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Abstract 
 

The aim of the work presented in this thesis was to investigate different mechanical 

and chemical pre-treatments which can dramatically change the properties of native 

cellulose and add alternative routes to structure formation. Ball milled cellulose, 

which had a reduced crystallinity, degree of polymerisation and degradation 

temperature, was rehydrated in excess water resulting in recrystallisation. Fully 

amorphous samples recrystallised to the more thermodynamically stable type II 

polymorphic crystal structure. Flash differential scanning calorimetry (DSC), which 

allows thermal transitions to be scanned at much higher rates than conventional 

DSC, was able to register a glass transition temperature for amorphous cellulose. The 

next stage of the study focussed on the production of freeze dried galactomannan 

foams. Cellulose fibres provided reinforcement to the foams. The level of 

reinforcement was related to fibre content, size, crystallinity and surface roughness. 

Microfibrillated cellulose (MFC) provided the greatest reinforcement due to its much 

higher surface area and fibrillated structure. Extrusion was found to be a useful 

alternative to homogenisation for the production of MFC and to create foams using 

alternative processing to the freeze drying routes. 

A novel molten salt hydrate, LiCl/urea/water, was found to swell native cellulose and 

reduce its crystallinity. A weak gel-like structure was formed at ambient temperature. 

Micro DSC results showed that this structure was melted out at 60oC but the process 

was reversible indicating hydrophilic to hydrophobic conformational changes on the 

surface of the cellulose fibres, although these were likely to be dependent on the 

celluloses having a low degree of polymerisation. In these solvent conditions starch 

granules were eroded from the outside rather than being swollen as has been found 
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for some ionic liquids and underwent total dissolution in LiCl/urea/water. Fenugreek 

and xyloglucan, which are both highly branched, were found to increase in viscosity 

in LiCl/urea/water relative to water, possibly due to the breakage of all 

intramolecular associations whereas the viscosity of konjac which is predominantly 

unbranched did not change. Locust bean gum (LBG) had a lower viscosity in 

LiCl/urea/water compared to water due to the disruption of aggregates. Confocal 

microscopy showed that fenugreek and LBG are able to bind to cellulose in water, 

however, the conformational change of fenugreek in these solvent conditions 

inhibited it from binding to cellulose in LiCl/urea/water whereas conformational 

change allowed xyloglucan to bind to cellulose in LiCl/urea/water whilst it was unable 

to bind in water. Konjac did not bind to cellulose in either solvent system. The pre-

treatments shown in this work will enable the creation of novel cellulose composites.  
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1.1 Introduction 

Cellulose is the main building block of the plant cell wall. Cellulose fibres have been 

used for millennia to make rope, textiles and reinforce mud bricks. Cellulose has 

found a renewed interest in ‘green’ composite materials. It is considered to be an 

almost inexhaustible source of raw material with a total annual biomass production 

of about 1.5 x 1012 tons (Klemm et al., 2005). 

Composites are a combination of a strong reinforcing, load carrying material 

embedded in a matrix which acts as a binder and maintains the position and 

orientation of the reinforcement material. While both components retain their own 

chemical and physical properties, together they produce a material with unique 

qualities they would be unable to produce on their own. There are many natural 

composites including wood, bone and teeth (Fratzl and Weinkamer, 2007). There are 

many historical examples of composites such as reinforced mud walls, concrete and 

combinations of wood, bone and animal glue. The first major industrial composites 

were glass fibre reinforced resins, invented in the 1930s. This provided a strong, light 

weight alternative to wood and metal to build boats and aircraft. By the 1970s, as 

better plastic resins and stronger reinforcing fibres, including aramid fibre (better 

known as Kevlar, developed by DuPont) and carbon fibre were developed, new 

composites were invented. Recently, the push towards more environmentally 

friendly materials and processes has resulted in a large increase into the research of 

bio-based composites. 

One of the main focuses of bio-based composites is natural fibres. Cells of higher 

plants are able to withstand an internal osmotic pressure of between 0.1 and 3.0 

MPa (1MPa = 145 pounds per square inch) (Somerville et al., 2004). The pressure 

rigidifies the cells by creating tension in the walls. Despite the large variety in cell wall 
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structure among all types of plants, a high cellulose content is common to all. 

Typically 35-50% of plant dry weight is cellulose. Cellulose is normally embedded in a 

matrix primarily composed of hemicelluloses and lignin which comprise 20-35% and 

5-30% respectively of plant dry weight (Lynd et al., 2002). In a few cases such as 

cotton bolls, cellulose is present in a nearly pure state. Hemicelluloses are comprised 

of several different polysaccharides such as xylans, xyloglucans, glucomannans, 

galactomannans and galactoglucomannans. (Spencer and Maclachl, 1972, Herth and 

Meyer, 1977). Lignin is a complex amorphous polymer consisting mainly of aromatic 

units such as guaiacyl, syringyl and phenylpropane (Moran et al., 2008). Plant cell 

walls are comprised of the middle lamella and the primary and secondary cell walls. 

The primary cell wall is formed while the cell is growing. It defines not only the rate 

of growth of the plant cells but also its size and shape. The primary cell wall is 

comprised of 90% polysaccharide and 10% proteins (glycoproteins)  (McNeil et al., 

1984). The secondary cell wall is formed after the cell is fully grown and is much 

thicker, more rigid and stronger than the primary cell wall. The middle lamella is the 

outermost layer, comprised mainly of pectins which glue the adjacent plant cells 

together. The degree of polymerisation (DP) (Spencer and Maclachl, 1972) and the 

degree of crystallinity of cellulose are also higher in the secondary cell wall. 

 As well as solid composites such as films and foams there is also a growing interest in 

using plant cell wall material to create soft solid structures, particularly in the food, 

cosmetics and pharmaceutical industries driven by their low cost, sustainability and 

inferred naturalness (Foster, 2011).  There are also many health benefits; a high 

intake of dietary fibre, traditionally defined as the portions of plant foods that are 

resistant to digestion by human digestive enzymes (i.e. polysaccharides and lignin), 

appears to significantly lower the risk of developing coronary heart disease, stroke, 

hypertension, diabetes, obesity and certain gastrointestinal diseases (Anderson et al., 
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2009). Recommended intakes for healthy adults are between 20-35 g/day (Marlett et 

al., 2002). However many people consume very low levels, for instance the majority 

of people in the United States consume less than half the recommended levels of 

dietary fibre daily (Park et al., 2005). It would therefore be beneficial to increase the 

use of cellulose and other cell wall polysaccharides in food systems. 

1.2 Plant Cell Wall Polysaccharides 

1.2.1 Cellulose 

 

Figure 1.1 Chemical structure of cellulose. 

The French chemist Anselm Payen in 1838 first described cellulose as a resistant 

fibrous solid that remains behind after treatment of various plant tissues with acids 

and ammonia. He determined the molecular formula to be C6H10O5, an isomer of 

starch. Cellulose has since been established to be a high molecular weight 

homopolymer of β-1,4-linked anhydro-D-glucose units. Due to the bond angles of the 

acetyl oxygen bridges, every second anhydroglucose ring is rotated 180o in the plane. 

This means that the repeating unit of cellulose is a dimer of glucose, cellobiose 

(Figure 1.1). The structure is stabilised by an intramolecular hydrogen bond network. 

This network makes cellulose a relatively stable polymer, which does not readily 

dissolve in aqueous solvents and has no measurable melting point (Kroonbatenburg 

et al., 1986). Each chain possesses directional asymmetry with one end having a 

reducing functional group and the other end non reducing (Habibi et al., 2010). 
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The size of the cellulose molecule is often described by its DP. The DP strongly 

depends on the source of the cellulose (Collinson and Thielemans, 2010). The degree 

of polymerization is also dependant on the processing and extraction method. 

Naturally, cellulose does not occur as an isolated molecule but is found in the form of 

fibrils. Cellulose is synthesised in the cell as individual molecules which undergo self-

assembly at the site of biosynthesis (Brown and Saxena, 2000). Approximately 36 

molecules are then assembled into larger units known as elementary fibrils 

(protofibrils) (Habibi et al., 2010). These are then packed into larger units known as 

microfibrils, which are further assembled into the large macroscopic cellulose fibres 

(Figure 1.2). Microfibrils have cross sectional dimensions ranging from 2 to 20 nm 

depending on the source of cellulose. An important feature of cellulose is its 

crystalline nature, which means the cellulose chains have a structured order. The 

component molecules of each individual microfibril are packed so tightly that it 

prevents penetration by enzymes and even small molecules such as water. The 

supramolecular structure of the cellulose fibre is crystalline but there are some 

regions that are amorphous as well as some irregularities such as kinks and twists of 

the microfibrils and voids such as surface micropores. The effect of structural 

heterogeneity is that the macroscopic fibres are at least partially hydrated by water 

and there is some penetration by larger molecules such as enzymes (Stone et al., 

1969). 

 

Figure 1.2 Steps in the assembly of native cellulose. Adapted from Delmer and Amor (1995). 
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In the ordered crystalline regions the cellulose chains are tightly packed together and 

held in place by strong hydrogen bonding (in-plane) and Van der Waals interactions 

(between planes). The molecular orientation in the cellulose chains, and therefore 

their packing arrangement, can vary widely depending on the source, method of 

extraction or treatment of the cellulose, resulting in a variety of crystal structures or 

allomorphs. The allomorph most commonly found in nature is cellulose I. Native 

cellulose is composed of two sub-allomorphs Iα and Iβ. Cellulose Iα has a one chain 

triclinic structure and is predominant in primitive organisms. Iβ has monoclinic unit 

cells and is predominant in higher plants (Collinson and Thielemans, 2010). Native 

cellulose has parallel chain alignment. This refers to the chain direction as regards to 

the reducing and non-reducing ends of the polymer. Regenerated or mercerised 

cellulose II has anti-parallel chains (Langan et al., 1999) in a two chain unit cell. 

Cellulose III can be generated by adding liquid ammonia to cellulose I or cellulose II 

producing cellulose III1 and III2 respectively. Heat treatment of cellulose III1 and III2 

leads to cellulose IV1 and IV2  (Zugenmaier, 2001). These can then be reverted back to 

their original cellulose. Whilst cellulose I is the most commonly found form in nature 

it is the least thermodynamically stable, with cellulose III being the most stable form 

(Collinson and Thielemans, 2010).  

1.2.1.1 Cellulose extraction 

Cellulose extraction is generally difficult as it does not melt and is not soluble in 

either water or common organic solvents. This is due to the hydrogen bond network 

and its partially crystalline structure. Currently the most important industrial scale 

extraction process of cellulose is the viscose process, which is more than 100 years 

old. Cellulose, often from wood pulp or cotton linters is treated with sodium 

hydroxide and then carbon disulfide. The resulting product, dissolved in sodium 

hydroxide, is cellulose xanthogenate forming a thick solution called viscose. The 
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viscose is then forced through very small openings into an acid bath which coagulates 

the regenerated cellulose. Depending on the size of the openings, fibres (rayon) or 

films (cellophane) can be produced. The viscose process has some environmental 

concerns due to the hazardous by-products such as CS2, H2S and heavy metals. The 

cuprammonia process is another route for producing regenerated cellulose but also 

has environmental problems (Fink et al., 2001) and is no longer widely used. 

An alternative to the viscose method is the Lyocell process. Lyocell was first 

manufactured in 1987 and has been produced commercially since 1991. It is a much 

more environmentally friendly process (Fink et al., 2001): 

 Preparation of a homogenous concentrated solution (dope) of the starting 

cellulose (dissolving pulp) in an N-methylmorpholine-N-oxide (NMMO) - 

water mixture, 

 Extrusion of the highly viscous spinning dope at elevated temperatures 

through an air gap into a precipitation bath (dry jet-wet spinning process), 

 Coagulation of the cellulose fibre in the precipitation bath, 

 Washing, drying and post treatment of the cellulose fibre, 

 Recovery of the NMMO from the precipitation and washing baths. 

 

A major benefit of the Lyocell process is that it is capable of dissolving cellulose 

without derivitisation, complexation or special activation (Franks, 1980). 

Research into Ionic liquids has seen enormous growth recently due to the increased 

interest in green chemistry. Ionic liquids are often referred to as ‘green’ solvents (El 

Seoud et al., 2007). They are organic salts that exist as liquids at relatively low 

temperatures (<100 oC) (Seddon, 1997). Ionic liquids are also known as ionic fluids, 

molten salts, fused salts, or neoteric solvents. Some studies have shown that Ionic 
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liquids such as 1-butyl-3-methylimidazolium chloride (BMIMCl or [C4mim]Cl) and 1-

allyl-3-methylimidazolium chloride (AMIMCl) can dissolve cellulose, whether it is 

refined or natural, without causing derivation (Zhu et al., 2006). Microwave heating 

can significantly accelerate its dissolution (Varma and Namboodiri, 2001). Solutions 

containing up to 25% cellulose can be obtained by using [C4mim]Cl as the solvent at 

70oC (heated by microwave pulses), although compositions between 5 and 10% are 

more readily prepared (Swatloski et al., 2002). Cellulose can then be precipitated 

from the Ionic liquid by adding water, ethanol or acetone. 

Recently, Tatarova et al. (2010) have shown that mixed solutions of LiCl, urea and 

water, exert a swelling effect on regenerated cellulosics due to the propensity for 

formation of Li-cellulose coordination complexes where urea acts as a co-solvent for 

the LiCl. This may prove a useful alternative to alkali swelling treatments.  

1.2.1.2 Nano Cellulose 

Within the last 15 years there has been a growing interest in nano cellulose. There 

are two major classes of nano cellulose; micro (or nano) fibrillated cellulose and 

cellulose nanowhiskers (nanocrystals) although there are many differing 

terminologies which can lead to confusion. Both have at least one dimension in the 

nano scale (1-100nm). The two classes of nano cellulose are distinguished by their 

method of preparation. Cellulose nanowhiskers are prepared using strong acid while 

nanofibrillated cellulose is mainly prepared by mechanical homogenisation. 

1.2.1.3 Microfibrillated cellulose 

Microfibrillated cellulose (MFC) (also termed nanofibrillated cellulose or NFC) can be 

extracted from cellulose fibrils using a variety of mechanical processes including high-

pressure homogenisers, grinders/refiners, cryocrushing, high intensity ultrasonic 

treatments and microfluidisation (Moon et al., 2011). These processes generate high 
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shear which cleaves the cellulose fibrils along their longitudinal axes resulting in a 

greatly increased surface area. The long, flexible fibrils have lateral dimensions 

between 10-100 nm and length generally in the micrometre scale and consist of both 

the crystalline and amorphous domains (Andresen et al., 2006). The long fibrils result 

in a web like structure (Siqueira et al., 2009). The elastic modulus of single 

microfibrils from tunicate (a marine invertebrate) has recently been measured using 

atomic force microscopy with values between 145-150 GPa (Iwamoto et al., 2009). 

MFC was first extracted from wood by Turbak et al. (1983) and Herrick et al. (1983). 

The high energy requirements, however, meant that there was no large scale 

production of MFC. The energy required to produce MFC in the early 1980s was as 

high as 30,000 kWh/tonne. Using different pre-treatment methods this has been 

reduced by as much as 98% to 500 kWh/tonne (Aulin et al., 2011). Pre-treatments 

that have been developed include acid hydrolysis, enzymatic hydrolysis, pre-

beating/grinding, TEMPO oxidation and carboxymethylation (Klemm et al., 2011, 

Paakko et al., 2007, Spence et al., 2011).  

Due to cellulose’s hygroscopic nature, one of the major problems encountered with 

MFC is hornification (agglomeration upon drying). This results in the MFC having to 

either be used in a never dried state or chemically modified. The use of never dried 

suspensions is ultimately undesirable due to high shipping costs, the need for large 

storage facilities and its propensity for bacterial spoilage (Eyholzer et al., 2010a). 

Different routes that have been investigated to produce a re-dispersible powdered 

MFC include carboxymethylation, grafting of acetyl moieties or silylation (which also 

improves compatibilisation with hydrophobic matrices) (Eyholzer et al., 2010b). All 

these methods attempt to limit hydrogen bonding between fibrils by introducing 

steric hindrance or electrostatic groups. The original MFC structure may also be 
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preserved using a variety of cryo techniques such as high pressure freezing 

(vitrification), freeze fracturing or freeze etching (Eyholzer et al., 2010c). 

1.2.1.4 Cellulose Nanowhiskers 

Cellulose nanowhiskers have many appealing intrinsic properties such as their nano-

scale dimensions, high surface area, unique morphology, low density and high 

mechanical strength (the axial Young’s modulus is theoretically stronger than steel 

and similar to that of Kevlar (Tashiro and Kobayashi, 1991)).  Cellulose whiskers also 

have the concomitant benefit of being easily chemically modified. Cellulose whiskers 

have many potential applications such as tablet binders, texturising agents, fat 

replacers, additives in paper (e.g. security paper) and in nanocomposites. 

Cellulose nanowhiskers are isolated from cellulose microfibrils by the treatment with 

an acid. The microfibrils consist of crystalline regions surrounded by disordered 

amorphous regions. The acid hydrolyses the non-crystalline regions faster than the 

crystalline areas which have a higher resistance to hydrolysis (Favier et al., 1995). 

Needle shaped particles remain as a residue; the resulting suspension is then diluted 

with water and washed with successive centrifugations. The remaining suspension is 

then dialysed against distilled water to remove any free acid molecules from the 

dispersion.  Additional steps such as filtration, differential centrifugation and 

ultracentrifugation can also be used (Elazzouzi-Hafraoui et al., 2008, Bai et al., 2009). 

Generally, the longer the hydrolysis the shorter the nanowhisker and the narrower 

the size polydispersity (Beck-Candanedo et al., 2005).  

The type of acid used will impart different properties to the whiskers. The two most 

commonly used are sulphuric and hydrochloric acid. Phosphoric and hydrobromic 

acid have also been used (Kim et al., 1999). The concentration of sulphuric acid is 

typically about 65 wt% used at between room temperature and 70oC. The hydrolysis 
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time can be as little as 30 minutes up to leaving it overnight, dependant on the 

temperature used (Habibi et al., 2010). Hydrolysis using hydrochloric acid generally 

uses an acid concentration of 2.5-4 N at reflux temperature and for a variable time 

dependant on the source of the cellulose. Sulphuric acid produces negatively charged 

whiskers which are more stable in aqueous solution than whiskers from hydrochloric 

acid which have no charge (Araki et al., 1998). Dependant on the acid used, the 

whiskers are able to self-assemble into nematic liquid crystalline structures at high 

concentrations (Revol et al., 1992). The chiral nematic structure can even be 

preserved after total water removal, making it possible to form iridescent films of the 

nanowhiskers increasing the range of potential applications (Revol et al., 1995). 

Cellulose whiskers can be made from a variety of sources such as valonia, cotton, 

wood pulp, sugar beet pulp, tunicin and bacterial cellulose. Table 1.1 shows the 

range of sizes of whiskers from different sources. The aspect ratio of cellulose is its 

length-to-width (L/w) ratio. 

Table 1.1 Examples of the Length (L) and Width (w) of cellulose nanowhiskers from various sources 
obtained by transmission electron microscopy. Adapted from (Habibi et al., 2010). 

Source L (nm) W (nm) 

Bacterial 100-1000 10-50 

Cotton 100-150 5-10 

Cotton linters 25-320 6-70 

MCC 35-265 3-48 

Ramie 150-250 6-8 

Sisal 100-500 3-5 

Tunicate 1000-3000 15-30 

 

1.2.2 Hemicelluloses 

Most hemicelluloses are characterized by a β-1,4-linked backbone with an equatorial 

configuration at C1 and C4 (Scheller and Ulvskov, 2010). Hemicelluloses have a 

tendency to hydrogen bond with cellulose chains due to their cellulose-like 

conformation but can usually be extracted with alkaline treatment. Hemicelluloses 
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cover a broad range of structurally and physiochemically different polysaccharides. 

Polysaccharides often grouped together as hemicelluloses include xylans, mannans 

and xyloglucans. Hemicelluloses are more abundant in the secondary cell wall than 

primary cell walls (Caffall and Mohnen, 2009). 

1.2.2.1 Galactomannans 

Galactomannans are a group of polysaccharides that have a β-1,4-linked mannan 

backbone with different levels of galactose substitution. Galactomannans are 

structurally important components of the cell wall as well as an important source of 

storage polysaccharides. They are typically obtained from the endosperms of the 

seeds of leguminous plants. Table 1.2 shows the mannose to galactose ratio (M:G) of 

some typical galactomannans. 

Table 1.2 The mannose to galactose ratio of some typical galactomannans. 

Galacotmannan Mannose:Galactose ratio 

Fenugreek gum 1:1 

Guar gum 2:1 

Tara gum 3:1 

Locust bean gum 4:1 

 

Galactomannan solubility is due to the presence of the galactose side units which 

prevent the mannan backbone from forming aggregates (Garti et al., 1997). The 

mannose chains must have at least 12% galactose substitution to be water soluble. 

Ivory nut mannan contains about 95% mannose with few galactose side units and is 

therefore insoluble in water (Marchessault et al., 1990). 

Galactomannans are non-ionic so are unaffected by ionic strength or pH but will 

degrade at extreme pH. 
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1.2.2.1.1 LBG 

 

Figure 1.3 Chemical structure of Locust bean gum. 

Locust bean gum (LBG), also known as carob bean gum, is extracted from the seeds 

of the carob tree (Ceratonia siliqua), found mostly in Mediterranean regions. It has β-

1,4-linked mannose backbone. Approximately every fourth mannose unit is 

substituted with a 1,6-linked α-galactose residue (Figure 1.3). The galactose side 

chains are unevenly distributed resulting in there being smooth regions of the 

mannose backbone which are able to self-associate with other LBG molecules 

(McCleary et al., 1985, Dea et al., 1986). LBG therefore needs heating to 60-90oC to 

break the network of self-associations. This can make the determination of molecular 

weight problematic. A reduction in water activity or solution temperature can 

increase the amount of aggregation which results in the formation of a 3D network. 

This is particularly useful in ice cream production (Patmore et al., 2003, Regand and 

Goff, 2003). The weak gel structure can help impart excellent meltdown resistance in 

ice cream with a smooth texture without giving a slimy mouthfeel. Ice creams 

stabilised with LBG contain significantly smaller ice crystals than ice creams produced 

without stabilisers. LBG is also used in cream cheese to bind water and produce a 

spreadable texture without imparting sliminess.  

LBG and kappa carrageenan gels are used as alternative to gelatin gels. They have 

higher melting points than gelatin which can be advantageous in hot countries. LBG 
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also acts synergistically with xanthan gum which interacts with the unsubstituted 

regions of the mannan backbone. At low concentrations there is a synergistic 

increase in viscosity. At higher concentrations soft, elastic gels are formed (Phillips 

and Williams, 2000).  

1.2.2.1.2 Guar 

 

Figure 1.4 Chemical structure of Guar. 

Guar gum is derived from guar beans (Cyamopsis tetragonolobus). India is the major 

producer, accounting for 80% of the world’s total production. Guar has a β-1,4-linked 

mannose backbone with a galactose side chain approximately every two mannose 

units (Figure 1.4). Guar is able to fully hydrate in cold water. It does not form gels but 

does show good stability to freeze-thaw cycles and retards ice crystal growth.  

Guar produces high viscosity solutions making it useful as a thickener. Only small 

amounts are needed making it a very cost effective alternative to corn-starch. Guar is 

also used in baked goods to increase dough yield, improve texture and prevent 

syneresis. As well as the food industry, guar is used in textiles, pharmaceuticals and 

cosmetics. Recently, guar has found a new use as an additive to the fluids used in 

fracking gas (hydraulic fracturing, a technique used to force liquids at high pressure 

into shale rock to release natural gas). 
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1.2.2.1.3 Fenugreek 

 

Figure 1.5 Chemical structure of Fenugreek. 

India is the largest producer of fenugreek gum (Trigonella foenum-graecum), also 

known as ‘Methi’ in Hindi. The galactomannan is found in the endosperm of the 

fenugreek seeds. Fenugreek gum has only been used industrially since 1990. It has a 

β-1,4-linked mannose backbone that is fully substituted with galactose residues 

(Figure 1.5). Due the high galactose content, fenugreek is the most water soluble 

galactomannan.  

Fenugreek is currently used mainly as a health additive to lower blood sugar and 

reduce cholesterol levels (Sharma, 1986, Sharma et al., 1990).  

1.2.2.2 Konjac Glucomannan   

 

Figure 1.6 Chemical structure of Konjac glucomannan. The acetyl group is not shown. 
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Konjac glucomannan is the major storage polysaccharide from the tubers of 

Amorphophallus konjac which grows in eastern tropical regions. It has a of β-1,4-

linked mannose and glucose backbone in a ratio of 1.6:1 (Figure 1.6) with an acetyl 

group about every 19 glucose residues (Williams et al., 2000). Konjac readily dissolves 

in water producing a highly viscous pseudo-plastic liquid. The polymer remains in 

solution due to the presence of the acetyl groups. If konjac is treated with alkali, the 

acetyl groups will be removed resulting in konjac becoming water insoluble. Konjac is 

a non-ionic polymer so is acid stable and tolerant to high levels of salt. Konjac 

produces synergistic gels with xanthan and kappa carrageenan. Some applications for 

konjac include healthy/slim foods, noodles, fruit jellies, thickeners and edible films. 

1.2.2.3 Xylan 

 

Figure 1.7 Chemical structure of Glucuronoarabinoxylan substituted by glucuronic acid at the O-2 and 
by arabinose at the O-2 and O-3. 

Xylans have β-1,4-linked xylose backbone. Xylans may be substituted with α-1,2-

linked glucuronosyl and 4-O-methyl glucuronosyl residues and are often referred to 

as glucuronoxylans (Figure 1.7). Xylans do not have a repeated structure (Scheller 

and Ulvskov, 2010). They are the dominant hemicellulose in the secondary walls of 

dicotyledons. Xylans may also contain arabinose residues attached to the xylose 
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backbone. Arabinoxylans are the primary non-cellulosic polysaccharide in the primary 

cell walls of monocotyledons (e.g. grasses). Xylans are predominantly found in 

softwoods (10-15%), hardwoods (10-35%) and annual plants such as oat spelts (35-

40%) (Hettrich et al., 2006).  

1.2.2.4 Xyloglucan 

 

Figure 1.8 Chemical structure of Xyloglucan with an XLLG configuration. 

Xyloglucans are a family of hemicelluloses with a cellulose-like β-1,4-linked glucan 

backbone highly substituted with α-D-linked xylospyranosyl residues attached at O-6 

(Figure 1.8). Some xylose branches are further substituted at O-2 by combinations of 

galactopyranose, fucopyranose, arabinofuranose and O-acetyl residues. Xyloglucans 

are made of repetitive units, generally described using a one-letter code denoting the 

different side chains (Scheller and Ulvskov, 2010).  

