

TRANSFORMATION OF THE

UNIVERSITY EXAMINATION

TIMETABLING

PROBLEM SPACE

THROUGH

DATA PRE-PROCESSING

SITI KHATIJAH NOR ABDUL RAHIM, BSc., MSc.

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

2015

ii

Abstract

This research investigates Examination Timetabling or Scheduling, with the

aim of producing good quality, feasible timetables that satisfy hard

constraints and various soft constraints. A novel approach to scheduling, that

of transformation of the problem space, has been developed and evaluated for

its effectiveness.

The examination scheduling problem involves many constraints due to many

relationships between students and exams, making it complex and expensive

in terms of time and resources. Despite the extensive research in this area, it

has been observed that most of the published methods do not produce good

quality timetables consistently due to the utilisation of random-search. In

this research we have avoided random-search and instead have proposed a

systematic, deterministic approach to solving the examination scheduling

problem. We pre-process data and constraints to generate more meaningful

aggregated data constructs with better expressive power that minimise the

need for cross-referencing original student and exam data at a later stage.

Using such aggregated data and custom-designed mechanisms, the timetable

construction is done systematically, while assuring its feasibility. Later, the

timetable is optimized to improve the quality, focusing on maximizing the

gap between consecutive exams. Our solution is always reproducible and

displays a deterministic optimization pattern on all benchmark datasets.

Transformation of the problem space into new aggregated data constructs

through pre-processing represents the key novel contribution of this

research.

iii

Publications / Disseminations

during PhD period

Papers Published / Presented:

Rahim, S. K. N. A., Bargiela, A., & Qu, R. 2009. Granular Modelling Of Exam

To Slot Allocation. ECMS 2009 Proceedings edited by J. Otamendi, A.

Bargiela, J. L. Montes, L. M. Doncel Pedrera (pp. 861-866). European

Council for Modelling and Simulation. (doi:10.7148/2009-0861-0866).

Rahim, S. K. N. A., Bargiela, A., & Qu, R. 2012. Deterministic Optimization

of Examination Timetables. In 25th European Conference on Operational

Research, EURO 2012, Session WC-14, p.220-221, Vilnius, Lithuania, July

2012.

Rahim, S. K. N. A., Bargiela, A., & Qu, R. 2013. Hill Climbing Versus Genetic

Algorithm Optimization in Solving the Examination Timetabling Problem.

 2nd International. Conference On Operations Research and Enterprise

Systems, ICORES 2013, Barcelona, Spain, 16-18 February 2013.

Rahim, S. K. N. A., Bargiela, A., & Qu, R. 2013. Domain Transformation

Approach to Deterministic Optimization of Examination Timetables,

Artificial Intelligence Research (AIR) Journal. Sciedu Press. 2(1), 2013.

(doi:10.5430/air.v2n1p122).

Rahim, S. K. N. A., Bargiela, A., & Qu, R. 2013. Analysis of Backtracking in

University Examination Scheduling. In proceeding of: 27th European

Conference on Modelling and Simulation, ECMS2013, At Aalesund,

Norway. doi: (10.7148/2013-0782)

 Rahim, S. K. N. A., Bargiela, A., & Qu, R. 2013. A Study on the Effectiveness

of Genetic Algorithm and Identifying the Best Parameters Range for Slots

Swapping in the Examination Scheduling. International Symposium on

Mathematical Sciences and Computing Research, iSMSC 2013. Ipoh,

Malaysia.

Rahim, S. K. N. A., Bargiela, A., & Qu, R. The Incorporation of Late

Acceptance Hill Climbing Strategy in the Deterministic Optimization of

Examination Scheduling Framework: A Comparison with the Traditional

Hill Climbing. 2014 IEEE Conference on Systems, Process and Control

(ICSPC 2014), 12 - 14 December 2014, Kuala Lumpur, Malaysia.

iv

Acknowledgement

I would like to take this opportunity to personally thank a number of people

for their help and support during my PhD study. First and foremost, I would

like to express my profound gratefulness and deep honours to my first

supervisor, Professor Andrzej Bargiela for his constant guidance, support,

help, encouragement, and constructive comments throughout this study. I

really appreciate his dedicated commitments and professionalism in

supervising my research study.

Also, I would like to express my gratitude to Dr Rong Qu, my second

supervisor, for all the positive, constructive and detailed comments in my

work that she has always given to me despite her busy schedule and

commitments.

I would also like to thank the Ministry of Higher Education (MOHE) of

Malaysia and the Universiti Teknologi MARA (UiTM) for the doctoral

scholarship and other financial support throughout the course of this study.

My thanks also go to my wonderful friends and staffs at the University of

Nottingham Malaysia Campus and University Teknologi MARA (UiTM) for

their advice, support, and friendship.

A special thanks to my lovely husband Amir Hamzah Jaafar for his great

support, patience, understanding and unconditional love. Finally, thank you

very much to my both mother and mother-in-law, my daughters, my brother

and sisters, the entire family and friends for their support, love and prayers.

v

Table of Contents

Abstract ii

Publications and Disseminations During PhD Period iii

Acknowledgements iv

List of Tables ix

List of Figures xi

1- CHAPTER 1 .. 1

1.1 Introduction ... 1

1.2 Scope and Objective ... 7

1.3 Research Contributions ... 8

1.4 Thesis Overview ...10

2- CHAPTER 2 ...12

2.1 Background of the Scheduling Research ...12

2.1.1 Definition of Scheduling According to the Scheduling Literature13

2.1.2 Constraints in the Examination Scheduling Problems15

2.2 Reviews of Various Surveys in the Scheduling Literature17

2.3 Summary of Algorithmic Techniques in the Scheduling Literature .20

2.4 Benchmark Examination Scheduling Datasets28

2.4.1 University of Toronto Dataset ...30

2.4.2 University of Nottingham Dataset ..31

2.4.3 International Timetabling Competition 2007 (ITC2007) Dataset32

2.5 Widely Used Ordering Strategies ..33

2.6 Widely-Used Evaluation Function: Carter Evaluation Function34

2.7 Performance of Methods Proposed in the Examination Scheduling

Literature ...35

2.8 Pre-Processing Approach in the Examination Timetabling38

2.9 Important Insights from the Scheduling Literature and Motivations

for the Research ..42

vi

3- CHAPTER 3 ...46

3.1 Domain Transformation Approach – Overview46

3.2 The Flow of the Proposed Approach ..52

3.2.1 Standardization and Verification of the Problem Description

Data 54

3.2.2 Pre-processing .. 63

Generation of the Exam Conflict Matrix ... 64

Generation of the Conflict Chains ... 65

Generation of the Spread Matrix ... 73

3.2.3 Scheduling .. 75

3.2.3.1 Scheduling for Uncapacitated Problems 76

Effects of Pre-Ordering Exams on Scheduling 80

Implementations of Backtracking to Reduce the Number of Slots 87

Types of Backtracking Implemented in the Proposed Framework 98

Differences between Carter’s Backtracking and the Proposed

Backtracking ... 99

3.2.4 Optimization ... 104

3.2.4.1 Minimization of Total Slot Conflicts 107

3.2.4.2 Minimization of Costs via Permutations of Exam Slots... 112

Method 1 ... 114

Method 2 ... 114

Greedy Hill Climbing .. 115

Late Acceptance Hill Climbing ... 118

3.2.4.3 Minimization of Costs via Reassignments of Exams 122

3.3 Mathematical Formulation Based on the Proposed Approach 126

3.4 Recap of the Proposed Approach .. 127

4- CHAPTER 4 ... 128

4.1 Experiments and Results for Benchmark Datasets 128

vii

4.1.1 Pre-processed Data ... 129

Exam Conflict Matrix ... 129

Conflict Chains ... 130

Spread Matrix ... 133

4.1.2 Schedules Generated .. 134

4.1.2.1 Initial Feasible Schedule ... 134

Costs and Number of Slots Generated .. 135

4.1.3 Improved Quality Schedules via Optimization 138

4.1.3.1 Minimization of Total Slot Conflicts 138

4.1.3.2 Cost Reduction via Permutation of exam slots 140

Costs Produced By Method 1 versus Method 2 140

Costs Produced By Greedy Hill Climbing 144

Different Parameters for Permutations of Slots 146

4.1.3.2.1 Costs Produced By Late Acceptance Hill Climbing

(LAHC) 148

4.1.3.3 Cost Reduction via Reassignments of Exams 151

4.1.4 Summary of Results and Graphs Produced For Benchmark

Datasets Using Proposed Approach ... 152

4.1.5 Summary of Results and Graphs for Best Cost Produced For

Benchmark Datasets .. 160

4.1.6 Deterministic Pattern Obtained For All Tested Datasets 165

4.1.7 Comparison of the Proposed Methods Compared to Other

Constructive Methods in the Literature .. 173

5- CHAPTER 5 ... 180

5.1 Substitution of a Global Search Procedure in the Optimization Stage

of the Proposed Framework ... 180

5.1.1 Genetic Algorithm .. 183

5.1.2 Our Genetic Algorithm Implementation 185

5.1.3 Results for Hill Climbing versus Genetic Algorithm

Optimization ... 188

viii

6- CHAPTER 6 ... 214

6.1 Summary of the Research .. 214

6.2 Summary of Results ... 224

6.3 Contributions .. 229

6.4 Future Work ... 233

Bibliography………………………………………………………………………....234

ix

List of Tables

Table 2-2: Primary Soft Constraints in the Examination Scheduling

Problems ... 16

Table 2-3: The Characteristics of University of Toronto Benchmark

Dataset .. 30

Table 2-6: Widely-Used Graph Heuristics in Exam Scheduling 33

Table 2-7: Comparison of Results in Terms of Carter cost (2.1) for the

Thirteen Problem Instances of Toronto Benchmark Datasets For Different

Constructive Approaches Reported in the Literature 35

Table 2-8: Comparison of Results in Terms of Carter cost (2.1) for the

Thirteen Problem Instances of Toronto Benchmark Datasets For Different

Hyper-Heuristics Approaches Reported in the Literature 36

Table 2-9: Comparison of Results in Terms of Carter cost (2.1) for the

Thirteen Problem Instances of Toronto Benchmark Datasets For Other

Different Improvement Approaches Reported in the Literature 36

Table 2-10: No of Exams to Required No of Slots Ratio 39

Table 3-1: Different Number of Slots Generated After Pre-Processing By

Using Different Pre-Orderings ... 87

Table 4-1: Number of Slots for Nott and Toronto Datasets Before and

After Performing Backtracking .. 137

Table 4-2: Results after Performing the Minimization of Total Slot

Conflicts Procedure on Nott and Toronto Datasets 139

Table 4-3: Cost Functions Before and After Considering the Spread

Information for the Uncapacitated Nott Dataset. 142

Table 4-4: Cost Functions Before and After Considering the Spread

Information for the Capacitated Nott Dataset. 143

Table 4-5: Optimized number of starting points and repetitions of the

permutations of exam slots for different benchmark problems. 146

Table 4-6: Results Before and After Performing Permutation of Exam

Slots on Nott and Toronto Datasets ... 148

Table 4-7: Results before and after Performing LAHC Permutations of

Exam Slots on Nott and Toronto Datasets .. 149

x

Table 4-9: Computational Results (Best Cost) of the Proposed Approach

Applied to the Nott and Toronto Dataset .. 161

Table 4-10: The characteristics of the ITC2007 dataset 167

Table 4-11: Computational Results of the Proposed Approach Applied to

the ITC2007 Dataset .. 169

Table 4-12: Results in Terms of Carter cost (2.1) of Our Method in

Comparison with Some Other .. 176

Table 4-13: Average Percentage Distance to the Optimal Cost for 11

Datasets in the Toronto Problem ... 177

Table 4-14: Average Percentage Distance to the Optimal Cost 178

Table 5-1: Results Obtained Using GA Optimization With Minimization of

Total Slots Conflicts and Group Reassignments on Toronto Benchmark

Problem ... 190

Table 5-2: Comparison of Results Obtained By Using Hill Climbing and

Genetic Algorithm Optimization on Nott and Toronto Datasets 200

Table 5-3: Number of Generations That Could Improve the Schedule Cost

During GA Optimization .. 210

Table 5-4: Final Cost Produced Using HC versus GA Optimization 211

xi

List of Figures

Figure 2.4: Timeline of Brief Historical Lineage of Some Keys Algorithmic

Techniques – Various Heuristics (2005 – 2014) .. 26

Figure 3.1: Illustration of an Example of a Standard Examination

Scheduling Problem (Fine Resolution Level) ... 50

Figure 3.3: The Flow of the Proposed Approach 53

Figure 3.4: Sample of Enrollment Data from the University of Nottingham

Dataset File .. 56

Figure 3.5: Sample of Enrollment Data from the Toronto Dataset File ... 57

Figure 3.6: Sample of Enrollment Data from the ITC2007 Dataset File . 58

Figure 3.7: Algorithm for Retrieving Enrollment Data, Standardization

and Verification .. 62

Figure 3.8: Algorithm to Generate Conflict Chains 66

Figure 3.9: An Example of a representation of Student-Exam List 68

Figure 3.10: Exam-Students List Generated Based on the Student-Exam

List .. 69

Figure 3.11: Exam-Clashes List ... 69

Figure 3.12: Illustration of Exam-Conflict Matrix 70

Figure 3.13: Diagram Illustrating the Slot Allocation Process 71

Figure 3.14: Diagram Illustrating Exams Allocated To Slots 72

Figure 3.15: Conflict Chains Generated .. 72

Figure 3.16: Algorithms for Pre-Processing ... 74

Figure 3.17: Algorithm for Allocation of Exams to Time slots 78

Figure 3.18: Algorithm for Allocation of Exams to Time slots 79

Figure 3.19: Figure Illustrating Exam E510 Clashes with Exam E66 80

Figure 3.20: Figure Illustrating 8 Exams with The Clash List Pre-ordered

Using Ordering 1: Random Ordering (RO) .. 82

Figure 3.21: Slot Allocation Process for Random Ordering (RO) 83

xii

Figure 3.22: Figure Illustrating 8 Exams with The Clash List Pre-ordered

Using Ordering 2: Largest Degree (LD) ... 84

Figure 3.23: Slot Allocation Process for Largest Degree (LD) 85

Figure 3.24: Backtracking Stage in Our Proposed Framework 90

Figure 3.25: Flowchart of Backtracking Process 92

Figure 3.26: Pseudocode for Backtracking .. 94

Figure 3.27: Flowchart for Carter’s Backtracking in General 100

Figure 3.28: Flowchart for our Backtracking in General 101

Figure 3.29: Flowchart for Carter et al. (1996)’s Backtracking in Detail

 .. 103

Figure 3.30: An Example of a Feasible Examination Schedule 105

Figure 3.31: An Example of an Improved Examination Schedule 106

Figure 3.32: Algorithm for Minimization of Total Slot Conflicts 111

Figure 3.33: An Improved Examination Schedule after Optimization

(Permutations of Slots) ... 113

Figure 3.34: Re-ordered Time Slots Via Permutations of Slots with

Greater Effect ... 113

Figure 3.35: Algorithm for Permutations of Exam Slots Using Greedy Hill

Climbing Strategy .. 117

Figure 3.36: Algorithm for Permutations of Exam Slots Using Late

Acceptance Hill Climbing Strategy .. 120

Figure 3.37: An Improved Examination Schedule after Optimization

(Reassignment of Exam) .. 123

Figure 3.38: Algorithm for Reassigning Exams 125

Figure 4.1: An Example of an Exam Conflict Matrix 129

Figure 4.3: Conflict Chains after Merging ... 132

Figure 4.2: Conflict Chains before Merging ... 132

Figure 4.5: allocflag for yorf83 before backtracking 135

Figure 4.6: allocflag for yorf83 after backtracking 140

Figure 4.7: Initial Ordering of the Spread Matrix for the First 6 Slots for

the Nottingham Dataset... 140

THESIS-SITI%20KHATIJAH%20NOR-UNMC-CORRECTED-2015%20-18th%20APRIL%202015.doc#_Toc419241776
THESIS-SITI%20KHATIJAH%20NOR-UNMC-CORRECTED-2015%20-18th%20APRIL%202015.doc#_Toc419241777

xiii

Figure 4.8: The New Arrangements of the Initial Ordering of the Spread

Matrix after Applying Method 1 .. 141

Figure 4.9: The New Arrangements of the Initial Ordering of the Spread

Matrix after Applying Method 2 .. 141

Figure 4.11: An Example of a Spread Matrix with 10 Slots after

Performing the Greedy Hill Climbing Procedure 145

Figure 4.12: Graphs for the cost (2.1) versus the Total Slot conflict for all

Datasets .. 155

Figure 4.13: General Pattern of Graphs For All Datasets 156

Figure 4.14: Imitation Graph Created For Explanations 157

Figure 4.15: Cost (2.1) vs. the Total Slot Conflicts For Nott and Toronto

Dataset .. 164

Figure 4.16: The Predicted Pattern of the Graph with the Proposed

Approach ... 165

Figure 4.17: Cost (2.1) vs. the Total Slot Conflicts for ITC2007 Dataset

 .. 172

Figure 5.1: Scheduling and Optimization Steps Before and After GA

Substitution. ... 182

Figure 5.2: Generation of New Parents in the Proposed GA 186

Figure 5.3: Generation of Offsprings in the Proposed GA 187

Figure 5.4: Carter Cost (2.1) vs. Number of Parents for sta-f-83 dataset 197

Figure 5.5: Carter Cost (2.1) vs. Number of Parents for ute-s-92 dataset.

 .. 197

Figure 5.6: Cost (2.1) vs. the Total Slot Conflicts for Benchmark Datasets

(Using Hill Climbing (HC) vs. Genetic Algorithm (GA)). Note: Continuous

line- graphs on the left of this figure are for HC and dashed line –graphs

are for GA. .. 206

1

CHAPTER 1

1

Introduction

There are many events and activities in this world that need to be

synchronized. From social community activities, work and transportation

to personal agendas, they all need to be planned and scheduled. The

effectiveness of all this planning depends on the efficiency of the schedules.

This thesis is focused on transforming the university examinations’

scheduling problem into a more structured domain, in which a new

representation of information through pre-processing is introduced. We

also studied and implemented a few optimization approaches that enhance

the solutions generated with the proposed approach.

This chapter presents the introduction to this research, followed by the

scope and objectives of this study. Later, we present the thesis contributions

in brief. Finally the thesis overview is specified which briefly explains how

this thesis is organized, chapter by chapter.

1.1 Introduction

The word “timetable” (also known as schedule) is defined by the Oxford

Advanced Learner's Dictionary (which can be accessed from

http://www.oxfordlearnersdictionaries.com) as “a list showing the times at

which particular events will happen”. Therefore, timetabling or scheduling

2

can be thought of as a process of creating schedules that will list events

and the times at which they are planned to occur. In many organizations

or institutions, scheduling is an important challenge and is considered a

very tedious and time-consuming task. Normally, the personnel involved

in preparing the schedules will do it manually and, in most cases, using a

trial-and-error approach. Some scheduling problems involve many

constraints, and due to this the preparation of the schedules sometimes

becomes complex and expensive in terms of time and resources.

Wren (1996) mentioned that timetabling and scheduling has a

special type of relationship. The author defined timetabling as follows:

“Timetabling is the allocation, subject to constraints, of given resources to

objects being placed in space time, in such a way as to satisfy as nearly as

possible a set of desirable objectives.”

 There are various areas of scheduling, which include educational

scheduling, sports scheduling, transportation scheduling and nurse

scheduling, etc. Due to the wide spectrum of applications of scheduling,

research in the area is also scattered and is usually problem-specific.

Scheduling research not only concentrates on generating a feasible

timetable but the efficiency of the solution generated is also sought after.

Numerous approaches or methods have been proposed since the 1960s by

researchers from the Operational Research and Artificial Intelligence

area, as surveyed by Qu et al. (2009a).

Among the broad areas of the scheduling problems, educational

scheduling is one of the most studied and researched areas in the

scheduling literature. This is due to the significant and time-critical

3

challenge associated with the requirement of preparing the schedules

periodically in schools, colleges and universities (quarterly, annually etc.).

Educational scheduling includes school scheduling (course/teacher

scheduling), university course scheduling, university examination

scheduling and more. For this scheduling problem, in most universities

nowadays, the students are given the flexibility to enrol for courses across

faculties. That makes this kind of scheduling problem more challenging

and expensive to solve. In some cases, a number of people are in charge of

producing the schedules, and thousands of hours have been spent on this.

As an example, Universiti Teknologi Mara (UiTM) which is

Malaysia's largest institution of higher learning in terms of size and

population is no different in generating schedules. Besides the main

campus in Shah Alam, UiTM has expanded nationwide with 12 state

campuses, 6 satellite campuses in Shah Alam, 11 state satellite campuses

and 21 affiliated colleges (http://www.uitm.edu.my/index.php/en/about-

uitm/uitm-profile-history/university-profile). This university offers more

than 500 academic programmes delivered by 24 faculties. The schedules

will be prepared each semester by the timetable committee which exist in

every faculty. The committee is responsible to come up with a complete

schedule, which relates the lecturers, student groups and rooms. Unlike

other universities, UiTM has a different policy in disseminating

information to the students, most lectures are being conducted in small

classes with a minimum of 15 and a maximum of 40 students, which

introduces additional constrains to the preparation of the schedules.

4

In a different perspective, we have examined the number of

resources utilized to generate the schedules each semester. For a typical

UiTM branch campus having 25 departments, each department will have

a minimum of two persons as a committee member, with a total of 50

persons involved in the whole exercise which constitute roughly about

16% of the total faculty members. In preparing the course schedules, 40

working hours will be required by each committee member, in overall the

whole exercise consumes 2000 hours. The time spent on producing

schedules in a large educational establishment may not be obvious;

however, cumulatively and collectively it is equivalent to the time that

may be spent to build an airplane (Wilson R, 2010).

Surveys and overviews of educational timetabling problems and

the proposed methods to solve them can be found in many publications

e.g. (Schmidt and Strohlein, 1980), (Carter, 1986), (Carter and Laporte,

1996), (Burke et al., 1997), (Schaerf, 1999), (Qu et al., 2009a), (Pillay,

2013), (Kristiansen and Stidsen, 2013) and etc.

In this work, the focus is the university examination scheduling

problem. This problem is known as an NP hard real world problem

(Cooper and Kingston, 1996; and Even et al., 1976). This problem has

increasingly become more challenging in recent years due to the raise in

students’ enrolments and especially when students are given the

flexibility to register modular courses across faculties (Burke et al., 1994a)

and (McCollum, 2007).

The standard objective of university examination scheduling

problem is to satisfy the most important hard constraint that is to produce

5

feasible examination schedules (i.e. no conflicting exams scheduled

concurrently). However, it is also important to produce a good quality

schedules according to some preferences, which can be considered as soft

constraints. The term ‘soft’ refers to the fact that the satisfaction of these

types of constraints is not really crucial but the fulfilment will benefit

some entities.

To date, the number of approaches or methods proposed to solve

examination scheduling problems is increasing. These research efforts

have evaluated various approaches, created new methods and produced

promising findings or results. Efforts have also been devoted to

automating the scheduling process, so that the generation of schedules

could be carried out using computer software. However, due to the

inherent complexity of the problem, there is still room for improvement in

the current state of the art.

Common approaches developed in solving the timetabling problems

usually consist of two phases, i.e. the construction and improvement phase

(as claimed by (Hertz, 1991)). With regard to the constructive approach,

Burke et al., (2010b) stated that a constructive approach begins with an

empty solution and additionally constructs a final (complete) solution by

utilizing some heuristics. As opposed to the constructive phase, the

improvement phase begins with a complete solution where by the quality

of the solution is enhanced (normally using certain procedures repeatedly

until the optimal solution is produced).

One of the most widely used method in the construction phase is

the graph colouring heuristics, where it is defined as the problem of

6

colouring vertices of a graph with the most minimum number of colours so

that no two adjacent vertices share the same colour. Examination

timetabling problem can be represented as a graph colouring problem,

where the vertices represent the exams, edges represent the clashes

between exams and colours represent the time slots (Carter, 1986),

(Broder, 1964), (Cole, 1964), (Peck and Williams, 1966), (Welsh and

Powell, 1967), (Laporte and Desroches,1984), (Burke et al., 1994c), (Carter

et al., 1994), (Burke and Newall, 2004a), (Asmuni et al., 2009), (Abdul-

Rahman et al., 2009), (Kahar and Kendall, 2010) and etc. Therefore, by

representing the examination scheduling problem using a graph colouring

problem, the main objective is to find the minimum number of time slots

to schedule all the exams without any conflicts.

Though graph colouring heuristic is naturally quite simple,

however an initial solution with good quality is often produced. Coupled

with an improvement phase, many good quality examinations schedules

are being produced by the researchers (Carter, 1986), (Carter et al., 1994),

(Joslin and Clements, 1999), (Burke and Newall, 2004a), (Asmuni et al.,

2007), (Abdul-Rahman et al., 2009), (Kahar and Kendall, 2010) and etc.

But despite this fact, the timetabling researchers are aware that there is

no single heuristic that can be used to solve all timetabling problems

because of the incorporation of problem-specific features in the heuristics.

Due to this, current area of research concern is to investigate how to raise

the level of generality of state of the art algorithm, in order to deal with a

broader range of problems.

The other well known objective of examination scheduling in the

literature is to produce good quality timetable, where each exam taken by

7

individual student should be scheduled as far apart as possible from one

another. Carter’s evaluation function, proposed by Carter et al. (1996) is

extensively used by researchers in the literature to measure the quality of

examination schedules based on the above mentioned criteria.

1.2 Scope and Objective

In this research, as mentioned above, our focus is the university

examination scheduling. As such, besides aiming to propose a method

that could generate feasible examination schedules (which is by satisfying

the hard constraint, i.e. no conflicting exams are scheduled in the same

time slot), we are aiming to improve the quality of the initial examination

schedules constructed.

Despite the frequent generation of these schedules which occurs

periodically in all universities across the world, we can still see some

students having an unfavourable examination schedules. Examples of

unfavourable schedules include those where students have two or more

examinations in a row. We intend to research into how to improve the

existing methods available in solving this problem to ensure that better

quality schedules are generated.

To be specific, our main objective is to propose a transformation of

the complex university examination timetabling problem space into a

more structured domain, in which a new representation of information

through pre-processing is introduced. Other objectives are:

8

 To propose a method (construction phase) that is universal / applicable

which can be applied to a wider range of examination timetabling

problems (in line with the concern of raising the generality level of the

algorithm) that can generate feasible examination schedules (i.e. no

conflicting exams are scheduled in the same timeslot)

 To propose optimization method (improvement phase) which will

guarantee to improve the quality of the schedules (generated in the

construction phase) in terms of maximizing the gap between

consecutive exams taken by individual students to allow students to

have more revision time between exams, by maintaining feasibility.

Since in this research study, besides aiming to produce feasible

schedule (by satisfying had constraint), we are looking at maximizing the

gap between consecutive exams taken by students, thus Carter’s

evaluation function (Carter et al., 1996) was deliberately selected to

measure the quality of the examination schedules generated.

1.3 Research Contributions

A summary of the contributions of this thesis are as follows (details are

presented in Chapter 6):

 Reduced complexity of the problem domain. The Domain

Transformation Approach proposed has transformed the

examination scheduling problem into smaller problem domains

that can always be solved in a reasonable amount of time.

9

 Reduction of problem space. Pre-processing of constraints has

grouped together certain data which provided very useful

information through new data representation which reduced the

laborious searching during scheduling.

 Ensuring feasible solutions. Allocation of exams to slots and

split and merge procedures successfully created feasible exam

schedules (without fail) with encouraging figures in terms of

number of slots and cost.

 Efficiency. Backtracking procedure (Carter et al., 1996) which is

an improved algorithm that was proposed and managed to further

reduce the number of timeslots of the initial feasible schedule.

 Optimization procedures. The Optimization stage that consists

of three steps: minimization of total slot conflicts, permutation of

slots and reassignment of exams were proven to be very effective

procedures at optimizing the initial feasible exam schedules. A

significant reduction in costs for all datasets was recorded.

 Robust scheduling framework. The proposed framework in this

study is very systematic, efficient, robust and is proven to be very

flexible. This was demonstrated by the success of substituting other

procedures in the framework proficiently, i.e. substituting the

existing greedy traditional Hill Climbing with the Late Acceptance

Hill Climbing and Genetic Algorithm.

 Consistent performance. Through the avoidance of exhaustive

exploration of the search space which normally deploys random

10

selection between alternative choices during the optimization

process, the approach is capable of generating solutions that are

reproducible and consistent. This feature exhibits that the proposed

approach managed to raise the generality of the examination

scheduling algorithm, which is universal and applicable to a wide

range of university examination scheduling problem.

 Deterministic optimization pattern. Deterministic optimization

pattern obtained for all benchmark datasets is an overwhelming

achievement since to the best of our knowledge there are no claims

made by other researchers resulting in a deterministic pattern for

optimization in the university examination scheduling.

1.4 Thesis Overview

This thesis is presented in 6 chapters. The first chapter presents the

introduction, scope and objectives of the research.

Chapter 2 describes the overview of the examination scheduling

problem, the scheduling approaches or methods developed and the

benchmark datasets used over the years in the scheduling research. Some

reviews and surveys done by other researchers in the scheduling

literature are presented. The motivations that led to our research are also

discussed in this chapter.

In Chapter 3 we elaborate in detail on the Domain Transformation

Approach proposed in this study. Throughout this chapter, all the main

steps involved in generating feasible and improved schedules are

11

described, including the steps involved in pre-processing, scheduling and

optimizations.

Chapter 4 discusses the overall results and the analysis after

applying the proposed methods to the Nottingham, Toronto and the

International Timetabling Competition (ITC) datasets.

Optimization in our proposed framework involves minimization of

total slots conflicts, permutations of exams slots, and reassignments of

exams between slots. Chapter 5 zooms in into one of the component of

optimization which is the permutations of exams slots which contributed a

big percentage of the overall performance achieved through the

optimization process discussed in Chapter 4. In this chapter, we discussed

and analysed the effectiveness of incorporating a global search procedure

(Genetic Algorithm) into the proposed optimization framework in

comparison to our previous incorporation of local search procedure.

In Chapter 6, we conclude the thesis by discussing the

contributions of the study to the research community and highlight

opportunities for possible future works.

12

CHAPTER 2

2

Background and Literature

Review

This chapter focuses on providing a background to the examinations

scheduling research by introducing relevant definitions for the scheduling

and discussing the constraints imposed on this problem, as highlighted in

the literature. We also summarize and review various surveys done by

other researchers in this area. Later we briefly summarize the algorithmic

techniques proposed in this area by providing a timeline of representative

methods proposed in the last 40 years, in order to outline a general

landscape of the categories of methods available. Next, the benchmark

datasets, some pre-ordering strategies, and the most widely-used

evaluation functions are discussed in brief. In addition to that, we compare

the performances of some selected methods that reported encouraging

results. Lastly, we also present the insights and motivations obtained by

this background study.

2.1 Background of the Scheduling Research

Scheduling research has attracted researchers since the 1960s, especially

from the Operational Research community. Since then, there has been a

significant number of research activities in this area and the number is

still increasing. Over the years, many researchers have made a number of

13

insightful contributions to the scheduling literature, as surveyed by Qu et

al. (2009a).

Most of the methods proposed have reported very encouraging

results, stating that the schedules generated really have good qualities;

however, it has been reported that not a single method or heuristic is able

to consistently solve a broad spectrum of scheduling problems because of

the incorporation of problem-specific features in the heuristics (Burke et

al., 1994a). This observation calls for more extensive research and study

into how to generate good quality schedules consistently.

In the following we provide definitions of the scheduling problem

adopted by previous researchers, in order to establish the right context for

understanding the prior contributions. We also provide some reviews of a

list of publications including surveys conducted by some researchers in

this area.

2.1.1 Definition of Scheduling According to the

Scheduling Literature

Carter and Laporte (1996) defined the basic problem in examination

scheduling as:

“The assigning of examinations to a limited number of available time

periods in such a way that there are no conflicts or clashes.”

Burke et al. (2004c) further defined scheduling or timetabling as follows:

“A timetabling problem is a problem with four parameters: T, a finite set of

times; R, a finite set of resources; M, a finite set of meetings; and C, a finite

14

set of constraints. The problem is to assign times and resources to the

meetings so as to satisfy the constraints as far as possible.”

In the timetabling context, meetings can be referred to as events where

normally involved a meet-up between people at a particular location. A

general timetabling problem includes scheduling a number of events for

example exams or courses into certain number of periods.

According to Qu et al. (2009a), examination scheduling (timetabling)

problems can be defined as:

“Exam timetabling problems can be defined as assigning a set of exams E =

e1, e2, … ee into a limited number of ordered timeslots (time periods T = t1,

t2, …tt and rooms of certain capacity in each timeslot C = C1, C2, … Ct,

subject to a set of constraints.”

A more general definition of examination scheduling problems is given

below:

The examination scheduling problem is the problem of assigning a set of

examinations into time slots over a specific period of time such that it

satisfies the hard constraints (and some optional constraints if possible)

associated with the available resources.

15

2.1.2 Constraints in the Examination Scheduling

Problems

Normally, the main challenge of the examination scheduling problem is to

satisfy a wide variety of constraints. In the scheduling literature,

constraints can be classified into two categories; hard constraints and soft

constraints (Qu et al., 2009a).

 Hard constraints cannot be violated under any circumstances. For

instance, conflicting exams (i.e. exams which involve the same

students) cannot be scheduled concurrently. Another example of a

hard constraint that needs to be satisfied is the room capacity; i.e.

there must be enough space in a room to accommodate all students

taking a given exam.

A timetable that satisfies all the hard constraints is called a feasible

timetable.

 Soft constraints are not critical but their satisfaction is beneficial to

students and/or the institution. An example of a soft constraint is the

requirement to spread out the exams taken by individual students so

that they have sufficient revision time between the exams for which

they are enrolled. Typically, one cannot satisfy all of the soft

constraints; thus, there is a need for a performance function

measuring the degree of satisfaction of these constraints.

Some of the key (primary) hard constraints and soft constraints

suggested by Qu et al. (2009a) are listed in Table 2-1 and Table 2-2

respectively.

16

Table 2-1: Primary Hard Constraints in the Examination Scheduling

Problems

Primary Hard Constraints

1. No exams with common resources (e.g. students) can be

assigned simultaneously

2. Resources for exams need to be sufficient (i.e. number of exam

participants needs to be below the room capacity; enough rooms

for all of the exams)

Table 2-2: Primary Soft Constraints in the Examination Scheduling

Problems

Primary Soft Constraints

1. Spread conflicting exams as evenly as possible, or not in x

consecutive timeslots or days

2. Groups of exams are required to take place at the same time,

on the same day or at one location

3. Exams to be consecutive

4. Schedule all exams, or the longest exams, as early as possible

5. Order (precedence) of exams needs to be satisfied

6. Limited number of students and/or exams in any timeslot

7. Time requirements (e.g. exams (not) to be in certain timeslots)

8. Conflicting exams on the same day to be located nearby

9. Exams may be split over similar locations

10. Only exams of the same length can be combined in the same

room

11. Resource requirements (e.g. room facility)

Examination scheduling problems can be categorized as either

uncapacitated or capacitated. In the uncapacitated examination

scheduling problem, room capacities are not considered, while in the

capacitated problem the room capacities are treated as a hard constraint.

17

2.2 Reviews of Various Surveys in the

Scheduling Literature

From the 1980s until recently, several surveys have been undertaken in

the area of scheduling, with the approaches or methods used in the

literature to produce exam schedules being reported. Schmidt and

Strohlein (1980), Carter (1986), Carter and Laporte (1996), Burke et al.

(1997), Schaerf (1999) and Qu et al. (2009a) have conducted surveys and

overviews of various methods and strategies applied by researchers to

solving scheduling problems. Many of the surveyed methods and

approaches have successfully solved the examination scheduling problems

and some algorithms/heuristics were reported to work well on particular

datasets while others performed better when used with different datasets.

A survey conducted in 1980 by Schmidt and Strohlein (1980)

summarized the available methods used to generate examination

schedules up until 1979. In 1986 Carter wrote a survey paper that

includes all the methods developed in the previous 20 years for scheduling

examination sessions. This survey (Carter, 1986) is referenced by many

researchers in the scheduling community. Based on both of the surveys

mentioned above ((Schmidt and Strohlein, 1980) and (Carter, 1986)), it

was reported that the majority of researchers formalized the examination

scheduling problem as a graph colouring problem. In Carter (1986)’s

study, the graph colouring problem was used to produce a conflict-free

schedule by applying graph theory.

Ten years later, the author in the previously mentioned survey,

together with the co-author (Carter and Laporte, 1996), produced another

18

survey paper which focused on the state-of-the-art methods in the 1990s.

The authors have defined the examination scheduling problem as the

assignment of examinations into slots by rewarding the conflict-free

condition. The authors also introduced other soft constraints and new

benchmark datasets (Toronto) which are now very widely used and tested

by researchers in the examination scheduling area. Based on the graph

colouring methods, the authors have classified the scheduling methods

into four categories: cluster, sequential, meta-heuristics and the

constraint-based method. These methods were implemented and

experimented on the Toronto datasets. The authors also implemented the

Backtracking process which they initially hypothesized could reduce the

number of time slots required to schedule the exams. This hypothesis was

proven correct in some datasets. The results for the experiments

conducted on the Toronto datasets were presented in the paper and since

then, the research community has been challenged to propose other

approaches with the objective of improving the quality of the schedules

based on the same benchmark datasets documented in the literature.

Another survey paper was published by Bardadym (1996) in the

same year as Carter and Laporte (1996) produced their survey report, as

mentioned in the previous paragraph. In his survey, Bardadym (1996)

classified educational scheduling problems into 5 common types: faculty

scheduling, classteacher scheduling, classroom assignment, course

scheduling and examination scheduling. According to the author,

examination scheduling is the most difficult task, and therefore it was

claimed that the scheduling system was first proposed with the existence

of computers in the universities.

19

A survey of the state-of-the-art approaches and automated systems

in educational scheduling problems was presented a year later by Burke

et al. (1997). This survey discussed several major approaches in the

scheduling research which included Tabu Search, Genetic Algorithm,

Simulated Annealing, Memetic Algorithm and Constraint Logic

Programming.

