johnson Calculation Test scores confirmed that the mathematics group 

(M = 26.70, SD = 3.56) were significantly better at mathematics than the 

non-mathematics group (M = 14.57, SD = 4.86), t(48) = 12.14, p < .001, 

r = .87. Scores for the mathematics group represented a median 

percentile rank compared to age norms (Woodcock, McGrew & Mather, 

2001) of 95.00 (min = 66.00; max = 99.90)7. Scores for the non-

mathematics group represented a median percentile rank compared to 

age norms of 52.00 (min = 1.00; max = 96.00)8. 

Mathematicians (M = 12.30, SD = 4.83) performed better on the 

MRT-A test of general visuo-spatial ability than the non-mathematicians 

(M = 9.09, SD = 4.44). An independent t-test confirmed that this 

difference was significant, t(48) = 2.43, p = .019, r = .33. There was a 

significant relationship between general visuo-spatial ability and 

mathematics as MRT-A scores correlated with calculation scores, r  = 

.46, p  = .001. 

An independent t-test showed that there was no significant 

difference between the two groups for WASI Matrix Reasoning non-

verbal IQ (mathematics: M = 29.04, SD = 3.60; non-mathematics: M = 

27.52, SD = 3.20), t(48) = 1.56, p = .125, r = .22. 

 5.3.2 Storage Element 

Proportion correct scores were first calculated for each participant 

for the number of storage items recalled in their correct serial position 

(see section 2.2.1.6 of Chapter 2). 

                                            
7
 Two outliers, with scores of 66 and 71, were detected in the mathematics group. 

However, neither was identified as an influential case in the following analyses and 
their inclusion did not affect results or conclusions. 
8
 The maximum score of 96 in the non-mathematics group related to one participant. 

However, they were not identified as an influential case in the following analyses and 
their inclusion did not affect results or conclusions. The next highest score was 68. 
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To discover whether processing type had any effect on storage 

and whether there was any difference between the mathematicians and 

non-mathematicians for working memory storage capacity, a 2(group: 

mathematics, non-mathematics) x 2(working memory processing type: 

verbal, visuo-spatial) x 2(working memory storage type: verbal, visuo-

spatial) mixed ANOVA was then performed on the proportion correct 

scores. Descriptive statistics, by group, are shown in Figure 5.2. 

Figure 5.2: Accuracy of storage for each working memory span type for each 
participant group with S.E.M. error bars. On the horizontal axis, V V is verbal 
processing & verbal storage; V S is verbal processing & visuo-spatial storage; S V is 
visuo-spatial processing & verbal storage; and S S is visuo-spatial processing & visuo-
spatial storage. 

 

Results of the ANOVA showed there was no main effect of 

studying or not studying mathematics, F(1,48) = 1.08, p = .304, r = .15. 

There was, however, a main effect of processing type, F(1,48) = 8.13, p 

= .006, r = .38, with storage performance better overall when combined 

with verbal processing than with visuo-spatial processing. There was 

also a main effect of storage type, F(1,48) = 31.21, p < .001, r = .63, 

with storage of verbal items more accurate overall than storage of 

visuo-spatial items. There was no processing type x group interaction, 

F(1,48) = .01, p = .909, r = .01. In contrast to Chapter 2’s results, there 

was no storage type x group interaction, F(1,48) = .02, p = .882, r = .02.  

There was, however, a processing type x storage type interaction, 
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F(1,48) = 47.76, p < .001, r = .71, shown in Figure 5.3. Pairwise 

comparisons showed visuo-spatial storage was more accurate when 

paired with verbal processing than with visuo-spatial processing 

(F(1,48) = 39.98, p < .001, r = .67). However, verbal storage was more 

accurate when paired with visuo-spatial processing than with verbal 

processing (F(1,48) = 20.35, p < .001, r = .55). Finally, there was no 

processing type x storage type x group interaction, F(1,48) = .48, p = 

.492, r = .109. 

 

Figure 5.3: Accuracy of storage type for each processing type with S.E.M. error bars.  

 

5.3.3 Processing Element 

Initially, mean accuracy and median RT were calculated for each 

participant in each of the four working memory span conditions. 

 To discover whether there was any difference between the two 

groups with regard to verbal and visuo-spatial processing ability when 

combined with the two different types of storage, a 2(group: 

mathematics, non-mathematics) x 2(working memory processing type: 

verbal, visuo-spatial) x 2 (working memory storage type: verbal, visuo-

                                            
9
 ANOVAs were also run using both the All-or-Nothing Unit and All-or-Nothing Load 

methods. All-or-Nothing Unit did not result in any significant changes to results or 
conclusions. All-or-Nothing Load resulted in no main effect of processing type 
(F(1,48), = .84, p = .365, r = .13, but did not significantly change any other main 
effects or interactions. 
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spatial) mixed ANOVA was performed for each of accuracy and 

latencies to examine performance of the two groups on the processing 

element of each condition. Mean accuracy, mean RT and standard 

error by group and span type are shown in Table 5.1. 

5.3.3.1 Accuracy 

Results showed no significant difference in accuracy on the 

processing tasks between groups or across the different working 

memory conditions. There was no main effect of studying or not 

studying mathematics, F(1,48) = .39, p = .533, r = .09, no main effect of 

storage type, F(1,48) = 1.60, p = .212, r = .18 and no main effect of 

processing type, F(1,48) = .68, p = .412, r = .12. There were also no 

significant interactions for group x processing type, F(1,48) = .83, p = 

.367, r = .13, group x storage type, F(1,48) = .39, p = .537, r = .09, or for 

processing type x storage type, F(1,48) = 2.81, p = .100, r = .24. Finally, 

there was no significant group x processing type x storage type 

interaction, F(1,48) = .19, p = .665, r = .06. 

Table 5.1 

Mean (M) and standard error (SE) for accuracy and reaction time in milliseconds (Ms) 
in the processing task by group in each working memory span task condition  

 
 
 
Condition 

      

Accuracy 

    

Reaction Time(Ms) 

Groups     M  SE     M  SE 

 

V V 

 

Mathematics 

Non-Mathematics 

  

.97 

.97 

 

.01 

.01 

  

1254 

1229 

  

  46 

  55 

V S Mathematics 

Non-Mathematics 

 .97 

.97 

.01 

.01 

 1347 

1306 

  56 

  56 

S V Mathematics 

Non-Mathematics 

 .97 

.97 

.01 

.01 

 1225 

1354 

  45 

  60 

S S Mathematics 

Non-Mathematics 

 .97 

.95 

.01 

.01 

 1388 

1576 

  50 

103 

Note. V V is verbal processing & visuo-spatial storage; V S is verbal processing & visuo-spatial 
storage; S V is visuo-spatial processing & verbal storage; and S S is visuo-spatial processing & 
visuo-spatial storage. 

 



                                  Chapter 5: WMC: verbal & visuo-spatial processing 

150 
 

5.3.3.2 Latencies 

Results showed no main effect of studying or not studying 

mathematics on latencies, F(1,48) = .79, p = .379, r = .13. There was, 

however, a main effect of processing type with verbal processing 

elements being answered faster than visuo-spatial processing 

elements, F(1,48) = 13.63, p = .001, r = .47. There was also a main 

effect of storage type, with the processing elements being answered 

faster overall when they were interleaved with verbal storage items 

compared to visuo-spatial storage items, F(1,48) = 30.28, p < .001, r = 

.62. There was a significant group x processing type interaction, F(1,48) 

= 11.99, p = .001, r = .45, shown in Figure 5.4. Pairwise comparisons 

showed that, for the mathematics group, there was no significant 

difference between latencies for the verbal and visuo-spatial processing 

items (p = .866), but that the non-mathematicians were slower to 

perform visuo-spatial processing than they were to perform the verbal 

processing (p < .001). Also, whilst there was no significant difference 

between the two groups for verbal processing task latencies (p = .634), 

the mathematics group were faster at processing visuo-spatial items 

and this difference approached significance (p = .059). There was no 

significant group x storage type interaction, F(1,48) = .79, p = .379, r = 

.13, no significant processing type x storage type interaction, F(1,48) = 

3.54, p = .066, r = .26 and no significant group x processing type x 

storage type interaction, F(1,48) = .02, p = .511, r = .02.

 

Figure 5.4: Reaction times for processing type for each participant group with S.E.M.  

error bars.  
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5.3.4 Regression Analysis to predict Mathematics Calculation 
Scores 

In Chapter 3, only visuo-spatial working memory storage capacity 

uniquely and significantly predicted mathematics calculation ability 

when included in a regression with controlled spatial attention and 

visuo-spatial short-term memory storage capacity (with no processing 

element). A regression was performed next to discover whether visuo-

spatial working memory storage capacity still uniquely and significantly 

predicted calculation when taking visuo-spatial processing and general 

visuo-spatial ability into account.  

As mathematicians were faster than non-mathematicians for the 

visuo-spatial processing task, but there was no significant difference 

between the two groups for accuracy (section 5.2), only processing RT 

was included in the regression as a measure of visuo-spatial 

processing. Because of a strong correlation between accuracy in the 

two conditions involving visuo-spatial storage (rs = .66, p <.001) and the 

two conditions measuring visuo-spatial processing RTs (rs = .43, p = 

.002), storage scores and processing RTs were combined across 

conditions before entering them into the regression.  Woodcock-

Johnson Calculation Test score was the dependent variable. 

Table 5.2 shows results for the regression model when MRT-A 

scores, for general visuo-spatial ability, were entered into the model 

together with visuo-spatial processing RT at Step 1, followed by visuo-

spatial working memory storage at Step 2. At Step 1, only MRT-A 

scores significantly and uniquely predicted calculation ability. When 

visuo-spatial working memory storage was added at Step 2, both MRT-

A and storage predicted calculation ability and there was significant 

improvement in the fit of the model. 
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Table 5.2  

Regression analysis for general visuo-spatial processing (MRT-A), visuo-spatial 
processing latencies (RT) and visuo-spatial working memory (WM) storage predicting 
Woodcock-Johnson Calculation score 

 

DV: calculation score 

 

B 

 

SEB 

 

β 

 

Step 1 

   

   Constant 20.39 5.84  

    MRT-A     .61   .20    .41** 

    Combined visuo-spatial processing RT - 4.29 3.36 -.17 

Step 2    

   Constant   7.06 8.58  

   MRT-A     .49   .21   .33* 

   Combined visuo-spatial processing RT - 3.85 3.26 -.15 

   Combined visuo-spatial WM storage 17.90 8.71    .27* 

 Note. R
2 

= .24 for Step 1 (p =.002), Δ R
2
 = .06 for Step 2 (p = .045).   *p < .05, **p < .01 

 

5.3.5 Comparison of Chapter 2 and Chapter 5 Visuo-Spatial 
Working Memory Results 

Results from the current chapter supported the findings of Chapter 

2 that there is no difference between mathematicians and non-

mathematicians for verbal working memory storage capacity. However, 

a different pattern of results to those of Chapter 2 emerged for visuo-

spatial storage. In Chapter 2, mathematicians were able to store more 

visuo-spatial items in working memory when the span tasks included 

the face-matching task as an as-neutral-as-possible processing 

element. In the current chapter, mathematicians showed no advantage 

for storing visuo-spatial information in working memory when storage 

was combined with either verbal or visuo-spatial processing. Across the 

two studies it appears that, whilst participants overall found visuo-

spatial storage harder when combined with visuo-spatial processing 

and easier when combined with verbal processing, the mathematicians 

found it easier than non-mathematicians to store visuo-spatial 
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information when combined with the neutral face-matching processing 

task.  

A statistical analysis was performed next to discover whether 

these assertions were correct. Visuo-spatial working memory scores 

from Experiment 2 in Chapter 2, with neutral processing, were 

compared to scores for the two working memory tasks in the current 

chapter that involved visuo-spatial storage. Scores for span lengths 

three to seven were included in the analysis to ensure consistency 

across conditions. Therefore, the performance of mathematicians and 

non-mathematicians were compared across three conditions: neutral 

processing & visuo-spatial storage; verbal processing & visuo-spatial 

storage; visuo-spatial processing & visuo-spatial storage. This 

investigated to what extent the three processing types affected visuo-

spatial storage ability and whether mathematicians did in fact have 

better visuo-spatial storage ability than non-mathematicians when 

storage was combined with neutral processing compared to verbal or 

visuo-spatial processing. 

The data for the tasks involving verbal processing and visuo-

spatial processing were collected within participants, whereas the data 

for the task involving neutral processing were collected from a different 

group of participants. To overcome this difference, the analysis was 

treated as between-participants, as though data were collected from 

three different participant groups. Although this had less power than if 

all three conditions were performed by the same participants, it would 

still give an indication of the effect of the processing elements on visuo-

spatial working memory storage capacity.  

Participant numbers for the mathematics and non-mathematics 

groups in the three processing conditions were as follows: neutral: 

mathematics 25, non-mathematics 26; verbal: mathematics 27, non-

mathematics 23; visuo-spatial: mathematics 27, non-mathematics 23. 

Initially, independent t-tests (shown in Table 5.3) were used to examine 

whether there were any differences between the profiles of the 
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mathematics groups in Experiment 2 of Chapter 2 and the current 

chapter and also between the non-mathematics groups in the two 

chapters. For the mathematicians, there was no significant difference 

between the two groups for age or non-verbal IQ. Mathematicians in the 

current chapter had slightly higher Woodcock-Johnson Calculation Test 

scores than those from Chapter 2 and this difference approached 

significance. For the non-mathematicians, there was no significant 

difference between the two groups for age or non-verbal IQ. Non-

mathematicians in the current chapter had slightly higher Calculation 

Test scores than those from Chapter 2 and this difference was just 

significant. 

Table 5.3   

Comparison of age profiles and of non-verbal IQ and Woodcock-Johnson Calculation 
Test scores for participants in Experiment 2 of Chapter 2 and Chapter 5 

 

 

 

Mathematicians 

 

 

 

Age 

 

Independent t-test result 

 

t(50) =    .21,  p = .833 

 Non-verbal IQ t(50) =    .14,  p = .892 

 Woodcock-Johnson Calculation t(50) =  1.94,  p = .058 

 

Non-mathematicians 

 

Age 

 

t(47) =    .88,  p = .382 

 Non-verbal IQ t(47) =    .69,  p = .494 

 Woodcock-Johnson Calculation t(47) =  2.02,  p = .049 

 

A 2(group: mathematics, non-mathematics) x 3(processing type: 

neutral, verbal, visuo-spatial) Factorial ANOVA was performed on the 

visuo-spatial proportion correct scores. Descriptive statistics by group 

and processing type are shown in Figure 5.5. 
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Figure 5.5: Accuracy of storage for each working memory span processing type for 

each participant group with S.E.M. error bars. 

 

There was a main effect of studying or not studying mathematics, 

F(1,145) = 10.08, p = .002, r = .25, with the mathematicians having 

better visuo-spatial storage scores overall. The type of processing 

element significantly affected visuo-spatial storage ability, as there was 

also a main effect of processing type, F(2,145) = 11.28, p < .001, r = 

.27. Pairwise comparisons showed that visuo-spatial storage scores 

were greater overall when storage was combined with neutral 

processing than with visuo-spatial processing (p < .001) and greater 

with verbal processing than with visuo-spatial processing (p < .001). 

Storage scores were no different between the conditions using neutral 

and verbal processing (p = 1.00).  There was a group x processing type 

interaction F(2,145) = 3.34, p = .038, r = .15. Tests of Bonferroni-

corrected simple main effects discovered the mathematicians were 

better than the non-mathematicians at storing visuo-spatial information 

when storage was combined with the neutral processing task, F(1, 145) 

= 15.65, p <.001, r = .31. However, there was no significant difference 

between the two groups for visuo-spatial storage when it was combined 

with verbal processing, F(1, 145) = .97, p = .328, r = .08 or visuo-spatial 

processing, F(1, 145) = .35, p = .557, r = .05. Also, for the 
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mathematicians, visuo-spatial storage scores were greater when 

storage was combined with neutral processing than with visuo-spatial 

processing, F(2,145) = 12.10, p < .001, r = .28 and when storage was 

combined with verbal processing than with visuo-spatial processing, 

F(2,145) = 12.10, p = .011, r = .28. Storage scores were no different 

between the conditions using neutral and verbal processing, F(2,145) = 

12.10, p = .143, r = .28. For the non-mathematicians, there was no 

significant difference in visuo-spatial storage between any of the three 

conditions (all ps > .05). 

5.4 Discussion 

This chapter employed working memory span tasks, using verbal 

and visuo-spatial processing elements, to investigate whether the type 

of processing involved affected the ability of adult mathematicians and 

non-mathematicians to store verbal and visuo-spatial information whilst 

using working memory. It also investigated whether there was any 

difference in storage capacity or processing ability between these two 

groups. General visuo-spatial ability was also measured to see whether 

the ability to store visuo-spatial information within working memory 

predicted mathematics ability when general visuo-spatial ability was 

taken into account. Results found no significant difference between 

mathematicians and non-mathematicians for working memory storage 

capacity for any of the combinations of verbal and visuo-spatial 

processing and storage. However, they did find that mathematicians 

were faster to perform the visuo-spatial processing element of the 

working memory span tasks. Mathematicians also performed 

significantly better than the non-mathematicians on the measure of 

general visuo-spatial ability. Both general visuo-spatial ability and visuo-

spatial storage within working memory were able to uniquely predict 

mathematics calculation ability. Comparison of results between Chapter 

2 and the current chapter suggested that mathematicians have superior 

ability to store visuo-spatial information in working memory when the 

processing involved is neutral, but not when the processing is either 

verbal or visuo-spatial. 
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The finding, in the current chapter, that mathematicians and non-

mathematicians had similar verbal storage capacity, irrespective of the 

type of processing, supports the results of Chapter 2. It also provides 

additional evidence that, whilst verbal storage has previously been 

found to be involved in mathematics (e.g. Fϋrst & Hitch, 2000; Geary, 

2011; Imbo & Vandierendonck, 2007a; Logie et al., 1994), it is not an 

important factor in the differences between mathematicians and non-

mathematicians for mathematical performance.  

