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ABSTRACT 

The inflammatory bowel diseases, ulcerative colitis and Crohn's disease are 

characterised by spontaneously relapsing and remitting inflammation, 

associated with increased mucosal levels of the inflammatory cytokine, 

interleukin-1 (IL-1 )p. IL-1 P processing and release is mediated by ATP

stimulation of the purine receptor, P2X7. P2X7 is a membrane ion channel 

highly expressed in immune cells. Signal transduction occurs via rapid cation 

exchange, plasma membrane depolarisation and increased intracellular 

calcium. Additionally, prolonged or repeated P2X7 stimulation leads to 

formation of a non-selective membrane pore permeable to small molecules, 

and ultimately to cell death. 

The aim of this project was to investigate the properties of the P2X7 receptor 

in mononuclear cells, to show that it is associated with IL-1 p release in the 

colon, and that this release can be modified by P2X7 antagonists. Studies of 

ethidium bromide uptake, a functional assay, showed that P2X7 receptors 

are present on LPMCs and displayed properties similar to those of PBMCs 

and THP-1 cells. P2X7 receptor-stimulation released mature IL-1 p from 

LPMCs in a dose-dependent manner that, in IBD patients, matched the 

severity of their inflammation, and could be markedly reduced by P2X7 

antagonists. 

P2X7 stimulation also results in increased exposure of phosphatidylserine on 

the outer cell membrane (PS flip), often considered to be a marker of 

apoptotic cell death. P2X7-stimulated PS flip however is reversible and is not 

associated with cell death following brief stimulation times. Cell death caused 

by longer stimulation did not have features of apoptosis, was more evident in 

monocytes than Iymphocytes, with LPMCs being less susceptible than 

PBMCs and THP-1 cells. 

These studies have shown that the P2X7 receptor is intimately involved in the 

release of IL-1 p from human colonic mononuclear cells, that the release is 

greater in cells from IBD tissue and can be markedly inhibited by P2X7 

antagonists. 
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CHAPTER 1. INTRODUCTION 

1.1. INFLAMMATORY BOWEL DISEASE 

Inflammatory Bowel Disease (IBO) is a heterogeneous group of diseases 

with some common causative factors but different clinical manifestations in 

terms of disease behaviour, location and response to treatment (Cummings, 

JRF & Jewell, DP, 2005).The two principal disorders are ulcerative colitis 

(UC) and Crohn's disease (CD), both characterised by spontaneously 

relapsing and remitting inflammation of the intestinal tract. 

The predominant symptom in UC is bloody diarrhoea, but patients may also 

suffer from abdominal or rectal pain, fever and weight loss (Harris, M et al., 

2006). UC is exclusively confined to the colon and rectum (Fig 1.1.), but the 

extent of the disease can involve the rectum only (proctitis), the left side of 

the colon (left-sided or distal colitis), or the entire colon (pancolitis). UC 

primarily affects the superficial mucosa; exhibiting ulceration, oedema and 

haemorrhage of varying severity. Some of the characteristics of UC mucosa 

are shown in Fig 1.2. 

Crohn's disease is more variable and may occur anywhere in the 

gastrointestinal tract, but is most common in the ileum and colon (Fig 1.1.). 

Unlike UC, ulceration is patchy but involves chronic inflammation of all layers 

of the intestinal wall, often resulting in the formation of fistulas between loops 

of the bowel or to the skin (Fig 1.2.). Common symptoms are abdominal 

pain, diarrhoea, weight loss, fever, anaemia and perianal disease (Bayless, T 

et al., 2006). A feature of both diseases is the infiltration of inflammatory cells 

into the gut wall. Acute ulcerative colitis is particularly marked by high 

numbers of neutrophils that often migrate into the crypt lumen to form micro

abscesses (McKaig, B & Mahida, YR, 2000). 

The geographical incidence of IBD varies considerably (Lakatos, PL, 2006). 

In general, the highest incidence rates (frequency of new cases) and 

prevalence for both CD and UC are found in Northern and Western Europe 

and North America (Loftus, EVJ, 2004). In these countries, the incidence 

rates range from 1.5-20.3 cases per 100,000 person-years for UC and 0.7-

15.6 cases per 100,000 person-years for CD (Loftus, EVJ, 2004). Prevalence 

1 
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Ulcera I e 
co iris 

Fig 1.1. Anatomic distribution of ulcerative colitis and Crohn's 
disease 

rectum 

Ulcerative colitis is exclusively confined to the colon and rectum; the diagram shows left
sided colitis involving the rectum, sigmoid colon and descending colon. 
Crohn's disease may occur anywhere in the gastrointestinal tract (indicated on the 
diagram by red patches), but it is most common in the ileum and colon. 
Artwork is reproduced, with permission, from the Johns Hopkins Gastroenterology and 
Hepatology Resource Center, www.hopkins-gLorg, copyright 2006, Johns Hopkins 
University, all rights reserved . 
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Fig 1.2. The appearance of normal, CD and UC mucosa: 
diagrammatic, histological and endoscopic views 

Chapter 1 

UC exhibits ulceration, oedema and haemorrhage of varying severity, primarily of the 
superficial mucosa. Severe inflammation can lead to the formation of pseudopolyps, areas 
of granular tissue that on healing become re-epithelialised and protrude into the lumen. 

With CD ulceration is patchy but involves chronic inflammation of all layers of the intestinal 
wall. The mucosa takes on a "cobblestone" appearance as a result of the deep ulceration 
and swelling of the surrounding tissue. 
Artwork is reproduced, with permission, from the Johns Hopkins Gastroenterology and 
Hepatology Resource Center, www.hopkins-gLorg, copyright 2006, Johns Hopkins 
University, all rights reserved. 
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of the diseases in Europe range from 21.4-243 cases per 100,000 persons 

for UC and 8.3-214 cases per 100,000 persons for CD, which when 

extrapolated across the European population, gives a maximum estimate of 

2.2 million persons affected by IBO (Loftus, EVJ, 2004). IBD therefore 

appears to be a disease of westernised societies, particularly in urban 

environments. Ethnic groups from low incidence areas who have migrated to 

other geographic areas show increased incidence of the disease, indicating 

that environmental factors have a powerful influence (Loftus, EVJ & 

Sandborn, WJ, 2002). In addition, recent trends have indicated a stabilisation 

of incidence rates in North America and the European countries, but a 

progressive rise in areas with previously low incidence rates, probably due to 

increased urbanisation of these areas and increased awareness of the 

disease (Lakatos, PL, 2006). 

The causes of IBO are unknown but they are generally believed to result 

from predisposing genetic factors, particularly for CO. In a study on identical 

twins, 50% of the pairs with CD exhibited similarities in disease diagnosis 

and behaviour compared to 18% of the pairs with UC (Halfvarson, J et al., 

2003). One of the characteristics of IBD is altered intestinal permeability, and 

it has been shown that 10-20% of healthy relatives of Crohn's patients also 

exhibit an abnormal increase (Hollander, 0, 1999). In another study on first

degree relatives of patients with CD, 49% of them showed signs of 

subclinical intestinal inflammation (Thjodleifsson, B et al., 2003). 

Over the last few years, genome linkage studies of families affected with IBD 

identified nine susceptibility loci on different chromosomes (Ahmad, T et al., 

2004). Since then, more recent studies have identified further susceptibility 

genes including the interleukin 23 receptor gene (Tremelling, M et al., 2007) 

and four novel loci (Parkes, M et al., 2007). The most significant genetic 

association for CD has been the discovery of genetic polymorphisms of the 

NOD2ICARD15 gene. NOD proteins are a subset of pattern-recognition 

receptors which help to regulate the host response to pathogens, and a 

mutation in the gene has been shown to confer susceptibility to CD (Cho, JH, 

2004). NOD2 is expressed mainly by macrophages and dendritic cells and 

mediates intracellular recognition of MOP (muramyl dipeptide), a building 

block for bacterial cell walls (Maeda, S et al., 2005). There are three common 
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genetic variants of NOD2 associated with CD; the relative risk of developing 

CD from carrying one variant is between 1.5 and 3, increasing to 20-40 in 

people carrying two variants. NOD2 variants are also associated with 

disease development, carriers demonstrating younger age at onset, 

presence of ileal involvement and a tendency to develop strictures (Ahmad, 

T et al., 2004). 

Development of IBD is thought to result from complex interactions between 

environmental and genetic factors that stimulate an abnormal activation of 

the mucosal immune system. In healthy people the intestine becomes 

inflamed in response to a potential pathogen, but then returns to a normal 

state once the pathogen has been eradicated. However, in individuals with 

IBD the inflammation is not down-regulated and the mucosal immune system 

remains chronically activated, leading to chronic inflammation of the intestine 

(Hanauer, SB, 2006). Other theories about the pathogenesis of IBD have 

suggested that it may be caused by a dysfunctional immune response to 

commensal bacteria, or a defective mucosal barrier allowing unrestrained 

uptake of antigens and proinflammatory molecules (Hendrickson, BA et al., 

2002; Sartor, RB, 1997b) 

1.2. EXISTING AND POTENTIAL NEW TREATMENTS FOR IBD 

Successful treatment of IBD involves the control of active inflammation to 

obtain clinical remission and then maintaining it for as long as possible. 

Long-term management is governed by the type and severity of disease 

(Table 1.1.), and will include drugs to treat symptoms, such as antidiarrhoeal 

agents, as well as anti-inflammatory agents (Podolsky, OK, 2002). Treatment 

is generally stepped, adding more potent agents if less active drugs fail to 

give the required response. Because the inflammation in IBD is thought to be 

caused by an abnormal immune response, the mainstay of treatment in the 

past has been anti-inflammatory and immunosuppressant drugs. More 

recently, a number of drugs have been produced with inflammatory 

mediators as specific targets. 
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Ulcerative colitis Crohn's Disease 

Aminosalicylates 

Mild disease Aminosalicylates 
Metronidazole 
Budesonide or 
Ciprofloxacin 

Aminosalicylates 
Corticosteroids 

Moderate disease Azathioprine or 
Corticosteroids 

Mercaptopurine 

Corticosteroids 
Corticosteroids 

Severe disease Cyclosporine Methotrexate 
Infliximab 

Corticosteroids plus 
Refractory disease Azathioprine or Infliximab 

Mercaptopurine 

Aminosalicylates 
Azathioprine or 

Remission Azathioprine or 
Mercaptopurine, 

Mercaptopurine 
Mesalamine, 
Metronidazole 

Table 1.1. Current treatments for UC and CD 

long-term management of IBO requires the use of several different treatments and is 
governed by the type and severity of disease. 
Adapted from Podolsky. OK. (2002) 
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1.2.1.1. Aminosalicylates 
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Aminosalicylates such as sulphasalazine and mesalazine have long been 

used in UC for maintenance of remission, and are suitable for treatment of 

mild or moderately active UC and CD. The active moiety is 5-aminosalicylic 

acid (5-ASA) which is administered in different formulations that govern its 

site of release. This may depend on time, pH, or bacterial enzymes in the 

large bowel (Carter, MJ et al., 2004). 5-ASA acts by inhibiting the production 

of prostaglandins, leukotrienes and inflammatory cytokines, decreasing the 

activation of the nuclear transcription factor NF-KB, and scavenging reactive 

oxygen species. 5-ASA has been shown to exert its effects through 

increased PPAR-y (peroxisome proliferators-activated receptor-y) expression 

(Rousseaux, C et al., 2005). PPAR-y is highly expressed in colonic epithelial 

cells and is a key receptor in the regulation of bacterial-induced 

inflammation. It acts by reducing NF-KB activity and its expression is highly 

impaired in patients with UC (Dubuquoy, L et al., 2003). 

1.2.1.2. Corticosteroids 

In more severe cases of IBD when 5-ASA-based compounds are 

inadequate, corticosteroids such as prednisolone, hydrocortisone and 

budesonide are used. Corticosteroids are only used to control acute 

inflammatory activity and are of no benefit to patients in remission (Malchow, 

H et al., 1984). They are usually administered for as short a period as 

possible, due to their serious side effects. Budesonide is a newer 

corticosteroid which is rapidly metabolised by the liver, reducing its potential 

for causing systemic side effects (Kane, SV et al., 2002). Corticosteroids act 

by inhibiting several inflammatory pathways; they suppress interleukin 

transcription and arachidonic acid metabolism, and stimulate apoptosis of 

Iymphocytes in the lamina propria (Carter, MJ et al., 2004). 

1.2.2. Immunosuppressant drugs 

Immunosuppressant drugs are used for maintenance, particularly to reduce 

the need for corticosteroid treatment, but may put the patient at risk of 

infection as well as having side effects of their own. 
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1.2.2.1. Thiopurines 

Azathioprine and its active metabolite mercaptopurine are effective for both 

active disease and maintenance of remission in CO and UC (Sandborn, WJ 

et al., 2000; Pearson, DC et al., 2000). They act by inducing T cell apoptosis 

by modulating cell signalling (Tiede, I et al., 2003), and have a relatively slow 

onset of action, requiring 4 to 12 weeks to achieve a therapeutic effect. 

Thiopurines need to be monitored carefully since they cause a dose-related 

suppression of bone marrow leading to leucopenia (Podolsky, OK, 2002). 

1.2.2.2. Methotrexate 

Methotrexate is used in CD patients who are resistant or intolerant to 

thiopurines. Its anti-inflammatory effects are thought to be mediated by 

adenosine, whose release is promoted by methotrexate through inhibition of 

adenosine deaminase (Cronstein, BN, 1997). Its side effects are initially 

gastrointestinal (nausea, vomiting, diarrhoea and stomatitis) but it may also 

lead to hepatotoxicity and pneumonitis (Fraser, AG, 2003). 

1.2.2.3. Cyclosporin 

Cyclosporin is effective in the management of severe UC in patients who 

would otherwise undergo colectomy. It is a highly specific inhibitor of T cell 

activation and prevents clonal expansion of T cell subsets. It acts by 

inhibiting calcineurin· (a protein phosphatase that stimulates growth and 

differentiation of the T cell response) and blocks Signalling pathways 

triggered by antigen recognition (Matsuda, S & Koyasu, S, 2000). Major 

complications with the drug are reported in 0-17% of patients and these 

include renal impairment, infections and neurotoxicity (Ourai, 0 & Hawthorne, 

AB,2005). 

1.2.3 Anti-cytokine therapy 

Cytokines are small soluble proteins released by cells that control other cell 

behaviour, interaction and communication. They play a central role in the 

immune system and are involved in a variety of immunological, inflammatory 

and infectious diseases (see section 1.5). A greater understanding of the 

inflammatory mechanisms underlying IBO has allowed the development of 

new treatments, many of which are aimed at inflammatory cytokines. The 

most prominent one is infliximab, an anti-Tumour Necrosis Factor (TNF) 
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1.2.3.1. Anti-TNF drugs 
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Infliximab was originally designed to bind soluble TNF in the circulation or 

interstitium, but it is now known that it acts by binding membrane-bound TNF 

in immune cells and inducing apoptosis. This induction of apoptosis has 

been demonstrated both in T cells (ten Hove, T et al., 2002) and in 

monocytes (Lugering, A et al., 2001). It therefore eliminates not only the 

cytokine but also the TNF-positive cell population. Controlled trials with 

infliximab have demonstrated efficacy in both active and fistulating CO 

(Targan, SR et al., 1997; Hanauer, SB et al., 2002; Present, OH et al., 1999). 

The use of infliximab in UC is not so established, although trials have shown 

that it induces a clinical response in patients with active colitis (Rutgeerts, P 

et al., 2005) and reduces colectomy rate in those with severe colitis 

(Jarnerot, G et al., 2005). 

Because infliximab acts in an immunosuppressive way, treatment is 

associated with side effects including severe infections such as tuberculosis 

and other opportunistic infections. In other patients autoimmune diseases 

such as lupus erythematodes or multiple sclerosis have been seen (Stange, 

EF, 2006). One of the problems of biological therapies such as infliximab is 

the formation of antibodies to the drug itself (immunogenicity). This can affect 

both the efficacy of the drug as well as its safety, and patients may suffer 

serum sickness-like reactions, or occasionally anaphylactic reactions 

(Vermeire, S, 2006). Infliximab is a mouse/human chimeric monoclonal 

antibody which is approximately 75% human and 25% murine (Sandborn, 

WJ, 2003). To try and overcome the problem of immunogenicity, newer 

antibodies have been developed which are more humanised. Certolizumab is 

a polyethylene glycol conjugate of the antigen-binding fragment of a 

humanised anti-TNF-a monoclonal antibody; adalimumab is a monoclonal 

antibody that is 100% human. Both of these antibodies have undergone 

clinical trials and have been shown to be effective in Crohn's disease and 

well tolerated (Schreiber, 5 et al., 2005; Hanauer, S8 et al., 2006). 

Etanercept is a genetically engineered fusion protein consisting of the human 

TNF receptor fused with the Fc domain of human IgG1. It is a completely 
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human molecule and binds soluble TNF-a but is not effective in the treatment 

of Crohn's disease (Sandborn, WJ et al., 2001). This confirms the 

importance of the binding of these antibodies to membrane-bound TNF-a for 

their efficacy. 

1.2.3.2. Other anti-cyfokines 

Work on experimental colitis in mice has shown increased apoptosis in T 

cells when treated with anti-interleukin (IL)-6 (Atreya, R et al., 2000) or anti

IL-12 (Fuss, IJ et al., 1999) antibodies. More recently, an anti-IL-12p40 

antibody has been shown to reduce secretion of IL-12p70 and IL-23 in cells 

from CD patients, and also reduce IL-23-induced production of IL-17 and IL-6 

(Fuss, IJ et al., 2006). IL-12 and IL-23 both contain an identical p40 chain 

bound to a p35 or a p19 chain respectively, and it is now thought that IL-23 

may be a more important cytokine in the development of IBD than IL-12, and 

that IL-12 antibodies may actually be working against IL-23 (Yen, 0 et al., 

2006; Fuss, IJ et al., 2006). 

1.2.4. Regulatory cytokine therapy 

An alternative to blocking inflammatory cytokines is to administer regulatory 

cytokines, and this has been tried for both IL-10 and IL-11. Administration of 

recombinant human IL-11 to patients with Crohn's disease produced 

remission in approximately 36% of the patients compared with 16% of the 

placebo-treated controls (Sands, BE et al., 2002). Trials with IL-10 showed 

clinical improvement but not remission in patients with chronic active CD 

(Schreiber, S et al., 2000), whereas 23% of patients with moderate CD 

achieved improvement and remission (Fedorak, RN et al., 2000). These 

effects were found to be dose-dependent, higher doses of IL-10 being less 

effective, and it has since been shown that high doses of IL-10 upregulate 

the production of IFN-y, a pro-inflammatory cytokine (Tilg, H et al., 2002). 

Another drawback with these two cytokines is that they have to be 

administered intravenously and the cytokine may be cleared from the 

bloodstream before reaching its target. 
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1.2.5.1. Adhesion molecules 
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Adhesion molecules regulate trafficking of leucocytes between the blood and 

the tissues. In IBD, adhesion molecules are upregulated and increased 

recruitment of leucocytes into the inflamed tissue amplifies the immune 

response. Natalizumab is a humanised monoclonal antibody against a4 

integrin that produced small improvements in response and remission rates 

when administered to Crohn's disease patients (Sand born, WJ et al., 2005). 

Unfortunately a few patients developed progressive multifocal 

leukoencephalopathy, a fatal viral disease affecting people with severe 

immune deficiency, and the drug was withdrawn from the market for a re

evaluation of its safety (Keeley, KA et al., 2005). 

1.2.5.2. Galectin-2 

Galectin-2 is a lectin expressed in intestinal epithelial cells that binds to T 

cells and initiates apoptosis. Studies in experimental models of murine colitis 

showed that galectin-2 induced apoptosis of activated but not resting T cells. 

It also caused downregulation of proinflammatory, but upregulation of anti

inflammatory cytokine expression in T cells (Sturm, A et al., 2006). 

1.2.5.3. GM-CSF 

In some patients with Crohn's disease a defect in neutrophil function is 

thought to be a causative factor (Sands, BE, 2006) and this has led to GM

CSF (granulocyte-macrophage-colony-stimulating factor) being tested as a 

potential treatment. Trials carried out so far suggest that GM-CSF can 

decrease disease severity and improve quality of life for patients 

(Dieckgraefe, BK & Korzenik, JR, 2002; Korzenik, JR et al., 2005). 

1.2.5.4. Stem cells 

Hematopoietic stem cell transplantation (HSCT) has been used for several 

years in the treatment of severe autoimmune diseases and a few reports 

have suggested that it may be of significant benefit in IBD (Tyndall, A & 

Hawkey, CJ, 2006). In a phase I study in 12 patients with refractory CD, 

eleven achieved sustained clinical remission and only one developed a 

recurrence of active CD after 15 months (Oyama, Y et al., 2005). 
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1.2.5.5. Gastrointestinal parasites 

The hygiene hypothesis proposes that raising children in extremely hygienic 

environments with less exposure to parasitic infections may negatively affect 

the development of the immune system and predispose them to immunologic 

diseases such as IBD (Moreels, TG & Pelckmans, PA, 2005). 

Gastrointestinal infections with helminths induce a Th2 immune response 

and also activate regulatory T cells which contribute to immune suppression. 

Since CD has been shown to be a Th1-mediated disease, it has been 

proposed that infection with helminths may modulate the inflammatory 

response. Trials in patients infected with helminth ova showed that 72% of 

CD patients achieved remission, and in UC patients 43% responded to 

treatment (Summers, RW et al., 2005; Summers, RW et al., 2004). 

Many of the newer treatments for IBD are based on inhibition of inflammatory 

mediators or promotion of suppressors of inflammation. Development of 

these treatments has been possible through a greater understanding of the 

inflammatory process. 

1.3. INFLAMMATION 

Inflammation is a complex reaction of the body in response to damage to its 

cells and microcirculation. The basic symptoms have been known since 

ancient Greek and Roman times and were described as redness (rubor), 

swelling (tumor), heat (calor), pain (dolor) and loss of function (function 

laesa) (Sedgwick, AD & Willoughby, DA, 1985). Any harmful stimulus can 

provoke an inflammatory reaction but there are three main groups: 

i. physical, which may be mechanical, irradiation or extremes of temperature 

ii. chemical, contact with any irritating substance 

iii. infection, by any living organism. 

The process of inflammation has a very close relationship with the immune 

system, the cells of which are widely distributed throughout the body. The 

progressive development of the inflammatory response is controlled by 

inflammatory mediators; soluble diffusible molecules which act both locally at 

the site of tissue damage or infection, and at more distant sites. Bacterial 

products and toxins act as exogenous mediators, the most important of these 
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being endotoxin (lipopolysaccharide, LPS) of Gram-negative bacteria. 

Endogenous mediators are produced within the immune system itself and 

may be derived from normal plasma proteins, e.g. complement or clotting 

proteins, or may be released at the site of injury from various cell types, e.g. 

cytokines, chemokines. 

The immediate inflammatory response is vasodilation, leading to increased 

blood supply, and increased capillary permeability allowing the entry of fluids 

and plasma proteins into the tissue. This causes the characteristic heat, 

redness and swelling. One of the first vasoactive substances to be released 

in acute inflammation is histamine and this plays an important role in the 

earliest stages of inflammation (Spector, WG & Willoughby, OA, 1963). 

Vascular permeability is maintained by the sequential release of other 

mediators such as bradykinin, 5-hydroxytryptamine and prostaglandins. Over 

the next few hours following the acute response, leucocytes start to migrate 

from small blood vessels and accumulate in the surrounding tissues. This 

occurs through the action of cytokines and complement fragments, which 

affect the adhesive properties of the endothelium, and also by chemokines 

which attract the cells to the site. Initially the main cell types are neutrophils, 

followed by monocytes which rapidly differentiate into macrophages, and it is 

these cells and their local actions which cause the pain of inflammation. 

Lymphocytes will also be involved, activated by antigen which drains from 

the site of infection via the afferent Iymphatics (Janeway, CA et al., 2001). 

In order to reduce the possibility of damage to surrounding tissues, the body 

must have mechanisms to stop the inflammatory reaction once the damaging 

agent is removed. If the immune response is not controlled, the tissue may 

be damaged by the cells and the mediators involved in the immune 

response, and the inflammatory reaction may become harmful rather than 

useful. In many diseases such as IBO a large part of the tissue damage is 

caused by the inflammatory response itself (Playfair, JHL & Chain, BM, 

2001). 

1.4. THE MUCOSAL IMMUNE SYSTEM 

The intestinal mucosa is divided into distinct compartments of different cell 

types: the surface epithelium, the lamina propria and the muscularis 
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mucosae. The mucosal immune system consists of gut-associated lymphoid 

tissue (GAL T), and immune cells distributed diffusely throughout the lamina 

propria and epithelium. The GAL T are organised structures which act as 

primary lymphoid organs aiding the development of T Iymphocytes 

(cryptopatches), or secondary lymphoid organs involved in the induction of 

the mucosal immune response (Peyer's patches, isolated lymphoid follicles) 

(Newberry, RD & Lorenz, RG, 2005). The mucosal surface of the gut is 

continually exposed to potentially harmful antigens from the environment, 

food and bacteria. The mucosal immune system therefore has to control the 

balance between responsiveness and non-responsiveness, and it is the 

antigen-presenting cells (APCs) and the cytokines they secrete, that play a 

major role in controlling the mucosal immune response (Mahida, YR, 1997; 

McKaig, B et al., 2000). 

APCs are so called because they can take up antigens which cross the 

epithelial barrier, process them and present the antigen on their cell surface 

bound to major histocompatibility (MHC) class 11 molecules (transmembrane 

proteins expressed at the cell surface). Only macrophages, dendritic cells 

and B Iymphocytes constitutively express MHC class 11 molecules as well as 

important costimulatory molecules, and are called professional APCs 

(Brandtzaeg, P, 2001). All are present in the GALT and scattered throughout 

the lamina propria (Fig 1.3.). Antigens can cross the epithelium through 

direct transport by M cells (specialised epithelial cells which are scattered 

amongst the epithelium covering the lymphoid tissue), or as a result of 

breaks in the integrity of the epithelial barrier. It has also been shown that 

dendritic cells can migrate into the epithelium and extend cellular processes 

into the lumen to sample the contents (Rescigno, M et al., 2001). The 

presentation of antigens by APes leads to activation of T Iymphocytes which 

migrate from the Peyer's patches via the circulation to the lamina propria. In 

a healthy individual, these cells would naturally die by apoptosis, but if the 

same antigen was present in the lamina propria then the Iymphocyte 

response would be amplified leading to inflammation (Brandtzaeg, P, 2001). 

1.4.1. Immune responses and IBD 

As described above, the human intestinal mucosa has to maintain a delicate 
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a. Antigen enters the tissue through the M cells in the follicle-associated epithelium and is 
taken up by local dendritic cells (DC). 
b. The antigen is presented directly to T cells (CD4+) in the Peyer's patch or 
c. the antigen-loaded dendritic cell enters the draining lymph and presents antigen to T 
cells in the mesenteric lymph node (d). 
e. A similar process may occur when antigen enters the tissue through the epithelium. 
f. It is also possible that epithelial cells expressing MHC class II may act as local APCs. 
g. The activated T cells leave the mesenteric lymph node and home back to the intestinal 
mucosa via the blood stream. 
h. Antigen can also gain direct access to the bloodstream from the gut and interact with T 
cells in peripheral lymphoid tissues (i). 

SED: subepithelial dome 
TDA: thymus-dependent area 
Reproduced with permission from Nature Reviews Immunology, 3, Mowat, AM, 
Anatomical basis of tolerance and immunity to intestinal antigens, 331-41 . Copyright 
(2003) Macmillan Magazines Ltd . 
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balance between the ability to react to potential pathogens, but not to 

common gut constituents. This is normally achieved by a process known as 

oral tolerance, in which the mucosal immune system establishes 

unresponsiveness to antigens on the mucosal surface, (Strober, Wet al., 

1998). IBD is thought to be caused by a combination of inappropriate 

activation of effector-cell responses together with failure of normal 

immunosuppressive mechanisms (Eksteen, B et al., 2005). 

It is now generally believed that the luminal bacteria are central to the 

development of IBD and that disease occurs through loss of tolerance in 

susceptible individuals (Sartor, RB, 1997a; Mahida, YR & Rolfe, VE, 2004). 

This is supported by studies in experimental models of IBD which 

demonstrate impaired homeostasis with the gut flora (Elson, CO et al., 

2005). Patients with IBD have also been shown to have higher 

concentrations of bacteria associated with and within the mucosa compared 

to control patients (Swidsinski, A et al., 2002). Duchmann, R et al., (1995) 

investigated tolerance of isolated T cells from normal and inflamed intestine 

to bacterial sonicates. They showed that T cells from normal intestine were 

tolerant to bacterial sonicates cultured from their own intestine, but 

proliferated in the presence of sonicates from other individuals. In contrast, T 

cells isolated from IBD intestine strongly proliferated in response to bacteria 

from their own mucosa. More recently, it has been shown that the bacterial 

flora composition of CD patients, but not UC patients, is significantly altered 

from that of healthy controls (Gophna, U et al., 2006). However, the 

imbalance was found in both inflamed and non-inflamed tissues of the CD 

patients so is unlikely to be the sole cause of the inflammation. 

Development of disease is thought to occur through defects in one or more 

of the mechanisms involved in host tolerance for the intestinal flora. The first 

of these is the innate immune response involving phagocytic cells and the 

epithelial barrier itself. Zareie, M et al., (2001) showed that isolated lamina 

propria cells from Crohn'S patients spontaneously secreted the inflammatory 

cytokine TNF-a, and reduced the epithelial resistance of a co-cultured 

monolayer of T84 cells. The second mechanism is regulation and 

suppression mediated by regulatory T cells. Animal studies have shown that 
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transfer of naive T cells into immune-deficient mice produces colitis which 

can be prevented by co-transfer, or cured by subsequent transfer of 

regulatory T cells (Coombes, JL et al., 2005). 

The result of an abnormal innate response or defective regulatory 

mechanism is an excessive T cell response which, if left unchecked, leads to 

acute and chronic inflammation in the intestine. 

1.4.2. Cells of the Immune System 

1.4.2.1. Macrophages 

Macrophages are part of the first line of host defence against gut 

microorganisms and other antigenic stimuli. They protect the mucosa against 

harmful pathogens, phagocytose dead cells and foreign debris, and regulate 

the inflammatory response to bacteria and antigens which have crossed the 

epithelial layer. They are derived from stem cells in the bone marrow that 

differentiate into monocytes, and are subsequently released into the blood. 

After circulating for 2-3 days, monocytes migrate into the tissues where they 

mature into macrophages and remain as resident cells for weeks to months 

before undergoing apoptosis (Abbas, AK et al., 1997). In recent years it has 

become clear that there are different populations of macrophages with 

distinct biological functions. The characteristics of these subpopulations are 

shown in Table 1.2. 

In the gut, macrophages are located in the lamina propria, mainly 

concentrated in a band beneath the luminal epithelium (Pavli, P et al., 1996). 

In normal mucosa, resident tissue macrophages display a very different 

phenotype to the monocytes from which they are derived (Smith, PO et al., 

2005). They retain the ability to phagocytose and kill microorganisms, but do 

not produce pro-inflammatory cytokines in response to phagocytosis. They 

also lack surface C014, the receptor for bacterial LPS, thus limiting LPS

induced cytokine production (Smith, PO et al., 2001). Normal intestinal 

macrophages also lack APC function, partly due to absence of the co

stimulatory molecules necessary for T cell activation (Rugtveit, J et al., 

1997). Hence, despite residing in a tissue in close contact with large 

numbers of potentially immunostimulatory bacteria, normal gut tissue 

macrophages provide an efficient scavenging host defence function without 
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Classically activated Alternately Type 11 activated 
activated 

Activating I FN-y followed by IL-4 or IL-13 Binding to FcyR 
signals binding to TLR followed by binding to 

(microbe or LPS) TLR 

Secretory IL-1, TNF, IL-6, IL-12 IL-10,IL-1ra IL-10, IL-1, TNF, IL-6 
products 

chemokines 

arachidonic acid & 
prostaglandins 

Characteristics enhanced antigen- MHC class 11 MHC class 11 
presentation (MHC upregulated but upregulated 
class 11 upregulated) inefficient antigen-

presentation 

phagocytic mannose receptor phagocytic 
upregulated 
leading to 
endocytosis and 
phagocytosis 

enhanced ability to no NO production produce toxic oxygen 
kill and degrade and NO 
intracellular microbes 
by toxic oxygen and 
NO production 

produce arginase, 
promoting cell 
growth and repair 

inflammatory anti-inflammatory anti-inflammatory 
prolonged cytokine regulatory and IL-10 inhibits actions 
production leads to recovery function of classically 
tissue damage activated type 

Table 1.2. Characteristics of macrophage subpopulations 

The three subpopulations of macrophages are known as classically activated, alternately 
activated and type 11 activated. Classically activated macrophages induce T cells to produce 
IFN-y and hence promote a Th1 response. Type 11 activated macrophages are named for 
their ability to preferentially induce Th2 immune responses since they induce T cells to 
produce high levels of IL-4. 
TLR = Toll-like receptor 
FcyR is the receptor for the constant region of Immunoglobulin G. Antibodies that bind to the 
surface of invading pathogens (opsonisation) also bind to the Fc receptors and initiate 
phagocytosis. 
Mosser, OM, (2003); Gordon, 5, (2003); Ma, J et al., (2003) 
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promoting mucosal inflammation. 

In active IBD there is an increase in the mucosal macrophage population 

thought to be derived from circulating monocytes (Rugtveit, J et al., 1994; 

Allison, MC et al., 1988). The recruitment of these monocytes is through 

receptor-binding of chemotactic ligands such as chemokines, secreted by 

cells in the inflamed tissue (Smith, PD et al., 2005). The macrophage 

population from inflamed tissue has been shown to exhibit greater 

heterogeneity than that of normal mucosa (Mahida, YR et al., 1989a; Allison, 

MC & Poulter, LW, 1991). Rogler, G et al., (1997) investigated the phenotype 

of macrophages isolated from IBD tissue compared to those of normal tissue 

and found increased expression of CD14, CD16 (a receptor for the Fc 

portion of IgG), CD11 band c (adhesion molecules), and HLA-OR (MHC 

class 11 histocompatibility antigen). In another study, Mahida, YR et al., 

(1989a) demonstrated that macrophages from normal tissue were located 

just below the epithelium, had high lysosomal enzyme content and were 

likely to be 'scavenger' cells. In inflamed UC and CD tissue however, the 

cells became distributed throughout the lamina propria. They also showed 

the presence of two macrophage populations not present in normal tissue. 

The first were CD16+ macrophages whose function are unknown, although 

CD16+-monocytes have been shown to differentiate into lymph-homing 

dendritic cells (Randolph, GJ et al., 2002). The second population were 

epithelioid cells which are modified macrophages and are the main 

component of granulomas, often found in CO but not in UC. Epithelioid cells 

have a reduced phagocytic but greater secretory capacity and granulomas 

are thought to be crucial antigen-presenting sites (Matsumoto, T et al., 

2001). An increase in epithelioid cells, clustered at sites of tissue damage 

has also been demonstrated by Allison, MC et al., (1991). 

1.4.2.2. Lymphocytes 

Lymphocytes are cells that specifically recognise and respond to an 

individual antigen. Naive Iymphocytes (Le. ones which have not yet been 

exposed to their particular antigen) are released into the blood stream and 

migrate from there into one of the organised lymphoid tissues, awaiting 

contact with their respective antigens. If this fails to occur, they pass back 

into the blood stream via the efferent Iymphatics and are transported on to 
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another lymphatic organ. Once the naive Iymphocyte binds to its specific 

antigen, it starts to proliferate and differentiate within the lymphoid tissue. 

The activated cells produced enter the blood circulation, but they now 

preferentially leave the blood in the same type of tissue as that in which they 

were activated, a process known as homing. There they are able to respond 

to any antigen still present (5almi, M & Jalkanen, 5, 2005). 

Lymphocytes are divided into two major subpopulations; B Iymphocytes (8 

cells), which are produced and mature in the bone marrow, and T 

Iymphocytes (T cells), which are produced in the bone marrow but mature in 

the thymus (Playfair, JHL et al., 2001; Abbas, AK et al., 1997). T cells have 

been further subdivided into populations that have distinct functions; helper 

cells (Th), cytotoxic cells (Tc), regulatory cells (Tr), and intraepithelial cells 

(IELs).The characteristics of the different Iymphocyte populations are shown 

in Table 1.3. 

In the gut, naive Iymphocytes are mostly located in Peyer's patches where 

they become exposed to antigens transported through the epithelium and 

presented by dendritic cells (Fig 1.3.). After returning to the circulation, they 

preferentially home to the lamina propria to execute a response (5almi, M et 

al., 2005). T cells constitute approximately one-third of the cells in the 

intestinal lamina propria and are capable of producing high levels of 

cytokines, predominantly IFN-y (Monteleone, I et al., 2002). This may be 

because T cells derived from Peyer's patches are likely to be activated by 

bacterial antigens which stimulate dendritic cells to produce IL-12 and 

promote a Th1-type response (Nagata, 5 et al., 2000). Persistent stimulation 

and inflammation is avoided by the presence of regulatory cells secreting 

TGF-p and IL-10 (Groux, H et al., 1997; Annacker, 0 & Powrie, F, 2002). 

Also, Boirivant, M et al., (1996) showed that, compared with peripheral blood 

T cells, lamina propria T cells exhibited increased susceptibility to apoptosis 

which was enhanced on stimulation. The cells are therefore removed before 

they can mediate a harmful response. 

Crohn's disease is characterised by excessive numbers of activated T cells 

in the mucosa, and studies have demonstrated a resistance to apoptosis in 

mucosal T cells leading to prolonged survival, accumulation of cells and 
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8 Iymphocytes Antigen receptors are membrane-bound 
(8 cells) antibodies. 

Differentiate into plasma cells which secrete 
antibody. 
(Playfair, JHL et al., 2001) 

T Iymphocytes Helper T cells Act on other immune cells to promote the 
(T cells) (Th) immune response. Characterisation based on the 

cytokines they release: 
Th1 cells - proinflammatory. Promote 
differentiation and proliferation of T cells and 
activate other cells such as macrophages. 
Enhance activity of cytotoxic T cells. 
Th2 cells - promote 'allergic' response. Stimulate 
8 cells to produce antibody. Promote eosinophil 
recruitment. 
(Neurath, MF et al., 2002) 
Th17 cells - recently discovered proinflammatory 
subset so-named because they secrete IL-17. 
Produced in response to IL-23 and TGF-13 
(Harrington, LE et al., 2006). 

Cytotoxic Detect and destroy virus-infected cells by lysis or 
Tcells induction of apoptosis. 

(Playfair, JHL et al., 2001) 

Regulatory Inhibit proliferation of other cells and suppress 
Tcells immune responses. 
(Tr) 'Natural' Tr cells are thought to have a role in 

preventing autoimmune disease (Nagler-
Anderson, C et al., 2004). 
Tr1 cells require IL-10 for their formation and 
once mature secrete large amounts of it (Groux, 
H & Powrie, F, 1999). 
Th3 cells secrete TGF-13 and are thought to be 
involved in maintenance of tolerance to dietary 
antigen (Weiner, HL, 2001). 
CD8+ Tr cells are thought to be involved in oral 
tolerance (Mowat, AM, 2003). 

I ntraepithelial Dispersed as single cells within the mucosal 
Iymphocytes epithelium. 
(IELs) Effector memory cells with regulatory features, 

normally quiescent but can respond rapidly to 
harmful antigens. 
Protect against epithelial pathogens and promote 
healing after injury. 
(Cheroutre, H, 2005) 

Natural killer Detect cells expressing low levels of MHC class I 
cells molecules, such as virally infected or cancerous 
(NK cells) cells, and kill them 

Secrete IFN-y and TNF-a 
(Moretta, L et al., 2002) 

Table 1.3. Characteristics of Iymphocyte cell populations 
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hence perpetuation of inflammation (Ina, K et al., 1999; 80irivant, M et al., 

1999). 

1.4.2.3. Dendritic cells 

Dendritic cells (DCs) are APCs present in small numbers in most tissues. 

Their role is to acquire antigen and transport it to the lymphoid tissue where 

they activate naive T cells; one DC can affect between 300-1000 T cells 

(Stagg, AJ et al., 2003). DC precursors are derived in the bone marrow and 

migrate to the tissues via the peripheral blood. These immature cells are 

highly efficient at antigen uptake by endocytosis, but express low levels of 

MHC class 11 on their cell surface. However in response to damage or 

inflammatory signals such as microbial products and cytokines, they undergo 

maturation and migrate to the lymph nodes. During maturation, their 

expression of MHC class 11 is upregulated, turning them into potent 

stimulators of T cells (Stagg, AJ et al., 2003; 8anchereau, J & Steinman, RM, 

1998). DCs express many costimulatory molecules which interact with 

receptors on T cells to enhance adhesion and signalling (e.g. 87.1, 87.2, 

CD40), and these are also upregulated on maturation. As with the other 

immune cells, there are also subsets of dendritic cells and most of the 

information about their development has come from isolation and culture of 

their precursor cells. Their characteristics are shown in Table 1.4. 

In the human colon, dendritic cells have been shown to form a network 

throughout the lamina propria and beneath the basement membrane of the 

crypts (Pavli, P et al., 1996). The precise role of these cells is still not 

completely understood, and stUdies have been complicated by the different 

subpopulations which exist, but they appear to be critical for regulation of 

immunity in the gut. For instance, it is now known that as well as promoting 

responses to foreign antigens, DCs are also involved in tolerance to self

antigens (Mowat, AM, 2003). DCs express a series of surface receptors 

which recognise common structural elements of microbes. They appear to be 

able to differentiate between different microorganisms and respond in 

different ways (Stagg, AJ et al., 2003). Resident tissue DCs are not normally 

activated by harmless antigens and have regulatory functions, maintaining 

homeostasis and suppressing responses to commensal bacteria. However 

during inflammation Des are recruited from the blood which express different 
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OC1 OC2 

Precursor pOC1 pOC2 

Monocytes (derived from Plasmacytoid cells (derived 
myeloid progenitor cells) from lymphoid progenitor cells) 

Immature cell imOC1 imOC2 

Produced by culture in the Produced by culture in the 
presence of GM-CSF and IL-4, presence of IL-3 or following 
or after bacterial phagocytosis. an innate immune response to 

viral stimulation. 

Mature cell mOC1 mOC2 

Matured by stimulation with pro- Cells matured with IL-3 
inflammatory cytokines or promote Th2 responses and 
microbial products such as LPS. production of COB+ Tr cells. 
Secrete IL-12, inducing strong 
Th1 and cytotoxic Iymphocyte Cells matured by viral 
responses. stimulation secrete IFN-a and 

13, and promote Th cells to 
produce IFN-'Y and IL-10. 

Table 1.4. Characteristics and development of dendritic cell 
populations 

The table shows the stages of development of the two subsets of dendritic cells and the 
conditions required to produce them. 
Uu, Y-J, (2001; Shortman, K & Liu, Y-J, (2002) 
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pattern-recognition receptors (PRRs) capable of recognising pathogen

associated molecular patterns (PAMPs) of invading bacteria (Granucci, F & 

Ricciardi-Castagnoli, P, 2003). Hart, AL et al., (2005) studied DC populations 

in lamina propria mononuclear cells (LPMCs) isolated from IBD patients and 

healthy controls. They found that in IBO, DCs expressed higher levels of 

C040 (a marker of maturation/activation), expression of PRRs was 

upregulated, and that OCs from Crohn's disease (but not UC) produced pro

inflammatory cytokines. 

The ability of immune cells to affect each other's functions provides an 

important amplification mechanism for specific immunity, but when 

uncontrolled can also lead to damaging inflammation (Abbas, AK et al., 

1997). The way in which the cells influence each other is principally by the 

release of cytokines. 

1.5. CYTOKINES 

Cytokines are small soluble proteins which act through specific receptors to 

influence the activation, differentiation or growth of other cells. Nearly all 

nucleated cells are capable of synthesising them, and of responding to them. 

They have autocrine, paracrine and endocrine activities that may be exerted 

directly or indirectly by stimulating the release of other effector molecules. 

Cytokines are primarily involved in host responses to disease and infection 

and have been grouped according to their biological function rather than their 

structure (Dinarello, CA, 2000). 

1.5.1. Proinflammatory cytokines in IBD 

These cytokines promote inflammation by upregulating the enzymes 

associated with the production of inflammatory mediators such as 

prostaglandins, leukotrienes, nitric oxide and platelet-activating factor. Three 

inflammatory cytokines have been shown to be produced spontaneously 

from IBD mucosa at levels significantly higher than that of normal mucosa 

(Ligumsky, M et al., 1990; Reimund, JM et al., 1996). The cytokines originate 

mainly from LPMCs (Youngman, KR et al., 1993; Reinecker, H-C et al., 

1993), and their production appears to correlate with the degree of 
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inflammation (Ishiguro, Y, 1999). 

Interleukin (IL)-1 J3 is a key multifunctional cytokine which is produced by, 

and acts on nearly all tissues and organs of the body (Oinarello, CA, 1996). It 

is a potent mediator and activates many immune and inflammatory cells 

including T cells and NK cells (Rogler, G & Andus, T, 1998a). It also induces 

expression of endothelial adhesion molecules, essential for adhesion of 

leukocytes to the endothelial surface prior to migration into the tissues 

(Oinarello, CA, 2000). IL-1 P is a principal cytokine in IBO and has been 

shown to be present at higher levels in biopsies from patients with active 

disease compared to healthy controls (Ligumsky, M et al., 1990). A similar 

increase has been demonstrated in IL-1 p secretion from isolated 

mononuclear cells from active IBO tissue (Mahida, YR et al., 1989b). This 

study also showed that depletion of macrophages from the cell population 

appreciably reduced the amount of IL-1P produced, demonstrating that these 

cells are a major source of this cytokine. IL-1J3 release is a principal topic of 

this project and is discussed in more detail in section 1.6. 

