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Abstract 

 

This research investigates Examination Timetabling or Scheduling, with the 

aim of producing good quality, feasible timetables that satisfy hard 

constraints and various soft constraints. A novel approach to scheduling, that 

of transformation of the problem space, has been developed and evaluated for 

its effectiveness.   

The examination scheduling problem involves many constraints due to many 

relationships between students and exams, making it complex and expensive 

in terms of time and resources. Despite the extensive research in this area, it 

has been observed that most of the published methods do not produce good 

quality timetables consistently due to the utilisation of random-search. In 

this research we have avoided random-search and instead have proposed a 

systematic, deterministic approach to solving the examination scheduling 

problem. We pre-process data and constraints to generate more meaningful 

aggregated data constructs with better expressive power that minimise the 

need for cross-referencing original student and exam data at a later stage. 

Using such aggregated data and custom-designed mechanisms, the timetable 

construction is done systematically, while assuring its feasibility. Later, the 

timetable is optimized to improve the quality, focusing on maximizing the 

gap between consecutive exams. Our solution is always reproducible and 

displays a deterministic optimization pattern on all benchmark datasets. 

Transformation of the problem space into new aggregated data constructs 

through pre-processing represents the key novel contribution of this 

research. 
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CHAPTER 1 

1  

Introduction 

 

There are many events and activities in this world that need to be 

synchronized. From social community activities, work and transportation 

to personal agendas, they all need to be planned and scheduled. The 

effectiveness of all this planning depends on the efficiency of the schedules. 

This thesis is focused on transforming the university examinations’ 

scheduling problem into a more structured domain, in which a new 

representation of information through pre-processing is introduced. We 

also studied and implemented a few optimization approaches that enhance 

the solutions generated with the proposed approach.    

This chapter presents the introduction to this research, followed by the 

scope and objectives of this study. Later, we present the thesis contributions 

in brief. Finally the thesis overview is specified which briefly explains how 

this thesis is organized, chapter by chapter. 

 

1.1 Introduction 

 

The word “timetable” (also known as schedule) is defined by the Oxford 

Advanced Learner's Dictionary (which can be accessed from 

http://www.oxfordlearnersdictionaries.com) as “a list showing the times at 

which particular events will happen”. Therefore, timetabling or scheduling 
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can be thought of as a process of creating schedules that will list events 

and the times at which they are planned to occur. In many organizations 

or institutions, scheduling is an important challenge and is considered a 

very tedious and time-consuming task. Normally, the personnel involved 

in preparing the schedules will do it manually and, in most cases, using a 

trial-and-error approach. Some scheduling problems involve many 

constraints, and due to this the preparation of the schedules sometimes 

becomes complex and expensive in terms of time and resources. 

Wren (1996) mentioned that timetabling and scheduling has a 

special type of relationship. The author defined timetabling as follows: 

“Timetabling is the allocation, subject to constraints, of given resources to 

objects being placed in space time, in such a way as to satisfy as nearly as 

possible a set of desirable objectives.” 

   There are various areas of scheduling, which include educational 

scheduling, sports scheduling, transportation scheduling and nurse 

scheduling, etc. Due to the wide spectrum of applications of scheduling, 

research in the area is also scattered and is usually problem-specific. 

Scheduling research not only concentrates on generating a feasible 

timetable but the efficiency of the solution generated is also sought after. 

Numerous approaches or methods have been proposed since the 1960s by 

researchers from the Operational Research and Artificial Intelligence 

area, as surveyed by Qu et al. (2009a). 

Among the broad areas of the scheduling problems, educational 

scheduling is one of the most studied and researched areas in the 

scheduling literature. This is due to the significant and time-critical 
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challenge associated with the requirement of preparing the schedules 

periodically in schools, colleges and universities (quarterly, annually etc.). 

Educational scheduling includes school scheduling (course/teacher 

scheduling), university course scheduling, university examination 

scheduling and more. For this scheduling problem, in most universities 

nowadays, the students are given the flexibility to enrol for courses across 

faculties. That makes this kind of scheduling problem more challenging 

and expensive to solve. In some cases, a number of people are in charge of 

producing the schedules, and thousands of hours have been spent on this.  

As an example, Universiti Teknologi Mara (UiTM) which is 

Malaysia's largest institution of higher learning in terms of size and 

population is no different in generating schedules. Besides the main 

campus in Shah Alam, UiTM has expanded nationwide with 12 state 

campuses, 6 satellite campuses in Shah Alam, 11 state satellite campuses 

and 21 affiliated colleges (http://www.uitm.edu.my/index.php/en/about-

uitm/uitm-profile-history/university-profile).  This university offers more 

than 500 academic programmes delivered by 24 faculties.  The schedules 

will be prepared each semester by the timetable committee which exist in 

every faculty. The committee is responsible to come up with a complete 

schedule, which relates the lecturers, student groups and rooms. Unlike 

other universities, UiTM has a different policy in disseminating 

information to the students, most lectures are being conducted in small 

classes with a minimum of 15 and a maximum of 40 students, which 

introduces additional constrains to the preparation of the schedules.  
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In a different perspective, we have examined the number of 

resources utilized to generate the schedules each semester. For a typical 

UiTM branch campus having 25 departments, each department will have 

a minimum of two persons as a committee member, with a total of 50 

persons involved in the whole exercise which constitute roughly about 

16% of the total faculty members. In preparing the course schedules, 40 

working hours will be required by each committee member, in overall the 

whole exercise consumes 2000 hours. The time spent on producing 

schedules in a large educational establishment may not be obvious; 

however, cumulatively and collectively it is equivalent to the time that 

may be spent to build an airplane (Wilson R, 2010).  

Surveys and overviews of educational timetabling problems and 

the proposed methods to solve them can be found in many publications 

e.g. (Schmidt and Strohlein, 1980), (Carter, 1986), (Carter and Laporte, 

1996), (Burke et al., 1997), (Schaerf, 1999), (Qu et al., 2009a), (Pillay, 

2013), (Kristiansen and Stidsen, 2013) and etc. 

In this work, the focus is the university examination scheduling 

problem. This problem is known as an NP hard real world problem 

(Cooper and Kingston, 1996; and Even et al., 1976). This problem has 

increasingly become more challenging in recent years due to the raise in 

students’ enrolments and especially when students are given the 

flexibility to register modular courses across faculties (Burke et al., 1994a) 

and (McCollum, 2007). 

The standard objective of university examination scheduling 

problem is to satisfy the most important hard constraint that is to produce 
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feasible examination schedules (i.e. no conflicting exams scheduled 

concurrently). However, it is also important to produce a good quality 

schedules according to some preferences, which can be considered as soft 

constraints. The term ‘soft’ refers to the fact that the satisfaction of these 

types of constraints is not really crucial but the fulfilment will benefit 

some entities. 

To date, the number of approaches or methods proposed to solve 

examination scheduling problems is increasing. These research efforts 

have evaluated various approaches, created new methods and produced 

promising findings or results. Efforts have also been devoted to 

automating the scheduling process, so that the generation of schedules 

could be carried out using computer software.  However, due to the 

inherent complexity of the problem, there is still room for improvement in 

the current state of the art. 

Common approaches developed in solving the timetabling problems 

usually consist of two phases, i.e. the construction and improvement phase 

(as claimed by (Hertz, 1991)). With regard to the constructive approach, 

Burke et al., (2010b) stated that a constructive approach begins with an 

empty solution and additionally constructs a final (complete) solution by 

utilizing some heuristics. As opposed to the constructive phase, the 

improvement phase begins with a complete solution where by the quality 

of the solution is enhanced (normally using certain procedures repeatedly 

until the optimal solution is produced). 

One of the most widely used method in the construction phase is 

the graph colouring heuristics, where it is defined as the problem of 



6 
 

colouring vertices of a graph with the most minimum number of colours so 

that no two adjacent vertices share the same colour. Examination 

timetabling problem can be represented as a graph colouring problem, 

where the vertices represent the exams, edges represent the clashes 

between exams and colours represent the time slots (Carter, 1986), 

(Broder, 1964), (Cole, 1964), (Peck and Williams, 1966), (Welsh and 

Powell, 1967), (Laporte and Desroches,1984), (Burke et al., 1994c), (Carter 

et al., 1994), (Burke and Newall, 2004a), (Asmuni et al., 2009), (Abdul-

Rahman et al., 2009), (Kahar and Kendall, 2010) and etc. Therefore, by 

representing the examination scheduling problem using a graph colouring 

problem, the main objective is to find the minimum number of time slots 

to schedule all the exams without any conflicts. 

Though graph colouring heuristic is naturally quite simple, 

however an initial solution with good quality is often produced. Coupled 

with an improvement phase, many good quality examinations schedules 

are being produced by the researchers (Carter, 1986), (Carter et al., 1994), 

(Joslin and Clements, 1999), (Burke and Newall, 2004a), (Asmuni et al., 

2007), (Abdul-Rahman et al., 2009), (Kahar and Kendall, 2010) and etc. 

But despite this fact, the timetabling researchers are aware that there is 

no single heuristic that can be used to solve all timetabling problems 

because of the incorporation of problem-specific features in the heuristics. 

Due to this, current area of research concern is to investigate how to raise 

the level of generality of state of the art algorithm, in order to deal with a 

broader range of problems. 

The other well known objective of examination scheduling in the 

literature is to produce good quality timetable, where each exam taken by 
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individual student should be scheduled as far apart as possible from one 

another. Carter’s evaluation function, proposed by Carter et al. (1996) is 

extensively used by researchers in the literature to measure the quality of 

examination schedules based on the above mentioned criteria. 

 

1.2 Scope and Objective 

 

In this research, as mentioned above, our focus is the university 

examination scheduling.  As such, besides aiming to propose a method 

that could generate feasible examination schedules (which is by satisfying 

the hard constraint, i.e. no conflicting exams are scheduled in the same 

time slot), we are aiming to improve the quality of the initial examination 

schedules constructed. 

Despite the frequent generation of these schedules which occurs 

periodically in all universities across the world, we can still see some 

students having an unfavourable examination schedules. Examples of 

unfavourable schedules include those where students have two or more 

examinations in a row.  We intend to research into how to improve the 

existing methods available in solving this problem to ensure that better 

quality schedules are generated.  

To be specific, our main objective is to propose a transformation of 

the complex university examination timetabling problem space into a 

more structured domain, in which a new representation of information 

through pre-processing is introduced. Other objectives are: 
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 To propose a method (construction phase) that is universal / applicable 

which can be applied to a wider range of examination timetabling 

problems (in line with the concern of raising the generality level of the 

algorithm) that can generate feasible examination schedules (i.e. no 

conflicting exams are scheduled in the same timeslot) 

 To propose optimization method (improvement phase) which will 

guarantee to improve the quality of the schedules (generated in the 

construction phase) in terms of maximizing the gap between 

consecutive exams taken by individual students to allow students to 

have more revision time between exams, by maintaining feasibility. 

Since in this research study, besides aiming to produce feasible 

schedule (by satisfying had constraint), we are looking at maximizing the 

gap between consecutive exams taken by students, thus Carter’s 

evaluation function (Carter et al., 1996) was deliberately selected to 

measure the quality of the examination schedules generated. 

 

1.3 Research Contributions 

 

A summary of the contributions of this thesis are as follows (details are 

presented in Chapter 6): 

 Reduced complexity of the problem domain. The Domain 

Transformation Approach proposed has transformed the 

examination scheduling problem into smaller problem domains 

that can always be solved in a reasonable amount of time. 
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 Reduction of problem space. Pre-processing of constraints has 

grouped together certain data which provided very useful 

information through new data representation which reduced the 

laborious searching during scheduling.  

 Ensuring feasible solutions. Allocation of exams to slots and 

split and merge procedures successfully created feasible exam 

schedules (without fail) with encouraging figures in terms of 

number of slots and cost. 

 Efficiency. Backtracking procedure (Carter et al., 1996) which is 

an improved algorithm that was proposed and managed to further 

reduce the number of timeslots of the initial feasible schedule. 

 Optimization procedures. The Optimization stage that consists 

of three steps: minimization of total slot conflicts, permutation of 

slots and reassignment of exams were proven to be very effective 

procedures at optimizing the initial feasible exam schedules. A 

significant reduction in costs for all datasets was recorded. 

 Robust scheduling framework. The proposed framework in this 

study is very systematic, efficient, robust and is proven to be very 

flexible. This was demonstrated by the success of substituting other 

procedures in the framework proficiently, i.e. substituting the 

existing greedy traditional Hill Climbing with the Late Acceptance 

Hill Climbing and Genetic Algorithm. 

 Consistent performance. Through the avoidance of exhaustive 

exploration of the search space which normally deploys random 
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selection between alternative choices during the optimization 

process, the approach is capable of generating solutions that are 

reproducible and consistent. This feature exhibits that the proposed 

approach managed to raise the generality of the examination 

scheduling algorithm, which is universal and applicable to a wide 

range of university examination scheduling problem. 

 Deterministic optimization pattern. Deterministic optimization 

pattern obtained for all benchmark datasets is an overwhelming 

achievement since to the best of our knowledge there are no claims 

made by other researchers resulting in a deterministic pattern for 

optimization in the university examination scheduling. 

 

1.4 Thesis Overview 

 
This thesis is presented in 6 chapters. The first chapter presents the 

introduction, scope and objectives of the research.  

Chapter 2 describes the overview of the examination scheduling 

problem, the scheduling approaches or methods developed and the 

benchmark datasets used over the years in the scheduling research. Some 

reviews and surveys done by other researchers in the scheduling 

literature are presented. The motivations that led to our research are also 

discussed in this chapter. 

In Chapter 3 we elaborate in detail on the Domain Transformation 

Approach proposed in this study. Throughout this chapter, all the main 

steps involved in generating feasible and improved schedules are 
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described, including the steps involved in pre-processing, scheduling and 

optimizations. 

Chapter 4 discusses the overall results and the analysis after 

applying the proposed methods to the Nottingham, Toronto and the 

International Timetabling Competition (ITC) datasets.  

Optimization in our proposed framework involves minimization of 

total slots conflicts, permutations of exams slots, and reassignments of 

exams between slots. Chapter 5 zooms in into one of the component of 

optimization which is the permutations of exams slots which contributed a 

big percentage of the overall performance achieved through the 

optimization process discussed in Chapter 4. In this chapter, we discussed 

and analysed the effectiveness of incorporating a global search procedure 

(Genetic Algorithm) into the proposed optimization framework in 

comparison to our previous incorporation of local search procedure. 

In Chapter 6, we conclude the thesis by discussing the 

contributions of the study to the research community and highlight 

opportunities for possible future works.   
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CHAPTER 2 

2  

Background and Literature 

Review 

 

This chapter focuses on providing a background to the examinations 

scheduling research by introducing relevant definitions for the scheduling 

and discussing the constraints imposed on this problem, as highlighted in 

the literature. We also summarize and review various surveys done by 

other researchers in this area. Later we briefly summarize the algorithmic 

techniques proposed in this area by providing a timeline of representative 

methods proposed in the last 40 years, in order to outline a general 

landscape of the categories of methods available. Next, the benchmark 

datasets, some pre-ordering strategies, and the most widely-used 

evaluation functions are discussed in brief. In addition to that, we compare 

the performances of some selected methods that reported encouraging 

results. Lastly, we also present the insights and motivations obtained by 

this background study. 

 

2.1 Background of the Scheduling Research 

 

Scheduling research has attracted researchers since the 1960s, especially 

from the Operational Research community. Since then, there has been a 

significant number of research activities in this area and the number is 

still increasing. Over the years, many researchers have made a number of 
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insightful contributions to the scheduling literature, as surveyed by Qu et 

al. (2009a). 

Most of the methods proposed have reported very encouraging 

results, stating that the schedules generated really have good qualities; 

however, it has been reported that not a single method or heuristic is able 

to consistently solve a broad spectrum of scheduling problems because of 

the incorporation of problem-specific features in the heuristics (Burke et 

al., 1994a). This observation calls for more extensive research and study 

into how to generate good quality schedules consistently. 

In the following we provide definitions of the scheduling problem 

adopted by previous researchers, in order to establish the right context for 

understanding the prior contributions. We also provide some reviews of a 

list of publications including surveys conducted by some researchers in 

this area. 

 

2.1.1 Definition of Scheduling According to the 

Scheduling Literature 

 

Carter and Laporte (1996) defined the basic problem in examination 

scheduling as: 

 

“The assigning of examinations to a limited number of available time 

periods in such a way that there are no conflicts or clashes.” 

 
Burke et al. (2004c) further defined scheduling or timetabling as follows: 

“A timetabling problem is a problem with four parameters: T, a finite set of 

times; R, a finite set of resources; M, a finite set of meetings; and C, a finite 
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set of constraints. The problem is to assign times and resources to the 

meetings so as to satisfy the constraints as far as possible.” 

In the timetabling context, meetings can be referred to as events where 

normally involved a meet-up between people at a particular location. A 

general timetabling problem includes scheduling a number of events for 

example exams or courses into certain number of periods.  

 

According to Qu et al. (2009a), examination scheduling (timetabling) 

problems can be defined as: 

“Exam timetabling problems can be defined as assigning a set of exams E = 

e1, e2, … ee into a limited number of ordered timeslots (time periods T = t1, 

t2, …tt and rooms of certain capacity in each timeslot C = C1, C2, … Ct, 

subject to a set of constraints.” 

A more general definition of examination scheduling problems is given 

below: 

The examination scheduling problem is the problem of assigning a set of 

examinations into time slots over a specific period of time such that it 

satisfies the hard constraints (and some optional constraints if possible) 

associated with the available resources. 
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2.1.2 Constraints in the Examination Scheduling 

Problems 

 

Normally, the main challenge of the examination scheduling problem is to 

satisfy a wide variety of constraints. In the scheduling literature, 

constraints can be classified into two categories; hard constraints and soft 

constraints (Qu et al., 2009a).  

 Hard constraints cannot be violated under any circumstances. For 

instance, conflicting exams (i.e. exams which involve the same 

students) cannot be scheduled concurrently. Another example of a 

hard constraint that needs to be satisfied is the room capacity; i.e. 

there must be enough space in a room to accommodate all students 

taking a given exam. 

A timetable that satisfies all the hard constraints is called a feasible 

timetable. 

 

 Soft constraints are not critical but their satisfaction is beneficial to 

students and/or the institution. An example of a soft constraint is the 

requirement to spread out the exams taken by individual students so 

that they have sufficient revision time between the exams for which 

they are enrolled. Typically, one cannot satisfy all of the soft 

constraints; thus, there is a need for a performance function 

measuring the degree of satisfaction of these constraints.  

Some of the key (primary) hard constraints and soft constraints 

suggested by Qu et al. (2009a) are listed in Table 2-1 and Table 2-2 

respectively. 
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Table 2-1: Primary Hard Constraints in the Examination Scheduling 

Problems 

Primary Hard Constraints 

1.  No exams with common resources (e.g. students) can be 

assigned simultaneously 

2.  Resources for exams need to be sufficient (i.e. number of exam 

participants needs to be below the room capacity; enough rooms 

for all of the exams) 

 

Table 2-2: Primary Soft Constraints in the Examination Scheduling 

Problems 

Primary Soft Constraints 

1.  Spread conflicting exams as evenly as possible, or not in x 

consecutive timeslots or days 

2.  Groups of exams are required to take place at the same time, 

on the same day or at one location 

3.  Exams to be consecutive 

4.  Schedule all exams, or the longest exams, as early as possible 

5.  Order (precedence) of exams needs to be satisfied 

6.  Limited number of students and/or exams in any timeslot 

7.  Time requirements (e.g. exams (not) to be in certain timeslots) 

8.  Conflicting exams on the same day to be located nearby 

9.  Exams may be split over similar locations 

10.  Only exams of the same length can be combined in the same 

room 

11.  Resource requirements (e.g. room facility) 

 

 

Examination scheduling problems can be categorized as either 

uncapacitated or capacitated. In the uncapacitated examination 

scheduling problem, room capacities are not considered, while in the 

capacitated problem the room capacities are treated as a hard constraint. 
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2.2 Reviews of Various Surveys in the 

Scheduling Literature 

  

From the 1980s until recently, several surveys have been undertaken in 

the area of scheduling, with the approaches or methods used in the 

literature to produce exam schedules being reported. Schmidt and 

Strohlein (1980), Carter (1986), Carter and Laporte (1996), Burke et al. 

(1997), Schaerf (1999) and Qu et al. (2009a) have conducted surveys and 

overviews of various methods and strategies applied by researchers to 

solving scheduling problems.  Many of the surveyed methods and 

approaches have successfully solved the examination scheduling problems 

and some algorithms/heuristics were reported to work well on particular 

datasets while others performed better when used with different datasets. 

A survey conducted in 1980 by Schmidt and Strohlein (1980) 

summarized the available methods used to generate examination 

schedules up until 1979. In 1986 Carter wrote a survey paper that 

includes all the methods developed in the previous 20 years for scheduling 

examination sessions. This survey (Carter, 1986) is referenced by many 

researchers in the scheduling community. Based on both of the surveys 

mentioned above ((Schmidt and Strohlein, 1980) and (Carter, 1986)), it 

was reported that the majority of researchers formalized the examination 

scheduling problem as a graph colouring problem. In Carter (1986)’s 

study, the graph colouring problem was used to produce a conflict-free 

schedule by applying graph theory.  

Ten years later, the author in the previously mentioned survey, 

together with the co-author (Carter and Laporte, 1996), produced another 
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survey paper which focused on the state-of-the-art methods in the 1990s. 

The authors have defined the examination scheduling problem as the 

assignment of examinations into slots by rewarding the conflict-free 

condition. The authors also introduced other soft constraints and new 

benchmark datasets (Toronto) which are now very widely used and tested 

by researchers in the examination scheduling area. Based on the graph 

colouring methods, the authors have classified the scheduling methods 

into four categories: cluster, sequential, meta-heuristics and the 

constraint-based method. These methods were implemented and 

experimented on the Toronto datasets. The authors also implemented the 

Backtracking process which they initially hypothesized could reduce the 

number of time slots required to schedule the exams. This hypothesis was 

proven correct in some datasets. The results for the experiments 

conducted on the Toronto datasets were presented in the paper and since 

then, the research community has been challenged to propose other 

approaches with the objective of improving the quality of the schedules 

based on the same benchmark datasets documented in the literature. 

Another survey paper was published by Bardadym (1996) in the 

same year as Carter and Laporte (1996) produced their survey report, as 

mentioned in the previous paragraph. In his survey, Bardadym (1996) 

classified educational scheduling problems into 5 common types: faculty 

scheduling, classteacher scheduling, classroom assignment, course 

scheduling and examination scheduling. According to the author, 

examination scheduling is the most difficult task, and therefore it was 

claimed that the scheduling system was first proposed with the existence 

of computers in the universities. 
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A survey of the state-of-the-art approaches and automated systems 

in educational scheduling problems was presented a year later by Burke 

et al. (1997). This survey discussed several major approaches in the 

scheduling research which included Tabu Search, Genetic Algorithm, 

Simulated Annealing, Memetic Algorithm and Constraint Logic 

Programming. 

 Qu et al. (2006) in their survey highlighted that the most studied 

and researched area of scheduling is educational scheduling; mainly the 

examination scheduling, and due to this their survey concentrated on this 

type of scheduling. From this literature, the authors have classified and 

discussed the available methods used in examination scheduling which 

are motivated by raising the generality of the approaches: graph 

heuristics, meta-heuristics, constraint-based methods, multi-criteria 

techniques, hybridizations, and methods that concerned neighbourhood 

structures, etc. 

Qu et al. (2009a) in another survey highlights new trends and key 

research achievements that have been carried out in the last decade. A 

widespread survey of the development of the search methodologies and 

automated systems for examination scheduling was done by the authors. 

According to Qu et al. (2009a), meta-heuristics approaches and their 

hybridization with other search techniques were found to be implemented 

quite commonly in the examination scheduling problem. In this survey, 

the author also claimed that different versions of problem datasets with 

the same name have been circulating in the scientific research community 

for the last ten years and this has generated some confusion among the 

researchers. The authors have made the effort to rename the widely-
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studied datasets in order to avoid this confusion. Apart from this, the 

author also summarized the datasets used by some researchers and 

reported in the literature. 

Another recent survey in educational timetabling was conducted by 

Pillay (2013). However, this survey was not focusing on the examination 

timetabling problem, instead it can be considered as the first survey that 

only concentrated on school timetabling. The survey defined school 

timetabling and discussed a detailed overview on the proposed methods to 

generate solutions. Besides that, the author also presented the different 

hard and soft constraints in the school timetabling problem. 

A comprehensive study of educational timetabling, a latest survey 

paper was published recently by Kristiansen and Stidsen (2013). The 

authors concentrated on the main educational timetabling problems and 

highlighted some of the main trends and research achievements within 

educational planning problems. The authors mentioned that they did not 

intend to perform any experimental comparison on the different methods 

used, but only to give an overview of the methods. As claimed by Qu et al. 

(2009a), Kristiansen and Stidsen (2013) concluded that many of the used 

solution approaches are of some kind of hybridization of multiple 

heuristics.  

 

2.3 Summary of Algorithmic Techniques in the 

Scheduling Literature 

 

The general approach to solving the scheduling problems usually consists 

of two phases, i.e. the construction and improvement phases (Hertz, 1991). 
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In the first phase, the construction phase, a solution is constructed using a 

sequential construction algorithm. At this point, the solution can be 

feasible or infeasible. For an infeasible solution, an adjustment is made in 

the second phase to make it feasible and for a feasible solution an 

improvement is attempted to enhance its quality. 

Scheduling research actually began with straightforward 

sequential techniques in the 1960s, as discussed in detail by Qu et al. 

(2006). Later, the emergence of many successful techniques was seen; 

these can be categorized into several broad categories (Carter and 

Laporte, 1996; Schaerf, 1999; Burke and Petrovic, 2002; Petrovic and 

Burke, 2004; and Qu et al., 2009a).  

In their survey, Qu et al. (2006) made mention of the specialization 

of the scheduling research into sub-areas of educational scheduling, nurse 

scheduling, transport scheduling, sports scheduling, etc. However, 

according to the authors the most studied and researched scheduling 

problem is that of educational scheduling and in particular, exam 

scheduling. The survey highlighted families of related heuristics deployed 

in the solution of scheduling problems which include: graph heuristics, 

meta-heuristics, constraint-based methods, multi-criteria techniques, 

hybridizations, and methods that focus on the investigation of 

neighbourhoods in the solution space. 

In this section, we will highlight the key algorithmic techniques 

that have been successfully applied in the examination scheduling 

problem. Rather than explaining and summarizing the characteristics and 

algorithms of each technique in detail, which can be found readily in the 
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literature (for example; Qu et al., 2006; Qu et al., 2009a etc.), we are 

taking a different approach in presenting and describing the emergence of 

these methods over the years.  

We have provided a timeline that illustrates a historical lineage of 

key algorithmic techniques for solving examination scheduling problems, 

as can be seen in Figures 2.1 to 2.4. Please note that these timeline 

figures were based on selected methods that are widely used and 

described (most well-cited) in the literature (up to 2014); therefore, recent 

methods that are not as well established are not depicted in this diagram. 

Another important note is that the methods were arranged according to 

the category. In each category, the name of the method was displayed 

according to the year it was proposed or used, with the intention of 

illustrating the progression or origination of each method. Some methods 

were hybridized or integrated with other methods but, in the interest of 

clarity, the linkages between these methods were not shown in the 

diagram since the main objective is to provide a general overview of the 

methods according to their main categories.  
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YEAR

GRAPH- BASED

HEURISTICS

FUZZY-BASED

TECHNIQUES

DECOMPOSITION

TECHNIQUES
NEURAL NETWORK

1964

BRODER (1964)

First Ordering Strategy: 

Largest Degree

COLE (1964)

Largest Degree Heuristic

1965

1966
PECK and WILLIAMS (1966)

Largest Degree Heuristics

1967

WELSH and POWELL (1967)

Graph Colouring Heuristic

-chromatic number

1968
WOOD (1968)

Largest Enrolment

1979
BRELAZ (1979)

Saturation Degree

1981
MEHTA (1981)

Saturation Degree

1983

1984

LAPORTE and DESROCHES 

(1984)

All Graph Colouring

1990

JOHNSON (1990)

largest Enrolment & Largest 

Degree

1992
KIAER and YELLEN (1992)

Weighted Graph Model

1994

BURKE ET AL. (1994c) 

Graph Colouring

CARTER ET AL. (1994)

Sequential Heuristics

TECHNIQUE

CONSTRUCTION 

HEURISTIC

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Timeline of Brief Historical Lineage of Some Keys Algorithmic 

Techniques – Constructive Heuristics (1964 – 1994) 
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YEAR

GRAPH- BASED

HEURISTICS

FUZZY-BASED

TECHNIQUES

DECOMPOSITION

TECHNIQUES
NEURAL NETWORK

1995

1996
CARTER ET AL. (1996a)

Ordering Heuristics

1998

BURKE ET AL. (1998)

Graph Heuristics with Random 

Element

1999
JOSLIN and CLEMENTS (1999)

Adaptive Graph Coloring

BURKE and NEWALL (1999)

 Memetic Algorithm With 

Decomposition

2001
CARTER and JOHNSON (2001)

 Clique Initialization

2002

2003

2004
BURKE and NEWALL (2004a)

Adaptive Heuristic Orderings

2005
ASMUNI ET AL. (2005)

Fuzzy Technique

2006

CORR ET AL. (2006)

 Graph Coluring & Kohonen 

Self Organizing

2007
CARRINGTON ET AL. (2007)

Weighted Graph Model

ASMUNI ET AL. (2007) 

Fuzzy Evaluation Function

QU and BURKE (2007)

Adaptive Decomposition

2008
KENDALL and LI (2008)

 Simplification

2009
ABDUL-RAHMAN ET AL. (2009)

Adaptive Ordering Strategy

ASMUNI ET AL. (2009)

Fuzzy Technique

2010

BURKE ET AL. (2010c)

Weighted Graph Model

KAHAR and KENDALL (2010)

Graph Colouring

PAIS and BURKE (2010)

Fuzzy Measure

2011

ABDUL-RAHMAN ET AL. (2011)

 Adaptive Decomposition and 

Ordering

2012

SABAR ET AL. (2012)

Graph Colouring

2013

2014

ABDUL-RAHMAN ET AL. (2014)

Adaptive Linear Combination 

of Heuristic Orderings

TECHNIQUE

CONSTRUCTION 

HEURISTIC

 

 

 

 

Figure 2.2: Timeline of Brief Historical Lineage of Some Keys Algorithmic 

Techniques – Constructive Heuristics (1995 – 2014) 
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YEAR

1990
JOHNSON (1990)

2 Phase Simulated Annealing

1991

1992

1993

1994

1995

ROSS and CORNE (1995)

 Stochastic & Simulated 

Annealing Hybrid Hill Climbing

WEARE ET AL. (1995) 

Genetic Algorithm & Graph 

Colouring Hybrid

COLIJN and LAYFIELD (1995) 

Multi Stage Approach

1996
CHEN and BUSHNELL (1995)

Branch & Bound

BOIZUMAULT ET AL. (1996)

 Contraint Programming

GUERET ET AL. (1996) 

Constraint Logic Programming

BURKE ET AL. (1996b)

 Evolutionary & Local Search 

Hybrid

1997

1998

DAVID (1998)

Constraint Satisfaction 

Technique

THOMPSON and DOWSLAND 

(1998)

 2 Phase Simulated Annealing

1999
REIS and OLIVEIRA (1999)

Constraint Logic Programming

TERASHIMA-MARIN ET AL. 