The finding that there was no difference between the two groups 

for visuo-spatial storage capacity, in the current chapter, did not support 

initial predictions. For both the verbal processing & visuo-spatial storage 

and the visuo-spatial processing & visuo-spatial storage conditions, 

there was no difference between the two groups for visuo-spatial 

storage accuracy. This contrasts with the findings of Chapter 2, where 

mathematicians showed superior visuo-spatial storage when this was 

combined with the as neutral as possible processing element. Section 

5.3.5 above described the comparison of results across the three 

processing type conditions, albeit with the caveat that the analysis 

treated all three conditions as between-participants. This analysis 

indicated that, overall, participants found visuo-spatial storage more 

difficult when it was combined with visuo-spatial processing than with 

verbal or neutral processing. However, the mathematicians were better 

than the non-mathematicians at storing visuo-spatial information when it 

was combined with neutral processing. To confirm these findings, a 

within-participants experiment should be run to measure visuo-spatial 

storage with all three processing conditions. 

One explanation for the difference in findings might be differences 

in participant characteristics. However, the participant profiles of the 

mathematics and non-mathematics groups used in Chapter 2 and the 

current chapter were very similar (section 5.3.5). Although the non-

mathematicians involved in the current chapter had greater Woodcock-

Johnson calculation scores than the non-mathematicians from Chapter 

2, the difference in scores was very small and only just significant. The 
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calculation scores of the mathematicians from the current chapter were 

also slightly greater than those from Chapter 2 and this difference was 

close to significance. It therefore seems unlikely that this slight 

difference in calculation ability is responsible for the different patterns of 

results found in the two studies. Therefore, the only substantial 

differences between the methods employed were the types of 

processing elements included in the working memory span tasks.  

It is important to consider the level of central executive 

involvement in the neutral, verbal and visuo-spatial processing tasks 

employed. The central executive component of working memory is used 

both during working memory tasks and in mathematics. In terms of 

using working memory, the central executive is involved in controlling 

attention, switching between tasks, memory updating and retrieving 

information from long-term memory (Baddeley, 2003). In terms of 

mathematical cognition, it has been found to be used in the verification 

of sums (De Rammelaere, Stuyven & Vandierendonck 1999; 2001) and 

in mental addition (Logie et al., 1994). Also, Bull et al. (1999) found that 

performance on the Wisconsin Card Sorting Task, a general measure of 

executive functioning, was related to children’s performance on a 

mathematics test. It is therefore important to consider the level of 

central executive involvement within the processing element of the span 

tasks used. 

As well as differing according to content domain, it has also been 

argued that processing tasks differ according to their level of central 

executive involvement. Miyake et al., (2001) carried out a latent variable 

analysis and fractionated visuo-spatial processing tasks into three 

types: perceptual speed; spatial relations; and spatial visualisation. 

According to Miyake et al. (2001), perceptual speed involves the 

efficiency with which an individual can make basic perceptual 

judgements and involves visual comparisons rather than spatial 

manipulations. Spatial relations involve transformations, such as the 

rotation of objects. Finally, spatial visualisation requires complex mental 

manipulation of spatial objects. Their study involved 167 adults 
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performing two executive function tasks (Tower of Hanoi & random 

number generation), two visuo-spatial short-term memory and two 

visuo-spatial working memory tasks as well as two tasks for each of the 

three visuo-spatial processing factors described above. Confirmatory 

factor analysis revealed that central executive resources were 

implicated in both visuo-spatial short-term and working memory 

storage. Structural equation modelling then indicated that, whilst visuo-

spatial storage was involved in all three visuo-spatial processing 

factors, spatial visualisation had the highest involvement of central 

executive processes, spatial relations involved the central executive to 

a lesser degree and that perceptual speed involved the least executive 

resources.  

This distinction is relevant to the type of visuo-spatial processing 

task used in Chapter 2, because the face-matching task was a form of 

perceptual speed task. It comprised basic visual comparison, with little 

spatial content, and therefore had a low level of central executive 

involvement. The type of spatial visualisation task used in the visuo-

spatial processing & visuo-spatial storage condition (the paper folding 

task) involves more central executive resources than does the basic 

visual comparison task (the face-matching task) used in the neutral 

processing condition or the phonological task (rhyming words) used in 

the verbal condition. 

It therefore seems logical that the mathematicians performed 

better for visuo-spatial storage when it was combined with processing in 

the verbal domain or with a visual task involving lower levels of central 

executive resources. Mathematicians performed significantly worse 

when the processing element involved the greatest level of central 

executive resources. This was not the case, however, for the non-

mathematicians who performed no differently for visuo-spatial storage 

whatever the type of processing involved. It seems that the non-

mathematicians’ worse ability to store visuo-spatial information, as 

shown in the neutral condition of Chapter 2, prevented them from being 

able to take advantage of less domain interference and store a larger 
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amount of this material when visuo-spatial storage was combined with 

verbal or neutral processing. 

Results across this thesis have consistently found no difference 

between mathematicians and non-mathematicians for verbal working 

memory storage capacity. However, the mathematicians’ superior ability 

to store visuo-spatial information was only apparent when more working 

memory resources were available in the neutral processing condition 

within Chapter 2, which used a comparatively low level of central 

executive resources (section 5.3.5). This has implications in terms of 

mathematical cognition. If mathematicians are more efficient at ordering 

visuo-spatial information (as found in Chapter 4) and more efficient at 

remembering and applying calculation strategies (Dowker et al., 1996; 

Pesenti, 2005), all of which require working memory resources, 

mathematicians will have greater resources available to use their visuo-

spatial storage advantage to hold, visualise and manipulate numbers 

during calculation (Geary, 2004; Heathcote, 1994; Seron et al., 1992). 

They will also have more working memory resources available to use 

their superior general visuo-spatial ability (section 5.3.1) to solve 

mathematical problems. This will be discussed further in the concluding 

chapter, Chapter 7.  

General visuo-spatial processing ability, visuo-spatial working 

memory storage capacity and speed of visuo-spatial processing all 

seem to have a relationship with calculation performance. However, the 

regression analyses reported in section 5.3.4 showed general visuo-

spatial ability and visuo-spatial storage significantly and uniquely 

predicted calculation scores, but there was no predictive relationship for 

speed of visuo-spatial processing. The relationship between general 

visuo-spatial ability and calculation supports the previous research of 

Wei et al. (2012) who found that this ability correlated with mathematics, 

although the authors did not then attempt to discover whether general 

visuo-spatial ability could uniquely predict mathematics performance. It 

also supports previous findings that general visuo-spatial processing 

has a role in complex mathematics such as algebra (Landy et al., 2014) 
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and interpreting graphs (Hegarty & Waller, 2005) and generally in 

mathematics (Friedman, 1995). The finding that visuo-spatial working 

memory storage capacity also significantly and uniquely predicted 

calculation when added to the models suggests that mathematicians’ 

superior capacity cannot just be explained by a better general ability to 

deal with visuo-spatial information.  

Although the results from Chapters 2, 3 and the current chapter 

found a relationship between general visuo-spatial ability, visuo-spatial 

storage in working memory and mathematics, the results for the current 

chapter also suggest that the level of central executive involvement may 

contribute to visuo-spatial working memory differences between 

mathematicians and non-mathematicians. It seems that, through 

achieving a more efficient use of domain-general executive resources 

via better ordering of information and application of available strategies, 

mathematicians are then able to use their superior visuo-spatial abilities 

to store and manipulate information within working memory in order to 

solve complex mathematics problems. The relative roles of the central 

executive and visuo-spatial storage in adult mathematics will be 

examined in Chapter 6. 

5.5 Conclusion 

The current chapter investigated differences between adult 

mathematicians and non-mathematicians in verbal and visuo-spatial 

working memory capacity when the processing elements of the tasks 

involved were either verbal or visuo-spatial. Performance between 

mathematicians and non-mathematicians for general visuo-spatial 

processing ability was also compared. Results found that, as in Chapter 

2, which used an as neutral as possible processing task, there was no 

difference between mathematicians or non-mathematicians for verbal 

storage capacity. Contrary to the results of Chapter 2, mathematicians 

did not display superior capacity in the visuo-spatial domain. 

Comparison of results across Experiment 2 of Chapter 2 and the 

current chapter suggested that mathematicians only have superior 
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working memory storage capacity in the visuo-spatial domain when the 

processing involved uses a comparatively low level of central executive 

resources. The relative roles of the central executive and visuo-spatial 

storage in mathematics will be investigated further in Chapter 6. 

Mathematicians also displayed superior general visuo-spatial ability. 

Finally, a regression analysis found that both visuo-spatial working 

memory storage capacity and general visuo-spatial processing ability 

significantly and uniquely predicted mathematics calculation scores.  
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Chapter 6: The Involvement of the Central 
Executive and Visuo-Spatial Storage in 
Mental Arithmetic 

6.1 Introduction 

This chapter investigates the relative roles of the central executive 

and visuo-spatial storage in adults performing single digit and double 

digit additions, using a dual task methodology. Although the previous 

chapters have consistently found a relationship between visuo-spatial 

working memory and mathematics, the extent to which the central 

executive and visuo-spatial sketchpad are involved is not clear. The 

current chapter therefore attempts to discover the relative roles of the 

central executive and visuo-spatial storage. 

Chapter 2 found that adult mathematicians have superior visuo-

spatial working memory storage capacity to adult non-mathematicians 

using a working memory span task that contained a processing element 

with a comparatively low level of central executive involvement (Miyake 

et al., 2001). Chapter 3 indicated that it is this ability to store visuo-

spatial information whilst also carrying out processing rather than simply 

short-term storage ability that predicts mathematics calculation 

performance. Chapter 3 also found that endogenous spatial attention, 

believed to be a function of the central executive (e.g. Baddeley, 2002; 

Cowan, 1995), predicted performance for arithmetic fluency, but not 

calculation. Therefore, Chapter 2 indicated a relationship between 

visuo-spatial working memory storage capacity, requiring both central 

executive and visuo-spatial sketchpad resources, and calculation and 

Chapter 3 indicated a relationship between the central executive and 

arithmetic fluency. Finally, Chapter 5 found no difference between adult 

mathematicians and non-mathematicians for visuo-spatial working 

memory storage capacity when the visuo-spatial span task used 

contained a processing element with a comparatively high level of 

central executive involvement (Miyake et al., 2001). Visuo-spatial 

working memory storage capacity did still, however, uniquely predict 
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calculation ability, as did general visuo-spatial ability. The rotation task 

used to measure general visuo-spatial ability was one with a 

comparatively moderate level of central executive involvement (Miyake 

et al., 2001). Inclusion of processing elements with differing levels of 

central executive involvement within the working memory span tasks of 

Chapters 2 and 5 resulted in different patterns of results for visuo-

spatial storage capacity differences between adult mathematicians and 

non-mathematicians. The relative involvement of the visuo-spatial 

sketchpad and the central executive within visuo-spatial working 

memory therefore appears to differ depending upon the type of 

mathematics being performed, the type of processing required and also 

depending upon whether direct retrieval of answers or procedural 

methods are being employed. 

As discussed in Chapter 1, section 1.4, there is evidence within 

the previous literature that adults use visuo-spatial working memory 

when solving arithmetic problems. It seems likely that the involvement 

of visuo-spatial working memory varies according to the arithmetic 

strategy employed. Visuo-spatial representation and processing are 

likely to be particularly important for counting, which emphasizes the 

ordinal sequence of numbers. Similarly, decomposition strategies, 

which involve partitioning, storing, and recombining numbers, are likely 

to require visuo-spatial involvement. In contrast, it has been proposed 

that known addition facts are stored in a verbal, not visuo-spatial, code 

(Dehaene, 1992), and therefore retrieval of facts from memory should 

not require visuo-spatial working memory.  

As well as strategy use, other factors such as problem size are 

also likely to influence the extent and nature of working memory 

involvement. A common feature of mental arithmetic is the problem-size 

effect, whereby error rates and reaction times increase with problem 

sizes (e.g., De Rammelaere et al., 1999; Seyler et al., 2003). Previous 

research has largely concentrated on single-digit arithmetic (LeFevre, 

DeStefano, Coleman, & Shanahan, 2005), although problems involving 

double digits are likely to be more dependent on working memory 
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because they often require holding interim sums and carry-overs in 

working memory (Imbo, Duverne, & Lemaire, 2007). The effect of 

problem size on strategy has been investigated in single-digit arithmetic 

(Imbo, Vandierendonck, & Rosseel, 2007) and Hubber et al. 

(Experiment 1: 2014) investigated problem size in both double-digit and 

single-digit additions. 

Whilst the previous chapters have investigated between-group 

differences for visuo-spatial working memory storage capacity and 

correlational evidence for its relationship with mathematics, the current 

chapter investigates the use of visuo-spatial working memory when 

actually performing mathematics. Hubber et al. (Experiment 1: 2014) 

investigated the role of visuo-spatial working memory in solving single-

digit and double-digit arithmetic problems using three different 

strategies. Adult participants, from the general population, answered 

addition problems, using counting, decomposition and direct retrieval of 

number facts from memory, whilst under visuo-spatial load in an n-back 

dual task. Participants were slower to answer the problems and less 

accurate in the visuo-spatial load condition for all three strategies, but 

the slowing was greatest for counting. This implied that visuo-spatial 

working memory is used for all three strategies, but is particularly 

important when answering sums by counting. Participants were also 

slower to answer double-digit than single-digit sums and this difference 

was more pronounced when counting was used. 

The findings from Hubber et al. (Experiment 1: 2014) suggest a 

role for visuo-spatial working memory in arithmetic and that it was 

recruited to different extents by different strategies and different 

problem sizes. However, the nature of the visuo-spatial n-back task 

used meant that it was unclear whether it was the demands of simply 

holding visuo-spatial information online, or controlling and manipulating 

this information that was interfering with solving the addition problems. 

According to the Baddeley and Hitch multi-component model of working 

memory (Baddeley, 2000; 2003) these two processes rely on different 

components of working memory: holding visuo-spatial information 
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online is the function of the visuo-spatial sketchpad, which acts as a 

temporary store for visual and spatial information, whereas controlling 

and manipulating information in memory is the function of the central 

executive. This is responsible for attentional control and for the co-

ordination of the visuo-spatial sketchpad and the phonological loop. The 

n-back secondary task used in Hubber et al. (Experiment 1: 2014) 

placed a load on both the visuo-spatial sketchpad and the central 

executive due to the requirement to continuously monitor and update a 

sequence in working memory. Use of the dual tasks within the current 

chapter, designed to separately load the central executive and visuo-

spatial sketchpad, will help inform which of these working memory 

components are involved in actually performing arithmetic when 

different methods are used to solve the problems. Undergraduates from 

a range of different subjects used different strategies to answer addition 

sums whilst performing standard separate secondary tasks designed to 

independently load the central executive and visuo-spatial sketchpad. 

This should help inform the relative contribution of these two working 

memory elements for performing additions with each strategy type. 

With regard to the visuo-spatial sketchpad, several researchers 

have proposed its fractionation, with two sub-systems: one, a visual 

system which holds information such as shape and colour and another 

which holds information about movement and spatial relations 

(Baddeley, 2003; Bull et al., 1999; Logie et al., 1994). Moreover, 

Pickering et al. (2001) suggested that the visuo-spatial sketchpad is 

fractionated between static and dynamic functions, rather than by visual 

and spatial, as a result of the discovery of a developmental dissociation 

in performance in the static and dynamic conditions of their 

experiments. Previous studies investigating the role of the visuo-spatial 

sketchpad in arithmetic have concentrated on loading its static, visual 

element during dual-task experiments (Imbo & LeFevre, 2010; Lee & 

Kang, 2002; Trbovich & LeFevre, 2003), such as remembering a 

pattern of asterisks. However, as suggested in Hubber et al. 

(Experiment 1: 2014) and Reuhkala (2001), the dynamic, spatial 
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element of the visuo-spatial sketchpad also appears to be involved in 

mental arithmetic. Hegarty and Kozhevnikov (1999) found that the use 

of schematic spatial representations, as opposed to pictorial 

representations, was positively correlated with achievement in 

mathematical problem solving in 11 to 13 year olds. Also, the span 

tasks used in Chapters 2, 3 and 5 and the item and order memory tasks 

used in Chapter 4 all measured dynamic resources as presentation of 

visuo-spatial items were sequential rather than simultaneous. To 

systematically address the influence of maintaining static and dynamic 

visuo-spatial information on mental arithmetic, half of the participants in 

the present experiment completed a visuo-spatial sketchpad secondary 

task that involved maintaining static visuo-spatial information while the 

other half completed a dynamic visuo-spatial sketchpad secondary task. 

Both groups were also given the same central executive secondary 

task.  

6.1.1 The Current Experiment 

The current experiment investigated the extent to which the central 

executive and visuo-spatial sketchpad components of visuo-spatial 

working memory are used when adults solve mental arithmetic using 

direct retrieval, counting and decomposition strategies. It also 

investigated their comparative roles for answering single-digit and 

double-digit sums. Participants answered addition sums whilst 

completing no secondary task (described in section 6.2.3.1), a 

secondary task designed to load the central executive (described in 

section 6.2.3.2) and a secondary task designed to load the visuo-spatial 

sketchpad (described in section 6.2.3.3). The latter task involved 

participants completing either a dynamic or static visuo-spatial version. 

Recruitment of undergraduate participants across a range of subject 

areas allowed examination of the importance of the central executive 

and visuo-spatial sketchpad across a wide range of mathematical 

ability. 

A distinction has been previously made in the literature between 

strategy selection and strategy execution, through the use of choice and 
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no-choice conditions in experiments (e.g. Imbo, Duverne & Lemaire, 

2007; Imbo & Vandierendonck, 2007b). In choice conditions, 

participants are able to choose which strategy they use to solve 

problems, allowing the investigation of strategy selection under different 

experimental conditions. In no-choice conditions, participants are given 

instructions as to which strategy they should use for solving problems, 

thus facilitating the investigation of strategy execution, with the 

complication of initial strategy selection removed, although this does 

remove an element of ecological validity (Imbo, Duverne & Lemaire, 

2007). The present experiment used a no-choice method to enable the 

investigation of strategy execution under different working memory load 

conditions. As no-choice conditions rely on participants adhering to 

strategies they have been instructed to use, participants in the current 

experiment were asked to self-rate, after answering each set of 

problems, to what extent they had used the strategy required.  Seyler et 

al. (2003) highlighted issues with self-report, including a possible feeling 

of obligation to report the use of a strategy that hadn’t in fact been used, 

and underlined the importance of a “silent control” (p. 1,343) to provide 

a reassurance regarding strategy use and self-report. To this effect, in 

addition to the removal of participants who self-rated strategy 

adherence as ‘1’, indicating they had hardly used the required strategy, 

overall results for the present experiment were checked to confirm that 

reaction times were fastest when using the direct retrieval strategy 

(Imbo & Vandierendonck, 2008; Imbo & Vandierendonck, 2010; Seyler 

et al., 2003) and that answers were most accurate when using the 

procedural strategies of counting or decomposition (Imbo & 

Vandierendonck, 2010).  