IL-6 is secreted by a number of cell types including monocytes, activated T 

cells, B cells, fibroblasts, endothelium and mesangial cells (Radford-Smith, G 

& Jewell, DP, 1994). It is not normally produced unless cells are 

appropriately stimulated; such stimuli are bacterial lipopolysaccharide, viral 

infection, and other proinflammatory cytokines such as IL-1P and TNF-a. IL-6 

promotes the differentiation of B cells into antibody-producing plasma cells, 

and promotes IL-2 production in activated T cells (Ito, H, 2003). Both tissue 

and serum levels of IL-6 are significantly higher in active IBO compared with 

controls (Mitsuyama, K et al., 1991), even patients with only moderately 

active CO show elevated serum IL-6 (Gross, V et al., 1992). Increased 

production by macrophages and T cells of IL-6 and its soluble receptor (sIL-

6R), leads to increased formation of the complex IL-6-sIL-6R which binds to 

T cell membranes and promotes induction of anti-apoptotic genes. This leads 

to resistance of LPMCs to apoptosis thereby increasing the T cell population 

and augmenting the inflammation (Atreya, R & Neurath, MF, 2005). 
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TNF-a is a highly inflammatory cytokine secreted mainly by activated 

macrophages and monocytes. It has many actions but those relevant to IBD 

are its ability to recruit circulating inflammatory cells, induction of oedema, 

activation of granulocytes and T cells, and granuloma formation. It shares 

many of its activities with IL-1P except that TNF induces apoptotic cell death, 

a property which gave it its name (van Deventer, SJH, 1997). Spontaneous 

secretion of TNF-a from isolated LPMCs from IBD tissue is much lower than 

that of IL-1 p and IL-6 (Reinecker, H-C et al., 1993), and a study of TNF-a 

mRNA levels found no difference between IBD and control groups (Stevens, 

C et al., 1992). Cappello, M et al., (1992) also showed that TNF mRNA was 

located in cells in deeper lamina propria whereas IL-1 mRNA was in 

subepithelial macrophages. It would thus appear that TNF-a plays a less 

prominent role in IBD than IL-1P or IL-6. 

As well as activating inflammatory cells within the intestinal mucosa, IL-1 p, 

IL-6 and TNF-a are responsible for a characteristic accompanying systemic 

response (Fig 1.4). Effects include fever, anorexia, increased circulating 

white blood cells (Ieukocytosis), increased blood platelets (thrombocytosis), 

induction of the hepatic acute phase response (production of plasma proteins 

whose function is to restore homeostasis), and stimulation of the 

hypothalamiclpituitary/adrenal axis (part of the neuroendocrine system that 

controls reaction to stress) (Sartor, RB, 1994). IL-1P appears to be a primary 

stimulator of diarrhoea, a major symptom of intestinal inflammation. It 

induces the release of prostaglandins from subepithelial mesenchymal cells 

which promotes anion secretion from epithelial cells. It also increases gut 

motility by the release of corticotrophin-releasing hormone, and 

prostaglandins which stimulate small intestinal contractions. IL-1P and TNF-a 

also stimulate proliferation of intestinal smooth muscle cells and fibroblasts, 

contributing to fibrosis, an important complication of CD (Sartor, RB, 1994). 

1.5.2. Immunoregulatory cytokines in IBD 

Some cytokines play a more regulatory role by controlling the development 

of immune cell populations, or by inhibiting or stimulating the release of other 
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Fig 1.4. Systemic effects of IL-1~ 

a. IL-1 ~ is secreted by many cell types including macrophages. 
b. IL-1 ~ enters the circulation and activates IL-1 receptors in the hypothalamic vascular network resulting in the synthesis of COX-2. COX-2 causes elevated 
brain PGE2 levels which activates the thermoregulatory centre and leads to fever. 
c. IL-1~ activates IL-1 receptors on the endothelium resulting in rashes and production of IL-6. 
d. Circulating IL-6 stimulates production of acute phase proteins from liver hepatocytes. 
e. IL- 1~ acts on the bone marrow to increase mobilisation of granulocyte progenitors and mature neutrophils. 
f. IL-1-induced IL-6 increases platelet production resulting in thrombocytosis. 
Dinarello, CA, (2005) 
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cytokines. A simplified diagram of the role of regulatory cytokines in the 

development of Th Iymphocyte populations and their control of pro

inflammatory cytokine release is shown in Fig 1.5. The actions of regulatory 

cytokines may lead to pro or anti-inflammatory effects, and the principal 

regulatory cytokines involved in the mucosal immune response are shown in 

Table 1.5. 

Much of the information on the immunoregulatory profiles of UC and CD has 

come from studies of cytokine production in diseased and normal tissue, and 

the two diseases differ in the type of immune response they express. 

Crohn's disease is considered to be an excessive Th1 response, leading to 

increased production of IFN-y and decreased IL-4 (Shanahan, F, 2002; Fuss, 

IJ et al., 1996). IFN-y is a cytokine which promotes classic activation of 

macrophages, leading to the release of the inflammatory cytokines IL-1~, 

TNF-a. and IL-6. The production of IFN-y is driven by IL-12 and studies have 

shown elevated levels of IL-12 in tissues from CD patients compared to 

normal tissue (Monteleone, G et al., 1997; Parronchi, P et al., 1997). More 

recent studies have also demonstrated the presence of the IL-12-related 

cytokine IL-23, and its proinflammatory product, IL-17 (Fuss, IJ et al., 2006; 

Schmidt, C et al., 2005; Nielsen, OH et al., 2003; Fujino, S et al., 2003). In 

fact, it is now becoming evident that IL-23 may be more important for the 

development of IBD than IL-12 through its promotion of the development of 

Th17 T cells (Yen, 0 et al., 2006). A recent genetic study has demonstrated 

a highly significant association between Crohn's disease and the IL23 

receptor gene (Duerr, RH et al., 2006). Uhlig, HH et al., (2006) have 

suggested that IL-12 and IL-23 play distinct roles, and that IL-12 has a key 

role in systemic immune activation whereas IL-23 drives local inflammation. 

IL-18 is a member of the IL-1 family and acts as a costimulatory factor for the 

proliferation of Th1 cells, and for their production of IFN-y. Its expression has 

been shown to be increased in intestinal epithelial cells and LPMCs from CD 

patients compared to UC and control patients (Pizarro, IT et al., 1999). 

Monteleone, G et al., (1999) also showed that IL-18 was present at higher 

levels in CD mucosal samples and that it was functionally active. In cultures 

of LPMCs in which they downregulated the IL-18, they demonstrated a 
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Fig 1.5. Regulatory cytokines involved in the development of 
Th Iymphocyte populations and the inflammatory response 

Activation of APCs by different stimuli (see tables 1.2 and 1.4) determines the 
cytokines they release. These cytokines in turn stimulate naIve T cells to 
differentiate into Th1. Th2 or Th17 populations. 
APC : Antigen presenting cell 
Th: T helper Iymphocyte populations 
M~: macrophage 
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Cytokine Properties 

IL-2 Secreted primarily by activated Th cells. 
Critical for development and proliferation of 'natural' Tr cells. May be 
important in self-tolerance (Nelson, BH, 2004), and enhances epithelial 
repair (Oignass, AU & Podolsky, OK, 1996). 

IL-4 & IL-5 Secreted by Th2 cells. 
Stimulate proliferation and differentiation of B cells. 
IL-4 inhibits release of IL-1 and TNF-a and induces IL-1 ra. 
IL-5 activates eosinophils (Rogler, G et al., 1998a). 

IL-10 Secreted by Th2 cells and inhibits cytokine production in Th1 cells. 
Inhibits inflammatory cytokines and synthesis of inflammatory 
mediators (nitric oxide, prostaglandins) in macrophages. Reduces 
antigen presentation in APCs (Li, MC & He, SH, 2004). Studies suggest 
a reduced ability to produce and respond to IL-10 in LPMCs from IBO 
tissue (Gasche, C et al., 2000; Autschbach, F et al., 1998). 

IL-11 Inhibits IL-1 and TNF synthesis in macrophages, and IFN-y and IL-2 in 
T cells. Induces IL-4 production and is a direct inhibitor of Th1 
Iymphocytes (Opal, SM & OePalo, VA, 2000). Has cytoprotective 
effects on intestinal mucosa and reduces apoptosis in colonic epithelial 
cells (Kiessling, S et al., 2004) 

IL-12 Secreted by activated macrophages and dendritic cells. 
Induces expression of IFN-y in T cells and NK cells, and promotes 
differentiation of naive T cells into Th1 cells (Becker, C et al., 2005). 

IL-13 Produced by activated Th2 cells. 
Involved in B cell maturation and differentiation, upregulation of MHC 
class 11 expression, and inhibition of proinflammatory cytokine and 
chemokine production. Modulates resistance to gastrointestinal 
nematodes (Wynn, TA, 2003). 

IL-17 A family of cytokines (IL-17A-F) secreted by Th17 cells that promote 
maturation of dendritic cells, expression of proinflammatory cytokines 
and recruitment of neutrophils (Kolls, JK & Linden, A, 2004). 

IL-18 Member of the IL-1 family produced by epithelial cells, macrophages 
and dendritic cells. Combines with IL-12 to induce IFN-y production 
(Oinarello, CA, 1999). Induces Th1 and Th2 responses, activates 
endothelial cells and neutrophils, promotes recruitment of T cells, 
dendritic cells and neutrophils and induces inflammatory cytokines 
(Reuter, BK & Pizarro, TT, 2004). 

IL-23 Contains the p40 subunit of IL-12. 
Promotes generation of the Th 17 subset which release I L -17 and I L-6 
(Yen, 0 et al., 2006). 

IL-27 Contains a protein related to the p40 subunit of IL-12. 
Thought to limit the intensity and duration of T cell activation (Becker, C 
et al., 2005). 

IFN-y Produced by Th1 and NK cells. 

(Interferon-y) Potent activator of macrophages and promotes T and B cell 
differentiation. Increases MHC class I & 11 expression and activates 
neutrophils, NK cells and vascular endothelial cells (Rogler, G et al., 
1998a). 

Table 1.5. Regulatory cytokines associated with the mucosal Immune response 
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decrease in IFN-y expression. 

In ulcerative colitis the picture is less clear but it has been considered to 

have some features of a Th2-mediated disease (Bouma, G & Strober, W, 

2003; Farrell, RJ & Peppercorn, MA, 2002). UC is associated with the 

production of autoantibodies, which have been used to differentiate between 

disease subgroups (Saxon, A et al., 1990; Oas, KM et al., 1993; Ouerr, RH & 

Neigut, OA, 1995). As Th2 cells are generally more involved in the activation 

of B cells and induction of a humoral immune response than Th 1 cells, the 

presence of autoantibodies is more likely to indicate a Th2-mediated 

response. The characteristic cytokine of the Th2 response is IL-4 and 

although there is no evidence that T cells from UC secrete elevated amounts 

of IL-4, increased expression of IL-4 mRNA has been demonstrated (Inoue, 

S et al., 1999). Secretion of IL-5, another Th2 cytokine, has been shown to 

be elevated in UC but not in CO (Fuss, IJ et al., 1996; Fuss, IJ et al., 2004). 

It has been suggested that IL-13 is an important effector cytokine in UC in 

that it has been shown to impair epithelial barrier function by affecting tight 

junctions, inducing apoptosis and inhibiting repair (Helier, F et al., 2005). 

Others have shown elevated levels of IL-13 produced by NK T cells from UC 

patients (Fuss, IJ et al., 2004), but contradictory studies have shown 

decreased levels of IL-13 and suggest disease may be as a result of 

impaired regulatory properties (Vainer, B et al., 2000; Kadivar, K et al., 

2004). 

1.5.3. Chemokines 

Chemokines are a family of cytokines whose main function is to control the 

movement and activation of leucocytes. They are small proteins (7-15kOa) 

with 20-70% homology in their amino acid sequences, and have been 

subdivided into families (named CXC, CC, C and CX3C) based on the 

arrangement of their N-terminal cysteine residues (Zlotnik, A & Yoshie, 0, 

2000). Functionally chemokines are broadly divided into 'inflammatory' or 

'homeostatic', although some homeostatic chemokines have been shown to 

be upregulated during inflammation. The inflammatory chemokines are 

inducible, and are synthesised and secreted by infiltrating leucocytes and 
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tissue cells on stimulation. The main stimuli for chemokine production are 

proinflammatory cytokines, bacterial products such as LPS, and viral 

infection. Homeostatic chemokines are constitutively expressed in lymphoid 

tissue, and are involved in basallymphocyte trafficking between lymphoid 

organs and the tissues (Papadakis, KA, 2004). 

Chemokines are important in the trafficking of dendritic cells. Immature DCs 

express several chemokine receptors which respond to chemokines present 

in the tissues and help to keep them located there. On maturation however, 

these receptors are downregulated and the cells upregulate expression of a 

receptor which binds a chemokine expressed in T cell-rich areas. This results 

in the movement of DCs, activation of T cells and induction of the adaptive 

immune response (Sozzani, S et al., 1998; Dieu, MC et al., 1998). 

Similarly chemokines play a role in the differentiation of T cells into Th1 or 

Th2 cells. They can activate T cells directly, or indirectly by affecting the 

dendritic cells and the cytokines they produce. Th1 and Th2 cells have been 

shown to express different chemokine receptors (Luther, SA & Cyster, JG, 

2001). 

Chemokines also play a vital role in leucocyte adhesion and extravasation 

during inflammation. The chemokines secreted in any particular tissue will 

control the type of inflammatory cells which infiltrate that tissue. Ulcerative 

colitis and Crohn's disease are characterised by chronic inflammation with 

additional acute inflammatory flare-ups. In the chronic phase, the gut mucosa 

is infiltrated with macrophages and Iymphocytes, whereas during the acute 

phase there are additional increased levels of neutrophils, particularly in 

ulcerative colitis (Luster, AD, 1998). Chemokines which have been shown to 

be increased or induced in patients with IBD are shown in Table 1.6. 

1.6. THE INTERLEUKIN (IL)-1 FAMILY 

IL-1 is a highly inflammatory cytokine, often acting in conjunction with other 

cytokines or cell mediators. The three classical members of the IL-1 family 

are IL-1a (IL-1F1), IL-113 (IL-1F2), and IL-1 receptor antagonist (IL-1Ra, IL-

1 F3) (Dinarello, CA, 1996). 

The two agonists, IL-1a and IL-113, are synthesised as 31kDa precursors 

(pro-IL-1) that are processed to 17kDa mature forms by specific intracellular 
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Chemokine Site of production Action 

CCL2 
Macrophages, smooth Recruits monocytes, dendritic cells 

(MCP-1) 
muscle, and activated T cells (Grimm, MC et 
endothelial cells al., 1996). 

CCL3 Epithelial cells, 
(MIP-1a) endothelial cells, 

Recruit activated T cells. 
CCl4 mucosal inflammatory 

(MIP-113) cells (Banks, C et al., 2003; Mazzucchelli, l 
et al., 1996) 

CCl5 IEls, subepithelial 
(RANTES) lamina propria 

CCL7 Predominantly epithelial Recruits monocytes, dendritic cells 

(MCP-3) cells and activated T cells (Wedemeyer, J 
et al., 1999). 

CCl11 
Epithelial and endothelial 

Recruits eosinophils and basophils cells, peripheral blood 
(Eotaxin) 

eosinophils 
(Garcia-Zepeda, EA et al., 1996). 

Epithelial cells, 
Recruits dendritic cells, B cells and CCL20 particularly follicle-
memory T cells (Puleston, J et a/., 

(MIP-3a) associated epithelium of 
2005) 

Peyer's patches 

GRO-a has synergistic effects on IL-

Epithelial cells, 8-induced neutrophil activation 
CXCL1-3 

macrophages, (Imada, A et al., 2001). Increased 
(GRO-a,I3,y) myofibroblasts expression of CXCL 1-3 and their 

receptors in IBO (Puleston, J et al., 
2005). 

CXCL5 Epithelial cells of Recruits and activates neutrophils 
(ENA-78) inflamed mucosa (Z'Graggen, K et al., 1997). 

Recruits neutrophils. Thought to be 
important in formation of crypt 

Constitutively expressed abscesses. Increased expression of 
CXCl8 in the gut by IL-8 and its receptor in active UC 
(IL-8) macrophages, epithelial (Mahida, YR et al., 1992; Williams, EJ 

cells, fibroblasts et al., 2000). Expression correlates 
with disease severity (Oaig, R et al., 
1996). 

Recruits activated T cells. Has a role 

CXCL10 
Expressed in lamina in basal trafficking of Iymphocytes in 

(IP-10) 
propria cells of normal the gut but is upregulated in 
colon inflammation (Uguccioni, M et al., 

1999). 

Table 1.6. Chemokines shown to be increased or induced in tissue 
from IBD patients 

MCP: Monocyte Chemoattractant Protein; MIP: Macrophage Inflammatory Protein; 
RANTES: Regulated on Activation, Normal T -cell Expressed and Secreted; GRO: Growth
Related gene product; ENA: Epithelial Neutrophil-Activating peptide; IL: Interleukin; IP: 
Interferon-inducible Protein; IEl: Intraepitheliallymphocyte 
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proteases. IL-1 J3 is biologically active only in its mature form, which is 

exported in large quantities on stimulation. Both forms of IL-1a are active, but 

it is produced in much lower amounts than IL-1J3, and is not actively secreted 

(Hazuda, DJ et al., 1988). 

IL-18 (IL-1 F4) and IL-33 (IL-1 F11) are regulatory cytokines; IL-18 stimulates 

activation of Th1 cell differentiation and IFN-y secretion (Table 1.5) and the 

endothelium-derived IL-33 induces expression of Th2-associated cytokines 

(Carriere, Vet al., 2007). More recently, new members of the IL-1 family 

have been identified, numbered IL-1F5 -IL-1F10, whose functions have yet 

to be fully elucidated (8arksby, HE et al., 2007). 

The IL-1 receptor binds both IL-1a and IL-1P and is also composed of a 

family of three proteins, the type I receptor (IL-1 RI), the type 11 receptor (IL-

1 RII) and the receptor accessory protein (IL-1 RAcP). Of the two IL-1 

receptors, just IL-1RI is signal transducing, and this only occurs after binding 

of the accessory protein. The IL-1 RI! receptor has been described as a 

'decoy' receptor since it has no functional activity on binding IL-1, and by 

preventing IL-1 from binding to the functionallL-1RI receptor, it helps to 

regulate its activity. It has a high affinity for IL-1P but much lower for IL-1a 

and IL-1 Ra, which is consistent with a regulatory role. 

The receptor antagonist (IL-1 Ra) is also a natural regulator of IL-1 since it 

binds to both the IL-1 receptors, but inhibits binding of the accessory protein, 

thus blocking signalling (Sims, JE, 2002). IL-1 Ra exists as three structural 

isoforms. The secreted form (sIL-1Ra) is a 17kDa protein primarily produced 

by mononuclear cells, and the 18kDa intracellular form (iclL-1 Ral) is found in 

keratinocytes and other epithelial cells, monocytes, tissue macrophages, 

fibroblasts and endothelial cells (Arend, WP, 2002). A second 16kDa 

intracellular form (iclL-1 Rail) has also been detected, thought to be derived 

by alternative translation initiation from the mRNA of s1L-1 Ra (Malyak, M et 

al., 1998). iclL-1 Ral has been shown to have no effect intracellularly on IL-1 

mediated signalling, but inhibits IL-1 responses only when released from the 

cell (Evans, I et al., 2006). 

In the intestinal mucosa, levels of totallL-1 Ra protein have been found to be 

greater in the epithelial cells than the LPMCs in both normal and IBD 
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subjects (Cominelli, F & Pizarro, TT, 1996). s1L-1Ra was detectable in 

LPMCs from both normal and inflamed tissue, but only in epithelial cells from 

inflamed tissue. In contrast, iclL-1Ra was virtually undetectable in both 

LPMCs and epithelial cells from normal tissue but induced during active 

inflammation in both cell types (Cominelli, F et al., 1996). The authors 

suggested that production of I L-1 Ra from epithelial cells in particular, may be 

a mechanism of controlling the harmful effects of IL-1 produced during an 

inflammatory response. A mucosal imbalance between IL-1 and IL-1 Ra has 

been shown to be present in patients with IBO. The ratio IL-1 Ra/IL-1 

decreased markedly in both CD and UC patients when compared to control 

subjects, and it was also found to correlate with severity of disease (Casini

Raggi, Vet al., 1995; Oionne, S et al., 1998). Furthermore, the same studies 

found that the ratio did not decrease in inflammatory control patients, 

suggesting that the imbalance may be of pathogenic importance in IBO. 

An association has also been demonstrated between UC and allele 2 of the 

IL-1Ra gene (Mansfield, JC et al., 1994). The association appeared to be 

greatest in patients with total colitis and was not seen in CO. Other groups 

have shown similar associations, one suggesting that the presence of allele 

2 is a genetic marker for severity of disease (Bioque, G et al., 1996), and 

another that the predisposition to UC caused by the allele may have an 

ethnic association (Tountas, NA et al., 1999). A study in India (Mittal, RD et 

al., 2005) found an association between allele 2 and patients with CD but not 

with UC, the opposite result to studies from the West, which they also 

proposed was due to ethnic differences and genetiC heterogeneity. 

1.6.1. Cleavage of IL-1 p 
Biological activity of IL-1~ requires cleavage of the inactive pro-IL-1J3. IL-1~ is 

cleaved to its mature form by a specific protease enzyme, IL-1J3 converting 

enzyme (ICE). ICE is a member of a family of intracellular cysteine proteases 

known as caspases (cysteine proteases cutting after aspartic acid, (Alnemri, 

ES et al., 1996». ICE (caspase-1) cleaves pro-I L-1 J3 after the aspartic acid 

residue at position 116, to produce the biologically active 17kOa form 

(Wilson, KP et al., 1994). 
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Caspase-1 is constitutively expressed in many cell types and like IL-1I3, is 

also produced as an inactive precursor (Siegmund, B, 2002). The active 

enzyme is a heterodimer composed of 10kDa and 20kDa proteins. It is 

generated by cleavage of the 45kDa inactive pro-enzyme at four aspartic 

acid residues, resulting in removal of a 13kDa amino-terminal domain, and a 

2kDa protein separating the 10- and 20kDa subunits (Ayala, JM et al., 1994). 

Maturation of caspase-1 occurs through a caspase-activating complex called 

the inflammasome (Martinon, F et al., 2002). The inflammasome is a scaffold 

of interacting proteins which bind pro-caspase enzymes through caspase

recruitment domains (Fig 1.6.). The NALP3 inflammasome binds only pro

caspase-1 and is restricted to immune cells; once bound, activation of pro

caspase-1 occurs through autocatalysis (Martinon, F & Tschopp, J, 2004). 

Since excessive IL-1f3 production is harmful, it is not surprising that as well 

as controlling the activity of IL-1f3, cells also have regulatory mechanisms for 

controlling caspase-1 activity. The LRR region of the NALP3 protein is 

thought to bind to the NACHT region exerting an autoinhibitory effect, and 

the cell also contains several proteins (COP, ICEBERG, DASC) that interfere 

with pro-caspase-1 binding to the inflammasome (Martinon, F et al., 2004). A 

single amino acid mutation in the NACHT region of the NALP3 protein has 

been shown to be involved in hereditary fever syndromes and chronic 

inflammatory diseases (Agostini, L et al., 2004). Macrophages from such 

patients secrete IL-1 f3 even in the absence of a stimulus and it is thought that 

the mutation prevents the autoinhibitory effect of LRR binding to the NACHT 

domain (Agostini, L et al., 2004; Dinarello, CA, 2004). Another protein, 

proteinase inhibitor 9, has been shown to inhibit caspase-1 by blocking its 

active site (Annand, RR et al., 1999), and nitric oxide is also a potent 

inhibitor of caspase-1, preventing the release of IL-1f3 and IL-18 from 

macrophages (Kim, YM et al., 1998). 

In the human intestinal mucosa, lamina propria macrophages have been 

shown to be the predominant caspase-1-expressing cell type (McAlindon, 

ME et al., 1999). This is consistent with the finding that macrophages are 

also responsible for the release of mature IL-1 f3 in inflamed mucosa (Mahida, 
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Fig 1.6. The role of the inflammasome in activation of caspase-1 and 
release of mature IL-1 ~ 

Monocytes stimulated with substances such as bacterial endotoxin (LPS) accumulate pro
IL-1P in the cytosol. Pro-caspase-1 is constitutively expressed in these cells and is activated 
by the inflammasome. 
The caspase recruitment domain (CARD) on pro-caspase-1 interacts with CARD of an 
adapter protein (ASC). The pyrin domain (PYD) of ASC binds to the PYD of NALP-3. NALP-
3 is composed of a NACHT domain, a NALP-associated domain (NAD) and a region of 
leucine-rich repeats (LRR). The CARD of caspase-1 also interacts with CARD of a protein 
called Cardinal, which binds to NACHT in NALP-3 via its N-terminal domain (FIIND). 
Formation of the inflammasome results in activation of caspase-1 by autocatalysis which 
then associates with pro-IL-1 f3 at the inner surface of the cell membrane. Cleavage of pro
IL-1 P occurs and active IL-1P is secreted from the cell. 
Reprinted from Immunity, 20, Dinarello, CA, Unravelling the NALP-3/IL-1 p Inflammasome:' a 
big lesson from a small mutation, 243-4. Copyright (2004). with permission from Elsevier. 
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YR et al., 1989b). Studies on LPMCs isolated from normal and IBO mucosa 

showed that cells from normal tissue only expressed the inactive p45 form of 

caspase-1 and produced pro-IL-1J3 (McAlindon, ME et al., 1998b). In 

contrast, cells from IBO tissue also expressed the active p20 form of 

caspase-1 and secreted mature IL-1J3. Caspase-1 has also been shown to 

be strongly expressed in normal colonic epithelium but only in its inactive 

form (Jarry, A et al., 1999). A study in mice has demonstrated that caspase-1 

deficiency protected them from chronic colitis, and that it was more effective 

than treatment with IL-1Ra or blocking IL-18 activity (Siegmund, B et al., 

2001). Similarly, a caspase-1 inhibitor, pralnacasan, has been shown to 

prevent dextran sulphate sodium-induced colitis in mice (Loher, F et 8/., 

2004). 

1.6.2. Secretion of IL-1 P 
Most proteins that are secreted from cells do so via transport through the 

endoplasmic reticulum; a process that requires a 'signal peptide' at the 

amino-terminus. IL-1J3 is unusual for a secreted protein in that it does not 

contain a signal sequence, and accumulates in the cytoplasm until it is 

processed and released. The mechanisms governing the maturation and 

release of active IL-1 J3 are not well understood, but it is known that two 

separate stimuli are required. 

In the human colon there is a complex population of microorganisms, largely 

composed of Gram-negative bacteria (MacOonald, TT, 1995). LPS is the 

main component of the outer membrane of Gram-negative bacteria, and is a 

potent stimulator of inflammation. LPS stimulation of monocytes and 

macrophages induces many genes which express inflammatory mediators 

such as cytokines and chemokines, including the production of large 

amounts of pro-IL-1J3 (Guha, M & Mackman, N, 2001). This pro-cytokine, 

however, is not released in its mature form unless the cells receive a second 

stimulus that will promqte maturation of caspase-1. 

Agents which have been shown to induce processing and release of IL-1 J3 

include antimicrobial peptides (Perregaux, OG et al., 2002), nigericin 

(Cheneval, 0 et al., 1998) and adenosine 5'-triphosphate (ATP) (Perregaux. 
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DG & Gabel, CA, 1998b; Perregaux, DG et al., 2000). All of these agents are 

able to promote major changes to the intracellular ionic environment, in 

particular efflux of potassium ions (K+) from the cell which has been shown to 

be necessary for caspase-1 maturation (Cheneval, 0 et al., 1998; Perregaux, 

DG & Gabel, CA, 1994). 

Some studies suggest that caspase-1 may also play a part in the secretion of 

IL-1~ from the cell. In LPS-stimulated monocytes, Singer, 11 et al., (1995) 

used immuno-electron microscopy to demonstrate localisation of caspase-1 

on the external cell membrane in conjunction with IL-1~. Others have shown 

an association between extracellular release of mature 20kDa caspase-1 

subunits and IL-1~ processing in stimulated monocytes (Laliberte, RE et al., 

1999). 

Two groups have proposed vesicular mechanisms for IL-1P secretion (Fig 

1.7.). Andrei, C et al., (2004) demonstrated localisation of pro-IL-1 ~ and pro

caspase-1 in secretory Iysosomes from ATP-stimulated human monocytes. 

They suggested that ATP-induced K+ efflux is crucial for the exocytosis of 

these Iysosomes and the secretion of mature IL-1p. The process also 

required activation of three phospholipase enzymes: phosphatidylcholine

specific phospholipase C and calcium-independent and -dependent 

phospholipase A2. Calcium-independent phospholipase A2 has been shown 

to be involved in processing of pro-IL-1 p to the mature form (Walev, I et al., 

2000), whereas the other two enzymes are required for secretion (And rei, C 

et al., 2004). A more recent study has shown that inhibitors of histone 

deacetylases prevented exocytosis of IL-1p-containing secretory Iysosomes 

(Carta, S et al., 2006). The inhibition appeared to be due to disruption of a 

microtubule network required for activation of calcium-dependent 

phospholipase A2. 

MacKenzie, A et al., (2001) using a monocytic cell line (THP-1 cells) 

stimulated with ATP, found that the monocytes shed microvesicles from their 

plasma membrane within 2-5 seconds of stimulation. Two minutes after 

stimulation the vesicles were shown to contain mature IL-1 p which later 

appeared in the vesicle-free supernatant. Formation of the microvesicles was 

accompanied by phosphatidylserine (PS) flip and loss of membrane 
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I 

Fig 1.7. Proposed pathways for P2X7-stimulated I L-1~ cleavage and release 

1. Activation of TLRs by LPS causes accumulation of pro-IL-1 ~ and formation of the inflammasome. 
2. Pro-IL-1 ~ and the inflammasome localise below the inner leaflet of the plasma membrane. 
3. Activation of P2X7 triggers K+ efflux leading to the formation of secretory Iysosomes containing 

some components of the inflammasome. During this process, procaspase-1 is cleaved and pro-IL-
1 ~ is converted to mature IL-1~ . 

4. The lysosome content is secreted in a process requiring P2X7-dependent K+ efflux, Ca2+ increase, 
activation of PC-specific phospholipase C and phospholipase A2. 

Alternatively: 
5. Activation of P2X7 and K+ efflux triggers budding of small membrane blebs (microvesicles) that trap 

some of the inflammasome components. During this process, procaspase-1 is cleaved and pro-IL-
1 ~ is converted to mature I L -1 ~ . 

6. Eventually the membrane blebs pinch off and diffuse into the pericellular space. 
Reprinted with permission from J Immunol, 176, Ferrari, D et al., The P2X7 receptor: a key player in IL-
1 processing and release, 3877-83. Copyright 2006 The American Association of Immunologists, Inc. 
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asymmetry. PS-flip is normally associated with apoptosis, but has been 

shown to occur constitutively on a subset of T cells expressing low levels of 

CD45RB (transmembrane tyrosine phosphatase) (Elliott, JI et al., 2005). 

Redistribution of PS in the membrane was suggested to play a role in signal 

transduction and to modulate activity of several membrane proteins. 

A similar vesicle-mediated mechanism for IL-1P release has been shown in 

microglia stimulated with ATP (Bianco, F et al., 2005) and in dendritic cells 

(Pizzirani, C et al., 2007). In contrast, a recent study in peritoneal 

macrophages has shown that activation of caspase-1 and maturation of pro

IL-1P occur in the cytosol, and that IL-1P may be secreted directly across the 

plasma membrane (Brough, D & Rothwell, NJ, 2007). The authors proposed 

that there may be multiple mechanisms of IL-1P release. 

The ability of ATP to initiate IL-1 ~ processing is believed to occur via 

activation of the purine receptor, P2X7 (Ferrari, 0 et al., 1997b; Sanz, JM & 

Di Virgilio, F, 2000; Colomar, A et al., 2003). 

1.7. PURINE RECEPTORS 

Extracellular purines (adenosine, ATP and ADP) and pyrimidines (UTP and 

UDP) are important signalling molecules with diverse effects on many 

biological processes (Ralevic, V et al., 1998). The first paper describing their 

actions was published in 1929 by Drury & Szent-Gyorgyi, who investigated 

their effects on the heart (Burnstock, G, 2004). When ATP was proposed as 

a transmitter many years later, the idea was not widely accepted because of 

its already recognised role as an important intracellular molecule and energy 

source (Burnstock, G, 2006b). Early studies on adenosine, ATP and UTP 

focussed on their cardiovascular effects, but later research also investigated 

effects of purines on platelet aggregation (Born, GV, 1962) and on mast cells 

(Cockcroft, S & Gomperts, BD, 1980). Since then, many diverse responses 

to extracellular purines and pyrimidines have been reported in a wide range 

of biological systems, including smooth muscle contraction, 

neurotransmission, exocrine and endocrine secretion, the immune response, 

inflammation, platelet aggregation, pain, and modulation of cardiac function 

(Ralevic, V et al., 1998). 
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Purinergic receptors were first formally recognised in 1978 by Burnstock, 

who proposed their division into two main families; P1 receptors that respond 

to adenosine and P2 receptors that recognise ATP, ADP, UTP and UDP 

(Ralevic, Vet al., 1998). P1 receptors are all G-protein coupled and have 

been divided into four subtypes, A1, A2A, A2B and A3; their distribution and 

properties are shown in Table 1.7. 

P2 receptors have been divided into two sub-families dependent on whether 

they are G-protein coupled (P2Y), or membrane ion channels (P2X) 

(Abbracchio, MP & Burnstock, G, 1994). Further sub-divisions have been 

made based on molecular structure of cloned receptors, and currently six 

mammalian P2Y receptors (P2Y1, P2Y2, P2Y4 , P2Ys, P2Y11 and P2Y12) and 

seven P2X receptor subunits (P2X1-7) are recognised (Fig 1.8). 

P2Y receptors respond to nucleotides either by activating phospholipase C 

and releasing intracellular calcium, or by affecting adenylyl cyclase and 

altering cAMP levels (Burnstock, G, 2006b). Many cells express multiple P2Y 

receptor subtypes; some are activated principally by nucleotide 

diphosphates, others by triphosphates. Likewise, some P2Y receptors are 

activated by both purine and pyrimidine nucleotides, whereas others are 

activated by purine nucleotides alone (Burnstock, G, 2006b). P2Y receptors 

are widely distributed (Table 1.8) and have many biological effects including 

vasodilation, hormone secretion, platelet aggregation and regulation of cell 

function. 

P2X receptors are abundantly distributed and functional responses have 

been seen in neurons, glia, epithelia, endothelia, and bone, muscle and 

haematopoietic tissues (North, RA, 2002). They are involved in smooth 

muscle contractility, neuroendocrine secretion and modulation of synaptic 

transmission. They are also thought to be involved in pain perception and are 

key factors in sensing tissue damage and inflammatory stimuli (North, RA, 

2002). P2X receptors are composed of subunits which have two hydrophobic 

transmembrane domains with short intracellular amino- and carboxyl

terminals and a large extracellular region containing ten cysteine residues 

(Fig 1.8.b) (Burnstock, G, 1997). The functional receptors are thought to be 

oligomeric structures; studies of P2X1, P2X2 and P2X3 have shown them to 

be composed of three subunits (Fig 1.8.c) (Nicke, A et al., 1998; Mio, K et al., 
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Distribution Effects 

Reduces neurotransmitter release and 

Widely distributed but 
neuronal firing. In the heart it reduces 

A, particularly ubiquitous within the rate, muscle conductivity, and force 

the eNS. 
of contraction. Reduction of lipolysis in 
adipose tissue, and reduction of urine 
formation. 

eNS, vascular smooth Acts on endothelial and smooth muscle 

A2A muscle, endothelium, 
cells to produce vasodilation. Interacts 

immune tissues, platelets. 
with dopamine receptor signalling in the 
eNS. 

Present in practically every 
cell but in small numbers 
and need relatively high 

A2B 
concentrations of adenosine May be involved in regulation of 
to evoke a response. vascular tone and mast cell function. 
Present at higher levels in 
parts of the intestine and 
bladder. 

Anti-inflammatory response in 
neutrophils, eosinophils and 
macrophages by direct effect on cell 
degranulation or the production of anti-
inflammatory cytokines. In basophils, 

Widely distributed but 
degranulation and mediator release 
lead to bronchospasm and asthma. In 

A3 expression levels are cardiomyocytes, neuronal cells and 
generally low. bone marrow cells activation induces 

cytoprotective effects in vitro. In vivo, 
agonists act as cardio- and 
neuroprotective agents and attenuate 
ischemic damage (Fishman, P & Bar-
Yehuda, S, 2003). 

Table 1.7. Distribution and properties of P1 receptors 

Ralevic, V et al., (1998); Klotz, K-N, (2000) 
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a. P2Y receptors have 7 transmembrane domains, an internal C-terminal chain and an external N-terminal chain. The diagram shows the human 
P2Y, receptor which binds ATP via transmembrane domains 3, 6 and 7 and extracellular loops 2 and 3. 

b. P2X receptors have 2 transmembrane domains and both terminal chains are intracellular. In the extracellular domain there are 10 highly 
conserved cysteine residues (-S) thought to form disulphide bridges. Conserved positively charged residues (K and R) at positions 68, 70, 292 
and 309 are important for ATP binding in the P2X, receptor. 

c. Possible arrangements of P2X subunits. P2X receptors are thought to be arranged in trimers, intersubunit recognition is dependent on 
residues in the second transmembrane domain. 

Reprinted with permission from Jacobsen KA et ai , Purine and pyrimidine (P2) receptors as drug targets. J Med Chem, 45, 4057-93. Copyright 
(2002) American Chemical Society. 
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Receptor Agonist potency Distribution 

P2Y1 
2-MeSADP > ADP> Widespread, including heart, vascular, 
2-MeSATP > ATP connective, immune and neural tissues. 

P2Y2 
UTP = ATP» Widespread, including lung, heart, skeletal 
2-MeSATP muscle, spleen and kidney. 

P2Y4 UTP »ATP,UDP Placenta, lung and vascular smooth muscle. 

P2Ys 
UDP > UTP > ADP> Widespread, including lung, heart, aorta, 
2-MeSADP» ATP spleen, placenta, thymus, intestine and brain. 

P2Y11 
ATP > 2-MeSATP »> 

Spleen, intestine and granulocytes. 
ADP 

P2Y12 
2-MeSADP > ADP » 

Platelets, brain (Nicholas, RA, 2001). 
ATP 

Table 1.8. Agonist profiles and tissue distribution of human P2Y receptors 

ADP; Adenosine 5'-diphosphate 
ATP; Adenosine 5'-triphosphate 
2-MeSADP (ATP); 2-methylthioADP (ATP) 
UTP (UDP); Uridine 5'-triphosphate (diphosphate) 
von Kugelgen, I & Wetter, A, (2000); Ralevic, Vet al., (1998) 
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2005), and the second trans-membrane domain appears to be critical for 

subunit interactions (Torres, GE et al., 1999b). 

The native receptor assembly is unknown for most cell types, but studies 

with cloned P2X receptors have shown that all of the receptors are able to 

produce homo-oligomers except P2X6 . Most of the P2X subunits associate 

with each other to form stable hetero-oligomers, particularly P2Xs which 

associates with all of the other receptor subunits, but P2X7 forms only homo

oligomeric units (Torres, GE et al., 1999a). The seven cloned receptors show 

distinct pharmacological profiles (Table 1.9), but for all of them their naturally 

occurring agonist is ATP. Signal transduction occurs via fast influx of sodium 

(Na+) and calcium (Ca2+) ions and K+ efflux, leading to depolarisation of the 

plasma membrane and an increase in intracellular Ca2+ concentration (Di 

Virg ilio , F et al., 2001). 

The role of P2 receptors in the immune system has been widely investigated 

over the last ten years. Nucleotides are now considered to be inflammatory 

mediators, released as danger signals to the immune system (Gallucci, S & 

Matzinger, P, 2001). They are concentrated to micromolar or even millimolar 

levels within the cytoplasm of every living cell, but the extracellular 

concentration is very low (Di Virgilio, F et al., 2003). Stressed or damaged 

cells can locally release nucleotides which may be detected by APCs, 

activating them and initiating an immune response (Gallucci, S et al., 2001). 

Once released, the nucleotides are degraded by ecto-nucleotidase enzymes 

expressed on the plasma membranes of most cells (Zimmermann, H, 2000). 

This results in the formation of adenosine, which has been shown to have an 

anti-inflammatory function via the A2A P1 receptor (Ohta, A & Sitkovsky, M, 

2001). Hence there is an inbuilt mechanism for controlling any inflammatory 

response produced (Fig 1.9.). 

Apart from cellular damage, ATP can be released by other mechanisms. 

Tissue damage is generally associated with vascular injury which leads to 

platelet adherence and degranulation, releasing high levels of ATP (Hechler, 

B et al., 2005). Endothelial cells of the vessel walls have also been shown to 

release ATP both constitutively, and when stimulated with Ca2+-mobilizing 

agents or by mechanical stress (Schwiebert, LM et al., 2002). Macrophages 

release ATP when infected with Mycobacterium tuberculosis (Sikora, A et al., 
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Agonist activity of cloned receptors Distribution of native receptors 

hP2X1 ATP> cx,p-meATP 
CNS, principal P2X receptor expressed 

rP2X1 2-MeSATP > ATP > cx,p-meATP 
in smooth muscle. 

The only P2X receptor found in the 

rP2X2 
2-MeSATP > ATP, (l,p-meATP adrenal medulla. Widespread in brain 
inactive and spinal cord, also found in bladder, 

intestine, vas deferens. 

hP2X3 2-MeSATP > ATP > cx,i3-meATP 
Expressed only by a subset of sensory 

rP2X3 2-MeSATP > ATP > cx,i3-meATP 
neurons 

The only P2X receptor expressed by 

hP2X. A TP > 2-MeSA TP > cx,p-meATP 
acinar cells of salivary glands. 
Expressed in brain, spinal cord, 

rP2X. ATP > 2-MeSATP > cx,i3-meATP 
sensory ganglia, lung, bronchial 
epithelium, thymus, bladder, adrenal 
gland, testis, vas deferens. 

rP2Xs ATP > 2-MeSATP > ADP 
Neural tissue but not expressed in the 
brain. 

rP2Xe ATP > 2-MeSATP > ADP CNS, uterus, ovary, bronchial epithelia. 

hP2X7 BzATP >ATP Principally cells of haematopoietic 

rP2X7 BzA TP > ATP > 2-MeSATP > ADP 
origin 

Table 1.9. Agonist profiles and tissue distribution of P2X receptors 

Seven P2X receptor proteins (principally human and rat) have been cloned. The ion channels 
formed from homomeric association of the subunits when expressed in cells have been 
functionally characterised and show distinct agonist profiles. P2X7 is the only P2X receptor for 
which BzATP is a more potent agonist than ATP (Ralevic, V & Burnstock, G, 1998). 

ADP; Adenosine 5'-diphosphate 
ATP; Adenosine 5'-triphosphate 
2-MeSATP; 2-methylthioATP 
(l,p-meATP; cx,p-methyleneATP 
BzA TP; 2'(3')-O-(4-benzoylbenzoyl)-ATP 
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coagulation response 
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release of macromolecules 

cell permeability 

epithelial transport 

tissue protection 

anti-inflammatory effect 

anticoagulation 

antinociception 

decreased neuronal activity 

epithelial transport 

Fig 1.9. ATP release and its effects on purine receptors 
The inflammatory response is initiated in immune cells by the release of ATP 
from stressed or damaged cells and stimulation of the P2X7 receptor. The 
response is controlled by breakdown of ATP to adenosine by 
ectonucleotidases leading to stimulation of anti-inflammatory P1 receptors . 
Novak, I, (2003) 
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1999), and cytotoxic T cells release ATP as part of their killing process 

(Filippini, A et al., 1990; Blanchard, OK et al., 1995). Activation with LPS has 

also been shown to release ATP from both macrophages (Sperlagh, B et al., 

1998) and microglial cells (Ferrari, 0 et al., 1997c). Furthermore, bacteria 

and other infectious agents themselves contain A TP which could be released 

at the site of infection (Vizi, ES et al., 2001). 

The P2 receptor principally involved in the regulation of inflammation is 

thought to be P2X7 (Di Virgilio, F et al., 1998), and it has been shown that the 

P2X7 receptor itself can mediate ATP release from both astrocytes 

(Suadicani, SO et al., 2006) and HEK293 cells (Pellegatti, P et al., 2005). 

1.7.1. P2X7 

Unlike the other P2 receptors which are mostly expressed on excitable cells 

(e.g. smooth muscle cells, neurons and glial cells), the P2X7 receptor is 

almost exclusively confined to immune cells and is widely distributed among 

them. Originally considered to be a separate purinoceptor subtype (named 

the P2Z receptor), it was shown by cloning experiments to be a member of 

the P2X family (Surprenant, A et al., 1996). 

Monocytes have been shown to express four- to five-fold more P2X7 on their 

surface than Iymphocytes, with very weak surface expression in neutrophils 

and platelets, although all the cell types had abundant intracellular 

expression of P2X7 (Gu, BJ et al., 2000). Some of the functions of P2X7 

receptors in immune cells are shown in Table 1.10. These include release of 

inflammatory cytokines and matrix metalloproteinases, shedding of adhesion 

molecules and activation markers, and cell death. 

Promotion of mature IL-1j3 release from monocytes makes P2X7 an important 

receptor in the inflammatory process; the postulated role of P2X7 in the 

release of IL-1j3 is shown in Fig 1.10. The fact that P2X7 is an important 

inflammatory receptor has been demonstrated by several studies. Firstly, 

incubation of THP-1 monocyte cells with the inflammatory cytokines IFN-y 

and TNF-a, increased amounts of P2X7 mRNA (Humphreys, BD & Dubyak, 

GR, 1998a). The two cytokines were found to have a greater effect when 

added together, and IFN-y has also been shown to have a similar synergistic 
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Cell type Agonist Action Reference 

Human PBMC ATP, Rapid release of MMP-9, a matrix Gu, BJ & Wiley, JS, (2006) 
monocytes BzATP metalloproteinase which assists 

passage of cells through the 
basement membrane into areas of 
inflammation. 

Human monocyte- Formation of multinucleated giant Falzoni, S et al., (1995) 
derived cells by concanavalin A ± IFN-y 
macrophages inhibited by P2X7 antagonist oATP. 

Human monocyte- ATP, Killing of intracellular bacteria. Lammas, OA et al., (1997) 
derived BzATP 
macrophages 

J774 mouse P2X7 hyper-expressing clones more Chiozzi, P et al., (1996); 
macrophages susceptible to spontaneous cell 

death. 
Mouse peritoneal ATP Induces DNA fragmentation and Hogquist, KA et al., (1991a) 
macrophages apoptotic cell death. 

Human monocyte- ATP Release of mature IL-1~ Ferrari, 0 et al., (1997b); 
derived Perregaux, OG et al., 
macrophages (1994); Perregaux, OG et 
Mouse peritoneal ATP al., (2001) 
macrophages 

LG14 Promotes proliferation of cells Baricordi, OR et al., (1999) 
B-Iymphoblastoid grown in the absence of exogenous 
cells growth factors. Growth inhibited by 

oA TP and apyrase. 

