
I M P R O V I N G T Y P O G R A P H Y A N D M I N I M I S I N G C O M P U TAT I O N F O R
D O C U M E N T S W I T H S C A L A B L E L AY O U T S

Alexander J. Pinkney, B.Sc. (Hons)

thesis submitted to the university of nottingham

for the degree of doctor of philosophy

july 2015

A B S T R A C T

Since the 1980s, two paradigms have dominated the representation of format-
ted electronic documents: flowable and fixed. Flowable formats, such as
HTML, EPUB, or those used by word processors, allow documents to scale
to any arbitrary page size, but typographical compromises must be made
since the layout is computed in real time, and is re-computed each time the
document is displayed. Conversely, fixed formats such as SVG or PDF are
afforded the potential for arbitrarily complex typography, but are constrained
to the fixed layout that is set at the time of creation. With the recent surge
in popularity of low-powered portable reading devices — from tablets to
e-readers to mobile phones — there is an expectation that documents should
scale to any size, maintain their high-quality typography, and not provide
unnecessary strain on an already overloaded battery.

This thesis defines a novel paradigm for electronic document represent-
ation — the Malleable Document — whereby documents are partially typeset
at the time of creation, leaving enough flexibility that their content can be
flowed to arbitrary page sizes with minimal computation. One tradeoff en-
countered is that of increased file size, and this is addressed with a bespoke,
computationally-light compression scheme.

A sample implementation is presented that transforms documents from
a source format into Malleable Document format, alongside a lightweight
display engine that enables the documents to be viewed and resized on
a wide range of devices, mobile and otherwise. Reviews of the technical
aspects and a user study to evaluate the quality of the system’s rendering
and layout show that the Malleable Document paradigm is a promising
alternative to both fixed and flowable formats, and builds upon the best of
both approaches.

iii

In a badly designed book, the letters mill and stand like starving horses
in a field. In a book designed by rote, they sit like stale bread and
mutton on the page. In a well-made book, where designer, compositor
and printer have all done their jobs, no matter how many thousands of
lines and pages they must occupy, the letters are alive. They dance in
their seats. Sometimes they rise and dance in the margins and aisles.

Robert Bringhurst, The Elements of Typographic Style

A C K N O W L E D G M E N T S

People who have got me through this

academically, socially, pastorally, alcoholically. . .

you know who you are!1

Thanks

1 If you’re not sure, it probably isn’t you

v

C O N T E N T S

0 foreword and overview xi

i motivation 1

1 the rise of ebooks 3

1.1 Devices 3

1.2 “Good” typesetting 5

1.2.1 Hyphenation and Line-Breaking 5

1.2.2 Microtypographical Techniques 6

1.3 Paradigms of Document Representation 9

1.3.1 Fixed Formats 9

1.3.2 Flowable Formats 10

1.4 Limitations of Current Formats 10

1.5 Summary 13

1.6 Contributions of this Thesis 13

1.6.1 Scope 14

1.6.2 Limits 15

ii implementation 17

2 the malleable document 19

2.1 Historical Interlude 19

2.1.1 The use of Galleys in Typesetting 20

2.2 Galleys as a Reflow Tool 20

2.3 Multiple Galley Renderings 21

2.4 A Simple Implementation 21

2.4.1 The cog Model 23

2.4.2 The Source Document 25

2.4.3 pdfdit 25

2.4.4 Acrobat Plugin 28

2.5 Included galley renderings 31

2.6 The Best Galley? 34

2.7 Efficiency 35

2.8 Summary 37

3 floatable blocks 39

3.1 Document Generation 39

3.2 The Viewer 41

3.2.1 Floats with a Queue 41

3.2.2 A Grid-Based Layout 44

3.3 Summary 47

4 dealing with file bloat 51

4.1 Rationale 51

4.2 Implementation 52

4.2.1 Pointers into the Source Text 52

4.2.2 Use of a Dictionary 52

4.2.3 Further Compression Possibilities 56

4.2.4 A Toy Example 59

4.3 Results 62

4.3.1 Discussion 69

4.4 Summary 69

vii

viii contents

iii analysis 71

5 analysis 73

5.1 Quantitative 73

5.1.1 Fixed Document Formats 73

5.1.2 Flowable Document Formats 73

5.1.3 Malleable Documents 74

5.1.4 Handling of Floats 75

5.2 Qualitative 76

5.2.1 Placement of Floats 76

5.2.2 Measures of Aesthetic Quality 77

5.3 User Study 78

5.3.1 Participants 78

5.3.2 Methodology 78

5.3.3 Preamble 80

5.3.4 Questions 80

5.3.5 Discussion of Results 81

5.3.6 User Comments 82

5.4 Summary 85

6 final thoughts 87

6.1 Contribution 87

6.2 System Extensions 88

6.2.1 Improved Support for Floats 88

6.2.2 Improved Vertical Layout 88

6.2.3 Postponing Layout 88

6.2.4 Moving Nearer to the Metal 89

6.3 Open Research Questions 90

6.4 Concluding Remarks 90

references 93

Glossary 99

iv appendices 101

a a sample malleable document 103

b sample layouts 113

b.1 Layout by the Malleable Document System 114

b.1.1 Rendered by Mozilla Firefox on a PC 114

b.1.2 Chrome on an Android Phone 117

b.1.3 Safari on an iPad 119

b.2 Other systems 121

b.2.1 LATEX 121

b.2.2 html 122

L I S T O F F I G U R E S

Figure 1 Examples of document display technologies 4

Figure 2 Poor typography on the Kindle 6

Figure 3 Knuth-Plass layout versus a first-fit algorithm 7

Figure 4 Examples of microtypographical techniques 8

Figure 5 Reflowed text of a pdf file 11

Figure 6 Document displayed in Calibre 14

Figure 7 Same document displayed on the Kindle 15

Figure 8 Extra whitespace in a single-galley document 22

Figure 9 Extra whitespace in a multi-galley document 24

Figure 10 A simple Galley Structure Tree 25

Figure 11 Sample renderings from the Acrobat plugin 32

Figure 12 Graph of minimum penalty values 36

Figure 13 Flowchart of the two-queue float algorithm 45

Figure 14 An example of a grid-based layout 46

Figure 15 Step through of multi-column layout 48

Figure 16 A sample rendering with multi-column floats 49

Figure 17 Inconsistent font scaling by WebKit 50

Figure 18 Word frequencies in various documents 54

Figure 19 Cumulative distribution of word frequencies 55

Figure 20 Filesizes of documents in original encoding 63

Figure 21 Filesizes with an unordered dictionary 64

Figure 22 Filesizes with an ordered dictionary 65

Figure 23 Filesizes with relative positioning 66

Figure 24 Comparison of filesizes from all encodings 67

Figure 25 Comparison of gzips of all encodings 68

Figure 26 Plot showing user study results 83

Figure 27 Plot of user rating against filesize 84

L I S T O F TA B L E S

Table 1 Word frequencies in various documents 53

Table 2 Galley widths used in documents in the user study 79

Table 3 Summary of user study results 82

ix

L I S T O F L I S T I N G S

Listing 1 Excerpt from a kern table 8

Listing 2 A sample troff source document, part 1 26

Listing 3 A sample troff source document, part 2 27

Listing 4 Excerpt from a malleable document pdf 28

Listing 5 Excerpt from a Galley Structure Tree 29

Listing 6 A cog and its associated spacer object 30

Listing 7 Contents of a pdf Page object 31

Listing 8 Acrobat plugin’s layout algorithm 33

Listing 9 An excerpt from a sample source document 40

Listing 10 Algorithm used by the Paragraph Splitter 42

Listing 11 Excerpt from JavaScript data file 43

Listing 12 Excerpt from a paragraph tree using deltas 56

Listing 13 Excerpt from a dictionary storing word widths 57

x

0
F O R E W O R D A N D O V E RV I E W

This thesis is structured in a slightly unconventional manner: its
literature review is spread amongst the chapters, and sources are
discussed within relevant areas of the text. Below is an outline of the
thesis structure:

Chapter 1 provides an overview of the present state of affairs of
the electronic document world, with particular emphasis upon the
technologies used in contemporary ebook readers, and their benefits
and drawbacks.

Chapter 2 takes a brief look at the history of movable type, and some
of the techniques tradionally used in newspaper typesetting. Using
some of these techniques as a basis, it then describes a novel paradigm
for document representation that allows documents to fit a wide
variety of screen sizes whilst maintaining high typographic quality. It
then outlines a prototype implementation of a system to generate and
display simple documents. Work in this chapter was published and
presented at DocEng’11 in Mountain View, CA, USA [PBB11].

Chapter 3 introduces a complete reimplementation of the system
described in Chapter 2 to enable its use on mobile devices, and extends
the devised model to include support for floating items such as figures
and tables. Work in this chapter was published and presented at
DocEng’13 in Florence, Italy [PBB13].

Chapter 4 addresses the issue of enlarged file sizes, and details various
methods to keep file sizes to a minimum, where possible avoiding
unnecessary increases in computational complexity that would counter
the work described in Chapters 2 and 3.

Chapter 5 provides technical and aesthetic analysis, focusing on the
quantitative and qualitative aspects of the system as it runs at view-
time, and includes the results of a user study of the system developed
in the previous chapter.

Finally, Chapter 6 evaluates the success of the project, and details areas
of potential new research that have been encountered throughout the
process.

xi

Part I

M O T I VAT I O N

1
T H E R I S E O F E B O O K S

In this chapter we look in depth at the status quo of the electronic
document world: we examine the hardware used to display docu-
ments, we examine the paradigms used to represent documents,
we examine what is considered to be good typesetting, and then
in the context of this information, we examine the limitations
currently enforced upon us.

In the past five years, the surge in popularity of tablets and dedicated
ebook readers has vastly increased the sale and distribution of ebooks.
In August 2012, it was widely reported in the media[hex12] that
Amazon’s Kindle Store sales were outstripping print book sales by
114 to 100. This figure did not include free ebooks “sold” through the
Kindle Store, which would skew the figures significantly further.

Project Gutenberg, a digital online library that (as of January 2015)
hosts over 46,000 freely downloadable out-of-copyright ebooks, regu-
larly exceeds 150,000 downloads per day.1

Ebook readers have now become a commodity item, and although
their displays are becoming increasingly print-like, the typography
and formatting that they offer does not meet the high standards of
traditionally typeset documents.

Whilst at first glance this may not seem like a difficult problem to
solve, the expectation that ebooks should scale to fit many devices and
adapt to the reading preferences of many different users makes it far
from trivial, as we shall see further on in this chapter.

1.1 devices

In addition to dedicated ebook readers, such as the Amazon Kindle
and the Kobo eReader, many other devices (such as tablets, mobile Amazon distributes

software that allows
Kindle format books
to be read on
Android and iOS
tablets and
smartphones, and on
Windows and OS X,
in addition to its
own range of Kindle
hardware

phones, laptops, and desktop PCs) can be equipped to read ebook files.
Indeed, virtually every modern device with a screen can be equipped
to read ebooks.

The screen technologies used in these devices have vastly improved
over the past decade or so, from the introduction of electronic paper
displays that provide a reading experience very similar to that of real
paper, to the enormous advances in lcd and oled screens, which
now often have resolutions high enough that it is difficult to resolve
individual pixels with the naked eye. Figure 1 shows some examples

1 See http://www.gutenberg.org/browse/scores/pretty-pictures for up-to-date
statistics.

3

http://www.gutenberg.org/browse/scores/pretty-pictures

4 the rise of ebooks

(a) A commercially
printed book

(b) A laser-printed
webpage

(c) A dot-matrix lcd

screen

(d) A tft lcd monitor (e) Another tft lcd

monitor
(f) A tft lcd on a Kindle

Fire HD tablet

(g) A Super amoled

display on a Galaxy
Nexus smartphone

(h) An electronic paper
display on a Kobo
eReader

(i) An electronic paper
display on a Kindle
Touch

Figure 1: Examples of some document display technologies, magnified about
25 times (top halves of images) and 350 times (bottom halves). These
images were all captured with a £25 usb microscope purchased
from Amazon. Note that the resolutions of the screens in (f) and
(g) are close to that of the microscope used to capture the image,
hence the aliasing effect.

1.2 “good” typesetting 5

of document display technologies — note the visual similarity of the
“real” print (Figure 1a and 1b) to the electronic paper displays (Figure
1h and 1i).

As a consequence of this, ebook file formats must be flexible enough
that their content can be displayed and read on a vast range of devices
with differing screen sizes and types.

1.2 “good” typesetting

Generally speaking, the better the quality of a document’s typography,
the less it should be noticed by the reader. Good typography should
be transparent, in order that the reader may concentrate upon the
content of the document, rather than be distracted by its presentation.

Many studies[MR91, Hil99, Bri08, Voo11, LB11] conclude that the
readability of text is inextricably linked to the quality of its typography.
In particular, it is stated in The Magic of Reading[Hil99] that both
regularity of whitespace between words and the evenness of line
lengths are of importance — and the only way to achieve this is to
use a line-breaking algorithm that attempts to make line lengths as
even as possible. Unfortunately, producing well-typeset text can be an
extremely complex process [HLM09].

1.2.1 Hyphenation and Line-Breaking

Ebook readers typically use a “greedy” algorithm to lay out their
text — that is, they place as many words as will fit onto the current
line without exceeding it, then start a new line and continue. Although
this algorithm is optimal in that it will always fit text onto the fewest
possible lines, it often causes consecutive lines to have wildly varying
lengths, accentuating either the “ragged right” effect of the text, or,
in the case of fully-justified text, the inter-word spacing. In general,
ebook readers will only hyphenate in extreme cases — indeed the
Kindle seems not to do so at all, to the detriment of its typography
(see Figure 2).

Donald E. Knuth and Michael F. Plass[KP81] developed a more
advanced line-breaking algorithm (now used by TEX) that attempts to
minimise large discrepancies between consecutive lines by considering
each paragraph as a whole. TEX also uses the hyphenation algorithm
designed by Franklin Liang[Lia83] (another of Knuth’s grad students)
which has been ported to many other applications. Figure 3 compares
the Knuth-Plass algorithm against the default layout of a web browser
(a first fit, greedy approach).

Knuth and Plass’s line breaking algorithm, in conjunction with
Liang’s hyphenation algorithm, breaks paragraphs into lines of text
to fit a page, resulting in what can be considered an aesthetically
optimal configuration. TEX’s default behaviour is then to alter the

6 the rise of ebooks

Figure 2: The Kindle fully justifies its text, falling back to ragged-right when
inter-word spacing would become too large. Its lack of hyphenation
exacerbates this problem.

spacing between words in order to justify the line to fit the measure
of the page. The Knuth-Plass algorithm nominally runs in O(n2) time
(compared with O(n) for a greedy first-fit approach), although with
some pruning, the effective complexity can be reduced to nearer O(n)

[HL87, EG92, HLM09]. In practice though, large constant factors still
make the algorithm slow. In any case, the Knuth-Plass algorithm is
certainly not the last word in line-breaking algorithms: for example,
it has no mechanism to avoid (nor indeed any knowledge of) vertical
rivers of whitespace [MR91]. Inevitably, adding support to avoid rivers,
and for any of the other nuances used by hand compositors, would
add further complexity.

1.2.2 Microtypographical Techniques

Other techniques employed during hand-typesetting, and high-quality
electronic typesetting, include the use of what is often termed micro-
typography,[HLM09] such as the use of kerning and ligatures. Kerning

1.2 “good” typesetting 7

Figure 3: Knuth-Plass layout (left) versus a first-fit algorithm (right). The text
has been greeked to draw attention to layout rather than content.
Note that Knuth-Plass results in looser spacing of certain lines
where it helps avoid extremely loosely-set lines ahead. Even without
using hyphenation (this implementation of Knuth-Plass does not
include a hyphenation algorithm) the differences are pronounced.

8 the rise of ebooks

October 7, 2014

Abstract

To AV V. Wa fi fl
To AV V. Wa fi fl

1

Figure 4: Examples of various letter-pairs and their kerned (left) or ligature
(right) equivalents, as typeset by pdfLATEX. Some further examples
of fi ligatures (or not!) can be seen in Figure 1 on page 4.

KPX A y -92
KPX A w -92
KPX A v -74
KPX A u 0
KPX A quoteright -111
KPX A quotedblright 0
KPX A p 0
KPX A Y -105
KPX A W -90
KPX A V -135
KPX A U -55
KPX A T -111
KPX A Q -55
KPX A O -55
KPX A G -40
KPX A C -40 �
Listing 1: An excerpt from a kern table for Times Roman, showing

kern pairs beginning with A only. This is taken from an AFM
(Adobe Font Metrics) file, where the units are (according to the
specification[Ado98]) “equal to 1/1000 of the scale factor (point size)
of the font being used”.

involves altering the spacing between certain glyph pairs in order to
give the appearance of more consistent letter spacing, and ligatures
are single-glyph replacements for two or more single glyphs that may
otherwise have had clashing components. Some examples of these are
shown in Figure 4.

Kerning requires a table of kern-pairs, specific to each font; values
from this table must then be looked up for every pair of adjacent
glyphs in the document. An example of a kern table is shown in
Listing 1.

Ligatures may or may not need to be inserted: if the component
characters of the ligature lie over a potential hyphenation point, it
cannot be decided whether to replace them with the ligature until it is
known whether the hyphenation point needs to be used.

1.3 paradigms of document representation 9

TEX handles kerning and insertion of ligatures automatically, but
there are still further typographical tweaks that its default typesetting
algorithm does not use.

More advanced methods than simply stretching or shrinking the pdfLATEX, used to
typeset this
document, does
tweak tracking and
glyph widths when
justifying text

word spacing do exist, however. Robert Bringhurst, in The Elements
of Typographic Style,[Bri08] suggests that in addition to altering word
spacing, subtle changes to inter-character spacing (also known as
tracking) and to individual glyph widths (in the range of ± 3%) can
produce more typographically and aesthetically pleasing results.

1.3 paradigms of document representation

Computer representations of documents can be classified into two
distinct paradigms:

• Documents stored in fixed formats, such as Portable Document
Format (pdf), PostScript and SVG, are designed to be the direct
analogues of printed pages.

• Documents stored in flowable formats, such as the Hypertext
Markup Language (html) and EPUB, have no fixed presentation
associated with them, thus their layouts must be computed each
time they are displayed.

Currently there is no middle ground — a document may either be fully
rendered to a fixed layout, or completely unrendered, to be laid out at
the mercy of a display device’s decisions.

1.3.1 Fixed Formats

The only fixed document format commonly used for ebooks (or indeed
commonly used at all) is pdf,[Ado01] which was originally designed
as a way of faithfully reproducing documents both on screen and
in print [War91]. For this reason, it is almost entirely presentation-
oriented and will not necessarily include any metadata pertaining to
the semantic structure of a given document.

The archetypal pdf file consists solely of drawing operators that de-
scribe the document pages. There is no compulsion for these drawing
operators to render the page in an order that might be considered
sensible by a human reader. For example, if a pdf generator program
decided to render every character on a page in alphabetical order,
or radially outwards from the centre, the resulting file would still
be semantically valid, and the result would be imperceptible to the
reader.

This lack of imposed semantic structure makes it difficult to infer
the best way to “unpick” pdf files to allow their content to be reflowed
into a new layout [LB95, BB05]. For example, it is not easy to decide

10 the rise of ebooks

programatically whether a line break between adjacent lines of text is
explicitly intended to be there (for example, the end of a paragraph) or
if it is an artefact of the document layout. As an example, the Adobe
Reader app for Android cheerfully offers to reflow pdf pages should
you require it, but usually results in what can be seen in Figure 5.

It would be inaccurate to state that pdf files cannot represent the
semantic structure of their content — indeed as early as 1999, pdf 1.3
introduced logical structure facilities,[Ado01] adding an optional struc-
ture tree to the pdf specification, and tagged pdf, introduced in pdf 1.4
in 2001, provides various extensions to this. pdf documents that actu-
ally make good use of these facilities are few and far between, even a
decade after their introduction.

1.3.2 Flowable Formats

The two most common flowable ebook formats are EPUB and Mobi-
pocket, both of which are largely based on html [IDP11]. html wasAmazon’s

proprietary Kindle
format is derived
from Mobipocket;

pdf and EPUB are
open standards

chosen not only because of its inherent support for reflow, but also
because it allows document content to be semantically marked up into
paragraphs, various levels of headers, and so on. At the time, this was
an enormous improvement over ebooks stored as plain text, which
consequently had neither formatting nor semantic structure.

Whilst the use of these html-like formats allows the semantic struc-
ture of documents to be very well defined, in general their presentation
can only be specified in a very loose manner. On an ebook reader (or
in ebook reading software) the user is often presented with a choice
of typefaces and point sizes, which gives the e-reader software some
scope for rendering the document in arbitrary ways.

Since a document stored in a flowable format does not have any
concrete presentation associated with it, each time the document is
displayed, its layout must be recomputed. For an ebook reader to max-
imise its battery life, this computation must be as simple as possible.
As a consequence, the algorithm used must not be too complex, since
the more cpu cycles spent executing it, the less time the cpu can spend
idle, and thus the greater the drain on the device’s battery [PBB11].

1.4 limitations of current formats

The design paradigm of pdf, conceived in the early 1990s,[War91]
was to form a perfect analogue of the printed page, which would be
exactly reproducible regardless of the system on which the file was
rendered. For this reason, it is possible to embed fonts within pdf files,
to ensure faithful reproduction on any system, regardless of which
fonts are actually installed. In general, a well typeset pdf file looks
good wherever it is displayed, but, stemming from the “digital sheet
of paper” paradigm, page sizes in a pdf document are necessarily

1.4 limitations of current formats 11

Figure 5: Adobe’s Reader app for Android includes an option that allows
pdf files to be reflowed, but the lack of semantic structure within
most pdf files limits the process to using only what can be inferred
from the original layout. This figure shows the start of this chapter
reflowed by the app — see page 3.

12 the rise of ebooks

fixed at creation-time. An overwhelming majority of pdf documents
are rendered for us letter or a4 size paper. This is fine if the document
is to be printed and read. On a reasonably large screen, the document
remains perfectly readable, and on a 10” netbook or tablet screen it
may provide an acceptable reading experience. Anything much smaller
(notably mobile phones, and ebook readers) requires a combination of
zooming and panning in order to read the document.

Documents may, of course, be rendered to a smaller page size, but
the problem still remains — it is unlikely that any one page size will
be suited to all reading platforms. Most ebook readers, using their
native (i.e. non-pdf) formats, allow text to be resized according to user
preference. Indeed, it seems unnecessarily restrictive to force one size
of type upon the user. While physical books suffer from this affliction,
ebooks need not. Selling ebooks separately in standard and large-print
versions seems perverse when, for virtually no difference in cost to
the publisher/distributor, both can be included in one file.

Systems to reflow the content of PDF documents have been devised,
[LB95, Mar13] but as noted in Section 1.3.1, this is often extremely
difficult to accomplish satisfactorily. Even when the logical order
of page components can be identified correctly, the benefit of any
precomputed high-quality typesetting is lost if the text itself must be
re-typeset.

EPUB and Mobipocket, both based on html, provide a higher level
of abstraction for documents, whereby the logical structure of their
content is still present. They allow many rendering decisions to be
made at view-time, such as choice of typeface and font size. Line
breaks and page breaks are then calculated and inserted as necessary,
in order to wrap the text to fit the screen, and to paginate the content.

The rendering engines of ebook readers use simplistic reflow al-
gorithms — but necessarily so. One of the major bottlenecks in today’s
portable electronic devices is their battery life: battery capacity has
not improved at anywhere near the same rate as other facets of mobile
computing. Manufacturers of ebook readers may claim their products
have batteries that can last for weeks, but this is principally due to the
many typographical corners that they cut when laying out flowable
content. As noted in Section 1.3.2, were these devices to use more
complex layout algorithms, which can produce far higher quality
typeset output, any savings made by using a low-power electronic
paper screen would quickly be lost. Furthermore, the more time that
is spent formatting the output, the longer the delay between page
turns on the device, given that each subsequent page is only rendered
when a page turn is requested. This time delay could be shortened by
precomputing the layout of subsequent pages between page turns, but
this would not solve the battery-drain problem.

EPUB allows fonts to be embedded, but Mobipocket does not. Mo-
bipocket files (and by extension, Kindle files) are therefore restricted

1.5 summary 13

to be rendered in a typeface local to (and often chosen by) the reader
software. The Kindle, as an example, provides the user with a choice Amazon has begun

to address this issue
by developing a new
format, kf8, still
Mobipocket-based,
that allows more
complex styling,
in a manner
comparable to epub

of “regular”, “condensed”, or “sans-serif” for the main body text of
its documents. There are bold and italic variants of these, which are
applied according to formatting instructions within the documents
themselves. Additionally, there is a typewriter-style font which docu-
ment authors may choose to use in the same manner.

The Mobipocket specification supports a very limited subset of html

and css, which makes it virtually impossible to achieve complex lay-
outs such as those involving arbitrary indentation or font size changes.
Figures 6 and 7 overleaf demonstrate the well known “Mouse’s Tale”
from Lewis Carroll’s Alice in Wonderland, and the limitations of various
formats.

EPUB is a little more flexible, since it supports a more compre-
hensive range of xhtml and css, has support for svg, and allows
for arbitrarily complex styling. EPUB files are still entirely reliant on
the rendering engine of the display device correctly displaying their
content, as they have no concrete layout associated with them.

1.5 summary

We have so far seen that electronic representations of documents have
layouts that are either fully fixed, or fully flowable. Currently there is
no middle ground. Documents with fixed layouts may be of arbitrarily
high typographic quality, since their layout is fully computed when
they are created. Documents with flowable layouts are not provided
with any guarantee that their content will be laid out with any semb-
lance of typographic quality. In any case, to compute a high-quality
layout in real-time is difficult, especially on a low-powered portable
device such as an ebook reader.

We have seen that screen technologies for ebook readers have been
evolving to become better and better, allowing documents to be dis-
played in a quality that rivals physical, printed pages. Document
representation paradigms have not caught up. They are based on tech-
nologies that have been repurposed to be used in ways they were never
designed. Fixed layout representations were designed for display on
paper. Flowable layout representations were designed for display on
such low-resolution screens and underpowered devices that quality
typography would have been nothing but a pipe dream.

1.6 contributions of this thesis

It is clearly time for a new document representation paradigm to be
devised, in order to catch up with contemporary document display
technologies — it is time for the introduction of a more malleable docu-
ment format. There has been little research into this area in the past.

14 the rise of ebooks

Figure 6: On the left is an EPUB version of Alice in Wonderland, displayed
in Calibre (an open source desktop ebook viewer). On the right is
the same file, converted to Mobipocket, also displayed in Calibre.
Note that in addition to the indentation being lost, the (embedded)
font from the EPUB is no longer present in the Mobipocket file.

Much effort has been put into high-quality typesetting for documents
with fixed layouts. Much effort has been put into providing styling for
documents with flowable layouts — notably via css — but virtually no
consideration has been given to producing well-typeset output on the
fly, particularly with the minimum required computation.

1.6.1 Scope

In this thesis, such a novel document representation paradigm, geared
towards use on portable devices, is proposed and implemented. The
desired malleability is afforded to documents by precomputing key
parts of the typesetting process, which allows their content to be gently
coaxed to fit any page size, without needing to make any compromises
in the quality of their typography.

It is shown how this system can be extended from supporting
straightforward sequential content to allowing “floating” blocks of
varying sizes whose absolute placement is unimportant. With this
addition, the system becomes capable of rendering its documents into
layouts reminiscent of those of newspapers, magazines, and academic
journals.