A random letter generation task was selected to load the central 

executive. This required making a letter series random, rather than 

simply producing a serial string of letters. Random letter generation 

involves constant attention and switching between retrieval plans to 

avoid automaticity of previously learnt sequences, such as alphabet 

order, which is controlled by the central executive (Baddeley, 1996). It 
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involves keeping track of items, and the inhibition of familiar sequences, 

requiring planning and control by the central executive (Logie et al., 

1994). De Rammelaere et al. (1999) also found that random generation 

at a fixed rate involved the central executive.  

Although random letter generation contains a verbal element and 

therefore involves the phonological loop, this task has previously been 

shown to load the central executive over and above any verbal 

involvement. Logie et al. (1994) found that random letter generation 

caused far more disruption to performance on an arithmetic task than 

did loading the phonological loop via articulatory suppression. Imbo & 

Vandierendonck (2007a) also found that, during a dual task, loading the 

phonological loop both passively and actively had little effect on 

performing additions.  

Previous studies have used manual responding to high and low 

audible tones (e.g. Imbo & Vandierendonck, 2007b) and tapping a 

random pattern on a keyboard (e.g. De Rammelaere et al., 2001) as a 

central executive secondary task. However, both of these tasks require 

hand movements and these have been found to disrupt adult counting 

(Imbo, Vandierendonck & Fias, 2011). Therefore, based on the 

evidence above, a random letter generation task was deemed the most 

appropriate to load the central executive in the current experiment. 

The following predictions were made for the current experiment. 

Firstly, it was predicted that central executive load would hinder direct 

retrieval of answers, but that visuo-spatial sketchpad load would not. 

This was predicted as Chapter 3 showed endogenous spatial attention, 

controlled by the central executive, predicted arithmetic fluency, which 

should largely reflect the direct retrieval of number facts rather than 

calculation in adults. Also, the four models of working memory 

discussed in Chapter 1 (section 1.3) all include a role for the central 

executive in retrieving number facts from long-term memory. Visuo-

spatial short-term memory capacity of the visuo-spatial sketchpad did 

not predict arithmetic fluency in Chapter 3.  
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Secondly, in terms of the procedural strategies; decomposition 

and counting, it was expected that loading both the central executive 

and the visuo-spatial sketchpad would hinder arithmetic performance. 

Both of these strategies involve calculation rather than simply retrieving 

number facts and Chapter 5 found that visuo-spatial working memory 

capacity predicted calculation performance. Visuo-spatial working 

memory includes both the central executive involved in processing and 

the visuo-spatial sketchpad for the storage of information whilst the 

processing is carried out.   

 Thirdly, no firm predictions were made as to the relative 

importance of the central executive and visuo-spatial sketchpad. 

Previous chapters have consistently found visuo-spatial working 

memory to be implicated in calculation performance and Miyake et al. 

(2001) found the visuo-spatial sketchpad to be strongly linked to the 

central executive. However, previous studies have largely loaded visuo-

spatial working memory as a whole rather than attempting to 

differentiate the involvement of the central executive and visuo-spatial 

sketchpad.  

Fourthly, as previous studies have found a relationship between 

both static and dynamic visuo-spatial load and arithmetic, it was 

predicted that both would hinder answering the sums by the two 

procedural methods: decomposition and counting.  

Fifthly, it was expected that the dynamic visuo-spatial secondary 

task would have more impact on decomposition and counting than 

would the static task. Chapter 4 found that the ordering of dynamic 

visuo-spatial information predicted calculation performance, but not 

arithmetic fluency. It was therefore expected that the two procedural 

methods involving calculation, requiring several steps, rather than the 

direct retrieval of number facts would show greater decrement in 

performance under a dynamic load.  

Finally, it was expected that where central executive and visuo-

spatial sketchpad load affected arithmetic performance, the impact 
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would be greater for double-digit compared to single digit sums, 

following the previous finding that visuo-spatial working memory load 

had greater impact on answering double-digit sums (Hubber et al.: 

Experiment 1, 2014). 

6.2 Method 

6.2.1 Participants 

G*Power 3 (Faul et al., 2007) suggested that a minimum sample 

size of 22 participants was required to detect an interaction, for two 

groups with nine measures (3 strategies x 3 working memory load 

types), with an effect size of .25.  As in Chapter 2, this effect size was 

chosen as being a medium effect size per Faul et al. (2007). 45 

participants were recruited from undergraduates at the University of 

Nottingham:  22 (6 male) were allocated to the static visuo-spatial task 

group and 23 (5 male) to the dynamic visuo-spatial task group on an 

alternate basis. Participants received either a course credit or a £6 

inconvenience allowance for taking part in the study.  

The static task group comprised participants from a variety of 

disciplines (11 Psychology; 5 Mathematics, 4 English, 1 Chemistry; 1 

History). Their ages ranged from 18.27 years to 33.42 years (M = 19.75; 

SD = 3.18). On average they had not studied maths for 2.15 years (SD 

= 3.18). 

The dynamic task group also comprised participants from a variety 

of disciplines (9 Psychology; 6 Mathematics, 4 English, 1 Physics; 1 

Engineering; 1 French; 1 German). Their ages ranged from 18.10 years 

to 21.84 years (M = 19.26; SD = .98). On average they had not studied 

maths for 1.52 years (SD = 1.39).  

6.2.2 Equipment 

A Viglen Pentium D computer, running Windows XP and 

PsychoPy Version 1.73.06 (Peirce, 2007), was used to present stimuli 

and record latencies and accuracy.  
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Responses to the sums presented were made using a USB 

numeric keypad, whilst responses to the secondary visuo-spatial 

working memory task were made using a mouse. Responses to the 

central executive secondary task were recorded using a digital sound 

recorder. Participants used their right hand to use the keypad and their 

left hand to use the mouse. 

6.2.3 Experimental Tasks 

Participants answered 20 addition problems in each combination 

of answering strategy and working memory load type, giving a total of 

nine blocks (retrieval with sum-only, visuo-spatial, central executive; 

counting with sum-only, visuo-spatial, central executive; decomposition 

with sum-only, visuo-spatial, central executive). The way conditions 

were presented is depicted in Figure 6.1. The addition task (section 

6.2.3.1), central executive secondary task (section 6.2.3.2) and visuo-

spatial secondary task (section 6.2.3.3) are now described in the 

following sections. 

6.2.3.1 Addition Task 

Participants were required to answer arithmetic problems using 

three different strategies: retrieval, counting and decomposition. For 

example, for 7 + 6 =   : Retrieval – give answer directly from memory; 

counting – from 7, count upwards 6 times; decomposition – first, add 3 

onto 7 to get to 10, then add remaining units to get to the answer. Each 

problem contained two numbers and was presented horizontally, with 

the larger number on the left (e.g. 12 + 6 = ). Nine sets of 20 

experimental problems were used, resulting in 180 experimental 

problems. Participants were also given eight practice trials for each 

strategy. Within each problem set, half comprised solely single digit (1 

to 9 omitting 0), and half comprised a double-digit number (max 29) on 

the left and a single-digit number on the right. The averages for sum 

totals were the same across each problem set. The current experiment 

used the same strategies— retrieval, decomposition, and counting—
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and the same sets of addition problems (see Appendix K) as those in 

Hubber et al.: Experiment 1 (2014).10 

 

Figure 6.1: Task structure. Participants completed all three working memory 

conditions for a single strategy before moving onto the next strategy. 

                                            
10

In order to ensure that all nine problem sets were matched for mean size of the second addend as well as 

mean sum total, 8 problems were removed from the analysis leaving a total of 172 experimental trials. This 
was not required in Hubber et al. (Experiment 1: 2014) because the combination of problem sets with 
strategy/working memory condition was counterbalanced, something that was not possible in in the current 
study due to the experimental software used. 
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6.2.3.2 Central Executive Secondary Task 

Participants were required to say letters from the alphabet out 

loud, at random, in time to a metronome set to one beat per second. 

Letter generation was continuous from the presentation of the first sum 

to the answering of the final sum in each block. Participants were 

instructed to avoid strings of letters, such as “a, b, c, d” and were not 

given a starting letter. Performance on the central executive task was 

measured by producing a score for randomness of the spoken letters, 

using RGCalc (Towse & Neil, 1998). The adjacency score measured 

the percentage of occasions that a spoken letter was directly followed 

by one of its immediate neighbours in the alphabet.  

6.2.3.3 Visuo-Spatial Sketchpad Secondary Task 

For both the static and dynamic groups, participants were required 

to memorize the positions of four red dots on a 4 × 4 black grid, 

presented in the centre of the screen. The two groups performed the 

same dots trials, but these were presented differently for the two 

groups, as described below in sections 6.2.3.3.1 and 6.2.3.3.2. Section 

6.2.3.3.3 describes a pilot study carried out to ensure equal difficulty of 

visuo-spatial load on the blocks containing different types of arithmetic.  

6.2.3.3.1 Static Version     

In the static version of the task, the grid and all four dots on the 

grid were presented at the same time, for a total of two seconds. 

Immediately after, an addition problem was presented which 

participants had to answer using the required strategy for that block. As 

soon as the problem had been answered, a blank black grid was 

presented in the centre of the screen, and participants had to use the 

mouse to indicate the position of the four red dots, by clicking on the 

computer screen. The position of the mouse clicks was recorded by 

PsychoPy (Peirce, 2007). Once the mouse had been clicked four times, 

the next set of dots to remember was immediately presented. 

Performance was measured by calculating each participant’s proportion 

correct score for the number of dot positions remembered for each of 

the three strategies. 
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6.2.3.3.2 Dynamic Version 

Participants in the dynamic group saw the same grid and sets of 

dots, but the dots were presented one at a time, for 0.5 seconds each. 

Once they had answered the problem, participants were required to use 

the mouse to indicate the position of the dots in the order that they were 

presented on a blank black grid. Performance was measured by 

calculating each participant’s proportion correct score for the number of 

dot positions remembered, in the correct order, for each of the three 

strategies. 

6.2.3.3.3 Pilot Study 

Three blocks of visuo-spatial sketchpad task trials were required: 

one for each of the different arithmetic strategies. To ensure equal 

difficulty of the three blocks, a pilot study was initially conducted. In this 

pilot study, six postgraduate Psychology students each performed the 

dynamic version of the visuo-spatial sketchpad task trials for all three 

blocks, without answering any addition sums. The dynamic version was 

used for piloting as dynamic visuo-spatial tasks are generally found to 

be more difficult than static ones (e.g. Pickering et al., 2001; Reuhkala, 

2001) and so the dynamic version was likely to result in greater 

variability between the blocks. As described for the dynamic group 

above (section 6.2.3.3.2), the dots in each trial were presented one at a 

time, for 0.5 seconds each. After presentation of the fourth dot, a blank 

black grid was presented in the centre of the screen, and participants 

had to use the mouse to indicate the position of the four red dots, by 

clicking on the computer screen. Performance was measured by 

calculating each participant’s proportion correct score for the number of 

dot positions remembered, in the correct order, for each of the three 

blocks. Box plots were then created to highlight any trials where 

accuracy was greater than two standard deviations from the mean. As a 

result, two trials within the decomposition block were found to be more 

difficult than the other trials and they were then amended to be simpler. 
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6.2.4 Additional Materials 

The Woodcock-Johnson Math Fluency Test (Woodcock, McGrew 

& Mather, 2001) and WASI Matrix Reasoning (WASI; Psychological 

Corporation, 1999) were administered using the standard procedures to 

measure mathematics fluency and non-verbal IQ, as described in 

Chapter 2 (sections 2.3.1.4 & 2.3.1.5). 

6.2.5 Procedure 

All participants were tested individually by the same experimenter 

and each session lasted around 50 minutes. Participants began by 

answering a set of 20 practice problems, using a free choice of strategy, 

before practising the visuo-spatial sketchpad and central executive 

tasks. They then began the experiment. The order in which the three 

strategies were used was assigned randomly, and participants 

completed all three working memory conditions for a single strategy 

(order counterbalanced) before moving onto the next strategy. 

Participants were told to give equal attention to the addition problems 

and the working memory tasks. The addition problems remained on 

screen whilst participants worked out the answer using the required 

strategy. Reaction time was measured from the time the problem 

appeared until the first digit of the answer was pressed. After keying the 

answer to the problem, the participant pressed enter, which immediately 

triggered the appearance of the next problem, in the sum only and 

central executive conditions, or the grid in the visuo-spatial condition. 

The order of trials within each block was randomised across 

participants. 

At the end of each set of 20 problems, participants were instructed 

to self-rate on how many of the problems they had used the required 

strategy to answer, using the numeric keypad, on a scale of 1 to 5, 

where 1 was “hardly any”, and 5 was “almost all”. 

Following completion of the computerised task, participants 

completed WASI Matrix Reasoning followed by Woodcock-Johnson 

Math Fluency. 
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6.3 Results 

Of the 45 participants, two were removed from the static group 

(one male, one female) and three from the dynamic group (all female) 

as they had a self-rating of “1” at some point on the strategy check. This 

left data for 20 participants in the static group (5 male) and 20 

participants in the dynamic group (5 male). The remaining 40 

participants reported that they had used the required strategies on the 

majority of trials (retrieval, M = 4.68, SD = 0.67; decomposition, M = 

4.35, SD = 0.72; counting, M = 4.44, SD = 0.62). 

  A Cook’s Distance score was calculated initially for each 

participant in each condition within all of the ANOVAs reported in the 

sections below to discover whether there were any influential cases that 

could affect the results of the ANOVAs. No influential outliers with a 

Cook’s Distance score >1 (Field, 2009) were detected. Controlling for 

gender had no significant impact on analyses and results reported 

below are without controlling for gender. Degrees of freedom were 

corrected using Greenhouse-Geisser estimates of spherity where 

necessary. 

In the sections below, results for standardised tests will be firstly 

reported (section 6.3.1), followed by results for comparison of the static 

and dynamic visuo-spatial groups in the visuo-spatial condition only 

(section 6.3.2) to examine whether the two visuo-spatial groups 

performed differently. Section 6.3.3 reports results for the arithmetic 

task. Performance on the central executive and visuo-spatial secondary 

tasks are reported in section 6.3.4. 

 6.3.1 Standardised Tests 

An independent t-test to compare the two groups’ Woodcock-

Johnson Math Fluency Test scores confirmed there was no significant 

difference between the static group (M = 121.80, SD= 27.78) and 

dynamic group (M = 126.55, SD = 20.55), for mathematical fluency t(38) 

= -.62, p = .542, r = .10. Scores for the static group represented a 

median percentile rank compared to age norms (Woodcock, McGrew & 
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Mather, 2001) of 53.00 (min = 8.00; max = 99.00). Scores for the 

dynamic group represented a median percentile rank compared to age 

norms of 62.50 (min = 12.00; max = 96.00). 

An independent t-test showed that there was no significant 

difference between the two groups for WASI Matrix Reasoning non-

verbal IQ (static: M = 26.10, SD = 3.11; dynamic: M =27.25, SD = 4.87), 

t(38) = -.89, p = .379, r = .14. 

 6.3.2 Comparison of Static and Dynamic Visuo-Spatial Groups 

Initially, reaction times and accuracy for the arithmetic problems in 

the visuo-spatial condition only were analysed in two separate 3 

(strategy: retrieval, decomposition, counting) × 2 (problem size: single 

digit, double digit) × 2 (visuo-spatial group: static, dynamic) mixed-

design ANOVAs. This was performed to examine whether the two 

visuo-spatial task groups performed differently.  

There was no main effect of visuo-spatial group on either RT, F(1, 

38) = .00, p  = .968, r  = .01 or accuracy, F(1, 38) = 1.07, p = .307, r  = 

.17, nor any significant interactions involving visuo-spatial group (all ps 

> .05).  

As there were no significant main effects of group or interactions 

involving group, the data were collapsed across group for the analysis 

of arithmetic task performance. 

6.3.3 Arithmetic Task 

Reaction times and accuracy for the full arithmetic task were then 

analysed in two separate 3 (strategy: retrieval, decomposition, counting) 

× 3 (working memory type: sum-only, visuo-spatial, central executive) × 

2 (problem size: single digit, double digit) repeated measures ANOVAs. 

Mean latencies, mean accuracy, and standard errors are shown in 

Table 6.1. 
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Table 6.1 

Descriptive statistics for the arithmetic task. Reaction time (RT) is shown in 
milliseconds (ms) 

 
 
 

  
RT (ms): 
Double  
digit 

 
RT (ms): 
Single  
digit 

 
Accuracy: 
Double 
digit 

 
Accuracy: 
Single 
digit 

 
Strategy 

 
Working Memory 
Load 

 
M (SE) 
 

 
M (SE) 

 
M (SE) 

 
M (SE) 

      

Retrieval Sum-only 1556 (84) 1176 (47) .90 (.02) .94 (.01) 

 Visuo-spatial 1954 (126) 1683 (113) .87 (.02) .94 (.01) 

 Central Executive 3452 (187) 2662 (150) .82 (.03) .89 (.02) 
 

Decomposition Sum-only 2916 (192) 2656 (183) .92 (.02) .94 (.01) 

 Visuo-spatial 3691 (349) 2786 (240) .94 (.01) .97 (.01) 

 Central Executive 6054 (486) 4277 (377) .90 (.02) .95 (.01) 
 

Counting Sum-only 4351 (183) 2358 (125) .89 (.02) .97 (.01) 

 Visuo-spatial 4557 (276) 3006 (202) .93 (.02) .98 (.01) 

 Central Executive 9655 (1511) 5833 (883) .86 (.03) .95 (.01) 

 

6.3.3.1 Latencies 

There was a significant main effect of working memory load type 

on RT, F(1.11, 43.34) = 33.30, p <.001, r  = .66. Post hoc tests revealed 

that problems were solved more quickly in the sum-only condition than 

in the visuo-spatial load condition (p = .007), which in turn was faster 

than the central executive load condition (p <.001). There was a 

significant main effect of strategy on RT, F(1.33, 51.72) = 34.28, p 

<.001, r  = .63. Problems were solved more quickly using retrieval than 

using decomposition (p <.001), which was faster than counting (p= 

.002). There was also a significant main effect of problem size, F(1, 39) 

= 134.82, p <.001, r = 88, with slower responses for double-digit than 

for single-digit problems. 