Human PBMC ATP Induces shedding of L-selectin Gu, B et al., (1998); 
Iymphocytes BzATP (C062L, an adhesion molecule 

important in transendothelial 
migration) and C023 (a B cell 
activation marker). 

Mouse splenic ATP Induces shedding of L-selectin and Sengstake, S et al., (2006); 
Iymphocytes C021 (involved in activation of B 

cells). 
Mouse splenic ATP Induces shedding of C027 (a co- Moon, H et al., (2006) 
Iymphocytes stimulatory receptor involved in T 

cell expansion and generation of T 
and B cell memory). 

Mouse splenic ATP Induces cell death. Aswad, F et al., (2005); 
Iymphocytes 
Mouse T BzATP, Regulation of differentiation and cell Chused, TM et al., (1996) 
Iymphocytes ATP death. 

Human dendritic ATP Release of mature IL-1j3 and TNF-a Ferrari, 0 et al., (2000) 
cells 

02SC/1 mouse ATP Induces apoptosis Coutinho-Silva, R et al., 
dendritic cells (1999) 

Human dendritic ATP Induces rapid shedding of C023 Sluyter, R & Wiley, JS, 
cells (2002) 

Table 1.10. Effects of P2X7 receptor stimulation on immune cells 
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effect with LPS (Humphreys, BD & Dubyak, GR, 1996). Secondly, Labasi, 

JM et al., (2002) showed that P2X7R-deficient mice were less affected by 

induction of experimental arthritis than wild-type mice. There was also no 

detectable IL-113 production when stimulated with ATP and LPS, either from 

the blood of the P2X7R-deficient mice, or from their peritoneal macrophages 

(Solle, M et al., 2001). Finally, P2X7 antagonists have been shown to inhibit 

inflammatory pain in rats (Dell'Antonio, G et al., 2002), and to inhibit the 

release of the inflammatory cytokines, IL-1I3, IL-6 and TNF-a (Gourine, AV et 

al., 2005). 

Of all the P2X receptors, P2X7 is the least sensitive to ATP (North, RA & 

Surprenant, A. 2000), ensuring that the receptor is only activated in extreme 

conditions involving the release of large amounts of the agonist. Its sensitivity 

also varies between species, the rat receptor having a greater affinity for 

ATP than the human one (Rassendren, F et al., 1997). The ATP analogue 

2'(3')-O-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP, Fig 1.11.) is 

a more potent agonist for P2X7 than ATP, a defining factor for P2X7 activity. 

BzA TP is not specific for P2X7 but at other P2X receptors it is equipotent with 

or less potent than ATP (North, RA et al., 2000). 

Little is known about the ATP binding site in the extracellular loop of the 

receptor, but ATP binding generally involves hydrogen bond formation with 

charged or polar side chains (Jiang, LH et al., 2000b). Point mutation studies 

have identified sites thought to be involved; in the human receptor these 

include Lys 193 and Lys311 (Worthington, RA et al., 2002), Arg307 (Gu, BJ et al., 

2004), and possibly His 155 (Cabrini, G et al., 2005). Studies on the rat 

P2X7receptor also suggest that residues close to lIe67 may be important in 

ATP-binding (Jiang, LH et al., 2000b). Other sites on the P2X7 receptor have 

been shown to be important in subunit assembly (Glu496 (Gu, BJ et al., 2001) 

and possibly His 155 (Cabrini, G et al., 2005», or in trafficking of the receptor 

to the cell surface (lIe568 (Wiley, JS et al., 2003) and Arg578 and Lys579 

(Den linger, LC et al., 2003». A recent study has identified the extracellular 

residue Th.-283 as being critical for mediation of P2X7 receptor ion channel 

activity (Young, MT et al., 2006). 

In addition to ion channel activity, prolonged or repeated stimulation of the 
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Fig 1.11. Structure of the principal P2X7 agonists 

• 

a. ATP: adenosine S'-triphosphate, the natural agonist for the P2X7 receptor. 

b. BzATP: 2'(3')-O-(4-benzoylbenzoyl)-adenosine 5'-triphosphate. 

P2X7 is characterised by the fact that it is the only P2X receptor at which BzA TP is 
more potent than ATP. 
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P2X7 receptor leads to the formation of a non-selective membrane pore that 

is permeable to small molecules. In Iymphocytes the membrane pore is 

much smaller than that of other cells, only allowing permeation of molecules 

of approximately 3000a in size compared to approximately 9000a in other 

cells (Wiley, JS et al., 1993). P2X7 is structurally different from other P2X 

receptors in that it has a much longer carboxyl terminal, and this appears to 

be essential for pore formation (Surprenant, A et al., 1996; Virginio, C et al., 

1999a). A study of the rat P2X7 receptor demonstrated that 95% of the C

terminal chain was required for pore formation, but only a small portion for 

ion channel activity (Smart, ML et al., 2003). Similarly Cheewatrakoolpong, B 

et al., (2005) identified a splice variant of human P2X7 lacking the C-terminus 

which demonstrated normal ion channel activity but was unable to form a 

pore. 

Although it appears to have no role in the ion channel activity of P2X7, the C

terminal chain appears to be important in receptor function containing the 

sites for receptor trafficking as well as pore formation. Oenlinger, LC et al., 

(2001) also showed that it contains a region (amino acids 573-590) sharing 

strong amino acid homology with the LPS binding site of LPS-binding 

protein. They suggested that internalised LPS may play a regulatory role in 

receptor trafficking, and this is supported by the fact that the point mutations 

involved in trafficking lie within the LPS-binding region. 

Kim, M et al., (2001) have identified a rat P2X7 signalling complex involving 

11 proteins connected to the receptor via the C-terminal chain (Fig 1.12.). 

Some of the proteins are thought to initiate cytoskeletal rearrangements 

following receptor activation and others exert feedback control of the ion 

channel function.The residue at position 451 has been identified as a 

potential site of interaction with one or more of the proteins forming the 

signalling complex (Young, MT et al., 2006). 

Activation of P2X7 by A TP is associated with increased exposure of the 

membrane phospholipid, phosphatidylserine (PS), on the outer surface of the 

cell membrane (Harada, H et al., 2000; MacKenzie, A et al., 2001). PS is 

normally located predominantly on the inner surface of the cell membrane, 

but during early apoptosis it translocates from the inner to the outer layer of 

the plasma membrane (PS-flip) where it is thought to trigger recognition and 
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A 

Fig 1.12. Schematic representation of the signalling complex for the rat 
P2X7 receptor expressed in HEK293 cells 

11 proteins have been identified which interact with the rat P2X7 receptor. These are the 
extracellular matrix protein lam in in a3, membrane-spanning proteins integrin P2 and 
receptor protein tyrosine phosphatase p (RPTPP), and 8 intracellular proteins, namely a
actinin 4, p-actin, supervillin, three heat shock proteins (Hsp90, Hsc71 , Hsp70), 
phosphatidylinositol 4-kinase 230 (PI4K), and membrane-associated guanylate kinase P55 
(MAGuK). 
Reprinted by permission from Macmillan Publishers Ltd: EMBO Journal , Kim, M et al., 
Proteomic and functional evidence for a P2X7 receptor signalling complex, 6347-58. 
Copyright (2001). 
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phagocytosis by macrophages (Fadok, VA et al., 1992). Naito, M et al., 

(1997) suggested that this PS externalisation was a downstream event of 

caspase activation since it could be blocked by caspase inhibitors. For many 

years, therefore, ATP-stimulation of the P2X7 receptor has been considered 

to be a mediator of apoptotic cell death. More recently however it has been 

demonstrated that PS-flip is reversible, particularly with short stimulation 

times, and its role as an apoptotic receptor has been questioned 

(MacKenzie, AB et al., 2005). Alternatively, P2X7 stimulation has been 

proposed as a secretory mechanism for IL-113 release (Andrei, C et al., 1999; 

MacKenzie, A et al., 2001) thus making P2X7 a potential target for new 

treatments for inflammatory conditions such as IBD. 

1.8. AIMS AND OBJECTIVES 

Many agents are being investigated as prospective treatments for IBD 

including inhibitors of T cell activation, proinflammatory cytokine receptors 

and Th1 polarisation (Ardizzone, S & Bianchi Porro, G, 2005). The multiple 

downstream effects of P2X7 receptor stimulation, namely IL-1 p release in 

monocytes, and adhesion molecule shedding and regulation of differentiation 

and cell death in Iymphocytes, make this receptor another very attractive 

anti-inflammatory target. 

Very little work has been carried out so far on the function of the P2X7 

receptor in the human colon. Colonic mucosal macrophages and T cells 

have been shown to express functional P2X7 receptors associated with both 

apoptosis and the release of IL-1P (Li, CKF et al., 2001). This project aims to 

investigate the characteristics of the P2X7 receptor in human colonic LPMCs 

isolated from both normal and inflamed tissue. The pharmacological 

properties of the receptor will be investigated in terms of its agonist and 

antagonist profiles, in particular looking at the effects of receptor stimulation 

on IL-113 secretion and cell death. P2Xr stimulated PS flip will be detected 

using Annexin V binding, with propidium iodide to identify dead cells. This will 

be backed up by other methods for measuring cell apoptosis and death to 

ascertain whether P2X7 mediated PS flip is associated with apoptotic cell 

death in LPMCs. 
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Comparisons of LP MC receptor activity will be made with a known P2Xr 

expressing monocyte cell line (THP-1 cells) and also with peripheral blood 

mononuclear cells (PBMCs). Since inflamed tissue contains a higher 

proportion of newly recruited cells from the circulation, it is to be expected 

that LPMCs from inflamed tissue will show characteristics closer to those of 

PBMCs than will LPMCs from normal tissue. The ability of novel P2X7 

antagonists to inhibit IL-1 J3 release will also be investigated and their 

potential as new treatments for IBD considered. 
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CHAPTER 2. GENERAL MATERIALS AND METHODS 

2.1. CELL CULTURE AND ISOLATION OF PRIMARY CELLS 

THP-1 cells are a monocyte cell line derived from the peripheral blood of a 

one-year-old male with acute monocytic leukaemia (Tsuchiya, 5 et al., 1980). 

They express a well-characterised P2X7 receptor which responds to ATP 

(Spranzi, E et aI., 1993) and therefore make a good model system for 

comparing receptor responses with those of PBMCs and LPMCs. They have 

been used to study many aspects of P2X7 function including IL-1P release 

(Verhoef, PA et al., 2005; Grahames, CB et al., 1999), pore formation 

(Donnelly-Roberts, 0 et al., 2004) and other functional studies (Wilson, HL et 

al., 2002; Humphreys, BD et al., 1998a; Buell, G et al., 1998). 

LPMCs were isolated from colonic tissue obtained from freshly resected 

operation specimens; normal tissue was acquired from cancer patients 

(>5cm from the tumour), and inflamed tissue from patients with Crohn's 

disease or ulcerative colitis. In most cases of inflamed tissue, there was also 

an accompanying specimen of un inflamed tissue. All patients gave written 

informed consent and approval was obtained from the Nottingham Local 

Research Ethics Committee. PBMCs were isolated from fresh venous blood 

taken from healthy volunteers and prevented from coagulating with 3.2% 

buffered sodium citrate. 

2.1.1. THP-1 cell culture 

A sample culture donated by AstraZeneca R&D Charnwood (Loughborough, 

UK), was maintained in suspension in RPMI 1640 containing 25mM HEPES 

(Sigma-Aldrich, Poole, Dorset), supplemented with 10% v/v foetal calf serum 

(FCS), 2mM l-glutamine, and 50jJg/ml gentamicin (all supplied by Invitrogen 

Co., Paisley) (hereafter called RPMI medium). Experimental culture flasks 

were seeded at 1 x 105 cells/ml and used when the cell number reached 

approximately 1 x 106 cells/ml (3-5 days). Cultures were propagated by 

dilution (1:10) in fresh medium. 
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2.1.2. Isolation of peripheral blood mononuclear cells (PBMCs) 

PBMCs were isolated using Histopaque-1077 (Sigma-Aldrich), a solution of 

polysucrose and sodium diatrizoate adjusted to a density of 1.077 ± 

0.001g/ml. During centrifugation, erythrocytes and granulocytes are 

aggregated by polysucrose and rapidly sediment, whereas Iymphocytes and 

monocytes remain at the plasma-Histopaque interface (Sigma Diagnostics 

Inc., 1999). 

Anticoagulated whole blood was carefully pipetted onto Histopaque-1077 

and centrifuged at 400 x g for 30min at room temperature. The opaque 

interface containing the mononuclear cells was carefully transferred into 

clean tubes and washed with RPM I 1640 containing 25mM HEPES but with 

no added supplements. Cells were centrifuged at 250 x g for 10min, washed 

again and resuspended in RPM I 1640. PBMCs were used within one hour 

after preparation and were kept at room temperature prior to use. The cell 

population (estimated from flow cytometry scatter plots) was composed of 

approximately 75-80% Iymphocytes, 5-10% monocytes and cell debris. 

2.1.3. Isolation of lamina propria mononuclear cells (LPMCs) 

LPMCs were isolated from human colonic mucosa following the method of 

Mahida, YR et al., (1997). The tissue sample was collected in cold RPMI 

1640, and transported to a Class II safety cabinet for processing. The 

mucosa was washed several times in Hanks Balanced Salt Solution without 

calcium and magnesium ions (Ca2+ and Mg2+ -free HBSS, Invitrogen), with 

gentle scraping to remove mucus, blood and digested material. The mucosa 

was dissected from the underlying muscularis mucosae in small strips and 

washed approximately six times by gentle shaking in Ca2+ and Mg2+ -free 

HBSS. The mucosal strips were incubated in a shaking water bath at 37°C 

for 15min in 50ml of 1mM dithiothreitol (OTT, Sigma-Aldrich) in Ca2+ and 

Mg2+ -free HBSS to remove surface mucus, followed by five washes in Ca2+ 

and Mg2+ -free HBSS. 

To remove epithelial cells, the strips were transferred into 50ml of pre

warmed 1 mM Ethylenediaminetetraacetic acid (EDT A, Sigma-Aldrich) in 

Ca2+ and Mg2+ -free HBSS, and incubated at 37°C for 30min in a shaking 

water bath. The strips were washed five times as before, and then the EDTA 
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incubation and wash repeated a further two times, with a final wash in RPM I 

1640. The strips were cut into approximately 1cm2 pieces, placed in cell 

culture dishes containing RPMI medium and incubated overnight at 37°C in 

5% C02. After incubation the dishes were checked carefully to ensure that 

LPMCs had migrated out of the tissue, and for any bacterial contamination. 

The tissue was transferred into approximately 30ml RPMI1640 and shaken 

gently to dislodge any cells still attached to it. The LPMCs were removed 

from the culture dish by repeated gentle pipetting, and the cell suspension 

transferred to 50ml conical tubes. The tissue washings and the cell 

suspension were pooled, centrifuged at 350 x g for 5min and resuspended in 

RPMI 1640. The LPMCs were used within one hour after preparation and 

were kept at room temperature prior to use. 

Cell populations from normal tissue (estimated from flow cytometry scatter 

plots) were approximately 65-75% Iymphocytes, 5-10% 

monocytes/macrophages and 15% neutrophils. In tissue from inflamed 

patients, the neutrophil population rose to approximately 25%. These 

numbers are consistent with phenotypic characterisation studies carried out 

on migrating cell populations from both normal and IBD tissue using 

combinations of monoclonal antibodies specific for different cell types. In 

normal tissue, the predominant cell population was found to be T cells 

(approximately 68%), and of the remaining cells, approximately 3% were B 

cells, 10% macrophages and 8% eosinophils (Mahida, YR et al., 1997). In 

IBD tissue, the cell populations were found to be similar, except that the 

proportion of T cells was reduced (approximately 45%), and there was a 

neutrophil population of approximately 23% (McAlindon, ME et al., 1998a). 

2.1.4. Assessment of cell viability 

Prior to experimentation, all of the cell suspensions were checked for viability 

by mixing an aliquot with an equal volume of Trypan blue (Sigma-Aldrich) 

and counting in a haemocytometer. 

Viability was calculated as follows: 

Viability = number of live cells x 100 % 

total number of cells 
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The results are shown below: 

cell type 
% viability 

n 
(mean ± se) 

THP-1s 97.1 ±0.6 4 

PBMCs 95.4 ± 0.9 3 

LPMCs 95.7±1.8 3 

Viability for LPMCs was determined with cells from normal tissue. The data 

shows that the cells were viable prior to the start of the experiments and 

were not damaged by the isolation procedures. 

2.2. FLOW CYTOMETRY 

Flow cytometry is a method for analysis of single cells using laser light and 

fluorescent labels. The labelled cells travel through the cytometer in 

suspension within a sheath fluid, which allows them to be presented one at a 

time to the excitation lasers (Fig 2.1.). The light that is scattered or emitted 

by the cells is then detected by a series of mirrors, beam splitters and filters, 

allowing specific bands of fluorescence to be measured (Ormerod, MG, 

1999). 

The combination of fluorescent labels with monoclonal antibody technology 

has made flow cytometry a powerful tool in immunobiology (Nihei, OK et al., 

2000b). In studies of the P2X7 receptor, flow cytometry has been widely used 

to study cell parameters such as cell viability, morphology, intracellular 

calcium and apoptosis (Nihei, OK et al., 2000b). 

Fluorescence can be used to examine any cell component or function that 

can be detected with a fluorescent compound. The following fluorochromes 

were used in this project: 

Fluorescein isothiocyanate (FITC) 
Propidium iodide (PI) 
Ethidium bromide (EB) 
Phycoerythrin (PE) 
Allophycocyanin (APC) 
TOTO-3 iodide 
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3. Photomultiplier 
tubes convert 
fluorescent light into 
an electronic signal 

Argon laser 
488nm 

He-Ne laser 
633nm 

1 . Laser light 
excites the 
fluorochromes 
in the sample 

Fig 2.1. Simplified schematic of the Altra flow cytometer 
-BK: Laser-blocking filter, transmits the fluorescence wavelengths but not the laser 
wavelength . 

-BP: Bandpass filters, transmit light within a specified range. 

-DL: Dichroic lenses, act as long pass filters and reflect the blocked light to the detectors. 

-PMT: Photomultiplier tube, light sensitive sensors which convert light energy into electronic 
signals proportional to the original fluorescence intensity. These are translated by a computer 
into data (Ormerod 1999). 

-FS: Forward Scatter, laser light passing through the sample around the cells, a measure of 
cell size. 

-SS: Side Scatter, laser light scattered by the cells in the sample, a measure of cell 
granularity. 
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A common application of flow cytometry is the measurement of surface 

antigens by fluorescent-labelled monoclonal antibodies. Such a technique 

was used in this project to identify individual populations of cells within the 

mixed mononuclear cell preparations. The cells were incubated with 

fluorescent-labelled antibodies to CD (cluster of differentiation) markers; a 

group of cell membrane proteins that are expressed by functionally distinct 

populations of cells. These may be specific for cells of a particular lineage, 

maturation state, or a state of activation or differentiation. Monoclonal 

antibodies raised against these proteins are widely used to identify cells 

involved in various immune responses, e.g. most helper T Iymphocytes are 

CD3+CD4+CD8- whereas cytolytic T Iymphocytes are CD3+CD4-CD8+ 

(Abbas, AK et al., 1997). 

CD3 is expressed by mature T Iymphocytes. It is part of a bigger complex 

which includes the T cell receptor, and is associated with T cell activation 

(Tsoukas, CD et al., 1985). In the experiments described here, PE-labelled 

mouse anti-human CD3 antibody (Beckman-Coulter, High Wycombe, Bucks) 

was used to identify the T-Iymphocyte population. The monocyte population 

was identified using CD14 which is highly expressed on peripheral blood 

monocytes and forms part of the receptor for bacterial LPS (Ziegler

Heitbrock, HW & Ulevitch, RJ, 1993). CD33 has been identified as a marker 

for intestinal macrophages, which show only low expression for CD14 

(Rogler, G et al., 1998b). Both of these mouse anti-human CD14 and CD33 

antibodies were labelled with APC (Beckman-Coulter). 

2.2.1. Use of flow cytometry to measure apoptosis and cell death 

Ethidium bromide (EB), propidium iodide (PI, both from Sigma-Aldrich) and 

TOTO-3 iodide (Molecular Probes, Invitrogen) are all nucleic acid stains. EB 

and PI are structurally similar dyes that have the ability to intercalate double

stranded DNA or RNA leading to a 20- to 30-fold increase in fluorescence 

(Haugland, RP, 2002). TOTO-3 is a cyanine dimer dye that exhibits strong 

fluorescence on binding to DNA (Molecular Probes, 2000). All three dyes are 

generally excluded from viable cells and have been widely used for the 

measurement of cell death. EB however is also small enough to pass 

through the P2X7-induced pore of living cells, and this property has been 
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utilised to demonstrate the presence of functional P2X7 receptors on the cell 

surface (detailed in chapter 3). 

Annexin V (AV) is a calcium-dependent phospholipid-binding protein with a 

high affinity for cell membrane phosphatidylserine (PS). This property has 

been widely used for the detection of early apoptosis in a flow-cytometric 

method using FITC-Iabelled AV (Vermes, I et al., 1995; van Engeland, M et 

al., 1998; Tait, JF et al., 1999). The combination of AV-FITC with PI is 

commonly used to distinguish between early apoptotic cells, which have an 

intact cell membrane and will therefore only stain with AV-FITC, and necrotic 

cells that will show positive staining for both dyes. 

Annexin V-FITC was used here to investigate P2Xrinduced PS-flip together 

with PI to measure cell death, in particular looking at concentration-response 

curves (chapter 4), the effect of stimulation time (chapter 5) and the 

reversibility of AV binding (chapter 6). Experimental details for the individual 

incubations are detailed in the respective chapters. 

Samples were measured in a Beckman-Coulter Altra flow cytometer with a 

blue laser (488nM) to excite the FITC, PI, EB and PE, and a red laser 

(633nm) to excite APC and TOTO-3. 

2.3. P2X7-STIMULA TED INTERLEUKIN (IL)-1 P RELEASE 

For each experiment carried out to measure AV binding, parallel sets of 

samples were set up to measure IL-1P release. For the IL-1P experiments, 

cells were resuspended in RPMI1640 containing 0.1% v/v FCS. Serum 

contains LPS-binding protein which is essential for the binding of LPS to 

CD14 (Muta, T & Takeshige, K, 2001). However serum also contains many 

other proteins including soluble CD14, and was therefore added to the 

medium at a low concentration to minimise any effect on the results. Cells 

were pre-incubated with LPS for three hours to induce formation of pro-IL-1P 

prior to P2X7 receptor stimulation to release mature IL-1p. For some of the 

experiments intracellular IL-1 p was also measured by lysing the cells in 0.1 % 

saponin (chapters 6 and 7). 

IL-1P was assayed by sandwich ELlSA, according to the manufacturer's 

instructions, using a DuoSet® development kit for human IL-1 p (R&D 
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Systems, Abingdon, Oxon). Absorbance was measured at 450/540nm using 

a Multiskan Ascent® microplate photometer (Thermo Electron Corporation, 

Basingstoke, Hampshire) with Ascent software v2.4. 

Some of the samples were also assayed for pro-IL-1f3 (Quantikine® human 

pro-IL-1f3 immunoassay kit, R&D Systems) and IL-18 (Module set. Bender 

MedSystems, Vienna, Austria). 

The Quantikine® pro-IL-1f3 kit is stated to be specific for pro-IL-1f3 with no 

significant cross-reactivity with IL-1f3 or IL-1a. For the IL-1f3 DuoSet® kit, the 

manufacturer states no cross-reactivity with IL-1a and 3.8% cross-reactivity 

with rat IL-1 p. No data was supplied for cross-reactivity with human pro-IL-

113, so this was tested by assaying the standards from the pro-IL-1f3 kit. The 

results are shown below: 

pg pro-IL-1 ~ml 

added measured %of 
added 

1500 206.73 13.8 

750 102.95 13.7 

375 53.23 14.2 

187.5 27.76 14.8 

93.8 14.1 15.0 

46.9 5.28 11.3 

23.4 0 

The IL-1f3 kit measured 13.8% (mean) of the pro-IL-1f3 added; hence it is 

possible that a small proportion of the IL-1f3 measured in the assays was due 

to pro-IL-1 p. 

2.4. DATA ANALYSIS 

2.4.1. Analysis of flow cytometry dotplots 

Flow cytometry data was analysed using WinMDI v2.8 (Windows Multiple 

Document Interface for flow cytometry (2000), Scripps Research Institute, La 

Jolla, USA). Cells passing through the flow cytometer are recorded 

individually as events and can be displayed as dotplots, where each dot 

represents an individual cell, or histograms, which show the frequency 
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distribution of the intensity of the fluorescent signal. For the THP-1 cells 

10,000 events were collected per sample; for the PBMCs and LPMCs 50,000 

events were collected. For the mixed cell populations, individuallymphocyte 

and monocyte populations were identified either by plotting side scatter (SS) 

versus CD-marker (Fig 2.2.a & b, R1 and R2), or by gating the populations 

on the forward scatter (FS) versus SS plots (Fig 2.2.c & d). These gates 

were then applied to the ethidium or the AV/PI plots. Using gates from the 

FS/SS plot will not include dead cells in the selected populations, since being 

smaller; they will have a smaller forward scatter. For the time course 

experiments, where cell death was of particular interest, AV/PI plots were 

gated using the regions from the SS v CD-marker plots which will include 

both live and dead cells. 

2.4.2. Analysis of cell cycle histograms 

Cell cycle analysis measures the DNA content of a cell by measuring the 

fluorescence of PI bound to DNA in the nucleus and can be used as a 

method to identify apoptotic cells. The cell cycle consists of four distinct 

phases. Quiescent (GO) and G1 cells have one copy of DNA and therefore 

will all have the same fluorescence intensity. S phase cells are duplicating 

their DNA and thus exhibit increasing levels of fluorescence. G2 and M 

phase cells are preparing for or undergoing mitosis so have two copies of 

DNA and hence twice the fluorescence intensity. However, if two G1 cells 

pass through the laser beam together they will appear to have the same 

fluorescence as a single G2 cell and this has to be corrected for (Anon, 

1999). 

As a cell passes through the laser beam, its fluorescent signal increases to a 

maximum and then decreases, and the area under the curve gives the total 

fluorescence of the particle. Two G1 cells passing through the laser beam 

together will exhibit the same maximum fluorescence as one G2 cell but the 

area under the curve will be larger. This property can be used to differentiate 

between these two events by plotting the maximum fluorescence (peak 

height) against the peak area (Fig 2.3.a). Aggregates of cells have a larger 

peak area relative to peak height and can be gated out. 
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b) C014-APC stained PBMCs 

a & b . SS/CD-marker dotplots of PBMCs. R1 indicates a region of 
Iymphocytes showing strong staining with CD3-PE, but low side scatter. 
R2 indicates a region of monocytes, which stain strongly with CD14-APC, 
and show high side scatter due to their granular nature. 

c) PBMCs d) LPMCs 
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c. FS/SS dotplot of PBMCs showing Iymphocyte and monocyte cell 
populations identified by the CD markers. PBMC monocytes are larger and 
more granular than Iymphocytes, reflected by their higher FS and SS. The two 
distinct populations of each cell type indicate live and dead/dying cells. 
Apoptotic and dead cells are smaller due to cell shrinkage and breakdown and 
hence have a smaller FS. 

d. LPMCs have a similar FS/SS pattern to PBMCs but also contain 
neutrophils. 

Fig 2.2. Flow cytometric analysis of PBMCs and LPMCs 
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b) histograms of cell fluorescence and Cylchred analysis 
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Fig 2.3. Analysis of THP-1 cell cycle data using WinMDI and Cylchred 

a) A dotplot of peak height v peak area allows a gate to be drawn around the population 
of single cells. Cell aggregates have a greater peak area relative to peak height and can 
be excluded from the gate. 

b) Histograms of the fluorescence of the gated single cells show the phases of the cell 
cycle. The M1 region marks the sub-GO/1 population which contains the apoptotic cells. 
Cylchred analysis of the histograms identifies the phases of the cell cycle. 
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The single-cell gate thus obtained can be applied to the fluorescence 

histogram (Fig 2.3.b). For the mixed cell populations the single-cell gate was 

combined with a gate to identify the Iymphocyte and monocyte populations 

taken from the FS/SS dotplot. The resulting gated histograms were analysed 

using Cylchred version 1.0.2 (Terry Hoy, Cardiff University) (Fig 2.3.b); 

software for cell cycle analysis based on algorithms by Watson, JV et al., 

(1987) and Ormerod, MG et al., (1987). Apoptotic cells have less DNA than 

cells in the GO/1 phase, and are known as the 'sub-GO/1 cell population' 

(Darzynkiewicz, Z et al., 1999). 

2.4.3. Statistical analysis 

Non-linear regression analysis was carried out for the concentration

response curves using GraphPad Prism® v4 (Graph Pad Software Inc, San 

Diego, USA). Values were obtained for the ECso concentration (the 

concentration that gives a response halfway between the baseline and the 

maximum) and its 95% confidence intervals. Since non-linear regression 

assumes the scatter of the data around the curve to be normally distributed, 

residuals data was also tested for normality using the D'Agostino-Pearson 

omnibus test (Motulsky, HJ & Christopoulos, A, 2003). 
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CHAPTER 3. P2X7-STIMULATED PORE FORMATION TO 

DEMONSTRATE THE PRESENCE OF FUNCTIONAL 

RECEPTORS 

3.1. INTRODUCTION 

Chapter 3 

As described in section 1.7.1, P2X7 has the ability to form a non-selective 

membrane pore that is permeable to small molecules. This property has 

been utilised as a method to demonstrate the presence of functional P2X7 

receptors on the cell surface by measuring the uptake of small fluorescent 

dyes such as ethidium bromide (EB) into the cells. Ethidium bromide is often 

used to detect dead cells by flow cytometry. It normally enters the cell 

through breaks in the membrane, but is also small enough to pass through 

the P2X7-induced pore of living cells. Once inside the cell it intercalates 

double-stranded DNA or RNA with a 20- to 30-fold increase in its 

fluorescence (Haugland, RP, 2002). 

Theaker, J et al., (2000) characterised EB uptake in BzA TP-stimulated THP-

1 cells. They found that for each concentration of BzA TP used, EB uptake 

increased in a linear fashion with time, reaching a maximum at approximately 

30 minutes. ECso values were similar during both the initial linear response 

phase and also at 90 minutes when the reaction had reached a plateau. 

They proposed that the size of the agonist-concentration dependent plateau 

could be ascribed to the number of cells responding to BzA TP, 

demonstrating that EB uptake is a suitable measure of P2X7 activity and pore 

formation. 

Table 3.1. shows the wide range of cell types in which EB uptake has been 

used to demonstrate P2X7-induced pore formation. It is important to show 

that dye uptake is via the P2X7-activated pore and not simply by a process 

such as endocytosis, and to this end several of these studies have 

incorporated a P2X7 antagonist and demonstrated reduced uptake. 

The mechanism of P2X7-stimulated pore formation is unknown. One study in 

THP-1 cells suggested that it does not involve insertion or initial movement of 

receptors in the membrane but that the receptors cluster together after 

prolonged activation for 40 minutes (Connon, CJ et al., 2003). In contrast, 
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Reference cell type agonist antagonist 

human peripheral blood monocytes 
Falzoni, S et al., (1995) and macrophages (derived in culture ATP 

with IFN-y) 

Wiley, JS et al., (1993) human peripheral blood Iymphocytes ATP suramin 

Gargett, CE et al., (1997a) human peripheral blood Iymphocytes 
BzATP, 

KN-62 
ATP 

Gu, BJ et al., (2000) human PBMCs ATP 

Sluyter, R et aI., (2004) human PBMCs ATP 

Gartland, A et al., (2001) human osteoblasts ATP 

Georgiou, JG et al., (2005) human Langerhans cells 
BzATP, 
ATP 

Humphreys, BD et al., (1996) THP-1 cells ATP 

Nihei, OK et al., (2000a) murine dendritic cells ATP oATP 

Chen, YW et al., (2005) rat peritoneal cells 
BzATP, 
ATP 

Chaib, N et aI., (2000) rat submandibular acinar cells 
BzATP, 
ATP 

Tatham, PER & Lindau, M, rat peritoneal mast cells ATP 
(1990) 

Courageot, MP et al., (2004) BALB/c mice thymocytes ATP 

Takenouchi, T et al., (2005) mouse microglial cells 
BzATP, 
ATP 

Chessell, IP et al., (1997) NTW8 mouse microglial cells ATP PPADS 

Bisaggio, RD et al., (2001) 2BH4 murine thymic epithelial cells ATP 

Lundy, PM et al., (2004) CHO cells (K1 strain) BzATP oATP 

Table 3.1. Examples of published data for P2X7-stimulated pore formation 
measured by ethidium bromide uptake 
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an earlier study concluded that P2X7 pore formation did not involve receptor 

density changes or clustering (Smart, ML et al., 2002). 

The C-terminus of the P2X7 receptor has been shown to be critical for pore 

formation (Surprenant, A et al., 1996; Smart, ML et al., 2003). North, RA, 

(2002) suggested that the pore is not formed by a gradual increase in 

permeability of the P2X7 receptor itself, but that the C-terminus initiates a 

signal transduction that couples P2X7 to a separate but closely associated 

pore-forming protein within the membrane. Several studies support this 

theory. 

Firstly, calmidazolium (an ion channel inhibitor) blocked BzATP-stimulated 

ion currents but had no effect on YO-PRO (a cyanine dye of similar size to 

EB) uptake in HEK293 cells expressing the rat P2X7 receptor (Virginio, C et 

al., 1997). Secondly, maitotoxin, a potent marine toxin, has been shown to 

activate an ion channel with distinct properties to that of P2X7, but also 

induces formation of a pore with characteristics indistinguishable from those 

of the P2X7-induced pore (Schilling, WP et al., 1999; Lundy, PM et al., 2004). 

The third piece of evidence comes from studies of Xenopus oocyte cells 

expressing the P2X7 receptor. Cells transfected with the rat P2X7 receptor 

demonstrated no uptake of YO-PRO iodide following BzA TP stimulation for 

up to 20 minutes, but similar experiments performed with HEK293 cells did 

show increased fluorescence on stimulation with BzA TP (Petrou, S et al., 

1997). Similarly, Klapperstuck, M et al., (2000) compared human P2X7 

expressed in Xenopus oocytes with the native receptor of human B 

Iymphocytes and found that the transfected receptor was unable to induce 

pore formation. Finally YO-PRO uptake has been shown to vary considerably 

among different transfections of HEK293 cells while ion currents are 

comparable (North, RA, 2002). 

P2X7-stimulated pore formation in mouse peritoneal macrophages and a 

mouse thymic epithelial cell line (2BH4), has been shown to require a 

sustained increase in intracellular Ca2
+ and activation of MAP (mitogen

activated protein) kinases (Faria, RX et al., 2005). Other studies have also 

shown involvement of MAP kinase-dependent pathways in P2X7 signal 

transduction (Donnelly-Roberts, 0 et al., 2004; Amstrup, J & Novak, 1,2003; 

Humphreys, BD et al., 2000). In addition, Amstrup, J et al., (2003) showed 
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that the N-terminus of the receptor was important for activation of the kinases 

while the C-terminus was important for Ca2
+ entry. 

It therefore appears that pore formation by the P2X7 receptor is dependent 

on Ca2
+ entry into the cell promoted by the C-terminus, and N-terminal 

activation of a signalling pathway involving MAP kinases. Provided the host 

cell contains the necessary components for pore formation, activation of the 

signalling pathway couples P2X7 to a pore-forming protein within the 

membrane. Recent studies have suggested that pannexin-1 may be that 

pore-forming protein (Locovei, S et al., 2007; Pelegrin, P & Surprenant, A, 

2006). Pannexin-1 is a member of a new group of proteins whose function is 

unknown but which may be responsible for ATP release from erythrocytes 

(Locovei, S et al., 2006). It has been shown to co-immunoprecipitate with 

P2X7 protein from human and mouse macrophages, and exhibit hemichannel 

function (non-selective ion permeability to molecules <1 kOa) when 

overexpressed (Pelegrin, P et al., 2006). The same authors reported that the 

hemichannel activity of pannexin-1 was non-functional in the absence of 

P2X7 stimulation. In a more recent study, pannexin-1 has been shown to be 

required for caspase-1 activation (Pelegrin, P & Surprenant, A, 2007), 

suggested to be a result of its ability to transport bacterial components into 

the cytoplasm which prompt formation of the inflammasome (Kanneganti, TO 

et al., 2007). It would appear therefore, that pannexin-1 is intimately 

associated with the activity of the P2X7 receptor. 

Pore formation is not unique to the P2X7 receptor and the P2X2, P2X4 and 

the heteromeric P2X2/P2X3 receptors have all been shown to form similar 

pores (Virginio, C et al., 1999b; Khakh, BS et al., 1999). However. P2X7 is 

the only P2X receptor at which BzATP is a more potent agonist than ATP, 

and the combination of this property together with pore formation are defining 

factors for P2X7 activity. 

It has been shown previously that macrophages and T cells isolated from 

human colonic mucosa exhibit P2X7 receptor activity (Li, CKF et al., 2001). 

The characteristics of EB uptake in LPMCs were studied to demonstrate the 

presence of functional P2X7 receptors in both the Iymphocyte- and 
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monocyte-gated cells, and were compared to those of PBMCs and THP-1 

monocyte cells. 

3.2. METHODS 

Concentration-response curves for EB uptake were carried out for each cell 

type to confirm the presence of P2X7 receptors; LPMCs were isolated from 

normal tissue. Cells were resuspended in RPMI 1640 at a concentration of 2 

x 106 cells/ml. The cells were incubated for 20min at 37°C with ATP or 

BzATP (Sigma-Aldrich) over a total concentration range of 5J.lM to 10mM. 

The agonists were incubated in the presence of 21-1M ethidium bromide 

(Sigma-Aldrich) in a total incubation volume of 1001-11; unstimulated cells were 

also incubated as a control. The reaction was stopped by adding 4001-11 of 

phosphate-buffered saline (PBS, Sigma-Aldrich), since P2X7 activity has 

been shown to be inhibited by extracellular Na+ ions (Wiley, JS et al., 1993; 

Li, Q et al., 2005), and the cells were placed on ice. The cells were 

centrifuged at 350 x 9 for 5min and resuspended in 401-11 of PBS. CD markers 

were added to the mixed cell populations and incubated for 30min on ice in 

the dark. Cold PBS (2501-11) was added and the cells were analysed by flow 

cytometry. 

3.3. RESULTS AND DISCUSSION 

The Iymphocyte and monocyte populations of the PBMCs and LPMCs were 

identified using CD markers and gated on the forward scatter (FS)/side 

scatter (SS) dotplots. Since gates drawn this way exclude dead cells, the 

THP-1 cells were also gated for 'live cells' to enable a truer comparison with 

the results for the PBMCs and LPMCs. Because all of the cell types shrink 

on stimulation with BzA TP or ATP (Fig 3.1.), the gates had to be drawn large 

enough to allow for this. For each cell population, ethidium fluorescence 

versus SS was plotted, and a quadrant applied to identify the percentage of 

the gated cell population binding positively for EB (Fig 3.2.). For all the flow 

cytometry experiments, because the cell populations were identified by 

gating post-experiment rather than specific characterisation or isolation, the 

cell types have been described as 'Iymphocyte-gated cells' or 'monocyte-
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a) THP-1 cells 

FSLIn FSLn 

control BzATP 500llM 

b) PBMCs 

control 

,:' 

FSLIn 

Iymphocytes monocytes 

Fig 3.1. Forward Scatter (FS)/Side Scatter (SS) dotplots 
showing cell shrinkage on stimulation 

Cells stimulated with BzA TP or A TP shrink on stimulation shown by a decrease in 
FS. Gates drawn around cell populations therefore have to be large enough to 
include such movement. As can be seen in fig b, with the mixed cell populations 
this can be particularly difficult as the cell populations tend to converge. 
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b) Lymphocyte-gated LPMCs 
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ii. BzATP-stimulated cells 
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Fig 3.2. An example of EB dotplots for LPMCs 
Figures show EB fluorescence plotted against side scatter. Unstimulated cells 
are shown on the left and cells stimulated with 1mM BzATP on the right. The 
increase in EB staining on stimulation of both Iymphocyte- and monocyte-gated 
cells can clearly be seen . The large unstained population (fig a) are neutrophils. 
wh ich do not respond to P2X7 stimulation. 
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gated cells' respectively. In the case of LPMCs, the term 'monocyte-gated 

cells' also refers to mature tissue macrophages. The data for EB uptake is 

summarised in Table 3.2. 

3.3.1. EB uptake in THP-1 cells 

EB uptake increased in a concentration-dependent manner with both BzA TP 

and ATP stimulation (Fig 3.3.a). BzATP was a more potent agonist than ATP 

as shown by the 16-fold reduction in ECso value (24~M for BzATP compared 

to O.4mM for ATP), although the maximal response was greater with ATP 

(96% of gated cells exhibiting EB fluorescence compared to 83% with 

BzATP). 

The number of cells contained within the live-gate decreased markedly with 

increased agonist concentration (Fig 3.4.a); this was particularly true for 

BzATP which fell by 83%. The decrease in cell number suggested that 

BzA TP-stimulated pore-formation leads to cell death in THP-1 cells causing 

the cells to shrink and move out of the live-gate (Fig 3.1.a). With ATP, the 

pattern of response was very different; the number of cells within the live

gate fell initially by 54% and then increased by 43%. Cell shrinking is a 

characteristic of apoptosis and cell death, but has also been shown to be 

associated with P2X7-stimulated vesicle-shedding from THP-1 cells and 

hence loss of cell membrane (MacKenzie, A et al., 2001). The change in cell 

number seen with ATP suggested that the cells were shrinking on stimulation 

(and hence moving out of the gate) and then recovering and moving back 

into the live-gate. 

One possible explanation is a pH effect. Although ATP was prepared in a 

buffered medium, at high concentrations the solution was acidic and affected 

the pH of the incubation medium. For ATP stimulation of P2X7, the tetra

anionic (ATp4-) form has been shown to be the active mOiety (Steinberg, TH 

& Silverstein, se, 1987b). Virginio, C et al., (1997) measured the 

concentration of ATp4- under different conditions of ion concentration and 

pH, and showed that reducing the pH from 7.3 to 5.3 resulted in a 50% 

reduction in ATp4- concentration. Also Steinberg, TH et al., (1987a) found 

that lucifer yellow uptake into J774 macrophage cells was barely detectable 

77 



....... 
(X) 

EC50 value with 
Maximum and minimum Concentration at which 1 

95% confidence intervals responses (% of cell maximum response occurred 
HiIIslope 

DODulation) (mean ± sem) (mean ± sem) (mean ± sem) 

BzATP ATP BzATP ATP BzATP ATP BzATP ATP 

THP-1 cells 24J.1M 0.40mM 83 ± 2.6 96 ± 1.0 
21 - 29J.1M 0.38 - 0.42mM 3.7 ± 1.2 4.7 ± 0.9 163 ± 113J.1M 2.7 ±0.2mM 4.3 ± 1.2 7.3 ± 0.7 

PBMCs: 84J.1M 1.02mM 70 ± 3.2 56 ± 13 
monocytes 67 -106J.1M 0.8 -1.3mM 8.6 ± 3.1 7.2 ± 2.1 267 ± 33J.1M 2.0±0.OmM 3.4 ± 1.1 5.3 ± 6.1 

I 

PBMCs: 301J.1M 1.18mM 31 6.5 ±2.0 
Iymphocytes 231- 392J.1M 2.3 ± 0.8 2.1 ±0.5 667 ± 167J.1M 2.0±0.OmM 2.6 ± 0.9 8.5 

Normal LPMCs: 127J.1M 0.89mM 60 ± 12 53 ± 8.5 

monocytes 88 -182J.1M 0.66 -1.2mM 8.5 ± 2.6 13 ± 3.1 1.2 ± O.4mM 2.7 ±0.3mM 2.1 ± 0.6 4.5 ± 3.0 

Normal LPMCs: 277J.1M 1.12mM 40 ± 21 13 ± 9.4 
Iymphocytes 140 - 545J.1M 1.3±0.8 1.5±0.5 

1.2± 0.4mM 2.3 ±0.3mM 2.5 ± 2.0 12.5 

Table 3.2. Summary of results for P2X7-stimulated ethidium bromide uptake 

The table shows the ECso values taken from the concentration response curves and the Hillslope calculated from the curve. The mean maximum and 
minimum responses for each cell type with each agonist are shown, together with the mean of the agonist concentrations at which each subject 
achieved the maximum response. 
BzATP was a more potent agonist than ATP, as shown by the ECso values. Lymphocyte cells were less reactive than monocyte cells demonstrating 
higher ECso values and lower maximum responses. The monocyte cells demonstrated an order of reactivity of THP-1 > PBMCs > LPMCs. 
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Fig 3.3 EB uptake in mononuclear cells stimulated with BzA lP 
or AlP. 
EB uptake was measured by flow cytometry after 20min stimulation with either 
BzATP or ATP in RPMI1640. The number of cells with positive EB fluorescence was 
expressed as a percent of the gated cell population. Figures show the mean :t sem of 
3 or 4 (THP-1) separate experiments. 
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Fig 3.4. The percentage of the total cell population contained within 
the'lIve-gates' 
The Iymphocyte and monocyte populations were gated from the FS/SS dotplots and the 
number of cells contained within each live gate were expressed as a percent of the total 
cell population. For the PBMCs and LPMCs the figures show little effect of ATP stimulation 
on cell number, but BzA TP stimulation caused a decrease in the number of cells gated for 
all of the cell types. Results with THP-1 cells were markedly different showing a large 
reduction in gated cell number with BzATP stimulation, and a reduction followed by a 
recovery after ATP stimulation. 
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below pH 6.5. Although the incubation medium was not reduced to pH values 

as low as these, it is possible that at higher ATP concentrations, less ATp4
-

was available and stimulation of the receptor was reduced. Reduced 

stimulation would mean less vesicle shedding and allow the membrane to 

recover and replace itself. However, reduced receptor stimulation should 

also mean reduced EB uptake, but this was not the case at high ATP 

concentrations. 

The ATP concentration at which the cell numbers began to rise again 

corresponded to the concentration at which EB uptake reached a maximum 

in the live-gated cells, suggesting that the pore is fully open. ATP has a 

molecular weight small enough to pass through the P2X7 pore of monocytes 

and once inside the cell it could stimulate cell metabolism and regeneration 

of membrane (Di Virgilio, F, 2000). Transfection of P2X7 into HEK cells has 

been shown to increase cellular ATP levels and promote growth, but only in 

cells with full pore-forming function (Adinolfi, E et al., 2005). The pannexin-1 

protein thought to be involved in pore formation has already been shown to 

be involved in ATP transport across red cell membranes (Locovei, S et al., 

2006) and could potentially play a similar role in THP-1 cells. If this was the 

case, a similar recovery with BzA TP might also be expected to occur. 