 G – Unbranched glucose residue 

 X – α-D-Xyl-(1-6)-Glc 

 L – Xylose residue substituted with β-Gal 

 S – Xylose residue substituted with α-L-Araf 

 F – A Gal residue substituted at O-2 with α-L-Fuc  
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The most common core repeating units are XXGG and XXXG. The most widely studied 

xyloglucan is from tamarind seed and has a repeating unit of XXXG.  

X-ray fibre diffraction indicates that the main chain has a flat ribbon like 

conformation, similar to that of crystalline cellulose chains (Levy et al., 1991). The 

side chains fold tightly onto the main chain surface. In aqueous solution the main 

chain has a twisted conformation so the side chains are unable to fold as tightly onto 

the main chain (Umemura and Yuguchi, 2005). 

In the plant cell wall, xyloglucan coats the cellulose microfibrils, limits their 

aggregation and connects them via cross-links. These cross-links can directly 

influence the mechanical properties of the cell wall (Ebringerova, 2006). Xyloglucan 

endo-transcglycosylase (XET)  has been implicated in both wall-loosening and wall-

strengthening roles (Eklof and Brumer, 2010). 

Xyloglucan (extracted from tamarind kernel powder) is currently used as a sizing 

agent in textiles, especially in Asia. It improves yarn strength during weaving and 

imparts smoothness and stiffness to fabrics (Zhou et al., 2007). It is also used as a 

replacement for starch and galactomannans in papermaking but is not widely 

implemented (Shankaracharya, 1998). The xyloglucan helps paper formation and 

strength as well as reducing fibre flocculation (Christiernin et al., 2003, Lima et al., 

2003, Yan et al., 2006). 

1.2.3 Pectins 

Along with hemicelluloses, pectins help form part of the cell wall matrix. Pectins are 

present in the primary cell wall and the middle lamella where it binds cells together. 

Pectins are a group of polysaccharides that are rich in galacturonic acid (GalA). There 

are three major structural domains of pectin, homogalacturonan (HGA), 

rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II). These can be linked 
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to form a pectin network throughout the primary cell wall matrix and the middle 

lamella. 

HGA is a linear homopolymer of α-1,4-linked-D-galacturonic acid and is thought to 

contain about 100-200 GalA residues (Zhan et al., 1998); the GalA residues can be 

methylesterified and O-acetylated. Sugar beet root and potato tubers have a 

particularly large amount of acylated GalA (Pauly and Scheller, 2000). The GalA 

residues may be substituted with xylose to form xylogalacturonan (XGA) (Willats et 

al., 2001). HGA tends to be insoluble, so is hard to extract (McNeil et al., 1984). 

RG-I consists of as many as 100 repeats of the disaccharide 1,2-α-L-rhamnose-1,4-α-

D-galacturonic acid (Albersheim et al., 1996). RG-I is abundant and heterogenous and 

generally thought to be glycosidically bonded to HGA domains. Many of the 

rhamnose residues have side chains. The side chains can range from one glycosyl 

residue up to 50 or more. The predominant side chains contain linear and branched 

α-L-arabinofuranosyl (Araf), and/or β-D-galactopyranosyl (Galp) residues, although 

their relative proportions and chain lengths may differ depending on the plant source 

(Lerouge et al., 1993, Ralet et al., 2009). The highly branched nature of RG-I has led 

to it being known as the hairy region of pectin, in contrast to HGA domains which are 

known as the smooth region (Willats et al., 2001).  

RG-II is not structurally related to RG-I; it has an HGA backbone, nine or more 

residues long and has side chains composed of eleven different sugars (Willats et al., 

2001). RG-II is the only boron containing polysaccharide that can be isolated from a 

biological source (Kobayashi et al., 1996). Boron is an essential microelement for 

plant growth and its deficiency can lead to disorganised cell expansion and cell walls 

with abnormal morphology (O'Neill et al., 1996). O’Neill et al. propose that dRG-II-B 

(a borate ester cross-linked dimer of RG-II) is an essential component of the cross-
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linked pectin matrix. The covalent cross links of the primary cell wall may result in the 

formation of a macromolecular complex composed of RG-II, RG-I and HGA, linked by 

glycosidic bonds. This matrix may participate in regulating the rate of cell growth and 

may create wall domains that control the rate at which enzymes, polysaccharides, 

biologically active oligosaccharides and even lower molecular weight compounds 

pass through the wall (Baronepel et al., 1988). 

Many of the galacturonic acid groups along the main chain are esterified with 

methoxy groups. The percentage of galacturonic acids that are esterified is referred 

to as the degree of esterification (DE). The pattern of the distribution of methoxy 

groups is also important and is often described as blockiness (Daas et al., 1999, 

Winning et al., 2007). Commercially, pectins are generally categorised according to 

their methoxy content: 

 High methoxy (HM) pectin – DE higher than 50 

 Low methoxy(LM) pectin – DE lower than 50 

HM pectin forms gels under conditions of low pH (below 3.5) and high solids content 

(above 55 wt%) and is typically used for jam making (Pilgrim et al., 1991). The 

number of methoxy groups determines the speed at which the gels will set. The rate 

of gelation is decreased as more methoxy groups are removed. As the pH is reduced, 

gel strength and setting temperature will decrease (Phillips and Williams, 2000). If 

the pH is reduced to a point where the setting temperature and preparation 

temperature are similar the pectin tends to pre-gel. This results in a non-

homogenous weaker gel which is therefore more susceptible to syneresis. This can 

be solved by preparing pectin mixtures at higher pH and then acidifying when ready. 

LM pectin forms gels in the presence of divalent cations, most commonly calcium; 

the reactivity to calcium increases with decreasing DE. LM pectins are often used to 
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produce low sugar jams. They are also often used in milk products where they utilise 

the calcium present to enhance viscosity and stabilise emulsions (Glahn, 1982, 

BenZion and Nussinovitch, 1997). If HM pectins are reacted with ammonia, normally 

in an aqueous alcohol slurry at ambient temperature, an LM amidated pectin can be 

produced. Amidated pectin requires less calcium to gel than conventional LM pectins. 

Pectin is present in nearly all terrestrial plants but is most abundant in vegetables 

and fruits. The major source is from the rind of citrus fruit. Apple pomace and sugar 

beet pulp are also widely used as sources of pectin. This is often waste material from 

another industry, for example, apple pomace from cider production. Pectin is 

generally extracted from plant material using hot aqueous mineral acid. The pectin is 

then isolated from the solution. One of the main challenges for producers is to retain 

a high molecular weight as pectin is very susceptible to degradation either by 

enzymes already present in the plant material or heat during drying and subsequent 

processing (Phillips and Williams, 2000). 

Jams have been made for centuries by adding fruit containing high levels of pectin. 

Pectin has been industrially produced since the early 20th century. Pectin is now also 

used in other food and personal care products as a thickener, stabiliser and gelling 

agent. Pectin also forms excellent films. 

1.2.4 Starch 

1.2.4.1 Starch Structure 

Starch is one of the main energy reserves in nature and is a staple food in most 

human diets. Starch also has many non-food uses, for instance in papermaking, 

adhesives or as a gum in the textile industry. It is also used as a feedstock for the 

production of chemicals such as ethanol and acetone or polymers such as polylactic 
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acid (PLA). There is now growing interest in the use of starch as a plastic material that 

could be a possible replacement to oil based materials (Laycock and Halley, 2014). 

Starch granules are produced by plants as a carbohydrate storage. Depending on 

botanical source, the size of the starch granule can vary from as small as 2µm (e.g. 

rice) up to 80-100µm (e.g. tubers).  

 

 

 

Figure 1.9 Chemical structure of amylose (top) and amylopectin (bottom). 
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Starch is comprised of linear chains of α-1,4-linked anhydro-D-glucose with some 

branching with α-1,6 linkages. Native starch has two macromolecular components, 

amylose (mainly linear) and amylopectin (highly branched) (Figure 1.9). Amylopectin 

branches approximately every 20 units (Cheetham and Tao, 1998). Due to the α 

glycosidic linkage a natural twist is imparted to the molecule (Zobel, 1988). The ratio 

of amylose and amylopectin is dependent on the botanical species. Some starch 

granules naturally occur with low amounts of amylose and are typically referred to as 

waxy starches. 

1.2.4.2 Starch Crystallinity 

Starch granules have alternating crystalline and amorphous regions due to the 

branched amylopectin structure. This results in spherical rings (Figure 1.10) with 

diameters ranging from 20 to 500nm (Gallant et al., 1997). Starch granules exhibit 

two crystalline polymorphic forms depending on their amylose/amylopectin ratio and 

amylopectin branch length, the A-type, found predominantly in cereals and the B-

type which is found mainly in tubers as well as maize starches with more than 30-

40% amylose (Blanshard, 1987). A third polymorph, the C-type is a combination of 

the A and B-types and is usually found in pea and bean starches (Lopez-Rubio et al., 

2008). The A-type crystal structure consists of left handed parallel stranded double 

helices packed in monoclinic units cells while the B-type has hexagonal unit cells 

(Imberty et al., 1988, Imberty and Perez, 1988). When lipids are present (particularly 

in cereal starches) another crystal polymorph may be observed. The V-type crystal 

form consists of left handed single amylose helices with six residues per turn 

enclosing the aliphatic tail of a lipid in its centre (Tester and Morrison, 1990, 

Morrison et al., 1993). The amylose-lipid complexes restrict the swelling capacity of 

starch (Zuluaga et al., 2007, Nuwamanya et al., 2011). 
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Figure 1.10 Schematic diagram of the starch granule structure (Ratnayake and Jackson, 2008). 

1.2.4.3 Starch Gelatinisation 

Native starch granules are insoluble in cold water and do not absorb much water. 

When heated in excess water or another solvent able to form hydrogen bonds, (e.g. 

liquid ammonia) starch undergoes significant irreversible physical changes known as 

gelatinisation (Error! Reference source not found.). Above the gelatinisation 

emperature water penetrates and swells the granule. The starch crystals melt and 

amylose progressively leeches out. The gelatinisation temperature is dependent on 

the starch-water ratio, pH, salt or sugar concentration and fat or protein content. 

Upon gelatinisation there is often a large increase in viscosity which is the major 

reason for its ubiquity in food. Native starch generally gelatinises at temperatures 

between 55-80oC although high amylose starch may require higher temperatures to 

fully gelatinise.  

After gelatinisation the linear portions of the amylose and amylopectin chains 

recrystallise in a process often referred to as retrogradation (Figure 1.11). Long 

amylose chains are able to recrystallise rapidly whereas amylopectin retrogradation 

occurs at a slower rate, depending on chain length, temperature and moisture 

content.  
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Figure 1.11 Gelationisation and retrogradation of starch. (A) native starch (B) gelatinised starch and 
(C) retrogradated starch (http://www.food-info.net/uk/carbs/starch.htm date accessed 15.03.2014). 

1.3 BioComposites 

1.3.1 Natural Fibre Composites 

Natural fibres such as jute, flax and sisal have many benefits as they are strong, 

biodegradable, renewable, low cost, low density and abundantly available. They are 

also much less abrasive than many fibres currently used in composites. 

There are major difficulties in using natural fibres as reinforcing fillers. Natural fibres 

start degrading at about 240oC so cannot be processed at high temperature. The 

fibres also absorb moisture and may have a moisture content of between 5-10 wt% 

(Riccieri et al., 1999) which can lead to poor processability. The fibres can also be 

biodegraded by microorganisms and are susceptible to UV light (Saheb and Jog, 

1999). Natural fibres may also not function well as a reinforcing component due to 

poor adhesion at the fibre-matrix interface. They also aggregate in a hydrophobic 

polymer matrix. This can be counteracted by appropriate pre-treatments with 

suitable additives such as stearic acid, mineral oil or maleated ethylene (generally at 

a concentration of about 1 wt%) which will reduce fibre-fibre interaction (Saheb and 

Jog, 1999). To improve adhesion between the fibres and matrix polymers, 

compatibilisers or coupling agents may also be used, such as silane, zirconate or 

http://www.food-info.net/uk/carbs/starch.htm
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titanate. Sodium alginate and sodium hydroxide have also been used with banana 

and coir fibres to increase adhesive bonding and thus improve their ultimate tensile 

strength (Mani and Satyanarayana, 1990). Chemical grafting is another route to 

improving the physical properties of fibres by attaching suitable additives such as 

vinyl monomers to the surface of the fibre which will improve the bonding between 

fibre and matrix (Ellis and O'Dell, 1999).  

Many different parameters influence the strength of composites, including, the 

volume fraction of fibres, fibre aspect ratio, fibre-matrix adhesion, stress transfer at 

the interface and orientation (Saheb and Jog, 1999).  

Natural fibre composites have been produced with a variety of matrix materials. 

Many that are in use now, for instance in the automotive industry, rely on oil based 

matrix resins such as polypropylene, polyethylene and poly vinyl chloride (PVC) 

(Keener et al., 2004, Abdelmouleh et al., 2007, Zheng et al., 2007, Mohanty et al., 

2002).  In the pursuit of completely renewable and biodegradable composites, other 

matrix materials are currently being researched. Those of interest include, polylactic 

acid, cellulose esters, poly hydroxy butyrate, starch and lignin based plastics (Oksman 

et al., 2003). Few are commercially available so are often high cost, as well as having 

poor processability and, as with most polymers from natural sources, a low moisture 

stability. Polylactic acid (PLA), which is derived from starch by fermentation, is 

perhaps one of the most promising renewable polymers (Graupner et al., 2009). 

Bodros et al. (2007) have shown that PLA/flax composites have a specific tensile 

strength and Young’s modulus close to that of fibre glass polyester composites and 

have a greater tensile strength and modulus than that of similar polypropylene/flax 

composites. 
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One answer to achieving improved compatibility between fibre and matrix is to 

utilise cellulose as the matrix material itself. All-cellulose composites were initially 

developed by Nishino et al. (2004), where the cellulose pulp was dissolved in lithium 

chloride/N,N-dimethylacetamide (LiCl/DMAc). The cellulose solution then formed the 

surrounding matrix for aligned ramie fibres. The solution was then coagulated with 

methanol and dried and the composite had longitudinal strength as high as 480 MPa 

as well as extremely good thermal stability. One of the major difficulties in producing 

all-cellulose composites is the high viscosity of concentrated cellulose solutions. An 

alternative to using a cellulose solution as the matrix material is to only partially 

dissolve fibres such as flax or ramie (Gindl and Keckes, 2005). 

An alternative to using natural fibres is to use purified primary cell wall fragments. 

This would have the advantage that cheap waste sources of cellulosic material such 

as sugar beet pulp or vegetable waste could be used for composite manufacture. 

Hepworth and Bruce (2000a) used Swede root as the source of cell wall material 

which was ground into a fine paste. Lipid membranes were destroyed with 1 wt% 

detergent and some of the pectins were removed with 0.5M HCl to break up the 

cells. The cell wall fragments were then bound together in a matrix of polyvinyl 

alcohol (PVA). The composite had a tensile stiffness of 5.4GPa and a strength of 

70MPa which compares favourably to epoxy and phenolic composites reinforced 

with randomly orientated vegetable fibres. They did however comment that if the 

cellulose microfibrils were completely extracted and aligned then a higher strength 

could probably be achieved. This was later done using chemical extraction of the 

non-cellulosic components of the cell wall with 2 wt% sodium hydroxide (Hepworth 

and Bruce, 2000b, Bruce et al., 2005). The purified cellulose suspension was then 

passed through a homogeniser to separate the microfibrils. They used four different 

matrix materials; PVA, acrylic polymer, epoxy and hemicellulose which was chosen to 
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be LBG. Composites made with LBG showed higher tensile strength and stiffness than 

pure LBG. The LBG composites had a lower stiffness compared to PVA or epoxy but 

had a higher strength and stiffness compared to flax/epoxy composites. 

1.3.2 Cellulose Composites 

Despite the many attractive properties of natural fibres there are still major draw 

backs. The non-cellulosic components of natural fibres often impart some of the 

most undesirable aspects. It is often useful therefore to create composites with pure 

cellulose. Lignin is first removed with alkali (usually NaOH) and the fibres are then 

treated with acid to remove any hemicellulose and pectin (Moon et al., 2011). The 

cellulose is also often bleached to remove any colour.   

Both cellulose nanowhiskers and MFC are prepared in water. To create 

nanocomposite films the suspensions are mixed with a polymer that has been 

previously dissolved in water and then the liquid is evaporated. Due to the inherently 

high sensitivity of these polymers to humidity, storage is difficult (Siqueira et al., 

2009). Water also induces a strong plasticising effect and greatly affects the 

properties of the film (de Rodriguez et al., 2006). 

To investigate the effect of moisture on the dynamical mechanical properties of 

cellulose composites Dammstrom et al. (2005) produced composite films with 

bacterial cellulose and glucuronoxylan from Aspen wood chips. Humidity scans using 

dynamic mechanical analysis (DMA) showed no softening for the pure bacterial 

cellulose sample but there was a pronounced softening at 85% relative humidity (RH) 

for pure glucuronoxylan. The composite of the two polymers also showed a decrease 

in modulus but at a slightly lower RH as compared to pure glucuronoxylan. The 

glucuronoxylan acts as a plasticiser but also changes the spatial organisation of the 
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cellulose fibres although there are no clear interactions between the cellulose and 

hemicellulose.  

The use of cellulose nanowhiskers may improve the water transmission properties of 

xylan films. Saxena and Ragauskas (2009) have shown that xylan films reinforced with 

10 wt% sulphuric nanowhiskers had a 74% reduction in specific water transmission 

properties compared to control xylan films. There was also a 362% improvement 

with respect to xylan reinforced with 10 wt% softwood Kraft pulps. The high 

crystallinity of the nanowhiskers and the dense composite structure formed due to a 

rigid hydrogen bonded network leads to a film that has reduce moisture transmission 

properties (Saxena et al., 2011). Nanowhisker reinforced xylan films also have 

excellent tensile strength (Saxena et al., 2009). The use of plasticisers such as xylitol 

or sorbitol improves the mechanical properties of the films by conferring flexibility 

and workability (Peng et al., 2011).    

Nanowhisker reinforced hemicellulose films have also been produced using konjac 

glucomannan (Mikkonen et al., 2010). The addition of nanowhiskers to konjac, 

plasticised by glycerol, induced the formation of fibre-like structures with lengths of 

several millimetres although the differences in film structure did not appear to be 

related to the thermal properties of the films. 

Recently Azeredo et al. (2009) have used nanowhiskers to reinforce mango puree to 

produce edible films. The nanowhiskers increased the tensile strength and Young’s 

modulus in respect to pure puree films as well as improving the water barrier 

properties of the films.  

1.3.3 Cellulose/Polymer interactions 

Both hemicelluloses and pectins are likely to bind to cellulose in the plant cell wall 

but there is as yet no complete consensus as to what the binding mechanisms are. 
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Xyloglucan is known to bind to cellulose but there is some debate as to whether it is 

dependent on molecular weight or side chain composition. The presence of fucose 

was suggested by Levy et al. (1991) to create a flat conformation which enabled 

xyloglucan to bind to cellulose. This was further confirmed by binding experiments 

with fucosylated (pea) and non-fucosylated (tamarind seed) xyloglucans (Levy et al., 

1991, Hayashi et al., 1994). However, the role of fucose in facilitating xyloglucan-

cellulose interactions was later cast into doubt by Vanzin et al. (2002) by using the 

Arabidopsis mutant mur2 which eliminates xyloglucan fucosylation in all major plant 

organs. Despite the lack of fucose the mur2 plants showed a normal growth habit 

and wall strength. Lima et al. (2004) have since shown with in vitro experiments that 

the binding capacity of xyloglucan is improved when the molecular weight of the 

polymer is decreased by enzymatic hydrolysis and that the branching with fucose 

seems not to be a key factor in binding. Fucose though may still have some role in 

strengthening the cell wall structure.      

Whitney et al. (1995) first developed the method of modelling plant cell wall 

interactions using the Gram negative bacterium Acetobacter aceti ssp. xylinum which 

synthesises pure, highly crystalline cellulose I as an extracellular polysaccharide. The 

cellulose forms a thick pellicle which floats on the surface of the medium. Viewed 

using deep etch freeze fracture transmission electron microscopy (TEM), the 

cellulose ribbons appear to form a randomly orientated network. Different 

polysaccharides can be added to the medium. In the presence of tamarind 

xyloglucan, the bacterial cellulose also forms a network similar in structure to that of 

plant cell walls (Whitney et al., 2000). Whitney et al. (2006) found that galactose 

depleted xyloglucan is likely to self-associate, leading to phase separation into 

xyloglucan-rich and cellulose-rich phases with limited direct binding between the two 

polymer types. This led them to conclude that galactose content has a greater effect 
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on composites than other xyloglucan variants with fucose substitution only acting as 

a secondary modulator. These results are consistent with the work done on 

Arabidopsis mutants. 

The A xylinum system has also been used for other cell wall polysaccharides such as 

mannans. In the presence of konjac glucomannan a structure is formed which shows 

considerable heterogeneity (Whitney et al., 1998). Micrographs show regions of 

apparent cross-linking of cellulose ribbons by glucomannan and areas of 

glucomannan network within a cellulose network. The cellulose acts as a template 

where the mannan residues along the polymer chains adopt a cellulosic 

conformation. Konjac, as well as low galactose galactomannans, dramatically reduces 

the cellulose crystallinity. Mannans with a low galactose content are also more 

effective at disrupting cellulose organisation. This suggests that the galactose side 

chains present a significant barrier to incorporation within cellulose fibrils. Due to the 

much more polydisperse fine structure of galactomannans, as opposed to xyloglucan, 

the long range alignment of fibrils is not as pronounced. In secondary cell walls both 

gluco- and galactomannans are significant components. The mannan based polymers 

are able to help the coalescence/densification of cellulose and thus provide a 

stronger composite compared to xyloglucan in the primary cell wall where flexibility 

is the major requirement. 

Many of the models of cell wall organisation suggest that the cellulose-hemicellulose 

network is independent from the one formed by pectins (Cosgrove, 2000). However, 

Zykwinska et al. (2005) have demonstrated that pectin is able to bind in vitro to 

cellulose microfibrils. The neutral pectin side chains are likely to enable non-covalent 

cellulose binding rather than the pectin backbone domains (Zykwinska et al., 2007). 
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Commercial citrus pectins which have a very low number of neutral side chains, due 

to their harsh acidic extraction, do not bind to cellulose (Chanliaud and Gidley, 1999). 

1.3.4 Semi Solid Composites 

There are many semi-solid composites particularly in food systems where a gel 

network is embedded with a filler. The filler enhances the rheological properties and 

textural characteristics of the system. Common fillers in the food industry include 

meat fibres, starch granules or emulsified oil droplets (Mavrakis and Kiosseoglou, 

2008). Inorganic fillers such as glass fibre or hydroxyapatite clay may be used in non-

food applications. The size, shape, strength and phase volume of the filler will all 

influence its reinforcing effect (Fu et al., 2008, Ahmed and Jones, 1990, Fiedler et al., 

2006). When suitably incorporated the filler should improve the mechanical 

properties of the system due to load transfer from the matrix to the filler particle. 

One of the most common fillers in the food industry is microcrystalline cellulose 

(MCC). MCC has been shown to improve gelatin gel strength (Kasapis, 1999, Koh and 

Kasapis, 2011). By applying torque to the setting gels Koh and Kasapis (2011) found 

they could highly orientate the MCC fibres resulting in a higher storage modulus of 

1.5 wt% gelatin gels due to an enhancement in network strength.  

Microfibrillated cellulose (MFC) has outstanding rheological properties. MFC 

suspensions possess a classical pseudoplastic (shear thinning) behaviour that is 

common to many polymer solutions (Paakko et al., 2007) and have a solid like 

viscoelastic behaviour. The rheological properties are not effected by either 

temperature or pH although an increase in ionic strength does increase both the 

storage modulus (G’) and loss modulus (G’’) moduli of MFC suspensions (Agoda-

Tandjawa et al., 2010). MFC may also be able to increase viscosity or gel strength of 

low methoxy (LM) pectin. Agoda-Tandjawa et al. (2012) added LM pectin to a 
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suspensions of MFC which had a synergistic effect on the rheological properties of 

the composites. Addition of calcium to the mixtures induced gelation which was 

enhanced by the presence of sodium resulting in the formation of a stronger 

cellulose/ LM pectin gel. 

Since the early 1990s MCC has been used as a fat replacer. The MCC is first subjected 

to severe mechanical attrition such as high pressure homogenisation which breaks it 

down into colloidal crystalline aggregates. It can then be co-dried with a hydrocolloid 

such as carboxymethylcellulose which aids later re-dispersion and forms a network 

which evenly distributes the particles (Lucca and Tepper, 1994). When added to an 

aqueous medium (generally above 5 wt% solids content) the insoluble sub-micron 

sized crystals disperse to create a stable thixotropic gel which has a creamy mouth 

feel, opacity and body (Samir et al., 2005). MCC also enhances the gelling properties 

of galactomannans (Newman and Hemmingson, 1998).      

Ang (1991) and Ang and Miller (1991) first reported the effect of powdered cellulose 

on the viscosity of polymer solutions. Powdered cellulose was able to increase the 

viscosity of guar, carboxymethylcellulose and xanthan solutions of between 0.1 and 

0.3 wt%. Recently Day et al. (2010) added xanthan to rehydrated carrot cell wall 

particles (CWP). The addition of xanthan to CWP at concentrations lower than 1 wt% 

influenced the rheological behaviour of the CWP dispersions due to the increase in 

the viscoelastic properties of the continuous phase but this was not the case for 

concentrations higher than 3 wt% as the viscoelastic behaviour of the mixtures was 

dominated by the CWP particle network. There have been several other studies using 

cell wall dispersions from a variety of horticultural sources such as tomato, apple and 

carrot which have all demonstrated the importance of interactions between the solid 

particles and the deformability of the fully packed particles (Kabbert et al., 1997, 
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Kotcharian et al., 2004, Kunzek et al., 1999, Kunzek et al., 2002, Pickardt et al., 2004, 

Vetter and Kunzek, 2002). 
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1.4 A brief introduction to the thesis 

With growing environmental concerns as well as food shortages, cellulosic research is 

increasingly important. Cellulose, the most abundant natural polymer on earth, is the 

major component of plant cell walls, but due to its poor water solubility it has seen 

little use in the promotion of structures in manufactured products in its native state. 

Traditional methods of utilising cellulose involve harsh chemical treatments. Recent 

research has focussed on ‘green’ solvents such as ionic liquids and molten salt 

hydrates which have a much lower environmental footprint or using different 

mechanical pre-treatments such as ball milling and homogenisation which 

dramatically change the properties of native cellulose and add alternative routes to 

structure formation.  