 Qu et al. (2006) in their survey highlighted that the most studied

and researched area of scheduling is educational scheduling; mainly the

examination scheduling, and due to this their survey concentrated on this

type of scheduling. From this literature, the authors have classified and

discussed the available methods used in examination scheduling which

are motivated by raising the generality of the approaches: graph

heuristics, meta-heuristics, constraint-based methods, multi-criteria

techniques, hybridizations, and methods that concerned neighbourhood

structures, etc.

Qu et al. (2009a) in another survey highlights new trends and key

research achievements that have been carried out in the last decade. A

widespread survey of the development of the search methodologies and

automated systems for examination scheduling was done by the authors.

According to Qu et al. (2009a), meta-heuristics approaches and their

hybridization with other search techniques were found to be implemented

quite commonly in the examination scheduling problem. In this survey,

the author also claimed that different versions of problem datasets with

the same name have been circulating in the scientific research community

for the last ten years and this has generated some confusion among the

researchers. The authors have made the effort to rename the widely-

20

studied datasets in order to avoid this confusion. Apart from this, the

author also summarized the datasets used by some researchers and

reported in the literature.

Another recent survey in educational timetabling was conducted by

Pillay (2013). However, this survey was not focusing on the examination

timetabling problem, instead it can be considered as the first survey that

only concentrated on school timetabling. The survey defined school

timetabling and discussed a detailed overview on the proposed methods to

generate solutions. Besides that, the author also presented the different

hard and soft constraints in the school timetabling problem.

A comprehensive study of educational timetabling, a latest survey

paper was published recently by Kristiansen and Stidsen (2013). The

authors concentrated on the main educational timetabling problems and

highlighted some of the main trends and research achievements within

educational planning problems. The authors mentioned that they did not

intend to perform any experimental comparison on the different methods

used, but only to give an overview of the methods. As claimed by Qu et al.

(2009a), Kristiansen and Stidsen (2013) concluded that many of the used

solution approaches are of some kind of hybridization of multiple

heuristics.

2.3 Summary of Algorithmic Techniques in the

Scheduling Literature

The general approach to solving the scheduling problems usually consists

of two phases, i.e. the construction and improvement phases (Hertz, 1991).

21

In the first phase, the construction phase, a solution is constructed using a

sequential construction algorithm. At this point, the solution can be

feasible or infeasible. For an infeasible solution, an adjustment is made in

the second phase to make it feasible and for a feasible solution an

improvement is attempted to enhance its quality.

Scheduling research actually began with straightforward

sequential techniques in the 1960s, as discussed in detail by Qu et al.

(2006). Later, the emergence of many successful techniques was seen;

these can be categorized into several broad categories (Carter and

Laporte, 1996; Schaerf, 1999; Burke and Petrovic, 2002; Petrovic and

Burke, 2004; and Qu et al., 2009a).

In their survey, Qu et al. (2006) made mention of the specialization

of the scheduling research into sub-areas of educational scheduling, nurse

scheduling, transport scheduling, sports scheduling, etc. However,

according to the authors the most studied and researched scheduling

problem is that of educational scheduling and in particular, exam

scheduling. The survey highlighted families of related heuristics deployed

in the solution of scheduling problems which include: graph heuristics,

meta-heuristics, constraint-based methods, multi-criteria techniques,

hybridizations, and methods that focus on the investigation of

neighbourhoods in the solution space.

In this section, we will highlight the key algorithmic techniques

that have been successfully applied in the examination scheduling

problem. Rather than explaining and summarizing the characteristics and

algorithms of each technique in detail, which can be found readily in the

22

literature (for example; Qu et al., 2006; Qu et al., 2009a etc.), we are

taking a different approach in presenting and describing the emergence of

these methods over the years.

We have provided a timeline that illustrates a historical lineage of

key algorithmic techniques for solving examination scheduling problems,

as can be seen in Figures 2.1 to 2.4. Please note that these timeline

figures were based on selected methods that are widely used and

described (most well-cited) in the literature (up to 2014); therefore, recent

methods that are not as well established are not depicted in this diagram.

Another important note is that the methods were arranged according to

the category. In each category, the name of the method was displayed

according to the year it was proposed or used, with the intention of

illustrating the progression or origination of each method. Some methods

were hybridized or integrated with other methods but, in the interest of

clarity, the linkages between these methods were not shown in the

diagram since the main objective is to provide a general overview of the

methods according to their main categories.

23

YEAR

GRAPH- BASED

HEURISTICS

FUZZY-BASED

TECHNIQUES

DECOMPOSITION

TECHNIQUES
NEURAL NETWORK

1964

BRODER (1964)

First Ordering Strategy:

Largest Degree

COLE (1964)

Largest Degree Heuristic

1965

1966
PECK and WILLIAMS (1966)

Largest Degree Heuristics

1967

WELSH and POWELL (1967)

Graph Colouring Heuristic

-chromatic number

1968
WOOD (1968)

Largest Enrolment

1979
BRELAZ (1979)

Saturation Degree

1981
MEHTA (1981)

Saturation Degree

1983

1984

LAPORTE and DESROCHES

(1984)

All Graph Colouring

1990

JOHNSON (1990)

largest Enrolment & Largest

Degree

1992
KIAER and YELLEN (1992)

Weighted Graph Model

1994

BURKE ET AL. (1994c)

Graph Colouring

CARTER ET AL. (1994)

Sequential Heuristics

TECHNIQUE

CONSTRUCTION

HEURISTIC

Figure 2.1: Timeline of Brief Historical Lineage of Some Keys Algorithmic

Techniques – Constructive Heuristics (1964 – 1994)

24

YEAR

GRAPH- BASED

HEURISTICS

FUZZY-BASED

TECHNIQUES

DECOMPOSITION

TECHNIQUES
NEURAL NETWORK

1995

1996
CARTER ET AL. (1996a)

Ordering Heuristics

1998

BURKE ET AL. (1998)

Graph Heuristics with Random

Element

1999
JOSLIN and CLEMENTS (1999)

Adaptive Graph Coloring

BURKE and NEWALL (1999)

 Memetic Algorithm With

Decomposition

2001
CARTER and JOHNSON (2001)

 Clique Initialization

2002

2003

2004
BURKE and NEWALL (2004a)

Adaptive Heuristic Orderings

2005
ASMUNI ET AL. (2005)

Fuzzy Technique

2006

CORR ET AL. (2006)

 Graph Coluring & Kohonen

Self Organizing

2007
CARRINGTON ET AL. (2007)

Weighted Graph Model

ASMUNI ET AL. (2007)

Fuzzy Evaluation Function

QU and BURKE (2007)

Adaptive Decomposition

2008
KENDALL and LI (2008)

 Simplification

2009
ABDUL-RAHMAN ET AL. (2009)

Adaptive Ordering Strategy

ASMUNI ET AL. (2009)

Fuzzy Technique

2010

BURKE ET AL. (2010c)

Weighted Graph Model

KAHAR and KENDALL (2010)

Graph Colouring

PAIS and BURKE (2010)

Fuzzy Measure

2011

ABDUL-RAHMAN ET AL. (2011)

 Adaptive Decomposition and

Ordering

2012

SABAR ET AL. (2012)

Graph Colouring

2013

2014

ABDUL-RAHMAN ET AL. (2014)

Adaptive Linear Combination

of Heuristic Orderings

TECHNIQUE

CONSTRUCTION

HEURISTIC

Figure 2.2: Timeline of Brief Historical Lineage of Some Keys Algorithmic

Techniques – Constructive Heuristics (1995 – 2014)

25

YEAR

1990
JOHNSON (1990)

2 Phase Simulated Annealing

1991

1992

1993

1994

1995

ROSS and CORNE (1995)

 Stochastic & Simulated

Annealing Hybrid Hill Climbing

WEARE ET AL. (1995)

Genetic Algorithm & Graph

Colouring Hybrid

COLIJN and LAYFIELD (1995)

Multi Stage Approach

1996
CHEN and BUSHNELL (1995)

Branch & Bound

BOIZUMAULT ET AL. (1996)

 Contraint Programming

GUERET ET AL. (1996)

Constraint Logic Programming

BURKE ET AL. (1996b)

 Evolutionary & Local Search

Hybrid

1997

1998

DAVID (1998)

Constraint Satisfaction

Technique

THOMPSON and DOWSLAND

(1998)

 2 Phase Simulated Annealing

1999
REIS and OLIVEIRA (1999)

Constraint Logic Programming

TERASHIMA-MARIN ET AL.

(1999)

 Genetic Algorithm & Maximal

Clique Hybrid

2000

2001
SIERKSMA (2001)

Integer Programming

ERBEN (2001)

 Genetic Algorithm Grouping &

Graph Colouring Hybrid

WHITE and XIE (2001)

OTTABU

DI GASPERO and SCHAERF

(2001)

 Graph Colouring & Tabu Seach

BURKE ET AL. (2001)

Multi Criteria Approach

PAQUETE and FONSECA

(2001)

Multi-objective Evolutionary

Algorithm

2002

DI GASPERO (2002)

 Multi-neighbourhood Tabu

Search

2003

MERLOT ET AL. (2003)

 Constraint Programming &

Hybridisation

MERLOT ET AL. (2003)

Three Phase Hybrid

 CASEY and THOMPSON (2003)

Iterative Greedy Randomized

Adaptive Search Procedure

AHMADI ET AL. (2003)

 Variable Neighbourhood

Search

PETROVIC and BYKOV (2003)

Multi Objective Technique

2004

DUONG and LAM (2004)

Constraint Programming &

Simulated Annealing

BURKE ET AL. (2004b)

Simulated Annealing & Great

Deluge Hybrid

WHITE ET AL. (2004)

Relaxed Tabu Search

PETROVIC and BURKE (2004)

Cased-Based Reasoning

YANG and PETROVIC (2004)

Cased-Based Reasoning with

Graph Colouring

TECHNIQUE

EXACT APPROACHES
CONSTRAINT BASED

APPROACHES

METAHEURISTIC &

IMPROVEMENT HEURISTIC

HYPER HEURISTICS &

CASE BASED REASONING

MULTI CRITERIA &

MULTI OBJECTIVE

Figure 2.3: Timeline of Brief Historical Lineage of Some Keys Algorithmic

Techniques – Various Heuristics (1990 – 2004)

26

YEAR

2005
BOSCH and TRICK (2005)

Integer Programming

OZCAN and ERSOY (2005)

Genetic Algorithm & Violated

Directed Hierarchical Hill

Climbing

WONG ET AL. (2005)

Variable Neighbourhood

Descent

DOWSLAND and THOMPSON

(2005)

 Ant Algorithm & Graph

Colouring Hybrid

KENDALL and MOHD HUSSIN

(2005a) & (2005b)

Tabu Search Based Hyper

Heuristic

BURKE ET AL. (2005a)

 Hybrid Graph Colouring &

Hyper-Heuristic

QU and BURKE (2005)

 Hybrid Variable

Neighbourhood Search

 PETROVIC and YANG (2005)

Case Based Reasoning

COTE ET AL. (2005)

Hybrid Bi-Objective

Evolutionary Algorithm

2006

MIRHASSANI (2006)

Integer Pogramming

BURKE and BYKOV (2006)

 Flex Deluge

BURKE ET AL. (2006)

Cased-Based Reasoning

Selection

2007

ABDULLAH ET AL. (2007)

Large Neighbourhood

ERSOY ET AL. (2007)

HyperHill Climber & Memetic

Algorithm Hybrid

BURKE ET AL. (2007)

Multi Stage Hyper Heuristics

ELEY (2007)

Ant Algorithm

BURKE ET AL. (2007)

Graph Based Hyper Heuristic

Using Tabu Search

CHEONG ET AL. (2007)

Multi-Objective Evolutionary

Algorithm

2008

CARAMIA ET AL. (2008)

Hybrid hill Climbing

BURKE and BYKOV (2008)

Late Acceptance Hybrid Hill

Climbing

2009
QU ET AL. (2009c)

Integer Programming

SABAR ET AL. (2009)

Tabu & Exponential Monte

Carlo Hybrid

OZCAN ET AL. (2009)

Late Acceptance & Heuristic

Hybrid Hill Climbing

SABAR ET AL. (2009)

Honey Bee Mating

Optimization

QU ET AL. (2009b)

Adaptive Heuristic

Hybridisation

PILLAY and BANZHAF (2009)

Hierachical Hyper-Heuristics

& Highest Cost Heuristics

2010

AL-YAKOOB ET AL. (2010)

A Mixed-Integer Mathematical

Modelling

BURKE ET AL. (2010a)

 Variable Neighbourhood

Search & Genetic Algorithm

Hybrid

AL-BETAR ET AL. (2010)

Harmony Search Algorithm

2011

TURABIEH and ABDULLAH

(2011a)

Great Deluge & Megnetic-Like

Hybrid

TURABIEH and ABDULLAH

(2011b)

A Hybrid Fish Swarm

Optimization

2012

MCCOLLUM ET AL. (2012)

Integer Pogramming: A New

Model

BOLAJI ET AL. (2012)

Artificial Bee Colony

DEMEESTER ET AL. (2012)

Hyper-Heuristics

GOGOS ET AL. (2012)

Multi-Stage Algorithmic

Process

2013

ABDULLAH and ALZAQEBAH

(2013)

A Hybrid self-Adaptive Bees

Algorithm

ANWAR ET AL. (2013)

Harmony Search-Based

Hyper Heuristics

2014

AL-BETAR ET AL. (2014)

Memetic Techniques

ALZAQEBAH and ABDULLAH

(2014)

Artificial Bee Colony & Late

Acceptance Hill Climbing

TECHNIQUE

EXACT APPROACHES
CONSTRAINT BASED

APPROACHES

METAHEURISTIC &

IMPROVEMENT HEURISTIC

HYPER HEURISTICS &

CASE BASED REASONING

MULTI CRITERIA &

MULTI OBJECTIVE

Figure 2.4: Timeline of Brief Historical Lineage of Some Keys Algorithmic

Techniques – Various Heuristics (2005 – 2014)

27

In the timeline diagrams above, several broad categories of

techniques used in examination scheduling can be seen. These include

constructive heuristics (for example, graph-based heuristics); fuzzy-based

techniques; decomposition techniques and neural network. Other

techniques include exact approaches; constraint-based; metaheuristic and

improvement heuristic; hyper-heuristics and case-based reasoning; and

multi-criteria and multi-objective techniques.

Based on the diagrams, we observed that majority of the proposed

methods in solving the examination timetabling problems were based on

graph-based heuristics and metaheuristic/improvement heuristic

techniques, which the latter attracted more interests among the

researchers. Despite the rapid emergence or progression of the methods, it

was studied that many of the methods are the spin-off or followers of the

previous published approaches which did not differ substantially from

those established methods.

28

2.4 Benchmark Examination Scheduling

Datasets

From the published research it is clear that benchmark datasets were

used quite extensively. The usage of the same standard benchmark

datasets in different research conducted by all researchers in this area is

very important in order to have a fair judgement about the efficiency and

effectiveness of a particular method. Besides, it can also provide a quick

understanding and generalization of the strength or capability of a

particular method based on the results reported.

In the examination scheduling literature, the most extensively

used benchmark dataset is the Toronto dataset proposed by (Carter et al.,

1996) which was made publicly available on the internet

[ftp://ftp.mie.utoronto.ca/pub/carter/testprob]. The characteristics of all the

datasets from Toronto benchmark problems are listed in Table 2-3 in

Section 2.4.1. For the Toronto dataset, according to (Qu et al., 2009a) 8 out

of 13 problem instances exist in 2 versions. Version I of the datasets which

are widely tested by other researchers will be presented in the table.

The data in the table are arranged according to the name of

institution, followed by the name of each dataset, number of exams exists

in the problem, total number of students registered for the examination

session, number of total enrolments of students for the courses, conflict

density and lastly required number of exams slots for each dataset.

The Conflict Density represents the ratio between the number of

elements of value "1" to the total number of elements in the conflict

29

matrix. A Conflict Matrix C is a square matrix of dimension number of

exams [number of exams x number of exams], and was defined where each

element Cij = 1 if exam i conflict with exam j (have common students), or

Cij = 0 if they don’t.

Other than Toronto datasets, we include two more datasets, which

we will be using in our experimentation phase at a much later stage, ie:

the University of Nottingham dataset which could be accessed from

[http://www.cs.nott.ac.uk/~rxq/files/Nott.zip] and the International

Timetabling Competition 2007 dataset which can be retrieved from

[http://www.cs.qub.ac.uk/itc2007/Login/SecretPage.php], presented in

section 2.4.2 and 2.4.3 respectively. Definitions for column titles for these

new tables are the same as given earlier above.

30

2.4.1 University of Toronto Dataset

 Table 2-3: The Characteristics of University of Toronto Benchmark Dataset

Institution Name of

Dataset

No of

Exams

No Of

Students

No Of

Enrolments

Conflict

Density

Required

No Of

Slots

Carleton University car-s-91 (I) 543 18419 55522 0.14 32

Carleton University car-f-92 (I) 682 16925 56877 0.13 35

Earl Haig Collegiate ear-f-83 (I) 190 1125 8109 0.27 24

Ecole des Hautes Etudes Commerciales hec-s-92 (I) 81 2823 10632 0.42 18

King Fahd University kfu-s-93 461 5349 25113 0.06 20

London School of Economics lse-f-91 381 2726 10918 0.06 18

Purdue University pur-s-93 (I) 2419 30032 120681 0.03 42

Ryerson University rye-f-92 486 11483 45051 0.08 23

St. Andrews High School sta-f-83 (I) 139 611 5751 0.14 13

Trent University tre-s-92 261 4360 14901 0.18 23

University of Toronto, Arts & Science uta-s-92 (I) 622 21266 58979 0.13 35

University of Toronto, Engineering ute-s-92 184 2750 11793 0.08 10

York Mills Collegiate yor-f-83 (I) 181 941 6034 0.29 21

3
0

31

2.4.2 University of Nottingham Dataset

 Table 2-4: The Characteristics of University of Nottingham Benchmark Dataset

Institution Name of

Dataset

No. Of

Exams

No. Of

Students

No. Of

Enrolments

Conflict

Density

University of

Nottingham

Nott

(Nottingham a

or Nottingham

b)

800 7896 33997 0.03

3
1

32

2.4.3 International Timetabling Competition 2007 (ITC2007) Dataset

 Table 2-5: The Characteristics of ITC2007 Benchmark Dataset

Name of

Dataset

No. of Exams No. of Students Required No. of Slots Conflict

Density

Exam1 607 7891 54 0.0505

Exam2 870 12743 40 0.0117

Exam3 934 16439 36 0.0262

Exam4 273 5045 21 0.1500

Exam5 1018 9253 42 0.0087

Exam6 242 7909 16 0.0616

Exam7 1096 14676 80 0.0193

Exam8 598 7718 80 0.0455

3
2

33

2.5 Widely Used Ordering Strategies

In the process of allocating exams to exam slots, researchers have to

decide which exam to allocate first to one of the available time slots. With

this in mind, various ordering strategies were utilized by researchers (for

example; Broder, 1964; Cole, 1964; Peck and Williams, 1966; Welsh and

Powell, 1967; Laporte and Desroches, 1984; Burke et al., 1994c; Carter et

al., 1994; Joslin and Clements, 1999; Burke and Newall, 2004a; Abdul-

Rahman et al., 2009; and Kahar and Kendall, 2010). It was proven that

the ordering strategies affect the final outcome and quality of the solution

generated (as discussed by Asmuni et al., 2005). In the normal practise in

the timetabling literature, most researchers will try out all ordering

strategies (to preorder the datasets) and select the strategy that produce

the best results. The summary of the widely-used ordering strategies in

Graph Heuristics made by Qu et al. (2006) is presented in the following

table:

Table 2-6: Widely-Used Graph Heuristics in Exam Scheduling

Heuristics Ordering Strategy

Saturation Degree Increasingly by the number of timeslots

available for the exam in the timetable at the

time

Largest Degree Decreasingly by the number of conflicts the

exams has with other exams

Largest Weighted

Degree

This is the same as Largest Degree but weighted

by the number of students involved

Largest Enrolment Decreasingly by the number of enrolments for

the exam

Random Ordering Randomly ordered exams

Color Degree Decreasingly by the number of conflicts the exam

has with those scheduled at the time

34

2.6 Widely-Used Evaluation Function: Carter

Evaluation Function

The standard objective of examination scheduling that is widely used in

the literature is to minimize the cumulative inconvenience implied by the

temporal proximity of consecutive exams taken by individual students.

Based on this objective, in order to have a good quality timetable, each

exam to be taken by a student should be scheduled as far apart as possible

from one another. The quality of the timetable is measured by the cost

function originally proposed by Carter et al. (1996) as in the Equation

(2.1) below:




 

1

1 1

|pi - pj|

1 N

i

N

ij

ij ws
T

 (2.1)

where N is the number of exams, sij is the number of students enrolled in

both exams, i and j, pj is the time slot when exam j is scheduled, pi is the

time slot when exam i is scheduled and T is the total number of students.

Based on this cost function, a student taking two exams that are | pj - pi |

slots apart, where | pj - pi | ={1, 2, 3, 4, 5}, leads to a cost of 16, 8, 4, 2,

and 1, respectively. The lower the cost obtained, the higher the quality of

the schedule, since the gap between two consecutive exams allows

students to have extra revision time.

It is worth noting here that the gap of the consecutive exams taken

by individual students that are more than 5 slots apart (i.e. 6 and above),

will not have any penalty, therefore the cost will be zero. According to

Carter cost function (Equation 2.1), if all consecutive exams taken by all

students in the problem are scheduled 5 slots apart, then the timetable is

35

considered a zero cost timetable (but this is very seldom since in real life it

will cause a very long duration of examination session).

2.7 Performance of Methods Proposed in the

Examination Scheduling Literature

In order to analyse the effectiveness of the available methods proposed in

producing feasible examination schedules, we have presented the results

in terms of the Carter cost (2.1) produced by some researchers and

compiled by Abdul-Rahman et al. (2011) and Qu et al. (2009a). The results

are presented in three different tables according to the categories of the

methods; i.e. constructive, hyper-heuristics, and numerous improvement

approaches on the Toronto datasets. Note that the first column of these

tables contains the name of each dataset in the Toronto benchmark

problem as can be found in Table 2-3 of this thesis.

Table 2-7: Comparison of Results in Terms of Carter cost (2.1) for the

Thirteen Problem Instances of Toronto Benchmark Datasets For Different

Constructive Approaches Reported in the Literature

Problem [1] [2] [3] [4] [5] [6] [7] [8]

car-s-91 (I) 7.10 4.97 5.45 5.29 5.08 5.03 5.18 5.08

car-f-92 (I) 6.20 4.32 4.50 4.54 4.38 4.22 4.44 4.34

ear-f-83 (I) 36.40 36.16 36.15 37.02 38.44 36.06 39.55 38.28

hec-s-92 (I) 10.80 11.61 11.38 11.78 11.61 11.71 12.20 11.13

kfu-s-93 14.00 15.02 14.74 15.80 14.67 16.02 15.46 14.42

lse-f-91 10.50 10.96 10.85 12.09 11.69 11.15 11.83 11.43

pur-s-93 (I) 3.90 - - - - - 4.93 5.74

rye-f-92 7.30 - - 10.38 9.49 9.42 10.04 9.37

sta-f-83 (I) 161.50 161.90 157.21 160.40 157.72 158.86 160.50 157.34

tre-s-92 9.60 8.38 8.79 8.67 8.78 8.37 8.71 8.73

36

uta-s-92 (I) 3.50 3.36 3.55 3.57 3.55 3.37 3.49 3.52

ute-s-92 25.80 27.41 26.68 28.07 26.63 27.99 29.44 26.24

yor-f-83 (I) 41.70 40.77 42.20 39.8 40.45 39.53 42.19 40.38

[1]-(Carter and Laporte,1996), [2]-(Burke and Newall, 2004a), [3]-(Qu and

Burke, 2007), [4]-(Asmuni et al., 2009), [5]-(Abdul-Rahman et al., 2009),

[6]-(Burke et al., 2010c), [7]-(Pais and Burke, 2010), [8]-(Abdul-Rahman et

al., 2011)

Table 2-8: Comparison of Results in Terms of Carter cost (2.1) for the

Thirteen Problem Instances of Toronto Benchmark Datasets For Different

Hyper-Heuristics Approaches Reported in the Literature

Problem [9] [10] [11] [12] [13] [14]

car-s-91 (I) 5.37 5.36 4.97 5.16 5.17 5.19

car-f-92 (I) 4.67 4.53 4.28 4.16 4.32 4.31

ear-f-83 (I) 40.18 37.92 36.86 35.86 35.70 35.79

hec-s-92 (I) 11.86 12.25 11.85 11.94 11.93 11.19

kfu-s-93 15.84 15.20 14.62 14.79 15.30 14.51

lse-f-91 - 11.33 11.14 11.15 11.45 10.92

pur-s-93 (I) - - 4.73 - - -

rye-f-92 - - 9.65 - - -

sta-f-83 (I) 157.38 158.19 158.33 159.00 159.05 157.18

tre-s-92 8.39 8.92 8.48 8.60 8.68 8.49

uta-s-92 (I) - 3.88 3.40 3.42 3.30 3.44

ute-s-92 27.60 28.01 28.88 28.30 28.00 26.70

yor-f-83 (I) - 41.37 40.74 40.24 40.79 39.47

[9]-(Kendall and Hussin, 2005a), [10]-(Burke et al., 2007), [11]-(Pillay and

Banzhaf, 2009), [12]-(Qu and Burke, 2009), [13]-(Qu et al., 2009b), [14]-

(Burke et al., 2010e)

Table 2-9: Comparison of Results in Terms of Carter cost (2.1) for the

Thirteen Problem Instances of Toronto Benchmark Datasets For Other

Different Improvement Approaches Reported in the Literature

Problem [15] [16] [17] [18] [19] [20] [21]

car-s-91 (I) 5.10 4.50 5.40 5.20 6.60 4.60 4.80

car-f-92 (I) 4.30 3.93 4.20 4.40 6.00 3.90 4.10

ear-f-83 (I) 35.10 33.71 34.20 34.90 29.30 32.80 34.92

hec-s-92 (I) 10.60 10.83 10.40 10.30 9.20 10.00 10.73

37

kfu-s-93 13.50 13.82 14.30 13.50 13.80 13.00 13.00

lse-f-91 10.50 10.35 11.30 10.20 9.60 10.00 10.01

pur-s-93 (I) - - - - 3.70 - 4.73

rye-f-92 8.40 8.53 8.80 8.70 6.80 - 9.65

sta-f-83 (I) 157.30 158.35 157.00 159.20 158.20 156.90 158.26

tre-s-92 8.40 7.92 8.60 8.40 9.40 7.90 7.88

uta-s-92 (I) 3.50 3.14 3.20 3.60 3.50 3.20 3.20

ute-s-92 25.10 25.39 25.30 26.00 24.40 24.80 26.11

yor-f-83 (I) 37.40 36.53 36.40 36.20 36.20 34.90 36.22

[15]-(Merlot et al., 2003), [16]-(Yang and Petrovic, 2004), [17]-(Cote et al.,

2005), [18]-(Abdullah et al., 2007) [19]-(Caramia et al., 2008), [20]-(Burke

et al., 2010a), [21]-(Turabieh and Abdullah, 2011a).

The results presented in the above three tables are arranged

according to the 13 Toronto datasets problem proposed by Carter et al.

(1996). These results were obtained by some of the researchers using

numerous techniques. Each column consists of the Carter cost (2.1) for

each dataset in this Toronto benchmark problem.

According to the Carter cost (2.1), we could say that the cost is

actually the average penalty of the students spread in the examination

schedule. An achievement of a zero cost timetable means that the

timetable is of a very high quality, and we can imagine that every single

student will have at least a five slots’ gap between one exam and the next

in the examination session.

However, none of the costs obtained and reported in the

examination scheduling research on the Toronto benchmark problem have

a zero cost (as can be seen in the above three tables), which means that in

real life some of the inconvenience is tolerated in order to achieve a

shorter examination period.

38

In the three tables presented above, each bold value is the best

value for each dataset reported among the researchers. Overall, the costs

obtained are considered to be very encouraging, as the lowest Carter cost

(2.1) obtained is 3.14 for dataset uta-s-92 (I). Here the value 3.14 is the

value of the average penalty of the students spread in the examination

schedule.

It is worth noting here, however, that the listed methods have a

rather uneven performance. They perform well against some benchmark

problems and less well against others. One important point to note when

comparing the performance of the various methods is that several of the

best results have been obtained by methods that did not report any results

for some datasets; for example, for lse-f-91, pur-f-93 (I) and rye-f-92.

2.8 Pre-Processing Approach in the Examination

Timetabling

Based on the observations of Table 2-7 to 2-9, there are quite a

number of approaches that are unable to produce results for certain

benchmark datasets, which after analysis we can determine that the

inability to produce feasible solutions for a problem is due to the size and

complexity of the relationships among the entities in the problem space.

For example, by analyzing datasets lse-f-91, pur-f-93 (I) and rye-f-92, we

observed that these problems have a high ratio value of number of exams

against required number of slots (as can be seen in the last column of

Table 2-10). The ratios are 21.17, 57.60 and 21.13 for lse-f-91, pur-f-93 (I)

and rye-f-92 respectively which means that on average these are the

39

minimum number of exams to be allocated per slot. The higher this value

is, the harder it is to find the exams that are not conflicting among one

another.

Table 2-10: No of Exams to Required No of Slots Ratio

Name of

Dataset

No of

Exams

No Of

Students

No Of

Enrolments

Conflict

Density

Required

No Of

Slots

No of

Exams to

Required

No of

Slots

Ratio

car-s-91 (I) 543 18419 55522 0.14 32 16.97

car-f-92 (I) 682 16925 56877 0.13 35 19.49

ear-f-83 (I) 190 1125 8109 0.27 24 7.92

hec-s-92 (I) 81 2823 10632 0.42 18 4.50

kfu-s-93 461 5349 25113 0.06 20 23.05

lse-f-91 381 2726 10918 0.06 18 21.17

pur-s-93 (I) 2419 30032 120681 0.03 42 57.60

rye-f-92 486 11483 45051 0.08 23 21.13

sta-f-83 (I) 139 611 5751 0.14 13 10.69

tre-s-92 261 4360 14901 0.18 23 11.35

uta-s-92 (I) 622 21266 58979 0.13 35 17.77

ute-s-92 184 2750 11793 0.08 10 18.40

yor-f-83 (I) 181 941 6034 0.29 21 8.62

We foresee that there is a need to minimize or reduce the

complexity of the problem or we hypothesize that what if we were to

transform the problem into another problem where there is a possibility

that the complexity of the existing problem can be degraded into simpler

problems. To enable this, an understanding of the data is required, in line

40

with this notion we observe an approach by Thomas et al. (2009) which

tries to give a better understanding of the problem space to the timetable

designer has a merit in which by understanding the correlation of all the

entities in the problem space a solution can be generated.

Thomas et al. (2009) approached the timetabling problem by

introducing a pre-processing stage that visualized the timetabling data.

The researches were confident that the visualization will provide a new

insight or analysis of the timetabling data that would help the timetable

designer and decision maker to formulate a feasible timetable. The

researchers used Prefuse which is a Java-based extensible software

framework for pre-processing to visualize the data. They provided five

interaction techniques to the users to interact with the data, namely

Selection, Explore, Encode, Filter and Connects. Selection, enables the

marking of a particular data that can be further analysed. Explore,

enables the visualization of the timetabling data to be interacted, showing

a different perspective or concentrating only on a specific part of the

problem space. Encode, enables the user to change the visual

representation of the data. Filter, enables the user to add certain

restrictions on the data to be visualized enabling the user to focus on

certain part of the data. Connects allows the user to view interconnected

data within the problem space. The pre-processing stage provides

additional interactions to the scheduler (person) on the interrelation or

linkage of all the elements in the problem domain. The pre-processing

stage through visualization enables the timetable designer to learn more

about the data and with this knowledge it is hoped it would help the

timetable designer to design a better timetable.

41

 There is also another approach by Gunawan et al. (2008) which

provides another insight where the pre-processing of data to generate new

representation of information can be utilized within the algorithm to help

in constructing a better quality timetable. Gunawan et al. (2008) proposed

a hybrid approach which combines Tabu Search and Simulated Annealing

to solve the teacher and course scheduling simultaneously. The approach

consists of three phases; the pre-processing stage, initial construction

stage and the improvement stage. The initial construction stage

concentrates on finding the initial feasible timetable.

The researchers constructed new information which is the

information on which teacher is willing to teach a particular course,

resulting in a set of new data connecting a particular paper with the

probable teacher. The information was generated from the preferences

given by the teachers. The second information generated is the list of slots

that a particular teacher prefers to teach which is given by the day and

time period. These two lists are generated and sorted based on the

preferences set by the teachers.

Gunawan et al. (2008) reported that the pre-processing is done on

the information of preferences provided by the teachers, which is actually

considered as the soft constrains of the actual problem. The main problem

(scheduling) is being solved using the greedy heuristics (similar to

Gunawan et al. (2007a)) without the assistance on the new information

generated. This opens up a new avenue where the pre-processing can be

conducted on the data related to the hard constraints. New information

can be generated which will give a new representation that will enable the

algorithm to understand the problem space.

42

What interests us, we observe that these two papers (Thomas et al.

(2009); Gunawan et al. (2008)) which touched on pre-processing, did that

specifically and without the intention to want to alter the data

representation of the problem space. Hence, the intention that we have is

to provide an alternative methodology that transforms the problem space

into a different representation that could open-up new avenues or simplify

the problem to a more manageable and deterministic solution. This is

with the understanding that many of the researchers claim that the exam

timetabling is an NP-complete problem which requires huge amount of

resources to fully explore the entire search space of a feasible solution and

more over to find the best solution within these feasible timetables.

2.9 Important Insights from the Scheduling

Literature and Motivations for the Research

Despite many methods having been proposed to date to solve the

examination scheduling problems, various findings have concluded that

there is no single heuristic that is able to solve all scheduling problems

effectively (Burke et al., 1994). Meta-heuristics approaches - for example,

Genetic Algorithm (GA), Simulated Annealing (SA) and Tabu Search (TS)

etc., which were believed to generate promising results - were improved

further through the introduction of hyper-heuristic approaches (Qu et al.,

2009a).

Notwithstanding the advantages and capabilities of the many

methods reported in the literature, we are aware that the results for some

problems are not easily reproducible because most of the algorithms

43

depend on some random number generation. These algorithms deploy

random selection between alternative choices during the optimization

process. This means that a simple change in the generation of random

numbers may affect very significantly the direction of the optimization

process. As a result, the randomness generates different results. This

makes the results only statistically comparable. Since the results are hard

to reproduce, it is difficult to determine whether they are optimal or not.

A huge volume of publications have reported the investigation and

refinement of hyper-heuristics. Various methods concerning the design

and selection of heuristics and hyper-heuristics have been proposed and

evaluated. On one hand, there have been various improvements in the

examination schedules produced using these methods. On the other hand,

this suggests that the results generated in this way cannot be seen as

definitive.

We have also learned from the background study that some

researchers have classified the examination scheduling problem as an NP

complete problem (e.g. Cooper and Kingston, 1996; and Even et al., 1976).

An NP complete problem is a problem which cannot be resolved to a global

optimum in a reasonable amount of time. Currently, with the flexibility of

the students’ enrolments, there was a great increase in size of the

examination timetabling problem, which also has increased the

complexity of this problem (McCollum, 2007). As the examination

scheduling problem is classified as an NP complete problem, it can be

understood that the resources needed to solve the problem grow very

rapidly with the size of the problem. Hence, some problems cannot be

solved even on the fastest computers, and in the examination scheduling

44

context, it means that the optimal schedules are not generated

successfully and one has to accept sub-optimal (but feasible) solutions.

It is worth emphasizing that the examination scheduling problem

represents a challenging computational problem due to the strong

interactions between the many-to-many relationships between the data of

students and exams. The challenge and complexities of the problem

increase when most of the universities allow flexibility for the students to

register on modular courses across faculties (Burke et al., 1994). The

increasing size of students’ enrolments and different choices of available

courses increases the challenge and complexity of this real-world problem

(McCollum, 2007).

From the background study we can learn that some methods that deploy

random selection between alternative choices during the optimization

process failed to reproduce the solutions obtained previously. This is

because a simple change in the generation of random numbers may affect

very significantly the direction of the optimization process, thus generating

different solutions. This means that the results produced with methods

deploying random selection are only statistically comparable and cannot

guarantee the quality of every individual solution.

All of the above scenarios and phenomena create motivations for

further research. In general, the literature review and background study

have provided insights into the following:

45

a) a new approach to analyzing the complex system by looking at

different levels of abstraction;

b) abstraction of essential features in order to simplify the data

used in scheduling by doing pre-processing of data and

constraints;

c) propose a definite step (a constructive approach) to schedule

the exams to ensure the method can reproduce the schedule at

any time;

d) sub-dividing the problems into smaller sub-problems in order to

reduce the NP complexity of the examination scheduling

problems as described in the literature, and therefore increase

the efficiency in terms of the computational time;

e) the exploration of the search space that is guided by one

heuristic which avoids exhaustive exploration of the search

space.

46

CHAPTER 3

3

Domain Transformation

Approach to Examination

Scheduling

This chapter presents the proposed framework for solving examination

scheduling problems. We start by giving an overview of the Domain

Transformation Approach – the approach that transforms the original

problem domain into different and smaller domains which are easier to

manage. We provide the general framework proposed in this study, which

consists of several main stages; namely, the pre-processing of data,

scheduling and optimization. Each step is then elaborated in greater detail

by providing the algorithm, its essential elements and its computational

complexity.

3.1 Domain Transformation Approach –

Overview

Classical description of examination scheduling implies a search in a large

solution space which is typically accomplished with the aid of heuristics to

control the exploration of the search space. We propose that the

transformation of the problem domain is an effective methodological

approach to dealing with complex examination scheduling problems. In the

proposed approach, we define alternative data structures that capture the

47

essential dependences in the examination scheduling problem. By

performing an appropriate pre-processing of the original student-exam

data into suitable data structures, we can map the original problem

expressed in the multi-dimensional space of exams and students into a

space with a reduced dimensionality of exams and exam-slots. We will

refer to this approach to solving the scheduling problem as the Domain

Transformation Approach.