There was a significant interaction between working memory load 

type and strategy, F(1.08, 41.91) = 5.71, p = 0.019, r  = .35, suggesting 

that the secondary tasks had different effects on RT depending upon 

which arithmetic strategy was used. Tests of simple main effects 

demonstrated that there was a significant effect of working memory load 
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type for each arithmetic strategy [retrieval, F(2, 38) = 83.54, p <.001, r = 

.83 ; decomposition, F(2, 38) = 29.43, p <.001, r  = .66; counting,  F(2, 

38) = 7.43, p = .002, r = .40]. For all strategies, problems were solved 

faster in the sum-only condition than in the visuo-spatial condition, (ps ≤ 

.05) and faster in the visuo-spatial condition than in the central 

executive condition (ps <.001). However, contrasts revealed a greater 

difference between the central executive and visuo-spatial conditions 

for counting than for retrieval, F(1, 39) = 6.59, p = .014, r = 38, or 

decomposition, F(1, 39) = 4.92, p = .032, r  = .33, and for decomposition 

compared with retrieval F(1, 39) = 7.39, p = .010, r = .40. As shown in 

Figure 6.2, these contrasts reflect the fact that the central executive 

condition increased RTs more for the counting strategy than it did for 

the decomposition and retrieval strategies. Contrasts also showed there 

was a greater difference between the sum-only and visuo-spatial 

conditions for decomposition than for retrieval, F(1, 39) = 6.34, p = .016, 

r = .37, but not counting, F(1, 39) = .05, p = .825, r = .04. There was no 

significant difference in the slowing of latencies between the sum-only 

and visuo-spatial conditions for decomposition and counting, F(1, 39) = 

.04, p = .835, r = .03. There was no three-way interaction between 

strategy, working memory, and problem size, F(1.35, 52.45) = 3.31, p = 

.063, r  = .24.  

 

Figure 6.2: Arithmetic strategy and working memory condition interaction with S.E.M. 

error bars. 
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6.3.3.2 Accuracy 

There was a significant main effect of working memory load type, 

F(2, 78) = 11.95, p <.001, r  = .36. Post hoc tests revealed that 

arithmetic problems were solved more accurately in the sum-only (p = 

.001) and visuo-spatial (p = .001) conditions than in the central 

executive condition but that there was no significant difference in 

accuracy between sum-only and visuo-spatial (p = .82) conditions. 

There was also a main effect of strategy, F(1.54, 59.98) = 12.52, p 

<.001, r  = .42. Post hoc tests revealed that both counting (p = .009) 

and decomposition (p <.001) were more accurate than retrieval and that 

there was no significant difference in accuracy between counting and 

decomposition (p = .92). A significant main effect of problem size, F(1, 

39) = 42.54, p <.001, r = .72, demonstrated that single-digit sums were 

solved more accurately than double-digit sums. There were no 

significant interactions: strategy x working memory load type, F(3.19, 

124.30) = 1.88, p = .133, r  = .12; strategy x problem size, F(2, 78) = 

3.08, p = .051, r  = .19; working memory type x problem size, F(2, 78) = 

.63, p = .535, r  = .09; strategy x working memory type x problem size, 

F(4, 156) = .81, p = .520, r  = .07. 

6.3.4 Analysis of Secondary Tasks Performance 

6.3.4.1 Central Executive Secondary Task 

For the central executive task, a one-way ANOVA was carried out 

to compare performance for each of the three strategies (retrieval, 

decomposition, counting). Due to the design of the central executive 

task, performance could not be compared for single- and double-digit 

trials separately. 

Mean adjacency scores (standard errors) for the random letter 

generation task, when using each arithmetic strategy, were as follows: 

retrieval, .22 (.02); decomposition, .20 (.01); counting, .21 (.02). There 

was no main effect of strategy, F(1.50, 58.66) = 0.39,  p = .622, r = .08, 

showing that participants performed similarly on the central executive 

task irrespective of which addition strategy they were using.  
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6.3.4.1 Visuo-Spatial Secondary Task 

For the visuo-spatial secondary task, a 3 (strategy: retrieval, 

counting, decomposition) × 2 (problem size: single digit, double digit) 

mixed ANOVA, with visuo-spatial task (static, dynamic) as a between-

subjects factor, was performed. 

There was a main effect of visuo-spatial task group, with 

participants in the static group performing significantly more accurately 

than those in the dynamic group, F(1, 38) = 42.71, p <.001, r = .73. 

There was also a significant main effect of strategy, F(2, 76) = 24.28, p 

<.001, r  = .49. Post hoc tests revealed that performance in the visuo-

spatial task was better whilst using retrieval than whilst using 

decomposition (p <.001) and counting (p <.001), but that there was no 

significant difference between performance whilst using decomposition 

and counting (p = 1.00). There was also a main effect of problem size, 

F(1, 38) = 40.79,  p <.001 r  = .72, with performance less accurate when 

answering problems containing double digits. 

Although there was a main effect of visuo-spatial task group, this 

did not interact with strategy, F(2, 76) = 1.51, p = .227 r  = .14, showing 

that participants in the dynamic group found the visuo-spatial task 

harder than those in the static group, no matter which arithmetic 

strategy was used. There was no visuo-spatial task × problem size 

interaction, F(1, 38) = .19, p = .664, r  = .07. There was, however, a 

visuo-spatial task group × strategy × problem size interaction, F(2, 76) = 

4.60, p =.013, r  = .24. As shown in Figure 3, this was driven by a 

smaller difference in accuracy between the visuo-spatial task groups 

when retrieving single digit sums. 
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Figure 6.3: Accuracy in the secondary visuo-spatial task, for both dynamic and static 
groups, whilst answering (a) single-digit and (b) double-digit sums, with S.E.M. error 
bars. 

 

6.4 Discussion 

This chapter investigated the relative involvement of the central 

executive and visuo-spatial storage in adult arithmetic. Using a dual 

task methodology, participants answered addition sums, using three 

different strategies, whilst performing no secondary task, a central 

executive secondary task and a visuo-spatial sketchpad secondary 

task. 

Results showed that the central executive load produced a greater 

impairment on arithmetic performance than the visuo-spatial sketchpad 

load in terms of both slower and less accurate responses. Moreover, 
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the effect of central executive load slowed performance to a greater 

extent for counting than for decomposition and retrieval, and this was 

not due to a differential speed/accuracy or task trade-off across 

strategies. This clarifies the findings of Hubber et al. (Experiment 1: 

2014) and indicates that the slowed counting in their experiment was 

likely to be due to increased load on the central executive, rather than 

the visuo-spatial nature of their n-back task. 

The visuo-spatial task in the current study did not influence 

accuracy on the arithmetic task compared to the sum-only condition, but 

it did slow performance, albeit to a lesser extent than the central 

executive condition. It is not possible to completely rule out that this 

slowing was due to the general demands of performing a secondary 

task. However, it appears that maintaining visuo-spatial information in 

the visuo-spatial sketchpad plays a small role in solving addition 

problems whatever the strategy. This contradicted initial predictions that 

visuo-spatial storage would be required for procedural methods but not 

direct retrieval, based on the previous finding that short-term visuo-

spatial storage predicted calculation performance but not fluency 

(Chapter 3). It appears then, that visuo-spatial storage is required for 

direct retrieval but that it is not an important factor contributing to 

individual differences in arithmetic fluency.  

Similar patterns of performance on the arithmetic task were 

observed for both the static and dynamic visuo-spatial task groups. This 

contradicted initial expectations that the dynamic task would interfere 

more with the two procedural methods, as Chapter 4 had shown that 

memory for the ordering of visuo-spatial items, which is a dynamic 

process, predicted calculation performance. However, the types of 

sums included in the current study were far simpler than the majority of 

items included in the Woodcock-Johnson Calculation Test which was 

used to measure calculation ability in Chapter 4. Therefore, the different 

pattern of findings may well be due to the relative complexity of the 

mathematics measures used.  
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 The dynamic group performed worse on the visuo-spatial task 

itself. This reflects the fact that the dynamic task is more difficult, 

requiring maintenance of the order as well as location of the stimuli. 

Better secondary visuo-spatial task performance for the retrieval 

strategy may reflect the fact that the visuo-spatial information did not 

have to be maintained for as long in this condition, as sums were 

answered faster using retrieval than when using decomposition or 

counting.  

As expected, and in line with the findings of Hubber et al. 

(Experiment 1: 2014), results also confirmed that working memory load 

decreases performance to a greater extent when solving sums involving 

double digits than in those only involving single digits, suggesting it 

plays a greater role in more complex sums. This was true for both 

visuo-spatial and central executive load.  

The present results show the central executive to be involved in 

counting, decomposition, and retrieval strategies, but to be particularly 

important for counting. This is consistent with a number of studies 

demonstrating that procedural strategies rely on the central executive to 

a greater extent than retrieval strategies (Hecht, 2002; Imbo & 

Vandierendonck, 2007b). The role of the central executive in counting is 

probably due to the need to store, switch between, and update several 

different pieces of information. For example, to solve the problem 9 + 4, 

it is necessary to store the size of the first addend, to increment this 

total as each counting step is performed (10, 11, 12, 13), and to 

maintain and update a record of the number of count steps made (1, 2, 

3, 4). The coordination of information in memory such as this is known 

to be a key function of the central executive (Logie et al., 1994). The 

greater impact of the central executive than the dynamic visuo-spatial 

task on counting may also suggest that it is the central executive, rather 

than the visuo-spatial sketchpad store, that is important for the ordering 

of information in visuo-spatial working memory.  
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The central executive secondary task impaired performance on 

decomposition strategies, but to a lesser extent than counting. On the 

one hand this might be surprising because, like counting strategies, 

decomposition also involves the temporary storage and manipulation of 

several pieces of numerical information. However, it is possible that 

some elements of a given decomposition strategy relied on the recall of 

known facts and thus may have been less reliant on executive 

processes. Moreover, participants reported using different 

decomposition methods in the study, including estimating to the nearest 

10 then subtracting, adding to the nearest 10, then adding units to get 

to the answer and also, where the initial addend was double digit, 

adding the units of the two addends first, before adding the product to 

the initial decade number. Thus, the use of these somewhat different 

strategies may have served to mask the overall effects of working 

memory that were observed. Although the study was designed to 

investigate strategy execution, there appears to have been an element 

of strategy selection within the decomposition condition, and this use of 

different methods should be investigated further, as decomposition 

strategies may differ in their reliance on working memory resources. 

In contrast to previous research (Hecht, 2002; Imbo & 

Vandierendonck, 2007b), this study suggested that even direct retrieval 

of numerical facts relied on central executive processes to some extent. 

It is plausible that the use of more difficult two-digit addition problems 

may have caused participants to use strategies other than retrieval for 

these problems. However, it was found that there was a significant 

impact of central executive load for both the single- and double-digit 

problems. Single-digit addition problems are well learned, and educated 

adult participants, such as those involved in this study, should be able 

to directly retrieve these solutions. Retrieval of known facts involves 

more than just looking up an answer in long-term memory. Although 

there are some differences among models, it is generally believed that 

number facts are stored in a network of associations, such that a 

number pair (e.g., 6 + 7) will be associated with several possible 
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solutions, with differing strengths (Ashcraft, 1992; Campbell, 1995; 

Siegler & Shrager, 1984). For individuals who are able to retrieve an 

answer correctly, the correct answer will have the strongest association; 

however, other surrounding answers may have weaker associations. 

Therefore in order to retrieve an answer to a known fact, it is necessary 

to select the appropriate fact and suppress others. This is in line with 

the controlled-attention model of working memory that considers 

inhibition to be an important element in fact retrieval (Engle, 2002; Kane 

et al., 2007) and also the time-based resource-sharing model that 

states similar items stored within long-term memory can cause 

interference (Barrouillet et al., 2007). In particular it is known that the 

answers to multiplication facts (i.e., 6 × 7 = 42) will interfere with 

retrieving the correct answer to known addition facts (i.e., 6 + 7 = 13) 

and vice versa (Campbell, 1987; LeFevre, Bisanz & Mrkonjic, 1988). It 

is likely that suppressing incorrect responses will be one process that 

requires central executive involvement in solving problems by retrieval.  

In contrast to the large impact of central executive load on mental 

arithmetic, the visuo-spatial sketch pad only appeared to play a small 

role. This contribution was similar across all three strategies, which 

suggests that the visuo-spatial sketch pad may have been involved in 

holding the sum in mind, rather than in performing the different 

strategies themselves. Participants in the current study were well-

educated adults rather than children and were asked to solve addition 

problems involving adding a single digit. It is possible that these 

problems were simple enough for participants to be able to solve them 

without recourse to visuo-spatial working memory. Indeed, Chapters 2 

and 3, which also involved adult participants, found that short-term 

visuo-spatial storage within working memory predicted ability for 

calculation but not arithmetic fluency. Perhaps more complex problems 

(e.g. algebra: Landy et al., 2014; interpreting graphs: Hegarty & Waller, 

2005; negative numbers: Robert & LeFevre, 2013) or those involving 

different operations (e.g. subtraction: Lee & Kang, 2002) may have 

required more visuo-spatial working memory involvement.  
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A second possible explanation for the apparent lack of 

involvement of visuo-spatial storage is that adult participants have 

alternative methods available for solving arithmetic problems. So while 

participants may use visuo-spatial storage for holding numerical 

information in some situations, verbal storage may be available as an 

alternative. Thus when participants are prevented from using visuo-

spatial storage, due to the dual task, they fall back onto using verbal 

storage. Similarly, Seron et al. (1992) found that there are wide 

individual differences in the extent to which participants report 

visualizing numbers. It is possible that there are individual differences 

between which of the storage systems is the preferred and which the 

backup one is, although Chapters 2 and 5 found no difference between 

adult mathematicians and non-mathematicians for verbal working 

memory storage capacity. Contrasting participants’ performance on 

arithmetic problems with different types of load would be a valuable 

avenue to explore these possible individual differences.  

6.5 Conclusion 

The current chapter investigated the relative roles of the central 

executive and visuo-spatial storage when adults solve arithmetic 

problems using three different strategies. 

The results have shown clearly that the working memory system in 

general is heavily involved in the performance of even simple arithmetic 

in adults. The central executive load had a greater impact on the 

performance of all addition strategies than visuo-spatial storage load. 

Counting placed more demands on this aspect of working memory than 

other strategies. While visuo-spatial storage does not appear to be as 

important for mental addition, it may play a role in other types of 

arithmetic such as subtraction. It may also play a role in more advanced 

mathematics, such as algebra, interpreting graphs and the use of 

negative numbers. 
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Chapter 7: General Discussion      

7.1 Introduction 

In Chapter 1, I set out four main research questions that I intended 

to investigate throughout this thesis. Chapters 2 to 6 then reported six 

experiments designed to answer those questions. Sections 7.2 to 7.5 of 

the current chapter will now discuss each of these main questions in 

light of the evidence from the experimental chapters. Section 7.6 will 

then include a discussion around limitations of this thesis together with 

suggestions for future research. Finally, section 7.7 will summarise my 

conclusions. 

7.2 Are there Working Memory Capacity Differences 
between Adult Mathematicians and Non-
Mathematicians? 

Within Chapter 1, I discussed previous evidence that adults use 

both verbal and visuo-spatial working memory when solving 

mathematical problems (e.g. Raghubar et al., 2010; Wilson & Swanson, 

2001). I also explained how the controlled-attention and multi-

component models of working memory include an assumption that the 

storage of verbal and visuo-spatial information takes place in domain-

specific stores rather than relying on entirely domain-general resources. 

However, no one had compared the working memory capacity of skilled 

adult mathematicians to the capacity of those less skilled at 

mathematics to discover whether the verbal or visuo-spatial domain or 

both are related to mathematics achievement. Differences between 

adult mathematicians and non-mathematicians for verbal and visuo-

spatial working memory capacity were therefore investigated within two 

chapters of this thesis.  

Chapter 2 employed working memory span tasks involving a face-

matching processing task (Burton et al., 2010) that was as neutral as 

possible with regard to the storage items, to ensure consistency across 

the storage-type conditions of the experiments. Capacity for storing 

visuo-spatial information and both numbers and words in the verbal 
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domain was examined. Results for Experiment 1 showed 

mathematicians had superior capacity for storing visuo-spatial 

information within working memory, but were no better than the non-

mathematicians for storing verbal information. Also, visuo-spatial 

working memory scores correlated with mathematics ability (measured 

by the Woodcock-Johnson Calculation Test), but verbal working 

memory scores did not. Experiment 2 again examined working memory 

capacity differences for numbers and visuo-spatial information, with 

different participants to those in Experiment 1, and found a very similar 

pattern of results. Comparison of the serial position curves of the 

mathematicians and non-mathematicians for the visuo-spatial 

conditions in the two experiments showed no difference in the profiles 

of their curves at any span length. Mathematicians were simply able to 

store more information in total. There was also no difference between 

the mathematicians and non-mathematicians for performance on the 

neutral face-matching processing element. 

The pattern of results from both experiments in Chapter 2 

supported the view within the controlled-attention and multi-component 

models of working memory that the storage of information within 

working memory is indeed domain-specific. Taken overall, these results 

suggested that adult mathematicians have superior capacity for storing 

visuo-spatial information within working memory, but not for verbal 

information. Results also suggested that mathematicians do not have 

any advantage for remembering numerical information compared to 

other material within the verbal domain. Therefore, despite the fact that 

both verbal and visuo-spatial working memory have been previously 

found to be implicated in adults solving mathematical problems, the link 

between mathematics and visuo-spatial working memory appears to be 

strongest in adults. A different pattern of results to those in Chapter 2 

was, however, found in Chapter 5. 

Chapter 5 also compared performance of a group of 

mathematicians to a group of non-mathematicians on working memory 

span tasks, but this time, instead of using a neutral processing element, 
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the tasks employed verbal and visuo-spatial processing. There was 

again no difference between the two groups for the storage of verbal 

material within working memory, but the mathematicians were no better 

at storing visuo-spatial information either. This supported previous 

findings in the literature that the type of processing undertaken affects 

storage ability (e.g. Jarrold et al., 2011; Shah & Miyake, 1996).  

Comparison of the results from the conditions involving visuo-

spatial storage in Chapter 5 and Experiment 2 of Chapter 2 confirmed 

that the mathematicians only had superior ability to the non-

mathematicians for storing visuo-spatial information within working 

memory when storage was combined with neutral processing. 

Moreover, the storage ability of the non-mathematicians for visuo-

spatial information did not vary with the type of processing, whereas the 

mathematicians exhibited better storage when combined with verbal or 

neutral processing when compared to visuo-spatial processing. As the 

visuo-spatial processing task contained a greater level of central 

executive resources than the neutral and verbal tasks (Miyake et al., 

2001) it appears that the level of central executive resources required in 

a processing task within working memory is an important factor in 

mathematicians being able to take advantage of their superior visuo-

spatial storage ability. Also, whereas the mathematicians were no faster 

at performing the neutral and verbal processing tasks, they were 

significantly faster at the visuo-spatial processing task.  