Recently, Tatarova et al., (2010) have developed a novel swelling solution 

(LiCl/urea/water) for the treatment of regenerated cellulose fibres during textile 

processing. Fibres were shown to swell to the same extent as found in traditional 

alkali swelling treatments. The LiCl/urea/water system has the advantage of being 

noncorrosive, so reverse osmosis can be used to recycle the LiCl and urea. The 

swelling system provides the opportunity to change the structure of cellulose 

without complete dissolution. Other plant polysaccharides can also be co-processed 

with cellulose in the swelling solution (Eichhorn et al., 2001).  

There has also been a growing interest in amorphous cellulose. By completely 

disrupting the crystal structure there is a possibility that cellulose can be 

thermoformed to produce renewable bioplastics, however, there are serious 

limitations due to cellulose degrading before it melts. However, as well as reducing 

the crystallinity of cellulose (Paes et al., 2010), ball milling also decreases the degree 
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of polymerisation (Csiszar and Fekete, 2011) which may help overcome the issues 

involved in thermoforming (Zhang et al., 2012).  

Cellulose can also be used in its native form as a reinforcement material in polymer 

composites, for example, there are already applications in wound dressings, bone 

scaffolds, automotive parts and packaging. There is a particular interest in renewable 

foams which could be used as insulation, packaging and cushioning materials, 

however, many of the matrix polymers used are hydrophobic leading to poor 

interactions with natural fibres so there needs to be further work to identify other 

natural matrix polymers. 

By understanding the structural changes that cellulose and hemicelluloses undergo 

during different pre-treatments novel structures can be formed which will help 

reduce the dependency on oil based materials.  
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1.5 Objectives and structure of the Thesis 

1.5.1 Objectives 

The main aim of the work was to find novel ways of utilising native cellulose, for 

example, in the production of bioplastics, aerogels or thickeners, using either 

mechanical or chemical pre-treatments. A greater understanding of the structural 

changes that occur during various pre-treatments will enable the creation of novel, 

renewable and biodegradable structures from cellulose or cellulose-polymer 

composites. Within this framework the objectives of this work were:  

 To further understand the effect of ball milling on different types of cellulose 

and study its recrystallisation in excess water.  

 To investigate the possibility of thermoforming amorphous cellulose 

 To produce cellulose-polymer composites  

 To investigate the effect of a novel swelling solution on cellulose and 

different plant polysaccharides.  

 To investigate any interactions between cellulose and plant polysaccharides 

in different solvent systems. 
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1.5.2 Structure of Thesis 

A general literature review has been presented in Chapter 1 which is now followed 

by a description of the main techniques used throughout the thesis in Chapter 2. 

Within each results chapter there is also a specific literature review and materials 

and methods section. 

The work in Chapter 3 focussed on the effect of ball milling on two different types of 

cellulose and in particular their change in degree of polymerisation, crystallinity and 

degradation temperature with increased milling time. The ball milled celluloses were 

then rehydrated in excess water and any changes due to recrystallisation were 

investigated. Flash differential scanning calorimetry (DSC) was used for the first time 

to measure a glass transition temperature for amorphous cellulose.  

The work presented in Chapter 4 investigates different ways of utilising cellulose in 

the construction of biofoams. Three different celluloses were added to locust bean 

gum or fenugreek freeze dried foams. Their effect on mechanical properties, 

morphology and water absorption were monitored. Further work was carried out to 

produce biofoams using through extrusion which is a less time consuming and less 

energy intensive process than homogenisation. 

In Chapter 5, the effect of a novel swelling solution (LiCl/urea/water) on the 

crystallinity, morphology and rheological properties of different celluloses was 

studied. To further understand the system, two starches were compared in either 

water or LiCl/urea/water. 

In Chapter 6, the solution properties of four different plant polysaccharides in two 

solvent systems, water or LiCl/urea/water, were investigated to identify any 

conformational changes. These changes were further studied after the solvents were 

removed. Having gained an understanding of the effect of LiCl/urea/water on 
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cellulose or hemicelluloses alone, the polysaccharides were co-processed to identify 

any changes in interactions between cellulose and hemicelluloses in different solvent 

systems.  

In Chapter 7 general conclusions of this work are presented along with suggestions 

for future studies. 
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Chapter 2. Techniques 
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2.1 Nuclear magnetic resonance (NMR) 

NMR spectroscopy makes use of nuclei with an uneven number of subatomic 

particles in the nucleus (often 1H or 13C). These nuclei spin on their axis either 

clockwise or counter clockwise (spin states of +1/2 or -1/2) (Figure 2.1). The spin 

makes the nuclei act like magnets. The resulting spin-magnet has a magnetic moment 

proportional to the spin.  When an external magnetic field is applied these nuclei will 

align in their low energy state (+1/2). For the two states to be significantly different a 

very powerful magnet is required.    

 

Figure 2.1 Spinning nuclei. 

When radiation (radio waves) hits the nuclei at a certain wavelength which 

corresponds exactly to the spin state separation energy it will flip to a higher energy. 

When the spin returns to its base level, energy is emitted at the same frequency. This 

signal can then be measured.  

All nuclei will flip at different wavelengths of radiation levels dependant on their 

chemical environment (i.e. where the electrons surrounding the nuclei are 

positioned). The electrons will generate a secondary magnetic field which shields the 

nucleus from the applied external magnetic field.  
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Figure 2.2 A carbon-hydrogen bond showing its shared pair of electrons where (a) electrons are 
shared equally (b) the electron pair is drawn towards the carbon nucleus and (c) the electron pair is 
drawn towards the hydrogen nucleus. 

Electronegativity is the power of an atom in a molecule to attract electrons to itself. 

The Pauling scale is a scale of electronegativity which ranges from Fluorine (the most 

electronegative element) which has a value of 4.0, to Francium (the least 

electronegative element) which has a value of 0.7. Figure 2.2a shows a simple 

carbon-hydrogen bond. If the carbon is attached to something that is electron 

withdrawing (for instance a benzene ring) then it will pull the pair of electrons away 

from the hydrogen giving it less shielding (Figure 2.2b). Conversely if the carbon is 

attached to something less electronegative than itself (for instance Si, which has a 

value of 1.90 on the Pauling scale, compared to carbon and hydrogen which have 

values of 2.55 and 2.20 respectively) then the hydrogen will draw the shared 

electrons closer to itself increasing the level of shielding (Figure 2.2c). The 

wavelength of radiation required to make each of these protons flip will therefore 

vary. The more the proton is shielded the less energy is required to flip the proton. 

The precise resonant frequency of the energy transition is described as a chemical 

shift (ppm). The effective magnetic field is also affected by neighbouring nuclei in an 

effect known as spin-spin coupling. 

13C NMR uses the nuclei of an isotope of carbon (which has a natural abundance of 

1.1%) instead of protons. It is much less sensitive than 1H NMR but can show a single 

peak for each non-equivalent carbon atom (as couplings between carbon atoms can 
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be ignored due to the scarcity of the 13C isotope). Figure 2.3 shows the NMR spectra 

of native cellulose with each carbon in the glucose molecule labelled. 

 

Figure 2.3 Solid state 
13

C NMR spectra of microcrystalline cellulose showing the assignment of peaks 
to the carbons in a glucopyranose repeat unit (adapted from Park et al. (2010)). 

2.2 X-Ray Diffraction (XRD) 

An X-ray is electromagnetic radiation that has a wavelength of between 0.1Å and 

100Å which is similar to the interatomic distances in a crystal. To produce X-rays, a 

tungsten filament is heated inside a vacuum tube. Electrons are emitted and 

accelerated by an electric potential and impact on a metal target (often copper). 

These electrons will disturb the metal atom’s inner electrons. When the outer 

electrons fall to a lower orbital to take their place X-rays are emitted. 

In an amorphous material, atoms have no order. When the atoms are hit by X-ray 

beams, the surrounding electrons will oscillate at the same frequency as the beam. 

Due to the lack of order, the x-ray beams will be reflected at all angles resulting in 

destructive interference as the waves are out of phase of one another. However, 
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crystals have an ordered structure. Due to the regular patterns in the crystal when X-

ray beams hit the atoms, in some directions, the waves will be in phase which will 

cause constructive interference that can be measured by the detector (Figure 2.4). 

The smallest repeating part is the unit cell which has a fixed arrangement. It reflects 

X-ray beams at certain angles of incidence (θ).  This angle is dependent on the 

distance (d) between atomic layers and the wavelength of the incident X-ray beam 

(λ). This relationship is defined by Bragg’s Law: 

 𝑛𝜆 = 2𝑑 sin 𝜃 (2.1) 

 

Figure 2.4 Bragg diffraction in a crystal showing constructive interference of reflected waves. 

Miller indices are used to describe the orientation of a plane within a lattice in 

relation to the unit cell (Figure 2.5). The “overbar” denotes a negative index. 
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Figure 2.5 Example of Miller indices (http://www.doitpoms.ac.uk/tlplib/miller_indices/printall.php 
date accessed 18.03.2014) 
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One of the most common ways of measuring crystallinity is using powder diffraction. 

The powder must be randomly packed so the crystals are in all directions. This will 

mean all the possible diffraction directions of the lattice are attained.  Figure 2.6 and 

2.7 show the typical spectra of type I and type II celluloses respectively.  

 

Figure 2.6 X ray diffraction spectra of type I microcrystalline cellulose showing Miller indices. 

 

Figure 2.7 X ray diffraction spectra of type II regenerated cellulose (Lyocell) showing Miller indices. 
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2.3 Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis is a quick method to determine moisture content and 

degradation temperature of a sample. A sample is loaded onto a very sensitive 

balance with a robotic arm (Figure 2.8). The sample is then heated up at a constant 

rate in a furnace in either an inert atmosphere (nitrogen) or an oxidising atmosphere 

(oxygen and nitrogen). The weight of the sample will decrease as the temperature 

rises, first through moisture loss, and then vaporisation due to decomposition.  

 

Figure 2.8 A simplified diagram of a thermogravimetric analysis system. 
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Figure 2.9 Thermogravimetric analysis (solid line) and differential thermal analysis (dotted line) plots 
of microcrystalline cellulose showing where moisture loss and degradation occur. 

TGA results provide the mass over the temperature range. Often the differential 

thermal analysis (DTA) of the raw data provides a clearer picture (Figure 2.9). 

2.4 Dynamic Vapour Sorption (DVS) 

DVS measures how quickly a solvent (often water) can be absorbed by a sample. A 

reference and a sample holder are attached to a very sensitive microbalance (Figure 

2.10). These are initially dried in pure nitrogen. When the weight has stabilised the 

relative humidity (RH) is raised in steps of 10%. When the weight has stabilised the 

RH will be raised another step up to 95% RH and then back to 0%. Samples are 

considered equilibrated when the change in mass per unit time is less than 0.0005 

mg min-1 or the equilibration time has reached 1500 min. 
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Figure 2.10 A Simplified diagram of a dynamic vapour sorption system. 

2.5 Differential Scanning Calorimetry (DSC) 

DSC measures the heat required to increase the temperature of a reference and a 

sample. Any differences between the heat required for the reference and sample will 

indicate some sort of physical transition, such as a glass transition. The event will be 

either exothermic or endothermic. When the temperature of some amorphous 

materials is raised the polymer molecules will gain sufficient translational and 

torsional energy to reorganise into a crystalline structure which is a lower entropic 
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state and therefore energy will be released which can be seen on the DSC as an 

exothermic transition. Due to the small sample size some transitions cannot be seen 

with traditional DSC. One option is Micro DSC which has a much larger sample 

volume of 0.8g and can be run at much slower rates. A second option is Flash DSC, in 

which a very small amount of the sample is loaded onto a chip with a heating 

element. The sample is then heated and cooled at an incredibly fast rate 

(10,000oC/s). This then enables the sample to be heated above its degradation 

temperature and cooled down before it is able to degrade. Flash DSC is therefore 

much more sensitive than standard DSC. 

2.6 Rheology 

 
Rheology is the study of the flow and deformation of materials under applied forces. 

Viscosity is the resistance of a fluid to flow and is often measured using a rotational 

rheometer. One of the most commonly used geometries for a rotational rheometer is 

the cone and plate (Figure 2.11a) which is often referred to by its diameter and the 

angle of the cone however it is important that the gap size (the distance between the 

base plate and the cone) is correctly positioned. For this reason, systems containing 

particulate material must be measured using a parallel plate geometry (Figure 2.11b) 

which allows for a bigger gap size. The gap size must be about ten times the mean 

particle diameter. However, due to the larger gap size the parallel plate geometry is 

not as sensitive as the cone and plate as the shear rate produced varies across the 

sample (although software normally takes this into account) and there may be a 

temperature gradient across the sample. For samples of lower viscosity, a double gap 

geometry (Figure 2.11c) can be used which has a much greater sensitivity due to its 

large surface area, however much larger sample volumes are required. 
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Figure 2.11 Different types of rheometer geometries; (a) cone and plate (b) parallel plate and (c) 
double gap. 

2.7 Capillary viscometry 

For liquids of very low viscosity a capillary viscometer can be used, the simplest 

version being an Ostwald (U-tube) viscometer (Figure 2.12). The viscometer is held 

vertically in a temperature controlled water bath and the bottom bulb is filled with 

the sample. The liquid is then drawn into the upper bulb and above the upper mark 

(Figure 2.12a). The liquid is then allowed to freely flow and the time is measured for 

the sample to flow from the upper to lower mark.   
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Figure 2.12 Diagram of an Ostwald U-tube viscometer where (a) is the upper mark (b) is the lower 
mark and (c) is the sample mark. 

2.8 Rapid Visco Analyser (RVA) 

The RVA is a useful tool to measure the viscosity of a system while under shear. It 

was originally developed for starch pasting analysis. Temperature and rpm can be 

controlled. 
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Chapter 3. Ball milled cellulose 
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3.1 Introduction 

Ball milling is used extensively as a pre-treatment for biofuel production to enhance 

enzymatic hydrolysis of cellulosic and lignocellulosic material such as corn stover (Lin 

et al., 2010), bleached pine pulp (Hu et al., 2014), corncob (Luo et al., 2013) and 

wheat straw (Silva et al., 2012) as well as being used in combination with other pre-

treatments such as microwave irradiation (Peng et al., 2013), hot compressed water 

(Inoue et al., 2008), non-thermal atmospheric plasma (Benoit et al., 2012) and 

extrusion (Lee et al., 2010). All of these studies have found that a decrease in the 

crystallinity increased the rate of enzymatic hydrolysis. Ball milling is also used to 

grind fibres such as flax to optimize the interaction between fibre and matrix in 

polymer composites (Csiszar and Fekete, 2011, Csiszar et al., 2013, Ghozali and 

Haryono, 2013, Baheti and Militky, 2013, Huang et al., 2012, Qua et al., 2009). The 

physical stability of para-crystalline cellulose is also of importance in tableting 

pharmaceuticals (Bates et al., 2006). It is therefore useful to have a better 

understanding of the structural changes caused by ball milling. 

Ball milling cellulose leads to a decreased crystallinity, particle size and degree of 

polymerisation (DP), the levels of which depend on the speed (rpm) and milling time 

(Howsmon and Marchessault, 1959) as well as the material that the balls and cups 

are made of, such as either ceramic (zirconium oxide) or metal (aluminium). Cellulose 

crystallinity is caused by the large number of intermolecular hydrogen bonds in the 

β-1,4 linked glucose chains (Nishiyama et al., 2002, Delmer and Amor, 1995, Matsuda 

et al., 1992). In the presence of water, amorphous cellulose can recrystallise. Iyer et 

al., (1984) have shown that for amorphous cellulose to recrystallise back to cellulose 

I, the presence of the type I nuclei is required (to act as seed crystals), or it will 

recrystallise to the more thermodynamically stable type II cellulose (antiparallel 

packing) if the amorphous content is above 75%. Heat has also been found to 
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increase cellulose crystallinity (Bhuiyan et al., 2000). Abbaszadeh et al., (2014) found 

that after ball milling, type I cellulose that had been newly recrystallised gradually 

converted to type II at a relative humidity (RH) of 97% and ambient temperature over 

7 days. 

Avolio et al., (2012) performed a comprehensive analysis on the effect of ball milling 

cellulose fibres for up to 60 minutes. A combination of wide angle X-ray diffraction 

(WAXD), solid state 13C NMR and attenuated total reflectance Fourier transform 

infrared spectroscopy (ATR FTIR) showed that the crystal structure was completely 

destroyed after 60 minutes. Thermogravimetric analysis (TGA) analysis also revealed 

that the amount of absorbed water increased with higher milling time due to the 

increase in the amorphous fraction which is more accessible to water molecules than 

the crystalline fraction. They also showed that the fibre structure was completely lost 

after 60 minutes. Using sorption calorimetry Kocherbitov et al., (2008) showed that 

at an RH of above 90% amorphous cellulose will recrystallise which leads to a loss of 

adsorbed water.  

A glass transition is the reversible transition that amorphous and semi-crystalline 

materials go through from a hard/ brittle (glassy) state to a rubbery (elastic) state. 

The glass transition temperature (Tg) of polymers is the temperature below which the 

physical properties of amorphous materials are similar to those of a solid, and above 

which amorphous materials have liquid characteristics (Paes et al., 2010). The Tg of 

biopolymers is known to decrease with the absorption of water (Szczesniak et al., 

2008) but is difficult to measure for cellulose due to the main relaxation being close 

to the degradation temperature as well as the small change in heat capacity although 

the Tg has been reported as 221oC (Batzer and Kreibich, 1981) and 235oC (Salmen and 

Back, 1980). Vittadine et al., (2001) were unable to find a glass transition 
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temperature for cellulose with a moisture range of 0-19 wt% (dry basis) using 

differential scanning calorimetry (DSC). Paes et al., (2010) investigated the glass 

transition of ball milled cellulose using dynamic mechanical thermal analysis (DMTA) 

which showed an underlying glass transition between 47-107oC which was 

dependant on water content and a second transition at around 117oC which was only 

weakly water dependant (which may have been due to evaporation at high 

temperature and low scan rate). By using differential thermal analysis (DTA), Ciolacu 

and Popa (2006) found that a reduction in cellulose crystallinity lead to a reduced 

thermal stability. Nada and Hassan (2000) found bleached viscose pulp has an initial 

decomposition temperature of 266oC and a charring temperature of 315oC. Huang 

(2012) have shown that the temperature at the maximum rate of degradation for 

microcrystalline cellulose (MCC) (viscosity average DP=235) is 344.6oC. 

Alternative fast heating methods have been used to identify thermal changes in 

cellulose. A glass transition temperature of about 210oC was reported by Back et al., 

(1967) using ultrasonic pulse velocity measurements. Although the heating times 

were very short (2.5 to 3 seconds) there was some auto-crosslinking at 240oC which 

was followed by thermal hardening between 240-300oC.  

Due to the large number of hydrogen bonds within the cellulose structure, the level 

of thermal energy required to break a sufficient number in order to melt cellulose is 

higher than the temperature at which intramolecular bonds are broken, resulting in 

degradation and incineration (Calahorra et al., 1989).  Nordin et al., (1973) first 

theorised the possibility of melting cellulose by rapid heating and cooling so as to 

avoid significant degradation. They used a carbon dioxide laser beam to heat 

cellulose samples rapidly (within 0.1 ms to 500oC) so that chemical reactions were 

kept to a minimum. The samples were then cooled immediately using liquid nitrogen. 
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The laser cut holes through the cellulose paper, but, surrounding the holes there 

were fibres that had developed bubbles with diameters of a few micrometres where 

the fibrillar structure of the cellulose had been lost. The authors suggested that in 

these areas the cellulose had melted. They also found there was a concomitant 

decrease in the crystallinity of the samples which they attributed to melting rather 

than degradation (Nordin et al., 1974).  

Boutin et al., (1999) used brief flashes of concentrated radiation at the focus of an 

image furnace and showed that short life time liquid intermediates were formed for 

flash durations lower than 1 second. These products were stable and soluble in water 

indicating the cellulose had been considerably degraded. They predicted that the 

reaction temperature was close to 467oC. Later, Boutin et al., (2002) found that 

cellulose goes through an intermediate liquid phase followed by condensable 

vapours and char during thermal decomposition. In fast heating conditions 

levoglucosan and cellobiosan were minority components and 84% of the species had 

a weight average DP ranging from 3 to 7, measured using a mass spectrometer (Lede 

et al., 2002, Lede and Boutin, 1999).  

Dauenhauer et al., (2009) used high speed photography (1000 frames per second) to 

show that MCC passed through a liquid intermediate phase during pyrolysis when 

heated on a catalytic surface (700-800oC) where vapours (volatile organic 

compounds) were seen and droplets were formed when in direct contact with the 

surface. After 176 ms the cellulose completely vaporised and no char was left on the 

surface.  

While there are many papers that show some sort of cellulose liquid intermediary 

during pyrolysis there is much less evidence that there is in fact melting before 

degradation (Lede, 2012). The liquid intermediary is often soluble in water and has a 
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lower weight average DP than the initial cellulose. However, Schroeter and Felix 

(2005) did report some level of success. The energy level required to open 

intermolecular hydrogen bonds is reported to be above 20 kJ/mol (Fengel and 

Wegener, 1984) which is equivalent to 3.3x10-20 J per bond. Schroeter and Felix 

(2005) used an infrared laser with an equivalent photon energy (wavelength of 6 µm) 

to open the hydrogen bonds. The authors reported they had managed to plasticise 

cellulose as although there was no severe difference in the IR spectra of the treated 

and untreated samples (i.e. no chemical modification) there was a significant change 

in the structure from fibrous to a continuous solid as well as a change in the optical 

properties from opaque to transparent and from dull to glossy on the surface. A 

combination of uniaxial pressure, shear and laser radiation were necessary for this 

transformation. However, the authors were unable to perform structural analysis 

such as crystallinity due to the small amount of sample produced. 

Whilst there have been a few studies on the effect of ball milling cellulose (Hu et al., 

2014, Wormald et al., 1996, Kocherbitov et al., 2008, Paes et al., 2010, Hajji et al., 

2011, Abbaszadeh et al., 2014), thus far there have been none which directly 

compare two different celluloses or the use of flash DSC.  

3.2 Materials and methods 

3.2.1 Materials 

The celluloses used in this work are cellulose fibre (CF) (Solka 900FCC, International 

Fibre Corporation, USA) and Avicel MCC type PH-101 Ph Eur (Sigma Aldrich, UK). 

Maltose monohydrate was purchased from Sigma Aldrich. 
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3.2.2 Ball milling 

The celluloses were milled using a Planetary Micro Mill Pulverisette 7 (Fritsch GmbH, 

Germany) at 600 rpm with 10 minutes milling followed by a 10 minute pause to allow 

heat to dissipate. Each zirconium oxide pot was filled with 0.5g of cellulose and 

contained six zirconium oxide balls (10 mm Ø). This is the same speed used by Paes et 

al. (2010) but with more frequent pauses (every 10 minutes rather than 30 minutes) 

as the pots were found to heat up significantly after 10 minutes. All samples had 3 

replicates. 

3.2.3 Rehydration of ball milled cellulose 

Samples were rehydrated by dispersing the celluloses in excess water (50 ml per 1g 

of cellulose) and storing for 24 hours at 4oC. The samples were then filtered using 

Whatman filter paper and dried in an oven overnight at 60oC. 

3.2.4 Light microscopy 

Samples were mounted on a glass slide and images were taken using a Leitz Diaplan 

microscope (Leica, Heidelberg, Germany) and a Pixelink PL-A600 (Ottawa, Canada) 

recording camera at magnifications of 20X and 50X. 

3.2.5 Scanning electron microscopy (SEM) 

Samples were mounted on aluminium stubs and coated with gold to about 25nm 

thickness using a sputter coater (Leica EM SCD005 Sputter Coater – Ion). Images were 

taken using a Quanta 200 (FEI, USA) and captured using the automatic software 

system at different magnifications. 

3.2.6 Wide angle X-ray diffraction 

Plastic holders were filled with randomly orientated powders. Some samples had to 

be ground with a pestle and mortar before use to give a free flowing and 

compactable powder. X-Ray measurements were carried out using a Bruker D5005 
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diffractometer (Bruker AXS, UK) using copper K alpha (CuKα) radiation of wavelength 

1.5418 Å. Slit focus geometry was used. Total acquisition time for each sample was 

40 minutes.  

To determine crystallinity, a linear background was first applied over the main 

diffraction features (5 – 35 2θ). The diffraction peaks were then simulated as a series 

of pure Gaussian functions, for example at the 110, 110, 021 and 200 crystallographic 

planes for cellulose I and at the 110, 110 and 020 planes for cellulose II. For the 

amorphous component one broad Gaussian curve was used (Ozturk et al., 2010). 

Slight variations in position were due to small errors in the height of samples. To 

estimate the crystallinity, data manipulation was carried out using intensity vs 2θ 

data in the Microsoft Excel software package with the Solver add in. 

3.2.7 13C Cross Polarization Magic Angle Spinning Nuclear Magnetic 
Resonance (CPMAS NMR) 

 

13C CPMAS NMR spectra were recorded on a Bruker (Karlsruhe Germany) AVANCE 

600 NMR Spectrometer with narrow bore magnet and 4mm triple resonance probe. 

The parameters used in CPMAS experiments were as follows. The Proton 90o pulse 

length was 3 µs. Field strength of the proton and spin locking fields during the 

contact period was 83 kHz. Samples were packed into 4 mm rotors and spun at 10 

kHz. ppm scales were referenced to the high field peak of adamantane (29.5 ppm) 

run as an external standard under identical conditions to the samples.  

Proton decoupling was provided by a Spinal64 sequence and the proton power levels 

during the contact time and decoupling stage could be varied independently to 

provide optimum signal to noise levels. The highest intensity signal for all types of 

bonded carbons in these carbohydrate materials lay between a contact time of 1 and 

2 milliseconds hence for all CPMAS experiments a value of 2 milliseconds was used. 
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3.2.8 Dynamic vapour sorption (DVS) 

A dynamic vapour sorption analyser (Surface Measurement Systems Ltd, London, UK) 

equipped with a Cahn D200 microbalance was used to measure the water sorption 

isotherms of the cellulose samples. The experiments were carried out at a 

temperature of 25oC and relative humidities from 0 to 95%. The initial weight of the 

samples was approximately 20 mg. Samples were pre-dried in the DVS by passing dry 

air over the powder until equilibration. The dry samples were subsequently hydrated 

in RH steps of 10%. Samples were considered equilibrated when the change in mass 

per unit time was less than 0.0005 mg min-1 or the equilibration time had reached 

1500 min. 