(1999)

 Genetic Algorithm & Maximal 

Clique Hybrid

2000

2001
SIERKSMA (2001) 

Integer Programming

ERBEN (2001)

 Genetic Algorithm Grouping & 

Graph Colouring Hybrid

WHITE and XIE (2001)

OTTABU

DI GASPERO and SCHAERF 

(2001)

 Graph Colouring & Tabu Seach

BURKE ET AL. (2001) 

Multi Criteria Approach

PAQUETE and FONSECA 

(2001) 

Multi-objective Evolutionary 

Algorithm

2002

DI GASPERO (2002)

 Multi-neighbourhood Tabu 

Search

2003

MERLOT ET AL. (2003)

 Constraint Programming & 

Hybridisation

MERLOT ET AL. (2003) 

Three Phase Hybrid

 CASEY and THOMPSON (2003) 

Iterative Greedy Randomized 

Adaptive Search Procedure

AHMADI ET AL. (2003)

 Variable Neighbourhood 

Search

PETROVIC and BYKOV (2003) 

Multi Objective Technique

2004

DUONG and LAM (2004)

Constraint Programming & 

Simulated Annealing

BURKE ET AL. (2004b) 

Simulated Annealing & Great 

Deluge Hybrid

WHITE ET AL. (2004) 

Relaxed Tabu Search

PETROVIC and BURKE (2004) 

Cased-Based Reasoning

YANG and PETROVIC (2004) 

Cased-Based Reasoning with 

Graph Colouring

TECHNIQUE

EXACT APPROACHES
CONSTRAINT BASED 

APPROACHES

METAHEURISTIC & 

IMPROVEMENT HEURISTIC

HYPER HEURISTICS & 

CASE BASED REASONING

MULTI CRITERIA &

MULTI OBJECTIVE

 

 

 

Figure 2.3: Timeline of Brief Historical Lineage of Some Keys Algorithmic 

Techniques – Various Heuristics (1990 – 2004) 
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YEAR

2005
BOSCH and TRICK (2005)

Integer Programming

OZCAN and ERSOY (2005) 

Genetic Algorithm & Violated 

Directed Hierarchical Hill 

Climbing

WONG ET AL. (2005) 

Variable Neighbourhood 

Descent

DOWSLAND and THOMPSON 

(2005)

 Ant Algorithm & Graph 

Colouring Hybrid

KENDALL and MOHD HUSSIN 

(2005a) & (2005b)

Tabu Search Based Hyper 

Heuristic

BURKE ET AL. (2005a)

 Hybrid Graph Colouring & 

Hyper-Heuristic

QU and BURKE (2005)

 Hybrid Variable 

Neighbourhood Search

 PETROVIC and YANG (2005)

Case Based Reasoning

COTE ET AL. (2005) 

Hybrid Bi-Objective 

Evolutionary Algorithm

2006

MIRHASSANI (2006) 

Integer Pogramming

BURKE and BYKOV (2006)

 Flex Deluge

BURKE ET AL. (2006) 

Cased-Based Reasoning 

Selection

2007

ABDULLAH ET AL. (2007) 

Large Neighbourhood

ERSOY ET AL. (2007) 

HyperHill Climber & Memetic 

Algorithm Hybrid

BURKE ET AL. (2007) 

Multi Stage Hyper Heuristics

ELEY (2007) 

Ant Algorithm

BURKE ET AL. (2007) 

Graph Based Hyper Heuristic 

Using Tabu Search

CHEONG ET AL. (2007) 

Multi-Objective Evolutionary 

Algorithm

2008

CARAMIA ET AL. (2008) 

Hybrid hill Climbing

BURKE and BYKOV (2008) 

Late Acceptance Hybrid Hill 

Climbing

2009
QU ET AL. (2009c)

Integer Programming

SABAR ET AL. (2009) 

Tabu & Exponential Monte 

Carlo Hybrid

OZCAN ET AL. (2009) 

Late Acceptance & Heuristic 

Hybrid Hill Climbing

SABAR ET AL. (2009)

Honey Bee Mating 

Optimization

QU ET AL. (2009b) 

Adaptive Heuristic 

Hybridisation

PILLAY and BANZHAF (2009) 

Hierachical Hyper-Heuristics 

& Highest Cost Heuristics

2010

AL-YAKOOB ET AL. (2010) 

A Mixed-Integer Mathematical 

Modelling

BURKE ET AL. (2010a)

 Variable Neighbourhood 

Search & Genetic Algorithm 

Hybrid

AL-BETAR ET AL. (2010)

Harmony Search Algorithm

2011

TURABIEH and ABDULLAH 

(2011a) 

Great Deluge & Megnetic-Like 

Hybrid

TURABIEH and ABDULLAH 

(2011b) 

A Hybrid Fish Swarm 

Optimization

2012

MCCOLLUM ET AL. (2012) 

Integer Pogramming: A New 

Model

BOLAJI ET AL. (2012)

Artificial Bee Colony

DEMEESTER ET AL. (2012) 

Hyper-Heuristics

GOGOS ET AL. (2012) 

Multi-Stage Algorithmic 

Process

2013

ABDULLAH and ALZAQEBAH 

(2013)

A Hybrid self-Adaptive Bees 

Algorithm

ANWAR ET AL.  (2013) 

Harmony Search-Based 

Hyper Heuristics

2014

AL-BETAR ET AL. (2014)

Memetic Techniques

ALZAQEBAH and ABDULLAH 

(2014)

Artificial Bee Colony & Late 

Acceptance Hill Climbing

TECHNIQUE

EXACT APPROACHES
CONSTRAINT BASED 

APPROACHES

METAHEURISTIC & 

IMPROVEMENT HEURISTIC

HYPER HEURISTICS & 

CASE BASED REASONING

MULTI CRITERIA &

MULTI OBJECTIVE

 

Figure 2.4: Timeline of Brief Historical Lineage of Some Keys Algorithmic 

Techniques – Various Heuristics (2005 – 2014) 
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In the timeline diagrams above, several broad categories of 

techniques used in examination scheduling can be seen. These include 

constructive heuristics (for example, graph-based heuristics); fuzzy-based 

techniques; decomposition techniques and neural network. Other 

techniques include exact approaches; constraint-based; metaheuristic and 

improvement heuristic; hyper-heuristics and case-based reasoning; and 

multi-criteria and multi-objective techniques. 

Based on the diagrams, we observed that majority of the proposed 

methods in solving the examination timetabling problems were based on 

graph-based heuristics and metaheuristic/improvement heuristic 

techniques, which the latter attracted more interests among the 

researchers. Despite the rapid emergence or progression of the methods, it 

was studied that many of the methods are the spin-off or followers of the 

previous published approaches which did not differ substantially from 

those established methods.  
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2.4 Benchmark Examination Scheduling 

Datasets 

 

From the published research it is clear that benchmark datasets were 

used quite extensively. The usage of the same standard benchmark 

datasets in different research conducted by all researchers in this area is 

very important in order to have a fair judgement about the efficiency and 

effectiveness of a particular method. Besides, it can also provide a quick 

understanding and generalization of the strength or capability of a 

particular method based on the results reported. 

In the examination scheduling literature, the most extensively 

used benchmark dataset is the Toronto dataset proposed by (Carter et al., 

1996) which was made publicly available on the internet 

[ftp://ftp.mie.utoronto.ca/pub/carter/testprob]. The characteristics of all the 

datasets from Toronto benchmark problems are listed in Table 2-3 in 

Section 2.4.1. For the Toronto dataset, according to (Qu et al., 2009a) 8 out 

of 13 problem instances exist in 2 versions. Version I of the datasets which 

are widely tested by other researchers will be presented in the table. 

The data in the table are arranged according to the name of 

institution, followed by the name of each dataset, number of exams exists 

in the problem, total number of students registered for the examination 

session, number of total enrolments of students for the courses, conflict 

density and lastly required number of exams slots for each dataset. 

The Conflict Density represents the ratio between the number of 

elements of value "1" to the total number of elements in the conflict 
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matrix. A Conflict Matrix C is a square matrix of dimension number of 

exams [number of exams x number of exams], and was defined where each 

element Cij = 1 if exam i conflict with exam j (have common students), or 

Cij = 0 if they don’t.  

Other than Toronto datasets, we include two more datasets, which 

we will be using in our experimentation phase at a much later stage, ie: 

the University of Nottingham dataset which could be accessed from 

[http://www.cs.nott.ac.uk/~rxq/files/Nott.zip] and the International 

Timetabling Competition 2007 dataset which can be retrieved from 

[http://www.cs.qub.ac.uk/itc2007/Login/SecretPage.php], presented in 

section 2.4.2 and 2.4.3 respectively. Definitions for column titles for these 

new tables are the same as given earlier above. 
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2.4.1 University of Toronto Dataset 

 

                        Table 2-3: The Characteristics of University of Toronto Benchmark Dataset 

Institution Name of 

Dataset 

No of 

Exams 

No Of 

Students 

No Of 

Enrolments 

Conflict 

Density 

Required 

No Of 

Slots 

Carleton University car-s-91 (I) 543 18419 55522 0.14 32 

Carleton University car-f-92 (I) 682 16925 56877 0.13 35 

Earl Haig Collegiate ear-f-83 (I) 190 1125 8109 0.27 24 

Ecole des Hautes Etudes Commerciales hec-s-92 (I) 81 2823 10632 0.42 18 

King Fahd University kfu-s-93 461 5349 25113 0.06 20 

London School of Economics lse-f-91 381 2726 10918 0.06 18 

Purdue University pur-s-93 (I) 2419 30032 120681 0.03 42 

Ryerson University rye-f-92 486 11483 45051 0.08 23 

St. Andrews High School sta-f-83 (I) 139 611 5751 0.14 13 

Trent University tre-s-92 261 4360 14901 0.18 23 

University of Toronto, Arts & Science uta-s-92 (I) 622 21266 58979 0.13 35 

University of Toronto, Engineering ute-s-92 184 2750 11793 0.08 10 

York Mills Collegiate yor-f-83 (I) 181 941 6034 0.29 21 

3
0
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2.4.2 University of Nottingham Dataset 

 

                 Table 2-4: The Characteristics of University of Nottingham Benchmark Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

Institution Name of 

Dataset 

No. Of 

Exams 

No. Of 

Students 

No. Of 

Enrolments 

Conflict 

Density 

University of 

Nottingham 

Nott 

(Nottingham a 

or Nottingham 

b) 

800 7896 33997 0.03 

3
1
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2.4.3 International Timetabling Competition 2007 (ITC2007) Dataset 

 

                            Table 2-5: The Characteristics of ITC2007 Benchmark Dataset 

Name of 

Dataset 

No. of Exams No. of Students Required No. of Slots Conflict 

Density 

Exam1 607 7891 54 0.0505 

Exam2 870 12743 40 0.0117 

Exam3 934 16439 36 0.0262 

Exam4 273 5045 21 0.1500 

Exam5 1018 9253 42 0.0087 

Exam6 242 7909 16 0.0616 

Exam7 1096 14676 80 0.0193 

Exam8 598 7718 80 0.0455 

 

3
2
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2.5 Widely Used Ordering Strategies 

 

In the process of allocating exams to exam slots, researchers have to 

decide which exam to allocate first to one of the available time slots. With 

this in mind, various ordering strategies were utilized by researchers (for 

example; Broder, 1964; Cole, 1964; Peck and Williams, 1966; Welsh and 

Powell, 1967; Laporte and Desroches, 1984; Burke et al., 1994c; Carter et 

al., 1994; Joslin and Clements, 1999; Burke and Newall, 2004a; Abdul-

Rahman et al., 2009; and Kahar and Kendall, 2010). It was proven that 

the ordering strategies affect the final outcome and quality of the solution 

generated (as discussed by Asmuni et al., 2005). In the normal practise in 

the timetabling literature, most researchers will try out all ordering 

strategies (to preorder the datasets) and select the strategy that produce 

the best results. The summary of the widely-used ordering strategies in 

Graph Heuristics made by Qu et al. (2006) is presented in the following 

table:  

Table 2-6: Widely-Used Graph Heuristics in Exam Scheduling 

Heuristics Ordering Strategy 

Saturation Degree Increasingly by the number of timeslots 

available for the exam in the timetable at the 

time 

Largest Degree Decreasingly by the number of conflicts the 

exams has with other exams 

Largest Weighted 

Degree 

This is the same as Largest Degree but weighted 

by the number of students involved 

Largest Enrolment Decreasingly by the number of enrolments for 

the exam 

Random Ordering Randomly ordered exams 

Color Degree Decreasingly by the number of conflicts the exam 

has with those scheduled at the time 
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2.6 Widely-Used Evaluation Function: Carter 

Evaluation Function 

 

The standard objective of examination scheduling that is widely used in 

the literature is to minimize the cumulative inconvenience implied by the 

temporal proximity of consecutive exams taken by individual students. 

Based on this objective, in order to have a good quality timetable, each 

exam to be taken by a student should be scheduled as far apart as possible 

from one another. The quality of the timetable is measured by the cost 

function originally proposed by Carter et al. (1996) as in the Equation 

(2.1) below: 




 

1

1 1

|pi -  pj|

1 N

i

N

ij

ij ws
T

                                                      (2.1) 

where N is the number of exams, sij is the number of students enrolled in 

both exams, i and j, pj is the time slot when exam j is scheduled, pi is the 

time slot when exam i is scheduled and T is the total number of students. 

Based on this cost function, a student taking two exams that are | pj - pi | 

slots apart, where | pj - pi | ={1, 2, 3, 4, 5}, leads to a cost of 16, 8, 4, 2, 

and 1, respectively. The lower the cost obtained, the higher the quality of 

the schedule, since the gap between two consecutive exams allows 

students to have extra revision time.  

It is worth noting here that the gap of the consecutive exams taken 

by individual students that are more than 5 slots apart (i.e. 6 and above), 

will not have any penalty, therefore the cost will be zero. According to 

Carter cost function (Equation 2.1), if all consecutive exams taken by all 

students in the problem are scheduled 5 slots apart, then the timetable is 
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considered a zero cost timetable (but this is very seldom since in real life it 

will cause a very long duration of examination session). 

 

2.7 Performance of Methods Proposed in the 

Examination Scheduling Literature 

 

In order to analyse the effectiveness of the available methods proposed in 

producing feasible examination schedules, we have presented the results 

in terms of the Carter cost (2.1) produced by some researchers and 

compiled by Abdul-Rahman et al. (2011) and Qu et al. (2009a). The results 

are presented in three different tables according to the categories of the 

methods; i.e. constructive, hyper-heuristics, and numerous improvement 

approaches on the Toronto datasets. Note that the first column of these 

tables contains the name of each dataset in the Toronto benchmark 

problem as can be found in Table 2-3 of this thesis.  

Table 2-7: Comparison of Results in Terms of Carter cost (2.1) for the 

Thirteen Problem Instances of Toronto Benchmark Datasets For Different 

Constructive Approaches Reported in the Literature  

Problem [1] [2] [3] [4] [5] [6] [7] [8] 

car-s-91 (I) 7.10 4.97 5.45 5.29 5.08 5.03 5.18 5.08 

car-f-92 (I) 6.20 4.32 4.50 4.54 4.38 4.22 4.44 4.34 

ear-f-83 (I) 36.40 36.16 36.15 37.02 38.44 36.06 39.55 38.28 

hec-s-92 (I) 10.80 11.61 11.38 11.78 11.61 11.71 12.20 11.13 

kfu-s-93 14.00 15.02 14.74 15.80 14.67 16.02 15.46 14.42 

lse-f-91 10.50 10.96 10.85 12.09 11.69 11.15 11.83 11.43 

pur-s-93 (I) 3.90 - - - - - 4.93 5.74 

rye-f-92 7.30 - - 10.38 9.49 9.42 10.04 9.37 

sta-f-83 (I) 161.50 161.90 157.21 160.40 157.72 158.86 160.50 157.34 

tre-s-92 9.60 8.38 8.79 8.67 8.78 8.37 8.71 8.73 
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uta-s-92 (I) 3.50 3.36 3.55 3.57 3.55 3.37 3.49 3.52 

ute-s-92 25.80 27.41 26.68 28.07 26.63 27.99 29.44 26.24 

yor-f-83 (I) 41.70 40.77 42.20 39.8 40.45 39.53 42.19 40.38 

 

[1]-(Carter and Laporte,1996), [2]-(Burke and Newall, 2004a),  [3]-(Qu and 

Burke, 2007), [4]-(Asmuni et al., 2009), [5]-(Abdul-Rahman et al., 2009), 

[6]-(Burke et al., 2010c), [7]-(Pais and Burke, 2010), [8]-(Abdul-Rahman et 

al., 2011) 

 

 

Table 2-8: Comparison of Results in Terms of Carter cost (2.1) for the 

Thirteen Problem Instances of Toronto Benchmark Datasets For Different 

Hyper-Heuristics Approaches Reported in the Literature 

Problem [9] [10] [11] [12] [13] [14] 

car-s-91 (I) 5.37 5.36 4.97 5.16 5.17 5.19 

car-f-92 (I) 4.67 4.53 4.28 4.16 4.32 4.31 

ear-f-83 (I) 40.18 37.92 36.86 35.86 35.70 35.79 

hec-s-92 (I) 11.86 12.25 11.85 11.94 11.93 11.19 

kfu-s-93 15.84 15.20 14.62 14.79 15.30 14.51 

lse-f-91 - 11.33 11.14 11.15 11.45 10.92 

pur-s-93 (I) - - 4.73 - - - 

rye-f-92 - - 9.65 - - - 

sta-f-83 (I) 157.38 158.19 158.33 159.00 159.05 157.18 

tre-s-92 8.39 8.92 8.48 8.60 8.68 8.49 

uta-s-92 (I) - 3.88 3.40 3.42 3.30 3.44 

ute-s-92 27.60 28.01 28.88 28.30 28.00 26.70 

yor-f-83 (I) - 41.37 40.74 40.24 40.79 39.47 

 

[9]-(Kendall and Hussin, 2005a), [10]-(Burke et al., 2007),  [11]-(Pillay and 

Banzhaf, 2009), [12]-(Qu and Burke, 2009), [13]-(Qu et al., 2009b), [14]-

(Burke et al., 2010e) 

 

Table 2-9: Comparison of Results in Terms of Carter cost (2.1) for the 

Thirteen Problem Instances of Toronto Benchmark Datasets For Other 

Different Improvement Approaches Reported in the Literature 

Problem [15] [16] [17] [18] [19] [20] [21] 

car-s-91 (I) 5.10 4.50 5.40 5.20 6.60 4.60 4.80 

car-f-92 (I) 4.30 3.93 4.20 4.40 6.00 3.90 4.10 

ear-f-83 (I) 35.10 33.71 34.20 34.90 29.30 32.80 34.92 

hec-s-92 (I) 10.60 10.83 10.40 10.30 9.20 10.00 10.73 
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kfu-s-93 13.50 13.82 14.30 13.50 13.80 13.00 13.00 

lse-f-91 10.50 10.35 11.30 10.20 9.60 10.00 10.01 

pur-s-93 (I) - - - - 3.70 - 4.73 

rye-f-92 8.40 8.53 8.80 8.70 6.80 - 9.65 

sta-f-83 (I) 157.30 158.35 157.00 159.20 158.20 156.90 158.26 

tre-s-92 8.40 7.92 8.60 8.40 9.40 7.90 7.88 

uta-s-92 (I) 3.50 3.14 3.20 3.60 3.50 3.20 3.20 

ute-s-92 25.10 25.39 25.30 26.00 24.40 24.80 26.11 

yor-f-83 (I) 37.40 36.53 36.40 36.20 36.20 34.90 36.22 

 

[15]-(Merlot et al., 2003), [16]-(Yang and Petrovic, 2004), [17]-(Cote et al., 

2005), [18]-(Abdullah et al., 2007) [19]-(Caramia et al., 2008), [20]-(Burke 

et  al., 2010a), [21]-(Turabieh and Abdullah, 2011a). 

 

The results presented in the above three tables are arranged 

according to the 13 Toronto datasets problem proposed by Carter et al. 

(1996). These results were obtained by some of the researchers using 

numerous techniques. Each column consists of the Carter cost (2.1) for 

each dataset in this Toronto benchmark problem.  

According to the Carter cost (2.1), we could say that the cost is 

actually the average penalty of the students spread in the examination 

schedule. An achievement of a zero cost timetable means that the 

timetable is of a very high quality, and we can imagine that every single 

student will have at least a five slots’ gap between one exam and the next 

in the examination session.  

However, none of the costs obtained and reported in the 

examination scheduling research on the Toronto benchmark problem have 

a zero cost (as can be seen in the above three tables), which means that in 

real life some of the inconvenience is tolerated in order to achieve a 

shorter examination period.  
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In the three tables presented above, each bold value is the best 

value for each dataset reported among the researchers. Overall, the costs 

obtained are considered to be very encouraging, as the lowest Carter cost 

(2.1) obtained is 3.14 for dataset uta-s-92 (I). Here the value 3.14 is the 

value of the average penalty of the students spread in the examination 

schedule.  

It is worth noting here, however, that the listed methods have a 

rather uneven performance. They perform well against some benchmark 

problems and less well against others. One important point to note when 

comparing the performance of the various methods is that several of the 

best results have been obtained by methods that did not report any results 

for some datasets; for example, for lse-f-91, pur-f-93 (I) and rye-f-92.  

    

2.8 Pre-Processing Approach in the Examination 

Timetabling 

 

Based on the observations of Table 2-7 to 2-9, there are quite a 

number of approaches that are unable to produce results for certain 

benchmark datasets, which after analysis we can determine that the 

inability to produce feasible solutions for a problem is due to the size and 

complexity of the relationships among the entities in the problem space. 

For example, by analyzing datasets lse-f-91, pur-f-93 (I) and rye-f-92, we 

observed that these problems have a high ratio value of number of exams 

against required number of slots (as can be seen in the last column of 

Table 2-10). The ratios are 21.17, 57.60 and 21.13 for lse-f-91, pur-f-93 (I) 

and rye-f-92 respectively which means that on average these are the 
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minimum number of exams to be allocated per slot. The higher this value 

is, the harder it is to find the exams that are not conflicting among one 

another.  

Table 2-10: No of Exams to Required No of Slots Ratio 

Name of 

Dataset 

No of 

Exams 

No Of 

Students 

No Of 

Enrolments 

Conflict 

Density 

Required 

No Of 

Slots 

No of 

Exams to 

Required 

No of 

Slots 

Ratio 

car-s-91 (I) 543 18419 55522 0.14 32 16.97 

car-f-92 (I) 682 16925 56877 0.13 35 19.49 

ear-f-83 (I) 190 1125 8109 0.27 24 7.92 

hec-s-92 (I) 81 2823 10632 0.42 18 4.50 

kfu-s-93 461 5349 25113 0.06 20 23.05 

lse-f-91 381 2726 10918 0.06 18 21.17 

pur-s-93 (I) 2419 30032 120681 0.03 42 57.60 

rye-f-92 486 11483 45051 0.08 23 21.13 

sta-f-83 (I) 139 611 5751 0.14 13 10.69 

tre-s-92 261 4360 14901 0.18 23 11.35 

uta-s-92 (I) 622 21266 58979 0.13 35 17.77 

ute-s-92 184 2750 11793 0.08 10 18.40 

yor-f-83 (I) 181 941 6034 0.29 21 8.62 

 

 

We foresee that there is a need to minimize or reduce the 

complexity of the problem or we hypothesize that what if we were to 

transform the problem into another problem where there is a possibility 

that the complexity of the existing problem can be degraded into simpler 

problems. To enable this, an understanding of the data is required, in line 
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with this notion we observe an approach by Thomas et al. (2009) which 

tries to give a better understanding of the problem space to the timetable 

designer has a merit in which by understanding the correlation of all the 

entities in the problem space a solution can be generated. 

Thomas et al. (2009) approached the timetabling problem by 

introducing a pre-processing stage that visualized the timetabling data. 

The researches were confident that the visualization will provide a new 

insight or analysis of the timetabling data that would help the timetable 

designer and decision maker to formulate a feasible timetable. The 

researchers used Prefuse which is a Java-based extensible software 

framework for pre-processing to visualize the data. They provided five 

interaction techniques to the users to interact with the data, namely 

Selection, Explore, Encode, Filter and Connects. Selection, enables the 

marking of a particular data that can be further analysed. Explore, 

enables the visualization of the timetabling data to be interacted, showing 

a different perspective or concentrating only on a specific part of the 

problem space. Encode, enables the user to change the visual 

representation of the data. Filter, enables the user to add certain 

restrictions on the data to be visualized enabling the user to focus on 

certain part of the data. Connects allows the user to view interconnected 

data within the problem space. The pre-processing stage provides 

additional interactions to the scheduler (person) on the interrelation or 

linkage of all the elements in the problem domain. The pre-processing 

stage through visualization enables the timetable designer to learn more 

about the data and with this knowledge it is hoped it would help the 

timetable designer to design a better timetable. 
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 There is also another approach by Gunawan et al. (2008) which 

provides another insight where the pre-processing of data to generate new 

representation of information can be utilized within the algorithm to help 

in constructing a better quality timetable. Gunawan et al. (2008) proposed 

a hybrid approach which combines Tabu Search and Simulated Annealing 

to solve the teacher and course scheduling simultaneously. The approach 

consists of three phases; the pre-processing stage, initial construction 

stage and the improvement stage. The initial construction stage 

concentrates on finding the initial feasible timetable. 

The researchers constructed new information which is the 

information on which teacher is willing to teach a particular course, 

resulting in a set of new data connecting a particular paper with the 

probable teacher. The information was generated from the preferences 

given by the teachers. The second information generated is the list of slots 

that a particular teacher prefers to teach which is given by the day and 

time period. These two lists are generated and sorted based on the 

preferences set by the teachers.  

Gunawan et al. (2008) reported that the pre-processing is done on 

the information of preferences provided by the teachers, which is actually 

considered as the soft constrains of the actual problem. The main problem 

(scheduling) is being solved using the greedy heuristics (similar to 

Gunawan et al. (2007a)) without the assistance on the new information 

generated. This opens up a new avenue where the pre-processing can be 

conducted on the data related to the hard constraints. New information 

can be generated which will give a new representation that will enable the 

algorithm to understand the problem space.  
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What interests us, we observe that these two papers (Thomas et al. 

(2009); Gunawan et al. (2008)) which touched on pre-processing, did that 

specifically and without the intention to want to alter the data 

representation of the problem space. Hence, the intention that we have is 

to provide an alternative methodology that transforms the problem space 

into a different representation that could open-up new avenues or simplify 

the problem to a more manageable and deterministic solution. This is 

with the understanding that many of the researchers claim that the exam 

timetabling is an NP-complete problem which requires huge amount of 

resources to fully explore the entire search space of a feasible solution and 

more over to find the best solution within these feasible timetables. 

 

2.9 Important Insights from the Scheduling 

Literature and Motivations for the Research 

 

Despite many methods having been proposed to date to solve the 

examination scheduling problems, various findings have concluded that 

there is no single heuristic that is able to solve all scheduling problems 

effectively (Burke et al., 1994). Meta-heuristics approaches - for example, 

Genetic Algorithm (GA), Simulated Annealing (SA) and Tabu Search (TS) 

etc., which were believed to generate promising results - were improved 

further through the introduction of hyper-heuristic approaches (Qu et al., 

2009a). 

Notwithstanding the advantages and capabilities of the many 

methods reported in the literature, we are aware that the results for some 

problems are not easily reproducible because most of the algorithms 
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depend on some random number generation. These algorithms deploy 

random selection between alternative choices during the optimization 

process. This means that a simple change in the generation of random 

numbers may affect very significantly the direction of the optimization 

process. As a result, the randomness generates different results. This 

makes the results only statistically comparable. Since the results are hard 

to reproduce, it is difficult to determine whether they are optimal or not.  

A huge volume of publications have reported the investigation and 

refinement of hyper-heuristics. Various methods concerning the design 

and selection of heuristics and hyper-heuristics have been proposed and 

evaluated. On one hand, there have been various improvements in the 

examination schedules produced using these methods. On the other hand, 

this suggests that the results generated in this way cannot be seen as 

definitive.  

We have also learned from the background study that some 

researchers have classified the examination scheduling problem as an NP 

complete problem (e.g. Cooper and Kingston, 1996; and Even et al., 1976). 

An NP complete problem is a problem which cannot be resolved to a global 

optimum in a reasonable amount of time. Currently, with the flexibility of 

the students’ enrolments, there was a great increase in size of the 

examination timetabling problem, which also has increased the 

complexity of this problem (McCollum, 2007). As the examination 

scheduling problem is classified as an NP complete problem, it can be 

understood that the resources needed to solve the problem grow very 

rapidly with the size of the problem. Hence, some problems cannot be 

solved even on the fastest computers, and in the examination scheduling 
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context, it means that the optimal schedules are not generated 

successfully and one has to accept sub-optimal (but feasible) solutions.  

It is worth emphasizing that the examination scheduling problem 

represents a challenging computational problem due to the strong 

interactions between the many-to-many relationships between the data of 

students and exams. The challenge and complexities of the problem 

increase when most of the universities allow flexibility for the students to 

register on modular courses across faculties (Burke et al., 1994). The 

increasing size of students’ enrolments and different choices of available 

courses increases the challenge and complexity of this real-world problem 

(McCollum, 2007). 

 

From the background study we can learn that some methods that deploy 

random selection between alternative choices during the optimization 

process failed to reproduce the solutions obtained previously. This is 

because a simple change in the generation of random numbers may affect 

very significantly the direction of the optimization process, thus generating 

different solutions. This means that the results produced with methods 

deploying random selection are only statistically comparable and cannot 

guarantee the quality of every individual solution. 

 

All of the above scenarios and phenomena create motivations for 

further research. In general, the literature review and background study 

have provided insights into the following: 
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a) a new approach to analyzing the complex system by looking at 

different levels of abstraction; 

b) abstraction of essential features in order to simplify the data 

used in scheduling by doing pre-processing of data and 

constraints; 

c) propose a definite step (a constructive approach) to schedule 

the exams to ensure the method can reproduce the schedule at 

any time; 

d) sub-dividing the problems into smaller sub-problems in order to  

reduce the NP complexity of the examination scheduling 

problems as described in the literature, and therefore increase 

the efficiency in terms of the computational time; 

e) the exploration of the search space that is guided by one 

heuristic which avoids exhaustive exploration of the search 

space. 
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CHAPTER 3 

3  

Domain Transformation 

Approach to Examination 

Scheduling 

 

This chapter presents the proposed framework for solving examination 

scheduling problems. We start by giving an overview of the Domain 

Transformation Approach – the approach that transforms the original 

problem domain into different and smaller domains which are easier to 

manage. We provide the general framework proposed in this study, which 

consists of several main stages; namely, the pre-processing of data, 

scheduling and optimization. Each step is then elaborated in greater detail 

by providing the algorithm, its essential elements and its computational 

complexity. 

 

3.1 Domain Transformation Approach – 

Overview 

 

Classical description of examination scheduling implies a search in a large 

solution space which is typically accomplished with the aid of heuristics to 

control the exploration of the search space. We propose that the 

transformation of the problem domain is an effective methodological 

approach to dealing with complex examination scheduling problems. In the 

proposed approach, we define alternative data structures that capture the 
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essential dependences in the examination scheduling problem. By 

performing an appropriate pre-processing of the original student-exam 

data into suitable data structures, we can map the original problem 

expressed in the multi-dimensional space of exams and students into a 

space with a reduced dimensionality of exams and exam-slots. We will 

refer to this approach to solving the scheduling problem as the Domain 

Transformation Approach. 

Domain Transformation Approach therefore could be defined as an 

approach whereby a problem is transformed into a simpler problem 

expressed in terms of different variables from the original problem 

description. Examples of the domain transformation approach in other 

application areas include the subdivision of a problem domain into 

multiple sub-problems (e.g. the Danzig-Wolfe decomposition for solving 

linear programming problems), transformation of problem variables (e.g. 

the Fourier Transform, employed to transform signals between time or 

spatial domain into frequency domain) and the  transformation from 

continuous to discrete functional description (e.g. the Z-transform 

converting time domain signals into discrete domain of trains of pulses), to 

mention just a few prominent examples.  

The proposed domain transformation of the examination scheduling 

focuses on the pre-processing of constraints prior to the generation of a 

feasible timetable. This is done through the abstraction of essential 

features of the exam scheduling problem from the original student-exam 

data. This data abstraction process constitutes a significant methodological 

contribution of this study, as it enables subsequent optimization of the 

examination schedule without the need to refer to the voluminous student-
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exam data in the course of the optimization.  One example of a pre-

processing is the identification of the clashing exams. This information will 

ease and expedite the scheduling process later because less permutations 

are needed to obtain this information since it is readily available. Unlike 

other approaches, without employing pre-processing, a lot of permutations 

are needed, since this information is implicit in data. Other examples of 

pre-processing will be discussed in further detail in this chapter later. 

This approach was inspired by insights from previous studies on 

industrial process optimization (Bargiela, 1985; Argile et al., 1996; 

Peytchev et al., 1996; and Bargiela et al., 2002) and has been formalized as 

a Granular Computing methodology (Pedrycz et al., 2000; Bargiela and 

Pedrycz, 2002; Bargiela et al., 2004; and Bargiela and Pedrycz, 2008). 

Granular Computing is an emerging conceptual and computing 

paradigm of information processing methodology (Pedrycz et al., 2000), 

(Bargiela et al., 2002), (Bargiela et al., 2004), (Bargiela and Pedrycz, 2008). 

In the concept of Granular Computing, the key element is multiple levels 

of information processing sometimes called hierarchical processing. Each 

level will perform different types of processing that will result in different 

types of information representation or meaning. In general, Granular 

Computing can be viewed as human inspired paradigms of computing and 

information processing (Pedrycz et al., 2000; Bargiela and Pedrycz, 2002; 

Bargiela et al., 2004; Bargiela and Pedrycz, 2008). 

According to Granular Computing concept, the information 

processing will create information granules and this process is known as 

Information Granulation (Bargiela and Pedrycz, 2002). According to 



49 
 

Merriam-Webster’s Dictionary (http://www.merriam-webster.com), a 

granule is defined as “a small particle; especially:  one of numerous 

particles forming a larger unit”.  These information granules, with regard 

to Granular Computing concept, are collection of entities that are arranged 

together due to some criteria, and normally they are central to the 

abstraction processes in solving many tasks.  

Information Granulation (Bargiela and Pedrycz, 2002) serves as an 

important medium to simplify problem that needs to be split into smaller 

sub tasks. It provides an abstraction mechanism that reduces the overall 

conceptual burden in the original problem space. By having different sizes 

or representations of the information granules, certain amount of details 

can be hidden during the problem solving. This offers advantage in terms 

of reducing the complexities of the problems. As we can imagine, the 

consistent existence of some details are sometimes unwelcome because 

they complicate things and therefore they need to be hidden. 

As far as the examination scheduling problem is concerned, 

Granular Computing problem solving strategy could be applied 

successfully to produce feasible and good quality exams schedules. The 

systematic approach which involves information processing will create new 

data representation which will provide valuable and meaningful 

information that could definitely ease the scheduling task. 