Domain Transformation Approach therefore could be defined as an

approach whereby a problem is transformed into a simpler problem

expressed in terms of different variables from the original problem

description. Examples of the domain transformation approach in other

application areas include the subdivision of a problem domain into

multiple sub-problems (e.g. the Danzig-Wolfe decomposition for solving

linear programming problems), transformation of problem variables (e.g.

the Fourier Transform, employed to transform signals between time or

spatial domain into frequency domain) and the transformation from

continuous to discrete functional description (e.g. the Z-transform

converting time domain signals into discrete domain of trains of pulses), to

mention just a few prominent examples.

The proposed domain transformation of the examination scheduling

focuses on the pre-processing of constraints prior to the generation of a

feasible timetable. This is done through the abstraction of essential

features of the exam scheduling problem from the original student-exam

data. This data abstraction process constitutes a significant methodological

contribution of this study, as it enables subsequent optimization of the

examination schedule without the need to refer to the voluminous student-

48

exam data in the course of the optimization. One example of a pre-

processing is the identification of the clashing exams. This information will

ease and expedite the scheduling process later because less permutations

are needed to obtain this information since it is readily available. Unlike

other approaches, without employing pre-processing, a lot of permutations

are needed, since this information is implicit in data. Other examples of

pre-processing will be discussed in further detail in this chapter later.

This approach was inspired by insights from previous studies on

industrial process optimization (Bargiela, 1985; Argile et al., 1996;

Peytchev et al., 1996; and Bargiela et al., 2002) and has been formalized as

a Granular Computing methodology (Pedrycz et al., 2000; Bargiela and

Pedrycz, 2002; Bargiela et al., 2004; and Bargiela and Pedrycz, 2008).

Granular Computing is an emerging conceptual and computing

paradigm of information processing methodology (Pedrycz et al., 2000),

(Bargiela et al., 2002), (Bargiela et al., 2004), (Bargiela and Pedrycz, 2008).

In the concept of Granular Computing, the key element is multiple levels

of information processing sometimes called hierarchical processing. Each

level will perform different types of processing that will result in different

types of information representation or meaning. In general, Granular

Computing can be viewed as human inspired paradigms of computing and

information processing (Pedrycz et al., 2000; Bargiela and Pedrycz, 2002;

Bargiela et al., 2004; Bargiela and Pedrycz, 2008).

According to Granular Computing concept, the information

processing will create information granules and this process is known as

Information Granulation (Bargiela and Pedrycz, 2002). According to

49

Merriam-Webster’s Dictionary (http://www.merriam-webster.com), a

granule is defined as “a small particle; especially: one of numerous

particles forming a larger unit”. These information granules, with regard

to Granular Computing concept, are collection of entities that are arranged

together due to some criteria, and normally they are central to the

abstraction processes in solving many tasks.

Information Granulation (Bargiela and Pedrycz, 2002) serves as an

important medium to simplify problem that needs to be split into smaller

sub tasks. It provides an abstraction mechanism that reduces the overall

conceptual burden in the original problem space. By having different sizes

or representations of the information granules, certain amount of details

can be hidden during the problem solving. This offers advantage in terms

of reducing the complexities of the problems. As we can imagine, the

consistent existence of some details are sometimes unwelcome because

they complicate things and therefore they need to be hidden.

As far as the examination scheduling problem is concerned,

Granular Computing problem solving strategy could be applied

successfully to produce feasible and good quality exams schedules. The

systematic approach which involves information processing will create new

data representation which will provide valuable and meaningful

information that could definitely ease the scheduling task.

Granular Computing in scheduling involves analyzing or

representing the scheduling problem at various levels of abstraction. For

example, at the fine resolution we may deal with individual students

taking individual exams (which is a standard problem definition) as

50

illustrated in Figure 3.1, at the coarser resolution we deal with classes of

exams (for example non-conflicting exams) and formalise the problem

description using these classes as illustrated in Figure 3.2. The

implication of this is that we deal with several complementary problem

descriptions at different levels of generality or accuracy. The more general

descriptions serve to facilitate an approximate problem solution in a

smaller search space and more detailed representations preserve the

possibility of refinement of the solutions. This approach contrasts with the

standard, detailed level of problem representation which requires

deployment of various heuristic methods to cope with computational

complexity.

Figure 3.1: Illustration of an Example of a Standard Examination

Scheduling Problem (Fine Resolution Level)

51

Figure 3.2: Illustration of Classes of Exams - Group of Non-Conflicting

Exams With the Students Enrolled (Coarser Resolution)

The key hypothesis of this thesis is that the pre-processing of initial

problem data can lead to a transformation of the scheduling problem into a

new solution space in which the problem is solved more easily. This

aggregated data from the modified data space which are grouped

appropriately will be much easier to handle, as opposed to dealing with the

original data, as has been done in many previous studies.

We also argue that after applying pre-processing, scheduling could

be done more efficiently, generating reproducible results.

52

3.2 The Flow of the Proposed Approach

This research is proposing a different approach from the work done by

others who utilized pre-processing methods; for example, Gunawan et al.

(2007b), who used a hybrid algorithm which consists of three phases: (1)

pre-processing, (2) construction, and (3) improvement in the teacher

assignment-course scheduling problem. The pre-processing phase in their

work involves assigning teachers to courses by sorting them in descending

order, based on their preferences towards the course.

In the approach advocated in this thesis, the aim is for the pre-

processing method on the timetable datasets to be employed before the real

scheduling process is undertaken. Possible data will be combined in the

datasets in such a way that will satisfy the hard constraints imposed on

the timetable. These combinations include the courses, rooms and

students. Each pre-processing stage will lead to a richer representation

and collection of data containing more information to make the final

scheduling easier. The revelation of dependencies existing within the data

at the aggregated level, which may be difficult to handle at the detailed

level, is the fundamental rationale behind the information granulation and

subsequent Granular Computing (Bargiela and Pedrycz, 2002). It is

postulated that the pre-processing will improve the efficiency and ease of

the scheduling task because only feasible solutions will be available to

work with, since the pre-processing eliminates all unfeasible timetables

from the solution space. The flow of the proposed work is given below:

53

Figure 3.3: The Flow of the Proposed Approach

The steps of the proposed work in creating feasible and quality

examination schedules are: standardization and verification of the problem

description data, pre-processing, scheduling and lastly, timetable

optimization, as illustrated in Figure 3.3.

The above figure clearly shows that in order to produce feasible and

good quality examination schedules, the very first step is to do a

standardization and verification of the original data files (timetabling

problem). Once this is done, pre-processing of data files will follow to

generate meaningful aggregated data construct that will ease the next

task which is the scheduling. In the scheduling stage, exams will be

assigned to slots, which always ensure the feasibility of the schedules.

Despite the feasibility of the schedules, the initial orderings of exams

produced by the scheduling stage might not be optimal (because it might

not fulfil certain soft constraints), therefore this requires a separate

deployment of optimization process to further improve the quality, hence

the need of the last stage, the optimization. In this final stage, the

schedules cost will be minimized via certain procedures.

Scheduling

Timetable
Optimization

Data Standardization
And Verification

Pre-processing

54

3.2.1 Standardization and Verification of the Problem

Description Data

The first step in this proposed approach is to perform the standardization

and verification of the problem description data. The standardization and

verification of data are done on the examination scheduling benchmark

datasets retrieved earlier that are freely made available to the public over

the internet. These data will be used to produce the information shown in

Figure 3.9, Figure 3.10: and Figure 3.11.

In the early stage, the datasets that were used are the benchmark

exam scheduling data for the University of Nottingham, semester 1, 1994 –

95 and University of Toronto, as presented in the previous chapter. The

files contain information pertaining to students, exams, enrolments and

data (other data and constraints). This information will be retrieved and

assigned to a data representation format that would be easy for future

processing. At the same time, there is the concern of Lewis (2008)

regarding the disadvantage of heavy reliance on certain benchmark

datasets. Consequently, the proposed approach has also been tested on

other benchmark datasets from the International Timetabling Competition

2007 (ITC2007).

The datasets produced and made available by the researchers come

in various representations and formats. The variations come from the

representations of information about courses, students and classes made

available in the datasets. For example, for University of Nottingham

dataset, there is a student-exam enrolment data representing a list where

each row contains a ten characters alphanumeric student ID (or code) and

55

eight characters exam code as depicted in Figure 3.4. Each student will

have a number of rows depending on the number of exams the student has

enrolled. For instance, the first five rows of data in the figure represents

that the student with student ID ‘A890186790’ was enrolled for five exams

with exam code: ‘R13001E1’, ‘R13006E1’, R13016E1’, ‘R13021E1’ and

‘R13022E1’.

Unlike the Nottingham dataset, for the Toronto dataset, the

enrolment file consists of rows containing a variable-length list of four

digits exam code. Each row represents exams enrolled by a particular

student. This can be seen in Figure 3.5. If we observe this figure, we can

see that the student code is not supplied in the file. Based on the list given

in this figure, we can view that the first student in the list (assume that

student id = ‘1’) is enrolled for one exam only which is exam with the code

‘0174’. The other two students, in the second and third row were enrolled

for exam ‘0329’ and ‘0332’ respectively. The list continues with the fourth

student enrolled for exam ‘0377’, ‘0378’, ‘0392’ and 0406’, and the list

continues for other students in the dataset. It is worth highlighting here

that these two data files are totally in different format, thus need to be

standardized and verified in the initial stage.

Some researchers represent the courses in the form of course codes

and some in the form of unique numbers – this is also the case with the

information about students and classes. Initially, a solution was developed

for one dataset with the intention to later provide a more generic

algorithm that would cater for various kinds of datasets formats and

arrangements.

56

Figure 3.4: Sample of Enrolment Data from the University of Nottingham

Dataset File

57

Figure 3.5: Sample of Enrolment Data from the Toronto Dataset File

Recall that we have also decided to test our approach on the

ITC2007 dataset. In this particular dataset, in contrast to the Toronto

dataset which is in the perspective of students, the ITC2007 is however is

in the perspective of exams. A sample of the ITC2007 data file is

illustrated in Figure 3.6. Each row represents an exam, where it consists of

a two or three digit numbers showing the duration of the exam in minutes.

The information in each row is then followed with a variable-length list of

a one digit up until four digits student code for all students enrolled for

this exam.

58

Figure 3.6: Sample of Enrolment Data from the ITC2007 Dataset File

In the above diagram, by assuming that both the first and second

row in the list represent exam with 180 minutes duration, if we observe

these two rows, we could see that there are 8 students (same students)

with student ID: ‘312’, ‘752’, ‘760’, ‘768’, 858’, ‘879’, ‘1920’ and ‘1987’ were

enrolled for these two exams.

The main algorithm, as presented below, was designed to utilize a

specific data type to represent the scheduling data. It was decided to use

matrix as the main data type to represent all the information pertaining to

the scheduling problem in the solution space. Since the matrix data type is

highly adaptable in terms of the complexity of the representation in the

sense that it can easily be converted from a single dimension to two

dimensions and so on, this robustness only requires minimal changes in

the actual program coding to be implemented. In this study a few matrix

59

or data types were identified that will be used to keep the initial data and

also processed data within the system.

The main data type is the StudentExamList matrix that represents

the relationship between a student and all the exams that the student will

be required to sit. It is a matrix of dimension NumberOfStudents x

MaxNoOfExamForAStudent + 1. This data structure will be used to

generate other data representations of the problem space. Each row index

will represents a student, the first column will contain the total number of

exams that the students have registered. Subsequent column will contain

the examination index. The StudentExamList will be supported by the

ExamLookupIndex and StudentLookupIndex. The ExamLookupIndex is a

matrix of NumberOfExam x 2. Each row in the ExamLookupIndex will hold

information for an exam. The first column contains the actual exam code

or name and the following column will contain the number of unique

students sitting for the exam. Similar to ExamLookupTable, the

StudentLookupTable holds information for a student. Each row represents

a student. The first column stores the student’s actual ID Number and the

second column holds the number of exams the students will be sitting in.

The relations of these data structures can be seen in the following

algorithm.

The algorithm to alleviate the initial problem of dataset and format

variety is by providing an algorithm or function that would convert a

dataset format to a standard format that will be used as an input to the

pre-processing stage. The algorithm consists of three subroutines each for

a particular dataset, namely Nottingham, Toronto and ITC2007 dataset.

60

The Nottingham subroutine will extract information from the input

file. The Nottingham input file consist of rows with two column of

information, The Student ID and the Exam ID each of this piece of

information will be converted to an integer value reference. The unique.

reference id for an exam and student will be used to populate the

StudentExamList. While placing the exam id in the StudentExamList this

subroutine will also keep the count of exams a student is enrolled and the

number of students sitting for a particular exam. Once the placement of all

the information is completed, a verification function will be called to verify

all the information in the StudentExamList is exactly the same is the

information in the original file. The verification will also check if there are

inconsistencies in the input file.

The Toronto subroutine is responsible to read and convert

information from the input file to the format that is required by the

scheduling algorithm. Each row in the Toronto input file is the list of

exams a student is enrolled in which is deliminated by spaces. The Toronto

file does not provide any information on the student id thus requiring the

subroutine to assume that the first list of exams belongs to student with id

equals to 1 and so on until the end of the file. The algorithm will place the

exam id on the StudentExamList, keeps the tally for the number of exams

a student is taking and the number of students sitting for a particular

exam.

The ITC2007 subroutine on the other hand will have to read and

filter information in the input files as part of the data is not being used in

our implementation. Each row in the ITC2007 dataset file has the

duration of an exam and the list of student id enrolled in the exam

61

deliminated by a comma. Since the dataset does not provide any exam id,

the subroutine will assume that the first entry in the dataset belongs to

exam id equals to 1 and so on. Similar to the previous two routines, this

routine will also populate the StudentExamList, keeps track of the number

of exams a student is enrolled in and tally the number of students sitting

for a particular exam.

Algorithm 1

If Nottingham Dataset

 Open the Data File

 While not End Of File

Read a line from file to Input

Get FirstToken from Input //StudentID

Get SecondToken from Input //ExamID

i = -1

j = -1

Find Index of SecondToken in ExamLookupIndex assign to i if

found

Find Index of FirstToken in StudentLookupIndex assign to j if

found

If j = = -1

 LastSLI = LastSLI + 1

 StudentLookupIndex[LastSLI] = FirstToken

 j = LastSLI

EndIf

If i = = -1

 LastELI = LastELI + 1

 ExamLookupIndex[LastELI] = SecondToken

 i = LastELI

 StudentExamList[j][(StudentExamList [j][0])+1] = i

StudentExamList [j][0]= StudentExamList [j][0]+1

Else

 StudentExamList [j][(StudentExamList [j][0])+1] = i

 StudentExamList [j][0]= StudentExamList [j][0]]+1

EndIf

UpdateLookupTable(StudentLookupIndex,j,

ExamLookupIndex,i)

 End While

Close

DataValidity = VerifyData(ExamLookupIndex, StudentLookupIndex)

End if

If Toronto Dataset

Open the Data File

 While not EndOfFile

62

 i = i+1;

 j=0;

 Read a line from file to Input

While Input not empty

 j=j+1

 Get FirstToken from Input //Space Deliminated

 StudentExamList [i][j]=FirstToken

 UpdateLookupTable(StudentLookupIndex, i,

ExamLookupIndex, FirstToken)

End While

StudentExamList[i][0]= j

 End While

Close

DataValidity = VerifyData(ExamLookupIndex, StudentLookupIndex)

End if

If ITC2007 Dataset

Open the Data File

 i = 1;

 While not EndOfFile

 Read a line from file to Input

 Get FirstToken from Input //Exam Duration,not used

 j = 0

 While Input not empty

 Get FirstToken from Input //Comma Deliminated

 j= j+1

 StudentExamList[FirstToken][

StudentExamExam[FirstToken][0]] = i

 StudentExamExam[FirstToken][0]= StudenExamList

[FirstToken][0]+1

 UpdateLookupTable(StudentLookupIndex,FirstToken,

ExamLookupIndex,i)

 End While

 i = i + 1

End While

Close

DataValidity = VerifyData(ExamLookupIndex, StudentLookupIndex)

End if

Figure 3.7: Algorithm for Retrieving Enrolment Data, Standardization and

Verification

63

3.2.2 Pre-processing

A key step in the proposed exam scheduling method is the pre-processing

of constraints prior to the generation of a feasible timetable. This is done

through the abstraction of essential features of the exam scheduling

problem from the original student-exam data.

One example of the information obtained from the pre-processing is

the identification of the clashing exams. Due to the need to ensure the

feasibility of timetables, typical timetabling algorithms check if exams do

not clash every time an exam is scheduled. In other words, for

conventional approaches, without the pre-processing stage, the clashing

information is implicit in data; thus, a lot of permutations requiring a lot

of time need to be done in order to create a feasible timetable. This

problem can be avoided using the approach of this study. The data

structure is part of the mechanism to ensure that the feasibility of all

generated schedules is maintained. By devising a data structure combining

non-clashing exams into separate entities one can avoid subsequent

feasibility checks. The data structure enables easy lookup of exams that

can be scheduled together. We take an example of exam A, if exam B is in

the non-clashing list of exam A, then they can be scheduled together.

Otherwise there is at least one student that is enrolled in exam A and

exam B. Hence, this approach deals only with feasible solutions.

The pre-processed data can also be utilized later to find another

information in the pre-processing stage; for instance, the non-clashing

exams information, all exams will have its corresponding non -clashing

list. To find the non-clashing exams, we just need to focus solely on the

64

clashing exams information logically, by finding the inverse of the clashing

exams. This means that instead of doing a lot of cross-checking and cross-

referencing across many files, we are only employing the information that

we obtained through the previous pre-processing. At each stage of the next

level of pre-processing we will be doing a hierarchical processing that will

always provide us with richer information. The types of pre-processing

mentioned above are just examples. Other types of pre-processing and data

dependencies will be considered to further enrich the existing information

in order to minimize and simplify the scheduling process, thereby creating

a valid and optimal exam timetable.

The pre-processing stage has generated the following information:

1. Number of students for each exam.

2. List of students in each exam.

3. List of clashing exams for each exam.

4. List of non-clashing exams for each exam.

5. Generation of the exam-conflict matrix.

6. Generation of the conflict chain.

7. Generation of the spread matrix.

Generation of the Exam Conflict Matrix

The first pre-processing step is to determine potential clashes between

examinations and to count the number of students causing these clashes.

This information is used to construct an exam conflict matrix which is a

square matrix of dimension equal to the number of exams. Entries in this

matrix at position (i,j) represent the number of students causing conflict

65

between exams i and j. The exam conflict matrix is generated by

incrementing the value at position (i,j) by 1 for each student taking exams

i and j when the student-exam list is traversed. The matrix will contain a

negative number of students value (-s) at position i,j if there are s students

causing conflict between exams i and j. The exam conflict matrix is a static

data representation of the problem space. Information contain herein is

fixed, which represent the interrelation between an exam to another exam.

It forms the reference for allocation, optimization and calculation of the

schedules quality (Carter cost (2.1)). The algorithm to generate this matrix

is given in Figure 3.16.

Generation of the Conflict Chains

The clashes between exams are static information or relation which will

not change in a problem space. By this we mean that the exam clashes will

only change with an addition of a student taking both exams or all the

students taking the two exams drop or unregister for either one of the

exam. A clash between two exams is a situation where there is one or more

students taking the two exams, thus implies that the two exams cannot be

scheduled concurrently. This representation provides useful information

granules that can be utilized in the scheduling process. Based on these

information granules we determine the minimum number of time slots

that are necessary for scheduling the given set of examinations. We refer

to this stage as the construction of conflict chains.

The algorithm deployed at this stage can be summarized as follows:

66

1. Initiate the algorithm by allocating all exams to time slot one.

2. Select the first exam as “current” and initiate the counter for the

current conflict chain.

3. Label the current exam as “allocated to the current chain” and note all

of the exams that are in potential conflict with the current exam.

4. If the list of potentially conflicting exams is non-empty, re-allocate

those exams to the next available time slot. Otherwise, label the current

chain as complete and proceed to Step 6.

5. If the list of potentially conflicting exams is non-empty, select the first

exam from the list and repeat from Step 3 with the currently selected

exam.

6. Check if all exams allocated at Step 1 are belonging to one of the

conflict chains; if YES, then the algorithm terminates; if NO, then the

conflict chain counter is incremented and the unallocated exam is taken

as “current” for processing, starting from Step 3.

Figure 3.8: Algorithm to Generate Conflict Chains

In this section we will illustrate the generation of conflict chains

based on an example data. Assuming that Figure 3.9 is the student-exam

list that was generated after the standardization and data retrieval phase.

We are using four (4) students that have enrolled in total of 7 exams. The

exam-students list generated will be as in Figure 3.10.

This information will be used to generate the Exam Conflict Matrix,

resulting in a conflict matrix in Figure 3.12. Note that the contents of the

Exam Conflict Matrix are negative values. Each value is derived from the

number of students that enrols in an exam from the x-axis and the y-axis.

67

Example we have two students taking exam E1 and E24 which is student

A and B.

The conflict chains generation as illustrated in Figure 3.13 starts by

assigning all the exams to the first slot (i.e. slot number 1). Next the

algorithm will traverse the exam list that has been assign to slot 1. It will

start with the first exam and marking it as assign to slot 1. It will then

check all other exams in slot 1 against the accepted exam to determine if it

clashes (utilizing the exam clash list in the process). E1 has been marked

as accepted and the algorithm will check E1 with the rest of the content of

Slot 1. E24 is in the clash list of E1 thus marked as clash and it will be

shifted to the next slot (slot 2) in the shifting phase, same goes to E300,

E45 and E60.

Upon completion of exam E1 inspection, the algorithm will mark

the second exam which is still unmarked or not allocated; the slot still

contains E512 and E73. E512 is marked as accepted and the algorithm

will inspect E512 against E73 which will result in marking E73 as clash

and to be moved to the next slot. Upon completion of E512 inspection the

algorithm will mark another exam in Slot 1 as accepted, however Slot 1

currently does not contain any exams unallocated, hence marking the

completion of the checking phase.

In the next phase all exams that were marked as “to be shifted” will

be shifted to the second slot, the exams are E24, E300, E45, E73 and E60.

The checking cycle continues by accepting E24 and evaluating its clash

with other exams in Slot 2. E300 and E45 will be marked as to be shifted.

E73 will then be marked as accepted and E73 clash list will be inspected

68

and no exam is being marked as to be shifted. Finally E60 will then be

marked as accepted and E60 clash list will be inspected and no exam is

being marked as to be shifted. In the subsequent shifting phase, E300 and

E45 are being shifted and the process continues until all the exams are

accepted.

Once the process of generating conflict chains has been completed,

the algorithm will check the maximum number of slots obtained against

the maximum slot required for a dataset. If the value of current slot

configuration is lower than the maximum slot required, the exam in the

last slot will be separated to create another slot as illustrated in Figure

3.13 (After N Process). The final exam to slot allocation is depicted in

Figure 3.14.

Figure 3.9: An Example of a representation of Student-Exam List

69

Figure 3.10: Exam-Students List Generated Based on the Student-Exam

List

Figure 3.11: Exam-Clashes List

70

Figure 3.12: Illustration of Exam-Conflict Matrix

71

Figure 3.13: Diagram Illustrating the Slot Allocation Process

72

Figure 3.14: Diagram Illustrating Exams Allocated To Slots

Figure 3.15: Conflict Chains Generated

The outcome of the above algorithm is a set of conflict chains that

represent mutually dependent exams that need to be scheduled in

different time slots in order to avoid the violation of hard constraints

(Figure 3.14). However, the algorithm implies that it is possible to have

one exam belonging to more than one conflict chain (although the

algorithm will ensure that the allocation of this exam to the time slot is

consistent in both chains). For this reason we perform the additional step

of merging these conflict chains, which happen to have common exams.

73

The merged conflict chains represent independent subsets of the

examination set that can be dealt with one at a time.

Generation of the Spread Matrix

Besides generating the independent conflict chains, as outlined above, the

number of students who take exams allocated to time slots that are 1, 2, 3,

4 and 5 time slots apart was evaluated. Since we are dealing with

information granules that represent a potential conflict between all exams

in one time slot and all exams in another time slot, regardless of what the

actual time slot numbers are, we create a framework for efficient

optimization of the cost function (measuring the quality of the timetable).

The following will describe the proposed scheme for renumbering the time

slots using the background knowledge about the structure of the cost

function. This stage will be referred to as maximizing the spread of

examinations.

Using the exam conflict matrix information together with initial

grouping of exams information through the early pre-processing stage, the

spread matrix is then generated. The spread matrix (Rahim et al., 2009) is

a square matrix of dimension S, where S is a number of slots. Entries in

the spread matrix at position (p,q) represent the number of students who

take an exam from both slot p and slot q. The matrix is symmetrical with

diagonal elements being omitted because students can take only one exam

in any given exam slot. The spread matrix is created by incrementing the

value at position (p,q) by 1 if exam p and exam q are not grouped together

in the early allocation process (meaning they are clashing).

74

The pre-processing of the original student-exam data into the exam

conflict matrix and the spread matrix pays dividends in terms of

minimizing the subsequent cross-checking and cross-referencing in the

original data in the optimization process, thus speeding up the scheduling

task. The essence of pre-processing is summarized by the pseudocode in

Figure 3.16.

Algorithm 2

Read student-exam list

Initialise exam-conflict matrix to zero

Initialise spread matrix to zero

Initial allocation of exams to slots

Read exam-to-slot allocation vector

For i=1 to number-of-students

 For j=1 to number-of-exams-of-student-i -1

 For k=j to number-of-exams-of-student-i

 Increment entry exam-conflict(student-exam(j),student-exam(k)) by 1

 If exam-to-slot(student-exam(j))/=exam-to-slot(student-exam(k))

 THEN

 Increment matrix element spread(j,k) by 1

 End

 End

 End

End

Figure 3.16: Algorithms for Pre-Processing

The pre-processing stage is one of the biggest contributions towards

solving and minimizing the search space. In the approach that is proposed

and implemented in this study, the granulation of the problem space was

introduced using the exam-conflict matrix, spread matrix and exam-to-slot

vector to simplify the problem and provide an algorithm which is not NP

complete to solve the problem. The main computational component in the

algorithm is the outer loop which iterates through the student list, l which

ranges between 611 to 30032 based on the three benchmark datasets used

in this study as can be found in Chapter 2. For each of the students there

is an inner loop to create a permutation of the exams that the students are

75

taking, m with itself to create the exam-conflict matrix and spread matrix.

The value of m has a limitation, which is actually the maximum number of

exams a student can enrol in a particular semester. By assuming that one

exam is equivalent to a one credit hour, a worst case scenario, a student

will enrol for a maximum of 25 exams. The number of exams m is selected

from a pool of exams ranging from 81 to 2419 based on the benchmark

datasets used in this study. The complexity of the algorithm can be

simplified to O(l x m x m) = O(lm2). Within the problem domain when l is

increased its relative value towards m is huge making m irrelevant. The

value of m can be neglected due to the fact that m has a limit to its value,

which is very small compared to the number of students l when it grows.

Thus, the complexity of the algorithm is simplified to O(l).

The pre-processing of data and constraints from the original problem space

will provide important information granules which in turn provide

valuable information for scheduling. The new aggregated data generated by

the pre-processing stage, i.e. exam conflict and spread matrices, will

minimize the subsequent cross-checking and cross-referencing in the

original data in the optimization process, thus expediting the scheduling

process.

3.2.3 Scheduling

After the pre-processing of data is completed, the next step is the

scheduling process. This is when the initial allocation of exams to slots is

done, i.e. grouping exams that are not conflicting in a group. In this study,

76

there are two methods for scheduling; the first is via the conflict chains

generation and the second is via the allocation method.

3.2.3.1 Scheduling for Uncapacitated Problems

Scheduling will be done using the derived information from the pre-

processing stage. The timetable generated at this stage is based on pre-

processed data; therefore, it will always fulfil the hard constraints.

The generation of a feasible solution is achieved using an allocation

method which is based on the standard Graph Colouring Heuristic

(Broder, 1964), (Cole, 1964), (Peck and Williams, 1966), (Welsh and Powell,

1967), (Laporte and Desroches,1984), (Burke et al., 1994c), (Carter et al.,

1994), (Joslin and Clements, 1999), (Burke and Newall, 2004a), (Asmuni et

al., 2007), (Abdul-Rahman et al., 2009), (Kahar and Kendall, 2010), which

is used to generate the allocation of exams to time slots. This method

allocates exams by placing exams with the highest conflicts first; it then

moves to other exams with lower conflicts. This is based on the principle of

an early allocation of those exams with the highest number of conflicts to

the available time slots. During this process, the number of conflicts of

exams which have not been scheduled yet is recalculated to reflect the

latest updated status of exams. This means that all unallocated exams are

taken into consideration in every iterative step, rather than being

processed sequentially.

During the allocation of exams to slots, there will always be two

types of slots: empty slots and non-empty slots. Empty slots are the slots

are not yet been assigned any exams, where as non-empty slots are the

77

slots that already have exams been assigned to them. We have four

preferences for allocation determination which are: assigning conflicting

exams to non-empty slots; assigning conflicting exams to empty slots;

assigning non-conflicting exams to non-empty slots; and assigning non-

conflicting exams to empty slots. These have the values of 0.4, 0.3, 0.2 and

0.1, respectively. The higher the value, the higher the preference for

allocation.

Any unused slots are removed and provide a buffer-space for

subsequent optimization. The output is an allocation flag, exam-to-slot

vector which contains the slot numbers for all exams. An allocation flag is

a single dimensional array or also known as a column vector of dimension

[number of exams x 1] where each value in the vector corresponds to the

slot number where each exam in problem is assigned. At this point, the

number of slots could be determined by the maximum value in the

allocation flag.

The generation of a feasible solution (or what can be considered

here as a feasible conflict chain) is done by allocating a group of exams to

timetable slots which are verified by calling a verification procedure. The

process continues by calling the merging procedure to reallocate exams. By

splitting a slot p and reassigning constituent exams to other slots, the total

number of slots may be reduced if every exam in slot p can be allocated to

some other slot, i.e. is not in conflict with exams in other slots.

Algorithm 3

Generate a feasible allocation of group of exams to timetable slots

Verify allocation of exams to slots

Execute splitandmerge procedure

Split a slot p and reassign constituent exams to reduce the number of slots

78

Execute backtracking to further reduce number of slots

Figure 3.17: Algorithm for Allocation of Exams to Time slots

The generation of a feasible solution process through the allocation

of exam to timetable slots in Algorithm 3 is further detailed in Algorithm

3a.

Algorithm 3a

Create the first slot, islot=1;

Initialize allocflag array, xs array and inew to 0.

initialize xe with the exam conflict matrix

while there is still exam unallocated

if inew > 0 there was a new assignment to allocflag

 update 'xe'

 Obtain an unscheduled exam id (istart) with the biggest conflict

 if the obtained exam has a confnum==0

 assign all exams not yet allocated with value nex + 1

 if exam 'istart' can't be allocated to 'islot-1' slots

 allocate istart to the last slot 'islot'

 update xs with the latest exam

 increment islot by 1

 update xs with the new slot availability

 else

 assign exam istart with value nex + 1 indicating deferred assignment

 inew=istart

end

initialize inew and xc matrix to 0

reinitialize xe with the exam conflict matrix

for i=1 to number of exams

if exam i is allocated to nex+1

 Assign ye the number of conflicts of exam 'i'

 for j=1 to islot

 if xs(j,i)==0

 Assign ys number of conflicts of slot 'j’

 Assign y number of conflicts of slot 'j' after allocating exam 'i'

 Obtain preference value based on ye and ys

 Assign xc(j,i) with ye + ys –y + pref

 end

 end

 end

end

Identify exam with maximum conflict reduction potential

Identify slot to assign 'exam'

update slot conflict xs

allocflag(exam)=slot

79

while there is still exams allocated to slot nex+1

clear y1

 Update 'exam' column of 'xc'

 update the 'slot' row of 'xc'

 for i=1 to number of exams

 if exam i is assign to nex+1

 j=slot;

 Assign ye with number of conflicts of exam 'i'

 if xs(j,i)==0

 Assign ys with number of conflicts of slot 'j'

 Assign y the number of conflicts of slot 'j' after

allocating exam 'i'

 Obtain preference value based on ye and ys

 Assign xc(j,i) with ye + ys – y + pref

 else

 Assign xc(islot,i) with 0.3

 end

 end

 end

 identify exam with maximum conflict reduction potential

 identify slot to assign 'exam'

 update slot conflict xs

 allocflag(exam)=slot;

if slot==islot

 add additional slot, update xs and xc

end

end

Figure 3.18: Algorithm for Allocation of Exams to Time slots

The above algorithm is divided into three parts, each having a loop

to do the allocation of exams to time slots. The first loop is responsible for

the first round of allocation, ensuring that the exams with the largest

number of conflicts are scheduled first into the slots. The loop has a

complexity of O(n) which is proportional to the number of exams. The

second loop will schedule exams which have been deferred in the first

round of allocation. It is a nested loop with two loops forming the external

loop and the internal loop. Both of these loops go through the exams list;

thus, giving the element n as the maximum value, which results in a

complexity of O(n2). The final loop is responsible for allocating unallocated

80

exams which have not been scheduled in the first or second loop. The final

loop has a complexity of O(n2) with the maximum number of time slots to

solve the problem is equal to the number of exams, contributed by a for

loop nested in a while loop.

Overall, the whole process of allocating exams to time slot has the

complexity of O(n + n2 + n 2), which totals to O(n + 2n2) and a final

complexity of O(n2).

Effects of Pre-Ordering Exams on Scheduling

In the process of assigning exams to slots, or creating the conflict

chain, we have identified that the final outcome is highly dependent on the

ordering of the exams prior to the assignment. We can look further into

this phenomenon to identify the criteria or reasons for this behaviour.

Each exam in the examination scheduling has corresponding exams that

clash with it, except for any exam that is taken only by students who are

not sitting for any other exam. Whenever there are two students who are

both taking the same exam and either of them also has another exam, the

clashing situation exists. This situation is depicted in the following figure:

Figure 3.19: Figure Illustrating Exam E510 Clashes with Exam E66

81

In the above figure students E and F will both be sitting for exam

E510 and student F has an additional exam E66. When this situation

arises in the examination scheduling problem, we know that E510 clashes

with E66; thus, making these two exams interconnected and ensuring that

they cannot be scheduled in the same time slot or location in order to

adhere to the hard constraint imposed on the scheduling problem. The

above instance creates a link of dependence between these two exams. If

there exists one exam in a slot then we cannot have its counterpart in the

same slot. Another fact that needs to be highlighted is that the two exams

E510 and E66 actually contributed towards the calculation of the cost

function. Whenever these two exams are scheduled less than 5 slots apart,

it will add some weight to the cost function.

In an instance where there are other exams that the student is

sitting for and between these exams there are other students who are also

sitting for it, this would result in an intertwined connection between the

exams. This creates a complex interlinking between these exams and

determines the outcome of the possible solutions that can be generated

during the conflict chains generation, based on the order in which these

exams were assigned into slots. To prove this, we introduce a clash list for

a set of exams, as depicted in the following figure:

82

Figure 3.20: Figure Illustrating 8 Exams with The Clash List Pre-ordered

Using Ordering 1: Random Ordering (RO)

83

Figure 3.21: Slot Allocation Process for Random Ordering (RO)

In the above and following examples we omit the list of students

and other details since the information is no longer needed in the

processing. The figure above shows the exam list from E1 to E8 (the first

column); each is followed by other boxes containing the exam codes for

84

those exams with which they clash. We have obtained this arrangement

for conflict chain creation based on random ordering. The following figure

is another ordering of the same datasets which we have obtained through

the Largest Degree arrangement.

Figure 3.22: Figure Illustrating 8 Exams with The Clash List Pre-ordered

Using Ordering 2: Largest Degree (LD)

85

Figure 3.23: Slot Allocation Process for Largest Degree (LD)

Figure 3.20 and Figure 3.22 are translated into two matrices as

shown below: clashA and clashB, respectively. Pre-processing has been

achieved by running the code to determine the number of minimum slots

required. The slot allocation process for the Random Ordering is shown in

Figure 3.21 and slot allocation process for Largest Degree is shown in

86

Figure 3.23. As a result of going through the slot allocation process, the

following number of slots required for each ordering is obtained:

clashA=[

1 2 4 6 0 0

2 1 3 4 5 6

3 2 5 0 0 0

4 1 2 5 6 0

5 2 3 4 6 8

6 1 2 4 5 0

7 8 0 0 0 0

 8 5 7 0 0 0];

clashB=[

1 2 3 4 5 6

2 1 3 4 6 7

3 1 2 4 5 0

4 1 2 3 5 0

5 1 3 4 0 0

6 1 2 0 0 0

7 2 8 0 0 0

8 7 0 0 0 0];

a) Ordering 1 (clashA): 5 slots

b) Ordering 2 (clashB): 4 slots

We have also done some pre-processing on the problems of

benchmark datasets to determine the minimum number of slots required

to schedule the exams and, as expected, different orderings have produced

different results. The differences can be seen in Table 3-1:

87

Table 3-1: Different Number of Slots Generated After Pre-Processing By

Using Different Pre-Orderings

Based on these results we can generalize that different pre-

orderings result in a different number of slots being required and this will

also affect the quality of the schedules later on.

Implementations of Backtracking to Reduce the Number

of Slots

Reducing the number of slots for a solution reduces the number of days

and resources that will be utilized for the examination, thus reducing the

operational cost. However, by reducing the number of days, it will

Name of

Dataset

Minimum No. of

Slots Required

Using Random

Ordering (RO)

Minimum No. of

Slots Required

Using Largest

Enrolment (LE)

Minimum No. of

Slots Required

Using Largest

Degree (LD)

nott 26 19 18

car-s-91 (I) 44 35 32

car-f-92 (I) 48 36 34

ear-f-83 (I) 29 26 24

hec-s-92 (I) 22 22 20

kfu-s-93 25 21 20

lse-f-91 22 20 19

pur-s-93 (I) 54 41 38

rye-f-92 28 26 25

sta-f-83 (I) 35 35 35

tre-s-92 29 22 23

uta-s-92 (I) 43 37 36

ute-s-92 13 10 11

yor-f-83 (I) 29 25 27

88

definitely increase the value of the cost function since the Carter cost (2.1)

function is highly dependent on the temporal distance between consecutive

exams, which is affected by the number of days’ duration of the overall

examinations.