3.2.9 Capillary viscometry measurements 

Samples were dried overnight at 105oC. 10mg of the dried samples were dispersed 

with a few pieces of copper wire in a plastic bottle with 5ml of distilled water. The 

cellulose suspension was then dissolved by adding 5ml of 1M Copper (II) 

ethylenediamine (CED) solution and placing on a roller bed for 2 hours (ISO, 2009).  

Viscosity measurements were carried out with a U-tube viscometer in an accurate 

temperature regulated water bath. The temperature was kept constant at 25oC 

throughout. 2ml of each solution was injected into the viscometer and the flow time 

(𝑡) determined using an automatic timer.  

The relative, (𝜂𝑟𝑒𝑙), and specific (𝜂𝑠𝑝) viscosities were calculated from the following 

equations: 

 
𝜂

𝜂
0

 =  
𝑡

𝑡0

 =  𝜂
𝑟𝑒𝑙

 (3.1) 
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The specific viscosity (𝜂𝑠𝑝) can therefore be determined: 

 𝜂
𝑠𝑝

=  𝜂
𝑟𝑒𝑙

− 1 (3.2) 

The intrinsic viscosity can then be calculated using the Solomon – Ciuta equation 

(Solomon and Ciutǎ, 1962): 

 [𝜂] =  
1

𝑐
√2 (𝜂

𝑠𝑝
− ln  𝜂

𝑟𝑒𝑙
) (3.3) 

The viscosity average degree of polymerisation (DP) was then calculated using the 

Mark – Houwink – Kuhn – Sakurada (MHKS) equation (Evans and Wallis, 1989): 

 [𝜂] = 𝐾. 𝐷𝑃𝑎 (3.4) 

Where 𝐾 and 𝑎 are the MHKS coefficients which are taken from the literature for the 

values of cellulose at 25oC in 0.5M CED (Table 3.1).  

Table 3.1 Mark-Houwink coefficients for Eq. (4) 

𝑲 (cm3/g) 𝒂 Source 

1.37 0.905 Immergut and Eirich (1953) 

0.42 1 Marxfigini (1978) 

2.28 0.76 Gruber and Gruber (1981) 

0.91 0.85 Evans and Wallis (1989) 

1.87 0.771 Lojewski et al., (2010) 

3.2.10 Thermogravimetric analyser (TGA) 

A steel pan loaded with 5 mg of sample was placed inside a TGA 851e 

thermogravimetric analyser (Mettler Toledo, Switzerland) where the weight of the 

sample was constantly measured. The samples were heated from ambient to 450oC 

at a rate of 10oC min-1 in a nitrogen atmosphere.  
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3.2.11 Differential scanning calorimetry (DSC) 

Thermal transitions were monitored using a heat flux DSC 823e (Mettler Toledo, UK) 

with auto sampler and liquid cooling attachment. Samples were placed in gold pans, 

sealed and run from -80 to 300oC at scan rates of 10oC min-1. 

3.2.12 Flash DSC 

A very small amount of sample was placed on the chip sensor of a Flash DSC 1 

(Mettler Toledo, UK) which had first been conditioned and calibrated using the 

provided software. Maltose was cured at 100oC for different times and heated and 

cooled at 200oC s-1. Cellulose samples were heated five times from 25-460oC at 500oC 

s-1 with a cooling rate of 200oC s-1.  

3.2.13 Hot press 

23g of dry cellulose powder was loaded into a rectangular mould. The mould was 

then heated for 15 minutes at 200oC and compressed using a Daniels 160 Ton down 

stroke press at 90 bar. The mould was then transferred to a Macey Bowley 100 ton 

upstroke press to cool at 90 bar. The compressed cellulose was then carefully pushed 

out of the mould.  

3.3 Results and Discussion 

Two types of cellulose were used in this work, cellulose fibre (CF) which is sourced 

from wood and microcrystalline cellulose (MCC) which (also from wood) is produced 

by acid hydrolysis, which removes the majority of amorphous regions, due to their 

lower density (Dufresne, 2012), resulting in high crystallinity and a reduced particle 

size. CF has a much larger aspect ratio (length to width ratio) than MCC as seen in 

Figure 3.1. The celluloses were ball milled for between 2 to 610 minutes. Within the 

first 10 minutes the fibrous structure is completely destroyed (Figure 3.1) and the 

particles appear to aggregate together (Figure 3.2). This occurs much earlier than was 
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reported by Avolio et al. (2012), although they do not state at what speed they ball 

milled their samples, suggesting that their work was at a much lower energy.    

 

Figure 3.1 Light micrographs of (a) CF and (b) MCC at different ball milling times (minutes). Scale bars 
are 100 µm (left column) and 50 µm (right column).  
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Figure 3.2 SEM micrographs of (a) MCC and (b) MCC ball milled for 610 minutes. Scale bars are shown 
on the bottom right corner of each micrograph.  

Capillary viscometry is a useful way of determining the viscosity average degree of 

polymerisation (DP). Cellulose is dissolved in copper (II) ethylenediamine (CED) 

solution and the intrinsic viscosity can then be calculated. However, to calculate the 

DP, Mark-Houwink coefficients must be used of which there are several different 

values in the literature. Table 3.2 shows the viscosity average DP of MCC calculated 

using the Mark-Houwink coefficients from different literature sources (from herein 

all DPs refer to viscosity average DP). The value of the DP for MCC in the product 

specification is 350. Lojewski et al. (2010) provide the closest value with a DP of 370, 

therefore, these coefficients are used for the rest of this chapter to determine 

sample DP.  

Table 3.2 Viscosity average DP of MCC calculated using different 𝑲 and 𝒂 values; the average of three 
repeats. 

Source Viscosity average degree of polymerisation 

Evans and Wallis (1989) 498  

Marxfigini (1978) 424  

Lojewski et al. (2010) 370  

Gruber and Gruber (1981) 311  

Immergut and Eirich (1953) 217  

a b 
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Ball milling has previously been shown to decrease DP (Hu et al., 2014, Csiszar and 

Fekete, 2011). The DP of CF reduced rapidly with ball milling, with the rate of DP loss 

reducing after 250 minutes (Figure 3.3). MCC has a much smaller starting DP of 370, 

which is in agreement with the product specifications but after 250 minutes the DP 

plateaus at 190. With 610 minutes of ball milling CF reached a DP of 247 with the 

slope of the curve indicating it would also plateau at a similar DP to MCC with longer 

ball milling time. It is possible that this is the lowest limit to which this method is able 

to determine DP and in fact the DP continues to fall (Domvoglou et al., 2010) or that 

this is the value reached due to the ball milling energy constraints. With much longer 

ball milling times sharp peaks have been shown in WAXD spectra which may indicate 

the cellulose structure has been largely destroyed leaving only small glucose 

oligomers (Hajji, 2014).            

 

Figure 3.3 Viscosity average degree of polymerisation of CF (diamonds) and MCC (squares) at different 
ball milling times. 
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A commonly used method of determining cellulose crystallinity is to use X-ray 

diffraction (XRD). There are multiple ways of quantifying the data, which can lead to 

large differences in stated literature values for the same cellulose. Table 3.3 shows 

this disparity for lyocell (a commercially produced cellulose made by dissolving pulp 

in N-Methylmorpholine N-oxide (NMMO) and regenerating in water) using different 

methods to calculate crystallinity. Following the procedure used by Ozturk et al. 

(2010), a multi-peak deconvolution method has been used in this work to estimate 

the amount of type I and II crystallinity (c.f. Figures 2.6 and 2.7). Figure 3.4 shows an 

example of the multi-peak deconvolution method which has been used to determine 

all of the crystallinities of the cellulose samples shown in Figures 3.5-3.8. The results 

of the multi-peak deconvolution are shown in Figure 3.9 with the averages of three 

replicates for each sample.   

Table 3.3 Selected literature values for regenerated cellulose (lyocell) crystallinity using different 
methods to calculate cellulose crystallinity. 

Method Crystallinity (%) Source 

WAXD Amorphous Subtraction 70 Smole et al. (2003) 

WAXD Peak height 62 Cheng et al. (2006) 

WAXD Peak deconvolution 50.5 Ozturk et al. (2010) 

WAXD Peak height 44 Kreze et al. (2002) 
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Figure 3.4 The wide angle X-ray diffraction pattern of MCC ball milled for 20 minutes and 
subsequently rehydrated, showing the Gaussian peaks used to fit the cellulose type I and II cellulose 
peaks. The percentages of crystallinity based purely on area for type I and II were 15.4 and 10.6 
respectively. 

The loss in crystallinity due to ball milling is shown in the XRD spectra of CF (Figure 

3.5). After the ball milled CF has been rehydrated and subsequently dried it moves 

from a completely type I crystal structure (0 minutes) to a completely type II 

structure (610 minutes) (Figures 3.6 and 3.9). For intermediate milling time (5-70 

minutes) there is a mixture of both type I and II. MCC shows a similar trend (Figures 

3.7 and 3.8).  
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Figure 3.5 Wide angle X-ray diffraction spectra of CF which has been ball milled for different times 
(length of ball milling is shown to the right of each diffraction pattern). 
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Figure 3.6 Wide angle X-ray diffraction spectra of CF which has been ball milled for different times 
(length of ball milling is shown to the right of each diffraction pattern), rehydrated in excess water 
and subsequently dried at 60

o
C for 24 hours. 
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Figure 3.7 Wide angle X-ray diffraction spectra of MCC which has been ball milled for different times 
(length of ball milling is shown to the right of each diffraction pattern). 
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Figure 3.8 Wide angle X-ray diffraction spectra of MCC which has been ball milled for different times 
(length of ball milling is shown to the right of each diffraction pattern), rehydrated in excess water 
and subsequently dried at 60

o
C for 24 hours. 
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Figure 3.9 shows the numerical values of the crystallinities for both celluloses. Time is 

plotted on a log scale as there are substantial changes at short milling times. From 

the XRD data, both celluloses are completely amorphous by 40 minutes of ball milling 

(Figure 3.9a).  

When amorphous cellulose is rehydrated in excess water, the fibrils are able to 

realign and crystallise in the more thermodynamically stable type II lattice structure 

(Kocherbitov et al., 2008) (Figure 3.9b). In this work, for samples which have been 

ball milled up to 70 minutes, both CF and MCC partially recrystallise back to type I, 

due to a seeding effect of the intact type I crystalline regions (Figures 3.9c and 3.9d). 

There must then be a small amount of intact type I crystallinity up to 70 minutes 

even though this level is too low for XRD to detect. 

After 70 minutes of ball milling time the crystallinity of rehydrated MCC starts to 

increase whereas this only occurs for CF after 250 minutes. This may be due to an 

increased rate of recrystalisation due to the lower DP of MCC. β-glucans have been 

found to gel faster and produce gels with greater storage modulus (G’) values as their 

molecular weight decrease (Brummer et al., 2014).  As seen in Figure 4.3 the DP of CF 

after 70 minutes is still much greater than that of MCC. After 610 minutes CF still has 

a lower crystallinity than MCC. This may be due to its slightly higher DP.  
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Figure 3.9 The percentage crystallinity of (a) dry ball milled cellulose (b) rehydrated cellulose (c) MCC 
type I and II and (d) CF type I and II. The crystallinities were calculated using the peak deconvolution 
method shown in Figure 3.4 which was applied to all the X-ray diffraction spectra, examples of which 
are shown in Figures 3.5-3.8. Results are the average of three replicates and the error bars show the 
standard deviation. 

The loss of crystal structure is confirmed by NMR as the crystalline areas in the C-4 

(88-92 ppm) and C-6 (64-68 ppm) regions are reduced whilst the amorphous areas 

increase (60-64 and 80-86 ppm) (Figures 3.10 and 3.11) (Park et al., 2010, Ibbett et 

al., 2007). A small peak at 97 ppm appears (arrow) with longer ball milling which 

Wormald et al. (1996) attributed to an increase in the number of reducing ends 

caused by depolymerisation. However, it can be seen in Figure 3.11 that this peak 
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decreases for the recrystallised sample, suggesting that it may not be due to an 

increase in the number of reducing ends. 

 

Figure 3.10 
13

C CPMAS NMR spectra of CF (a) before and (b) after ball milling for 610 minutes. The six 
carbons of glucose are shown as well as the crystalline, c; and amorphous, a; regions. Arrow indicates 
an amorphous peak at 97 ppm. 

Dynamic vapour sorption (DVS) is a method used to assess solvent uptake of a 

sample, by measuring the change in weight of a sample against a reference. The 

sample is first dried in 0% relative humidity (RH) nitrogen. The RH is then increased in 

steps of 10% to 95% RH and then decreased in steps of 10% to 0% RH. The weight of 

the ball milled MCC increased steadily until 95% RH whereupon the weight decreased 

(Figure 3.12a). When the stepped increase and decrease in RH is repeated the results 

clearly show a reduced moisture (weight) uptake in the second cycle (Figure 3.12b). 

This is likely to be due to the recrystallisation of the cellulose during the first 

rehydration steps where water mobilises amorphous regions initiating 

recrystallisation, which subsequently is forced out by the closer packing of the 

crystalline areas (Kocherbitov et al., 2008). Kocherbitov et al. (2008) found that the 
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enthalpy of hydration for MCC, amorphous and rehydrated cellulose is the same; 18 

kJ/mol at zero water content. After the initial hydration, there is no weight loss at 

95% RH on the second run as the cellulose becomes recrystallised to the extent 

determined by the relative rates and levels of rehydration used in the experiment. 

The level of recrystallisation may then be different to that achieved in the excess 

water experiments.  

 

Figure 3.11 
13

C CPMAS NMR spectra of MCC with (a) 0 minutes (b) 20 minutes (c) 130 minutes (d) 610 
minutes ball milling and (e) rehydrated after 610 minutes ball milling. Arrows indicates an amorphous 
peak at 97 ppm. 
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Figure 3.12 DVS water sorption and desorption cycle of CF ball milled for 610 minutes (a) first cycle (b) 
second cycle at 25

o
C with steps of 5% relative humidity. 

Thermogravimetric analysis (TGA) provides two useful pieces of information, firstly 

moisture loss and secondly the temperature at which a sample degrades. Samples 

were not equilibrated to a RH before TGA; however, for both MCC and CF the 610 

min ball milled samples have higher moisture contents than the non-ball milled 

cellulose (Figures 3.13 and 3.14) due to the more open structure and higher surface 
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area of the fully amorphous celluloses (Mihranyan et al., 2004, Stubberud et al., 

1996). This is in agreement with DVS results which show that as the cellulose 

recrystallises, water is forced out (Figure 4.12). Avolio et al. (2012) have previously 

shown that the amount of water absorbed by cellulose increases with milling time as 

the amorphous regions are more accessible to water than the crystalline domains, 

i.e. there are more sorption sites (hydroxyl groups) available (Kocherbitov et al., 

2008, Mihranyan and Strømme, 2004).  Using DSC, Bertran and Dale (1986) showed 

there was a large endothermic peak between 110-160oC which was due to the loss of 

absorbed water and found there was a direct relationship between the area of the 

peak and the crystallinity of the sample. MCC has previously been shown to absorb 

up to 3 wt% of water into its internal structure (Khan et al., 1988, Sun, 2008). 

 

Figure 3.13 TGA plots (solid lines) and their respective differential thermal analysis (dashed lines) for 
MCC (black lines) and MCC ball milled for 610 minutes (grey lines). 
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Figure 3.14 TGA plots (solid lines) and their respective differential thermal analysis (dashed lines) for 
CF (black lines) and CF ball milled for 610 minutes (grey lines). 

During the pyrolytic degradation of cellulose several compounds are formed 

including water vapour, carbon dioxide, carbon monoxide and various hydrocarbon 

derivatives such as alkanes, alkenes, ketones and aldehydes (Soudais et al., 2007). 

TGA reveals some differences between the two types of cellulose. CF has a higher 

peak degradation temperature than MCC, (Figures 3.15 and 3.16) even though it has 

a lower crystallinity, possibly because of its larger fibre size and higher DP. The 

degradation temperature of CF decreases with increasing ball milling time but begins 

to plateau at higher milling times. This correlates with the decrease in DP which also 

begins to plateau at high milling times. Calahorra et al. (1989) have previously shown 

that thermal stability decreases as molecular weight decreases. There is little 

difference between the dry and rehydrated samples which indicates that DP rather 

than crystallinity is the influencing factor in the degradation temperature of CF.  
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Figure 3.15 Differential thermal analysis of TGA data for (a) CF and (b) MCC ball milled for different 
times. Arrows show the peak degradation temperature for cellulose that has not been ball milled (0 
mins), measured as the maximum height for each differential peak. 

The degradation temperature of MCC also decreases with increased milling time; 

however, there is a large jump of over 10oC between 20 and 40 minutes. This is the 
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time at which MCC becomes completely amorphous indicating that it is the loss of 

crystallinity (i.e. a tightly bound structure) which lowers the degradation 

temperature. The increase in mobility, which may be shown in the increased ability 

of the amorphous cellulose to absorb water (Figures 3.13 and 3.14), leads to a lower 

degradation temperature. For the rehydrated samples there is no jump but instead a 

steady decrease in the degradation temperature. These values are higher than the 

dry samples indicating that the more ordered crystalline structure is harder to 

degrade as more energy is required to disrupt the crystalline domains (Avella et al., 

2010, Pedersoli, 2000). For MCC then it is likely that both the decrease in DP and 

crystallinity impact the temperature at which the cellulose degrades.  

 

Figure 3.16 The peak degradation temperature (measured as the maximum height for each 
differential peak, as indicated by the arrows in Figure 3.15) of MCC (left) and CF (right), measured as 
the maximum peak DTA peak, as seen in Figure 3.15.  

It is useful to again look at the moisture loss for the samples at 20 and 40 minutes 

where the cellulose becomes almost completely amorphous (Figure 3.17). There is 

little difference in the moisture loss for the CF samples whereas there is a large 

increase in the amount of moisture that is lost for the amorphous MCC (at 40 
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minutes). This is in agreement with the drop in degradation temperature seen in 

Figure 3.16. The physical desorption of water generally occurs between 25-150oC 

whilst thermal dehydration occurs between 150-240oC (Tang and Bacon, 1964, Bacon 

and Tang, 1964). Due to the highly polar nature of cellulose, the water is closely 

associated with the cellulose chains through hydrogen bonding (Scheirs et al., 2001). 

For all the cellulose samples there is a small shoulder between 75-80oC which is most 

apparent for CF that has not been milled. This may be due to the evaporation of the 

small amount of bulk water.  

The peak moisture loss temperature shifts to a slightly higher temperature with ball 

milling (Figure 3.17). Using 2D 13C-13C NMR correlation spectroscopy and quantum 

chemistry computer simulations, Mori et al. (2012) have also found that amorphous 

cellulose has a more hydrophilic surface than crystalline cellulose. The amorphous 

cellulose may therefore bind water more tightly which will require more energy for 

the water to be released.  
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Figure 3.17 Differential thermal analysis showing the moisture loss of (a) CF and (b) MCC which have 
been ball milled for different lengths of time. 

An interesting observation that should be pointed out is that all the amorphous 

samples (>40 minutes ball milling time) flowed out of the TGA pans at a temperature 

of above 250oC (Figure 3.18). This again indicates an increase in mobility of the 

amorphous samples compared to those that were partially crystalline. Wang et al. 

(2013) found that ball milled cellulose samples studied by TGA had gone through a 

liquid intermediate stage. SEM showed a cellular foam structure, with trapped air 

bubbles, was formed whilst for the non-ball milled samples the fibre integrity was 
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maintained up to 600oC. They attributed the formation of these liquid intermediates 

(mainly oligo-anhydrosugars) to be caused by dehydration and cross linking during 

the formation of furanic compounds. The yield of the furanic compounds was 

considerably higher for the ball milled samples compared to the control samples, 

possibly due to a combination of decreased DP and lower crystallinity, resulting in a 

lower activation energy. As discussed in the introduction a liquid intermediate stage 

is well reported (Lede, 2012). 

 

 

Figure 3.18 The top images show the degradation of MCC that was ball milled for 610 mins during 
heating in the TGA (the temperatures at which the samples were heated to are shown above each 
pot). The lower images show replicate samples that were heated to 450

o
C, where the degraded 

cellulose has exited the TGA pans during heating. 

Using DSC, Figure 3.19 also shows that the degradation temperature of the ball 

milled amorphous sample is lower than that of the original MCC. The degradation 

temperature is lower than that shown in TGA as it is in air (oxidative) rather than 

nitrogen (inert). Below the degradation the crystalline MCC shows no transitions. The 

amorphous sample, however, shows two other peaks at about 50oC and 110oC. It is 

well reported that amorphous polymers show a thermal relaxation transition at 

about 50oC due to long range order that then requires time (in the order of days 

rather than hours) to return after heating (Appelqvist et al., 1993, Gidley et al., 
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1993). It will therefore not be seen in an immediate reheat.  Paes et al. (2010) 

ascribed the peak to the ‘melting’ out of weak associations, most likely hydrogen 

bonds, as the endotherm was at a constant temperature regardless of moisture 

content. If the endothermic peak was due to physical aging it might be expected to 

shift to a higher temperature with increased moisture content. The exothermic peak 

at 110oC is likely to be due to recrystallisation. Paes et al. (2010) found that on 

reheats this exothermic peak was not observed, but instead there was a higher level 

of meltable/freezable water due to the dehydrated recrystallised cellulose releasing 

water, as was also seen with DVS in Figure 3.12.   

 

Figure 3.19 DSC spectra of MCC (black) and MCC which has been ball milled for 610 mins (grey). Insert 
graph shows the region of 40-140

o
C expanded for the ball milled MCC. 

Flash DSC is a newly available technique that enables the rapid heating and cooling of 

very small amounts of sample. It is primarily used for samples that melt and are 

therefore able to make a good contact with the chip sensor. The physical aging of 

maltose provides a good example of what the flash DSC is capable of (Figure 3.20). 
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The maltose was cured at 100oC and with longer aging the enthalpy of relaxation 

increases (Schmidt and Lammert, 1996, Lammert et al., 1999, Noel et al., 2005).   

 

Figure 3.20 Flash DSC thermograms of maltose after curing at 100
o
C for (a) 1 second (b) 1 minute (c) 4 

minutes (d) 16 minutes (e) 66.67 minutes and (f) 266.67 minutes. 

Using flash DSC presents both an advantage and a drawback; the rapid heating and 

cooling rates (500 Ks-1) should enable the measurement of any thermal transitions 

before degradation occurs. The obvious drawback being that crystalline cellulose 

does not melt so there is poor adherence to the sensor. Indeed, when MCC was run 

on the flash DSC it was very difficult to measure anything as the sample more often 

than not jumped off the sensor on the first heat. When the sample did stay in place 

there was very little direct contact with the sensor. Due to the jumping of the sample 

the initial heat produced very noisy data. Figure 3.21 shows the results of a run 

where some of the MCC did stay in place. No transition was seen for MCC. 
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Figure 3.21 Flash DSC thermograms of MCC showing successive heats. The first heat is not shown due 
to excess noise.  

The ball milled sample (610 minutes) on the other hand did appear to flow slightly 

and adhere to the sensor on the first run of five heating cycles. This enabled a better 

contact with the sensor and with a subsequent run of heating cycles a thermal 

transition is shown (Figure 3.22) with the mid-point of the glass transition at 176oC. 

With each subsequent run the heat flow of the Tg reduces until by the 5th reheat the 

Tg is completely lost. This may well be due to the ball milled cellulose degrading with 

each successive heat and fuming off the chip and therefore decreasing the weight of 

the sample. This may also explain why the overall heat capacity decreases with 

further heating runs.  
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Figure 3.22 Flash DSC thermograms of MCC ball milled for 610 minutes showing successive heats.  

Figure 3.23a shows that the maltose melts and forms a glass with a uniform shape. 

MCC does not melt (Figure 3.23b) whereas ball milled MCC does appear to flow as 

evidenced by the rounded and almost transparent sample in the middle of the sensor 

(Figure 3.23c). On both of the cellulose samples a ring is clearly visible around the 

heating element which is a result of the cellulose degrading. When the samples were 

viewed as the heating took place fumes were seen every time the samples were 

heated above 350oC. 

 

Figure 3.23 Flash DSC chips after use with (a) maltose (b) MCC and (c) MCC ball milled for 610 mins. 

As the ball milled MCC appeared to flow slightly on the flash DSC chips, attempts 

were then made to thermoform cellulose on a larger scale so that the particulate 

structure could be disrupted creating a continuous material. Hot pressing has been 
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and Biliaderis, 1999), PLA (Wang et al., 2002), flax fibres (Romhány et al., 2003) or 

eucalyptus pulp (Curvelo et al., 2001). A temperature of 200oC was chosen as this 

was higher than the Tg (Figure 3.22) but lower than the degradation temperature 

(Figure 3.19). Preliminary experiments on a small scale hot press were promising, 

producing a slightly transparent material. This was then scaled up using a 160 ton 

down-stroke press at a pressure of 90 bar (Figure 3.24). MCC, which is often used in 

the production of pharmaceutical tablets (Iloañusi and Schwartz, 1998, Sun, 2008), 

produced a compacted sheet, similar in texture to strong cardboard and there was a 

slight browning due to the heat (Figure 3.25a). Yamamura et al. (1997) have 

suggested that during the compaction of MCC, as well as cohesion between cellulose 

particles, there may be the formation of a regular long range intermolecular 

arrangement. The hot pressed ball milled MCC produced a much stronger sheet that 

cracked when removing from the mould. As can be seen from Figure 3.25b, part of 

the sheet turned a caramel brown colour. The differences in colour on the sheet are 

likely to be due to pressure differences during the hot press caused by uneven 

loading of the powder in the mould. The degradation temperature of ball milled MCC 

is above 200oC (Figure 3.19) but the high pressure will reduce the degradation 

temperature (Zhang et al., 2012). These areas were much harder to break by hand 

than the MCC sheet. Whilst visually, parts of the ball milled MCC sheet appears to 

have flowed and formed a continuous polymer melt due to its shiny surface, SEM 

images indicate the ball milled MCC has just been compacted (Figure 3.25b) and 

sintered as ball milled MCC particles were intact but fused together. This can be seen 

more clearly with the sheet that was composed of 70 wt% MCC that was ball milled 

for 610 minutes and 30 wt% CF (Figure 3.25c). The inability of ball milled MCC to lose 

its particulate structure is likely to be due to it recrystalising before it was able to 

flow.  
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Figure 3.24 Pictures of (a) the down stroke hot press and (b) the up press to cool the sample whilst 
still under pressure. 

 

Figure 3.25 Cellulose pressed at 200
o
C (a) MCC (b) MCC ball milled for 610 minutes and (c) 70 wt% 

MCC ball milled for 610 mins + 30 wt% CF. Top are images of the pressed cellulose. Each tile is 8cm
2
. 