As the comparison of visuo-spatial working memory scores across 

Chapters 2 and 5 found mathematicians to have superior capacity only 

when the central executive resources involved in processing were 

comparatively low, it might be expected that mathematicians would also 

have superior visuo-spatial short-term memory scores when no 

processing was present. This was not the case, however, when visuo-

spatial short term memory performance was measured in Chapter 3, 

resulting in no significant difference between the groups of 

mathematicians and non-mathematicians (section 3.3.2.1). I see two 

possible explanations for this. Firstly, the mathematicians displayed 
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higher mean visuo-spatial short-term memory scores than the non-

mathematicians and this difference was approaching significance using 

a non-parametric test. As discussed in section 2.2.1.1 of Chapter 2, the 

power calculations within this thesis state the number of participants 

required to detect interactions and that there is less power for detecting 

main effects. This lack of significance may therefore be the result of a 

lack of power. Use of a larger sample size within the Chapter 3 

experiment may have enabled the detection of a significant main effect 

for visuo-spatial short-term memory capacity. Secondly, whilst the 

short-term memory task in Chapter 3 involved no processing, the 

working memory task in Chapter 2 required constant switching between 

the processing and storage elements of the task. It may be that the 

mathematicians used central executive resources more efficiently than 

the non-mathematicians, in the neutral processing condition, whilst 

combining processing and storage and this resulted in a greater 

availability of working memory resources to store visuo-spatial 

information. A large central executive load in the visuo-spatial 

processing condition of Chapter 5 may have caused this advantage in 

central executive efficiency to disappear. 

In summary, the results for the working memory tasks in Chapters 

2 and 5 suggested no difference between skilled adult mathematicians 

and non-mathematicians for either verbal processing or storage ability 

within working memory. Although verbal working memory has been 

previously found to be used in mathematics (Wilson & Swanson, 2001) 

and the phonological loop has been found to be used to store interim 

results during calculation (Fϋrst & Hitch, 2000), individual differences 

within the verbal domain do not seem to contribute to individual 

differences in adult mathematics achievement. Within the visuo-spatial 

domain, however, mathematicians seem to be faster at processing 

visuo-spatial information within working memory and seem to have a 

greater ability to store visuo-spatial information when the central 

executive resources required for processing are comparatively fewer. 

Results from the experiments within Chapter 2 suggest that storage 
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within working memory is domain-specific, but that the domain-general 

central executive resources required for processing need to be 

relatively low in order that mathematicians are able to utilise their visuo-

spatial storage advantage. The implications of this for solving 

mathematical problems will be discussed in section 7.4. 

7.3 What drives the Relationship between Visuo-Spatial 
Working Memory and Mathematics Achievement? 

Having found that mathematicians had superior visuo-spatial 

working memory capacity when storage was combined with neutral 

processing in Chapter 2, I then examined, in Chapter 3, the 

contributions to this advantage of more basic elements.  

Visuo-spatial working memory involves both storage and 

processing (Adams & Hitch, 1997). According to the multi-component 

model of working memory, temporary storage of visuo-spatial 

information occurs within the visuo-spatial sketchpad and the central 

executive controls working memory (e.g. Baddeley, 2002). The latter 

includes processing, shifting between tasks and cognitive flexibility, 

monitoring and updating, retrieving information and controlling attention. 

 Chapter 3 therefore examined differences between adult 

mathematicians and non-mathematicians for performance on a visuo-

spatial short-term memory task which measured capacity of the visuo-

spatial sketchpad when no concurrent processing was taking place. 

Differences in endogenous (controlled) attention were also examined 

through a Posner (1980) task. Endogenous attention has been 

previously found to be important for visuo-spatial working memory 

performance (Astle & Scerif, 2011; Awh et al., 1998; Awh et al., 2006; 

Gazzaley & Nobre, 2012). However, I found no significant difference 

between the mathematicians and non-mathematicians for performance 

on either task. Moreover, the mathematicians retained their superior 

visuo-spatial working memory advantage when working memory scores 

were included in an ANCOVA which controlled for short-term memory 

and endogenous spatial attention performance. Also, when short-term 
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memory, endogenous attention and working memory were included in a 

regression analysis only the latter uniquely and significantly predicted 

mathematics calculation ability. These results suggested that basic 

temporary storage and endogenous attention do not drive the difference 

in visuo-spatial working memory capacity between mathematicians and 

non-mathematicians. 

The finding that short-term memory did not drive working memory 

differences supported the view within the literature that working memory 

performance is more predictive of ability in complex cognitive tasks 

such as mathematics (Bayliss et al., 2003; St. Clair-Thompson & Sykes, 

2010). According to the multi-component model of working memory, 

central executive resources are important in the processing that takes 

place within working memory (e.g. Repovš & Baddeley, 2006). 

However, results from Chapter 3 indicate that differences in attention 

controlled by the central executive are not responsible for differences in 

mathematical ability. The contribution of a further element was then 

examined in Chapter 5. 

Chapter 5 included a measurement of general visuo-spatial ability: 

the MRT-A test (Peters et al., 2005). This was to discover whether 

mathematicians’ superior visuo-spatial working memory capacity was 

simply due to a greater ability to deal with and manipulate visuo-spatial 

material. The test involved the mental rotation of 3-dimensional objects 

and had a greater level of central executive involvement than the 

neutral processing element employed in Chapter 2 and the verbal 

processing element in Chapter 5, but a lower level than the visuo-

spatial processing element of the working memory span tasks used in 

Chapter 5 (Miyake et al., 2001). Mathematicians performed significantly 

better than the non-mathematicians on this test, suggesting they have 

better general visuo-spatial ability. However, when included in a 

regression together with visuo-spatial processing speed and visuo-

spatial working memory capacity, both general visuo-spatial ability and 

visuo-spatial working memory capacity uniquely and significantly 

predicted mathematics calculation ability. This provided evidence that 
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mathematicians’ superior visuo-spatial working memory capacity is not 

simply driven by general visuo-spatial processing.  

A forced-choice recognition task employed in Chapter 4 found the 

ability to order visuo-spatial information was related to mathematics 

performance. The ability to correctly choose which of a pair of visuo-

spatial locations that had previously been presented in a larger set had 

appeared earliest predicted calculation ability. Simply remembering 

which of a pair of locations was present in a set of previously presented 

items (item memory) did not predict calculation ability. Further research, 

measuring performance of mathematicians and non-mathematicians for 

order memory and visuo-spatial working memory involving neutral 

processing within the same study, would also enable examination of 

whether visuo-spatial working memory capacity is still able to predict 

mathematics performance when the ability to order visuo-spatial 

information is taken into account. 

There is a debate within the literature as to whether the order of 

visuo-spatial items is maintained within the visuo-spatial sketchpad or 

by the central executive. Logie (1995) suggests that the inner scribe of 

the visuo-spatial sketchpad is responsible for order maintenance, whilst 

Baddeley (2000) suggests it may be a function of the central executive 

via controlled attention. Although this thesis did not set out to resolve 

this issue, the experimental evidence it contains perhaps points more 

towards the central executive. If the ordering of visuo-spatial information 

takes place within the visuo-spatial sketchpad and ordering ability 

predicts mathematics ability (Chapter 4), it could be expected that 

mathematicians would have superior visuo-spatial short-term memory. 

This was not the case, however. Also, mathematicians were only better 

than non-mathematicians at recalling, in their correct order, visuo-

spatial items stored within working memory when the processing 

element was neutral and had the lowest level of central executive 

involvement. When the processing element was the visualisation task 

with the highest level of central executive load, this advantage 
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disappeared. This suggests that loading the central executive may 

hamper the mathematicians’ superior ordering ability.  

The view that the central executive is responsible for the ordering 

of visuo-spatial information has recently been supported by Allen, 

Baddeley & Hitch (2014). Their series of three experiments found that, 

whilst a secondary task loaded central executive resources, the final to-

be-remembered- item in a visuo-spatial sequence was stored in a 

privileged state. However, there was a disruption in the memory for 

earlier items. This could be explored further through comparing 

performance on the forced-choice recognition task (Chapter 4) in a no 

load and a central executive load condition.  

The involvement of the central executive in ordering visuo-spatial 

information may therefore contribute to the relationship between the 

central executive and the visuo-spatial sketchpad being greater than 

that between the central executive and the phonological loop (Miyake et 

al., 2001). The phonological loop, rather than the central executive, 

performs the ordering of verbal items via articulatory rehearsal 

(Baddeley et al., 1975). This may explain why mathematicians did not 

have superior verbal working memory capacity to the non-

mathematicians. With increasing evidence for the central executive’s 

role in the link between visuo-spatial working memory and mathematics 

in adults, Chapter 6 investigated the relative roles of the central 

executive and visuo-spatial sketchpad when adults actually performed 

mathematics. 

Chapter 6 measured the performance of adults when solving 

single-digit and double-digit additions whilst simply solving the sums, 

solving them under visuo-spatial sketchpad load and solving them 

under central executive load. Participants also used three different 

strategies for solving the problems. Although loading the visuo-spatial 

sketchpad decreased performance across all of the conditions, the 

impact of loading the central executive was greater and particularly so 

when counting was used. This again supported the view that the central 
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executive is an important component in the link between visuo-spatial 

working memory and mathematics.  

In summary, the more basic ability of temporary storage within the 

visuo-sketchpad was not found to contribute to visuo-spatial working 

memory capacity differences between mathematicians and non-

mathematicians, suggesting that differences lie at a higher cognitive 

level involving the central executive. However, ability for controlled 

spatial attention, believed to be performed by the central executive, did 

not drive the working memory differences either. Whilst general visuo-

spatial ability, previously found to involve the central executive (Miyake 

et al., 2001), did not explain differences in the storage of visuo-spatial 

information within working memory, it did predict performance at 

mathematical calculation, as did visuo-spatial working memory storage 

capacity. Loading the central executive and the visuo-spatial sketchpad 

whilst adults actually solved mathematical problems found the central 

executive played a greater role than did the visuo-spatial sketchpad. 

Also, the ability to order visuo-spatial items was found to predict 

mathematics achievement and experimental evidence within this thesis 

perhaps points to the central executive being responsible for this 

ordering.  

The evidence discussed within this section and section 7.2 above 

consistently suggests that visuo-spatial working memory capacity 

predicts mathematics performance in adults and that the central 

executive plays a crucial role. How mathematicians’ superior visuo-

spatial working memory enables their proficient solving of mathematical 

problems will now be discussed in the next section. 
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7.4 How does having Good Visuo-Spatial Working 
Memory assist the Proficient Solving of 
Mathematical Problems? 

The experimental chapters within this thesis have consistently 

provided evidence for a role for visuo-spatial working memory when 

adults perform mathematics. Several elements of visuo-spatial working 

memory have also been discovered to be linked to the proficient solving 

of mathematical problems. 

Mathematicians have been found to have greater general visuo-

spatial ability to non-mathematicians and also to be able to store more 

visuo-spatial items within working memory when processing involves a 

low involvement of the central executive. Several chapters have also 

found that the ability to store visuo-spatial items within working memory, 

general visuo-spatial ability and the ability to order visuo-spatial items 

predicts mathematics performance. Both experiments within Chapter 2 

found a strong correlation between visuo-spatial working memory 

capacity and mathematics ability and, in Chapter 5, both this capacity 

and general visuo-spatial ability significantly and uniquely predicted 

mathematics performance. In Chapter 4, visuo-spatial order memory, 

but not item memory, predicted ability in mathematics. Chapter 6 

showed that loading both the central executive and visuo-spatial 

sketchpad hampered the solving of addition problems. However, 

experimental results throughout this thesis have indicated that the 

importance of visuo-spatial working memory, and its components, when 

adults perform mathematics varies depending upon the type of 

mathematics being performed. 

Two different measures of mathematics ability have been 

employed throughout the experimental chapters. Woodcock-Johnson 

Math Fluency Test measured how many simple arithmetic problems 

participants could answer correctly within three minutes. It consisted of 

basic addition, subtraction and multiplication problems that the majority 

of adults would be able to solve by directly retrieving number facts 

stored within long-term memory, without the need for any form of 
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calculation to be performed. Woodcock-Johnson Calculation Test 

measured participants’ ability to attempt more complex mathematics 

that required procedural steps to be followed to solve the problems. The 

items increased in difficulty and ranged from solving double-digit 

additions and long division through to decimals and fractions then onto 

items such as matrices, simultaneous equations and trigonometry. 

Different relationships were found between visuo-spatial working 

memory and the two mathematical tests, suggesting the former plays a 

different role when direct fact retrieval or calculation is required. 

In Chapter 3, when basic short-term storage in the visuo-spatial 

sketchpad and controlled spatial attention via the central executive were 

taken into account, visuo-spatial working memory capacity predicted 

calculation ability, but not retrieval fluency for answering arithmetic 

problems. Fluency scores were only predicted by controlled spatial 

attention. In Chapter 5, the ability to store visuo-spatial information 

within working memory again predicted calculation ability. These results 

indicate that visuo-spatial working memory, involving both storage and 

processing, predicts the ability to perform mathematical calculations 

whilst the ability to control spatial attention predicts the ability to retrieve 

number facts from long-term memory. Therefore, the efficient use of 

different elements of visuo-spatial working memory assists the 

successful answering of different types of mathematical problems. 

The direct retrieval of answers from long-term memory seems to 

be supported by the use of controlled attention via the central executive. 

Previous research has found that those who are more proficient at 

mathematics tend to rely more on direct retrieval of number facts as a 

strategy for solving mathematical problems than do those who are less 

proficient (Imbo et al., 2007). Also, those with greater working memory 

capacity tend to use direct retrieval more (Barrouillet & Lépine, 2005). 

Group differences for the Math Fluency Test in Experiment 2 of Chapter 

2 (section 2.3.2.1) showed that mathematicians were significantly better 

than non-mathematicians for retrieving arithmetic answers directly from 

memory. With controlled attention performance predicting arithmetic 
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fluency, it therefore seems that good controlled attention is related to 

fluency in retrieving number facts from long-term memory. 

Efficient use of central executive resources appears to assist 

mathematicians in answering more complex problems that require a 

greater amount of visuo-spatial working memory resources. Retrieving 

number facts directly from long-term memory requires less visuo-spatial 

working memory resources than using procedural methods to answer 

problems (Hubber et al., Experiment 1: 2014) and therefore leaves 

more resources available for the processing and storage of information. 

This is also true of efficient strategy selection and execution (Imbo et 

al., 2007; Imbo & Vandierendonck, 2010). Dowker (1992) and Dowker 

et al. (1996) found expert mathematicians used a wider variety of 

strategies to solve problems and were also better at selecting and 

executing the most appropriate strategies. Otsuka & Osaka (2014) have 

recently published a similar finding within the verbal domain. In their 

dual task study, they found that skilled mathematics performers reduced 

their reliance on working memory resources through choosing 

strategies involving less use of the phonological loop. As the direct 

retrieval of number facts, carry overs and strategy selection and 

execution require central executive resources (e.g. Fϋrst & Hitch 2000; 

Imbo & Vandierendonck, 2007a & b; Imbo et al., 2007) and 

mathematicians are more efficient at performing these elements, they 

therefore have more working memory resources available to take 

advantage of their superior visuo-spatial working memory storage 

capacity which only became apparent when the requirement for central 

executive resources was lower (Chapter 5, section 5.3.5).  

Therefore, when presented with a mathematical problem that 

requires calculation using a procedure with more than one step, those 

proficient at mathematics are better able to retrieve required number 

facts from memory (Chapter 2, section 2.3.2.1), and better able to 

select the appropriate strategy and to execute it (Dowker, 1992; Dowker 

et al., 1996). This leaves more working memory resources available for 

mathematicians to use their superior ability to store visuo-spatial 
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information whilst carrying out processing (Chapter 2) and their superior 

general visuo-spatial ability (Chapter 5) in any calculation that is 

required. The extent to which these elements are then required to solve 

a problem seems to depend upon the type of calculation taking place. 

Visuo-spatial working memory has been previously found to be 

used in solving additions (Hubber et al., Experiment 1: 2014), 

subtractions (Lee & Kang, 2002), approximations (Logie et al., 1994), 

interpreting initial questions and operands (Jiang et al., 2014; Landy et 

al., 2014; Pinhas et al., 2014), interpreting graphs (Hegarty & Waller, 

2005) and using visual images to solve problems (Bull et al., 1999; 

Holmes at al., 2008).  The spatial magnitude of numbers has also been 

implicated in solving arithmetic (Marghetis et al., 2014; Wiemers et al., 

2014). The greater ability of mathematicians to store visuo-spatial 

information within working memory when executive resources are used 

efficiently and their better general visuo-spatial ability should therefore 

aid mathematicians in their superior performance at these types of 

mathematics. Following the finding that visuo-spatial working memory is 

used by adults for solving addition problems (Hubber et al., Experiment 

1: 2014), Chapter 6 of this thesis then attempted to understand the 

relative roles of the visuo-spatial sketchpad and central executive. 

Chapter 6 examined performance on solving single digit and 

double digit additions, using retrieval, decomposition and counting 

strategies, whilst under no load, loading the visuo-spatial sketchpad and 

loading the central executive. Results showed that both the visuo-

spatial sketchpad and central executive were used when solving the 

problems using all of the strategies and more so for double-digit 

(involving carry overs) compared to single-digit sums. However, loading 

the central executive produced a greater decrement in performance 

compared to the visuo-spatial sketchpad in terms of both speed and 

accuracy and particularly in terms of speed of counting.  

As discussed in section 6.4, the finding of a greater involvement of 

the central executive in counting supports the need to store, order, 
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switch between and continually update information within working 

memory. It also ties with the finding in Chapter 4 that the ability to order 

visuo-spatial information predicts mathematics ability. Moreover, it 

supports the view that strategies requiring several steps to solve a 

problem rely on more working memory resources than those involving 

fewer steps (e.g. Hecht, 2002; Imbo & Vandierendonck, 2007b).  