However, BzA TP is supplied as a triethylammonium salt with a molecular 

weight >1000, and would therefore be too large to pass through the 

membrane pore. 

3.3.2. EB uptake in PBMCs 

EB uptake in both Iymphocyte- and monocyte-gated cell populations of 

PBMCs increased in a concentration-dependent manner in response to 

BzATP and ATP stimulation (Fig 3.3.b & c). For both cell types, ATP acted 

as a partial agonist, particularly with the Iymphocyte-gated cells where the 

response to ATP was very low. BzATP was a more potent agonist than ATP, 

characteristic of P2X7 stimulation. In monocyte-gated cells BzA TP potency 

was approximately 10-fold that of ATP, with EC50 values of 84JlM and 

1.02mM respectively. In Iymphocyte-gated cells BzA TP potency was 

approximately 4-fold (EC50 values of 301 JlM for BzA TP and 1.18mM for 
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analysis could only give an estimate of the EC50 value. 
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The response to stimulation of the Iymphocyte-gated cell population was less 

than the monocyte-gated cells; only 31 % responded to BzA TP compared to 

70% of the monocytes. This was even more marked for A TP stimulation with 

only 6.5% responding compared to 56% of monocytes. Gu, BJ et al., (2000) 

showed that the uptake of ethidium correlates closely with the surface 

expression of P2X7 receptors and that monocytes express 4-5 times more 

than B- or T-Iymphocytes. They induced uptake of ethidium in human 

PBMCs with 1mM ATP, and found that it was 5-fold greater for monocytes 

than for Iymphocytes. This supports the data presented here given that the 

monocyte-gated cells were 2-8 times more responsive than Iymphocyte

gated cells. 

EB uptake in response to ATP stimulation was decreased at higher 

concentrations of the agonist. The decreased response was not seen with 

BzA TP stimulation of PBMCs but this is probably because the maximum 

concentration was insufficient to demonstrate the effect. PBMCs required 

higher concentrations of BzA TP to stimulate EB uptake than the THP-1 cells, 

and as a result the top plateau on the concentration curves was not well 

defined. 

Reduced responses with ATP can often be due to the presence of 

nucleotidase enzymes. Many cells express apyrase enzymes which break 

down A TP to ADP, AMP and adenosine, as soon as it is released 

(Zimmermann, H, 2000). CD39 (ecto-apyrase) has been shown to hydrolyse 

ATP and modulate its effects in B cells (Nie, K et al., 2005), endothelial cells 

(Imai, M et al., 2000), and dendritic cells (Berchtold, S et al., 1999). Ecto

nucleotidase enzymes in hippocampal slices have also been shown to break 

down BzATP to Bz-adenosine (Kukley, M et al., 2004). 

It is also possible that the reduced EB uptake with ATP was due to the effect 

of decreased pH as described in section 3.2.1. If high concentrations of ATP 

lead to reduced pH and hence less available ATp4
-, it is possible that 

stimulation of the P2X7 receptor could be reduced resulting in decreased EB 

uptake. 

82 



Chapter 3 

Another possible explanation might be the inclusion of dead cells within the 

'live-cell gate'. As described in section 3.3, the live cell gates have to be 

drawn large enough to allow for cell shrinkage on stimulation. In the case of 

a single cell line such as THP-1 cells it is relatively easy to achieve this and 

still keep distinct cell populations. In the dotplots for the mixed cell types 

however, the Iymphocyte and monocyte populations are quite close together 

(see Fig 3.1.b) making it more difficult to differentiate between them. It is 

likely therefore that there is some overlap and inclusion of dead cells within 

the live gate which could account for some apparent reduction in EB uptake. 

The number of cells within the live-gates was plotted for both Iymphocyte

and monocyte-gated cells to see if there was a similar pattern to that of THP-

1 cells (Fig 3.4.b & c). BzA TP stimulation produced a decrease in the 

number of gated cells for both populations, with a slightly greater effect on 

monocyte-gated cells (33% decrease) than Iymphocyte-gated cells (26% 

decrease), but much less than that seen with THP-1 cells. ATP stimUlation 

also produced a decrease in Iymphocyte-gated cell number (14%) but less 

than that with BzATP. Like THP-1 cells, PBMC monocytes stimulated with 

ATP showed a slight fall in gated-cell number followed by an increase, but 

not as distinctive. The results therefore suggest that PBMCs were less 

susceptible to cell death at higher concentrations of agonist than THP-1 

cells. 

3.3.3. EB uptake in LPMCs 

P2X7-stimulated EB uptake increased in a concentration-dependent manner 

for both Iymphocyte and monocyte-gated cell populations (Fig 3.3.d & e), but 

as seen with PBMCs, ATP was only a partial agonist. BzA TP was 

approximately seven times more potent than ATP in monocyte-gated cells 

(EC50 values of 127JlM and O.89mM for BzATP and ATP respectively), and 

four times in the Iymphocyte-gated population (EC5o of 277JlM for BzATP 

and 1.12mM for ATP). For lPMCs, the maximal BzA TP concentration used 

was increased to 2mM and at this concentration there was a reduced 

response as seen with PBMCs and ATP. The response to A TP stimulation 

also produced bell-shaped curves similar to those of PBMCs. The number of 
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cells within the live-gates was plotted for both Iymphocyte- and monocyte

gated cells and is shown in Fig 3.4.d & e. Only BzA TP stimulation produced 

a decrease at higher concentrations of agonist (10% for Iymphocyte-gated 

cells and 26% for monocyte-gated cells), and this was less than that seen 

with PBMCs. This suggests that LPMCs are less susceptible to P2X7-

induced cell death than PBMCs. 

The response of LPMCs to P2X7-stimulated EB uptake was therefore very 

similar to that seen with PBMCs, particularly for the Iymphocyte-gated cells. 

LP MC monocytes required higher concentrations of agonist to produce a 

response than the PBMC monocytes, particularly with BzATP stimulation, 

and the EC50 value was also greater. This could reflect downregulation of the 

receptor in colonic tissue macrophages in accordance with their non

inflammatory characteristics. It is also possible however that it may be an 

artefact of the cell gating procedure. With LPMCs gating is more difficult due 

to the presence of a large neutrophil population. At high concentrations of 

agonist when the cell populations are closer to each other, it is possible that 

neutrophils, which do not respond to P2X7, may be included in the monocyte 

gate. This would reduce the number of responsive cells within the gate and 

therefore produce an apparently reduced response compared to that of 

PBMCs. 

EB uptake in LPMCs was very variable between subjects, particularly for the 

Iymphocyte-gated population as shown by the wide error bars on the graph 

(Fig 3.3.d). This was mainly due to one subject whose responses were much 

lower than the other two. Each individual's maximal responses for each cell 

type with each agonist are shown below: 

subject Iymphocyte-gated cells monocyte-gated cells 

BzATP ATP BzATP ATP 

1 78% 32% 69% 62% 

2 4% 1.6% 45% 37% 

3 38% 4.5% 75% 63% 

It is clear that the responses of the Iymphocyte-gated cells are more diverse 

than the monocyte-gated cells. This may be due to differences in pore size of 
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the two cell types. The Iymphocyte pore is thought to be approximately 300-

400Da in size (Wiley, JS et al., 1993) whereas the monocyte pore is 

approximately 800-9000a (Steinberg, TH et al., 1987a). Increase in pore size 

occurs gradually with increasing ATP concentration (Tatham, PER et al., 

1990), but because the ethidium ion (MW 314) is at the limit of the 

Iymphocyte pore size it will require maximal stimulation to allow entry of the 

ion into the cell. Different subjects do not a" respond to agonist stimulation in 

the same way and a concentration that will produce a maximal effect in one 

subject may be sub-maximal in another. As a result, when the mean data is 

plotted large error bars are produced, as seen in Fig 3.3.d. 

Interestingly, for both the PBMCs and LPMCs, one of the subjects failed to 

respond to stimulation with BzA TP or ATP and showed very little or no EB 

uptake (Fig 3.S.). Studies have shown a genetic component in P2X7 function 

and several structural polymorphisms have been discovered. In around 20% 

of the population a Glu496 to Ala polymorphism has been found, located in 

the carboxyl terminus of the receptor, which leads to loss of function in 

homozygous individuals and approximately SO% reduction in heterozygous 

individuals (Gu, BJ et aJ., 2001). A second polymorphism, "e568 to Asn, is 

located within the trafficking motif of the carboxyl tail of the receptor and 

prevents normal surface expression (Wiley, JS et al., 2003), and a third has 

been found (Arg307 to Gin) which is thought to be located in the area 

essential for ATP binding (Gu, BJ et al., 2004). As we" as being responsible 

for a lack of response, the existence of polymorph isms could also explain the 

LPMC data for subject 2; if a heterozygous individual displays a reduced 

response this could account for the lower observed values. 

3.4. SUMMARY OF P2X7-STIMULATED EB UPTAKE 

The results showed that a" of the cells demonstrated a concentration

dependent increase in EB uptake on stimulation with P2X7 agonists, and for 

all of them BzATP was a more potent agonist than ATP. This is consistent 

with the presence of functional P2X7 receptors and shows that colonic 

mucosal mononuclear cells, as well as PBMCs and THP-1 cells, are capable 

of P2X7-stimulated pore formation. 
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Fig 3.5. Subjects showing a lack of response for P2X7-stimulated 
EB uptake in mononuclear cells stimulated with BzA TP or ATP 

In both PBMC and LP MC cell types, one subject failed to respond to stimulation and 
showed very little or no EB uptake. Even in the absence of a response, PBMC 
monocytes (fig b) demonstrated a higher level of basal activity than the other cell types 
confirming their more active nature. 

86 

10-2 



Chapter 3 

The EC50 values for each agonist were similar for the PBMCs and LPMCs, 

being approximately 1mM for ATP and 100-300JlM for BzATP. Comparable 

responses to ATP stimulation have been demonstrated in studies on EB 

uptake in mouse dendritic cells (Nihei, OK et al., 2000a), mouse microglial 

cells (Takenouchi, T et al., 2005), and HEK293 cells transfected with 

recombinant P2X7 (Ferrari, D et al., 2004). Similarly, Tsukimoto, M et al., 

(2005) demonstrated a concentration dependent increase in EB uptake in 

DT40 cells (a chicken B-cellline) transfected with P2X7, when they were 

stimulated with 10-500JlM BzATP. 

Studies of human PBMC Iymphocytes have shown increased EB uptake 

stimulated by both BzATP and ATP, in which BzATP was five times more 

potent than ATP, and ATP was only a partial agonist, the maximal response 

for ATP being only 70% of that for BzATP (Gargett, CE et al., 1997a). These 

results are consistent with the Iymphocyte data presented here. 

In contrast, Falzoni, S et al., (1995) studied human PBMC monocytes and 

mature macrophages (derived from monocytes by culture for five days with 

IFN-y) and found that ethidium fluorescence increased in macrophages 

stimulated with ATP, but that monocytes did not respond. This differs from 

the results presented here in which the LP MC tissue macrophages 

demonstrated less stimulated EB uptake than PBMC monocytes, suggesting 

downregulation of the receptor during maturation of the cells in the tissue. 

The difference may be due to the mode of maturation. IFN-y is a cytokine 

that promotes classic activation of macrophages and the production of an 

inflammatory response (Rogler, G et al., 1998a). In the normal colon 

however, resident tissue macrophages do not have pro-inflammatory 

properties (Smith, PD et al., 2005) and it is therefore likely that a receptor 

such as P2X7, which is involved in the release of the inflammatory cytokine 

IL-1(3, would have low levels of expression. 

For all the cell types studied BzA TP was a more potent agonist than ATP, 

but was relatively more so in monocyte-gated cells (7-20 times) as opposed 

to Iymphocyte-gated cells (4 times). Monocytes also showed greater 

maximum responses to the two agonists than Iymphocytes, particularly with 

ATP where the maximum response with monocytes was 4-8 times greater 
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than that with Iymphocytes. It is clear that Iymphocytes do not respond as 

readily to P2X7-stimulation, and this is supported by a study on mouse 

thymocytes stimulated with ATP in which EB did not permeate the cells at all 

(Pizzo, P et al., 1991). 

The THP-1 monocyte cell line appeared to be more responsive to P2Xr 

stimulation than the monocyte cells of PBMCs and LPMCs. The ECso values 

for both agonists with THP-1 cells were lower than those with the isolated 

primary cells; 24J.1M for BzATP and O.4mM for ATP compared with 

approximately 100J.1M and 1.0mM for BzATP and ATP respectively. The 

maximum response with each agonist was also higher in THP-1 cells. One 

reason for this could be cell size. Monocytes are bigger cells than 

Iymphocytes (approximately 4.61lm compared to 3.3Ilm) (Yang, J et al., 

1999) and THP-1 cells are bigger than monocytes (Holmes, 0 & Morgan, H, 

2002). If P2X7 expression is related to cell size, this might explain the 

magnitude of response of the three cell types. Another possibility is that 

THP-1 cells are a leukaemic cell line and may demonstrate an uncontrolled 

response to receptor stimulation. Similarly, if pore formation depends on the 

presence of other membrane proteins in the cell, different levels of activity 

could reflect the degree of expression of the associated pore-forming protein 

in the different cell types. 

In their study of PBMC Iymphocytes, Gargett, CE et al., (1997a) plotted Hill 

analyses of BzA TP- and ATP-stimulated uptake of EB. Hill analysis is a way 

of quantifying the steepness of the concentration-response curve and 

provides information about the nature of ligand-receptor interactions 

(Colquhoun, 0, 1998). A value for the Hill coefficient greater than one 

normally indicates positive cooperativity, i.e. binding of one ligand facilitates 

binding of subsequent ligands at other sites on the receptor. For ligand-gated 

ion channels such as the P2X receptors which are composed of subunits, the 

Hill coefficient is almost always greater than one. This is because each of the 

subunits carries an agonist binding site and usually more than one of them 

need to be occupied for the receptor to be activated (Gibb, AJ, 2003). 

Gargett, CE et al., (1997a) calculated Hill coefficients of 3.1 and 2.1 for 

BzA TP and ATP respectively for P2X7-stimulated PBMC Iymphocytes. This 
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is similar to the value obtained here for Iymphocyte-gated PBMCs stimulated 

with BzATP (2.6 ± 0.9); due to the poor response with ATP an accurate value 

for the Hill coefficient could not be calculated. In fact for all of the cell types, 

concentration-response curves for EB uptake gave values for the Hill 

coefficient greater than two. This suggests that binding of more than one 

ATp4
- molecule is required for receptor activation (Tatham, PER et al., 1990). 

In summary, the data presented here has shown that LPMCs isolated from 

colonic mucosa express functional P2X7 receptors with properties similar to 

those of PBMCs and THP-1 cells. Lymphocyte cells appeared to be less 

responsive than monocyte cells and monocyte cells appeared to express an 

order of reactivity, with THP-1 cells being the most reactive and LPMCs the 

least. THP-1 cells had the lowest ECso value (24J.lM), required the lowest 

BzATP concentration to achieve a maximum response (163J.lM) but reached 

the highest percent response (83%). In contrast, LPMC monocytes required 

millimolar concentrations of BzA TP to achieve a maximum 60% response. 

This may reflect both the cell size and the expression levels of the receptor 

and the pore-forming protein in the different cells. 
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CHAPTER 4. P2X7 RECEPTOR STIMULATION: EFFECT ON IL-

1 P RELEASE AND ANNEXIN V BINDING 

4.1. INTRODUCTION 

Stimulation of the P2X7 receptor results in the release of IL-113 and induction 

of PS-flip, a marker of apoptotic cell death (Ferrari, 0 et al., 1997b; 

Perregaux, OG et al., 1994; Chiozzi, P et al., 1996; Hogquist, KA et al., 

1991 a), both of which are important targets for anti-inflammatory drugs. 

IL-1P is a potent inflammatory cytokine shown to be present at higher levels 

in IBO tissue (Ligumsky, M et al., 1990), and both aminosalicylates and 

corticosteroids exert their anti-inflammatory actions by inhibiting cytokine 

production (Carter, MJ et al., 2004). They act by preventing activation of 

nuclear transcription factor, NF-KB, a key regulator of the expression of many 

genes involved in immune and inflammatory responses in the gut, including 

that of IL-1p (Oijkstra, G et al., 2002). 

Several of the standard treatments for IBO act by inducing apoptosis. Lamina 

propria T cells in the gut exhibit a susceptibility to apoptosis that is 

decreased in cells from inflamed tissue (Boirivant, M et al., 1996; Boirivant, 

M et al., 1999). Corticosteroids (Carter, MJ et al., 2004) and thiopurines 

(Tiede, I et al., 2003) both induce T cell apoptosis, and corticosteroids have 

also been shown to induce monocyte apoptosis (Schmidt. M et al., 1999). 

The anti-TNF drug infliximab also induces both T cell and monocyte 

apoptosis. It acts by upregulating transcription of Bax and Bak, two 

proapoptotic members of the Bcl-2 family (see section 4.3.1.1.) (Lugering, A 

et al., 2001; ten Hove, T et al., 2002). 

Since the P2X7 receptor appears to have a role both in cytokine release and 

cell death, affecting the activity of the receptor may provide a way of 

controlling these processes, and hence potential treatment for inflammatory 

diseases. Therefore the characteristics of P2X7-stimulated IL-1P release and 

AV-binding (as a measure of PS-flip) were investigated. 
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4.2. P2X7 RECEPTOR-STIMULATED IL-1 P RELEASE 

4.2.1. Introduction 

Cells do not normally contain large amounts of inflammatory cytokines 

waiting to be released (Oinarello, CA, 2000). An initial stimulus is required to 

'prime' the cells and in the gut this is generally bacterial LPS. The intestinal 

mucosa forms the primary barrier against the many bacteria present within 

the gut lumen, and it is important that the body recognises any penetration of 

this barrier by bacteria or their products. The cells of the innate immune 

system are able to recognise bacterial wall components such as LPS and 

induce cytokine secretion leading to an inflammatory response (Beutler, B et 

al., 2003). LPS stimulation of monocytes and macrophages induces many 

genes which express inflammatory mediators such as cytokines and 

chemokines, including the production of large amounts of pro-IL-113 (Guha, M 

et al., 2001). 

LPS is a glycolipid which forms a major structural component of the outer 

wall of Gram-negative bacteria. It consists of a lipid component (lipid A) and 

a hydrophilic heteropolysaccharide. Lipid A anchors the molecule within the 

cell wall and is responsible for the biological toxicity of LPS (Fenton, MJ & 

Golenbock, OT, 1998). When bacteria multiply or when they die and break 

up, LPS is released and acts as an extremely potent toxin. Macrophages are 

of primary importance in LPS recognition and can be activated by 

concentrations as low as 1pg/ml (Fenton, MJ et al., 1998). 

After its release, LPS forms a complex with a plasma protein, LBP (LPS

binding protein), which enhances the binding of LPS to C014 (Guha, M et 

al., 2001). C014 is a glycoprotein expressed on the surface of monocytes, 

macrophages and weakly on neutrophils. It is anchored to the plasma 

membrane by a glycosylphosphatidylinositollinkage, but also exists in a 

soluble form (Guha, M et al., 2001). Its role is to facilitate contact between 

LPS and its signalling molecule, TLR4 (Toll-like receptor 4) (Jiang, a et al., 

2000). The TLRs are a group of receptors named after their similarity to the 

Drosophila protein Toll, and act as primary sensors of microbial infection. 

They have a cytoplasmic domain homologous to the IL-1 receptor and signal 
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through activation of the pro-inflammatory transcription factor, NF-KB 

(Beutler, B et al., 2003) (Fig 4.1.). LPS has been shown to upregulate CD14 

and TLR4, and trigger a physical association between them (Jiang, Q et al., 

2000). The LPS signalling complex also includes a small molecule (MD-2), 

which is physically associated with TLR4 on the cell surface and is essential 

for the correct intracellular distribution of TLR4 as well as its recognition of 

LPS (Nagai, Y et al., 2002). 

TLR signalling results in recruitment of leukocytes, bacterial phagocytosis 

and induction of inflammatory cytokines and chemokines (Dobrovolskaia, MA 

& Vogel, SN, 2002). TLR4 expression has been shown to be increased in 

inflamed intestinal mucosa and localised to macrophages (Hausmann, M et 

al., 2002). Others have shown strong upregulation of TLR4 in intestinal 

epithelial cells from UC and CD tissue compared to normal mucosa (Cario, E 

& Podolsky, OK, 2000). More recently associations have been made 

between polymorphisms of the TLR4 gene that lead to impaired LPS 

signalling, and occurrence of CD and UC (Franchimont, 0 et al., 2004; 

Torok, HP et al., 2004; Oostenbrug, LE et al., 2005). 

In the experiments described here, cells were incubated with LPS for three 

hours to induce formation of pro-IL-1P, followed by stimulation of the P2X7 

receptor to release mature IL-1p. LPS also has the ability to release mature 

IL-1P, and it has been suggested that it does this by inducing ATP release 

and hence P2X7 stimulation (Ferrari, D et al., 1997c). An incubation period of 

three hours with LPS was sufficient to induce formation of intracellular pro-IL-

1 p without releasing substantial amounts of IL-1 p into the supernatant. 

4.2.2. Method 

For the LPMCs, IL-1 p release was studied in cells isolated from normal 

colonic tissue collected from colon cancer patients (tissue >5cm from the 

tumour site), and also from tissue collected from IBO patients. Wherever 

possible, samples of tissue from both inflamed and uninflamed sections of 

the colon were obtained from each IBD patient. Cells isolated from inflamed 

tissue were not pre-incubated with LPS. 

Cells were resuspended in RPMI 1640 containing 0.1 % v/v FCS at a 
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LPS binds to TLR4 via CD14 and LBP. TLR-4 signalling occurs via two pathways; the 
'MyD88-dependent' and the 'MyD88-independent' pathways. Both result in activation of 
NF-KB and the MAP kinase cascade. Translocation of NF-KB to the nucleus leads to 
production of numerous cytokines, including pro-IL-1 p. 
Beutler, B et al., (2003) 
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concentration of 1 x 106 cells/ml, and incubated with LPS (1 ~g/ml, 

Escherichia coli 0127:B8, Sigma-Aldrich) for approximately three hours at 

37°C in 5% C02. Cells were then incubated with BzATP or ATP, over a total 

concentration range of 10llM to 10mM, for 20min at 37°C in a total incubation 

volume of 100~1. PBS (400~1) was added, the cells were placed on ice and 

then centrifuged at 350 x g for 5min. Aliquots (450~1) of the supernatants 

were stored at -80°C for IL-113 assay by sandwich ELlSA, according to the 

manufacturer's instructions. For each experiment, LPS controls (containing 

no BzATP or ATP), agonist controls (containing no LPS) and RPMI medium 

controls were prepared. The cells from IBO patients were also measured for 

release of pro-IL-113 and the related caspase-1-activated cytokine, IL-18. 

4.2.3. Results and Discussion 

The data for IL-113 release is summarised in Table 4.1. Because of the wide 

variation in the absolute amounts of IL-1J3 released between subjects, the 

results were expressed as a percentage of the maximum response to BzATP 

for each individual. 

4.2.3.1. IL-1P release from THP-1 cells 

THP-1 cells did not release any IL-113 when incubated with BzATP or ATP. 

This is because they are an immature monocyte cell line expressing little or 

no C014 and are therefore unable to respond to LPS priming (Abrink, M et 

a/., 1994). 

A single experiment was carried out to test the cells for IL-1 13 release with 

BzATP stimulation (Fig 4.2.). The THP-1 cells released only 4pg IL-1p/106 

cells whereas comparative experiments with PBMCs and LPMCs released 

1870 ± 420 and 750 ± 320 pg IL-1p/106 cells respectively. Increasing the 

FCS content of the medium from 0.1 % to 10% increased the amount of IL-1 13 

released to 42 pg IL-1 13/1 06 cells, but this was still low compared to the 

PBMCs and LPMCs. 

THP-1 cells can be induced to differentiate into mature cells with 

macrophage-like function by incubation with various compounds (Tsuchiya, 

Set a/., 1982): one commonly used is a phorbol diester, phorbol12-
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BzATP ATP BzATP ATP BzATP ATP BzATP ATP BzATP 

PBMCs 391!M 0.8mM 93± 7 67 ± 10 
31 - 5Ol!M 0.5 -1.2mM 2± 0.5 2±0.6 112 ± 311!M 2.3 ± 0.3mM 2509 ± 777 1767 ± 508 3.8 ± 1.5 

Normal 112J.1M 1.1mM 92±4 53 ± 10 
LPMCs 81 -1531!M 0.02 - 53mM 14 ±6 16± 7 300 ± 71J.1M 1.7 ± 0.3mM 748 ± 322 379 ±240 2.9±1.1 

Inflamed 80J.1M 1.4mM 94±3 110 ± 41 

LPMCs 62 -103J.1M 0.7 -2.9mM 17±6 16±6 217 ± 40J.1M 4.3 ± 1.2mM 2311 ± 1254 1787 ± 914 3.5 ± 1.2 

Un inflamed 88J.1M 1.1mM 88±7 106 ± 14 
LPMCs 60 -1281!M 0.7-1.7mM 10 ± 0.6 8±2 325 ± 631!M 2.3 ±0.3mM 600 ± 180 934 ± 278 2.9 ± 1.2 
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Table 4.1. Summary of results for P2X7-stimulated IL-1 ~ release 

The table shows the ECso values taken from the concentration response curves and the Hillslope calculated from the curve. The mean maximum and 
minimum responses for each cell type with each agonist are shown, together with the mean of the agonist concentrations at which each subject 
achieved the maximum response. The absolute amounts of IL-1\3 released (pg/106 cells) corresponding to the maximum response are also shown. 
Normal LPMCs were isolated from tissue from cancer patients. Inflamed and un inflamed LPMCs were isolated from tissue from IBD patients, from 
actively inflamed and un inflamed sections respectively. 
BzATP was 10-20 times more potent than ATP, as shown by the ECso values. PBMCs released much greater amounts of IL-1\3 than LPMCs from 
normal or uninflamed tissue, and at lower concentrations of agonist. Release of IL-1\3 from LPMCs from inflamed tissue was similar to that of PBMCs. 
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Fig 4.2. The effect of FCS on the release of IL-1 ~ from 
THP-1 cells stimulated with BzATP 

THP-1 cells were resuspended at 2 x 106 cells/m I in RPMI containing 
0.1, 1 or 10% FCS and incubated with LPS (1 J..lg/ml) for 3h. Cells were 
stimulated for 20min with BzATP (200J..lM) and the amount of IL-1~ 
released into the supernatant was measured by ELlSA. Results are from 
a single experiment and are expressed as pg IL-1~ 1106 cells. 
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myristate-13-acetate (TPAlPMA) (MacKenzie, A et al., 2001; Cochran, FR & 

Finch-Arietta, MB, 1989). Functional studies of IL-1j3 release from THP-1 

cells generally incorporate an activation step involving incubation with 

substances such as PMA or with naturally-occurring compounds such as 

IFN-y. IL-1j3 release from matured THP-1 cells has been demonstrated many 

times in the literature (MacKenzie, A et al., 2001; Gudipaty, L et al., 2003; 

Donnelly-Roberts, 0 et al., 2004; Verhoef, PA et al., 2005) and therefore 

experiments on IL-1~ release in this project were confined to PBMCs and 

LPMCs. 

4.2.3.2.IL-1p release from PBMCs 

PBMCs generally released large amounts of IL-1j3; up to 4800pg/106 cells in 

one subject, and this release occurred in a concentration-dependent manner 

for both agonists (Fig 4.3.). BzATP was approximately twenty times more 

potent than ATP with an EC50 value of 391lM compared with 0.8mM for ATP. 

With both agonists the release occurred over a narrow concentration range 

and the values for the Hill slope were high (5.8 for ATP and 3.8 for BzATP), 

suggesting multiple agonist binding sites as seen with EB uptake. High 

values for the Hill slope also arise when the response measured is indirect, 

i.e. when a sequence of cellular events link receptor activation to the 

observed response. This is because the Hill equation makes the assumption 

that response is linearly related to receptor occupancy, whereas with an 

indirect response this is usually not the case (Jenkinson, OH, 2003). Release 

of mature IL-1j3 requires a complex sequence of events involving maturation 

of caspase-1 via formation of the inflammasome followed by maturation and 

secretion of IL-1j3 itself. Combined with the subunit structure of the P2X7 ion 

channel which also produces a Hill coefficient >1, it is not surprising that the 

values obtained here for the Hill slope were so high. 

ATP acted as a partial agonist, although both agonists demonstrated 

reduced release of IL-1j3 at concentrations greater than the maximum. Other 

studies have found a similar reduction in IL-1j3 release at high ATP 

concentrations (Verhoef, PA et al., 2003; Ferrari, 0 et al., 1997b). One 

possible reason could be that high agonist concentrations cause necrotic cell 
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Fig 4.3. The release of IL-1 ~ from PBMCs stimulated 
with BzA TP or ATP 

LPS-primed cells in RPMI 1640 + 0.1 % FCS were stimulated for 
20min with BzATP or ATP. IL-1J3 released into the supernatant 
was measured by ELlSA and expressed as a percent of the 
maximum amount released by BzATP. Results show the mean ± 
sem of four separate experiments. 
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death and release of unprocessed pro-IL-1~ instead of mature IL-1~. 

Verhoef, PA et al., (2005) proposed that the reduction in IL-1~ release is due 

to chloride ions present in the medium which enter the cell and attenuate the 

ATP response. Replacement of chloride ions with a non-permeant anion 

such as gluconate produced a 10-fold increase in IL-1 ~ release. They 

suggested that chloride ions may alter the conformation of the receptor in 

such a way as to limit ATP binding, or may regulate inflammasome assembly 

and hence inhibit caspase-1 processing of pro-IL-1~. 

4.2.3.3.IL-1p release from LPMCs 

i. mature IL-1 p release 

IL-1~ release from normal tissue (cancer patients) and from inflamed and 

uninflamed tissue (IBD patients) is shown in Fig 4.4. The release of IL-1~ 

was concentration-dependent in cells from all tissue types, and occurred 

over a narrow concentration range. This was particularly marked with ATP 

stimulation of normal and uninflamed cells where there was only one 

concentration point on the slope resulting in inconclusive curve fit and very 

high values for the Hill slope (12.6 for normal and 7.3 for uninflamed 

LPMCs). BzATP was 10-15 times more potent than ATP, with ECso values of 

80-112/lM compared with 1.1-1.4mM for ATP. As seen with PBMCs, IL-1~ 

release decreased at higher concentrations of agonist. The decreased 

response was not seen with BzATP stimulation of LPMCs from IBD patients, 

probably because the concentration range was not high enough. 

In cells from normal tissue, ATP acted as a partial agonist, but in cells from 

inflamed tissue this was not the case. The efficacy of a partial agonist 

depends on the ratio between receptor occupancy and the ability of the 

bound receptor to elicit a response. These factors may vary in different 

tissues and efficacy is therefore tissue dependent (Jenkinson, OH, 2003). 

Since P2X7 has inflammatory properties, it may be that ATP binding to the 

receptor in normal tissue is controlled such that the response is reduced and 

only partial. Perhaps in IBD tissue this control is absent, leaving ATP to elicit 

a full receptor response and produce a greater inflammatory effect. 
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• BzA TP-stimulated cells 

A ATP-stimulated cells 

• unstimulated control 

b) LPMCs isolated from inflamed tissue (n=6) 
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Fig 4.4. The release of IL·1~ from LPMCs stimulated with BzATP 
orATP 
lPS-primed cells in RPM I 1640 + 0.1% FCS were stimulated for 20min with BzATP or ATP 
(cells. and control from inflamed tissue were not treated with LPS). Il-1P released into the 
supernatant was measured by ElISA and expressed as a percent of the maximum amount 
released by BlA TP. Results show the mean :t sem of separate experiments. 
NormallPMCs were isolated from tissue from cancer patients. Inflamed and un inflamed 
lPMCs were isolated from tissue from IBD patients, from actively inflamed and uninflamed 
sections respectively. 
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LPMCs from inflamed tissue (Fig 4.4.b) showed a wide variation in ATP

stimulated IL-1~ release, particularly at high concentrations. This is because 

the amounts released by the six subjects with ATP differed extensively with 

respect to their responses to BzA TP-stimulation. This can be seen even 

more clearly when, based on the histopathology reports, the data for the 

inflamed tissue was divided into those subjects who exhibited severe 

inflammation and those who were only mildly inflamed (Fig 4.5.). Of the two 

subjects with severe inflammation (Fig 4.5.a), ATP behaved in one as a 

partial agonist reaching only 35% of the BzA TP response, whereas in the 

other it acted as a full agonist reaching 110% of the BzATP response. Four 

subjects had moderate inflammation and ATP acted as a partial agonist in 

only one (Fig 4.5.b). For the other three subjects ATP acted as a full agonist, 

and in one subject ATP released three times the amount of IL-1~ as BzATP. 

This shows that the ability of ATP to act as a full agonist does not depend on 

the severity of the inflammation, but may be a feature of the disease itself 

and reflect variations in the receptor responses from different subjects. 

LPMCs from normal tissue secreted much lower levels of IL-1J3 than PBMCs 

(748 ± 322 versus 2509 ± 777 pg/106 cells), confirming the non-inflammatory 

character of normal colonic tissue macrophages. In inflamed tissue however, 

where there is usually an influx of cells from the peripheral blood, the amount 

secreted was much higher (2311 ± 1254 pg/106 cells) and similar to that 

seen in PBMCs (2509 ± 777 pg/106 cells). The maximum amounts of IL-1~ 

released from each patient matched the severity of their inflammation. 

Patients with severe active UC (n=2) released a mean of 6492 ± 919pg/1 06 

cells with BzA TP and 4383 ± 1792pg with A TP, whereas those with 

moderate UC (n=3) released only 363 ± 220pg and 576 ± 31 Opg/1 06 cells 

with BzA TP and ATP respectively. The single CD patient, who had only slight 

inflammation, released 591 pg/1 06 cells with BzATP and 498pg/106 cells with 

ATP. These values confirm the importance of IL-1J3 as an inflammatory 

cytokine in IBD and its usefulness as a therapeutic target, particularly in 

cases of severe inflammation. 
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Fig 4.5. The release of IL-113 from LPMCs isolated from 
Inflamed tissue 
Graphs show the data from Fig 4.4.b separated into results for severely 
inflamed tissue and moderately inflamed tissue based on the histopathology 
reports. The wide variation in the responses to ATP stimulation can clearly be 
seen. For the severely inflamed tissue where there were only 2 subjects, the 
error bars show the responses of each individual. 

102 



Chapter 4 

i;. pro-IL-1P release 

The results for pro-IL-1 p release from individual subjects are shown in Fig 

4.6. For the two patients with severely inflamed UC (Fig 4.6.a), BzATP

stimulated LPMCs released pro-IL-1 p in a concentration-dependent manner 

with the amount released reaching a maximum of 1400-2250pg/1 06 cells. 

This was equal to approximately 30% of the maximum amount of IL-1 p 

released. The release of pro-IL-1P did not occur until BzATP concentration 

was greater than 100J.lM, a concentration at which release of mature IL-1 P in 

these patients was at or near maximum (Fig 4.5.a). This shows that in 

severely inflamed tissue pro-IL-1P starts to be released together with mature 

IL-1P at BzATP concentrations near maximal for IL-1P release, although not 

to the same extent. One possible explanation for the release of pro-IL-1P 

could be a toxic effect of high concentrations of BzA TP leading to necrotic 

cell death and release of cell contents. 100J.lM BzA TP was the concentration 

at which the monocyte-gated cell population started to decrease in number 

(Fig 3.4.e) suggesting that may be the concentration at which cells start to 

die. 

For the patients with moderate inflammation (Fig 4.6.b & c) the responses to 

BzATP-stimulation differed considerably. One patient demonstrated a 

concentration-dependent response of a similar pattern to that seen with 

severely inflamed tissue, but in this patient the release of mature IL-1 P was 

very low (232 pg/106 cells maximum). It may be that in this patient the cells 

died on stimulation and released pro-IL-1P into the supernatant. The other 

two patients showed no increase in pro-IL-1 p release when stimulated with 

BzATP, but did release greater amounts of mature IL-1P (793 and 590 

pg/106 cells maximum). ATP did not markedly increase pro-IL-1P release in 

any of the patients. This may be because the concentration range was not 

high enough. If pro-IL-1P is not released untillL-1P release is near-maximal, 

then ATP concentrations greater than 10mM would be necessary. 

1Ii. IL-18 release 

Very little IL-18 was released into the cell supernatant and only samples from 

the severely inflamed UC patients produced measurable amounts. The 

results are shown in Fig 4.7. and show very different profiles for each patient. 
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a) LPMCs isolated from severely inflamed UC tissue 
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Fig 4.6. The release of pro-IL-1 P from LPMCs isolated from 
inflamed tissue 
Supematants collected for measurement of IL-1j3 release from IBD patients (fig 4.4.b & c) 
were also assayed for pro-IL-1j3. Figures show the results for individual patients. The 
numbers U1, U2 and U3 indicate where a sample of un inflamed tissue was obtained from 
the same patient as the inflamed tissue. The amount of pro-IL-1j3 released was clearly 
related to the degree of inflammation. 
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Fig 4.7. The release of IL-18 from LPMCs isolated from 
severely inflamed tissue 

Supernatants collected for measurement of IL-1P release from the two 
patients with severely inflamed tissue were assayed for IL-18. The 
results are expressed as pg IL-18/106 cells and each figure shows the 
results from one patient. Very little IL-18 was released from either patient 
although the pattern of release was very different. 
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One patient demonstrated a clear concentration-dependent release of IL-18 

on stimulation with both agonists, whereas the other had a higher baseline 

secretion but little increase on stimulation. These results suggest that 

intestinal inflammatory cells secrete very little IL-18. This is supported by a 

study of IL-18 mRNA expression in IBO tissue which was up-regulated, 

particularly in CO, but the expression was much greater in intestinal epithelial 

cells than in LPMCs (Pizarro, TT et al., 1999). 

4.2.3.4. Summary of P2Xrstimulated IL-1P release 

Both PBMCs and LPMCs displayed a concentration-dependent increase in 

IL-1 p release and for both cell types BzA TP was a more potent agonist than 

ATP. This is consistent with a P2X7-mediated response. The principaIIL-1p

secreting cells are the monocytes and macrophages, and several 

comparable studies have been performed using these cell types. For 

example, studies on ATP stimulation of PBMC monocytes (Elssner, A et al., 

2004), PBMC differentiated macrophages (Ferrari, 0 et al., 1997b) or 

macrophage cell lines (Verhoef, PA et al., 2003) have all shown a 

concentration-dependent increase in IL-1P release over the range O.OS-SmM 

ATP. Similarly, a study using matured THP-1 cells demonstrated BzATP

stimulated IL-1 p release with an ECso value of approximately 130IlM, a value 

consistent with the ones reported here for PBMCs and LPMCs (Buell, Get 

al., (1998). 

The results clearly showed that LPMCs isolated from normal colonic tissue 

did not readily produce IL-1P in response to P2X7 stimulation. Secretion of 

IL-1 p increased dramatically however in cells from inflamed tissue to levels 

similar to those secreted by PBMCs, confirming that inflamed tissue contains 

a greater proportion of cells derived from the circulation. This was 

demonstrated not only by the amount of IL-1 p released, which was 3-4Y2 

times that of normal LPMCs, but also by the ECso value which was reduced 

by up to two-thirds in cells from inflamed tissue (80IlM compared to 112J.tM in 

normal LPMCs) and w~s closer to the value obtained for PBMCs (39J.tM). 

The variable nature of cytokine secretion between patients as seen in these 

results also confirms the nature of IBO, in that characteristics of the disease 
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vary widely between subjects, with many factors involved in the nature of its 

presentation. There is a need therefore for treatments that can target the 

inflammatory processes in different ways since one that is effective in one 

patient may not be in another. Inhibition of P2X7-stimulated IL-1f3 release 

offers another mechanism for such treatment. 

4.3. P2X7 RECEPTOR-STIMULATED ANNEXIN V BINDING 

4.3.1. Introduction 

Some studies have associated P2X7-stimulated IL-1f3 release with cell death 

(Hogquist, KA et al., 1991a; Brough, 0 et al., 2007). The receptor's ability to 

promote membrane PS flip has suggested that it mediates death by 

apoptosis, but the demonstrated reversibility of PS flip has made this less 

certain (MacKenzie, AB et al., 2005). 

4.3.1.1. Cell death 

Cell death can occur via one of two fundamentally different processes; 

namely apoptosis or necrosis. 

i. Necrosis is a degenerative process usually triggered by extreme trauma or 

injury to the cell. Integrity is lost in both internal organelle and plasma 

membranes, resulting in the release of cell contents into the surrounding 

environment. This may lead to injury to neighbouring cells, and the infiltration 

of cytokine-producing immune cells into the area, generating an inflammatory 

response (Alien, RT et al., 1997). The term necrosis generally refers to the 

changes that have occurred in cells after they have died regardless of how 

death has occurred. Two principal mechanisms of necrotic death are oncosis 

and pyroptosis. 

Oncosis is the opposite of apoptosis in that death occurs by cellular and 

organelle swelling, blebbing and increased membrane permeability. The 

process ultimately leads to depletion of cellular energy stores, either as a 

result of interference with A TP generation or uncontrolled energy 

consumption (Majno, G & Joris, I, 1995). 

Pyroptosis is a relatively new term that was originally devised for cell death 

induced by Salmonella and Shigella infection of host macrophages 
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(Cookson, BT & Brennan, MA (2001). It is a pro-inflammatory pathway 

mediated by the activation of caspase-1 and leads to membrane breakdown 

and processing of Il-1 ~ and Il-18. 

ii. Apoptosis (programmed cell death) is a regulated event involving a series 

of structural and biochemical changes within the cell (Saraste, A & Pulkki, K, 

2000). Nuclear chromatin condenses and becomes confined to the margin of 

the nucleus, followed by progressive condensing and fragmentation of the 

nucleus itself. Cell cytoplasm also condenses leading to cell shrinkage, and 

the cell detaches from surrounding tissues. The plasma membrane becomes 

convoluted and forms extensions which seal and separate from the cell. This 

process is called budding, and the 'apoptotic bodies' thus formed are rapidly 

phagocytosed by macrophages (Saraste, A et al., 2000; Alien, RT et al., 

1997). Because the break-up of the cell occurs with no release of cellular 

contents, apoptosis is not generally associated with inflammation (Savill, J et 

al., 2002). 

All of these structural changes occur in the cell as a result of the activity of 

caspase enzymes (Thornberry, NA & Lazebnik, Y, 1998). The first member 

of the family to be identified was caspase-1, which is not involved in 

apoptosis but is responsible for the cleavage of IL-1 ~ to its mature form 

(section 1.6.1.). Many other members of the family however, are involved 

both in the breaking up of the cell (known as effectors, caspase-3, -6 & -7), 

or in the instigation of this disassembly (known as initiators, caspase-2, -8, -9 

& -10) (Thornberry, NA et al., 1998). 

Caspases are constitutively expressed as inactive proenzymes and require 

cleavage to form the active enzyme (Zimmermann, KC & Green, OR, 2001). 

Activation of the initiator caspases in response to pro-apoptotic signals leads 

to the proteolytic cleavage and generation of mature effector caspases 

(Zimmermann, KC et al., 2001). Once activated, effector caspases cleave 

proteins which support the nuclear membrane, initiate DNA fragmentation, 

and cleave proteins involved in the cytoskeleton and in the attachment of 

cells to their neighbours, all faCilitating cell disassembly (Thornberry, NA et 

al., 1998). 
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Signalling pathways leading to caspase activation are characterised as 

extrinsic or intrinsic (Fig 4.8.). The extrinsic pathway involves the binding of 

extracellular ligands to cell surface receptors (e.g. TNF, Fas, TRAIL) 

resulting in the recruitment of cytosolic adaptor proteins (e.g. FADD), 

activation of initiator caspases and subsequent activation of effector 

caspases (Schafer, ZT & Kornbluth, S, 2006; Menaker, RJ & Jones, NL, 

2003). 

The intrinsic pathway acts via the mitochondria and can be initiated by 

factors such as cytotoxic agents and DNA damage. The process results in 

mitochondrial outer membrane permeabilisation and cytochrome c release, 

and is regulated by proteins of the BcI-2 family (Schafer, ZT et al., 2006). 

The BcI-2 proteins can be subdivided into pro- and anti-apoptotic members 

depending on whether they promote (e.g. Bax, Bak) or impede (e.g. BcI-2, 

BcI-Xd cytochrome c release (Opferman, JT & Korsmeyer, SJ, 2003). Once 

cytochrome c is released it forms part of a complex called the 'apoptosome', 

together with a protein called Apaf-1 (apoptosis protease-activating factor-1) 

and initiator procaspase-9. The apoptosome then activates effector caspases 

leading to the breakdown of the cell and formation of apoptotic bodies 

(Schafer, ZT et al., 2006). 

4.3.1.2. Phosphatldylserine (PS) flip 

The phagocytosis of apoptotic bodies occurs as a result of a change in the 

phospholipid bilayer of the plasma membrane early in apoptosis. 

Phosphatidyserine (PS) is normally located predominantly on the inner 

surface of the cell membrane, but during early apoptosis, it translocates from 

the inner to the outer layer of the plasma membrane (PS-flip) where it 

triggers recognition by macrophages (Fadok, VA et al., 1992). 