Despite focusing mainly on reducing computational complexity at
view-time, attention also must be paid to the filesize of the resultant
documents, to ensure that storage space is not being wasted unne-

1.6 contributions of this thesis 15

Figure 7: On the left is the Mobipocket version of Alice in Wonderland (from
Figure 6) displayed on the Kindle. Note that the sizing instructions
appear to have been ignored. On the right is the free version of
Alice in Wonderland from the Kindle store, displayed on the Kindle.
Note that no attempt has been made to render the poem in a “tail”
shape.

cessarily. To address this issue, a computationally-light compression
scheme is developed.

1.6.2 Limits

To ensure maximum portability for a single codebase, the final imple-
mentation is designed to run within any modern JavaScript enabled
web browser, and can therefore be used on virtually any modern web-
enabled device, including desktops, mobiles, and tablets. However,
for many devices, JavaScript running within a web browser will not
be most efficient way to display text and images. Some other, more
lightweight, native implementation tailored to the specific device will
almost certainly provide a more computationally- and battery-efficient
solution. Within this thesis, no attempt will be made to implement
such a program, though all algorithms described herein are applicable
to other languages and concrete implementations.

Other aspects of the proposed system that will only partially be
explored are those described in Sections 2.5 and 2.6. These areas cover
the more qualitative aspects: respectively, how to choose the range
of galley renderings at document compile-time, and how to choose
the “best” single galley rendering to display at document view-time.

16 the rise of ebooks

These two areas contain so many variables that fine-tuning them is
almost a research project in itself. On this basis, both the initial choice
of range of renderings, and the algorithm to choose which rendering
to show at view-time, were developed by trial and error by the author,
in conjunction with a user study that provided feedback from a wider
range of participants.

Part II

I M P L E M E N TAT I O N

2
T H E M A L L E A B L E D O C U M E N T

The research in
this chapter was
previously published
in [PBB11]

In Chapter 1 we looked in considerable detail at precisely which
elements of a typeset document must be considered computation-
heavy (and thus should be avoided if possible at view-time).

In this chapter we delve briefly into typesetting’s mechanical
history, and examine a technique used in the past for newspaper
layouts that we adapt to our purposes today. We then discuss
which portions of the typesetting process can be pre-computed
and which cannot, and analyse where shortcuts can be taken, and
their effects on the final document.

We then look at the development of a first prototype implement-
ation, made up of a plugin for Adobe Acrobat, in conjunction
with a program that produces pdf files with extra embedded
metadata. These special pdf files can then be viewed and reflowed
within Adobe Acrobat when the plugin is active. This actual
implementation is not used beyond this chapter, as its reliance
on Adobe Acrobat stymies its portability, though the underlying
ideas are transferred to a new, more portable implementation, as
we will see in subsequent chapters.

The ultimate goal for a “malleable” document format is a system
that allows the majority of typographical decisions (and therefore hard
computation) to be carried out at document compile-time, but leaves
enough flexibility that at view-time the content can be rendered to fit
any screen size. The requirement for “malleability” in pre-typeset text
is not a new one, and we discuss this next.

2.1 historical interlude

The invention of movable type in China in the 11th Century, and
independently in Europe in the 15th Century, led to an enormous in-
crease in the availability of printed material. In its various incarnations,
movable type formed an extremely important part of the newspaper
industry, from its advent in the 17th century, until digitisation in the
mid-1980s.

The inherently volatile nature of newspaper layout (caused, for ex-
ample, by important stories breaking shortly before going to press)
coupled with the expense and time-consuming nature of physical type-
setting, led to the development of the familiar columnar appearance
of the newspaper that is prevalent worldwide.

19

20 the malleable document

2.1.1 The use of Galleys in Typesetting

In a traditional newspaper layout, each page is divided into columns
that are of equal width, or measure. All text that is to appear in the
newspaper is typeset to fit this measure (or integer multiples thereof,
for example in the case of headlines) allowing articles to be slotted
anywhere into the final layout of the newspaper, simply by breaking
the article text between lines where necessary to span across columns
and/or pages. This means that wherever an article is placed, it never
requires retypesetting as long as its content remains unchanged — an
advantage only available when all text is rendered to fit into columns
of the same width.

The metal trays that are used to contain typeset lines of physical
type are known as galleys. Newspapers use reasonably narrow galleys;
paperback books tend to use wider galleys, and hardback books wider
still. Narrower galleys offer the advantage that less space is wasted
if the final line in a paragraph does not span the full width: this isA straw poll of

various items of
print within arms’

reach suggests that
newspapers use

approximately 2”
galleys, paperback

books around 4”, and
hardback books

around 5”. This
thesis uses a galley

width of 42
3”

more important in newspaper layout than in most other typesetting
situations, since space is at a premium. Wider galleys aid readability,
up to a certain point, after which it becomes difficult for the eyes to
keep track between lines [Bri08, BMM+

09, Voo11].

2.2 galleys as a reflow tool

Since each individual line never changes, typesetting text into physical
galleys is directly analogous to precomputing many of the “hard”
parts of typesetting. In particular, all hyphenation, line breaking, justi-
fication, kerning, glyph substitution, and in fact all horizontal layout,
is “compiled out” as the galley is created.

When the galleys are later fitted to a physical page, there is no
requirement to re-typeset any of the horizontal layout: only vertical
layout problems remain, such as attempting to avoid widowed and
orphaned lines (where the last/first lines of a paragraph appear first/
last in a column) and choosing optimal placements of figures and other
floating bodies. What remains is essentially the problem described
by Michael F. Plass in his Ph.D. thesis Optimal Pagination Techniques
for Automatic Typesetting Systems,[Pla81] and by Donald E. Knuth in
Chapter 15 of The TEXbook, How TEX Makes Lines into Pages [Knu84].

As mentioned in the previous section, setting the text of a document
into a galley provides it with some limited flowability. Specifically,
the document can be paginated to fit pages of any size at least as
wide as the galley, and of arbitrary height. Wider pages may be able
to accommodate multiple columns, though if care is not taken when
choosing the page size, the likelihood of noticeable extra horizontal
whitespace is increased.

2.3 multiple galley renderings 21

Figure 8 shows how the extra horizontal whitespace on a page
varies with page width. The peaks occur just before the point where
an extra column can be added, and the amount of extra whitespace
that is required drops to a minimum. The blue line shows the extra
whitespace divided by the number of columns that fit on the page,
which gives a more useful metric to work with: if we physically divide
the extra whitespace and insert it between the columns to increase their
spacing (as opposed to leaving it on the right- or left-hand margins)
then the wider the page, the less detriment is caused by the extra
fraction of galley width.

This process of setting text into galleys and reflowing can easily
be simulated programatically, and as such is a promising way to
precompute many of the more complex parts of the typesetting process,
without sacrificing flowability.

2.3 multiple galley renderings

The problem of extra whitespace can be overcome in several ways.
Firstly, and most simply, the precomputed galley could be scaled up
or down, effectively simulating a change in the point size of the font.
This is an obvious side-effect and is probably undesirable, unless a
change in point size has explicitly been requested, and especially if
the size change is particularly noticeable.

A second way in which columns can be better fitted to the page
width is to typeset the source document into a range of galleys, each
of different measure. When the document is to be rendered at view-
time, the most appropriate measure (according to some metric) can
be selected for display. One very simple (and therefore fast) metric is
to select whichever galley rendering would minimise the additional
whitespace.

By overlaying the Figure 8-like graphs for each galley, we are able to
obtain a graph like Figure 9, which features all available galleys. If we
use our simple metric of minimum whitespace, we can simply select
whichever galley requires the smallest amount of extra whitespace for
a given page width. Further consideration is given to this process in
Section 2.6.

2.4 a simple implementation

The algorithm described above was prototyped using existing tools
from the University of Nottingham Document Engineering Laboratory:
specifically, the Component Object Graphic (cog) model[BBH03] for
creating and managing modularised pdf documents. This was chosen
specifically to avoid the need to write a typesetter or layout engine
from scratch; typesetting is performed by the troff suite, and the
display of the final layout by Adobe Acrobat.

22 the malleable document

 0

 0.2

 0.4

 0.6

 0.8 1

 1.2 0
 2

 4
 6

 8
 10

Additional horizontal whitespace
(as a multiple of galley width)

Page w
idth (as a m

ultiple of galley w
idth)

absolute
per colum

n

Figure
8:A

s
m

ore
colum

ns
fiton

a
page,the

extra
w

hitespace
required

per
colum

n
(show

n
in

blue
on

the
graph)

decreases.The
peaks

occur
justbefore

the
point

w
here

an
extra

colum
n

can
be

added,and
the

am
ount

of
extra

w
hitespace

that
is

required
drops

to
a

m
inim

um
.

2.4 a simple implementation 23

2.4.1 The cog Model

The cog model was developed to enable the reuse of semantic com-
ponents within pdf documents, by breaking the traditional graphical-
ly-monolithic pdf page into a series of distinct, encapsulated graphical
blocks, termed cogs. Initial work on what later became the cog model
was conducted in the mid-1990s,[SB95] and further developed through-
out the 2000s [BBH03, Bag04, BB05, MBB05, Bag06, BBO07]. The cog

model, as described in the previous citations, does not account for
any relationship between individual cogs — it was simply designed as
a method with which document components could be easily reused,
reordered, or extracted. The cogs generated are largely at the granu-
larity of a paragraph, but there is still no directive to image them onto
the page in any particular order (for example in reading order).

In order to implement a galley-based design, it was necessary to
change the granularity at which the cogs were produced, such that
each line of text is represented by a separate cog. However, it was also
important to maintain the semantic structure of documents. This is
crucial for the process of layout at view-time: not only must the logical
order of the document content be preserved, but also the relationship
between each component of the content, such as which line belongs to
which paragraph, whether a certain item is floatable, and so on.

The cog model takes advantage of the fact that the pdf specification
[Ado01] allows page content to be described by an array of streams
of imaging operators, rather than the more commonly encountered
single, monolithic stream. Unfortunately, this array is one-dimensional,
meaning that whilst it can state an explicit ordering of components,
it cannot be used, say, to group lines into paragraphs, or paragraphs
into sections.

Since the pdf specification allows essentially arbitrary insertion of According to the
specification, pdf

readers that
encounter unknown
data within a pdf

file that they do not
recognise should
simply ignore it

data structures into a document, this flexibility was used to embed the
document’s structure as a tree, in parallel to the pdf’s content array.
The term Galley Structure Tree will henceforth be used to refer to this
data structure. (At this point, it is important to make the distinction
between the term Galley Structure Tree and the unrelated structure tree
that is defined in the pdf specification and mentioned in Section 1.3.1.)

An example of a simple Galley Structure Tree is shown in Figure 10.
At the level of its leaves, this tree contains pointers to the cogs which
make up the content of the document. In the simplest case, where the
document contains only one rendering (and thus the paragraph-level
items have only one child) the cogs pointed at by the leaves can simply
be rendered in order, adding vertical space as appropriate.

24 the malleable document

 0 5

 10

 15

 20

 25 0
 20

 40
 60

 80
 100

 120
 140

Additional horizontal
whitespace per galley (em)

Page w
idth (em

)

15 em
 galley w

idth
18 em

 galley w
idth

21 em
 galley w

idth
24 em

 galley w
idth

Figure
9:O

verlaying
the

saw
tooth

grap
hs

for
several

galleys
of

d
iffering

w
id

ths
allow

s
u

s
to

easily
id

entify
the

galley
that

m
inim

ises
extra

ad
d

ed
w

hitespace:at
any

point
on

the
x-axis,the

line
w

ith
the

sm
allest

valu
e

on
the

y-axis
correspond

s
to

the
galley

that
w

illm
ost

tightly
fi

t
the

space.The
choice

of
galley

w
idths

used
here

is
essentially

arbitrary,to
dem

onstrate
the

effect
of

overlaying
these

graphs.Section
2.

5
goes

into
detailabout

how
to

choose
the

w
idths

of
the

included
renderings.

2.4 a simple implementation 25

Root

Paragraph-level items

Galley renderings

COG pointers

Figure 10: A simple Galley Structure Tree. The first level below the root
represents all paragraph-level items: headings, paragraphs, figures
etc. These items have one child for each galley rendering of the
document. These in turn have one child for each cog comprising
their content — in the case of a paragraph or heading its lines; in
the case of a figure, the figure itself and any associated caption.

2.4.2 The Source Document

Since the majority of available tools for producing cogged pdfs rely
on the typesetting package ditroff ,[Ker82] it was decided to use this
as the basis for the source document. Ditroff is particularly amenable
to many of the features required here — it is quite happy to have its
page size set to large values — one sample document used a page
length of 2000 inches (approximately 50 metres) with no complaints
from ditroff . (This is important because it avoids ditroff performing any
pagination, which would otherwise cause cog resources to be spread
across multiple pages in the resultant pdf file, which in turn would
cause difficulties accessing these resources from other pages.) An
example of a source document is shown in Listings 2 and 3 overleaf.

2.4.3 pdfdit

The output from ditroff , Ditroff Intermediate Code, is very express-
ive, and, unlike TEX’s equivalent dvi, contains enough information
that post-processors are easily able to locate the start and end of
lines and paragraphs within the document. This meant that only min-
imal changes were needed to the pdfdit package,[BBH03] which was
developed to produce cog-pdf from troff documents.

The first modification necessary was to alter the granularity of the
output cogs, to produce them at line level, rather than at paragraph
level. Secondly, some method of generating the requisite tree repres-
enting the document structure was required. Fortunately, since pdfdit
could already detect paragraphs, this code was adapted to create a
new node in the Galley Structure Tree. Each subsequent line-level cog

produced can then be added as a child of this node.

26 the malleable document

.nr HM 0.5i

.nr FM 0.5i

.ds CH

.\" Overwrites the Centre Header (suppresses page number)

.pl 2000i

.\" Make the page quite long to avoid troff doing any pagination

.nr PO 0

.\" set Page Offset (ie left margin) to zero

.ps 11

.vs 13

.nr PS 11

.nr VS 13

.\" Set point size to 11 and vertical spacing (leading) to 13

.\" Below, alter value of LL (line length) and include document

.\" content with the .so macro

.nr LL 1i
\X’cWidth:72’
.\" Line Length (ie galley width)
.so contents.inc
.nr LL 1.5i
\X’cWidth:108’
.so contents.inc
.nr LL 2i
\X’cWidth:144’
.so contents.inc
.nr LL 2.5i
\X’cWidth:180’
.so contents.inc
.nr LL 3i
\X’cWidth:216’
.so contents.inc
.nr LL 3.5i
\X’cWidth:252’
.so contents.inc
.nr LL 4i
\X’cWidth:288’
.so contents.inc �
Listing 2: A sample troff source document. The actual document text is in a

file named contents.inc , and is imported multiple times with the
.so macro. After each import, the current line length is changed
(using, for example, .nr LL 1.5i to set the Line Length register
to 1.5 inches). The \X commands are used to pass arbitrary data
through the typesetter, and into the resultant ditroff intermediate
code for later use. In this case, it is used to pass the column width
(hence cWidth) in points, so that this data can later be embedded
within the final pdf file.

2.4 a simple implementation 27

.PP
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras vel
enim vitae mauris vestibulum egestas. Suspendisse potenti.
Pellentesque leo nunc, lobortis vitae gravida vel, congue at
nulla. Praesent a placerat mauris. Praesent sed erat ac dui
tincidunt consectetur vel nec leo. In velit odio, congue non
eleifend at, accumsan eu diam. Suspendisse dignissim, quam quis
euismod laoreet, est leo euismod lectus, sed consequat leo nunc
in ante. Duis risus tellus, suscipit ut fermentum et, ornare non
lorem. Morbi nibh elit, dignissim ullamcorper posuere at, lacinia
condimentum odio. Fusce vitae metus mi. Pellentesque scelerisque
fermentum magna a dictum. Mauris ut ante mauris, ac viverra
felis. Praesent ut elit ut purus malesuada suscipit. Fusce mollis
eros ac lectus suscipit gravida. Pellentesque vel nisl nec eros
convallis luctus nec eu quam. Aliquam tincidunt ultrices blandit.
.PP
Vestibulum lorem felis, consectetur ornare vehicula ac, cursus
tincidunt nisl. Aliquam in enim nisi, quis hendrerit est. Nullam
pretium congue sapien ac tincidunt. Suspendisse suscipit felis
eget nibh luctus sit amet imperdiet ligula venenatis. Vestibulum
eu dui nulla. Vivamus interdum ullamcorper sapien eget dapibus.
Proin sed dictum arcu. Curabitur velit justo, fringilla non
sodales laoreet, dignissim nec nulla. Praesent convallis ipsum
quis dolor ultricies non sodales dui viverra. Phasellus nec nisi
at nisi bibendum aliquam vitae et arcu. Donec feugiat dolor ut
felis dapibus eget auctor enim mattis.
.PP
Curabitur eget eros neque, in pulvinar massa. Suspendisse ac
massa quis justo fringilla consectetur. Vivamus lacinia tincidunt
purus, sit amet ullamcorper neque imperdiet quis. Nulla at lectus
turpis, in semper augue. Donec eu rhoncus turpis. Maecenas lectus
lacus, porta et dictum eget, eleifend a nibh. Vestibulum pulvinar
pellentesque lectus, et tincidunt eros consequat sed. Duis risus
lorem, placerat et molestie ut, porta a mi. Fusce eu elit enim,
id consequat nibh. Cras elementum, odio a tristique rutrum, nibh
neque sodales lorem, eu feugiat ipsum leo a nunc. Quisque enim
felis, luctus dapibus iaculis ac, tempor vitae lacus. Nunc eu mi
quis lacus scelerisque tincidunt. Sed sed nulla dui. Suspendisse
porta imperdiet tortor vel ultricies. Donec sit amet ligula
velit. Nulla tempor, risus sit amet congue aliquam, est nulla
tincidunt lectus, scelerisque cursus lacus diam vel metus. Donec
eu elit dolor. Nullam id libero ac metus ornare iaculis id ut
lorem. Quisque iaculis justo nec nibh interdum vuPPutate. �
Listing 3: A three-paragraph excerpt from a sample contents.inc file, as

described in Listing 2. Each paragraph is preceded by a call of the
.PP macro, which signifies to troff (via the ms macros) the start of
a new paragraph.

28 the malleable document

%PDF-1.4
1 0 obj
<<
/Type /Catalog
/Pages 2 0 R
/CogData 7472 0 R
/ParagraphData 7473 0 R
>>
endobj
2 0 obj
<<
/Type /Pages
/Kids [7471 0 R]
/Count 1
>>
endobj �
Listing 4: An excerpt from the start of a malleable document pdf file. A

reference to the /ParagraphData object (shown in Listing 5) has
been added to the pdf’s /Catalog object. The /Pages object is also
shown — note that there is only ever one page in a malleable pdf.

The general algorithm for the processes alluded to in Sections 2.4.2
and 2.4.3 is detailed below:

1. The troff document’s line length is set to a small value (2 inches
or less) in order to produce a narrow column of text, and its
page length to a very large value, to prevent pagination.

2. Following this, the actual document content is inserted sev-
eral times, and the line length increased after each iteration,
producing one document that effectively contains multiple gal-
ley-width renderings of the same content.

3. The source document is then processed with ditroff to generate
the Ditroff Intermediate Code.

4. The Ditroff Intermediate Code is processed by pdfdit to produce
a cog representation of the document, then it amalgamates the
tree representations of each of the various galley widths into a
Galley Structure Tree, in the form indicated in Figure 10.

5. Finally the pdf file is serialised, replete with cogs and Galley
Structure Tree.

Various key excerpts from a malleable pdf file’s internal structure
are shown in Listings 4, 5, 6, and 7.

2.4.4 Acrobat Plugin

The decision to use Acrobat as an “ebook reader emulator” stemmed
once again from the existing cog-based tools (see Section 2.4.2), as
well as the extensive API and developer support available for Acrobat.

2.4 a simple implementation 29

7473 0 obj
<<
/Type /Multi-Width
/Paragraphs
[

[72 108 144 180 216 252 288] % Width of each set of paragraphs, in
points (ie 72*inch)

[% Paragraph 1
[4 0 R 6 0 R 8 0 R 10 0 R 12 0 R 14 0 R 16 0 R 18 0 R 20 0 R 22 0

R 24 0 R 26 0 R 28 0 R 30 0 R 32 0 R 34 0 R 36 0 R 38 0 R 4
0 0 R 42 0 R 44 0 R 46 0 R 48 0 R 50 0 R 52 0 R 54 0 R 56 0
R 58 0 R 60 0 R 62 0 R 64 0 R 66 0 R 68 0 R 70 0 R 72 0 R 74
0 R 76 0 R 78 0 R 80 0 R 82 0 R 84 0 R 86 0 R 88 0 R 90 0 R
92 0 R 94 0 R 96 0 R 98 0 R 100 0 R 102 0 R 104 0 R 106 0 R
108 0 R 110 0 R 112 0 R 114 0 R 116 0 R 118 0 R 120 0 R 122
0 R 124 0 R 126 0 R 128 0 R 130 0 R 132 0 R 134 0 R]

[2303 0 R 2305 0 R 2307 0 R 2309 0 R 2311 0 R 2313 0 R 2315 0 R 2
317 0 R 2319 0 R 2321 0 R 2323 0 R 2325 0 R 2327 0 R 2329 0
R 2331 0 R 2333 0 R 2335 0 R 2337 0 R 2339 0 R 2341 0 R 2343
0 R 2345 0 R 2347 0 R 2349 0 R 2351 0 R 2353 0 R 2355 0 R 2
357 0 R 2359 0 R 2361 0 R 2363 0 R 2365 0 R 2367 0 R 2369 0
R 2371 0 R 2373 0 R 2375 0 R 2377 0 R 2379 0 R 2381 0 R 2383
0 R]

[3755 0 R 3757 0 R 3759 0 R 3761 0 R 3763 0 R 3765 0 R 3767 0 R 3
769 0 R 3771 0 R 3773 0 R 3775 0 R 3777 0 R 3779 0 R 3781 0
R 3783 0 R 3785 0 R 3787 0 R 3789 0 R 3791 0 R 3793 0 R 3795
0 R 3797 0 R 3799 0 R 3801 0 R 3803 0 R 3805 0 R 3807 0 R 3
809 0 R 3811 0 R 3813 0 R]

[4821 0 R 4823 0 R 4825 0 R 4827 0 R 4829 0 R 4831 0 R 4833 0 R 4
835 0 R 4837 0 R 4839 0 R 4841 0 R 4843 0 R 4845 0 R 4847 0
R 4849 0 R 4851 0 R 4853 0 R 4855 0 R 4857 0 R 4859 0 R 4861
0 R 4863 0 R 4865 0 R 4867 0 R]

[5661 0 R 5663 0 R 5665 0 R 5667 0 R 5669 0 R 5671 0 R 5673 0 R 5
675 0 R 5677 0 R 5679 0 R 5681 0 R 5683 0 R 5685 0 R 5687 0
R 5689 0 R 5691 0 R 5693 0 R 5695 0 R 5697 0 R 5699 0 R]

[6355 0 R 6357 0 R 6359 0 R 6361 0 R 6363 0 R 6365 0 R 6367 0 R 6
369 0 R 6371 0 R 6373 0 R 6375 0 R 6377 0 R 6379 0 R 6381 0
R 6383 0 R 6385 0 R]

[6951 0 R 6953 0 R 6955 0 R 6957 0 R 6959 0 R 6961 0 R 6963 0 R 6
965 0 R 6967 0 R 6969 0 R 6971 0 R 6973 0 R 6975 0 R 6977 0
R 6979 0 R]

] % Note: "<x> <y> R" is a pointer to the object defined with "<x> <y
> obj" -- these all point to COG spacer objects

[% Paragraph 2
[136 0 R 138 0 R 140 0 R 142 0 R 144 0 R 146 0 R 148 0 R 150 0 R

152 0 R 154 0 R 156 0 R 158 0 R 160 0 R
%%% truncated %%% �
Listing 5: An excerpt from a Galley Structure Tree in a malleable document

pdf file. The tree structure described in Figure 10 can be observed
in the /Paragraphs array, with the exception that the first element
is an array containing the widths of each included galley rendering.

30 the malleable document

2303 0 obj
<<

/Type /XObject
/Subtype /Form
/Name /Cog8f692dee-5919-11e0-90bd-9eb109602c3e
/FormType 1
/BBox [0.000000 0.000000 82.933000 9.889000]
/Baseline 2.387000
/Indent 25.000000
/Length 219
/Resources <<

/Font <<
/R 3 0 R

>>
/ProcSet [/PDF /Text]

>>
>>
stream

q
0.125000 0 0 0.125000 0 0 cm
BT
/R 1 Tf
88.000000 0 0 88.000000 0.000000 19.096000 Tm (Lorem) Tj
88.000000 0 0 88.000000 448.000000 19.096000 Tm (i) Tj
88.000000 0 0 88.000000 473.000000 19.096000 Tm (psum) Tj
ET
Q

endstream
endobj

2304 0 obj
<<

/Type /CogReference
/Height 9.889000
/Length 83
/ptrTo /Cog8f692dee-5919-11e0-90bd-9eb109602c3e
/X 25.000000
/Width 82.933000
/Y -14118.497000

>>
stream

q 1 0 0 1 25.000000 -14118.497000 cm /Cog8f692dee-5919-11e0-90bd-
9eb109602c3e Do Q

endstream
endobj �
Listing 6: A cog (object 2303) and its associated spacer (object 2304) from a

malleable pdf. The cog object is never modified. To reposition the
cog on the page, the spacer object is deleted and replaced with a
new one that has the required /X and /Y values set.

2.5 included galley renderings 31

7471 0 obj
<<
/Type /Page
/Subtype /Cogified
/MediaBox [0 0 595 841]
/Contents [5 0 R 7 0 R 9 0 R 11 0 R 13 0 R 15 0 R 17 0 R 19 0 R 21 0 R 2

3 0 R 25 0 R 27 0 R 29 0 R 31 0 R 33 0 R 35 0 R 37 0 R 39 0 R 41 0
R 43 0 R 45 0 R 47 0 R 49 0 R 51 0 R 53 0 R 55 0 R 57 0 R 59 0 R 61
0 R 63 0 R 65 0 R 67 0 R 69 0 R 71 0 R 73 0 R 75 0 R 77 0 R 79 0 R
81 0 R 83 0 R 85 0 R 87 0 R 89 0 R 91 0 R 93 0 R 95 0 R 97 0 R 99
0 R 101 0 R 103 0 R 105 0 R 107 0 R 109 0 R 111 0 R 113 0 R 115 0 R
117 0 R 119 0 R 121 0 R 123 0 R 125 0 R 127 0 R

%%% truncated %%% �
Listing 7: An excerpt from a malleable pdf file showing that the /Contents

of a /Page can be an array of content streams rather than one
stream. In this case, each of the objects being pointed to are cog

spacers, as shown in Listing 6. Consequently, when a spacer object
is deleted and a new one created (to reposition a cog on the page)
the /Contents array must be modified to reflect this.

By the point the document is to be displayed in Acrobat, most of
the computationally expensive typesetting has already been carried
out, which means that the algorithm used to lay out the lines of the
selected galley can be very simple.

The plugin chooses the most appropriate galley width to lay out,
based on the current page width, and according to some measure of
aesthetics (see Sections 2.6 and 5.2) and then simply lays the document
out line by line, with appropriate vertical spacing, until no more lines
will fit in the current column. Any subsequent columns that will fit
on the same page are then laid out in the same manner.

For convenience of testing, the plugin also automatically resizes
the page to that of the window of Acrobat, and re-lays out the text
on the fly, allowing various combinations of page sizes, zoom levels,
and aspect ratios to be tried out. Some sample renderings from the
Acrobat plugin are shown in Figure 11, and an excerpt of the code
used for the layout is shown in Listing 8.

2.5 included galley renderings

In order for a document to achieve optimal fit on every device of
every conceivable size, we must produce one galley rendering of every
conceivable width. Clearly, this is infeasible, both in terms of space
and time. For reasons of practicality, we are therefore forced to choose
some finite subset of galley widths to include within a document.