Bottom images are the corresponding SEM images of the fractured surface. 

3.4 Conclusion 

Ball milling rapidly changes the structure of cellulose, both decreasing its crystallinity 

and viscosity average DP. Kinetic energy is transferred from the balls to the cellulose 

via collisions, rupturing the glycosidic bonds. When rehydrated, cellulose will 

recrystallise to its more thermodynamically stable type II polymorph unless there are 
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still some type I seed crystals present. At intermediate milling times a mixture of both 

polymorphs recrystallise. DP is the most important factor in the degradation 

temperature of CF whereas crystallinity is also important for dry ball milled MCC. DVS 

showed that if the RH is raised to 95% ball milled MCC will recrystallise which forces 

out water, lowering the weight of the sample. When cellulose becomes completely 

amorphous it will go through a liquid intermediate stage at a temperature above 

250oC. A liquid intermediate/melt stage is also seen with flash DSC. This enabled the 

measurement of a glass transition temperature. Attempts to thermoform amorphous 

cellulose were not successful which is likely to be due to recrystallisation before it 

flows.  
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Chapter 4. Reinforced 
polysaccharide biofoams 
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4.1 Introduction 

Cellular solids or solid foams are comprised of cells which have solid edges or faces 

that fill space. They are found widely in nature, for instance cork, cancellous bone, 

wood, coral and sponge due to their high strength but light weight. Man-made foams 

have been manufactured since the early 20th century and have been used as 

packaging, cushioning and insulation materials. There are also many cellular solid 

foods, for example, bread and meringue.  

Solid foams can be categorised into two types, based on cell structure, either open 

(also known as reticulated) or closed.  Pores in open cell structured foams form an 

interconnected network and often result in a soft structure. Closed cell foams are 

often stronger and denser as the pores are not interconnected. Closed cell foams are 

particularly good as thermal insulators due to their poor conductivity of enclosed gas 

and good thermal shock resistance (Gibson and Ashby, 1988).  

Aerogels are formed by removing liquid from a gel, for example by lyophilisation or 

super-critical CO2 drying. This produces a structure that is lightweight, porous and 

has a large surface area as well as being mechanically strong. Thickened hydrocolloid 

solutions can also form sponges when dried but cannot strictly be referred to as 

aerogels. Due to the low solids content of most hydrocolloid solutions and gels the 

drying process is expensive and time consuming but there are many novel 

applications that can make the process economical, for example, for packaging, 

insulation and tissue scaffold/wound healing (Sharma et al., 2013, Gupta et al., 2010, 

Cardea et al., 2013, Barbetta et al., 2010, Croisier and Jerome, 2013, Rudaz et al., 

2014) as well as drug delivery (Vishal Gupta and Shivakumar, 2010, Garcia-Gonzalez 

et al., 2011, Mehling et al., 2009, Ulker and Erkey, 2014) and chemical sensing 

(Deligkaris et al., 2010).  
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Traditionally, aerogels have been prepared from inorganic materials such as silica. 

There is now an increasing interest in producing aerogels from renewable, 

sustainable sources, particularly polysaccharides. Much of the current literature 

focuses on marine polysaccharides such as carrageenan and alginate (Hyland et al., 

2011, Sun and Tan, 2013). There is also a focus on micro/nanofibrillated cellulose 

aerogels as well as all cellulose composites (Duchemin et al., 2010). 

One of the most widespread ways of removing the liquid phase from a gel is by 

lyophilisation (freeze drying). The freezing rate is therefore important as it will 

dictate the size and direction of ice crystal formation. Faster freezing rates produce 

small ice crystals. Using micro-CT imaging Koehnke et al. (2012) showed they were 

able to produce a unidirectional aerogel by freezing in liquid nitrogen (-196oC) using a 

temperature gradient with nanoreinforced xylan-cellulose composite foams. They 

found that samples with larger pores were stronger and stiffer than those with 

smaller pores and that samples with strong anisotropy of the pore structure in the 

loading direction were stronger than samples with non-directional freezing (random 

pore orientation). Wu et al. (2007) used a combination of collagen and chitosan and 

found that scaffolds fabricated at -20oC and -80oC had an open pore structure 

whereas the scaffolds fabricated at -196oC had a parallel sheet structure. Stokols and 

Tuszynski (2004) created a linear pore structure with agarose aerogels by touching 

just the ends of glass vials containing agarose solution onto a block of dry ice 

surrounded by liquid nitrogen. The samples were allowed to freeze for 45 minutes 

and then freeze dried.  

The production of nanofibrillated cellulose aerogels is particularly sensitive to the 

drying method. Jin et al. (2004) compared regular freeze drying, rapid freeze drying 

and solvent exchange. Regular freeze drying resulted in significant coalescence of the 
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microfibrils due to capillary effects whilst the solvent exchanged and dried aerogels 

gave a highly porous structure. Rapid freeze drying (freeze casting on a liquid 

nitrogen cooled metal plate) gave aerogel sheets with asymmetrical porosity. 

Recently, Mikkonen et al. (2014) produced aerogels using guar gum and tamarind 

xyloglucan. They found that by using enzyme oxidisation of the polysaccharides the 

compressive modulus could be greatly increased. The modification also resulted in 

the aerogels no longer being water soluble which would help significantly for 

potential applications such as packaging. 

One of the most important characteristics of a foam is its mechanical strength and 

stiffness (Young’s modulus). Figure 4.1 shows a typical stress strain curve of a 

polysaccharide foam.  

 

Figure 4.1 Stress-strain curve of a polysaccharide foam. 
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Due to the soft nature of foams, the initial portion of a stress-strain curve has a high 

deformation/low force characteristic known as the toe region caused by the 

alignment of the foam structure. The linear region, caused by the cell walls bending, 

follows the toe region and is used for the determination of Young’s Modulus. The 

yield region is where permanent deformation starts. At high strain densification 

occurs as the cells collapse and compress. Foams are low density and generally have 

a relatively low Young’s modulus compared to other materials (Figure 4.2). 

 

Figure 4.2 Chart of Young’s modulus as a function of density (Verdejo et al., 2011) 

 

The mechanical strength of foams can be greatly improved by adding another 

component to reinforce the foam structure. One of the major factors in whether 

fibres will improve composite strength is their compatibility with the matrix polymer. 

Natural fibres therefore have much better adherence to polysaccharides such as 

starch due to their chemical similarities than to hydrophobic oil derived polymers 

such as polyester (Wollerdorfer and Bader, 1998). 
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Bergeret and Benezet (2011) used natural fibres such as cotton linters, hemp, 

sugarcane and coconut fibres to reinforce extruded starch biofoams which induced a 

density reduction of up to 33% as well as a decrease in water adsorption and increase 

in the mechanical properties. Similar studies using sugarcane fibres (Debiagi et al., 

2011), henequen and coconut (Aguilar‐Palazuelos et al., 2007), leafwood and paper 

pulp fibres (Averous and Boquillon, 2004), sisal, jute and cabuya (Torres et al., 2007) 

and cellulose nanofibres (Hietala et al., 2013) have all shown that the mechanical 

properties of the foams were greatly improved by fibre reinforcement. One of the 

major areas these new structures could be used is as an alternative loose fill 

packaging material. 

Another polymer which has seen considerable interest in composite construction is 

polylactic acid (PLA) which is thermoplastic and derived from natural resources such 

as corn starch or sugarcane (Dicker et al., 2014). Many studies have shown that PLA’s 

mechanical properties can be improved by the addition of fibres (Sahari and Sapuan, 

2011, Wambua et al., 2003, Graupner et al., 2009, Mukherjee and Kao, 2011). Neagu 

et al. (2009) produced PLA composite foams using supercritical CO2. The addition of 

5-10 wt% wood fibre significantly increased the stiffness and strength of the foam.  

Water sorption can be incredibly important for the structural integretiy of cellulose 

solids. Some aerogels are designed to absorb as much water as possible, for instance 

wound dressings (Gupta et al., 2010). Vishal Gupta and Shivakumar (2010) designed 

chitosan/poly(vinyl alcohol) superporous hydrogels which were able to swell and de-

swell reversibly depending on the pH of media which enabled better drug delivery. 

Kuang et al. (2011) chemically modified starch to prepare fast swelling 

superabsorbant hydrogels which could be useful in a number of biomedical 

applications. However in many applications pronounced water absorption is not 
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desirable. Enzymatic oxidation of guar and xyloglucan has been used to slightly 

decrease the moisture uptake of aerogels (Mikkonen et al., 2014).  

Sundaram and Durance (2007) found that dried hydrocolloid hydrogels with the 

highest total pore area had the highest moisture content in sorption isotherms and 

that more interconnected pores resulted in higher moisture contents. They showed 

that hydrogels absorbed only small amounts of water at low relative humidity (RH) 

but large amounts at high RH, following a type III moisture sorption isotherm. 

Locust bean gum (LBG) has a β-1,4-linked mannose backbone and approximately 

every fourth mannose unit is substituted with a 1,6-linked α-galactose residue. The 

distribution of galactose side chains is neither regular nor completely random (Dea et 

al., 1986). LBG undergoes cryogelation when frozen due to association of the 

unsubstituted regions of the mannan backbone. LBG is used to reduce ice crystal 

recrystallisation rates in ice cream so as to provide a smoother texture (Patmore et 

al., 2003, Regand and Goff, 2003, Doyle et al., 2006). LBG is adsorbed onto cellulose 

fibres and has been used in papermaking (Swanson, 1961). Using 13C NMR 

spectroscopy Newman and Hemmingson (1998) looked at interactions between LBG 

and cellulose. Fractions of LBG with a higher mannose to galactose (M:G) ratio were 

found to selectively bind to bleached kraft pulp and the fraction with a higher 

galactosyl substitution was washed from the sample. They suggested that most of 

the mannosyl residues were involved in generalised interactions with cellulose, not 

just the unsubstituted regions whereas the galactosyl residues were not involved. 

LBG has been found to interact synergistically with microcrystalline cellulose (MCC) 

(Dea et al., 1986). 

Fenugreek has a β-1,4-linked mannose backbone that is fully substituted with 

galactose residues and therefore does not undergo cryogelation. There have been 
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few studies on the interaction between cellulose and fenugreek but the sidechains of 

xyloglucan do not prevent it from binding to cellulose (Levy et al., 1991). However 

galactomannans with less galactosyl residues tend to interact more with other 

polysaccharides (Dea et al., 1986), for instance LBG forms a gel with  xanthan 

whereas guar (M:G = 2:1) does not (Phillips and Williams, 2000). Fenugreek has no 

synergistic interaction with carboxymethylcellulose (Mathur, 2011).  

This chapter seeks to identify any differences in foam structure caused by the cryo-

gelation or non-gelation of the two galactomannans and to identify the 

reinforcement effect of different celluloses.  Scoping experiments were also carried 

out to identify new methods of fibrillating cellulose through extrusion. 

4.2 Materials and Methods 

4.2.1 Materials 

The celluloses used in this work are cellulose fibre (CF) and cellulose powder (CP) 

(Solka 900FCC and 300FCC respectively, International Fibre Corporation, USA) and 

Avicel MCC type PH-101 Ph Eur (Sigma Aldrich, UK). The polysaccharides used were 

fenugreek (Airgreen, Japan) and Locust bean gum (LBG  246) (Danisco, Denmark) 

which had weight average molecular weight of 4.05 x 106 and 2.72 x 106 g/mol 

respectively (please see Chapter 6, section 6.2.3, page 180 for the method of 

molecular weight measurement). Hydroxypropylcellulose (HPC) with a weight 

average molecular weight of 80,000 g/mol was purchased from Sigma Aldrich (UK).  

4.2.2 Microfibrillation 

2 wt% CP was swollen in water for 2 hours and then passed through a Niro Soavi 

Panda 2K high pressure homogeniser (GEA, Italy) at 1300 bar for a total of 15 passes. 

The microfibrillated cellulose (MFC) dispersion was then concentrated by centrifuging 
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at 2000g for 20 minutes and removing the excess water. The MFC dispersion was 

then diluted to its required concentration. 

4.2.3 Light microscopy 

Light microscope images were taken using a Leitz Diaplan microscope (Leica, 

Heidelberg, Germany) and a Pixelink PL-A600 (Ottawa, Canada) recording camera. 

MFC dispersions were dyed with Congo red. Hot stage pictures were taken using a 

TMHS 600 Linkam stage (Linkam Scientific Instruments, UK) and images were taken 

every 5 seconds with a heating rate of 10oC min-1. 

4.2.4 Gel and foam production 

Polysaccharide gels and foams were made by first preparing concentrated 

polysaccharide solutions (≈2.5 wt%) by adding the polysaccharide powder slowly to 

water using a mixer and heating to 80oC for 30 minutes until fully dissolved. The 

solutions were left overnight on a roller bed and then centrifuged at 4000 rpm for 40 

minutes to remove as much of the insoluble particles as possible. The concentrations 

of the polysaccharide solutions were checked by oven drying and the solutions were 

then diluted to a concentration of 2 wt%. Cellulose suspensions were prepared to 

required concentrations (taking into account their moisture content) in distilled 

water and left to swell for 2 hours. The cellulose suspensions and polysaccharide 

solutions were then mixed together using a mixer. The mixtures were immediately 

frozen for 48 hours and then freeze dried for 7 days. The cellulose was added to the 

galagtomannan solutions at ratios of 1:1 to 1:6 galactomannan:cellulose. The foams 

with a ratio of 1:6, therefore, had six times as much cellulose filler as galactomannan 

matrix. 
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4.2.5 Texture analysis 

Foams were removed from their pots after freeze drying and cut to a height of 15 

mm with a sharp serrated knife (so as to remove the uneven top of the foams). The 

foams were then compressed using a TA.HD Plus Texture Analyser (Stable Micro 

Systems, UK) with a 100 kg load cell. All foams were compressed to a true strain of 

0.4. The maximum force was the force at a true strain of 0.4. Figure 4.3 shows where 

the compression was stopped (dotted line) instead of completely crushing the foam 

(solid line). This enabled the additional measurement of height loss which was 

calculated by: 

 𝐻𝑒𝑖𝑔ℎ𝑡 𝑙𝑜𝑠𝑠 (%) =  
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 − ℎ𝑒𝑖𝑔ℎ𝑡 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝐼𝑛𝑖𝑡𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡
× 100 (4.1) 

 

Figure 4.3 Stress-strain curve of a foam with a fenugreek to CF ratio of 1:4. The solid line shows full 
compression whereas the dotted line shows the true stress of a foam that was compressed to a true 
strain of 0.4 and then released. 

Further calculations can be performed with the data provided by the texture analyser 

(i.e. distance and force) as follows: 
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Engineering stress is the applied load divided by the cross sectional area of a 

material, i.e. a force that deforms a body: 

 𝜎𝐸 =
𝐹

𝐴0

 (4.2) 

 

Where 𝐹 is the force and 𝐴0 is the cross sectional area before deformation. 

Engineering stain is the deformation of a material compared to its original size: 

 𝜖𝐸 =  
∆𝐻

𝐻0

 (4.3) 

Where ∆𝐻 is the change in height and 𝐻0 is the original height. 

Both engineering stress and strain use fixed reference quantities such as the original 

cross sectional area or original height. These definitions are often accurate enough 

when the cross sectional area and height do not change substantially as force is 

applied. However, in some situations such as the compression of foams, these 

quantities can change substantially and thus must be accounted for. This is usually 

done by calculating the true stress and true stain. 

The true stress is the applied load divided by the actual cross sectional area (which 

changes with time) of the material at that load: 

 𝜎𝑇 =
𝐹

𝐴
=

𝐹

𝐴0

.
𝐿

𝐿0

= 𝜎𝐸(1 + 𝜖𝐸) (4.4) 

Where 𝐴 is the cross sectional area of the specimen at which the load is applied. 

True strain equals the natural log of the quotient of current length over the original 

length. True strain is defined as the sum of all instantaneous engineering strains. True 

strain can be related back to engineering strain: 
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 𝜖𝑇 = ln
𝐿𝑓

𝐿0

= ln
𝐿0 + ∆𝐿

𝐿0

= ln (1 + 𝜖𝐸) (4.5) 

 

Where 𝐿𝑓 is final length.  

Young’s modulus is a measure of stiffness. It is the ratio of stress over strain in the 

linear viscoelastic region. Strain is unitless so Young’s modulus has the same units as 

stress. 

 𝐸 =  
𝜎

𝜖
 (4.6) 

 

Figure 4.4 The engineering (solid line) and true (dashed line) stress strain curves of a foam with a 
fenugreek to CF ratio of 1:4. 

As Figure 4.4 shows the values of engineering and true stress are very similar at low 

strain and only deviate at higher strain rates. 

4.2.6 Bulk density 

The bulk density of the foams was calculated by the following: 

 𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑜𝑎𝑚

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑜𝑎𝑚
 (4.7) 
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4.2.7 Moisture uptake 

The polysaccharide foams were equilibrated over saturated salt solutions 

(Phosphorous Pentoxide RH≈2%, Potassium Carbonate RH=43% and Potassium 

Sulphate RH=97%) for 7 days. Moisture uptake was measured by the following: 

 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑢𝑝𝑡𝑎𝑘𝑒 =  
𝑊𝑒𝑖𝑔ℎ𝑡 𝑔𝑎𝑖𝑛 𝑎𝑓𝑡𝑒𝑟 7 𝑑𝑎𝑦𝑠

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡
 𝑋 100 (4.8) 

4.2.8 Extrusion 

For the initial fibrillation trials a Clextral BC-21 (Clextral Ltd, Firminy, France) was 

used which has a co-rotating twin-screw with a length of 400 mm, a barrel length to 

diameter ratio of 16:1 and screw speed of 200 rpm. The extruder was equipped with 

a pre-calibrated K-Tron Type T20 twin-screw volumetric feeder and a DKM-Clextral 

Type TD/2 water pump, which were used to control the solid feed and water inputs, 

respectively. The water flow rate was adjusted to give a moisture content of 

approximately 50 wt%. 

The starch extrusion trials were performed on a co-rotating and intermeshing TSE 24 

MC Extruder (Thermo Scientific, USA). The extruder barrel with a horizontally-split 

design is vertically segmented into 10 heating zones. The temperature profile along 

the extruder axis was maintained at 30, 30, 40, 40, 60, 60, 80, 100, 120, 140°C from 

the feed hopper to die. The twin-screws used had a diameter of 24 mm, length to 

diameter (L/D) ratio of 40:1 and were operated at screw speed of 200-400 rpm. The 

extrusion process was operated with a round die, a peristaltic pump for the supply of 

water (which was decreased from 100 L Hr-1 to 0.8 L Hr-1) as plasticiser and two 

gravimetric feeders (Brabender Technology, Canada). One gravimetric feeder was 

used to feed the pre-mixed starch and cellulose powders (solid feed rate: 2 kg Hr-1), 

and the other to feed maize grits which were used to clean the extruder. The 

extrudates produced were then equilibrated to different RH. In the course of the 
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extrusion process, pressure, torque, feeding rate, and the die temperature readings 

were monitored. The specific mechanical energy (SME) could then be calculated 

using the following equation:   

 𝑆𝑀𝐸 = [2 𝜋 (
𝑛

60
)  𝜏] /𝑀𝐹𝑅 (4.9) 

 

Where 𝑛 = screw speed, 𝜏 = torque and MFR = mass flow rate. 

4.2.9 Radial Expansion Ratio (RER) 

Radial expansion of extruded starch foams can be described by square of the ratio of 

the cross-sectional area of the foam to the die cross-section (Willett and Shogren, 

2002):  

 𝑅𝐸𝑅 = (
𝑅𝑓

𝑅𝑑

)
2

 (4.10) 

Where Rf is the radius of the foam and Rd is the radius of the die. Extrudates were 

measured using a calliper and the RER was the average of 10 measurements. 

4.2.10  C-Cell Mono image analyser 

A C-Cell Mono imaging system (Calibre Control International Ltd, Warrington, UK) 

with a 75mm high resolution camera was used to capture images of the extrudate 

samples. 

4.2.11  Capillary Rheometer 

A Rosand RH7 twin bore Rosand Flowmaster RH7 capillary rheometer, (Bohlin 

Instruments, UK) was used. The sample was driven through a capillary die. The 

sample (70 wt% hydroxypropylcellulose 30 wt% MCC) was loaded into the barrel, 

allowed to equilibrate for 10 min and extruded at 140oC. The extrusion was carried 
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out at ram speeds of 2, 5.63, 15.9, 44.7, 126, 355 and 1000 mm/s. The pressure was 

recorded as a function of the piston speed. 

4.3 Results and Discussion 

Figure 4.5 shows a freeze thaw cycle of each initial polysaccharide solution. As ice 

crystals form LBG is phase concentrated into the interstitial regions between the ice 

crystals and forms junction zones between the unsubstituted regions of the mannan 

backbone resulting in a gel-like network upon thawing. The gel structure can be seen 

in the thawed LBG micrograph in Figure 4.5 which shows the outline of where the ice 

crystals had been. Goff et al. (1999) found that the gel-like network formed after 

freezing becomes more distinct with temperature cycling. The authors found that 

there was no such structure formed with guar gum and therefore that LBG was more 

effective at inhibiting ice recrystallisation. Similarly to guar, in this work, fenugreek, 

which has a fully substituted backbone, was also unable to form a cryogel (Figure 

4.5).   

Therefore, to see if the cryogelation had any effect in increasing polymer-cellulose 

interaction, fenugreek was used as an alternative polymer. The particles seen in 

Figure 4.5 are part of the insoluble fraction that could not be removed even with 

significant centrifugation. The solutions therefore still contained a small fraction of 

impurities. 
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Figure 4.5 Light micrographs of a 1 wt% fenugreek aqueous solution (top) and a 1 wt% LBG aqueous 
solution (bottom) freeze thaw cycle from 20

o
C to -20

o
C and back to 20

o
C. 

Both LBG and fenugreek create highly porous, interconnected and unordered open 

cell structured foams when freeze dried (Figure 4.6). The macroporous structure is 

due to the ice crystals acting as a template for the formation of pores (Lozinsky et al., 

2003). The pore size appears to be smaller for the LBG foam as would be expected 

due to its use in ice cream to slow down ice crystal growth (Patmore et al., 2003). 

Fenugreek formed larger flat sheets, the edges of which show a fine fibril network. 

Foams with a similar morphology were created from alginate and chitosan gels 

(Hyland et al., 2011). Sharma et al. (2013) produced carrageenan-gelatin cryogel 

foams with large and interconnected pores in the range of 60-100µm which would 

allow nutrient flow if used as a tissue scaffold. Using LBG-pectin-starch composites, 

Sundaram and Durance (2008) compared different drying methods; air, vacuum, 

freeze drying and microwave vacuum drying. They showed that compared to the 

other methods freeze dried gels showed a more collapsed pore structure which is 

common in food dehydration (Rassis et al., 2002). Nussinovitch et al. (2004) used 

ImageJ, a public domain image processing program, to measure the fractal pore size 

distribution of freeze dried agar and fruit purees. The addition of fruit puree resulted 
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in small pores. Their method did have significant limitations as the pore numbers 

were calculated from 2-dimensional images of 3-dimensional structures. Stănescu et 

al. (2008) also used fractal analysis to provide a quantitative measure of the 

smoothness and therefore homogeneity as well as to give a better measure of the 

porosity of freeze dried collagen-chitosan matrices. 

 

Figure 4.6 SEM micrographs of pure LBG (left) and fenugreek (right) foams at different magnifications. 
The scale bar is located in the bottom right corner of each micrograph. 

Three celluloses were chosen as fibre reinforcements for the polysaccharide foams to 

identify the effect of fibre size and crystallinity. MCC is produced by acid hydrolysis of 

pulp resulting in a high crystallinity and small particle size and is widely used for 
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tableting, wet granulation and capsule filling. Cellulose fibres (CF) and cellulose 

powder (CP) are produced from the same source but CP is milled to a smaller particle 

size (Figure 4.7) which decreases its crystallinity and degree of polymerisation (Table 

4.1). The average particle sizes are from the product specifications. The cellulose was 

added to the galagtomannan solutions at ratios of 1:1 to 1:6 

galactomannan:cellulose. The foams with a ratio of 1:6, therefore, had six times as 

much cellulose filler as galactomannan matrix.  

Table 4.1 Crystallinity from X-ray diffraction and viscosity average degree of polymerisation of the 
celluloses based on the average of three replicates. The average particle size is from the product 
specifications. 

Cellulose Crystallinity (%) Degree of 
polymerisation  

Average particle 
size (µm) 

CF 41.5±0.15 1870 110 

CP 27.4±0.1 1210 22 

MCC 52.1±0.25 370 50 
 

           

Figure 4.7 SEM micrographs of (a) CF (b) CP and (c) MCC at different magnifications. 

a 

c 

b 
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The cell size of the foams containing CF at a ratio of 1:2 galactomannan:cellulose is 

smaller than the pure galactomannans foams (Figure 4.8). The addition of cellulose 

increases the solids content of the foams which will result in more sites for ice 

nucleation. During ice crystal growth the fibres appear to have been forced into the 

fenugreek cell wall sheets. The cellulose fibres are not aligned in either of the 

polysaccharide foams as there was no directional freezing.  

 

Figure 4.8 SEM micrographs of LBG (left) and fenugreek (right) foams with a 1:2 
galactomannan:cellulose content. 
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A series of cellulose concentrations were added to the polysaccharide foams. Figure 

4.9 shows typical stress strain curves for fenugreek foams with increasing content of 

MCC.  

 

Figure 4.9 Typical stress strain curves for the fenugreek foams filled with MCC. The ratios represent 
the fenugreek:cellulose content, so 1:4 has four times as much cellulose filler as fenugreek matrix. 

After compression both the fenugreek and LBG foams lose about 19% of their height 

(Figure 4.10). The plateau region of the foams is between a true strain of 0.15 and 

0.25 (Figure 4.9) and at higher strain the foams begin to enter the zone of 

densification where the cell walls begin to buckle and touch during compression. 

When the compressive load is released, some of the cell walls are still adhered 

resulting in the foams being unable to spring back to their original height.  

The height loss of both the LBG and fenugreek foams increases with increasing MCC 

concentration whilst both CP and CF have a much smaller impact on height loss 

(Figure 4.10). It might be expected that the foams containing MCC reach the level of 

densification before the other cellulose containing foams resulting in there being less 

spring back, however, when the 1:4 glactomannan to cellulose containing foams are 

compared, densification starts at the same strain value for each type of cellulose 
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(Figure 4.11). The difference is therefore likely to not be due to when densification 

occurs. 