Granular Computing in scheduling involves analyzing or 

representing the scheduling problem at various levels of abstraction. For 

example, at the fine resolution we may deal with individual students 

taking individual exams (which is a standard problem definition) as 
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illustrated in Figure 3.1, at the coarser resolution we deal with classes of 

exams (for example non-conflicting exams) and formalise the problem 

description using these classes as illustrated in Figure 3.2.  The 

implication of this is that we deal with several complementary problem 

descriptions at different levels of generality or accuracy. The more general 

descriptions serve to facilitate an approximate problem solution in a 

smaller search space and more detailed representations preserve the 

possibility of refinement of the solutions. This approach contrasts with the 

standard, detailed level of problem representation which requires 

deployment of various heuristic methods to cope with computational 

complexity.  

 

Figure 3.1: Illustration of an Example of a Standard Examination 

Scheduling Problem (Fine Resolution Level) 
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Figure 3.2: Illustration of Classes of Exams -  Group of Non-Conflicting 

Exams With the Students Enrolled (Coarser Resolution) 

 

The key hypothesis of this thesis is that the pre-processing of initial 

problem data can lead to a transformation of the scheduling problem into a 

new solution space in which the problem is solved more easily. This 

aggregated data from the modified data space which are grouped 

appropriately will be much easier to handle, as opposed to dealing with the 

original data, as has been done in many previous studies.  

We also argue that after applying pre-processing, scheduling could 

be done more efficiently, generating reproducible results. 
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3.2 The Flow of the Proposed Approach 

 

This research is proposing a different approach from the work done by 

others who utilized pre-processing methods; for example, Gunawan et al. 

(2007b), who used a hybrid algorithm which consists of three phases: (1) 

pre-processing, (2) construction, and (3) improvement in the teacher 

assignment-course scheduling problem. The pre-processing phase in their 

work involves assigning teachers to courses by sorting them in descending 

order, based on their preferences towards the course.  

In the approach advocated in this thesis, the aim is for the pre-

processing method on the timetable datasets to be employed before the real 

scheduling process is undertaken. Possible data will be combined in the 

datasets in such a way that will satisfy the hard constraints imposed on 

the timetable. These combinations include the courses, rooms and 

students. Each pre-processing stage will lead to a richer representation 

and collection of data containing more information to make the final 

scheduling easier. The revelation of dependencies existing within the data 

at the aggregated level, which may be difficult to handle at the detailed 

level, is the fundamental rationale behind the information granulation and 

subsequent Granular Computing (Bargiela and Pedrycz, 2002). It is 

postulated that the pre-processing will improve the efficiency and ease of 

the scheduling task because only feasible solutions will be available to 

work with, since the pre-processing eliminates all unfeasible timetables 

from the solution space. The flow of the proposed work is given below: 
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Figure 3.3:  The Flow of the Proposed Approach 

 

The steps of the proposed work in creating feasible and quality 

examination schedules are: standardization and verification of the problem 

description data, pre-processing, scheduling and lastly, timetable 

optimization, as illustrated in Figure 3.3.  

The above figure clearly shows that in order to produce feasible and 

good quality examination schedules, the very first step is to do a 

standardization and verification of the original data files (timetabling 

problem). Once this is done, pre-processing of data files will follow to 

generate meaningful aggregated data construct that will ease the next 

task which is the scheduling. In the scheduling stage, exams will be 

assigned to slots, which always ensure the feasibility of the schedules. 

Despite the feasibility of the schedules, the initial orderings of exams 

produced by the scheduling stage might not be optimal (because it might 

not fulfil certain soft constraints), therefore this requires a separate 

deployment of optimization process to further improve the quality, hence 

the need of the last stage, the optimization. In this final stage, the 

schedules cost will be minimized via certain procedures. 

Scheduling 

Timetable 
Optimization 

Data Standardization 
And Verification 

Pre-processing 
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3.2.1  Standardization and Verification of the Problem 

Description Data 

 

The first step in this proposed approach is to perform the standardization 

and verification of the problem description data. The standardization and 

verification of data are done on the examination scheduling benchmark 

datasets retrieved earlier that are freely made available to the public over 

the internet.  These data will be used to produce the information shown in 

Figure 3.9, Figure 3.10:  and Figure 3.11. 

In the early stage, the datasets that were used are the benchmark 

exam scheduling data for the University of Nottingham, semester 1, 1994 – 

95 and University of Toronto, as presented in the previous chapter. The 

files contain information pertaining to students, exams, enrolments and 

data (other data and constraints). This information will be retrieved and 

assigned to a data representation format that would be easy for future 

processing. At the same time, there is the concern of Lewis (2008) 

regarding the disadvantage of heavy reliance on certain benchmark 

datasets. Consequently, the proposed approach has also been tested on 

other benchmark datasets from the International Timetabling Competition 

2007 (ITC2007). 

The datasets produced and made available by the researchers come 

in various representations and formats. The variations come from the 

representations of information about courses, students and classes made 

available in the datasets. For example, for University of Nottingham 

dataset, there is a student-exam enrolment data representing a list where 

each row contains a ten characters alphanumeric student ID (or code) and 
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eight characters exam code as depicted in Figure 3.4. Each student will 

have a number of rows depending on the number of exams the student has 

enrolled. For instance, the first five rows of data in the figure represents 

that the student with student ID ‘A890186790’ was enrolled for five exams 

with exam code: ‘R13001E1’, ‘R13006E1’, R13016E1’, ‘R13021E1’ and 

‘R13022E1’. 

Unlike the Nottingham dataset, for the Toronto dataset, the 

enrolment file consists of rows containing a variable-length list of four 

digits exam code.  Each row represents exams enrolled by a particular 

student.  This can be seen in Figure 3.5. If we observe this figure, we can 

see that the student code is not supplied in the file. Based on the list given 

in this figure, we can view that the first student in the list (assume that 

student id = ‘1’) is enrolled for one exam only which is exam with the code 

‘0174’. The other two students, in the second and third row were enrolled 

for exam ‘0329’ and ‘0332’ respectively. The list continues with the fourth 

student enrolled for exam ‘0377’, ‘0378’, ‘0392’ and 0406’, and the list 

continues for other students in the dataset. It is worth highlighting here 

that these two data files are totally in different format, thus need to be 

standardized and verified in the initial stage. 

Some researchers represent the courses in the form of course codes 

and some in the form of unique numbers – this is also the case with the 

information about students and classes. Initially, a solution was developed 

for one dataset with the intention to later provide a more generic 

algorithm that would cater for various kinds of datasets formats and 

arrangements. 
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Figure 3.4: Sample of Enrolment Data from the University of Nottingham 

Dataset File 
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Figure 3.5: Sample of Enrolment Data from the Toronto Dataset File 

 

Recall that we have also decided to test our approach on the 

ITC2007 dataset. In this particular dataset, in contrast to the Toronto 

dataset which is in the perspective of students, the ITC2007 is however is 

in the perspective of exams. A sample of the ITC2007 data file is 

illustrated in Figure 3.6. Each row represents an exam, where it consists of 

a two or three digit numbers showing the duration of the exam in minutes. 

The information in each row is then followed with a variable-length list of 

a one digit up until four digits student code for all students enrolled for 

this exam. 
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Figure 3.6:  Sample of Enrolment Data from the ITC2007 Dataset File 

 

In the above diagram, by assuming that both the first and second 

row in the list represent exam with 180 minutes duration, if we observe 

these two rows, we could see that there are 8 students (same students) 

with student ID: ‘312’, ‘752’, ‘760’, ‘768’, 858’, ‘879’, ‘1920’ and ‘1987’ were 

enrolled for these two exams. 

The main algorithm, as presented below, was designed to utilize a 

specific data type to represent the scheduling data. It was decided to use 

matrix as the main data type to represent all the information pertaining to 

the scheduling problem in the solution space. Since the matrix data type is 

highly adaptable in terms of the complexity of the representation in the 

sense that it can easily be converted from a single dimension to two 

dimensions and so on, this robustness only requires minimal changes in 

the actual program coding to be implemented. In this study a few matrix 
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or data types were identified that will be used to keep the initial data and 

also processed data within the system.  

The main data type is the StudentExamList matrix that represents 

the relationship between a student and all the exams that the student will 

be required to sit. It is a matrix of dimension NumberOfStudents x 

MaxNoOfExamForAStudent + 1. This data structure will be used to 

generate other data representations of the problem space. Each row index 

will represents a student, the first column will contain the total number of 

exams that the students have registered. Subsequent column will contain 

the examination index. The StudentExamList will be supported by the 

ExamLookupIndex and StudentLookupIndex. The ExamLookupIndex is a 

matrix of NumberOfExam x 2. Each row in the ExamLookupIndex will hold 

information for an exam. The first column contains the actual exam code 

or name and the following column will contain the number of unique 

students sitting for the exam. Similar to ExamLookupTable, the 

StudentLookupTable holds information for a student. Each row represents 

a student. The first column stores the student’s actual ID Number and the 

second column holds the number of exams the students will be sitting in. 

The relations of these data structures can be seen in the following 

algorithm. 

The algorithm to alleviate the initial problem of dataset and format 

variety is by providing an algorithm or function that would convert a 

dataset format to a standard format that will be used as an input to the 

pre-processing stage. The algorithm consists of three subroutines each for 

a particular dataset, namely Nottingham, Toronto and ITC2007 dataset. 
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The Nottingham subroutine will extract information from the input 

file. The Nottingham input file consist of rows with two column of 

information, The Student ID and the Exam ID each of this piece of 

information will be converted to an integer value reference. The unique. 

reference id for an exam and student will be used to populate the 

StudentExamList. While placing the exam id in the StudentExamList this 

subroutine will also keep the count of exams a student is enrolled and the 

number of students sitting for a particular exam. Once the placement of all 

the information is completed, a verification function will be called to verify 

all the information in the StudentExamList is exactly the same is the 

information in the original file. The verification will also check if there are 

inconsistencies in the input file. 

The Toronto subroutine is responsible to read and convert 

information from the input file to the format that is required by the 

scheduling algorithm. Each row in the Toronto input file is the list of 

exams a student is enrolled in which is deliminated by spaces. The Toronto 

file does not provide any information on the student id thus requiring the 

subroutine to assume that the first list of exams belongs to student with id 

equals to 1 and so on until the end of the file. The algorithm will place the 

exam id on the StudentExamList, keeps the tally for the number of exams 

a student is taking and the number of students sitting for a particular 

exam. 

The ITC2007 subroutine on the other hand will have to read and 

filter information in the input files as part of the data is not being used in 

our implementation.  Each row in the ITC2007 dataset file has the 

duration of an exam and the list of student id enrolled in the exam 
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deliminated by a comma. Since the dataset does not provide any exam id, 

the subroutine will assume that the first entry in the dataset belongs to 

exam id equals to 1 and so on. Similar to the previous two routines, this 

routine will also populate the StudentExamList, keeps track of the number 

of exams a student is enrolled in and tally the number of students sitting 

for a particular exam. 

 

Algorithm 1 

If Nottingham Dataset 

 Open the Data File 

 While not End Of File 

Read a line from file to Input 

Get FirstToken from Input  //StudentID 

Get SecondToken from Input  //ExamID 

i = -1 

j = -1 

Find Index of SecondToken in ExamLookupIndex assign to i if 

found 

Find Index of FirstToken in StudentLookupIndex assign to j if 

found 

If j = = -1 

   LastSLI = LastSLI + 1 

   StudentLookupIndex[LastSLI] = FirstToken 

   j = LastSLI 

EndIf 

If  i = = -1 

    LastELI = LastELI + 1 

     ExamLookupIndex[LastELI] = SecondToken 

     i = LastELI 

    StudentExamList[j][( StudentExamList [j][0])+1] = i 

StudentExamList [j][0]= StudentExamList [j][0]+1 

Else  

     StudentExamList [j][( StudentExamList [j][0])+1] = i 

    StudentExamList [j][0]= StudentExamList [j][0]]+1 

EndIf 

UpdateLookupTable(StudentLookupIndex,j, 

ExamLookupIndex,i) 

 

 End While 

Close 

DataValidity = VerifyData(ExamLookupIndex, StudentLookupIndex) 

End if 

 

If Toronto Dataset 

Open the Data File 

 While not EndOfFile 
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  i = i+1; 

                           j=0; 

  Read a line from file to Input 

While Input not empty 

      j=j+1 

      Get FirstToken from Input //Space Deliminated 

      StudentExamList [i][j]=FirstToken  

         UpdateLookupTable(StudentLookupIndex, i, 

ExamLookupIndex, FirstToken) 

 

End While 

StudentExamList[i][0]= j 

 End While 

Close 

DataValidity = VerifyData(ExamLookupIndex, StudentLookupIndex) 

End if 

 

If ITC2007 Dataset 

Open the Data File 

 i = 1; 

 While not EndOfFile 

    Read a line from file to Input 

   Get FirstToken from Input  //Exam Duration,not used 

     j = 0 

    While Input not empty 

         Get FirstToken from Input  //Comma Deliminated 

        j= j+1 

     StudentExamList[FirstToken][ 

StudentExamExam[FirstToken][0] ] = i 

     StudentExamExam[FirstToken][0]= StudenExamList 

[FirstToken][0]+1 

      UpdateLookupTable(StudentLookupIndex,FirstToken, 

ExamLookupIndex,i) 

 

  End While 

 i = i + 1 

End While 

Close 

DataValidity = VerifyData(ExamLookupIndex, StudentLookupIndex) 

End if 

 
 

 

Figure 3.7: Algorithm for Retrieving Enrolment Data, Standardization and 

Verification 
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3.2.2 Pre-processing 

 

A key step in the proposed exam scheduling method is the pre-processing 

of constraints prior to the generation of a feasible timetable. This is done 

through the abstraction of essential features of the exam scheduling 

problem from the original student-exam data.  

One example of the information obtained from the pre-processing is 

the identification of the clashing exams. Due to the need to ensure the 

feasibility of timetables, typical timetabling algorithms check if exams do 

not clash every time an exam is scheduled. In other words, for 

conventional approaches, without the pre-processing stage, the clashing 

information is implicit in data; thus, a lot of permutations requiring a lot 

of time need to be done in order to create a feasible timetable. This 

problem can be avoided using the approach of this study. The data 

structure is part of the mechanism to ensure that the feasibility of all 

generated schedules is maintained. By devising a data structure combining 

non-clashing exams into separate entities one can avoid subsequent 

feasibility checks. The data structure enables easy lookup of exams that 

can be scheduled together. We take an example of exam A, if exam B is in 

the non-clashing list of exam A, then they can be scheduled together. 

Otherwise there is at least one student that is enrolled in exam A and 

exam B. Hence, this approach deals only with feasible solutions.  

The pre-processed data can also be utilized later to find another 

information in the pre-processing stage; for instance, the non-clashing 

exams information, all exams will have its corresponding non -clashing 

list. To find the non-clashing exams, we just need to focus solely on the 
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clashing exams information logically, by finding the inverse of the clashing 

exams. This means that instead of doing a lot of cross-checking and cross-

referencing across many files, we are only employing the information that 

we obtained through the previous pre-processing. At each stage of the next 

level of pre-processing we will be doing a hierarchical processing that will 

always provide us with richer information. The types of pre-processing 

mentioned above are just examples. Other types of pre-processing and data 

dependencies will be considered to further enrich the existing information 

in order to minimize and simplify the scheduling process, thereby creating 

a valid and optimal exam timetable. 

The pre-processing stage has generated the following information: 

1. Number of students for each exam. 

2. List of students in each exam. 

3. List of clashing exams for each exam. 

4. List of non-clashing exams for each exam. 

5. Generation of the exam-conflict matrix. 

6. Generation of the conflict chain. 

7. Generation of the spread matrix. 

 

Generation of the Exam Conflict Matrix 

 

The first pre-processing step is to determine potential clashes between 

examinations and to count the number of students causing these clashes. 

This information is used to construct an exam conflict matrix which is a 

square matrix of dimension equal to the number of exams. Entries in this 

matrix at position (i,j) represent the number of students causing conflict 
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between exams i and j. The exam conflict matrix is generated by 

incrementing the value at position (i,j) by 1 for each student taking exams 

i and j when the student-exam list is traversed. The matrix will contain a 

negative number of students value (-s) at position i,j if there are s students 

causing conflict between exams i and j. The exam conflict matrix is a static 

data representation of the problem space. Information contain herein is 

fixed, which represent the interrelation between an exam to another exam. 

It forms the reference for allocation, optimization and calculation of the 

schedules quality (Carter cost (2.1)). The algorithm to generate this matrix 

is given in Figure 3.16. 

 

Generation of the Conflict Chains 

 

The clashes between exams are static information or relation which will 

not change in a problem space. By this we mean that the exam clashes will 

only change with an addition of a student taking both exams or all the 

students taking the two exams drop or unregister for either one of the 

exam. A clash between two exams is a situation where there is one or more 

students taking the two exams, thus implies that the two exams cannot be 

scheduled concurrently. This representation provides useful information 

granules that can be utilized in the scheduling process. Based on these 

information granules we determine the minimum number of time slots 

that are necessary for scheduling the given set of examinations. We refer 

to this stage as the construction of conflict chains.  

The algorithm deployed at this stage can be summarized as follows: 
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1. Initiate the algorithm by allocating all exams to time slot one. 

2. Select the first exam as “current” and initiate the counter for the 

current conflict chain. 

3. Label the current exam as “allocated to the current chain” and note all 

of the exams that are in potential conflict with the current exam. 

4. If the list of potentially conflicting exams is non-empty, re-allocate 

those exams to the next available time slot. Otherwise, label the current 

chain as complete and proceed to Step 6. 

5. If the list of potentially conflicting exams is non-empty, select the first 

exam from the list and repeat from Step 3 with the currently selected 

exam. 

6. Check if all exams allocated at Step 1 are belonging to one of the 

conflict chains; if YES, then the algorithm terminates; if NO, then the 

conflict chain counter is incremented and the unallocated exam is taken 

as “current” for processing, starting from Step 3. 

Figure 3.8: Algorithm to Generate Conflict Chains 

 

In this section we will illustrate the generation of conflict chains 

based on an example data. Assuming that Figure 3.9 is the student-exam 

list that was generated after the standardization and data retrieval phase. 

We are using four (4) students that have enrolled in total of 7 exams. The 

exam-students list generated will be as in Figure 3.10. 

This information will be used to generate the Exam Conflict Matrix, 

resulting in a conflict matrix in Figure 3.12. Note that the contents of the 

Exam Conflict Matrix are negative values. Each value is derived from the 

number of students that enrols in an exam from the x-axis and the y-axis. 
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Example we have two students taking exam E1 and E24 which is student 

A and B. 

The conflict chains generation as illustrated in Figure 3.13 starts by 

assigning all the exams to the first slot (i.e. slot number 1). Next the 

algorithm will traverse the exam list that has been assign to slot 1. It will 

start with the first exam and marking it as assign to slot 1. It will then 

check all other exams in slot 1 against the accepted exam to determine if it 

clashes (utilizing the exam clash list in the process). E1 has been marked 

as accepted and the algorithm will check E1 with the rest of the content of 

Slot 1. E24 is in the clash list of E1 thus marked as clash and it will be 

shifted to the next slot (slot 2) in the shifting phase, same goes to E300, 

E45 and E60. 

Upon completion of exam E1 inspection, the algorithm will mark 

the second exam which is still unmarked or not allocated; the slot still 

contains E512 and E73.  E512 is marked as accepted and the algorithm 

will inspect E512 against E73 which will result in marking E73 as clash 

and to be moved to the next slot. Upon completion of E512 inspection the 

algorithm will mark another exam in Slot 1 as accepted, however Slot 1 

currently does not contain any exams unallocated, hence marking the 

completion of the checking phase. 

In the next phase all exams that were marked as “to be shifted” will 

be shifted to the second slot, the exams are E24, E300, E45, E73 and E60. 

The checking cycle continues by accepting E24 and evaluating its clash 

with other exams in Slot 2. E300 and E45 will be marked as to be shifted. 

E73 will then be marked as accepted and E73 clash list will be inspected 
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and no exam is being marked as to be shifted. Finally E60 will then be 

marked as accepted and E60 clash list will be inspected and no exam is 

being marked as to be shifted. In the subsequent shifting phase, E300 and 

E45 are being shifted and the process continues until all the exams are 

accepted.  

Once the process of generating conflict chains has been completed, 

the algorithm will check the maximum number of slots obtained against 

the maximum slot required for a dataset. If the value of current slot 

configuration is lower than the maximum slot required, the exam in the 

last slot will be separated to create another slot as illustrated in Figure 

3.13 (After N Process). The final exam to slot allocation is depicted in 

Figure 3.14. 

 

Figure 3.9: An Example of a representation of Student-Exam List 
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Figure 3.10: Exam-Students List Generated Based on the Student-Exam 

List 

 

Figure 3.11: Exam-Clashes List 
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Figure 3.12: Illustration of Exam-Conflict Matrix 
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Figure 3.13: Diagram Illustrating the Slot Allocation Process 
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Figure 3.14: Diagram Illustrating Exams Allocated To Slots 

 

 

Figure 3.15: Conflict Chains Generated 

 

The outcome of the above algorithm is a set of conflict chains that 

represent mutually dependent exams that need to be scheduled in 

different time slots in order to avoid the violation of hard constraints 

(Figure 3.14). However, the algorithm implies that it is possible to have 

one exam belonging to more than one conflict chain (although the 

algorithm will ensure that the allocation of this exam to the time slot is 

consistent in both chains). For this reason we perform the additional step 

of merging these conflict chains, which happen to have common exams. 
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The merged conflict chains represent independent subsets of the 

examination set that can be dealt with one at a time. 

 

Generation of the Spread Matrix 

 

Besides generating the independent conflict chains, as outlined above, the 

number of students who take exams allocated to time slots that are 1, 2, 3, 

4 and 5 time slots apart was evaluated. Since we are dealing with 

information granules that represent a potential conflict between all exams 

in one time slot and all exams in another time slot, regardless of what the 

actual time slot numbers are, we create a framework for efficient 

optimization of the cost function (measuring the quality of the timetable). 

The following will describe the proposed scheme for renumbering the time 

slots using the background knowledge about the structure of the cost 

function. This stage will be referred to as maximizing the spread of 

examinations. 

Using the exam conflict matrix information together with initial 

grouping of exams information through the early pre-processing stage, the 

spread matrix is then generated. The spread matrix (Rahim et al., 2009) is 

a square matrix of dimension S, where S is a number of slots. Entries in 

the spread matrix at position (p,q) represent the number of students who 

take an exam from both slot p and slot q. The matrix is symmetrical with 

diagonal elements being omitted because students can take only one exam 

in any given exam slot. The spread matrix is created by incrementing the 

value at position (p,q) by 1 if exam p and exam q are not grouped together 

in the early allocation process (meaning they are clashing). 
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The pre-processing of the original student-exam data into the exam 

conflict matrix and the spread matrix pays dividends in terms of 

minimizing the subsequent cross-checking and cross-referencing in the 

original data in the optimization process, thus speeding up the scheduling 

task. The essence of pre-processing is summarized by the pseudocode in 

Figure 3.16. 

Algorithm 2 

Read student-exam list 

Initialise exam-conflict matrix to zero 

Initialise spread matrix to zero 

Initial allocation of exams to slots  

Read exam-to-slot allocation vector 

For i=1 to number-of-students 

  For j=1 to number-of-exams-of-student-i -1 

   For k=j to number-of-exams-of-student-i 

    Increment entry exam-conflict(student-exam(j),student-exam(k)) by 1 

     If exam-to-slot(student-exam(j))/=exam-to-slot(student-exam(k)) 

 THEN 

     Increment matrix element spread(j,k) by 1 

    End 

   End 

  End 

End 

 

Figure 3.16: Algorithms for Pre-Processing 

The pre-processing stage is one of the biggest contributions towards 

solving and minimizing the search space. In the approach that is proposed 

and implemented in this study, the granulation of the problem space was 

introduced using the exam-conflict matrix, spread matrix and exam-to-slot 

vector to simplify the problem and provide an algorithm which is not NP 

complete to solve the problem. The main computational component in the 

algorithm is the outer loop which iterates through the student list, l which 

ranges between 611 to 30032 based on the three benchmark datasets used 

in this study as can be found in Chapter 2. For each of the students there 

is an inner loop to create a permutation of the exams that the students are 
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taking, m with itself to create the exam-conflict matrix and spread matrix. 

The value of m has a limitation, which is actually the maximum number of 

exams a student can enrol in a particular semester.  By assuming that one 

exam is equivalent to a one credit hour, a worst case scenario, a student 

will enrol for a maximum of 25 exams. The number of exams m is selected 

from a pool of exams ranging from 81 to 2419 based on the benchmark 

datasets used in this study.  The complexity of the algorithm can be 

simplified to O(l x m x m) = O(lm2). Within the problem domain when l is 

increased its relative value towards m is huge making m irrelevant. The 

value of m can be neglected due to the fact that m has a limit to its value, 

which is very small compared to the number of students l when it grows. 

Thus, the complexity of the algorithm is simplified to O(l). 

The pre-processing of data and constraints from the original problem space 

will provide important information granules which in turn provide 

valuable information for scheduling. The new aggregated data generated by 

the pre-processing stage, i.e. exam conflict and spread matrices, will 

minimize the subsequent cross-checking and cross-referencing in the 

original data in the optimization process, thus expediting the scheduling 

process. 

 

 

3.2.3 Scheduling 

 

After the pre-processing of data is completed, the next step is the 

scheduling process. This is when the initial allocation of exams to slots is 

done, i.e. grouping exams that are not conflicting in a group. In this study, 
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there are two methods for scheduling; the first is via the conflict chains 

generation and the second is via the allocation method. 

 

3.2.3.1 Scheduling for Uncapacitated Problems 

 

Scheduling will be done using the derived information from the pre-

processing stage. The timetable generated at this stage is based on pre-

processed data; therefore, it will always fulfil the hard constraints. 

The generation of a feasible solution is achieved using an allocation 

method which is based on the standard Graph Colouring Heuristic 

(Broder, 1964), (Cole, 1964), (Peck and Williams, 1966), (Welsh and Powell, 

1967), (Laporte and Desroches,1984), (Burke et al., 1994c), (Carter et al., 

1994), (Joslin and Clements, 1999), (Burke and Newall, 2004a), (Asmuni et 

al., 2007), (Abdul-Rahman et al., 2009), (Kahar and Kendall, 2010), which 

is used to generate the allocation of exams to time slots. This method 

allocates exams by placing exams with the highest conflicts first; it then 

moves to other exams with lower conflicts. This is based on the principle of 

an early allocation of those exams with the highest number of conflicts to 

the available time slots. During this process, the number of conflicts of 

exams which have not been scheduled yet is recalculated to reflect the 

latest updated status of exams. This means that all unallocated exams are 

taken into consideration in every iterative step, rather than being 

processed sequentially. 

During the allocation of exams to slots, there will always be two 

types of slots: empty slots and non-empty slots. Empty slots are the slots 

are not yet been assigned any exams, where as non-empty slots are the 
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slots that already have exams been assigned to them. We have four 

preferences for allocation determination which are: assigning conflicting 

exams to non-empty slots; assigning conflicting exams to empty slots; 

assigning non-conflicting exams to non-empty slots; and assigning non-

conflicting exams to empty slots. These have the values of 0.4, 0.3, 0.2 and 

0.1, respectively. The higher the value, the higher the preference for 

allocation.  

Any unused slots are removed and provide a buffer-space for 

subsequent optimization. The output is an allocation flag, exam-to-slot 

vector which contains the slot numbers for all exams. An allocation flag is 

a single dimensional array or also known as a column vector of dimension 

[number of exams x 1] where each value in the vector corresponds to the 

slot number where each exam in problem is assigned.  At this point, the 

number of slots could be determined by the maximum value in the 

allocation flag.  

The generation of a feasible solution (or what can be considered 

here as a feasible conflict chain) is done by allocating a group of exams to 

timetable slots which are verified by calling a verification procedure. The 

process continues by calling the merging procedure to reallocate exams. By 

splitting a slot p and reassigning constituent exams to other slots, the total 

number of slots may be reduced if every exam in slot p can be allocated to 

some other slot, i.e. is not in conflict with exams in other slots. 

Algorithm 3 

Generate a feasible allocation of group of exams to timetable slots 

Verify allocation of exams to slots 

Execute splitandmerge procedure 

Split a slot p and reassign constituent exams to reduce the number of slots 
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Execute backtracking to further reduce number of slots 

 

Figure 3.17: Algorithm for Allocation of Exams to Time slots 

 

The generation of a feasible solution process through the allocation 

of exam to timetable slots in Algorithm 3 is further detailed in Algorithm 

3a. 

Algorithm 3a 

Create the first slot, islot=1;        

  

Initialize allocflag array, xs array and inew to 0.  

initialize xe with the exam conflict matrix 

while there is still exam unallocated  

if inew > 0 there was a new assignment to allocflag 

           update 'xe' 

    Obtain an unscheduled exam id (istart) with the biggest conflict 

    if the obtained exam has a confnum==0  

           assign all exams not yet allocated with value nex + 1  

    if exam 'istart' can't be allocated to 'islot-1' slots 

           allocate istart to the last slot 'islot' 

           update xs with the latest exam 

           increment islot by 1 

           update xs with the new slot availability 

    else 

           assign exam istart with value nex + 1 indicating deferred assignment 

    inew=istart 

end 

initialize inew and xc matrix to 0 

reinitialize xe with the exam conflict matrix 

for i=1 to number of exams 

if exam i is allocated to nex+1 

       Assign ye the number of conflicts of exam 'i' 

       for j=1 to islot 

           if xs(j,i)==0 

              Assign ys number of conflicts of slot 'j’ 

              Assign y number of conflicts of slot 'j' after allocating exam 'i' 

              Obtain preference value based on ye and ys 

              Assign xc(j,i) with ye + ys –y + pref 

           end 

       end 

   end 

end 

Identify exam with maximum conflict reduction potential 

Identify slot to assign 'exam' 

update slot conflict xs 

allocflag(exam)=slot 
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while there is still exams allocated to slot nex+1 

clear y1 

 Update 'exam' column of 'xc' 

 update the 'slot' row of 'xc' 

 for i=1 to number of exams  

       if exam i is assign to nex+1 

           j=slot; 

        Assign ye with number of conflicts of exam 'i' 

             if xs(j,i)==0 

              Assign ys with number of conflicts of slot 'j' 

         Assign y the number of conflicts of slot 'j' after 

allocating exam 'i' 

              Obtain preference value based on ye and ys 

                Assign xc(j,i) with ye + ys – y + pref 

             else 

               Assign xc(islot,i) with 0.3 

           end  

       end 

 end 

 identify exam with maximum conflict reduction potential 

 identify slot to assign 'exam' 

 update slot conflict xs 

 allocflag(exam)=slot; 

if slot==islot 

    add additional slot, update xs and xc 

end    

end 
 

 

Figure 3.18: Algorithm for Allocation of Exams to Time slots 

 

The above algorithm is divided into three parts, each having a loop 

to do the allocation of exams to time slots. The first loop is responsible for 

the first round of allocation, ensuring that the exams with the largest 

number of conflicts are scheduled first into the slots. The loop has a 

complexity of O(n) which is proportional to the number of exams. The 

second loop will schedule exams which have been deferred in the first 

round of allocation. It is a nested loop with two loops forming the external 

loop and the internal loop. Both of these loops go through the exams list; 

thus, giving the element n as the maximum value, which results in a 

complexity of O(n2). The final loop is responsible for allocating unallocated 
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exams which have not been scheduled in the first or second loop. The final 

loop has a complexity of O(n2) with the maximum number of time slots to 

solve the problem is equal to the number of exams, contributed by a for 

loop nested in a while loop. 

Overall, the whole process of allocating exams to time slot has the 

complexity of O(n + n2 + n 2), which totals to O(n + 2n2) and a final 

complexity of O(n2). 

Effects of Pre-Ordering Exams on Scheduling 

 

In the process of assigning exams to slots, or creating the conflict 

chain, we have identified that the final outcome is highly dependent on the 

ordering of the exams prior to the assignment. We can look further into 

this phenomenon to identify the criteria or reasons for this behaviour. 

Each exam in the examination scheduling has corresponding exams that 

clash with it, except for any exam that is taken only by students who are 

not sitting for any other exam. Whenever there are two students who are 

both taking the same exam and either of them also has another exam, the 

clashing situation exists. This situation is depicted in the following figure: 

 

Figure 3.19: Figure Illustrating Exam E510 Clashes with Exam E66 
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In the above figure students E and F will both be sitting for exam 

E510 and student F has an additional exam E66. When this situation 

arises in the examination scheduling problem, we know that E510 clashes 

with E66; thus, making these two exams interconnected and ensuring that 

they cannot be scheduled in the same time slot or location in order to 

adhere to the hard constraint imposed on the scheduling problem. The 

above instance creates a link of dependence between these two exams. If 

there exists one exam in a slot then we cannot have its counterpart in the 

same slot. Another fact that needs to be highlighted is that the two exams 

E510 and E66 actually contributed towards the calculation of the cost 

function. Whenever these two exams are scheduled less than 5 slots apart, 

it will add some weight to the cost function.  

In an instance where there are other exams that the student is 

sitting for and between these exams there are other students who are also 

sitting for it, this would result in an intertwined connection between the 

exams. This creates a complex interlinking between these exams and 

determines the outcome of the possible solutions that can be generated 

during the conflict chains generation, based on the order in which these 

exams were assigned into slots. To prove this, we introduce a clash list for 

a set of exams, as depicted in the following figure:   
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Figure 3.20: Figure Illustrating 8 Exams with The Clash List Pre-ordered 

Using Ordering 1: Random Ordering (RO) 
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Figure 3.21: Slot Allocation Process for Random Ordering (RO) 

 

In the above and following examples we omit the list of students 

and other details since the information is no longer needed in the 

processing. The figure above shows the exam list from E1 to E8 (the first 

column); each is followed by other boxes containing the exam codes for 
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those exams with which they clash. We have obtained this arrangement 

for conflict chain creation based on random ordering. The following figure 

is another ordering of the same datasets which we have obtained through 

the Largest Degree arrangement.  