In The Elements of Typographic Style,[Bri08] typographer Robert Bring-
hurst states that lines that range in length between 45 and 75 characters
(including both letters and spaces) produce satisfactory layouts for a
single-column page, and further that the 66-character line is widely

32 the malleable document

Figure 11: Three sample renderings from the Acrobat plugin, with page
widths of 42, 48, and 54 em. Note that the middle rendering is
considered to be a “better fit” than either the top or the bottom
renderings, since the space between columns has been reduced,
but that in each case, the galley rendering chosen is the one that
minimises the space between columns for that particular page
width.

2.5 included galley renderings 33

int numPars = CosArrayLength(parArray) - 1; // first element is not a paragraph
CosObj widthsArray = CosArrayGet(parArray, 0); // it is the widths array
int numWidths = CosArrayLength(widthsArray);
ASFixed *widths = (ASFixed*)calloc(numWidths, sizeof(ASFixed));
double *badness = (double*)calloc(numWidths, sizeof(double));

int min_badness_index = 0;
int numCols = 0;

// Choose the "best" rendering
for (int i = 0; i < numWidths; i++) {

widths[i] = CosFixedValue(CosArrayGet(widthsArray,i));
int nc = pageWidth / (widths[i] + mingutter);
ASFixed ex_ws = pageWidth % (widths[i] + mingutter);

badness[i] = (ex_ws / 65536.0 + 100) * sqrt((double)nc);

if (nc == 0) badness[i] = 1000 * i;

if (badness[i] <= badness[min_badness_index]) {
min_badness_index = i;
numCols = nc;

}
}

ASFixed colsep = pageWidth / numCols;
ASFixed linesep = 13<<16; // 13pt. (Ideally, infer from data within PDF)
ASFixed parsep = 0;

int curr_x = mediabox.left + (colsep - widths[min_badness_index]) / 2;
int curr_y = mediabox.top - topmargin;

CosObj newContents = CosNewArray(cosDoc, false, 100);

// Create new spacer objects with correct COGs, and insert into newContents
for (int p = 0; p < numPars; p++) {

CosObj para = CosArrayGet(CosArrayGet(parArray, p + 1), min_badness_index);
int numLines = CosArrayLength(para);
for (int l = 0; l < numLines; l++) {

CosObj baseline = CosDictGet(CosStreamDict(CosArrayGet(para, l)),
ASAtomFromString("Baseline"));

CosObj indent = CosDictGet(CosStreamDict(CosArrayGet(para, l)),
ASAtomFromString("Indent"));

CosObj name = CosDictGet(CosStreamDict(CosArrayGet(para, l)),
ASAtomFromString("Name"));

int y_offset = CosFixedValue(baseline);
int x_offset = CosFixedValue(indent);

if (curr_y < (mediabox.bottom + botmargin)) { //start new column
curr_y = mediabox.top - topmargin;
curr_x += colsep;

}

CCosDoc cDoc(cosDoc);
CSpacerCreator spacerCreator(cDoc);
CCosStream newSpacer = spacerCreator.Create(ASAtomGetString(CosNameValue(

name)), curr_x + x_offset, curr_y - y_offset);

CosArrayInsert(newContents, CosArrayLength(newContents), newSpacer);

curr_y -= linesep;
}
curr_y -= parsep;

}

PDPageAddCosContents(page, newContents); �
Listing 8: An excerpt from the C++ Acrobat plugin, showing the

implementation of the layout algorithm described in Section 2.4.4.

34 the malleable document

regarded as ideal. He also asserts that an average of 40–50 characters is
reasonable for multiple-column work. Furthermore, he states that line
lengths exceeding 75–80 characters make continuous reading difficult,
and that at the other end of the spectrum, lines shorter than 38–40

characters are unlikely to be easy to fully justify, and should therefore
in most cases be set ragged right. Below 30 characters, Bringhurst
states, even ragged right text begins to look “anorexic”.

On this basis, the choice of galleys to display should range from
a minimum of 40 characters to a maximum of 75. To account for
smaller screens or larger font sizes, it may be necessary to include
galley renderings narrower than 40 characters. These galleys would be
reserved for use only when the screen size is so narrow as to mandate
it.

In order to establish a suitable range of galleys to include within
these limits, some informal experimentation was performed on peers
and colleagues. This suggested that there should be an absolute min-
imum of three galley renderings, and that the beneficial effects become
less noticeable when there are more than seven or ten renderings in-
cluded. A far more comprehensive user study, detailed in Chapter 5,
covers this in more detail.

2.6 the best galley?

As discussed in Sections 2.1.1, 2.2, and 2.3, galleys of text lend them-
selves to being used in a columnar format, and therefore a method
of fitting columns appropriately to the available page width must be
devised.

A sensible first approach is simply to calculate how many columns
of each galley rendering will fit, by adding the galley width to a
specified minimum inter-column spacing, and dividing the page width
by the result. The remainder of this division will then specify the
amount of additional horizontal whitespace required, which can then
divided up and inserted between the columns.

A simple measure of aesthetic quality here is to apply a linear
penalty for any extra whitespace required, as we seek to keep page
margins and column gutters to a minimum.

Equations 1 and 2 below show the formulae used to calculate the
number of columns that will fit (Ncols), and the requisite extra white-
space (Sextra). Wpage is the total width of the page, Wgalley is the width
of the current galley, and WICS is the width of the minimum required
inter-column spacing.

Ncols =

⌊
Wpage

Wgalley +WICS

⌋
(1)

2.7 efficiency 35

Sextra = Wpage mod
(
Wgalley +WICS

)
(2)

As the page width increases, so must the widths of the inter-column
gutters. In accordance with the extra-whitespace penalty, each galley
rendering will produce penalties which vary in a sawtooth manner
as the width of the page is increased. With a careful choice of galley
widths, when these sawtooth penalties are overlaid, and the galley
producing the minimum penalty chosen at each page width, a flatter
and finer-toothed penalty graph emerges, as shown in Figure 12.

In addition to penalising extra whitespace, wider columns should,
in general, be favoured over narrower ones, i.e. for a given page width,
fewer, wider columns are generally considered preferable to a greater
number of narrower columns. By multiplying the existing penalty by
a smaller-than-linear function of the number of columns, the penalty
may be subtly increased for greater numbers of columns.

The formula for the penalty used in Figure 12 is

P = (C+ Sextra) ·
√
Ncols (3)

where P is the penalty, Sextra is the extra whitespace required to be in-
serted (as computed in equation 2), Ncols is the number of columns that
are required to fill the width of the page (as computed in equation 1),
and C is a positive constant.

The purpose of the constant is to prevent the penalty from ever
evaluating to zero, which would have the effect of disregarding the
weighting of the number of columns. Figure 12 uses C = 1.

This is calculated for each galley rendering, and the galley with the
minimum value of P is selected.

2.7 efficiency

It can easily be observed that the view-time complexity of the layout
algorithm described in this chapter is linear.

At view-time, it must be decided which galley rendering to display:
this is a trivial operation that requires one calculation per galley
rendering. Assuming that there will never be more than ten galley
renderings within one document (this seems reasonable given the
discussion in Sections 2.5 and 5.3) the time taken to choose the best-
fitting galley will always be dominated by the time taken to perform
the layout itself.

Once the best-fitting galley rendering has been selected, all that is
left is to traverse the Galley Structure Tree, laying out each line of text
sequentially. When the bottom of the physical page is reached, text is
then laid out in a new column adjacent to the previous one.

36 the malleable document

Figure
1

2:G
raph

show
ing

the
m

inim
um

penalty
value

of
allgalleys

in
a

reflow
able

docum
ent,over

a
range

of
page

w
idths.T

he
particular

docum
ent

used
contained

four
galleys;these

w
ere

rendered
atw

idths
of

1
5,

1
8,

2
1

and
2
4

em
,w

ith
a

m
inim

um
gutter

w
idth

of
1

em
.Each

verticalband
highlights

a
range

of
page

w
id

ths
w

ithin
w

hich
only

the
horizontalspacing

of
the

page
is

altered
.T

he
bound

aries
betw

een
verticalband

s
represent

a
sw

itch
betw

een
galley

renderings—
the

galley
used

and
num

ber
of

colum
ns

is
as

annotated
on

the
graph.

2.8 summary 37

If there are n lines of text in the document, this takes at most k ·n
operations, where k is some constant pertaining to the operations
required to lay out one line of text, and therefore the view-time com-
plexity is O(n).

A first-fit (or greedy) layout algorithm, as used by most current
ebook hardware and web browsers, also runs in O(n), but proportional
to the number of possible breakpoints rather than the number of lines
of text. Due to using first-fit, the resultant layout will almost certainly
be substandard in comparison to any high-quality pre-rendered layout,
as used by the system described in this chapter. Conversely, to compute
a higher-quality layout on the fly, (using, for example, the Knuth-
Plass line breaking algorithm,[KP81, Knu99] or something even more
complex) can take upwards of O(n2) [HL87, EG92, HLM09, PBB13].

2.8 summary

The malleable document system described in this chapter produces
document layouts that are essentially indistinguishable from those
produced by troff itself. Indeed, the layouts produced are comparable
to those produced by any professional-level typesetting system that
sets long text-based content into columns.

The drawbacks of this system are that the filesize is necessarily
increased (since data for multiple layouts must be included), and that
the galley rendering that is displayed may not fit the available page
width as snugly as an algorithm that has been run on the fly (which
would therefore be specifically tailored to the dimensions of the page).

The implementation of this algorithm within Adobe Acrobat is
somewhat clunky — and certainly impractical to deploy on a real
ebook platform — but it demonstrates that the concept of pre-ren-
dering several variants is a viable means to producing well-typeset
flowable layouts.

The one notable omission from this chapter is support for floating
blocks (such as figures) — only non-floating blocks are supported. In
the next chapter, both of these issues are addressed.

3
F L O ATA B L E B L O C K S

The research in
this chapter was
previously published
in [PBB13]

The system described in Chapter 2 supports only simple doc-
uments that are composed solely from text. Most documents
contain figures, diagrams, illustrations, or tables, and so we
must give consideration towards how these should be handled.

In this chapter, we extend the work of the previous chapter to
allow floatable graphical blocks, whose absolute position within a
document’s text may vary depending upon the layout.

Furthermore, we reimplement the system described in the previ-
ous chapter, moving away from pdf and Adobe Acrobat, towards
a new system based in html, css and JavaScript that is much
more portable and as such can be used on ebook hardware.

The implementation of the system described in the previous chapter
is deeply rooted within pdf, and requires a custom-written plugin
for Adobe Acrobat (see Section 2.4.4) to view the documents. Con-
sequently, it is difficult to test that particular implementation on any
device that is not running Microsoft Windows and does not have a
fully licensed version of Adobe Acrobat, which effectively rules out
any mobile ebook readers. Almost all ebook readers support the EPUB
format, which is principally built upon html, css, and JavaScript. With Amazon’s Kindle is

one of the few
contemporary
devices that do not
support EPUB

this in mind, it was decided that the system should be reimplemented
using these technologies, in order that it could be deployed on ebook
hardware.

3.1 document generation

Since the new system no longer relies on cog-pdf, the reliance on troff
and pdfdit is no longer present. Consequently, a sensible approach is
to produce a completely bespoke typesetting tool, allowing unneeded
features to be removed, together with the provision of some finer-
grained control over other aspects. For example, it is important for
this system that the the line-breaking and hyphenation algorithms can
easily be changed.

In the new system, the source document is described in terms of
separate logical blocks: a block is either designated as a ‘float’, or as
a ‘paragraph’. (Listing 9 contains an excerpt from a sample source
document.) Floats are currently limited to referencing images only
(with an optional size parameter). Paragraphs, on the other hand, are
described by their desired textual content. This is deliberately simple.
It is envisaged that in a real system, the source document would have

39

40 floatable blocks

3.1.3 pdfdit

Having generated the source document, it was processed with
ditroff to generate the intermediate code used to feed each
typesetter post-processor. This output is very expressive, and,
unlike TEX’s DVI, contains enough information that post-
processors are easily able to locate the start and end of lines
and paragraphs within the document. This meant that only minimal
changes were needed to be made to the pdfdit package described in
[1] to implement our design.

__FLOAT fig4.png

Figure 4: Sample renderings from the Acrobat plugin at page
widths of 42, 48, and 54 em.

__PARA

The first change necessary was to decrease the granularity of the
output COGs, producing them at the line level, rather than at the
paragraph level. Secondly, some method of generating the
requisite tree representing the document structure was required.
This was solved by simply using the point at which the original
version of pdfdit would have started a new paragraph-level COG,
and, instead, starting a new paragraph-level block entry in the
document structure tree. Each subsequent line-level COG produced
can then be added as a child of this block.

Once the entire output file has been parsed, the tree
representations of the various width galleys are amalgamated
per-paragraph, as indicated in figure 3, and finally the PDF file
is serialised, replete with COGs and content tree. �
Listing 9: An excerpt from a sample source document, itself an excerpt from

[PBB11]. The document is parsed from top to bottom. Paragraphs
are separated by blank lines. Floats are specified by lines that begin
__FLOAT and contain a reference to an image. Subsequent lines,
until the next __FLOAT or __PARA marker, are interpreted as the
float caption.

a richer language, perhaps using Markdown, xml, or a form similar
to LATEX source.

Next, the source document is passed through a program termed the
Paragraph Splitter to produce the output that becomes the malleable
document itself.

The Paragraph Splitter passes the text of each paragraph through
an implementation of a line-breaking algorithm. The Knuth-Plass
algorithm[KP81] was used by the Paragaph Splitter instance that
produced the layouts shown in Appendix B, though it is trivial to
replace this with any other line-breaking algorithm.

Each paragraph is rendered multiple times, once for each galley
width, in order to produce the document’s multiple galley renderings.
Each line of each rendering of every paragraph is converted into a list

3.2 the viewer 41

of its composite words. All of these words have an associated position
offset value (as shown in Listing 11) which is later used when drawing
the text, to ensure that each word is positioned on the line with the
correct spacing. The general algorithm used is given in Listing 10.

The content of the floats is largely left unchanged. A reference to the
image, along with its required dimensions, is simply passed through
to the output. If dimensions were not explicitly specified in the source
document, the pixel size of the image itself is used, at 96 dpi (i. e. 16

pixels becomes 12 points).
Finally, once the whole of the source document has been processed,

the rendered content is output — in the form of the Galley Structure
Tree shown in figure 10 on page 25 — encoded as a JavaScript Object
Notation (json) string. This becomes the data representing the source
document, which, in conjunction with the viewer defined in the next
section, becomes a malleable document. A sample of this data is shown
in Listing 11.

3.2 the viewer

In order to circumvent the web browser’s default text-layout algorithm,
and to ensure that the “high quality” pre-computed text layout is used,
the absolute position of every word on each line must be specified, in
a manner not dissimilar to the internals of a PDF file. The Paragraph
Splitter described in the previous section ensures that all the informa-
tion needed to lay out the text is contained within the generated json

string representing the Galley Structure Tree.
When the viewer is launched, it decides which is the most appropri-

ate galley rendering to display, based on a metric of which rendering
will be most aesthetically pleasing. Since it works well, the metric
defined in Chapter 2 is used, which balances a penalty for excessive
inter-column whitespace against a penalty for too many columns.

Although every galley is rendered in the same point size, this can
be scaled up or down at view-time based on the preference of the user,
to simulate point-size changes. All dimensions other than the page
size, such as the gaps between words, are scaled proportionally, to
allow the text to remain correctly justified.

3.2.1 Floats with a Queue

The first approach taken towards supporting floats took inspiration
from TEX, which places floats into a queue until it finds somewhere
it deems appropriate to place the first float [Pla81, Knu84]. In order
to emulate this, two queues were defined: the float queue, and the line
queue.

If both queues are empty, as they will be at the start of the layout
process, the Galley Structure Tree is traversed, and when the first

42 floatable blocks

galleyStrucTree renderDocument(documentContent, galleyWidths[]) {
parasAndFloats[] = parseDocumentSource(documentContent);
galleyStrucTree = empty tree;
foreach (item in parasAndFloats) {

if (item is a floatable object) {
if (dimensions are not specified) {

read pixel dimensions from file;
}
add floatable object to galleyStrucTree;

} else { /* therefore item is a paragraph */
create empty paragraph container;
foreach (width in galleyWidths) {

pass item text through linebreaker using width;
create empty galley container;
foreach (line returned by linebreaker) {

add words and positioning data of line to galley
container;

}
add galley container to paragraph container;

}
add paragraph container to galleyStrucTree;

}
}
return galleyStrucTree;

}

parasAndFloats[] parseDocumentSource(documentContent) {
step through documentContent line by line, returning the

documentContent broken into an array of strings with one element
per paragraph and per floatable object;

} �
Listing 10: The algorithm followed by the Paragraph Splitter. Firstly the

source of the document is parsed to break it into its initial logical
blocks: one block per paragraph and one block per float, in the
order encountered in the document source. These blocks are then
processed further depending on their type. Floats may be probed
for their pixel dimensions if no size was specified, and are then
added to the Galley Structure Tree. Paragraphs have their content
passed through a line breaking algorithm, once for each specified
width.

3.2 the viewer 43

[
{
"w": 952.5,
"h": 342.75,
"d": "<img style=\"width:100%\" src=\"fig0.png\" alt=\"Reflowable Documents

Composed from\nPre-rendered Atomic Components\nAlexander J. Pinkney\
nSteven R. Bagley\nDavid F. Brailsford\nDocument Engineering Lab.\nSchool
of Computer Science\nUniversity of Nottingham\nNottingham, NG8 1BB, UK\n
{azp|srb|dfb}@cs.nott.ac.uk\n\">"

},
[
[
[
[0, "Abstract"]

]
],
[
[
[0, "Abstract"]

]
],
[
[
[0, "Abstract"]

]
]

],
[
[
[
[0, "Mobile"], [38.346, "eBook"], [73.356, "readers"]

],
[
[0, "are"], [17.334, "now"], [40.68, "commonplace"]

],
[
[0, "in"], [13.004, "today's"], [52, "society,"], [92.664, "but"]

],
[
[0, "their"], [26.334, "document"], [78, "layout"]

],
[
[0, "algorithms"], [53.736,"remain"], [89.46,"basic,"]

],
[
[0, "largely"],[35.724, "due"],[55.452, "to"],[67.188, "constraints"]

],
/* truncated */ �

Listing 11: Excerpt from JavaScript data file representing a 3-galley document.
Note that the title "Abstract" is treated as any normal paragraph
and, as for any paragraph, is typeset once for each galley
rendering (despite there being no difference between each
rendering in this case). The first rendering of the first paragraph
of the abstract begins below. For brevity’s sake, subsequent
renderings are not shown, but since the following galleys are
typeset with a different measure, the spacing and words per line
will differ. At the top is an object representing a float, which
contains values for width, height, and data.

44 floatable blocks

paragraph-level item (see Figure 10 on page 25) is encountered, its
subcomponents (of the chosen galley rendering) are added to the
requisite queue: lines to the line queue, and floats to the float queue.

When at least one of the queues is not empty, document layout
begins. If the float queue is non-empty, and the first float in the queue
will fit below the last typeset item, it is placed on the page. If not,
items from the line queue are placed one by one, until no more will fit
in the current column. When this happens, a new column is started,
and the first float in the float queue is output. Whenever the line queue
is depleted, and no floats in the float queue will fit at the current point
on the page, all subcomponents of the next paragraph-level item from
the Galley Structure Tree are queued. This process is illustrated in
Figure 13.

Pagination is reasonably simple with this queueing system: as soon
as a page is full, the layout can be restarted at the origin of the page
using the current status of both queues and the Galley Structure
Tree. Whilst this approach does produce professional-looking layouts,
and handles floats well without the need for backtracking, it is not
particularly conducive to producing layouts with floats that span
multiple columns. The queue-based layout described above is rather
simplistic: it knows about the size of each component that it lays out,
but it does not remember the history of the positions of any of the
components that are already laid out. This makes it difficult to have
items that span more than one column, because there is no mechanism
to mark space on the page as being reserved. In order to do this,
another approach must be taken.

3.2.2 A Grid-Based Layout

One method for allowing regions of a page to be reserved is to break up
the page into a grid. Grid-based layouts are useful in many situations;
[Col91, Bri08] one example of particular note is that of modern-day
newspapers (see figure 14). Following the example set by these news-
papers, the grid used in this system is defined to have a row height of
the leading of the document’s body text, and a column width of the
measure of one text column plus the required gutter space.

The viewer uses the dimensions of the float, as specified in the Galley
Structure Tree (see Section 3.1), to determine how many columns
it should span. The float is scaled to span the integer multiple of
column widths that most closely matches its ‘natural’ size, though for
reasons that should hopefully be obvious, this number is limited to
a minimum of 1, and a maximum of the number of columns on the
page. Additionally, checks are made to ensure that the scaling will not
cause the height of the figure to exceed that of the page.

An advantage of this grid-based approach is that it no longer re-
quires the use of queues, either for lines, or for floats. The viewer

3.2 the viewer 45

Past
bottom of

page?

First
float will

fit?

Lines
in queue?

Place line;
Move down

Queue
next item

Start new
column

Place float;
Move down

Start
parTree

depleted?
Stop

Yes

Yes

Yes

No

No

No

Yes

No

Figure 13: Flowchart describing the two-queue float algorithm. Section 3.2.1
explains this process in detail.

46 floatable blocks

Figure 14: An example of a grid-based layout in a UK newspaper. Note how
all the baselines of the main body text are aligned to a common
grid, and that all items span integer multiples of columns.

3.3 summary 47

simply traverses the Galley Structure Tree, placing each item in the
first available place in the grid. In the case of floats, or other items
larger than multiples of the main leading, spaces in the grid can be
marked as reserved, to prevent other items from trampling over their
reserved space. If a float will not fit directly below the previous item
to be placed, the grid is walked over until a gap of sufficient size can
be found. Figure 15 shows the progressive stages of this algorithm,
and Figure 16 shows a real example of a document laid out with this
system.

Pagination becomes a little trickier when floats are allowed to span
multiple columns. For example, if a float whose natural size would
lead it to span n columns is encountered in the Galley Structure
Tree when there are fewer than n columns remaining to be typeset
on the page, it must be decided how best to handle the situation.
Three obvious options present themselves: alter the float to span fewer
columns; delay the placement of the float until the start of the next
page; or backtrack and check whether there is room to move the
float back one or more columns, by shunting non-floatable text lines
forwards.

The first option is clearly not ideal behaviour, given that shrinking
a float may well reduce its legibility. Additionally, if this becomes a
common problem, it is likely to be noticeable that floats spanning into
the rightmost column of the page appear shrunken.

The second option (delaying placement until the following page) is
a reasonable compromise, though it will increase float-drift (whereby
floats become separated from their callout points in the text), which
again is not ideal.

The third option (backtracking and shunting) is likely to produce
the most desirable output, although some computational overhead
will be added. One approach is simply to check whether there is
enough space immediately to the left (specifically a gap between other,
already placed, floats) into which the current float can be placed, with
the displaced lines of text being shunted forwards. This method will
not produce layouts as optimal as methods that use full backtracking
and check all possibilities, but will run in much quicker time. A
combination of all three of the above options is likely to work best in
practice.

3.3 summary

The reimplementation of the system in html is not without its pitfalls.
One strong advantage of using pdf over html is that any pdf renderer
that correctly implements the standard[Ado01] should display any
given document in an identical manner to any other renderer. Regret-
tably (and much to the chagrin of web developers everywhere) this is
very much not true of rival web browser layout engines. Though stand-

48 floatable blocks

(a) Lines of text are
added to the grid at
the leftmost then
topmost available
position

(b) A 2-column float is
encountered, and is
inserted below the
text

(c) More lines of text are
laid out

(d) A single column float
is encountered, but
will not fit in the
current space

(e) The float will also not
fit at the top of the
next column due to
the position of the
previous float

(f) A space has been
found for the second
float

(g) More text is laid out
until the bottom of
the column is reached

(h) Text begins to be laid
out at the top of the
next column, until the
reserved space of the
float is encountered

(i) Text is subsequently
laid out below the two
floats until the page is
filled

Figure 15: A step-by-step example of how multi-column spanning floats are
positioned using the grid-based layout described in Section 3.2.2

3.3 summary 49

Figure 16: An excerpt from [PBB11], typeset and rendered by the system de-
scribed in Chapter 3. Of the two floats (a screenshot from a Kindle,
and a demonstration of some micro-typographical techniques),
one spans only one column, and one spans two.

50 floatable blocks

Figure 17: Chrome and Safari’s layout engine (WebKit) can be inconsistent
when scaling fonts. The paragraph to the left is displayed “cor-
rectly”, but the paragraph to the right (scaled up by 1% by the
JavaScript) has clearly not scaled linearly. In contrast, Firefox’s
layout engine, Gecko, scales smoothly, and behaves as one might
expect when zooming in on a pdf file, which was the intended
behaviour. (Output from Gecko is not shown in this figure.)

ards do exist, published by the World Wide Web Consortium (w3c),1

which are largely adhered to by all the major layout engines, there are
certain areas that appear to be open to interpretation. One particular
problem that is encountered, when using the system described in this
chapter, is that of font scaling.

The layouts produced by this system will only retain their quality
if they are laid out precisely as specified by the typesetting process.
Viewing the malleable documents in Google Chrome and Mozilla Fire-
fox (which use WebKit and Gecko respectively) produces noticeably
different results when the user chooses to scale the page up or down.
WebKit appears to be inconsistent and non-linear when scaling fonts,
whereas Gecko does a better job, and manages to lay out the text as
intended by the typesetter. Figure 17 shows an example of WebKit’s
font scaling problem. There is no real way around this issue, other
than ensuring that whichever rendering engine is used in the reader
device provides the required smooth scaling of fonts.

This is less of a problem on mobile devices: although in general
their web browsers use the WebKit engine, their pixel-densities are
much higher (many mobile phones have higher resolution screens
than many laptops) so their displays are vastly scaled up, and fewer
bad spacing issues such as those shown in Figure 17 occur.

In general, however, as a document layout engine, the system pro-
duces professional-looking layouts that scale to fit on many different
screen sizes, and the reimplementation in xhtml, css, and JavaScript
makes the system much more portable. One stand-out problem re-
mains: that of bloated filesizes. The next chapter proposes several
methods to keep file sizes to a minimum.

1 See http://www.w3.org/standards/ for full details

http://www.w3.org/standards/

4
D E A L I N G W I T H F I L E B L O AT

In Chapter 3 we converted the implementation of our previously
developed system into one that uses html, css, and JavaScript
in place of pdf and Adobe Acrobat, which vastly increases its
portability. We also added support for floating items, which
allows us to produce document layouts that are extremly similar
to those used in newspapers, magazines, and academic journals.

In this chapter, we turn around and address the elephant in the
room: what effect does the inclusion of all these renderings have
upon file size, and what can we do about it?

4.1 rationale

In the system described so far, the emphasis has been firmly upon
reducing the computational complexity of layout operations at docu-
ment view-time, and therefore little consideration has been given to
the filesize of the output malleable documents.

The tradeoff between filesize and required computation has previ-
ously been justified on the basis that storage is cheap, light, and small, as of 2015, one US

dollar will buy
around three
gigabytes of nand

flash memory

and that batteries, although relatively inexpensive, already comprise a
significant portion of the overall mass and volume of most portable
devices that are suitable for reading ebooks. The consequence of this
is that adding more storage would have little impact upon devices’
aesthetics, but adding extra battery life (emerging nanotube battery
technology notwithstanding) would result in vast increases in devices’
overall bulk and mass.

Despite this, it seems perverse to make no attempt at all to keep
filesizes as small as possible, as long as there are no (or limited)
impacts upon the required computation at view-time.