In the plant cell wall hemicelluloses bind to the surface of cellulose fibrils and act as 

tethers (Kiemle et al., 2014). In Chapter 6 we will show that both LBG and fenugreek 

bind to the surface of CF and MCC in water, however, when the solvent is changed, 

whilst LBG still binds to the surface of CF it appears to be bound to MCC to a much 

lower level which may be due to its higher crystallinty (i.e. less regions available for 

hydrogen bonding). MCC has been shown to have weaker interactions with PLA 

compared to wood fibre (Mathew et al., 2005). The authors proposed that the better 

interaction may have been due to greater roughness of the wood fibre. Other studies 

have shown that increasing the surface roughness of natural fibres increases the 

interaction with matrix polymers (Valadez-Gonzalez et al., 1999, Herrera-Franco and 

Valadez-Gonzalez, 2005, Faruk et al., 2012). A combination of lower surface 

roughness and higher crystallinity may therefore result in a lower interaction 

between MCC and the galactomannans than CP.  

To produce the foams the galactomannans and celuloses were first mixed in water so 

there is likely to have been some interaction. It is unclear however, what effect the 

drying process would have on this interaction, although it might be assumed that the 

interaction between the galactomannan and cellulose will still be present as 

galactomannans are sometimes used in paper manufacture due to their fibre 

bonding ability (Prajapati et al., 2013). If MCC is less tightly bound to the 

galactomannan matrix, during compression it will be able to move more freely. When 

the compression is then removed the MCC which has moved will inhibit the foams 

from springing back (Figure 4.10a). CP, which also has a low aspect ratio, similar to 

that of MCC (Figure 4.7), but a low crystallinity (Table 4.1) may have a higher level of 
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interaction with the galactomannan matrix than MCC and so only increases the 

height loss of the foams slightly (Figure 4.10b). CF has a much higher fibre size than 

either CP or MCC so is likely to have the highest flexibility and therefore does not 

stop the foam from regaining height after compression (Figure 4.10c).  

 

Figure 4.10 Height loss of fenugreek (solid) and LBG (hollow) foams after the compressive load is 
removed compared to the original height of the foams for (a) MCC (b) CP and (c) CF. The x axis 
represents the galactomannan:cellulose ratio. 

 

Figure 4.11 Stress strain graphs of fenugreek foams with a ratio of 1:4 fenugreek:cellulose measured 
with a texture analysiser. The solid lines indicate the plateau region. The vertical line indicates where 
densification begins. 
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Whilst both the pure LBG and fenugreek foams had the same height loss after 

compression (Figure 4.10) the maximum force required to compress the foams to a 

true strain value of 0.4 was greater for fenugreek compared to LBG (Figure 4.12) 

which may be due to its higher weight average molecular weight of 4.05 x 106 g/mol 

compared to 2.72 x 106 g/mol (please see the materials and methods section 4.2.1, 

page 99). Due to the differences in molecular weight it is difficult to see if there is any 

difference due to the cryogelation of LBG and it would therefore be useful in future 

work to use another polysaccharide of similar molecular weight to LBG to fully 

appreciate any differences in foam strength caused by cryogelation. 

The addition of fibres to foams is known to increase their compressive modulus 

(Karthikeyan and Sankaran, 2004). Figure 4.12 shows that increasing cellulose 

content increases the maximum force required to compress the foams, however, 

there are differences between the celluloses. CF, which has the highest particle size 

and aspect ratio, provides the greatest reinforcement. It is well reported that the 

larger the fibre size the greater the reinforcement ability (Stark and Rowlands, 2003, 

Bouafif et al., 2009, Migneault et al., 2009). CP has a smaller particle size than CF and 

therefore provides lower reinforcement to the foams. MCC has a larger particle size 

than CP and so would be expected to provide greater reinforcement, however, this is 

not the case. MCC is actually composed of aggregates of cellulose crystals which can 

be seen in Figure 4.7. During the mixing process with the galactomannan solutions it 

is possible that these aggregates break up leaving the smaller individual crystals, 

however, disaggregation of MCC is only usually achieved by high pressure 

homogenisation (Kleinebudde et al., 2000, Lee et al., 2014) so it unlikely that the 

bench top mixer would induce sufficient shear to disaggregate the MCC, indeed, 

Mathew et al. (2005) found that even after extrusion, MCC remained as aggregates 

of crystalline fibrils.  
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As described above, the interaction between MCC and the galactomannan matrix 

may be weaker than that of CP. The better adhesion will result in the filler being able 

to provide greater reinforcement. The influence of filler/matrix interaction, which 

can depend on the size of the interface, strength of the interaction, filler anisotropy 

and filler orientation, on the strength of composites has been widely studied 

(Pukanszky, 1990, Dittenber and GangaRao, 2012, Dicker et al., 2014).  

  

Figure 4.12 The maximum force required to compress fenugreek (solid) and LBG (hollow) foams to a 
true strain of 0.4 for (a) MCC (b) CP and (c) CF measured with a texture analyser. The x axis represents 
the galactomannan:cellulose ratio. 

Young’s modulus is a measure of stiffness. Fenugreek forms a stiffer foam than LBG 

even though it does not gel during freezing which again may be due to its higher 

molecular weight with a Young’s modulus of 0.16 MPa compared to 0.09 MPa for 

LBG.  

Mikkonen et al. (2014) prepared freeze dried polysaccharide foams from 1 wt% 

solutions, with guar (molecular weight 2600 kDa) and xyloglucan (molecular weight 

1300 kDa) foams having compressive moduli of between 2 and 22 kPa. 

 The stiffness of the foams follows a similar trend to that of maximum force where 

increasing cellulose content increases the Young’s modulus (Figure 4.13) which is 

consistent with previous reports of fibre composites (Bouafif et al., 2009, Bledzki and 
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Gassan, 1999, Mukherjee and Kao, 2011, Bergeret and Benezet, 2011). There are 

larger differences between the galactomannans with LBG + cellulose foams being 

considerably less stiff than the fenugreek counterparts. This may be again due to the 

fenugreek’s higher molecular weight.   

Although CP had a greater reinforcing effect than MCC when compared using 

maximum force (Figure 4.12) they both impart the same level of stiffness to the 

foams with comparable value of Young’s modulus (Figure 4.13). Young’s modulus is 

measured during the initial linear region so particle size may be a more important 

factor.  

  

Figure 4.13 The Young’s modulus of fenugreek (solid) and LBG (hollow) foams for (a) MCC (b) CP and 
(c) CF. The x axis represents the galactomannan:cellulose ratio. 

The bulk modulus is proportional to the level of solids in the suspensions prior to 

freezing (Figure 4.14). By looking at the bulk density and Young’s modulus of the 

foams, comparisons can be made with other polymer foams. Nussinovitch et al. 

(2004) produced freeze dried aerogels from 2 wt% agar solutions which had Young’s 

modulus values of 0.2 MPa. The fenugreek foam in the present work compares 

favourably to this with a foam produced from a 1 wt% solution having a Young’s 

modulus of 0.15 MPa (Figure 4.14). Sharma et al. (2013) produced freeze dried 

carrageean-gelatin cryogel matrices that regained their orginal lengh after 90% 
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compression. The Young’s modulus of the cryogels with a density of 0.00207-0.00266 

g/cm3 was in the range of 4-11 kPa when measured dry. Surapolchai and Schiraldi 

(2010) produced cellulose aerogels by freeze drying sonicated MCC dispersions of 

between 5-10 wt%. They found that the modulus increased with increasing density, 

with 5 wt% solids giving a density of 0.056 g/cm3 and a modulus of 17 kPa while 

foams with a solids content of 10 wt% had a density of 0.106 g/cm3 and a modulus of 

120 kPa. The authors found that by chemically modifying MCC by 

carboxymethylation the modulus of compression could be increased from a modulus 

of 120 kPa to 3442 kPa for foams with comparable densities.  

 

Figure 4.14 The Young’s moduli of fenugreek foams against their bulk density for CF (circles), CP 
(triangles) and MCC (squares). The fenugreek:cellulose content are shown above. 

Galactomannans and cellulose are highly hydrophilic so will absorb a high level of 

moisture. The foams were equilibrated for 7 days over saturated salt solutions to 

different relative humidities (RH). At a RH of 97% both the LBG and fenugreek foams 

shrink significantly whereas at 43% RH there is only slight shrinkage (Figure 4.15). The 

LBG foams shrink to a greater extent than the fenugreek foams. When CF is 
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incorporated at a ratio 1:4 (galactomannan:cellulose) the foams no longer shrink as 

the cellulose maintains the shape of the foam (Figure 4.16). Other fillers such as 

starch have been shown to reduce shrinkage of foams (Rassis et al., 1998, Rassis et 

al., 2002).  

 

Figure 4.15 Galactomannan foams equilibrated at different RH, LBG (top) and fenugreek (bottom). 

 

Figure 4.16 Foams at 97% RH LBG (top) and fenugreek (bottom) with pure galactomannan on the right 
and galactomannan + CF at a ratio of 1:4 on the left. 

As the RH increases the foams absorb more water (Figure 4.17). Due to the higher 

solids content, the foams containing cellulose are able to absorb a greater amount of 

water than the pure galactomannan foams by weight (Figure 4.17a), however, as a 

percentage of the total increase, the pure galactomannan foams absorb more water 

2% RH 43% RH 97% RH 



119 
  

at an RH of 97% (Figure 4.17b). The pure fenugreek foams absorb a much larger 

amount of water compared to LBG at an RH of 97% which may indicate the more 

unstructured nature of fenugreek as it did not form a cryogel.  

Due to the pure foam’s high water uptake and shrinkage, when compressed, they are 

unable to spring back so lose much of their height (Figure 4.17c). The maximum force 

and Young’s modulus of the foams are reduced with increasing water uptake (Figures 

4.17d and 4.17e). Even though there is no shrinkage for the foams containing 

cellulose their mechanical properties are greatly impaired at high RH due to the 

hydration of the matrix.  When the galactomannan foams were immersed in water 

they quickly dispersed, including those containing cellulose. 

Sisal/polyester composites were reported to lose up to 13-31% of their strength 

when fully immersed in water compared to 95% RH (Dittenber and GangaRao, 2012). 

Other natural fibres such as flax and coir have also been shown to reduce in tensile 

strength with increased water absorption (Symington et al., 2009). 

A possible method in the future to reduce the level of moisture uptake and therefore 

increase the stability of cellulose based foams could be to waterproof the fibres and 

so decrease water absorbance. This can be achieved by wetting them with ethyl-

cyanoacrylate monomer solutions containing inorganic nanoparticles and so 

encapsulating the fibres with a hydrophobic shell (Bayer et al., 2011). This also leads 

to some antimicrobial activity. It would be of great interest to see if this method 

could also waterproof the galactomannan foams.  
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Figure 4.17 Polysaccharide foams equilibrated at different RH with (a) total moisture uptake (b) 
percentage moisture uptake (c) height loss (d) maximum force and (e) Young’s modulus, showing pure 
galactomannan foams (solid symbols) and 1:4 galactomannan:cellulose (hollow symbols). 

Microfibrillated cellulose (MFC) was produced by repeated passes of CP through a 

homogeniser, where the high shear and pressure peels away the microfibrils, greatly 
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increasing the surface area of the cellulose (Figure 4.18) (Spence et al., 2011). Even at 

low concentrations (e.g. 1 wt%) MFC will from stable dispersions that have a high 

viscosity and do not sediment (Klemm et al., 2011). MFC therefore has a much higher 

phase volume and space filling capacity than its original cellulose. A major drawback 

of using MFC is that it must be utilised in its wet state or the fibrils will aggregate 

upon drying (Peng et al., 2012).  

        

Figure 4.18 Light micrographs of CP before (top) and after (bottom) high pressure homogenisation.  

MFC is able to reinforce LBG foams to a greater extent than CF at much lower 

concentrations due to the fibrillated network and higher surface area (Figure 4.19) 

(Nakagaito and Yano, 2005, Siro and Plackett, 2010). Zimmermann et al. (2010) found 

that fibrillated cellulose produced composites that had higher tensile strength and 

stiffness compared to the fibres from which they were produced. Homogenous 

fibrillation was more important for the mechanical properties than the degree of 

polymerisation (DP) of the cellulose. Svagan et al. (2010) produced freeze dried 

starch foams that contained up to 70 wt% MFC which had a combination of open and 

50µm 
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closed cells and had negligible shrinkage. Unfortunately due to problems with 

equipment there was insufficient material to test with fenugreek foams.   

 

Figure 4.19 The (a) height loss (b) maximum force and (c) Young’s modulus of LBG and MFC (hollow 
diamonds) and LBG and CP (solid circles) foams measured using a texture analyser. The x axis 
represents the galactomannan:cellulose ratio. 

MFC is generally produced using high pressure homogenisation which is a highly 

energy intensive process. Pre-treatments such as TEMPO oxidation (Saito et al., 

2007), carboxymethylation (Eyholzer et al., 2010b), enzyme treatment (Zhu et al., 

2011) and other mechanical pretreatments such as cryo-crushing and milling 

(Sandquist, 2013) have been used to reduce the energy needed to fibrillate cellulose. 

However, there has been little work to date on using extrusion as a method for 

cellulose fibrillation (Backfolk et al., 2010).  

To assess the viability of using extrusion to fibrillate cellulose, CF was passed through 

an extruder (Figure 4.20) with excess water at 90oC. There were difficulties, for 

instance, the extruder did become blocked as the cellulose dried out at the end of 

the barrel due to water evaporating (Figure 4.21). Extrusion was partially succesful at 

fibrillating cellulose as can be seen in the micrographs of Figure 4.22 where the fibres 

have become “hairy” which was caused by the high shear forces in the extruder. The 
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fibrillation is not as extensive as that produced by high pressure homogenisation 

(Figure 4.18), but it is possible that with a longer barrel and repeated passes there 

would have been greater fibrillation, however, this initial experiment demonstrated 

that fibrillation is possible through extrusion. For future trials it would be useful to 

use a series of temperatures to identify if heating is necessary. When the extruded 

cellulose was dried most of the separated fibrills collapsed due to a process of 

hornification and the fibres clumped together (Figure 4.23).    

 

Figure 4.20 The Clextral extruder used for the initial fibrillation experiments. 

 

Figure 4.21 The extruder screws became blocked as the cellulose dried towards the end of the barrel. 



124 
  

 

 

Figure 4.22 Light micrographs of CF before (left) and after (right) extrusion. The extruded CF had not 
been dried. 

 

Figure 4.23 SEM micrographs of dried extruded CF. 

Whilst freeze drying produces good foams it is both a costly and time intensive 

process (a week to produce a batch of foams). Extrusion is an alternative route to 

creating foam structures. Unfortunately, as extrusion is on a much larger scale, we 

were unable to secure sufficient quantities of the galactomannans. However, to 

100μm 

200μm 200μm 

100μm 
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investigate extrusion as a method for cellulose reinforced foam production, starch 

was used as a matrix polymer.  

Extrusion has been used in the food industry since the 1930s to produce pasta and 

later cooked extruded products such as expanded starch snacks. Modern starch 

extrusion literature often refers to thermoplastic starch (TPS) which is produced by 

extruding starch and a plasticiser at temperature of between 140-160oC at high 

pressure and high shear. With plasticiser levels greater than 15-20 wt% TPS can be 

repeatedly softened and moulded (Carvalho, 2013). When the processing 

temperature is above 100oC water will volatize resulting in an expanded material. 

This can be desirable if producing impact bearing materials such as foam packaging. 

Besides water, other low molecular weight plasticisers can be used, for instance urea, 

fructose, xylitol, sorbitol, maltitol, glycols and most commonly glycerol (vanSoest et 

al., 1996, VanderBurgt et al., 1996, Lourdin et al., 1997, Gaudin et al., 1999). By 

replacing water with another plasticiser the gelatinisation temperature is increased 

(Perry and Donald, 2000). Any crystalline order in the starch is destroyed during 

extrusion but, due to the mobility of the starch chains some recrystallisation will 

occur depending on the plasticiser content and temperature stored. This can result in 

TPS products becoming brittle over time.  

The poor mechanical properties and water solubility of TPS materials can be greatly 

improved by using TPS as the matrix phase in composites. The addition of cellulose 

fibres should help reinforce TPS.  

A key factor in extrusion is the water flow rate. Lowering the flow rate will greatly 

increase the specific mechanical energy (SME) (Figure 4.24) which is a measure of the 

energy per mass unit that is transferred to the material by mechanical imput during 
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extrusion (Domenech et al., 2013). However, if the water flow rate was decreased 

too much the extruder became blocked (Figure 4.25). 

 

Figure 4.24 The specific mechanical energy at the die of the extruder of 70 wt% starch + 30 wt% CF at 
different water flow rates. 

Although cellulose had been fibrillated when extruded on its own, when added to 

starch there was no fibrillation as the starch acted as a plasticiser/lubricant (Figure 

4.26). The addition of cellulose did substantially change the structure of the starch 

extrudate (Figure 4.27) as the diamter of the extrudate was much decreased (Figure 

4.28). Figure 4.29 shows that the cellulose fibres restricted the growth of the cells 

(bubbles caused by the expansion and  evaporation of water at the extruder die). 

This effect has previously been observed by Bergeret and Benezet (2011) who 

described the decrease in cell size as due to the addition of fibres increasing the 

viscosity of the starch system. The addition of cellulose did not affect the water 

uptake for extrudate samples equilibrated to different RH (Figure 4.30).  
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Figure 4.25 The screws of the extruder became blocked at low water flow rates. 

 

Figure 4.26 Light micrographs of 70 wt% Starch + 30 wt% CF after extrusion (a) 99.9 L Hr
-1

 water (b) 
70.1 L Hr

-1
 water (c) 39.9 L Hr

-1
  water. 

  

Figure 4.27 Extruded foams of 70 wt% starch + 30 wt% CF (top) and pure starch (bottom). 

 

a b c 
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Figure 4.28 The (a) diameter and (b) radial expansion ratio of pure starch and 70 wt% starch + 30 wt% 
CF extrudates. 

 

Figure 4.29 C Cell images of pure starch (top) and 70 wt% starch + 30 wt% CF (bottom) extrudates. 
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Figure 4.30 Water absorption at different RH of pure starch and 70 wt% starch + 30 wt% CF 
extrudates. 

Further trials to produce foams were conducted on a capillary rheometer which 

consists of a heated tube with a piston which forces the contents of the tube through 

a capillary die at the base at varying shear speeds and is often used to model the 

shear within an extruder. Low molecular weight hydroxypropylcellulose (HPC), which 

is able to form a polymer melt at about 80oC was used as the matrix material and 

cellulose at different concentrations was added. The low moisture content present in 

the cellulose was sufficient to act as a foaming agent when the sample was extruded 

at 140oC. Continuous HPC + MCC foams were produced (Figure 4.31), even with 0.5 

mm capillary die diameter (Figure 4.32). Zimmermann et al. (2004) have found that 

by incorporating just 5 wt% MFC into HPC composites there was a fivefold increase of 

the elongation to rupture.  
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Figure 4.31 70 wt% HPC + 30 wt% MCC extrudate from the capillary rheometer. 

 

Figure 4.32 70 wt% HPC + 30 wt% MCC extrudate from the capillary rheometer using a 0.5 mm 
diameter capillary die. 
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4.4 Conclusion 

LBG gels during the freezing process (cryogelation). Whilst there were some 

observable differences in the morphology between the LBG and fenugreek foams, 

the cryogelation did not improve the foam strength with fenugreek producing slightly 

stronger and stiffer foams which is possibly due to its higher molecular weight. The 

pure polymer foams had a low density and low stength which could be improved 

considerably with the addition of cellulose acting as a filler. A high content of 

cellulose (at least 1:6 galactomannan:cellulose content) could be introduced to form 

stable structures. Increasing cellulose content increased the strength and stiffness of 

the polysaccharide foams with CF providing the greatest level of reinforcement which 

may have been due to its larger fibre size. CF provided a higher level of 

reinforcement than MCC which may be attributed to its lower crystallinity and 

surface roughness and so possibly higher matrix/fibre interactions. Both 

galactomannans foams absorbed a large amount of water at high RH which 

dramatically reduced their strength and stiffness. The addition of cellulose reduced 

shrinkage. MFC reinforced the foams to a much greater extent than the fibres, 

possibly due to its higher surface area and fibrilated structure. Extrusion was shown 

to fibrillate cellulose but more work is needed to find the best process parameters. 

Extrusion is also a useful process to produce cellulose reinforced starch foams.  
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Chapter 5. Cellulose in 
LiCl/urea/water 
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5.1 Introduction 

Cellulose is insoluble in water and most common solvents, which is commonly 

attributed to its extensive intermolecular hydrogen bonding. To be able to use 

cellulose it is often dissolved and then regenerated to form regular fibres such as 

viscose and rayon. The solvents commonly used, such as carbon disulphide, are bad 

for the environment (Zhu et al., 2006). Ionic liquids, which are commonly defined as 

salts that have a melting point below the boiling point of water, are ‘greener’ 

alternatives due to their ease of recycling, low vapour pressure, chemical stability 

and inflammablitiy (El Seoud et al., 2007). The most commonly used ionic liquid is N-

methylmorpholine N-oxide (NMMO), which has been used since 1987 in the 

production of Lyocell (under the trade name of Tencel by Courtaulds) (Borbély, 

2008). Other ionic liquids that are gaining wider use in research include LiCl/N,N-

dimethylacetamide (DMAc), LiCl/1,3-dimethyl-2-imidazolidinone (DMI) and 

DMSO/paraformaldehyde (PF) (Zhang et al., 2005, Nishino et al., 2004, Tamai et al., 

2004, Masson and Manley, 1991).  

Molten salt hydrates are similar to ionic liquids but contain water which is tightly 

bound to the inner coordination sphere of the cation (Leipner et al., 2000). Some 

inorganic molten salt hydrates are able to completely dissolve cellulose such as 

LiClO4·3H2O, LiSCN·2H2O, ZnCl2·3H2O and (NCS)2·3H2O (Zhang et al., 2005, Fischer et 

al., 2003, Xu and Chen, 1999, Fischer et al., 1999) whilst other are only able to swell 

cellulose, such as LiCl·2-5H2O, LiNO3·2H2O and ZnCl2·4H2O (Fischer et al., 2003). 

Molten salt hydrates have also been shown to be non-derivatising (Lu and Shen, 

2011) and are also inexpensive, nontoxic and easier to prepare than other non 

derivatising cellulose solvents (Sen et al., 2013). 
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Swelling treatments are often employed in the textile industry as they can enhance 

the reactivity and accessibility of cellulose, change its pore structure to aid dye 

retention and help shape its structure (Jaturapiree et al., 2008). In general, swelling is 

achieved using an alkali such as NaOH (Cuissinat and Navard, 2006).  Recent work has 

shown that a mixture of LiCl, urea and water is able to swell cellulose to the same 

extent as NaOH (Tatarova et al., 2010). Alkali sensitive reagents may therefore be 

used during the swelling treatment. The solution is noncorrosive, so reverse osmosis 

can be used for the recycling of LiCl and urea resulting in a lower toxicity of process 

effluents. 

The interaction between lithium and cellulose was first investigated by Morgenstern 

et al. (1992) using 7Li NMR. They showed there was increasing shielding of the 7Li 

nuclei with increasing cellulose concentration indicating direct interactions between 

cellulose hydroxyl groups and lithium cations. Using 13C NMR to analyse cellulose 

dissolved in LiClO4·3H2O, LiSCN·2H2O or ZnCl2·4H2O, Leipner et al. (2000) showed 

there was higher shielding of all the cellulose carbons except C6 compared to 

cellulose dissolved in either NaOH/H2O or LiCl/DMAc which again indicated solvent 

cellulose interactions. This was further investigated by Brendler et al. (2001) using 7Li 

NMR for a number of lithium salt hydrates. They found that the salt hydrates with 

less shielded lithium nuclei were only able to swell cellulose and not dissolve it. 

Recording 7Li-1H HOESY (Heteronuclear Overhauser Effect SpectroscopY) spectra, 

they also showed that cellobiose was part of the first coordination sphere of the 

lithium cation. 

Some authors suggest that the amount of water present in the inner coordination 

sphere of the metal cation is the deciding factor in whether the molten salt hydrate 

will dissolve or only swell cellulose (Lu and Shen, 2011), for instance ZnCl2·3H2O will 
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dissolve bacterial cellulose whilst ZnCl2·2H2O and ZnCl2·4H2O will only swell cellulose. 

However, other authors have suggested that the cellulose hydroxyl groups hydrogen 

bond to the water molecules directly bonded to the metal cation (Sen et al., 2013).  

Tatarova et al. (2010) developed a LiCl/urea/water solution to treat fabrics. Urea was 

used as a co-solvent so that both urea and cellulose act as ligands for the lithium 

cation, and the urea stabilised solutions at ambient temperature. Urea has been 

found to significantly reduce the concentration needed of NaOH in caustic soda 

(Kunze and Fink, 2005). They found that the swelling of cellulose increased with 

decreasing water and urea content and described the mechanism of swelling as 

lithium-cellulose coordination complexes. The LiCl content of this solution is 

considerably lower than LiCl·2H2O but has similar properties and thus lowers the cost 

of usage (Tatarova et al., 2012).   

Whilst work has been done on the effect of LiCl/urea/water on type II celluloses 

(Tatarova et al., 2010, Tatarova et al., 2012), there has, as yet, been no work on the 

naturally occurring type I cellulose allomorph or ball milled cellulose. The following 

two chapters will address this and will also look at other natural plant 

polysaccharides in LiCl/urea/water. 

5.2 Methods 

5.2.1 Materials 

The celluloses used in this work were cellulose fibre (CF) and cellulose powder (CP) 

(Solka 900FCC and 300FCC, International Fibre Corporation, USA), bacterial cellulose 

AxCel CG PX (CP Kelko, USA), eucalyptus pulp (Innovia, Cumbria, UK), cotton linters 

pulp (Shaanxi CHONYU Imp & Exp Co., Ltd, China), regenerated cellulose - Lyocell 

(Lenzig, Austria), and Avicel MCC type PH-101 Ph Eur (Sigma Aldrich, UK). Cotton 



136 
  

linters, eucalyptus and regenerated cellulose were ground for 1-2 minutes in a coffee 

grinder before use. 

LiCl ≥99% and urea were purchased from Sigma Aldrich (UK). 

5.2.2 LiCl/Urea/Water solution preparation 

The swelling solution was prepared with 0.28:0.11:0.61 mol fractions of LiCl, urea 

and water respectively (Tatarova et al., 2010). The water was added to the dry 

powders and stirred over heat until the solution turned clear. Any water lost as 

vapour when solutions were heated was replenished after the solutions were cooled. 

The final solution had a pH of 6.3.  

5.2.3 Ball milling 

The celluloses were milled using a Planetary Mill PULVERISETTE 5 at 200 rpm with 5 

minutes milling followed by a 5 minute pause to allow heat to dissipate for a total 

milling time of 6 hours. Each pot (with zirconium balls) was filled with 10g of 

cellulose.  