During the scheduling process, the order of processing the exams

may sometimes lead to a non-optimal assignment of exams to slots which

could create an infeasible schedule (i.e. does not satisfy the number of slots

required). This situation calls for a reassignment of exams from the initial

slot allocation to other slots in order to ensure the number of slots is

reduced to the required number and the schedule becomes feasible. This

kind of reassignment will need to revisit or backtrack through the initial

allocation or assignment process, and therefore we will call this a

backtracking process. In the backtracking process, some assignments

which have already been made will be undone in order to schedule these

exams in other time slots. As a result, this simulates the generation of a

set of feasible schedules that will be used in the optimization process later.

The backtracking process takes place when we execute the

optimization stage to minimize the number of slots for a solution. The

main objective of the algorithm is to look for possible exam movements

within the available slots and identify the best moves that can be made.

The specific objectives of the backtracking might include: 1) to

reduce the number of slots in order to satisfy the slots number

requirement in a given problem; 2) to prepare the non-optimal schedule for

further optimization; or 3) to undo certain assignments of exams to periods

during scheduling in order to allow other exams, which previously failed to

89

be assigned and caused the infeasibility of the schedule, to be scheduled

first.

 In one of their approaches, Carter et al. (1996) utilized the

backtracking process in the main algorithm to come up with a feasible

solution for a timetable, giving the algorithm the advantage of undoing

steps; which is de-assigning exams from a period to obtain a previous

solution state, with the objective of assigning an exam which previously

could not be assigned to any one of the periods or slots. Carter et al. (1996)

concluded that the backtracking process managed to reduce the overall

solution length by 50%; thus, we found the algorithm very appealing and it

fitted easily into our implementation. Therefore, it was decided to use the

Carter et al. (1996) backtracking algorithm, with some modifications, as

the basis from which to eliminate or reduce the slots of the current

solution.

This is due to the fact that a reduction of slots involves rearranging

or reassigning allocated exams to new slots, which will result in the

modification of other related exams. By doing this, we are in the same

position as Carter et al. (1996), as the probability of the future movement

of exams to reach a feasible solution is uncertain; thus, we need to have

the capability to undo any movements made previously.

This is in anticipation of the fact that by reducing the number of

slots at the early stage, one can minimize the cost of timetables at the later

stage during the optimization process. The initial schedule with a few slots

(i.e. less than the required number of slots) can always be modified to one

with the required number of slots. We hypothesize that this could provide

90

a useful buffering space during the optimization involving permutations of

exam slots. Consequently, this has the potential to improve the quality of

the schedules (Rahim et al., 2009; Rahim et al., 2012).

After each exam has been assigned to a slot via the scheduling

process, backtracking is then performed to further reduce the number of

slots, if any reduction is possible (Rahim et al., 2013b). The backtracking

process in our proposed framework is illustrated by the following diagram.

Figure 3.24: Backtracking Stage in Our Proposed Framework

We have implemented the backtracking process used by Carter et al.

(1996). The backtracking took place after doing the scheduling using the

allocation method, as discussed in the previous section. The purpose of

implementing this is to see whether backtracking could reduce the number

of time slots required to schedule the exams.

The flowchart of the backtracking process implemented in our work

is given in Figure 3.25. Note that the general idea was based on the

91

backtracking algorithm proposed by Carter et al. (1996), but with some

modifications to suit our framework. Figure 3.26 outlines the pseudocode

of the whole process.

92

Figure 3.25: Flowchart of Backtracking Process

93

Algorithm 4

for i = 0 to Last_i

 for p=0 to Last_p

 if <i can fit to p>

 Assign i to p

 end if

 next p

 for p = 0 to Last_p

 Bp = 0

 x = all course where i conflicts

 for j = 0 to max(x)

 APaper = x[j]

 for p = 0 to Last_p

 if <APaper can fit to p>

 CostApaperAtP = <cost if Apaper is put

to p>

 end if

 next p

 if <total CostP = 0>

 if <i bumped APaper before>

 Bp = -1

 else

 Bp = Bp + 1

 Mark APaper to bump if p selected

 end if

 else

 <Get min cost and mark p for new location of

APaper>

 end if

 next j

 Calculate m for p

 next p

 Get min Bp

 if <min Bp = 0>

 Get all of p where Bp= 0

 Get min Mp for all p selected

 put i to p

 execute APaper shifting

 else

 if min Bp is infinity

 mark i as unable to schedule

 else

 Get all p for min Bp

 if p unique

 put i to p

 execute APaper (which is marked) shifting

 else

94

 get min Mp for p

 put i to p

 execute APaper (which is marked) shifting

 end if

 end if

 end if

Next i

Figure 3.26: Pseudocode for Backtracking

For each exam in the Exam_to_relocate list that we have selected

(which will be referred to as the current exam), we will calculate a Bp

value for each slot that we have as the solution, which is the number of

exams that will need to be relocated if the current exam is assigned to the

slot p (the process of finding the number of exams clashing with it in each

of the available periods). Please note that the exams clashing with the

current exam will be bumped to the Exam_to_relocate list, and thus will be

assumed to be unscheduled exams.

In the process of calculating the Bp value for each slot we create a

CurrentExamClashWith list for each slot that the exam can enter or be

relocated. All the exams which have students clashing will be included in

this list. The total number of the content of CurrentExamClashWith is the

Bp for the slot. If the exam is allocated there the content of

CurrentExamClashWith can easily be used to populate the

Exam_to_relocate list.

Initially, each Bp value in each slot is assigned the value of 0 and if

an exam cannot be assigned to the slot for a specific reason, it will be

marked or given the value number_of_exams + 1. In the process of finding

the Bp, if the exam in the list has bumped any clashing exams encountered

95

in the period we are dealing with, then the Bp for this period is equal to

number of exams + 1 (Bp= nex + 1). This is a bit different from Carter et al.

(1996), who assigned an infinity value to the Bp whenever they

encountered this condition. We also assign Bp = nex+1 for a period, if the

exam in the list originated from this period. This is another modification to

Carter’s method to avoid a cyclic shift. We continue finding the Bp for all

periods for each exam in the waiting list.

Each of the exams that can be relocated to accommodate the coming

exam has an indicator to determine whether the incoming exam has a

history of shifting out the exam to the relocation list. We create a

BumpMatric which is a matrix of exam x exam, where the rows represent

the Exam_to_reduce and columns represent CurrentExamClashWith. The

intersection between rows and columns has an indicator: the value 1

indicated the Exam_to_reduce has bumped the corresponding exam

CurrentExamClashWith. The value 0 indicates that Exam_to_reduce has

not bumped the corresponding exam CurrentExamClashWith. This value,

however, will change to 1 in the transfer stage if a ‘bump’ occurs.

We have taken the same approach as Carter et al. (1996) in that an

exam is allowed to push out an exam to the relocation list only once during

the process; this is to eliminate the probability of creating a cyclic shift

resulting in an infinite loop of transferring exams out and into the slot. In

order to do this, we monitor or keep track of the last slot that an exam in

the relocated list originated from. This is to ensure that the exam that has

been transferred out does not go back into its original slot when it is time

for the exam to be evaluated for relocation.

96

The purpose of finding the Bps for all the periods is to determine

which period to choose to assign the exams in the waiting list. Bps for all

periods can range from the value of 0 to nex + 1. So, the best Bp would be 0

and the worst Bp would be nex + 1. This means that the exam in the

waiting list will be assigned to the period with the minimum value of Bp.

The lowest Bp value will be the best criterion to be selected as the target

location for the Current exam relocation.

In the period selection stage, there is always a possibility of having

the same Bp values. If there are several periods with Bp = 0, then our

method will choose the first period with Bp=0 encountered or, in other

words, the first available period with no exams clashing with the exam in

the waiting list. In cases where the Bp ranges from the value 1 to nex

(Bp=1 to Bp=nex), and there exist multiple periods with the same Bps,

then our method will execute a selection based on the weighting given to

the periods.

The weighting given was based on the total number of students

having conflicts in both exams in the periods and the exam in the waiting

list. The period with the maximum value of the weighting will be selected;

thus, the exams in the period clashing with the exam in the waiting list

will be bumped to the waiting list. The weighting given is mainly for the

purpose of breaking the ties of the same Bps.

Once the period or the location to assign the exam in the waiting

list is complete, the transfer stage follows. The transfer stage is the process

of transferring the current exam in the waiting list to the new period

selected.

97

The above process then repeats for other exams in the waiting list.

If, at the end of the process, some exams fail to be assigned to any periods,

then we assume the backtracking process has failed; thus, the above

process will be undone and the previous configurations of allocation of

exams to periods will be used. The transfer stage will allocate the exam to

its new slot and it will also transfer out existing exams in the slot that

clashed with the incoming exam to the Exam_to_relocate list. All current

information that is affected by the move is initialized to its original value

before starting the evaluation for the next exam in the Exam_to_relocate

list. If the algorithm finds a situation where there is no solution to allocate

all the existing exams or any of the exams in the Exam_to_relocate list,

then it will revert and undo all of the movements of exams to obtain the

original placement before the reduction of the slot is executed.

The backtracking algorithm consists of a few levels of nested loops

that will increase the computational complexity. This is due to the fact

that we will be traversing and searching the solution space for all possible

moves that an exam can make and all moves are evaluated. The first loop

will traverse the list of exams that have to be selected to be relocated.

Within this loop there are two sequential loops. The first will traverse all

the available remaining slots to check if the exam can be allocated to the

slot; and, if this is possible, an allocation of the exam to the slot will take

place. The second loop will go through all the available periods and

evaluate the possibility of assigning the exam to other slots which have

conflicting exams. Within the second loop there are two loops; one inside

the other. Each of these loops has a different controlling logic. The

complexity of the main loop depends on the number of exams that need

98

rescheduling and would have a maximum value of n, being the number of

exams. The two sequential loops inside the main loop are controlled by the

number of slots currently available and required by the solution m. The

algorithm initially will have the complexity of O(n(m+m(n(m)))). As the

value of m and n grow bigger, the value of m will be the same as n. The

initial algorithm complexity reduces to O(n(n+n(n(n)))) = O(n(n+n3)). This

can be further reduced to O(n2 + n3) = O(n3).

Types of Backtracking Implemented in the Proposed

Framework

i. First Method: Backtracking 1 (BT1)

In the first backtracking method, called here Backtracking 1 (BT1), we

attempt to eliminate the last utilized time-slot. We have implemented the

backtracking process used by Carter et al. (1996), but with some

modifications. In contrast to Carter et al. (1996)’s method, where

backtracking was performed during the initial placement of exams, in our

approach the placement of exams to their allocated slots has already been

completed; therefore, we are attempting to convert the infeasible schedule

into a feasible one.

After allocations of exams to slots were completed, we identified all

the exams in the last slot and we assigned them to a waiting list of

unscheduled exams. Then, for each exam in this list, we initialized the

selection criterion, which is known as Bp (according to Carter et al., 1996),

for all periods equal to zero (Bp=0). Next, for each exam in the list we

99

proceed by finding the number of exams clashing with it in each of the

available periods. Bp for each period is the number of exams clashing with

the exam currently being evaluated in the waiting list. Please note that

the exams clashing with the exam in the list are the exams that will be

bumped to the waiting list, and thus will be assumed to be unscheduled

exams. (Note also that we process the exams in the list on a ‘First In, First

Out’ basis).

ii. Second Method: Backtracking 2 (BT2)

In the second backtracking approach (BT2), the objective is to eliminate

the slot containing the fewest number of exams after the allocation

method. The number of slots that will be eliminated is also 1 (the same as

BT1).

It is interesting to note here that, in BT2, the slot that will be

eliminated could be any slot in the schedule (in BT1 it is always the last

slot); therefore, it could be the first, in the middle or the last one. Once the

slot with the fewest exams has been determined, all the exams will be put

in a waiting list. Each exam in the list will be evaluated for reallocation as

with our first approach (BT1).

Differences between Carter’s Backtracking and the

Proposed Backtracking

The backtracking implemented by Carter et al. (1996) was used during the

initial placement process. However, in our approach the placement of

exams in their allocated slots has been completed. What we are doing is

100

using the backtracking method to rearrange the placement of exams to

reduce the final number of time slots to schedule all the exams. We differ

in terms of approach and purpose from the backtracking of Carter et al.

(1996); we are utilizing the backtracking process to reduce the number of

slots of an existing feasible solution and the other is utilizing the process to

allocate exams which could not be allocated via the normal process. Thus,

two different outcomes will be derived from the process, as depicted in the

two following figures.

Figure 3.27: Flowchart for Carter’s Backtracking in General

no

yes

no

yes

no

yes

101

Figure 3.28: Flowchart for our Backtracking in General

In our approach, after the allocation of exams to slots is completed,

we identify all the exams in the slot to be eliminated and we assign them

to a waiting list which is a list of unscheduled exams. Then, for each exam

in this list, we start to calculate and evaluate the possible locations to be

assigned. Only when the assignments have been made are exams which

are in conflict with the incoming exam transferred out to the unscheduled

list. Carter et al. (1996), on the other hand, transferred out the exams

which were in conflict with the incoming exam straight to their new slots

and only exams that could not be allocated to other slots were shifted to

the unscheduled list or waiting list.

102

We have created and converted Carter et al. (1996)’s backtracking

algorithm to a flowchart for comparison and to give a better understanding

of the process, as can be seen in Figure 3.29.

103

Figure 3.29: Flowchart for Carter et al. (1996)’s Backtracking in Detail

104

A scheduling process which utilizes an allocation method to assign each

exam to a slot using a Graph Colouring Heuristic, coupled with a

backtracking procedure (a modified version of Carter et al. (1996)’s

backtracking approach), is adopted as a basic scheduling process. It is

expected to produce only feasible solutions with a total number of

slots that will satisfy the slots number requirements given in the

problem. Backtracking will aid in assuring the feasibility of the

schedule by reducing the number of slots if the allocation method does

not conform to the constraint on the number of slots. Besides ensuring

the feasibility, by reducing the number of slots at the early stage, the

extra slots could provide a useful buffering space for subsequent

optimization in improving the quality of the schedules.

3.2.4 Optimization

In the area of computer science or mathematical programming,

optimization can be understood as selecting the best solution from a set of

available solutions. In general, optimization can be seen as a process that

maximizes the benefits while minimizing the investment in resources that

facilitates these benefits.

Therefore, in the examination scheduling context, optimization

could be defined as a process of improving the quality of the feasible exam

schedule or solution. A feasible timetable could have an ordering of exams

that does not satisfy many of the soft constraints. This calls for a separate

105

deployment of optimization to achieve greater satisfaction of soft

constraints and consequently the improvement of the quality of the

schedules.

In order to demonstrate optimization as a process to improve the

examination schedules, we present below a diagram (Figure 3.30) which

illustrates an example of a feasible examination schedule. As can be seen,

there are a few students: S1, S2, S3, S4 ,S5 …. Sn and a few exams: E1,

E2, E3, E4 …Em together with a few time slots: T1, T2, T3, T4 …. Tk.

In this example, student S1 has registered for exams E1, E2 and

E4; and student S2 has registered for E3 and E4. Therefore, exams E1, E2

and E4 are the set of conflicting exams for student S1 and because of this,

they cannot be assigned to the same time slots. The diagram below shows

that these three exams are not assigned to the same time slot (they are

assigned to time slots T1, T2 and T3 respectively) and thus this is

considered a feasible examination schedule.

Figure 3.30: An Example of a Feasible Examination Schedule

106

According to the above example, although student S2 has a feasible

examination schedule, the timetable does not satisfy the soft constraint in

terms of putting a gap between one exam and the next exam that student

will have to sit. This is not necessary but satisfying this would improve the

schedule quality by benefiting the student, since it allows the student to

have more revision time between exams. Thus, if exam E3 is now

reassigned to time slot T1, the quality of the schedule can be improved, as

illustrated in Figure 3.31.

Figure 3.31: An Example of an Improved Examination Schedule

This study has adopted an approach to the design of the exam

schedule optimization that focuses on promoting understandability of the

optimization process. To this end, we have avoided random exploration of

the solution space, such as that widely proposed in the literature, where

mostly were not really successful in applying to a wider range of

timetabling problems, and this scenario calls for an investigation on

raising the generality of the existing approaches (Qu et al., 2009a). Thus

we have adhered to the deterministic evaluation of the search direction

107

during the optimization process, which through systematic procedures, by

using the background knowledge about the structure of the cost function,

the optimization process will always maneuver intelligently to achieve as

low cost as possible (rather than randomly search for solutions).

In this work, we develop optimization methods to improve the

initial feasible schedule generated by the allocation method. The cost of the

initial feasible schedule is normally fairly high. In order to minimize the

cost, we perform the minimization of the total slot conflicts, followed by

further optimization of the initial schedule by the permutations of exam

slots and the reassignment of exams between slots (Rahim et al., 2012).

The standard objective function that we will be using is the cost

function originally proposed by Carter et al. (1996), as discussed in

Chapter 2. The lower the cost obtained, the higher the quality of the

schedule, since a gap between two consecutive exams allows students to

have extra revision time.

3.2.4.1 Minimization of Total Slot Conflicts

The notion of a slot conflict is a generalization of the notion of exam

conflict. We consider two exams i and j as being “in conflict” if there is a

student who is taking both exams. In a feasible schedule such exams are

allocated to different exam slots. It is worth noting here that the conflict

between exams is a binary property that does not increase in value if there

are several students taking these two exams. Consequently, once we

establish which exams are in conflict we do not need to be distracted, in

the exam scheduling process, by the detailed student-exam data. This

108

domain-transformation approach, motivated by the granular information

processing paradigm (Bargiela and Pedrycz, 2002) provides a key

advantage of the proposed exam scheduling.

Taking an even a broader view on the exam conflict, a novel

contribution of this study is the consideration of the exam-slot conflict.

Since every exam that is in conflict with the exam i is allocated to other

slot in the initial feasible solution, we can count the number of slots that

contain conflicting exams for exam i. An exam-slot conflict is a matrix

(binary matrix) with a dimension of number of exams x number of slots.

The value 1 in the matrix at location i,j indicates an exam i has a one or

more conflicting exams in slot j.

To exemplify the exam-slot conflict matrix, assume that we have an

exam E1 that is in conflict with E3 and E7. After the initial allocation

method, let us say, E1 is assigned to timeslot T2, E3 is assigned to time

slot T7 and E7 is assigned to time slot T10. The exam-slot conflict matrix

[E2, T7], [E2, T10] will have the value 1 and the total number of exam-slot

conflicts for E1 is 2 which was contributed by T10 and T10 (which is the

total number of columns in the matrix having the value of 1 for a

particular exam). The best case scenario is an exam that is not in conflict

with any exam in other slots, having a total number of exam-slot conflicts

value of 0. On the other hand, the worst case scenario is an exam having a

total number of exam-slot conflicts of number of slots -1 (the exam has one

or more conflicting exams in all other slots.)

109

In order to guide our exam schedule optimization process, we use

the total number of exam-slot conflicts as a measure of the ability to re-

schedule exams between the slots. If the total count is high, it means that,

on average, exams are in conflict with many slots and consequently there

are few slots available for rescheduling. Conversely, if the total count is

low, on average, there are more slots that can be used for the re-scheduling

of exams. To the best of our knowledge, the potential for the rescheduling

of exams has not been quantified in the literature so far, despite it being a

key factor in enabling the improvement of the initial feasible schedule.

Consideration of the exam-slot conflict in the optimization is a novel

contribution of this study. Slots that contain conflicting exams can be

counted easily. The exam-slot conflict matrix has a binary property that

indicates an exam conflicting slot. The exam-slot conflict value does not

increase if an exam has several conflicting exams in a particular slot (and

therefore is equal to 1). But the total exam-slot conflict for a particular

exam which has conflicting exams allocated to a few different slots will be

correspondingly higher (equal to the number of slots containing the

conflicting exams). A high total of exam-slot conflicts indicates that, on

average, exams are in conflict with many slots and consequently there are

few slots available for rescheduling, and vice versa. As far as the potential

for rescheduling is concerned, to the best of our knowledge, it has not been

quantified in the literature although it acts as a key factor in enabling the

improvement of the initial feasible schedule.

110

Recognizing the rationale for the maximization of the ability to

reschedule individual exams between different slots, we start our

optimization process by minimizing the total exam-slot conflict.

The procedure starts by taking the first exam i in the dataset, and

calculating the total number of slot conflicts. Next, we try to reassign exam

i to all other valid slots (i.e. not in conflict with exam i) and calculate the

new total of slot conflicts. A slot that could lead to a maximum reduction of

total conflicts will be selected as the new slot for exam i. The procedure is

repeated for all other exams in the problem. The pseudocode for

minimizing slot conflicts is presented in Figure 3.32.

By minimizing the total number of slot conflicts it is usually

possible to reduce the cost of the exam schedule. However, we consider this

stage primarily as the enhancement of the potential for the subsequent

minimization of the cost of the schedule.

Nevertheless, it is worth observing that although the cost formula

(2.1) counts the spread of exams from the viewpoint of individual students,

it is an integrative measure that is concerned with the average inter-exam

spread. By reducing the total exam-slot conflict, we achieve a greater

packing of conflicting exams and, by implication, an increased possibility of

separating the slots that have the largest number of conflicting exams.

Algorithm 5

For each exam i in the problem

Obtain the slot number (where it is allocated) from the allocation flag

Find the sum of the total slot conflicts, and set it as the lowest total slot

conflicts

For each slot (except the slot for exam i)

Calculate the new total slot conflicts by reassigning exam i into a new slot

If the new total slot conflicts is lower than the lowest total slot conflicts

111

Set the new total slot conflicts as the lowest total slot conflicts

 End

Reassign exam i to the slot that produced the lowest total slot conflicts

 End

End

Figure 3.32: Algorithm for Minimization of Total Slot Conflicts

Minimization of total slot conflicts involves shifting or swapping

exams between slots to find the best location/slot for an exam arrangement

that will generate the lowest penalty; thus, reducing the Carter cost (2.1)

and providing a better solution. The first initial loop is determined by the

number of exams, n. The second inner loop traverses through all of the

available slots, m. This gives an increased complexity of O(mn). O(mn) is

equal to O(n2) if the number of slots matches the number of exams i.e. one

exam in a day. However, there is a limiting factor in the number of m.

Regardless of the situation, if the number of exams is to increase, the

number of m is limited to the number of days (having exams), thus

minimizing the computational complexity to O(n).

Minimization of the total exam-slot conflict is the first optimization

stage proposed in this study. In this procedure, we simulate the

reassignment of each exam in the problem to all other valid slots and

calculate the new total slot conflicts. The slot that could give the biggest

reduction of conflicts will be selected for the reassignment. By minimizing

the total slot conflicts it has a huge possibility of reducing the cost of the

schedule. However, we consider this stage primarily as the enhancement of

the potential for the subsequent minimization of the cost of the schedule.

112

3.2.4.2 Minimization of Costs via Permutations of Exam

Slots

The second stage of the optimization is explicitly focused on the

minimization of the cost function (2.1). The preparatory work of preparing

the exam spread data structure, coupled with the maximization of the

possibility of re-positioning (re-labelling) exam slots, brings dividends in

terms of having a much smaller slot-optimization problem to consider

while capturing the essence of the overall exam scheduling problem. Since

the number of available exam slots is typically quite small, the

optimization of the position of individual slots can be accomplished by the

permutation of rows/columns of the spread matrix and the evaluation of

the resulting cost (2.1).

Figure 3.33 below shows how the permutation of exam slots has

changed the original ordering of the slots in Figure 3.31, and consequently

an improved schedule has been generated. By this permutation, a time slot

has been added between time slot T2 and T3, and thus giving extra time

for the students to do their revision.

113

Figure 3.33: An Improved Examination Schedule after Optimization

(Permutations of Slots)

However, adding an extra time slot between T1 and T2 will have a

greater effect as illustrated in Figure 3.34 than adding it between time slot

T2 and T3 as illustrated in the previous diagram. In this new example,

both students have more time between exams as compared to the previous

example.

Figure 3.34: Re-ordered Time Slots Via Permutations of Slots with

Greater Effect

114

We propose here three strategies for optimization of the exam

spread, named as Method 1, Method 2 (Rahim et al., 2009) and Greedy Hill

Climbing (Rahim et al., 2012; Rahim et al., 2013a). A brief explanation of

each method is given below:

Method 1

The first method is focused on extracting the smallest element in each row

of the original spread matrix and re-numbering the relevant time slots in

order to place the smallest element on the first minor diagonal. While

implementing such re-numbering, it is possible that higher order minor

diagonals will have some greater elements associated with them. However,

we suspect that if the primary concern is to minimize the number of

adjacent exams, the method provides the optimum solution.

Method 2

The second method takes a different approach of identifying the smallest

elements in both rows and columns and shifting them towards the first

minor diagonal. This corresponds to arranging simultaneously from the

first slot and from the last slot towards the middle one. We believe by

taking this approach a more balanced re-numbering is achieved that

attempts to minimize the sum of higher minor diagonals.

115

Greedy Hill Climbing

Based on the ideas from the two methods presented above, we can see the

potential of shuffling the exam slots in the spread matrix in order to

reduce the cost of the schedule. Here we present another prospective

optimization process, by doing the permutations of exam slots in the

spread matrix. This process involves the shuffling of slots or columns as

block shifting and swapping. The procedure started by reading a spread

matrix which is a matrix indicating how many students are taking an

exam from slot ‘i’ and ‘j’.

The permutations in the spread matrix involved the swapping of

slots and repetitions of block shifts. Each slot will be swapped with

another slot. This is done by doing provisional swapping and the Carter

cost (2.1) will be evaluated first. If the cost is reduced, the swap will be

remembered and the exam proximity matrix will be updated according to

this swap. Due to this, we call this kind of optimization greedy Hill

Climbing (HC). Hill Climbing is a neighbourhood search algorithm to

locate the best value that can be obtained from a problem space which is

around the current solution. It is considered as a local search due to the

fact that the algorithm selects better solution which is near to the current

obtained solution. The local search will definitely reach a local optimum.

However, there is a possibility that there are other local optimums within

the search space which is the global optimum, thus requiring a global

search. The global optimum will be the main goal of this algorithm. The

term ‘greedy’ here refers to the fact that we always take the best solution

whenever it is found in a neighbourhood. A number of repetitions of block

116

shift and swapping are done in order to ensure the search space is explored

in different directions so that the best local optimum or global optimum of

the solutions can be found.

Figure 4.4 in Chapter 4 presents an example of a spread matrix.

The cost function (2.1) assigns a weight of “16” to exams that are 1 slot

apart (entries in the spread matrix (1,2), (2,3), (3,4), etc.) and assigns a

weight of “8” to the exams which are 2 slots apart (entries in the spread

matrix (1,3), (2,4), (3,5), etc.), and so on. To put it in a slightly more formal

way, the weight “16” in the cost function is associated with the “first minor

diagonal” entries of the spread matrix; weight “8” is associated with the

“second minor diagonal” entries, etc. The potential for the reduction of this

cost lies in the possibility of re-ordering the slots so as to replace the big

numbers in the first minor diagonal with the smaller entries that are on

subsequent minor diagonals.

The reordering of slots has been implemented as a simple greedy

optimization process that involved swapping the positions of individual

slots and also swapping the positions of groups of adjacent slots. If a swap

operation improved the cost function (2.1), the swap was accepted and the

exam slots were rearranged accordingly. Recognizing, however, that the

greedy optimization may lead to local optima, we have adopted a simple

measure of restarting the optimization from several initial orderings of

exam slots and picking the best solution from a pre-defined number of

runs.

117

Algorithm 6

Generate initial ordering of exam slots

Repeat for a predefined number of trials

 Shift block of size k in the spread matrix

Accept block shift if the cost (2.1) is reduced

Swap individual slots

Accept the swap if the cost is reduced

Update the spread matrix with the best schedule

 End

Figure 3.35: Algorithm for Permutations of Exam Slots Using Greedy Hill

Climbing Strategy

It is worth pointing out that while the optimization by permutation

of slots does benefit from the prior minimization of the exam-slot conflicts,

it does not affect the total count of the exam-slot conflicts because the

allocation of individual exams to slots does not change.

A single run of the optimization process outlined in Figure 3.35 on

the spread matrix from Figure 4.4 will cause large entries on the first

minor diagonal in Figure 4.4 to be replaced with much smaller values that

were previously positioned on higher order minor diagonals.

The main core of the algorithm is mainly contributed by three levels

of nested loops where each starting point value on the loop is determined

by the current value of the outer loop. As the whole process executes, the

inner loop gets smaller. The complexity for the algorithm can be easily

obtained and would result in O(n3). This basic algorithm can be further

executed within additional loops with a determined number of iterations,

with the objective of using the output of the inner loop as a new input for

further processing. In our approach we tested various approaches prior to

executing the main algorithm, which increases the complexity of the

118

algorithm to O(abn3) where the value of a is between 1 and 50 and the

value of b is between 1 and 10. Since the values of a and b are small, we

can disregard the two coefficients, resulting in the same complexity of

O(n3).

Late Acceptance Hill Climbing

Late Acceptance Strategy was introduced by Burke and Bykov (2008). The

strategy concentrates on the timing of a comparison of an accepted solution

in an examination scheduling problem. A new solution is compared with a

solution found n steps or iterations before, to determine its acceptance as a

solution to the problem. In the implementation the researchers created a

list of predefined length L as the storage location for all previous solutions.

The current solution is only accepted on the list if it meets the minimum or

better than the previous solution L steps ago. Whenever a new solution

does not meet this criterion, the previous solution that does satisfy it is

added to the list to maintain the number of L previous steps. Through

their research and participation in the International Optimization

Competition in December 2011, they concluded that the Late Acceptance

strategy is similar in terms of implementation to greedy Hill Climbing

(HC), but much more powerful from the perspective of performance. In

Burke and Bykov (2012)’s study, the Late Acceptance Hill Climbing

(LAHC) strategy outperformed other one-point search methods; namely,

Simulated Annealing, Threshold Accepting and the Great Deluge

algorithm.

119

Based on this finding we have investigated the effectiveness of our

approach compared with LAHC, since we are utilizing a greedy Hill

Climbing (HC) method as one of our approaches. We hypothesize that if

the granulation approach is on a par or better than the Late Acceptance

Hill Climbing (LAHC), there will be a very minimal difference in the

quality of the solutions generated by the two algorithms, and we could also

see which approach would be able to generate better quality examination

timetables.

We have implemented the LAHC in our existing Hill Climbing (HC)

algorithm implementation by substituting a variable to keep the best cost

function with an array of length L. In the current optimization process we

are evaluating the moves that we can make in the current solution to find

the best move that would result in a better solution; and, once the best

move is identified as actual, a new solution is generated. It is in this aspect

we implement the LAHC, where a new possible solution from a single slot

swap will be evaluated against an accepted solution from a swap L steps

earlier.

We differ from Burke and Bykov (2008; 2012) in how we populate or

maintain the content of the L list. During each iteration they add to the

list with the latest current solution accepted (better solution) and remove

the last solution from the list. If the current solution is lower in quality,

they add the last current solution accepted to the list and remove the last

solution, making the L list change at each iteration and creating the

existence of multiple identical values in L.

120

Our approach, on the other hand, only adds the solution to the L if

the solution surpasses the existing solution. Burke and Bykov (2008; 2012)

implemented the L list using a First In, First Out approach but we

implemented ours as a Round Robin list, modifying items at specific

locations based on the length of L and the number of generations; using

the value of the modulus of the number of generations against L as the

index. We also keep additional information on the list, which is the value

of i and j, indicating the locations of the swap.

The algorithm for Late Acceptance Hill Climbing (LAHC) that we have

implemented is as follows:

Algorithm 7

For each different starting point (do a block shift of the best solution)

 Set C[0 ...L] to Carter cost for starting point solution

 Set Generation = 0

 For number of repetition

 For k=1 to NumberOfSlot - 1

 For i = k to NumberOfSlot - 1

 For j = i+1 to NumberOfSlot

 Simulate swap i with j

 if NewCost < C[Generation%L]

 C[Generation%L]=NewCost

 Ci[Generation%L]=i

 Cj[Generation%L]=j

 End

 End

 End

 If there is an update to C[Generation%L]

Do an actual swap Ci[Generation%L] with

Cj[Generation%L]

 Generation = Generation +1

 End

 End

 End

End

Figure 3.36: Algorithm for Permutations of Exam Slots Using Late

Acceptance Hill Climbing Strategy

121

The algorithm in general will start with an outer loop that will

iterate through the available different starting points. In our approach a

starting point is a feasible solution that we have obtained through the

allocation method. We have limited the starting points to only 6, which is

derived from the best solution found. The second loop is the value that

determines the number of trials or cycles to execute the process of the

swapping of slots. The main algorithm consists of three levels of loops, one

inside another. The two innermost loops function as a permutator that will

match every slot in the outer loop, with all other slots starting from i +1 to

the end. The complexity of this loop based on the steps will be (n-1)+(n-

2)+...+0, which rearranges to the sum of 0 to n-1; this is T(n)=(n-1)((n-

1)+1)/2. Rearranging this, we can see that T(n) will always be smaller

than or equal to 1/2(n²), thus giving a complexity of O(n²). The outermost

loop is a shrinking window loop that will reduce the value of k each time

the loop completes, where k will have the value {n, n-1, n-2,...,1}. However,

with the shrinking window and limitation of each loop the complexity of

the algorithm is reduced to n(n2) + n-1(n2) + n-2(n2) … + 0 which resolves to

O(n3) for the overall algorithm complexity. In reality the number of n has a

limit on the value with a logical limitation of 365 where it is the number of

days in a year. No university will conduct examinations every day in a

year, which limits the computational to a maximum of 48,627,125 steps,

which is simple for a computer to execute.

122

One of the outcomes of the pre-processing stage, the exam spread data

structure (namely spread matrix), provides the opportunity for re-

positioning time slots if the aim is to maximize the gap between consecutive

exams. Since the number of available exam slots (as available in the spread

matrix) is typically quite low, the optimization of the positions of individual

slots can be accomplished by the permutation of rows/columns of the

spread matrix and the evaluation of the resulting cost. This second stage of

optimization, known as permutations of exam slots, is explicitly focused

on the minimization of the cost function and brings dividends in terms of

having a much smaller slot-optimization problem. The potential for the cost

reduction lies in the possibility of re-shuffling the slots to replace the large

values in the first minor diagonal with the smaller values on subsequent

minor diagonals.

3.2.4.3 Minimization of Costs via Reassignments of

Exams

In the third stage of the optimization, exams that make large contributions

to the first minor diagonal entries of the reordered spread matrix are

reassigned to slots represented by higher minor diagonals (preferably of

order 6 or higher). Shifting an exam from one slot to another has a chain

effect. Changes happen not only at the spread matrix level but also in the

slot conflict matrix. Alterations of exam slots to reduce the cost function

value could further reduce the overall conflict count or increase the value

for the current solution. This is because the insertion of an exam to a slot

can only happen if the slot exclusively contains exams that do not conflict

123

with it. This action forces us to reevaluate the slot conflict count, which

changes based on the slot location of all exams within the same chain as

the shifted exam. The bigger the chain of the exam, the greater the effect it

will have on the conflict count. There are two methods of reassignment;

single reassignments and group reassignments.

Figure 3.37 below illustrates how a feasible schedule in Figure 3.33

has been further optimized by reassigning exam E2 to time slot T5. At this

stage, the gap between exams E1 and E2 has been increased greatly (the

gap is now 3 slots apart). Note that this is not the final schedule so further

optimization will be performed to increase the quality.

Figure 3.37: An Improved Examination Schedule after Optimization

(Reassignment of Exam)

The single reassignments optimization move throughout the search

space to identify an exam that has the biggest reduction to the cost

function (2.1) if it were to be moved to other slots. The algorithm looks for

a conflict-free slot which leads to the biggest cost reduction for all exams.

124

The process of identifying the possible slots and calculating the cost

function contribution is made simple by a data structure that combines the

slot location and the penalty values generated by each exam for a slot.

The group reassignments optimization moves throughout the

search space to identify an exam which could lead to the biggest reduction

to the cost function. The optimization process evaluates the reduction from

moving an exam to all other slots, and the best combination or total

reduction configuration will be selected as the move that will be executed.

During the process of optimization the generated possible moves

are evaluated against a history of moves two steps behind. The purpose of

this is to eliminate possible cyclic moves in the optimization process. The

group reassignments move exams to another slot if a reduction can be

obtained. This may push other exam(s) out of the selected slot to

alternative slots. There is a possibility that these exams switch slots and

keep on giving an improvement to the Carter cost (2.1); thus, keeping the

optimization process ongoing. This will not stop if these two exams keep

exchanging slots. This kind of move must be identified to eliminate infinite

swapping. The process continues until there is no more improvement

available and the number of iterations is more than half of the number of

exams.

Both the single and group reassignments start by evaluating each

exam, one at a time, and looking for possible slot locations that could

accept the exam without any clashes. The main difference is in the

evaluation criteria to shift and the number of exams for every shift. The

125

single reassignment will end up with solutions within the local optima due

to the minor changes made to the initial placement of exams.

However, the group optimization has the possibility of moving

solutions out from the local optima, concluding in a better result. This is

due to the larger changes made at each step where all exams are evaluated

and shifted at each cycle.

The effect of reassignments on the schedule is that the cost (2.1)

will be reduced at the expense of some increase in the total number of slot

conflicts. The pseudocode for the reassignment process is outlined in

Figure 3.38.

Algorithm 8

Obtain the number of slots from the spread matrix

Obtain the number of exams from the exam conflict matrix

Read exam-to-slot allocation

Read Slot Conflict Matrix

For all exams

 For all slots

Find the most beneficial exam to reassign by calculating the potential cost

(2.1)

If improvement is possible

Reassign the exam to the new slot

Update Allocation Flag, Slot Conflict Matrix

 End

End

End

Figure 3.38: Algorithm for Reassigning Exams

The complexity for the algorithm can be easily obtained, which

would result in O(mn), where m is the number of exams and n is the

number of slots. This can be further simplified to O(n2), with a limiting

value of either the number of exams or the number of slots.