Much like typesetting algorithms, few compression algorithms are
designed with the minimisation of computation in mind. As a con-
sequence of this, the result of compressing the data using some generic
algorithm is likely to require significantly more computation to de-
compress than that of a carefully designed bespoke algorithm. The
following section describes work towards such an algorithm.

51

52 dealing with file bloat

4.2 implementation

The most obvious saving that can be made is with the duplication
of a document’s textual content. The systems described in Chapters
2 and 3 both contain as many copies of the document text as there are
pre-rendered galleys. In practice, there is no real need for more than
one copy to be present in the file. Two approaches to this problem
were considered.

4.2.1 Pointers into the Source Text

The first approach to be considered was to include the plaintext source
of the document in its entirety, and for each rendering to contain
only pointers to the relevant sections of text, instead of the words
themselves. These pointers can either be absolute (in the form of
a character offset from the start of the text) or logical (in the form
paragraph m, word n). If the document text is to be included as a
plaintext string, absolute pointers are easier to use than logical: logical
pointers require either an auxiliary data structure to map the logical
pointers to absolute ones, or for the document text to be stored in a
format reflecting the logical structure, i. e. not in plain text.

The principal drawback of using this approach is that on occasion,
the output of the linebreaking process does not precisely match the
input: for example in the case where words are hyphenated (requiring
one word to be broken into two parts, and the addition of a hyphen)
or where certain glyphs may be substituted for others (such as with
the use of ligatures, where a glyph pair or triplet may be replaced
with a single glyph). For this reason, this approach was not considered
further.

4.2.2 Use of a Dictionary

The second approach considered was the use of a dictionary to act as
a lookup table for each word-level item produced by the linebreaking
process.

A document’s source text itself is likely to contain significant redund-
ancy. In the 1930s, American linguist George Kingsley Zipf proposed
Zipf’s law,[Zip32] which (broadly) states that given a sizeable sample
of text in any given language, the frequency of any word is inversely
proportional to its rank in the frequency table. Stated another way, the
most common word tends to appear twice as often as the second most
common word, three times as often as the third most common word,
and so on. There have been many subsequent studies on redundancy
in English that have come to related conclusions, for example Claude
Shannon estimated the redundancy of written English to be around
50% [Sha51, Hir88].

4.2 implementation 53

Bu
t

t
e

r
l

e
y

[P
BB

1
1
]

Sh
a

k
e

s
p

e
a

r
e

K
i
n

g
Ja

m
e

s
Bi

b
l

e
Br

i
t

i
s
h

N
a

t
i
o

n
a

l
C

o
r

p
u

s

1
0
3

th
e

2
3
3

th
e

2
3
1
9
7

th
e

6
2
0
9
9

th
e

5
3
7
5
3
0
4

th
e

3
5

of
1
3
4

of
1
9
5
4
0

I
3
8
5
7
6

an
d

3
0
1
0
7
1
3

of

3
3

an
d

1
1
6

to
1
8
2
6
3

an
d

3
4
4
4
5

of
2
5
4
1
2
2
7

to

3
1

in
7
5

an
d

1
5
5
9
2

to
1
3
3
8
7

to
2
4
6
3
8
1
7

an
d

2
5

to
7
5

a
1
5
5
0
7

of
1
2
7
3
5

A
nd

2
0
1
5
8
1
5

a

2
3

fo
r

5
6

is
1
2
5
1
6

a
1
2
4
5
1

th
at

1
7
5
0
2
0
5

in

2
3

a
5
2

be
1
0
8
2
5

m
y

1
2
1
6
7

in
9
4
9
6
7
7

th
at

2
1

w
as

5
0

in
9
5
6
5

in
9
7
6
0

sh
al

l
9
2
4
7
6
3

is

1
9

co
m

pa
ny

3
4

as
9
0
5
9

yo
u

9
5
0
8

he
8
3
8
9
5
5

w
as

1
7

Bu
tt

er
le

y
3
2

do
cu

m
en

t
7
8
3
1

is
8
9
3
2

un
to

8
1
6
1
9
3

fo
r

t
o

t
a

l
w

o
r

d
s

1
2
3
2

3
7
2
4

8
9
9
5
9
5

8
2
1
1
3
3

9
7
0
8
7
7
0
0

u
n

i
q

u
e

w
o

r
d

s
6
2
8

1
4
3
6

6
7
1
0
7

3
3
4
4
6

1
7
3
3
0
3
2

Ta
bl

e
1
:T

op
1

0
m

os
t

fr
eq

ue
nt

w
or

ds
in

va
ri

ou
s

do
cu

m
en

ts
.T

he
to

ta
ln

um
be

r
of

w
or

ds
an

d
to

ta
lu

ni
qu

e
w

or
ds

ar
e

al
so

sh
ow

n
fo

r
ea

ch
do

cu
m

en
t.

Th
e

d
at

a
us

ed
to

pr
od

uc
e

th
is

ta
bl

e
as

su
m

es
a

w
or

d
is

an
y

co
nt

ig
uo

us
bl

oc
k

of
(c

as
e-

se
ns

it
iv

e)
no

n-
w

hi
te

sp
ac

e
ch

ar
ac

te
rs

;t
hu

s,
“a
n
d

”
is

d
is

ti
nc

t
fr

om
“A
n
d

”,
an

d
“d
o
c
u
m
e
n
t

”
is

di
st

in
ct

fr
om

“d
o
c
u
m
e
n
t
.

”.
Th

e
ra

tio
na

le
be

hi
nd

th
is

is
th

at
th

e
da

ta
pr

od
uc

ed
is

m
or

e
cl

os
el

y
re

pr
es

en
ta

tiv
e

of
a

re
al

di
ct

io
na

ry
of

at
om

ic
“w

or
ds

”
to

be
ty

pe
se

t
in

a
m

al
le

ab
le

do
cu

m
en

t.

54 dealing with file bloat

Figure 18: Word frequencies in various documents, plotted on a log-log scale.
All of these documents, despite their varying lengths, appear to
conform well with Zipf’s Law, which manifests itself on a log-log
scale as a straight line.

Table 1 shows the ten most frequent words in four separate doc-
uments and for the British National Corpus[BNC07] as a whole.1

The four documents used are the Wikipedia page for the Butterley
Company2, the author’s 2011 paper Reflowable Documents Composed
from Pre-rendered Atomic Components[PBB11], the Complete Works of
Shakespeare, and the King James Version of the Bible. Figure 18 showsboth Shakespeare and

The Bible were
obtained as plain

text files from
Project Gutenberg

the word frequency data for the same documents plotted on a log-log
scale. At the extremities, the data does not conform perfectly to Zipf’s
Law, though despite their hugely varying lengths, each document
does display a clear Zipfian distribution.

This inherent redundancy in natural language can be exploited to
produce a simple compression scheme through use of a dictionary. If,
for example, the word “shall” appears multiple times in a document
(in the King James Version of the Bible it appears 9760 times, and in
the complete works of Shakespeare 3016 times) it is only stored once
in the dictionary. As long as on average (i. e. over every occurrence of
every word) each word’s key is lexicographically shorter than the word
itself, it can be guaranteed that some redundancy has been removed
from the data.

1 The British National Corpus describes itself as “a 100 million word collection of samples
of written and spoken language from a wide range of sources, designed to represent a wide
cross-section of British English from the later part of the 20th century, both spoken and
written” and is available freely online at http://www.natcorp.ox.ac.uk/

2 http://en.wikipedia.org/wiki/Butterley_Company

http://www.natcorp.ox.ac.uk/
http://en.wikipedia.org/wiki/Butterley_Company

4.2 implementation 55

Figure 19: Cumulative distribution of word frequencies in various
documents.

The html and JavaScript system described in Chapter 3 can be
altered to use a dictionary-based lookup table with fairly few modi-
fications. Firstly, since the data for the malleable document must be
represented in json,3 some means of including the dictionary must be
devised. json supports two types of collection. The first is the object,
which is defined formally as an unordered set of name/value pairs. This
acts much like an associative array, though it does not guarantee the
order of its elements. The second collection type supported by json

is the array, defined as an ordered collection of values. Since both must
be declared literally (in the forms {"key1":"word1","key2":"word2"}

and ["word1","word2"] respectively) rather than being populated pro-
gramatically, using a plain array for the dictionary allows us to omit
the keys from the dictionary itself, as they are implied by the order
of the elements in the array. Additionally, since this forces the use of
integers as keys, the Galley Structure Tree will not require the use of
quote marks when the dictionary keys are referenced. If the keys were
string values, each use of each key in the Galley Structure Tree would
therefore necessitate two extra characters (e. g. "key" versus 401).

It should also be noted that using integers as keys in json has
different implications to using integers as keys in some more com-
pact binary format. json is always stored in some textual encoding
(perhaps ascii, perhaps utf-8), and there is no support for numeric
representation in any base other than decimal. What might take up
one 32 bit integer (i. e. 4 bytes) in a compiled language such as C
might take as many as ten textual characters (10 bytes, assuming that

3 see http://www.json.org/ for full details

http://www.json.org/

56 dealing with file bloat

[
[[0,982],[3.678,26],[3.678,93]],
[[0,14],[2.682,1307],[2.682,558]],
[[0,7],[3.668,557],[3.668,797],[3.668,226]],
[[0,102],[4.338,9],[4.338,30]],
[[0,112],[2.4,1013],[2.4,1068]],
[[0,182],[2.4,1303],[2.4,2],[2.4,547]],
[[0,308],[15.666,15],[15.666,1114]],
[[0,177],[2.4,1173],[2.4,229],[2.4,733]],
[[0,19],[7.336,81],[7.336,26],[7.336,143]],
[[0,96],[7.116,33],[7.116,97],[7.116,16]],
[[0,141],[9.444,0],[9.444,30],[9.444,1]],
[[0,0],[8.78,89],[8.78,8],[8.78,11]],
[[0,905],[10.008,2],[10.008,0],[10.008,66]],
[[0,1125],[5.922,5],[5.922,34],[5.922,0],[5.922,1172]],
[[0,1],[2.676,1053],[2.676,471]],
[[0,3],[4.008,967],[4.008,112]],
[[0,524],[10.338,19],[10.338,0]],
[[0,126],[7.356,571],[7.356,1]],
[[0,0],[6.896,197],[6.896,16],[6.896,18]],
[[0,0],[2.4,9],[2.4,5],[2.4,691]],
[[0,1249],[14.004,1046],[14.004,317]],
[[0,5],[11.112,289],[11.112,2],[11.112,0]],
[[0,273],[9.84,24],[9.84,859]],
[[0,986],[11.34,144],[11.34,210]],
[[0,263],[2.4,774]]

], �
Listing 12: Excerpt from a JavaScript data file that uses position deltas in

the Galley Structure Tree, representing one galley rendering of
one paragraph. The first value in each pair is the position delta
(in points) and the second is the dictionary key of the associated
word.

whichever character encoding system is used represents low-ascii

characters with only one byte). Conversely, textual representation of
integers can be more compact under certain conditions: namely, for
values that use three or fewer characters, i. e. the numbers 0–999.

Referring back to Figure 18, to Figure 19, and to Zipf’s law, it can
be seen that even for extremely long documents, the number of words
that are ranked in the top 1000 exceeds 60%, and so as long as the
order of words in the dictionary is chosen carefully, using a textual
representation of integers can be more compact than a naïve binary
representation.

It was therefore decided to store the dictionary as an array, ordered
such that the most frequently occurring words have the shortest keys.

4.2.3 Further Compression Possibilities

The techniques discussed thus far have focused mostly upon exploiting
the inherent redundancy in natural language. A fairly large part of the

4.2 implementation 57

[["the",14.664],["of",9.996],["to",9.336],["and",17.328],["a",5.328],["
is",8.004],["be",11.328],["in",9.336],["as",9.996],["document",47.3
28],["that",18],["it",6.672],["page",22.656],["for",13.992],["are",
14.652],["by",12],["on",12],["will",18.672],["which",29.328],["with
",21.336],["this",17.34],["The",18.66],["can",16.656],["an",11.328
],["or",9.996],["-",3.996],["eBook",31.332],["used",21.996],["PDF",
22.008],["In",9.996],["layout",30],["have",22.656],["from",23.328
],["not",15.336],["at",8.664],["width",27.336],["This",21.336],["
has",15.996],["then",20.664],["each",21.984],["was",18.66],["
typesetting",52.668],["columns",40.668],["simply",32.676],["these",
24.66],["text",18],["into",18.672],["hyphenation",59.328],["content
",35.328],["quality",33.336],["column",36],["lines",22.668],["only"
,21.336],["line",18],["ACM",27.336],["our",15.996],["its",11.34],["
structure",41.988],["Document",49.992],["penalty",35.328],["between
",39.984],["galley",29.328],["order",25.32],["more",24.66],["COGs",
30],["out",15.336],["end",17.328],["one",17.328],["use",15.996],["
algorithm",46.668],["producing",48.66],["columns.",43.668],["
galleys",33.996],["figure",28.656],["simple",32.004],["would",30], �

Listing 13: Excerpt from the dictionary from a JavaScript data file that uses
position deltas, where the width of each word is stored alongside
the word itself. This is the dictionary from a rendering of [PBB11]:
compare its ordering to that shown in Table 1 on page 53.

data contained within the Galley Structure Tree has been overlooked:
the typesetting data itself.

All of the aforementioned encoding systems have used an absolute
value for the x position of each word on each line; that is, each occur-
rence of each word has an associated value representing the required
distance of its placement, in points, from the start of the line. An
example of this can be seen in Listing 11 on page 43.

With a view to producing data that would be more easily compress-
ible by a generic compression algorithm (that would perhaps be useful
if HTTP compression or similar is used to transfer the document
data to a device) it was decided to investigate a different approach to
storing this data.

In any typeset document, most (if not all) occurrences of the same
word will typeset identically upon the page. In particular, the amount
of horizontal space reserved for a word will be the same for each
occurrence of the word. Similarly, if a document’s text is fully justified,
the space between words on each individual line will be identical.
If the document is left-justified, then each space between each pair
of words on every line will be identical. This redundancy is present
within all the previous encodings, but cannot be picked up by a
generic compression algorithm, since it requires knowledge of the
typesetting process. By separating the word widths from the spacing,
this redundancy can be made more explicit, and therefore easier for a
generic compression algorithm to take advantage of.

On the basis of the above observations, the decision was taken that
the dictionary should be modified to store the width of each word

58 dealing with file bloat

alongside itself, and that the Galley Structure Tree should be modified
so that each word to be typeset is now accompanied by the offset
required from the end of the previous word (which will henceforth be
referred to as position deltas) rather than the absolute offset required
from the start of the line. This does of course necessitate two array
lookups in the dictionary where previously there would have been
one, but since array accesses run in constant time, this does not present
a problem. Excerpts from a Galley Structure Tree and dictionary that
use this encoding system are shown in Listings 12 and 13 respectively.

Further redundancy could be removed by exploiting the fact that
words tend to be regularly spaced on each line. Whilst the encoding
could be modified to allow only regular spacing of words, it was felt
that this might be somewhat restrictive, and would detract from the
appeal of the system as something that supports complex, arbitrary
layouts.

Even without making further compression attempts beyond the
encoding system shown in Listings 12 and 13 — the motivation for
which, we must remember, was to produce an encoding that was more
compressible, rather than more compressed — by pure chance, it turns
out that even in its full form, this is the most compact representation
yet devised!

4.2 implementation 59

4.2.4 A Toy Example

Here we see a very short document represented using each of the
aforementioned compression schemes. Each of the following examples
produces the same output document, which contains two galley ren-
derings of one paragraph: “This is a short sentence”.

These will be rendered looking something like

This is a
short sen-
tence.

and
This is a short sentence.

The following is the original encoding, which uses absolute posi-
tioning and no dictionary:

{
"galley_widths" : [72, 360],

"paragraph_tree": [
[

[
[

[0, "This"], [38.538, "is"], [65.328, "a"]
],
[

[0, "short"], [51.276, "sen-"]
],
[

[0, "tence."]
]

],
[

[
[0, "This"], [22.872, "is"], [33.9, "a"], [44.04, "short"

], [71.964, "sentence."]
]

]
]

]
} �

60 dealing with file bloat

The following encoding uses a dictionary, which reduces redund-
ancy by avoiding repetition of words. Since this document is so short,
all its dictionary keys are the same length. For this reason, its cor-
responding version using an ordered dictionary (the next level of
encoding devised) would be identical and is therefore omitted from
this example.

{
"galley_widths" : [72, 360],

"paragraph_tree": [
[

[
[

[0, 0], [38.538, 1], [65.328, 2]
],
[

[0, 3], [51.276, 4]
],
[

[0, 5]
]

],
[

[
[0, 0], [22.872, 1], [33.9, 2], [44.04, 3], [71.964, 6]

]
]

]
],
"dict": ["This", "is", "a", "short", "sen-", "tence.", "sentence."]

} �

4.2 implementation 61

This final encoding uses a dictionary that also contains the widths
of words, so each word in the paragraph tree needs to store only its
offset from the end of the preceding word.

//Ordered dictionary with position deltas
{

"galley_widths" : [72, 360],

"paragraph_tree": [
[

[
[

[0, 1], [19.134, 2], [19.134, 3]
],
[

[0, 0], [26.82, 6]
],
[

[0, 5]
]

],
[

[
[0, 1], [3.468, 2], [3.468, 3], [3.468, 0], [3.468, 4]

]
]

]
],

"dict": [
["short", 24.456],
["This", 19.404],
["is", 7.656],
["a", 6.672],
["sentence.", 46.368],
["tence.", 29.628],
["sen-", 20.724]

]
} �

62 dealing with file bloat

4.3 results

The following pages show the evolution of the encoding system, and
how the filesizes vary according to the number of included galley
renderings, for the same sample documents that are used for Figures
18 and 19:

• Figure 20 (page 63) shows the “original” encoding system de-
scribed in Chapter 3, which does not make any attempt to min-
imise filesize.

• Figure 21 (page 64) shows the encoding system described in
Section 4.2.2, using a dictionary ordered such that the earliest oc-
curring words have the shortest keys. (The dictionary is therefore
described as unordered.)

• Figure 22 (page 65) shows the encoding system described in
Section 4.2.2, using a dictionary ordered such that the most fre-
quently occurring words have the shortest keys. (The dictionary
is therefore described as ordered.)

• Figure 23 (page 66) shows the encoding system described in
Section 4.2.3, which not only uses a dictionary ordered such
that the most frequently occurring words have the shortest keys,
but also stores the width of each word in the dictionary, so that
the Galley Structure Tree contains deltas rather than absolute
positioning data.

• Figure 24 (page 67) shows a comparison of the filesizes produced
by all encodings, and Figure 25 (page 68) shows the resultant
filesizes when each rendering is further compressed with gzip.

4.3 results 63

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1 2 4 8 16 32

F
il

es
iz

e
(b

y
te

s)

Number of Galley Renderings

Butterley

PBB11

Shakespeare

KJV

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

F
il

es
iz

e
as

 a
 p

ro
p

o
rt

io
n

 o
f

so
u

rc
e

d
o

cu
m

en
t

fi
le

si
ze

Number of Galley Renderings

Butterley

PBB11

Shakespeare

KJV

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18

F
il

es
iz

e
as

 a
 p

ro
p

o
rt

io
n

 o
f

so
u

rc
e

d
o

cu
m

en
t

fi
le

si
ze

, p
er

 g
al

le
y

 r
en

d
er

in
g

Number of Galley Renderings

Butterley

PBB11

Shakespeare

KJV

Figure 20: Filesizes of various documents, using the original encoding.

64 dealing with file bloat

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1 2 4 8 16 32

F
il

es
iz

e
(b

y
te

s)

Number of Galley Renderings

Butterley

PBB11

Shakespeare

KJV

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

F
il

es
iz

e
as

 a
 p

ro
p

o
rt

io
n

 o
f

so
u

rc
e

d
o

cu
m

en
t

fi
le

si
ze

Number of Galley Renderings

Butterley

PBB11

Shakespeare

KJV

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18

F
il

es
iz

e
as

 a
 p

ro
p

o
rt

io
n

 o
f

so
u

rc
e

d
o

cu
m

en
t

fi
le

si
ze

, p
er

 g
al

le
y

 r
en

d
er

in
g

Number of Galley Renderings

Butterley

PBB11

Shakespeare

KJV

Figure 21: Filesizes of various documents, encoded using an unordered dic-
tionary.

4.3 results 65

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1 2 4 8 16 32

F
il

es
iz

e
(b

y
te

s)

Number of Galley Renderings

Butterley

PBB11

Shakespeare

KJV

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

F
il

es
iz

e
as

 a
 p

ro
p

o
rt

io
n

 o
f

so
u

rc
e

d
o

cu
m

en
t

fi
le

si
ze

Number of Galley Renderings

Butterley

PBB11

Shakespeare

KJV

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18

F
il

es
iz

e
as

 a
 p

ro
p

o
rt

io
n

 o
f

so
u

rc
e

d
o

cu
m

en
t

fi
le

si
ze

, p
er

 g
al

le
y

 r
en

d
er

in
g

Number of Galley Renderings

Butterley

PBB11

Shakespeare

KJV

Figure 22: Filesizes of various documents, encoded using an ordered diction-
ary.

66 dealing with file bloat

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1 2 4 8 16 32

F
il

es
iz

e
(b

y
te

s)

Number of Galley Renderings

Butterley

PBB11

Shakespeare

KJV

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

F
il

es
iz

e
as

 a
 p

ro
p

o
rt

io
n

 o
f

so
u

rc
e

d
o

cu
m

en
t

fi
le

si
ze

Number of Galley Renderings

Butterley

PBB11

Shakespeare

KJV

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18

F
il

es
iz

e
as

 a
 p

ro
p

o
rt

io
n

 o
f

so
u

rc
e

d
o

cu
m

en
t

fi
le

si
ze

, p
er

 g
al

le
y

 r
en

d
er

in
g

Number of Galley Renderings

Butterley

PBB11

Shakespeare

KJV

Figure 23: Filesizes of various documents, encoded using an ordered diction-
ary with word widths, and position deltas in the Galley Structure
Tree.

4.3 results 67

 0

 5
e+

07

 1
e+

08

 1
.5

e+
08

 2
e+

08

 2
.5

e+
08

 3
e+

08

 3
.5

e+
08

 0
 2

 4
 6

 8
 1

0
 1

2
 1

4
 1

6
 1

8

Filesize (bytes)

N
um

be
r

of
 G

al
le

y
R

en
de

ri
ng

s

O
ri

gi
na

l
U

no
rd

er
ed

 d
ic

ti
on

ar
y

O
rd

er
ed

 d
ic

ti
on

ar
y

O
rd

er
ed

 d
ic

ti
on

ar
y

w
it

h
de

lt
as

Fi
gu

re
2

4
:A

co
m

pa
ri

so
n

of
fil

es
iz

es
pr

od
uc

ed
by

al
le

nc
od

in
gs

,u
si

ng
th

e
K

in
g

Ja
m

es
Ve

rs
io

n
of

th
e

Bi
bl

e
as

a
sa

m
pl

e
do

cu
m

en
t.

68 dealing with file bloat

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

Filesize (bytes)

N
um

ber of G
alley R

enderings

O
riginal

U
nordered dictionary
O

rdered dictionary
O

rdered dictionary w
ith deltas

Figure
2

5:A
com

p
arison

of
fi

lesizes
of

all
encod

ings
after

gzip
p

ing,
u

sing
the

K
ing

Jam
es

V
ersion

of
the

B
ible

as
a

sam
p

le
d

ocu
m

ent.
N

ote
the

substantialim
provem

ent
in

com
pression

of
the

encoding
that

uses
position

deltas,over
the

variants
that

use
absolute

positioning.

4.4 summary 69

4.3.1 Discussion

It is fairly clear from the preceding graphs that so long as some
thought is put in, a lot of redundancy can be squeezed out of the data,
without the need to resort to aggressive compression methods that
require significant computation during decompression.

Nevertheless, Figures 24 and 25 suggest that a significant amount of
redundancy remains in each of the encoding schemes: on gzipping, the
filesizes are reduced by some 66–75%. Some of this can be attributed
to json’s syntax, but it is likely that the blame lies more with the data
itself. The dictionary itself is not particularly compact. No advantage is
taken of words that share common substrings, nor of words that have
identical widths. Algorithms that do take advantage of substrings,
for example lz77,[ZL77] tend not to have been designed with fast
decompression in mind. It is vital that the complexity of any required
decompression does not dominate that of the layout process itself.

A further manner in which the data could be compressed is to take
advantage of the fact that the values of the position deltas are often
repeated, particularly when lines have even spacing between words,
which is in the vast majority of cases. This can be seen fairly clearly in
Listing 12 on page 56. A second “dictionary” can be created in which
to store these position deltas. Informal experimentation has suggested
this would reduce filesizes by a further 10–15%, and gzipped filesizes
by a further 5%.

4.4 summary

The result of the work in this chapter is a reasonably compact version
of the document representation model developed in Chapter 3. As an
example, a 7-galley malleable version of the King James Bible in the
original representation was around 150 mb, and in the most compact
representation around 57 mb. This is still considerably larger than the
source document (around 4.3 mb as plain text) but does contain data
that allows the content to be typeset to seven different widths. The
graphs in Figure 23 show that each included rendering contributes
approximately twice the size of the original plaintext source.

Since the compression used relies entirely on array lookups, the
computational overhead for decompression is kept to a minimum.
Dealing with moderately larger file sizes seems a reasonable price to
pay.

Part III

A N A LY S I S

5
A N A LY S I S

We have now devised a fully-fledged document layout system
that works across many platforms. In this chapter we discuss
the layouts produced by the system both quantitatively and
qualitatively, and put the system to the test in a user study.

5.1 quantitative

Chapter 1 (and in particular Section 1.2) provides an overview of some
of the operations required when laying out a document. This section
examines this in further depth, and contrasts the operations required
to view fixed and flowable documents against the operations required
to view malleable documents.

5.1.1 Fixed Document Formats

Documents in a fixed format are rendered in a manner similar to the
following:

parse and tokenise the document layout instructions;
foreach (layout instruction) {

interpret and execute the instruction;
}
paint the results to the screen; �

With the notable exception of PostScript, which is Turing complete,
the majority of fixed document formats have only declarative layout
instructions, and do not permit computation. This helps ensure that
the document is always rendered identically [BBO07].

5.1.2 Flowable Document Formats

When a document in a flowable format is to be laid out, the process is
as follows:

parse the source to identify flowable blocks;
foreach (flowable block) {

apply a line-breaking algorithm;
}
paint the results to the screen; �

73

74 analysis

This process generates information similar to that contained in fixed-
format documents, which is then used to drive the painting of contents
to the screen.

The line breaking algorithm can be as simple as or complex as
desired. In most cases, the line-breaking algorithm used by flowable
documents is reasonably simple, and will take a first fit approach. This
will be of the form:

parse block to identify all possible breakpoints;
while (non-breakable items remain to be laid out) {

place one item on the current line;
if (there is not space for the next item) {

adjust spacing between items to justify;
move to a new line;

}
} �

As is noted in Section 1.2, first-fit algorithms do not generally result
in well-typeset output. The simplest of these algorithms will not at-
tempt to identify potential hyphenation points. More complex layout
algorithms that search for “optimal” layouts usually require a con-
siderable amount of backtracking and are thus more computationally
demanding.

5.1.3 Malleable Documents

The layout algorithm for a malleable document is as follows. First, the
penalties are calculated:

foreach (included galley rendering) {
compute penalty for the rendering at current page width;

}
select the rendering with the minimum penalty; �

Then, using the galley rendering that has the lowest penalty, the
content is laid out onto the screen:

foreach (paragraph-level item in selected galley rendering) {
foreach (line-level item in paragraph) {

use precomputed data to place words;
}

}
paint the results to the screen; �

Crucially, a number of complex steps have been moved from view-
time to compile-time (as they are for fixed-format documents) but
without flowability being sacrificed:

• The source is already parsed into a form optimised for layout.