5.2.4 Rapid Visco Analyser (RVA) 

The viscosity of celluloses in the swelling solution was measured using a Rapid Visco 

Analyzer (RVA) (Newport Scientific, Australia) with an initial shear rate of 200 rpm for 

30s and then at 160 rpm for the remainder of the experiment. The initial 

temperature was 25oC which was then increased after 5 minutes to 90oC for 10 

minutes (at a heating rate of 6.5oC min-1) and then cooled back down to 25oC and 

held for a further 20 minutes for a total time of 45 minutes. Further experiments 

were run at a heating rate of 1oC min-1 to match the DSC. 
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5.2.5 Light microscopy 

Light microscope images were taken using a Leitz Diaplan microscope (Leica, 

Heidelberg, Germany) and a Pixelink PL-A600 (Ottawa, Canada) recording camera. 

Hot stage images were taken using a Linkam stage. Images were taken every 5 

seconds and the temperature profile was the same as that used for the RVA. 

5.2.6 Filtering 

After the RVA treatment the cellulose samples were either washed immediately or 

washed after 24hrs in the swelling solution with either water or ethanol. The samples 

were then filtered with Whatman filter paper (Cat No 1001 090) and dried at 60oC for 

24 hours. 

5.2.7 Wide angle X-ray diffraction 

See Chapter 3, section 3.2.6, page 59. 

5.2.8 Nitrogen analysis 

Cellulose samples (50 mg) were weighed into the sample cells and the nitrogen 

content measured using a Nitrogen analyser (NA2000, Fisons Instruments, Milan, 

Italy). The method is based on the complete and instantaneous oxidation of the 

sample by combustion so the sample is converted into combustion products. The 

combustion gases pass through a reduction furnace and a chromatographic column 

to separate the gases. A thermal conductivity detector outputs a signal proportional 

to the concentration of nitrogen in the mixture. 

5.2.9 13C Cross Polarization Magic Angle Spinning Nuclear Magnetic 
Resonance (CPMAS NMR) 

 

See Chapter 3, section 3.2.7, page 60. 
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5.2.10  Rheology 

Viscosity measurements were carried out using a Bohlin CVOR (Bohlin Instruments 

Ltd, Cirencester, UK), with a parallel plate (40 mm diameter, 1000 µm gap) geometry 

at 25oC. Shear viscosity was monitored by increasing the shear rate from 0.00015 to 

1000 s-1. Zero shear values were obtained by using the Cross model within the Bohlin 

software. 

Oscillatory rheology measurements were performed using a Bohlin CVO rheometer 

with a parallel plate geometry (40mm diameter and 1000 µm gap) at 25oC. Amplitude 

sweeps were carried out to ensure measurements were within the linear viscoelastic 

region where the dynamic storage modulus (G’) and loss modulus (G’’) are 

independent of the stress amplitude. Frequency sweeps had an applied stress of 1 

Pa.  

5.2.11  Micro-differential scanning calorimetry (Micro-DSC) 

Micro-DSC has an increased sensitivity when compared to conventional DSC due to 

the larger sample volume and lower scan rates. A Micro DSC III (Setaram, Caluire, 

France) was used which has cells made from Hastalloy which hold a volume of 

approximately 0.8 mL. 0.08g of starch or cellulose was weighed, followed by either 

water or the LiCl/urea/water solution, for a total sample weight of 0.8g. Samples 

were initially cooled to a starting temperature of 5oC and run at rates of 1oC min-1 up 

to 96oC with four heating and cooling cycles. The reference cell was filled with either 

water or the LiCl/urea/water solution and matched for heat capacity with the 

sample. By ensuring they are matched, the calorimeter is balanced with the heat flow 

signal and is centred around the zero level, giving the most sensitive results. 
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5.3 Results  

Six celluloses were initially used with the LiCl/urea/water swelling solution. A 

treatment temperature of 90oC was chosen as this had been shown to produce the 

highest level of swelling (Tatarova et al., 2012). All celluloses showed an increase in 

viscosity upon cooling after the heat treatment (Figure 5.1). The possible cause of 

this increase in viscosity upon cooling will be discussed later in this chapter. 

Differences in viscosity are believed to be due to fibre size (aspect ratio), due to the 

higher hydrodynamic volume, (Milliken et al., 1989, Djalili-Moghaddam and Toll, 

2006) which can be seen in Figure 5.2.  

 

Figure 5.1 RVA viscosity profiles of celluloses in the LiCl/urea/water swelling solution at 5 wt% 
concentration.  

Regenerated cellulose (Lyocell) clearly shows some swelling whereas it is much 

harder to see significant difference after treatment for the other celluloses (Figure 

5.2). This may be because native cellulose does not swell to the same degree as 

regenerated cellulose, or more likely, it is more difficult to compare native fibres due 

to their natural differences in shape and size. 
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Figure 5.2 Light micrographs of celluloses before (top) and after (bottom) treatment in 
LiCl/urea/water (a) MCC (b) regenerated cellulose (c) cotton linters (d) CF (e) eucalyptus. 

After treatment the celluloses were washed with either water or ethanol 

immediately or after 24 hours in the swelling solution at ambient temperature. The 

crystallinity of most of the celluloses decreased as a result of the treatment when 

washed immediately (Figure 5.3a). The ethanol washed samples had a greater 

reduction in crystallinity. Ethanol is not as effective as water as a solvent for either 

LiCl or urea. The solubility of LiCl in de-ionised water is high at 63.7g per 100 ml water 

compared to ethanol at only 42.4g per 100 ml water (Nayak et al., 2008). This results 

in some of the salts still being trapped within the fibres and inhibiting 

recrystallisation. Nitrogen analysis confirms that less of the urea has been removed 

with the ethanol wash (Figure 5.4). When the fibres are left in the swelling solution at 

ambient temperature for 24 hours there is a greater reduction in crystallinity as the 

salts are able to penetrate further into the fibre and disrupt the crystal structure 

(Figure 5.3b). 

200μm 

a b c d e 
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Figure 5.3 Cellulose crystallinity, measured by X-ray diffraction (XRD), after LiCl/urea/water treatment 
either (a) washed immediately or (b) washed 24 hours after treatment. The average of three samples 
is shown with error bars indicating the standard deviation.  

Lyocell, Eucalyptus and cotton linters all had to be milled to prepare the samples so 

only microcrystalline cellulose (MCC), cellulose fibres (CF) and cellulose powder (CP) 

were used for later experiments so as to minimize any inhomogeneity effects.  
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Figure 5.4 Nitrogen analysis of LiCl/urea/water treated CP which had either been washed in excess 
water or ethanol straight after treatment or 24 hours after treatment. The average of three samples is 
shown with error bars indicating the standard deviation.  

Figure 5.3 shows the reduction in crystallinity when cellulose is treated for 10 

minutes at 90oC (Figure 5.1). It might be expected that if cellulose is treated at 90oC 

for a longer time the crystallinity would decrease, however this was not the case 

(Figure 5.5). MCC was treated for different times at 90oC. The crystallinity of the MCC 

does not decrease between 10-90 minutes at 90oC. There is also no change in the 

final viscosity of the dispersions after treatment. Tatarova and Foster (2010) found 

that whilst the fibre diameter of cotton fibres slightly increased with heat when 

treated for 1 hour, there was little difference after 10 days. They also found that an 

increase in the temperature of the treatment resulted in an increase in viscosity upon 

cooling for Lyocell.  They later showed there was in increase in the water retention 

value with an increase in temperature (Tatarova et al., 2012).   
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Figure 5.5 Crystallinity of MCC treated in LiCl/urea/water with different treatment times, measured 
using X-ray diffraction. The average of three samples is shown with error bars indicating the standard 
deviation. 

Figure 5.6 shows ball milled (BM) MCC that has been treated in the RVA for 10 

minutes or 90 minutes at 90oC and then regenerated in water. Both samples 

regenerate to the same crystallinity. 

 

Figure 5.6 XRD spectra of ball milled MCC treated in LiCl/urea/water for either 10 minutes (black) or 
90 minutes (grey) at 90

o
C. 

When BM MCC is regenerated directly with water it recrystallises to a higher 

crystallinity (29%) than when treated and washed (24%) (Figure 5.7). The treated 

sample will still contains salt that will inhibit recrystallisation. 
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Figure 5.7 XRD spectra of ball milled MCC rehydrated in water (black) or treated in LiCl/urea/water 
and then water washed (grey). 

While X-ray diffraction (XRD) shows that the crystallinities of the treated ball milled 

sample is lower than that of the water washed sample (Figure 5.7), NMR shows little 

difference between the samples (Figure 5.8).  

 

Figure 5.8 
13

C CPMAS NMR spectra of celluloses treated in LiCl/urea/water (grey) or untreated and 
rehydrated (water washed) (black) for (a) CF and (b) BM MCC. 
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Polarized microscopy is a useful tool to quickly identify crystallinity. Two polarizing 

filters are placed on the microscope at 90o to each other. When the polarised light 

passes through a crystal it will be slightly rotated. This rotation will then enable the 

light to pass through the upper filter and so produce birefringence. Cross polar 

micrographs show that the cellulose fibres are still highly crystalline after treatment 

(Figure 5.9). Even the BM MCC shows some birefringence indicating that it must have 

recrystallised in the LiCl/urea/water solution.      

 

Figure 5.9 Cross polar micrographs of 5 wt% celluloses in the LiCl/urea/water solution after treatment 
(a) BM MCC (b) MCC (c) CP and (d) CF. 

Using a hot stage on a light microscope allows the different heating stages to be 

investigated. Between 50-70oC the particles begin to swell and aggregate (Figure 

5.10a). This is shown in better detail in Figure 5.11 which is a more dilute dispersion 

(2.5 wt% compared to 5 wt% shown in Figure 5.10). Figure 5.10b shows that when 

the BM MCC is first dispersed into the swelling solution it immediately begins to 

recrystallise. When BM MCC is hydrated to a relative humidity (RH) of 95% it 
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recrystallises (Chapter 3), therefore, even though the swelling solution is a hydrogen 

bond disrupter (as it reduces cellulose crystallinity) there is sufficient water present 

that hydrogen bonds can actually be formed. As the heat increases the crystallinity is 

reduced.  

 
 

 
 
 
 

 

Figure 5.11 Hot-stage micrographs of 2.5 wt% BM MCC in the LiCl/urea/water solution at 25
o
C and 

90
o
C. The circles indicate particles that have swollen. 
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Figure 5.10 Hot-stage micrographs of 5 wt% BM MCC in the LiCl/urea/water solution showing (a) light 
micrographs and (b) cross polar micrographs. 
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There is little visual difference as CP is treated in the swelling solution (Figure 5.12). 

The decrease in crystallinity shown in Figure 5.3 is therefore likely to happen near the 

surface of the fibre. 

 

Figure 5.12 Cross polar hot-stage micrographs of 5 wt% CP in the LiCl/urea/water solution. 

To get a better understanding of what is happening to cellulose in the swelling 

solution two different starches were used, potato starch (large granules) and rice 

starch (small granules), similar to the comparison made by Koganti et al. (2011 and 

2014) on the effects of the cellulose dissolving solvent NMMO on starch dissolution.  

Starch is composed of two polymers; amylose comprised of linear chains of α-1,4-

linked anhydro-D-glucose units and amylopectin which has a high level of branching 

with α-1,6 linkages. Although both starch and cellulose are comprised of glucose 

monomers, the α-glycosidic linkage imparts a helical twist to the molecule as 

opposed to the flat ribbon structure of cellulose microfibrils. Starch granules have 

rings of crystallinity caused by amylopectin crystallites.  

Native starch is insoluble in cold water but when heated will go through a process of 

gelatinisation. Above the gelatinisation temperature the granules will swell resulting 

in an increase in viscosity. Starch crystals will melt and amylose will leach out. The 

gelatinisation temperature is dependent on the starch-water ratio, pH, salt or sugar 

concentration and fat or protein content. 
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When starch is cooled it will go through a process of retrogradation as the linear 

portions of the amylose and amylopectin chains recrystallise. The temperature at 

which these complexes melt out are often considerably higher than the gelatinisation 

temperature. 

In excess water, potato starch starts to swell at about 65oC (Figure 5.13a) and most of 

the crystal structure is lost by 70oC, as seen by the loss of birefringence (Figure 

5.13b). Rice starch has a higher gelatinisation temperature so complete melting and 

hydration is only complete at 80oC (Figure 5.14).  

 
 

 

Figure 5.13 Hot-stage micrographs of 5 wt% potato starch in water showing (a) light micrographs and 
(b) cross polar micrographs. 
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Figure 5.14 Hot-stage micrographs of 5 wt% rice starch in water. 

In the LiCl/Urea/water solution the granules do not swell but instead are eroded 

from the outside as temperature increases (Figures 5.15 and 5.16). The starch is only 

fully dissolved at a temperature of 90oC. The starch granules still retain some of the 

crystallinity up to 80oC. Due to the smaller granule size of the rice starch, complete 

dissolution happens faster. 

Koganti et al. (2011) used a series of NMMO/water solvents to dissolve starch. They 

found that NMMO concentrations between 50 and 60 wt% resulted in gelatinisation-

like behaviour and only at NMMO concentrations above 70 wt% did the solvent 

erode the starch from the outside. This indicates that the water content of the 

LiCl/urea/water solution is low enough for there to be no gelatinisation.  
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Figure 5.15 Hot-stage micrographs of 5 wt% potato starch in the LiCl/Urea/water solution showing (a) 
light micrographs and (b) cross polar micrographs. 

 

Figure 5.16 Hot-stage micrographs of 5 wt% rice starch in the LiCl/Urea/water solution. 

Potato starch has a much greater viscosity in water compared to rice starch due to its 

larger granule size. However, after treatment in the LiCl/urea/water solution the two 

starches have the same viscosity (Figure 5.17). It is reported that potato starch has an 

amylose content of 20.1-31.0% and rice starch has an amylose content of 5-28.4% 

(Singh et al., 2003). As the starches have a similar amount of amylose and 
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amylopectin, when fully dissolved in the LiCl/Urea/water solution their viscosity is 

matched. The original granule structure is now completely destroyed.  

 

Figure 5.17 The viscosity 5 wt% starches in water (filled symbols) or LiCl/urea/water (hollow symbols) 
after treatment. 

In the LiCl/urea/water solution the potato starch increases in viscosity during the 

initial heating to a lesser extent than rice starch due to its larger granule size (Figure 

5.18). In water the potato starch increases to a greater viscosity than in the 

LiCl/urea/water due to the granules swelling, however, upon cooling the treated 

potato starch has a very large increase in viscosity which decreases with continued 

shear. This might suggest that there are some granule remnants which interact in a 

similar way to cellulose upon cooling. At the endpoint of the treatment these 

remnants are likely to have been fully solubilised as the viscosity starts to plateau. 

The viscosity increase upon cooling is not seen for the rice starch. The 

LiCl/urea/water solution is able to completely dissolve the rice starch within the 

treatment time due to its smaller granule size, therefore, leaving no granule 

remnants intact to interact upon cooling.   
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Figure 5.18 RVA viscosity profiles of 5 wt% starch in water (grey) or LiCl/Urea/water solution (black) 
for (a) potato and (b) rice. 

In water, potato starch showed a frequency dependence and had a weak gel-like 

structure once gelatinised as the storage modulus (G’) was higher than the loss 

modulus (G’’) with no crossover (Figure 5.19) as is usual for native gelatinised 

starches (Chamberlain and Rao, 2000, Chaisawang and Suphantharika, 2006, Leite et 

al., 2012). In the LiCl/urea/water solution potato starch shows viscous behaviour with 

G’’ higher than G’, also indicating starch goes through complete dissolution providing 

a polymeric solution with no granule remnants. Koganti et al. (2011) found that, for 5 

wt% normal maize starch in NMMO concentrations of over 70 wt%, an increased 

viscosity response was observed whereas for concentrations of 50 wt% and below 

the system changed to produce a more elastic response, typical of swollen starch 

granules. 
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Figure 5.19 The dynamic moduli G’ (filled symbols) and G’’ (open symbols) of 5 wt% potato starch in 
water or LiCl/urea/water solution. 

As a larger quantity of ball milled cellulose was required than in Chapter 3, a large 

ball mill was used. Both MCC and CF were milled for 6 hours which was found to 

produce a similar level of milling compared to 610 minutes in the smaller ball mill.  

When the ball milled celluloses were treated they both had a very similar RVA profile 

(Figure 5.20). The degree of polymerisation (DP) of these samples was not measured, 

however, in Chapter 3 (section 3.3, page 66) it was shown that when MCC and CF 

were milled for 610 minutes they had a similar viscosity average DP (190 and 250 

respectively) which may be why there is little difference between the ball milled 

samples. Upon cooling BM cellulose undergoes a large increase in viscosity which 

then drops with continued shear.   
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Figure 5.20 RVA profiles showing a comparison of 5 wt% ball milled MCC (black) and CF (grey) in the 
LiCl/urea/water solution. 

After a second heat treatment the BM MCC repeats its large increase in viscosity 

upon cooling, and subsequent drop in viscosity with continued shear, whereas the 

starches return to their initial viscosities without an subsequent drop with 

subsequent shear as seen in the first run of the potto starch (Figure 5.21). Any 

interaction that causes the potato starch to increase in viscosity on the first run is 

completley lost by the second run and both starches have similar viscosities upon 

second cooling. The starch has a much higher viscosity than BM MCC as it is fully 

dissolved rather than just swollen due to its α-1,4 linkage compared to cellulose’s β-

1,4 glucose linkage.    
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Figure 5.21 RVA profiles showing two heating runs of 5 wt% concentration of potato starch (black), 
rice starch (grey) and BM MCC (dotted) in the LiCl/urea/water solution. 

The treated BM MCC dispersion was given a pre-shear for 60 seconds to completely 

break any structure that may have been formed. With increasing time before the 

viscosity was measured some structure was formed which resulted in a higher 

viscosity (Figure 5.22). At a shear rate of over 1 s-1 any structure is completely lost 

and all sampes have the same viscosity profile. The plateau (double knee) region 

from 0.015-0.15 s-1 is possibly caused by wall slip at low shear rates where the top 

plate is in contact with a thin layer of the liquid that has separated from the bulk 

(Meeker et al., 2004, Buscall et al., 1993). For future work it would be useful to try a 

serrated plate geometry which should negate any slip effects by providing voids to 

accommodate any separating liquid. If the double knee region is caused by slip, it 

indicates that for the samples with less structure there is less slip. 
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Figure 5.22 Viscosity of 5 wt% BM MCC in the LiCl/urea/water solution with different pause times 
(shown in the legend) after 60 second pre-shear. 

The structure formed by BM MCC in LiCl/urea/water is characteristic of a weak gel 

with the elastic modulus (G’) higher than the viscous modulus (G’’) but with some 

frequency dependance (Figure 5.23) (Ikeda and Nishinari, 2001).  

 

Figure 5.23 The dynamic moduli G’ (filled symbols) and G’’ (open symbols), measured at a shear stress 
of 1 Pa which was in the linear viscoelastic region (LVR), of 5 wt% BM MCC in LiCl/urea/water. 
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At a concentration of 5 wt% of MCC or CP the viscosity of the dispersions is too low 

to measure any structure formation. However, at a concentration of 10 wt% both 

cellulose dispersions increase in viscosity over time after an initial pre-shear (Figure 

5.24). 

 

Figure 5.24 Viscosity of 10 wt% MCC (circles) and CP (square) pre-sheared for 60 seconds and then 
measured immediately (hollow symbols) or after one hour (filled symbols). 

With increasing concentration, the viscosity of all the treated cellulose dispersions 

increase (Figure 5.25). The rheology of suspensions of rods in water, a Newtonian 

fluid, is dependant on the volume fraction and aspect ratio of the fibres (Milliken et 

al., 1989). At lower concentration the fibres are able to freely move but upon 

increasing the concentration the fibres start to be disturbed by each other due to 

steric effects resulting in a shift in the slope as the dispersion moves from the dilute 

to semiconcentrated regime, known as the critical volume fraction Øc (Pabst et al., 

2006). A similar effect is often seen for molecular solutions and described as the 

critical concentration (c*) (Lue and Zhang, 2009). The Øc will decrease with increasing 

apect ratio. CP and MCC show a Øc at 8 and 9 wt%, respectively. There is little 

difference bewteen fibre size of CP and MCC when dry so the steeper slope of CP 
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may be explained by its lower crystallinity and therefore increased ability to swell 

compared to MCC, thereby having a larger volume fraction. CF has a much larger 

aspect ratio and so has a much higher viscosity than either CP or MCC at comparable 

concentrations. The BM MCC does not have a  Øc due to its particulate shape. At low 

concentrations  it has a much higher viscosity than the other celluloses due to its 

larger surface area which allows for greater interaction and low crystallinity which 

enables it to swell to a much greater extent (Figure 5.11). CF also appears not to have 

a Øc but due to its much higher size and aspect ratio this might be at a concentration 

lower than measured in this work.   

 

Figure 5.25 Zero shear viscosity of cellulose dispersions in the LiCl/urea/water solution. 

Figure 5.26 shows the RVA profile of varying concentrations of BM MCC dispersions 

in the swelling solution. There appears to be a peak in viscosity upon cooling which is 

reminiscent of starch gelatinisation and may be a result of particle/aggregate 

disruption. Only BM MCC has a pronouced tailing off of its viscosity with continued 

shear upon cooling (Figure 5.26). As already shown in Figure 5.1, there is an increase 

in viscosity upon cooling for MCC (Figure 5.27), CP (Figure 5.28) and CF (Figure 5.29). 

MCC appears to have a slight incease in viscosity once at a steady temperature of 
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25oC (Figure 5.27), whereas, both CP and CF plateau when held at 25oC (Figures 5.28 

and 5.29). When the celluloses are concentration matched at 5 wt% there is an initial 

increase in viscosity at a temperature of between 65-70oC. With an increase in 

concentration the temperature at which this initial increase begins is decreased so 

for 16 wt% MCC the temperature is just 43oC. Interestingly, all the celluloses show a 

similar temperature of increase when matched at the same concentration.  

CF decreases in viscosity upon the initial heating (Figure 5.29) which was also seen 

for the other celluloses of high aspect ratio, lyocell and cotton linters (Figure 5.1). 

Due to their larger size the dispersions are already slightly viscous before the heat 

treatment.  

 

Figure 5.26 RVA viscosity profile for BM MCC in the LiCl/urea/water solution. 
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Figure 5.27 RVA viscosity profile for MCC in the LiCl/urea/water solution. 

 

Figure 5.28 RVA viscosity profile for CP in the LiCl/urea/water solution. 
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Figure 5.29 RVA viscosity profile for CF in the LiCl/urea/water solution. 

In order to begin to understand the events taking place in the RVA, a differential 

scanning calorimetry (DSC) comparison was undertaken, and again compared to 

starch in this solvent system.  

In excess water both potato and rice starch show gelatinisation endotherms (Figure 

5.30) which are ascribed to the melting of the crystalline regions (Donovan, 1979), 

and reducing the volume fraction of water the endotherm is moved to higher 

temperatures. No phase transitions are seen on subsequent reheats as the melting 

temperature of retrograded starch is higher than 95oC (Liu et al., 2007). In water, 

none of these celluloses are expected to show any phase transitions. 
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Figure 5.30 Micro DSC spectra of 10 wt% potato starch (black) and rice starch (grey) in water. 

In the LiCl/urea/water solution the starches and celluloses all show very large 

exothermic peaks (Figure 5.31). Koganti et al. (2011) found that with increasing 

NMMO concentration the thermal transitions of starch transformed from 

endotherms to exotherms. The enthalpy of mixing is related to the breaking of 

polymer-polymer interactions and the formation of polymer-solvent interactions 

(Koganti, 2014). Whereas energy is required to melt starch crystalline regions in 

water, heat is released in the LiCl/urea/water system. The breaking of cellulose-

cellulose or starch-starch hydrogen bonds is endotheric (Ramos et al., 2011) but the 

the enthalpy of mixing  i.e, the formation of hydrogen bonds with the 

LiCl/urea/water, is exothermic which appears to predominate here (Eq. 5.1).  

 ∆𝐻𝑡𝑜𝑡𝑎𝑙 =  ∆𝐻𝑚𝑒𝑙𝑡𝑖𝑛𝑔 +  ∆𝐻𝑚𝑖𝑥𝑖𝑛𝑔  (5.1) 
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Figure 5.31 Micro DSC spectra of the first heat in the LiCl/urea/water solution. 

BM MCC has the largest enthalpy whilst MCC is far smaller. The enthalpy is related to 

the availability of the polymer to form polymer-solvent interactions and is therefore 

negatively correlated to cellulose crystallinity. The unit cell of crystalline cellulose is 

anhydrous so will be unable to interact with the solvent until it is disrupted. MCC has 

a crystallinity almost double that of CP so it is harder for the swelling solution to 

penetrate MCC during the initial heat. Both starches have a similar total enthalpy.  

Table 5.1 Enthalpy of celluloses and starches in LiCl/urea/water during their first heat, average of 
three replicates ± standard deviation, from Micro DSC measurements. 

 Enthalpy (J/g) 

BM MCC -7.52 ± 0.39 

CP -5.85 ± 0.72 

MCC -1.71 ± 0.40 

Potato starch -4.69 ± 0.66 

Rice starch -4.12 ± 0.22 
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Upon cooling both BM MCC and MCC undergo exothermic transitions between 25-

15oC which indicates some structure formation (Figure 5.32). This is more 

pronounced for BM MCC presumably due to a combination of higher surface area 

and lower crystallinity. This structure is subsequently melted out between 40-60oC. 

Both of these transitions are repeatable with further runs. It is difficult to detect any 

transitions for CP on either heating or cooling runs. Similarly, both BM MCC and MCC 

have a tailing off of viscosity at 25oC after the initial heating in the RVA, indicating the 

breakdown of structure caused by shear, whereas CP has a constant viscosity 

demonstrating there is no structure breakdown. CP has a substantially higher 

viscosity average DP (1210) compared to MCC (370) and BM MCC (190) which may 

result in a lower mobility.  

The transitions observed for MCC and BM MCC are reminiscent of the thermal 

transitions seen for methylcellulose where a large endothermic peak is seen on 

heating (Takahashi et al., 2001). At low temperature, methylcellulose is soluble in 

water. It is generally agreed that the hydrophobic methyl groups (CH3) inhibit 

hydrogen bonding of the polymer chains (Li, 2002). Water molecules are hydrogen 

bonded along the polymer molecule and cage-like structures of water molecules are 

ordered around the methyl groups. The water molecules are therefore not free and 

random but possess a degree of order (Li et al., 2002). Heating a solution of 

methylcellulose leads to the destruction of the cage-like structures of water and 

exposes the methyl groups which are then able to form hydrophobic associations. 