The distribution of PS in the cell membrane is controlled by the activities of 

three enzymes; a PS-specific aminophospholipid translocase (flipase), a lipid 

scramblase and a non-specific flopase (Fig 4.9.) (Diaz, C et al., 1996). The 

activity of the enzymes is governed by the intracellular Ca2
+ concentration 

(Martinez, MC et al., 1999). At physiological Ca2
+ concentrations «100nM), 

the flipase and f10pase are active but the scramblase is inactive, producing 

the asymmetric distribution of PS on the inner layer of the membrane. At 

elevated Ca2
+ concentrations however, the flipase is inactive and the 
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Cup ... a 

Fig 4.8. The two major apoptotic pathways in mammalian cells 

8. The extrinsic pathway involves formation of a death-inducing signalling complex initiated 
by binding of ligand to a member of the death-receptor family (e.g. CD95, TNF receptor I). 
The complex binds procaspase-B via an adaptor molecule FADD (Fas-associated death 
domain protein), resulting in caspase-8 activation. 
b. The intrinsic pathway, or mitochondrial pathway, involves activation of proteins of the Bcl-
2 family. The balance between the activities of pro- and anti-apoptotic members of this 
family regulates release of cytochrome c from the mitochondria. Cytochrome C combines 
with Apaf-1 (a po ptosis protease-activating factor-1) and procaspase-9 to form the 
apoptosome, resulting in activation of caspase-9. 
Integration of the two pathways is through Bid, a pro-apoptotic member of the BcI-2 family. 
Active caspase-B cleaves Bid which then translocates to the mitochondria and promotes 
release of cytochrome c. 
The active caspase-8 and -9 promote cleavage of effector caspases such as procaspase-3 
resulting In the breakdown of the cell. 
Reprinted by permission from Macmillan Publishers Ltd: NATURE, 407, Hengartner, MO, 
The biochemistry of apoptosis, 770-6. Copyright (2000). 
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PS asymmetry in the membrane is governed by the activities of three enzymes. The flipase is an ATP-dependent aminophospholipid 
translocase which rapidly transports PS from the outer to the inner membrane. The flopase is also ATP-dependent and transports PS 
to the outer membrane but at a slower rate than the flipase. The scram blase transports PS in both directions. 
Activity of the enzymes is dependent on intracellular Ca2+ concentrations . At physiological Ca2+ concentrations «1 OOnM), the flipase 
and flopase are active but the scramblase is inactive, producing the asymmetric distribution of PS on the inner layer of the 
membrane. At elevated Ca2+ concentrations however, the flipase is inactive and the scram blase is active, resulting in increased PS in , 
the outer layer of the membrane. 
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scramblase is active, resulting in increased PS in the outer layer of the 

membrane (Oiaz, C et al., 1996). Most of the studies on these enzymes have 

been carried out on platelets and red blood cells, but reduced flipase activity 

has also been shown in T cells, occurring 5 hours after application of an 

apoptotic stimulus (Verhoven, B et al., 1995). 

Annexin V (AV) is a protein found in the cytosol and the nucleus and also 

associated with membranes of the heart, lung and liver (Tzima, E & Walker, 

JH, 2000). Its function is unclear but studies have suggested roles in 

regulation of the cytoskeleton, ion channel function and involvement in signal 

transduction pathways (Tzima, E et al., 2000). AV has a strong affinity for 

anionic phospholipids, particularly PS, and is widely used in assays to detect 

apoptotic cells (Vermes, I et al., 1995; van Engeland, M et al., 1998; Tait, JF 

et al., 1999). 

4.3.2. Method 

Binding of FITC-Iabelled Annexin V (AV) was used to measure PS-flip in 

BzA TP- or ATP-stimulated cells. Propidium iodide (PI) was also incorporated 

as a marker for cell death. Using a combination of AV and PI it was possible 

to distinguish between early apoptotic cells (AV+PI-), dead cells (AV+PI+) 

and unstained cells (AV-PI-). For isolated LPMCs, AV-binding was studied in 

cells isolated from normal colonic tissue collected from colon cancer patients 

(>5cm from the tumour site). 

Cells were resuspended in RPMI 1640 at a concentration of 2 x 106 cells/ml 

and incubated with ATP or BzA TP, over a total concentration range of 10jlM 

to 10mM, for 20min at 37°C in a total incubation volume of 100~.JI. 

Unstimulated cells were also incubated as a control. The reaction was 

stopped by adding 400jll of PBS and placing on ice. The cells were 

centrifuged at 350 x 9 for 5min and resuspended in 250jll of cold binding 

buffer containing 10mM HEPES/NaOH, 140mM NaCI, 2.5mM CaCI2, pH 7.4 

with 5JlI each of AV-FITC and PI (Alexis Biochemicals, Bingham, Notts). The 

cells were kept on ice and analysed by flow cytometry. 
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4.3.3. Results and Discussion 

Cell populations were gated on the FS/SS dotplots as shown in Fig 3.1. For 

each gated cell population, AV versus PI binding was plotted, and a quadrant 

applied to identify the percentage of the gated population binding positively 

for each stain (Fig 4.10.). Values for AV+PI- (upper left quadrant, apoptotic 

cells) and AV+PI+ (upper right quadrant, dead cells) were added together to 

give total AV-positive binding. Different quadrants were used for each cell 

population as monocytes bind approximately twice the number of annexin V 

molecules per cell as Iymphocytes (Ta it, JF et al., 1999). The data for AV 

binding is summarised in Table 4.2. 

4.3.3.1. AV binding in THP-1 cells 

Total AV-positive binding increased in a concentration-dependent manner 

with both BzATP and ATP stimulation (Fig 4.11.a). BzATP was a more 

potent agonist than ATP as shown by the ten-fold reduction in ECso value 

(100IlM for BzATP compared with 1.3mM with ATP), but the maximal 

response was similar for both agonists. The response to ATP occurred over 

a narrower concentration range than that to BzA TP and this was reflected in 

the values for the Hill slope (4.2 for ATP and 2.3 for BzATP). 

4.3.3.2. AV binding in PBMCs 

Total AV-positive binding in both Iymphocyte and monocyte-gated cell 

populations increased in a concentration-dependent manner (Fig 4.11.b & c). 

BzA TP was approximately eight times more potent than ATP in monocyte

gated cells with ECso values of 210llM and 1.6mM respectively. In 

Iymphocyte-gated cells this was reduced to approximately four times (ECso 

values of 246JlM for BzA TP and 1.1 mM for ATP). 

ATP acted as a partial agonist in both cell types, producing only 80% and 

88% of the BzA TP response in monocytes and Iymphocytes respectively. Its 

agonist activity was greater than that seen with IL-1f3 release however, 

where the ATP response was only 72% of the BzATP response. Both cell 

types responded to ATP over a narrower concentration range than BzATP, 

and this was reflected in values for the Hill slope which were 4.3 and 4.4 for 
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BzA TP-stimulated cells 
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Fig 4.10. Flow cytometry dotplots for AV/PI binding in 
Iymphocyte- and monocyte-gated PBMCs 

Each gated cell population was analysed for AV/PI binding. Unstimulated and 
maximally-stimulated cells were used to set the position of the quadrants. 
Cells above the horizontal line are AV-positive (apoptotic cells) and those to 
the right of the vertical line are PI-positive (dead cells). The figures show the 
percentage of the gated cell population in each quadrant. 
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EC50 value with 
Maximum and minimum Concentration at which maximum 

95% confidence intervals 
responses (% AV+ binding) 

Hillslope 

(mean ± sem) response occurred (mean ± sem) (mean ± sem) 

BzATP ATP BzATP ATP BzATP ATP BzATP ATP 

THP-1 cells 100J1M 1.3mM 76± 0.4 74 ± 8 
87 -114J1M 1.0 -1.6mM 11 ± 0.8 12 ± 3 

1.5 ±0.3mM 2.5 ±0.3mM 2.3 ± 0.3 4.2 ± 1.3 

PBMCs: 210J1M 1.6mM 89±3 72±7 
monocytes 163 - 272J1M 1.1 - 2.3mM 23 ± 3 26±4 2.5± 0.9mM 5.3 ± 1.7mM 1.2 ± 0.2 4.3 ±2.3 

PBMCs: 246J1M 1.1mM 89 ±4.5 78 ± 3 
Iymphocytes 168 - 359J1M 0.9-1.2mM 13 ± 1.2 12 ± 1 3.2 ± 1.0mM 5.3 ± 1.7mM 1.1 ± 0.3 4.4±1.7 

Normal LPMCs: 83J1M 2.1mM 47±5 70 ± B 
monocytes 58 -119J1M 1.6 -2.9mM 14 ± 3 17 ±4 0.3± 0.1mM 7.5 ± 1.4mM 5.6 ± 3.0 3.3 ± 1.6 

Normal LPMCs: 131J1M 2.1mM 69±7 55 ± 9 
Iymphocytes 94 - 184J1M 1.6- 2.6mM 5.7 ± 1.2 6.3 ± 1.4 

0.6±OmM 5.7 ± 1.5mM 2.4 ± 0.9 4.4 ± 2.7 

- - --- -- - -----

Table 4.2. Summary of results for P2X7-stimulated total AV-positive binding 

The table shows the EC50 values taken from the concentration response curves and the Hillslope calculated from the curve. The mean maximum 
and minimum responses for each cell type with each agonist are shown, together with the mean of the agonist concentrations at which each 
subject achieved the maximum response. 
BzATP was a more potent agonist than ATP as shown by the EC50 values. The responses to the two agonists for all the cell types were similar 
except for LPMC monocytes stimulated with BzA TP, where the maximal response was very low and less than that seen with A TP. 
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Fig 4.11. Annexin V binding in mononuclear cells stimulated with 
BzATP or AlP. 

Total AV-positive binding was measured by flow cytometry after 20min stimulation with either 
BzA TP or A TP in RPM I 1640. Cells staining positive were expressed as a percent of the 
gated cell population; results show the mean ± sem of four separate experiments. 
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ATP but only 1.2 and 1.1 for BzA TP for monocyte- and Iymphocyte-gated 

cells respectively. 

Interestingly, the concentration-response curves with BzATP appeared to be 

less steep than all of the other curves produced so far. The values for the Hill 

slope have been greater than two for every other measured parameter, but 

were only 1.2 and 1.1 for BzA TP-stimulated AV binding in PBMCs. Also, 

most of the EC50 values for BzA TP stimulation have been in the region of 

100flM, whereas the values for AV binding in PBMCs were greater than 

200flM. 

In experiments performed at the beginning of the project, concentration

response curves were carried out using PBMCs stimulated with BzA TP for 

five minutes. These results were compared with the ones for 20min 

stimulation and are shown in Fig 4.12. AV binding curves for both 

Iymphocyte- and monocyte-gated cells showed a leftward shift with 5min 

stimulation suggesting that BzA TP was a more potent agonist with a shorter 

stimulation time. This was reflected in the EC50 values which were 79flM for 

Iymphocyte-gated cells and 62flM for monocyte-gated cells. Also whilst the 

curves for the Iymphocyte-gated cells were parallel, the monocyte-gated cells 

demonstrated a steeper curve with the shorter stimulation time (Hill slope = 

1.8). 

One possible explanation is receptor desensitisation with a longer stimulation 

time, although this has only been seen with the P2X1 and P2X3 receptors so 

far (North, RA et al., 2000). A more likely reason for the effect is substrate 

depletion. As described in section 3.3.2., many cells express nucleotidase 

enzymes which break down ATP and BzATP (Zimmermann, H, 2000; 

Kukley, M et al., 2004). With longer incubation times more of the agonist will 

be removed by the enzymes, thus requiring a higher concentration to 

produce a similar effect. 

4.3.3.3. A V binding In LPMCs 

Total AV-positive binding in both Iymphocyte and monocyte-gated cell 

populations increased in a concentration-dependent manner for both 

agonists (Fig 4.11.d & e). BzA TP was approximately twenty-five times more 
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10 -2 

• 20min stimulation 

o 5min stimulation 

10 -2 
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2461lM 
168 - 359J.1M 

210llM 
163 - 2721lM 

Fig 4.12. Comparison of BzA TP-stimulation of AV binding in 
PBMCs stimulated for 5 or 20 minutes 

Total AV-positive binding was measured by flow cytometry after 5 (n=3) or 
20min (n=4) stimulation with BzATP in RPMI1640, Cells staining positive for 
AV were expressed as a percent of the Iymphocyte or monocyte cell 
population gated by FS/SS; results show the mean ± sem of separate 
experiments, 
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potent than ATP in monocyte-gated cells with ECso values of 83J.lM and 

2.1mM respectively. This reduced to sixteen times in Iymphocyte-gated cells 

(ECso values of 131J.lM for BzATP and 2.1mM for ATP). 

ATP acted as a partial agonist in Iymphocyte-gated cells producing only 80% 

of the BzA TP response, but in monocyte-gated cells ATP produced a greater 

maximum response than BzA TP. AV binding in BzA TP-stimulated monocyte

gated LPMCs was unusual in that it was very low (maximum response only 

47% of the gated population) and it also occurred over a very narrow 

concentration range typical of that seen with ATP in other cell types. This 

was reflected in the value for the Hill slope which was 5.6 for BzA TP

stimulated monocyte-gated cells, but only 2.4 for Iymphocyte-gated cells. 

Normal tissue macrophages are long-lived cells that provide an efficient 

scavenging host defence function without promoting mucosal inflammation. 

PS externalisation is a marker for macrophage phagocytosis, but for them to 

remain functioning within the tissue it is important that macrophages do not 

express PS readily on their external membrane surface and thus become a 

target of their own phagocytic process. Normal tissue macrophages may 

therefore be resistant to P2X7-stimulated PS flip to enable them to live 

longer. This could be the reason for their low level of AV binding on 

stimulation with BzA TP, although this is contradicted somewhat by the 

response to ATP. 

4.3.3.4. Summary of P2X.,..stimulated AV binding 

All of the cell types displayed a concentration-dependent increase in total 

AV-binding, and for all of them BzATP was a more potent agonist than ATP. 

This shows that increased AV-binding, and hence PS-flip, is the result of 

P2X7 receptor-stimulation. 

Very little work has been published on the kinetics of AV binding and this 

study is the first reported for primary human colonic LPMCs. Most of the 

published studies have used mouse cell lines. Murine macrophages have 

demonstrated increased AV binding with both 100J.lM BzA TP (Wilson, HL et 

a/., 2004) and 5mM ATP (Pelegrin, Pet a/., 2004). Similarly, mouse T cells 

stimulated with 150J.lM BzATP exhibited increased AV-binding in up to 35-
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40% of the cells (Elliott, JI et al., 2005), and a similar response was also 

shown by BAlB/c thymocytes stimulated with 1mM ATP (Courageot, MP et 

al., 2004; le Stunff, H et al., 2004). 

Apoptotic cell death is generally considered to be a non-inflammatory 

process (Savill, J et al., 2002). Susceptibility to apoptosis has been shown to 

be decreased in cells from inflamed tissue (Boirivant, M et al., 1999), and 

several treatments for IBD act by promoting apoptotic cell death. The activity 

of the P2X7 receptor is anomalous in that stimulation releases Il-1 ~ which is 

pro-inflammatory, but also induces PS flip, a characteristic of apoptosis 

which is non-inflammatory. MacKenzie, AB et al., (2005) has suggested that 

PS-flip associated with brief stimulation of the P2X7 receptor is not part of the 

apoptotic process and has called it 'pseudoapoptosis'. They have proposed 

that P2X7 couples to two distinct mechanisms. 

Firstly, brief stimulation of P2X7 receptors leads to influx of extracellular Ca2
+ 

into the cell resulting in PS-flip and loss of membrane asymmetry. This 

directly triggers actin filament disruption and zeiotic membrane blebbing. 

Increased intracellular Ca2
+ also enters the mitochondria, leading to 

mitochondrial swelling but no cytochrome c release. This process is 

completely reversible when intracellular Ca2
+ levels fall. 

Alternatively, prolonged P2X7 stimulation for more than 20-30 minutes leads 

to the release of cytochrome c from the mitochondria, which initiates 

apoptosome formation, activation of caspase enzymes and subsequent 

apoptotic cell death. Apoptotic membrane blebbing occurs via a calcium

independent pathway involving the ROCK-1 (RhoA-associated kinase) 

signalling cascade and is not reversible. 

MacKenzie, AB et al., (2005) also proposed that the rapid reversible 

cytoskeletal rearrangements may be linked to other similar effects of P2X7 

stimulation such as cell proliferation and giant cell formation, which also 

require plasma membrane disruption. 

In the data presented here, P2X7-stimulated Il-1~ release generally occurred 

at lower agonist concentrations than AV binding. Il-1 ~ release has also been 

shown to be maximal after short stimUlation times (MacKenzie, A et al., 

2001). This suggests that Il-1 ~ release is associated with reversible PS-flip 
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rather than irreversible apoptosis which requires 30 minutes stimulation of 

the P2X7 receptor (MacKenzie, AB et al., 2005). This implies that IL-1 f3 

release is a primary response to P2X7 receptor stimulation whereas 

apoptosis is a secondary effect of prolonged stimulation. P2X7 antagonism 

could therefore provide a useful treatment for IBD by reducing levels of IL-1f3 

release. IL-1f3 has been shown to reduce monocyte apoptosis, so inhibition 

of IL-1f3 release might also encourage apoptotic cell death, further reducing 

the numbers of inflammatory cells (Mangan, DF et al., 1991). 

4.4. THE FUNCTIONAL CHARACTERISATION OF THE P2X7 RECEPTOR 

The results presented in chapters 3 and 4 have shown that human colonic 

LPMCs express functional P2X7 receptors in common with PBMCs and the 

monocyte cell line, THP-1 cells. This has been demonstrated by increases in 

pore formation, IL-1 f3 release and PS flip on stimulation with the P2X7 

receptor agonists, BzA TP and ATP. A pictorial comparison of the ECso 

values obtained for EB uptake, IL-1f3 release and AV binding is shown in Fig 

4.13. Although the values for each agonist were all of the same order, it 

appears that those for AV binding were somewhat higher than those for IL-1f3 

release and EB uptake, which were very similar. This was particularly true for 

ATP stimulation of monocyte cells. 

ECso values, while being a measure of the half-maximal response, are not a 

measure of receptor occupancy, and in many tissues a maximal response 

can occur when an agonist occupies less than a tenth of available receptors 

(Jenkinson, DH, 2003). In many cases the response seen in the tissue is not 

a direct effect of receptor occupation but involves activation of a chain of 

signalling molecules. Each step in the chain of events can produce many 

more active molecules leading to amplification of the response. Therefore, a 

response involving many steps is likely to require less initial activation (and 

hence have a smaller ECso value) than one involving few steps. 

The three responses of P2X7 receptor binding studied here, namely IL-1f3 

release, AV binding and EB uptake, are produced by different consequences 

of P2X7 activation. 
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Fig 4.13. A pictorial comparison of ECso values for EB uptake, 
AV binding and IL-1~ release in mononuclear cells stimulated 
with BzA TP or ATP 
EC!50 values for AV binding appear to be higher than those for IL-1 ~ release 
and EB uptake, particularly for ATP stimulation of monocyte cells (b). The 
EC!50 values for EB uptake are very similar to those for IL-1 ~ release except 
for BzATP stimulation of Iymphocyte cells where the values were high. 
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The P2X7 receptor is an ion channel, activation of which results in increased 

intracellular Ca2+ and Na+ concentrations and decreased K+ concentration. 

As described in section 4.3.1.2, intracellular Ca2+ concentrations are 

important for the control of PS distribution in the cell membrane. High 

intracellular Ga2+ results in inactivation of PS-flipase enzyme and activation 

of the scram blase enzyme, leading to increased PS on the external surface 

of the cell membrane. The increased AV binding associated with P2X7 

stimulation is therefore a consequence of the receptor ion channel activity 

and increased intracellular Ga2+ concentration. 

Another result of P2X7 ion channel activity is reduced intracellular K+ 

concentrations, and this has been shown to be necessary for caspase-1 

maturation (Gheneval, 0 et al., 1998; Perregaux, DG et al., 1994). The 

maturation of caspase-1 requires the formation of the inflammasome, a large 

complex of proteins which have to be activated and assembled together with 

pro-caspase-1 (Fig 1.6.). Formation of the complex allows autocatalysis of 

pro-caspase-1 to its mature form leading to maturation of pro-IL-1f3. Thus 

P2X7-stimulated IL-1 f3 release is a consequence of several intracellular 

processes, including decreased intracellular K+ concentration, formation of 

the inflammasome complex and maturation of caspase-1. 

P2X7-stimulated EB uptake is a result, not of ion channel activity, but the 

ability of the receptor to form a membrane pore on prolonged stimulation. 

Originally believed to be a property of the receptor itself, the pore is now 

thought to be formed by association of P2X7 with a separate pore-forming 

protein (North, RA, 2002). Pore formation is known to require the C-terminal 

chain of the receptor that forms part of a large signalling complex 

(Surprenant, A et al., 1996; Kim, M et al., 2001), but more recently it has also 

been shown to be associated with Signalling through MAP kinase pathways 

(Faria, RX et al., 2005; Donnelly-Roberts, 0 et al., 2004). 

Since IL-1 f3 release and EB uptake are associated with complex signalling 

pathways involving multiple steps, it is not surprising that the measured EG50 

values for these processes were generally lower than those for AV binding. 

EC50 values, although a useful measure, are not an absolute value and only 

apply to the experimental conditions in which they are measured. In order to 
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enable comparison between the results from each set of experiments, the 

incubation conditions were kept as similar as possible for all three, the main 

difference being that Il-1 p release was measured using 1 x 106 cells/ml 

rather than 2 x 106 cells/m!. This could potentially affect the ECso value since 

if more cells were present, then more agonist might be required to stimulate 

them. To check this, Il-1P release was measured from BzATP-stimulated 

lPMCs, using different concentrations of cells. The results (Fig 4.14.) 

showed that doubling of the cell number from 1 x 106 cells/ml to 2 x 106 

cells/ml had a substantial effect on the total amount of Il-1P released, but 

very little effect on the EC50 value. In support of this, the EB uptake 

experiments were carried out using cells at a concentration of 2 x 106 

cells/m I, the same as for AV binding, yet the resulting ECso values were very 

similar to those for Il-1 p release. 

The only other difference between the experimental conditions was that Il-1 p 
release was carried out in the presence of 0.1 % v/v FCS. Binding to FCS has 

been shown to reduce agonist potency (Michel, AD et al., 2001), so that the 

presence of FCS in the experimental medium might be expected to increase 

the value of the ECso. In the presence of 1 % v/v FCS, ATP concentration 

was only decreased by approximately 10% over 20 minutes (Michel, AD et 

al., 2001). It is unlikely therefore that a concentration of FCS as low as 0.1 % 

had any Significant effect on agonist concentration. 

The EC50 data for the Iymphocytes did not show such clear differences as 

that for the monocytes and may reflect different levels of receptor number or 

activity of the different pathways in the different cell types. 

It is becoming apparent that the length of stimulation time is critical to the 

effects of P2X7 stimulation, that P2X7-stimulated PS-flip is not necessarily a 

mark of apoptosis and that apoptotic cell death requires stimulation for 30 

minutes or more (MacKenzie, AB et al., 2005). The effect of stimulation time 

on IL-1P release and AV binding was therefore examined. 
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Fig 4.14. Effect of cell number on IL-1J3 release from 
LPMCs isolated from normal tissue 

LPMCs were resupended at the concentrations shown and incubated 
with LPS for 3h prior to stimulation for 20min with BzATP in RPMI1640 
+ 0.1% FCS. The EC50 values obtained are shown in the table. Results 
are from a single experiment. 
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CHAPTER 5. P2X7 RECEPTOR STIMULATION: TIME COURSE 

OF RESPONSE 

5.1. INTRODUCTION 

Early studies of IL-1P release suggested that it resulted from processes that 

caused cell damage, and was therefore thought to be associated with cell 

death (Gery, I et al., 1981; Hogquist, KA et al., 1991b). In addition, Hogquist, 

KA et al., (1991 a) showed that induction of necrotic cell death was 

associated with the release of pro-IL-1 p, but that mature IL-1 p was released 

from cells undergoing apoptosis. Later studies however, demonstrated that 

the release of IL-1P was mediated by ATP (Griffiths, RJ et al., 1995; 

Perregaux, DG et al., 1994). 

The cytotoxic ability of ATP has been known for some time (Arav, R & 

Friedberg, I, 1985; Mirabelli, F et al., 1986; Kitagawa, T et al., 1988). Many 

studies have shown that incubation for longer than 20 minutes in the 

presence of large (1-5mM) concentrations of extracellular ATP caused cell 

death; examples of these studies are listed in Table 5.1. In most of these 

studies the cells exhibited apoptotic changes, but ATP stimulation can also 

result in necrotic cell death (Zanovello, P et al., 1990). 

The 'cytotoxic A TP receptor' was subsequently identified as the P2X7 

receptor (Surprenant, A et al., 1996; Chiozzi, P et al., 1996). P2X7 is a 

bifunctional receptor that behaves as a cation-selective channel or non

selective pore depending on the level of its activation. All cells sensitive to 

ATP-mediated cell death express P2X7, and the degree of sensitivity 

generally correlates with the level of expression (Gu, BJ et al., 2000). The 

best evidence that P2X7 is the main cytotoxic receptor for ATP has come 

from studies using cells selected for high or low expression of P2X7 (Chiozzi, 

P et al., 1996), or using cells isolated from P2X7 knock-out mice (Brough, 0 

et al., 2002; Le Stunff, H et al., 2004). Chiozzi, Petal., (1996) selected 

macrophage clones that hyper-expressed the P2X7 receptor and showed 

that they underwent a high rate of spontaneous cell death during cuHure. 

This cell death was greatly reduced by addition of the P2X7 antagonist, 

oxidised ATP (oATP). Others have shown that microglia (Brough, 0 et al., 
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Reference cell type agonist stimulation 
time 

Ferrari, 0 et al., (2000) human dendritic cells SmM ATP 2 hours 
Nihei, OK et al., (2000a) mouse dendritic cells SmMATP 30 minutes 

Coutinho-Silva, R et al., 
02SC/1 mouse dendritic cell line SmMATP 30 minutes (1999) 

Blanchard, OK et al., (1991) human PBMC-derived 
1.25mM ATP 6 hours macrophages 

Le Feuvre, RA et al., (2002) mouse peritoneal macrophages 1 or 5mMATP 30 minutes 

Raymond, MN & Le Stunff, RAW 264.7 mouse macrophages 3mMATP 2 hours 
H, (2006) 

Chiozzi, P et al., (1997) J77 4 mouse macrophages 3mMATP 6 hours 

Ferrari, 0 et al., (1997a) N9 & N13 microglial cell lines 3mM ATP 30 minutes 

Brough, 0 et al., (2002) mouse microglia 1 or SmM ATP 3 hours 

Zheng, LM et al., (1991) rat thymocytes 1mMATP 90 minutes 

Sugiyama, T et al., (2005) rat retinal microvessels 3mMATP 24 hours 

Morelli, A et al., (2003) HEK293 cells expressing hP2X7 3mM ATP 20 minutes 

Table 5.1. Examples of published data for ATP-stimulated cell death 

127 



Chapter 5 

2002) and thymocytes (Le Stunff, H et al., 2004) isolated from P2X7 knock

out mice did not release lactate dehydrogenase (LDH) in response to ATP, 

compared to cells from wild-type mice. 

Sensitivity to ATP-mediated cell death varies between different cell types. 

Mouse YAC-1 lymphoma cells are rapidly lysed by 0.2-0.5mM ATP 

(Zanovello, P et al., 1990), whereas macrophage and microglial cells require 

stimulation with at least 1 mM ATP for 30 minutes or more (Blanchard, DK et 

al., 1991; Ferrari, D et al., 1999). In contrast some cells, such as cytotoxic T 

Iymphocytes or Iymphokine-activated killer cells, are resistant to ATP

mediated death (Di Virgilio, F et al., 1989). 

The kinetics of P2X7 receptor stimulation in isolated LPMCs has never been 

studied. Hickman, SE et al., (1994) reported that the P2X7 receptor is 

upregulated during development from monocyte to macrophage. They 

showed that human monocytes matured in culture with 30% v/v human 

serum demonstrated an increase in ATP-stimulated pore formation from 10% 

to 45% of the cell population after 7 days. LPMC macrophages might 

therefore be expected to be more susceptible to ATP-mediated cell death 

than PBMC monocytes. Similarly Gu, BJ et al., (2000) showed that 

monocytes have a four- to five-fold greater expression of P2X7 than 

Iymphocytes suggesting that they should be more susceptible to ATP

mediated cell death than the Iymphocyte population. 

The kinetics of P2X7 stimulation of LPMCs with ATP, and the more potent 

agonist BzA TP, were investigated and compared to those of PBMCs and 

THP-1 cells. AV-FITC was used as a marker of PS-flip (and hence 

apoptosis) and PI as a marker of cell death. The kinetics of IL-1P release 

were also studied and compared to those for AV/PI binding. 

5.2. TIME COURSE OF P2X7-STIMULATED AV-BINDING 

LPMCs isolated from normal tissue were used for these experiments. They 

would be expected to contain principally mature tissue macrophages with 

few peripheral blood monocytes, which are usually present in higher 

numbers in inflamed tissue. The effect of stimulation time was investigated at 

both maximal and half-maximal concentrations for the two agonists taken 
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from the concentration-response curves. At the start of these experiments, 

the aim was to use the same concentrations of the two agonists as far as 

possible for all three cell types. The ECso values were used as a guide for the 

half-maximum concentrations, and for all of the experiments 100)lM BzA TP 

and 1mM ATP were used. These were a compromise between the ECso 

values determined for IL-1 p release (Table 4.1.) and those for AV binding 

(Table 4.2.). Maximum concentrations were chosen visually from the 

concentration-response curves, being the concentration at which the curve 

reached a plateau. For most of the cells the maximum ATP concentration 

used was 5mM, this was reduced to 3mM for IL-1P release in LPMCs. The 

maximum BzA TP concentration used was 1 mM with THP-1 cells but this was 

reduced to 300llM or 500)lM for the other cell types. 

The PBMC/LPMC Iymphocyte and monocyte cell populations were gated 

using C03 and CD14 or CD33 markers respectively as shown in Fig 2.2.a & 

b. For each gated cell population, values for AV+PI- and AV+PI+ binding 

were obtained as described in section 4.3.3 (Fig 4.10.). These were plotted 

separately to look at the effect of stimulation time on apoptosis and cell 

death. 

5.2.1. Method 

Cells were resuspended in RPMI1640 at a concentration of 2 x 106 cells/ml 

and incubated with BzATP or ATP, for 0, 1,2,3,5, 10,20,30,45 or 60min at 

37°C in a total incubation volume of 1 OO~I. Unstimulated controls were also 

prepared for each time point. Incubation was stopped by adding PBS (400J,J1), 

the cells were placed on ice and then centrifuged at 350 x g for 5min. THP-1 

cells were resuspended in 250J,J1 of cold binding buffer containing AV-FITC 

and PI, kept on ice and analysed by flow cytometry. For the PBMCs and 

LPMCs, cells were resuspended in 40J,J1 of cold binding buffer containing 

C03 and CD14 or C033 and incubated for 30min on ice in the dark. Cold 

binding buffer (200J,J1) containing AV-FITC and PI was then added, and the 

samples analysed by flow cytometry. 
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5.2.2. Results and Discussion 

5.2.2.1. Time course of AV binding in THP-1 cells 

With 1mM BzATP (Fig 5.1.a), AV+PI- binding rose rapidly from 9% to 61% of 

the total cell population after stimulation for 1 minute, and then increased 

gradually to a maximum of 70% at 10 minutes. It then steadily decreased to 

29% at 60 minutes, with an accompanying increase in AV+PI+ binding to 

51 % of the total cell population. Unstimulated control levels of both AV+PI

and AV+PI+ staining remained unchanged throughout, at approximately 5% 

and 9% respectively. 

Similarly with 100l-'M BzA TP (Fig 5.1.b), AV+PI- binding increased rapidly for 

the first 5 minutes, reached a peak at 10 minutes (47%), and then decreased 

to 27% at 60 minutes, with an associated increase in AV+PI+ binding (32%). 

The rate of AV/PI binding per minute was calculated by subtracting the value 

for each time point from the value for the following time point and dividing by 

the total time passed. For both concentrations of BzATP the rate of AV 

binding was highest at 0-1 minute (Fig 5.1.e). The rate for 1mM BzATP was 

approximately twice that for 100flM BzA TP which is compatible with using 

maximal and half-maximal concentrations of agonist. 

For both concentrations of BzATP, the increase in AV+PI+ staining matched 

the decrease in AV+PI- staining suggesting that the increased AV+PI+ cell 

population resulted directly from cells from the AV+PI- population. This was 

supported by the fact that the unstained AV-PI- population showed very little 

change after 10 minutes (Fig 5.2.a). 

With 5mM ATP (Fig 5.1.c), AV+PI- binding increased rapidly with time over 

the first 5 minutes, and then continued to increase steadily to a maximum of 

70% of the total cell population by 45 minutes. The highest AV binding rate 

occurred at 1-2 minutes (18% per min, Fig 5.1.f), but was less than half that 

for 1mM BzATP stimulation (53% per min). There was no increase in AV+PI+ 

binding, which was at or below the level of the controls. 

With 1mM ATP, there was very little stimulation of AV binding, only 14% of 

the total cell population responding after 45 minutes (Fig 5.1.d), but this may 

have been due to inaccurate measurement of the ECso. The increase in the 

concentration-response curves for AV binding with A TP occurred over a very 
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Fig 5.1. Time course of AV/PI binding in THP-1 cells 

i. AV/PI binding was measured by flow cytometry after 0-60min stimulation with BzATP or ATP 
in RPM I 1640 at maximal (a & c) or half-maximal (b & d) concentrations, taken from the 
concentration-response curves. Cells staining positive were expressed as a percent of the total 
cell population, and show the mean ± sem of four separate experiments. Values for the 
unstimulated control cells are also shown . . 
ii. Rate of binding was calculated by subtracting values for percent of total cell population 
binding AV/PI at each time point from the value for the following time point and dividing by the 
total time passed. 
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Fig 5.2. The effect of stimulation time on the unstained 
population of THP-1 cells 
AV/PI binding was measured by flow cytometry after 0-60min stimulation 
with BzATP or ATP in RPMI1640 at maximal or half-maximal 
concentrations. taken from the concentration-response curves. The graphs 
show the percent of the total cell population which remained unstained. and 
show the mean ± sem of four separate experiments. 
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narrow concentration range (Fig 4.11.a). Only two concentration points were 

on the slope of the curve and these generally had wide error bars due to 

variability of responses. This resulted in a wide margin of error for the curve 

fit and hence the value of the ECso. 

In THP-1 cells, BzA TP stimulation clearly produced a faster response, a 

higher rate of PS flip and more cell death than ATP. It may be that A TP 

requires stimulation times longer than 60min to cause cell death. This is 

supported by the fact that in many of the examples shown in Table 5.1., the 

cells were stimulated for several hours to bring about cell death. 

5.2.2.2. Time course of A V binding in PBMCs 

The maximal BzA TP concentration used for the PBMC time course 

experiments was 300J..lM. This was based on earlier results from the 

concentration-response curves in which the cells were stimulated for 5 

minutes (Fig 4.12.). These curves produced lower BzATP concentrations for 

both the ECso and the maximal response than those in which the cells were 

stimulated for 20 minutes. As a result fewer cells responded to stimulation, 

but the level of response was comparable to that seen in the concentration

response curves for this concentration of BzA TP (Fig 4.11 b & c) 

i. Lymphocyte-gated cells 

With 300~M BzATP (Fig 5.3.a), AV+PI- binding increased rapidly from 9% to 

46% of the Iymphocyte-gated cell population over the first 5 minutes, peaked 

at 48% at 10 minutes and then decreased steadily to 22% at 60 minutes. The 

decrease was matched by an increase in AV+PI+ binding which was most 

marked between 30-45 minutes, rising to 30% at 60 minutes. With 100J..lM 

BzATP (Fig 5.3.b), the pattern of AV/PI binding was very similar to that seen 

with 300J.1M BzA TP except that the percentage of cells staining was 

approximately half that seen at the higher concentration. 

ATP-stimulation of the Iymphocyte-gated cells at both concentrations (Fig 

5.3.c & d) produced a similar pattern of AV/PI binding to that of BzATP, 

except that the subsequent decrease in AV+PI- staining did not occur until 

after 30 minutes stimulation, with a correspondingly slower increase in 
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Fig 5.3. Time course of AV/PI binding in Iymphocyte-gated PBMCs 
i. AV/PI binding was measured by flow cytometry after 0-60min stimulation with BzA TP or 
ATP in RPMI1640 at maximal (a & c) or half-maximal (b & d) concentrations, taken from the 
concentration-response curves. Cells staining positive were expressed as a percent of the 
Iymphocyte cell population gated by C03-PE binding, and show the mean ± sem of four 
separate experiments. Values for the unstimulated control cells are also shown. 

ii. Rate of release was calculated by subtracting values for percent of gated cell population 
binding AV/PI at each time point from the value for the following time point and dividing by 
the total time passed. 
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AV+PI+ staining. The maximum rate of binding with 5mM ATP (7% per min) 

was approximately half that seen with 300llM BzA TP stimulation (13% per 

min, Fig 5.3.e & f) and occurred at 3-5min compared to 2-3min with BzATP. 

Unstimulated control cells demonstrated no change in AV/PI staining over 

the 60 minute period, remaining at approximately 11-19% AV+PI- staining 

and 7% AV+PI+ staining. 

ii. Monocyte-gated cells 

Like the Iymphocyte-gated cells, PBMC monocyte-gated cells demonstrated 

rapid increases in AV+PI- staining following stimulation. However the 

increased staining also decreased rapidly, with an accompanying rise in 

AV+PI+ binding after short stimulation times (Fig 5.4.a-d). In cell~ stimulated 

with 300llM BzATP (Fig 5.4.a), AV+PI- binding rose from 11% to 57% of the 

gated cell population within 5 minutes, but then decreased to values below 

those of the unstimulated control by 30 minutes. This was accompanied by a 

rise in AV+PI+ binding to 45% after 20 minutes stimulation. Stimulation with 

100J..lM BzA TP gave similar binding patterns but with only half the number of 

cells staining (Fig 5.4.b). In PBMC monocytes, the maximum rate of binding 

for both agonists occurred over 2-5 minutes (Fig 5.4.e & f), but the maximum 

rate of response to BzA TP was greater than that to ATP. 

The incubations with BzA TP and ATP were carried out at different times and 

the unstimulated controls demonstrated distinct staining patterns. In the 

experiments with BzATP, the level of control AV/PI staining during the 60 

minute period remained at approximately 18% of the gated cell population for 

AV+PI- staining and 14% for AV+PI+ (Fig 5.4a & b, open symbols). In 

contrast the unstimulated controls from the set of experiments with ATP 

showed increased AV+PI- staining over the first 5 minutes up to 59% of the 

gated cell population, which then fell to the initial level of staining of 

approximately 30% (Fig 5.4c & d, open squares). The AV+PI+ staining (open 

triangles) increased steadily throughout the 60 minute incubation period from 

16% to 33% of the gated cell population. 

Although both sets of experiments were carried out following the same 

protocol, the different results suggest that some factor during the 

experiments using ATP caused the control cells to become apoptotic and 

135 



i. Percent of AV/PI binding Chapter 5 

b) 100J1M BzATP 

75 

o +--,.-----r----.--; 1 i 0 +--,.----,----.---f 1-1 -,---,-

o 5 10 15 20 30 45 60 0 5 10 15 20 30 45 60 

• AV+PI- binding ·····0··· unstimulated AV+PI-

• AV+PI+ binding ·····6····· unstimulated AV+PI+ 

c: o 
~ 
(U 

"30) 
Q.c 

75 

8.:5 50 
=s BUl 

Q) 

i~ 
n;'in 25 
fl»8. 
-.t.r= ,.... .-

c) SmM ATP 

0'-
u ~ 0 +--,.-----r----.--; 1-1 -,---,-

o 5 10 15 20 30 45 60 

stimulation time (min) 

Ii. The rate of AV/PI binding 

e) BzATP 

25 • 300llM AV+PI-

20 & 100llM AV+PI-

15 0 300llM AV+PI+ 

l:l 100llM AV+PI+ 
10 

5 

o ~~Q;::::::;::~. • m1il 
o 5 10 15 20 30 45 60 

stimulation time (min) 

d) 1mM ATP 
75 

50 

25 

o +--,.-----r----.--; t-I -~---.i-

o 5 10 15 20 30 45 60 

f) AlP 
25 

20 

15 

10 

5 

stimulation time (min) 

• 5mMAV+PI

& 1mM AV+PI

o 5mMAV+PI+ 

l:l 1mMAV+PI+ 

o .wI!F:;::::::::...t ..... ,..;;:::~....... 0 =iI 
o 5 10 15 20 30 45 60 

stimulation time (m in) 

Fig 5.4. Time course of AV/PI binding in monocyte-gated PBMCs 
i. AVlPI binding was measured by flow cytometry after 0-60min stimulation with BzATP or 
AlP in RPMI1640 at maximal (a & c) or half-maximal (b & d) concentrations, taken from the 
concentration-response curves. Cells staining positive were expressed as a percent of the 
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total time passed. 
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die. One possible reason might be contamination of the PBMC preparation 

with platelets. Platelets contain large amounts of ATP but are normally 

removed during the low speed centrifugation washing procedure. A change 

in the protocol, such as use of a different centrifuge, might cause some 

platelets to remain or even rupture. Any ATP released into the medium would 

then trigger responses in the unstimulated cells, the effect being masked in 

the stimulated cells by the large amounts of external ATP added to them. 

This could also explain the higher level of AV+PI- staining observed in the 

controls for the corresponding ATP-stimulated Iymphocyte-gated cells 

(approximately 20%, compared to 11 % in the BzA TP-stimulated controls, Fig 

5.3.c). 

Another unusual feature of this set of experiments with PBMCs was that both 

the stimulated and unstimulated cells appeared to have a population of cells 

demonstrating high levels of PI staining at time 0 min, which decreased 

during the first 3 minutes of incubation. This decrease was mirrored by an 

increase in the unstained AV-PI- population over the same time period (Fig 

5.5.). This phenomenon was only observed with the PBMC cell populations 

and therefore must have been caused either by the isolation procedure or by 

a unique feature of these cells. The apparent reversal of PI staining within 

the cell populations would not be possible if the cells were dead and 

suggests that the PI staining is due to another cause. 

For the monocyte-gated cells, increases in AV+PI+ staining could be due to 

entry of the propidium ion through the P2X7 pore. As described earlier 

(section 1.7.1.), the P2X7 receptor has the ability to form a non-selective 

membrane pore that is permeable to small molecules. The monocyte pore is 

large, allowing permeation of molecules up to 9000a in size, and the 

propidium ion has a molecular weight of only 4140a. It is possible to surmise 

therefore that ATP released during the isolation procedure, maybe from dead 

cells or platelet contamination, could stimulate pore opening allowing entry of 

PI into the cells. Subsequent incubation and A TP removal by endonucleases 

would then allow the pore to close resulting in reduced staining with PI. 

Lymphocytes are reported to have a smaller pore than monocytes, 

approximately 3000a in size, so that any staining with PI should be an 

indication of cell death. However the size of the Iymphocyte pores has not 
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Fig 5.5. lhe effect of stimulation time on the unstained populations 
of Iymphocyte- and monocyte-gated PBMCs 
AV/PI binding was measured by flow cytometry after 0-60min stimulation with BzATP or 
ATP in RPMI1640 at maximal or half-maximal concentrations, taken from the 
concentration-response curves. The graphs show the percent of the respective gated 
cell populations which remained unstained, and show the mean ± sem of four separate 
experiments. 
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been absolutely defined, and the propidium ion is only slightly larger than the 

estimated pore size, so it is possible that a similar effect may occur. 

5.2.2.3. Time course of A V binding in LPMCs 

The maximal BzA TP concentration used was 500JlM for this set of 

experiments. 

i. Lymphocyte-gated cells 

The pattern of AV/PI binding in Iymphocyte-gated LPMCs stimulated with 

BzA TP or A TP was similar to that seen in Iymphocyte-gated PBMCs except 

that there was very little increase in AV+PI+ binding above control values 

(Fig 5.6.a-d). This suggests that LPMC Iymphocytes are less susceptible to 

P2X7-stimulated cell death than PBMC Iymphocytes. Maximum AV+PI

binding occurred at 10 minutes with BzA TP stimulation and 20 minutes with 

ATP; the maximum levels reached (60-70%) were similar for both agonists. 

The maximum rate of binding with BzA TP stimulation also occurred earlier 

(1-2min) than with ATP stimulation (3-5min) (Fig 5.6.e & f) and was twice that 

of ATP (20% per min for BzA TP and 9% per min for ATP). There was little 

change in AV/PI staining in unstimulated control cells which remained at 

approximately 14% AV+PI- staining and 4% AV+PI+ staining. 

ii. Monocyte-gated cells 

AV+PI- staining in LPMC monocyte-gated cells rose rapidly on stimulation 

with both BzA TP and ATP, followed by a steady decrease and an associated 

increase in AV+PI+ staining (Fig 5.7.a-d). Both the maximum levels of AV 

binding and the maximum rates (Fig 5.7.e & f) were similar for both agonists 

but occurred slightly earlier with BzA TP stimulation. As seen for PBMCs, the 

peak rates of reaction for each agonist with the monocyte-gated cells 

occurred earlier than with Iymphocyte-gated cells. 

It was noticeable that the pattern of AV+PI+ staining in unstimulated control 

cells matched that of the stimulated cells, demonstrating a rise from 

approximately 10% to 30% of the cell population over the incubation period. 

This implies that the LPMC monocytes spontaneously died during incubation 

and that stimulation with BzA TP or ATP did not substantially increase cell 

death. However the observed decrease in the AV+PI- stained population of 
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Fig 5.6. Time course of AV/PI binding in Iymphocyte-gated LPMCs 

i. A VIP I binding was measured by flow cytometry after 0-60min stimulation with BzA TP or 
ATP in RPMI1640 at maximal (a & c) or half-maximal (b & d) concentrations, taken from the 
concentration-response curves. Cells staining positive were expressed as a percent of the 
Iymphocyte cell population gated by CD3-PE binding, and show the mean ± sem of four 
separate experiments. Values for the unstimulated control cells are also shown. 

ii. Rate of release was calculated by subtracting values for percent of gated cell population 
binding AVIPI at each time point from the value for the following time point and dividing by the 
total time passed. 
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Fig 5.7. Time course of AV/PI binding in monocyte-gated LPMCs 
i. AV/PI binding was measured by flow cytometry after 0-60min stimulation with BzATP or 
ATP in RPMI 1640 at maximal (a & c) or half-maximal (b & d) concentrations, taken from the 
concentration-response curves. Cells staining positive were expressed as a percent of the 
monocyte cell population gated by C033-APC binding, and show the mean ± sem of four 
separate experiments. Values for the unstimulated control cells are also shown. 

ii. Rate of release was calculated by subtracting values for percent of gated cell population 
binding AV/PI at each time point from the value for the following time point and dividing by the 
total time passed. . 
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stimulated cells was likely to be a result of cells becoming positively stained 

for PI, and hence becoming part of the AV+PI+ population. This, together 

with the apparent spontaneous cell death seen in these cells, should have 

given rise to a bigger population of AV+PI+ cells. The fact that it didn't 

suggested that dead cells were being lost from the cell gate and hence not 

being counted. 