 

Figure 3.22: Figure Illustrating 8 Exams with The Clash List Pre-ordered 

Using Ordering 2: Largest Degree (LD) 
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Figure 3.23: Slot Allocation Process for Largest Degree (LD) 

 

Figure 3.20 and Figure 3.22 are translated into two matrices as 

shown below: clashA and clashB, respectively. Pre-processing has been 

achieved by running the code to determine the number of minimum slots 

required. The slot allocation process for the Random Ordering is shown in 

Figure 3.21 and slot allocation process for Largest Degree is shown in 
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Figure 3.23. As a result of going through the slot allocation process, the 

following number of slots required for each ordering is obtained: 

clashA=[ 

1 2 4 6 0 0 

2 1 3 4 5 6 

3 2 5 0 0 0 

4 1 2 5 6 0 

5 2 3 4 6 8 

6 1 2 4 5 0 

7 8 0 0 0 0 

  8 5 7 0 0 0]; 

 

clashB=[ 

1 2 3 4 5 6 

2 1 3 4 6 7 

3 1 2 4 5 0 

4 1 2 3 5 0 

5 1 3 4 0 0 

6 1 2 0 0 0 

7 2 8 0 0 0 

8 7 0 0 0 0]; 

 

a) Ordering 1 (clashA):  5 slots 

b) Ordering 2 (clashB):  4 slots 

 

We have also done some pre-processing on the problems of 

benchmark datasets to determine the minimum number of slots required 

to schedule the exams and, as expected, different orderings have produced 

different results.  The differences can be seen in Table 3-1: 
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Table 3-1: Different Number of Slots Generated After Pre-Processing By 

Using Different Pre-Orderings 

 

Based on these results we can generalize that different pre-

orderings result in a different number of slots being required and this will 

also affect the quality of the schedules later on.  

 

Implementations of Backtracking to Reduce the Number 

of Slots 

 

Reducing the number of slots for a solution reduces the number of days 

and resources that will be utilized for the examination, thus reducing the 

operational cost. However, by reducing the number of days, it will 

Name of 

Dataset 

Minimum No. of 

Slots Required 

Using Random 

Ordering (RO) 

Minimum No. of 

Slots Required 

Using Largest 

Enrolment (LE) 

Minimum No. of 

Slots Required 

Using Largest 

Degree (LD) 

nott 26 19 18 

car-s-91 (I) 44 35 32 

car-f-92 (I) 48 36 34 

ear-f-83 (I) 29 26 24 

hec-s-92 (I) 22 22 20 

kfu-s-93 25 21 20 

lse-f-91 22 20 19 

pur-s-93 (I) 54 41 38 

rye-f-92 28 26 25 

sta-f-83 (I) 35 35 35 

tre-s-92 29 22 23 

uta-s-92 (I) 43 37 36 

ute-s-92 13 10 11 

yor-f-83 (I) 29 25 27 
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definitely increase the value of the cost function since the Carter cost (2.1) 

function is highly dependent on the temporal distance between consecutive 

exams, which is affected by the number of days’ duration of the overall 

examinations. 

During the scheduling process, the order of processing the exams 

may sometimes lead to a non-optimal assignment of exams to slots which 

could create an infeasible schedule (i.e. does not satisfy the number of slots 

required). This situation calls for a reassignment of exams from the initial 

slot allocation to other slots in order to ensure the number of slots is 

reduced to the required number and the schedule becomes feasible. This 

kind of reassignment will need to revisit or backtrack through the initial 

allocation or assignment process, and therefore we will call this a 

backtracking process. In the backtracking process, some assignments 

which have already been made will be undone in order to schedule these 

exams in other time slots. As a result, this simulates the generation of a 

set of feasible schedules that will be used in the optimization process later. 

The backtracking process takes place when we execute the 

optimization stage to minimize the number of slots for a solution. The 

main objective of the algorithm is to look for possible exam movements 

within the available slots and identify the best moves that can be made. 

The specific objectives of the backtracking might include: 1) to 

reduce the number of slots in order to satisfy the slots number 

requirement in a given problem; 2) to prepare the non-optimal schedule for 

further optimization; or 3) to undo certain assignments of exams to periods 

during scheduling in order to allow other exams, which previously failed to 
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be assigned and caused the infeasibility of the schedule, to be scheduled 

first. 

 In one of their approaches, Carter et al. (1996) utilized the 

backtracking process in the main algorithm to come up with a feasible 

solution for a timetable, giving the algorithm the advantage of undoing 

steps; which is de-assigning exams from a period to obtain a previous 

solution state, with the objective of assigning an exam which previously 

could not be assigned to any one of the periods or slots. Carter et al. (1996) 

concluded that the backtracking process managed to reduce the overall 

solution length by 50%; thus, we found the algorithm very appealing and it 

fitted easily into our implementation. Therefore, it was decided to use the 

Carter et al. (1996) backtracking algorithm, with some modifications, as 

the basis from which to eliminate or reduce the slots of the current 

solution.  

This is due to the fact that a reduction of slots involves rearranging 

or reassigning allocated exams to new slots, which will result in the 

modification of other related exams. By doing this, we are in the same 

position as Carter et al. (1996), as the probability of the future movement 

of exams to reach a feasible solution is uncertain; thus, we need to have 

the capability to undo any movements made previously.  

This is in anticipation of the fact that by reducing the number of 

slots at the early stage, one can minimize the cost of timetables at the later 

stage during the optimization process. The initial schedule with a few slots 

(i.e. less than the required number of slots) can always be modified to one 

with the required number of slots. We hypothesize that this could provide 



 

90 

 

a useful buffering space during the optimization involving permutations of 

exam slots. Consequently, this has the potential to improve the quality of 

the schedules (Rahim et al., 2009; Rahim et al., 2012). 

After each exam has been assigned to a slot via the scheduling 

process, backtracking is then performed to further reduce the number of 

slots, if any reduction is possible (Rahim et al., 2013b). The backtracking 

process in our proposed framework is illustrated by the following diagram. 

 

Figure 3.24: Backtracking Stage in Our Proposed Framework 

 

We have implemented the backtracking process used by Carter et al. 

(1996). The backtracking took place after doing the scheduling using the 

allocation method, as discussed in the previous section. The purpose of 

implementing this is to see whether backtracking could reduce the number 

of time slots required to schedule the exams.  

The flowchart of the backtracking process implemented in our work 

is given in Figure 3.25. Note that the general idea was based on the 
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backtracking algorithm proposed by Carter et al. (1996), but with some 

modifications to suit our framework. Figure 3.26 outlines the pseudocode 

of the whole process. 
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Figure 3.25: Flowchart of Backtracking Process 
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Algorithm 4 

for i = 0 to Last_i 

 for p=0 to Last_p 

  if <i can fit to p> 

   Assign i to p 

  

  end if 

 next p 

 for p = 0 to Last_p 

  Bp = 0 

  x = all course where i conflicts 

  for j = 0 to max(x) 

   APaper = x[j] 

   for p = 0 to Last_p 

    if <APaper can fit to p> 

     CostApaperAtP = <cost if Apaper is put 

to p> 

    end if  

   next p 

   if <total CostP = 0> 

    if <i bumped APaper before> 

     Bp = -1 

    else 

     Bp = Bp + 1 

     Mark APaper to bump if p selected 

    end if 

 

   else 

    <Get min cost and mark p for new location of 

APaper> 

   end if 

  next j 

  Calculate m for p 

 next p 

 Get min Bp 

 if <min Bp = 0> 

  Get all of p where Bp= 0 

  Get min Mp for all p selected 

  put i to p 

  execute APaper shifting  

 else 

  if min Bp is infinity 

   mark i as unable to schedule 

  else 

   Get all p for min Bp 

   if p unique 

    put i to p 

    execute APaper (which is marked) shifting 

   else 



 

94 

 

    get min Mp for p 

    put i to p 

    execute APaper (which is marked) shifting 

   end if 

  end if 

 end if 

Next i 

 

Figure 3.26:  Pseudocode for Backtracking 

 

For each exam in the Exam_to_relocate list that we have selected 

(which will be referred to as the current exam), we will calculate a Bp 

value for each slot that we have as the solution, which is the number of 

exams that will need to be relocated if the current exam is assigned to the 

slot p (the process of finding the number of exams clashing with it in each 

of the available periods). Please note that the exams clashing with the 

current exam will be bumped to the Exam_to_relocate list, and thus will be 

assumed to be unscheduled exams.  

In the process of calculating the Bp value for each slot we create a 

CurrentExamClashWith list for each slot that the exam can enter or be 

relocated. All the exams which have students clashing will be included in 

this list. The total number of the content of CurrentExamClashWith is the 

Bp for the slot. If the exam is allocated there the content of 

CurrentExamClashWith can easily be used to populate the 

Exam_to_relocate list. 

Initially, each Bp value in each slot is assigned the value of 0 and if 

an exam cannot be assigned to the slot for a specific reason, it will be 

marked or given the value number_of_exams + 1. In the process of finding 

the Bp, if the exam in the list has bumped any clashing exams encountered 
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in the period we are dealing with, then the Bp for this period is equal to 

number of exams + 1 (Bp= nex + 1). This is a bit different from Carter et al. 

(1996), who assigned an infinity value to the Bp whenever they 

encountered this condition. We also assign Bp = nex+1 for a period, if the 

exam in the list originated from this period. This is another modification to 

Carter’s method to avoid a cyclic shift. We continue finding the Bp for all 

periods for each exam in the waiting list. 

Each of the exams that can be relocated to accommodate the coming 

exam has an indicator to determine whether the incoming exam has a 

history of shifting out the exam to the relocation list. We create a 

BumpMatric which is a matrix of exam x exam, where the rows represent 

the Exam_to_reduce and columns represent CurrentExamClashWith. The 

intersection between rows and columns has an indicator: the value 1 

indicated the Exam_to_reduce has bumped the corresponding exam 

CurrentExamClashWith. The value 0 indicates that Exam_to_reduce has 

not bumped the corresponding exam CurrentExamClashWith. This value, 

however, will change to 1 in the transfer stage if a ‘bump’ occurs.  

We have taken the same approach as Carter et al. (1996) in that an 

exam is allowed to push out an exam to the relocation list only once during 

the process; this is to eliminate the probability of creating a cyclic shift 

resulting in an infinite loop of transferring exams out and into the slot. In 

order to do this, we monitor or keep track of the last slot that an exam in 

the relocated list originated from. This is to ensure that the exam that has 

been transferred out does not go back into its original slot when it is time 

for the exam to be evaluated for relocation. 
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The purpose of finding the Bps for all the periods is to determine 

which period to choose to assign the exams in the waiting list. Bps for all 

periods can range from the value of 0 to nex + 1. So, the best Bp would be 0 

and the worst Bp would be nex + 1. This means that the exam in the 

waiting list will be assigned to the period with the minimum value of Bp. 

The lowest Bp value will be the best criterion to be selected as the target 

location for the Current exam relocation. 

In the period selection stage, there is always a possibility of having 

the same Bp values. If there are several periods with Bp = 0, then our 

method will choose the first period with Bp=0 encountered or, in other 

words, the first available period with no exams clashing with the exam in 

the waiting list. In cases where the Bp ranges from the value 1 to nex 

(Bp=1 to Bp=nex), and there exist multiple periods with the same Bps, 

then our method will execute a selection based on the weighting given to 

the periods. 

The weighting given was based on the total number of students 

having conflicts in both exams in the periods and the exam in the waiting 

list. The period with the maximum value of the weighting will be selected; 

thus, the exams in the period clashing with the exam in the waiting list 

will be bumped to the waiting list. The weighting given is mainly for the 

purpose of breaking the ties of the same Bps. 

Once the period or the location to assign the exam in the waiting 

list is complete, the transfer stage follows. The transfer stage is the process 

of transferring the current exam in the waiting list to the new period 

selected. 
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The above process then repeats for other exams in the waiting list. 

If, at the end of the process, some exams fail to be assigned to any periods, 

then we assume the backtracking process has failed; thus, the above 

process will be undone and the previous configurations of allocation of 

exams to periods will be used. The transfer stage will allocate the exam to 

its new slot and it will also transfer out existing exams in the slot that 

clashed with the incoming exam to the Exam_to_relocate list. All current 

information that is affected by the move is initialized to its original value 

before starting the evaluation for the next exam in the Exam_to_relocate 

list. If the algorithm finds a situation where there is no solution to allocate 

all the existing exams or any of the exams in the Exam_to_relocate list, 

then it will revert and undo all of the movements of exams to obtain the 

original placement before the reduction of the slot is executed. 

The backtracking algorithm consists of a few levels of nested loops 

that will increase the computational complexity. This is due to the fact 

that we will be traversing and searching the solution space for all possible 

moves that an exam can make and all moves are evaluated. The first loop 

will traverse the list of exams that have to be selected to be relocated. 

Within this loop there are two sequential loops. The first will traverse all 

the available remaining slots to check if the exam can be allocated to the 

slot; and, if this is possible, an allocation of the exam to the slot will take 

place. The second loop will go through all the available periods and 

evaluate the possibility of assigning the exam to other slots which have 

conflicting exams. Within the second loop there are two loops; one inside 

the other. Each of these loops has a different controlling logic. The 

complexity of the main loop depends on the number of exams that need 
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rescheduling and would have a maximum value of n, being the number of 

exams. The two sequential loops inside the main loop are controlled by the 

number of slots currently available and required by the solution m. The 

algorithm initially will have the complexity of O(n(m+m(n(m)))). As the 

value of m and n grow bigger, the value of m will be the same as n. The 

initial algorithm complexity reduces to O(n(n+n(n(n)))) = O(n(n+n3)). This 

can be further reduced to O(n2 + n3) = O(n3). 

 

Types of Backtracking Implemented in the Proposed 

Framework 

 

i. First Method: Backtracking 1 (BT1) 

 

In the first backtracking method, called here Backtracking 1 (BT1), we 

attempt to eliminate the last utilized time-slot. We have implemented the 

backtracking process used by Carter et al. (1996), but with some 

modifications. In contrast to Carter et al. (1996)’s method, where 

backtracking was performed during the initial placement of exams, in our 

approach the placement of exams to their allocated slots has already been 

completed; therefore, we are attempting to convert the infeasible schedule 

into a feasible one.  

After allocations of exams to slots were completed, we identified all 

the exams in the last slot and we assigned them to a waiting list of 

unscheduled exams. Then, for each exam in this list, we initialized the 

selection criterion, which is known as Bp (according to Carter et al., 1996), 

for all periods equal to zero (Bp=0). Next, for each exam in the list we 
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proceed by finding the number of exams clashing with it in each of the 

available periods. Bp for each period is the number of exams clashing with 

the exam currently being evaluated in the waiting list. Please note that 

the exams clashing with the exam in the list are the exams that will be 

bumped to the waiting list, and thus will be assumed to be unscheduled 

exams. (Note also that we process the exams in the list on a ‘First In, First 

Out’ basis).  

 

ii. Second Method: Backtracking 2 (BT2) 

 

In the second backtracking approach (BT2), the objective is to eliminate 

the slot containing the fewest number of exams after the allocation 

method. The number of slots that will be eliminated is also 1 (the same as 

BT1). 

It is interesting to note here that, in BT2, the slot that will be 

eliminated could be any slot in the schedule (in BT1 it is always the last 

slot); therefore, it could be the first, in the middle or the last one. Once the 

slot with the fewest exams has been determined, all the exams will be put 

in a waiting list. Each exam in the list will be evaluated for reallocation as 

with our first approach (BT1). 

Differences between Carter’s Backtracking and the 

Proposed Backtracking 

 

The backtracking implemented by Carter et al. (1996) was used during the 

initial placement process. However, in our approach the placement of 

exams in their allocated slots has been completed. What we are doing is 
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using the backtracking method to rearrange the placement of exams to 

reduce the final number of time slots to schedule all the exams. We differ 

in terms of approach and purpose from the backtracking of Carter et al. 

(1996); we are utilizing the backtracking process to reduce the number of 

slots of an existing feasible solution and the other is utilizing the process to 

allocate exams which could not be allocated via the normal process. Thus, 

two different outcomes will be derived from the process, as depicted in the 

two following figures. 

 

Figure 3.27:  Flowchart for Carter’s Backtracking in General 
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Figure 3.28:  Flowchart for our Backtracking in General 

 

In our approach, after the allocation of exams to slots is completed, 

we identify all the exams in the slot to be eliminated and we assign them 

to a waiting list which is a list of unscheduled exams. Then, for each exam 

in this list, we start to calculate and evaluate the possible locations to be 

assigned. Only when the assignments have been made are exams which 

are in conflict with the incoming exam transferred out to the unscheduled 

list. Carter et al. (1996), on the other hand, transferred out the exams 

which were in conflict with the incoming exam straight to their new slots 

and only exams that could not be allocated to other slots were shifted to 

the unscheduled list or waiting list.  
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We have created and converted Carter et al. (1996)’s backtracking 

algorithm to a flowchart for comparison and to give a better understanding 

of the process, as can be seen in Figure 3.29. 
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Figure 3.29:  Flowchart for Carter et al. (1996)’s Backtracking in Detail 
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A scheduling process which utilizes an allocation method to assign each 

exam to a slot using a Graph Colouring Heuristic, coupled with a 

backtracking procedure (a modified version of Carter et al. (1996)’s 

backtracking approach), is adopted as a basic scheduling process. It is 

expected to produce only feasible solutions with a total number of 

slots that will satisfy the slots number requirements given in the 

problem. Backtracking will aid in assuring the feasibility of the 

schedule by reducing the number of slots if the allocation method does 

not conform to the constraint on the number of slots. Besides ensuring 

the feasibility, by reducing the number of slots at the early stage, the 

extra slots could provide a useful buffering space for subsequent 

optimization in improving the quality of the schedules.  

 

 

3.2.4 Optimization 

 

In the area of computer science or mathematical programming, 

optimization can be understood as selecting the best solution from a set of 

available solutions. In general, optimization can be seen as a process that 

maximizes the benefits while minimizing the investment in resources that 

facilitates these benefits. 

Therefore, in the examination scheduling context, optimization 

could be defined as a process of improving the quality of the feasible exam 

schedule or solution. A feasible timetable could have an ordering of exams 

that does not satisfy many of the soft constraints. This calls for a separate 
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deployment of optimization to achieve greater satisfaction of soft 

constraints and consequently the improvement of the quality of the 

schedules. 

In order to demonstrate optimization as a process to improve the 

examination schedules, we present below a diagram (Figure 3.30) which 

illustrates an example of a feasible examination schedule. As can be seen, 

there are a few students:  S1, S2, S3, S4 ,S5 …. Sn and a few exams: E1, 

E2, E3, E4 …Em together with a few time slots: T1, T2, T3, T4 …. Tk.   

In this example, student S1 has registered for exams E1, E2 and 

E4; and student S2 has registered for E3 and E4. Therefore, exams E1, E2 

and E4 are the set of conflicting exams for student S1 and because of this, 

they cannot be assigned to the same time slots.  The diagram below shows 

that these three exams are not assigned to the same time slot (they are 

assigned to time slots T1, T2 and T3 respectively) and thus this is 

considered a feasible examination schedule. 

 

Figure 3.30: An Example of a Feasible Examination Schedule 
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According to the above example, although student S2 has a feasible 

examination schedule, the timetable does not satisfy the soft constraint in 

terms of putting a gap between one exam and the next exam that student 

will have to sit. This is not necessary but satisfying this would improve the 

schedule quality by benefiting the student, since it allows the student to 

have more revision time between exams. Thus, if exam E3 is now 

reassigned to time slot T1, the quality of the schedule can be improved, as 

illustrated in Figure 3.31. 

 

Figure 3.31: An Example of an Improved Examination Schedule 

 

 

This study has adopted an approach to the design of the exam 

schedule optimization that focuses on promoting understandability of the 

optimization process. To this end, we have avoided random exploration of 

the solution space, such as that widely proposed in the literature, where 

mostly were not really successful in applying to a wider range of 

timetabling problems, and this scenario calls for an investigation on 

raising the generality of the existing approaches (Qu et al., 2009a).  Thus 

we  have adhered to the deterministic evaluation of the search direction 
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during the optimization process, which through systematic procedures, by 

using the background knowledge about the structure of the cost function, 

the optimization process will always maneuver intelligently to achieve as 

low cost as possible (rather than randomly search for solutions). 

In this work, we develop optimization methods to improve the 

initial feasible schedule generated by the allocation method. The cost of the 

initial feasible schedule is normally fairly high. In order to minimize the 

cost, we perform the minimization of the total slot conflicts, followed by 

further optimization of the initial schedule by the permutations of exam 

slots and the reassignment of exams between slots (Rahim et al., 2012). 

The standard objective function that we will be using is the cost 

function originally proposed by Carter et al. (1996), as discussed in 

Chapter 2. The lower the cost obtained, the higher the quality of the 

schedule, since a gap between two consecutive exams allows students to 

have extra revision time.   

 

3.2.4.1 Minimization of Total Slot Conflicts 

 

The notion of a slot conflict is a generalization of the notion of exam 

conflict. We consider two exams i and j as being “in conflict” if there is a 

student who is taking both exams. In a feasible schedule such exams are 

allocated to different exam slots. It is worth noting here that the conflict 

between exams is a binary property that does not increase in value if there 

are several students taking these two exams. Consequently, once we 

establish which exams are in conflict we do not need to be distracted, in 

the exam scheduling process, by the detailed student-exam data. This 
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domain-transformation approach, motivated by the granular information 

processing paradigm (Bargiela and Pedrycz, 2002) provides a key 

advantage of the proposed exam scheduling. 

Taking an even a broader view on the exam conflict, a novel 

contribution of this study is the consideration of the exam-slot conflict. 

Since every exam that is in conflict with the exam i is allocated to other 

slot in the initial feasible solution, we can count the number of slots that 

contain conflicting exams for exam i. An exam-slot conflict is a matrix 

(binary matrix) with a dimension of number of exams x number of slots. 

The value 1 in the matrix at location i,j indicates an exam i has a one or 

more conflicting exams in slot j.  

To exemplify the exam-slot conflict matrix, assume that we have an 

exam E1 that is in conflict with E3 and E7. After the initial allocation 

method, let us say, E1 is assigned to timeslot T2, E3 is assigned to time 

slot T7 and E7 is assigned to time slot T10.  The exam-slot conflict matrix 

[E2, T7], [E2, T10] will have the value 1 and the total number of exam-slot 

conflicts for E1 is 2 which was contributed by T10 and T10 (which is the 

total number of columns in the matrix having the value of 1 for a 

particular exam). The best case scenario is an exam that is not in conflict 

with any exam in other slots, having a total number of exam-slot conflicts 

value of 0. On the other hand, the worst case scenario is an exam having a 

total number of exam-slot conflicts of number of slots -1 (the exam has one 

or more conflicting exams in all other slots.) 
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In order to guide our exam schedule optimization process, we use 

the total number of exam-slot conflicts as a measure of the ability to re-

schedule exams between the slots. If the total count is high, it means that, 

on average, exams are in conflict with many slots and consequently there 

are few slots available for rescheduling. Conversely, if the total count is 

low, on average, there are more slots that can be used for the re-scheduling 

of exams. To the best of our knowledge, the potential for the rescheduling 

of exams has not been quantified in the literature so far, despite it being a 

key factor in enabling the improvement of the initial feasible schedule.  

Consideration of the exam-slot conflict in the optimization is a novel 

contribution of this study. Slots that contain conflicting exams can be 

counted easily. The exam-slot conflict matrix has a binary property that 

indicates an exam conflicting slot.  The exam-slot conflict value does not 

increase if an exam has several conflicting exams in a particular slot (and 

therefore is equal to 1). But the total exam-slot conflict for a particular 

exam which has conflicting exams allocated to a few different slots will be 

correspondingly higher (equal to the number of slots containing the 

conflicting exams). A high total of exam-slot conflicts indicates that, on 

average, exams are in conflict with many slots and consequently there are 

few slots available for rescheduling, and vice versa. As far as the potential 

for rescheduling is concerned, to the best of our knowledge, it has not been 

quantified in the literature although it acts as a key factor in enabling the 

improvement of the initial feasible schedule. 
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Recognizing the rationale for the maximization of the ability to 

reschedule individual exams between different slots, we start our 

optimization process by minimizing the total exam-slot conflict. 

The procedure starts by taking the first exam i in the dataset, and 

calculating the total number of slot conflicts. Next, we try to reassign exam 

i to all other valid slots (i.e. not in conflict with exam i) and calculate the 

new total of slot conflicts. A slot that could lead to a maximum reduction of 

total conflicts will be selected as the new slot for exam i. The procedure is 

repeated for all other exams in the problem. The pseudocode for 

minimizing slot conflicts is presented in Figure 3.32. 

By minimizing the total number of slot conflicts it is usually 

possible to reduce the cost of the exam schedule. However, we consider this 

stage primarily as the enhancement of the potential for the subsequent 

minimization of the cost of the schedule. 

Nevertheless, it is worth observing that although the cost formula 

(2.1) counts the spread of exams from the viewpoint of individual students, 

it is an integrative measure that is concerned with the average inter-exam 

spread. By reducing the total exam-slot conflict, we achieve a greater 

packing of conflicting exams and, by implication, an increased possibility of 

separating the slots that have the largest number of conflicting exams.  

Algorithm 5 

For each exam i in the problem 

Obtain the slot number (where it is allocated) from the allocation flag 

Find the sum of the total slot conflicts, and set it as the lowest total slot 

conflicts 

For each slot (except the slot for exam i) 

Calculate the new total slot conflicts by reassigning exam i into a new slot 

If the new total slot conflicts is lower than the lowest total slot conflicts 
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Set the new total slot conflicts as the lowest total slot conflicts 

    End 

Reassign exam i to the slot that produced the lowest total slot conflicts 

 End 

End 
 

Figure 3.32: Algorithm for Minimization of Total Slot Conflicts 

 

Minimization of total slot conflicts involves shifting or swapping 

exams between slots to find the best location/slot for an exam arrangement 

that will generate the lowest penalty; thus, reducing the Carter cost (2.1) 

and providing a better solution. The first initial loop is determined by the 

number of exams, n. The second inner loop traverses through all of the 

available slots, m. This gives an increased complexity of O(mn). O(mn) is 

equal to O(n2) if the number of slots matches the number of exams i.e. one 

exam in a day. However, there is a limiting factor in the number of m. 

Regardless of the situation, if the number of exams is to increase, the 

number of m is limited to the number of days (having exams), thus 

minimizing the computational complexity to O(n). 

Minimization of the total exam-slot conflict is the first optimization 

stage proposed in this study. In this procedure, we simulate the 

reassignment of each exam in the problem to all other valid slots and 

calculate the new total slot conflicts. The slot that could give the biggest 

reduction of conflicts will be selected for the reassignment. By minimizing 

the total slot conflicts it has a huge possibility of reducing the cost of the 

schedule. However, we consider this stage primarily as the enhancement of 

the potential for the subsequent minimization of the cost of the schedule. 
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3.2.4.2 Minimization of Costs via Permutations of Exam 

Slots 

 

The second stage of the optimization is explicitly focused on the 

minimization of the cost function (2.1). The preparatory work of preparing 

the exam spread data structure, coupled with the maximization of the 

possibility of re-positioning (re-labelling) exam slots, brings dividends in 

terms of having a much smaller slot-optimization problem to consider 

while capturing the essence of the overall exam scheduling problem. Since 

the number of available exam slots is typically quite small, the 

optimization of the position of individual slots can be accomplished by the 

permutation of rows/columns of the spread matrix and the evaluation of 

the resulting cost (2.1). 

Figure 3.33 below shows how the permutation of exam slots has 

changed the original ordering of the slots in Figure 3.31, and consequently 

an improved schedule has been generated. By this permutation, a time slot 

has been added between time slot T2 and T3, and thus giving extra time 

for the students to do their revision. 
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Figure 3.33: An Improved Examination Schedule after Optimization 

(Permutations of Slots) 

 

However, adding an extra time slot between T1 and T2 will have a 

greater effect as illustrated in Figure 3.34 than adding it between time slot 

T2 and T3 as illustrated in the previous diagram. In this new example, 

both students have more time between exams as compared to the previous 

example. 

 

Figure 3.34:  Re-ordered Time Slots Via Permutations of Slots with 

Greater Effect 
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We propose here three strategies for optimization of the exam 

spread, named as Method 1, Method 2 (Rahim et al., 2009) and Greedy Hill 

Climbing (Rahim et al., 2012; Rahim et al., 2013a). A brief explanation of 

each method is given below: 

 

Method 1 

 

The first method is focused on extracting the smallest element in each row 

of the original spread matrix and re-numbering the relevant time slots in 

order to place the smallest element on the first minor diagonal. While 

implementing such re-numbering, it is possible that higher order minor 

diagonals will have some greater elements associated with them. However, 

we suspect that if the primary concern is to minimize the number of 

adjacent exams, the method provides the optimum solution. 

 

Method 2 

 

The second method takes a different approach of identifying the smallest 

elements in both rows and columns and shifting them towards the first 

minor diagonal. This corresponds to arranging simultaneously from the 

first slot and from the last slot towards the middle one. We believe by 

taking this approach a more balanced re-numbering is achieved that 

attempts to minimize the sum of higher minor diagonals. 
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Greedy Hill Climbing 

 

Based on the ideas from the two methods presented above, we can see the 

potential of shuffling the exam slots in the spread matrix in order to 

reduce the cost of the schedule. Here we present another prospective 

optimization process, by doing the permutations of exam slots in the 

spread matrix. This process involves the shuffling of slots or columns as 

block shifting and swapping. The procedure started by reading a spread 

matrix which is a matrix indicating how many students are taking an 

exam from slot ‘i’ and ‘j’.  

The permutations in the spread matrix involved the swapping of 

slots and repetitions of block shifts. Each slot will be swapped with 

another slot. This is done by doing provisional swapping and the Carter 

cost (2.1) will be evaluated first. If the cost is reduced, the swap will be 

remembered and the exam proximity matrix will be updated according to 

this swap. Due to this, we call this kind of optimization greedy Hill 

Climbing (HC). Hill Climbing is a neighbourhood search algorithm to 

locate the best value that can be obtained from a problem space which is 

around the current solution. It is considered as a local search due to the 

fact that the algorithm selects better solution which is near to the current 

obtained solution. The local search will definitely reach a local optimum. 

However, there is a possibility that there are other local optimums within 

the search space which is the global optimum, thus requiring a global 

search. The global optimum will be the main goal of this algorithm. The 

term ‘greedy’ here refers to the fact that we always take the best solution 

whenever it is found in a neighbourhood. A number of repetitions of block 
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shift and swapping are done in order to ensure the search space is explored 

in different directions so that the best local optimum or global optimum of 

the solutions can be found. 

Figure 4.4 in Chapter 4 presents an example of a spread matrix. 

The cost function (2.1) assigns a weight of “16” to exams that are 1 slot 

apart (entries in the spread matrix (1,2), (2,3), (3,4), etc.) and assigns a 

weight of “8” to the exams which are 2 slots apart (entries in the spread 

matrix (1,3), (2,4), (3,5), etc.), and so on. To put it in a slightly more formal 

way, the weight “16” in the cost function is associated with the “first minor 

diagonal” entries of the spread matrix; weight “8” is associated with the 

“second minor diagonal” entries, etc. The potential for the reduction of this 

cost lies in the possibility of re-ordering the slots so as to replace the big 

numbers in the first minor diagonal with the smaller entries that are on 

subsequent minor diagonals. 

The reordering of slots has been implemented as a simple greedy 

optimization process that involved swapping the positions of individual 

slots and also swapping the positions of groups of adjacent slots. If a swap 

operation improved the cost function (2.1), the swap was accepted and the 

exam slots were rearranged accordingly. Recognizing, however, that the 

greedy optimization may lead to local optima, we have adopted a simple 

measure of restarting the optimization from several initial orderings of 

exam slots and picking the best solution from a pre-defined number of 

runs. 
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Algorithm 6 

Generate initial ordering of exam slots 

Repeat for a predefined number of trials 

  Shift block of size k in the spread matrix 

Accept block shift if the cost (2.1) is reduced 

Swap individual slots 

Accept the swap if the cost is reduced 

Update the spread matrix with the best schedule 

  End 

 

Figure 3.35: Algorithm for Permutations of Exam Slots Using Greedy Hill 

Climbing Strategy 

 

It is worth pointing out that while the optimization by permutation 

of slots does benefit from the prior minimization of the exam-slot conflicts, 

it does not affect the total count of the exam-slot conflicts because the 

allocation of individual exams to slots does not change. 

A single run of the optimization process outlined in Figure 3.35 on 

the spread matrix from Figure 4.4 will cause large entries on the first 

minor diagonal in Figure 4.4 to be replaced with much smaller values that 

were previously positioned on higher order minor diagonals.  

The main core of the algorithm is mainly contributed by three levels 

of nested loops where each starting point value on the loop is determined 

by the current value of the outer loop. As the whole process executes, the 

inner loop gets smaller. The complexity for the algorithm can be easily 

obtained and would result in O(n3). This basic algorithm can be further 

executed within additional loops with a determined number of iterations, 

with the objective of using the output of the inner loop as a new input for 

further processing. In our approach we tested various approaches prior to 

executing the main algorithm, which increases the complexity of the 
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algorithm to O(abn3) where the value of a is between 1 and 50 and the 

value of b is between 1 and 10. Since the values of a and b are small, we 

can disregard the two coefficients, resulting in the same complexity of 

O(n3). 