126

In the third optimization stage, the information of the reordered spread

matrix is utilized to further reduce the cost of the schedule. Exams that

make a large contribution to the first minor diagonal entries are reassigned

to slots represented by higher minor diagonals (preferably of order 6 or

higher). This procedure is expected to reduce more of the existing cost.

3.3 Mathematical Formulation Based on the

Proposed Approach

In this section, the examination scheduling problem is represented

using mathematical formulation according to our proposed approach.

Recall that we generated our solution by assigning each exam in the

problem to a time slot by checking certain criteria (e.g. the value in the

Exam Conflict Matrix) and ensuring certain conditions were fulfilled. The

complete formulations are shown below:

E is a set of Exams and ¬ {}

NE is the number of Exams or |E|

Ei is an exam where i > 0, I ≤ NE and Ei ϵ E

S is a set of Students and ¬{}

Ns is the number of Students or |S|

Si is a student where i > 0, i ≤ Ns and Si ϵ S

T is a set of Slot and ¬ {}

NT is the number of Slot or |T|

Ti is a slot where i > 0, i ≤ NT and Ti ϵ T

127

Li is a set specifying the Enrolment of Student Si , where the element in Li ϵ

E

ECM = (ECMmn) |E| x |E| is the Exam Conflict Matrix where each element

denoted by ECMmn is the negative summation of Sh that fulfil Em ϵ Lh, En ϵ

Lh, Em ϵ E and En ϵ E

Am is the allocation of an exam to a slot p. Am = p, Tp ϵ T.

Therefore, an Examination Scheduling Problem is the problem of

allocating E to a T that fulfils:

∀ Ei ϵ E, ∃ Tj where ECMik = 0, ∀ Ek , where k={1,….,|E|}-{i} and Aj = Ak.

3.4 Recap of the Proposed Approach

As a summary, the proposed method proceeds in the following stages:

1) Problem domain transformation from student-exam to exam conflict

and spread matrix data space

2) Generation of a feasible schedule

3) Minimization of the overall slot conflicts

4) Minimization of the schedule cost by slot swapping

5) Minimization of the schedule cost by exam reallocation

6) Repetition of stages 4 and 5 until there is no improvement in the

schedule cost.

128

CHAPTER 4

4

Experiments, Results, and

Discussions

This chapter discusses the results and findings of experiments that were

performed on benchmark datasets using the proposed approach. The

chapter starts by presenting the outcome of each phase involved in the

proposed framework one by one, before the complete set of results for all

datasets is presented. Afterwards, the results obtained by the proposed

approach are compared with other constructive methods that have been

reported in the literature.

4.1 Experiments and Results for Benchmark

Datasets

This chapter will discuss the experiments that were performed and the

results that were obtained based on the proposed approach described in

the previous chapter and applied to benchmark datasets. This includes the

pre-processing of data, scheduling, and the optimization stage.

129

4.1.1 Pre-processed Data

The pre-processed data that was generated in the early stages

include: the exam conflict matrix, conflict chains, and the spread matrix.

All of these pre-processed data were utilized to a high degree in the

scheduling and optimization process at the later stages. This chapter

provides also illustrations and explanations of these data structures.

Exam Conflict Matrix

An exam conflict matrix produced by the pre-processing stage, as

discussed in the previous chapter, is illustrated in Figure 4.1. As can be

seen, it is a square matrix containing –s value at position i,j where s is the

number of students causing conflict between exam i and j. The matrix is

symmetrical with diagonal elements (shaded in grey) by definition equal to

0 because an exam cannot be in conflict with itself. The last row and

column indicate the exam number.

0 -19 -23 -291 -35 -247 -16 -12 -3 -18 -275 -20 -303 1

-19 0 -174 -232 -171 -192 -29 -6 -11 -132 -243 -170 -252 2

-23 -174 0 -2 -128 -6 -33 0 -12 -133 -28 -168 -19 3

-291 -232 -2 0 -75 -435 -19 -12 -2 -3 -506 -11 -535 4

-35 -171 -128 -75 0 0 0 0 0 -127 -71 -129 -73 5

-247 -192 -6 -435 0 0 0 0 0 -5 -426 -6 -439 6

-16 -29 -33 -19 0 0 0 0 0 -2 -21 -42 -19 7

-12 -6 0 -12 0 0 0 0 -1 -24 -11 -6 -29 8

-3 -11 -12 -2 0 0 0 -1 0 -1 -3 -15 -1 9

-18 -132 -133 -3 -127 -5 -2 -24 -1 0 -6 -127 -27 10

-275 -243 -28 -506 -71 -426 -21 -11 -3 -6 0 -26 -516 11

-20 -170 -168 -11 -129 -6 -42 -6 -15 -127 -26 0 -3 12

-303 -252 -19 -535 -73 -439 -19 -29 -1 -27 -516 -3 0 13

1 2 3 4 5 6 7 8 9 10 11 12 13 0

Figure 4.1: An Example of an Exam Conflict Matrix

130

In this particular example, the matrix has been generated by a

dataset containing 13 exams. Each value in the cell -s, which is at the

intersection of row i and column j (or vice versa) means that there are s

students taking both exam i and j. As an example, the value -19 at the

intersection of column 1 and row 2 (or vice versa) means there are 19

students causing conflict between exam i and j. On the other hand, the fact

that the value zero is shown at the intersection of column 3 and row 8

demonstrates that exam 3 and exam 8 do not clash.

Useful information is provided by this matrix during the scheduling

process; in particular the zero value found during traversing of the matrix,

immediately indicates that both exams can be scheduled concurrently in

the same timeslot.

Conflict Chains

A representative section of the output of the conflict chain generation

algorithm (Rahim et al., 2009), described in Section 3.2.2.2, is shown in

Figure 4.2. The chain label is given in the first row and the exam number

is indicated in the first column. It can be seen that conflict chains 1, 3, and

7 share some of the exams between them. For example, exam 309 is shared

between conflict chain 1 and 3; exam 311 is shared between conflict chain

1 and 5; and exam 440 is shared between conflict chains 1 and 7. This

means that conflict chains 1, 3, and 7 can be justifiably merged into one

conflict chain. It is worth noting that the merged conflict chain of 1 and 7

131

will also include exams 317 and 321 even if they were previously only

displayed in conflict chain 7.

The resulting merged conflict chain is illustrated in Figure 4.3

under the chain label 1. Conflict chains 2, 4, and 6 are unaffected by this

post processing as they do not have any exams in common with those from

chain 1. In particular, it should be noted that exam 323 is assigned to time

slot 8 in conflict chain 6 but, since it is not in conflict with any of the

exams in chain 1, it has the label 0 in the merged conflict chain 1.

Furthermore, the length of the conflict chain, measured as the

number of necessary time slots to schedule the exams in the chain is an

immediate indication of the difficulty of the specific scheduling task.

132

 1 2 3 4 5 6 7

309 11 0 0 0 0 0 0

310 2 0 0 0 0 0 0

311 7 0 0 0 0 0 0

312 6 0 0 0 0 0 0

313 1 0 0 0 0 0 0

314 1 0 0 0 0 0 0

315 3 0 0 0 0 0 0

316 19 0 0 0 0 0 0

317 1 0 0 0 0 0 0

318 6 0 0 0 0 0 0

319 11 0 0 0 0 0 0

320 10 0 0 0 0 0 0

321 2 0 0 0 0 0 0

322 11 0 0 0 0 0 0

323 0 0 0 0 0 8 0

324 10 0 0 0 0 0 0

325 11 0 0 0 0 0 0

326 2 0 0 0 0 0 0

327 9 0 0 0 0 0 0

: : : : : : : :

439 4 0 0 0 0 0 0

440 1 0 0 0 0 0 0

441 13 0 0 0 0 0 0

Figure 4.3: Conflict Chains after Merging

By inspecting the conflict chains, three immediate observations can

be made. If the number of available time slots is smaller than the length of

the largest conflict chain, the scheduling problem is infeasible. If the

number of available time slots is not much greater than the length of the

longest conflict chain then the problem is heavily constrained and the

quality of the resulting timetable, measured by the cost function, might be

expected to be low. On the other hand, if the number of the available time

slots is significantly greater than the length of the longest conflict chain

then high quality (low cost) solutions can be expected.

 1 2 3 4 5 6 7

309 11 0 11 0 0 0 0

310 2 0 0 0 0 0 0

311 7 0 0 0 7 0 0

312 6 0 0 0 0 0 0

313 1 0 0 0 0 0 0

314 1 0 1 0 0 0 0

315 3 0 0 0 0 0 0

316 19 0 19 0 0 0 0

317 0 0 0 0 0 0 1

318 6 0 0 0 0 0 0

319 11 0 0 0 0 0 0

320 10 0 10 0 0 0 0

321 0 0 0 0 0 0 2

322 11 0 0 0 0 0 0

323 0 0 0 0 0 8 0

324 10 0 10 0 0 0 0

325 11 0 11 0 0 0 0

326 2 0 0 0 0 0 0

327 9 0 0 0 0 0 0

 : : : : : : :

439 4 0 4 0 0 0 0

440 1 0 0 0 0 0 1

441 13 0 13 0 0 0 0

Figure 4.2: Conflict Chains

before Merging

 Figure 4.3: Conflict

Chains after Merging

133

Spread Matrix

An example of a spread matrix (Rahim et al., 2009; Rahim et al., 2012)

generated by the algorithm presented in the previous chapter is shown in

Figure 4.4. As previously mentioned, a spread matrix is a square matrix of

dimension s, where s is the number of slots. Entries in the spread matrix

at position (p,q) represent the number of students who took an exam from

both slot p and slot q. The last row and column in the matrix indicate the

slot number. The matrix is symmetrical with diagonal elements omitted

because only one exam can be taken by students in any given exam slot.

The spread matrix presented below has been generated for a dataset which

requires 10 slots to schedule all exams.

Figure 4.4: A Spread Matrix for a Dataset with 10 Time Slots

It can be observed that there are 1044 students taking exams in

time slot 1 and 2 and 1,108 students taking exams in time slot 1 and 3, etc.

The cost function (2.1) assigns a weight of “16” to exams that are 1 slot

apart (i.e. blue cells in the spread matrix (1,2), (2,3), (3,4) etc.) and a

weight of “8” is assigned to an exam 2 slots apart (i.e. green cells in the

134

spread matrix (1,3), (2,4), (3,5), etc.), and so on (with yellow, pink, purple,

and grey assigned the weights 4, 2, 1, and 0 respectively).

Useful information will be provided by this matrix during

optimization of the schedules at a later stage. This is made possible by

using the background knowledge of the structure of the cost function (2.1),

the renumbering of the time slots could be done to maximize the spread of

examinations.

4.1.2 Schedules Generated

4.1.2.1 Initial Feasible Schedule

The initial feasible schedule generated at this stage is based on the

allocation method discussed in Chapter 3. The output is an allocation flag,

exam-to-slot vector in which the slot number for all exams is contained. At

this point, the number of slots could be determined by the maximum value

in the allocation flag. A representative section of an allocation flag

(allocflag) for a dataset with 181 exams (yorf83), before and after

respectively performing the backtracking process, is shown in Figure 4.5

and Figure 4.6.

The slot number for each exam is represented by the numbers in

the column of both Figures 5.5 and 5.6 (numbered outside the column for

the purpose of reference). The number of slots required to schedule all the

exams in both allocation flags (allocflag) is 22 and 21 respectively.

135

Costs and Number of Slots Generated

1 11

2 13

3 7

4 16

5 11

6 1

: :

: :

54 14

55 1

56 13

57 12

58 10

59 5

: :

: :

71 5

72 10

73 7

74 4

75 13

: :

: :

98 12

99 14

100 3

101 20

102 17

103 5

104 19

: :

: :

177 21

178 21

179 22

180 7

181 19

1 11

2 13

3 7

4 16

5 11

6 1

: :

: :

54 14

55 1

56 14

57 12

58 10

59 5

: :

: :

71 5

72 10

73 7

74 13

75 13

: :

: :

98 12

99 14

100 5

101 17

102 3

103 20

104 19

: :

: :

177 21

178 21

179 4

180 7

181 19

Figure 4.5: allocflag for

yorf83 before backtracking

Figure 4.6: allocflag for

yorf83 after backtracking

136

Backtracking has been deployed after scheduling in order to reduce the

number of slots, as described in Section 3.2.3.1.2. Figures 4.5 and 4.6

illustrate the effect of backtracking by showing that after reassignment of

exams to time slots only 21 slots are required to schedule all exams for

yor-f-83 dataset (instead of 22 slots required before doing backtracking).

Backtracking plays an important role to satisfy the number of slots

stipulated by the problem statement.

 The number of slots generated together with the cost obtained on

the initial feasible schedules before and after performing backtracking

(which tries to eliminate the last slot) on the University of Nottingham

and University of Toronto datasets are given in Table 4-1.

 Based on this table, five datasets managed to reduce the number

of slots (bold numbers indicate the reduction). The proposed backtracking

tries to eliminate the last slot in the initial feasible schedule generated by

allocating the existing exams in the last slot to other slots while

maintaining the feasibility, hence only a reduction of one slot can be seen

in the five successful cases (Nott, Car-s-91, Pur-s-93, Tre-s-92 and Yor-f-

83). It is worth highlighting here that the number of slots in our initial

feasible schedules is already quite small (the same or smallest than the

required number of slots for all but the yor-f-83 problem), therefore a

significant reduction in terms of the number of slots is not critical.

However, any reduction represents an advantage because it allows extra

buffering space during permutations of exam slots at the later

optimization stage.

137

Table 4-1: Number of Slots for Nott and Toronto Datasets Before and After

Performing Backtracking

Name

of

Data

set

Slots

Required

(as in

the

literature)

Before

Performing

Backtracking

After

 Performing

Backtracking

Number

of

Slots

Based

on

allocflag

Initial

Cost

 Before

Optimization

Number

of

Slots

Based

on

allocflag

Initial

Cost

Before

Optimization

Nott 23 19 38.99 18 38.33

Car-s-

91

35 33 11.77 32 11.79

Car-f-

92

32 31 9.43 31 9.43

Ear-f-

83

24 24 72.69 24 72.69

Hec-s-

92

18 18 22.83 18 22.83

Kfu-s-

93

20 19 37.79 19 37.79

Lse-f-

91

18 18 23.77 18 23.77

Pur-s-

93

42 37 14.91 36 14.87

Rye-f-

92

23 22 31.50 22 31.50

Sta-f-

83

13 13 201.95 13 201.95

Tre-s-

92

23 23 14.81 22 14.12

Uta-s-

92

35 34 8.71 34 8.71

Ute-s-

92

10 10 60.71 10 60.71

Yor-f-

83

21 22 59.04 21 57.19

138

The backtracking procedure tested on Toronto benchmark datasets has

successfully reduced the number of slots for some datasets. In the yor-f-

83 dataset, this is prioritized in order to satisfy the minimum number

of slot restrictions imposed in the problem. For all cases that recorded a

reduction in slots, the cost after backtracking was further reduced,

which is an added advantage to preparing a schedule with extra

buffering space for slot permutations in succeeding optimizations. At

this stage the exam schedule generated is always feasible but not

necessarily optimal.

4.1.3 Improved Quality Schedules via Optimization

The optimization documented in this section shows improvement of the

initial feasible schedule that was generated in the previous section. It

includes the minimization of the overall slot conflicts, minimization of the

schedule cost by slot swapping, and minimization of the schedule cost by

exam reallocation (Rahim et al., 2012). The results obtained by all these

processes are given in sections 4.1.3.1, 4.1.3.2 and 4.1.3.3 respectively.

4.1.3.1 Minimization of Total Slot Conflicts

The first step in the optimization stage is to minimize the total slot

conflicts as described in Section 3.2.4.1. Table 4-2 shows that the

technique of minimizing the total slot conflicts as well as the cost of the

exam schedule has been shown to be effective. This stage can be

considered as an enhancement of the potential for subsequent

minimization of the cost of the schedule.

139

Table 4-2: Results after Performing the Minimization of Total Slot

Conflicts Procedure on Nott and Toronto Datasets

Dataset

Re-

quired

No

of Slots

Initial

Cost

Total

Slot

Conflicts

before

Total

Slot

Conflicts

after

 Cost

after

reduction

of slot

conflicts

Nott 23 38.99 8589 8090 31.95

car-s-91 (I) 35 11.77 17169 16665 10.43

car-f-92 (I) 32 9.43 12332 12217 8.89

ear-f-83(I) 24 72.69 3582 3544 62.57

hec-s-92(I) 18 22.83 1263 1243 25.15

kfu-s-93 20 37.79 4616 4544 29.89

lse-f-91 18 23.77 3739 3685 21.35

pur-s-93 (I) 42 14.91 49821 49470 14.07

rye-f-92 23 31.50 7178 6782 26.05

sta-f-83(I) 13 201.95 1507 1505 193.47

tre-s-92 23 14.81 4392 4251 13.25

uta-s-92(I) 35 8.71 15859 15416 8.28

ute-s-92 10 60.71 1200 1149 46.57

yor-f-83 (I) 21 59.04 3336 3256 56.31

Table 4-2 documents that the minimization of total slot conflicts reduces

simultaneously the total number of slot conflicts and the cost of the

schedule. By reducing the total slot conflicts a greater packing of conflicting

exams was achieved and by implication, an increased possibility of

separating the slots that have the largest number of conflicting exams was

also obtained. This first optimization stage can be considered as an

enhancement of the potential for further reduction of the cost of the solution.

140

4.1.3.2 Cost Reduction via Permutation of exam slots

This subsection documents results obtained by the permutation of exam

slots obtained by the allocation method that generated the initial feasible

schedule..

Costs Produced By Method 1 versus Method 2

Methods 1 and 2, described in subsection 3.2.4.2.1 and 3.2.4.2.2

respectively (Rahim et al., 2009), have been evaluated on the University

of Nottingham dataset and the results are presented and discussed below.

Figure 4.7 is the representative section of the first 6 slots of the spread

matrix for Nott dataset. The total number of slots for this dataset is 18

and 23 for uncapacitated and capacitated problems respectively.

0 1454 1360 1717 1276 1006 1

1454 0 1355 1634 1085 997 2

1360 1355 0 1392 1158 947 3

1717 1634 1392 0 1529 1446 4

1276 1085 1158 1529 0 1120 5

1006 997 947 1446 1120 0 6

1 2 3 4 5 6 0

Figure 4.6: allocflag for yorf83 after backtracking

Figure 4.7: Initial Ordering of the Spread Matrix for the First 6 Slots for

the Nottingham Dataset

The first six rows and columns of the re-numbered spread matrix

using Method 1 and 2 are shown in Figure 4.8 and Figure 4.9

respectively. However, some of the rows and columns represented in

Figures 4.8 and 4.9 do not appear in Figure 4.7 because their

141

corresponding time slot number is greater than 6. Nevertheless the

sample spread matrices serve to illustrate the main characteristics of the

two methods.

0 1006 1360 1276 1454 1717 1

1006 0 947 1120 997 1446 2

1360 947 0 1158 1355 1392 3

1276 1120 1158 0 1085 1529 4

1454 997 1355 1085 0 1634 5

1717 1446 1392 1529 1634 0 6

1 2 3 4 5 6 0

Figure 4.8: The New Arrangements of the Initial Ordering of the Spread

Matrix after Applying Method 1

0 1006 1717 1360 1454 1276 1

1006 0 1446 947 997 1120 2

1717 1446 0 1392 1634 1529 3

1360 947 1392 0 1355 1158 4

1454 997 1634 1355 0 1085 5

1276 1120 1529 1158 1085 0 6

1 2 3 4 5 6 0

Figure 4.9: The New Arrangements of the Initial Ordering of the Spread

Matrix after Applying Method 2

The cost function (2.1) evaluated with the optimization of the

exam spread using Method 1 and Method 2 is presented in Table 4-3.

142

Table 4-3: Cost Functions Before and After Considering the Spread

Information for the Uncapacitated Nott Dataset.

No of Slots 18

Cost Function with Original Ordering of Time

Slots

43.91

Cost Function After Rearrangement of Slots

Using Method 1

29.03

Improvement Percentage (%) 33.89

Cost Function After Rearrangement of Slots

Using Method 2

24.18

Improvement Percentage (%) 44.93

Furthermore, the optimization of the spread matrix by re-

numbering of exam slots leads to a significant improvement of the cost

function. We considered the smallest number of time slots that allows

generation of a feasible schedule. As such, the cost function is large

because there is little room for manoeuver as far as moving time slots

around is concerned.

An alternative version of the Nottingham exam-scheduling

problem involves, on the one hand, a relaxation of the constraint on the

number of time slots from 18 to 23 and the introduction of an additional

constraint on the number of students taking exams in any of the time

slots (maximum number 1550). When the same cost function (2.1) is used,

and the results for the original ordering of time slots are evaluated, the

results of the optimized ordering obtained by using Method 1 and 2 are

presented in Table 4-4.

143

Table 4-4: Cost Functions Before and After Considering the Spread

Information for the Capacitated Nott Dataset.

No of Slots 23

Cost Function with Original Ordering of Time

Slots

22.51

Cost Function After Rearrangement of Slots

Using Method 1

21.29

Improvement Percentage (%) 5.42

Cost Function After Rearrangement of Slots

Using Method 2

19.61

Improvement Percentage (%) 12.88

The inspection of the spread matrix that was generated by both

methods has revealed that the first method tends to over-emphasize the

selection of small spread values on the first minor diagonal and, by the

time the few remaining time slots are dealt with by the optimization

process, it is forced to leave the high spread values at the bottom right

section of the first minor diagonal by the capacity constraints. In contrast

Method 2 takes a more balanced approach to optimizing the spread

values and is less affected by the capacity constraint, thus producing a

lower overall cost.

144

Costs Produced By Greedy Hill Climbing

The next method in which the concept of permutations of exam slots is

utilized is the Greedy Hill Climbing algorithm (Rahim et al., 2009; Rahim

et al., 2012), as described in section 3.2.4.2.3. Illustrated in Figure 4.10

below is an example of a spread matrix which requires 10 slots to

schedule all the exams in the initial feasible solution.

Figure 4.10: An Example of a Spread Matrix with 10 Slots Before

Performing Greedy Hill Climbing Procedure

Assuming that the total number of students is 2,749 the cost

function (2.1) is evaluated as:

[[(1044 + 1349 + 1282 + 921 + 684 + 546 + 79 + 35 + 25) * 16] +

[(1108 + 1119 + 1198 + 518 + 733 + 92 + 140 + 12)* 8] +

[(918 + 1302 + 575 + 656 + 159 + 23 + 43) * 4] +

[(948 + 593 + 786 + 95 + 194 + 45) * 2] +

[(708 + 753 + 166 + 181 + 33) * 1]] / 2749

= 56.99

145

A single run of the Greedy Hill Climbing algorithm on the spread

matrix from Figure 4.10 has resulted in the spread matrix that is

presented in Figure 4.11.

Figure 4.11: An Example of a Spread Matrix with 10 Slots after

Performing the Greedy Hill Climbing Procedure

The large entries on the first minor diagonal in Figure 4.10 are

replaced with much smaller values that were previously positioned on

higher order minor diagonals. The cost (2.1) after the permutations of

slots is:

[[(575 + 23 + 194 + 33 + 33 + 95 + 47 + 628 + 753) * 16] +

[(342 + 684 + 25 + 921 + 12 + 918 + 79 + 1044)* 8] +

[(1198 + 45 + 181 + 159 + 7 + 656 + 118) * 4] +

[(9 + 518 + 35 + 948 + 43 + 1119) * 2] +

[(1282 + 92 + 222 + 733 + 9) * 1]] / 2749

= 31.81

If the permutations of exams slots based on the Greedy

optimization can lead to local optima then the sensitivity of this

optimization to the number of starting points is investigated, so as to

ensure sufficient exploration of the search space and promote the

146

convergence to the global optimum. However, no claim is made regarding

the exhaustive exploration of the search space and instead the plots of the

convergence trajectories in the “exam conflict – schedule cost” space are

offered as an indication of the robust performance of the proposed

method.

Different Parameters for Permutations of Slots

Different combinations of parameters have been tested in order to find

the ideal or sufficient combinations that would lead to local optima. The

numbers 6, 9, and 12 have been used as starting points; and experiments

for iterations 4, 8, 10, and 12 have been performed. All combinations were

tested and the results for all datasets are recorded in Table 4-5.

Table 4-5: Optimized number of starting points and repetitions of the

permutations of exam slots for different benchmark problems.

Dataset

Carter

Cost

Before

Permutati

ons

of Slots

(Before

Optimizati

ons)

Number

of

Starting

Points

Providing

Best

(local)

Optimum

Number

Of

Repetitions

Providing

Best

(local)

Optimum

Carter

Cost

After

Permuta

tions

of Slots

CPU

Time

(seconds)

Nott 31.95 6 6 10.74 15.95

car-s-91 10.43 9 6 6.36 201.50

car-f-92 8.89 12 4 5.29 101.72

ear-f-83 62.57 6 4 39.54 18.59

hec-s-92 25.15 6 4 11.49 10.77

kfu-s-93 29.89 12 4 15.91 18.25

lse-f-91 21.35 6 4 14.11 9.14

pur-s-93 14.07 9 6 6.64 277.27

rye-f-92 26.05 6 4 12.34 18.70

147

sta-f-83 193.47 9 6 173.36 6.05

tre-s-92 13.25 6 4 9.75 14.42

uta-s-92 8.28 9 4 4.28 149.08

ute-s-92 46.57 6 4 30.85 1.34

yor-f-83 56.31 6 4 39.94 34.45

The study indicated that a combination of 12 starting points and 6

iterations provided the best (sub-optimal) results on the benchmark

dataset and that the increase of the number of iterations did not produce

any improvement in cost. In order to further enhance the exploration of

the search space, 24 random starting points and 6 iterations were

adopted in all subsequent experiments. This was made possible because

the optimization of slot ordering is relatively inexpensive in terms of

computational power.

The results for all datasets utilizing 24 starting points and 6

iterations are therefore presented in Table 4-6. It should be noted that

the total number of slot conflicts is maintained after the permutations of

exam slots because the allocation of individual exams to slots was not

changed.

148

Table 4-6: Results Before and After Performing Permutation of Exam Slots

on Nott and Toronto Datasets

Dataset

Initial

Cost

Cost

Before

Per-

mutatio

ns

of

 Exam

Slots

Total

Slot

Conflicts

Cost

After

Per-

mutatio

ns

of Exam

Slots

Total

Slot

Conflicts

nott 31.95 31.95 8090 10.94 8090

car-s-91 (I) 10.43 10.43 16665 6.26 16665

car-f-92 (I) 8.89 8.89 12217 5.36 12217

ear-f-83(I) 62.57 62.57 3544 40.45 3544

hec-s-92(I) 25.15 22.55 1263 12.52 1263

kfu-s-93 29.89 29.89 4544 16.06 4544

lse-f-91 21.35 22.42 3739 14.63 3739

pur-s-93 (I) 14.07 14.27 49821 6.69 49821

rye-f-92 26.05 28.55 7178 12.68 7178

sta-f-83(I) 193.47 193.47 1505 158.43 1505

tre-s-92 13.25 13.25 4251 9.84 4251

uta-s-92(I) 8.28 8.28 15416 4.24 15416

ute-s-92 46.57 46.57 1149 29.82 1149

yor-f-83 (I) 56.31 56.31 3256 43.36 3256

4.1.3.2.1 Costs Produced By Late Acceptance Hill Climbing

(LAHC)

In this section we document the results obtained by implementing the

LAHC strategy described in section 3.2.4.2.4. Different L was used in

order to examine the effectiveness of increasing the value. According to

Burke and Bykov (2008), the increase of L would increase the

computational cost and simultaneously help to achieve better solutions.

149

As such, a lower Carter cost (2.1) is expected to be obtained with an

increased L value.

Table 4-7: Results before and after Performing LAHC Permutations of

Exam Slots on Nott and Toronto Datasets

Dataset

Costs Produced By Permutations of Slots in the First Stage

Optimization (not the final costs)

Traditional

Greedy

Hill

Climbing

 Late Acceptance Hill Climbing

(with different length (L))

 L = 1 L = 5 L = 10 L = 50

nott 10.6031 10.6031 10.6031 10.6031 10.5968

car-s-91 (I) 6.2564 6.2564 6.2564 6.2564 6.2304

car-f-92 (I) 5.3625 5.3625 5.3625 5.3625 5.3745

ear-f-83(I) 40.4516 40.4516 39.96 39.7813 40.5698

hec-s-92(I) 12.519 12.519 12.3234 12.481 12.4676

kfu-s-93 16.0615 16.0615 15.7846 16.0578 15.7846

lse-f-91 14.6321 14.6321 14.5238 14.5873 14.5873

pur-s-93 (I) 6.3294 6.3294 6.6496 6.6496 6.5603

rye-f-92 12.6768 12.6768 12.481 12.481 12.481

sta-f-83(I) 158.4157 158.4157 158.4157 158.639 158.639

tre-s-92 9.8375 9.8375 9.8375 9.8375 9.8375

uta-s-92(I) 4.2357 4.2357 4.2133 4.1836 4.2037

ute-s-92 29.2862 29.2862 29.2862 29.2862 29.2862

yor-f-83 (I) 43.3549 43.3549 43.3549 43.3549 43.5218

The results obtained by LAHC slot permutations have been

recorded and compared with the results obtained by traditional Greedy

Hill Climbing as shown in the above table. By analyzing the results, it is

clearly shown that the L value does not guarantee a better result when

increased. In two datasets, nott and car-s-91(I), LAHC managed to reduce

150

the Carter cost (2.1) when L was increased to 50. In these examples, the

increase in L reduced the initial cost which was stagnant when using L =

1, 5, and 10. However, in many more datasets for example car-f-92 (I),

ear-f-83(I), hec-s-92(I), lse-f-91, pur-s-93 (I), sta-f-83(I), uta-s-92(I), and

yor-f-83 (I) the cost increased when L increased. For the two other

datasets tre-s-92 and ute-s-92 the cost was the same for different L values

that were tested. This probably happened due to the configurations of

examinations allocations (slots ordering) which reached the local or global

optimum contributed by the small search space.

In comparison to the Greedy Hill Climbing (GHC), we can see in

some datasets, LAHC outperformed HC, but in some cases they are equal.

Based on this finding, it was quite difficult to predict the quality of

solutions using the LAHC, therefore the greedy HC was used in the

optimization stage of this study.

The second stage of optimization that is proposed is the minimization of

costs via the permutations of exam slots. This procedure was

performed to re-order exam slots in the spread matrix with the aim of

minimizing the large elements in the first minor diagonal by replacing

them with smaller entries from subsequent minor diagonals. A few

different methods have been implemented, but it was decided that Greedy

Hill Climbing was the best procedure for obtaining effective and consistent

solutions. From the results presented, it can be clearly seen that the cost

was greatly reduced after this procedure was applied to the schedule. The

approach of repeating and restarting the search from different starting

points was worthwhile in obtaining optimized schedules.

151

4.1.3.3 Cost Reduction via Reassignments of Exams

After the permutations of slots was performed on the feasible schedule,

the next stage of optimization was the reassignment of exams between

slots, as described in section 3.2.4.3. The best results obtained by this

process (i.e. either single or group reassignments) are recorded in Table 4-

8. It should be noted that the total slot conflicts for all datasets increased

after the reassignment process. This is due to alterations to the allocation

of exams to slots during this process.

The results presented later in this chapter will show in detail the

cost obtained for each type of reassignment in the benchmark datasets.

Table 4-8: Results before and after Performing Reassignments of Exams

Between Slots

Dataset
Initial

Cost

Cost

Before

Reassign

ment

Total

Slot

Conflicts

Cost After

Reassign

ment

Total Slot

Conflict

nott 38.99 10.94 8090 7.34 9979

car-s-91 (I) 11.77 6.26 16665 5.19 18847

car-f-92 (I) 9.43 5.36 12217 4.52 13558

ear-f-83(I) 72.69 40.45 3544 37.57 3707

hec-s-92(I) 22.83 12.52 1263 11.85 1266

kfu-s-93 37.79 16.06 4544 14.36 5174

lse-f-91 23.77 14.63 3739 12.41 4077

pur-s-93

(I)
14.91 6.69 49821 4.92 60005

rye-f-92 31.50 12.68 7178 9.80 7664

sta-f-83(I) 201.95 158.43 1505 158.25 1507

tre-s-92 14.81 9.84 4251 8.77 4714

uta-s-92(I) 8.71 4.24 15416 3.59 16792

ute-s-92 60.71 29.82 1149 27.37 1274

yor-f-83 (I) 59.04 43.36 3256 41.35 3412

152

The third stage of optimization: the reassignment of exams should

also be considered worth executing because from the results that

were presented it can be clearly shown the cost was further reduced

for all datasets after its execution. This has proven that the

reassignment of exams that make a large contribution to the first

minor diagonal entries in the spread matrix should be considered a

reliable process. It indirectly demonstrates that pre-processing has

supplied valuable information, i.e. regarding the spread matrix.

Furthermore, the optimization was assisted by its intelligent

exploitation of the available information.

4.1.4 Summary of Results and Graphs Produced For

Benchmark Datasets Using Proposed Approach

The results for all the datasets using the approaches that were proposed

with a combination of all methods are presented in Table 4-9. Using the

data gathered from the experiments on all the datasets, we have plotted

graphs for cost (2.1) versus the Total Slot conflict in Figure 4.12.

153

5 10 15 20 25 30 35
7.5

8

8.5

9

9.5

10

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Nott94

4 5 6 7 8 9 10
12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

13.8

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Carf92

5 6 7 8 9 10 11 12
16.5

17

17.5

18

18.5

19

19.5

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Cars91

35 40 45 50 55 60 65 70 75

3.55

3.6

3.65

3.7

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

 Earf83(a)

10 15 20 25
1.25

1.255

1.26

1.265

1.27

1.275

1.28

1.285

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Hecs92(a)

10 12 14 16 18 20 22 24 26
1.24

1.245

1.25

1.255

1.26

1.265

1.27

1.275

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Hecs92(b)

154

10 15 20 25 30 35 40
4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Kfus93

10 12 14 16 18 20 22 24
3.65

3.7

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Lsef91

4 6 8 10 12 14 16
48

50

52

54

56

58

60

62

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Purs93

5 10 15 20 25 30 35
6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Ryes93

155 160 165 170 175 180 185 190 195 200 205
1.504

1.5045

1.505

1.5055

1.506

1.5065

1.507

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Staf83(a)

20 40 60 80 100 120 140 160 180
2.57

2.58

2.59

2.6

2.61

2.62

2.63

2.64

2.65

2.66

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Staf83(c)

155

8 9 10 11 12 13 14 15
4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

4.75

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Tres92

3.5 4 4.5 5 5.5 6 6.5 7 7.5
15

15.2

15.4

15.6

15.8

16

16.2

16.4

16.6

16.8

17

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Utas92(a)

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
15

15.5

16

16.5

17

17.5

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Utas92(b)

25 30 35 40 45 50 55 60
1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

Carter cost

T
o
ta

l
s
lo

t
c
o
n
flo

c
t

*
1
0
0
0

Utes92

40 42 44 46 48 50 52 54 56 58 60

3.25

3.3

3.35

3.4

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

yor-f-83 (I)

Figure 4.12: Graphs for the cost (2.1) versus the Total Slot conflict for all

Datasets

156

5 10 15 20 25 30 35
7.5

8

8.5

9

9.5

10

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Figure 4.13: General Pattern of Graphs For All Datasets

The pattern generated for all the graphs presented in Figure 4.12 is

roughly shown in the above graph, Figure 4.13. In all of these graphs,

there actually exist four lines (because they are plotted based on four

different combinations of procedures), however, since some of these lines

overlap due to similarities in the costs that were obtained for each point,

the same trajectory of line is created.

The graph in Figure 4.14 below is an imitation graph that has been

created specifically for the purpose of explaining how all the lines exist on

the graph. They are created so that all four lines can be easily seen and

compared.

Reduction of total

slot conflict

Reduction of cost

due to swapping of slots

Reduction of cost

due to reassignment of exams

157

Figure 4.14: Imitation Graph Created For Explanations

The data points (moving from right to left) represented in each graph

correspond to the following:

a) First data point (1):

- initial feasible (but not optimal) schedule which was generated via the

allocation method

b) Second data point (2) – (if the first trajectory is slanting):

- optimized exam schedule obtained through minimization of total slot

conflicts

c) Third data point (3):

158

 - optimized exam schedule obtained through permutation of exam

slots

d) Fourth data point (4):

- optimized exam schedule derived through reassignment of exams

between slots.

e) Fifth data point (5):

- optimized exam schedule that was arrived at through permutations of

exam slots obtained in (d).

f) Sixth data point (6):

- optimized exam schedule obtained through reassignment of exams

between slots optimized in (e);

The four lines in each graph are described below:

a) the dotted green line where data points are indicated by asterisks

- after performing both first and second order optimization (permutations

of exam slots and single reassignment): known as swap-single_reassign

b) the dotted purple line where data points are indicated by squares

- after performing both first and second order optimizations (permutations

of exam slots and group reassignment): known as swap-group_reassign

c) the dotted blue line where data points are represented by empty

circles

- after performing a minimization of total slot conflicts together with both

the first and second order optimizations (permutations of exam slots and

single reassignment): known as min-swap-single_reassign

d) the dotted red line where data points are indicated by the plus sign

159

- after performing a minimization of total slot conflicts together with both

the first and second order optimizations (permutations of exam slots and

group reassignment): known as min-swap-group_reassign

160

4.1.5 Summary of Results and Graphs for Best Cost

Produced For Benchmark Datasets

Based on the results presented earlier, the best cost produced for each

dataset using the proposed method is summarized in the following table

(Table 4-9). It is recalled that, there were four lines in each of the graphs

presented before, so the best cost is determined by the line in which it

managed to record the best cost. Graphs for each dataset according to the

best cost produced are plotted and can be found in Figure 4.15.