This was confirmed by looking at the number of cells contained within the 

monocyte gate. Cell death is accompanied by shrinking and fragmentation 

resulting in non-inclusion within the cell gate. The number of cells contained 

within the gates was plotted for both PBMCs and lPMCs, and is shown in 

Fig 5.8. All of the gated cell populations showed a reduction in number 

during the incubation period, but the monocyte-gated cells were particularly 

affected. For the lPMC monocyte-gated cells, the number within the 

unstimulated control cell population fell from 6.5% to 5.2% of the total cell 

population, a drop of 20% over the 60 minute incubation period. However, for 

the lPMCs stimulated with maximal agonist concentration, the number 

contained within the monocyte gate fell to 2.8% of the total cell population, a 

decrease of 57%. This might therefore account for the apparent lack of 

increased AV+PI+ staining on stimulation with BzATP and ATP. 

5.2.3. Summary of AV binding 

The kinetics of AV binding, and hence PS externalisation on the cell 

membrane, appeared to be rapid in all the cell types following P2X7 

stimulation. One study has shown that PS was exposed on the surface of 

THP-1 or HEK cells within 1-2 seconds of exposure to BzATP (MacKenzie, A 

et al., 2001). The results presented here did not measure such small time 

periods, but maximum AV+PI- binding (indicating PS flip) was achieved with 

BzATP stimulation over a period of 2-10 minutes with the greatest rate of 

binding per minute occurring between 0-3 minutes. For ATP the kinetics was 

slightly slower with maximum AV+PI- binding at 10-30 minutes and peak rate 

per minute at 1-5 minutes. In general, the maximum rate of BzA TP

stimulated AV binding was twice that of ATP-stimulated binding. 

For all the cell types the maximum level of AV+PI- binding was very similar 

for both agonists at their maximal concentrations, and was comparable to the 
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Fig 5.8. Changes in the number of cells contained within the gates 
for the Iymphocyte and monocyte populations of PBMCs and LPMCs 

The Iymphocyte and monocyte populations were gated from the SS vs CD marker dotplots 
and the number of cells contained within each gate were expressed as a percent of the total 
cell population. 
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level of binding seen in the concentration response curves. As expected, 

100J.lM BzA TP produced a level of AV+PI- binding that was approximately 

half that produced by the maximal concentration of BzA TP, but with ATP the 

response to 1 mM was less than half that to 5mM. This was because of the 

difficulties of trying to standardise the agonist concentrations used for all 

parts of these experiments. The calculated ECso values for IL-1 J3 release 

were generally lower than those for AV binding, and the half-maximal 

concentration selected for the ATP experiments was less than its ECso value 

for AV binding. 

Stimulation with 1 mM ATP has produced variable responses in other studies 

using mouse thymocytes. Both demonstrated maximal PS externalisation 

after approximately 15 minutes, but while the maximal response was 15% in 

one study (Le Stunff, H et al., 2004), in the other it was 40% (Courageot, MP 

et al., 2004), which is closer to the values seen with 5mM ATP in the results 

presented here. 

Reducing the concentration of agonist did not affect the pattern of AV+PI

and AV+PI+ binding relative to each other. The overall effect of using half the 

maximal agonist concentration was to reduce the number of cells responding 

by approximately half. This was particularly clear for BzA TP stimulation of 

PBMC monocytes (Fig 5.4.a & b). 

The increase in AV binding occurred more rapidly in monocyte-gated cells 

than Iymphocyte-gated cells, demonstrated by the peak rates of binding per 

minute which occurred at 0-2min for monocytes and 2-5min for Iymphocytes. 

This was expected since monocytes have 4-5-fold greater expression of 

P2X7 than Iymphocytes (Gu, BJ et al., 2000). 

The findings of Hickman, SE et al., (1994), who showed increased P2X7 

activity in macrophages compared to monocytes, suggested that 

macrophages should be more susceptible to cell death than monocytes. This 

appeared not to be the case since PBMC monocytes exhibited a more rapid 

increase in levels of AV+PI+ binding (indicating cell death) than LPMC 

monocytes. PBMCs were also stimulated with a lower maximal concentration 

of BzA TP than the LPMCs yet demonstrated a greater response. 
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The innate susceptibility of the different populations to cell death can be 

looked at by considering the AV/PI staining patterns for the unstimulated 

control cells shown below. 

Cell type AV+PI- staining (PS flip) AV+PI+ staining (cell death) 

PBMC Iymphocytes approx 11-19% approx 7% 

LPMC Iymphocytes approx 14% approx 4% 

THP-1 cells approx 5% approx 9% 

PBMC monocytes approx 18-30% approx 15% increasing to 33% 

LPMC monocytes approx 18% approx 10% increasing to 30% 

Lymphocytes exhibited a low level of spontaneous cell death (4-7% of cells) 

that remained relatively constant throughout the whole time course of the 

experiment. In contrast, monocytes not only displayed a greater level of 

basal AV+PI+ staining (9-15% of cells) than Iymphocytes, but this also 

increased with time to 30% of the cell population. These levels were similar 

for both PBMC and LPMC monocyte gated cells. 

Another indication of cell death is the decrease in the gated cell population, 

as was described in section 5.2.2.4.ii and Fig 5.8. The percent decreases in 

the respective cell populations are shown below: 

unstimulated control cells maximally stimulated cells 

PBMC Iymphocyte-gated cells 12% 23% 

LPMC Iymphocyte-gated cells 5% 15% 

PBMC monocyte-gated cells 35% 78% 

LPMC monocyte-gated cells 20% 57% 

It is clear that monocyte-gated cells were more susceptible to both 

spontaneous and stimulated cell death than Iymphocyte-gated cells, and lost 

a much greater percentage of their respective cell populations. Isolated 

PBMCs also exhibited greater loss of cells than LPMCs for both cell types, 

suggesting that in fact they are more susceptible to cell death. 

However, the reduction in cell number in the gated PBMC monocyte 

population is not solely due to cell death but also to loss of CD14, the marker 

used to identify the monocyte population. Bazil, V & Strominger, JL, (1991) 

demonstrated that monocytes shed CD14 following stimulation with 

activating agents such as PMA and LPS, and suggested that it was a 
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regulatory mechanism to reduce the monocyte response following initial 

activation. The flow cytometry dotplots for CD14 staining of PBMC 

monocytes clearly demonstrated a reduction in the CD14-positive population 

following BzATP (Fig 5.9.) and ATP stimulation. 

As described in section 5.2.2.3.ii, increased AV+PI+ staining in monocyte

gated cells may be due to PI entry through the P2X7 pore rather than cell 

death. It has been proposed that pore formation is a result of P2X7 coupling 

to a pore-forming protein within the membrane (North, RA, 2002). This could 

explain the diversity of the PI+ staining in the three monocyte cell types 

studied here, that are likely to demonstrate differences in their membrane 

proteins and regulation of pore formation. 

To attempt to dissociate increased PI staining due to uptake through the pore 

from that due to cell death, an experiment was carried out using a larger 

nucleic acid dye, TOTO-3. 

5.3. USE OF TOTO-310DIDE TO INVESTIGATE CELL DEATH IN PBMCS 

5.3.1. Introduction 

TOTO-3 iodide (Molecular Probes, Invitrogen) is a dimeric cyanine dye which 

exhibits strong fluorescence on binding to DNA (Molecular Probes, 2000). 

The aim of this experiment was to use a nucleic acid dye which was too large 

to enter through the pore of monocytes i.e. with a molecular weight greater 

than 9000a, and compare its uptake into PBMCs with that of the smaller 

dyes. 

5.3.2. Method 

PBMCs from a single subject were stimulated with 1 mM BzA TP as 

previously described for 5,20 or 60 minutes and then stained with AV-FITC 

and TOTO-3 (0.1JlM) together with either EB or PI. PE-labelled CD3 or CD14 

were added to identify the Iymphocyte or monocyte populations respectively. 

EB and PI have similar excitation and emission wavelengths and cannot be 

measured together (Fig 5.1 O.a). Each test condition was therefore set up in 

quadruplicate with the following combinations of stains: 
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The figures show flow cytometry dotplots of side scatter v CD14 staining 
of PBMCs. The population of monocytes visible in the unstimulated 
control cells clearly diminishes on stimulation with BzATP. A similar 
effect was observed following ATP stimulation 
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a) Excitation and emission spectra of TOTO-3 (red line), PI (blue line) and EB (green 
line). The wavelength of the filter for TOTO-3 detection is shown as a red band. 
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Fig 5.10. Emission spectra and dotplots of TOTO-3 and PI or EB 
fluorescence 
Fig a shows the overlap between the emission spectra of EB, PI and TOTO-3. It is 
clear that some of the EB and PI emitted fluorescence falls within the TOTO-3 filter 
wavelength. The overlapping fluorescence can normally be compensated for as in the 
case of EB (fig b), but because the PI emission is greater than the EB emission it 
could not be fully compensated for. The cells which fluoresce in both channels appear 
as a linear band on the dotplot (fig c). 
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The results for TOTO-3 were taken from the samples in which it was added 

in the presence of EB because there was some overlap between PI and 

TOTO-3 fluorescence which could not be fully compensated for (Fig 5.1 O.c). 

The percentages of Iymphocyte- or monocyte-gated cells staining positively 

for each dye are shown in Fig 5.11. 

The Iymphocyte pore was clearly open after 20 minutes stimulation as shown 

by the near-maximal uptake of EB (Fig 5.11.a), which reached levels of 

staining (approximately 40%) comparable to that seen in the concentration

response curves (Fig 3.3.b). The increase in the number of TOTO-3-stained 

cells was small, only 12% of the population after 60 minutes stimulation, 

reflecting cell death. The PI+ population increased in proportion to the 

stimulation time, to a level greater than that seen with the other dyes (79%). 

PI is considered to be too large to enter the pore of Iymphocyte cells and 

should therefore be a marker for cell death in this cell type. However, if the 

level of PI staining was due to cell death, the other dyes would be expected 

to show similar numbers of stained cells. 

ES has been shown to spontaneously leak out of liposome membranes due 

to its higher lipophilicity than that of propidium (Silvander, M & Edwards, K, 

1996), a process that might also occur in cell membranes and therefore lead 

to reduced uptake. This may explain the lower level of ES uptake compared 

to PI uptake. The difference between the PI and the TOTO-3 staining could 

be a result of their molecular sizes. PI (MW 414) is only slightly larger than 

the pore size of Iymphocytes (3000a) and therefore could enter the cell quite 

quickly once the membrane starts to break down. TOTO-3 however, is twice 

as large as PI and would require a greater degree of membrane disruption to 

enter the cells, and hence a longer stimulation time. It is also possible 

however that the high level of PI staining is an artefact of the overlapping 

fluorescence with TOTO-3 shown in Fig 5.10.c. 
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Fig 5.11. Measurement of cell death in BzA lP-stimulated 
PBMCs using EB, PI and TOTO-3 
PBMCs were incubated with 1mM BzATP for 5,20 or 60min and then 
stained with AV-FITC and TOTO-3 with either EB (ethidium bromide) or PI 
(propidium iodide). Cell populations were identified with PE-labelled 
antibodies to CD3 or CD14. Each data set has been corrected for the 
unstimulated control value and show the results of a single experiment. 
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In monocyte-gated cells, the number of EB-stained cells was high after only 

5 minutes stimulation (42%) and maximal after 20 minutes (62%) (Fig 

5.11.b). This is because the pore in these cells is much larger (900Da), 

allowing the passage of the small EB ion (MW 314) with much shorter 

stimulation times. PI staining was low after stimulation for 5 minutes (3%) but 

was maximal after 20 minutes stimulation (77%). Following stimulation for 20 

minutes, TOTO-3 was only taken up by 25% of the cell population, but after 

60 minutes stimulation the uptake of all three dyes was the same (62-67%). 

The difference between the levels of staining for PI and TOTO-3 after 20 

minutes stimulation suggests that some component of PI uptake in 

monocytes is probably due to entry through the pore with shorter stimulation 

times. After 60 minutes stimulation however, 60% of the cell population was 

clearly dead. 

TOTO-3 was not an ideal dye for this experiment because the molecular 

weight of the ion is 846, slightly smaller than the estimated size of the 

monocyte pore. However it was the largest dye available that was suitable 

for excitation with the flow cytometer. It is possible therefore that some of the 

fluorescence with TOTO-3 in monocytes was also due to entry through the 

pore. Nevertheless the much lower level of TOTO-3 staining after 20 minutes 

stimulation compared to that of PI suggests that TOTO-3 is a better marker 

of cell death than PI in monocytes. The use of TOTO-3 however was 

inconclusive as a means of comparing pore entry with cell death. Despite 

this, the results confirmed that monocytes are much more susceptible than 

Iymphocytes to cell death with prolonged P2X7 stimulation, and suggest that 

Iymphocytes might need longer than 60 minutes incubation with agonist to 

instigate cell death. 

As an alternative indicator of cell death, the release of lactate 

dehydrogenase (LDH) was measured. 
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5.4. LDH RELEASE FROM P2X7-STIMULATED CELLS AS A MEASURE 

OF CELL DEATH 

5.4.1. Introduction 

LDH is an enzyme found in the cytoplasm of viable cells which catalyses the 

interconversion of pyruvate and lactate. Dead or damaged cells release LDH 

into the supernatant and this provides a marker of population viability and 

membrane integrity (Legrand, C et al., 1993). 

5.4.2. Method 

For PBMCs and LPMCs, the supernatants from the IL-1 J3 experiments 

(section 5.5) which had been stored at -BOoC were assayed for LDH release. 

For THP-1 cells, experiments were set up as described for IL-1J3 release 

(section 5.5.1.) and the supernatants stored at -BOoC until assayed for LDH. 

Because the samples for IL-1 J3 analysis had been pre-incubated with LPS, 

the LPS controls were also assayed for LDH release. 

Samples were assayed using an LDH kit (In vitro Toxicology Assay Kit, 

Lactic Dehydrogenase based, Sigma-Aldrich) according to the 

manufacturer's instructions. Positive controls were prepared from freshly 

isolated cells lysed using the solution provided. 1 001-11 of cell supernatant was 

pipetted into duplicate wells of a 96-well plate. Controls were prepared to 

match the experimental conditions; negative controls using RPMI 1640 and 

positive controls with lysed-cell supernatant. Assay mix was prepared by 

mixing equal volumes of LDH substrate, enzyme and dye solutions, and 501-11 

was added to each well. Plates were incubated for 20-30min at room 

temperature in the dark and the reaction was stopped by adding 15JlI of 1 M 

hydrochloric acid. Absorbance was read at 492/690nM using a Multiskan 

Ascent® microplate photometer (Thermo Electron Corporation). Results were 

corrected for the negative control and expressed as a percent of the positive 

control. 
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5.4.3. Results and Discussion 

THP-1 cells displayed little LDH release for the first 5 minutes of stimulation 

after which time LDH levels rose steadily with ATP stimulation, and more 

rapidly with BzATP stimulation (Fig 5.12.a & b). For each agonist, the 

amount of LDH released was similar for both concentrations, although 1 mM 

ATP released more LDH than 5mM ATP. This concurs with two other 

studies, using macrophages differentiated from PBMCs (Ferrari, 0 et al., 

1997b) and mouse thymocytes (Le Stunff, H et al., 2004), that also showed 

LDH release to be maximal at 1 mM ATP and reduced at higher 

concentrations. The fact that BzATP, a more potent P2X7 agonist, induced 

both a greater and a more rapid release of LDH enzyme than ATP suggests 

that stimulation of the P2X7 receptor results in cell death. 

Following stimulation for up to 60 minutes, neither PBMCs nor LPMCs 

demonstrated a sizeable increase in LDH release (Fig 5.12.c-f). BzA TP 

stimulation seemed to release more LDH from PBMCs than LPMCs but with 

ATP-stimulation this was reversed, and the secretion from ATP-stimulated 

PBMCs was very low. One possible reason for this might be that PBMCs are 

more efficient at breaking down ATP with endonuclease enzymes. This is 

supported by the earlier observation that stimulation of AV binding in PBMCs 

for 20 minutes required higher concentrations of agonist to achieve the same 

level of binding as stimulation for 5 minutes (Fig 4.12.). However, this is 

contradicted somewhat by the results for PI staining, which was greater for 

PBMCs than LPMCs with both agonists, but as indicated previously, high 

levels of PI staining can reflect uptake through the P2X7 pore rather than cell 

death. 

In both PBMCs and LPMCs neither agonist appeared to release more LDH 

than that produced by the LPS controls. Le Feuvre, RA et al., (2002) showed 

that LPS priming of mouse peritoneal macrophages made the cells more 

susceptible to ATP-stimulated cell death, hence it is possible that LPS alone 

could cause some release of LDH. 

For the mixed cell populations it is impossible to know which cells had 

released the LDH. However given the low PI+ binding of Iymphocytes, it is 

more likely that the monocytes are the source. The mixed cell populations 
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Fig 5.12. The release of LDH enzyme from mononuclear cells 
stimulated with BzA TP or A TP 
Samples were assayed according to the manufacturer's instructions. Results were 
corrected for the negative control and expressed as a percent of the positive control 
(THP-1 cells or PBMCs). The PBMC and lPMC samples assayed were the 
supematants from the incubations for Il-1P release. These cells had been incubated 
with LPS prior to stimulation, therefore the lPS control samples were also assayed for 
LDH release. 
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were composed of approximately 40-50% Iymphocytes and 5-10% 

monocytes, it is therefore possible to surmise that the secretion of LDH seen 

in the mixed cells, which was approximately 5% of the positive control, may 

have been due to the response of monocytes to LPS incubation and P2Xr 

stimulation. 

This is supported by the high level of LDH release observed in the THP-1 

monocyte cells following P2X7 stimulation, and also by the results of TOTO-3 

uptake in PBMCs. Those experiments demonstrated that following 

stimulation for 60 minutes, 60% of the monocyte cell population were 

permeable to TOTO-3 but only 10% of the Iymphocyte population. This 

suggests a much greater disruption of the monocyte cell membrane 

compared to Iymphocytes and hence a greater likelihood of the release of 

LDH, an even bigger molecule than TOTO-3, from the monocytes. 

Most studies using non-monocyte cells have shown less than 10% of total 

LDH released into the supernatant after 60 minutes stimulation with ATP (Le 

Stunff, H et al., 2004; Grahames, CB et al., 1999; Gudipaty, L et al., 2003). 

However, other studies have found that stimulation for 60 minutes released 

approximately 27% of total LDH from macrophages stimulated with 1 mM 

ATP and approximately 42% from dendritic cells with 5mM ATP (Ferrari, D et 

al., 1997b; Ferrari, 0 et al., 2000). In contrast, Murgia, M et al., (1992) 

stimulated J774 macrophages with 3mM ATP and found that LDH was not 

released until 1 hour after addition of agonist (10%) but then increased 

steadily up to 60% at 6 hours. Similarly, Grahames, CB et al., (1999) 

stimulated PMA-differentiated THP-1 cells with 5mM ATP for up to 4 hours 

and found that less than 10% of the total LDH was released. 

The molecular weight of LDH is approximately 140,000 (Plummer, DT & 

Leathwood, PO, 1967) and such a large molecule is likely to be released only 

during the final stages of cell death when membrane disruption is high. It is 

probable therefore that stimulation for a period greater than 1 hour is 

required to observe significant amounts of LDH released from PBMCs and 

LPMCs. 
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5.5. TIME COURSE OF P2X7-STIMULATED IL-1 P RELEASE 

The kinetics of IL-1 p release was measured in PBMCs and LPMCs. 

Monocytes are the principal source of IL-1P so the kinetics of its release was 

compared to the kinetics of AV/PI binding in monocyte-gated cells. 

5.5.1. Method 

Cells were resuspended in RPMI 1640 containing 0.1 % v/v FCS at a 

concentration of 1 x 106 cells/ml, and incubated with LPS (1J,Jg/ml) for 

approximately three hours at 37°C in 5% C02. Cells were then incubated 

with BzATP or ATP for 0, 1,2,3,5, 10,20,30,45 or 60min at 37°C in a total 

incubation volume of 100J,J1. LPS controls (containing no BzATP or ATP) and 

RPMI medium controls were also prepared for each time point. Incubation 

was stopped by adding PBS (400J,J1), the cells were placed on ice and then 

centrifuged at 350 x g for 5min. Aliquots (450J,J1) of the supernatants were 

stored at -BO°C for assay by sandwich ELlSA, according to the 

manufacturer's instructions. 

5.5.2. Results and Discussion 

5.5.2.1. Time course of IL.1p release from PBMCs 

For PBMCs, the release of IL-1 p was very similar with both concentrations of 

BzATP (Fig 5.13.a). After 2 minutes, a sharp rise in IL-1P release was 

observed reaching a plateau at approximately 20 minutes, after which time 

there was no further increase. Both concentrations of BzATP released large 

amounts of IL-1J3, reaching a maximum of 6403 ± 2174 pgl106 cells at 20 

minutes with 300J.1M BzA TP, and 5186 ± 1220 pg/106 cells at 30 minutes with 

100llM BzATP. These values are of a similar order but greater than the 

amount released in the concentration-response curve which peaked at 2509 

± 777pg/106 cells with 1121lM BzATP and 20 minutes stimulation. The rate of 

release of IL-1 J3 was calculated for each time point and this was maximal at 

2-5 minutes (Fig 5.13.c). It is clear from the results that the half-maximal 

concentration used was too high and gave a near-maximal response. This is 

because the ECso for IL-1 p release from PBMCs was much lower than that 

for AV binding, and it would have been better to use individualised 
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Fig 5.13. Time course of IL-1 p release from PBMCs 

i. Cells were stimulated for up to 60min with BzATP or ATP in RPMI1640 + 0.1% FCS 
at maximal or half-maximal concentrations, taken from the concentration-response 
curves. Results were corrected for the LPS control, and show the mean ± sem of four 
separate experiments. 

ii. Rate of release was calculated by subtracting values for pg IL-1f3 released at each 
time point from the value for the following time point and dividing by the total time 
passed. 
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concentrations for each. rather than trying to standardise the concentrations 

used in all parts of the experiment. 

With 5mM ATP, the release of IL-113 also reached a plateau after 20 minutes 

although the amount released was much less than with BzATP (Fig 5.13.b). 

The rate of release was also slower than that of BzA TP and reached a 

maximum at 5-10 minutes (Fig 5.13.d). With 1mM ATP the release of IL-113 

was slower and did not reach a plateau until 45 minutes. Both concentrations 

of ATP however did ultimately release similar maximal amounts of IL-113; 507 

± 305 pg/106 cells at 20 minutes with 5mM ATP and 513 ± 226 pg/106 cells 

at 45 minutes with 1 mM A TP. These values are considerably less than the 

maximum amount released in the concentration-response curve which was 

1767 ± 508pg/106 cells with 2mM ATP and 20 minutes stimulation. The lack 

of IL-113 release from ATP-stimulated PBMCs was due to the use of K2ATP in 

this set of experiments. Because of a shortage of Na2A TP stock, K2ATP was 

used for the time course experiments and resulted in reduced release of IL-

113. This was confirmed by a test carried out with LPMCs and detailed in 

section 5.5.2.2. below. 

5.5.2.2. Time course of /L.1p re/ease from LPMCs 

For LPMCs stimulated with 300J-lM BzA TP IL-113 release increased steadily 

with time reaching a plateau at 30 minutes (Fig 5.14.a); the rate of release 

was greatest at 5-10 minutes (Fig 5.14.c). As to be expected the amount of 

IL-1P released (911 ± 453 pg/106 cells at 30 minutes) was much less than 

that seen with PBMCs. but was comparable with the amount released in the 

concentration-response curve for this concentration of BzA TP (716 ± 234 

pg/106 cells). The variability between subjects in the amount of IL-113 

released was very high as demonstrated by the wide error bars. Following 

stimulation with 100J-lM BzATP there was very little release of IL-1I3. only 

reaching a peak of 194 ± 149pg/106 cells at 45 minutes. 

With ATP-stimulation there was very little IL-113 released at either 

concentration; 114 ± 33 pg/106 cells at 30 minutes with 3mM ATP. and 51 ± 

35 pg/106 cells at 30 minutes with 1mM ATP (Fig 5.14.b). This is somewhat 
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Fig 5.14. Time course of IL·1f3 release from LPMCs 
i. Cells were stimulated for up to 60min with BzATP or ATP in RPM I 1640 + 0.1% FCS 
at maximal or half-maximal concentrations, taken from the concentration-response 
curves. Results were corrected for the LPS control, and show the mean ± sem of four 
separate experiments. 

ii. Rate of release was calculated by subtracting values for pg IL-1~ released at each 
time point from the value for the following time point and dividing by the total time 
passed. 
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less than the amounts released in the concentration-response curve, which 

were 362 ± 215 pg/106 cells and 110 ± 49 pg/106 cells for the same 

concentrations of ATP with 20 minutes stimulation. 

As stated above K2A TP was used for this set of experiments and to test 

whether this was responsible for the reduced IL-1 P levels, a comparison was 

made between K2ATP- and Na2ATP-stimulated IL-1P release from LPMCs 

from a single subject. The results (Fig 5.15.a) show that Na2ATP released 2-

3 times as much IL-1P as K2ATP; up to 300pg/106 cells, a value comparable 

to that seen with the concentration-response curve. 

Interestingly, the monocyte-gated cells, which are the source of IL-1P, 

demonstrated less AV+PI+ staining with Na2ATP compared to K2ATP (Fig 

5.15.bii) showing that increased IL-1 p release is not a result of cell death. For 

Iymphocyte-gated cells, there was no difference in AV/PI staining with either 

type of ATP. These results concur with the findings of Perregaux, DG & 

Gabel, CA. (1998a) who showed that Na+ was required for IL-1P processing, 

and that this was not due to inactivation of the receptor but rather involved a 

downstream step in the process. 

Stimulation of the P2X7 ion channel results in influx of Na + and Ca2+ ions into 

the cell and efflux of K+ ions, but various studies have shown that receptor 

activity is markedly affected by ion concentrations. Physiological 

concentrations of both divalent and monovalent cations, and anions have 

been shown to inhibit agonist activity (Michel, AD et al., 1999). It has been 

suggested that cations affect the availability of ATp4
., the active form of the 

agonist, but a study by Virginio, C et al., (1997) found that divalent cations 

reduced ATp4. concentration by only 50% whereas dye uptake through the 

P2X7 pore was inhibited by more than 95%. 

It is unlikely that the increased IL-1P release observed with Na2ATP 

stimulation compared with K2ATP is due solely to differences in the ion 

affinities for ATp4., since ion concentrations within the RPM I 1640 would be 

expected to outweigh any influence of the type of A TP used, and hence the 

amount of ATp4- available for P2X7 receptor stimulation. Melchior, NC, 

(1954) demonstrated that both Na + and K+ form complexes with ATp4- and 

that these complexes are present at physiological pH ranges and ion 
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lPMCs from a single subject were stimulated for up to 60min with 5mM K+ or Na+ ATP 
in RPMI1640. Figure a shows Il-113 release corrected for the lPS control. Figure b 
shows AV/PI staining. Cells staining positive were expressed as a percent of the gated 
cell population; each data point has been corrected for the unstimulated control value. 
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concentrations. He proposed that combination with a metal ion specifically 

alters the molecular shape, and if a particular shape is favoured by an 

enzyme it could affect the rate of reaction. 

More recently it has been shown that P2X7 has binding sites for Na+ and cr 
ions that appear to regulate its permeability to large molecules (Li, Q et al., 

2005). Chloride ions have also been shown to inhibit IL-1~ release by 

attenuating inflammasome formation and hence maturation of caspase-1 

(Verh oef, PA et al., 2005). 

Studies of ionic effects on receptor activity generally involve manipulation of 

the ion content of the medium, and it is interesting that simply using different 

forms of ATP in the same medium also had an effect on IL-1~ release and 

AV/PI binding. This suggests that either the ionic complexes with ATP are 

important, as suggested above (Melchior, NC, 1954), or that the P2X7 

receptor is exquisitely sensitive to ionic balances in the medium so that 

adding Na2ATP or K2ATP can alter receptor activity. 

It seems therefore that the outcome of P2X7 stimulation is governed by 

complex interactions between availability of A Tp4
• and interactions of ions 

with the receptor, and with intracellular pathways associated with pore 

formation, PS flip and IL-1~ release. 

5.5.3. Summary of IL-1 p release 

The kinetics of IL-1 p release was similar for both PBMCs and LPMCs with 

maximum secretion generally occurring after 20-30 minutes. Various studies 

have shown similar IL-1 p release with ATP stimulation. Several, using a 

range of cell types, have demonstrated maximum release of IL-1~ at 30 

minutes following stimulation with 1-5mM ATP (Mehta, VB et al., 2001; 

Andrei, C et al., 2004; Colomar, A et al., 2003; Kahlenberg, JM & Oubyak, 

GR. 2004b; Gudipaty, L et al., 2003). Other studies using human monocytes 

or macrophages have found peak IL-1P release times of 1-2 hours (Chessell, 

IP et al., 2001; Ferrari, 0 et al., 1997b; Wewers, MD et al., 1997). 

Wewers, MD et al., (1997) compared ATP-induced release of IL-1~ from 

monocytes and macrophages and showed that macrophage release was 

slower than that of monocytes. They found that 30 minutes after stimulation, 

162 



Chapter 5 

58% of maximum IL-1 Jl release had occurred from monocytes but only 23% 

from macrophages. The absolute amount released was also higher from 

monocytes (23 ng/106 cells) than macrophages (9 ng/106 cells) and they 

suggested that macrophages have a tighter control on IL-1 Jl release than 

monocytes. The results presented here also showed that PBMCs released 

much larger amounts of IL-1 Jl than LPMCs and the rate of release was 

quicker; maximum rate with BzA TP at 2-5min for PBMCs and 5-1 Omin for 

LPMCs. The release of IL-1 Jl occurred more slowly than PS-flip in the 

monocyte-gated cells. Maximum levels of AV+PI- staining were achieved by 

5-10 minutes with maximum rates of binding at 1-3 minutes. 

5.6. SUMMARY OF THE EFFECT OF P2X7-RECEPTOR STIMULATION 

TIME ON CELL DEATH AND IL-1 Jl RELEASE 

Stimulation of the P2X7 receptor for up to one hour in LPMCs and PBMCs 

resulted in a rapid increase in PS-flip (indicated by increased AV binding), 

followed by cell death (indicated by increased PI uptake) with longer 

stimulation times. Monocyte-gated cells were more susceptible to cell death 

than Iymphocyte-gated cells; in addition, peripheral blood cells appeared to 

be more susceptible than colonic LPMCs. Approximately half of the AV+PI

population of Iymphocytes from PBMCs became AV+PI+, whereas only 

around 10% of the equivalent LPMC population became AV+PI+. In contrast, 

all of the AV+PI- population of PBMC monocytes became AV+PI+ and most 

of the LPMC population, although this occurred much more quickly in the 

PBMCs. Whether the increased uptake of PI in monocytes was due solely to 

cell death or to uptake through the P2X7 pore could not be confirmed 

conclusively using a larger nucleic acid dye or by measuring LDH release. 

Increased AV binding occurred more rapidly following P2X7 stimulation than 

IL-1Jl release. This was particularly true for BzATP-stimulation for which AV 

binding reached a plateau after 5-10 minutes compared to 20-30 minutes for 

IL-1Jl release. This reflects the fact that secretion of IL-1Jl is a more 

complicated process requiring formation of the complex inflammasome 
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structure, whereas PS-flip is a result of altered enzyme activity due to rapid 

Ca2
+ influx through the ion channel. The two concentrations of ATP used 

throughout the experiments were the same for all the cell types and it was 

noticeable that whilst 1 mM ATP produced only 50% of the level of AV 

binding stimulated by 5mM ATP, the amount of IL-1J3 released was almost 

the same. This is probably because the complex pathway of IL-1J3 release 

results in amplification of the response (section 4.3) and hence can be 

initiated by lower concentrations of agonist. 

Recently MacKenzie, AB et al., (2005) proposed that P2X7-induced PS-flip is 

an initial upstream effector in a P2X7 signalling pathway. Using HEK293 cells 

expressing P2X7 they showed that stimulation of the receptor caused influx 

of extracellular Ca2
+, mitochondrial swelling and release of Ca2

+ from the 

mitochondria. High intracellular Ca2
+ resulted in PS-flip with subsequent 

cytoskeletal disruption and membrane blebbing. The physiological function of 

the blebbing is not known but may be connected with the microvesicular 

release of IL-1J3 demonstrated by the same group (MacKenzie, A et a/., 

2001), who showed that the vesicles all exhibited positive AV staining. If PS

flip is an early step in IL-1J3 release, it would need to occur more rapidly than 

IL-1 J3 processing, as was demonstrated here. 

A Signalling role has also been proposed for P2X7-mediated PS-flip in 

Iymphocytes (Elliott, JI et a/., 2005). Changes in membrane PS distribution 

stimulated shedding of CD62L, a protein involved in homing to lymph nodes, 

and also inhibited P-glycoprotein, a protein that has also been implicated in 

Iymphocyte homing. The authors proposed that the P2X7 signalling pathway 

may mediate the 'danger response' of T cells, promoting T cell migration to 

non-lymphoid sites. It is therefore becoming clear that PS externalisation on 

the cell membrane is not always a sign of apoptotic cell death. 

MacKenzie, A et a/., (2001) has shown that if P2X7 activation was limited to 

less than 10 minutes, PS-flip completely reversed within 3 hours and there 

was no cell death in the subsequent 24 hours. In contrast, a 30 minute 
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stimulation of the P2X7 receptor with BzA TP resulted in irreversible PS-flip 

and loss of all cells within 24 hours. The effect of short and long stimulation 

times on the reversibility of PS-flip in human colonic LPMCs was therefore 

investigated. 
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CHAPTER 6. P2X7 RECEPTOR STIMULATION: 

REVERSIBILITY OF RESPONSE 

6.1. INTRODUCTION 

Studies have shown that prolonged stimulation of the P2X7 receptor leads to 

cell death by necrotic or apoptotic mechanisms (Hogquist, KA et al., 1991 a; 

Di Virgilio, F et al., 1996; Ferrari, D et al., 1997a; Virginio, C et al., 1999a). 

P2X7-stimulated necrotic death was initially considered to be a result of pore 

formation and subsequent loss of cell contents. Pore formation occurs after 

prolonged or repeated ATP stimulation, but it is now known that provided the 

ATP is removed within 10-15 minutes most cell types can reseal the pore 

and recover (Morelli, A et al., 2001; Chessell, IP et al., 1997; Virginio, C et 

al., 1999a). Pore formation is not unique to the P2X7 receptor. Other P2X 

receptors, namely P2X2, P2X-t and the heteromeric P2X2/P2X3 receptors, 

have been shown to form similar pores, but stimulation of these receptors 

never results in cell death (Virginio, C et al., 1999b; Khakh, BS et al., 1999). 

P2X7 has been regarded as an apoptotic receptor because some 

characteristics of P2X7 stimulation are similar to morphological features of 

apoptotic cell death, namely PS exposure on the outer plasma membrane 

and rapid membrane blebbing (Nihei, OK et al., 2000a; Le Stunff, H et al., 

2004; Tsukimoto, M et a/. , 2005). These features are generally irreversible 

when associated with apoptosis but this is not the case for P2X7 stimulation. 

MacKenzie, A et al., (2001) used AV-binding to study BzATP-stimulated PS 

exposure in HEK cells expressing the rat P2X7 receptor and detected AV

positive cells as early as 1-2 seconds after application of BzA TP. This rapid 

PS-flip was quickly followed by shedding of microvesicles from the plasma 

membrane, which contained IL-1 ~ and also bound AVon their surface. They 

also found that, if P2X7 activation was limited to less than 10 minutes, PS 

translocation was completely reversed with no cell death. In contrast, 

stimulation for 30 minutes resulted in irreversible PS flip and loss of all cells 

after 24 hours. Another study in the same cells demonstrated reversible 

membrane blebbing when ATP stimulation was removed after 20 minutes 

(Morelli, A et al., 2003). This study also showed that bleb formation could be 
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prevented by preincubation with the P2X7 inhibitor, oxidised ATP. Reversible 

vesicle formation has also been demonstrated in human skin fibroblasts 

(Solini, A et al., 1999). When the cells were stimulated with BzA TP a large 

number of perinuclear microvesicles were formed whose function was 

unknown, but which completely disappeared within 15-30 minutes of BzA TP 

removal. 

In more recent studies, MacKenzie, AB et al., (2005) has proposed that P2X7 

activation is linked to two signalling pathways, depending on the length of 

exposure to stimulation. They showed that high intracellular Ca2
+ levels 

resulting from P2X7 stimulation led to PS-flip, cytoskeletal protein disruption 

and membrane blebbing which were fully reversible provided receptor 

activation was less than 20-30 minutes. However prolonged P2X7 stimulation 

resulted in apoptotic cell death due to cytochrome c release from the 

mitochondria and a caspase-3/ROCK-1 signalling cascade. It would thus 

appear that some of the effects resulting from P2X7 stimUlation can be 

reversed provided the stimulation time is short, and that stimulation of the 

receptor does not necessarily result in apoptotic cell death. 

The reversibility of PS-flip following P2X7-stimulation was therefore studied in 

LPMCs, PBMCs and THP-1 cells, using BzATP stimulation for 5 or 30 

minutes. AV-binding was used as a measure of PS-flip and staining with PI 

as a measure of cell death. Since PS-flip is not a definitive method for 

measuring apoptotic cell death following P2X7 stimulation, induction of 

apoptosis was also measured using cell cycle analysis and Hoechst staining. 

Likewise, because increased PI staining may be due to uptake through the 

P2X7 pore, LDH release was used as another measure of cell death. The 

effect of different stimulation times on the release of IL-1 ~ was also 

measured. 

6.2. METHODS 

6.2.1. Reversibility of P2X7-lnduced AV binding 

Cells were resuspended in RPM I 1640 at a concentration of 2 x 106 cells/ml 

and incubated with 500J.1M BzA TP for 5 or 30min at 37°C in a total incubation 
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volume of 1001-11. Based on previous results, this concentration of BzA TP 

should give a maximal, or close to maximal response in all the cell types. 

Incubation was stopped by adding PBS (4001-11), the cells were placed on ice 

and then centrifuged at 350 x g for 5min. Cells were resuspended in 401-11 of 

warm AV-binding buffer and incubated at 37°C for 0, 5, 10,20,40 or 60min. 

Unstimulated controls were also prepared for each time point. Incubation 

was stopped by placing the cells on ice. To the THP-1 cells, 2001-11 of cold 

binding buffer containing AV-FITC and PI was added, the cells were kept on 

ice and analysed by flow cytometry. For the PBMCs and LPMCs, CD3 and 

CD14/CD33 were added and the cells incubated for 30min on ice in the dark. 

Cold binding buffer (2001-11) containing AV-FITC and PI was then added, and 

the samples analysed by flow cytometry. 

6.2.2. Release of LDH from cells stimulated for 5 or 30 minutes 

LDH release was determined as described in section 5.4.2. The samples 

assayed were the supernatants from the cells set up for Hoechst staining 

(section 6.2.4.) and stored at -20°C. 

6.2.3. P2X7-stimulated apoptosis determined by cell cycle analysis 

Cell cycle analysis measures the DNA content of a cell and as well as 

identifying cells in the GO/1 and G2/M phases, it can also be used to identify 

apoptotic cells. The fixing process, as well as preserving the cells, also 

makes them permeable and accessible to a fluorochrome. In apoptotic cells 

DNA is cleaved by endonucleases, creating fragments which may be washed 

out of the cells during the hydration and staining process. Apoptotic cells 

therefore have less DNA than cells in the GO/1 phase, and are known as the 

'sub-GO/1 cell population' (Darzynkiewicz, Z et al., 1999). 

Cells were resuspended in RPMI 1640 at a concentration of 2.5 x 106 

cells/ml and incubated with 500J.lM BzA TP for 5 or 30min at 37°C in a total 

incubation volume of 1001-11. Incubation was stopped by adding PBS (4001-11), 

the cells were placed on ice and then centrifuged at 350 x g for 5min. Cells 

were resuspended in 401-11 of warm RPMI 1640 and incubated at 37°C for 0, 

20, 40, 60min, 3h, 6h and 24h. Unstimulated controls were also prepared for 
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each time point. Incubation was stopped by placing the cells on ice and 

adding 960,..1 of ice-cold PBS with 0.1 % bovine serum albumin (BSA. Sigma

Aldrich). Cells were mixed well by repeated pipetting and 2.3ml ice-cold 

absolute ethanol was added to fix the cells. After thorough mixing, samples 

were stored at -20°C. To process for flow cytometry; after bringing to room 

temperature, cells were centrifuged at 350 x g for 5min and washed twice 

with 1ml PBS with 0.1% BSA with gentle pipetting to resuspend. The cells 

were then incubated in 500,..1 of PI/RNASE staining buffer (BD Pharmingen, 

Cowley, Oxford) for 15min at 37°C in the dark and analysed on the flow 

cytometer. The RNAse enzyme breaks down any double-stranded RNA 

present in the cells which would intercalate the PI and give a false positive 

result. 

The flow cytometry data was analysed as described in section 2.4.2. 

6.2.4. P2X7-stimulated apoptosis determined by Hoechst staining 

Hoechst 33342 (Molecular Probes) is a cell-permeable bisbenzimide dye that 

fluoresces bright blue on binding to DNA (Molecular Probes, 2005). Apoptotic 

cells appear with visibly fragmented nuclei and brighter than average staining 

due to condensation of chromatin. 

Cells were resuspended in RPMI1640 at a concentration of 2 x 106 cells/ml 

and incubated with BzA TP as described in section 6.2.3. At the end of the 

incubation time, 400,..1 ice-cold PBS was added; cells were centrifuged at 350 

x g for 5min and fixed in 50,..1 of 4% paraformaldehyde. The cells were stored 

at 4°C until stained. 

The cells were washed once with 200,..1 PBS and then spun onto glass slides 

using a ShandonlLipshaw cytospin centrifuge (ThermoShandon, Pittsburgh, 

USA) at 60 x g for 10 min. After air-drying, the slides were stained with 

Hoechst 33342 (10,..g/ml in PBS) for 10 min at room temperature in the dark. 

The slides were washed gently in distilled water and left to dry in the dark 

before mounting with a coverslip using PBS/glycerol (50/50 v/v). The 

coverslips were sealed with nail varnish and the slides stored in the dark at 

4°C until counted. Cell fluorescence was monitored with a fluorescent 

microscope (Leica DMIRB) using a blue filter (488nm). A total of 200 cells 
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were counted on each slide from randomly selected fields and the number of 

apoptotic cells calculated as a percentage of total cells. Cells with brightly 

staining visibly fragmented nuclei were scored as apoptotic. 

6.2.5. IL-1 ~ release from cells stimulated for 5 or 30 minutes 

For IL-1 p release, the concentration of BzA TP was reduced to 200,....M since 

IL-1P release occurs at lower agonist concentrations than AV binding. Cells 

were resuspended in RPM I 1640 containing 0.1% v/v FCS at a concentration 

of 1 x 106 cells/ml, and incubated with LPS (1IJg/ml) for approximately three 

hours at 37°C in 5% C02. BzA TP was then added and incubated for 5 or 

30min at 37°C in a total incubation volume of 1001J1. Incubation was stopped 

by adding PBS (400IJI), the cells were placed on ice and then centrifuged at 

350 x g for 5min. Cells were resuspended in 1001J1 of warm RPMI1640 with 

0.1% v/v FCS containing 1,....g/ml LPS and incubated at 37°C for 0,20,40, 

60min, 3h, 18h and 24h. Unstimulated controls were also prepared for each 

time point. Incubation was stopped by adding cold PBS (4001J1) and placing 

the cells on ice. The cells were centrifuged at 350 x g for 5min and aliquots 

(4501J1) of the supernatants were stored at -BOoC for assay by sandwich 

ELlSA, according to the manufacturer's instructions. The cells remaining in 

the tubes were lysed by incubation with 250,....1 of 0.1 % saponin in RPMI 1640 

for 30min at 37°C. The cells were centrifuged at 350 x g for 5min and 

aliquots (2501J1) of the supernatants were stored at -BOoC for IL-1P assay. 

6.3. RESULTS AND DISCUSSION 

6.3.1. Reversibility of P2X7-induced AV binding 

For AV binding, the individual PBMC and LPMC cell populations were gated 

using CD markers as described in section 5.2. 

6.3.1.1. Reversibility of AV binding in THP-1 cells 

Following 5 minutes stimulation with 500IJM BzATP, 85 ± 1.0% of the cell 

population exhibited positive AV binding but there was very little AV+PI+ 

staining (10 ± 0.6%), indicating a high level of PS-flip but not cell death (Fig 
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6.1.b & c, solid squares). After removal of agonist, the AV+PI- staining 

decreased rapidly to 34 ± 2.2% at 20 minutes post-stimulation, finally falling 

to 26 ± 0.5% after 60 minutes. Most of the AV+PI- population of cells 

reversed the PS-flip and lost the annexin staining, as shown by the increase 

in the unstained AV-PI- population (Fig 6.1.a) which rose from 5.5 ± 0.7% to 

48 ± 2.0% of the total cell population after 20 minutes incubation. Only a 

small proportion of the AV+PI- cells became PI-positive; the AV+PI+ 

population rising from 10 ± 0.6% to 21 ± 1.1% after 60 minutes incubation. 

In contrast, after 30 minutes stimulation with BzA TP 54 ± 1.9% of the 

population exhibited AV+PI- staining but 36 ± 2.5% were AV+PI+ (Fig 6.1.b & 

c, solid triangles). Furthermore, following removal of agonist, 60% of the 

AV+PI- population became AV+PI+, with only 40% reversing the PS-flip and 

becoming unstained. 

Unstimulated control cells demonstrated little or no changes in levels of 

AV/PI staining, with 80% ofthe cell population unstained, approximately 12% 

staining positive for annexin and only 9% with AV+PI+ staining. 

It is clear from these results that in THP-1 cells brief stimulation of the P2X7 

receptor for 5 minutes resulted in almost complete reversal of PS-flip. 

Stimulation for 30 minutes however, resulted in committed PS-flip in 80% of 

the population, with 50% of the population also staining positively for PI. 

6.3.1.2. Reversibility of AV binding in PBMCs 

Following 5 minutes stimulation with BzATP, 56 ± 6.6% of the Iymphocyte

gated cell population exhibited AV+PI- staining compared with 77 ± 4.1% of 

the monocyte-gated population (Fig 6.2.ii, solid squares). However, whereas 

94% of the Iymphocyte AV+PI- population reversed the PS-flip and became 

AV-PI- (Fig 6.2.ai), 76% of the monocyte AV+PI- population became AV+PI+ 

(Fig 6.2.biii) and only 24% reversed the PS flip (Fig 6.2.bi). This suggests 

that, based on positive PI staining, the monocyte-gated cells were much 

more susceptible to P2X7-stimulated cell death than the Iymphocytes. 