Given the links between mathematics ability and general visuo-

spatial skills (e.g. Chapter 5; Friedman, 1995; Wei et al., 2012), it is 

perhaps surprising that there was such a small effect of maintaining 

visuo-spatial information within the visuo-spatial sketchpad on 

arithmetic performance. This finding contrasts with previous evidence 

showing relationships between arithmetic performance and visuo-

spatial working memory tasks (Dumontheil & Klingberg, 2012; 

Heathcote, 1994; Reuhkala, 2001; Simmons et al., 2012; Trbovich & 

LeFevre, 2003). There are perhaps two possible explanations for the 

limited involvement of visuo-spatial storage. First, participants in 

Chapter 6 were well-educated adults rather than children, and were 

asked to solve addition problems involving adding a single digit. It is 

possible that these problems were simple enough for participants to be 

able to solve them without recourse to visuo-spatial working memory. 

Indeed, Chapter 3, which also involved adult participants, found that 

visuo-spatial storage during the use of working memory only predicted 

performance on complex mathematics (Woodcock-Johnson 

Calculation) rather than basic arithmetic fluency (Woodcock-Johnson 

Math Fluency). Perhaps more complex problems or those involving 

different operations may have required more visuo-spatial working 

memory involvement (e.g. algebra: Landy et al., 2014; graphs: Hegarty 

& Waller, 2005; subtraction: Lee & Kang, 2002). Studies which involved 

multiple arithmetical operations and allowed participants to use a wider 

range of strategies would be needed to better understand the 

involvement of all components of working memory in arithmetic. Future 

studies should also investigate the relative roles of working memory 

components for different forms of more complex mathematics. 
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In summary, visuo-spatial working memory has been previously 

found to be involved in a variety of types of mathematics (e.g. Landy et 

al., 2014, Hegarty & Waller, 2005, Lee & Kang, 2002). Good visuo-

spatial working memory seems to be linked to mathematics 

performance in different ways depending on the type of problems being 

solved. Controlled attention ability via the central executive predicts 

mathematics ability for retrieval fluency. Skilled mathematicians are 

better at retrieving number facts from long-term memory (Chapter 2) 

and at selecting and executing appropriate strategies (Dowker, 1992; 

Dowker et al., 1996), both of which lessen the requirement of working 

memory resources for solving mathematical problems. As Chapter 5 

(section 5.3.5) found that mathematicians have a superior ability to 

store visuo-spatial information in working memory when fewer central 

executive resources are required for processing, more efficient use of 

retrieval and appropriate strategies should enable mathematicians to 

use their superior visuo-spatial working memory storage capacity and 

superior general visuo-spatial ability for solving problems. Chapter 6 

showed that central executive resources are required more than visuo-

spatial sketchpad resources in solving addition problems, particularly 

when solving them using counting which requires several steps and the 

continuous monitoring and updating of information. Future research 

should further examine the roles of the components of working memory 

when performing different types of mathematics, as the relative 

requirements of central executive, phonological and visuo-spatial 

resources may vary with the type of problem being solved. 

7.5 How can Working Memory be incorporated within a 
Model of Mathematical Cognition? 

As discussed in Chapter 1, section 1.2.4, the abstract code 

(McCloskey, 1992), triple code (Dehaene, 1992) and encoding-complex 

hypothesis (Clark & Campbell, 1991) models of mathematical cognition 

do not include a role for working memory. This thesis, however, has 

consistently found a relationship between working memory performance 

and mathematics achievement, and particularly between visuo-spatial 
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working memory and mathematics. There is therefore a need to 

incorporate working memory within a cognitive model that explains the 

processes involved when an individual solves a mathematical problem. 

This was also proposed in a review of mathematics and working 

memory (Raghubar et al., 2010).  

Chapters 3 and 5 of this thesis both found that the ability to store 

visuo-spatial items within working memory, during concurrent 

processing, predicted performance for mathematical calculation. It was 

consistently found that the ability to store verbal items during concurrent 

processing did not predict mathematics scores. Although these results 

have supported a domain-dissociation for storage during the use of 

working memory, in line with the multi-component model, they have 

also highlighted the involvement of the central executive. 

Results within Chapter 3 showed it was the ability to store visuo-

spatial items within working memory (when processing was taking 

place) rather than simple short-term memory (without processing) that 

predicted mathematics scores. Whilst there were clearly individual 

differences across participants regarding the amount of information that 

could be stored temporarily within the visuo-spatial sketchpad, 

supporting the view that it is limited by capacity, capacity only predicted 

mathematics achievement when the central executive was involved to a 

greater extent through the use of working memory.  

The link between the central executive and mathematics was also 

highlighted in Chapters 5 and 6. Chapter 5 results showed that the level 

of central executive involvement in the processing element within 

working memory affected the ability of mathematicians to store visuo-

spatial information (section 5.3.5). Mathematicians could store 

significantly more visuo-spatial information when the involvement of the 

central executive was comparatively low, whereas the level of central 

executive involvement in processing made no difference to the visuo-

spatial storage ability of the non-mathematicians. Chapter 6 results 

showed that the central executive was used more than the visuo-spatial 
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sketchpad when adults solved addition problems and particularly when 

counting, involving several steps and the continual monitoring and 

updating of information within working memory, was employed as a 

strategy. Evidence within this thesis therefore also supports the 

assumption within the multi-component model that working memory 

ability is affected by individual differences in performance of the central 

executive.  

The embedded-process (Cowan, 1999) and controlled-attention 

(Engle et a., 1992) models also state the importance of limitations in 

central executive performance in terms of individual differences in 

working memory capacity, but both place an emphasis on the role of 

controlled attention. Chapter 3 of this thesis, however, found no 

differences between mathematicians and non-mathematicians for 

performance on a controlled attention task and controlled attention only 

predicted ability to retrieve number facts from long-term memory 

(Woodcock-Johnson Math Fluency Test) and not ability to perform 

calculations (Woodcock-Johnson Calculation Test). These results 

suggested that controlled attention ability is important for retrieving 

mathematical facts, in support of these two models, but that the ability 

to retrieve facts does not explain the superior calculation ability of 

mathematicians.  

The time-based resource-sharing model suggests that controlled 

attention and also the time taken to process items within working 

memory affects the amount of information that can be stored because 

of temporal decay (Barrouillet et al., 2004). However, although 

mathematicians were faster to process visuo-spatial items within 

working memory (Chapter 5) this faster processing speed did not 

explain differences in calculation ability (section 5.3.4). Also, in Chapter 

2, mathematicians were able to store more visuo-spatial information in 

working memory than the non-mathematicians even though they were 

no faster to carry out the processing element of the task. Functions of 

the central executive other than controlled attention and speed of 
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processing therefore appear to contribute to differences in mathematical 

calculation achievements. 

Whilst the multi-component model of working memory agrees that 

the central executive controls the retrieval of facts from long-term 

memory (Baddeley, 2002) it also includes other roles for the central 

executive, such as switching, updating and inhibition (Miyake et al., 

2000), manipulating information (Repovš & Baddeley, 2006) and 

possibly the ordering of visuo-spatial information (Allen et al., 2014; 

Baddeley, 2000). Support for the latter function was discussed in 

section 7.3. This thesis has therefore provided evidence that the central 

executive performance plays a role in the differences between 

mathematicians and non-mathematicians, but that individual differences 

in controlled attention or processing speed do not explain differences in 

calculation ability. Differences between mathematicians and non-

mathematicians in the other executive functions should therefore be 

explored. This will be discussed further in section 7.6. 

As this thesis contains evidence of roles for domain-specific 

storage and central executive processes within working memory in 

mathematics that differ between fact-based retrieval and more complex 

calculation, any model of mathematical cognition should include roles 

for both that depend upon the type of mathematical problem being 

solved. Figure 7.1 depicts how the multi-component model of working 

memory can be used to explain the various processes involved in 

solving mathematical problems, based on the previous literature and 

findings within this thesis. 

Within Figure 7.1, elements underlined are those for which I have 

found evidence within this thesis that they are related to mathematics 

performance in adults. 
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Figure 7.1: Use of the multi-component model of working memory to depict the 
processes involved in solving mathematical problems. Note: Items marked with a * 
indicate items that require further investigation. Underlining indicates there is evidence 
within this thesis that the item is related to mathematics performance in adults.  

 

The bold, black line between the central executive and the visuo-

spatial sketchpad highlights the stronger link association these two 

components than that between the central executive and the 

phonological loop (Miyake at al., 2001). It also highlights the fact that, 

within this thesis, I have found the link between the central executive 

and the visuo-spatial sketchpad to be crucial with regard to the amount 

of visuo-spatial information that can be stored within working memory 

and its impact on visuo-spatial working memory capacity differences 
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between mathematicians and non-mathematicians (Chapter 5, section 

5.3.5). The link between the central executive and visuo-spatial 

sketchpad also seems to be relevant with regard to the ordering of 

visuo-spatial information (Chapter 4) and mathematicians’ superior 

ability at mental rotation, as evidenced by performance on the MRT-A 

(Peters et al., 1995) in Chapter 5.  

Although results from this thesis support the view of domain-

specific storage for verbal and visuo-spatial information, in line with the 

multi-component model, it seems too simplistic to view central executive 

resources as purely domain-general. For example, whilst the 

phonological loop is thought to be responsible for the ordering of verbal 

information, the central executive appears to be responsible for ordering 

visuo-spatial information, as mentioned above.  

Items marked with a * within Figure 7.1 indicate elements that 

require further investigation to fully understand their importance when 

adults perform mathematics. These elements, cognitive flexibility 

(inhibition, updating and shifting), the relative use of static and dynamic 

visuo-spatial sketchpad resources and the involvement of the episodic 

buffer will be discussed in section 7.6. 

7.6 Limitations and Future Studies 

This section will discuss limitations within the experimental 

chapters of this thesis, with a view to informing future research. I will 

discuss issues surrounding causality with regard to the relationship 

between visuo-spatial working memory and mathematics (section 

7.6.1), the use of static versus dynamic visuo-spatial resources (section 

7.6.2) and whether visuo-spatial working memory storage capacity 

differences are due to differing ability for encoding or retrieval of 

information (section 7.6.3). In section 7.6.4 I will consider the need for a 

better understanding of the role of visuo-spatial working memory in 

different types of mathematics. I will then explain the need to further 

examine the contribution of the various elements of the central 

executive (section 7.6.5) and the role of the episodic buffer (section 
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7.6.6) in the relationship between visuo-spatial working memory and 

mathematics in adults. Finally, in section 7.6.7, I discuss an issue 

surrounding the use of standardised mathematics tests throughout this 

thesis. 

7.6.1 Causality 

Throughout this thesis the experimental evidence suggests that 

the ability to store visuo-spatial information within working memory, to 

order visuo-spatial information, controlled spatial attention ability and 

general visuo-spatial ability are related to mathematics achievement. 

However, the fact that a relationship exists cannot be used to imply 

causality. Whilst it is tempting to assume that a greater ability in these 

elements leads to superior mathematical achievement, it could be that 

adults skilled at mathematics have developed these superior abilities as 

a result of studying more advanced mathematics or as a result of 

studying mathematics for a longer period of time than those who are 

less proficient at mathematics.  

Although longitudinal evidence exists within the literature involving 

children that those with better visuo-spatial working memory capacity go 

on to be more proficient at mathematics (e.g. Bull et al., 2008; Geary, 

2011; Dumontheil &Klingberg, 2012), the direction of the relationship 

has not been investigated in adults who are studying or doing more 

complex mathematics. The direction of causality in adults has also not 

been investigated for the ordering of visuo-spatial information, general 

visuo-spatial ability or controlled attention. This should be the subject of 

future studies.  

7.6.2 Visuo-spatial Sketchpad: Static v Dynamic 

As discussed in Chapter 1 (section 1.3.4.2) it has been proposed 

that the visuo-spatial sketchpad is fractionated into subsystems (Darling 

et al., 2009; Duff & Logie, 1999; Logie et al., 1994): one for the storage 

of static visual material; one for the storage of dynamic information such 

as movement. Other than in Chapter 6, this thesis has employed tasks 

requiring the maintenance of dynamic visuo-spatial information through 
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tracking the movement of objects on screen. Therefore evidence for a 

link between visuo-spatial working memory and adult mathematics 

performance has largely reflected dynamic visuo-spatial working 

memory. 

 In the visuo-spatial sketchpad load condition within Chapter 6 

(section 6.3.3.2) participants were required to remember either a static 

visuo-spatial display of objects or a dynamic display where the objects 

moved. Although the two types of visuo-spatial memory had the same 

impact on arithmetic performance, those in the static condition 

performed significantly better on this secondary task, suggesting that 

memory for static visuo-spatial information may be easier. This 

corresponds to previous findings with children that static information is 

the easiest to store (e.g. Pickering et al., 2001). Also, in the 

experiments within Chapters 2 and 5, which measured visuo-spatial 

working memory capacity, anecdotally, the non-mathematicians 

reported rehearsing in mind the movement of the objects in the order 

they were presented on screen whereas many of the mathematicians 

reported forming a static shape, made up of the different locations, 

within memory (although they were unable to explain how they had 

maintained the objects’ order).  

Differences in visuo-spatial working memory capacity and the 

ability of this to predict mathematics test scores may therefore reflect a 

difference in strategy for remembering visuo-spatial information 

between static and dynamic formats and hence the visual cache and 

inner scribe (Logie, 1995). Holmes et al. (2008) have previously found 

that the ability to maintain static visual images in memory predicted 

mathematics ability in older children whilst the maintenance of dynamic 

images predicted mathematics ability in younger children. The use of 

static and dynamic visuo-spatial working memory and their relative 

relationships with mathematics has not been systematically investigated 

in adults and should be an area for further exploration. 
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7.6.3 Differences in Visuo-Spatial Working Memory Capacity: 
Encoding or Retrieval? 

One of the main questions examined within this thesis was 

whether there are any differences between the working memory 

capacity of mathematicians and non-mathematicians. In Chapter 2, 

having found that mathematicians had superior ability to store visuo-

spatial information within working memory when the processing 

required was a neutral as possible, I then examined the serial position 

curves of the two groups for visuo-spatial storage (section 2.3.2.5). The 

serial position curves showed that there were no significant differences 

between the two groups in the patterns of the curves, but that 

mathematicians simply displayed greater overall accuracy for 

remembering and recalling visuo-spatial items. Whilst this showed that 

the mathematicians had greater overall capacity, it did not shed light on 

whether the mathematicians’ advantage was due to superior encoding 

of visuo-spatial items, superior ability to recall items or a combination of 

both.  

Unsworth, Spillers & Brewer (2012) have suggested that adults 

with greater working memory capacity are better at retrieving previously 

formed representations from memory when recall is required. Although 

this research involved memory for verbal categorical information and 

cannot necessarily be generalised to the visuo-spatial domain, their 

experiments involving cued and free recall of word lists resulted in those 

with lower working memory capacity failing to use appropriate strategies 

to access stored information. Unsworth and colleagues concluded that 

those with greater working memory capacity are more efficient at 

retrieving items from memory, but also acknowledged the need to 

examine, in the future, efficiency at the encoding stage. The working 

memory span task employed within Chapter 2 could be repeated with 

loading of visuo-spatial working memory at encoding and retrieval to 

investigate the relative effects on performance of the mathematicians 

and non-mathematicians. 
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7.6.4 Different Types of Mathematics 

Having found within Chapter 5 that the level of central executive 

involvement in processing within working memory affects the ability to 

store visuo-spatial information, results from Chapter 6 showed that the 

central executive has the greatest involvement in procedural strategies 

for solving mathematical problems and particularly for counting. This 

suggested that the level of involvement of visuo-spatial working memory 

and its components varies with the type of strategy employed. Previous 

research has also suggested that the use of visuo-spatial working 

memory varies with the type of mathematics problems being solved. For 

example, visuo-spatial working memory has been implicated in 

interpreting graphical information (Hegarty & Waller, 2005), solving 

problems involving approximations (Logie et al., 1994) and additions 

(Hubber et al., 2014: Experiment 1) and interpreting initial operands 

(Jiang et al., 2014). There is also evidence that it is used for solving 

subtractions, but not multiplications (Lee & Kang, 2002).  

The Woodcock-Johnson Calculation Test, used to measure 

calculation ability throughout the experimental chapters of this thesis, 

included a variety of different types of mathematical problems (e.g. 

additions, fractions, simultaneous equations, long division, integrations, 

matrices and trigonometry). Results from the experimental chapters 

have implicated visuo-spatial working memory capacity and 

performance on this mathematical test, but do not give any indication of 

relationships with the different individual types of problems contained 

within the test. For example, solving long divisions involves several 

steps and the storage of interim results (implicating the central 

executive and phonological loop: e.g. Chapter 6; Fϋrst & Hitch, 2000) 

whereas trigonometry involves angles and might be expected to be 

more visuo-spatial in nature.  

It would be useful to discover how visuo-spatial working memory 

capacity and general visuo-spatial ability are related to different forms of 

mathematics problems because this could help highlight which 

individuals may struggle to learn a specific type of mathematics. 
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7.6.5 The Central Executive 

In Chapter 5, I found that the level of central executive 

involvement in processing affected storage of visuo-spatial information 

in working memory and, in Chapter 6, load on the central executive had 

more of a detrimental effect on performing additions than did load on 

the visuo-spatial sketchpad. The ability to order visuo-spatial 

information (Chapter 4) and ability for controlled spatial attention 

(Chapter 3) seem to be functions of the central executive that are 

related to mathematics achievement. However, there are other 

functions of the central executive that have not been explored within 

this thesis that may be important for solving mathematical problems. 

7.6.5.1 Attention 

In terms of attention, the models of working memory discussed in 

Chapter 1 (section 1.3) all suggest that attentional capacity limits 

working memory capacity. The use of procedural strategies to solve 

mathematical problems requires performing several steps and therefore 

the ability to attend to more than one item at a time. Mathematics ability 

may therefore be constrained by the limit of an individual’s attentional 

capacity. The Posner (1980) task employed in Chapter 3 measured the 

ability to control attention for one item at a time rather than the amount 

of items that can simultaneously be maintained within the focus of 

attention. Future research should explore differences between 

mathematicians and non-mathematicians for the number of items that 

can be maintained within working memory in the face of central 

executive load (e.g. Allen et al., 2014). 

7.6.5.2 Cognitive Flexibility 

Other functions of the central executive were highlighted in 

Chapter 1 (section 1.3.4.3). These included switching, monitoring and 

updating, inhibition and manipulation of information (e.g. Miyake et al., 

2000; Repovš & Baddeley, 2006). Individuals may be able to 

compensate for poor knowledge of mathematical strategies with good 

working memory capacity, and executive function skills may mediate 

the relationship between basic numerical representations and 
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mathematics outcomes (Gilmore et al., 2013). Solving mathematical 

problems using procedural strategies involves switching between 

different tasks (such as storage and processing) and the monitoring and 

updating of interim totals. Solving mathematical problems by directly 

retrieving answers from long-term memory involves inhibiting competing 

but incorrect answers (e.g. 2 x 4 = 6). Examining these executive 

functions in the future will aid our understanding of which of them drive 

the importance of the central executive when adults solve mathematical 

problems.  