 

Late Acceptance Hill Climbing 

 

Late Acceptance Strategy was introduced by Burke and Bykov (2008). The 

strategy concentrates on the timing of a comparison of an accepted solution 

in an examination scheduling problem. A new solution is compared with a 

solution found n steps or iterations before, to determine its acceptance as a 

solution to the problem. In the implementation the researchers created a 

list of predefined length L as the storage location for all previous solutions. 

The current solution is only accepted on the list if it meets the minimum or 

better than the previous solution L steps ago. Whenever a new solution 

does not meet this criterion, the previous solution that does satisfy it is 

added to the list to maintain the number of L previous steps. Through 

their research and participation in the International Optimization 

Competition in December 2011, they concluded that the Late Acceptance 

strategy is similar in terms of implementation to greedy Hill Climbing 

(HC), but much more powerful from the perspective of performance. In 

Burke and Bykov (2012)’s study, the Late Acceptance Hill Climbing 

(LAHC) strategy outperformed other one-point search methods; namely, 

Simulated Annealing, Threshold Accepting and the Great Deluge 

algorithm.  
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Based on this finding we have investigated the effectiveness of our 

approach compared with LAHC, since we are utilizing a greedy Hill 

Climbing (HC) method as one of our approaches. We hypothesize that if 

the granulation approach is on a par or better than the Late Acceptance 

Hill Climbing (LAHC), there will be a very minimal difference in the 

quality of the solutions generated by the two algorithms, and we could also 

see which approach would be able to generate better quality examination 

timetables. 

We have implemented the LAHC in our existing Hill Climbing (HC) 

algorithm implementation by substituting a variable to keep the best cost 

function with an array of length L. In the current optimization process we 

are evaluating the moves that we can make in the current solution to find 

the best move that would result in a better solution; and, once the best 

move is identified as actual, a new solution is generated. It is in this aspect 

we implement the LAHC, where a new possible solution from a single slot 

swap will be evaluated against an accepted solution from a swap L steps 

earlier.  

We differ from Burke and Bykov (2008; 2012) in how we populate or 

maintain the content of the L list. During each iteration they add to the 

list with the latest current solution accepted (better solution) and remove 

the last solution from the list. If the current solution is lower in quality, 

they add the last current solution accepted to the list and remove the last 

solution, making the L list change at each iteration and creating the 

existence of multiple identical values in L.  
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Our approach, on the other hand, only adds the solution to the L if 

the solution surpasses the existing solution. Burke and Bykov (2008; 2012)  

implemented the L list using a First In, First Out approach but we 

implemented ours as a Round Robin list, modifying items at specific 

locations based on the length of L and the number of generations; using 

the value of the modulus of the number of generations against L as the 

index. We also keep additional information on the list, which is the value 

of i and j, indicating the locations of the swap. 

The algorithm for Late Acceptance Hill Climbing (LAHC) that we have 

implemented is as follows: 

Algorithm 7 

For each different starting point (do a block shift of the best solution) 

 Set C[0 ...L] to Carter cost for starting point solution 

 Set Generation = 0 

 For number of repetition 

  For k=1 to NumberOfSlot - 1 

   For i = k to NumberOfSlot - 1 

    For j = i+1 to NumberOfSlot 

     Simulate swap i with j 

     if NewCost < C[Generation%L] 

      C[Generation%L]=NewCost 

      Ci[Generation%L]=i 

      Cj[Generation%L]=j 

     End 

    End 

   End 

   If there is an update to C[Generation%L] 

Do an actual swap Ci[Generation%L] with 

Cj[Generation%L] 

    Generation = Generation +1 

   End 

  End 

 End 

End 

 

Figure 3.36: Algorithm for Permutations of Exam Slots Using Late 

Acceptance Hill Climbing Strategy 
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The algorithm in general will start with an outer loop that will 

iterate through the available different starting points. In our approach a 

starting point is a feasible solution that we have obtained through the 

allocation method. We have limited the starting points to only 6, which is 

derived from the best solution found. The second loop is the value that 

determines the number of trials or cycles to execute the process of the 

swapping of slots. The main algorithm consists of three levels of loops, one 

inside another. The two innermost loops function as a permutator that will 

match every slot in the outer loop, with all other slots starting from i +1 to 

the end. The complexity of this loop based on the steps will be (n-1)+(n-

2)+...+0, which rearranges to the sum of 0 to n-1; this is T(n)=(n-1)((n-

1)+1)/2. Rearranging this, we can see that T(n) will always be smaller 

than or equal to 1/2(n²), thus giving a complexity of O(n²). The outermost 

loop is a shrinking window loop that will reduce the value of k each time 

the loop completes, where k will have the value {n, n-1, n-2,...,1}. However, 

with the shrinking window and limitation of each loop the complexity of 

the algorithm is reduced to n(n2) + n-1(n2) + n-2(n2) … + 0 which resolves to 

O(n3) for the overall algorithm complexity. In reality the number of n has a 

limit on the value with a logical limitation of 365 where it is the number of 

days in a year. No university will conduct examinations every day in a 

year, which limits the computational to a maximum of 48,627,125 steps, 

which is simple for a computer to execute. 
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One of the outcomes of the pre-processing stage, the exam spread data 

structure (namely spread matrix), provides the opportunity for re-

positioning time slots if the aim is to maximize the gap between consecutive 

exams. Since the number of available exam slots (as available in the spread 

matrix) is typically quite low, the optimization of the positions of individual 

slots can be accomplished by the permutation of rows/columns of the 

spread matrix and the evaluation of the resulting cost. This second stage of 

optimization, known as permutations of exam slots, is explicitly focused 

on the minimization of the cost function and brings dividends in terms of 

having a much smaller slot-optimization problem. The potential for the cost 

reduction lies in the possibility of re-shuffling the slots to replace the large 

values in the first minor diagonal with the smaller values on subsequent 

minor diagonals. 

 

3.2.4.3 Minimization of Costs via Reassignments of 

Exams 

 

In the third stage of the optimization, exams that make large contributions 

to the first minor diagonal entries of the reordered spread matrix are 

reassigned to slots represented by higher minor diagonals (preferably of 

order 6 or higher). Shifting an exam from one slot to another has a chain 

effect. Changes happen not only at the spread matrix level but also in the 

slot conflict matrix. Alterations of exam slots to reduce the cost function 

value could further reduce the overall conflict count or increase the value 

for the current solution. This is because the insertion of an exam to a slot 

can only happen if the slot exclusively contains exams that do not conflict 



 

123 

 

with it. This action forces us to reevaluate the slot conflict count, which 

changes based on the slot location of all exams within the same chain as 

the shifted exam. The bigger the chain of the exam, the greater the effect it 

will have on the conflict count. There are two methods of reassignment; 

single reassignments and group reassignments. 

 

Figure 3.37 below illustrates how a feasible schedule in Figure 3.33 

has been further optimized by reassigning exam E2 to time slot T5. At this 

stage, the gap between exams E1 and E2 has been increased greatly (the 

gap is now 3 slots apart). Note that this is not the final schedule so further 

optimization will be performed to increase the quality.  

 

 

Figure 3.37: An Improved Examination Schedule after Optimization 

(Reassignment of Exam) 

 

The single reassignments optimization move throughout the search 

space to identify an exam that has the biggest reduction to the cost 

function (2.1) if it were to be moved to other slots. The algorithm looks for 

a conflict-free slot which leads to the biggest cost reduction for all exams. 
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The process of identifying the possible slots and calculating the cost 

function contribution is made simple by a data structure that combines the 

slot location and the penalty values generated by each exam for a slot.  

The group reassignments optimization moves throughout the 

search space to identify an exam which could lead to the biggest reduction 

to the cost function. The optimization process evaluates the reduction from 

moving an exam to all other slots, and the best combination or total 

reduction configuration will be selected as the move that will be executed. 

During the process of optimization the generated possible moves 

are evaluated against a history of moves two steps behind. The purpose of 

this is to eliminate possible cyclic moves in the optimization process. The 

group reassignments move exams to another slot if a reduction can be 

obtained. This may push other exam(s) out of the selected slot to 

alternative slots. There is a possibility that these exams switch slots and 

keep on giving an improvement to the Carter cost (2.1); thus, keeping the 

optimization process ongoing. This will not stop if these two exams keep 

exchanging slots. This kind of move must be identified to eliminate infinite 

swapping. The process continues until there is no more improvement 

available and the number of iterations is more than half of the number of 

exams. 

Both the single and group reassignments start by evaluating each 

exam, one at a time, and looking for possible slot locations that could 

accept the exam without any clashes. The main difference is in the 

evaluation criteria to shift and the number of exams for every shift. The 
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single reassignment will end up with solutions within the local optima due 

to the minor changes made to the initial placement of exams.  

However, the group optimization has the possibility of moving 

solutions out from the local optima, concluding in a better result. This is 

due to the larger changes made at each step where all exams are evaluated 

and shifted at each cycle. 

The effect of reassignments on the schedule is that the cost (2.1) 

will be reduced at the expense of some increase in the total number of slot 

conflicts. The pseudocode for the reassignment process is outlined in 

Figure 3.38. 

Algorithm 8 

Obtain the number of slots from the spread matrix 

Obtain the number of exams from the exam conflict matrix 

Read exam-to-slot allocation 

Read Slot Conflict Matrix 

For all exams  

 For all slots 

Find the most beneficial exam to reassign by calculating the potential cost 

(2.1) 

If improvement is possible 

Reassign the exam to the new slot 

Update Allocation Flag, Slot Conflict Matrix 

      End 

End 

End 

 

Figure 3.38: Algorithm for Reassigning Exams 

 

The complexity for the algorithm can be easily obtained, which 

would result in O(mn), where m is the number of exams and n is the 

number of slots. This can be further simplified to O(n2), with a limiting 

value of either the number of exams or the number of slots. 
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In the third optimization stage, the information of the reordered spread 

matrix is utilized to further reduce the cost of the schedule. Exams that 

make a large contribution to the first minor diagonal entries are reassigned 

to slots represented by higher minor diagonals (preferably of order 6 or 

higher). This procedure is expected to reduce more of the existing cost. 

 

3.3 Mathematical Formulation Based on the 

Proposed Approach 

 

In this section, the examination scheduling problem is represented 

using mathematical formulation according to our proposed approach. 

Recall that we generated our solution by assigning each exam in the 

problem to a time slot by checking certain criteria (e.g. the value in the 

Exam Conflict Matrix) and ensuring certain conditions were fulfilled. The 

complete formulations are shown below: 

E is a set of Exams and ¬ {} 

NE is the number of Exams or |E| 

Ei is an exam where i > 0, I ≤ NE and Ei ϵ E 

S is a set of Students and ¬{} 

Ns is the number of Students or |S| 

Si is a student where i > 0, i ≤ Ns and Si ϵ S 

T is a set of Slot and ¬ {} 

NT is the number of Slot or |T| 

Ti is a slot where i > 0, i ≤ NT and Ti ϵ T 
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Li is a set specifying the Enrolment of Student Si , where the element in Li ϵ 

E 

ECM = (ECMmn) |E| x |E| is the Exam Conflict Matrix where each element 

denoted by ECMmn is the negative summation of Sh that fulfil Em ϵ Lh, En ϵ 

Lh, Em ϵ E and En ϵ E 

Am is the allocation of an exam to a slot p. Am = p, Tp ϵ T. 

 

Therefore, an Examination Scheduling Problem is the problem of 

allocating E to a T that fulfils:  

∀ Ei  ϵ  E,  ∃  Tj where ECMik = 0, ∀  Ek , where k={1,….,|E|}-{i} and Aj = Ak. 

 

 

3.4 Recap of the Proposed Approach 

 

As a summary, the proposed method proceeds in the following stages: 

 

1) Problem domain transformation from student-exam to exam conflict 

and spread matrix data space  

2) Generation of a feasible schedule 

3) Minimization of the overall slot conflicts  

4) Minimization of the schedule cost by slot swapping  

5) Minimization of the schedule cost by exam reallocation  

6) Repetition of stages 4 and 5 until there is no improvement in the 

schedule cost.  
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CHAPTER 4 

4  

Experiments, Results, and 

Discussions 

 

This chapter discusses the results and findings of experiments that were 

performed on benchmark datasets using the proposed approach. The 

chapter starts by presenting the outcome of each phase involved in the 

proposed framework one by one, before the complete set of results for all 

datasets is presented. Afterwards, the results obtained by the proposed 

approach are compared with other constructive methods that have been 

reported in the literature.  

 

4.1 Experiments and Results for Benchmark 

Datasets 

 
This chapter will discuss the experiments that were performed and the 

results that were obtained based on the proposed approach described in 

the previous chapter and applied to benchmark datasets. This includes the 

pre-processing of data, scheduling, and the optimization stage. 
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4.1.1 Pre-processed Data 

 

The pre-processed data that was generated in the early stages  

include: the exam conflict matrix, conflict chains, and the spread matrix. 

All of these pre-processed data were utilized to a high degree in the 

scheduling and optimization process at the later stages. This chapter 

provides also illustrations and explanations of these data structures. 

Exam Conflict Matrix 

An exam conflict matrix produced by the pre-processing stage, as 

discussed in the previous chapter, is illustrated in Figure 4.1. As can be 

seen, it is a square matrix containing –s value at position i,j where s is the 

number of students causing conflict between exam i and j. The matrix is 

symmetrical with diagonal elements (shaded in grey) by definition equal to 

0 because an exam cannot be in conflict with itself. The last row and 

column indicate the exam number. 

0 -19 -23 -291 -35 -247 -16 -12 -3 -18 -275 -20 -303 1 

-19 0 -174 -232 -171 -192 -29 -6 -11 -132 -243 -170 -252 2 

-23 -174 0 -2 -128 -6 -33 0 -12 -133 -28 -168 -19 3 

-291 -232 -2 0 -75 -435 -19 -12 -2 -3 -506 -11 -535 4 

-35 -171 -128 -75 0 0 0 0 0 -127 -71 -129 -73 5 

-247 -192 -6 -435 0 0 0 0 0 -5 -426 -6 -439 6 

-16 -29 -33 -19 0 0 0 0 0 -2 -21 -42 -19 7 

-12 -6 0 -12 0 0 0 0 -1 -24 -11 -6 -29 8 

-3 -11 -12 -2 0 0 0 -1 0 -1 -3 -15 -1 9 

-18 -132 -133 -3 -127 -5 -2 -24 -1 0 -6 -127 -27 10 

-275 -243 -28 -506 -71 -426 -21 -11 -3 -6 0 -26 -516 11 

-20 -170 -168 -11 -129 -6 -42 -6 -15 -127 -26 0 -3 12 

-303 -252 -19 -535 -73 -439 -19 -29 -1 -27 -516 -3 0 13 

1 2 3 4 5 6 7 8 9 10 11 12 13 0 

 

Figure 4.1: An Example of an Exam Conflict Matrix 
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In this particular example, the matrix has been generated by a 

dataset containing 13 exams. Each value in the cell -s, which is at the 

intersection of row i and column j (or vice versa) means that there are s 

students taking both exam i and j. As an example, the value -19 at the 

intersection of column 1 and row 2 (or vice versa) means there are 19 

students causing conflict between exam i and j. On the other hand, the fact 

that the value zero is shown at the intersection of column 3 and row 8 

demonstrates that exam 3 and exam 8 do not clash.  

Useful information is provided by this matrix during the scheduling 

process; in particular the zero value found during traversing of the matrix, 

immediately indicates that both exams can be scheduled concurrently in 

the same timeslot.  

 

Conflict Chains 

A representative section of the output of the conflict chain generation 

algorithm (Rahim et al., 2009), described in Section 3.2.2.2, is shown in 

Figure 4.2. The chain label is given in the first row and the exam number 

is indicated in the first column. It can be seen that conflict chains 1, 3, and 

7 share some of the exams between them. For example, exam 309 is shared 

between conflict chain 1 and 3; exam 311 is shared between conflict chain 

1 and 5; and exam 440 is shared between conflict chains 1 and 7. This 

means that conflict chains 1, 3, and 7 can be justifiably merged into one 

conflict chain. It is worth noting that the merged conflict chain of 1 and 7 
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will also include exams 317 and 321 even if they were previously only 

displayed in conflict chain 7. 

The resulting merged conflict chain is illustrated in Figure 4.3 

under the chain label 1. Conflict chains 2, 4, and 6 are unaffected by this 

post processing as they do not have any exams in common with those from 

chain 1. In particular, it should be noted that exam 323 is assigned to time 

slot 8 in conflict chain 6 but, since it is not in conflict with any of the 

exams in chain 1, it has the label 0 in the merged conflict chain 1. 

Furthermore, the length of the conflict chain, measured as the 

number of necessary time slots to schedule the exams in the chain is an 

immediate indication of the difficulty of the specific scheduling task. 
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 1 2 3 4 5 6 7 

309 11 0 0 0 0 0 0 

310 2 0 0 0 0 0 0 

311 7 0 0 0 0 0 0 

312 6 0 0 0 0 0 0 

313 1 0 0 0 0 0 0 

314 1 0 0 0 0 0 0 

315 3 0 0 0 0 0 0 

316 19 0 0 0 0 0 0 

317 1 0 0 0 0 0 0 

318 6 0 0 0 0 0 0 

319 11 0 0 0 0 0 0 

320 10 0 0 0 0 0 0 

321 2 0 0 0 0 0 0 

322 11 0 0 0 0 0 0 

323 0 0 0 0 0 8 0 

324 10 0 0 0 0 0 0 

325 11 0 0 0 0 0 0 

326 2 0 0 0 0 0 0 

327 9 0 0 0 0 0 0 

: : : : : : : : 

439 4 0 0 0 0 0 0 

440 1 0 0 0 0 0 0 

441 13 0 0 0 0 0 0 

 

 

 

Figure 4.3: Conflict Chains after Merging 

By inspecting the conflict chains, three immediate observations can 

be made. If the number of available time slots is smaller than the length of 

the largest conflict chain, the scheduling problem is infeasible. If the 

number of available time slots is not much greater than the length of the 

longest conflict chain then the problem is heavily constrained and the 

quality of the resulting timetable, measured by the cost function, might be 

expected to be low. On the other hand, if the number of the available time 

slots is significantly greater than the length of the longest conflict chain 

then high quality (low cost) solutions can be expected. 

 

 

 1 2 3 4 5 6 7 

309 11 0 11 0 0 0 0 

310 2 0 0 0 0 0 0 

311 7 0 0 0 7 0 0 

312 6 0 0 0 0 0 0 

313 1 0 0 0 0 0 0 

314 1 0 1 0 0 0 0 

315 3 0 0 0 0 0 0 

316 19 0 19 0 0 0 0 

317 0 0 0 0 0 0 1 

318 6 0 0 0 0 0 0 

319 11 0 0 0 0 0 0 

320 10 0 10 0 0 0 0 

321 0 0 0 0 0 0 2 

322 11 0 0 0 0 0 0 

323 0 0 0 0 0 8 0 

324 10 0 10 0 0 0 0 

325 11 0 11 0 0 0 0 

326 2 0 0 0 0 0 0 

327 9 0 0 0 0 0 0 

 : : : : : : : 

439 4 0 4 0 0 0 0 

440 1 0 0 0 0 0 1 

441 13 0 13 0 0 0 0 

 

Figure 4.2: Conflict Chains 

before Merging 

 Figure 4.3: Conflict 

Chains after Merging 
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Spread Matrix 

An example of a spread matrix (Rahim et al., 2009; Rahim et al., 2012) 

generated by the algorithm presented in the previous chapter is shown in 

Figure 4.4. As previously mentioned, a spread matrix is a square matrix of 

dimension s, where s is the number of slots. Entries in the spread matrix 

at position (p,q) represent the number of students who took an exam from 

both slot p and slot q. The last row and column in the matrix indicate the 

slot number. The matrix is symmetrical with diagonal elements omitted 

because only one exam can be taken by students in any given exam slot. 

The spread matrix presented below has been generated for a dataset which 

requires 10 slots to schedule all exams. 

 

Figure 4.4: A Spread Matrix for a Dataset with 10 Time Slots 

 

It can be observed that there are 1044 students taking exams in 

time slot 1 and 2 and 1,108 students taking exams in time slot 1 and 3, etc. 

The cost function (2.1) assigns a weight of “16” to exams that are 1 slot 

apart (i.e. blue cells in the spread matrix (1,2), (2,3), (3,4) etc.) and a 

weight of “8” is assigned to an exam 2 slots apart (i.e. green cells in the 
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spread matrix (1,3), (2,4), (3,5), etc.), and so on (with yellow, pink, purple, 

and grey assigned the weights 4, 2, 1, and 0 respectively).  

Useful information will be provided by this matrix during 

optimization of the schedules at a later stage. This is made possible by 

using the background knowledge of the structure of the cost function (2.1), 

the renumbering of the time slots could be done to maximize the spread of 

examinations. 

 

4.1.2 Schedules Generated 

 

4.1.2.1  Initial Feasible Schedule 

The initial feasible schedule generated at this stage is based on the 

allocation method discussed in Chapter 3. The output is an allocation flag, 

exam-to-slot vector in which the slot number for all exams is contained. At 

this point, the number of slots could be determined by the maximum value 

in the allocation flag. A representative section of an allocation flag 

(allocflag) for a dataset with 181 exams (yorf83), before and after 

respectively performing the backtracking process, is shown in Figure 4.5 

and Figure 4.6. 

The slot number for each exam is represented by the numbers in 

the column of both Figures 5.5 and 5.6 (numbered outside the column for 

the purpose of reference). The number of slots required to schedule all the 

exams in both allocation flags (allocflag) is 22 and 21 respectively.  
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Costs and Number of Slots Generated 

1 11 

2 13 

3 7 

4 16 

5 11 

6 1 

: : 

: : 

54 14 

55 1 

56 13 

57 12 

58 10 

59 5 

: : 

: : 

71 5 

72 10 

73 7 

74 4 

75 13 

: : 

: : 

98 12 

99 14 

100 3 

101 20 

102 17 

103 5 

104 19 

: : 

: : 

177 21 

178 21 

179 22 

180 7 

181 19 

1 11 

2 13 

3 7 

4 16 

5 11 

6 1 

: : 

: : 

54 14 

55 1 

56 14 

57 12 

58 10 

59 5 

: : 

: : 

71 5 

72 10 

73 7 

74 13 

75 13 

: : 

: : 

98 12 

99 14 

100 5 

101 17 

102 3 

103 20 

104 19 

: : 

: : 

177 21 

178 21 

179 4 

180 7 

181 19 

Figure 4.5: allocflag for  

yorf83 before backtracking 

Figure 4.6: allocflag for  

yorf83 after backtracking 
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Backtracking has been deployed after scheduling in order to reduce the 

number of slots, as described in Section 3.2.3.1.2.  Figures 4.5 and 4.6 

illustrate the effect of backtracking by showing that after reassignment of 

exams to time slots only 21 slots are required to schedule all exams for 

yor-f-83 dataset (instead of 22 slots required before doing backtracking). 

Backtracking plays an important role to satisfy the number of slots 

stipulated by the problem statement. 

 The number of slots generated together with the cost obtained on 

the initial feasible schedules before and after performing backtracking 

(which tries to eliminate the last slot) on the University of Nottingham 

and University of Toronto datasets are given in Table 4-1. 

 Based on this table, five datasets managed to reduce the number 

of slots (bold numbers indicate the reduction).  The proposed backtracking 

tries to eliminate the last slot in the initial feasible schedule generated by 

allocating the existing exams in the last slot to other slots while 

maintaining the feasibility, hence only a reduction of one slot can be seen 

in the five successful cases (Nott, Car-s-91, Pur-s-93, Tre-s-92 and Yor-f-

83). It is worth highlighting here that the number of slots in our initial 

feasible schedules is already quite small (the same or smallest than the 

required number of slots for all but the yor-f-83 problem), therefore a 

significant reduction in terms of the number of slots is not critical. 

However, any reduction represents an advantage because it allows extra 

buffering space during permutations of exam slots at the later 

optimization stage.  
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Table 4-1: Number of Slots for Nott and Toronto Datasets Before and After 

Performing Backtracking 

 

 

Name 

of 

Data 

set 

 

 

Slots 

Required 

(as in  

the 

literature) 

Before  

Performing  

Backtracking 

After 

 Performing  

Backtracking 

Number 

of  

Slots 

Based 

on 

allocflag 

Initial  

Cost 

 Before 

Optimization 

Number  

of  

Slots 

Based  

on 

allocflag 

Initial  

Cost  

Before 

Optimization 

Nott 23 19 38.99 18 38.33 

Car-s-

91 

35 33 11.77 32 11.79 

Car-f-

92 

32 31 9.43 31 9.43 

Ear-f-

83 

24 24 72.69 24 72.69 

Hec-s-

92 

18 18 22.83 18 22.83 

Kfu-s-

93 

20 19 37.79 19 37.79 

Lse-f-

91 

18 18 23.77 18 23.77 

Pur-s-

93 

42 37 14.91 36 14.87 

Rye-f-

92 

23 22 31.50 22 31.50 

Sta-f-

83 

13 13 201.95 13 201.95 

Tre-s-

92 

23 23 14.81 22 14.12 

Uta-s-

92 

35 34 8.71 34 8.71 

Ute-s-

92 

10 10 60.71 10 60.71 

Yor-f-

83 

21 22 59.04 21 57.19 
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The backtracking procedure tested on Toronto benchmark datasets has 

successfully reduced the number of slots for some datasets. In the yor-f-

83 dataset, this is prioritized in order to satisfy the minimum number 

of slot restrictions imposed in the problem. For all cases that recorded a 

reduction in slots, the cost after backtracking was further reduced, 

which is an added advantage to preparing a schedule with extra 

buffering space for slot permutations in succeeding optimizations. At 

this stage the exam schedule generated is always feasible but not 

necessarily optimal. 

 

4.1.3 Improved Quality Schedules via Optimization 

The optimization documented in this section shows improvement of the 

initial feasible schedule that was generated in the previous section. It 

includes the minimization of the overall slot conflicts, minimization of the 

schedule cost by slot swapping, and minimization of the schedule cost by 

exam reallocation (Rahim et al., 2012). The results obtained by all these 

processes are given in sections 4.1.3.1, 4.1.3.2 and 4.1.3.3 respectively. 

4.1.3.1  Minimization of Total Slot Conflicts  

The first step in the optimization stage is to minimize the total slot 

conflicts as described in Section 3.2.4.1. Table 4-2 shows that the 

technique of minimizing the total slot conflicts as well as the cost of the 

exam schedule has been shown to be effective. This stage can be 

considered as an enhancement of the potential for subsequent 

minimization of the cost of the schedule. 
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Table 4-2: Results after Performing the Minimization of Total Slot 

Conflicts Procedure on Nott and Toronto Datasets 

Dataset 

Re- 

quired  

No  

of Slots 

Initial 

Cost 

Total  

Slot 

Conflicts 

before 

Total  

Slot  

Conflicts 

after 

 Cost 

after 

reduction 

of slot 

conflicts 

Nott 23 38.99 8589 8090 31.95 

car-s-91 (I) 35 11.77 17169 16665 10.43 

car-f-92 (I) 32 9.43 12332 12217 8.89 

ear-f-83(I) 24 72.69 3582 3544 62.57 

hec-s-92(I) 18 22.83 1263 1243 25.15 

kfu-s-93 20 37.79 4616 4544 29.89 

lse-f-91 18 23.77 3739 3685 21.35 

pur-s-93 (I) 42 14.91 49821 49470 14.07 

rye-f-92 23 31.50 7178 6782 26.05 

sta-f-83(I) 13 201.95 1507 1505 193.47 

tre-s-92 23 14.81 4392 4251 13.25 

uta-s-92(I) 35 8.71 15859 15416 8.28 

ute-s-92 10 60.71 1200 1149 46.57 

yor-f-83 (I) 21 59.04 3336 3256 56.31 

 

Table 4-2 documents that the minimization of total slot conflicts reduces 

simultaneously the total number of slot conflicts and the cost of the 

schedule. By reducing the total slot conflicts a greater packing of conflicting 

exams was achieved and by implication, an increased possibility of 

separating the slots that have the largest number of conflicting exams was 

also obtained. This first optimization stage can be considered as an 

enhancement of the potential for further reduction of the cost of the solution. 
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4.1.3.2  Cost Reduction via Permutation of exam slots 

This subsection documents results obtained by the permutation of exam 

slots obtained by the allocation method that generated the initial feasible 

schedule.. 

Costs Produced By Method 1 versus Method 2 

Methods 1 and 2, described in subsection 3.2.4.2.1 and 3.2.4.2.2 

respectively (Rahim et al., 2009), have been evaluated on the University 

of Nottingham dataset and the results are presented and discussed below. 

Figure 4.7 is the representative section of the first 6 slots of the spread 

matrix for Nott dataset. The total number of slots for this dataset is 18 

and 23 for uncapacitated and capacitated problems respectively. 

0 1454 1360 1717 1276 1006 1 

1454 0 1355 1634 1085 997 2 

1360 1355 0 1392 1158 947 3 

1717 1634 1392 0 1529 1446 4 

1276 1085 1158 1529 0 1120 5 

1006 997 947 1446 1120 0 6 

1 2 3 4 5 6 0 

Figure 4.6: allocflag for  yorf83 after backtracking 

Figure 4.7: Initial Ordering of the Spread Matrix for the First 6 Slots for 

the Nottingham Dataset 

 

The first six rows and columns of the re-numbered spread matrix 

using Method 1 and 2 are shown in Figure 4.8 and Figure 4.9 

respectively. However, some of the rows and columns represented in 

Figures 4.8 and 4.9 do not appear in Figure 4.7 because their 
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corresponding time slot number is greater than 6. Nevertheless the 

sample spread matrices serve to illustrate the main characteristics of the 

two methods. 

 

0 1006 1360 1276 1454 1717 1 

1006 0 947 1120 997 1446 2 

1360 947 0 1158 1355 1392 3 

1276 1120 1158 0 1085 1529 4 

1454 997 1355 1085 0 1634 5 

1717 1446 1392 1529 1634 0 6 

1 2 3 4 5 6 0 

 

Figure 4.8: The New Arrangements of the Initial Ordering of the Spread 

Matrix after Applying Method 1 

 

0 1006 1717 1360 1454 1276 1 

1006 0 1446 947 997 1120 2 

1717 1446 0 1392 1634 1529 3 

1360 947 1392 0 1355 1158 4 

1454 997 1634 1355 0 1085 5 

1276 1120 1529 1158 1085 0 6 

1 2 3 4 5 6 0 

 

Figure 4.9: The New Arrangements of the Initial Ordering of the Spread 

Matrix after Applying Method 2 

 

The cost function (2.1) evaluated with the optimization of the 

exam spread using Method 1 and Method 2 is presented in Table 4-3. 
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Table 4-3: Cost Functions Before and After Considering the Spread 

Information for the Uncapacitated Nott Dataset. 

 

No of Slots 18 

Cost Function with Original Ordering of Time 

Slots 

43.91 

Cost Function After Rearrangement of Slots 

Using Method 1  

 

29.03 

Improvement Percentage (%) 33.89 

Cost Function After Rearrangement of Slots  

Using Method 2 

 

24.18 

Improvement Percentage (%) 44.93 

 

Furthermore, the optimization of the spread matrix by re-

numbering of exam slots leads to a significant improvement of the cost 

function. We considered the smallest number of time slots that allows 

generation of a feasible schedule. As such, the cost function is large 

because there is little room for manoeuver as far as moving time slots 

around is concerned.   

An alternative version of the Nottingham exam-scheduling 

problem involves, on the one hand, a relaxation of the constraint on the 

number of time slots from 18 to 23 and the introduction of an additional 

constraint on the number of students taking exams in any of the time 

slots (maximum number 1550). When the same cost function (2.1) is used, 

and the results for the original ordering of time slots are evaluated, the 

results of the optimized ordering obtained by using Method 1 and 2 are 

presented in Table 4-4.  
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Table 4-4: Cost Functions Before and After Considering the Spread 

Information for the Capacitated Nott Dataset. 

 

No of Slots 23 

Cost Function with Original Ordering of Time 

Slots 

22.51 

Cost Function After Rearrangement of Slots 

Using Method 1  

 

21.29 

Improvement Percentage (%) 5.42 

Cost Function After Rearrangement of Slots 

Using Method 2 

 

19.61 

Improvement Percentage (%) 12.88 

 

 

The inspection of the spread matrix that was generated by both 

methods has revealed that the first method tends to over-emphasize the 

selection of small spread values on the first minor diagonal and, by the 

time the few remaining time slots are dealt with by the optimization 

process, it is forced to leave the high spread values at the bottom right 

section of the first minor diagonal by the capacity constraints. In contrast 

Method 2 takes a more balanced approach to optimizing the spread 

values and is less affected by the capacity constraint, thus producing a 

lower overall cost. 
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Costs Produced By Greedy Hill Climbing  

The next method in which the concept of permutations of exam slots is 

utilized is the Greedy Hill Climbing algorithm (Rahim et al., 2009; Rahim 

et al., 2012), as described in section 3.2.4.2.3. Illustrated in Figure 4.10 

below is an example of a spread matrix which requires 10 slots to 

schedule all the exams in the initial feasible solution.  