After 30minutes stimulation, 24 ± 4.5% of the Iymphocyte-gated cells were 

stained AV+PI+ and this increased to 35 ± 6.4% after 60 minutes incubation 

post-stimulation (Fig 6.2.aiii, solid triangles). However 58% of the AV+PI

population of cells still recovered and reversed the PS-flip. In contrast, 
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Fig 6.1. Reversibility of AV binding in THP-1 cells 

Cells were stimulated for 5 or 30min with 500llM BzATP, then resuspended in 
AV binding buffer and incubated for up to 60min, AV/PI binding was 
measured by flow cytometry and cells with positive staining were expressed 
as a percent of the total cell population, Values for unstimulatecl control cells 
are also shown, Figures show the mean ± sem of four separate experiments, 
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Fig 6.2. Reversibility of AV binding in PBMCs 

Cells were stimulated for 5 or 30 minutes with 500j.lM BzATP, then resuspended in AV 
binding buffer and incubated for up to 60min. AV/PI binding was measured by flow 
cytometry and cells with positive staining were expressed as a percent of the Iymphocyte or 
monocyte cell population gated with CD3 or CD14 respectively. Values for unstimulated 
control cells are also shown. Figures show the mean ± sem of three separate experiments. 
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approximately 80% of the monocyte-gated cells were stained AV+PI+ at the 

end of the 30 minute stimulation period (Fig 6.2.biii), with little change 

throughout the subsequent incubation. The AV+PI- population of cells was 

less than the unstimulated control population. 

The unstimulated control cells demonstrated higher levels of AV and PI 

staining in the monocyte-gated cells compared to Iymphocyte-gated cells. 

Only approximately 45% of the monocyte-gated control cell population 

remained unstained (AV-PI-) throughout the experiment (Fig 6.2.bi, open 

circles), compared to 75% of the Iymphocyte-gated cells (Fig 6.2.ai). 

Hence, using PI staining as a marker of cell death, these results suggest that 

PBMC monocyte-gated cells are very susceptible to P2X7-stimulated cell 

death, and also demonstrate a greater level of spontaneous cell death than 

PBMC Iymphocytes. 

6.3.1.3. Reversibility of AV binding in LPMCs 

The Iymphocyte-gated LPMCs demonstrated a similar pattern of staining 

after stimulation with BzA TP for both 5 and 30 minutes (Fig 6.3.a). There 

was almost complete reversal of PS-flip in both cases and, unlike the PBMC 

Iymphocytes, there was no increase in AV+PI+ staining even after 30 

minutes stimulation (Fig 6.3.aiii). Approximately 90% of the unstimulated 

controllymphocyte population remained unstained throughout the incubation, 

with approximately 9% AV+PI- and 3% AV+PI+. This showed that the cells 

were very stable and not subject to spontaneous cell death over the 60 

minute incubation period. 

The monocyte-gated LPMCs also appeared to be less susceptible to P2X7-

stimulated PI staining than PBMC monocytes. After 5 minutes stimulation 68 

± 17% of the LPMC monocyte-gated cells were AV+PI-, falling to 18 ± 3.9% 

after 20 minutes incubation (Fig 6.3.bii). However, whereas 76% of the AV

positive PBMC monocytes became AV+PI+, only 20% of the AV+PI- LPMC 

monocyte-gated cells became PI-positive (Fig 6.3.biii) and 80% reversed the 

PS flip and became unstained (AV-PI-, Fig 6.3.bi). 

After 30 minutes stimulation, approximately 30-35% of the LPMC monocyte

gated cells were AV+PI+ (Fig 6.3.biii), but this was much less than the level 

of 80% seen with the PBMC monocytes (Fig 6.2.biii). Furthermore, the 
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Fig 6.3. Reversibility of AV binding in LPMCs 

Cells were stimulated for 5 or 30 minutes with 500J.LM BzATP, then resuspended in AV 
binding buffer and incubated for up to 60min. AV/PI binding was measured by flow 
cytometry and cells with positive staining were expressed as a percent of the Iymphocyte or 
monocyte cell population gated with CD3 or CD33 respectively. Values for unstimulated 
control cells are also shown. Figures show the mean ± sem of three separate experiments. 
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decrease in the AV+PI- population during the subsequent incubation (Fig 

6.3.bii) was matched by an increase in the unstained AV-PI- population (Fig 

6.3.bi) and there was no increase in the AV+PI+ population. This suggests 

that some P2X7-stimulated cell death (based on increased PI staining) 

occurred during the 30 minute stimulation period, but there was no further 

increase once the agonist was removed and the cells which had been 

displaying PS flip recovered. Unstimulated control LPMC monocyte-gated 

cells also demonstrated less spontaneous cell death than the PBMC 

monocytes. with 60-80% of cells remaining unstained throughout the 

incubation. 

These results showed that following stimulation of the P2X7 receptor for 5 

minutes. all of the cells displayed increased AV-positive staining which was 

reversible. except for PBMC monocyte-gated cells which demonstrated an 

increase in AV+PI+ staining. Following 30 minutes stimulation with BzATP, 

all of the cells except for LPMC Iymphocytes demonstrated increased levels 

of AV+PI+ staining which increased only a little once the agonist had been 

removed. 

Based on the results for PI staining therefore, PBMC monocytes appear to 

be highly susceptible to cell death from P2X7 stimulation, but also 

spontaneously probably as a result of cell handling and the experimental 

procedures. THP-1 cells and LPMC monocytes were much less susceptible 

to P2X7-stimulated cell death, and the Iymphocyte-gated cells were even less 

so. This was particularly true of LPMC Iymphocyte-gate cells in which there 

was no increase in AV+PI+ staining for either stimulation time. 

6.3.2. Release of LDH from cells stimulated for 5 or 30 minutes 

The release of LDH was used to confirm whether prolonged stimulation of 

the P2X7 receptor with BzA TP resulted in cell death. Supernatants were 

collected from the cells set up for Hoechst staining and levels of LDH were 

measured. The amount of LDH released by the cells was expressed as a 

percent of the total amount released by lysed freshly isolated cells, and the 

results are shown in Fig 6.4. 
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• 5min stimulation 

... 30min stimulation 

o unstimulated control 

Fig 6.4. Release of LDH from mononuclear cells stimulated with 
500JIM BzA TP for 5 or 30 minutes 
The amount of LDH released into the supernatant after 5 or 30min stimulation with 
BzATP is shown. 'LDH released during stimulation' indicates the amount of LDH 
released during the stimulation period with BzA TP; the time 0 symbols represent 
the amount of LDH present immediately after resuspenslon in RPM11640. The 
results have been expressed as a percent of the positive control and represent the 
mean ± sem of three separate experiments. 
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LDH release increased for up to 1 hour post stimulation in all the cell types 

but there was no further increase after that time. The observed increase was 

very small (approximately 6%) for THP-1 cells and LPMCs, but more marked 

(approximately 20%) for PBMCs. The overall amount of LDH release was 

also greater from PBMCs than either LPMCs or THP-1 cells. For all the cell 

types however, there was little difference between the levels released by the 

BzA TP-stimulated cells and the unstimulated controls. 

In contrast, there were differences in the amount of LDH released into the 

supernatants during the stimulation period. In THP-1 cells, LDH release 

during the 5 minute stimulation period was similar to that of the unstimulated 

control (Fig 6.4.a). After 30 minutes stimulation however, LDH release 

increased four-fold to 32 ± 3.9% of the positive control value, a figure 

comparable to the level of AV+PI+ staining (36%, Fig 6.1.b). This confirms 

that stimulation of THP-1 cells for 30 minutes results in the death of 

approximately 30% of the cell population. During the subsequent incubation 

following removal of agonist, LDH release was the same for both the 5- and 

30-minute stimulated cells, suggesting that it was not directly related to 

duration of P2X7 stimulation. 

PBMCs released a large amount of LDH during both stimulation periods (70-

80% of the positive control value), but the release was also high in the 

unstimulated control cells (55%). This was probably due to handling 

procedures, e.g. centrifugation, and confirms that PBMCs are very 

susceptible to cell death. This was also indicated by their elevated levels of 

AV+PI+ staining, particularly in the monocyte-gated cells, following 

stimulation with BzATP. 

LPMCs released less LDH during stimulation than PBMCs and there was 

very little difference between the amounts released by the BzA TP-stimulated 

cells and the unstimulated controls. The levels of LDH release during the 

subsequent incubation were also at or below the level of the unstimulated 

controls. 

Because LDH release from the different PBMC and LPMC cell populations 

cannot be distinguished, it is not possible to directly correlate the release 

with the AV+PI+ staining for each cell type. However the data for the THP-1 

cells implies that AV+PI+ staining is an indication of cell death, and the 
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results for AV+PI+ staining for the PBMCs and LPMCs suggest that the 

source of the LDH is more likely to be the monocytes. 

The results for LDH release and AV binding together therefore indicate that 

prolonged stimulation of the P2X7 receptor does lead to cell death, 

particularly in monocyte cells, but the effect appears to occur only in the 

presence of the agonist. Le Stunff, H et al., (2004) demonstrated a similar 

effect in mouse thymocytes and showed that LDH release was reduced by 

40% when ATP (1 mM) was removed after 30 minutes incubation compared 

to sustained incubation for 5 hours. 

6.3.3. P2X7-stimulated apoptosis determined by cell cycle analysis 

During apoptosis, DNA is broken down by endonucleases within the cell 

creating fragments which can be removed by washing. Cell cycle analysis 

measures the number of cells with less than a normal complement of DNA 

(sub-GO/1 fraction) and therefore gives an indication of the number of 

apoptotic cells within the population. The method was used to determine 

whether P2X7-stimulation for 5 or 30 minutes induces apoptosis. The PBMC 

and LPMC cell populations were gated using the FS/SS dotplots. Because 

the cells had been fixed prior to analysis, the LPMC monocyte and neutrophil 

populations were indistinguishable and were therefore included in a single 

gate. However, since neutrophils do not express P2X7 receptors on their cell 

surface (Gu, BJ et al., 2000), any responses could be attributed to the 

monocyte cells. Neutrophils are known to undergo spontaneous apoptosis 

(Scheel-Toellner, D et a/., 2004) but this was accounted for by the values for 

the unstimulated controls. The results are shown in Fig 6.5. 

THP-1 cells demonstrated the greatest increase in number of apoptotic cells, 

from approximately 10% of the cell population to approximately 20% over the 

first 3 hours post-stimulation (Fig 6.5.a). There was little difference however 

between the numbers of apoptotic cells for both 5- and 30-minute stimulation 

times. 

Lymphocyte-gated PBMCs demonstrated no induction of apoptosis at all 

following 5 minutes stimulation with BzATP (Fig 6.S.b), and only a small rise 

(8.9 ± 4.1% of gated cell population) after 30 minutes stimulation and 24 

hours incubation. The monocyte-gated PBMCs stimulated with BzA TP for 30 
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Fig 6.5. Induction of apoptosis in BzA TP-stimulated mononuclear 
cells, determined by cell cycle analysis 
After 5 or 30min stimulation with 500JLM BzATP cells were resuspended in RPMI1640 and 
incubated for up to 24h. Cells were processed for DNA analysis as described in section 6.2.3 
and 2.4.2. For the mixed cell populations. the single-cell gate was combined with a gate 
identifying Iymphocyte and monocyte cells (based on FS/SS plot). Cell fluorescence was 
analysed using Cylchred (Terry Hoy. Cardiff University) and the graph represents the percent 
of gated cells in the sub-G0/1 peak. Results show the mean ± sem of three separate 
experiments. The higher percentage of apoptotic cells in the monocyte-gated LPMC 
unstimulated control was probably due to the neutrophil population. which could not be 
separated by gating. 
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minutes had increased numbers of apoptotic cells at all time points 

compared to the unstimulated controls, but the increase was small (Fig 

6.S.c). 
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There was no increase in the percentage of apoptotic cells in the LPMC 

Iymphocyte-gated cell population following BzA TP stimulation for 5 or 30 

minutes, and only a small rise in the monocyte-gated cell population 

following 24 hours incubation (Fig 6.S.d & e). LPMCs had a higher 

percentage of apoptotic cells in the unstimulated controls than the PBMCs 

suggesting a higher level of spontaneous apoptosis, but this was probably 

due to the neutrophil population. 

The results for cell cycle analysis indicated that prolonged P2X7 stimulation 

induced some apoptosis in human PBMCs, particularly the monocyte-gated 

cells, and in THP-1 cells, but had little effect on human LPMCs. 

6.3.4. P2X7-stimulated apoptosis determined by Hoechst staining 

Induction of apoptosis by P2X7 stimulation was also measured using the 

nucleic acid dye, Hoechst 33342. The cell-permeable dye fluoresces on 

binding to DNA allowing visual detection of nuclei. During apoptosis the 

nuclear chromatin condenses making the staining brighter, and subsequent 

fragmentation of the nucleus itself allows clear identification of apoptotic 

cells. The number of visible apoptotic cells was expressed as a percent of 

the total cell count and the results are shown in Fig 6.6. 

The results indicate that P2X7 receptor activation induced very little 

apoptosis during the 24 hours following BzA TP stimulation of the cells. The 

greatest effect was seen with THP-1 cells in which 6-12% of the cells 

became apoptotic during the first 6 hours post stimulation, but there was little 

difference between the cells stimulated for S or 30 minutes. This concurred 

with the results for cell cycle analysis in which 10-20% of the cells appeared 

apoptotic following both 5 and 30 minutes stimulation. 

With PBMCs and LPMCs there were very few apoptotic cells, only 

approximately 1-2% of the cell population. It has been shown that apoptotic 

cell death in monocytes is inhibited by stimulation with LPS or cytokines such 

as IL-1~ and TNF-a (Mangan, OF et al., 1991). It may be therefore that 
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P2X7-stimulated IL-1 P release inhibits any pro-apoptotic stimulus also 

associated with the receptor. This inhibitory effect would not have occurred 

with THP-1 cells which were unable to produce Il-1. 

These results confirmed the lack of P2X7-induced apoptosis seen with cell 

cycle analysis. Although cell cycle analysis indicated a slightly higher level of 

apoptotic cells than Hoechst staining, this may have been because the data 

analysis also included cell debris in the sub-GO/1 fraction and would 

therefore include some dead and fragmented cells. Also the data for cell 

cycle analysis was divided into that for monocytes (+ neutrophils in the case 

of lPMCs) and Iymphocytes by gating on the dotplot, whereas the Hoechst 

data was for the total cell population. The number of apoptotic cells would 

therefore be proportionally higher for each cell population. 

For all of the cell types, it was noticeable that the density of the cells on the 

24-hour slides was less than that of the earlier time points. The effect was 

not so marked on the slides for the unstimulated controls, indicating that 

P2X7 stimulation led to necrotic cell death and loss of cells during the 

incubation period. A similar but more severe effect was observed in a study 

using HEK cells expressing rat P2X7 receptors that demonstrated complete 

loss of all cells 6 hours post-stimulation with BzA TP (MacKenzie, A et al., 

2001). This illustrates the variation between different cell types and also 

different species; BzATP has been shown to be a more potent agonist at rat 

P2X7 receptors than at human ones (Hibell, AD et al., 2000). 

6.3.5. IL-1P release from cells stimulated for 5 or 30 minutes 

The release of mature and pro-ll-1P from PBMCs and lPMCs following 

BzA TP-stimulation for 5 or 30 minutes is shown in Figs 6.7. and 6.8. The 

graphs show that whilst both cell types contained similar amounts of 

intracellular pro-ll-1P (Fig 6.7.b & 6.8.b, blue open squares) PBMC 

monocytes released more of the mature form in response to BzA TP 

stimulation than the lPMC monocytes (Fig 6.7.a & 6.8.a, black solid 

squares). 
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Fig 6.7. Release of IL-1~ from PBMCs stimulated with BzATP for 5 or 
30 minutes 
After 5 or 30mln stimulation with 200llM BzATP, cells were resuspended in RPMI 1640 
containing 0.1 % FCS with 11lM LPS and incubated for up to 24h. IL-1 l3 released into the 
supernatant was measured by ELlSA (closed symbols). After removal of the supernatant, 
cells were treated with 0.1 % saponin to release intracellular IL-1 l3 (open symbols). Mature 
IL-113 release is shown in the figures on the left and pro-IL-1l3 release on the right. Results 
show the mean ± sem of three separate experiments. 
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Fig 6.S. Release of IL-1 J3 from LPMCs stimulated with BzATP for 5 or 
30 minutes 
After 5 or 30min stimulation with 200llM BzATP, cells were resuspended in RPMI1640 
containing 0.1 % FCS with 11lM LPS and incubated for up to 24h. IL-1 P released into the 
supernatant was measured by ELlSA (closed symbols). After removal of the supernatant, 
cells were treated with 0.1% saponin to release intracellular IL-1P (open symbols). Mature 
IL-1P release is shown in the figures on the left and pro-IL-1P release on the right. Results 
show the mean ± sem of three separate experiments. 
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6.3.5.1.IL-1p release after 5 minutes stimulation 

During the 5 minute stimulation period, PBMCs released 1055 ± 454pg IL-

1P/106 cells, but large amounts of intracellular mature IL-1P (3011 ± 1487 pg 

IL-1P/106 cells) were also produced (Fig 6.7.ai). Most of this intracellular IL-

1P (approximately 2000pg/106 cells) was released during the first hour of the 

subsequent incubation, and intracellular levels of pro-IL-1P also decreased 

from 2800 ± 1 005pg/1 06 cells to 756 ± 27pg/106 cells (Fig 6.7.bi). The levels 

of intracellular mature- and pro-IL-1 p (open squares) then remained at 

approximately 700pg/106 cells for the whole 24 hour incubation. 

In contrast, stimulation of LPMCs for 5 minutes with BzA TP released only 

100 ± 50pg IL-1P/106 cells followed by the further release of 321 ± 245pg/106 

cells in the first hour of the subsequent incubation (Fig 6.8.ai). Levels of 

intracellular mature and pro-IL-1 p decreased steadily during the first 3 hours 

of incubation post-stimulation from 454 ± 231pg IL-1P/106 cells to 186 ± 47pg 

IL-1P/106 cells and from 4003 ± 1219pg pro-IL-113/106 cells to 1525 ± 248pg 

pro-IL-1 P/1 06 cells respectively (Figs 6.8.ai & bi). The amount of mature IL-1 p 
released into the supematant post stimulation corresponded approximately 

to the decrease in the amount of intracellular mature IL-113. Also, the 

decrease in intracellular pro-lL-113 was much greater than the amount of 

mature IL-1P produced. This implies that the mature IL-113 released into the 

supernatant was from that already present within the cell post-stimulation 

and that the decrease in intracellular pro-IL-113 was due to degradation rather 

than conversion to the mature form. This also suggests that conversion of 

pro-lL-1p to mature IL-1P within the cell only occurs in the presence of 

agoniSt. 

6.3.5.2.IL-1p release after 30 minutes stimulation 

Stimulation of PBMCs with BzA TP for 30 minutes released 3435 ± 329pg 

mature IL-1P/108 cells into the supematant but there was very little 

intracellular pro-ll-1p (756 ± 157pg/106 cells) or mature IL-1 p (283 ± 

124pg/108 cells) present within the cells following stimulation (Fig 6.7.aii & 

186 



bii). During the subsequent incubation further release of mature IL-1 p 
reached a maximum of approximately 700pg/106 cells during the first hour. 

LPMCs stimulated for 30 minutes released 1255 ± 995pg mature IL-1 P/1 06 

cells into the supematant (Fig 6.8.aii). However the amount released by 

LPMCs from different patients was highly variable; one subject releasing 

over 3000pg IL-1 P/1 06 cells whilst the other two released only 120 and 

406pg/106 cells, amounts similar to those produced after 5 minutes 

stimulation. The subject who produced over 3000pg IL-1 P/1 06 cells had 

received radical radiotherapy for prostate cancer and although there was no 

obvious inflammation of the tissue, radiotherapy has been shown to increase 

levels of eicosanoid inflammatory mediators in the bowel (Cole, AT et al., 

1993). During the subsequent incubation period, 254 ± 158pg IL-1P/106 cells 

were released from the LPMCs within the first hour, an amount similar to that 

released following 5 minutes stimulation. Levels of intracellular mature and 

pro-IL-1 p were also very similar to those seen after stimulation for 5 minutes. 

Neither PBMCs nor LPMCs released substantial amounts of pro-IL-1P into 

the supernatant during inCUbation post-stimulation (Fig 6.7.b & 6.S.b, solid 

symbols). This shows that the decrease in intracellular pro-IL-1P was due to 

degradation within the cell and not release due to cell death and breakdown. 

It is clear from these results that LPMCs stimulated with BzA TP did not 

produce or release large amounts of mature IL-1P regardless of the length of 

stimulation, and that high levels of pro-IL-1P produced within the cell in 

response to LPS were quickly degraded. This is confirmed by the results for 

the LPS control (Fig 6.8.aiii & biii) in which large amounts of pro-IL-1 p were 

produced intracellularly but very little of this was converted to mature IL-1P or 

secreted. 

In contrast, PBMCs produced large amounts of mature IL-1 J3 and this was 

rapidly released in response to P2X7 stimulation. LPS alone also released 

mature IL-1 p from PBMCs but required a long inCUbation time. After 18 hours 

incubation the amount of IL-1 p released by cells incubated with LPS alone 

was 1147 ± 433pg IL-1 P/1 06 cells (Fig 6.7.aiii), almost 10-fold more than that 
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produced by lPMCs, and confirming the sensitivity of PBMC monocytes to 

bacterial endotoxin compared to that of lPMC macrophages. 

PBMCs generally secreted approximately 10 times more mature Il-1~ than 

lPMCs, but stimulation for 30 minutes as opposed to 5 minutes did not 

increase the total amount of cytokine released. The longer stimulation time 

resulted in a greater release of Il-1 ~ during the BzA TP stimulation period but 

less during the subsequent incubation in the absence of agonist. Two studies 

have showed that a long stimulation time with ATP is not required for 

maximum Il-1~ release. Kahlenberg, JM et al., (2004b) and Colomar, A et 

al., (2003) in studies using Bac1 macrophages and mouse Schwann cells 

respectively, stimulated the cells with ATP for 30 minutes or for 5 minutes 

followed by 25 minutes incubation in the absence of agonist, and found that 

similar amounts of Il-1 ~ were released under both conditions. 

8.4. SUMMARY OF THE REVERSIBILITY OF THE EFFECTS OF P2X7 

STIMULATION 

The results for AV/PI binding showed that. in all the cell types, brief (5min) 

stimulation of the P2X7 receptor induced increased AV binding that was not 

associated with cell death and that reversed when the stimulus was 

removed. The only exception was PBMC monocytes in which 40% of the cell 

population did not reverse the AV binding and also stained positive for PI. 

This confirmed the susceptibility of these cells to P2X7-stimulated cell death 

as seen in the previous chapter (section 5.2), based on PI staining as a 

measure of cell death. It always has to be considered however with PI 

staining in monocytes, that some component is due to uptake through the 

pore rather than cell death. 

Prolonged stimulation for 30 minutes led to high levels of AV+PI+ staining in 

THP-1 cells (50%) and PBMC monocytes (80%), but only a small increase in 

lPMC monocytes above control levels. lymphocyte-gated cells from both 

PBMCs and lPMCs largely reversed the AV-positive binding following 5 or 

30 minutes stimulation; only PBMC Iymphocytes stimulated for 30 minutes 

demonstrated irreversible PS flip and an increase in PI staining. 
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Using LDH release as a measure of cell death suggested that the P2X7 

receptor mediated cell death during stimulation but there was little effect 

following removal of the agonist. This agreed with the results for PI staining 

which were elevated post stimulation and remained at the same level during 

subsequent incubation. Only THP-1 cells demonstrated a marked difference 

in the amount of LDH released following 5 or 30 minutes stimulation, and 

only PBMCs exhibited any substantial release after 5 minutes stimulation 

with BzA TP. LPMCs released very little LDH above control values 

highlighting their lack of response to P2X7 stimulation. These results 

concurred with those for AV/PI binding in that PBMCs were most affected by 

P2X7 stimulation. 

P2X7 did not appear to induce significant apoptotic cell death, measured by 

cell cycle analysis or Hoechst staining, in any of the cell populations, 

however it is possible that the cells were not stimulated for long enough to 

demonstrate an effect. Stimulation for 30 minutes has been shown in several 

studies to be sufficient for induction of apoptosis (MacKenzie, A et al., 2001; 

Nihei, OK et al., 2000a; Coutinho-Silva, R et al., 1999), but the susceptibility 

of cells to P2X7-mediated death will obviously vary with cell type and the 

incubation conditions. Many studies of apoptotic cell death induced by P2X7 

stimulated the cells for several hours or with very high concentrations of 

agonist (Ferrari, 0 et al., 1999; Le Stunff, H et al., 2004; Lepine, S et al., 

2006). 

It is possible that isolating the separate monocyte and Iymphocyte 

populations and treating them separately might have shown an effect, 

particularly with the PBMC monocytes. In fact, this was implied by the 

differences in the results for Hoechst staining, which were expressed as a 

percent of the total cell population, and cell cycle analysis, in which the two 

cell populations were gated and counted separately. For THP-1 cells both 

methods of analysis gave an approximate increase of 10% apoptotic cells 

above control values. For the PBMCs and LPMCs however, whilst Hoechst 

staining measured an approximate increase of 2% apoptotic cells, cell cycle 

analysis gave an increase in apoptotic cell number of approximately 7% 

above control values. Lymphocytes have been shown throughout all of the 

experiments to be less responsive to P2X7 stimulation than monocytes, and 
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because they make up the largest fraction of the PBMC and LPMC cell 

populations they may have masked a greater response in the monocyte 

cells. 

Overall these results suggest that, in the cell types studied here, the P2X7 

receptor mediates necrotic cell death, and monocyte cells are more 

susceptible than Iymphocyte cells, probably because of their higher levels of 

receptor expression. P2X7 appears not to induce apoptotic cell death but this 

may require stimulation for longer than 30 minutes in these cells. 

6.4.1. P2X7-mediated cell death 

Mechanisms of P2X7-mediated cell death are still not understood but have 

been studied by many groups who have shown that cell lysis and induction of 

apoptosis occur via different signalling pathways. 

P2X7 mediated cell lysis has been shown to involve signalling via the ERK 112 

MAPK pathway (Auger, R et al., 2005). MAPKs (mitogen~activated protein 

kinases) compose a family of protein kinases that regulate cellular activities 

ranging from gene expression, mitosis, movement, metabolism and 

apoptosis (Johnson, GL & Lapadat, R, 2002). There are three well 

characterised families of MAPKs; ERKs (extracellular signal-regulated 

kinases, mainly involved in cell growth and proliferation), JNKs (c-jun NH2-

terminal kinases, activated by cellular stress) and p38 enzymes (activated by 

inflammatory cytokines, endotoxins or osmotic shock, and associated with 

apoptosis). ATP stimulation of murine thymocytes has been shown to 

activate all three types of MAPK enzymes but only the ERK1/2 pathway was 

associated with necrotic death and cell lysis (Auger, R et al., 2005), and 

activation involved the N-terminal chain of the receptor (Amstrup, J et al., 

2003). 

The ERK1/2 signalling pathway is not involved in PS exposure or pore 

formation, which are regulated by the C-terminal chain (Auger, R et al., 

2005). Other studies using THP-1 cells have shown that p38 MAPKs are 

involved in pore formation (Donnelly-Roberts, 0 et al., 2004). 

Two of the principal characteristics of apoptotic cell death are cell shrinking 

and membrane blebbing. Chloride ions entering cells via the P2X7-stimulated 

pore have been associated with cell shrinkage and apoptotic death in OT 40 
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B cells transfected with the rat P2X7 receptor (Tsukimoto, M et al., 2005). 

The same group later showed that chloride ions had no effect on ERK1/2 

activity confirming that these enzymes are not involved in cell shrinking and 

apoptotic cell death (Tsukimoto, M et al., 2006). 

Several groups have studied membrane blebbing associated with P2X7 

stimulation and have shown it to be associated with activation of p38 MAPK 

and ROCK -1 (Rho-effector kinase-1) (Pfeiffer, ZA et al., 2004; Morelli, A et 

al., 2003; Verh oef, PA et al., 2003). The ROCK enzymes are important 

regulators of cell growth, migration and apoptosis through control of actin 

cytoskeletal assembly (Noma, K et al., 2006). Wilson, HL et al., (2002) 

demonstrated that the C-terminus of the P2X7 receptor is required for 

blebbing and that it mediates the process via an interaction with members of 

the epithelial membrane protein family (EMP-1, -2, -3, and PMP-22). 

Many of the changes associated with apoptotic cell death are brought about 

by effector caspase enzymes. ATP stimulation of RAW 264.7 macrophages 

was shown to lead to the synthesis and accumUlation of ceramide, an 

apoptogenic sphingolipid, which was required for activation of caspase-3 and 

caspase-7 (Raymond, MN et al., 2006). A similar P2X7-stimulated 

accumulation of ceramide was found in thymocytes, but in these cells there 

was resulting mitochondrial damage rather than caspase activation (Lepine, 

5 et al., 2006). 

The natural agonist for the P2X7 receptor is ATP but T cell death has also 

been shown to be induced by NAD (nicotine adenine dinucleotide) acting at 

the receptor (Seman, M et al., 2003; Kawamura, H et al., 2005). NAD is a 

substrate for ART-2 (ADP-ribosyl transferase), an ectoenzyme that transfers 

ADP-ribosyl groups onto cell surface proteins. Binding of the ADP-ribosyl 

group to P2X7 has been shown to induce rapid cell death within seconds 

(Kawamura, H et al., 2005). Death was characterised by increased AV 

binding and pore formation, and was instigated by low NAD concentrations 

«10J.1M). It was proposed that NAO-induced cell death provides a safeguard 

mechanism, operating during conditions of trauma when NAO would be 

released from cells. T cells activated by APCs shed ART -2 and are therefore 
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not susceptible to NAD-induced cell death, but bystander T cells would bind 

NAD and die. thus preventing the activation of an irrelevant response. 

It is clear therefore that P2X7-mediated cell death involves a delicate balance 

between many complicated cellular pathways (Fig 6.9.). The P2X7 receptor 

appears to cause cell death by pore formation and cell lysis in certain 

susceptible cell types. but requires prolonged stimulation for induction of 

apoptosis. The two types of cell death involve different signalling pathways 

and do not appear to be associated with IL-1P release. This was 

demonstrated by the short stimulation time required for IL-1P release and the 

lack of pro-IL-1 p secretion despite high intracellular concentrations. A study 

on ROCK-dependent membrane blebbing has also shown that it is 

dissociated from IL-1 p release (Verhoef. PA et al., 2003). 
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Chapter 7 

CHAPTER 7. THE EFFECTS OF P2X7 ANTAGONISTS ON IL-1~ 

RELEASE FROM HUMAN COLONIC TISSUE AND FROM 

ISOLATED LPMCs 

7.1. INTRODUCTION 

Because of the diversity of P2X receptors, selective P2X antagonists have 

the potential to play a therapeutic role in a large range of diseases such as 

urinary incontinence, hypertension, pain syndromes and inflammatory 

conditions (Williams, M et al., 2000; Lambrecht, G, 2000). 

i. Neurourology: A TP appears to be involved in bladder sensation via 

activation of the P2X3 and P2X2I3 receptors on sensory neurons (Ford, AP et 

al., 2006). Purinergic neurotransmission has also been shown to represent a 

major component of excitatory stimulation in the urinary bladder of rats 

(Hegde, SS et al., 1998), and a later study in mice indicated that this involved 

P2X1 receptors (Vial, C & Evans, RJ, 2000). Similarly, ATP-stimulated 

contractions have been shown to be present in the human bladder, and to be 

enhanced in disease states (Bayliss, M et al., 1999). Likewise, the purinergic 

component of parasympathetic neurotransmission is increased up to 40% in 

interstitial cystitis, outflow obstruction and neurogenic bladder (Burnstock, G, 

1998). P2 antagonists could therefore play a substantial role in treating 

bladder disorders. 

11. Hypertension: In spontaneously hypertensive rats, ATP has been shown 

to have a greater cotransmitter role than noradrenaline in blood vessels 

(Burnstock, G, 1998), and P2X antagonists have been shown to reduce 

vasoconstrictor responses in pulmonary vessels of the cat (Neely, CF et al., 

1996). Vonend, 0 et al., (2004) have also demonstrated significantly 

increased expression of the P2X7 receptor in glomeruli of hypertensive or 

diabetic rats compared to normal animals. 

Ill. Pain: Several P2X receptors have been shown to be associated with 

pain. ATP injections have been known for many years to produce pain, but 

its role has only become clear since P2X subunit cloning demonstrated 

selective expression of P2~ at high levels in nOCiceptive sensory neurons 

(Bumstock, G, 2006a). P2X3 has been shown to form functional receptors 
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both on its own and in combination with the P2X2 receptor (Tsuda, M et al., 

1999; Burgard, EC et al., 1999). The two receptors are found in a wide range 

of organs including skin, tongue, tooth pulp, bladder and intestine 

(Bumstock, G, 2006a). 

Microglial cells of the central nervous system are thought to play a role in 

neuropathic pain. Following injury to a peripheral nerve, microglia in the 

spinal cord become activated and upregulate expression of the P2N 

receptor, leading to release of trophic factors, increased neuron signalling 

and pain hypersensitivity (Trang, T et al., 2006). 

Antagonism of the P2X7 receptor has been shown to relieve inflammatory 

pain in rats and lead to a reduction in receptor expression in peripheral nerve 

endings and in endothelial cells (Dell'Antonio, G et al., 2002). Similarly, 

chronic inflammatory and neuropathic pain was completely abolished in P2X7 

knockout mice (Chessell, IP et al., 2005). 

Sensory nerve endings in the gastrointestinal tract express P2X receptors 

and antagonists could be used to reduce abdominal pain in IBS patients 

(Galligan. JJ, 2004). In a similar way, P2X agonists or antagonists acting at 

enteric motor neurons could be used to treat IBS symptoms of constipation 

or diarrhoea respectively. by altering intestinal motility and secretion. 

Iv. Inflammation: P2X7 plays a central role in the maturation and release of 

IL-1Jl. Macrophages from P2X7 knockout mice do not release IL-1Jl in 

response to ATP and demonstrate reduced incidence and severity of 

collagen-induced arthritis (Labasi. JM et al., 2002). IL-1 Jl is a principal 

cytokine in the inflammatory processes of IBD and some current treatments 

already act by reducing cytokine release (Carter. MJ et a/ .. 2004). 5-

Aminosalicylic acid has been shown to inhibit the production of IL-1Jl in 

colonic tissue from IBD patients (Mahida. YR et al .• 1991) and corticosteroids 

act by inhibiting its tranSCription (Carter. MJ et al., 2004). Selective P2X7 

antagonists could therefore be important therapeutic agents in the control of 

inflammation. 
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7.1.1. Current P2X7 antagonists 

Unfortunately a lack of selective antagonists that are stable and potent, and 

that can be administered orally, means that there have been hardly any in 

vivo studies with P2 receptor antagonists. Very few selective P2X 

antagonists exist. Pyridoxal-5-phosphate and suramin (Fig 7.1.a & b) are 

general P2 antagonists which do not discriminate between P2X and P2Y 

receptors. Analogues of these compounds, PPADS (pyridoxal phosphate-6-

azophenyl-2',4'-disulfonic acid)) and NF023 (a suramin-based compound) 

(Fig 7.1.c & d), have been developed that show moderate selectivity for P2X 

receptors but still retain some P2Y activity. Currently, there are two widely 

used antagonists for the P2X7 receptor; period ate-oxidized ATP (oATP) and 

KN62 (Fig 7.2.a & b). Some of the known P2X7-mediated effects that they 

have been shown to inhibit are listed in Table 7.1. 

7.1.1.1.oATP 

Periodate oxidation of ATP produces 2',3'-dialdehyde ATP (oATP), which 

has long been used to affinity label nucleotide sites in enzymes. oATP reacts 

with accessible lysine residues within the nucleotide binding site forming 

covalent bonds, and has been used to label the ATP binding site in a variety 

of purified proteins (Colman, RF, 1983). Murgia, M et al., (1993) 

subsequently showed that oATP at low concentrations (1 OO~M) was also an 

irreversible antagonist of the P2X7 receptor in mouse macrophages, although 

it required a prolonged incubation. They demonstrated complete blockage of 

P2X7-mediated pore formation and ethidium bromide uptake, but showed 

that mobilisation of Ca2
+ from intracellular stores, a process mediated by P2Y 

receptors, was unaffected. 

oATP has since been widely used to antagonise ATP stimulation of P2X7, 

particularly in studies of its proinflammatory responses and Il-1 ~ release 

(Mehta, VB et al., 2001; Ferrari, 0 et al., 1997b; Ferrari, D et al., 1997c). 

Other studies investigating the role of P2X7 in pain have shown that oATP 

not only inhibited inflammatory pain and reduced proinflammatory chemokine 

secretion, but there was also decreased P2X7 expression in nerves and 
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Authors Cell type Antagonist Agonist 

Humphreys, BD & Oubyak, GR, (1996)· 
THP-1 cells treated with 300llM oATP for 3h or 51lM 100llM BzA TP for 15min 
LPS & IFN-y KN62 for 10min 

Lammas, OA et al., (1997) monocyte-derived 
300llM oATP for 2h 3mM ATP for 10min 

macrophages 

Murgia, M et al., (1993) J77 4 macrophages 300llM oATP for up to 3h 3mM ATP for 10min 

Wiley, JS et al., (1994) PBMC Iymphocytes from 
300llM oATP for 1 h 0.1mMATP 8-CLL patients 

Gu, B et al., (1998) 
P8MC Iymphocytes from 

300llM oATP for 1h 100llM 8zA TP for up to 
8-Cll patients 1Smin 

P8MC Iymphocytes from 
Gargett, CE & Wiley, JS, (1997b) 8-Cll patients 1-1000nM KN62 for Srn in SOOIlM ATP for S-1Smin 

Michel, AD et al., (2000) 
HEK293 cells expressing 1-100mM oATP or 0.3-20J.1M 8zATP for 
human rP2X7 10-1000nM KN62 for 30min 20min 

Chessell, IP et al., (1998) 
HEK293 cells expressing 

10-100nM KN62 for 10min 1-2001lM BzA TP for 2sec human rP2X7 

Humphreys, 80 et al., (1998b) HEK293 cells expressing 
O.03-1IlM KN62 for 10min 1 mM ATP for up to 4min human rP2X7 
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Table 7.1. Examples of P2X7 receptor-mediated effects that have been inhibited by oATP and KN62 
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endothelial cells close to the site of inflammation (Dell'Antonio, G et al., 2002; 

Fulgenzi, A et al., 2005). 

Recently a study of three human cell lines not expressing the P2X7 receptor 

has demonstrated an inhibitory effect of oATP, suggesting that P2X7 is not its 

only target. Using human HUVEC, HEK293 and 1321N1 astrocyte cells, 

Beigi, RD et al., (2003) showed that oATP decreased IL-8 secretion 

stimulated by TNF-a, Il-1 ~ or LPS. They proposed that oATP may interfere 

directly with activation of cytokine or TLR receptors, or that it may enter the 

cells and inhibit downstream signalling from the cytokine receptors. It has 

been proposed therefore that oATP should only be used to study P2X7 

receptor function under selected experimental conditions; namely when the 

stimulant is a known P2X7 agonist such as ATP or BzATP, and the 'read-out' 

is a known P2X1-dependent response (Di Virgilio, F, 2003). 

7.1.1.2. KN62 

The isoquinoline derivative KN62 (1-[N,O-bis(5-isoquinolinesulphonyl)-N

methyl-L-tyrosyl]-4-phenylpiperizine) is a selective inhibitor of calmodulin

dependent protein kinase 11 (Tokumitsu, H et al., 1990), but has also been 

reported to be a potent antagonist of P2X7 at nanomolar concentrations 

(Gargett, CE et al., 1997b; Chessell, IP et al., 1998; Humphreys, BD et al., 

1998b). Gargett, CE et al., (1997b) showed that the P2X7 antagonism was 

independent of the kinase inhibition since KN04, a structural analogue of 

KN62 which has no effect on calmodulin-dependent protein kinase 11, was 

almost equally potent at inhibiting P2X1-mediated effects. 

Attempts have been made to find more potent and selective P2X1 

antagonists by modifying the structure of KN62. Baraldi, PG et al., (2000) 

synthesised a conformationally restrained analogue, in which the N-methyl 

group on the tyrosine molecule was constrained into a ring structure, but 

found that it led to a complete loss of antagonist activity. The same group 

also showed that the isoquinoline-5-sulphonyl moiety is essential for activity, 

and by modifying the piperazine residue they obtained compounds more 

potent than KN62 (Baraldi, PG et al., 2003). 
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Ravi, RG et al., (2001) showed that the methyl group on the nitrogen of the 

tyrosine is not essential for activity but that opening the piperazinyl ring 

abolished antagonism. By systematically modifying three positions on the 

KN62 molecule they also produced compounds slightly more potent than 

KN62 itself. 

Michel, AD et al., (2000) have suggested that KN62 acts as an allosteric 

inhibitor of the P2X7 receptor. They studied BzA TP-stimulated YO-PRO-1 

uptake in HEK293 cells expressing the human P2X7 receptor, and compared 

antagonistic effects of oATP, PPADS, pyridoxal-5-phosphate (P5P), KN04 

and KN62. They found that oATP, PPADS and P5P acted as irreversible 

antagonists but KN04 and KN62 behaved as non-competitive antagonists. 

They also showed that PPADS and P5P were able to prevent the 

antagonistic effects of oATP, but that KN04 and KN62 did not. Since oATP is 

structurally similar to ATP, they proposed that oATP, PPADs and P5P act by 

binding to the ATP-binding site on P2X7, but that KN04 and KN62 interact at 

an allosteric site on the receptor. 

7.1.1.3. Other P2X7 antagonists 

Brilliant Blue G has been reported to inhibit ATP-evoked inward currents in 

HEK293 cells expressing the rat or human P2X7 receptor (Jiang, LH et al., 

2000a). However, while being a highly selective antagonist with nanomolar 

affinity at rat P2X7 receptors, it is less effective at human receptors. Brilliant 

Blue G also inhibits P2~ receptors, but with greater potency at human than 

at rat receptors (Jiang, LH et al., 2000a). Consequently for rat receptors 

Brilliant Blue G has 1000-fold selectivity for P2X7 compared with P2~, but 

for human P2X7, selectivity is only approximately 15-fold. P2X7 and P2~ 

receptors are commonly expressed in the same cells, therefore Brilliant Blue 

G provides a useful tool for selectively antagonising rat P2X7 receptors but 

not the human receptor. 

Chelerythrlne is a protein kinase C inhibitor which has also been shown to 

block actions of the P2X7 receptor. Using human peripheral blood 8-

Iymphocytes stimulated with ATP, Shemon, AN et al., (2004) demonstrated 

inhibition of both cation f1uxes and phospholipase 0 activity. They suggested 
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that chelerythrine acts in a non-competitive manner, binding at a site on the 

P2X7 receptor other than the ATP-binding site. 

Decavanadate (H2V1002S-4) is a polymeric molecule, formed in solution from 

ionic species of oxides of vanadium, which has been shown to act as a 

reversible and competitive antagonist of the P2X7 receptor (Michel, AD et al., 

2006). Decavanadate inhibited ATP-stimulated uptake of ethidium in 

HEK293 cells expressing the human, rat or mouse recombinant P2X7 

receptors. A similar inhibition was also seen in BzA TP-stimulated THP-1 

cells which express an endogenous P2X7 receptor. Decavanadate also 

competitively blocked the antagonistic effects of oATP and PPADS, 

suggesting that they act at the same site. The interaction of decavanadate 

and KN62 however was non-competitive, implying that they act at different 

sites on the P2X7 receptor and reinforcing the suggestion that KN62 is an 

allosteric antagonist of P2X7. 

7.1.2. Novel P2X7 antagonists 

Several drug companies have produced novel compounds with P2X7 

antagonist properties. High throughput screening of large numbers of 

compounds enables the companies to develop those with the most promising 

properties and potential as candidate drugs. A typical screen for measuring 

P2X7 receptor inhibition is the reduction of pore formation and ethidium 

bromide uptake in cells expressing the receptor (e.g. THP-1 cells) and 

stimulated with BzA TP. The properties of the candidate drugs to be 

considered are potency, molecular weight, Jipophilicity and clearance 

(Baxter, A et a/., 2003). Potency of a compound can be estimated by its pA2 

value, which is the negative log of the concentration of antagonist that shifts 

the agonist concentration/effect curve two-fold (Neubig, RR et al., 2003). An 

ideal drug candidate should have a pA2 value> 7. The compound should 

also not be too large (MW < 450) and should be lipophilic, to enable binding 

to membrane receptors (Baxter, A et al., 2003). 

Using these criteria, AstraZeneca have produced two sets of compounds, 

one based on the adamantane amide structure (Baxter, A et al., 2003) and 

the other on cyclic imides (Alcaraz, L et al., 2003) (Fig 7.3.a & b). One of 
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their P2X7 antagonists, AZ09056, has recently been advanced into Phase 11 

clinical trials for rheumatoid arthritis (Gever, JR et al., 2006). Two novel P2X7 

antagonist compounds, AZ10573295 and AZ10603690, were provided by 

AstraZeneca for use in this project. AZ10573295 is a more potent antagonist 

with a pA2 value of 8.0, whereas AZ1 0603690 has a pA2 value of <5.5 and is 

less potent. The compounds were studied for their ability to inhibit IL-1 ~ 

release from colonic biopsies and from LPMCs isolated from inflamed colonic 

mucosa, and compared with that of oATP. 

Other companies have produced P2X7 antagonists based on 4,5-

diarylimidazolines (Merriman, GH et al., 2005) and 1-benzyl-5-

phenyltetrazole (Nelson, OW et al., 2006) (Fig 7.3.c & d). A-740003 (Abbott 

Laboratories) has been shown to reduce sensitivity to neuropathic or 

inflammatory pain when administered to rats, and also blocked IL-1~ release 

and pore formation in differentiated THP-1 cells (Honore, P et al., 2006). 

No work has yet been published on the effects of P2X7 antagonists on 

colonic mucosal inflammatory cells. IL-1~ is the principal inflammatory 

cytokine in IBo. If P2X7 antagonists can reduce IL-1 ~ release from colonic 

LPMCs this would provide a new therapeutic target for the treatment of IBo. 