7.6.6 The Episodic Buffer 

In Chapter 2 (section 1.3.4.4), I described how the episodic buffer 

is a domain-general store capable of integrating, or binding, information 

from the other components of working memory and that the central 

executive can access and manipulate the buffer’s content through 

conscious awareness (Baddeley, 2000).  

An emerging line of research is examining how memory for verbal 

items can be improved by presenting visuo-spatial information 

alongside the verbal information (e.g. Darling, Allen, Havelka, Campbell 

& Rattray, 2012; Darling & Havelka, 2010; Darling, Parker, Goodhall, 

Havelka & Allen, 2014). The authors have provided evidence that 

memory for digits can be enhanced through presenting them in familiar 

spatial locations. It may therefore be that mathematicians’ superior 

visuo-spatial skills and visuo-spatial storage capacity within working 

memory can be used to support and enhance the use of verbal 

resources during calculation via the episodic buffer. 

7.6.7 Use of Standardised Mathematical Tests 

Throughout the experimental chapters, two standardised tests of 

mathematical ability have been employed: Woodcock-Johnson 

Calculation and Woodcock-Johnson Math Fluency. These measures 

were described in detail in Chapter 2, sections 2.2.1.4 and 2.3.1.4 and 

were used to measure an individual’s ability for advanced mathematics 

calculation and more basic arithmetic fluency respectively.  
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Where extreme group designs are employed, differences between 

groups for performance on standardised tests can be exaggerated (A. 

D. Baddeley, personal communication, June 24, 2014). Items within the 

Woodcock-Johnson Calculation Test increased in difficulty from start to 

finish and later items consisted of mathematical problems that will only 

have been previously encountered by individuals who have studied 

mathematics at A level and beyond. Therefore, the groups of unskilled 

mathematicians within Chapters 2, 3 and 5 were required to answer 

some problems of which they had no prior experience.  

This is not deemed to be too great an issue, however, because the 

unskilled mathematicians tended to fail at items before they reached 

those requiring A level knowledge. On average, the non-

mathematicians began to make errors around the 13th item. This and 

the surrounding questions involved long division, multiplication of 

decimals, addition and division using fractions and arithmetic involving 

negative numbers. They would have previously encountered all of these 

types of problems for GCSE mathematics. The link between the ability 

to store visuo-spatial information within working memory and 

mathematics could however be explored again using the tasks within 

Chapters 2, 3 and 5 with a more continuous sample of mathematics 

ability, to confirm the findings. This was not an issue for the Woodcock-

Johnson Math Fluency Test, as this involved basic arithmetic and all 

participants would have had prior experience of all of the types of 

problems it contained.  

Use of extreme groups (such as expert mathematicians and those 

poorer at mathematics) may also make generalisation to the wider 

population difficult (Conway, Kane & Bunting, 2005). Therefore, findings 

may not apply across a full range of mathematics ability. To provide 

balance and greater generalizability, Chapters 4 and 6 contained 

experiments involving adult participants with a more continuous range 

of mathematical ability.  
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7.7 General Conclusions of the Thesis 

Throughout this thesis I have aimed to discover whether there are 

any domain-specific or domain-general differences between the working 

memory capacity of adult mathematicians and non-mathematicians, 

what drives visuo-spatial working memory capacity predicting 

mathematics achievement in adults, how can having good visuo-spatial 

working memory support the proficient solving of mathematical 

problems and how can working memory be accommodated within a 

model of mathematical cognition. 

I have presented a novel finding within this thesis that 

mathematicians have superior capacity for storing visuo-spatial 

information within working memory, but only when the processing 

demands within working memory have a low level of central executive 

involvement. I have also consistently found that there is no difference 

between mathematicians and non-mathematicians for the amount of 

verbal information that can be stored within working memory.  

Another novel finding is that, in adults, the fact that visuo-spatial 

working memory capacity predicts mathematics achievement is not 

driven by simple basic storage ability within the visuo-spatial sketchpad 

or general ability to deal with visuo-spatial material. Also, whilst 

controlled spatial attention ability was found to predict the ability directly 

retrieve number facts from long-term memory, it did not drive visuo-

spatial working memory capacity predicting complex calculation ability 

in adults. The ability to order visuo-spatial information, however, did 

predict calculation ability. It may also be that attentional capacity limits, 

cognitive flexibility and the episodic buffer are important for proficiency 

in mathematics and these areas should be explored in the future. 

In terms of how having good visuo-spatial working memory is 

related to adults performing well at mathematics, I have presented 

evidence within this thesis that it depends upon the type of mathematics 

being performed and the strategies used. The central executive was 

found to be used in the retrieval of number facts from long-term 
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memory, but more so in procedural methods, such as counting which 

requires several steps. Adult mathematicians seem to be more efficient 

at using central executive resources to access stored number facts, 

select and execute appropriate strategies and deal with the carry-over 

of interim results. This means they then have greater working memory 

resources available to use their greater ability to store visuo-spatial 

information within working memory and generally deal with visuo-spatial 

material to solve mathematical problems.  

Finally, I have provided strong evidence that visuo-spatial working 

memory capacity and mathematics ability are related and there is 

therefore a need to include working memory within any model of 

mathematical cognition. I have suggested how the multi-component 

model of working memory can be used as a basis for such a model. 
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Appendix A 

Examples of same and different pairs of faces used as the 

processing element of the working memory span tasks in 

Chapter 2. 

 

Same 

   

           

Different 
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Appendix B 

List of span sets used for the working memory span tasks in the 
number, visuo-spatial and word conditions in Experiment 1 of Chapter 2 
and in the visuo-spatial condition in Experiment 2 of Chapter 2. 

 
Number Condition 
 
Span 
Length 

 
Storage Task: 
Numbers Presented 

 
Processing Task:  
Faces same or different 

2 2 5 1 same, 1 different 

2 3 8 1 same, 1 different 

2 7 9 1 same, 1 different 

3 1 4 7 2 same, 1 different 

3 2 6 9 1 same, 2 different 

3 1 3 8 2 same, 1 different 

4 2 3 5 8 2 same, 2 different 

4 2 4 6 7 3 same, 1 different 

4 1 3 6 8 1 same, 3 different 

5 1 4 6 7 9  2 same, 3 different 

5 1 2 5 6 8 3 same, 2 different 

5 2 4 5 8 9 2 same, 3 different 

6 1 3 4 6 7 9  2 same, 4 different 

6 2 4 5 7 8 9  4 same, 2 different 

6 1 3 4 5 7 9 3 same, 3 different 

7 1 2 3 5 6 8 9 4 same, 3 different 

7 2 3 4 5 6 7 8 3 same, 4 different 

7 1 3 4 5 6 7 9 4 same, 3 different 
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 B-2 
 

Visuo-Spatial Condition    

7 8 9 

4 5 6 

1 2 3 

 
 
 
 
Span 
Length 

 
 
 
Storage Task: 
Locations of red dot 
on 3 x 3 grid 

 
 
 
 
Processing Task:  
Faces same or different 

2 2 9 1 same, 1 different 

2 1 4 1 same, 1 different 

2 6 8 1 same, 1 different 

3 2 5 7 2 same, 1 different 

3 1 3 6 1 same, 2 different 

3 2 4 9 2 same, 1 different 

4 2 4 7 8  2 same, 2 different 

4 1 3 5 8 3 same, 1 different 

4 3 4 7 9  1 same, 3 different 

5 2 4 6 7 9 2 same, 3 different 

5 1 3 5 6 8 3 same, 2 different 

5 2 4 5 7 9 2 same, 3 different 

6 1 3 4 5 7 8 2 same, 4 different 

6 1 2 4 6 8 9 4 same, 2 different 

6 2 3 5 6 7 9 3 same, 3 different 

7 1 2 3 5 6 7 8 4 same, 3 different 

7 1 3 4 5 6 8 9 3 same, 4 different 

7 1 3 5 6 7 8 9 4 same, 3 different 



   Appendix B 
 

 B-3 
 

 
Word Condition 
 
Span 
Length 

 
Storage Task:  
Words Presented 

 
Processing Task:  
Faces same or different 

2 fly cow 1 same, 1 different 

2 bat dog 1 same, 1 different 

2 hen ape 1 same, 1 different 

3 elk fox ram 2 same, 1 different 

3 bat cow hen 1 same, 2 different 

3 dog ape fly 2 same, 1 different 

4 fox cow ram bat 2 same, 2 different 

4 ape fly elk dog 3 same, 1 different 

4 hen elk cow dog 1 same, 3 different 

5 ram fox fly ape bat 2 same, 3 different 

5 fox elk hen ram dog 3 same, 2 different 

5 fly bat fox hen ape 2 same, 3 different 

6 cow elk ram fly ape fox 2 same, 4 different 

6 cow dog bat elk hen ram 4 same, 2 different 

6 fly dog ape hen ram cow 3 same, 3 different 

7 fly dog bat fox elk hen ram 4 same, 3 different 

7 cow dog bat ape fox elk 
hen 

3 same, 4 different 

7 fly cow bat ape fox elk ram 4 same, 3 different 
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Appendix C 

Span sets used in the number condition of Experiment 2 in Chapter 2. 

 
Number Span 
 
Span 
Length 

 
Storage Task: 
Numbers Presented 

 
Processing Task:  
Faces same or different 

3 1 4 7 2 same, 1 different 

3 2 6 9 1 same, 2 different 

3 1 3 8 2 same, 1 different 

4 2 3 5 8 2 same, 2 different 

4 2 4 6 7 3 same, 1 different 

4 1 3 6 8 1 same, 3 different 

5 1 3 6 7 9  2 same, 3 different 

5 1 2 5 6 8 3 same, 2 different 

5 2 4 5 8 9 2 same, 3 different 

6 1 3 4 6 7 9  2 same, 4 different 

6 2 4 5 7 8 9  4 same, 2 different 

6 1 3 4 5 7 9 3 same, 3 different 

7 1 2 3 5 6 8 9 4 same, 3 different 

7 2 3 4 5 6 7 8 3 same, 4 different 

7 1 3 4 5 6 7 9 4 same, 3 different 

8 1 3 4 5 6 7 8 9 4 same, 4 different 

8 1 2 3 4 5 7 8 9  4 same, 4 different 

8 2 3 4 5 6 7 8 9 4 same, 4 different 
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                 Appendix D 

Span sets used in Chapter 3, visuo-spatial short-term memory task. 
 

 
 
 
 

 
 
 
Span Length 

 
 
Storage Task:  
Locations of red dot on 3 x 3 grid 

3 2  4  6 

3 3  5  9 

3 1  5  7 

4 2  4  5  8 

4 3  6  7  9 

4 1  5  7  8 

5 3  4  6  8  9  

5 1  2  4  6  9 

5 1  3  5  7  8 

6 2  3  4  6  8  9  

6 1  3  4  6  7  9 

6 1  2  5  7  8  9 

7 1   2  4  5 6  8  9 

7 2  3  4  6  7  8  9 

7 1  2  3  4  5  7  8 

8 1  2  3  4  5  6  7  9 

8 1  2  3  5  6  7  8  9  

8 1  2  3  4  5  6  7  8 

7 8 9 

4 5 6 

1 2 3 
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Appendix E 

Trials used in Chapter 3, endogenous spatial attention task. 
 
 

Trial 

 
 

Cue Validity 

 
 Target 
Position 

 
      SOA 
(milliseconds) 

1 Neutral Right 200 

2 Neutral Right 200 

3 Neutral Right 400 

4 Neutral Right 400 

5 Neutral Right 800 

6 Neutral Right 800 

7 Neutral Left 200 

8 Neutral Left 200 

9 Neutral Left 400 

10 Neutral Left 400 

11 Neutral Left 800 

12 Neutral Left 800 

13 Invalid Right 200 

14 Invalid Right 200 

15 Invalid Right 400 

16 Invalid Right 400 

17 Invalid Right 800 

18 Invalid Right 800 

19 Invalid Left 200 

20 Invalid Left 200 

21 Invalid Left 400 

22 Invalid Left 400 

23 Invalid Left 800 

24 Invalid Left 800 

25 Valid Left 200 

26 Valid Left 200 

27 Valid Left 200 

28 Valid Left 200 

29 Valid Left 200 

30 Valid Left 200 

31 Valid Left 200 

32 Valid Left 200 

33 Valid Left 400 

34 Valid Left 400 

35 Valid Left 400 

36 Valid Left 400 

37 Valid Left 400 

38 Valid Left 400 

39 Valid Left 400 

40 Valid Left 400 

41 Valid Left 800 
 
 

    



   Appendix E 
 

 E-2 
 

 
 

Trial 

 
 

Cue Validity 

 
 Target 
Position 

 
      SOA 
(milliseconds) 

44 Valid Left 800 

45 Valid Left 800 

46 Valid Left 800 

47 Valid Left 800 

48 Valid Left 800 

49 Valid Right 200 

50 Valid Right 200 

51 Valid Right 200 

52 Valid Right 200 

53 Valid Right 200 

54 Valid Right 200 

55 Valid Right 200 

56 Valid Right 200 

57 Valid Right 400 

58 Valid Right 400 

59 Valid Right 400 

60 Valid Right 400 

61 Valid Right 400 

62 Valid Right 400 

63 Valid Right 400 

64 Valid Right 400 

65 Valid Right 800 

66 Valid Right 800 

67 Valid Right 800 

68 Valid Right 800 

69 Valid Right 800 

70 Valid Right 800 

71 Valid Right 800 

72 Valid Right 800 
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Appendix F 

 

List of span sets used in Chapter 4, process dissociation task. 

 
 
 

 
 
 
 
Inclusion condition 

 

13 14 15 16 

9 10 11 12 

5 6 7 8 

1 2 3 4 

 
 
 
Trial 

 
 
Locations of Frog 

on 4 x 4 grid 

 
 

1 1   3   7  10  16  

2 2   5   8  11  14  

3 4   6   9  11  13  

4 1  7  12  13  15  

5 2   3   6  10  14  

6 4   5   7    9  15  

7 1  6    9  11  16  

8 2  8  10  14  15  

9 3  4   5   12  13  

10 1  6   8   12  16  

11 3  7  10  12  14  

12 2  5   9   13  16  

13 1  4   7   11  13  

14 2  6   8   11  15  

15 3  5   9   10  16  
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 F-2 
 

 
 
Exclusion condition 
 
 
 
Trial 

 
 
Locations of Frog 

on 4 x 4 grid 

 
 

1 4  8  10  14  15  

2 1   2   6  11  16  

3 3   5   7  11  14  

4 2   7   9  12  15  

5 3  6  10  15  16  

6 2   4   5  11  14  

7 1   5   6  12  13  

8 3   8   9  11  15  

9 4  7  10  13  16  

10 1   3   8  10  16  

11 2   6   7  11  13  

12 1   8   9  10  16  

13 2  5  11  13  14  

14 1   4   6  12  15  

15 3   5    8   9  14  
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Appendix G 

List of span sets used in Chapter 4, forced-choice recognition task. 

 
 
 
 
 
 
 
Item Memory Condition 
 
 
Trial 

 
Locations of red dot on 

 4 x 4 grid 

 
Test Items 

Present  Absent 

1 7  12  2  11  1  14       14 16  

2 16  1  6  5  4  10       5 3  

3 4  7  9  11  15  1       4 6  

4 11  5  1  16  8  13       1 10  

5 12  7  3  15  8  1       7   14  

6 1  6  3  15  10  13      10 8  

7 14  12  5  6  1  9       6  15  

8 15  8  5  13  11  2      11 4  

9 6  1  14  12  4  16      16   7  

10 2  7  14  8  15  9       2 4  

11 2  3  6  12  13  8      12 14  

12 15  7  10  2  12  6      15 8  

13 5  4  11  2  9  14       9 7  

14 10  16  13  2  5  11      13  6  

15 4  3  14  16  10  7       3 12  

16 3  10  12  14  6  15      15 9  

17 9  3  5  16  8  11       8 2  

18 7  3  13  15  9  10      10 16  

19 9  13  11  4  16  7      13 5  

20 8  12  2  4  5  14       2 9  
 

13 14 15 16 

9 10 11 12 

5 6 7 8 

1 2 3 4 
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 G-2 
 

 
 
Trial 

 
Locations of red dot on 

 4 x 4 grid 

 
Test Items 

Present  Absent 

  

21 13  2  1  6  12  9          1 3  

22 13  3  10  4  14  8          4 11  

23 11  8  9  6  16  4         11 13  

24 10  7  16  5  3  15           7 1  

 
 
Order Memory Condition 
 
 
Trial 

Locations of red dot on  
4 x 4 grid 

 
Test Items 

1 7  12  2  11  1  14 7 12  

2 16  1  6  5  4  10 1 6  

3 4  7  9  11  15  1 9 11  

4 11  5  1  16  8  13 16 8  

5 12  7  3  15  8  1 8   1  

6 1  6  3  15  10  13 6 3  

7 14  12  5  6  1  9 14 12  

8 15  8  5  13  11  2 5 13  

9 6  1  14  12  4  16 12   4  

10 2  7  14  8  15  9 15 9  

11 2  3  6  12  13  8 2 3  

12 15  7  10  2  12  6 7 10  

13 5  4  11  2  9  14 11 2  

14 10  16  13  2  5  11 2 5  

15 4  3  14  16  10  7 10 7  

16 3  10  12  14  6  15 3 10  

17 9  3  5  16  8  11 3 5  

18 7  3  13  15  9  10 13 15  

19 9  13  11  4  16  7 4 16  

20 8  12  2  4  5  14 5 14  
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Appendix H 

Images used in the visuo-spatial processing element in Chapter 5. 
 

 
                  no1           no2                     no3               no4 
 
 

 
                  no5           no6                     no7               no8 
 
 

 
                  no9           no10       no11               no12 
 
 

 
                  no13           no14       no15               no16 
 
 

 
                  no17           no18       no19               no20 
 
 
 

 
                  no21           no22       no23               no24 
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 H-2 
 

 
                no25           no26      no27               no28 
 
 

 
                no29           no30      no31               no32 
 
 

 
                no33           no34      no35               no36 
 
 

 
                no37           no38      no39               no40 
 
 

 
                no41           no42      no43               no44 
 
 

 
                no45           no46      no47               no48 
 
 

 
                no49           no50      no51               no52 
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 H-3 
 

 
                no53           no54      no55               no56 
 
 

 
                no57           no58      no59               no60 
 
 

 
               no61           no62      no63               no64 
 
 

 
               no65           no66      no67               no68 
 
 

 
               no69           no70      no71               no72 
 
 

 
               no73           no74      no75               no76 
 
 

 
               no77           no78      no79               no80 
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 H-4 
 

 
               no81           no82      no83               no84 
 
 

 
               no85           no86      no87               no88 
 
 

 
               no89           no90      no91               no92 
 
 

 
               no93           no94      no95               no96 
 
 

 
               no97           no98      no99               no100 
 
 

 
               no101 
 
 

 
              yes1           yes2      yes3               yes4 
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 H-5 
 

 
              yes5           yes6      yes7                            yes8 
 
 

 
              yes9           yes10      yes11                            yes12 
 
 

 
              yes13           yes14      yes15                            yes16 
 
 

 
              yes17           yes18      yes19                            yes20 
 
 

 
              yes21           yes22      yes23                            yes24 
 
 

 
              yes25           yes26      yes27                            yes28 
 
 

 
              yes29           yes30      yes31                            yes32 
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 H-6 
 

 
              yes33           yes34      yes35                            yes36 
 
 

 
              yes37           yes38      yes39                            yes40 
 
 

 
              yes41           yes42      yes43                            yes44 
 
 

 
              yes45           yes46      yes47                            yes48 
 
 

 
              yes49           yes50      yes51                            yes52 
 
 

 
              yes53           yes54      yes55                            yes56 
 
 

 
              yes57           yes58      yes59                            yes60 
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 H-7 
 

 
              yes61           yes62      yes63                            yes64 
 
 

 
              yes65           yes66      yes67                            yes68 
 
 

 
              yes69           yes70      yes71                             yes72 
 
 

 
              yes73           yes74      yes75                            yes76 
 
 

 
              yes77           yes78      yes79                             yes80 
 
 

 
              yes81           yes82      yes83                             yes84 
 
 

 
              yes85           yes86      yes87                             yes88 
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 H-8 
 

 
              yes89           yes90      yes91                              yes92  
 
 

 
              yes93           yes94      yes95                              yes96 
 
 

  
              yes97           yes98      yes99                              yes100 
 
 

 
            yes101 



   Appendix I 
 

 I-1 
 

Appendix I 

Word pairs used in the verbal processing element in Chapter 5. 
 