 
 

Figure 4.10: An Example of a Spread Matrix with 10 Slots Before 

Performing Greedy Hill Climbing Procedure 

 

Assuming that the total number of students is 2,749 the cost 

function (2.1) is evaluated as: 

[[(1044 + 1349 + 1282 + 921 + 684 + 546 + 79 + 35 + 25) * 16] + 

[(1108 + 1119 + 1198 + 518 + 733 + 92 + 140 + 12)* 8]  + 

[(918 + 1302 + 575 + 656 + 159 + 23 + 43) * 4] + 

[(948 + 593 + 786 + 95 + 194 + 45) * 2] + 

[(708 + 753 + 166 + 181 + 33) * 1] ] / 2749 

= 56.99 
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A single run of the Greedy Hill Climbing algorithm on the spread 

matrix from Figure 4.10 has resulted in the spread matrix that is 

presented in Figure 4.11.  

 
 

Figure 4.11: An Example of a Spread Matrix with 10 Slots after 

Performing the Greedy Hill Climbing Procedure 

 

The large entries on the first minor diagonal in Figure 4.10 are 

replaced with much smaller values that were previously positioned on 

higher order minor diagonals. The cost (2.1) after the permutations of 

slots is: 

[[(575 + 23 + 194 + 33 + 33 + 95 + 47 + 628 + 753 ) * 16] + 

[(342 + 684 + 25 + 921 + 12 + 918 + 79 + 1044)* 8]  + 

[(1198 + 45 + 181 + 159 + 7 + 656 + 118) * 4] + 

[(9 + 518 + 35 + 948 + 43 + 1119) * 2] + 

[(1282 + 92 + 222 + 733 + 9) * 1] ] / 2749 

= 31.81 

 

If the permutations of exams slots based on the Greedy 

optimization can lead to local optima then the sensitivity of this 

optimization to the number of starting points is investigated, so as to 

ensure sufficient exploration of the search space and promote the 
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convergence to the global optimum. However, no claim is made regarding 

the exhaustive exploration of the search space and instead the plots of the 

convergence trajectories in the “exam conflict – schedule cost” space are 

offered as an indication of the robust performance of the proposed 

method. 

Different Parameters for Permutations of Slots 

Different combinations of parameters have been tested in order to find 

the ideal or sufficient combinations that would lead to local optima. The 

numbers 6, 9, and 12 have been used as starting points; and experiments 

for iterations 4, 8, 10, and 12 have been performed. All combinations were 

tested and the results for all datasets are recorded in Table 4-5. 

Table 4-5: Optimized number of starting points and repetitions of the 

permutations of exam slots for different benchmark problems. 

 

Dataset 

Carter 

Cost 

Before 

Permutati

ons 

of Slots 

(Before 

Optimizati

ons) 

Number 

of 

Starting 

Points 

Providing 

Best 

(local) 

Optimum 

Number 

Of 

Repetitions 

Providing 

Best 

(local) 

Optimum 

Carter 

Cost 

After 

Permuta

tions 

of Slots 

CPU 

Time 

(seconds) 

Nott 31.95 6 6 10.74 15.95 

car-s-91 10.43 9 6 6.36 201.50 

car-f-92 8.89 12 4 5.29 101.72 

ear-f-83 62.57 6 4 39.54 18.59 

hec-s-92 25.15 6 4 11.49 10.77 

kfu-s-93 29.89 12 4 15.91 18.25 

lse-f-91 21.35 6 4 14.11 9.14 

pur-s-93 14.07 9 6 6.64 277.27 

rye-f-92 26.05 6 4 12.34 18.70 
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sta-f-83 193.47 9 6 173.36 6.05 

tre-s-92 13.25 6 4 9.75 14.42 

uta-s-92 8.28 9 4 4.28 149.08 

ute-s-92 46.57 6 4 30.85 1.34 

yor-f-83 56.31 6 4 39.94 34.45 

 

The study indicated that a combination of 12 starting points and 6 

iterations provided the best (sub-optimal) results on the benchmark 

dataset and that the increase of the number of iterations did not produce 

any improvement in cost. In order to further enhance the exploration of 

the search space, 24 random starting points and 6 iterations were 

adopted in all subsequent experiments. This was made possible because 

the optimization of slot ordering is relatively inexpensive in terms of 

computational power. 

The results for all datasets utilizing 24 starting points and 6 

iterations are therefore presented in Table 4-6. It should be noted that 

the total number of slot conflicts is maintained after the permutations of 

exam slots because the allocation of individual exams to slots was not 

changed. 
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Table 4-6: Results Before and After Performing Permutation of Exam Slots 

on Nott and Toronto Datasets 

 

 

Dataset 

Initial 

Cost 

Cost  

Before  

Per- 

mutatio

ns  

of 

 Exam 

Slots 

 

Total 

Slot 

Conflicts 

Cost 

After 

Per- 

mutatio

ns 

of Exam 

Slots 

 

Total 

Slot 

Conflicts 

nott 31.95 31.95 8090 10.94 8090 

car-s-91 (I) 10.43 10.43 16665 6.26 16665 

car-f-92 (I) 8.89 8.89 12217 5.36 12217 

ear-f-83(I) 62.57 62.57 3544 40.45 3544 

hec-s-92(I) 25.15 22.55 1263 12.52 1263 

kfu-s-93 29.89 29.89 4544 16.06 4544 

lse-f-91 21.35 22.42 3739 14.63 3739 

pur-s-93 (I) 14.07 14.27 49821 6.69 49821 

rye-f-92 26.05 28.55 7178 12.68 7178 

sta-f-83(I) 193.47 193.47 1505 158.43 1505 

tre-s-92 13.25 13.25 4251 9.84 4251 

uta-s-92(I) 8.28 8.28 15416 4.24 15416 

ute-s-92 46.57 46.57 1149 29.82 1149 

yor-f-83 (I) 56.31 56.31 3256 43.36 3256 

 

 

4.1.3.2.1  Costs Produced By Late Acceptance Hill Climbing 

(LAHC)  

In this section we document the results obtained by implementing the 

LAHC strategy described in section 3.2.4.2.4. Different L was used in 

order to examine the effectiveness of increasing the value. According to 

Burke and Bykov (2008), the increase of L would increase the 

computational cost and simultaneously help to achieve better solutions. 
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As such, a lower Carter cost (2.1) is expected to be obtained with an 

increased L value.  

Table 4-7: Results before and after Performing LAHC Permutations of 

Exam Slots on Nott and Toronto Datasets 

 

Dataset 

Costs Produced By Permutations of Slots in the First Stage 

Optimization (not the final costs) 

Traditional  

Greedy  

Hill  

Climbing 

 Late Acceptance Hill Climbing  

(with different length (L)) 

 

 

  L = 1 L = 5 L = 10 L = 50 

nott 10.6031 10.6031 10.6031 10.6031 10.5968 

car-s-91 (I) 6.2564 6.2564 6.2564 6.2564 6.2304 

car-f-92 (I) 5.3625 5.3625 5.3625 5.3625 5.3745 

ear-f-83(I) 40.4516 40.4516 39.96 39.7813 40.5698 

hec-s-92(I) 12.519 12.519 12.3234 12.481 12.4676 

kfu-s-93 16.0615 16.0615 15.7846 16.0578 15.7846 

lse-f-91 14.6321 14.6321 14.5238 14.5873 14.5873 

pur-s-93 (I) 6.3294 6.3294 6.6496 6.6496 6.5603 

rye-f-92 12.6768 12.6768 12.481 12.481 12.481 

sta-f-83(I) 158.4157 158.4157 158.4157 158.639 158.639 

tre-s-92 9.8375 9.8375 9.8375 9.8375 9.8375 

uta-s-92(I) 4.2357 4.2357 4.2133 4.1836 4.2037 

ute-s-92 29.2862 29.2862 29.2862 29.2862 29.2862 

yor-f-83 (I) 43.3549 43.3549 43.3549 43.3549 43.5218 

 

The results obtained by LAHC slot permutations have been 

recorded and compared with the results obtained by traditional Greedy 

Hill Climbing as shown in the above table. By analyzing the results, it is 

clearly shown that the L value does not guarantee a better result when 

increased. In two datasets, nott and car-s-91(I), LAHC managed to reduce 
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the Carter cost (2.1) when L was increased to 50. In these examples, the 

increase in L reduced the initial cost which was stagnant when using L = 

1, 5, and 10. However, in many more datasets for example car-f-92 (I), 

ear-f-83(I), hec-s-92(I), lse-f-91, pur-s-93 (I), sta-f-83(I), uta-s-92(I), and 

yor-f-83 (I) the cost increased when L increased. For the two other 

datasets tre-s-92 and ute-s-92 the cost was the same for different L values 

that were tested. This probably happened due to the configurations of 

examinations allocations (slots ordering) which reached the local or global 

optimum contributed by the small search space.  

In comparison to the Greedy Hill Climbing (GHC), we can see in 

some datasets, LAHC outperformed HC, but in some cases they are equal. 

Based on this finding, it was quite difficult to predict the quality of 

solutions using the LAHC, therefore the greedy HC was used in the 

optimization stage of this study.  

The second stage of optimization that is proposed is the minimization of 

costs via the permutations of exam slots. This procedure was 

performed to re-order exam slots in the spread matrix with the aim of 

minimizing the large elements in the first minor diagonal by replacing 

them with smaller entries from subsequent minor diagonals. A few 

different methods have been implemented, but it was decided that Greedy 

Hill Climbing was the best procedure for obtaining effective and consistent 

solutions. From the results presented, it can be clearly seen that the cost 

was greatly reduced after this procedure was applied to the schedule. The 

approach of repeating and restarting the search from different starting 

points was worthwhile in obtaining optimized schedules. 
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4.1.3.3 Cost Reduction via Reassignments of Exams 

After the permutations of slots was performed on the feasible schedule, 

the next stage of optimization was the reassignment of exams between 

slots, as described in section 3.2.4.3. The best results obtained by this 

process (i.e. either single or group reassignments) are recorded in Table 4-

8. It should be noted that the total slot conflicts for all datasets increased 

after the reassignment process. This is due to alterations to the allocation 

of exams to slots during this process.  

The results presented later in this chapter will show in detail the 

cost obtained for each type of reassignment in the benchmark datasets.  

Table 4-8: Results before and after Performing Reassignments of Exams 

Between Slots 

Dataset 
Initial  

Cost 

Cost 

Before 

Reassign

ment 

Total  

Slot  

Conflicts 

Cost After 

Reassign

ment 

Total Slot 

Conflict 

nott 38.99 10.94 8090 7.34 9979 

car-s-91 (I) 11.77 6.26 16665 5.19 18847 

car-f-92 (I) 9.43 5.36 12217 4.52 13558 

ear-f-83(I) 72.69 40.45 3544 37.57 3707 

hec-s-92(I) 22.83 12.52 1263 11.85 1266 

kfu-s-93 37.79 16.06 4544 14.36 5174 

lse-f-91 23.77 14.63 3739 12.41 4077 

pur-s-93 

(I) 
14.91 6.69 49821 4.92 60005 

rye-f-92 31.50 12.68 7178 9.80 7664 

sta-f-83(I) 201.95 158.43 1505 158.25 1507 

tre-s-92 14.81 9.84 4251 8.77 4714 

uta-s-92(I) 8.71 4.24 15416 3.59 16792 

ute-s-92 60.71 29.82 1149 27.37 1274 

yor-f-83 (I) 59.04 43.36 3256 41.35 3412 
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The third stage of optimization: the reassignment of exams should 

also be considered worth executing because from the results that 

were presented it can be clearly shown the cost was further reduced 

for all datasets after its execution. This has proven that the 

reassignment of exams that make a large contribution to the first 

minor diagonal entries in the spread matrix should be considered a 

reliable process. It indirectly demonstrates that pre-processing has 

supplied valuable information, i.e. regarding the spread matrix. 

Furthermore, the optimization was assisted by its intelligent 

exploitation of the available information. 

 

4.1.4  Summary of Results and Graphs Produced For 

Benchmark Datasets Using Proposed Approach 

 

The results for all the datasets using the approaches that were proposed 

with a combination of all methods are presented in Table 4-9. Using the 

data gathered from the experiments on all the datasets, we have plotted 

graphs for cost (2.1) versus the Total Slot conflict in Figure 4.12. 
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Figure 4.12: Graphs for the cost (2.1) versus the Total Slot conflict for all 

Datasets
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Figure 4.13: General Pattern of Graphs For All Datasets 

 

The pattern generated for all the graphs presented in Figure 4.12 is 

roughly shown in the above graph, Figure 4.13.  In all of these graphs, 

there actually exist four lines (because they are plotted based on four 

different combinations of procedures), however, since some of these lines 

overlap due to similarities in the costs that were obtained for each point, 

the same trajectory of line is created. 

The graph in Figure 4.14 below is an imitation graph that has been 

created specifically for the purpose of explaining how all the lines exist on 

the graph. They are created so that all four lines can be easily seen and 

compared.  

Reduction of total  

slot conflict 

Reduction of cost 

due to swapping of slots 

Reduction of cost 

due to reassignment of exams 
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Figure 4.14: Imitation Graph Created For Explanations 

 

The data points (moving from right to left) represented in each graph 

correspond to the following: 

a) First data point (1): 

- initial feasible (but not optimal) schedule which was generated via the 

allocation method 

b) Second data point (2) – (if the first trajectory is slanting):  

- optimized exam schedule obtained through minimization of total slot 

conflicts 

c) Third data point (3): 
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 - optimized exam schedule obtained through permutation of exam 

slots 

d) Fourth data point (4): 

- optimized exam schedule derived through reassignment of exams 

between slots. 

e) Fifth data point (5): 

- optimized exam schedule that was arrived at through permutations of 

exam slots obtained in (d). 

f)  Sixth data point (6): 

- optimized exam schedule obtained through reassignment of exams 

between slots optimized in (e); 

 

The four lines in each graph are described below: 

 

a) the dotted green line where data points are indicated by asterisks 

- after performing both first and second order optimization (permutations 

of exam slots and single reassignment): known as swap-single_reassign 

b) the dotted purple line where data points are indicated by squares 

- after performing both first and second order optimizations (permutations 

of exam slots and group reassignment): known as swap-group_reassign 

c) the dotted blue line where data points are represented by empty 

circles 

- after performing a minimization of total slot conflicts together with both 

the first and second order optimizations (permutations of exam slots and 

single reassignment): known as min-swap-single_reassign 

d) the dotted red line where data points are indicated by the plus sign 
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- after performing a minimization of total slot conflicts together with both 

the first and second order optimizations (permutations of exam slots and 

group reassignment): known as min-swap-group_reassign 
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4.1.5 Summary of Results and Graphs for  Best Cost 

Produced For Benchmark Datasets 

 
Based on the results presented earlier, the best cost produced for each 

dataset using the proposed method is summarized in the following table 

(Table 4-9). It is recalled that, there were four lines in each of the graphs 

presented before, so the best cost is determined by the line in which it 

managed to record the best cost. Graphs for each dataset according to the 

best cost produced are plotted and can be found in Figure 4.15. 
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Table 4-9: Computational Results (Best Cost) of the Proposed Approach Applied to the Nott and Toronto Dataset 

Dataset 

 

 No 

 of 

Slots 

Initial 

Cost 

Total  

Slot 

Conflicts 

Minimiza- 

tion of 

Slot 

Conflicts 

Total Slot 

Conflicts 

Current 

Cost 

G/ 

S 

Cost 

After 

Swap 1 

Cost  

After  

Reassign 

I 

Total  

Slot 

Conflicts 

Cost  

After 

Swap 

II 

Cost   

After 

Re- 

assign  

II 

Total  

Slot 

Conflicts 

Nott 23 38.99 8589 YES 8090 31.95 S 10.94 7.34 9979 7.34 7.34 9979 

car-s-91 (I) 35 11.77 17169 YES 16665 10.43 S 6.26 5.19 18847 5.19 5.19 18847 

car-f-92 (I) 32 9.43 12332 YES 12217 8.89 G 5.36 4.52 13558 4.52 4.49 13535 

ear-f-83(I) 24 72.69 3582 YES 3544 62.57 S 40.45 37.57 3707 37.57 37.57 3707 

hec-s-92(I) 18 22.83 1263 NO 1263 22.55 G 12.52 11.85 1266 11.62 11.47 1260 

kfu-s-93 20 37.79 4616 YES 4544 29.89 G 16.06 14.36 5174 14.36 14.36 5174 

lse-f-91 18 23.77 3739 NO 3739 22.42 S 14.63 12.41 4077 12.35 11.90 4107 

pur-s-93 (I) 42 14.91 49821 NO 49821 14.27 G 6.69 4.92 60005 4.92 4.88 60532 

rye-f-92 23 31.50 7178 NO 7178 28.55 G 12.68 9.80 7664 9.80 9.80 7664 

sta-f-83(I) 13 201.95 1507 YES 1505 193.47 G 158.43 158.25 1507 158.25 158.25 1507 

tre-s-92 23 14.81 4392 YES 4251 13.25 G 9.84 8.77 4714 8.77 8.74 4719 

uta-s-92(I) 35 8.71 15859 YES 15416 8.28 S 4.24 3.59 16792 3.59 3.59 16792 

ute-s-92 10 60.71 1200 YES 1149 46.57 G 29.82 27.37 1274 27.37 27.37 1274 

yor-f-83 (I) 21 59.04 3336 YES 3256 56.31 G 43.36 41.35 3412 41.27 41.10 3378 

1
6
1
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Figure 4.15:  Cost (2.1) vs. the Total Slot Conflicts For Nott and Toronto 

Dataset 



 

165 
 

 

4.1.6 Deterministic Pattern Obtained For All Tested 

Datasets 
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Figure 4.16:  The Predicted Pattern of the Graph with the Proposed 

Approach 

(c) (b) (a) 

Reduction of cost due 

to swapping of slots 

Reduction of total slot 

conflicts after 

minimization 

Reduction of cost due to 

reassignments of exams 
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When the general pattern of the lines (graphs) are observed it can 

be concluded that they consist of 3 stages, which can be named as section 

(a), (b), and (c) from right to left, as illustrated in Figure 4.16. A decrease 

of the total slot conflicts in section (a) is typically (but not necessarily) 

coupled with a decrease in the exam schedule cost. In the second stage, in 

section (b), the exam schedule cost is reduced without any augmentation 

of the total slot conflicts. The third stage, represented in section (c), 

resulted in a reassignment of exams that reduced the exam schedule cost 

but the total slot conflicts increased. However, for some datasets (hec-s-

92(I), lse-f-91, pur-s-93(I), and rye-f-92), only section (b) and (c) can be 

seen on the graph because the best results have already been recorded 

without running the minimization of slot conflicts procedure. 

It is agreed with Lewis (2008), that when certain benchmark 

datasets are relied upon to evaluate an algorithm, the resulting algorithm 

could be inclined towards the criteria of the benchmark datasets. 

Therefore besides the proposed approach being tested on Toronto 

datasets, other benchmark datasets, as given below, will also be used to 

prove the universality of the algorithm. These datasets are: Notts and 

ITC2007. 

As mentioned above, in order to test the flexibility of our approach 

and to ensure that it could work well when applied to other datasets, the 

methods were tested further on the International Timetabling 

Competition 2007 (ITC2007) dataset, which can be easily obtained from 

http://www.cs.qub.ac.uk/itc2007/Login/SecretPage.php.  
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Additional constraints are contained in the ITC2007 dataset 

including room capacities, period utilization, period related and room 

related in the objective function. Some important characteristics of the 

ITC2007 benchmark dataset are presented in Table 4-10. The results 

obtained for all exams in this dataset can be seen in Table 4-11. The cost 

(2.1) vs. the Total Slot Conflicts is plotted in Figure 4.17. 

 

Table 4-10: The characteristics of the ITC2007 dataset 

Name of  

Dataset 

No of 

Exams 

No of 

Students 

Required 

No of 

Slots 

Conflict  

Density 

Exam1 607 7891 54 5.05 

Exam2 870 12743 40 1.17 

Exam3 934 16439 36 2.62 

Exam4 273 5045 21 15.0 

Exam5 1018 9253 42 0.87 

Exam6 242 7909 16 6.16 

Exam7 1096 14676 80 1.93 

Exam8 598 7718 80 4.55 

 

From the results presented in Table 4-9 it is clear that the 

optimization of the initial feasible timetable resulted in an improved 

exam timetable with a lower cost (2.1). For the “Nott” dataset, a reduction 

of the cost from 38.99 to 10.94 was obtained after the permutations of 

exam slots on the initial schedule. The cost was further improved to 7.34 

after the reassignment of exams.  

For the ITC2007 dataset, significant reductions of the exam 

schedule cost are also shown in the results reported in Table 4-11 when 

compared to the cost of the original feasible schedule. For example, the 
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cost of the exam schedule evaluated against the benchmark problem 

Exam8 in the ITC2007 dataset was reduced from 25.15 to 0.32 by the 

permutations of exam slots and was further improved to 0.14 by the 

reassignment of exams. It is worth noting that for this benchmark 

problem a second round of slot swapping and exam reassignments 

resulted in further improvement to the cost from 0.14 to 0.13. However, 

for most benchmark problems a single round of optimization was 

sufficient to achieve a competitive exam schedule that could not be 

improved upon in the second round.  
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Table 4-11: Computational Results of the Proposed Approach Applied to the ITC2007 Dataset 

Dataset 

 

 No 

 of 

Slots 

Initial 

Cost 

Total  

Slot 

Conflicts 

Minimiza- 

tion of 

Slot 

Conflicts 

Total Slot 

Conflicts 

Current 

Cost 

G/ 

S 

Cost 

After 

Swap 

1 

Cost  

After  

Reassign 

I 

Total  

Slot 

Conflicts 

Cost  

After 

Swap 

II 

Cost   

After 

Re- 

assign  

II 

Total  

Slot 

Conflicts 

Exam1 54 23.90 7522 YES 7414 23.49 G 2.02 1.12 10787 1.12 1.12 10787 

Exam2 40 26.92 4740 YES 4709 26.92 G 0.48 0.22 5359 0.22 0.22 5359 

Exam3 36 28.53 9114 YES 8928 28.53 G 3.35 1.84 12584 1.84 1.84 12584 

Exam4 21 33.84 4001 YES 3958 28.49 G 14.62 12.06 4326 12.06 12.06 4326 

Exam5 42 41.79 5156 YES 5118 41.79 G 0.83 0.37 5736 0.37 0.37 5736 

Exam6 16 13.32 1652 YES 1647 13.32 G 5.50 4.70 1960 4.69 4.61 1954 

Exam7 80 23.38 9949 YES 9839 23.55 G 0.16 0.07 11066 0.07 0.07 11066 

Exam8 80 25.15 6843 YES 6706 25.15 G 0.32 0.14 7374 0.13 0.13 7374 

 

1
6
9
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An important feature of the proposed optimization is its 

deterministic pattern that is preserved for all the datasets. The 

minimization of the total slot conflicts has proven to be a useful 

preparatory step for the subsequent minimization of the cost of the exam 

schedule. Where the slot conflicts were minimized the greatest “packing” 

of conflicting exams was achieved and, by doing so, the possibility of 

reducing the schedule cost in subsequent steps was enhanced. It should 

be noted that this is beneficial even if, in some rare circumstances (see 

Exam7 in the ITC2007 dataset, Table 4-11; cost increase from 23.38 to 

23.55) the reduction of the total slot conflicts comes at the expense of 

some increase to the schedule cost. This enhanced potential for 

subsequent reduction to the schedule cost is fully capitalized on in the 

subsequent step of permutation of exam slots; where the cost was reduced 

to 0.07.  

The permutation of exams slots is a very simple approach and yet 

it produces a very significant reduction of the cost (2.1) of the initial exam 

schedule.  By splitting the exam scheduling problem into three sub-

problems of minimization of slot conflict, minimization of cost by slot 

swapping, and minimization of cost by reassignments we achieved a clear 

deterministic progression of the optimization process that lends itself to 

easy interpretation. 

The reassignments of exams also never fail to reduce the cost (2.1). 

The details showed that group reassignments outperformed single 

reassignments in most of the datasets. The effect of these reassignments 

can be seen from the third data point to the fourth data point in each line 

in the graphs given. There is a very clear pattern, whereby, for each line, 
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the graph is seen to rise on a diagonal to the left. This indicated that the 

exam schedule generated at this stage has a lower cost but an increase in 

the overall total slot conflicts.  

While the single reassignment follows the strict minimization of 

the cost (2.1), with group reassignment the benefit comes from the 

inherent interaction of the effects of reassignment of exams in a group. 

Although the individual exams in a group have been selected according to 

their potential to reduce the cost (2.1), when reassigned to another slot, 

taken together with other exams in a group, this potential for a reduction 

in cost (2.1) may be weakened or reversed. Although this is unwelcome, it 

allows the search to escape from local optima and thus improve on the 

single reassignment solution. An alternative strategy might be to perform 

a different type of optimization with a single reassignment that would 

allow the search to escape from local optima (e.g. simulated annealing) 

but it is recommend that the benefits be weighed against the 

computational cost before an approach is proceeded with. 
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Exam8 

Figure 4.17:  Cost (2.1) vs. the Total Slot Conflicts for ITC2007 Dataset 
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Additionally, the feasible solutions with the lower total slot 

conflicts appear to offer an advantage in terms of their increased capacity 

to minimize the cost (2.1) through simple re-ordering of the slots and, 

subsequently, through the re-assignment of exams between slots. 

However, while at the initial stages of optimization one is justified in 

making a positive correlation between the cost and the slot conflicts count 

(as is endorsed by the experiences of other researchers using max-degree 

pre-ordering of exams in their scheduling heuristics), it is clear that this 

correlation represents a potential for the reduction in cost by swapping 

the slots. At the final stages of optimization, this potential is not relevant, 

as the slots are deemed to have been optimally ordered already. In the 

rare circumstance where the reassignment of exams was discovered to 

create an opportunity for further cost reduction by swapping the exam 

slots, a second round of optimization delivered the expected improvement 

of the exam schedule. 

4.1.7 Comparison of the Proposed Methods Compared to 

Other Constructive Methods in the Literature 

 

A comparison of our results in terms of Carter cost (2.1) with the 

results obtained from other constructive methods reported in the 

literature is presented in Table 4-12. We have decided to analyse the 

results in a statistical approach by evaluating the distance between the 

Carter cost (2.1) obtained from a particular method against the best 

Carter cost (2.1) obtained in the literature. In this context, a mean 

percentage discrepancy between the solution delivered by a given method 

and the best solution reported in the literature, together with the 

standard deviation of such discrepancies, evaluated on a representative 
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set of benchmark problems, provide a measure of reliability of the 

examination scheduling method. In particular, the low value of the 

standard deviation indicates that the method consistently delivers good 

results. In Table 4-12 the mean shown at the bottom of each column is the 

mean calculated for available solutions obtained for each method in this 

table, however they are not conclusive because there are some methods 

that could not produce a feasible solution for a particular dataset. Hence 

we will analyze the data by omitting the datasets that could not be solved 

by all methods. We present the results in Table 4-13. We observe that the 

mean (average percentage difference) obtained by our approach is 5.02 is 

at the 6th position however with the standard deviation of 2.8 (2nd 

position) shows that the approach is predictable is terms of performance. 

Looking at Table 4-12 and Table 4-13, it is clear that the methods that 

are listed have a rather uneven performance. They perform well on some 

benchmark problems and not as well on others. In addition to that, some 

approaches even fail to produce any feasible solution. This is a rather 

unwelcome characteristic from the user’s perspective, as there is no way 

of predicting the quality of the solution that will be obtained using a 

particular method on a new dataset.  

The goal of our research is to propose a general algorithm that will 

provide a solution for all existing datasets or new ones. In relation to that 

we will be analyzing the results by omitting methods that are unable to 

produce results in any one of the datasets. Table 4-14 shows that our 

proposed method is very competitive, with a mean percentage discrepancy 

of 9.11% between its solutions and the best known ones, and is by far the 
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most consistently reliable, as indicated by the standard deviation 9.77 of 

these discrepancies. 

One important point that should be noted when comparing the 

performance of the various methods is that several of the best results 

have been obtained by using methods that did not report any results for 

pur-f-93 and/or rye-f-92. This is significant because the quality, 

consistency, and the universal applicability of the method are 

highlighted.  

The proposed optimization approach is a very simple yet very 

competitive one in generating reliably high quality exam schedules. It is 

believed that the domain transformation approach, that facilitated the 

transformation of a complex optimization problem into a sequence of more 

tractable optimizations, has the potential for successful application in a 

broader spectrum of applications. An important feature of the 

optimization method is that, the feasibility of the initial solution 

throughout the whole of the optimization is preserved, thus saving a 

considerable computational effort compared to other methods that require 

customized post-processing. 



 

176 
 

Table 4-12: Results in Terms of Carter cost (2.1) of Our Method in Comparison with Some Other  

Constructive Methods in the Literature 

 (Highlighted columns are for the methods that delivered results for all instances in the Toronto dataset.) 

 

 

Dataset  GH AHO ADC  MHO  OH LCH  ADO  ALC Ours  

car-s-91 (I) 7.1 4.97 5.45 5.29 5.08 5.03 5.17 5.12 5.19 

car-f-92 (I) 6.2 4.32 4.5 4.54 4.38 4.22 4.74 4.41 4.49 

ear-f-83(I) 36.4 36.16 36.15 37.02 38.44 36.06 40.91 36.91 37.57 

hec-s-92(I) 10.8 11.61 11.38 11.78 11.61 11.71 12.26 11.31 11.47 

kfu-s-93 14 15.02 14.74 15.8 14.67 16.02 15.85 14.75 14.36 

lse-f-91 10.5 10.96 10.85 12.09 11.69 11.15 12.58 11.41 11.9 

pur-s-93 (I) 3.9 - - - - - 5.87 5.87 4.88 

rye-f-92 7.3 - - 10.38 9.49 9.42 10.11 9.61 9.8 

sta-f-83(I) 161.5 161.9 157.21 160.4 157.72 158.86 158.12 157.52 158.25 

tre-s-92 9.6 8.38 8.79 8.67 8.78 8.37 9.3 8.76 8.74 

uta-s-92(I) 3.5 3.36 3.55 3.57 3.55 3.37 3.65 3.54 3.59 

ute-s-92 25.8 27.41 26.68 28.07 26.63 27.99 27.71 26.25 27.37 

yor-f-83 (I) 41.7 40.88 42.2 39.8 40.45 39.53 43.98 39.67 41.1 

Mean of 

Carter cost* 
26.02 29.54 29.23 28.12 27.71 27.64 26.94 25.78 26.05 

*Mean of Carter cost (2.1) for  datasets  obtained by each method 

GH-Graph Heuristics- (Carter and Laporte, 1996), AHO-Adaptation of Heuristics Orderings-(Burke, E. K. and Newall, J. P., 

2004a), ADC-Adaptive Decomposition and Construction- (Qu, R. and Burke, E. K., 2007), MHO-Multiple Heuristics Orderings-

(Asmuni et al., 2009), OH-Ordering Heuristics-(Abdul-Rahman et al., 2009), LCH-Linear Combinations of Heuristics-(Burke et 

al, 2010c), ADO-Adaptive Decomposition and Ordering- (Abdul-Rahman et al., 2011), ALC-Adaptive Linear Combination- 

(Abdul-Rahman et al., 2014).    

1
7
6
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Table 4-13: Average Percentage Distance to the Optimal Cost for 11 Datasets in the Toronto Problem 

Dataset                      

 

 

    Our Proposed  

      Method 

Best 

Cost** 

Cost % Cost % Cost % Cost % Cost % Cost % Cost % Cost %  Cost %  

car-s-91 (I) 7.1 42.86 4.97 0.00 5.45 9.66 5.29 6.44 5.08 2.21 5.03 1.21 5.17 4.02 5.12 3.02 5.19 4.24 4.97 

car-f-92 (I) 6.2 46.92 4.32 2.37 4.5 6.64 4.54 7.58 4.38 3.79 4.22 0.00 4.74 12.32 4.41 4.50 4.49 6.01 4.22 

ear-f-83(I) 36.4 0.94 36.16 0.28 36.15 0.25 37.02 2.66 38.44 6.60 36.06 0.00 40.91 13.45 36.91 2.36 37.57 4.02 36.06 

hec-s-92(I) 10.8 0.00 11.61 7.50 11.38 5.37 11.78 9.07 11.61 7.50 11.71 8.43 12.26 13.52 11.31 4.72 11.47 5.84 10.8 

kfu-s-93 14 0.00 15.02 7.29 14.74 5.29 15.8 12.86 14.67 4.79 16.02 14.43 15.85 13.21 14.75 5.36 14.36 2.51 14 

lse-f-91 10.5 0.00 10.96 4.38 10.85 3.33 12.09 15.14 11.69 11.33 11.15 6.19 12.58 19.81 11.41 8.67 11.9 11.76 10.5 

sta-f-83(I) 161.5 2.73 161.9 2.98 157.21 0.00 160.4 2.03 157.72 0.32 158.86 1.05 158.12 0.58 157.52 0.20 158.25 0.66 157.2 

tre-s-92 9.6 14.70 8.38 0.12 8.79 5.02 8.67 3.58 8.78 4.90 8.37 0.00 9.3 11.11 8.76 4.66 8.74 4.23 8.37 

uta-s-92(I) 3.5 4.17 3.36 0.00 3.55 5.65 3.57 6.25 3.55 5.65 3.37 0.30 3.65 8.63 3.54 5.36 3.59 6.41 3.36 

ute-s-92 25.8 0.00 27.41 6.24 26.68 3.41 28.07 8.80 26.63 3.22 27.99 8.49 27.71 7.40 26.25 1.74 27.37 5.74 25.8 

yor-f-83 (I) 41.7 5.49 40.88 3.42 42.2 6.75 39.8 0.68 40.45 2.33 39.53 0.00 43.98 11.26 39.67 0.35 41.1 3.82 39.53 

Average  

Percentage 

Difference*  

 

mean=10.71 

std=17.46 

mean=3.14 

std=2.92 

mean=4.67 

std=2.82 

mean=6.83 

std=4.52 

mean=4.79 

std=3.01 

 mean=3.64      mean=10.48       mean=3.72     mean=5.02 

   std=4.96           std=5.19            std=2.50           std=2.80 

*Average Percentage Difference To The Best Constructive Carter Cost(%)  in the Literature 

** Best Constructive Carter Cost (2.1) Reported in the Literature 

GH-Graph Heuristics- (Carter and Laporte, 1996), AHO-Adaptation of Heuristics Orderings-(Burke, E. K. and Newall, J. P., 2004a), ADC-Adaptive Decomposition and Construction- (Qu, R. 

and Burke, E. K., 2007), MHO-Multiple Heuristics Orderings-(Asmuni et al., 2009), OH-Ordering Heuristics-(Abdul-Rahman et al., 2009), LCH-Linear Combinations of Heuristics-(Burke et al, 

2010c), ADO-Adaptive Decomposition and Ordering- (Abdul-Rahman et al., 2011), ALC-Adaptive Linear Combination- (Abdul-Rahman et al., 2014).    