Both established and novel P2X7 antagonists were therefore investigated for 

their effects on IL-1 ~ release from colonic tissue biopsies and isolated 

colonic LPMCs. 

7.2. EFFECT OF P2X7 ANTAGONISTS ON SPONTANEOUS IL-1 P 
RELEASE FROM COLONIC MUCOSAL BIOPSIES 

7.2.1. Introduction 

Studies have shown that IL-1P is spontaneously released from cultured 

biopsies taken from colonic mucosa of CO and UC patients at much higher 

levels than that seen with normal mucosa (Reimund, JM et al., 1996; oionne, 

S et al., 1998; Ligumsky, M et a/., 1990). Furthermore, this release has been 

shown to be reduced by incubation with various drugs such as 5-
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aminosalicylic acid and dexamethasone (Mahida, YR et al., 1991), and 

oxpentifylline (Reimund, J-M et al., 1997). 
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P2X7 antagonist studies were carried out on biopsies from both normal (from 

cancer patients, sampled >5cm from the tumour) and inflamed/uninflamed 

tissue from IBD patients. The effects of established P2X7 inhibitors oATP and 

KN-62 were investigated, as well as those of the novel AstraZeneca P2X7 

antagonist AZ 10603690. 

7.2.2. Method 

Small pieces (approx 10mg) were cut from a washed strip of colonic mucosa, 

weighed and placed on steel mesh in an organ culture dish (FalconTM, BD 

Pharmingen) containing 1 ml of RPMI medium (Eastwood, GL & Trier, JS, 

1973). The dishes were placed in a sealed chamber equilibrated with 95% 

02/5% C02 and incubated at 37°C for 1 h, after which time the medium was 

changed for fresh medium with or without antagonists. The chamber was re

sealed, re-equilibrated and incubated at 37°C for 24h. After this time, 

supernatants were removed and stored at -BOoC for IL-1~ assay. Because 

normal and un inflamed tissues release very little IL-1~, these biopsies were 

incubated in the presence of LPS (10f.lg/ml): 

7.2.3. Results 

The effect of P2X7 receptor antagonists on IL-1~ release from colonic 

mucosal biopsies maintained in organ culture is shown in Fig 7.4. 

7.2.3.1. IL-1P release from biopsies from normal tissue 

Normal mucosa was incubated with oATP and KN62 in the presence of LPS. 

All concentrations of the inhibitors reduced the amount of IL-1~ released 

compared to the LPS control, but the effect did not appear to be 

concentration-related (Fig 7.4.a). The amounts of IL-1~ released were very 

small, ranging from approximately 1.5-2.5pg/mg tissue. 
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Fig 7.4. Effect of P2X7 antagonists on IL-1 J3 release from colonic 
mucosal biopsies maintained in organ culture 
Small tissue biopsies (10 - 20mg) were cultured for 24h in RPMI medium containing 10% 
FCS in the presence of P2X7 antagonists. The amount of IL-113 released into the 
supernatant was measured by ELlSA. LPS (10J..lg/ml) was also added to the incubation 
medium of the normal and uninflamed tissue. Results show the mean ± sem of separate 
experiments. 
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7.2.3.2.IL-1p release from biopsies from inflamed tissue 

Mucosal biopsies from inflamed and associated uninflamed tissue were 

incubated with oATP and the AstraZeneca P2X7 inhibitor, AZ10603690. Due 

to commercial sensitivity, the more potent inhibitor, AZ10573295 could not 

be used for these experiments. Only the uninflamed tissue was incubated in 

the presence of LPS as inflamed tissue produces high levels of IL-1P without 

the need for LPS priming. This is probably because in inflamed mucosa the 

epithelial barrier is often disrupted allowing gut bacteria and their products to 

penetrate the tissue (Ivanov, AI et al., 2004). Patients with IBD have been 

shown to have higher concentrations of bacteria associated with and within 

the mucosa compared to control patients (Swidsinski, A et al., 2002). During 

the cell isolation procedure, it was noticeable that colonic tissue preparations 

from inflamed samples were more prone to bacterial infection than normal 

tissue samples, probably due to the presence of bacteria within the tissue 

that could not be washed off during preparation. 

Inflamed tissue released approximately 5-fold more IL-1 J3 than LPS

stimulated uninflamed tissue (Fig 7.4.b & c). oATP inhibited IL-1J3 release 

from un inflamed tissue in a concentration-dependent manner, with 88% 

inhibition at the highest concentration. In inflamed tissue a high concentration 

of antagonist (3mM) was required to see any marked effect, and at this 

concentration there was 96% inhibition of IL-1 J3 release. However this was 

not significant by paired t test analysis. 

AZ10603690 did not inhibit IL-1P release from either inflamed or uninflamed 

tissue. There appeared to be a trend towards a decrease in IL-1 J3 release 

from inflamed tissue, but the amount of IL-1 J3 released was never less than 

the control value. 

7.2.4. Discussion 

The results demonstrated that the release of IL-1 J3 is markedly elevated in 

inflamed colonic mucosal tissue as has been shown previously (Ligumsky, M 

et al., 1990; Reimund, JM et al., 1996), however the P2X7 antagonist, 

AZ10603690 appeared to have no effect on its release. This may have been 

because AZ10603690 is a weak antagonist (pA2 < 5.5), requiring higher 
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concentrations to produce an effect, and the more potent antagonist, 

AZ10573295 (pA2 8.0), might have reduced IL-1J3 release. Another possibility 

is that AZ10603690 was unable to penetrate the tissue to access the 

inflammatory cells on which the P2X7 receptor is expressed. Experiments 

using isolated cells should overcome this. 

Alternatively, organ culture may not be a suitable system for testing P2X7 

activity. The method has been used successfully to demonstrate inhibition of 

IL-1J3 release by 5-aminosalicylic acid (Mahida, YR et al., 1991), but P2X7-

mediated IL-1J3 release requires stimulation with ATP. The experiments 

relied on incubation with LPS to promote IL-1J3 release which mayor may not 

involve ATP. 

LPS has been shown to induce the release of ATP from RAW 264.7 

macrophages (Sperlagh, B et al., 1998), and from N13 microglial cells and 

monocyte-derived human macrophages (Ferrari, 0 et al., 1997c). In contrast, 

a study of BAC1.2F5 macrophages found no increase in ATP release on 

stimulation with LPS (Beigi, RD & Dubyak, GR, 2000). It may be therefore, 

that the P2X7 inhibitor AZ10603690 did not inhibit IL-1J3 release because 

ATP stimulation was not involved. The apparent inhibition by oATP could 

have been due to its non-specific effects described in section 7.1.1 .1. which 

might have been mediated through the epithelial cells rather than the 

inflammatory cells. 

IL-1 J3 released from both normal and inflamed intestine is produced by the 

mononuclear cells of the lamina propria (Youngman, KR et al., 1993). 

Colonic epithelial cells have been shown to express both IL-1 J3 and caspase-

1, but caspase-1 is only expressed in the inactive pro-form (Jarry, A et al., 

1999). A similar study by McAlindon, ME et al., (1998b) demonstrated that 

colonic macrophages isolated from normal tissue synthesised only pro

caspase-1, whereas those from IBD tissue produced active caspase-1 and 

hence mature IL-1J3. It is possible therefore that under certain circumstances, 

epithelial cells could also produce mature caspase-1 leading to maturation of 

IL-1J3. 

Epithelial cells from normal colonic mucosa have been shown to barely 

express TLR4, the receptor which detects bacterial LPS, but the receptor is 
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strongly upregulated in both UC and CD (Cario, E et al., 2000). Under normal 

circumstances therefore, the intestinal epithelium is unresponsive to bacteria 

and their products, is not a source of IL-1~, and has been shown to produce 

IL-1receptor antagonist (IL-1ra), in keeping with an anti-inflammatory role 

(Daig, R et al., 2000). Under inflammatory conditions however it is possible 

that the control mechanisms are defective, and although the majority of IL-1~ 

is likely to be produced by macrophages, there may be an epithelial 

component. 

7.3. EFFECT OF P2X7 ANTAGONISTS ON P2X7-STIMULATED IL-1JJ 

RELEASE FROM ISOLATED LPMCs 

Antagonism of IL-1 ~ release was studied in LPMCs isolated from normal 

tissue from cancer patients (sampled >5cm from the tumour), and from tissue 

from IBD patients. Wherever possible, tissue samples from both inflamed 

and uninflamed sections of the colon were obtained from the IBD patients. 

7.3.1. Method 

LPMCs isolated from normal or uninflamed colonic mucosa were 

resuspended in RPM I 1640 containing 0.1% v/v FCS at a concentration of 

1.1 x 106 cells/ml and incubated with LPS (1f,Jg/ml) for approximately three 

hours at 37°C in 5% C02. Cells isolated from inflamed tissue produce IL-1~ 

spontaneously and did not need LPS-priming (Mahida, YR et al., 1989b). 

Antagonist was pre-incubated with the cells for up to 30 minutes at 37°C 

prior to addition of agonist. Agonist was then added and incubation continued 

for up to 20 minutes in a final total incubation volume of 100f,J1. Incubation 

was stopped by adding PBS (400f,J1) and the cells were placed on ice. 

Following centrifugation at 350 x g for 5min, aliquots (450f,JI) of the 

supematants were stored at -80°C for IL-1~ assay. The cells remaining in the 

tubes were incubated with 250~1 of 0.1 % saponin in RPM I 1640 for 30min at 

37°C. The cells were centrifuged at 350 x g for 5min and aliquots (250J,J1) of 

the supematants were stored at -80°C for IL-1~ assay. 
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7.3.2. Effect of P2X7 antagonists on IL-1P release from LPMCs isolated 

from normal tissue 

Inhibition of Il-1 p release from lPMCs isolated from normal tissue and 

primed with lPS was carried out using the established P2X7 antagonists, 

oATP and KN62. The concentrations of the two antagonists used were 

based on those from other published studies. oATP has been widely used at 

a concentration of 300J,lM to inhibit P2X7 activity (Table 7.1.) and was used 

over the concentration range 3J.1M to 5mM. KN62 has been reported to have 

a pA2 value of 8.1 ± 0.09 for uptake of YO-PRO-1 in HEK293 cells and was 

used over the concentration range 1 nM to 300nM (Michel, AD et al., 2000). 

7.3.2.1. Results 

The results (Fig 7.5.) clearly show that whilst oATP antagonised both 

BzATP- and ATP-stimulated Il-1p release, KN62 had no effect. oATP 

inhibited Il-1 p release in a dose-dependent manner for both BzA TP and ATP 

stimulated cells. The IC50 values were the same for both agonists (325J.1M 

oATP) but the shape of the inhibition curves was different, the BzA TP-curve 

being shallower than that of ATP. This was reflected in the values obtained 

for the Hill slopes (-0.9 ± 0.7 for BzATP and -2.4 ± 1.6 for ATP) and in the 

95% confident intervals for the IC50 which were much wider for BzA TP (60-

1751J.1M oATP) than for ATP (183-575J.1M oATP). The overall reduction in Il-

1P release was the same (approximately 80%) for both agonists. 

Even though the cells were incubated in the presence of lPS, the amount of 

Il-1 p released by both BzA TP and ATP was very small, reaching a 

maximum of only 80 ± 4.4pg/106 cells. This might be due to reduced 

expression of P2X7 receptors in these cells but also reflects the low 

expression of TlR4 receptors and/or CD14 that has been demonstrated in 

colonic lPMCs (Austin, AS et al., 2005; Ortega-Cava, CF et al., 2003). 

7.3.2.2. Discussion 

Various other studies, have demonstrated a similar inhibition of Il-1p release 

by oATP in a number of different cell types. Mehta, VB et al., (2001) showed 

that 300J,lM oATP added 30 minutes prior to stimulation with 5mM ATP 
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e) Pharmacological parameters for oATP inhibition of IL-1 J3 release 

ICso value Hill slope Max& min pg 
% inhibition of Agonist with 95% confidence ±sem IL-1f3 released 
IL-1f3 release intervals (mean ± sem) 

BzATP 325~M -0.9± 0.7 81 ± 4 
84% SO -1751~M 13 ± 13 

ATP 325~M -2.4 ± 1.S 71 ± 1S 
80% 183 - 575~M 11 ± 4 

Fig 7.S. Effect of P2X7 antagonists on IL-1 J3 release from LPMCs 
isolated from normal tissue 
LPS-primed cells in RPMI1640 + 0.1% FCS were incubated with antagonist for 
30min prior to stimulation for 10min with BzATP or ATP. Il-1 f3 released into the 
supematant was measured by El/SA. Results show the mean ± sem of four 
experiments. Open symbols represent the amount of IL-1f3 released in the absence 
of antagonist. 
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completely abolished IL-1J3 release from human monocytes. Similar results 

have been shown in microglial cells (Ferrari, D et al., 1997c), mature 

dendritic cells (Ferrari, D et al., 2000), and in macrophages differentiated 

from PBMC monocytes (Ferrari, 0 et al., 1997b). All of these studies used 

300J.1M oA TP added 2 hours prior to stimulation with 1-5mM ATP, and all 

demonstrated a total block of IL-1 J3 release. 

In contrast to the data presented here, some studies have shown a dose 

dependent inhibition of IL-1J3 release by both oATP and KN62. PMA-treated 

THP-1 cells incubated with KN62 for 30 minutes prior to stimulation with 

5mM ATP demonstrated a decrease in IL-1J3 release of 60% with 300nM 

KN62 and 85% with 1 J.1M KN62 (Grahames, CB et al., 1999). Freshly isolated 

human monocytes also exhibited 88% inhibition of IL-1 f3 release with 1 J.1M 

KN62. In the same study, a 2 hour incubation with oATP inhibited ATP

stimulated release by 25% with 30J.1M oATP increasing to 70% inhibition with 

100J.1M oA TP. Other studies using human PBMCs have demonstrated a 

dose-dependent decrease in IL-1f3 release with KN62 and oATP (Elssner, A 

et al., 2004), and reduced IL-18 secretion with KN62 in PBMCs stimulated 

with LPS and ATP for 2 hours (Muhl, H et al., 2003). 

The reason for the lack of response to KN62 by the colonic LPMCs is not 

known. One explanation may be morphological differences between the cell 

types. The principal IL-1 f3-producing cells of LPMCs are the mature tissue 

macrophages, whereas the published studies using KN62 quoted above 

were all performed on monocytes. All of the experiments carried out in this 

project have indicated that PBMC monocytes are much more responsive to 

P2X7 stimulation than LP MC macrophages from normal tissue. This implies 

therefore that PBMC monocytes are altered during maturation into tissue 

macrophages, probably changing the expression of receptors and other 

membrane proteins to make the cells more quiescent. As described in 

section 7.1.1.2, KN62 is thought to be an allosteric receptor, binding to a 

different site on the P2X7 receptor than the ATP-binding site (Michel, AD et 

a/., 2000). It may be therefore that in mature macrophages this site has 

somehow been altered and is not available for KN62-binding. Studies have 

shown the existence of many different point mutations of the P2X7 receptor 
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affecting its properties and expression (Denlinger, LC et al., 2003; WHey, JS 

et al., 2003; Le Stunff, H et al., 2004; Shemon, AN et al., 2006), and it is 

possible that structural changes may occur during the maturation process 

that affect the site of KN62 binding. Alternatively, tissue macrophages may 

contain membrane proteins that bind or break down KN62 and make it 

unavailable for P2X7 antagonism. 

7.3.3. Effect of P2X7 antagonists on IL-1 p release from LPMCs isolated 

from Inflamed tissue 

Based on the histopathology reports, the inflamed tissue was characterised 

into severe acutely inflamed tissue and moderately or chronically inflamed 

tissue, and the results were grouped accordingly. The results were 

expressed as pg IL-1 P/1 06 cells to illustrate the variation in amounts of IL-1 p 
released with different degrees of inflammation and are shown in Table 7.2. 

7.3.3.1. Results 

Isolated LPMCs from inflamed and associated uninflamed tissue were 

incubated with oATP and the AstraZeneca P2X7 inhibitor AZ1 0603690, as 

were used with inflamed mucosal tissue biopsies. The more potent inhibitor, 

AZ10573295 was also used in this set of experiments. 

oATP decreased IL-1 p release by 85% or more in LPMCs from all three 

tissue types (Fig 7.6.a, c, e). The ICso values ranged from 119-185J.1M and 

showed a tendency to decrease with increased severity of inflammation (ICso 

value in LPMCs from normal tissue was 325J.1M). One possible explanation 

for this could be the greater number of PBMC monocytes usually seen in 

inflamed tissue which might respond differently to oA TP. To see if this was 

the case, earlier data from incubations of PBMCs with oATP and 200J.1M 

BzA TP was analysed and is shown in Fig 7.7. The data is the result of only 

two experiments but the ICso value obtained was 102J.1M, close to that seen 

with LPMCs from severely inflamed tissue (119J.1M). This suggests a 

difference between the responses of P2X7 receptors in circulating monocytes 

compared to those of mature tissue macrophages. A similar effect was 
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IC50 value 
Max & min pg % inhibition 

Tissue with 95% Hill slope 
Antagonist 

type confidence 
IL-113 released ofIL-1f3 

±sem 

intervals 
(mean ± sem) release 

1851lM 91 ± 62 
oATP un inflamed -1.0±1.9 98% 

2.6 - 130401lM 1.4 ± 1.4 

moderately 1381lM 277 ± 94 
-1.4±1.7 85% 

inflamed 18 - 1048,..M 41 ± 28 

severely 119,..M 2027 
-0.8 95% 

inflamed n = 1 97 

4.1,..M 297 ± 138 
AZ10603690 uninflamed -1.2 ± 1.9 88% 

0.2 - 92,..M 37 ± 2.7 

moderately 149 ± 52 

inflamed - - 88 ± 55 
41% 

severely 4.21lM 1719 ± 984 
-1.4±1.8 84% 

inflamed 0.5 - 34,..M 270 ± 93 

10.3nM 287 ± 99 
AZ10573295 un inflamed -1.4±1.3 76% 

2.4 -45nM 68±29 

moderately 18.5nM 143 ± 45 
-0.7 ± 1.4 60% 

inflamed 0.1 - 5516nM 57 ± 13 

severely 13.5nM 2730 ± 1421 
-1.6 ± 1.9 95% 

inflamed 2.1 - 85nM 124 ± 21 

Table 7.2. Effect of P2X7 antagonists on IL-1J3 release from LPMCs isolated from 
Inflamed tissue 

The table shows the EC50 values, values for the Hill slope, the maximum and minimum amounts of IL-1f3 
released, and the percent inhibition achieved with each antagonist in each tissue type. Inflamed and 
uninflamed LPMCs were isolated from tissue from IBD patients, from actively inflamed and un inflamed 
sections respectively. The results for the inflamed tissue were divided into severely inflamed and 
moderately inflamed, based on the histopathology reports. 
All of the antagonists inhibited IL-1f3 release, with over 84% inhibition of release from severely inflamed 
tissue. The IC50 values for each antagonist were similar for cells from all the tissue types. oATP 
appeared to demonstrate a decrease In IC50 value with increased inflammation. 
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Fig 7.6. Effect of P2X7 antagonists, oATP and AZ10603690, on IL-1~ 
release from LPMCs isolated from Inflamed tissue 
Figures on the left represent cells treated with oATP and on the right with AZ10603690. Cells 
resuspended In RPMI1640 + 0.1% FCS were incubated with antagonist for 10min prior to 
stimulation for 20min with 80~M BzATP. The amount of IL-1J3 released into the supernatant 
was measured by ELlSA. Results show the mean ± sem of separate experiments. 
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Fig 7.7. Effect of oATP on IL-1 p release from PBMCs 
stimulated with 200J,LM BzA TP 
Cells were primed with LPS for approximately 4h and then incubated 
with oATP for 30min prior to stimulation with BzATP for 10min. Results 
were expressed as a percent of the IL-1j3 released in the absence of 
inhibitor and show the mean :t sem of 2 experiments. 
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observed with the agonist concentration response curves for the release of 

Il-1 p, in which the EC50 value for PBMCs was lower than that for lPMCs, 

particularly with BzA TP (39JlM for PBMCs compared to SOJlM for lPMCs 

isolated from inflamed tissue and 112JlM for lPMCs isolated from normal 

tissue, Table 4.1.). This provides further evidence of changes in the 

characteristics of the P2X7 receptor of circulating monocytes on maturation to 

tissue macrophages, indicating that the cells become less responsive and 

require higher concentrations of agonist to stimulate the receptor. 

The AstraZeneca compound, AZ10603690 (Fig 7.6.b, d, f) reduced Il-1P 

release from LPMCs isolated from severely inflamed tissue and lPS

stimulated release from cells from uninflamed tissue by over SO%, but was 

ineffective in LPMCs from moderately inflamed tissue. ICso values for this 

compound were approximately 4JlM (i.e. 10·S.
4M), which closely matched its 

reported pA2 value «5.5). This gives confidence that the reported effects 

were P2X7 receptor antagonist specific and not a result of non-specific 

effects of the chemical. An ICso value of 4JlM makes AZ1 0603690 a useful 

P2X7 inhibitor but not a suitable candidate for drug development. 

AZ10573295 inhibited Il-1P release (Fig 7.8., solid squares) by 95% from 

LPMCs isolated from severely inflamed tissue, but was slightly less effective 

in cells from moderately inflamed or un inflamed tissue (60-76% decrease). 

However it is a much more potent antagonist than either oATP or 

AZ10603690, the IC50 values for AZ10573295 being approximately 10-20nM, 

compared with values in the micromolar range for the other two antagonists. 

Like AZ10603690, the IC50 values (10·8_10·7.7M) were comparable to its pA2 

value (S.O) showing that the effects were P2X7-specific. In lPMCs from 

severely inflamed tissue, AZ10573295 reduced the amount of Il-1P released 

from 2730pg/106 cells to 124pg/106 cells. AZ10573295 is thus a potent 

inhibitor of IL-1 p release, showing that P2X7 antagonism by this class of 

compound could provide a useful treatment for IBD, particularly acute 

inflammatory episodes. 

levels of the IL-1P precursor, pro-ll-1P were also measured. Intracellular 

pro-ll-1P (Fig 7.8., blue triangles) increased with increasing antagonist 

concentration in LPMCs isolated from tissues from all three inflamed 
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a. LPMCs isolated from uninflamed tissue (n=3) 
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Fig 7.B. Effect of AZ1 0573295 on IL-1 ~ release from LPMCs isolated 
from inflamed tissue 
Cells resuspended in RPMI 1640 + 0.1 % FCS were incubated with antagonist for 10min 
prior to stimulation for 20min with 80f,lM BzATP. The amount of IL-1 ~ released into the 
supernatant was measured by ELlSA. Results show the mean ± sem of separate 
experiments. For the severely inflamed tissue (fig c) where there were only 2 subjects, the 
error bars show the responses of each individual and demonstrate the variation in the 
absolute amounts of IL-1 ~ released . 
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conditions. This indicates that the antagonist is inhibiting IL-1J3 maturation as 

well as its release. 

There was a steady release of pro-IL-1J3 from the LPMCs into the 

supernatant that was unaffected by antagonist concentration and was 

equivalent to the amount released by 80JlM BzA TP in the concentration

response curves (Fig 4.6.). The mean values for the amount released are 

shown below: 

uninflamed tissue 

moderately inflamed tissue 

severely inflamed tissue 

327 ± 13 pg pro-IL-1J3 per 106 cells 

232 ± 7.7 pg pro-IL-1 J3 per 106 cells 

830 ± 80 pg pro-IL-1J3 per 106 cells 

This probably reflects background levels of cell death, breakdown and 

spillage of contents. 

Intracellular levels of mature IL-1J3 were also measured and likewise 

demonstrated a comparatively constant amount within the cells that was not 

released on stimulation but did not increase as a result of antagonist activity. 

The mean values are shown below: 

uninflamed tissue 85 ± 8.1 pg IL-1 J3 per 106 cells 

moderately inflamed tissue 75 ± 3.3 pg IL-1J3 per 106 cells 

severely inflamed tissue 632 ± 40 pg IL-1J3 per 106 cells 

This confirms that the antagonists inhibited the maturation of IL-1 J3 as well as 

its release. 

In LPMCs from severely inflamed tissue the amount of intracellular IL-1J3 was 

approximately 8-times that of the moderately or uninflamed tissue. This 

however was matched by a similar fold increase in secreted IL-1 J3 (2730 ± 

1421 pg/1 06 cells from severely inflamed tissue compared to 287 ± 99pg/106 

cells from uninflamed tissue) and reflected generally higher levels of 

production and release of IL-1J3 in the severely inflamed condition. In these 

cells the levels of both secreted and intracellular pro-IL-1 J3 were also 

elevated compared to the other tissues. 
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7.3.3.2. Discussion 

The results showed that oATP and both AstraZeneca compounds 

demonstrated a similar pattern of antagonist responses to BzA TP stimulation 

of LPMCs isolated from all the tissue types. Pre-incubation of LPMCs from 

un inflamed tissue with LPS produced levels of IL-1~ release of 100-

300pg/106 cells; higher than the amount released from cells isolated from 

normal tissue (80pg/106 cells), and equivalent to that released spontaneously 

from moderately inflamed tissue. In severe inflammatory conditions the 

amount of IL-1~ was increased 10-fold. This is probably due to the presence 

of increased numbers of circulatory monocytes, cells which produce much 

higher levels of cytokine than tissue macrophages, but could also be a result 

of increased expression of P2X7 receptors in the inflammatory state. The 

results show that P2X7 activity is related to the severity of inflammation and 

therefore make it an important target for drug development. 

7.3.4. Summary and Conclusion 

BzATP-stimulated release of IL-1~ from isolated LPMCs has been shown to 

be inhibited by P2X7 antagonists. The antagonists were particularly effective 

at reducing IL-1J3 secretion in the severely inflamed condition. This means 

that the development of specific P2X7 antagonists could provide a useful tool 

for reducing levels of the inflammatory cytokine IL-1 J3 in IBD tissue, 

particularly in acute episodes, and hence alleviate the degree of 

inflammation and associated damage to the tissue. 

There is only one treatment currently available that acts by reducing IL-1 

activity. Anakinra (Kineret, Amgen) is a recombinant form of the naturally 

occurring IL-1 receptor antagonist (IL-1 Ra) and is used to treat moderate-to

severe rheumatoid arthritis (Furst, DE et al., 2006). It appears to be most 

useful in treatment of periodic fever syndromes such as Muckle-Wells 

syndrome, neonatal onset multisystem inflammatory disease (NOMID) and 

adult onset Still's disease. However, in order to be effective, anakinra 

requires daily injections suggesting that it has very short-term effects 

(Burger, 0 et al., 2006). 
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Other potential treatments currently undergoing clinical trial are IL-1 Trap, a 

soluble form of the IL-1 receptor used to bind and neutralise IL-1(Gabay, C, 

2003). and pralnacasan, an oral caspase-1 inhibitor (Randle, JC et al., 

2001). Both are being trialled for use in rheumatoid arthritis. 

None of these treatments are so far being considered for IBD therapy 

although pralnacasan has been shown to prevent dextran sulphate sodium

induced colitis in mice. The results obtained here however, have 

demonstrated that P2X7 antagonists can reduce IL-1 ~ release from 

inflammatory cells and could provide a useful alternative treatment for IBD. 
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CHAPTER 8. DISCUSSION AND FUTURE WORK 

8.1. SUMMARY 

This project set out to characterize the properties of the P2X7 receptor in 

human colonic LPMCs, and to determine whether it would make a useful 

target for the treatment of inflammation in IBo. Its properties were compared 

to those of PBMCs, the source of recruited cells in inflamed tissue, and THP-

1 cells, a human monocyte cell line known to constitutively express P2X7. 

The initial step was to demonstrate the presence of functional P2X7 

receptors in LPMCs from human colonic tissue. One of the defining 

properties of the P2X7 receptor is its ability to form a non-selective 

membrane pore permeable to small molecules on prolonged or repeated 

stimulation. The presence of the pore can be measured by the uptake of 

small fluorescent dyes such as ethidium bromide, which intercalate double

stranded DNA or RNA with a 20- to 30-fold increase in fluorescence 

(Haugland, RP, 2002). P2X7 is also unique in that it is the only P2 receptor at 

which the ATP analogue BzA TP is a more potent agonist than ATP; at all 

other P2 receptors BzATP is equipotent with or less potent than ATP (North, 

RA et al., 2000). Using these two properties, the results presented in chapter 

3 demonstrated that human colonic LPMCs express functional P2X7 

receptors with characteristics similar to those of PBMCs and THP-1 cells. 

Stimulation of the P2X7 receptor results in the release of IL-1f3 (Ferrari, 0 et 

al., 1997b; Perregaux, DG et al., 1994), a potent inflammatory cytokine 

shown to be present at higher levels in IBD tissue (Ligumsky, M et al., 1990). 

It also causes increased exposure of phosphatidylserine on the outer surface 

of the cell membrane, known as PS flip, which has often been considered a 

marker of apoptotic cell death (Chiozzi, P et al., 1996; Hogquist, KA et al., 

1991a). Both IL-1~ release and apoptosis are important targets for anti

inflammatory drugs. Aminosalicylates and corticosteroids reduce cytokine 

production by inhibiting their transcription (Carter, MJ et al., 2004), and 

several of the standard treatments for IBD act by inducing apoptosis, 
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including corticosteroids (Carter, MJ et al., 2004), thiopurines (Tiede, I et al., 

2003) and the anti-TNF drug infliximab (ten Hove, T et al., 2002). Selective 

P2X7-receptor antagonists could provide an alternate mechanism for 

controlling these processes, and hence potential treatment for inflammatory 

diseases such as IBO. For that reason the characteristics of P2X7-stimulated 

IL-1fJ release and PS flip (measured using AV-binding) were investigated. 

8.1.1. Characteristics of P2X7-stimulated IL-1 J3 release 

The results presented in chapter 4 demonstrated that I L-1 fJ was released 

from both PBMCs and LPMCs in response to P2X7 stimulation. LPMCs 

isolated from normal colonic tissue secreted very low levels of IL-1fJ, but this 

increased dramatically in cells from inflamed tissue. This is likely to be for 

two reasons. 

Firstly, resident tissue macrophages are non-inflammatory with the ability to 

phagocytose and kill microorganisms, but do not produce pro-inflammatory 

cytokines in response to phagocytosis (Smith, PO et al., 2005). Macrophages 

have been shown to have a lower rate of constitutive caspase-1 activation 

than monocytes and hence reduced ability to process IL-1fJ (Kahlenberg, JM 

& Dubyak, GR, 2004a). Colonic mucosal macrophages also lack surface 

C014, the receptor for bacterial LPS (Smith, PO et al., 2001) and have no 

APC function (Rugtveit, J et al., 1997). However, the presence of 

inflammatory stimuli, such as invading pathogens, results in maturation of 

dendritic cells and T cells and the release of inflammatory cytokines such as 

IFN-y. IFN-y promotes classical activation of macrophages, which have all 

the capabilities of antigen presentation and are major producers of 

inflammatory cytokines such as IL-1fJ. 

Secondly, in active IBD there is an increase in the mucosal macrophage 

population thought to be derived from Circulating monocytes (Rugtveit, J et 

al., 1994; Allison, MC et al., 1988). The results in chapter 4 (Table 4.1.) 

demonstrated that PBMC monocytes are capable of secreting much higher 

levels of IL-1 fJ than normal tissue macrophages (2509 ± 777pg/106 cells 

compared to 748:t 322pg/106 cells) following BzATP stimulation. An influx of 

these cells into the tissue would therefore automatically elevate production of 
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IL-113. The macrophage population from inflamed tissue has also been 

shown to exhibit greater heterogeneity than that of normal mucosa (Mahida, 

YR et al., 1989a; Allison, MC et al., 1991). Mahida, YR et al., (1989a) 

demonstrated the presence of two macrophage populations not present in 

normal tissue; epithelioid cells which have a reduced phagocytic but greater 

secretory capacity, and a population of CD16+ macrophages whose function 

was unknown but may have been lymph-homing dendritic cells that could 

also secrete inflammatory cytokines (Randolph, GJ et al., 2002). All of these 

fadors combined would lead to greatly increased secretion of IL-113 from 

inflamed tissue. 

The results in chapter 5 showed that maximaIIL-1f3 release was achieved 

after 20 minutes stimulation of the P2X7 receptor and that stimulation for 

longer times had no further effect. The release of IL-1f3 was greater (5 fold) 

from PBMCs than LPMCs, and more rapid. The maximum rate of release (pg 

IL-1f3/min) occurred at 5 minutes in PBMCs compared to 10 minutes for 

LPMCs, and the release of IL-113 reached a maximum at approximately 10 

minutes stimulation compared to 20 minutes for LPMCs. 

As demonstrated by the ECso values (Table 4.1 and 4.2), release of IL-1 f3 

generally required lower agonist concentrations than did stimulation of PS 

flip, but PS flip occurred more rapidly (maximum rate at approximately 2-3 

minutes compared to 5-10 minutes for IL-1f3 release). This is not surprising 

since it has been suggested that P2X7-induced PS flip is an initial upstream 

effedor in a P2X7 Signalling pathway, linked to cytoskeletal rearrangements 

and reversible membrane blebbing that mayor may not be linked to 

microvesicular release of IL-1f3 (MacKenzie, AB et al., 2005; MacKenzie, A et 

al., 2001). 

In chapter 6 it was demonstrated that 5 minutes stimulation with BzA TP was 

sufficient to initiate IL-1f3 release, which then reached a maximum during the 

first hour of the subsequent incubation. Stimulating the cells for 30 minutes 

did not increase the total amount of IL-1f3 released; instead, more IL-1f3 was 

released during the stimulation period but less during the ensuing incubation. 
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As seen in chapter 5, PBMCs demonstrated a greater capacity for IL-1J3 

release than LPMCs. Following stimulation for 5 minutes, they secreted more 

IL-1J3 than LPMCs but also contained higher levels of intracellular mature IL-

1J3. In contrast, LPMCs contained high levels of pro-IL-1J3 with very little 

mature IL-1 J3 either intracellular or released. Stimulation for 30 minutes 

resulted in high levels of IL-1J3 secretion from PBMCs with little pro- or 

mature IL-1J3 remaining intracellularly. LPMCs however, although secreting 

some mature IL-1 J3 during the 30 minutes, still contained high levels of pro

IL-1 J3. 

The maximum amounts of IL-1 J3 released from cells isolated from IBD 

patients matched the severity of their inflammation, making P2X7 inhibition a 

very attractive target in the treatment of IBD. BzATP-stimulated release of IL-

1J3 from LPMCs was shown to be inhibited by P2X7 antagonists (chapter 7). 

The antagonism was particularly marked in cells from severely inflamed 

tissue and suggests that the development of specific P2X7 antagonists could 

provide a useful approach for reducing levels of IL-1J3 in IBD, and hence 

alleviate the degree of inflammation and associated damage to the tissue. 

Unfortunately P2X7 antagonists did not appear to inhibit IL-1J3 release from 

colonic mucosal biopsies maintained in organ culture. However, it is possible 

that organ culture is not a good model system for P2X7 antagonism in vivo. 

P2X7-mediated IL-1J3 release requires stimulation ofthe receptor with ATP 

but the organ culture experiments used LPS to promote IL-1 J3 production 

which may not involve the release of ATP. 

The variable nature of cytokine secretion between patients seen in these 

results confirmed the nature of IBD, in that characteristics of the disease vary 

widely between subjects, with many factors involved in the nature of its 

presentation. There is a need therefore for treatments that can target the 

inflammatory processes in different ways since one that is effective in one 

patient may not be in another. New treatments already available that target 

IL-1J3 are anakinra (IL-1receptor antagonist), IL-1 Trap (soluble IL-1 receptor) 
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and pralnacasan (caspase-1 inhibitor). Inhibition of P2X7-stimulated IL-1P 

release offers another means for such treatment. 

8.1.2. Characteristics of P2X7-stimulated PS flip and cell death 

The results in chapter 4 demonstrated that all of the cell types displayed a 

P2Xrmediated increase in total AV-binding, and hence PS flip. Since PS flip 

has often been considered to be linked to apoptosis, this initially suggested 

that stimulation of the P2X7 receptor leads to apoptosis in these cells. 

MacKenzie, AB et a/., (2005) however has proposed that PS flip associated 

with brief stimulation of the P2X7 receptor is not part of the apoptotic process 

but is completely reversible, and has called it 'pseudoapoptosis'. In contrast, 

they showed that prolonged P2X7 stimulation for more than 20-30 minutes 

led to subsequent apoptotic cell death. 

These differences prompted an investigation into the effect of P2X7 receptor 

stimulation time on apoptosis and cell death in LPMCs. The results 

presented in chapter 5 showed the effect of increasing stimulation times of 

the P2X7 receptor at maximal and half-maximal agonist concentrations. PS 

flip, measured by AV binding, was rapid in all cell types, with maximum rates 

of binding per minute occurring between 0-3 minutes with BzA TP stimulation 

and 1-5 minutes with ATP stimulation. Monocytes generally demonstrated 

more rapid PS flip than Iymphocytes, and they were also more susceptible to 

cell death, as measured by PI staining. Further investigation of cell death 

using a larger nucleic acid stain, TOTO-3, and LDH release suggested that 

some of the observed PI staining in monocytes was probably due to uptake 

of the dye through the P2X7 pore rather than cell death. However they also 

confirmed that monocytes were more liable to die following P2X7-stimulation 

than Iymphocytes, and also that PBMCs were more susceptible than LPMCs. 

The reversibility of PS flip was then investigated using 5 or 30 minutes 

stimulation with BzATP. The results in chapter 6 showed that brief 

stimulation of the P2X7 receptor induced PS flip (measured by AV binding) 

that was completely reversible in all the cell types except for PBMC 
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monocytes, in which 40% of the cells demonstrated irreversible PS flip. 

Following stimulation for 30 minutes however, all of the cells demonstrated 

irreversible PS flip and cell death, as measured by PI staining, except for 

lPMC Iymphocytes which still reversed the AV binding. The combined 

results of AV/PI staining and lDH release confirmed the findings of chapter 

5; namely that monocytes were more susceptible to cell death following P2X7 

stimulation than Iymphocytes, and that PBMCs were more susceptible than 

lPMCs. This is not surprising since monocytes have been shown to have a 

four- to five-fold greater expression of P2X7 than Iymphocytes (Gu, BJ et al., 

2000). The pattern of lDH release suggested that P2Xr stimulated cell death 

was necrotic, occurring only in the presence of the agonist. 

Cell cycle analysis and Hoechst staining indicated little induction of apoptosis 

following P2X7 stimulation, but the 24-hour Hoechst-stained slides contained 

visibly less cells than the earlier time points, compatible with necrotic cell 

death. These results suggested therefore, that although P2X7 stimulation 

was associated with cell death, this was not apoptotic cell death and P2X7-

stimulated PS flip was not a marker for apoptosis. 

8.2. CONCLUSIONS AND FUTURE WORK 

The results presented in this thesis have shown that P2X7-stimulated IL-1f3 

release generally occurred at lower agonist concentrations than AV binding, 

and only required short stimulation times. This suggests that IL-1f3 release is 

associated with reversible PS flip rather than the irreversible flip associated 

with cell death, which generally requires at least 30 minutes stimulation of 

the P2X7 receptor (MacKenzie, AB et al., 2005). 

The role of P2X7 may therefore be two-fold. With minimal cell stress and/or 

damage, brief stimulation of the receptor caused by localised release of ATP 

would lead to IL-1 f3 release and promotion of an inflammatory reaction. The 

action of nucleotidase enzymes would then quickly remove the ATP with 

resulting resolution and repair. However in the event of major damage to 

cells leading to the prolonged release of ATP and hence prolonged P2X7 

stimulation, it acts as a danger signal and promotes cell death to ensure that 

the inflammatory response is stopped before it causes harm to the tissue. 
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Pyroptosis is a form of pro-inflammatory cell death initially used to describe 

death associated with Salmonella and Shigella infection of host 

macrophages (Cookson, BT & Brennan, MA, 2001; Hilbi, H et al., 1997). It 

was proposed as a mechanism of programmed cell death for the removal of 

potentially dangerous cells, such as infected cells, where recruitment of 

additional cells or cellular functions are required (Cookson, BT & Brennan, 

MA, 2001). Pyroptosis is dependent on caspase-1 activity and leads to 

membrane breakdown and pro-ll-1 p processing. 

A study using peritoneal macrophages showed that activation of caspase-1 

following P2X7 stimulation elicited rapid cell death preceded by Il-1P release 

that was analogous to pyroptosis (Brough, 0 et a/., 2007). More recently a 

unique structure called the pyroptosome has been proposed, composed of 

oligomerised ASC dimers (a component of the inflammasome, Fig 1.6.). 

Formation of the pyroptosome in THP-1 cells was driven by potassium efflux, 

a feature of P2X7 stimulation, and resulted in rapid activation of caspase-1 

and release of inflammatory cytokines (Fernandes-Alnemri, T et a/., 2007). 

Pyroptotic death of infected macrophages has also been shown to involve 

pore formation that required actin cytoskeleton rearrangements, also 

features of P2X7 stimulation (Fink, Sl & Cookson, BT, 2006). It is possible 

therefore that P2X7 is not an apoptotic receptor as was initially believed, but 

a pyroptotic receptor, stimulation of which results in Il-1P release followed by 

cell death. 

IL-1 p is a highly inflammatory cytokine whose release needs to be tightly 

regulated. The requirement for P2X7 as a second signal for Il-1 p production 

forms a fail-safe mechanism to ensure that activation of such a potent 

inflammatory response only occurs when absolutely necessary. A study of 

murine macrophages demonstrated that P2Xrmediated activation of 

caspase-1 required prestimulation with lPS (Kahlenberg, JM et al., 2005). 

This ensures that activation of P2X7 by ATP will only result in the maturation 

of Il-1 p if an inflammatory signal such as bacterial LPS is also present. 

Having such a potent receptor on the cell surface also requires tight control 

of its activity, and P2X7 has been shown to be inhibited by physiological 

concentrations of various ions including Ca2
+ and Mg2

+, Na + and K+ and cr , 
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(Michel, AD et al., 1999; Virginio, C et al., 1997). High levels of ATP are 

therefore needed for its stimulation, ensuring that the receptor is only 

activated under extreme conditions of cell stress or damage. 

A" of the investigations carried out in this project have shown that PBMCs, 

particularly monocytes, are more responsive to P2X7 stimulation than 

LPMCs. In contrast, a study by Hickman, SE et al., (1994) showed that P2X7 

expression increased as monocytes matured into macrophages. The 

macrophages they used however were matured in culture from blood 

monocytes incubated in medium containing 30% vlv FCS. They are likely 

therefore to have retained their monocyte properties, including expression of 

CD14, and to have characteristics of classica"y activated macrophages able 

to mount an inflammatory response. Conversely, normal tissue macrophages 

mature under the influence of other tissue cells and their secretory products, 

and become efficient scavenging cells with non-inflammatory characteristics. 

A study by Spottl, T et al., (2001) demonstrated that incubation of peripheral 

blood monocytes with intestinal epithelial cell lines resulted in down

regulation of CD14 expression from 86% of the cell population to 11% after 7 

days co-culture. It would be interesting to perform a similar experiment 

studying expression levels of the P2X7 receptor. 

Upregulation of the P2X7 receptor during inflammation may in part be a result 

of phagocytosis of invading pathogenic bacteria. The C-terminal chain of the 

P2X7 receptor has been shown to contain a region homologous to the LPS 

binding site of LPS-binding protein (Den linger, Le et al., 2001). The authors 

suggested that internalised LPS may play a regulatory role in receptor 

trafficking, and this is supported by the fact that point mutations involved in 

trafficking lie within the LPS-binding region (Den linger, LC et al., 2003). It 

would therefore be interesting to look at the distribution of the P2X7 receptor 

in PBMCs and in LPMCs from normal, uninflamed and inflamed tissue using 

anti-P2X7 antibodies. Slater, M et al., (2004) showed that P2X7 expression 

was associated with development of cancer in the prostate gland. The 

receptor appeared in a stage-specific manner beginning in the nucleus, 

progressing to the cytoplasm and finally gathering on the apical membrane of 
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the epithelial cells. It may be that a similar increase in P2X7 expression 

occurs in colonic macrophages, related to increased inflammation. If the level 

of P2X7 expression could be shown to correlate with the severity of 

inflammation this would confirm the usefulness of P2X7 antagonists as a 

treatment for IBO. 

It would also be interesting to discover whether increased receptor 

expression could be induced artificially by incubation of LPMCs from normal 

tissue with LPS or other inflammatory mediators, or by co-culture with 

bacteria such as E. coli. In association with P2X7 expression, the levels of 

C014 and TLR4 expression within the different tissue types would also 

indicate the cells' ability to respond to bacteria within the gut. This would 

confirm whether the principal modulator of P2X7 expression was bacterial 

LPS or whether other inflammatory signals were required. 

The role of P2X7 in LPMC cell death could also be investigated further, in 

particular additional experiments to see whether P2X7-stimulated PS flip is 

associated with apoptosis. Since T cells from IBO tissue are resistant to 

apoptosis (Neurath, MF et al., 2001), expansion of the studies of AV/PI 

binding to include cells from uninflamed and inflamed tissue would be 

expected to show different staining patterns to those from normal tissue. If 

there was no change, it would support the results from the cell cycle analysis 

and Hoechst staining indicating that P2X7 does not play a significant role in 

apoptotic cell death. 

The novel P2X7 antagonists provided by AstraZeneca could be investigated 

to see whether they bind to the ATP binding site, like oATP, or to an 

allosteric site on the receptor, like KN62. Michel, AD et al., (2000) pre

incubated cells with PPAOS or KN62 prior to antagonism of BzA TP 

stimulation with oATP. They found that PPAOS attenuated the antagonistic 

effect of oATP but KN62 had no effect and this led them to surmise that 

KN62 was an allosteric antagonist acting at a site distinct from that 

recognised by oATP and PPAOS. Similar experiments with the AZ 

antagonists could show whether they also bind to an allosteric site or 

whether they compete with the agonist for the same site. Many point 
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mutations have been identified in the P2X7 receptor, modifying its efficacy, 

actions or expression. If the AZ antagonists bind to an allosteric site it is 

possible that mutations within that site could negate their effects and hence 

their value as P2X7 inhibitors. 

Ultimately, the most interesting future work would be to administer the 

AstraZeneca P2X7 inhibitor, AZ09056 (currently being trialled for treatment 

of rheumatoid arthritis), to IBO patients. Measurement of pre- and post

treatment colonic biopsy IL-1J3 and plasma IL-18 would provide useful 

information, but the principal target would be the relief of inflammatory 

symptoms in the patient and to show that P2X7 inhibitors are useful 

treatments for IBO. 
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