161

Table 4-9: Computational Results (Best Cost) of the Proposed Approach Applied to the Nott and Toronto Dataset

Dataset

 No

 of

Slots

Initial

Cost

Total

Slot

Conflicts

Minimiza-

tion of

Slot

Conflicts

Total Slot

Conflicts

Current

Cost

G/

S

Cost

After

Swap 1

Cost

After

Reassign

I

Total

Slot

Conflicts

Cost

After

Swap

II

Cost

After

Re-

assign

II

Total

Slot

Conflicts

Nott 23 38.99 8589 YES 8090 31.95 S 10.94 7.34 9979 7.34 7.34 9979

car-s-91 (I) 35 11.77 17169 YES 16665 10.43 S 6.26 5.19 18847 5.19 5.19 18847

car-f-92 (I) 32 9.43 12332 YES 12217 8.89 G 5.36 4.52 13558 4.52 4.49 13535

ear-f-83(I) 24 72.69 3582 YES 3544 62.57 S 40.45 37.57 3707 37.57 37.57 3707

hec-s-92(I) 18 22.83 1263 NO 1263 22.55 G 12.52 11.85 1266 11.62 11.47 1260

kfu-s-93 20 37.79 4616 YES 4544 29.89 G 16.06 14.36 5174 14.36 14.36 5174

lse-f-91 18 23.77 3739 NO 3739 22.42 S 14.63 12.41 4077 12.35 11.90 4107

pur-s-93 (I) 42 14.91 49821 NO 49821 14.27 G 6.69 4.92 60005 4.92 4.88 60532

rye-f-92 23 31.50 7178 NO 7178 28.55 G 12.68 9.80 7664 9.80 9.80 7664

sta-f-83(I) 13 201.95 1507 YES 1505 193.47 G 158.43 158.25 1507 158.25 158.25 1507

tre-s-92 23 14.81 4392 YES 4251 13.25 G 9.84 8.77 4714 8.77 8.74 4719

uta-s-92(I) 35 8.71 15859 YES 15416 8.28 S 4.24 3.59 16792 3.59 3.59 16792

ute-s-92 10 60.71 1200 YES 1149 46.57 G 29.82 27.37 1274 27.37 27.37 1274

yor-f-83 (I) 21 59.04 3336 YES 3256 56.31 G 43.36 41.35 3412 41.27 41.10 3378

1
6
1

162

5 10 15 20 25 30 35
7.5

8

8.5

9

9.5

10

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Nott

5 6 7 8 9 10 11 12
16.5

17

17.5

18

18.5

19

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

car-s-91 (I)

4 5 6 7 8 9 10
12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

13.8

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

car-f-92 (I)

35 40 45 50 55 60 65 70 75

3.55

3.6

3.65

3.7

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

ear-f-83(I)

10 12 14 16 18 20 22 24
1.26

1.261

1.262

1.263

1.264

1.265

1.266

1.267

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

hec-s-92(I)

10 15 20 25 30 35 40
4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

kfu-s-93

163

10 12 14 16 18 20 22 24
3.7

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

lse-f-91

4 6 8 10 12 14 16
48

50

52

54

56

58

60

62

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

pur-s-93 (I)

5 10 15 20 25 30 35
7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

rye-f-92

155 160 165 170 175 180 185 190 195 200 205
1.5045

1.505

1.5055

1.506

1.5065

1.507

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

sta-f-83(I)

8 9 10 11 12 13 14 15
4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

4.75

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

tre-s-92

3 4 5 6 7 8 9
15.4

15.6

15.8

16

16.2

16.4

16.6

16.8

17

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

uta-s-92(I)

164

25 30 35 40 45 50 55 60 65
1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

ute-s-92

40 42 44 46 48 50 52 54 56 58 60

3.25

3.3

3.35

3.4

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

yor-f-83 (I)

Figure 4.15: Cost (2.1) vs. the Total Slot Conflicts For Nott and Toronto

Dataset

165

4.1.6 Deterministic Pattern Obtained For All Tested

Datasets

5 6 7 8 9 10 11 12
16.5

17

17.5

18

18.5

19

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Figure 4.16: The Predicted Pattern of the Graph with the Proposed

Approach

(c) (b) (a)

Reduction of cost due

to swapping of slots

Reduction of total slot

conflicts after

minimization

Reduction of cost due to

reassignments of exams

166

When the general pattern of the lines (graphs) are observed it can

be concluded that they consist of 3 stages, which can be named as section

(a), (b), and (c) from right to left, as illustrated in Figure 4.16. A decrease

of the total slot conflicts in section (a) is typically (but not necessarily)

coupled with a decrease in the exam schedule cost. In the second stage, in

section (b), the exam schedule cost is reduced without any augmentation

of the total slot conflicts. The third stage, represented in section (c),

resulted in a reassignment of exams that reduced the exam schedule cost

but the total slot conflicts increased. However, for some datasets (hec-s-

92(I), lse-f-91, pur-s-93(I), and rye-f-92), only section (b) and (c) can be

seen on the graph because the best results have already been recorded

without running the minimization of slot conflicts procedure.

It is agreed with Lewis (2008), that when certain benchmark

datasets are relied upon to evaluate an algorithm, the resulting algorithm

could be inclined towards the criteria of the benchmark datasets.

Therefore besides the proposed approach being tested on Toronto

datasets, other benchmark datasets, as given below, will also be used to

prove the universality of the algorithm. These datasets are: Notts and

ITC2007.

As mentioned above, in order to test the flexibility of our approach

and to ensure that it could work well when applied to other datasets, the

methods were tested further on the International Timetabling

Competition 2007 (ITC2007) dataset, which can be easily obtained from

http://www.cs.qub.ac.uk/itc2007/Login/SecretPage.php.

167

Additional constraints are contained in the ITC2007 dataset

including room capacities, period utilization, period related and room

related in the objective function. Some important characteristics of the

ITC2007 benchmark dataset are presented in Table 4-10. The results

obtained for all exams in this dataset can be seen in Table 4-11. The cost

(2.1) vs. the Total Slot Conflicts is plotted in Figure 4.17.

Table 4-10: The characteristics of the ITC2007 dataset

Name of

Dataset

No of

Exams

No of

Students

Required

No of

Slots

Conflict

Density

Exam1 607 7891 54 5.05

Exam2 870 12743 40 1.17

Exam3 934 16439 36 2.62

Exam4 273 5045 21 15.0

Exam5 1018 9253 42 0.87

Exam6 242 7909 16 6.16

Exam7 1096 14676 80 1.93

Exam8 598 7718 80 4.55

From the results presented in Table 4-9 it is clear that the

optimization of the initial feasible timetable resulted in an improved

exam timetable with a lower cost (2.1). For the “Nott” dataset, a reduction

of the cost from 38.99 to 10.94 was obtained after the permutations of

exam slots on the initial schedule. The cost was further improved to 7.34

after the reassignment of exams.

For the ITC2007 dataset, significant reductions of the exam

schedule cost are also shown in the results reported in Table 4-11 when

compared to the cost of the original feasible schedule. For example, the

168

cost of the exam schedule evaluated against the benchmark problem

Exam8 in the ITC2007 dataset was reduced from 25.15 to 0.32 by the

permutations of exam slots and was further improved to 0.14 by the

reassignment of exams. It is worth noting that for this benchmark

problem a second round of slot swapping and exam reassignments

resulted in further improvement to the cost from 0.14 to 0.13. However,

for most benchmark problems a single round of optimization was

sufficient to achieve a competitive exam schedule that could not be

improved upon in the second round.

169

Table 4-11: Computational Results of the Proposed Approach Applied to the ITC2007 Dataset

Dataset

 No

 of

Slots

Initial

Cost

Total

Slot

Conflicts

Minimiza-

tion of

Slot

Conflicts

Total Slot

Conflicts

Current

Cost

G/

S

Cost

After

Swap

1

Cost

After

Reassign

I

Total

Slot

Conflicts

Cost

After

Swap

II

Cost

After

Re-

assign

II

Total

Slot

Conflicts

Exam1 54 23.90 7522 YES 7414 23.49 G 2.02 1.12 10787 1.12 1.12 10787

Exam2 40 26.92 4740 YES 4709 26.92 G 0.48 0.22 5359 0.22 0.22 5359

Exam3 36 28.53 9114 YES 8928 28.53 G 3.35 1.84 12584 1.84 1.84 12584

Exam4 21 33.84 4001 YES 3958 28.49 G 14.62 12.06 4326 12.06 12.06 4326

Exam5 42 41.79 5156 YES 5118 41.79 G 0.83 0.37 5736 0.37 0.37 5736

Exam6 16 13.32 1652 YES 1647 13.32 G 5.50 4.70 1960 4.69 4.61 1954

Exam7 80 23.38 9949 YES 9839 23.55 G 0.16 0.07 11066 0.07 0.07 11066

Exam8 80 25.15 6843 YES 6706 25.15 G 0.32 0.14 7374 0.13 0.13 7374

1
6
9

170

An important feature of the proposed optimization is its

deterministic pattern that is preserved for all the datasets. The

minimization of the total slot conflicts has proven to be a useful

preparatory step for the subsequent minimization of the cost of the exam

schedule. Where the slot conflicts were minimized the greatest “packing”

of conflicting exams was achieved and, by doing so, the possibility of

reducing the schedule cost in subsequent steps was enhanced. It should

be noted that this is beneficial even if, in some rare circumstances (see

Exam7 in the ITC2007 dataset, Table 4-11; cost increase from 23.38 to

23.55) the reduction of the total slot conflicts comes at the expense of

some increase to the schedule cost. This enhanced potential for

subsequent reduction to the schedule cost is fully capitalized on in the

subsequent step of permutation of exam slots; where the cost was reduced

to 0.07.

The permutation of exams slots is a very simple approach and yet

it produces a very significant reduction of the cost (2.1) of the initial exam

schedule. By splitting the exam scheduling problem into three sub-

problems of minimization of slot conflict, minimization of cost by slot

swapping, and minimization of cost by reassignments we achieved a clear

deterministic progression of the optimization process that lends itself to

easy interpretation.

The reassignments of exams also never fail to reduce the cost (2.1).

The details showed that group reassignments outperformed single

reassignments in most of the datasets. The effect of these reassignments

can be seen from the third data point to the fourth data point in each line

in the graphs given. There is a very clear pattern, whereby, for each line,

171

the graph is seen to rise on a diagonal to the left. This indicated that the

exam schedule generated at this stage has a lower cost but an increase in

the overall total slot conflicts.

While the single reassignment follows the strict minimization of

the cost (2.1), with group reassignment the benefit comes from the

inherent interaction of the effects of reassignment of exams in a group.

Although the individual exams in a group have been selected according to

their potential to reduce the cost (2.1), when reassigned to another slot,

taken together with other exams in a group, this potential for a reduction

in cost (2.1) may be weakened or reversed. Although this is unwelcome, it

allows the search to escape from local optima and thus improve on the

single reassignment solution. An alternative strategy might be to perform

a different type of optimization with a single reassignment that would

allow the search to escape from local optima (e.g. simulated annealing)

but it is recommend that the benefits be weighed against the

computational cost before an approach is proceeded with.

172

0 5 10 15 20 25
7

7.5

8

8.5

9

9.5

10

10.5

11

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Exam1

0 5 10 15 20 25 30
4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Exam2

0 5 10 15 20 25 30
8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Exam3

10 15 20 25 30 35
3.95

4

4.05

4.1

4.15

4.2

4.25

4.3

4.35

4.4

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Exam4

0 5 10 15 20 25 30 35 40 45

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Exam5

4 5 6 7 8 9 10 11 12 13 14
1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Exam6

0 5 10 15 20 25
9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Exam7

0 5 10 15 20 25 30
6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

Exam8

Figure 4.17: Cost (2.1) vs. the Total Slot Conflicts for ITC2007 Dataset

173

Additionally, the feasible solutions with the lower total slot

conflicts appear to offer an advantage in terms of their increased capacity

to minimize the cost (2.1) through simple re-ordering of the slots and,

subsequently, through the re-assignment of exams between slots.

However, while at the initial stages of optimization one is justified in

making a positive correlation between the cost and the slot conflicts count

(as is endorsed by the experiences of other researchers using max-degree

pre-ordering of exams in their scheduling heuristics), it is clear that this

correlation represents a potential for the reduction in cost by swapping

the slots. At the final stages of optimization, this potential is not relevant,

as the slots are deemed to have been optimally ordered already. In the

rare circumstance where the reassignment of exams was discovered to

create an opportunity for further cost reduction by swapping the exam

slots, a second round of optimization delivered the expected improvement

of the exam schedule.

4.1.7 Comparison of the Proposed Methods Compared to

Other Constructive Methods in the Literature

A comparison of our results in terms of Carter cost (2.1) with the

results obtained from other constructive methods reported in the

literature is presented in Table 4-12. We have decided to analyse the

results in a statistical approach by evaluating the distance between the

Carter cost (2.1) obtained from a particular method against the best

Carter cost (2.1) obtained in the literature. In this context, a mean

percentage discrepancy between the solution delivered by a given method

and the best solution reported in the literature, together with the

standard deviation of such discrepancies, evaluated on a representative

174

set of benchmark problems, provide a measure of reliability of the

examination scheduling method. In particular, the low value of the

standard deviation indicates that the method consistently delivers good

results. In Table 4-12 the mean shown at the bottom of each column is the

mean calculated for available solutions obtained for each method in this

table, however they are not conclusive because there are some methods

that could not produce a feasible solution for a particular dataset. Hence

we will analyze the data by omitting the datasets that could not be solved

by all methods. We present the results in Table 4-13. We observe that the

mean (average percentage difference) obtained by our approach is 5.02 is

at the 6th position however with the standard deviation of 2.8 (2nd

position) shows that the approach is predictable is terms of performance.

Looking at Table 4-12 and Table 4-13, it is clear that the methods that

are listed have a rather uneven performance. They perform well on some

benchmark problems and not as well on others. In addition to that, some

approaches even fail to produce any feasible solution. This is a rather

unwelcome characteristic from the user’s perspective, as there is no way

of predicting the quality of the solution that will be obtained using a

particular method on a new dataset.

The goal of our research is to propose a general algorithm that will

provide a solution for all existing datasets or new ones. In relation to that

we will be analyzing the results by omitting methods that are unable to

produce results in any one of the datasets. Table 4-14 shows that our

proposed method is very competitive, with a mean percentage discrepancy

of 9.11% between its solutions and the best known ones, and is by far the

175

most consistently reliable, as indicated by the standard deviation 9.77 of

these discrepancies.

One important point that should be noted when comparing the

performance of the various methods is that several of the best results

have been obtained by using methods that did not report any results for

pur-f-93 and/or rye-f-92. This is significant because the quality,

consistency, and the universal applicability of the method are

highlighted.

The proposed optimization approach is a very simple yet very

competitive one in generating reliably high quality exam schedules. It is

believed that the domain transformation approach, that facilitated the

transformation of a complex optimization problem into a sequence of more

tractable optimizations, has the potential for successful application in a

broader spectrum of applications. An important feature of the

optimization method is that, the feasibility of the initial solution

throughout the whole of the optimization is preserved, thus saving a

considerable computational effort compared to other methods that require

customized post-processing.

176

Table 4-12: Results in Terms of Carter cost (2.1) of Our Method in Comparison with Some Other

Constructive Methods in the Literature

 (Highlighted columns are for the methods that delivered results for all instances in the Toronto dataset.)

Dataset GH AHO ADC MHO OH LCH ADO ALC Ours

car-s-91 (I) 7.1 4.97 5.45 5.29 5.08 5.03 5.17 5.12 5.19

car-f-92 (I) 6.2 4.32 4.5 4.54 4.38 4.22 4.74 4.41 4.49

ear-f-83(I) 36.4 36.16 36.15 37.02 38.44 36.06 40.91 36.91 37.57

hec-s-92(I) 10.8 11.61 11.38 11.78 11.61 11.71 12.26 11.31 11.47

kfu-s-93 14 15.02 14.74 15.8 14.67 16.02 15.85 14.75 14.36

lse-f-91 10.5 10.96 10.85 12.09 11.69 11.15 12.58 11.41 11.9

pur-s-93 (I) 3.9 - - - - - 5.87 5.87 4.88

rye-f-92 7.3 - - 10.38 9.49 9.42 10.11 9.61 9.8

sta-f-83(I) 161.5 161.9 157.21 160.4 157.72 158.86 158.12 157.52 158.25

tre-s-92 9.6 8.38 8.79 8.67 8.78 8.37 9.3 8.76 8.74

uta-s-92(I) 3.5 3.36 3.55 3.57 3.55 3.37 3.65 3.54 3.59

ute-s-92 25.8 27.41 26.68 28.07 26.63 27.99 27.71 26.25 27.37

yor-f-83 (I) 41.7 40.88 42.2 39.8 40.45 39.53 43.98 39.67 41.1

Mean of

Carter cost*
26.02 29.54 29.23 28.12 27.71 27.64 26.94 25.78 26.05

*Mean of Carter cost (2.1) for datasets obtained by each method

GH-Graph Heuristics- (Carter and Laporte, 1996), AHO-Adaptation of Heuristics Orderings-(Burke, E. K. and Newall, J. P.,

2004a), ADC-Adaptive Decomposition and Construction- (Qu, R. and Burke, E. K., 2007), MHO-Multiple Heuristics Orderings-

(Asmuni et al., 2009), OH-Ordering Heuristics-(Abdul-Rahman et al., 2009), LCH-Linear Combinations of Heuristics-(Burke et

al, 2010c), ADO-Adaptive Decomposition and Ordering- (Abdul-Rahman et al., 2011), ALC-Adaptive Linear Combination-

(Abdul-Rahman et al., 2014).

1
7
6

177

Table 4-13: Average Percentage Distance to the Optimal Cost for 11 Datasets in the Toronto Problem

Dataset

 Our Proposed

 Method

Best

Cost**

Cost % Cost % Cost % Cost % Cost % Cost % Cost % Cost % Cost %

car-s-91 (I) 7.1 42.86 4.97 0.00 5.45 9.66 5.29 6.44 5.08 2.21 5.03 1.21 5.17 4.02 5.12 3.02 5.19 4.24 4.97

car-f-92 (I) 6.2 46.92 4.32 2.37 4.5 6.64 4.54 7.58 4.38 3.79 4.22 0.00 4.74 12.32 4.41 4.50 4.49 6.01 4.22

ear-f-83(I) 36.4 0.94 36.16 0.28 36.15 0.25 37.02 2.66 38.44 6.60 36.06 0.00 40.91 13.45 36.91 2.36 37.57 4.02 36.06

hec-s-92(I) 10.8 0.00 11.61 7.50 11.38 5.37 11.78 9.07 11.61 7.50 11.71 8.43 12.26 13.52 11.31 4.72 11.47 5.84 10.8

kfu-s-93 14 0.00 15.02 7.29 14.74 5.29 15.8 12.86 14.67 4.79 16.02 14.43 15.85 13.21 14.75 5.36 14.36 2.51 14

lse-f-91 10.5 0.00 10.96 4.38 10.85 3.33 12.09 15.14 11.69 11.33 11.15 6.19 12.58 19.81 11.41 8.67 11.9 11.76 10.5

sta-f-83(I) 161.5 2.73 161.9 2.98 157.21 0.00 160.4 2.03 157.72 0.32 158.86 1.05 158.12 0.58 157.52 0.20 158.25 0.66 157.2

tre-s-92 9.6 14.70 8.38 0.12 8.79 5.02 8.67 3.58 8.78 4.90 8.37 0.00 9.3 11.11 8.76 4.66 8.74 4.23 8.37

uta-s-92(I) 3.5 4.17 3.36 0.00 3.55 5.65 3.57 6.25 3.55 5.65 3.37 0.30 3.65 8.63 3.54 5.36 3.59 6.41 3.36

ute-s-92 25.8 0.00 27.41 6.24 26.68 3.41 28.07 8.80 26.63 3.22 27.99 8.49 27.71 7.40 26.25 1.74 27.37 5.74 25.8

yor-f-83 (I) 41.7 5.49 40.88 3.42 42.2 6.75 39.8 0.68 40.45 2.33 39.53 0.00 43.98 11.26 39.67 0.35 41.1 3.82 39.53

Average

Percentage

Difference*

mean=10.71

std=17.46

mean=3.14

std=2.92

mean=4.67

std=2.82

mean=6.83

std=4.52

mean=4.79

std=3.01

 mean=3.64 mean=10.48 mean=3.72 mean=5.02

 std=4.96 std=5.19 std=2.50 std=2.80

*Average Percentage Difference To The Best Constructive Carter Cost(%) in the Literature

** Best Constructive Carter Cost (2.1) Reported in the Literature

GH-Graph Heuristics- (Carter and Laporte, 1996), AHO-Adaptation of Heuristics Orderings-(Burke, E. K. and Newall, J. P., 2004a), ADC-Adaptive Decomposition and Construction- (Qu, R.

and Burke, E. K., 2007), MHO-Multiple Heuristics Orderings-(Asmuni et al., 2009), OH-Ordering Heuristics-(Abdul-Rahman et al., 2009), LCH-Linear Combinations of Heuristics-(Burke et al,

2010c), ADO-Adaptive Decomposition and Ordering- (Abdul-Rahman et al., 2011), ALC-Adaptive Linear Combination- (Abdul-Rahman et al., 2014).

 GH AHO ADC MHO OH LCH ADO ALC

1
7
7

178

Table 4-14: Average Percentage Distance to the Optimal Cost

Dataset
[12] [22] [23]

Our

Proposed

Method

Best

Constructive

Cost

Cost % Cost % Cost % Cost %

car-s-91 (I) 7.10 42.86 5.17 4.02 5.12 3.02 5.19 4.43 4.97

car-f-92 (I) 6.20 46.92 4.74 12.32 4.41 4.50 4.49 6.40 4.22

ear-f-83(I) 36.40 0.94 40.91 13.45 36.91 2.36 37.57 4.19 36.06

hec-s-92(I) 10.80 0.00 12.26 13.52 11.31 4.72 11.47 6.20 10.80

kfu-s-93 14.00 0.00 15.85 13.21 14.75 5.36 14.36 2.57 14.00

lse-f-91 10.50 0.00 12.58 19.81 11.41 8.67 11.90 13.33 10.50

pur-s-93 (I) 3.90 0.00 5.87 50.51 5.87 50.51 4.88 25.13 3.90

rye-f-92 7.30 0.00 10.11 38.49 9.61 31.64 9.80 34.25 7.30

sta-f-83(I) 161.50 2.73 158.12 0.58 157.52 0.20 158.25 0.66 157.21

tre-s-92 9.60 14.70 9.30 11.11 8.76 4.66 8.74 4.42 8.37

uta-s-92(I) 3.50 4.17 3.65 8.63 3.54 5.36 3.59 6.85 3.36

ute-s-92 25.80 0.00 27.71 7.40 26.25 1.74 27.37 6.09 25.80

yor-f-83 (I) 41.70 5.49 43.98 11.26 39.67 0.35 41.10 3.97 39.53

Average Percentage

Difference To Best

Constructive cost (%)

mean = 9.06

std = 16.44

mean = 15.72

std = 13.84

mean = 9.47

std = 14.72

mean = 9.11

std = 9.77

1
7
8

179

The proposed method is also very reliable and stable in producing

schedules for larger problem instances, for example, pur-s-93 in the

Toronto dataset and Exam7 in the ITC2007 dataset.

It is expected that the proposed method be adapted in a relatively

straightforward manner to the capacitated scheduling problem by

introducing appropriate granular data structures that will permit the

required domain transformation in the optimization process. Also, other

constraints, suggested at the 2nd International Timetabling Competition

in 2007-08, should fit into the general framework of the proposed method.

The approach proposed in this study to solve the examination scheduling

problems is very efficient and reliable in producing good quality

examination timetables. It has consistently produced encouraging results

for all benchmark datasets, which is not the case for some other

constructive methods in the literature. They perform well on some

benchmark problems and not as well on others, and in a few cases some

methods failed to produce a solution. This is a rather unwelcome

characteristic from the user’s perspective, as there is no way of predicting

the quality of the solution that will be obtained using a particular method

on a new dataset. Since the proposed approach produces consistent results

when tested on different benchmark datasets, it should be stated that the

method is very flexible and highlights the quality, consistency, and

potential for universal application. The deterministic optimization pattern

achieved on all benchmark datasets, which was consistently maintained,

identifies the approach that is proposed as a novel contribution to this

area.

180

CHAPTER 5

5

Global Search Procedure:

Incorporation into the

Proposed Optimization

Framework

Optimization can be understood simply as a process of improving a set of

values in a direction that is desired. In computing, we can imagine

optimization as selecting the best set of values from an available set of

choices. In examination scheduling, optimization refers to minimizing the

cost of the schedule. We have previously demonstrated a few methods

proposed for optimization which produced very encouraging results. In this

chapter, a study on the effectiveness of incorporating a global search

procedure (Genetic Algorithm) into the proposed optimization framework

will be made in comparison to our previous incorporation of local search

procedure.

5.1 Substitution of a Global Search Procedure in

the Optimization Stage of the Proposed

Framework

A feasible timetable can have exam orderings which do not satisfy many of

the soft constraints. Consequently, a separate optimization process needs

181

to be deployed to obtain better quality schedules. In Chapter 4, the

proposed approach to solving the examination scheduling problem which

consists of several stages of optimization was discussed. The phases of the

examination scheduling method are as follows:

1. Problem domain transformation from student-exam to exam conflict

and spread matrix data space.

2. Generation of a feasible solution via an allocation method and

backtracking.

3. Minimization of the overall slot conflicts.

4. Minimization of the schedule cost by slot swapping.

5. Minimization of the schedule cost by exam reallocation.

6. Repetition of the last two steps until no further improvement in the

schedule cost can be made.

In the scheduling steps outlined above, optimization is started at

the third bullet point and continues until the last bullet point. It should be

noted that, for the fourth bullet point, (i.e. minimization of the schedule

cost by slot swapping), a simple Greedy Hill Climbing (GHC) was

introduced. Realizing that the method that was employed (permutation of

exam slots), is a local search procedure, it was thought that a global search

procedure should be incorporated in order to see whether or not better

quality schedules could be generated. For this purpose, we have

implemented the Genetic Algorithm (GA) to substitute the permutations of

exam slots in the optimization process (Rahim et al., 2013a).

182

Even though GA does not offer any guarantees with regard to

convergence to global optimum, recent research has moved on to explore

meta-heuristics based approaches (e.g. harmony search, particle swarm

optimization, bee colony optimization, etc.) to enhance the effectiveness of

such optimisation and has demonstrated some success. (Burke et al.,

1994a; Burke et al., 1994b; Gyori et al., 2001; Ulker et al., 2007).

Additionally, it has been confirmed that hybridizations of GA with some

local search have led to some success in this area (Qu et al., 2009a). We

have therefore chosen GA as an alternative approach to our optimisation

(Rahim et al., 2013a).

Below we have presented a diagram (Figure 5.1) to illustrate a

summary of the work done in our research which shows the sequence of

every process involved and the part that will be substituted by GA. Note

that the whole set of optimizations was performed twice, therefore, the

first and second order optimizations can be seen in the diagram.

Allocation of

exams to slots

First Order Optimization

Slot Ordering

(Hill Climbing)

Reassignment of

exams

Second Order Optimization

Slot Ordering

(Hill Climbing)

Reassignment of

exams

Allocation of

exams to slots

First Order Optimization

Slot Ordering

(Hill Climbing)

Reassignment of

exams

Second Order Optimization

Slot Ordering

(Hill Climbing)

Reassignment of

exams

Figure 5.1: Scheduling and Optimization Steps Before and After GA

Substitution.

GA

GA

183

As previously mentioned, the HC optimization was performed by

the permutations of the rows/columns of the spread matrix of a feasible

schedule obtained via the allocation method. The permutation method

should be considered quite an efficient procedure because the number of

available exam slots is frequently quite small. In our hypothesis, we

postulate that the effect of slot swapping is that new exam ordering will be

generated with better quality.

Besides HC, implementation of GA is with the same objective as

HC, which is to improve the ordering of the exams in the feasible exam

schedule that is generated. The exam slots of the parents involved during

crossover at certain points will be randomly exchanged by GA operators, it

is therefore suggested that slot swapping to the original slot order from the

original feasible schedules be performed (but note that it is a different type

of swap compared to the above Hill Climbing).

The main objectives of this research are to study the effectiveness of

GA in comparison to HC and to find the best range of parameters (the

population size and number of iterations in GA) in the optimization stage

of the proposed framework.

5.1.1 Genetic Algorithm

Genetic Algorithm (GA) is a search heuristic that imitates the process of

natural evolution. This heuristic is normally used to generate solutions

(which are normally good or useful) to optimization and search problems.

In a Genetic Algorithm, a population of candidate solutions will evolve

towards better solutions. Each individual in the population has some

http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Heuristic_(computer_science)
http://en.wikipedia.org/wiki/Evolution
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Problem
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Candidate_solution

184

characteristics (known as chromosomes) that can be mutated and

modified.

The evolution process begins from a population of randomly

generated individuals and is an iterative process, whereby the population

in each iteration is called a generation. In each generation, the fitness

(quality) of every individual in the population is evaluated based on the

objective function. Good quality individuals (normally the two best

individuals) are selected from the current population, and each individual's

genome (characteristics) is modified (recombined through crossovers and

possibly randomly mutated) to form a new generation. The new generation

of candidate solutions is then used in the next iteration of the algorithm.

Normally, the algorithm terminates when either a maximum number of

generations has been produced or a superior solution has been obtained for

the population.

The effectiveness of GA highly depends on the tweaks that are

made to its parameters. Despite the simplicity of its algorithm, GA

requires careful and intelligent settings to be given to its parameters, for

example: the method of selecting parents, the population size, and the

crossover type and rate; mutation type and rate, the number of iterations

etc. An optimal calibration of the parameters might cause the algorithm to

converge on the best results in an efficient time, meanwhile, on the other

hand, non-optimal configurations of the parameters might cause it to take

a longer time to produce good solutions and, in some cases, good solutions

may not be obtained at all.

http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Algorithm

185

5.1.2 Our Genetic Algorithm Implementation

In our Genetic Algorithm (GA) implementation (Rahim et al., 2013a;

Rahim et al., 2013c), we defined the original parent P0, which is a data

structure with the initial ordering of slots (1 …. N) where N is the number

of slots. GA creates a new parent by moving the position of the rows in

blocks from a random index K to the end of P0 to generate the first K-N

number of rows. To complete the parent, the balance (first row to K) is

then taken from P0 from position 0 to K to be filled in at position K + 1 to

N in the new parent. A number of npar parents will be created. In general,

the generation of the new parents is created by shifting the rows that, in

the end, are the new representation of the original parent with a

magnitude maximum distance of npar – 1. Therefore, if it is just a window

shift, there will be identical parents, especially when the number of N is

smaller than the number of npar.

We then produced the new offsprings from these initial parents.

The number of offsprings to be produced is equal to the unique

permutation of a parent in P with other parents in P. Each of the parents

will be crossed over with all other parents at a certain random point R,

creating two new offsprings. Offspring1 will contain the first to R slot from

Parent1 and will then be completed by appending the slot in Parent2

starting from the first to N which is not already in Offspring1. The same

goes for Offspring2. It will contain the first to R slot from Parent2 and will

be completed by appending the slot in Parent1. These two newly created

offsprings will be added to “O” which is the overall population. Any

identical offsprings will be eliminated and replaced with a mutated P

where we interchange a random slot t with a random slot u. The best

186

offspring with the lowest cost will be automatically selected to become the

next generation parent P.

The offsprings generated in the population are the individuals with

a new ordering of slots due to the crossover of the parents involved, which,

in this study, is assumed to be a type of slot swapping. The process of slot

swapping performed using GA is illustrated in Figure 5.2 and Figure 5.3.

In the process of generating the offspring there is a possibility of having a

redundant slot that has been obtained from the first parent when the slots

from the second parent is moved to the new child. We alleviate this by

substituting the identical slot with a slot that was not in the solution by

replacing the missing slot at the location of the redundant slot. In Figure

5.3 slot number 7 has been selected from the first parent and another

selected from the second parent. The second occurrence of slot 7 is being

replaced by slot 2 which is missing in the new offspring.

Figure 5.2: Generation of New Parents in the Proposed GA

187

Figure 5.3: Generation of Offsprings in the Proposed GA

Generating parents and offsprings via this technique does not

introduce any non-feasible solution as exams in all slots remain in their

slot, thus it does not create any new conflicts that will create unfeasible

solution. However the change due to slot shift will affect the cost function

value as the change shift the distance between exams (contributing factor

to Carter cost (2.1)) that are dependent among the slots. Recollect that

each of these slots has exams that are not in-conflict and each of these

exams contains students. The beauty of granularization is that we no

longer need to work at the micro level but we can solve the problem at a

higher perspective of the problem space. The proposed GA approach has

the whole search space of feasible solutions to work on unlike other GA

approaches, where the GA has the whole search space which includes

infeasible solutions. Having only feasible solutions in the search space

makes the approach efficient and fast. The proposed GA was tested on the

188

Toronto dataset and the results / performance will be discussed in the next

section.

5.1.3 Results for Hill Climbing versus Genetic Algorithm

Optimization

In order to determine the effectiveness of the proposed GA in the

optimization step for the examination scheduling, experiments on the

Toronto benchmark repository have been conducted. Furthermore, all nine

combinations of parameters for different number of parents and iterations

(i.e.: parents: 10 / 15 / 20 and iterations 10 / 15 / 20) were used during the

experiments.

As was previously mentioned, the initial schedules of the proposed

approach were generated using an allocation method before being further

optimized. The optimization process was performed twice; hence the name

First and Second Order Optimization as can be seen in the table.

The results obtained from the experiments were recorded in Table

5-1. Based on the results, we can state that a significant improvement has

been achieved for each dataset from the initial cost to the cost produced by

GA (from first to last iteration). In addition, the time taken for the GA

optimization was also very efficient, with the average of less than 1.5

second of CPU time for each dataset. However, no single combination of

parameters managed to outperform the results gained by HC in our

previous study as reported in Chapter 4. These improvements were

obtained for all combinations of parameters, therefore, the fact that GA is

an effective optimization technique through exams slot swapping, was

189

proven. The cost was further reduced by reassigning the exams in the first

order optimization and was further improved during the second order

optimization for some datasets. This pattern can be observed if one moves

from left to right across this table.