5.1 quantitative 75

• The line-breaking has been entirely precomputed.

One step has been added: each included galley rendering must be
examined once before layout, in order to ascertain its “penalty” for
use. The penalty is based entirely on the width of the page, and the
measure (width) of the galley rendering.

This penalty is calculated by taking the extra required horizontal
whitespace (which can be envisaged as slack between columns) and
weighting this to further penalise large numbers of columns. This
weighting is achieved by multiplying by a smaller-than-linear function
of the number of columns, such as a square root or logarithm.

Many low-power processors do not come with floating-point hard-
ware as standard (for example the arm range of processors) which
might suggest that these are poor choices of functions since they must
be emulated using integer and bitwise operations only. This is not
particularly important, for a number of reasons. Firstly, it has been
shown previously[Lom03] that it is often possible to use mathematical
analysis to find extremely good approximations for such functions.
Secondly, the range of inputs to such a function would be limited to
integers ranging from 1 to (in an extreme case) about 20, so the values
could be pre-computed and stored in a lookup table. Thirdly, the pen-
alty (and hence the root or logarithm) is calculated precisely once for
each included galley rendering: in Sections 2.5 and 5.3 it is suggested
that between three and ten galley renderings should be included in
any one document. Given these facts, it is clear that there will be little
impact from using such a function in the penalty calculation. In any
case, as Don Knuth famously (and perhaps a little overdramatically)
stated: “premature optimization is the root of all evil” [Knu74].

Most importantly, since the line-breaking algorithm has been moved
to compile-time, there is no longer any requirement to limit its com-
plexity. In fact, should the need (or desire) arise, the text layout can
be hand-tuned, or entirely hand-typeset, with no consequences at view-
time.

5.1.4 Handling of Floats

The grid-based layout system devised in Section 3.2.2 works in a
similar manner to a first-fit line-breaking algorithm, in that it places
elements on the page in order, in the first place they will fit. In the
case of this system, each element is a floatable figure or line of text.
Elements that are the same size as a single grid cell, such as lines of
text set in the main point size, can simply be placed in the first empty
slot in the current column, or the first empty slot in the next column,
should there be no empty spaces. For the placement of elements that
are larger than a single grid cell, there is some overhead required to
step through the grid until a suitable position can be found. Once a

76 analysis

position has been found, each grid cell that it overlaps must be marked
as being reserved.

In the worst case, this algorithm does have a greater-than-linear
time complexity. In practice, so long as the number of floats does not
become excessive (which would cause the grid to be walked many
times to search for suitably large gaps) the algorithm runs in linear
time.

The placement of floats is subject to certain constraints: they must
span integer multiples of columns, and can only be placed aligned to
grid cells. This is very different to the model used for floats in html,
whereby floats may be positioned arbitrarily, and text flowed around
them. The result of this imposed “restrictiveness” on float placement
(in comparison with that of html) is that the produced layouts are
more regular. Each produced document as a whole fits together much
better, as we shall see in Section 5.2.2.

5.2 qualitative

5.2.1 Placement of Floats

Since all text layout is precomputed, the only remaining concern is
that the columns of text and floats are laid out in a pleasing manner.

Plass[Pla81] devised a system to perform optimal placement of floats
within text, whereby float placement is penalised by the square of the
distance from its intended position. He showed that this problem was
NP-hard, but he also showed that a similar (but less “optimal”) system
using linear penalties could be made computationally tractable.

Brüggemann-Klein et al.[BKKW95] suggested that Plass’s method
is only optimal if one agrees with Plass’s definition of “optimal”. They
proposed that a superior metric for float placement is to minimise
the number of page turns that a reader must perform when reading
the document from front to back. This is a desirable characteristic for
a pagination algorithm that runs on an ebook reader, because page
turns tend to be slow, particularly on devices with electronic paper
displays. Unfortunately, the algorithm used runs in quadratic time,
which limits its usefulness to this system.

In essence, the assumption that Plass’s float placement algorithm
produces the most optimal layouts may be slightly short-sighted: other
pagination schemes are available! Clearly, using computationally complex
algorithms such as those devised by Plass and Brüggemann-Klein et
al. will have a significant impact on the demand for computation at
view-time. As with many facets of the system described in this thesis,
the float placement algorithm was chosen with efficiency in mind.

The float placement algorithm that has been developed for use with
the malleable document system also aims to minimise the distance
between the actual and intended positioning of floats: if a float can

5.2 qualitative 77

be placed directly at its intended position, then it will be, otherwise
it will be placed in the next available space. (Figure 15 on page 48

demonstrates this process.)
Whilst this algorithm does not perform any lookahead or back-

tracking in order to place floats optimally, anecdotal evidence gained
from using the system has shown that in most cases floats are placed
directly in their intended position, or at the top of an adjacent column,
and are rarely moved across page boundaries. Appendix B showcases
some examples of layouts produced using this algorithm, alongside
some comparative renderings of the same document, rendered in
LATEX and html. The output of the malleable document system looks
very similar to that of LATEX, and very different from that of the web
browser.

As it stands, the algorithm does not avoid widowed or orphaned
lines, nor single lines directly before or after floats. This can be seen
clearly in the example in Appendix B.1.1 on the e-reader example
(page 116) at the top of the fourth page, where the float has spanned
both columns and taken up all the space on the page, with the excep-
tion of one line at the top of each column. It would be simple to add a
constraint that states that single lines of text at the top or bottom of
the page must never be allowed, which could be enforced by leaving
extra lines blank and pushing the text forward, though it is possible
that this may harm the balance of the page if it causes columns to
have uneven lengths.

5.2.2 Measures of Aesthetic Quality

In their 2004 paper, Harrington et al.[HNJ+04] identified a number
of aesthetic properties against which automated document layout
systems may be measured. Many of these properties are inherently
well satisfied by this system, due to its use of a grid to provide regular
layout:

alignment This property states that all content objects must have
some commonality of alignment, based on their edges and/or centre-
line. Aligning content objects to a grid enforces this.

regularity This property states that alignment positions must be
regularly spaced — an inherent property of a grid.

balance This property states that a page’s visual weighting should
ideally be around the centre of the page, and also that the page must
be well balanced between left and right. Since the malleable document
system produces pages with uniform density — there are no gaps left
until the content has all been laid out — this property is well satisfied.

78 analysis

whitespace free-flow This property states that whitespace
should always be connected to the margins, and that there should
never be islands of whitespace. The grid-based columnar layouts pro-
duced by the malleable document system ensure that any non-margin
whitespace (for example the gaps between paragraphs or before and
after floats) is always directly connected to the margin whitespace.

uniformity This property states that the visual density of the
page should be consistent, i. e. that content objects should be distrib-
uted uniformly. The combination of the above measures (alignment,
regularity, balance, and whitespace free-flow) mean that the page’s
visual density is inherently uniform.

Examining the grid layout float placement algorithm specified in
Section 3.2.2 (in conjunction with the sample layouts shown in Ap-
pendix B) it can clearly be observed that all these characteristic prop-
erties are fulfilled by the malleable document system.

5.3 user study

In order to establish the most appropriate range of galleys to include
in a malleable document, as discussed in Section 2.5, a user study
was conducted. This was also used as a chance to get some general
feedback about the malleable document system from a large pool of
real-world users.

5.3.1 Participants

The study was carried out entirely online. Participants were recruited
via email circulated around the researchers mailing list at the School
of Computer Science, and via a number of posts on the web. No
personal data was collected from any participants, though due to the
recruitment method, it is a reasonable assumption to make that the
majority of the participants had prior experience in reading electronic
documents on a screen. In all, the study had 41 participants.

5.3.2 Methodology

Obtaining data that can be interpreted quantitatively from a process
that is inherently qualitative can be a challenge. It can be difficult to
turn How good did you think this was? and Which one of these is better?
into something from which statistical significance can be taken. With
enough respondents and the use of some cunning, this can certainly
be achieved.

5.3 user study 79

inches 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
characters 22 28 35 42 49 56 63 70 77 84

A 315 kb

B 392 kb

C 538 kb

D 549 kb

E 839 kb

F 386 kb

Table 2: This table shows both the pool of galley widths that were used in
the generation of malleable document instances A–F, which render-
ings each instance contained, and the filesize of each instance. The
number of characters corresponding to the width in inches has been
taken from a lookup table in The Elements of Typographic Style[Bri08].
These values are for 12 point Times Roman.

In this user study, each participant was given a malleable docu-
ment to read, and then asked for their feedback. Each participant was
randomly assigned into one of six groups, labelled from A to F. Parti-
cipants were not made aware that they had been assigned to a group.
Each group was presented with a separate instance of a malleable
document. These all had the same textual and graphical content, but
contained different ranges of galley renderings.

As mentioned in Section 2.5, according a consensus among profes-
sional typographers is that lines of text should not normally be less
than 30 characters wide, nor wider than 75, and that 40–50 characters
is reasonable for multi-column work. The pool of galley widths from
which each malleable document instance’s included renderings were
chosen is shown in Table 2. These were chosen to extend slightly
beyond this range, whilst providing good coverage across it. The table
also shows which of these renderings was included in each group’s
document.

All documents contained the narrowest two galley renderings. This
was to ensure that it would be possible to display the document on an
extremely narrow screen and/or with a high scaling factor.

Document A was deliberately designed to provide a poor user
experience. It had only three galleys, and only one of these was within
the range specified above. Documents B and D both contained galleys
up to 56 characters in width, and documents C, E and F contained
galleys up to 84 characters in width. Documents B and C contained a
coarser range of galleys (and hence fewer) than documents D and E.
Document F contained the coarsest range of galleys. These ranges and
coarsenesses were chosen in order to assess how their changes affect
perceived user experience.

80 analysis

5.3.3 Preamble

At the start of the study, each user was presented with the following:

This study is designed to evaluate a variety of document

layouts, and the way these layouts are interacted with by

users. You will be asked to read a short document with a

particular layout, and then fill in a questionnaire about

your reading experience. Don’t worry, this is not a

comprehension exercise! You may use any device with a

modern web browser (eg desktop, laptop, tablet, mobile

phone) though it is preferable that you use a mobile phone

or tablet, since this is primarily aimed at portable

devices with small screens. For this reason, if you’re

using a laptop or desktop, you may find it helpful if your

web browser window is not maximised.

Very shortly, you’ll be given some text to read (taken from

the Wikipedia article on The Great Fire of London) that

will be customised to fit the screen you’re reading it on.

Feel free to try changing your browser window size (or

screen orientation if you’re using a phone or tablet). If

you don’t want to read the whole document, it’s fine to

stop once you feel you have looked through it enough to be

able to answer some questions on the document’s layout.

Before you begin, here are some quick instructions:

If you’re using a laptop/desktop computer with a keyboard:

* Use the up/down arrow keys to increase/decrease

the font size

* Use the right/left arrow keys to turn to the

next/previous page

If you’re using a device with a touchscreen (phone/tablet

etc):

* Swipe up/down on the screen to decrease/increase the

font size

* Swipe left/right turn to the next/previous page

5.3.4 Questions

Once each user had read the preamble, and had had enough of reading
about The Great Fire of London, they were asked for their feedback in
the following manner:

Please rate the following statements based on how closely

5.3 user study 81

you agree or disagree with them. For each, choose a number

from 0 to 10, where 0 is "I strongly disagree", 5 is

neutral, and 10 is "I strongly agree".

Q1. The document layouts produced were well-adapted to fit

my screen.

Q2. I could adequately customise the document layout to

suit my personal reading preferences.

Q3. I would preferentially choose a document layout system

like this to read long text-based web pages.

Q4. I would preferentially choose a document layout system

like this to read PDFs.

Q5. I would preferentially choose a document layout system

like this to read ebooks.

Questions 1 and 2 were designed to assess overall impressions of
the system, and questions 3–5 to ascertain whether users would feel
comfortable using a similar system to read documents in different
contexts. Participants were also given the opportunity to provide
written feedback.

5.3.5 Discussion of Results

Table 3 and Figure 26 show the aggregated response data for each
group. It is clear that, especially for questions 1 and 2, renderings D
and E are by far and away the most consistently highly rated. These
were the two documents that had the least coarse range of galley
renderings, which suggests that, as seems intuitive, the inclusion of a
greater number of galley renderings within a given range provides a
better user experience. It is also clear that the smaller maximum galley
width used in rendering D has not had a vast adverse affect on its
user rating.

As shown in Table 2, rendering D’s filesize is approximately 65% of
that of rendering E. Figure 27 shows the filesizes of each rendering
plotted against their mean scores for questions 1 and 2. This quite
neatly illustrates each rendering’s tradeoff between filesize and per-
ceived quality, and it is easy to identify that rendering D here makes
the tradeoff work best.

As to questions 3, 4, and 5 (“I would use this for {web pages, PDFs,
ebooks}”) there does not seem to be much consensus between any of the
renderings. Averaging over all responses, the results are web pages: 5.8,
pdfs: 6.7, and ebooks: 6.9. This does show a weak preference for the

82 analysis

group range step n respondents q1 q2 q3 q4 q5

(inches) (inches)

A 1.5, 2− 3 1.0 3 9 6.8 6.3 5.7 7.1 6.8

B 1.5, 2− 4 1.0 4 6 7.7 6.7 6.0 6.3 5.8

C 1.5, 2− 6 1.0 6 8 7.1 6.6 4.5 6.0 5.8

D 1.5, 2− 4 0.5 6 7 8.1 7.7 5.9 5.9 7.4

E 1.5, 2− 6 0.5 10 5 8.6 8.0 8.6 8.0 8.4

F 1.5, 2− 6 2.0 4 6 6.5 7.2 5.3 7.0 8.0

Table 3: A summary of the data obtained from the user study. For each group
A–F, the included renderings are shown (columns range, step and
n, respectively the narrowest and widest galleys, the size of steps
between them, and the total number of included galleys). The mean
value of the responses for questions 1–5 (detailed in Section 5.3.4) is
shown for each group. Figure 26 shows a plot of this data in greater
detail.

malleable document system for all three, with a stronger preference
for pdfs and ebooks.

5.3.6 User Comments

Some comments from users follow:

“Initially the unconventional method of adjusting the type
size by swiping vertically seemed out of place and a little
jarring when it is standard practice to swipe vertically to
scroll webpages etc on an iPhone - swiping to turn pages,
typically reserved for ebooks does work well in this
application of the gesture. However, without the
instructional prompt before reading the article I would
have probably taken some extra attempts to realise
swiping ebook-style would progress through the article.
The way the text flowed into columns etc while adjusting
the size was fluid and ensured any preference could easily
be achieved. Overall I liked the way it worked.”

“The thing that put me off the viewer most was the fact
that it enforced a page model on a continuous flow
document and in so doing broke the browser’s native
scroll ability. This meant that I couldn’t use the mouse
wheel to scroll, and I couldn’t jump to arbitrary points in
the document using the scrollbar. I would have much
preferred a single continuous column that my browser
could scroll through normally, and this is also true if I
were browsing on a mobile device.”

5.3 user study 83

 0 2 4 6 8 1
0

A
B

C
D

E
F

User Rating

Re
nd

er
in

g
ID

Q
1

Q
2

Q
3

Q
4

Q
5

m
ed

ia
n

m
ea

n

Fi
gu

re
2

6
:T

hi
s

p
lo

t
sh

ow
s

th
e

d
is

tr
ib

u
ti

on
s

of
re

sp
on

se
s

to
ea

ch
su

rv
ey

qu
es

ti
on

fo
r

ea
ch

gr
ou

p
of

re
sp

on
d

en
ts

.T
he

bo
xe

s
m

ar
k

th
e

in
te

rq
u

ar
ti

le
ra

ng
es

,a
nd

th
e

w
hi

sk
er

s
sh

ow
th

e
fu

ll
ra

ng
e.

Th
e

m
ea

n
an

d
m

ed
ia

n
va

lu
es

ar
e

al
so

sh
ow

n
(a

s
in

di
ca

te
d

in
th

e
ke

y)
.Q

ue
st

io
ns

1
an

d
2

ar
e

of
th

e
m

os
ti

m
po

rt
:r

es
pe

ct
iv

el
y,

th
es

e
as

se
ss

w
he

th
er

th
e

us
er

th
ou

gh
tt

he
la

yo
ut

s
fit

te
d

w
el

lt
o

th
ei

r
sc

re
en

,a
nd

w
he

th
er

th
e

us
er

th
ou

gh
tt

he
y

co
ul

d
cu

st
om

is
e

th
e

la
yo

ut
to

su
it

th
ei

r
re

ad
in

g
pr

ef
er

en
ce

s.

84 analysis

 5

 5.5 6

 6.5 7

 7.5 8

 8.5 9

 9.5

 10 300
 400

 500
 600

 700
 800

 900

Mean user rating

Filesize in K
B

A

B

C

D

E

F
A

B
C

D

E

F

Q
1

Q
2

Figure
2

7:T
his

plot
show

s
the

m
ean

of
each

group’s
responses

to
questions

1
and

2
against

the
filesize

of
that

group’s
d

ocum
ent.A

lthough
group

E
scored

highest,group
D

’s
scores

are
not

far
behind,and

its
filesize

is
som

e
6

5%
of

group
E’s.

5.4 summary 85

“In general it seems to be working fine. My main issue is
that on each change (orientation/font size/etc...) it
changes amount of content being displayed. Which means
that if I switch devices or orientation on device or even
resize my browser - it will be really hard to find place
where to continue reading.”

The only issue is with long documents if you wish to go
back to a previous page or section then you have to keep
flipping through the pages one by one. The ability to jump
to a particular section via a list of contents would be
helful.

5.4 summary

The malleable document system devised in this thesis was designed
to be used for linear documents whose content is primarily text.
Examples of such documents would be novels and scientific papers,
but not reference books or graphic-heavy documents such as comics
or children’s picture books.

The layouts produced by this system are visually very similar to
those of both newspapers and scientific papers, and can be flowed to
fit virtually any page size. For smaller screen sizes, where single- or
double-column spreads occur, the layouts closely resemble those of
physical books and magazines.

6
F I N A L T H O U G H T S

The intention at the outset of this project was to devise an efficient
method to provide flowability to documents whilst maintaining their
typographic quality — to investigate the middle ground between fixed
formats and flowable formats. This area, as far as the author is aware,
has previously been left unexplored.

Much research into automated layouts[JMPS96, Gol02, PHOF03,
BHW09] has been geared towards static page sizes, and does not
provide support for reflow at view-time. Other research into auto-
mated layouts that is designed with view-time reflow in mind[JLS+

03,
SDJ+08] does so at the expense of typesetting: generally, the text must
be considered completely flowable in order to fit into the layouts
devised by the systems.

When text is to be typeset, the choice must be made between computa-
tionally cheap and typographically good. The fact that both computational
cheapness and typographical quality are desirable characteristics for
ebook readers suggests that ebook readers are not the correct place to
compute text layout.

6.1 contribution

The system devised in this thesis, whereby line breaking is precom-
puted but the final binding of layout is delayed until view-time, re-
moves the need to make any compromises on typographical quality.
Precomputing multiple variants of line breaking, at differing widths,
allows the text to fit to a multitude of screen sizes, by displaying one
or more columns of whichever galley width best fits the page.

Consideration has been given to compression of the resultant docu-
ments: ‘pre-compression’ provided by squeezing as much redundancy
out of the data as possible whilst still in its uncompressed form that
allows constant-time data access, and for ‘post-compression’, by mak-
ing the uncompressed form as amenable as possible to packing by
some generic compression algorithm, which can be used during file
transfers or long-term storage.

Since the line breaking is precomputed, the display device does
not need any knowledge of the algorithm: the only guarantee that is
needed is that the device must be able to correctly interpret the render-
ing instructions. Because of this, each individual malleable document
can use any text rendering algorithm — the system was deliberately
designed to be modular, so that the text rendering algorithm can easily
be changed.

87

88 final thoughts

The Malleable Document system shows real promise. It can repres-
ent documents whose text has been typeset by any manner of exotic
line breaker. It can produce layouts that are essentially indistinguish-
able from those produced by professional typesetting systems. It can
adapt its output to a vast range of screen sizes, with minimal com-
putation. This is the beginning of an exciting new era for electronic
document representation.

6.2 system extensions

The implementation of the Malleable Document presented in this
thesis should be considered only a prototype. There are numerous
areas in which it could be modified: some are reasonably straightfor-
ward changes, while others are fairly major overhauls.

6.2.1 Improved Support for Floats

The system described in chapter 3 provides only very basic support
for floats. A particular limitation is that unlike text, each float has
only one rendering, which must be scaled up or down as required,
to fit across multiples of columns. Whilst for image-based figures
or illustrations, this is probably already the desired behaviour, other
types of floats, such as tables or code listings, would almost certainly
benefit from the inclusion of multiple width renderings, with the
choice of which rendering to display to be made at view-time. As with
the text layout, these renderings could be hand-tuned, or produced by
some automated process.

6.2.2 Improved Vertical Layout

As mentioned in Chapter 5, a naïve algorithm is used for vertical
layout, which makes no attempt to avoid orphaned or widowed lines.
Kernighan and Van Wyk[KVW89] described the solution to a similar
problem, designed at improving the output of the troff typesetting
package, providing better methods of pagination, figure placement,
footnote handling, and so on. Care must be taken, of course, that any
extensions do not impact upon the computational demands of the
system as a whole, but certainly, improvements can be made.

6.2.3 Postponing Layout

Precisely when the precomputed aspects of layout should be precom-
puted is an interesting question. There are three key points where
this could be performed: at the time when the document is created;
directly before the document is transferred to an ebook reader device;

6.2 system extensions 89

and directly after the document has been transferred to an ebook
reader device. Each offers its own advantages.

If the precomputation is performed at creation time, the publisher
and author have full control over all renderings, which is certainly
beneficial from the point of view of quality control.

The second juncture at which the the precomputation can be per-
formed is directly before the document is transferred to the reader
device. This would allow knowledge of the reader device to be taken
into account, allowing the output to be more closely tailored to the
device. It is envisaged that such a system would utilise an intermedi-
ary program to transparently perform the text layout as the document
is transferred to the device, using a similar model to that of Cal-
ibre or iTunes, or the model Amazon uses, whereby users can email
documents to their Kindle, which then arrive in Kindle format.

The last point at which the precomputation can be performed is on
the device itself. At first glance this approach might seem counterpro-
ductive, and in conflict with the underlying philosophy of this thesis.
Instead of precomputing several variants all at once, the system can be
redesigned so that it only computes text layouts when necessary, but,
crucially, caches the layout to disk for later reuse. Though the layout
would be performed by the ebook reader device itself, it would only
ever be calculated once for each rendering of the document, and not
each time the document is displayed.

6.2.4 Moving Nearer to the Metal

The two implementations of the malleable document system that were
developed in this thesis in Chapters 2 and 3 were built upon pdf and
html respectively. Both of these require the layout instructions to
be parsed and interpreted, and rely upon third-party systems (e. g.
Acrobat and WebKit/Gecko) to display their content.

It has been shown previously[Bag10] that it is possible to compile
pdf to machine code, which can then be run natively on the processor
of the display device. Using a method such as this would dispense
with all the unneeded overhead associated with using an off-the-shelf
system for display, and in general would be likely to run faster. Clearly
this would require the output to be tailored to each device (or class of
comparable devices), but as is discussed in the previous section, this
is perfectly feasible.

90 final thoughts

6.3 open research questions

More generally, the development of the malleable document system
has highlighted a number of questions that suggest areas for future
research:

• Pre-rendering text layout necessitates that the typeface is chosen
ahead of time. Should each document be rendered in a cer-
tain set of typefaces, for example for accessibility purposes? Is
there a particular subset of typefaces or classes of typeface that
provides maximum flexibility, both in terms of user preference
and accessibility?

• In a similar vein, what should be the sampling frequency within
the range of included galley renderings? Should this be linear,
or would some other sampling frequency that attempts to avoid
simple multiples result in a smoother “sawtooth” penalty graph
(such as that in Figure 8 on page 22)?

• Is there any benefit in attempting to coordinate breakpoints
between different galley renderings, to allow switching between
different width galley renderings, for example to support floats
that span half-columns? Would this cause the typography to suf-
fer, or would it provide more benefits by giving more flexibility
to its layouts?

• Should some limited computation be allowed at view-time, for
example to adjust letter-spacing or glyph widths in order to
provide a better fit for a galley? How much should be allowed
before the benefits are outweighed by the computation itself?

• Many documents — particularly academic work — contain cross-
references and footnotes. What is the best way to handle these?

• Would use of Just In Time compilation on display devices (i. e.
computing but then caching layouts) positively or negatively
affect user experience?

6.4 concluding remarks

Linear, primarily text-based documents, such as novels, newspaper
articles, and scientific papers, make up a large proportion of published,
typeset documents. These documents typically have their text rendered
to fit rectangular apertures, and so long as this text is well-typeset, its
precise final layout is not of enormous importance.

It is the documents that fall into this category, in their uncountable
millions, that benefit most from the system described in this thesis.

6.4 concluding remarks 91

Ebook readers are beginning to reach critical mass. We must ensure
that we do not stumble blindly into a future where substandard
typography becomes an accepted norm.

R E F E R E N C E S

[Ado98] Adobe Systems Incorporated. Adobe Font Metrics File
Format Specification. 1998.

[Ado01] Adobe Systems Incorporated. Portable Document Format
Reference Manual. Addison-Wesley, third edition, 2001.

[Bag04] Steven Bagley. A Component-Based Model for Creating and
Manipulating Digital Documents. PhD thesis, University of
Nottingham, 2004.

[Bag06] Steven R. Bagley. COG extractor. In Proceedings of the 2006
ACM Symposium on Document Engineering, page 31. ACM
Press, 2006.

[Bag10] Steven R. Bagley. Lessons from the dragon: compiling PDF
to machine code. In Proceedings of the 10th ACM symposium
on Document engineering, DocEng ’10, pages 65–68, New
York, NY, USA, 2010. ACM.

[BB05] Steven R. Bagley and David F. Brailsford. Demo abstract:
The COG scrapbook. In Proceedings of the 2005 ACM Sym-
posium on Document Engineering, pages 233–234. ACM
Press, 2005.

[BBH03] Steven R. Bagley, David F. Brailsford, and Matthew R. B.
Hardy. Creating reusable well-structured PDF as a se-
quence of component object graphic (COG) elements. In
Proceedings of the 2003 ACM Symposium on Document En-
gineering, pages 58–67. ACM Press, 2003.

[BBO07] Steven R. Bagley, David F. Brailsford, and James A. Ollis.
Extracting reusable document components for variable
data printing. In Proceedings of the 2007 ACM Symposium
on Document Engineering, pages 44–52, New York, NY,
USA, 2007. ACM.

[BHW09] Helen Y. Balinsky, Jonathan R. Howes, and Anthony J.
Wiley. Aesthetically-driven layout engine. In Proceedings of
the 2009 ACM Symposium on Document Engineering, pages
119–122, 2009.

[BKKW95] Anne Brüggemann-Klein, Rolf Klein, and Stefan Wohlfeil.
Pagination reconsidered, 1995.

[BMM+
09] Cameron Braganza, Kim Marriott, Peter Moulder, Michael

Wybrow, and Tim Dwyer. Scrolling behaviour with single-

93

94 references

and multi-column layout. In Proceedings of the 18th inter-
national conference on World wide web, WWW ’09, pages
831–840, New York, NY, USA, 2009. ACM.

[BNC07] BNC Consortium. The British National Corpus, version 3
(BNC XML Edition). Oxford University Computing Ser-
vices on behalf of the BNC Consortium, 2007.