         GH    AHO                 ADC              MHO                OH              LCH             ADO           ALC                                                                                         

1
7
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Table 4-14: Average Percentage Distance to the Optimal Cost 

 

Dataset 
[12] [22] [23] 

Our 

Proposed 

Method 

Best 

Constructive  

Cost 

Cost % Cost % Cost % Cost %  

car-s-91 (I) 7.10 42.86 5.17 4.02 5.12 3.02 5.19 4.43 4.97 

car-f-92 (I) 6.20 46.92 4.74 12.32 4.41 4.50 4.49 6.40 4.22 

ear-f-83(I) 36.40 0.94 40.91 13.45 36.91 2.36 37.57 4.19 36.06 

hec-s-92(I) 10.80 0.00 12.26 13.52 11.31 4.72 11.47 6.20 10.80 

kfu-s-93 14.00 0.00 15.85 13.21 14.75 5.36 14.36 2.57 14.00 

lse-f-91 10.50 0.00 12.58 19.81 11.41 8.67 11.90 13.33 10.50 

pur-s-93 (I) 3.90 0.00 5.87 50.51 5.87 50.51 4.88 25.13 3.90 

rye-f-92 7.30 0.00 10.11 38.49 9.61 31.64 9.80 34.25 7.30 

sta-f-83(I) 161.50 2.73 158.12 0.58 157.52 0.20 158.25 0.66 157.21 

tre-s-92 9.60 14.70 9.30 11.11 8.76 4.66 8.74 4.42 8.37 

uta-s-92(I) 3.50 4.17 3.65 8.63 3.54 5.36 3.59 6.85 3.36 

ute-s-92 25.80 0.00 27.71 7.40 26.25 1.74 27.37 6.09 25.80 

yor-f-83 (I) 41.70 5.49 43.98 11.26 39.67 0.35 41.10 3.97 39.53 

Average Percentage 

Difference To Best 

Constructive cost (%) 

 

mean = 9.06 

std = 16.44 

 

mean = 15.72 

std = 13.84 

 

mean = 9.47 

std = 14.72 

 

mean = 9.11 

std = 9.77 

 

1
7
8
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The proposed method is also very reliable and stable in producing 

schedules for larger problem instances, for example, pur-s-93 in the 

Toronto dataset and Exam7 in the ITC2007 dataset. 

It is expected that the proposed method be adapted in a relatively 

straightforward manner to the capacitated scheduling problem by 

introducing appropriate granular data structures that will permit the 

required domain transformation in the optimization process. Also, other 

constraints, suggested at the 2nd International Timetabling Competition 

in 2007-08, should fit into the general framework of the proposed method. 

The approach proposed in this study to solve the examination scheduling 

problems is very efficient and reliable in producing good quality 

examination timetables. It has consistently produced encouraging results 

for all benchmark datasets, which is not the case for some other 

constructive methods in the literature. They perform well on some 

benchmark problems and not as well on others, and in a few cases some 

methods failed to produce a solution. This is a rather unwelcome 

characteristic from the user’s perspective, as there is no way of predicting 

the quality of the solution that will be obtained using a particular method 

on a new dataset. Since the proposed approach produces consistent results 

when tested on different benchmark datasets, it should be stated that the 

method is very flexible and highlights the quality, consistency, and 

potential for universal application. The deterministic optimization pattern 

achieved on all benchmark datasets, which was consistently maintained, 

identifies the approach that is proposed as a novel contribution to this 

area. 
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CHAPTER 5 

5  

Global Search Procedure: 

Incorporation into the 

Proposed Optimization 

Framework 

 

Optimization can be understood simply as a process of improving a set of 

values in a direction that is desired. In computing, we can imagine 

optimization as selecting the best set of values from an available set of 

choices. In examination scheduling, optimization refers to minimizing the 

cost of the schedule. We have previously demonstrated a few methods 

proposed for optimization which produced very encouraging results. In this 

chapter, a study on the effectiveness of incorporating a global search 

procedure (Genetic Algorithm) into the proposed optimization framework 

will be made in comparison to our previous incorporation of local search 

procedure. 

 

5.1 Substitution of a Global Search Procedure in 

the Optimization Stage of the Proposed 

Framework 

 

A feasible timetable can have exam orderings which do not satisfy many of 

the soft constraints. Consequently, a separate optimization process needs 
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to be deployed to obtain better quality schedules. In Chapter 4, the 

proposed approach to solving the examination scheduling problem which 

consists of several stages of optimization was discussed. The phases of the 

examination scheduling method are as follows: 

 

1. Problem domain transformation from student-exam to exam conflict 

and spread matrix data space. 

2. Generation of a feasible solution via an allocation method and 

backtracking. 

3. Minimization of the overall slot conflicts. 

4. Minimization of the schedule cost by slot swapping. 

5. Minimization of the schedule cost by exam reallocation. 

6. Repetition of the last two steps until no further improvement in the 

schedule cost can be made. 

 

In the scheduling steps outlined above, optimization is started at 

the third bullet point and continues until the last bullet point. It should be 

noted that, for the fourth bullet point, (i.e. minimization of the schedule 

cost by slot swapping), a simple Greedy Hill Climbing (GHC) was 

introduced. Realizing that the method that was employed (permutation of 

exam slots), is a local search procedure, it was thought that a global search 

procedure should be incorporated in order to see whether or not better 

quality schedules could be generated. For this purpose, we have 

implemented the Genetic Algorithm (GA) to substitute the permutations of 

exam slots in the optimization process (Rahim et al., 2013a). 
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Even though GA does not offer any guarantees with regard to 

convergence to global optimum, recent research has moved on to explore 

meta-heuristics based approaches (e.g. harmony search, particle swarm 

optimization, bee colony optimization, etc.) to enhance the effectiveness of 

such optimisation and has demonstrated some success. (Burke et al., 

1994a; Burke et al., 1994b; Gyori et al., 2001; Ulker et al., 2007). 

Additionally, it has been confirmed that hybridizations of GA with some 

local search have led to some success in this area (Qu et al., 2009a). We 

have therefore chosen GA as an alternative approach to our optimisation 

(Rahim et al., 2013a).  

Below we have presented a diagram (Figure 5.1) to illustrate a 

summary of the work done in our research which shows the sequence of 

every process involved and the part that will be substituted by GA. Note 

that the whole set of optimizations was performed twice, therefore, the 

first and second order optimizations can be seen in the diagram.  

Allocation of 

exams to slots

First Order Optimization

Slot Ordering 

(Hill Climbing)

Reassignment of 

exams

Second Order Optimization

Slot Ordering 

(Hill Climbing)

Reassignment of 

exams

Allocation of 

exams to slots

First Order Optimization

Slot Ordering 

(Hill Climbing)

Reassignment of 

exams

Second Order Optimization

Slot Ordering 

(Hill Climbing)

Reassignment of 

exams

 

Figure 5.1: Scheduling and Optimization Steps Before and After GA 

Substitution. 

GA 

GA 
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As previously mentioned, the HC optimization was performed by 

the permutations of the rows/columns of the spread matrix of a feasible 

schedule obtained via the allocation method. The permutation method 

should be considered quite an efficient procedure because the number of 

available exam slots is frequently quite small. In our hypothesis, we 

postulate that the effect of slot swapping is that new exam ordering will be 

generated with better quality. 

Besides HC, implementation of GA is with the same objective as 

HC, which is to improve the ordering of the exams in the feasible exam 

schedule that is generated. The exam slots of the parents involved during 

crossover at certain points will be randomly exchanged by GA operators, it 

is therefore suggested that slot swapping to the original slot order from the 

original feasible schedules be performed (but note that it is a different type 

of swap compared to the above Hill Climbing). 

The main objectives of this research are to study the effectiveness of 

GA in comparison to HC and to find the best range of parameters (the 

population size and number of iterations in GA) in the optimization stage 

of the proposed framework. 

 

 

5.1.1 Genetic Algorithm 

 

Genetic Algorithm (GA) is a search heuristic that imitates the process of 

natural evolution. This heuristic is normally used to generate solutions 

(which are normally good or useful) to optimization and search problems. 

In a Genetic Algorithm, a population of candidate solutions will evolve 

towards better solutions. Each individual in the population has some 

http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Heuristic_(computer_science)
http://en.wikipedia.org/wiki/Evolution
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Problem
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Candidate_solution
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characteristics (known as chromosomes) that can be mutated and 

modified. 

The evolution process begins from a population of randomly 

generated individuals and is an iterative process, whereby the population 

in each iteration is called a generation. In each generation, the fitness 

(quality) of every individual in the population is evaluated based on the 

objective function. Good quality individuals (normally the two best 

individuals) are selected from the current population, and each individual's 

genome (characteristics) is modified (recombined through crossovers and 

possibly randomly mutated) to form a new generation. The new generation 

of candidate solutions is then used in the next iteration of the algorithm. 

Normally, the algorithm terminates when either a maximum number of 

generations has been produced or a superior solution has been obtained for 

the population. 

The effectiveness of GA highly depends on the tweaks that are 

made to its parameters. Despite the simplicity of its algorithm, GA 

requires careful and intelligent settings to be given to its parameters, for 

example: the method of selecting parents, the population size, and the 

crossover type and rate; mutation type and rate, the number of iterations 

etc. An optimal calibration of the parameters might cause the algorithm to 

converge on the best results in an efficient time, meanwhile, on the other 

hand, non-optimal configurations of the parameters might cause it to take 

a longer time to produce good solutions and, in some cases, good solutions 

may not be obtained at all. 

 

 

 

http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Algorithm
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5.1.2 Our Genetic Algorithm Implementation 

 

In our Genetic Algorithm (GA) implementation (Rahim et al., 2013a; 

Rahim et al., 2013c), we defined the original parent P0, which is a data 

structure with the initial ordering of slots (1 …. N) where N is the number 

of slots. GA creates a new parent by moving the position of the rows in 

blocks from a random index K to the end of P0 to generate the first K-N 

number of rows. To complete the parent, the balance (first row to K) is 

then taken from P0 from position  0 to K to be filled in at position K + 1 to 

N in the new parent. A number of npar parents will be created. In general, 

the generation of the new parents is created by shifting the rows that, in 

the end, are the new representation of the original parent with a 

magnitude maximum distance of npar – 1. Therefore, if it is just a window 

shift, there will be identical parents, especially when the number of N is 

smaller than the number of npar.  

We then produced the new offsprings from these initial parents. 

The number of offsprings to be produced is equal to the unique 

permutation of a parent in P with other parents in P. Each of the parents 

will be crossed over with all other parents at a certain random point R, 

creating two new offsprings. Offspring1 will contain the first to R slot from 

Parent1 and will then be completed by appending the slot in Parent2 

starting from the first to N which is not already in Offspring1. The same 

goes for Offspring2. It will contain the first to R slot from Parent2 and will 

be completed by appending the slot in Parent1. These two newly created 

offsprings will be added to “O” which is the overall population. Any 

identical offsprings will be eliminated and replaced with a mutated P 

where we interchange a random slot t with a random slot u. The best 
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offspring with the lowest cost will be automatically selected to become the 

next generation parent P. 

The offsprings generated in the population are the individuals with 

a new ordering of slots due to the crossover of the parents involved, which, 

in this study, is assumed to be a type of slot swapping. The process of slot 

swapping performed using GA is illustrated in Figure 5.2 and Figure 5.3. 

In the process of generating the offspring there is a possibility of having a 

redundant slot that has been obtained from the first parent when the slots 

from the second parent is moved to the new child. We alleviate this by 

substituting the identical slot with a slot that was not in the solution by 

replacing the missing slot at the location of the redundant slot. In Figure 

5.3 slot number 7 has been selected from the first parent and another 

selected from the second parent. The second occurrence of slot 7 is being 

replaced by slot 2 which is missing in the new offspring. 

 

 

 

Figure 5.2: Generation of New Parents in the Proposed GA 
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Figure 5.3: Generation of Offsprings in the Proposed GA 

 

Generating parents and offsprings via this technique does not 

introduce any non-feasible solution as exams in all slots remain in their 

slot, thus it does not create any new conflicts that will create unfeasible 

solution. However the change due to slot shift will affect the cost function 

value as the change shift the distance between exams (contributing factor 

to Carter cost (2.1)) that are dependent among the slots. Recollect that 

each of these slots has exams that are not in-conflict and each of these 

exams contains students. The beauty of granularization is that we no 

longer need to work at the micro level but we can solve the problem at a 

higher perspective of the problem space. The proposed GA approach has 

the whole search space of feasible solutions to work on unlike other GA 

approaches, where the GA has the whole search space which includes 

infeasible solutions. Having only feasible solutions in the search space 

makes the approach efficient and fast. The proposed GA was tested on the 
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Toronto dataset and the results / performance will be discussed in the next 

section.  

 

 

5.1.3 Results for Hill Climbing versus Genetic Algorithm 

Optimization 

 

In order to determine the effectiveness of the proposed GA in the 

optimization step for the examination scheduling, experiments on the 

Toronto benchmark repository have been conducted. Furthermore, all nine 

combinations of parameters for different number of parents and iterations 

(i.e.: parents: 10 / 15 / 20 and iterations 10 / 15 / 20) were used during the 

experiments.  

As was previously mentioned, the initial schedules of the proposed 

approach were generated using an allocation method before being further 

optimized. The optimization process was performed twice; hence the name 

First and Second Order Optimization as can be seen in the table.  

The results obtained from the experiments were recorded in Table 

5-1. Based on the results, we can state that a significant improvement has 

been achieved for each dataset from the initial cost to the cost produced by 

GA (from first to last iteration). In addition, the time taken for the GA 

optimization was also very efficient, with the average of less than 1.5 

second of CPU time for each dataset. However, no single combination of 

parameters managed to outperform the results gained by HC in our 

previous study as reported in Chapter 4. These improvements were 

obtained for all combinations of parameters, therefore, the fact that GA is 

an effective optimization technique through exams slot swapping, was 



 

189 
 

proven.  The cost was further reduced by reassigning the exams in the first 

order optimization and was further improved during the second order 

optimization for some datasets. This pattern can be observed if one moves 

from left to right across this table.  
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Table 5-1: Results Obtained Using GA Optimization With Minimization of Total Slots Conflicts and Group Reassignments on Toronto 

Benchmark Problem 

Dataset 

(Initial Cost) 

 

 

npar 

 

Max  

Iter 
First Order Optimization Second Order Optimization 

Cost at 

First 

Iteration 

(1) 

Cost at 

Last 

Iteration 

(10/15/20) 

CPU 

Time 

(sec) 

Cost 

after 

Reassign 

Cost at 

First 

Iteration 

(1) 

Cost at 

Last 

Iteration 

(10/15/20) 

CPU 

Time 

(sec) 

Cost 

after 

Reassign 

 

 

 

 

car-f-92 (I) 

(9.4318) 

 

 

 

 

 

10 

10 7.8894 6.7645 0.296 5.2512 5.2512 5.2251 0.873 5.1215 

15 7.8894 6.7589 0.328 5.2512 5.2512 5.2251 0.796 5.1215 

20 7.8894 6.7589 0.484 5.2512 5.2512 5.2251 0.702 5.1215 

 

15 

10 8.0423 6.7761 0.609 5.2512 5.2512 5.2512 1.232 5.2512 

15 8.0423 6.7761 0.921 5.2512 5.2512 5.2512 1.513 5.2512 

20 8.0423 6.7761 1.248 5.2512 5.2512 5.2512 1.622 5.2512 

 

20 

10 8.0016 6.7523 1.123 5.2512 5.2512 5.2438 1.731 5.1197 

15 8.0016 6.7113 1.591 5.2512 5.2512 5.2438 2.403 5.1197 

20 8.0016 6.7113 2.231 5.2512 5.2512 5.2438 2.075 5.1197 

car-s-91 (I) 

(11.7678) 

 

10 

10 9.3936 8.0188 0.234 6.5652 6.5018 6.3214 1.389 6.3083 

15 9.3936 7.9814 0.405 6.5652 6.5018 6.3214 1.076 6.3083 

20 9.3936 7.9814 0.546 6.5652 6.5018 6.3214 1.513 6.3083 

 

15 

10 9.074 7.7664 0.593 6.5652 6.5018 6.3046 2.059 6.1502 

15 9.074 7.7563 0.858 6.5652 6.5018 6.3046 1.482 6.1502 

1
9
0
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20 9.074 7.7563 1.295 6.5652 6.5018 6.3046 1.529 6.1502 

 

20 

10 9.0604 7.6413 1.139 6.5652 6.5018 6.2936 1.482 6.2348 

15 9.0604 7.6413 1.934 6.5652 6.5018 6.2936 2.543 6.2348 

20 9.0604 7.6413 2.574 6.5652 6.5018 6.2936 3.791 6.2348 

ear-f-83 (I) 

(72.6889) 

 

10 

10 56.4729 49.1911 0.171 47.0667 45.0222 44.4204 0.203 43.7547 

15 56.4729 49.1911 0.301 47.0667 45.0222 44.4204 0.311 43.7547 

20 56.4729 49.1911 0.39 47.0667 45.0222 44.4204 0.421 43.7547 

 

15 

10 53.5138 48.9929 0.499 47.0667 45.0222 43.7209 0.499 43.5369 

15 53.5138 48.9929 0.677 47.0667 45.0222 43.7209 0.72 43.5369 

20 53.5138 48.9929 0.998 47.0667 45.0222 43.7209 1.029 43.5369 

 

20 

10 53.712 49.3271 1.014 47.0667 45.0222 42.7778 0.874 40.9298 

15 53.712 49.3271 1.498 47.0667 45.0222 42.7778 1.342 40.9298 

20 53.712 49.3271 1.81 47.0667 45.0222 42.7778 2.028 40.9298 

hec-s-92 (I) 

(21.8771) 

 

10 

10 19.3213 15.1902 0.156 15.011 15.011 13.4853 0.172 13.3808 

15 19.3213 15.1902 0.281 15.011 15.011 13.4853 0.28 13.3808 

20 19.3213 15.1902 0.359 15.011 15.011 13.4853 0.343 13.3808 

 

15 

10 19.3932 14.1367 0.453 15.011 14.6394 12.9954 0.421 12.8696 

15 19.3932 14.1367 0.593 15.011 14.6394 12.9954 0.639 12.8696 

20 19.3932 14.1367 2.817 15.011 14.6394 12.9954 2.601 12.8696 

 10 18.9968 13.622 15.147 15.011 14.3943 12.91 11.747 12.8232 

1
9
1
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20 15 18.9968 13.622 1.108 15.011 14.3943 12.91 1.264 12.8232 

20 18.9968 13.622 1.56 15.011 14.3943 12.91 1.497 12.8232 

kfu-s-93 

(37.7923) 

 

10 

10 25.8813 18.5782 0.188 17.5764 17.5764 17.5764 0.453 17.5556 

15 25.8813 18.5782 0.297 17.5764 17.5764 17.5764 0.593 17.5556 

20 25.8813 18.5782 0.375 17.5764 17.5764 17.5764 0.515 17.5556 

 

15 

10 25.2875 19.0258 0.468 17.5764 17.5764 17.5764 0.686 17.5556 

15 25.2875 19.0258 0.687 17.5764 17.5764 17.5764 0.967 17.5556 

20 25.2875 19.0258 0.921 17.5764 17.5764 17.5764 1.373 17.5556 

 

20 

10 25.2875 18.1512 11.341 17.5764 17.5764 17.5014 15.632 17.1342 

15 25.2875 18.1512 1.326 17.5764 17.5764 17.3632 1.498 16.9226 

20 25.2875 18.1512 1.716 17.5764 17.5764 17.3632 1.84 16.9226 

lse-f-91 

(23.7689) 

 

10 

10 20.0411 17.0422 0.172 16.8375 16.8375 16.0503 0.343 15.814 

15 20.0411 17.0422 0.28 16.8375 16.8375 16.0503 0.437 15.814 

20 20.0411 17.0422 0.343 16.8375 16.8375 16.0503 0.515 15.814 

 

15 

10 19.4017 17.1988 0.437 16.8375 16.8375 15.7095 0.608 15.6669 

15 19.4017 17.1988 0.655 16.8375 16.8375 15.7095 0.936 15.6669 

20 19.4017 17.1988 0.765 16.8375 16.8375 15.7095 1.029 15.6669 

20 10 19.099 16.135 0.92 16.8375 16.8375 15.6552 0.811 15.1555 

15 19.099 16.135 1.185 16.8375 16.8375 15.6552 1.248 15.1555 

20 19.099 16.135 1.684 16.8375 16.8375 15.6552 1.747 15.1555 

1
9
2
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rye-f-92 

(31.4992) 

 

10 

10 20.4928 18.1311 0.203 11.2954 11.2954 11.1047 0.483 10.8862 

15 20.4928 18.1311 0.312 11.2954 11.2954 11.1047 0.561 10.8862 

20 20.4928 18.1311 0.39 11.2954 11.2954 11.1047 0.764 10.8862 

 

15 

10 19.0379 16.4612 0.509 11.2954 11.2954 10.9618 1.011 10.9263 

15 19.0379 16.4612 0.733 11.2954 11.2954 10.9618 1.139 10.9263 

20 19.0379 16.4612 0.983 11.2954 11.2954 10.9618 1.388 10.9263 

 

20 

10 18.5681 17.3608 0.983 11.2954 11.2954 10.9618 1.373 10.9263 

15 18.5681 17.3608 1.358 11.2954 11.2954 10.9618 1.857 10.9263 

20 18.5681 17.3608 1.763 11.2954 11.2954 10.9618 2.325 10.9263 

sta-f-83 (I) 

(201.0638) 

 

10 

10 175.8216 163.9869 0.156 169.9624 169.707 161.7021 0.156 159.9591 

15 175.8216 163.9869 0.249 169.9624 169.707 161.7021 0.265 159.9591 

20 175.8216 163.9869 0.328 169.9624 169.707 161.7021 0.328 159.9591 

 

15 

10 172.8052 163.1211 0.39 169.9624 169.4779 161.198 0.39 161.1309 

15 172.8052 163.1211 0.561 169.9624 169.4779 161.198 0.578 161.1309 

20 172.8052 163.1211 0.749 169.9624 169.4779 161.198 0.748 161.1309 

 

20 

10 170.4517 161.8756 0.733 169.9624 164.6547 160.9264 0.655 160.4583 

15 170.4517 161.8756 0.983 169.9624 164.6547 160.9264 1.076 160.4583 

20 170.4517 161.8756 1.311 169.9624 164.6547 160.9264 1.389 160.4583 

tre-s-92 

(14.811) 

 

10 

10 12.6252 11.4214 0.188 10.8487 10.8487 10.6279 0.234 10.3505 

15 12.6252 11.4214 0.312 10.8487 10.8487 10.6279 0.343 10.3505 

1
9
3
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20 12.6252 11.4214 0.406 10.8487 10.8487 10.6279 0.39 10.3505 

 

15 

10 12.5101 11.0069 0.452 10.8487 10.8487 10.575 0.484 10.495 

15 12.5101 11.0069 0.764 10.8487 10.8487 10.575 0.686 10.495 

20 12.5101 11.0069 0.968 10.8487 10.8487 10.575 0.873 10.495 

 

20 

10 12.2224 10.9574 0.936 10.8487 10.8487 10.5089 0.858 10.3524 

15 12.2224 10.9574 1.248 10.8487 10.8487 10.5089 1.17 10.3524 

20 12.2224 10.9574 1.841 10.8487 10.8487 10.5089 1.545 10.3524 

uta-s-92 (I) 

(7.7053 

 

10 

10 5.9236 5.1598 0.249 4.2319 4.2319 4.2155 1.139 4.023 

15 5.9236 5.1337 0.422 4.2319 4.2319 4.2155 1.201 4.023 

20 5.9236 5.1337 6.693 4.2319 4.2319 4.2155 15.88 4.023 

 

15 

10 5.9267 5.0116 0.562 4.2319 4.2319 4.1421 1.216 4.0687 

15 5.9267 5.0116 0.842 4.2319 4.2319 4.1365 1.155 3.9579 

20 5.9267 5.0116 1.029 4.2319 4.2319 4.1365 1.638 3.9579 

 

20 

10 5.9 5.0359 1.17 4.2319 4.2319 4.1563 1.529 4.0837 

15 5.9 5.0356 1.56 4.2319 4.2319 4.1563 2.277 4.0837 

20 5.9 5.0356 1.903 4.2319 4.2319 4.1563 1.981 4.0837 

ute-s-92 

(56.9698) 

 

10 

10 38.388 34.5404 0.124 31.5378 31.5378 31.5378 0.125 31.5378 

15 38.388 34.5404 0.219 31.5378 31.5378 31.5378 0.281 31.5378 

20 38.388 34.5404 0.281 31.5378 31.5378 31.5378 0.265 31.5378 

 10 35.7745 32.956 0.327 31.5378 31.5378 31.4724 0.312 29.3473 

1
9
4
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15 15 35.7745 32.956 0.499 31.5378 31.5378 31.4724 0.453 29.3473 

20 35.7745 32.956 0.64 31.5378 31.5378 31.4724 0.624 29.3473 

 

20 

10 35.7745 32.8549 0.624 31.5378 31.5378 31.4724 0.639 29.3473 

15 35.7745 32.8549 0.843 31.5378 31.5378 31.4724 0.92 29.3473 

20 35.7745 32.8549 1.294 31.5378 31.5378 31.4724 1.186 29.3473 

yor-f-83 (I) 

(59.0404) 

 

10 

10 51.6706 47.543 0.156 44.8151 44.8151 43.0085 0.203 42.6291 

15 51.6706 47.543 3.682 44.8151 44.8151 43.0085 3.619 42.6291 

20 51.6706 47.543 0.343 44.8151 44.8151 43.0085 0.359 42.6291 

 

15 

10 50.7736 47.5016 0.437 44.8151 43.3199 42.831 0.405 42.5409 

15 50.7736 47.5016 0.593 44.8151 43.3199 42.831 0.592 42.5409 

20 50.7736 47.5016 0.78 44.8151 43.3199 42.831 0.764 42.5409 

 

20 

10 51.9692 46.6227 0.795 44.8151 44.3496 42.831 0.764 42.5409 

15 51.9692 46.6227 1.155 44.8151 44.3496 42.831 1.107 42.5409 

20 51.9692 46.6227 1.466 44.8151 44.3496 42.831 1.513 42.5409 

1
9
5
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In the results presented, if an observation of the cost produced by 

the same number of parents at Iteration 1 is made, one can clearly see 

that the costs that were produced for all cases were the same, for example 

for car-f-92 (I), where the values for the first 3 rows in the table are 

7.8894.  

A general assumption that can be made is that, for the same 

number of parents, an increase in the number of iterations does not offer 

an advantage in terms of improving the quality of the schedules (or 

reducing the cost) because, for most of the datasets, the costs remain even 

though the number of iterations were increased. There are some 

exceptions to this case however, i.e. for car-f-92 (I), car-s-91 (I), and uta-s-

92 (I).   

With the increased factor, in terms of the increase in the number 

of parents, it can also be deduced that the costs produced are mostly 

reductions or, in other words, improvements for the majority of the 

datasets, except for car-f-92 (I), ear-f-83 (I), kfu-s-93, lse-f-91, rye-f-92, 

and uta-s-92 (I) with npar=15, 20, 15, 15, 20 and 15 respectively. This can 

be seen in Figure 5.4 and Figure 5.5 which illustrate Carter Cost (2.1) vs. 

Number of Parents for datasets sta-f-83 and ute-s-92. 
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Figure 5.4: Carter Cost (2.1) vs. Number of Parents for sta-f-83 dataset 

 

 

Figure 5.5: Carter Cost (2.1) vs. Number of Parents for ute-s-92 dataset. 

 

For the second order of optimization, the behaviour of the results 

produced by GA is almost the same as the first order optimization, both 

when moving horizontally (left to right) and vertically (top to bottom) 

across the table. Most importantly, for all the datasets, the costs have 
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been significantly reduced before performing GA optimization and from 

the first iteration to the last iteration. 

Based on the results recorded, it can be concluded that the values 

selected for both parameters (i.e. the number of parents and iterations) in 

the GA proposed for the slot reordering of the exam schedules are 

suitable and the quality of the schedules was improved. In most cases, the 

values of both parameters were increased and that this assisted the 

procedure in exploring the search space efficiently and escaping from its 

local optima. 

Moreover, it has been observed that, for npar = 10 the cost 

produced by the GA is less encouraging than using npar = 15 or 20. Even 

though the GA was run over a few iterations with 10 parents, it appears 

that the explorations of the search space only managed to find its local 

optima. Therefore, to prevent the GA from getting stuck in its local 

optima, according to the overall results, it is suggested to use npar = 15 to 

20 with the same range of iterations. These suggested values seem to 

generate better results and have a better chance of arriving at their 

global minima. 

Based on the above results and observations, the results obtained 

by using Hill Climbing and the Genetic Algorithm optimization on the 

initial feasible schedule generated by the allocation method before 

performing other optimization are shown in Table 5-2. For the Hill 

Climbing, the worst and the best costs during the process were recorded 

(permutations of slots), and for the Genetic Algorithm, the cost produced 

after Generation 1 (Gen 1) and Generation 15 (Gen 15) is presented.  
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The best cost produced for each type of optimization is accepted 

and the ordering of the slots was rearranged accordingly before 

performing further optimization: i.e. reassignment of exams between slots 

and repeating the whole set of the optimization process later until no 

further improvement in the schedule cost is evident. The accepted cost 

together with the CPU time taken for each process can be seen in these 

tables. 

Based on the results presented in Table 5-2, it can be seen that the 

proposed Greedy Hill Climbing (HC) method outperformed the GA in all 

cases during the optimization when tested on the benchmark datasets; all 

the results produced by the GA for all the datasets after generation 15 

(Gen 15) were outperformed by the results produced by HC.  

It should be highlighted that the cost obtained by the GA for all 

datasets at generation 1 (Gen 1) are quite encouraging and are much 

lower than the worse cost that was obtained by HC. However, all of them 

failed to improve on the cost obtained by HC after generation 15 (Gen 15).  

Using the data that was gathered from the experiments on all the 

datasets, graphs for the cost (2.1) versus the Total Slot Conflicts for all 

benchmark datasets were plotted as shown in Figure 5.6. Diagram (a1), 

(b1), (c1), (d1), ….. (n1) are the graphs (continuous line-graphs) when HC 

optimization was used whereas diagrams (a2), (b2), (c2), (d2),…… (n2) are 

the graphs (dashed line-graphs) plotted when the GA optimization was 

used. The diagrams in these figures are arranged according to the 

sequence of datasets in Table 5-2. 
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Table 5-2: Comparison of Results Obtained By Using Hill Climbing and Genetic Algorithm Optimization on Nott and Toronto Datasets 

Dataset  / 

Initial  

Cost Hill Climbing 

 

Genetic Algorithm 

 

Worst 

 cost 

Best 

cost 

Accepted 

Cost Before  

Further  

Optimization 

CPU Time 

(seconds) 

Gen 1 Gen 15 Accepted 

Cost Before  

Further  

Optimization 

CPU Time 

(seconds) 

Nott / 

38.99 31.95 10.94 10.94 187.27 28.03 14.74 14.74 3.39 

car-f-92 /  

9.43 8.89 5.36 5.36 268.97 8.07 6.68 6.68 5.11 

car-s-91 /  

11.77 10.43 6.26 6.26 351.39 9.37 8.10 8.10 5.99 

ear-f-83 (I) / 

72.69 62.57 40.45 40.45 136.77 53.51 48.99 48.99 1.78 

hec-s-92 (I) / 

22.83 22.55 12.52 12.52 27.52 19.39 14.14 14.14 2.30 

kfu-s-93 /  

37.79 29.89 16.06 16.06 40.36 26.81 20.06 20.06 2.48 

2
0
0
 



 

201 
 

lse-f-91 /  

23.77 22.42 14.63 14.63 26.59 19.40 17.20 17.20 2.25 

pur-s-93 (I) / 

14.91 14.27 6.69 6.69 321.05 11.94 8.47 8.47 7.97 

rye-f-92 /  

31.50 28.55 12.68 12.68 73.17 19.04 16.46 16.46 3.25 

sta-f-83 /  

201.95 193.47 158.43 158.43 10.28 172.80 163.12 163.12 0.52 

tre-s-92 /  

14.81 13.25 9.84 9.84 66.34 12.76 11.70 11.70 3.17 

uta-s-92 (I) / 

7.30 6.59 4.23 4.23 455.94 6.19 5.22 5.22 6.54 

ute-s-92 /  

56.97 43.25 31.79 31.79 2.91 35.77 32.96 32.96 1.30 

yor-f-83 (I) / 

59.04 56.31 43.36 43.36 46.99 50.77 47.50 47.50 0.75 
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Figure 5.6: Cost (2.1) vs. the Total Slot Conflicts for Benchmark Datasets 

(Using Hill Climbing (HC) vs. Genetic Algorithm (GA)). Note: Continuous 

line- graphs on the left of this figure are for HC and dashed line –graphs 

are for GA. 
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From the graphs presented above, it can be noted that the pattern 

obtained from both HC and GA optimizations are similar and 

deterministic. The horizontal line constructed from the second data point 

to the third data point in the diagram (a1) to (n1) is due to a reduction of 

cost via the permutations of exam slots (Greedy HC) which did not 

involve any augmentation of total slot conflicts. The dotted line from the 

first data point to the second data point in each diagram (a2) to (n2) is 

constructed based on the GA optimization discussed earlier in this paper.  