190

Table 5-1: Results Obtained Using GA Optimization With Minimization of Total Slots Conflicts and Group Reassignments on Toronto

Benchmark Problem

Dataset

(Initial Cost)

npar

Max

Iter
First Order Optimization Second Order Optimization

Cost at

First

Iteration

(1)

Cost at

Last

Iteration

(10/15/20)

CPU

Time

(sec)

Cost

after

Reassign

Cost at

First

Iteration

(1)

Cost at

Last

Iteration

(10/15/20)

CPU

Time

(sec)

Cost

after

Reassign

car-f-92 (I)

(9.4318)

10

10 7.8894 6.7645 0.296 5.2512 5.2512 5.2251 0.873 5.1215

15 7.8894 6.7589 0.328 5.2512 5.2512 5.2251 0.796 5.1215

20 7.8894 6.7589 0.484 5.2512 5.2512 5.2251 0.702 5.1215

15

10 8.0423 6.7761 0.609 5.2512 5.2512 5.2512 1.232 5.2512

15 8.0423 6.7761 0.921 5.2512 5.2512 5.2512 1.513 5.2512

20 8.0423 6.7761 1.248 5.2512 5.2512 5.2512 1.622 5.2512

20

10 8.0016 6.7523 1.123 5.2512 5.2512 5.2438 1.731 5.1197

15 8.0016 6.7113 1.591 5.2512 5.2512 5.2438 2.403 5.1197

20 8.0016 6.7113 2.231 5.2512 5.2512 5.2438 2.075 5.1197

car-s-91 (I)

(11.7678)

10

10 9.3936 8.0188 0.234 6.5652 6.5018 6.3214 1.389 6.3083

15 9.3936 7.9814 0.405 6.5652 6.5018 6.3214 1.076 6.3083

20 9.3936 7.9814 0.546 6.5652 6.5018 6.3214 1.513 6.3083

15

10 9.074 7.7664 0.593 6.5652 6.5018 6.3046 2.059 6.1502

15 9.074 7.7563 0.858 6.5652 6.5018 6.3046 1.482 6.1502

1
9
0

191

20 9.074 7.7563 1.295 6.5652 6.5018 6.3046 1.529 6.1502

20

10 9.0604 7.6413 1.139 6.5652 6.5018 6.2936 1.482 6.2348

15 9.0604 7.6413 1.934 6.5652 6.5018 6.2936 2.543 6.2348

20 9.0604 7.6413 2.574 6.5652 6.5018 6.2936 3.791 6.2348

ear-f-83 (I)

(72.6889)

10

10 56.4729 49.1911 0.171 47.0667 45.0222 44.4204 0.203 43.7547

15 56.4729 49.1911 0.301 47.0667 45.0222 44.4204 0.311 43.7547

20 56.4729 49.1911 0.39 47.0667 45.0222 44.4204 0.421 43.7547

15

10 53.5138 48.9929 0.499 47.0667 45.0222 43.7209 0.499 43.5369

15 53.5138 48.9929 0.677 47.0667 45.0222 43.7209 0.72 43.5369

20 53.5138 48.9929 0.998 47.0667 45.0222 43.7209 1.029 43.5369

20

10 53.712 49.3271 1.014 47.0667 45.0222 42.7778 0.874 40.9298

15 53.712 49.3271 1.498 47.0667 45.0222 42.7778 1.342 40.9298

20 53.712 49.3271 1.81 47.0667 45.0222 42.7778 2.028 40.9298

hec-s-92 (I)

(21.8771)

10

10 19.3213 15.1902 0.156 15.011 15.011 13.4853 0.172 13.3808

15 19.3213 15.1902 0.281 15.011 15.011 13.4853 0.28 13.3808

20 19.3213 15.1902 0.359 15.011 15.011 13.4853 0.343 13.3808

15

10 19.3932 14.1367 0.453 15.011 14.6394 12.9954 0.421 12.8696

15 19.3932 14.1367 0.593 15.011 14.6394 12.9954 0.639 12.8696

20 19.3932 14.1367 2.817 15.011 14.6394 12.9954 2.601 12.8696

 10 18.9968 13.622 15.147 15.011 14.3943 12.91 11.747 12.8232

1
9
1

192

20 15 18.9968 13.622 1.108 15.011 14.3943 12.91 1.264 12.8232

20 18.9968 13.622 1.56 15.011 14.3943 12.91 1.497 12.8232

kfu-s-93

(37.7923)

10

10 25.8813 18.5782 0.188 17.5764 17.5764 17.5764 0.453 17.5556

15 25.8813 18.5782 0.297 17.5764 17.5764 17.5764 0.593 17.5556

20 25.8813 18.5782 0.375 17.5764 17.5764 17.5764 0.515 17.5556

15

10 25.2875 19.0258 0.468 17.5764 17.5764 17.5764 0.686 17.5556

15 25.2875 19.0258 0.687 17.5764 17.5764 17.5764 0.967 17.5556

20 25.2875 19.0258 0.921 17.5764 17.5764 17.5764 1.373 17.5556

20

10 25.2875 18.1512 11.341 17.5764 17.5764 17.5014 15.632 17.1342

15 25.2875 18.1512 1.326 17.5764 17.5764 17.3632 1.498 16.9226

20 25.2875 18.1512 1.716 17.5764 17.5764 17.3632 1.84 16.9226

lse-f-91

(23.7689)

10

10 20.0411 17.0422 0.172 16.8375 16.8375 16.0503 0.343 15.814

15 20.0411 17.0422 0.28 16.8375 16.8375 16.0503 0.437 15.814

20 20.0411 17.0422 0.343 16.8375 16.8375 16.0503 0.515 15.814

15

10 19.4017 17.1988 0.437 16.8375 16.8375 15.7095 0.608 15.6669

15 19.4017 17.1988 0.655 16.8375 16.8375 15.7095 0.936 15.6669

20 19.4017 17.1988 0.765 16.8375 16.8375 15.7095 1.029 15.6669

20 10 19.099 16.135 0.92 16.8375 16.8375 15.6552 0.811 15.1555

15 19.099 16.135 1.185 16.8375 16.8375 15.6552 1.248 15.1555

20 19.099 16.135 1.684 16.8375 16.8375 15.6552 1.747 15.1555

1
9
2

193

rye-f-92

(31.4992)

10

10 20.4928 18.1311 0.203 11.2954 11.2954 11.1047 0.483 10.8862

15 20.4928 18.1311 0.312 11.2954 11.2954 11.1047 0.561 10.8862

20 20.4928 18.1311 0.39 11.2954 11.2954 11.1047 0.764 10.8862

15

10 19.0379 16.4612 0.509 11.2954 11.2954 10.9618 1.011 10.9263

15 19.0379 16.4612 0.733 11.2954 11.2954 10.9618 1.139 10.9263

20 19.0379 16.4612 0.983 11.2954 11.2954 10.9618 1.388 10.9263

20

10 18.5681 17.3608 0.983 11.2954 11.2954 10.9618 1.373 10.9263

15 18.5681 17.3608 1.358 11.2954 11.2954 10.9618 1.857 10.9263

20 18.5681 17.3608 1.763 11.2954 11.2954 10.9618 2.325 10.9263

sta-f-83 (I)

(201.0638)

10

10 175.8216 163.9869 0.156 169.9624 169.707 161.7021 0.156 159.9591

15 175.8216 163.9869 0.249 169.9624 169.707 161.7021 0.265 159.9591

20 175.8216 163.9869 0.328 169.9624 169.707 161.7021 0.328 159.9591

15

10 172.8052 163.1211 0.39 169.9624 169.4779 161.198 0.39 161.1309

15 172.8052 163.1211 0.561 169.9624 169.4779 161.198 0.578 161.1309

20 172.8052 163.1211 0.749 169.9624 169.4779 161.198 0.748 161.1309

20

10 170.4517 161.8756 0.733 169.9624 164.6547 160.9264 0.655 160.4583

15 170.4517 161.8756 0.983 169.9624 164.6547 160.9264 1.076 160.4583

20 170.4517 161.8756 1.311 169.9624 164.6547 160.9264 1.389 160.4583

tre-s-92

(14.811)

10

10 12.6252 11.4214 0.188 10.8487 10.8487 10.6279 0.234 10.3505

15 12.6252 11.4214 0.312 10.8487 10.8487 10.6279 0.343 10.3505

1
9
3

194

20 12.6252 11.4214 0.406 10.8487 10.8487 10.6279 0.39 10.3505

15

10 12.5101 11.0069 0.452 10.8487 10.8487 10.575 0.484 10.495

15 12.5101 11.0069 0.764 10.8487 10.8487 10.575 0.686 10.495

20 12.5101 11.0069 0.968 10.8487 10.8487 10.575 0.873 10.495

20

10 12.2224 10.9574 0.936 10.8487 10.8487 10.5089 0.858 10.3524

15 12.2224 10.9574 1.248 10.8487 10.8487 10.5089 1.17 10.3524

20 12.2224 10.9574 1.841 10.8487 10.8487 10.5089 1.545 10.3524

uta-s-92 (I)

(7.7053

10

10 5.9236 5.1598 0.249 4.2319 4.2319 4.2155 1.139 4.023

15 5.9236 5.1337 0.422 4.2319 4.2319 4.2155 1.201 4.023

20 5.9236 5.1337 6.693 4.2319 4.2319 4.2155 15.88 4.023

15

10 5.9267 5.0116 0.562 4.2319 4.2319 4.1421 1.216 4.0687

15 5.9267 5.0116 0.842 4.2319 4.2319 4.1365 1.155 3.9579

20 5.9267 5.0116 1.029 4.2319 4.2319 4.1365 1.638 3.9579

20

10 5.9 5.0359 1.17 4.2319 4.2319 4.1563 1.529 4.0837

15 5.9 5.0356 1.56 4.2319 4.2319 4.1563 2.277 4.0837

20 5.9 5.0356 1.903 4.2319 4.2319 4.1563 1.981 4.0837

ute-s-92

(56.9698)

10

10 38.388 34.5404 0.124 31.5378 31.5378 31.5378 0.125 31.5378

15 38.388 34.5404 0.219 31.5378 31.5378 31.5378 0.281 31.5378

20 38.388 34.5404 0.281 31.5378 31.5378 31.5378 0.265 31.5378

 10 35.7745 32.956 0.327 31.5378 31.5378 31.4724 0.312 29.3473

1
9
4

195

15 15 35.7745 32.956 0.499 31.5378 31.5378 31.4724 0.453 29.3473

20 35.7745 32.956 0.64 31.5378 31.5378 31.4724 0.624 29.3473

20

10 35.7745 32.8549 0.624 31.5378 31.5378 31.4724 0.639 29.3473

15 35.7745 32.8549 0.843 31.5378 31.5378 31.4724 0.92 29.3473

20 35.7745 32.8549 1.294 31.5378 31.5378 31.4724 1.186 29.3473

yor-f-83 (I)

(59.0404)

10

10 51.6706 47.543 0.156 44.8151 44.8151 43.0085 0.203 42.6291

15 51.6706 47.543 3.682 44.8151 44.8151 43.0085 3.619 42.6291

20 51.6706 47.543 0.343 44.8151 44.8151 43.0085 0.359 42.6291

15

10 50.7736 47.5016 0.437 44.8151 43.3199 42.831 0.405 42.5409

15 50.7736 47.5016 0.593 44.8151 43.3199 42.831 0.592 42.5409

20 50.7736 47.5016 0.78 44.8151 43.3199 42.831 0.764 42.5409

20

10 51.9692 46.6227 0.795 44.8151 44.3496 42.831 0.764 42.5409

15 51.9692 46.6227 1.155 44.8151 44.3496 42.831 1.107 42.5409

20 51.9692 46.6227 1.466 44.8151 44.3496 42.831 1.513 42.5409

1
9
5

196

In the results presented, if an observation of the cost produced by

the same number of parents at Iteration 1 is made, one can clearly see

that the costs that were produced for all cases were the same, for example

for car-f-92 (I), where the values for the first 3 rows in the table are

7.8894.

A general assumption that can be made is that, for the same

number of parents, an increase in the number of iterations does not offer

an advantage in terms of improving the quality of the schedules (or

reducing the cost) because, for most of the datasets, the costs remain even

though the number of iterations were increased. There are some

exceptions to this case however, i.e. for car-f-92 (I), car-s-91 (I), and uta-s-

92 (I).

With the increased factor, in terms of the increase in the number

of parents, it can also be deduced that the costs produced are mostly

reductions or, in other words, improvements for the majority of the

datasets, except for car-f-92 (I), ear-f-83 (I), kfu-s-93, lse-f-91, rye-f-92,

and uta-s-92 (I) with npar=15, 20, 15, 15, 20 and 15 respectively. This can

be seen in Figure 5.4 and Figure 5.5 which illustrate Carter Cost (2.1) vs.

Number of Parents for datasets sta-f-83 and ute-s-92.

197

Figure 5.4: Carter Cost (2.1) vs. Number of Parents for sta-f-83 dataset

Figure 5.5: Carter Cost (2.1) vs. Number of Parents for ute-s-92 dataset.

For the second order of optimization, the behaviour of the results

produced by GA is almost the same as the first order optimization, both

when moving horizontally (left to right) and vertically (top to bottom)

across the table. Most importantly, for all the datasets, the costs have

198

been significantly reduced before performing GA optimization and from

the first iteration to the last iteration.

Based on the results recorded, it can be concluded that the values

selected for both parameters (i.e. the number of parents and iterations) in

the GA proposed for the slot reordering of the exam schedules are

suitable and the quality of the schedules was improved. In most cases, the

values of both parameters were increased and that this assisted the

procedure in exploring the search space efficiently and escaping from its

local optima.

Moreover, it has been observed that, for npar = 10 the cost

produced by the GA is less encouraging than using npar = 15 or 20. Even

though the GA was run over a few iterations with 10 parents, it appears

that the explorations of the search space only managed to find its local

optima. Therefore, to prevent the GA from getting stuck in its local

optima, according to the overall results, it is suggested to use npar = 15 to

20 with the same range of iterations. These suggested values seem to

generate better results and have a better chance of arriving at their

global minima.

Based on the above results and observations, the results obtained

by using Hill Climbing and the Genetic Algorithm optimization on the

initial feasible schedule generated by the allocation method before

performing other optimization are shown in Table 5-2. For the Hill

Climbing, the worst and the best costs during the process were recorded

(permutations of slots), and for the Genetic Algorithm, the cost produced

after Generation 1 (Gen 1) and Generation 15 (Gen 15) is presented.

199

The best cost produced for each type of optimization is accepted

and the ordering of the slots was rearranged accordingly before

performing further optimization: i.e. reassignment of exams between slots

and repeating the whole set of the optimization process later until no

further improvement in the schedule cost is evident. The accepted cost

together with the CPU time taken for each process can be seen in these

tables.

Based on the results presented in Table 5-2, it can be seen that the

proposed Greedy Hill Climbing (HC) method outperformed the GA in all

cases during the optimization when tested on the benchmark datasets; all

the results produced by the GA for all the datasets after generation 15

(Gen 15) were outperformed by the results produced by HC.

It should be highlighted that the cost obtained by the GA for all

datasets at generation 1 (Gen 1) are quite encouraging and are much

lower than the worse cost that was obtained by HC. However, all of them

failed to improve on the cost obtained by HC after generation 15 (Gen 15).

Using the data that was gathered from the experiments on all the

datasets, graphs for the cost (2.1) versus the Total Slot Conflicts for all

benchmark datasets were plotted as shown in Figure 5.6. Diagram (a1),

(b1), (c1), (d1), ….. (n1) are the graphs (continuous line-graphs) when HC

optimization was used whereas diagrams (a2), (b2), (c2), (d2),…… (n2) are

the graphs (dashed line-graphs) plotted when the GA optimization was

used. The diagrams in these figures are arranged according to the

sequence of datasets in Table 5-2.

200

Table 5-2: Comparison of Results Obtained By Using Hill Climbing and Genetic Algorithm Optimization on Nott and Toronto Datasets

Dataset /

Initial

Cost Hill Climbing

Genetic Algorithm

Worst

 cost

Best

cost

Accepted

Cost Before

Further

Optimization

CPU Time

(seconds)

Gen 1 Gen 15 Accepted

Cost Before

Further

Optimization

CPU Time

(seconds)

Nott /

38.99 31.95 10.94 10.94 187.27 28.03 14.74 14.74 3.39

car-f-92 /

9.43 8.89 5.36 5.36 268.97 8.07 6.68 6.68 5.11

car-s-91 /

11.77 10.43 6.26 6.26 351.39 9.37 8.10 8.10 5.99

ear-f-83 (I) /

72.69 62.57 40.45 40.45 136.77 53.51 48.99 48.99 1.78

hec-s-92 (I) /

22.83 22.55 12.52 12.52 27.52 19.39 14.14 14.14 2.30

kfu-s-93 /

37.79 29.89 16.06 16.06 40.36 26.81 20.06 20.06 2.48

2
0
0

201

lse-f-91 /

23.77 22.42 14.63 14.63 26.59 19.40 17.20 17.20 2.25

pur-s-93 (I) /

14.91 14.27 6.69 6.69 321.05 11.94 8.47 8.47 7.97

rye-f-92 /

31.50 28.55 12.68 12.68 73.17 19.04 16.46 16.46 3.25

sta-f-83 /

201.95 193.47 158.43 158.43 10.28 172.80 163.12 163.12 0.52

tre-s-92 /

14.81 13.25 9.84 9.84 66.34 12.76 11.70 11.70 3.17

uta-s-92 (I) /

7.30 6.59 4.23 4.23 455.94 6.19 5.22 5.22 6.54

ute-s-92 /

56.97 43.25 31.79 31.79 2.91 35.77 32.96 32.96 1.30

yor-f-83 (I) /

59.04 56.31 43.36 43.36 46.99 50.77 47.50 47.50 0.75

2
0
1

202

5 10 15 20 25 30 35 40
8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

Carter cost
(a1) Nott

5 10 15 20 25 30 35 40
7.5

8

8.5

9

9.5

10

10.5

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(a2) Nott

4 5 6 7 8 9 10
12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

13.8

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

(b1) car-f-92

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

13.8

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(b2) car-f-92

5 6 7 8 9 10 11 12
16.5

17

17.5

18

18.5

19

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

(c1) car-s-91

6 7 8 9 10 11 12
16.5

17

17.5

18

18.5

19

19.5

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(c2) car-s-91

203

35 40 45 50 55 60 65 70 75
3.54

3.56

3.58

3.6

3.62

3.64

3.66

3.68

3.7

3.72

3.74

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(d1) ear-f-83 (I)

45 50 55 60 65 70 75
3.55

3.6

3.65

3.7

3.75

3.8

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(d2) ear-f-83 (I)

10 12 14 16 18 20 22 24
1.26

1.261

1.262

1.263

1.264

1.265

1.266

1.267

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

(e1) hec-s-92 (I)

12 14 16 18 20 22 24
1.24

1.245

1.25

1.255

1.26

1.265

1.27

1.275

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(e2) hec-s-92 (I)

10 15 20 25 30 35 40
4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

(f1) kfu-s-93

15 20 25 30 35 40
4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(f2) kfu-s-93

204

10 12 14 16 18 20 22 24
3.7

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

(g1) lse-f-91

15 16 17 18 19 20 21 22 23 24
3.65

3.7

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(g2) lse-f-91

4 6 8 10 12 14 16
48

50

52

54

56

58

60

62

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

(h1) pur-s-93 (I)

5 6 7 8 9 10 11 12 13 14 15
48

50

52

54

56

58

60

62

64

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(h2) pur-s-93 (I)

5 10 15 20 25 30 35
7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

(i1) rye-f-92

10 15 20 25 30 35
6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

7.7

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

Carter cost
(i2) rye-f-92

205

155 160 165 170 175 180 185 190 195 200 205
1.5045

1.505

1.5055

1.506

1.5065

1.507

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

(j1) sta-f-83

160 165 170 175 180 185 190 195 200 205
1.5

1.505

1.51

1.515

1.52

1.525

1.53

1.535

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(j2) sta-f-83

8 9 10 11 12 13 14 15
4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

4.75

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

(k1) tre-s-92

9 10 11 12 13 14 15
4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

4.75

4.8

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(k2) tre-s-92

3.5 4 4.5 5 5.5 6 6.5 7 7.5
14.8

15

15.2

15.4

15.6

15.8

16

16.2

16.4

16.6

16.8

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(l1) uta-s-92 (I)

4 4.5 5 5.5 6 6.5 7 7.5
15

15.2

15.4

15.6

15.8

16

16.2

16.4

16.6

16.8

17

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(l2) uta-s-92 (I)

206

25 30 35 40 45 50 55 60

1.14

1.16

1.18

1.2

1.22

1.24

1.26

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(m1) ute-s-92

25 30 35 40 45 50 55 60

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(m2) ute-s-92

40 42 44 46 48 50 52 54 56 58 60

3.25

3.3

3.35

3.4

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fli

c
t

*
1
0
0
0

(n1) yor-f-83 (I)

42 44 46 48 50 52 54 56 58 60
3.24

3.26

3.28

3.3

3.32

3.34

3.36

3.38

3.4

3.42

3.44

Carter cost

T
o
ta

l
s
lo

t
c
o
n
fl
ic

t
*

1
0
0
0

(n2) yor-f-83 (I)

Figure 5.6: Cost (2.1) vs. the Total Slot Conflicts for Benchmark Datasets

(Using Hill Climbing (HC) vs. Genetic Algorithm (GA)). Note: Continuous

line- graphs on the left of this figure are for HC and dashed line –graphs

are for GA.

207

From the graphs presented above, it can be noted that the pattern

obtained from both HC and GA optimizations are similar and

deterministic. The horizontal line constructed from the second data point

to the third data point in the diagram (a1) to (n1) is due to a reduction of

cost via the permutations of exam slots (Greedy HC) which did not

involve any augmentation of total slot conflicts. The dotted line from the

first data point to the second data point in each diagram (a2) to (n2) is

constructed based on the GA optimization discussed earlier in this paper.

A significant reduction in terms of the initial cost has been

achieved by performing the GA optimization as shown in the dotted lines

at this stage. These lines also showed that the proposed GA managed to

substitute the HC implementation and was incorporated successfully in

the whole set of our optimization process.

One of the things that can be seen in the graphs is that the line

constructed by GA optimization is not always horizontal indicating a

change in the value of the total slot conflicts. This is because the

crossover and mutation of exam slots in the GA optimization process

changed the assignment of some exams to slots to ensure the feasibility of

the schedules. In changing the exam from one slot to another, it changes

the value of total slot conflicts due to the interactions of the shifted exam

with other exams that have common students. This is not the case

during HC optimization where the total exam-slot conflicts does not

change because the individual exams to slots remain as they were before

the permutations.

208

Based on our observations, GA produced quite encouraging

results, however it converges quite quickly, whereby in most datasets,

(out of the 9 combinations) best Carter cost (2.1) was obtained as early as

when using 10 parents and 15 iterations. Even though more parents and

iterations were used, however they did not record any improvements.

This is mainly because the GA procedure was being used in the

permutations of exams slots, where the number of slots are normally

quite small (ranging from 10 to 42 only). Thus the search space for the

permutations is small.

In the experiments conducted, overall we have obtained very good

results using GA, which demonstrates a deterministic optimization

pattern of the proposed framework. From initial feasible solution

constructed at the earlier stage, after going through the GA procedures, a

very significant reduction in terms of Carter cost (2.1) was obtained

successfully as predicted. The reduction can be seen obviously in the

horizontal line in each graph presented in the thesis. This shows that the

idea of optimizing the schedules using permutations of exams slots is very

efficient and reliable.

Based on the results, also, it indirectly shows that the framework,

which consists of a few stages (i.e. pre-processing, scheduling and

optimization), is proven to be an effective and flexible framework where

some procedures can be replaced and incorporated into the framework

adeptly. This was shown by the successful substitution of the GA with the

existing HC.

209

A point that should be noted is the computational time taken to

execute both methods. Even though the GA did not surpass HC in all

cases the time taken to execute the process was remarkably short when

compared to the implementation of HC. The proposed GA was simple,

straightforward, and quite effective and took a short amount of time to

improve the initial feasible schedule, although a majority of the research

claims that GA takes a very long time to solve scheduling problems (for

example, as claimed by (Abramson, 1992)).

This advantage (the minimal time requirement) could offer even

more advantages, because, based on the results presented earlier, it can

be predicted that an addition to the number of iterations or generations

(with the aim to generate better offsprings) to the GA execution will only

add a short amount of computational time, which can be considered to be

acceptable.

Unfortunately however this is not the case. No benefits, in terms

of reductions to the cost of the exam schedule generated, were given by

increasing the number of generations. Experiments were conducted up to

20 generations, but the highest number of generations at which the cost

is reduced is generation 12 (car-f-92(I)). A second round of optimization

was performed in order to test whether it could reduce the cost further.

Therefore, after performing reassignment of exams on the schedules

obtained by the GA optimization, we repeated the GA optimization one

more time. As can be seen in Table 5-3, the highest number of

generations that could reduce the schedule cost is generation 11 (rye-f-92)

even though 15 generations were tested.

210

The cost (2.1) was improved upon in the second round for most of

the datasets (except for nott, carf92, kfus93, purs93, and utes9) and this

is illustrated in diagram (a2) to (n2) by the third data point to the fourth

data point.

The final results obtained by HC and GA methods, which were

further improved by reassignments of exams, were compared and can be

found in Table 5-4. It can be clearly seen that HC outperforms GA in all

cases, even though the execution time recorded was somewhat high in

comparison to the GA, but the amount of time taken was still reasonable

which is only a few hundreds seconds of CPU time.

Table 5-3: Number of Generations That Improved the Schedule Cost

During GA

Dataset

First Order

Optimization:

Cost

Improved

Until

Iteration

Second Order

Optimization:

Cost

Improved

Until

Iteration

notts 7 0

carf92 12 0

cars91 9 2

earf83 7 6

hecs92 6 7

kfus93 10 0

lsef91 8 4

purs93 11 0

ryef92 8 11

staf83 6 4

tres92 8 5

utas92 10 4

utes92 3 0

yorf83 6 3

211

Table 5-4: Final Cost Produced Using HC versus GA Optimization

Dataset

Final Cost

Produced

after All

Optimization

Processes

For HC

(Rahim et

al., 2012)

Final Cost

Produced

after All

Optimization

Processes

For GA

(Rahim et

al., 2013a)

notts 7.34 7.62

carf92 4.49 5.18

cars91 5.19 6.03

earf83 37.57 45.08

hecs92 11.47 12.90

kfus93 14.36 17.27

lsef91 11.90 15.11

purs93 4.88 5.57

ryef92 9.8 10.63

staf83 158.25 161.13

tres92 8.74 9.86

utas92 3.58 4.01

utes92 27.37 29.35

yorf83 41.10 43.52

To summarize, the GA has been successfully implemented and

incorporated into the proposed Domain Transformation Approach

framework to solve the examination scheduling problems. The GA

proposed in this study is an efficient algorithm that managed to achieve

its objective which is to improve the initial feasible exam schedules

(before being optimized). With a robust implementation, it managed to

212

explore the search space efficiently and produced a good quality timetable

with a fast execution time. Since it succeeded in improving the quality of

the initial feasible schedule in a very efficient time and it produced very

consistent results with a deterministic optimization pattern, we consider

the incorporation of GA into our proposed framework is very effective.

However, this procedure works best within a certain range of parameters

(and depends on careful parameter tweaking). For this particular GA (for

slot swapping), it is suggested that at least 15 to 20 parents and also 15 to

20 iterations be used in order to get the best solutions.

Furthermore, the cost that was arrived at through GA

optimisation did not improve on the results that were obtained with the

Greedy HC optimisation. Although the computational time taken by the

GA execution is a lot shorter than HC, an additional reasonable amount

of time should be taken in order to ensure that good quality schedules are

obtained. HC managed to improve the initial feasible schedule without

fail for all datasets and always surpassed the GA results, therefore, it is

suggested that the proposed HC be used as a basis of the optimization

processes.

Through the findings of this research the claim made by Ross et al.

(1998) that sometimes the GA is not a very good approach to solving

problems, is supported by empirical evidence.

213

Even though the proposed approach has produced very encouraging and

consistent results, as reported in the previous chapter, it is still

recommended that a possibility of improving the solutions be sought. Once

the fact that the Greedy Hill Climbing slots permutations are merely a local

search procedure is realized then it is considered desirable that a global

search procedure be incorporated in the proposed framework. For this

purpose, the Genetic Algorithm (GA) was chosen to reorder the slots in the

spread matrix (with the aim of maximizing the gap between consecutive

exams). Even though GA is highly dependent on the adjustment of

parameters, the fact that it was reported as capable of producing high

quality examination schedules, provided a motivation for our investigation

of GA in the context of the proposed examination scheduling. As such, GA

was implemented and has substituted for the traditional Greedy Hill

Climbing. From the experiments conducted on benchmark datasets, it was

revealed that Greedy Hill Climbing outperformed the GA in all cases, where

the costs obtained by HC were considerably lower in all problems. Though

the technique of slot permutations proposed using HC is just a local search

procedure it was concluded that our approach of restarting the search from

different starting points managed to explore the search space efficiently.

214

CHAPTER 6

6 6

Conclusions and Future Work

This chapter presents the summary of the work conducted in this thesis.

The proposed approach to solving university examination timetabling

problem is summarized in brief. The contributions made to the area of

examination timetabling are also highlighted. Consequently, future

research directions based on the proposed approach are also discussed.

6.1 Summary of the Research

In this thesis, we presented and discussed our proposed approach to

solving the university’s examinations scheduling problems. In our initial

study, we believe that when enough information is supplied, using a

systematic method, the real world examination scheduling problems can

be solved efficiently and effectively. Even though the real world

university examination scheduling problems are complex and very

challenging to solve, we are certain that by imitating how people solve

complex problem solutions are always reproducible. When people deal

with problems, first they look at them in a macro perspective or bigger

picture in order to grasp the essence of the problem, before focusing on

the minute details. When deriving this simplified “big picture”, people

215

will normally do some information pre-processing in order to group

related data and by doing so to avoid being drawn into detail. Such a

simplification can take various forms but the common characteristic is a

deliberate tradeoff between the accuracy and generality of problem

representation. The most easy and least strenuous way of problem

simplification is when the problems is divided and then solved in stages.

Inspired by human approach to solving problems, we have

proposed a Domain Transformation Approach in solving the university

examination scheduling problems. The Domain Transformation Approach

that was proposed, is an approach that transforms the original

timetabling problem domain into smaller sub-domains that manages to

reduce the problems’ complexities effectively. By subdividing the real

world examination scheduling problems into smaller sub-problems, each

problem was solved more effectively.

We have chosen to solve the examinations scheduling problems by

performing a few independent stages in sequence: 1) pre-processing, 2)

scheduling, and 3) optimization. This approach is quite similar to

construction and improvement (Hertz, 1991) but in our approach, it is a

bit different, because we introduced a pre-processing step prior to both

the scheduling (construction) and optimization (improvement) phases.

In the early stages of this study, we postulated that pre-processing

of data and constraints provides more meaningful information that could

be utilized at a later stage in the scheduling process. When performing

pre-processing, certain data and constraints would be grouped according

to certain criteria (for example: the grouping of conflicting exams and

216

non-conflicting exams). This will reduce cross-checking and cross

referencing in voluminous data during scheduling.

Based on our preliminary study, we learned that information processing

was a key element to Granular Computing (Pedrycz et al., 2000; Bargiela

and Pedrycz, 2002; Bargiela et al., 2004; Bargiela and Pedrycz, 2008). (The

information processing approach is a multilevel processing approach,

which is capable of producing a new representation of meaningful data.

The basic details of the original data is hidden, thus directly reducing the

complexities of the problems.

Inspired by this concept, which we hypothesize could ease the

scheduling process significantly, we have taken an approach which

consists of an information pre-processing stage, followed by real

scheduling and separate optimization steps. The work based on our

proposed framework are summarized below:

 Pre-processing: The very first step taken in our proposed

examination scheduling algorithm was the pre-processing of data and

constraints prior to the generation of the feasible timetable. This was

performed through the abstraction of essential features from the

original students/exams data. By performing this step, we successfully

mapped the original problem expressed in multi-dimensional space of

exams and students onto a reduced dimensionality space. Data was

grouped together according to certain criteria and therefore the pre-

processed data, for example the exam conflict matrix and spread

matrix were rendered more meaningful. These aggregated data, which

could be referred to as information granules according to the concept

217

of Granular Computing (Pedrycz et al., 2000; Bargiela and Pedrycz,

2002; Bargiela et al., 2004; Bargiela and Pedrycz, 2008), supplied us

with important information for efficient scheduling. While more time

could be saved because cross referencing and checking of

data/constraints can be eliminated, the schedule is feasible (in terms

of ensuring no conflicting exams are scheduled concurrently) and is

generated in a short amount of time. This is guaranteed because the

scheduling at a later stage (after pre-processing) will always ensure

that the exams that will be assigned to a particular slot are from the

same group (group of non-conflicting exams – this is, supplied through

pre-processing).

 Scheduling: After pre-processing, scheduling was done by using a

standard Graph Coloring method with Largest Degree ordering. In

our proposed allocation method, exams with the highest conflicts are

placed first in the first available timeslot and is later moved to other

exams with lower conflicts. The allocation of exams was determined

by decisions made on the basis of four preferences: assigning

conflicting exams to none empty slots, assigning conflicting exams to

empty slots, assigning none conflicting exams to none empty slots and

assigning none conflicting exams to empty slots. Each of these has the

following value 0.4, 0.3, 0.2, and 0.1 respectively. The higher the

value, the higher the preference for allocation. A verification

procedure was used to verify whether the schedule generated was

feasible. Once verified, a splitting and merging process was performed

on the schedule. By splitting a slot p and reassigning constituent

exams, the total number of slots could be reduced if every exam in slot

218

p can be allocated to some other slot, i.e. not in conflict with exams in

other slots.

 Backtracking: Backtracking was implemented in this study with the

aim of reducing the number of slots after the construction of a feasible

but not optimal solution (or infeasible – for example in this research

the solution for yorf83 did not fulfil the minimum number of

timeslots) in the scheduling stage. The implementation of the

backtracking was based on the backtracking’s algorithm proposed by

Carter et al. (1996) but with some modifications. In general, Carter et

al. (1996) implemented backtracking during the initial placement of

exams in cases where exam(s) exist that cannot be scheduled to any of

the available slots. The assignment of exams that are in conflict with

the unscheduled exams will be undone in order to schedule it. As

opposed to our approach, the placement of all exams to their allocated

slots has already been completed therefore we attempted to convert an

infeasible schedule into a feasible one, for the purpose of reducing 1

slot. A reduction in the number of slots at an early stage is desirable,

since the cost can then be minimized at a later stage. An initial

schedule with a few slots (less than the requirement) can always be

altered into one which fulfils this constraint. We postulate that it

could provide a useful buffering space during the optimization

involving permutations of slots.

 Optimization: Rather than attempting direct optimization of

assignments of exams to specific time-slots, optimizations are

219

performed on the feasible (but not optimal) schedules obtained in the

previous stage. To minimize the cost, we perform the minimization of

total slot conflicts, followed by further optimization on the initial

schedule by: the permutations of exam slots and the reassignment of

exams between slots.

o Minimization of Total Slot Conflicts: The notion of a slot

conflict is a generalization about the notion of an exam conflict,

because in any feasible schedule, conflicting exams will always

be assigned to different timeslots. The conflict between exams

is a binary property (which can be determined via the domain

transformation approach) that remains no matter how many

students are enrolled in those exams. We have also considered

determining the exam-slot conflict count by summing the

number of slots that contain conflicting exams for a particular

exam i. The exam-slot conflict is a binary property that does

not increase in value if exam i has several conflicting exams in

one slot. The information of the total slot conflicts acts as a

measure of the ability to reschedule exams between slots. A

high total count means fewer slots are available for scheduling

and vice versa. Total slot conflicts can simply be minimized by

taking each exam from every slot and reassigning it to a new

slot that could reduce the total slot conflicts count if there are

any. Minimization has the potential to reduce the cost of the

exam schedule, however, in the proposed approach, this

process is considered to be an augmentation of the potential for

following minimization of the cost of the schedule.

220

o Permutations of Exam Slots: Taking into account the

definition of the Cater cost (2.1) where students taking exams

that are t slots apart, where t = {1, 2, 3, 4, 5,6} will give the

penalty weight of 16, 8, 4, 2, 1, and 0 respectively, we can

devise the task of optimization of the exam spread as a task of

re-arranging the time slots such that the smallest sum of

elements on the first minor diagonal can be achieved in the

rearranged spread matrix (Rahim et al., 2009; Rahim et al.,

2012). With this in mind, large numbers in the spread matrix

should be moved to minor diagonals that are of the order 6 or

more. The permutations in the spread matrix involve the

swapping of slots and the repetition of block shifts. In the

Greedy Hill Climbing implementation, the provisional

swapping of a slot with all other slots is done and the Carter

cost (2.1) is evaluated. The swap will be remembered and the

matrix will be updated accordingly if the cost is reduced.

Realizing that this optimization may lead to local optima, we

have adopted a simple measure of restarting the optimization

from several initial orderings and picking the best solution

from a pre-defined number of runs.

Prior to the idea of proposing Greedy Hill Climbing, by

exploiting the knowledge about the structure of the cost

function, we have initially proposed a scheme for renumbering

the timeslots in the spread matrix by proposing two methods,

namely, Method 1 and Method 2. These methods which later

221

contributed to the idea of Greedy Hill Climbing slot

permutations, are described below.

The first method focused on extracting the smallest element in

each row of the spread matrix and places it in the first minor

diagonal and later renumbered the relevant time slots. This

method works best if the objective it to minimize the number of

adjacent exams.

The second method also concerned the smallest element, but

unlike the first one, Method 2 extracted the smallest elements

in both rows and columns in the spread matrix. These

elements were shifted towards the first minor diagonal and

gave a more balanced re-numbering that could minimize the

sum of higher minor diagonals better.

 Reassignments of Exams: In the third stage of optimization, we

have performed some exams reassignments with the aim to further

reduce the Carter cost (2.1). Exams that make a large contribution to

the first minor diagonal entries of the reordered spread matrix are

reassigned to slots represented by higher minor diagonals (preferably

of order 6 or higher).

 Substitution of Greedy Hill Climbing Method: While proposing a

very systematic approach that we hypothesize could reduce the

timetable cost significantly using the greedy Hill Climbing slots

permutations in the optimization stage, we tried to substitute this

222

procedure with other procedures. The substitutions were performed

with the aim of analyzing whether they could improve the

performance in generating quality feasible schedules in comparison to

our existing approach.

o We have implemented the Late Acceptance Hill Climbing

(LAHC) algorithm which was claimed to be a very powerful

strategy by Burke and Bykov (2008; 2012), to substitute the

Greedy Hill Climbing in the optimization phase. In our slot

permutations using the LAHC implementation, we used a

variable to keep the best cost with an array of length L. During

the permutations, we took the best cost whenever we found one

and updated the spread matrix accordingly to the new

orderings. In contrast to the LAHC implementation, a new

solution from a single swap was evaluated against an accepted

solution from a swap L steps earlier. This solution was added

to the list L if it surpassed the existing solution. We

implemented the list as a Round Robin list, modifying items at

specific location based on the length of L and the number of

generations using the modulus of number of generations with

L as the index. The way our LAHC was implemented was a bit

different as proposed by Burke and Bykov (2008; 2012) to cater

for the smaller search space due to the fact that we

implemented the LAHC for slots permutations on the spread

matrix of a feasible solution with a small number of timeslots.

o Realizing that both the Greedy Hill Climbing and the Late

Acceptance Hill Climbing strategies are local search

223

procedures, we knew that this might cause the solution search

to be stuck in the local optimum. Motivated by the fact that a

global search procedure is known to guarantee better results in

finding the best possible solution (out of all possible solutions

in the search space), we implemented a Genetic Algorithm

(GA) to substitute the Hill Climbing procedure. In our GA

implementation, the original ordering of slots was reordered in

order to find the best arrangement with the lowest cost. The

original parent was a data structure that contained the initial

ordering of slots. New parents were created by taking a portion

of the rows (in blocks) and combining them with another

portion from other parents. In generating the offsprings, each

parent was crossed over with all other parents at a certain

random point R. Identical offspring were eliminated and

replaced with a mutated data structure (where a random slot t

was interchanged with a random slot u). The best offspring

with the lowest cost was selected to be the next parent in the

next generation. This process continued for a certain number of

iterations. The effect of this procedure is that the initial

orderings of slots will be shuffled (quite similar to the effect of

slots permutations using Hill Climbing) and the cost will be

improved.

224

6.2 Summary of Results

The approach that we proposed to solving the examination scheduling

problem has been proven to be very effective in generating feasible exam

timetables. When the original domain was transformed into smaller

domains the problem was subdivided rendering it less complex and

making it easy to solve. In order to analyze the effectiveness of our

proposed framework, we have done experiments on benchmark dataset

problems. We have tried to solve the examination timetabling benchmark

problems, i.e. University of Toronto, University of Nottingham and

International Timetabling Competition 2007 (ITC 2007) datasets.

In the early stages, through pre-processing, we have managed to

group together important data from the original students-exams data and

created new representations of data, for example, the exams conflict

matrix and spread matrix which supplied very important information

needed for the scheduling. Having the pre-processed data, lengthy search

or cross checking of implicit data can be avoided during scheduling.

The allocation method in the scheduling stage that we used which

was based on Graph Colouring algorithm with Largest Degree pre-

ordering, has always created feasible examination schedules which satisfy

the hard constraint (no conflicting exams should be assigned concurrently).

The procedure that we applied that manages to split and merge possible

timeslots has caused the timetables that we created always fulfil the

minimum number of required timeslots (for all datasets except for yorf83

in the Toronto dataset). After the main scheduling stage, the backtracking

procedure was performed on all the datasets to further reduce the number

225

of slot. Backtracking has successfully decreased the number of required

time slots in many datasets, and this offered an advantage both in terms of

making sure that the specified number of time slots is not exceeded and

providing a buffer-space for slots permutations in the subsequent

optimization stage.