[Bri08] Robert Bringhurst. The Elements of Typographic Style (v 3.2).
Hartley & Marks, 2008.

[Col91] David Collier. Collier’s Rules for Desktop Design and Typo-
graphy. Addison-Wesley, 1991.

[EG92] D Eppstein and Z Galil. Sparse dynamic programming II:
Convex and concave cost functions. J. ACM, 39(3):546–567,
1992.

[Gol02] Eldan Goldenberg. Automatic layout of variable-content
print data. Master’s thesis, University of Sussex, 2002.

[hex12] hexus.net. Kindle book sales overtake print at
Amazon. http://hexus.net/mobile/news/e-readers/

43365-kindle-book-sales-overtake-print-amazon/,
August 2012.

[Hil99] Bill Hill. The magic of reading. Technical report, Microsoft,
1999.

[Hir88] William Hirst, editor. The Making of Cognitive Science:
Essays in Honor of George Armitage Miller. Cambridge Uni-
versity Press, 1988.

[HL87] D S Hirschberg and L L Larmore. The least weight sub-
sequence problem. SIAM J. Comput., 16(4):628–638, 1987.

[HLM09] Nathan Hurst, Wilmot Li, and Kim Marriott. Review of
automatic document formatting. In Proceedings of the 2009
ACM Symposium on Document Engineering, 2009.

[HNJ+04] Steven J Harrington, J. Fernando Naveda, Rhys Price Jones,
Paul Roetling, and Nishant Thakkar. Aesthetic measures
for automated document layout. In Proceedings of the 2004
ACM Symposium on Document Engineering, pages 109–111.
ACM Press, 2004.

[IDP11] IDPF. EPUB 3.0 Specification. International Digital Publish-
ing Forum, 2011.

[JLS+
03] Charles Jacobs, Wilmot Li, Evan Schrier, David Bargeron,

and David Salesin. Adaptive grid-based document layout.
ACM Trans. Graph., 22(3):838–847, July 2003.

http://hexus.net/mobile/news/e-readers/43365-kindle-book-sales-overtake-print-amazon/
http://hexus.net/mobile/news/e-readers/43365-kindle-book-sales-overtake-print-amazon/

references 95

[JMPS96] Ramesh Johari, Joe Marks, Ali Partovi, and Stuart Shieber.
Automatic yellow-pages pagination and layout. Technical
report, Mitsubish Electric Research Laboratories, 1996.

[Ker82] Brian W. Kernighan. Computing science technical report
no. 97, A Typesetter Independent TROFF. Technical report,
AT&T Bell Laboratories, Murray Hill, New Jersey 07974,
1982.

[Knu74] Donald E. Knuth. Structured programming with go to
statements. Computing Surveys, 6(4), December 1974.

[Knu84] Donald E. Knuth. The TEXbook. Addison Wesley, 1984.

[Knu99] Donald E. Knuth. Digital Typography. CSLI Publications,
1999.

[KP81] D. E. Knuth and M. F. Plass. Breaking paragraphs into
lines. Software — Practice and Experience, 11:1119–1184,
1981.

[KVW89] Brian W. Kernighan and Christopher J. Van Wyk. Page
makeup by postprocessing text formatter output. Tech-
nical report, AT&T Bell Laboratories, 1989.

[LB95] William S. Lovegrove and David F. Brailsford. Docu-
ment analysis of PDF files: methods, results and implic-
ations. Electronic Publishing — Origination, Dissemination
and Design, 8(2 & 3):207–220, 1995.

[LB11] Gordon E. Legge and Charles A. Bigelow. Does print
size matter for reading? A review of findings from vision
science and typography. Journal of Vision, 11(5):8:1–22,
2011.

[Lia83] Franklin Mark Liang. Word Hy-phen-a-tion by Com-put-er.
PhD thesis, Stanford University, 1983.

[Lom03] Chris Lomont. Fast inverse square root. Technical report,
2003.

[Mar13] Simone Marinai. Reflowing and annotating scientific pa-
pers on ebook readers. In Proceedings of the 13th ACM
Symposium on Document Engineering, DocEng ’13, New
York, NY, USA, 2013. ACM.

[MBB05] Alexander J. Macdonald, David F. Brailsford, and Steven R.
Bagley. Encapsulating and manipulating component ob-
ject graphics (COGs) using SVG. In Proceedings of the 2005
ACM Symposium on Document Engineering, pages 61–63.
ACM Press, 2005.

96 references

[MR91] F Mittelbach and C Rowley. The pursuit of quality — how
can automated typesetting achieve the highest standards
of craft typography? In EP92 (Proceedings of Electronic
Publishing), pages 261–273. Cambridge University Press,
1991.

[PBB11] Alexander J. Pinkney, Steven R. Bagley, and David F. Brails-
ford. Reflowable documents composed from pre-rendered
atomic components. In Proceedings of the 11th ACM Sym-
posium on Document Engineering, DocEng ’11, pages 163–
166, New York, NY, USA, 2011. ACM.

[PBB13] Alexander J. Pinkney, Steven R. Bagley, and David F. Brails-
ford. No need to justify your choice: Pre-compiling line
breaks to improve eBook readability. In Proceedings of the
13th ACM Symposium on Document Engineering, DocEng
’13, New York, NY, USA, 2013. ACM.

[PHOF03] Lisa Purvis, Steven Harrington, Barry O’Sullivan, and
Eugene C. Freuder. Creating personalized documents: an
optimization approach. In Proceedings of the 2003 ACM
Symposium on Document Engineering, pages 68–77. ACM
Press, 2003.

[Pla81] Michael Frederick Plass. Optimal Pagination Techniques
for Automatic Typesetting Systems. PhD thesis, Stanford
University, 1981.

[SB95] Philip N. Smith and David F. Brailsford. Towards struc-
tured, block-based PDF. Electronic Publishing — Origination,
Dissemination and Design, 8(2 & 3):153–165, June/Septem-
ber 1995.

[SDJ+08] Evan Schrier, Mira Dontcheva, Charles Jacobs, Geraldine
Wade, and David Salesin. Adaptive layout for dynam-
ically aggregated documents. In Proceedings of the 13th
international conference on Intelligent user interfaces, IUI ’08,
pages 99–108, New York, NY, USA, 2008. ACM.

[Sha51] Claude Shannon. The redundancy of english. In Cyber-
netics: Circular Causal and Feedback Mechanisms in Biological
and Social Systems. Josiah Macy, Jr. Foundation, 1951.

[Voo11] Garret Voorhees. Congeniality of reading on digital
devices. Master’s thesis, Rochester Institute Of Techno-
logy, 2011.

[War91] John Warnock. The Camelot project. Technical report,
Adobe, 1991.

references 97

[Zip32] George Kingsley Zipf. Selected Studies of the Principle of
Relative Frequency in Language. Harvard university press,
1932.

[ZL77] Jacob Ziv and Abraham Lempel. A universal algorithm
for sequential data compression. IEEE Transactions on
Information Theory, 23(3):337–343, 1977.

G L O S S A RY

cog Component Object Graphic. 21, 23, 25, 28, 30, 31,
39

html Hypertext Markup Language. 9, 10, 12, 13, 39, 47,
51, 55, 76, 77, 89, 122

json JavaScript Object Notation. 41, 55, 69

pdf Portable Document Format. 9–12, 19, 21, 23, 25, 26,
28–31, 39, 47, 50, 51, 81, 82, 89

w3c World Wide Web Consortium. 50

galley A metal tray into which physical type is set. 15, 20,
21, 23, 25, 28, 29, 31, 34, 35, 37, 40, 41, 44, 52, 59, 62,
69, 74, 75, 78, 79, 81, 87, 90, 103, 113

glyph The smallest typesettable item. Generally a glyph
is a single character, but compounds of characters
(such as ligatures and dipthongs) are also logical
glyphs, though they may represent two separate
characters. 8, 9, 20, 52, 90

justification The process of adjusting spacing between (or
within) words on a line to effect some change in
the alignment of the text with respect to its left and
right margins. 20

kerning Small adjustments to the spacing between specific
pairs of letters in order to achieve spacing that
appears more even to the eye (compare AVATAR
with AVATAR). 6, 9, 20, 100

leading The vertical distance from the baseline of one line
of type to the next. In physical typesetting, this was
altered by using thin strips of lead, hence the name.
44, 47

measure The standard length of a line of text. 6, 20, 21, 43,
44, 75

99

100 glossary

point A common unit of measure in typesetting, usually
defined as 1

72 of an inch. 10, 21, 41, 57, 75

ragged right Text that is aligned to the left margin but not the
right is said to be set flush left, ragged right. Com-
monly also known as left justified text. Similarly,
right justified text may also be referred to as being
set ragged left, flush right. 5, 34

tracking Also known as letter-spacing. Similar to kerning,
though tracking is applied between every pair of
characters identically. Tracking is used to alter the
perceived density of a body of text. 9

Part IV

A P P E N D I C E S

A
A S A M P L E M A L L E A B L E D O C U M E N T

The following pages contain the full layout data of a reasonably short
(∼1200 word) document: the Wikipedia entry for The Butterley Com-
pany. (See http://en.wikipedia.org/wiki/Butterley_Company).

It contains three galley renderings, and has ordered dictionaries
both for words, and for position deltas.

103

http://en.wikipedia.org/wiki/Butterley_Company

{"galley_widths":[144.0,216.0,288.0],

"paragraph_tree": [[[[[0,9],[1,80]]],[[[0,9],[1,80]]],[[[0,9],[1,80]]]],[[[[0,51
8],[22,151],[22,0],[22,497]],[[0,123]]],[[[0,518],[1,151],[1,0],[1,497],[1,123]]
],[[[0,518],[1,151],[1,0],[1,497],[1,123]]]],[[[[0,9],[561,149],[561,7]],[[0,56]
,[547,132],[547,8]],[[0,487],[454,3],[454,291],[454,39]],[[0,344],[446,47],[446,
0],[446,9]],[[0,70],[551,314],[551,55]],[[0,72],[528,88],[528,2]],[[0,80],[361,3
],[361,439],[361,114]],[[0,319],[1,467],[1,94]]],[[[0,9],[344,149],[344,7],[344,
56]],[[0,132],[274,8],[274,487],[274,3],[274,291]],[[0,39],[183,344],[183,47],[1
83,0],[183,9]],[[0,70],[332,314],[332,55],[332,72],[332,88]],[[0,2],[9,80],[9,3]
,[9,439],[9,114],[9,319],[9,467]],[[0,94]]],[[[0,9],[444,149],[601,7],[444,56],[
601,132],[444,8]],[[0,487],[321,3],[512,291],[321,39],[512,344],[321,47],[512,0]
,[321,9]],[[0,70],[109,314],[109,55],[109,72],[109,88],[109,2],[109,80]],[[0,3],
[1,439],[1,114],[1,319],[1,467],[1,94]]]],{w:500.0,h:375.0,d:"<img style=\"width
:100%; height:100%\" src=\"Butterley_Company_Sign_2006.jpg\" alt=\"The Butterley
 Engineering sign in 2006\n\">"},[[[[0,288]]],[[[0,288]]],[[[0,288]]]],[[[[0,529
],[375,530],[375,1],[375,39]],[[0,18],[335,104],[335,98],[335,6],[335,22]],[[0,2
65],[222,1],[222,16],[222,579],[222,29]],[[0,18],[293,104],[293,199],[293,11],[2
93,433]],[[0,472],[383,0],[383,354],[383,421]],[[0,473],[603,0],[603,362]],[[0,2
13],[629,393],[629,241]],[[0,438],[297,7],[297,0],[297,223],[297,1]],[[0,0],[287
,591],[287,308],[287,377],[287,51]],[[0,13],[448,16],[448,331],[448,3]],[[0,179]
]],[[[0,529],[189,530],[189,1],[655,39],[189,18],[189,104]],[[0,98],[167,6],[627
,22],[167,265],[167,1],[167,16],[627,579],[167,29]],[[0,18],[137,104],[137,199],
[137,11],[137,433],[137,472],[137,0]],[[0,354],[201,421],[201,473],[201,0],[201,
362]],[[0,213],[473,393],[616,241],[473,438],[616,7],[473,0]],[[0,223],[75,1],[7
5,0],[75,591],[75,308],[75,377],[75,51]],[[0,13],[1,16],[1,331],[1,3],[1,179]]],
[[[0,529],[326,530],[283,1],[326,39],[283,18],[326,104],[283,98],[326,6],[283,22
]],[[0,265],[16,1],[16,16],[16,579],[16,29],[16,18],[16,104],[16,199],[16,11],[1
6,433]],[[0,472],[160,0],[621,354],[160,421],[160,473],[160,0],[621,362],[160,21
3]],[[0,393],[74,241],[428,438],[74,7],[74,0],[428,223],[74,1],[74,0],[428,591],
[74,308]],[[0,377],[1,51],[1,13],[1,16],[1,331],[1,3],[1,179]]]],[[[[0,12],[439,
431],[439,87],[439,306]],[[0,14],[352,0],[352,61],[352,1]],[[0,72],[644,84]],[[0
,57],[532,0],[532,23]],[[0,24],[421,4],[421,316],[421,317]],[[0,2],[395,23],[395
,14],[395,0]],[[0,318],[517,368],[517,12],[517,303]],[[0,9],[386,392],[386,6],[3
86,0]],[[0,23],[426,350],[426,48],[426,2]],[[0,16],[592,13],[592,144]],[[0,121],
[549,9],[549,540]],[[0,548],[317,391],[317,2],[317,3],[317,103]],[[0,84],[490,14
],[490,0],[490,201]],[[0,61],[564,1],[564,294]],[[0,169],[329,346],[329,26],[329
,2],[329,22]],[[0,79]]],[[[0,12],[187,431],[187,87],[640,306],[187,14],[187,0]],
[[0,61],[341,1],[341,72],[341,84]],[[0,57],[175,0],[175,23],[175,24],[175,4]],[[
0,316],[207,317],[207,2],[645,23],[207,14],[207,0]],[[0,318],[198,368],[198,12],
[198,303],[198,9]],[[0,392],[84,6],[84,0],[84,23],[84,350],[84,48],[84,2]],[[0,1
6],[370,13],[370,144],[370,121]],[[0,9],[105,540],[105,548],[105,391],[105,2],[1
05,3],[105,103]],[[0,84],[269,14],[269,0],[680,201],[269,61],[269,1]],[[0,294],[
1,169],[1,346],[1,26],[1,2],[1,22],[1,79]]],[[[0,12],[38,431],[38,87],[38,306],[
38,14],[38,0],[38,61],[38,1]],[[0,72],[4,84],[4,57],[4,0],[4,23],[4,24],[4,4]],[
[0,316],[44,317],[44,2],[44,23],[44,14],[44,0],[44,318],[44,368]],[[0,12],[258,3
03],[259,9],[259,392],[258,6],[259,0],[258,23],[258,350],[259,48]],[[0,2],[79,16
],[79,13],[79,144],[656,121],[79,9],[79,540],[79,548]],[[0,391],[179,2],[437,3],
[179,103],[437,84],[179,14],[437,0],[179,201]],[[0,61],[1,1],[1,294],[1,169],[1,
346],[1,26],[1,2],[1,22],[1,79]]]],[[[[0,10],[450,63],[450,552],[450,32]],[[0,13
],[204,336],[204,15],[204,381],[204,2]],[[0,455],[397,0],[397,257],[397,1]],[[0,
309],[514,302],[514,5],[514,330]],[[0,170],[631,338],[631,51]],[[0,7],[573,208],
[573,4]],[[0,137],[602,237],[602,2]],[[0,51],[369,45],[369,0],[369,9]],[[0,102],
[1,79]]],[[[0,10],[135,63],[135,552],[135,32],[135,13],[135,336],[135,15]],[[0,3
81],[140,2],[140,455],[140,0],[140,257],[140,1]],[[0,309],[245,302],[245,5],[245
,330],[245,170]],[[0,338],[458,51],[605,7],[458,208],[605,4],[458,137]],[[0,237]
,[253,2],[253,51],[681,45],[253,0],[253,9]],[[0,102],[1,79]]],[[[0,10],[212,63],
[211,552],[211,32],[212,13],[211,336],[212,15],[211,381],[212,2]],[[0,455],[170,
0],[614,257],[170,1],[170,309],[170,302],[614,5],[170,330]],[[0,170],[4,338],[4,
51],[4,7],[4,208],[4,4],[4,137]],[[0,237],[1,2],[1,51],[1,45],[1,0],[1,9],[1,102
],[1,79]]]],[[[[0,12],[366,561],[366,0],[366,360]],[[0,119],[576,495],[576,410]]
,[[0,52],[310,2],[310,15],[670,503],[310,0],[310,25]],[[0,43],[524,7],[524,64]],
[[0,405],[302,5],[302,246],[302,105],[302,1]],[[0,569],[206,16],[206,5],[646,97]
,[206,38],[206,0]],[[0,342],[315,376],[315,1],[315,0],[315,107]],[[0,27],[485,0]
,[485,8],[485,18]],[[0,243],[537,14],[537,329]],[[0,17],[249,11],[249,44],[249,4
24],[249,558]],[[0,17],[298,502],[298,380],[298,19],[298,25]],[[0,62],[442,2],[4

Page 1/9butterley.json

1/9

104 appendices

42,371],[442,18]],[[0,494],[301,4],[301,28],[301,443],[301,105]],[[0,575],[1,97]
]],[[[0,12],[462,561],[607,0],[462,360],[607,119],[462,495]],[[0,410],[169,52],[
625,2],[169,15],[169,503],[169,0],[625,25],[169,43]],[[0,7],[116,64],[116,405],[
116,5],[116,246],[116,105],[116,1]],[[0,569],[277,16],[278,5],[277,97],[278,38],
[277,0],[278,342],[278,376],[277,1]],[[0,0],[188,107],[188,27],[659,0],[188,8],[
188,18]],[[0,243],[161,14],[161,329],[161,17],[161,11],[161,44]],[[0,424],[85,55
8],[85,17],[85,502],[85,380],[85,19],[85,25]],[[0,62],[57,2],[57,371],[57,18],[5
7,494],[57,4],[57,28]],[[0,443],[1,105],[1,575],[1,97]]],[[[0,12],[32,561],[32,0
],[32,360],[32,119],[32,495],[32,410],[32,52],[32,2]],[[0,15],[247,503],[328,0],
[247,25],[328,43],[247,7],[328,64],[247,405],[328,5]],[[0,246],[11,105],[11,1],[
11,569],[11,16],[11,5],[11,97],[11,38],[11,0],[11,342],[11,376]],[[0,1],[320,0],
[319,107],[319,27],[320,0],[320,8],[319,18],[320,243],[319,14]],[[0,329],[37,17]
,[37,11],[37,44],[37,424],[37,558],[37,17],[37,502],[37,380]],[[0,19],[9,25],[21
8,62],[218,2],[9,371],[218,18],[9,494],[218,4],[9,28]],[[0,443],[1,105],[1,575],
[1,97]]]],[[[[0,436],[1,476]]],[[[0,436],[1,476]]],[[[0,436],[1,476]]]],{w:200.0
,h:300.0,d:"<img style=\"width:100%; height:100%\" src=\"Butterleyblast_furnace_
1.jpg\" alt=\"Blast furnace from 1790 exposed through building demolition in 198
6\n\">"},[[[[0,88],[270,504],[270,3],[270,507],[270,2]],[[0,0],[324,537],[324,31
3],[324,4],[324,0]],[[0,9],[558,70],[558,14]],[[0,36],[271,1],[271,266],[271,478
],[271,35]],[[0,273],[1,357],[1,452]]],[[[0,88],[61,504],[61,3],[61,507],[61,2],
[61,0],[61,537]],[[0,313],[408,4],[579,0],[408,9],[579,70],[408,14]],[[0,36],[95
,1],[95,266],[95,478],[95,35],[95,273],[95,357]],[[0,452]]],[[[0,88],[118,504],[
495,3],[118,507],[118,2],[495,0],[118,537],[118,313],[495,4],[118,0]],[[0,9],[16
8,70],[586,14],[168,36],[168,1],[168,266],[586,478],[168,35]],[[0,273],[1,357],[
1,452]]]],[[[[0,12],[457,513],[457,0],[457,8]],[[0,21],[273,0],[273,16],[273,531
],[273,6]],[[0,269],[466,400],[466,524],[466,0]],[[0,430],[1,285]]],[[[0,12],[12
9,513],[129,0],[129,8],[129,21],[129,0],[129,16]],[[0,531],[82,6],[82,269],[82,4
00],[82,524],[82,0],[82,430]],[[0,285]]],[[[0,12],[263,513],[262,0],[263,8],[262
,21],[263,0],[262,16],[263,531],[262,6]],[[0,269],[1,400],[1,524],[1,0],[1,430],
[1,285]]]],[[[[0,10],[471,8],[471,35],[471,45]],[[0,375],[381,398],[381,11],[381
,335]],[[0,29],[552,221],[552,65]],[[0,6],[230,0],[230,189],[230,2],[230,6]],[[0
,0],[483,192],[483,11],[483,145]],[[0,186],[417,536],[417,6],[417,327]],[[0,2],[
388,6],[388,0],[388,177]],[[0,387],[515,1],[515,68],[515,493]],[[0,10],[309,460]
,[309,225],[309,4],[309,0]],[[0,23],[583,24],[583,11]],[[0,156],[503,7],[503,340
],[503,0]],[[0,9],[347,555],[347,426],[347,12]],[[0,447],[510,87],[510,215],[510
,56]],[[0,239],[429,6],[429,0],[429,244]],[[0,21],[565,37],[565,152]],[[0,490],[
1,468],[1,59]]],[[[0,10],[152,8],[152,35],[152,45],[152,375],[152,398]],[[0,11],
[133,335],[133,29],[133,221],[133,65],[133,6],[133,0]],[[0,189],[194,2],[194,6],
[642,0],[194,192],[194,11]],[[0,145],[177,186],[177,536],[177,6],[177,327]],[[0,
2],[130,6],[130,0],[130,177],[130,387],[130,1],[130,68]],[[0,493],[379,10],[560,
460],[379,225],[560,4],[379,0]],[[0,23],[438,24],[596,11],[438,156],[596,7],[438
,340]],[[0,0],[138,9],[138,555],[138,426],[138,12],[138,447]],[[0,87],[415,215],
[584,56],[415,239],[584,6],[415,0]],[[0,244],[368,21],[368,37],[368,152]],[[0,49
0],[1,468],[1,59]]],[[[0,10],[154,8],[617,35],[154,45],[154,375],[154,398],[617,
11],[154,335]],[[0,29],[296,221],[295,65],[296,6],[295,0],[296,189],[295,2],[296
,6],[295,0]],[[0,192],[60,11],[60,145],[60,186],[650,536],[60,6],[60,327],[60,2]
],[[0,6],[25,0],[25,177],[25,387],[25,1],[25,68],[25,493],[25,10],[25,460]],[[0,
225],[311,4],[488,0],[311,23],[488,24],[311,11],[488,156],[311,7]],[[0,340],[113
,0],[113,9],[113,555],[667,426],[113,12],[113,447],[113,87]],[[0,215],[41,56],[4
1,239],[41,6],[41,0],[41,244],[41,21],[41,37]],[[0,152],[1,490],[1,468],[1,59]]]
],[[[[0,12],[359,419],[359,3],[359,0]],[[0,154],[533,63],[533,0]],[[0,178],[548,
480],[548,0]],[[0,17],[337,11],[337,9],[337,7],[337,0]],[[0,479],[494,1],[494,0]
,[494,271]],[[0,141],[498,10],[498,205],[498,1]],[[0,0],[422,334],[588,7],[422,4
],[588,553],[422,0]],[[0,435],[513,389],[513,277],[513,2]],[[0,290],[461,0],[461
,17],[461,6]],[[0,236],[630,108],[630,32]],[[0,280],[544,32],[544,13]],[[0,163],
[550,15],[550,339]],[[0,81],[521,0],[521,321],[521,366]],[[0,546],[229,14],[229,
5],[229,568],[229,143]],[[0,425],[205,499],[205,95],[205,96],[205,54]],[[0,399],
[80,4],[80,20],[80,532],[80,1],[80,0],[80,333]],[[0,53],[357,0],[357,193],[357,4
08]],[[0,445],[522,81],[522,469],[522,37]],[[0,407],[213,54],[213,5],[213,369],[
213,68]],[[0,3],[1,0],[1,538],[1,1],[1,0],[1,378]]],[[[0,12],[117,419],[117,3],[
117,0],[117,154],[117,63],[117,0]],[[0,178],[419,480],[590,0],[419,17],[590,11],
[419,9]],[[0,7],[132,0],[132,479],[132,1],[132,0],[132,271],[132,141]],[[0,10],[
31,205],[31,1],[31,0],[31,334],[31,7],[31,4],[31,553],[31,0]],[[0,435],[407,389]
,[577,277],[407,2],[577,290],[407,0]],[[0,17],[215,6],[215,236],[647,108],[215,3
2],[215,280]],[[0,32],[174,13],[174,163],[174,15],[174,339]],[[0,81],[63,0],[63,
321],[63,366],[63,546],[63,14],[63,5]],[[0,568],[153,143],[153,425],[153,499],[1