Rhyming Pair 
 

Word Pairs Used 
1 taught bought 

 

2 lace case 

 

3 wrote boat 

 

4 law sore 

 

5 crane brain 

 

6 goat throat 

 

7 rode load 

 

8 drain mane 

 

9 cold mould 

 

10 try sigh 

 

11 male hail 

 

12 weak seek 

 

13 corn fawn 

 

14 mate bait 

 

15 keen bean 

 

16 whale tail 

 

17 tight bite 

 

18 role bowl 

 

19 cool rule 

 

20 flew too 

 

21 soul hole 

 

22 light kite 

 

23 vile style 

 

24 heard bird 

 

25 home loam 

 

26 hurt dirt 

 

27 sort caught 

 

28 blame aim 

 

29 hoard ford 
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 I-2 
 

30 weigh tray 

 

31 crate great 

 

32 heal reel 

 

33 grime thyme 

 

34 crawl ball 

 

35 piece grease 

 

36 height white 

 

37 haze phase 

 

38 climb time 

 

39 nerd purred 

 

40 wrench bench 

 

41 lost frost 

 

42 yule spool 

 

43 band planned 

 

44 cake break 

 

45 rack quack 

 

46 tossed cost 

 

47 cause draws 

 

48 fund shunned 

 

49 gown noun 

 

50 scene queen 

 

51 nursed thirst 

 

52 dial file 

 

53 late eight 

 

54 ghost roast 

 

55 numb gum 

 

56 stir blur 

 

57 stunt front 

 

58 loose juice 

 

59 chrome comb 

 

60 stoat vote 

 

61 west chest 

 

62 rest guest 
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 I-3 
 

63 worst first 

 

64 place grace 

 

65 blue shoe 

 

66 school mule 

 

67 flue ewe 

 

68 stew zoo 

 

69 drawn born 

 

70 while nile 

 

71 aisle guile 

 

72 cling string 

 

73 ache bake 

 

74 work jerk 

 

75 stalk cork 

 

76 fault salt 

 

77 skirt squirt 

 

78 mace trace 

 

79 rake steak 

 

80 cart heart 

 

81 stilt quilt 

 

82 please tease 

 

83 freeze sees 

 

84 queue glue 

 

85 fame shame 

 

86 flight site 

 

87 fall trawl 

 

88 meant bent 

 

89 lean gene 

 

90 show toe 

 

91 grow though 

 

92 ends lens 

 

93 game maim 

 

94 fold scold 

 

95 tonne fun 
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 I-4 
 

96 curt shirt 

 

97 waist haste 

 

98 rile mile 

 

99 pile smile 

 

 

 

Non-Rhyming Pair 

 

        Word Pairs Used 

1 pair brake 
 

2 flat chart 
 

3 train blank 
 

4 mast hold 
 

5 fine think 
 

6 deer right 
 

7 lamp sold 
 

8 veer plant 
 

9 rail palm 
 

10 take hand 
 

11 like vest 
 

12 chair past 
 

13 pound fight 
 

14 green wrought 
 

15 grown use 
 

16 count turf 
 

17 hind vole 
 

18 pale near 
 

19 lamb pain 
 

20 tench brown 
 

21 barge face 
 

22 flow rock 
 

23 tough roof 
 

24 wine pert 
 

25 race bark 
 

26 hunt door 
 

27 brace nought 
 

28 gel phone 
 

29 reach tent 
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 I-5 
 

30 form touch 
 

31 frog delve 
 

32 part soon 
 

33 gnome risk 
 

34 teach bone 
 

35 foot sauce 
 

36 high beach 
 

37 twice flame 
 

38 clown hence 
 

39 zoom brush 
 

40 croft preach 
 

41 ouch moist 
 

42 prime truck 
 

43 loaves wished 
 

44 trance gust 
 

45 large chased 
 

46 mouth dealt 
 

47 odds grange 
 

48 press grout 
 

49 quaint least 
 

50 shape purse 
 

51 coin lock 
 

52 dress grape 
 

53 square jinx 
 

54 mope north 
 

55 wave took 
 

56 dream kick 
 

57 pelt cream 
 

58 bell foam 
 

59 mint veil 
 

60 dawn ship 
 

61 spoon bless 
 

62 glossed rate 
 

63 cope warm 
 

64 hall wish 
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 I-6 
 

65 taste isle 
 

66 wand guard 
 

67 mist quote 
 

68 draught hook 
 

69 clause oust 
 

70 dank each 
 

71 voice chains 
 

72 arch jaunt 
 

73 crest thorn 
 

74 heap floss 
 

75 bloke pawn 
 

76 pug drum 
 

77 pint tone 
 

78 call wheel 
 

79 does geek 
 

80 mouse frame 
 

81 joke rust 
 

82 vents help 
 

83 trough verb 
 

84 lime search 
 

85 jest bleed 
 

86 grouse clutch 
 

87 frets chore 
 

88 shunt scarce 
 

89 twelve sheer 
 

90 wealth best 
 

91 faint aide 
 

92 drunk hearth 
 

93 worse fox 
 

94 hot bend 
 

95 peel made 
 

96 witch blast 
 

97 balm rant 
 

98 teal hem 
 

99 feel ditch 
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Appendix J 

List of span sets used in Chapter 5 
 
 
Verbal processing - verbal storage condition 
 
 
 
 
Span 
Length 

 
 
 
 
Storage Task: 
Numbers Presented 

 
 
 

Processing task: 
Words Pairs Rhyme 

Yes or No 

3 1 4 7 2 rhyme, 1 no rhyme 

3 2 6 9 1 rhyme, 2 no rhyme 

3 1 3 8 2 rhyme, 1 no rhyme 

4 2 3 5 8 2 rhyme, 2 no rhyme 

4 2 4 6 7 3 rhyme, 1 no rhyme 

4 1 3 6 8 1 rhyme, 3 no rhyme 

5 1 3 6 7 9  2 rhyme, 3 no rhyme 

5 1 2 5 6 8 3 rhyme, 2 no rhyme 

5 2 4 5 8 9 2 rhyme, 3 no rhyme 

6 1 3 4 6 7 9  2 rhyme, 4 no rhyme 

6 2 4 5 7 8 9  4 rhyme, 2 no rhyme 

6 1 3 4 5 7 9 3 rhyme, 3 no rhyme 

7 1 2 3 5 6 8 9 4 rhyme, 3 no rhyme 

7 2 3 4 5 6 7 8 3 rhyme, 4 no rhyme 

7 1 3 4 5 6 7 9 4 rhyme, 3 no rhyme 

8 1 2 4 5 6 7 8 9 4 rhyme, 4 no rhyme 

8 1 2 3 4 5 7 8 9 4 rhyme, 4 no rhyme 

8 2 3 4 5 6 7 8 9 4 rhyme, 4 no rhyme 
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Verbal processing – visuo-spatial storage condition 
    

7 8 9 

4 5 6 

1 2 3 

 
 
Span 
Length 

 
Storage Task: 
Locations of red dot 
on 3 x 3 grid 

 
Processing task: 

Visualisation  
Yes or No 

3 2 4 6  2 rhyme, 1 no rhyme 

3 3 5 9 1 rhyme, 2 no rhyme 

3 1 5 7 1 rhyme, 2 no rhyme 

4 2 4 5 8  2 rhyme, 2 no rhyme 

4 3 6 7 9 3 rhyme, 1 no rhyme 

4 1 5 7 8  1 rhyme, 3 no rhyme 

5 3 4 6 8 9 2 rhyme, 3 no rhyme 

5 1 2 4 6 9 3 rhyme, 2 no rhyme 

5 1 3 5 7 8  3 rhyme, 2 no rhyme 

6 2 3 4 6 8 9 2 rhyme, 4 no rhyme 

6 1 3 4 6 7 9 4 rhyme, 2 no rhyme 

6 1 2 5 7 8 9 3 rhyme, 3 no rhyme 

7 1 2 4 5 6 8 9 4 rhyme, 3 no rhyme 

7 2 3 4 6 7 8 9 3 rhyme, 4 no rhyme 

7 1 2 3 4 5 7 8 3 rhyme, 4 no rhyme 

8 1 2 3 4 5 6 7 9 
 

4 rhyme, 4 no rhyme 

8 1 2 3 5 6 7 8 9 4 rhyme, 4 no rhyme 

8 1 2 3 4 5 6 7 8 4 rhyme, 4 no rhyme 
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 J-3 
 

Visuo-spatial processing - verbal storage condition 
 
 
 
 
Span 
Length 

 
 
 
Storage Task: 
Numbers Presented 

 
 

Processing task: 
Words Pairs Rhyme 

Yes or No 

3 1 5 8 2 rhyme, 1 no rhyme 

3 6 7 9 1 rhyme, 2 no rhyme 

3 3 4 8 2 rhyme, 1 no rhyme 

4 1 2 4 8 2 rhyme, 2 no rhyme 

4 2 5 7 9 3 rhyme, 1 no rhyme 

4 1 3 4 9 1 rhyme, 3 no rhyme 

5 1 3 4 6 8   2 rhyme, 3 no rhyme 

5 2 5 6 7 9  3 rhyme, 2 no rhyme 

5 1 3 4 5 8 3 rhyme, 2 no rhyme 

6 1 2 4 5 7 9  2 rhyme, 4 no rhyme 

6 2 3 4 6 7 8  4 rhyme, 2 no rhyme 

6 1 3 5 6 8 9 3 rhyme, 3 no rhyme 

7 1 2 5 6 7 8 9 4 rhyme, 3 no rhyme 

7 2 3 4 5 6 7 9 3 rhyme, 4 no rhyme 

7 1 2 3 5 6 7 9 3 rhyme, 4 no rhyme 

8 2 3 4 5 6 7 8 9 4 rhyme, 4 no rhyme 

8 1 2 3 4 6 7 8 9 4 rhyme, 4 no rhyme 

8 1 2 3 4 5 6 7 8 4 rhyme, 4 no rhyme 
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 J-4 
 

Visuo-spatial processing – visuo-spatial storage 
condition    

7 8 9 

4 5 6 

1 2 3 

 
 
Span 
Length 

 
Storage Task: 
Locations of red dot 
on 3 x 3 grid 

 
Processing task: 

Visualisation 
Yes or No 

3 2 4 6  2 rhyme, 1 no rhyme 

3 3 5 9 1 rhyme, 2 no rhyme 

3 1 5 7 1 rhyme, 2 no rhyme 

4 2 4 5 8  2 rhyme, 2 no rhyme 

4 3 6 7 9 3 rhyme, 1 no rhyme 

4 1 5 7 8  1 rhyme, 3 no rhyme 

5 3 4 6 8 9 2 rhyme, 3 no rhyme 

5 1 2 4 6 9 3 rhyme, 2 no rhyme 

5 1 3 5 7 8  3 rhyme, 2 no rhyme 

6 2 3 4 6 8 9 2 rhyme, 4 no rhyme 

6 1 3 4 6 7 9 4 rhyme, 2 no rhyme 

6 1 2 5 7 8 9 3 rhyme, 3 no rhyme 

7 1 2 4 5 6 8 9 4 rhyme, 3 no rhyme 

7 2 3 4 6 7 8 9 3 rhyme, 4 no rhyme 

7 1 2 3 4 5 7 8 3 rhyme, 4 no rhyme 

8 1 2 3 4 5 6 7 9 
 

4 rhyme, 4 no rhyme 

8 1 2 3 5 6 7 8 9 4 rhyme, 4 no rhyme 

8 1 2 3 4 5 6 7 8 4 rhyme, 4 no rhyme 
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Appendix K  

Additions used in 
Chapter 6 

    

 

 
Retrieval 
Sum Only 

1. 6 + 2 
2. 5 + 2 
3. 5 + 3 
4. 5 + 4 
5. 6 + 3 
6. 7 + 5 
7. 9 + 7 
8. 8 + 7 
9. 8 + 2 

       10.            9 + 3 
11. 13 + 8 
12. 14 + 3 
13. 19 + 4 
14. 21 + 5 
15. 23 + 6 
16. 24 + 3 
17. 25 + 6 
18. 25 + 8 
19. 27 + 4 
20. 28 + 7 

 
Visuo-spatial 

1. 6 + 2 
2. 5 + 4 
3. 7 + 4 
4. 4 + 3 
5. 5 + 2 
6. 8 + 5 
7. 6 + 3 
8. 7 + 5 
9. 9 + 8 
10.            8 + 3 
11. 12 + 7 
12. 17 + 3 
13. 18 + 6 
14. 19 + 5 
15. 21 + 6 
16. 22 + 7 
17. 26 + 4 
18. 27 + 8 
19. 27 + 5 
20. 29 + 6 

 
Central executive 
1. 6 + 2 
2. 4 + 2 
3. 9 + 5 
4. 5 + 4 
5. 6 + 4 
6. 6 + 2 
7. 8 + 7 
8. 7 + 5 
9. 9 + 8 
10.            9 + 4 
11. 13 + 7 
12. 15 + 3 
13. 16 + 3 
14. 18 + 5 
15. 19 + 7 
16. 21 + 7 
17. 23 + 7 
18. 28 + 6 
19. 28 + 7 
20. 29 + 5 

 
 
 

Counting 
Sum Only 

1. 7 + 2 
2. 5 + 2 
3. 4 + 2 
4. 8 + 4 
5. 5 + 3 
6. 6 + 2 
7. 8 + 7 
8. 8 + 5 
9. 8 + 4 
10.            9 + 5 
11. 11 + 8 
12. 12 + 7 
13. 17 + 6 
14. 19 + 9 
15. 19 + 7 
16. 21 + 8 
17. 22 + 7 
18. 23 + 6 
19. 28 + 8 
20. 28 + 9 

 
Visuo-spatial 

1. 6 + 2 
2. 7 + 2 
3. 8 + 3 
4. 4 + 3 
5. 9 + 5 
6. 5 + 3 
7. 6 + 3 
8. 7 + 4 
9. 8 + 2 
10.            9 + 7 
11. 12 + 6 
12. 14 + 5 
13. 16 + 5 
14. 18 + 7 
15. 24 + 4 
16. 25 + 4 
17. 25 + 9 
18. 27 + 6 
19. 28 + 7 
20. 28 + 6 

 
Central executive 
1. 4 + 3 
2. 6 + 3 
3. 7 + 2 
4. 5 + 4 
5. 6 + 5 
6. 6 + 2 
7. 6 + 4 
8. 8 + 5 
9. 9 + 7 
10.            9 + 3 
11. 11 + 4 
12. 12 + 5 
13. 16 + 8 
14. 19 + 7 
15. 22 + 7 
16. 23 + 5 
17. 24 + 7 
18. 26 + 6 
19. 28 + 9 
20. 28 + 8 

 
 
 

Decomposition 
Sum Only 

1. 6 + 3 
2. 5 + 3 
3. 6 + 4 
4. 8 + 5 
5. 6 + 3 
6. 7 + 5 
7. 7 + 6 
8. 8 + 6 
9. 8 + 7 
10.            9 + 4 
11. 16 + 7 
12. 17 + 9 
13. 18 + 4 
14. 19 + 3 
15. 21 + 6 
16. 22 + 5 
17. 22 + 8 
18. 23 + 6 
19. 24 + 4 
20. 26 + 3 

 
Visuo-spatial 

1. 6 + 3 
2. 5 + 4 
3. 4 + 3 
4. 8 + 5 
5. 6 + 3 
6. 7 + 6 
7. 9 + 7 
8. 7 + 2 
9. 8 + 3 
10.            9 + 4 
11. 13 + 7 
12. 14 + 5 
13. 16 + 4 
14. 17 + 9 
15. 19 + 7 
16. 23 + 6 
17. 24 + 6 
18. 24 + 7 
19. 26 + 8 
20. 27 + 8 

 
Central executive 
1. 6 + 3 
2. 4 + 3 
3. 5 + 4 
4. 8 + 4 
5. 9 + 5 
6. 5 + 3 
7. 7 + 2 
8. 6 + 2 
9. 7 + 5 
10.            9 + 7 
11. 13 + 6 
12. 14 + 9 
13. 18 + 8 
14. 19 + 6 
15. 19 + 9 
16. 21 + 4 
17. 22 + 7 
18. 24 + 5 
19. 27 + 8 
20. 28 + 8 

 