The optimization phase which started with the minimization of slot

conflicts was performed immediately after the initial feasible schedule was

obtained in the scheduling (with backtracking) process. The result of

minimizing the total slot conflicts was that more slots were prepared that

can be used for the rescheduling of exams. To the best of our knowledge,

the potential for the rescheduling of exams has not been quantified in the

literature so far, despite it being a key factor enabling the improvement of

the initial feasible schedule. During the experiments in the course of this

thesis, by minimizing the slot conflicts, the cost of the exam schedule was

also minimized. This stage can now be considered primarily as the

enhancement of the potential for the subsequent minimization of the cost

of the schedule.

In the next stage of optimization, permutations of slots in the

spread matrix decreased the Carter cost (2.1) of the initial feasible

schedule (which was not optimal) significantly for all the datasets that

were experimented with, attaining an average of a 50% improvement. This

shows that the Greedy Hill Climbing implemented for the slot

permutations is an effective procedure that manages to improve the

quality of the feasible exams schedule generated earlier.

We have also implemented the Late Acceptance Hill Climbing

(LAHC) strategy to substitute the greedy Hill Climbing in our proposed

226

framework. This strategy was incorporated successfully in the proposed

framework and produced quite encouraging results (on average the

performance is on par with the Greedy Hill Climbing). However, it has

been observed that the parameters used do not give a consistent

performance to all the datasets. In some cases, when the parameter size is

increased, the cost obtained is better, but in some cases, the increase in the

parameters also increased the cost, which meant it reduced the quality of

the existing schedule.

Realizing that the proposed Greedy Hill Climbing is a local search

procedure, even though overwhelming improvement was obtained, we

were concerned that it might merely find the local optimum in the solution

space. As such, the Genetic Algorithm optimization (a global search

procedure) was implemented in order to substitute the Greedy Hill

Climbing algorithm proposed earlier. This is with the aim that it would

improve the Carter cost (2.1) obtained by Greedy Hill Climbing.

The GA optimization involved the reordering of timeslots by

utilizing crossover and mutation concepts and at the end of the processes,

an improved timetable with new timeslot ordering (reduced Carter cost

(2.1)) was achieved.

This GA optimization, when tested on all benchmark datasets,

managed to improve the cost of the initial feasible schedule obtained from

each scheduling stage. However, it was realized that this procedure works

best within a certain range of parameters (and depended on careful

parameter tweaking). The good cost obtained by the GA did not manage to

outperform the results obtained by utilizing the proposed Greedy HC in all

cases (on benchmark datasets).

227

From the above findings, regarding the results based on the three

types of slot re-ordering optimizations, we can see that all three have been

successfully implemented and incorporated into our proposed framework.

This indirectly shows that the framework, which consists of a few stages

(i.e. pre-processing, scheduling and optimization), is proven to be an

effective and flexible framework where some procedures can be replaced

and incorporated into the framework proficiently. This was shown by the

substitution of the LAHC and the GA in the approach.

The first stage of optimization has revealed that our greedy Hill

Climbing produced expected results. Despite the fact that the results of the

Late Acceptance Hill Climbing strategy that were produced were on par

(on average) with Greedy Hill Climbing the parameter used in the LAHC

did not demonstrate a consistent performance. Due to this, we recommend

that traditional Greedy Hill Climbing be utilized in the slot permutation

phase.

Similarly to the LAHC, the GA will not be selected to optimize the

timetables according to the outcome of the experiments as it was clearly

shown that in all the experiments, Greedy Hill Climbing outperformed the

GA in all cases of producing good quality schedules. All costs obtained by

Greedy HC are considerably lower when compared to the GA.

The findings indicate that even though Greedy Hill Climbing is just

a local search procedure by restarting the search from different starting

points iteratively, the search managed to obtain good quality solutions

(managed to avoid being stuck in local optima).

After performing the slot permutations, the cost was further

reduced by reassigning some exams to other slots. This process exploited

228

the information in the spread matrix where exams that make large

contributions to the first minor diagonal entries of the reordered spread

matrix are reassigned to slots represented by higher minor diagonals

(preferably of the order 6 or higher). Based on the results that were

reported, the cost produced by reassigning some exams managed to further

reduce the cost without fail.

The whole stage of the optimization was performed twice, and it

was observed that in some datasets, the second round was worthwhile and

more improvements were recorded. It is worth noting here that feasible

solutions with lower total slot conflicts provide a good basis to minimize

the cost via a simple reordering of slots and the later reassignment of

exams between slots.

Overall the proposed approach in this study produced very high

quality exams schedules. The proposed method for examination

timetabling utilising Greedy HC optimisation has shown to deliver

consistently competitive results for all benchmark datasets (no matter how

large or difficult each dataset is). Comparing the average mean deviation

from the best known solution for each benchmark dataset, our method

shows that the performance are consistent on all types of problem and at

average outperforms all other results except by Carter et al. (1996) which

is the collection of best of all its approaches. The variance of these

deviations is smallest for our method when compared to others reported in

the literature. Unlike some constructive methods in the literature that

demonstrated an uneven performance, where they performed well on some

benchmark problems and less well on others. This is a rather undesirable

characteristic from the user’s perspective, as there is no way of predicting

229

the quality of the solution that will be obtained using a particular method

on a new dataset. Apart from this, it was shown that several of the best

results were obtained by the methods that did not report any results for a

few datasets.

In conclusion, it is clear that the Domain Transformation Approach

proposed in this study is very simple and competitive in terms of

generating reliably high quality exam schedules. By transforming the

original real world scheduling problem into smaller sub-problems and

applying appropriate pre-processing, we managed to reduce the

complexities of the problem, thus saving a substantial computational effort

compared to other methods that require customized post-processing. We

would also like to highlight that an important feature of the proposed

optimization is that its deterministic pattern in the results generated for

all datasets is always preserved, which makes it a novel contribution to the

examination scheduling research field.

6.3 Contributions

The following contributions to the field of examination scheduling were

presented in this thesis:

 Reduced complexity of the problem domain. The Domain

Transformation Approach which was proposed based on the

insights derived from the Granular Computing concept that has

clearly transformed the real world examination scheduling problem

into smaller problem domains, allowing the problems to be

230

conquered or solved in stages, making it a less complex problem

that can always be solved in a reasonable amount of time.

 Reduction of problem space. Pre-processing of constraints has

grouped together certain data which provided very useful

information. The creation of the exam conflict matrix and the

spread matrix from the pre-processing stage has managed to reduce

the laborious searching that was required during scheduling. These

matrices are very easy to generate and can be used as new data

representations in any examination scheduling algorithm.

 Ensuring feasible solutions. Allocation of exams to slots and split

and merge procedures successfully created feasible exam schedules

(without fail) with encouraging figures in terms of number of slots

and cost.

 Efficiency. Backtracking procedure (Carter et al., 1996) which is

an improved algorithm that was proposed and managed to further

reduce the number of timeslots of the initial feasible schedule.

 Optimization procedures. The Optimization stage that consists

of three steps: minimization of total slot conflicts, permutation of

slots and reassignment of exams were proven to be very effective

231

procedures at optimizing the initial feasible exam schedules. A

significant reduction in costs for all datasets was recorded.

 Minimization of Total Slot Conflicts approach. Minimization

of Total Slot Conflicts has helped to reduce the cost of the exam

schedule. This process was considered as an augmentation of the

potential for following minimization of the cost of the schedule.

Concisely, when the total of slot conflicts is low, on average, there

are more slots that can be used for the rescheduling of exams. To

the best of our knowledge, the potential for the rescheduling of

exams has not been quantified in the literature despite it being a

key factor enabling the improvement of the initial feasible schedule.

 Permutation of slots approach. The Permutation of slots, which

was implemented as a variant of the Greedy Hill Climbing

algorithm, managed to produce very encouraging results on par

with other results documented (based on other constructive

methods) in the literature. Even though it was just a local search

procedure, our approach of restarting the search from different

starting points, managed to outperform the Genetic Algorithm

optimization (a global search procedure).

 Robust scheduling framework. The proposed framework in this

study is very systematic, efficient, robust and is proven to be very

flexible. This was demonstrated by the success of substituting other

232

procedures in the framework, i.e. the Late Acceptance Hill Climbing

and the Genetic Algorithm. Both procedures managed to produce

quite good results. This indirectly shows that every stage in our

proposed framework is independent and could therefore be

integrated with other scheduling approaches in this area.

 Consistent performance. Through the avoidance of exhaustive

exploration of the search space which normally deploys random

selection between alternative choices during the optimization

process, the approach is capable of generating solutions that are

reproducible and consistent. This feature exhibits that the proposed

approach managed to raise the generality of the examination

scheduling algorithm, which is universal and applicable to a wide

range of university examination scheduling problem.

 Deterministic optimization pattern. Deterministic optimization

pattern obtained for all benchmark datasets is an overwhelming

achievement. The approach carried out in the research resulted in a

similar pattern for all datasets as described in Section 4.14, 4.15

and 4.16. This behaviour implies a deterministic optimization

pattern for all datasets resulting to an overwhelming achievement

since there are no claims made by other researchers resulting in a

deterministic pattern for optimization making the proposed

optimization a novel contribution to this field.

233

6.4 Future Work

It would be very interesting to extend the approach that is proposed in this

thesis to solve the capacitated examination scheduling problems. We

expect that the proposed method can be adapted, in a relatively

straightforward manner, to the capacitated scheduling problem by

introducing appropriate granular data structures that would permit the

required domain transformation in the optimization process.

 Apart from this, the investigation of different pre-ordering of exams

(for example: other graph coloring heuristics) before real scheduling could

be performed to improve the solutions. In addition, further research on

how to get the best parameter settings in the search procedure (to be

specific the Genetic Algorithm because it was highly dependent on

parameter tweaking) in order to guide the searching to obtain global

optimum. Having said this, it is also interesting to study when the Genetic

Algorithm would outperform the proposed Hill Climbing in the proposed

optimization stage.

Lastly, to test the flexibility of the approach, it is recommended

that future research attempts to solve other real world examination

scheduling problems and randomly generated problems using this

approach. Also, other constraints that are suggested in the literature

should be taken into consideration in constructing and determining exam

schedules.

234

Bibliography

Abdul-Rahman, S. A., Bargiela, A., Burke, E. K., Ozcan, E., & McCollum,

B. (2009, September). Construction of examination timetables based

on ordering heuristics. In Computer and Information Sciences, 2009.

ISCIS 2009. 24th International Symposium on (pp. 680-685). IEEE.

Abdul-Rahman, S., Burke, E., Bargiela, A., McCollum, B., & Ozcan, E.

(2011). A constructive approach to examination timetabling based on

adaptive decomposition and ordering (Forthcoming/Available Online).

Abdul-Rahman, S. A., Bargiela, A., Burke, E. K., Ozcan, E., & McCollum,

B. & McMullan, P. (2014). Adaptive linear combination of heuristic

orderings in constructing examination timetables. European Journal

of Operational Research, 232(2), 287-297.

Abdullah, S., Ahmadi, S., Burke, E. K., & Dror, M. (2007). Investigating

Ahuja–Orlin’s large neighbourhood search approach for examination

timetabling. OR Spectrum, 29(2), 351-372.

Abdullah, S., & Alzaqebah, M. (2013). A hybrid self-adaptive bees

algorithm for examination timetabling problems. Applied Soft

Computing, 13(8), 3608-3620.

Abramson, D., & Abela, J. (1992). A parallel genetic algorithm for solving

the school timetabling problem. Division of Information Technology,

CSIRO.

Ahmadi, S., Barone, R., Cheng, P., Cowling, P., & McCollum, B. (2003).

Perturbation based variable neighbourhood search in heuristic space

for examination timetabling problem. Proceedings of multidisciplinary

international scheduling: theory and applications (MISTA 2003),

Nottingham, 155-171.

Al-Betar, M. A., Khader, A. T., & Thomas, J. (2010, August). A

combination of metaheuristic components based on harmony search

for the uncapacitated examination timetabling. In the 8th Int. Conf.

Practice and Theory of Automated Timetabling (PATAT 2010) (pp. 57-

80).

Al-Betar, M. A., Khader, A. T., & Doush, I. A. (2014). Memetic techniques

for examination timetabling. Annals of Operations Research, 218(1),

23-50.

Al-Yakoob, S. M., Sherali, H. D., & Al-Jazzaf, M. (2010). A mixed-integer

mathematical modeling approach to exam timetabling. Computational

Management Science, 7(1), 19-46.

235

Alzaqebah, M., & Abdullah, S. (2014). An adaptive artificial bee colony and

late-acceptance hill-climbing algorithm for examination

timetabling. Journal of Scheduling, 17(3), 249-262.

Anwar, K., Khader, A. T., Al-Betar, M. A., & Awadallah, M. A. (2013,

March). Harmony search-based hyper-heuristic for examination

timetabling. In Signal Processing and its Applications (CSPA), 2013

IEEE 9th International Colloquium on (pp. 176-181). IEEE.

Argile, A., Peytchev, E., Bargiela, A., & Kosonen, I. (1996). DIME: A

shared memory environment for distributed simulation, monitoring

and control of urban traffic.

Asmuni, H., Burke, E. K., Garibaldi, J. M., & McCollum, B. (2005). Fuzzy

multiple heuristic orderings for examination timetabling. In Practice

and Theory of Automated Timetabling V (pp. 334-353). Springer

Berlin Heidelberg.

Asmuni, H., Burke, E. K., Garibaldi, J. M., & McCollum, B. (2007). A novel

fuzzy approach to evaluate the quality of examination timetabling. In

Practice and Theory of Automated Timetabling VI (pp. 327-346).

Springer Berlin Heidelberg.

Asmuni, H., Burke, E. K., Garibaldi, J. M., McCollum, B., & Parkes, A. J.

(2009). An investigation of fuzzy multiple heuristic orderings in the

construction of university examination timetables. Computers &

Operations Research, 36(4), 981-1001.

Bardadym, V. A. (1996). Computer-aided school and university

timetabling: The new wave. In Practice and theory of automated

timetabling (pp. 22-45). Springer Berlin Heidelberg.

Bargiela, A. (1985, November). An algorithm for observability

determination in water-system state estimation. In Control Theory

and Applications, IEE Proceedings D (Vol. 132, No. 6, pp. 245-250).

IET.

Bargiela, A., & Pedrycz, W. (2002). Granular computing: an introduction.

Springer.

Bargiela, A., Pedrycz, W., & Hirota, K. (2002). Logic-based granular

prototyping. In Computer Software and Applications Conference,

2002. COMPSAC 2002. Proceedings. 26th Annual International (pp.

1164-1169). IEEE.

Bargiela, A., Pedrycz, W., & Hirota, K. (2004). Granular prototyping in

fuzzy clustering. Fuzzy Systems, IEEE Transactions on, 12(5), 697-

709.

Bargiela, A., & Pedrycz, W. (2008). Toward a theory of granular computing

for human-centered information processing. Fuzzy Systems, IEEE

Transactions on, 16(2), 320-330.

236

Boizumault, P., Delon, Y., & Peridy, L. (1996). Constraint logic

programming for examination timetabling. The Journal of Logic

Programming, 26(2), 217-233.

Bolaji, A. L. A., Khader, A. T., Al-Betar, M. A., Awadallah, M. A., &

Thomas, J. J. (2012, August). The effect of neighborhood structures on

examination timetabling with artificial bee colony. In 9th

International Conference on the Practice and Theories of Automated

Timetabling (PATAT 2012) (pp. 131-144).

Bosch, R. and Trick, M. (2005). Search Methodologies: Introductory

tutorials in optimisation and decision support techniques, chapter

Integer Programming, (pp. 69-96). Berlin:Springer, Berlin.

Broder, S. (1964). Final examination scheduling. Communications of the

ACM,7(8), 494-498.

Burke, E. K., Elliman, D. G., & Weare, R. F. (1994a). A Genetic Algorithm

for University Timetabling, in proceedings of the AISB workshop on

Evolutionary Computing. University of Leeds, UK.

Burke, E. K., Elliman, D. G., & Weare, R. F. (1994b, September). A genetic

algorithm based university timetabling system. In East-West

Conference on Computer Technologies in Education, Crimea, Ukraine

pp35-40.

Burke, E. K., Elliman, D. G., & Weare, R. (1994c). A university timetabling

system based on graph colouring and constraint

manipulation. Journal of Research on Computing in Education, 27, 1-

1.

Burke, E. K., Newall, J. P., & Weare, R. F. (1996b). A memetic algorithm

for university exam timetabling. In Practice and Theory of Automated

Timetabling(pp. 241-250). Springer Berlin Heidelberg.

Burke, E., Jackson, K., Kingston, J. H., & Weare, R. (1997). Automated

university timetabling: The state of the art. The computer

journal, 40(9), 565-571.

Burke, E. K., Newall, J. P., & Weare, R. F. (1998, August). A simple

heuristically guided search for the timetable problem. In Proceedings

of the international ICSC symposium on engineering of intelligent

systems (EIS98)(pp. 574-579).

Burke, E. K., & Newall, J. P. (1999). A multistage evolutionary algorithm

for the timetable problem. Evolutionary Computation, IEEE

Transactions on, 3(1), 63-74.

Burke, E., Bykov, Y., & Petrovic, S. (2001). A multicriteria approach to

examination timetabling. In Practice and Theory of Automated

Timetabling III(pp. 118-131). Springer Berlin Heidelberg.

237

Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated

timetabling. European Journal of Operational Research, 140(2), 266-280.

Burke, E. K., & Newall, J. P. (2004a). Solving examination timetabling

problems through adaption of heuristic orderings. Annals of

operations Research, 129(1-4), 107-134.

Burke, E., Bykov, Y., Newall, J., & Petrovic, S. (2004b). A time-predefined

local search approach to exam timetabling problems. IIE

Transactions, 36(6), 509-528.

Burke, E. K., Kingston, J., & De Werra, D. (2004c). 5.6: Applications to

Timetabling. Handbook of graph theory, 445.

Burke, E., Dror, M., Petrovic, S., & Qu, R. (2005a). Hybrid graph heuristics

within a hyper-heuristic approach to exam timetabling problems.

In The next wave in computing, optimization, and decision

technologies (pp. 79-91). Springer US.

Burke, E. K., Petrovic, S., & Qu, R. (2006). Case-based heuristic selection

for timetabling problems. Journal of Scheduling, 9(2), 115-132.

Burke, E. K., & Bykov, Y. (2006, August). Solving exam timetabling

problems with the flex-deluge algorithm. In Proceedings of

PATAT (Vol. 2006, pp. 370-372).

Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A

graph-based hyper-heuristic for educational timetabling

problems. European Journal of Operational Research, 176(1), 177-192.

Burke, E. K., & Bykov, Y. (2008, August). A late acceptance strategy in

hill-climbing for exam timetabling problems. In PATAT 2008

Conference, Montreal, Canada.

Burke, E. K., & Bykov, Y. (2012). The late acceptance hill-climbing

heuristic (Vol. 192). technical report CSM.

Burke, E. K., Eckersley, A. J., McCollum, B., Petrovic, S., & Qu, R. (2010a).

Hybrid variable neighbourhood approaches to university exam

timetabling.European Journal of Operational Research, 206(1), 46-53.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., & Woodward, J. R.

(2010b). A classification of hyper-heuristic approaches. In Handbook of

Metaheuristics (pp. 449-468). Springer US.

Burke, E. K., Pham, N., Qu, R., & Yellen, J. (2010c). Linear combinations

of heuristics for examination timetabling. Annals of Operations

Research, 194(1), 89-109.

238

Burke, E. K., Qu, R., & Soghier, A. (2010e). Adaptive selection of heuristics

for improving constructed exam timetables. proceedings of PATAT10,

136-151.

Brélaz, D. (1979). New methods to color the vertices of a

graph.Communications of the ACM, 22(4), 251-256.

Caramia, M., Dell'Olmo, P., & Italiano, G. F. (2008). Novel local-search-

based approaches to university examination timetabling. INFORMS

Journal on Computing, 20(1), 86-99.

Carter, M. (1983). A decomposition algorithm for practical timetabling

problems. Department of Industrial Engineering, University of

Toronto.

Carter, M. W. (1986). OR Practice—A Survey of Practical Applications of

Examination Timetabling Algorithms. Operations research, 34(2),

193-202.

Carter, M. W., Laporte, G., & Chinneck, J. W. (1994). A general

examination scheduling system. Interfaces, 24(3), 109-120.

Carter, M. W., Laporte, G., & Lee, S. Y. (1996). Examination timetabling:

Algorithmic strategies and applications. Journal of the Operational

Research Society, 373-383.

Carter, M. W., & Laporte, G. (1996). Recent developments in practical

examination timetabling (pp. 1-21). Springer Berlin Heidelberg.

Carter, M. W., & Johnson, D. G. (2001). Extended clique initialisation in

examination timetabling. Journal of the Operational Research

Society, 538-544.

Carrington, J. R., Pham, N., Qu, R., & Yellen, J. (2007, December). An

enhanced weighted graph model for examination/course timetabling.

InProceedings of the 26th workshop of the UK planning and

scheduling special interest group (pp. 9-16).

Casey, S., & Thompson, J. (2003). GRASPing the examination scheduling

problem. In Practice and Theory of Automated Timetabling IV (pp.

232-244). Springer Berlin Heidelberg.

Chen, X., & Bushnell, M. L. (1995). Efficient branch and bound search with

application to computer-aided design. Kluwer Academic Publishers.

Cheong, C. Y., Tan, K. C., & Veeravalli, B. (2007, April). Solving the exam

timetabling problem via a multi-objective evolutionary algorithm-a

more general approach. In Computational Intelligence in Scheduling,

2007. SCIS'07. IEEE Symposium on (pp. 165-172). IEEE.

Cole, A. J. (1964). The preparation of examination time-tables using a

small-store computer. The Computer Journal, 7(2), 117-121.

239

Colijn, A. W., & Layfield, C. (1995). Conflict reduction in examination

schedules. In 1995). Proceedings of the 1st International Conference

on the Practice and Theory of Automated Timetabling. 30th Aug-1st

Sep (pp. 297-307).

Cooper, T. B., & Kingston, J. H. (1996). The complexity of timetable

construction problems (pp. 281-295). Springer Berlin Heidelberg.

Corr, P. H., McCollum, B., McGreevy, M. A. J., & McMullan, P. (2006). A

new neural network based construction heuristic for the examination

timetabling problem. In Parallel Problem Solving from Nature-PPSN

IX (pp. 392-401). Springer Berlin Heidelberg.

Côté, P., Wong, T., & Sabourin, R. (2005). A hybrid multi-objective

evolutionary algorithm for the uncapacitated exam proximity

problem. In Practice and Theory of Automated Timetabling V (pp.

294-312). Springer Berlin Heidelberg.

David, P. (1998). A constraint-based approach for examination timetabling

using local repair techniques. In Practice and Theory of Automated

Timetabling II (pp. 169-186). Springer Berlin Heidelberg.

Demeester, P., Bilgin, B., De Causmaecker, P., & Berghe, G. V. (2012). A

hyperheuristic approach to examination timetabling problems:

Benchmarks and a new problem from practice. Journal of

Scheduling, 15(1), 83-103.

Di Gaspero, L., & Schaerf, A. (2001). Tabu search techniques for

examination timetabling. In Practice and Theory of Automated

Timetabling III (pp. 104-117). Springer Berlin Heidelberg.

Di Gaspero, L. (2002, August). Recolour, shake and kick: A recipe for the

examination timetabling problem. In Proceedings of the fourth

international conference on the practice and theory of automated

timetabling, Gent, Belgium(pp. 404-407).

Dowsland, K. A., & Thompson, J. M. (2005). Ant colony optimization for

the examination scheduling problem. Journal of the Operational

Research Society,56(4), 426-438.

Duong, T. A., & Lam, K. H. (2004). Combining Constraint Programming

and Simulated Annealing on University Exam Timetabling.

InRIVF (pp. 205-210).

Eley, M. (2007). Ant algorithms for the exam timetabling problem.

In Practice and Theory of Automated Timetabling VI (pp. 364-382).

Springer Berlin Heidelberg.

Erben, W. (2001). A grouping genetic algorithm for graph colouring and

exam timetabling. In Practice and Theory of Automated Timetabling

III (pp. 132-156). Springer Berlin Heidelberg.

240

Ersoy, E., Özcan, E., & Uyar, Ş. (2007, August). Memetic algorithms and

hyperhill-climbers. In Proc. of the 3rd Multidisciplinary Int. conf. on

scheduling: theory and applications, P. Baptiste, G. Kendall, AM

Kordon and F. Sourd, Eds(pp. 159-166).

Even, S., Itai, A., & Shamir, A. (1976). On the complexity of time table and

multi-commodity flow problems. In Foundations of Computer Science,

1975., 16th Annual Symposium on (pp. 184-193). IEEE.

Gogos, C., Alefragis, P., & Housos, E. (2012). An improved multi-staged

algorithmic process for the solution of the examination timetabling

problem.Annals of Operations Research, 194(1), 203-221.

Guéret, C., Jussien, N., Boizumault, P., & Prins, C. (1996). Building

university timetables using constraint logic programming. In Practice

and Theory of Automated Timetabling (pp. 130-145). Springer Berlin

Heidelberg.

Gunawan, A., Ng, K. M., & Poh, K. L. (2007a). An improvement heuristic

for the timetabling problem. International Journal of Computational

Science, 1(2), 162-178.

Gunawan, A., Ng, K. M., & Poh, K. L. (2007b). Solving the teacher

assignment-course scheduling problem by a hybrid algorithm. World

Academy of Science, Engineering and Technology, 33, 259-264.

Gunawan, A., Ng, K. M., & Poh, K. L. (2008, August). A hybrid algorithm

for the university course timetabling problem. In Proceedings of the

7th International Conference on the Practice and Theory of

Automated Timetabling.

Gyori, S., Petres, Z., & Várkonyi-Kóczy, A. R. (2001). Genetic Algorithms in

Timetabling. A New Approach. Budapest University of Technology and

Economics, Hungary.

Hertz, A. (1991). Tabu search for large scale timetabling

problems. European journal of operational research, 54(1), 39-47.

Johnson, D. (1990). Timetabling university examinations. Journal of the

Operational Research Society, 39-47.

Joslin, D. E., & Clements, D. P. (1999, July). "Squeaky Wheel"

Optimization. In AAAI/IAAI (pp. 340-346).

Kahar, M. N. M., & Kendall, G. (2010). The examination timetabling

problem at Universiti Malaysia Pahang: Comparison of a constructive

heuristic with an existing software solution. European journal of

operational research, 207(2), 557-565.

Kendall, G., & Hussin, N. M. (2005a). An investigation of a tabu-search-

based hyper-heuristic for examination timetabling.

241

In Multidisciplinary Scheduling: Theory and Applications (pp. 309-

328). Springer US.

Kendall, G., & Hussin, N. M. (2005b). A tabu search hyper-heuristic

approach to the examination timetabling problem at the MARA

university of technology. InPractice and Theory of Automated

Timetabling V (pp. 270-293). Springer Berlin Heidelberg.

Kendall, G., & Li, J. (2007). Combining examinations to accelerate

timetable construction. In Proceedings of The 7th International

Conference on the Practice and Theory of Automated Timetabling,

Montreal.

Kiaer, L., & Yellen, J. (1992). Weighted graphs and university course

timetabling. Computers & operations research, 19(1), 59-67.

Kristiansen, S., & Stidsen, T. R. (2013). A comprehensive study of

educational timetabling-a survey. Department of Management

Engineering, Technical University of Denmark.

Laporte, G., & Desroches, S. (1984). Examination timetabling by

computer.Computers & Operations Research, 11(4), 351-360.

Lewis, R. (2008). A survey of metaheuristic-based techniques for university

timetabling problems. OR spectrum, 30(1), 167-190.

McCollum, B. (2007). A perspective on bridging the gap between theory

and practice in university timetabling. In Practice and theory of

automated timetabling VI (pp. 3-23). Springer Berlin Heidelberg.

McCollum, B., McMullan, P., Parkes, A. J., Burke, E. K., & Qu, R. (2012).

A new model for automated examination timetabling. Annals of

Operations Research, 194(1), 291-315.

Mehta, N. K. (1981). The application of a graph coloring method to an

examination scheduling problem. Interfaces, 11(5), 57-65.

Merlot, L. T., Boland, N., Hughes, B. D., & Stuckey, P. J. (2003). A hybrid

algorithm for the examination timetabling problem. In Practice and

theory of automated timetabling IV (pp. 207-231). Springer Berlin

Heidelberg.

MirHassani, S. A. (2006). Improving paper spread in examination

timetables using integer programming. Applied mathematics and

computation, 179(2), 702-706.

Ozcan, E., & Ersoy, E. (2005, September). Final exam scheduler-FES.

InEvolutionary Computation, 2005. The 2005 IEEE Congress on (Vol.

2, pp. 1356-1363). IEEE.

242

Ozcan, E., Bykov, Y., Birben, M., & Burke, E. K. (2009, May). Examination

timetabling using late acceptance hyper-heuristics. In Evolutionary

Computation, 2009. CEC'09. IEEE Congress on (pp. 997-1004). IEEE.

Pais, T. C., & Burke, E. (2010). Choquet integral for combining heuristic

values for exam timetabling problem. PATAT 2010, 305.

Paquete, L. F., & Fonseca, C. M. (2001, March). A study of examination

timetabling with multiobjective evolutionary algorithms.

In Proceedings of the 4th Metaheuristics International Conference

(MIC 2001) (pp. 149-154).

Peck, J. E. L., & Williams, M. R. (1966). Algorithm 286: Examination

scheduling. Communications of the ACM, 9(6), 433-434.

Pedrycz, W., Smith, M. H., & Bargiela, A. (2000). A granular signature of

data. In Fuzzy Information Processing Society, 2000. NAFIPS. 19th

International Conference of the North American (pp. 69-73). IEEE.

Petrovic, S., & Bykov, Y. (2003). A multiobjective optimisation technique

for exam timetabling based on trajectories. In Practice and Theory of

Automated Timetabling IV (pp. 181-194). Springer Berlin Heidelberg.

Petrovic, S., & Burke, E. K. (2004). University Timetabling. Ch. 45 in the

Handbook of Scheduling: Algorithms, Models, and Performance

Analysis (eds. J. Leung), Chapman Hall.

Petrovic, S., Yang, Y., & Dror, M. (2005). Case-based initialisation of

metaheuristics for examination timetabling. In Multidisciplinary

scheduling: theory and applications (pp. 289-308). Springer US.

Peytchev, E. T., Bargiela, A., & Gessing, R. (1996, October). A predictive

macroscopic city traffic flows simulation model. In 8th European

Simulation Symposium, Genoa, Italy, ISBN (pp. 1-565555).

Pillay, N., & Banzhaf, W. (2009). A study of heuristic combinations for

hyper-heuristic systems for the uncapacitated examination

timetabling problem.European Journal of Operational

Research, 197(2), 482-491.

Pillay, N. (2013). A survey of school timetabling research. Annals of

Operations Research, 218(1), 261-293.

Qu, R., & Burke, E. (2005). Hybrid variable neighborhood hyperheuristics

for exam timetabling problems.

Qu, R., Burke, E. K., McCollum, B., Merlot, L. T., & Lee, S. Y. (2006). A

survey of search methodologies and automated approaches for

examination timetabling. Computer Science Technical Report No.

NOTTCS-TR-2006-4, UK.

243

Qu, R., & Burke, E. K. (2007). Adaptive decomposition and construction for

examination timetabling problems. Proceedings of the 3rd

Multidisciplinary International Scheduling: Theory and Applications,

418-425.

Qu, R., & Burke, E. K. (2009). Hybridizations within a graph-based hyper-

heuristic framework for university timetabling problems. Journal of

the Operational Research Society, 60(9), 1273-1285.

Qu, R., Burke, E. K., McCollum, B., Merlot, L. T., & Lee, S. Y. (2009a). A

survey of search methodologies and automated system development

for examination timetabling. Journal of scheduling, 12(1), 55-89.

Qu, R., Burke, E. K., & McCollum, B. (2009b). Adaptive automated

construction of hybrid heuristics for exam timetabling and graph

colouring problems.European Journal of Operational

Research, 198(2), 392-404.

Qu, R., He, F., & Burke, E. K. (2009c). Hybridizing integer programming

models with an adaptive decomposition approach for exam

timetabling problems. The 4th Multidisciplinary International

Scheduling: Theory and Applications, 435-446.

Rahim, S. K. N. A., Bargiela, A., & Qu, R. (2009). Granular Modelling Of

Exam To Slot Allocation. In ECMS (pp. 861-866).

Rahim, S. K. N. A., Bargiela, A., & Qu, R. (2012). Domain transformation

approach to deterministic optimization of examination

timetables. Artificial Intelligence Research, 2(1), p122.

Rahim, S. K. N. A., Bargiela, A., & Qu, R. (2013a). Hill climbing versus

genetic algorithm optimization in solving the examination timetabling

problem.

Rahim, S. K. N. A., Bargiela, A., & Qu, R. (2013b). Analysis Of

Backtracking In University Examination Scheduling. In ECMS (pp.

782-787).

Rahim, S. K. N. A., Bargiela, A., & Qu, R. (2013c). A Study on the

Effectiveness of Genetic Algorithm and Identifying the Best

Parameters Range for Slots Swapping in the Examination Scheduling.

Reis, L. P., & Oliveira, E. (1999). Constraint logic programming using set

variables for solving timetabling problems. In 12th international

conference on applications of Prolog.

Ross, P., & Corne, D. (1995). Comparing genetic algorithms, simulated

annealing, and stochastic hillclimbing on timetabling problems.

In Evolutionary Computing (pp. 94-102). Springer Berlin Heidelberg.

244

Ross, P., Hart, E., & Corne, D. (1998). Some observations about GA-based

exam timetabling. In Practice and Theory of Automated Timetabling II

(pp. 115-129). Springer Berlin Heidelberg.

Sabar, N. R., Ayob, M., & Kendall, G. (2009, August). Solving examination

timetabling problems using honey-bee mating optimization (ETP-

HBMO). InProceedings of the 4th Multidisciplinary International

Scheduling Conference: Theory and Applications (MISTA 2009),

Dublin, Ireland (pp. 399-408).

Sabar, N. R., Ayob, M., & Kendall, G. (2009, April). Tabu exponential

Monte-Carlo with counter heuristic for examination timetabling.

In Computational Intelligence in Scheduling, 2009. CI-Sched'09. IEEE

Symposium on (pp. 90-94). IEEE.

Sabar, N. R., Ayob, M., Qu, R., & Kendall, G. (2012). A graph coloring

constructive hyper-heuristic for examination timetabling

problems. Applied Intelligence, 37(1), 1-11.

Schaerf, A. (1999). A survey of automated timetabling. Artificial

intelligence review, 13(2), 87-127.

Schmidt, G., & Ströhlein, T. (1980). Timetable construction–an annotated

bibliography. The Computer Journal, 23(4), 307-316.

Sierksma, G. (2001). Linear and integer programming: theory and practice.

CRC Press.

Terashima-Marín, H., Ross, P., & Valenzuela-Rendón, M. (1999).

Application of the hardness theory when solving the timetabling

problem with genetic algorithms. In Evolutionary Computation, 1999.

CEC 99. Proceedings of the 1999 Congress on (Vol. 1). IEEE.

Thomas, J. J., Khader, A. T., & Belaton, B. (2009, August). Visualization

Techniques on the Examination Timetabling Pre-processing Data.

In Computer Graphics, Imaging and Visualization, 2009. CGIV'09.

Sixth International Conference on (pp. 454-458). IEEE.

Thompson, J. M., & Dowsland, K. A. (1998). A robust simulated annealing

based examination timetabling system. Computers & Operations

Research,25(7), 637-648.

Turabieh, H., & Abdullah, S. (2011a). An integrated hybrid approach to

the examination timetabling problem. Omega, 39(6), 598-607.

Turabieh, H., & Abdullah, S. (2011b). A hybrid fish swarm optimisation

algorithm for solving examination timetabling problems. In Learning

and Intelligent Optimization (pp. 539-551). Springer Berlin

Heidelberg.

Ülker, Ö., Özcan, E., & Korkmaz, E. E. (2007). Linear linkage encoding in

grouping problems: applications on graph coloring and timetabling.

245

In Practice and Theory of Automated Timetabling VI (pp. 347-363).

Springer Berlin Heidelberg.

Weare, R., Burke, E., & Elliman, D. (1995, January). A hybrid genetic

algorithm for highly constrained timetabling problems. In Proceedings

of the Sixth International Conference on Genetic Algorithms, ed. LJ

Eshelman (pp. 605-610).

Welsh, D. J., & Powell, M. B. (1967). An upper bound for the chromatic

number of a graph and its application to timetabling problems. The

Computer Journal,10(1), 85-86.

White, G. M., & Xie, B. S. (2001). Examination timetables and tabu search

with longer-term memory. In Practice and Theory of Automated

Timetabling III (pp. 85-103). Springer Berlin Heidelberg.

White, G. M., Xie, B. S., & Zonjic, S. (2004). Using tabu search with longer-

term memory and relaxation to create examination

timetables. European Journal of Operational Research, 153(1), 80-91.

Wong, T., Bigras, P., & de Kelper, B. (2005, October). A multi-

neighborhood and multi-operator strategy for the uncapacitated exam

proximity problem. InSystems, Man and Cybernetics, 2005 IEEE

International Conference on (Vol. 4, pp. 3810-3816). IEEE.

Wilson R. (2010). Ron Wilson Design, [Online] Available at

http://www.acrolite.org/

Wood, D. C. (1968). A system for computing university examination

timetables.The Computer Journal, 11(1), 41-47.

Wren, A. (1996). Scheduling, timetabling and rostering—a special

relationship?. In Practice and theory of automated timetabling (pp.

46-75). Springer Berlin Heidelberg.

Yang, Y., & Petrovic, S. (2004). A novel similarity measure for heuristic

selection in examination timetabling. In Practice and Theory of

Automated Timetabling V (pp. 247-269). Springer Berlin Heidelberg.