Page 2/9butterley.json

2/9

appendices 105

53,95],[153,96]],[[0,54],[102,399],[472,4],[102,20],[102,532],[472,1],[102,0],[1
02,333],[472,53],[102,0]],[[0,193],[252,408],[252,445],[252,81],[252,469]],[[0,3
7],[314,407],[312,54],[314,5],[312,369],[314,68],[312,3],[314,0],[312,538]],[[0,
1],[1,0],[1,378]]],[[[0,12],[151,419],[591,3],[151,0],[151,154],[151,63],[591,0]
,[151,178]],[[0,480],[128,0],[493,17],[128,11],[128,9],[493,7],[128,0],[128,479]
,[493,1],[128,0]],[[0,271],[29,141],[29,10],[29,205],[29,1],[29,0],[29,334],[29,
7],[29,4]],[[0,553],[120,0],[487,435],[120,389],[120,277],[487,2],[120,290],[120
,0],[487,17],[120,6]],[[0,236],[143,108],[575,32],[143,280],[143,32],[143,13],[5
75,163],[143,15]],[[0,339],[5,81],[5,0],[5,321],[5,366],[5,546],[5,14],[5,5],[5,
568]],[[0,143],[12,425],[12,499],[12,95],[12,96],[12,54],[12,399],[12,4],[12,20]
,[12,532],[12,1]],[[0,0],[242,333],[435,53],[242,0],[435,193],[242,408],[435,445
],[242,81]],[[0,469],[13,37],[13,407],[13,54],[13,5],[13,369],[666,68],[13,3],[1
3,0],[13,538],[13,1],[13,0]],[[0,378]]]],[[[[0,196],[484,33],[484,0],[484,78]],[
[0,85],[334,5],[334,535],[334,396],[334,1]],[[0,136],[566,0],[566,8]],[[0,14],[1
85,580],[185,12],[639,550],[185,26],[185,7]],[[0,165],[232,4],[232,20],[232,0],[
232,42]],[[0,48],[256,412],[256,2],[256,0],[256,315]],[[0,42],[10,16],[10,228],[
10,3],[10,0]],[[0,544],[231,191],[231,38],[231,33],[231,534]],[[0,0],[342,8],[34
2,45],[342,5]],[[0,130],[559,343],[559,1]],[[0,259],[489,6],[489,65],[489,2]],[[
0,491],[243,6],[243,48],[243,2],[243,471]],[[0,2],[288,202],[288,5],[288,484],[2
88,25]],[[0,43],[1,11],[1,44],[1,450]]],[[[0,196],[362,33],[543,0],[362,78],[543
,85],[362,5]],[[0,535],[409,396],[580,1],[409,136],[580,0],[409,8]],[[0,14],[35,
580],[35,12],[35,550],[35,26],[35,7],[35,165],[35,4],[35,20]],[[0,0],[94,42],[94
,48],[94,412],[94,2],[94,0],[94,315]],[[0,42],[93,16],[93,228],[93,3],[93,0],[93
,544],[93,191]],[[0,38],[49,33],[49,534],[49,0],[49,8],[49,45],[49,5]],[[0,130],
[199,343],[199,1],[199,259],[199,6]],[[0,65],[62,2],[62,491],[62,6],[62,48],[62,
2],[62,471]],[[0,2],[134,202],[134,5],[134,484],[134,25],[134,43],[134,11]],[[0,
44],[1,450]]],[[[0,196],[208,33],[210,0],[208,78],[210,85],[208,5],[210,535],[20
8,396],[210,1]],[[0,136],[33,0],[33,8],[33,14],[33,580],[33,12],[33,550],[33,26]
,[33,7]],[[0,165],[87,4],[453,20],[87,0],[87,42],[453,48],[87,412],[87,2],[453,0
],[87,315]],[[0,42],[65,16],[511,228],[65,3],[65,0],[511,544],[65,191],[65,38],[
511,33],[65,534]],[[0,0],[127,8],[127,45],[127,5],[677,130],[127,343],[127,1],[1
27,259]],[[0,6],[111,65],[480,2],[111,491],[111,6],[480,48],[111,2],[111,471],[4
80,2],[111,202]],[[0,5],[1,484],[1,25],[1,43],[1,11],[1,44],[1,450]]]],{w:320.25
,h:480.0,d:"<img style=\"width:100%; height:100%\" src=\"Pinchbeck−Engine−by−Chr
is−Allen.jpg\" alt=\"1833 Butterley ’A’ frame engine at Pinchbeck,\nbelieved to
be the oldest ’A’ frame engine still in situ\n\">"},[[[[0,109],[284,1],[284,0],[
284,19],[284,75]],[[0,83],[331,11],[331,543],[331,520],[331,2]],[[0,0],[267,89],
[267,3],[267,0],[267,195]],[[0,386],[581,551],[581,75]],[[0,349],[343,13],[343,4
75],[343,15]],[[0,58],[464,55],[464,13],[464,0]],[[0,461],[1,489],[1,337]]],[[[0
,109],[73,1],[73,0],[73,19],[73,75],[73,83],[73,11]],[[0,543],[47,520],[47,2],[4
7,0],[47,89],[47,3],[47,0]],[[0,195],[291,386],[291,551],[291,75],[291,349]],[[0
,13],[88,475],[88,15],[88,58],[676,55],[88,13],[88,0],[88,461]],[[0,489],[1,337]
]],[[[0,109],[99,1],[519,0],[99,19],[99,75],[519,83],[99,11],[99,543],[519,520],
[99,2]],[[0,0],[292,89],[481,3],[292,0],[481,195],[292,386],[481,551],[292,75]],
[[0,349],[26,13],[26,475],[26,15],[26,58],[26,55],[26,13],[26,0],[26,461]],[[0,4
89],[1,337]]]],[[[[0,557],[51,21],[51,5],[51,510]],[[0,483],[264,1],[264,356],[2
64,47],[264,420]],[[0,6],[504,200],[504,4],[504,307]],[[0,6],[499,583],[499,451]
,[499,409]],[[0,209],[615,167],[615,24]],[[0,50],[377,496],[377,458],[377,2]],[[
0,180],[570,14],[570,74]],[[0,21],[518,11],[518,58],[518,2]],[[0,19],[531,30],[5
31,267]],[[0,230],[367,15],[367,300],[367,10]],[[0,8],[554,35],[554,21]],[[0,30]
,[563,128],[563,361]],[[0,6],[159,22],[159,584],[159,554],[159,53],[159,26]],[[0
,233],[401,19],[401,6],[401,0]],[[0,328],[1,252],[1,73]]],[[[0,557],[68,21],[68,
5],[68,510],[68,483],[68,1],[68,356]],[[0,47],[66,420],[66,6],[66,200],[66,4],[6
6,307],[66,6]],[[0,583],[308,451],[308,409],[308,209],[308,167]],[[0,24],[318,50
],[318,496],[672,458],[318,2],[318,180]],[[0,14],[234,74],[234,21],[654,11],[234
,58],[234,2]],[[0,19],[482,30],[620,267],[482,230],[620,15],[482,300]],[[0,10],[
195,8],[195,35],[195,21],[195,30]],[[0,128],[144,361],[578,6],[144,22],[144,584]
,[144,554],[578,53],[144,26]],[[0,233],[436,19],[595,6],[436,0],[595,328],[436,2
52]],[[0,73]]],[[[0,557],[21,21],[21,5],[21,510],[21,483],[21,1],[21,356],[21,47
],[21,420],[21,6]],[[0,200],[158,4],[618,307],[158,6],[158,583],[158,451],[618,4
09],[158,209]],[[0,167],[162,24],[623,50],[162,496],[162,458],[162,2],[623,180],
[162,14]],[[0,74],[209,21],[405,11],[209,58],[405,2],[209,19],[405,30],[209,267]
],[[0,230],[166,15],[626,300],[166,10],[166,8],[166,35],[626,21],[166,30]],[[0,1
28],[14,361],[14,6],[14,22],[14,584],[14,554],[14,53],[14,26],[14,233],[14,19]],
[[0,6],[1,0],[1,328],[1,252],[1,73]]]],[[[[0,114],[355,21],[355,578],[355,0]],[[
0,188],[463,74],[463,6],[463,0]],[[0,111],[378,262],[378,2],[378,19]],[[0,272],[

Page 3/9butterley.json

3/9

106 appendices

539,382],[539,0]],[[0,235],[529,253],[529,2]],[[0,216],[505,547],[505,281],[505,
2]],[[0,0],[387,23],[387,2],[387,562]],[[0,509],[414,73],[414,597],[414,295]],[[
0,89],[285,6],[285,0],[285,358],[285,395]],[[0,3],[376,311],[376,99],[376,11]],[
[0,182],[632,564],[632,541]],[[0,133]]],[[[0,114],[443,21],[599,578],[443,0],[59
9,188],[443,74]],[[0,6],[3,0],[3,111],[3,262],[3,2],[3,19],[3,272]],[[0,382],[22
4,0],[224,235],[224,253],[224,2]],[[0,216],[276,547],[276,281],[665,2],[276,0],[
276,23]],[[0,2],[353,562],[535,509],[353,73],[535,597],[353,295]],[[0,89],[86,6]
,[86,0],[86,358],[86,395],[86,3],[86,311]],[[0,99],[1,11],[1,182],[1,564],[1,541
],[1,133]]],[[[0,114],[290,21],[289,578],[290,0],[289,188],[290,74],[289,6],[290
,0],[289,111]],[[0,262],[89,2],[89,19],[89,272],[89,382],[89,0],[89,235]],[[0,25
3],[46,2],[46,216],[46,547],[46,281],[46,2],[46,0]],[[0,23],[237,2],[238,562],[2
37,509],[238,73],[237,597],[238,295],[237,89],[238,6]],[[0,0],[78,358],[440,395]
,[78,3],[78,311],[440,99],[78,11],[78,182],[440,564],[78,541]],[[0,133]]]],[[[[0
,10],[349,8],[349,7],[349,449]],[[0,4],[192,374],[192,3],[192,0],[192,111]],[[0,
69],[406,82],[406,6],[406,31]],[[0,140],[541,3],[541,413]],[[0,453],[486,36],[48
6,1],[486,523]],[[0,174],[313,34],[313,525],[313,52],[313,5]],[[0,325],[393,47],
[393,112],[393,488]],[[0,69],[286,390],[286,5],[286,492],[286,1]],[[0,37],[520,1
57],[520,37],[520,304]],[[0,10],[416,274],[416,13],[416,394]],[[0,28],[220,0],[2
20,78],[220,3],[220,99]],[[0,4],[345,326],[345,0],[345,297]],[[0,212],[1,1],[1,0
],[1,162]]],[[[0,10],[148,8],[585,7],[148,449],[148,4],[148,374],[585,3],[148,0]
],[[0,111],[173,69],[173,82],[173,6],[173,31]],[[0,140],[107,3],[107,413],[107,4
53],[107,36],[107,1],[107,523]],[[0,174],[90,34],[90,525],[90,52],[657,5],[90,32
5],[90,47],[90,112]],[[0,488],[126,69],[126,390],[126,5],[126,492],[126,1],[126,
37]],[[0,157],[147,37],[147,304],[147,10],[147,274],[147,13]],[[0,394],[70,28],[
70,0],[70,78],[70,3],[70,99],[70,4]],[[0,326],[142,0],[142,297],[142,212],[142,1
],[142,0]],[[0,162]]],[[[0,10],[91,8],[506,7],[91,449],[91,4],[506,374],[91,3],[
91,0],[506,111],[91,69]],[[0,82],[255,6],[336,31],[255,140],[336,3],[255,413],[3
36,453],[255,36],[336,1]],[[0,523],[20,174],[20,34],[20,525],[20,52],[20,5],[20,
325],[20,47],[20,112],[20,488]],[[0,69],[28,390],[28,5],[28,492],[28,1],[28,37],
[28,157],[28,37],[28,304]],[[0,10],[124,274],[492,13],[124,394],[124,28],[492,0]
,[124,78],[124,3],[492,99],[124,4]],[[0,326],[1,0],[1,297],[1,212],[1,1],[1,0],[
1,162]]]],{w:250.0,h:187.5,d:"<img style=\"width:100%; height:100%\" src=\"Butte
rley_co_plate.jpg\" alt=\"Butterley Company plate in St Pancras station\n\">"},[
[[[0,289],[525,323],[525,13]],[[0,422],[330,52],[330,15],[330,0],[330,66]],[[0,2
63],[423,112],[423,559],[423,279]],[[0,12],[420,76],[420,501],[420,77]],[[0,40],
[51,5],[51,92],[51,1]],[[0,64],[545,5],[545,418],[683,322]],[[0,16],[300,516],[3
00,98],[300,55],[300,0]],[[0,9],[400,437],[400,50],[400,3]],[[0,549],[398,100],[
398,16],[398,30]],[[0,477],[567,190],[567,566]],[[0,278],[456,12],[456,533],[456
,77]],[[0,40],[339,5],[339,92],[339,34]],[[0,282],[248,582],[248,90],[248,4],[24
8,20]],[[0,46],[299,28],[299,5],[299,406],[299,423]],[[0,32],[294,18],[294,91],[
294,15],[294,101]],[[0,36],[371,332],[371,341],[371,0]],[[0,161],[5,1],[5,31],[5
,249]],[[0,0],[202,567],[202,110],[202,4],[202,20]],[[0,60],[536,586],[536,292]]
,[[0,261],[434,238],[434,33],[434,4]],[[0,385],[390,444],[390,101],[390,36]],[[0
,384],[358,7],[358,5],[358,138]],[[0,226],[424,3],[424,120],[424,38]],[[0,500],[
394,0],[394,8],[394,7]],[[0,41],[7,0],[7,42],[7,351],[7,1]],[[0,16],[157,1],[157
,565],[157,86],[157,3],[157,0]],[[0,231],[348,416],[348,22],[348,526]],[[0,402],
[363,67],[363,113],[363,0]],[[0,347],[246,414],[246,545],[246,11],[246,594]],[[0
,305],[431,298],[431,3],[431,299]],[[0,29],[556,232],[556,519],[0,539]],[[0,352]
]],[[[0,289],[119,323],[119,13],[119,422],[119,52],[119,15],[119,0]],[[0,66],[21
9,263],[219,112],[649,559],[219,279],[219,12]],[[0,76],[184,501],[184,77],[184,4
0],[184,5]],[[0,92],[146,1],[146,64],[146,5],[146,418],[0,322],[146,16]],[[0,516
],[103,98],[103,55],[103,0],[103,9],[103,437],[103,50]],[[0,3],[92,549],[92,100]
,[92,16],[92,30],[92,477],[92,190]],[[0,566],[478,278],[110,12],[478,533],[110,7
7],[478,40]],[[0,5],[64,92],[64,34],[64,282],[652,582],[64,90],[64,4],[64,20]],[
[0,46],[114,28],[114,5],[114,406],[114,423],[114,32],[114,18]],[[0,91],[83,15],[
83,101],[83,36],[83,332],[83,341],[83,0]],[[0,161],[7,1],[7,31],[7,249],[7,0],[7
,567],[7,110],[7,4]],[[0,20],[191,60],[191,586],[191,292],[191,261]],[[0,238],[1
04,33],[104,4],[104,385],[104,444],[104,101],[104,36]],[[0,384],[141,7],[141,5],
[141,138],[141,226],[141,3]],[[0,120],[479,38],[619,500],[479,0],[619,8],[479,7]
],[[0,41],[98,0],[98,42],[98,351],[660,1],[98,16],[98,1],[98,565]],[[0,86],[3,3]
,[3,0],[3,231],[3,416],[3,22],[3,526]],[[0,402],[226,67],[226,113],[678,0],[226,
347],[226,414]],[[0,545],[136,11],[136,594],[136,305],[136,298],[136,3],[136,299
]],[[0,29],[1,232],[1,519],[0,539],[1,352]]],[[[0,289],[43,323],[43,13],[43,422]
,[43,52],[43,15],[43,0],[43,66]],[[0,263],[123,112],[123,559],[123,279],[671,12]
,[123,76],[123,501],[123,77]],[[0,40],[108,5],[108,92],[108,1],[679,64],[108,5],
[108,418],[0,322],[108,16]],[[0,516],[10,98],[470,55],[10,0],[10,9],[470,437],[1

Page 4/9butterley.json

4/9

appendices 107

0,50],[10,3],[470,549],[10,100]],[[0,16],[59,30],[59,477],[59,190],[648,566],[59
,278],[59,12],[59,533]],[[0,77],[15,40],[15,5],[15,92],[15,34],[15,282],[15,582]
,[15,90],[15,4],[15,20]],[[0,46],[24,28],[24,5],[589,406],[24,423],[24,32],[24,1
8],[24,91],[589,15],[24,101],[24,36]],[[0,332],[2,341],[2,0],[2,161],[2,1],[2,31
],[2,249],[2,0],[2,567]],[[0,110],[18,4],[18,20],[18,60],[18,586],[18,292],[18,2
61],[18,238],[18,33],[18,4]],[[0,385],[304,444],[306,101],[304,36],[306,384],[30
6,7],[304,5],[306,138],[304,226]],[[0,3],[27,120],[27,38],[27,500],[27,0],[27,8]
,[27,7],[27,41],[27,0]],[[0,42],[17,351],[17,1],[17,16],[17,1],[17,565],[17,86],
[17,3],[17,0],[17,231]],[[0,416],[241,22],[240,526],[241,402],[240,67],[241,113]
,[240,0],[241,347],[240,414]],[[0,545],[281,11],[280,594],[280,305],[281,298],[2
80,3],[281,299],[281,29],[280,232]],[[0,519],[0,539],[1,352]]]],[[[[0,187],[530,
107],[530,203]],[[0,7],[110,0],[110,19],[110,506],[110,211]],[[0,31],[323,563],[
323,40],[323,3],[323,482]],[[0,29],[365,50],[365,19],[365,30]],[[0,83],[380,4],[
380,441],[380,434]],[[0,90],[364,4],[364,20],[364,60]],[[0,397],[460,4],[606,570
],[460,0],[606,310],[460,498]],[[0,2],[396,247],[396,505],[396,33]],[[0,184],[25
0,0],[250,31],[250,571],[250,574]],[[0,512],[260,4],[260,20],[682,46],[260,4],[2
60,572]],[[0,465],[333,0],[333,41],[333,82],[333,53]],[[0,404],[305,18],[305,4],
[305,20],[305,46]],[[0,521],[455,49],[455,0],[455,41]],[[0,312],[340,560],[340,2
6],[340,18]],[[0,91],[1,220]]],[[[0,187],[178,107],[178,203],[636,7],[178,0],[17
8,19]],[[0,506],[139,211],[139,31],[139,563],[139,40],[139,3]],[[0,482],[131,29]
,[131,50],[131,19],[131,30],[131,83],[131,4]],[[0,441],[58,434],[58,90],[58,4],[
58,20],[58,60],[58,397]],[[0,4],[163,570],[622,0],[163,310],[163,498],[163,2],[6
22,247],[163,505]],[[0,33],[34,184],[34,0],[34,31],[34,571],[34,574],[34,512],[3
4,4],[34,20]],[[0,46],[112,4],[112,572],[0,465],[112,0],[112,41],[112,82],[112,5
3]],[[0,404],[145,18],[582,4],[145,20],[145,46],[145,521],[582,49],[145,0]],[[0,
41],[392,312],[569,560],[392,26],[569,18],[392,91]],[[0,220]]],[[[0,187],[40,107
],[40,203],[40,7],[40,0],[40,19],[40,506],[40,211]],[[0,31],[36,563],[36,40],[36
,3],[36,482],[36,29],[36,50],[36,19],[36,30]],[[0,83],[69,4],[425,441],[69,434],
[69,90],[425,4],[69,20],[69,60],[425,397],[69,4]],[[0,570],[72,0],[427,310],[72,
498],[72,2],[427,247],[72,505],[72,33],[427,184],[72,0]],[[0,31],[97,571],[268,5
74],[97,512],[268,4],[97,20],[97,46],[268,4],[97,572],[0,465],[268,0],[97,41]],[
[0,82],[19,53],[19,404],[19,18],[19,4],[19,20],[19,46],[19,521],[19,49],[19,0]],
[[0,41],[1,312],[1,560],[1,26],[1,18],[1,91],[1,220]]]],[[[[0,96],[445,7],[445,3
5],[445,56]],[[0,183],[526,175],[526,6]],[[0,185],[562,198],[562,1]],[[0,207],[5
68,2],[568,222]],[[0,171]]],[[[0,96],[228,7],[228,35],[653,56],[228,183],[228,17
5]],[[0,6],[261,185],[261,198],[658,1],[261,207],[261,2]],[[0,222],[1,171]]],[[[
0,96],[257,7],[452,35],[257,56],[452,183],[257,175],[452,6],[257,185]],[[0,198],
[1,1],[1,207],[1,2],[1,222],[1,171]]]],[[[[0,38],[534,508],[534,8]],[[0,286],[8,
13],[8,227],[8,4]],[[0,429],[500,6],[500,348],[500,134]],[[0,10],[374,8],[374,36
7],[374,115]],[[0,388],[474,229],[474,5],[474,283]],[[0,590],[1,577],[1,595],[1,
464]]],[[[0,38],[176,508],[176,8],[176,286],[176,13]],[[0,227],[2,4],[2,429],[2,
6],[2,348],[2,134],[2,10]],[[0,8],[403,367],[574,115],[403,388],[574,229],[403,5
]],[[0,283],[1,590],[1,577],[1,595],[1,464]]],[[[0,38],[266,508],[338,8],[266,28
6],[338,13],[266,227],[338,4],[266,429],[338,6]],[[0,348],[76,134],[76,10],[76,8
],[76,367],[76,115],[76,388]],[[0,229],[1,5],[1,283],[1,590],[1,577],[1,595],[1,
464]]]],[[[[0,556],[1,27]]],[[[0,556],[1,27]]],[[[0,556],[1,27]]]],{w:400.0,h:26
6.66666666666663,d:"<img style=\"width:100%; height:100%\" src=\"Crane_manufactu
red_by_Butterley_Engineering_being_loaded_for_road_transport.jpg\" alt=\"Crane b
eing prepared for road transport in 1988\n\">"},[[[[0,596],[275,22],[275,522],[6
64,3],[275,0],[275,446]],[[0,0],[571,8],[571,276]],[[0,28],[1,372],[1,301]]],[[[
0,596],[316,22],[491,522],[316,3],[491,0],[316,446],[491,0],[316,8]],[[0,276],[1
,28],[1,372],[1,301]]],[[[0,596],[23,22],[23,522],[23,3],[23,0],[23,446],[23,0],
[23,8],[23,276]],[[0,28],[1,372],[1,301]]]],[[[[0,12],[399,440],[399,5],[399,142
]],[[0,14],[182,585],[182,242],[182,1],[182,0]],[[0,581],[451,365],[451,194],[45
1,34]],[[0,8],[501,3],[501,0],[501,359]],[[0,224]]],[[[0,12],[115,440],[115,5],[
115,142],[115,14],[115,585],[115,242]],[[0,1],[96,0],[96,581],[96,365],[96,194],
[96,34],[96,8]],[[0,3],[1,0],[1,359],[1,224]]],[[[0,12],[77,440],[430,5],[77,142
],[77,14],[430,585],[77,242],[77,1],[430,0],[77,581]],[[0,365],[1,194],[1,34],[1
,8],[1,3],[1,0],[1,359],[1,224]]]],[[[[0,12],[171,0],[171,100],[171,456],[171,0]
],[[0,8],[638,71]],[[0,59],[587,127],[587,592]],[[0,593],[1,284],[1,116],[1,589]
,[1,515]]],[[[0,12],[418,0],[555,100],[418,456],[555,0],[418,8]],[[0,71],[6,59],
[6,127],[6,592],[6,593]],[[0,284],[1,116],[1,589],[1,515]]],[[[0,12],[122,0],[12
2,100],[122,456],[669,0],[122,8],[122,71],[122,59]],[[0,127],[1,592],[1,593],[1,
284],[1,116],[1,589],[1,515]]]],[[[[0,10],[402,44],[402,102],[402,17]],[[0,93],[
1,3],[1,474]]],[[[0,10],[1,44],[1,102],[1,17],[1,93],[1,3],[1,474]]],[[[0,10],[1
,44],[1,102],[1,17],[1,93],[1,3],[1,474]]]],[[[[0,10],[542,8],[542,7]],[[0,71],[

Page 5/9butterley.json

5/9

108 appendices

412,15],[412,514],[412,355]],[[0,3],[172,0],[172,528],[172,6],[172,197]],[[0,240
],[441,10],[441,8],[441,7]],[[0,126],[502,486],[502,588],[502,49]],[[0,9],[643,1
25]],[[0,9],[475,417],[475,2],[475,9]],[[0,135],[594,9],[594,411]],[[0,219],[523
,542],[523,2],[523,415]],[[0,0],[496,210],[496,217],[496,7]],[[0,527],[186,576],
[186,4],[186,403],[186,0]],[[0,124],[634,1],[634,39]],[[0,118],[360,12],[360,0],
[360,573]],[[0,432],[39,0],[39,86],[39,93]],[[0,95],[557,108],[557,296]],[[0,67]
,[608,13],[608,176]],[[0,0],[235,275],[235,25],[235,43],[235,1]],[[0,103],[1,7],
[1,251]]],[[[0,10],[190,8],[190,7],[641,71],[190,15],[190,514]],[[0,355],[216,3]
,[410,0],[216,528],[410,6],[216,197],[410,240],[216,10]],[[0,8],[155,7],[155,126
],[155,486],[155,588],[155,49]],[[0,9],[233,125],[233,9],[233,417],[233,2]],[[0,
9],[382,135],[382,9],[382,411]],[[0,219],[165,542],[165,2],[165,415],[165,0],[16
5,210]],[[0,217],[48,7],[48,527],[48,576],[48,4],[48,403],[48,0]],[[0,124],[469,
1],[469,39],[469,118]],[[0,12],[71,0],[71,573],[71,432],[71,0],[71,86],[71,93]],
[[0,95],[196,108],[196,296],[196,67],[196,13]],[[0,176],[272,0],[272,275],[662,2
5],[272,43],[272,1]],[[0,103],[1,7],[1,251]]],[[[0,10],[236,8],[327,7],[327,71],
[236,15],[327,514],[236,355],[327,3],[236,0]],[[0,528],[42,6],[42,197],[42,240],
[42,10],[42,8],[42,7],[42,126]],[[0,486],[164,588],[624,49],[164,9],[164,125],[1
64,9],[624,417],[164,2]],[[0,9],[449,135],[628,9],[449,411],[628,219],[449,542]]
,[[0,2],[121,415],[507,0],[121,210],[121,217],[507,7],[121,527],[121,576],[507,4
],[121,403]],[[0,0],[149,124],[600,1],[149,39],[149,118],[149,12],[600,0],[149,5
73]],[[0,432],[50,0],[50,86],[50,93],[50,95],[50,108],[50,296]],[[0,67],[100,13]
,[100,176],[100,0],[661,275],[100,25],[100,43],[100,1]],[[0,103],[1,7],[1,251]]]
],[[[[0,106],[1,27]]],[[[0,106],[1,27]]],[[[0,106],[1,27]]]],{w:350.0,h:248.5529
1576673866,d:"<img style=\"width:100%; height:100%\" src=\"FalkirkWheelSide_2004
_SeanMcClean.jpg\" alt=\"The Falkirk Wheel\n\">"},[[[[0,10],[447,8],[447,85],[44
7,0]],[[0,106],[39,27],[39,14],[39,5],[39,463]],[[0,139],[553,158],[553,6]],[[0,
131],[635,250]],[[0,255],[613,364],[613,2]],[[0,168],[1,160]]],[[[0,10],[303,8],
[303,85],[668,0],[303,106],[303,27]],[[0,14],[244,5],[244,463],[0,139],[244,158]
,[244,6]],[[0,131],[385,250],[385,255],[385,364]],[[0,2],[1,168],[1,160]]],[[[0,
10],[225,8],[227,85],[225,0],[227,106],[225,27],[227,14],[225,5],[227,463]],[[0,
139],[468,158],[612,6],[468,131],[612,250],[468,255]],[[0,364],[1,2],[1,168],[1,
160]]]],[[[[0,109],[354,1],[354,0],[354,66]],[[0,260],[356,254],[356,7],[356,0]]
,[[0,320],[239,353],[239,5],[239,268],[239,11]],[[0,258],[597,270],[597,4]],[[0,
204],[254,0],[254,448],[254,116],[254,466]],[[0,24],[279,2],[279,0],[279,442],[2
79,24]],[[0,3],[156,428],[156,1],[156,5],[156,256],[156,401]],[[0,1],[307,115],[
307,345],[307,234],[307,15]],[[0,517],[389,148],[389,26],[389,7]],[[0,373],[404,
15],[404,0],[404,173]],[[0,147],[598,10],[598,8]],[[0,57],[572,0],[572,206]],[[0
,457],[1,3],[1,146]]],[[[0,109],[221,1],[221,0],[651,66],[221,260],[221,254]],[[
0,7],[45,0],[45,320],[45,353],[45,5],[45,268],[45,11]],[[0,258],[53,270],[53,4],
[53,204],[53,0],[53,448],[53,116]],[[0,466],[56,24],[56,2],[56,0],[56,442],[56,2
4],[56,3]],[[0,428],[150,1],[604,5],[150,256],[150,401],[150,1],[604,115],[150,3
45]],[[0,234],[432,15],[593,517],[432,148],[593,26],[432,7]],[[0,373],[325,15],[
325,0],[325,173],[325,147]],[[0,10],[322,8],[322,57],[322,0],[322,206]],[[0,457]
,[1,3],[1,146]]],[[[0,109],[200,1],[391,0],[200,66],[391,260],[200,254],[391,7],
[200,0]],[[0,320],[8,353],[8,5],[8,268],[8,11],[8,258],[8,270],[8,4]],[[0,204],[
81,0],[508,448],[81,116],[81,466],[508,24],[81,2],[81,0],[508,442],[81,24]],[[0,
3],[55,428],[214,1],[55,5],[214,256],[55,401],[55,1],[214,115],[55,345],[214,234
],[55,15]],[[0,517],[282,148],[476,26],[282,7],[476,373],[282,15],[476,0],[282,1
73]],[[0,147],[467,10],[611,8],[467,57],[611,0],[467,206]],[[0,457],[1,3],[1,146
]]]],[[[[0,587],[193,598],[193,481],[193,459],[193,0]],[[0,8],[459,7],[459,379],
[459,49]],[[0,117],[637,0]],[[0,122],[633,287],[633,427]],[[0,54],[372,5],[372,3
63],[372,153]],[[0,218],[433,34],[433,110],[433,370]],[[0,172],[413,4],[413,0],[
413,214]],[[0,166]]],[[[0,587],[54,598],[54,481],[54,459],[54,0],[54,8],[54,7]],
[[0,379],[384,49],[384,117],[384,0]],[[0,122],[22,287],[22,427],[22,54],[22,5],[
22,363]],[[0,153],[203,218],[203,34],[203,110],[203,370]],[[0,172],[1,4],[1,0],[
1,214],[1,166]]],[[[0,587],[30,598],[30,481],[30,459],[30,0],[30,8],[30,7],[30,3
79],[30,49]],[[0,117],[125,0],[125,122],[125,287],[674,427],[125,54],[125,5],[12
5,363]],[[0,153],[6,218],[6,34],[6,110],[6,370],[6,172],[6,4],[6,0]],[[0,214],[1
,166]]]],[[[[0,164],[350,1],[350,0],[350,17]],[[0,7],[538,155],[538,3]],[[0,264]
,[546,2],[546,76]],[[0,94],[675,129]],[[0,293],[477,1],[477,0],[477,159]],[[0,2]
,[251,0],[251,17],[673,113],[251,11],[251,0]],[[0,324],[351,470],[351,10],[351,2
5]],[[0,62],[223,511],[223,1],[223,0],[223,454]],[[0,383],[497,2],[497,22],[497,
150]],[[0,462],[373,13],[373,245],[373,5]],[[0,181],[540,248],[540,3]],[[0,485]]
],[[[0,164],[516,1],[610,0],[516,17],[610,7],[516,155]],[[0,3],[197,264],[197,2]
,[197,76],[197,94]],[[0,129],[265,293],[265,1],[265,0],[265,159]],[[0,2],[101,0]
,[101,17],[101,113],[663,11],[101,0],[101,324],[101,470]],[[0,10],[67,25],[67,62