A significant reduction in terms of the initial cost has been 

achieved by performing the GA optimization as shown in the dotted lines 

at this stage. These lines also showed that the proposed GA managed to 

substitute the HC implementation and was incorporated successfully in 

the whole set of our optimization process. 

One of the things that can be seen in the graphs is that the line 

constructed by GA optimization is not always horizontal indicating a 

change in the value of the total slot conflicts. This is because the 

crossover and mutation of exam slots in the GA optimization process 

changed the assignment of some exams to slots to ensure the feasibility of 

the schedules.  In changing the exam from one slot to another, it changes 

the value of total slot conflicts due to the interactions of the shifted exam 

with other exams that have common students.   This is not the case 

during HC optimization where the total exam-slot conflicts does not 

change because the individual exams to slots remain as they were before 

the permutations. 



 

208 

 

Based on our observations, GA produced quite encouraging 

results, however it converges quite quickly, whereby in most datasets, 

(out of the 9 combinations) best Carter cost (2.1) was obtained as early as 

when using 10 parents and 15 iterations. Even though more parents and 

iterations were used, however they did not record any improvements. 

This is mainly because the GA procedure was being used in the 

permutations of exams slots, where the number of slots are normally 

quite small (ranging from 10 to 42 only). Thus the search space for the 

permutations is small.  

 

In the experiments conducted, overall we have obtained very good 

results using GA, which demonstrates a deterministic optimization 

pattern of the proposed framework. From initial feasible solution 

constructed at the earlier stage, after going through the GA procedures, a 

very significant reduction in terms of Carter cost (2.1) was obtained 

successfully as predicted. The reduction can be seen obviously in the 

horizontal line in each graph presented in the thesis. This shows that the 

idea of optimizing the schedules using permutations of exams slots is very 

efficient and reliable.  

 

Based on the results, also, it indirectly shows that the framework, 

which consists of a few stages (i.e. pre-processing, scheduling and 

optimization), is proven to be an effective and flexible framework where 

some procedures can be replaced and incorporated into the framework 

adeptly. This was shown by the successful substitution of the GA with the 

existing HC. 
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A point that should be noted is the computational time taken to 

execute both methods. Even though the GA did not surpass HC in all 

cases the time taken to execute the process was remarkably short when 

compared to the implementation of HC. The proposed GA was simple, 

straightforward, and quite effective and took a short amount of time to 

improve the initial feasible schedule, although a majority of the research 

claims that GA takes a very long time to solve scheduling problems (for 

example, as claimed by (Abramson, 1992)). 

This advantage (the minimal time requirement) could offer even 

more advantages, because, based on the results presented earlier, it can 

be predicted that an addition to the number of iterations or generations 

(with the aim to generate better offsprings) to the GA execution will only 

add a short amount of computational time, which can be considered to be 

acceptable. 

Unfortunately however this is not the case. No benefits, in terms 

of reductions to the cost of the exam schedule generated, were given by 

increasing the number of generations. Experiments were conducted up to 

20 generations, but the highest number of generations at which the cost 

is reduced is generation 12 (car-f-92(I)). A second round of optimization 

was performed in order to test whether it could reduce the cost further. 

Therefore, after performing reassignment of exams on the schedules 

obtained by the GA optimization, we repeated the GA optimization one 

more time. As can be seen in Table 5-3, the highest number of 

generations that could reduce the schedule cost is generation 11 (rye-f-92) 

even though 15 generations were tested.  
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The cost (2.1) was improved upon in the second round for most of 

the datasets (except for nott, carf92, kfus93, purs93, and utes9) and this 

is illustrated in diagram (a2) to (n2) by the third data point to the fourth 

data point.   

The final results obtained by HC and GA methods, which were 

further improved by reassignments of exams, were compared and can be 

found in Table 5-4.  It can be clearly seen that HC outperforms GA in all 

cases, even though the execution time recorded was somewhat high in 

comparison to the GA, but the amount of time taken was still reasonable 

which is only a few hundreds seconds of CPU time.  

 

Table 5-3: Number of Generations That Improved the Schedule Cost 

During GA  

Dataset 

First Order 

Optimization: 

Cost 

Improved 

Until 

Iteration 

Second Order 

Optimization: 

Cost 

Improved 

Until 

Iteration 

notts 7 0 

carf92 12 0 

cars91 9 2 

earf83 7 6 

hecs92 6 7 

kfus93 10 0 

lsef91 8 4 

purs93 11 0 

ryef92 8 11 

staf83 6 4 

tres92 8 5 

utas92 10 4 

utes92 3 0 

yorf83 6 3 
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Table 5-4: Final Cost Produced Using HC versus GA Optimization 

 

Dataset 

Final Cost 

Produced 

after All 

Optimization 

Processes 

For HC 

(Rahim et 

al., 2012) 

Final Cost 

Produced 

after All 

Optimization 

Processes 

For GA 

(Rahim et 

al., 2013a) 

notts 7.34 7.62 

carf92 4.49 5.18 

cars91 5.19 6.03 

earf83 37.57 45.08 

hecs92 11.47 12.90 

kfus93 14.36 17.27 

lsef91 11.90 15.11 

purs93 4.88 5.57 

ryef92 9.8 10.63 

staf83 158.25 161.13 

tres92 8.74 9.86 

utas92 3.58 4.01 

utes92 27.37 29.35 

yorf83 41.10 43.52 

 

 

To summarize, the GA has been successfully implemented and 

incorporated into the proposed Domain Transformation Approach 

framework to solve the examination scheduling problems. The GA 

proposed in this study is an efficient algorithm that managed to achieve 

its objective which is to improve the initial feasible exam schedules 

(before being optimized). With a robust implementation, it managed to 



 

212 

 

explore the search space efficiently and produced a good quality timetable 

with a fast execution time. Since it succeeded in improving the quality of 

the initial feasible schedule in a very efficient time and it produced very 

consistent results with a deterministic optimization pattern, we consider 

the incorporation of GA into our proposed framework is very effective. 

However, this procedure works best within a certain range of parameters 

(and depends on careful parameter tweaking). For this particular GA (for 

slot swapping), it is suggested that at least 15 to 20 parents and also 15 to 

20 iterations be used in order to get the best solutions. 

Furthermore, the cost that was arrived at through GA 

optimisation did not improve on the results that were obtained with the 

Greedy HC optimisation. Although the computational time taken by the 

GA execution is a lot shorter than HC, an additional reasonable amount 

of time should be taken in order to ensure that good quality schedules are 

obtained. HC managed to improve the initial feasible schedule without 

fail for all datasets and always surpassed the GA results, therefore, it is 

suggested that the proposed HC be used as a basis of the optimization 

processes. 

Through the findings of this research the claim made by Ross et al. 

(1998) that sometimes the GA is not a very good approach to solving 

problems, is supported by empirical evidence. 
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Even though the proposed approach has produced very encouraging and 

consistent results, as reported in the previous chapter, it is still 

recommended that a possibility of improving the solutions be sought. Once 

the fact that the Greedy Hill Climbing slots permutations are merely a local 

search procedure is realized then it is considered desirable that a global 

search procedure be incorporated in the proposed framework. For this 

purpose, the Genetic Algorithm (GA) was chosen to reorder the slots in the 

spread matrix (with the aim of maximizing the gap between consecutive 

exams). Even though GA is highly dependent on the adjustment of 

parameters, the fact that it was reported as capable of producing high 

quality examination schedules, provided a motivation for our investigation 

of GA in the context of the proposed examination scheduling. As such, GA 

was implemented and has substituted for the traditional Greedy Hill 

Climbing. From the experiments conducted on benchmark datasets, it was 

revealed that Greedy Hill Climbing outperformed the GA in all cases, where 

the costs obtained by HC were considerably lower in all problems. Though 

the technique of slot permutations proposed using HC is just a local search 

procedure it was concluded that our approach of restarting the search from 

different starting points managed to explore the search space efficiently.  
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CHAPTER 6 

6 6 

Conclusions and Future Work 

 

This chapter presents the summary of the work conducted in this thesis. 

The proposed approach to solving university examination timetabling 

problem is summarized in brief. The contributions made to the area of 

examination timetabling are also highlighted. Consequently, future 

research directions based on the proposed approach are also discussed.  

 

 

6.1 Summary of the Research  

 

In this thesis, we presented and discussed our proposed approach to 

solving the university’s examinations scheduling problems. In our initial 

study, we believe that when enough information is supplied, using a 

systematic method, the real world examination scheduling problems can 

be solved efficiently and effectively. Even though the real world 

university examination scheduling problems are complex and very 

challenging to solve, we are certain that by imitating how people solve 

complex problem solutions are always reproducible. When people deal 

with problems, first they look at them in a macro perspective or bigger 

picture in order to grasp the essence of the problem, before focusing on 

the minute details. When deriving this simplified “big picture”, people 
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will normally do some information pre-processing in order to group 

related data  and by doing so to avoid being drawn into detail. Such a 

simplification can take various forms but the common characteristic is a 

deliberate tradeoff between the accuracy and generality of problem 

representation. The most easy and least strenuous way of problem 

simplification is when the problems is divided and then solved in stages.   

Inspired by human approach to solving problems, we have 

proposed a Domain Transformation Approach in solving the university 

examination scheduling problems. The Domain Transformation Approach 

that was proposed, is an approach that transforms the original 

timetabling problem domain into smaller sub-domains that manages to 

reduce the problems’ complexities effectively. By subdividing the real 

world examination scheduling problems into smaller sub-problems, each 

problem was solved more effectively.  

We have chosen to solve the examinations scheduling problems by 

performing a few independent stages in sequence: 1) pre-processing, 2) 

scheduling, and 3) optimization. This approach is quite similar to 

construction and improvement (Hertz, 1991) but in our approach, it is a 

bit different, because we introduced a pre-processing step prior to both 

the scheduling (construction) and optimization (improvement) phases.  

In the early stages of this study, we postulated that pre-processing 

of data and constraints provides more meaningful information that could 

be utilized at a later stage in the scheduling process. When performing 

pre-processing, certain data and constraints would be grouped according 

to certain criteria (for example: the grouping of conflicting exams and 
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non-conflicting exams). This will reduce cross-checking and cross 

referencing in voluminous data during scheduling.   

Based on our preliminary study, we learned that information processing 

was a key element to Granular Computing (Pedrycz et al., 2000; Bargiela 

and Pedrycz, 2002; Bargiela et al., 2004; Bargiela and Pedrycz, 2008). (The 

information processing approach is a multilevel processing approach, 

which is capable of producing a new representation of meaningful data. 

The basic details of the original data is hidden, thus directly reducing the 

complexities of the problems. 

Inspired by this concept, which we hypothesize could ease the 

scheduling process significantly, we have taken an approach which 

consists of an information pre-processing stage, followed by real 

scheduling and separate optimization steps. The work based on our 

proposed framework are summarized below: 

 Pre-processing: The very first step taken in our proposed 

examination scheduling algorithm was the pre-processing of data and 

constraints prior to the generation of the feasible timetable. This was 

performed through the abstraction of essential features from the 

original students/exams data. By performing this step, we successfully 

mapped the original problem expressed in multi-dimensional space of 

exams and students onto a reduced dimensionality space. Data was 

grouped together according to certain criteria and therefore the pre-

processed data, for example the exam conflict matrix and spread 

matrix were rendered more meaningful. These aggregated data, which 

could be referred to as information granules according to the concept 
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of Granular Computing (Pedrycz et al., 2000; Bargiela and Pedrycz, 

2002; Bargiela et al., 2004; Bargiela and Pedrycz, 2008), supplied us 

with important information for efficient scheduling. While more time 

could be saved because cross referencing and checking of 

data/constraints can be eliminated, the schedule is feasible (in terms 

of ensuring no conflicting exams are scheduled concurrently) and is 

generated in a short amount of time. This is guaranteed because the 

scheduling at a later stage (after pre-processing) will always ensure 

that the exams that will be assigned to a particular slot are from the 

same group (group of non-conflicting exams – this is, supplied through 

pre-processing).  

 Scheduling: After pre-processing, scheduling was done by using a 

standard Graph Coloring method with Largest Degree ordering. In 

our proposed allocation method, exams with the highest conflicts are 

placed first in the first available timeslot and is later moved to other 

exams with lower conflicts. The allocation of exams was determined 

by decisions made on the basis of four preferences: assigning 

conflicting exams to none empty slots, assigning conflicting exams to 

empty slots, assigning none conflicting exams to none empty slots and 

assigning none conflicting exams to empty slots. Each of these has the 

following value 0.4, 0.3, 0.2, and 0.1 respectively. The higher the 

value, the higher the preference for allocation. A verification 

procedure was used to verify whether the schedule generated was 

feasible. Once verified, a splitting and merging process was performed 

on the schedule. By splitting a slot p and reassigning constituent 

exams, the total number of slots could be reduced if every exam in slot 
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p can be allocated to some other slot, i.e. not in conflict with exams in 

other slots. 

 

 Backtracking: Backtracking was implemented in this study with the 

aim of reducing the number of slots after the construction of a feasible 

but not optimal solution (or infeasible – for example in this research 

the solution for yorf83 did not fulfil the minimum number of 

timeslots) in the scheduling stage. The implementation of the 

backtracking was based on the backtracking’s algorithm proposed by 

Carter et al. (1996) but with some modifications. In general, Carter et 

al. (1996) implemented backtracking during the initial placement of 

exams in cases where exam(s) exist that cannot be scheduled to any of 

the available slots.  The assignment of exams that are in conflict with 

the unscheduled exams will be undone in order to schedule it. As 

opposed to our approach, the placement of all exams to their allocated 

slots has already been completed therefore we attempted to convert an 

infeasible schedule into a feasible one, for the purpose of reducing 1 

slot. A reduction in the number of slots at an early stage is desirable, 

since the cost can then be minimized at a later stage. An initial 

schedule with a few slots (less than the requirement) can always be 

altered into one which fulfils this constraint. We postulate that it 

could provide a useful buffering space during the optimization 

involving permutations of slots.  

 Optimization: Rather than attempting direct optimization of 

assignments of exams to specific time-slots, optimizations are 
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performed on the feasible (but not optimal) schedules obtained in the 

previous stage. To minimize the cost, we perform the minimization of 

total slot conflicts, followed by further optimization on the initial 

schedule by: the permutations of exam slots and the reassignment of 

exams between slots. 

o Minimization of Total Slot Conflicts: The notion of a slot 

conflict is a generalization about the notion of an exam conflict, 

because in any feasible schedule, conflicting exams will always 

be assigned to different timeslots. The conflict between exams 

is a binary property (which can be determined via the domain 

transformation approach) that remains no matter how many 

students are enrolled in those exams. We have also considered 

determining the exam-slot conflict count by summing the 

number of slots that contain conflicting exams for a particular 

exam i. The exam-slot conflict is a binary property that does 

not increase in value if exam i has several conflicting exams in 

one slot. The information of the total slot conflicts acts as a 

measure of the ability to reschedule exams between slots. A 

high total count means fewer slots are available for scheduling 

and vice versa. Total slot conflicts can simply be minimized by 

taking each exam from every slot and reassigning it to a new 

slot that could reduce the total slot conflicts count if there are 

any. Minimization has the potential to reduce the cost of the 

exam schedule, however, in the proposed approach, this 

process is considered to be an augmentation of the potential for 

following minimization of the cost of the schedule. 
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o Permutations of Exam Slots: Taking into account the 

definition of the Cater cost (2.1) where students taking exams 

that are t slots apart, where t = {1, 2, 3, 4, 5,6} will give the 

penalty weight of 16, 8, 4, 2, 1, and 0 respectively, we can 

devise the task of optimization of the exam spread as a task of 

re-arranging the time slots such that the smallest sum of 

elements on the first minor diagonal can be achieved in the 

rearranged spread matrix (Rahim et al., 2009; Rahim et al., 

2012). With this in mind, large numbers in the spread matrix 

should be moved to minor diagonals that are of the order 6 or 

more. The permutations in the spread matrix involve the 

swapping of slots and the repetition of block shifts. In the 

Greedy Hill Climbing implementation, the provisional 

swapping of a slot with all other slots is done and the Carter 

cost (2.1) is evaluated. The swap will be remembered and the 

matrix will be updated accordingly if the cost is reduced. 

Realizing that this optimization may lead to local optima, we 

have adopted a simple measure of restarting the optimization 

from several initial orderings and picking the best solution 

from a pre-defined number of runs. 

Prior to the idea of proposing Greedy Hill Climbing, by 

exploiting the knowledge about the structure of the cost 

function, we have initially proposed a scheme for renumbering 

the timeslots in the spread matrix by proposing two methods, 

namely, Method 1 and Method 2. These methods which later 
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contributed to the idea of Greedy Hill Climbing slot 

permutations, are described below. 

The first method focused on extracting the smallest element in 

each row of the spread matrix and places it in the first minor 

diagonal and later renumbered the relevant time slots. This 

method works best if the objective it to minimize the number of 

adjacent exams.  

The second method also concerned the smallest element, but 

unlike the first one, Method 2 extracted the smallest elements 

in both rows and columns in the spread matrix. These 

elements were shifted towards the first minor diagonal and 

gave a more balanced re-numbering that could minimize the 

sum of higher minor diagonals better. 

 

 Reassignments of Exams: In the third stage of optimization, we 

have performed some exams reassignments with the aim to further 

reduce the Carter cost (2.1). Exams that make a large contribution to 

the first minor diagonal entries of the reordered spread matrix are 

reassigned to slots represented by higher minor diagonals (preferably 

of order 6 or higher).  

 Substitution of Greedy Hill Climbing Method: While proposing a 

very systematic approach that we hypothesize could reduce the 

timetable cost significantly using the greedy Hill Climbing slots 

permutations in the optimization stage, we tried to substitute this 
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procedure with other procedures. The substitutions were performed 

with the aim of analyzing whether they could improve the 

performance in generating quality feasible schedules in comparison to 

our existing approach. 

o We have implemented the Late Acceptance Hill Climbing 

(LAHC) algorithm which was claimed to be a very powerful 

strategy by Burke and Bykov (2008; 2012), to substitute the 

Greedy Hill Climbing in the optimization phase.  In our slot 

permutations using the LAHC implementation, we used a 

variable to keep the best cost with an array of length L. During 

the permutations, we took the best cost whenever we found one 

and updated the spread matrix accordingly to the new 

orderings. In contrast to the LAHC implementation, a new 

solution from a single swap was evaluated against an accepted 

solution from a swap L steps earlier. This solution was added 

to the list L if it surpassed the existing solution. We 

implemented the list as a Round Robin list, modifying items at 

specific location based on the length of L and the number of 

generations using the modulus of number of generations with 

L as the index. The way our LAHC was implemented was a bit 

different as proposed by Burke and Bykov (2008; 2012) to cater 

for the smaller search space due to the fact that we 

implemented the LAHC for slots permutations on the spread 

matrix of a feasible solution with a small number of timeslots.  

o Realizing that both the Greedy Hill Climbing and the Late 

Acceptance Hill Climbing strategies are local search 
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procedures, we knew that this might cause the solution search 

to be stuck in the local optimum. Motivated by the fact that a 

global search procedure is known to guarantee better results in 

finding the best possible solution (out of all possible solutions 

in the search space), we implemented a Genetic Algorithm 

(GA) to substitute the Hill Climbing procedure. In our GA 

implementation, the original ordering of slots was reordered in 

order to find the best arrangement with the lowest cost. The 

original parent was a data structure that contained the initial 

ordering of slots. New parents were created by taking a portion 

of the rows (in blocks) and combining them with another 

portion from other parents. In generating the offsprings, each 

parent was crossed over with all other parents at a certain 

random point R. Identical offspring were eliminated and 

replaced with a mutated data structure (where a random slot t 

was interchanged with a random slot u). The best offspring 

with the lowest cost was selected to be the next parent in the 

next generation. This process continued for a certain number of 

iterations. The effect of this procedure is that the initial 

orderings of slots will be shuffled (quite similar to the effect of 

slots permutations using Hill Climbing) and the cost will be 

improved.  
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6.2 Summary of Results  

 

The approach that we proposed to solving the examination scheduling 

problem has been proven to be very effective in generating feasible exam 

timetables. When the original domain was transformed into smaller 

domains the problem was subdivided rendering it less complex and 

making it easy to solve. In order to analyze the effectiveness of our 

proposed framework, we have done experiments on benchmark dataset 

problems. We have tried to solve the examination timetabling benchmark 

problems, i.e. University of Toronto, University of Nottingham and 

International Timetabling Competition 2007 (ITC 2007) datasets.  

In the early stages, through pre-processing, we have managed to 

group together important data from the original students-exams data and 

created new representations of data, for example, the exams conflict 

matrix and spread matrix which supplied very important information 

needed for the scheduling. Having the pre-processed data, lengthy search 

or cross checking of implicit data can be avoided during scheduling.  

The allocation method in the scheduling stage that we used which 

was based on Graph Colouring algorithm with Largest Degree pre-

ordering, has always created feasible examination schedules which satisfy 

the hard constraint (no conflicting exams should be assigned concurrently). 

The procedure that we applied that manages to split and merge possible 

timeslots has caused the timetables that we created always fulfil the 

minimum number of required timeslots (for all datasets except for yorf83 

in the Toronto dataset). After the main scheduling stage, the backtracking 

procedure was performed on all the datasets to further reduce the number 
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of slot. Backtracking has successfully decreased the number of required 

time slots in many datasets, and this offered an advantage both in terms of 

making sure that the specified number of time slots is not exceeded and 

providing a buffer-space for slots permutations in the subsequent 

optimization stage. 

The optimization phase which started with the minimization of slot 

conflicts was performed immediately after the initial feasible schedule was 

obtained in the scheduling (with backtracking) process. The result of  

minimizing the total slot conflicts was that more slots were prepared that 

can be used for the rescheduling of exams. To the best of our knowledge, 

the potential for the rescheduling of exams has not been quantified in the 

literature so far, despite it being a key factor enabling the improvement of 

the initial feasible schedule. During the experiments in the course of this 

thesis, by minimizing the slot conflicts, the cost of the exam schedule was 

also minimized. This stage can now be considered primarily as the 

enhancement of the potential for the subsequent minimization of the cost 

of the schedule. 

In the next stage of optimization, permutations of slots in the 

spread matrix decreased the Carter cost (2.1) of the initial feasible 

schedule (which was not optimal) significantly for all the datasets that 

were experimented with, attaining an average of a 50% improvement. This 

shows that the Greedy Hill Climbing implemented for the slot 

permutations is an effective procedure that manages to improve the 

quality of the feasible exams schedule generated earlier.  

We have also implemented the Late Acceptance Hill Climbing 

(LAHC) strategy to substitute the greedy Hill Climbing in our proposed 



 

226 

 

framework. This strategy was incorporated successfully in the proposed 

framework and produced quite encouraging results (on average the 

performance is on par with the Greedy Hill Climbing). However, it has 

been observed that the parameters used do not give a consistent 

performance to all the datasets. In some cases, when the parameter size is 

increased, the cost obtained is better, but in some cases, the increase in the 

parameters also increased the cost, which meant it reduced the quality of 

the existing schedule.  

Realizing that the proposed Greedy Hill Climbing is a local search 

procedure, even though overwhelming improvement was obtained,  we 

were concerned that it might merely find the local optimum in the solution 

space. As such, the Genetic Algorithm optimization (a global search 

procedure) was implemented in order to substitute the Greedy Hill 

Climbing algorithm proposed earlier. This is with the aim that it would 

improve the Carter cost (2.1) obtained by Greedy Hill Climbing.  

The GA optimization involved the reordering of timeslots by 

utilizing crossover and mutation concepts and at the end of the processes, 

an improved timetable with new timeslot ordering (reduced Carter cost 

(2.1)) was achieved. 

This GA optimization, when tested on all benchmark datasets, 

managed to improve the cost of the initial feasible schedule obtained from 

each scheduling stage. However, it was realized that this procedure works 

best within a certain range of parameters (and depended on careful 

parameter tweaking). The good cost obtained by the GA did not manage to 

outperform the results obtained by utilizing the proposed Greedy HC in all 

cases (on benchmark datasets).  



 

227 

 

From the above findings, regarding the results based on the three 

types of slot re-ordering optimizations, we can see that all three have been 

successfully implemented and incorporated into our proposed framework. 

This indirectly shows that the framework, which consists of a few stages 

(i.e. pre-processing, scheduling and optimization), is proven to be an 

effective and flexible framework where some procedures can be replaced 

and incorporated into the framework proficiently. This was shown by the 

substitution of the LAHC and the GA in the approach.  

The first stage of optimization has revealed that our greedy Hill 

Climbing produced expected results. Despite the fact that the results of the 

Late Acceptance Hill Climbing strategy that were produced were on par 

(on average) with Greedy Hill Climbing the parameter used in the LAHC 

did not demonstrate a consistent performance. Due to this, we recommend 

that traditional Greedy Hill Climbing be utilized in the slot permutation 

phase. 

Similarly to the LAHC, the GA will not be selected to optimize the 

timetables according to the outcome of the experiments as it was clearly 

shown that in all the experiments, Greedy Hill Climbing outperformed the 

GA in all cases of producing good quality schedules. All costs obtained by 

Greedy HC are considerably lower when compared to the GA.  

The findings indicate that even though Greedy Hill Climbing is just 

a local search procedure by restarting the search from different starting 

points iteratively, the search managed to obtain good quality solutions 

(managed to avoid being stuck in local optima).  

After performing the slot permutations, the cost was further 

reduced by reassigning some exams to other slots. This process exploited 
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the information in the spread matrix where exams that make large 

contributions to the first minor diagonal entries of the reordered spread 

matrix are reassigned to slots represented by higher minor diagonals 

(preferably of the order 6 or higher). Based on the results that were 

reported, the cost produced by reassigning some exams managed to further 

reduce the cost without fail.  

The whole stage of the optimization was performed twice, and it 

was observed that in some datasets, the second round was worthwhile and 

more improvements were recorded. It is worth noting here that feasible 

solutions with lower total slot conflicts provide a good basis to minimize 

the cost via a simple reordering of slots and the later reassignment of 

exams between slots.  

Overall the proposed approach in this study produced very high 

quality exams schedules. The proposed method for examination 

timetabling utilising Greedy HC optimisation has shown to deliver 

consistently competitive results for all benchmark datasets (no matter how 

large or difficult each dataset is). Comparing the average mean deviation 

from the best known solution for each benchmark dataset, our method 

shows that the performance are consistent on all types of problem and at 

average outperforms all other results except by Carter et al. (1996) which 

is the collection of best of all its approaches. The variance of these 

deviations is smallest for our method when compared to others reported in 

the literature. Unlike some constructive methods in the literature that 

demonstrated an uneven performance, where they performed well on some 

benchmark problems and less well on others. This is a rather undesirable 

characteristic from the user’s perspective, as there is no way of predicting 
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the quality of the solution that will be obtained using a particular method 

on a new dataset. Apart from this, it was shown that several of the best 

results were obtained by the methods that did not report any results for a 

few datasets.  

In conclusion, it is clear that the Domain Transformation Approach 

proposed in this study is very simple and competitive in terms of 

generating reliably high quality exam schedules. By transforming the 

original real world scheduling problem into smaller sub-problems and 

applying appropriate pre-processing, we managed to reduce the 

complexities of the problem, thus saving a substantial computational effort 

compared to other methods that require customized post-processing. We 

would also like to highlight that an important feature of the proposed 

optimization is that its deterministic pattern in the results generated for 

all datasets is always preserved, which makes it a novel contribution to the 

examination scheduling research field. 

 

6.3 Contributions 

The following contributions to the field of examination scheduling were 

presented in this thesis: 

 Reduced complexity of the problem domain. The Domain 

Transformation Approach which was proposed based on the 

insights derived from the Granular Computing concept that has 

clearly transformed the real world examination scheduling problem 

into smaller problem domains, allowing the problems to be 
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conquered or solved in stages, making it a less complex problem 

that can always be solved in a reasonable amount of time. 

 

 Reduction of problem space. Pre-processing of constraints has 

grouped together certain data which provided very useful 

information. The creation of the exam conflict matrix and the 

spread matrix from the pre-processing stage has managed to reduce 

the laborious searching that was required during scheduling. These 

matrices are very easy to generate and can be used as new data 

representations in any examination scheduling algorithm.   

 

 Ensuring feasible solutions. Allocation of exams to slots and split 

and merge procedures successfully created feasible exam schedules 

(without fail) with encouraging figures in terms of number of slots 

and cost. 

 

 Efficiency. Backtracking procedure (Carter et al., 1996) which is 

an improved algorithm that was proposed and managed to further 

reduce the number of timeslots of the initial feasible schedule. 

 

 Optimization procedures. The Optimization stage that consists 

of three steps: minimization of total slot conflicts, permutation of 

slots and reassignment of exams were proven to be very effective 
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procedures at optimizing the initial feasible exam schedules. A 

significant reduction in costs for all datasets was recorded. 

 

 Minimization of Total Slot Conflicts approach. Minimization 

of Total Slot Conflicts has helped to reduce the cost of the exam 

schedule. This process was considered as an augmentation of the 

potential for following minimization of the cost of the schedule. 

Concisely, when the total of slot conflicts is low, on average, there 

are more slots that can be used for the rescheduling of exams. To 

the best of our knowledge, the potential for the rescheduling of 

exams has not been quantified in the literature despite it being a 

key factor enabling the improvement of the initial feasible schedule.  

 

 Permutation of slots approach. The Permutation of slots, which 

was implemented as a variant of the Greedy Hill Climbing 

algorithm, managed to produce very encouraging results on par 

with other results documented (based on other constructive 

methods) in the literature. Even though it was just a local search 

procedure, our approach of restarting the search from different 

starting points, managed to outperform the Genetic Algorithm 

optimization (a global search procedure). 

 

 Robust scheduling framework. The proposed framework in this 

study is very systematic, efficient, robust and is proven to be very 

flexible. This was demonstrated by the success of substituting other 
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procedures in the framework, i.e. the Late Acceptance Hill Climbing 

and the Genetic Algorithm. Both procedures managed to produce 

quite good results. This indirectly shows that every stage in our 

proposed framework is independent and could therefore be 

integrated with other scheduling approaches in this area. 

 

 Consistent performance. Through the avoidance of exhaustive 

exploration of the search space which normally deploys random 

selection between alternative choices during the optimization 

process, the approach is capable of generating solutions that are 

reproducible and consistent. This feature exhibits that the proposed 

approach managed to raise the generality of the examination 

scheduling algorithm, which is universal and applicable to a wide 

range of university examination scheduling problem. 

 

 Deterministic optimization pattern. Deterministic optimization 

pattern obtained for all benchmark datasets is an overwhelming 

achievement. The approach carried out in the research resulted in a 

similar pattern for all datasets as described in Section 4.14, 4.15 

and 4.16. This behaviour implies a deterministic optimization 

pattern for all datasets resulting to an overwhelming achievement 

since there are no claims made by other researchers resulting in a 

deterministic pattern for optimization making the proposed 

optimization a novel contribution to this field. 
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6.4 Future Work 

 

It would be very interesting to extend the approach that is proposed in this 

thesis to solve the capacitated examination scheduling problems. We 

expect that the proposed method can be adapted, in a relatively 

straightforward manner, to the capacitated scheduling problem by 

introducing appropriate granular data structures that would permit the 

required domain transformation in the optimization process.  

 Apart from this, the investigation of different pre-ordering of exams 

(for example: other graph coloring heuristics) before real scheduling could 

be performed to improve the solutions. In addition, further research on 

how to get the best parameter settings in the search procedure (to be 

specific the Genetic Algorithm because it was highly dependent on 

parameter tweaking) in order to guide the searching to obtain global 

optimum. Having said this, it is also interesting to study when the Genetic 

Algorithm would outperform the proposed Hill Climbing in the proposed 

optimization stage. 

Lastly, to test the flexibility of the approach, it is recommended 

that future research attempts to solve other real world examination 

scheduling problems and randomly generated problems using this 

approach. Also, other constraints that are suggested in the literature 

should be taken into consideration in constructing and determining exam 

schedules.  
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