Page 6/9butterley.json

6/9

appendices 109

],[67,511],[67,1],[67,0],[67,454]],[[0,383],[465,2],[609,22],[465,150],[609,462]
,[465,13]],[[0,245],[1,5],[1,181],[1,248],[1,3],[1,485]]],[[[0,164],[217,1],[411
,0],[217,17],[411,7],[217,155],[411,3],[217,264]],[[0,2],[52,76],[52,94],[52,129
],[52,293],[52,1],[52,0]],[[0,159],[106,2],[509,0],[106,17],[106,113],[509,11],[
106,0],[106,324],[509,470],[106,10]],[[0,25],[180,62],[181,511],[180,1],[181,0],
[180,454],[181,383],[180,2],[181,22]],[[0,150],[346,462],[527,13],[346,245],[527
,5],[346,181]],[[0,248],[1,3],[1,485]]]]],

"dictionary": [["the",15.012],["of",9.78],["and",19.62],["in",9.324],["to",9.36]
,["a",6.672],["for",13.992],["was",19.896],["company",46.404],["Butterley",42.72
],["The",17.604],["at",9.552],["In",9.06],["were",24.54],["with",20.82],["by",12
.48],["iron",20.016],["works",29.46],["had",19.62],["two",17.976],["be",12.528],
["produced",48],["its",10.536],["Cromford",48.492],["Canal",30.216],["blast",23.
496],["it",5.928],["century",36.468],["around",36.456],["which",29.508],["steam"
,29.22],["steel",21.864],["they",20.82],["this",16.812],["that",18.708],["also",
20.424],["one",18.612],["his",13.932],["By",12.228],["Derbyshire",54.528],["pate
nted",43.764],["rolling",32.004],["largest",33.552],["furnace",37.752],["Codnor"
,38.052],["owned",33.9],["moved",33.552],["from",23.196],["coal",21.108],["into"
,18.684],["used",23.28],["who",21.372],["out",15.504],["but",15.696],["is",7.656
],["as",11.28],["an",12.948],["constructed",56.592],["Butterley,",46.188],["loco
motive",53.724],["repeatedly",53.148],["assistance",50.52],["furnaces,",45.828],
["following",46.188],["producing",51.456],["limestone",46.872],["company’s",54.3
36],["buildings",45.792],["building",41.184],["Bessemer",46.62],["Company,",52.5
12],["acquired",44.568],["Benjamin",46.8],["Railway.",43.464],["castings",40.044
],["drainage",46.068],["December",50.928],["Alleyne",37.56],["country",37.092],[
"estate.",32.22],["Company",49.044],["Goodwin",46.932],["process",37.728],["engi
nes",38.58],["Outram,",42.516],["entered",37.608],["foundry",38.892],["William",
39.624],["Outram",39.048],["engine",33.972],["ingots",29.952],["passed",35.088],
["method",37.368],["closed",31.572],["2009.",31.212],["down.",31.512],["There",2
7.672],["year.",26.016],["known",33.192],["order",27.432],["early",25.212],["jus
t",16.68],["Park",22.368],["1790",27.744],["been",24.66],["tons",20.244],["21st"
,21.36],["next",20.88],["When",30.732],["One",22.068],["has",17.556],["new",20.7
48],["Sir",13.704],["are",16.74],["It",5.664],["11",13.872],["&",8.304],["admini
stration,",75.444],["Constabulary.",70.488],["Revolutionary",68.376],["productiv
ity.",61.944],["Fortuitously,",60.504],["administrator",66.864],["encyclopedia",
66.588],["headquarters",66.732],["Engineering,",63.888],["subsequently",64.188],
["manufacturer",66.864],["locomotives,",61.8],["Photographic",66.888],["consider
able",64.308],["constructing",60.048],["engineering",60.024],["Wirksworth.",61.6
68],["conditions.",54.528],["Aggregates.",61.968],["prosperity,",53.916],["Beres
ford’s",55.548],["substantial",53.124],["established",55.812],["manufacture",62.
652],["Revolution.",55.152],["partnership",57.384],["constables,",55.476],["disc
overed.",57.504],["Bullbridge,",54.48],["Portsmouth.",58.572],["Commission.",64.
356],["architects,",50.484],["Engineering",60.42],["underground",65.604],["Wikip
edia,",56.352],["remarkable",57.564],["specialist",45.348],["depression",54.288]
,["undertaken",56.388],["Bullbridge",51.012],["announcing",59.4],["reputation",5
1.12],["demolition",52.608],["steelwork.",50.184],["production",54.156],["licens
ees.",47.532],["confronted",53.724],["Demolition",53.916],["considered",54.972],
["downturn\".",56.292],["Caledonian",58.548],["structural",45.708],["Beresford,"
,51.084],["Nottingham",59.796],["dwellings.",50.532],["vulnerable",52.356],["Mil
lennium",55.392],["businesses",52.284],["brickworks",54.228],["demolished",57.33
6],["increasing",51.948],["Napoleonic",58.86],["Normandy.",58.212],["machinery",
52.644],["scheduled",50.04],["Middleton",50.76],["extensive",45.588],["technique
",48.3],["railways,",45.768],["providing",48.408],["Alleyne’s",45.492],["necessa
ry",49.188],["ironworks",49.476],["including",46.08],["Midlands.",50.292],["lime
kilns",42.912],["hexagonal",53.424],["establish",43.284],["Pinchbeck",50.196],["
Following",48.576],["£4.7",24.276],["thousands",50.616],["exploited",45.996
],["wagonways",60.408],["financial",43.248],["installed",41.34],["invention",45.
48],["reconnect",48.42],["intention",43.02],["Spinnaker",51],["factories",42.348
],["betrothed",47.784],["Telford’s",42.588],["companies",54.108],["reversing",46
.068],["interests",40.224],["Conquest,",50.316],["economic",47.928],["Brunton,",
42.156],["Godstone",48.612],["offices,",35.352],["business",41.82],["Outram’s",4
6.98],["through.",42.396],["supplied",42.336],["domestic",44.04],["property",42.
792],["Kingdom.",49.008],["wagonway",55.8],["increase",41.82],["starting",37.236
],["producer",45.54],["\"without",41.592],["designed",45.648],["country.",40.56]
,["included",42.624],["provided",44.952],["Designed",46.956],["Croydon,",47.328]
,["weapons.",48.648],["daughter",45.372],["Allowing",44.844],["engineer",44.04],

Page 7/9butterley.json

7/9

110 appendices

["million.",36.852],["Duffield",38.964],["Products",42.228],["expanded",50.544],
["company,",49.872],["declared",43.896],["thousand",46.008],["section.",37.908],
["monument",52.32],["sections",39.048],["bridges,",41.196],["exposed.",45.48],["
Counties",43.224],["Merstham",49.92],["projects",39.048],["overhead",47.364],["d
erelict",36.48],["grandson",47.856],["Falkirk,",36.84],["quarries",41.424],["pre
stige",39.792],["rollers.",34.164],["railways",42.3],["manager,",49.02],["Novemb
er",53.04],["outcrops",42.768],["Jessop’s",40.5],["dredgers",44.748],["boatlift"
,34.596],["Vauxhall",44.64],["Scotland",43.38],["Pentrich",39.78],["complete",44
.904],["William,",43.092],["licenses",38.208],["original",39.06],["employed",49.
212],["managers",50.16],["Warrior.",44.628],["Alleyne.",41.028],["arrived",36.01
2],["Railway",39.996],["allowed",39.624],["charge\"",40.236],["Hibberd",41.232],
["Thames.",41.556],["workers",39.528],["stating",33.024],["Origins",37.788],["No
table",40.644],["ransack",39.276],["Ripley,",34.032],["through",38.928],["record
s",37.332],["Francis",35.796],["winding",40.596],["surplus",35.052],["trading",3
6.42],["station",32.844],["London,",40.272],["Jessop.",36.036],["people.",37.668
],["Wright,",38.868],["digging",39.024],["method.",40.836],["Pancras",39.672],["
Jessop,",36.036],["heaters",36.36],["Ferrers",34.644],["Ichabod",40.848],["corre
ct",34.224],["working",40.836],["machine",42.624],["changed",43.704],["founded",
41.4],["second−",39.168],["connect",38.352],["Pinxton",36.768],["Erewash",42.492
],["existed",34.788],["Falkirk",33.372],["factory",34.644],["bearing",39.396],["
patents",35.844],["Aditnow",42.408],["license",33.6],["protect",34.272],["farmer
s",38.064],["Midland",42.216],["another",38.652],["wealthy",38.772],["masters",3
8.04],["person.",37.572],["event,",29.676],["rebels",29.868],["Crich,",30.228],[
"joined",31.38],["pumps.",36.768],["banker",35.232],["George",38.424],["called",
29.82],["During",34.32],["second",35.184],["number",38.364],["formed",35.724],["
locks.",28.056],["bought",35.112],["Barlow",35.064],["better",28.356],["museum",
41.16],["Canal,",33.684],["masses",35.556],["spans.",32.304],["Wheel,",36.444],[
"Middle",35.124],["Hanson",38.412],["goods,",34.368],["taking",31.08],["latter",
25.164],["United",32.76],["French",33.6],["mostly",31.644],["Norman",42.264],["h
ighly",30.732],["cranes",32.916],["helped",33.996],["agent,",31.812],["sacked",3
4.644],["Canal.",33.684],["listed",25.728],["proven",34.836],["output",31.2],["1
0,000",38.148],["funded",34.92],["invest",28.008],["Hilt’s",24.624],["decade",37
.02],["family",30.696],["works.",32.928],["placed",33.828],["having",34.272],["J
essop",32.568],["lines,",25.92],["tunnel",30.096],["person",34.104],["happen",38
.424],["Engine",34.368],["amount",37.656],["miners",33.204],["senior",30.48],["w
ithin",30.144],["vacant",33.132],["Tunnel",32.688],["nearby",35.496],["spread",3
4.692],["exists",26.868],["period",32.94],["rolled",28.548],["Quarry",36.984],["
little",19.992],["Bridge",32.868],["flight",24.828],["famous",36.408],["become",
39.36],["merely",33.6],["nearly",31.488],["roller",26.088],["ground",36.444],["o
ffice",27.276],["Thomas",38.712],["broke",28.764],["Hall,",23.568],["owner",31.4
4],["1856,",31.212],["train",23.088],["later",22.284],["Among",37.056],["Brick",
24.516],["load−",26.472],["1817,",31.212],["rails",21.204],["Ages.",29.028],["ta
ken",27.228],["after",22.92],["Park,",25.836],["faced",27.792],["Road.",29.808],
["\"This",24.672],["place",27.156],["fight",22.164],["River",24.972],["1793,",31
.212],["1980s",32.352],["least",22.68],["metal",27.276],["three",25.08],["Early"
,25.608],["Bulb,",25.368],["Frith",22.104],["1790.",31.212],["1957,",31.212],["a
llow",27.096],["Union",30.108],["4,500",31.212],["using",26.736],["where",30.816
],["1950s",32.352],["1812,",31.212],["Forth",25.536],["quick",26.7],["Park.",25.
836],["urns.",24.708],["over.",25.356],["being",28.512],["canal",27.576],["John,
",26.844],["1960s",32.352],["Tower",30.636],["gates",26.676],["2009,",31.212],["
steep",25.872],["Scoop",31.368],["wharf",29.076],["well−",23.784],["1874.",31.21
2],["enter",25.08],["Clyde",28.932],["until",21.012],["Horse",29.256],["stood",2
7.12],["site.",19.86],["iron,",23.484],["since",25.08],["After",24.684],["1965."
,31.212],["built",21.408],["years",27.156],["ships",25.212],["sons,",25.44],["sc
ene",27.888],["Wars,",31.284],["March",32.664],["1870,",31.212],["array",27.576]
,["third",23.088],["2013.",31.212],["split",19.872],["based",30.48],["Henry",30.
252],["wheel",29.268],["Steam",31.056],["mines",28.992],["month",31.116],["work.
",28.32],["risen",24],["Wars",27.816],["lock",19.98],["free",19.224],["size",19.
452],["them",24.216],["1863",27.744],["1859",27.744],["then",21.288],["1796",27.
744],["died",22.248],["With",24.528],["high",22.26],["1805",27.744],["1874",27.7
44],["Peak",24.012],["vast",19.5],["part",20.436],["have",24.144],["1814",27.744
],["Lord",21.984],["Ltd.",17.64],["beam",28.404],["RMJM",31.284],["From",25.584]
,["240−",24.792],["Hole",23.1],["back",24.18],["peak",24.744],["four",20.136],["
over",21.888],["took",21.384],["most",23.172],["sold",20.424],["1968",27.744],["
This",19.404],["area",23.412],["work",24.852],["seen",22.596],["1861",27.744],["
time",20.988],["long",22.08],["lime",20.772],["name",28.008],["yard",23.364],["f

Page 8/9butterley.json

8/9

appendices 111

oot",19.14],["Hall",20.1],["near",23.016],["home",27.816],["Pode",24.948],["East
",20.412],["shed",23.412],["who,",24.84],["Iron",19.752],["fell",14.484],["many"
,27.96],["1830",27.744],["land",22.284],["year",22.548],["kill",13.92],["use,",2
0.076],["Gang",28.968],["20th",23.028],["They",23.412],["both",22.308],["John",2
3.376],["once",23.904],["1793",27.744],["High",24.084],["mill",17.58],["Top",18.
624],["any",18.756],["HMS",24.756],["bar",17.556],["few",17.772],["pig",16.38],[
"get",15.396],["did",16.392],["re−",14.052],["mid",18.924],["not",15.636],["per"
,16.74],["off",13.08],["May",22.692],["all",12],["ore",16.548],["it.",9.396],["U
SA",22.908],["hot",15.636],["tea",15.408],["own",21.372],["Air",15.696],["put",1
5.696],["On",16.212],["up",12.816],["Co",14.412],["on",12.756],["de",12.528],["F
.",9.156],["C.",11.4],["St",9.324],["5,",10.404],["At",11.316],["A",8.436],["5",
6.936]],
"deltasdict": [0,3.468,5.46,6.908,6.502,6.384,7.572,4.524,11.112,7.556,5.139,4.3
44,3.942,5.161,4.892,4.092,5.208,6.308,3.956,7.56,5.84,6.7,9.276,9.261,3.901,5.8
29,7.503,6.054,4.446,6.066,8.394,5.316,5.313,9.978,4.494,5.787,8.034,4.89,10.848
,8.724,7.848,6.864,5.292,8.916,4.68,10.076,12.578,12.502,10.586,10.664,12.146,15
.472,9.538,4.858,7.944,6.262,8.762,4.986,4.682,8.755,5.743,9.166,7.052,5.878,6.5
93,4.869,6.248,9.378,7.782,4.755,7.772,9.196,4.637,9.494,4.641,8.196,9.898,6.359
,4.601,4.073,4.176,4.069,6.296,7.706,5.234,6.894,8.472,4.025,4.169,12.49,4.421,5
.369,5.496,3.642,6.848,4.512,4.318,5.902,5.935,6.811,5.033,6.905,6.521,6.124,7.4
22,8.146,5.569,5.962,6.629,4.716,5.697,4.373,5.586,8.825,8.312,5.488,5.076,5.984
,6.547,7.458,3.999,4.389,6.665,5.083,4.253,3.989,7.914,4.591,8.043,5.792,4.468,6
.144,5.58,4.75,9.08,6.74,8.6,8.9,11.844,11.028,12.864,10.212,13.056,5.746,4.994,
7.066,4.968,4.296,6.242,4.066,8.482,7.006,7.212,6.312,9.754,6.828,5.952,6.444,6.
638,11.28,7.354,5.784,5.174,5.786,6.166,6.036,4.598,5.666,8.17,5.09,9.05,11.838,
13.413,18.762,16.503,14.082,16.389,10.071,10.253,10.941,10.703,10.702,10.116,11.
205,12.333,10.231,11.691,12.847,12.521,12.919,10.613,15.384,15.387,10.491,13.087
,13.587,12.093,12.969,12.255,12.033,10.437,17.472,17.997,14.433,5.853,6.288,9.53
5,7.387,7.679,4.665,7.678,7.531,7.532,6.579,6.261,7.267,4.683,5.883,7.555,5.095,
4.671,7.193,6.345,6.342,14.55,7.784,8.779,7.783,7.049,4.605,7.977,5.817,4.644,5.
634,6.355,4.725,7.789,3.916,3.917,5.841,5.641,5.642,7.737,9.201,10.95,7.761,10.8
9,7.751,9.225,4.698,6.699,7.721,7.608,7.601,4.449,6.791,4.413,6.783,4.028,4.027,
8.201,6.775,8.488,8.489,6.969,8.595,6.851,5.121,5.901,6.821,6.504,7.311,6.713,5.
532,8.934,8.143,4.903,4.712,4.711,4.707,6.433,6.434,8.943,9.859,8.274,7.248,4.91
7,7.437,7.446,8.542,8.543,5.481,8.823,5.373,9.828,5.272,5.273,8.604,4.377,4.578,
9.024,5.682,7.452,8.309,3.992,8.835,3.991,8.214,9.009,5.088,6.029,6.951,4.586,7.
362,4.585,6.531,7.329,9.924,8.717,6.682,6.683,6.141,7.347,5.064,8.226,8.46,9.86,
7.79,7.75,5.43,4.86,7.05,6.24,4.62,8.73,10.5,6.79,6.84,6.85,12.496,17.308,22.128
,14.004,14.804,26.672,16.312,13.634,11.148,10.892,11.132,11.944,13.544,15.956,11
.158,14.268,21.108,10.084,10.864,10.068,26.464,10.172,16.252,10.846,10.016,13.00
4,14.672,19.528,10.744,15.544,10.332,17.812,12.828,17.864,13.272,10.492,12.292,1
8.952,18.148,14.452,12.806,13.896,14.204,15.008,13.252,24.344,11.492,13.196,12.2
64,14.476,12.136,14.516,10.436,11.366,14.416,11.648,13.352,15.044,14.836,13.864,
13.224,14.436,17.356,12.172,7.922,8.732,4.664,7.932,7.274,6.374,7.174,4.684,5.88
4,8.852,6.448,9.164,9.646,9.652,7.588,14.59,5.822,6.236,9.768,8.186,5.624,6.228,
4.754,7.032,4.638,4.642,7.028,6.358,7.296,9.794,10.36,12.94,7.736,7.726,10.94,5.
402,9.356,4.602,7.748,9.244,9.218,9.118,21.02,9.116,9.124,17.36,8.446,12.28,8.36
8,6.784,4.026,5.212,18.04,8.336,15.26,5.362,8.396,4.402,15.42,6.878,8.588,15.66,
7.306,9.864,7.406,3.694,4.824,5.138,8.556,6.522,6.842,7.432,4.808,8.944,9.756,5.
698,6.554,4.374,8.824,5.978,7.348,8.836,8.832,22.32,3.998,6.952,7.364,7.468,7.32
8,4.254,8.042,17.18,6.546,6.544,6.048,6.148,17.06,8.32,13.5,9.48,9.42,7.96,5.34,
5.37,4.39,4.07,5.57,6.02,4.87,6.14,6.22,6.28,9.02,6.31,6.58,6.88,6.81,5.3,5.2,8.
4,9.1,17.448,21.486,15.096,13.635,19.266,13.566,16.074,26.028,11.952,14.256,28.8
12,11.157,18.114,16.992,29.196,29.082,16.158,20.406,30.048,10.845,31.314,10.002,
10.206,12.312,19.422,10.338,19.686,19.404,12.642,11.538,14.586,14.589,13.968,23.
352,13.974,15.774,12.807,10.482,18.918,10.668,23.952,12.252,14.334,23.976,18.996
,11.367,15.246,16.686,10.698,33.48,7.923,5.747,9.522,7.275,4.993,6.375,7.173,20.
64,7.067,27.87,9.645,6.241,8.171,7.128,8.187,3.902,5.823,7.007,20.97,9.795,7.872
,7.725,5.403,27.21,7.818,9.219,4.067,9.117,11.73,31.02,8.483,5.361,4.401,6.879,8
.166,7.305,6.309,7.407,3.693,22.05,9.049,6.324,6.843,9.755,6.637,6.555,5.979,7.3
55,5.785,5.173,6.167,5.089,4.597,5.665,8.445,9.612,21.9,13.8,25.8,9.72,6.48,42.7
56,10.252,53.544,53.028,10.232,12.848,10.612,13.088,37.392,54.684,7.388,9.536,7.
268,8.754,5.096,5.742,7.192,6.594,7.048,6.356,12.92,4.074,4.422,6.776,12.52,5.93
4,5.034,6.712,6.906,8.144,4.904,5.162,8.826,8.308,6.666,6.028,5.082,8.716,7.72,3
.99,45.9,4.17,4.59,8.78,6.63,6.82,7.6,8.2,−0]
}

Page 9/9butterley.json

9/9

112 appendices

B
S A M P L E L AY O U T S

All the layouts in this section are of the author’s 2011 paper, Reflowable
Documents Composed from Prerendered Atomic Components [PBB11].

All the Malleable Document System layouts use the same selection
of galley renderings as were used in Rendering D of the user study —
see Table 2 on page 79.

113

114 appendices

b.1 layout by the malleable document system

b.1.1 Rendered by Mozilla Firefox on a PC

[PBB11] laid out by the malleable document system, running in Moz-
illa Firefox on a PC. The page size has been selected to resemble that
of A4 paper in a portrait orientation.

appendices 115

[PBB11] laid out by the malleable document system, running in
Mozilla Firefox on a PC. The page size has been selected to resemble
that of A4 paper in a landscape orientation.

116 appendices

[PBB11] laid out by the malleable document system, running in
Mozilla Firefox on a PC. The page size has been selected to resemble
that of an ebook reader in a portrait orientation.

appendices 117

b.1.2 Chrome on an Android Phone

[PBB11] laid out by the malleable document system, running in
Chrome on an Android phone. This example shows a point size
that is a little on the small side, but is still readable.

118 appendices

[PBB11] laid out by the malleable document system, running in
Chrome on an Android phone, in portrait and in landscape. This
example uses a point size that is likely to be readable by a greater
range of people. For brevity’s sake, only the first three pages of each
rendering are shown.

appendices 119

b.1.3 Safari on an iPad

[PBB11] rendered in Safari on a iPad in portrait orientation:

120 appendices

[PBB11] rendered in Safari on a iPad in landscape orientation:

appendices 121

b.2 other systems

b.2.1 LATEX

[PBB11] as rendered by LATEX. The layout is very similar to that pro-
duced by the malleable document system (see B.1.1) though LATEX
favours placing floats at the top of columns, rather than directly at
their logical position.

122 appendices

b.2.2 html

html version of [PBB11], as rendered by Mozilla Firefox, scaled to fit
multiple screen sizes. Though html can stretch to any screen size, it
tends to produce typographically inferior results, for example lines
that are too long, or line breaking that results in extremely uneven
spacing between adjacent lines.

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. [Bri08] classicthesis is available for both LATEX
and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of 15th May 2015 (azp-thesis 1.0).

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	0 Foreword and Overview
	Motivation
	1 The rise of ebooks
	1.1 Devices
	1.2 ``Good'' typesetting
	1.2.1 Hyphenation and Line-Breaking
	1.2.2 Microtypographical Techniques

	1.3 Paradigms of Document Representation
	1.3.1 Fixed Formats
	1.3.2 Flowable Formats

	1.4 Limitations of Current Formats
	1.5 Summary
	1.6 Contributions of this Thesis
	1.6.1 Scope
	1.6.2 Limits

	Implementation
	2 The Malleable Document
	2.1 Historical Interlude
	2.1.1 The use of Galleys in Typesetting

	2.2 Galleys as a Reflow Tool
	2.3 Multiple Galley Renderings
	2.4 A Simple Implementation
	2.4.1 The cog Model
	2.4.2 The Source Document
	2.4.3 pdfdit
	2.4.4 Acrobat Plugin

	2.5 Included galley renderings
	2.6 The Best Galley?
	2.7 Efficiency
	2.8 Summary

	3 Floatable Blocks
	3.1 Document Generation
	3.2 The Viewer
	3.2.1 Floats with a Queue
	3.2.2 A Grid-Based Layout

	3.3 Summary

	4 Dealing with File Bloat
	4.1 Rationale
	4.2 Implementation
	4.2.1 Pointers into the Source Text
	4.2.2 Use of a Dictionary
	4.2.3 Further Compression Possibilities
	4.2.4 A Toy Example

	4.3 Results
	4.3.1 Discussion

	4.4 Summary

	Analysis
	5 Analysis
	5.1 Quantitative
	5.1.1 Fixed Document Formats
	5.1.2 Flowable Document Formats
	5.1.3 Malleable Documents
	5.1.4 Handling of Floats

	5.2 Qualitative
	5.2.1 Placement of Floats
	5.2.2 Measures of Aesthetic Quality

	5.3 User Study
	5.3.1 Participants
	5.3.2 Methodology
	5.3.3 Preamble
	5.3.4 Questions
	5.3.5 Discussion of Results
	5.3.6 User Comments

	5.4 Summary

	6 Final Thoughts
	6.1 Contribution
	6.2 System Extensions
	6.2.1 Improved Support for Floats
	6.2.2 Improved Vertical Layout
	6.2.3 Postponing Layout
	6.2.4 Moving Nearer to the Metal

	6.3 Open Research Questions
	6.4 Concluding Remarks

	References
	Glossary

	Appendices
	A A Sample Malleable Document
	B Sample Layouts
	B.1 Layout by the Malleable Document System
	B.1.1 Rendered by Mozilla Firefox on a PC
	B.1.2 Chrome on an Android Phone
	B.1.3 Safari on an iPad

	B.2 Other systems
	B.2.1 LaTeX
	B.2.2 html

	Colophon