There is a corresponding morphological change from random coils to hydrophobic 

aggregates (Wang et al., 2006). The energy needed for the destruction of the cage 

structures is larger than the energy required for the formation of hydrophobic 

associations (which occur within the same temperature range) resulting in the total 

energy being endothermic (an entropy increasing process). The cooling process is 



165 
  

exothermic as the hydrophobic associations will be broken and the cage structures 

will be reformed so the entropy change will be negative. The temperature of 

degelation is 30oC lower than the gelation temperature (60oC). The thermal 

hysteresis indicates that the kinetics of the hydrophobic dissociation is not an exact 

reversal of the association during heating (Xu and Li, 2005).  

The enthalpy of the transitions of cellulose in LiCl/urea/water is much smaller than 

those of methylcellulose indicating that they are only a surface effect. This is in 

agreement with the fact that MCC is still highly crystalline in LiCl/urea/water. BM 

MCC has higher enthalpy values compared to MCC due to its larger surface area.  
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Figure 5.32 Micro DSC spectra of 10 wt% cellulose in the LiCl/urea/water solution cooling (left) and 
heating (right) for (a) BM MCC (b) MCC and (c) CP. 

In order to investigate the scan rate dependance and to probe further the origin of 
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Micro DSC. During the initial heat BM MCC has a steep increase in viscosity at about 

33oC which is the temperature of peak heat flow (Figure 5.33). This is the point at 

which the cellulose particles start to swell and aggregate. At the peak viscosity at 

70oC the heat flow plateaus indicating molecular dispersion. This peak is not seen in 

Figure 5.26 for BM cellulose, however, it is seen for both MCC and CP (Figures 5.27 

and 5.28). A slower heating rate is required to see the peak for BM MCC. Upon 

cooling the viscosity increases slowly until 34oC where there is a sharp increase in 

viscosity which correlates with the start point of the exotherm. On the second 

heating run the correlation between heat flow and viscosity is not quite so clear as 

the viscosity drops with increasing temperature but begins to plateau when the 

exotherm is completed. During the second cooling run the viscosity increases again 

matches the exotherm start point which is shifted 1oC lower than in the first run. The 

onset of this peak continues to shift to lower temperatures with subsequent runs 

(Figure 5.33). After the initial endotherm which shows that the heat of mixing is 

dominating, the subsequent endotherms and exotherms match what might be 

expected for conforational change.  
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Figure 5.33 Heat flow from Micro DSC (solid line) and viscosity (dotted line) against temperature for 
10 wt% BM MCC in the LiCl/urea/water solution showing the (a) first heat (b) first cool (c) second heat 
and (d) second cool. The RVA heating rate was matched to that of the Micro DSC at 1

o
C min

-1
. 

Upon cooling potato starch in LiCl/urea/water undergoes a slight exothermic 

transition with a peak at about 90oC (Figure 5.34). It is much harder to detect any 

transition for rice starch upon cooling although on the second cooling run there is a 

small exothermic peak. Both starches have clear endothermic peaks between 60-

80oC which decrease in size with each subsequent run.  
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Figure 5.34 Micro DSC spectra of 10 wt% starch in LiCl/urea/water solution cooling (left) and heating 
(right) for (a) potato and (b) rice. 

 

5.4 Discussion 

Recently Lindman et al. (2010) discussed the causes of cellulose insolubility in water. 

The cellulose community generally explain it by the large number of hydrogen bonds 

present. However Lindman et al. point out that other molecules with a high number 

of hydrogen bonds are highly soluble such as glucose and dextran. If only 

intermolecular hydrogen bonding is the cause of cellulose insolubility then glucose or 

dextran should self-associate and phase separate, however this is obviously not the 

case. This discrepancy therefore shows that hydrogen bonding is not the sole reason 

for cellulose insolubility. An answer to this may be the amphiphilicity of cellulose 
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(Biermann et al., 2001). Cyclodextrin (a ring of glucose molecules) is highly soluble in 

water yet is able to incorporate very non polar molecules into the interior of the ring, 

showing that glucose molecules can have very different polarity within a chain. The 

flat ribbons of cellulose chains may therefore have sides of different polarity 

(Yamane et al., 2006). The hydrophilic nature of cellulose is caused by the hydroxyl 

groups located in the equatorial direction whereas the axial direction of the 

glucopyranose rings is hydrophobic because of the hydrogen atoms of the C-H bonds, 

which means that cellulose molecules have structural anisotropy.  Lindeman et al. go 

on to explain that this may explain the excellent solubility of cellulose in amphiphilic 

solvents such as ionic liquids and that co-solutes such as PEG and urea, which weaken 

hydrophobic interactions also help in the aqueous solubility of cellulose.  Cellulose 

dissolved in 10 wt% NaOH/H2O gels at a temperature above 25oC (Medronho et al., 

2012). However, when betain derivative, an amphiphilic co-solute, is added the 

temperature of gelation is increased by 10oC which the authors attribute to the 

amphiphilic co-solute reducing the number of hydrophobic interactions that are 

responsible for aggregation.  

It has been noted that, as with the clouding phenomenon seen with some non-ionic 

polymers with increased temperature (Lindman and Karlström, 2009), cellulose 

dissolution may sometimes be favoured at lower temperatures. As temperature 

increases, the polar conformations around the C-C bonds which favour interactions 

with a polar solvent, shift to less polar conformations and so increase the overall 

hydrophobicity of the cellulose chains (Lindman et al., 2010).  

Amorphous cellulose is able to partially recrystallise immediately in the 

LiCl/urea/water solution at ambient temperature as the BM MCC is birefringent 

(Figure 5.10). Bergenstråhle et al. (2010) used molecular dynamic simulations of 
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short cello-oligomers in aqueous solution to estimate the contributions of 

hydrophobic stacking and hydrogen bonding to the insolubility of crystalline 

cellulose. They found that hydrophobic association and hydrogen bonding favour 

crystal packing over solubilisation which is partially a consequence of the planar 

topology of the rigid flat cellulose ribbons. The authors go on to say that even though 

their model is based on the native crystalline structure of cellulose they would expect 

the amorphous regions to behave in a similar way as the hydrophobic surfaces if the 

chains are paired together in such a way that they exclude water and that many 

intermolecular hydrogen bonds exist.  

Recently, mesoscale modeling of cellulose-water interactions has shown that at 

ambient temperature the surface of cellulose fibres have at least a monomolecular 

layer of water associated with it (Khazraji and Robert, 2013). The authors found that 

cellulose-water interactions are exothermic reactions as there is an increase in 

entropy which is denoted by a negative heat flow.  

It might be argued that the intial heating of cellulose in LiCl/urea/water solution 

“activates” the particles by swelling them. This is the large exotherm seen in Figure 

5.31 of the first heating of the dispersions in the Micro DSC. Hyrdogen bonding on 

the surface of the cellulose particles/fibres is broken and the swelling solution 

penetrates further as the temperature increases. This causes the increase in viscosity 

found by Tatarova and Foster (2010) where 1.4 wt% lyocell had an increase in final 

viscosity from 70cP to 300cP when heated to 60oC or 95oC respectively. The initial 

heat destroys some of the crystalline regions (Figure 5.3). At high temperature (90oC) 

there appears to be a maximum level the swelling solution is able to disrupt the 

crystalline regions as the crystallinity does not reduce with longer heat treatments 

(Figure 5.5). Due to the swelling, the cellulose chains are able to more freely change 
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their conformation between a predominantly hydrophobic or hydrophilic structure in 

a similar way to methylcellulose. As the temperature increases the cellulose becomes 

more hydrophobic (Medronho et al., 2012, Lindman et al., 2010) which halts the 

extremely polar solution from decrystallising the ordered regions. The ability of 

amorphous cellulose chains, located on the surface of the fibres, to change 

conformation is likely to be limited by their DP (Figure 5.32). Cellulose has been 

found to be decreasingly soluble in NaOH with increasing DP (Le Moigne and Navard, 

2010). This conformational change is likely to be a twisting of the cellulose chains to 

reduce the contact of their hydrophobic sides with water at higher temperature.  

At a temperature of 60-75oC the viscosity then falls (Figures 5.26, 5.27, 5.28 and 5.33) 

as the gel-like structure is melted out. Upon cooling, between 35-20oC, the gel-like 

structure is reformed, as shown by both RVA and Micro DSC results (Figure 5.33). As 

has been shown by the cross polar micrographs of BM MCC, cellulose is able to form 

hydrogen bonds at lower temperatures. This structure formation may then be as a 

result of the conformational change from predominantly hydrophobic to hydrophilic. 

The primarily hydrophilic cellulose structures water and  forms a cellulose-cellulose 

network which becomes stronger over time (Figure 5.22). 

The endothermic peak seen on subsequent reheats between 35-65oC may then be 

due to a shift from a predominantly hydrophilic structure to a hydrophobic structure. 

This disrupts the surrounding water and effectively melts out any structure that was 

formed at a lower temperature. 

The LiCl/urea/water solution is unable to completely dissolve cellulose but does 

solubilise starch. Koganti et al. (2011) found that NMMO at concentrations of 70 wt% 

and above were able to dissolve starch but only at concentrations above 86 wt% was 

the NMMO able to solubilise cellulose. If the water content of the LiCl/urea/water 
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solution was decreased then it could be expected to completely dissolve cellulose, 

however, this is not possible when using a starting temperature at ambient as the 

salt will come out of solution at such high concentrations.  

An alternative explanation to the sudden aggregation of the BM MCC particles seen 

in Figure 5.11 at approximately 65oC may be a change in phase behaviour due to the 

solubilty of the outer cellulose chains. Below the lower critical solution temperature, 

the cellulose may be partially miscible with the LiCl/urea/water solution, but above 

the lower critical solution temperature the Gibbs free energy become positive. The 

unfavourable entropy of mixing then causes the cellulose particles to aggregate.  

5.5 Conclusion 

A LiCl/urea/water solution is able to swell cellulose and decrease its crystallinity. The 

decrease in crystallinity is increased over time at ambient temperature but not with 

longer treatments at 90oC. Over time at ambient temperature the treated cellulose 

dispersions form a gel-like network. BM MCC is able to recrystallise in the 

LiCl/urea/water solution when first rehydrated showing that there is enough water 

present to allow some degree of hydrogen bonding. MCC and CP have a similar 

particle size but CP is able to reach a much higher viscosity at higher concentrations 

as it has a lower crystallinity and thus is able to swell to a higher degree. The 

mechanism of gelation may be due to a change in cellulose conformation from 

predominantly hydrophobic at high temperature to hydrophilic at lower 

temperatures but may be dependent on the mobility and therefore DP of the 

cellulose.  

Starch granules are eroded from the outside and do not swell in the LiCl/urea/water 

solution. The two starches have an equal final viscosity after treatment as they have 
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a similar amylose:amylopectin content showing that they are completely molecular 

solutions with no granular remnants.  
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Chapter 6. Natural 
polysaccharides in 
LiCl/urea/water 
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6.1 Introduction 

The swelling and dissolution of cellulose in molten salt hydrates and ionic liquids will 

enable the design of novel composites in combination with other polymers, and in 

particular cell wall polysaccharides. Before these composites can be designed, 

however, it is important to understand what effects these solvents have on the 

properties of the cell wall polysaccharides.   

Hofmeister (1888) was the first to recognise that electrolytes have differing effects 

on proteins by either increasing their solubility (salting in) or increasing precipitation 

(salting out). Heydweiller (1910) later discovered that salts dissolved in water 

increased the surface tension of the solution-air interface where anions were the 

major influencer. The variation in surface tension followed the Hofmeister series 

where anions are arranged in order of increasing electrostatic surface potential 

difference: 

CO3
2- > SO4

2- > IO3
- > F- > BrO3

- > Cl- > NO3
- > Br- > ClO3

- > I- > ClO4
- 

The order of some of the cations in the Hofmeister series are: 

NH4
+ > K+ > Na+ > Li+ > Mg2+ > Ca2+ 

The ions to the left of the series decrease the solubility of nonpoar molecules (salting 

out) and are referred to as chaotropes as they exhibit weaker interactions with water 

than water itself and so do not interfere to a great degree with hydrogen bonding 

whereas the ions with a high charge density, to the right of the series, are refered to 

as kosmotropes as they exhibit stronger interactions with water molecules than 

water itself and so are able to break water-water hydrogen bonds. The Hofmeister 

series has generally been derived from experimental results, but recently dos Santos 

et al. (2010), for the first time, have derived a theoretical model of the lyotropic 

(Hofmeister) series. 
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Kosmotropes are usually small, strongly hydrated ions and are able to structure 

water, while chaotropes are generally large and poorly hydrated so break the 

structure of water. A simple method of assessing the nature of an electrolyte is to 

measure its effect on the viscosity of water. As salt concentrations increase, 

kosmotropes will increase the viscosity of water whilst chaotropes will decrease it 

(Wiggins, 2002).   

Chloride ions are weakly chaotropic but the behaviour of a halide salt will normally 

be determined by the stronger metal ion. Therefore, the overall power of a LiCl 

solution will be kosmotropic.  Urea is a chaotrope but acts as a kosmotrope at high 

concentrations and is able to denature proteins at concentrations of 4-5M (Russo, 

2008). Urea is commonly refered to as a hydrogen bond breaker (McGrane et al., 

2004). It has been found to increase the intrinsic viscosity of chitosan by breaking 

intramolecular hydrogen bonds allowing the molecules to exist in a more extended 

form (Tsaih and Chen, 1997). The concentration of urea required to disrupt the 

intramolecular hydrogen bonds increased with increasing molecular weight (Chen 

and Tsaih, 2000).  

Urea, as a chaotrope,  acts as a co-solvent by promoting a better solvating interaction 

between the solute and water (Breslow and Guo, 1990). It breaks the structure of 

water in the bulk and disrupts the hydrophobic parts of non-ionic surfactants 

(Deguchi and Meguro, 1975). The unfolding process of ribonuclease by urea and LiCl 

have been compared (Ahmad, 1983). Urea is able to cause complete denaturation 

where the unfolded molecule acts as a linear random coil whereas the addition of 

LiCl leads to incomplete unfolding. When low concentrations of LiCl (i.e. below the 

concentration it is able to denature ribonulcease alone) were added to urea 

solutions, the salt actually stabilised the protein against urea denaturation (Ahmad, 
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1984). This may be due to the ability of the carbonyl oxygen of the urea molecules to 

form strong complexes with the lithium ions.  

Dextran, a high molecular weight α-1-6-linked glucose polymer, has been studied in a 

number of solvents to identify solvent effects on polymer conformation (Antoniou et 

al., 2010). Dextran’s intrinsic viscosity and coil volume (Vcoil) was found to double 

from water to ethanolamine and the hydrodynamic coil radius (Rcoil) increased from 

15.7 to 19.3 nm. The authors suggest that hydrogen bonding is the most important 

factor that determined solubility. The coil radius of dextran in the other solvents 

(which were either hydrogen acceptors or donors) increased in a linear order 

water→ethylene glycol→formamide→DMSO where the Hansen solubility parameter 

(δH) decreased with each solvent, which is a measure of the cohesive energy due to 

hydrogen bonding (Hansen, 2012).  

Due to the hydrogen bond breaking nature of ionic liquids they are excellent solvents 

for polysaccharides. Using 1-butyl-3-methylimidazolium chloride (BmimCl) as a 

solvent, Horinaka et al. (2012) found that three different galactomannans, guar, tara 

and locust bean gum (LBG) with mannose to galactose (M:G) ratios of 2:1, 3:1, and 

4:1 respectively all had a random coil conformation in concentrated solution and that 

the galactose side groups caused no conformational changes. 1-allyl-3-

methylimidazolium chloride (AmimCl) and BmimCl was used to dissolve 5 wt% konjac 

(Li et al., 2011). Konjac was found to swell at ambient temperature and dissolve 

above 60oC forming clear viscous solutions. With increasing temperature the 

dissolution time decreased, however, the molecular weight also decreased indicating 

at least some level of degradation.  

Ionic liquids have been used to prepare polysaccharide gel structures. Xanthan gum is 

an anionic polyelectrolyte and only able to form a weak gel network alone and is 
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usually added to other polysaccharides such as LBG to form synergistic, firm, 

thermoreversible gels (Copetti et al., 1997), however, at concentrations of 9.1-50 

wt% in BmimCl xanthan is able to form a firm gel when left standing at room 

temperature (Izawa and Kadokawa, 2010). A 9.1 wt% xanthan gum/BmimCl gel could 

then be converted into a hydrogel by soaking in water. The xanthan became ionically 

cross-linked (Izawa et al., 2009).  

The authors subsequently produced ion gels with fenugreek, guar and LBG 

(Kadokawa et al., 2013). They found that LBG constructed a looser gel network due 

to its lower galactose content. Fenugreek produced the strongest gels which the 

authors attributed to crystalline structures that were formed for fenugreek and guar 

but not LBG. However, they did not show the molecular weights of the 

galactomannans which are likely to have a large impact on mechanical properties.  

Four different polysaccharides, fenugreek, LBG, konjac and xyloglucan have been 

chosen to identify any solvent effects of the LiCl/urea/water solution. The binding of 

the polysaccharides to cellulose in the different solvent environments has also been 

investigated.  

6.2 Materials and Methods 

6.2.1 Materials 

The polysaccharides used were; Konjac glucomannan from the tubers of 

Amorphophallus Konjac, K. Koch: Propol RS (Shimizu Chemical Corporation, Japan), 

Xyloglucan from tamarind seed (Dainippon Pharmaceutical Company, Japan), 

Fenugreek Gum Powder T (Air Green Co., Ltd, Japan) and Locust bean gum (Danisco, 

Norway). 
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The celluloses used were cellulose fibre (CF) (Solka 900FCC, International Fibre 

Corporation, USA) and Avicel MCC type PH-101 Ph Eur (Sigma Aldrich, UK). Ball milled 

MCC was produced as described in chapter 5.  

LiCl ≥99%, urea, fluorescein isothiocyanate (FTIC) and rhodamine B were purchased 

from Sigma Aldrich (UK). Dimethyl sulfoxide (99.8%), toluene (99.8%), pyridine 

(99.5%) were purchased from Acros Organics (UK) and dibutyltin dilaurate (95%) was 

purchased from Alfa Aesar (UK). 

6.2.2 Sugar Analysis 

Sugar analysis was kindly performed by Nofima (Norway).  

6.2.3 Molecular weight measurement 

Molecular weight measurements were kindly performed by Nofima (Norway). Dried 

sample was mixed with water ca. 1 mg/ml.  Each sample was treated twice as 

follows:  cooked for 5 min in a boiling water bath followed by vigorous shaking in 

Precellys shaker for two cycles of 30 seconds (default program, without beads). All 

samples were then made to 0.1 M sodium nitrate, 0.02 wt% sodium azide and then 

filtered through a 0.8 µm filter.  Finally 100 µl was injected into the SEC-MALS 

system. This system comprised a Shimadzu autosampler and pump, Dawn helios light 

scattering detector (8 angles), Optilab T-rEX refractive index detector, and a viscostar 

II viscometer (all detectors from Wyatt, USA).  The columns were maintained at 25 °C 

and comprising two serially connected Tosoh Bioscience TSK gel Bioscience G5000 

and G6000 PWXL SEC columns operated at a flow rate of 0.5 ml min-1.  Pullulan (NP2) 

with a certified molecular weight of 4.23 x 105 from PSS, Germany was injected as a 

positive control (certified reference standard).   The refractive index increment 

(dn/dc) was not individually determined for each sample and was taken to be 0.147 

for all samples.  Nor was the second viral coefficient (A2) determined.  It was taken as 
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being zero. Forward extrapolation (to smaller masses) of molar mass data was done 

via fitting of an exponential function.  All data were processed with Astra 6 Software 

from Wyatt. 

6.2.4 LiCl/Urea/Water solution preparation 

See chapter 5, section 5.2.2, page 136. 

6.2.5 Hemicellulose purification 

Initially, hemicellulose powders were added to the LiCl/urea/water solution but there 

was great difficulty in dissolving the hemicelluloses. This may have been due to the 

small amounts of insoluble impurities present in the samples. The following 

purification step was then employed:  

Hemicellulose stock solutions were prepared by stirring the powders in deionised 

water and heating to 80oC for 30 minutes. The solutions were then left on a roller 

bed overnight at room temperature. The hemicellulose solutions were then 

centrifuged at 2000g for 20 minutes at 20oC. When powders were needed for the 

swelling treatment, the supernatant was freeze dried and the freeze dried material 

dispersed in the LiCl/urea/water solution.  

6.2.6 Rapid Visco Analyser (RVA) 

See chapter 5, section 5.24, page 136. 

6.2.7 Rheology 

Rheological measurements of the polymer solutions were carried out using a Bohlin 

CVO rheometer (Bohlin Instruments Ltd, Cirencester, UK) with cone and plate (4o 

cone angle/40mm diameter and 150 µm gap) and double gap (for low viscosity 

measurements) geometries at 25oC. Zero shear values were obtained by using the 

Cross model within the Bohlin software. 
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Oscillatory rheology measurements were performed using a Bohlin CVO rheometer 

with a cone and plate geometry (4o cone angle/40mm diameter and 150 µm gap) at 

25oC. Amplitude sweeps were carried out to ensure measurements were within the 

linear viscoelastic region where the dynamic storage modulus (G’) and loss modulus 

(G’’) are independent of the stress amplitude. Frequency sweeps had an applied 

stress of 1 Pa.  

Intrinsic viscosities were estimated using the single point method described in 

Chapter 4 using rotational rheometry data.  

6.2.8 Capillary Rheometer 

Water was mixed with unpurified polysaccharide powders in a food mixer. The 

hydrated mixture was then placed in the pre-heated (80oC) capillary of a Rosand 

Flowmaster Capillary Rheometer RH-7 (Malvern Instruments Ltd, UK). Samples were 

immediately run to avoid too much moisture loss at a series of 10 shear rates from 2-

1000 Pas.  

6.2.9 Surface tension measurements 

The surface tension of 0.04 wt% concentrations of the polysaccharide in either water 

or LiCl/urea/water was measured using a Profile Analysis Tensiometer 1 (Sinterface, 

Germany) at a temperature of 25oC. After thorough cleaning with the respective 

solvent a pendant drop was formed on a needle and the profile of the drop was 

measured over time using the tensiometer software. 

6.2.10  Dialysis 

Polysaccharide solutions were dialysed after treatment to remove the salts using 

BioDesignDialysis Tubing (D106) 8000 MWCO (BioDesign Inc, New York, USA). The 

dialysed samples were then freeze dried to remove water.  
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6.2.11 13C Cross Polarization Magic Angle Spinning Nuclear Magnetic 
Resonance (CPMAS NMR) 

 

See chapter 3, section 3.2.7, page 59. 

6.2.12  Fourier Transformed Infrared Spectra (FTIR) 

The FTIR spectra of the polysaccharides were recorded using a Brucker IFS48 

spectrometer with a DTGS detector equipped with an ATR single reflectance cell with 

a diamond crystal (45 incidence angle) golden gate cell (Graseby-Space Ltd, 

Orpington, UK). For each measurement the spectra was obtained from the average of 

128 scans at a resolution of 4 cm-1 against an empty background. Spectra were base 

line corrected.  

6.2.13  Fluorescent tagging 

Fluorescent tagging was kindly carried out by Latifah Jasmini (Chemical Engineering, 

University of Nottingham). LBG and fenugreek were labelled with Rhodamine B and 

konjac and xyloglucan were labelled with fluorescein isothiocyanate (FTIC). To a two-

necked-100 ml-round bottom flask equipped with a magnetic stir bar, the 

polysaccharide (0.5g) and fluorescent marker (50 mg) were added. The flask was 

purged with argon before adding dry dimethylsulfoxide (50 ml) and subsequently 

attached to the condenser. Pyridine (0.1 ml) and dibutyltin dilaurate (50 mg) were 

then added to the flask. The reaction was heated at 95oC for 24 h. The modified 

polysaccharide was filtered and washed with ethanol before drying in vacuo.  

6.2.14  Confocal laser scanning microscopy (CLSM) 

Polysaccharides were matched to a specific viscosity of 100 in either water or 

LiCl/urea/water. 0.01g of each polysaccharide was replaced with the fluorescently 

labelled sample. Samples were then run in the RVA with the same profile used above 

in 6.2.6. After treatment an aliquot of the sample was deposited onto a glass slide 
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and covered with a cover slip. A Leica TCS SP5 confocal laser scanning microscope 

(CLSM) equipped with an inverted microscope was used in single photon mode with 

an Ar laser with a Leica objective lens (10 X 0.4 IMM/dry/HC PL APO). Different 

excitation wavelengths were used depending on which florescent sample was used 

(Table 6.1).  

Table 6.1 Excitation and emission wavelengths of the fluorescent samples. 

 Excitation (nm) Emission (nm) 

Rhodamine B 540 625 

FITC 495 519 

 

6.3 Results and Discussion  

Sugar analysis gives a clear indication as to the structure of the polysaccharides 

(Table 6.2). LBG has a mannose to galactose (M:G) ratio of 2.9:1 which is lower than 

the 4:1 ratio usually found in the literature (Naoi et al., 2002). The M:G ratio of 

fenugreek is in better agreement with the literature at 1.1:1 (Mathur and Mathur, 

2005, Mathur, 2011, Brummer et al., 2003). Both LBG and fenugreek contain a 

number of other sugars which may be from a small fraction of other hemicelluloses. 

The percentage sum of the yield compared to the starting material is in agreement 

with the amount of insoluble material that is removed during the purification step 

(≈20 wt%) described in the methods section (Section 6.2.5, page 181). 

Table 6.2 Sugar analysis with yields described as wt% of dried starting material showing the yields of 
arabinose (Ara), rhamnose (Rha), fucose (Fuc), xylose (Xyl), glucuronic acid (GlcA), galacturonic acid 
(GalA), mannose (Man), galactose (Gal) and glucose (Glc). 

 
Ara Rha Fuc Xyl GlcA GalA Man Gal Glc Sum 

LBG 1.8 0.4 0.0 0.9 0.4 1.2 55.1 19.3 1.7 80.8 

Fenugreek 0.3 0.2 0.0 0.8 0.0 0.6 43.5 39.1 0.4 84.9 

Konjac 0.0 0.0 0.0 0.4 0.1 0.3 44.1 3.5 26.1 74.5 

Xyloglucan 1.4 0.2 0.0 28.8 0.2 0.6 4.0 14.4 13.2 62.8 
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The mannose to glucose ratio of konjac is 1.7:1 which is close to 1.6:1 often 

described in the literature for the β-(1-4)-linked backbone (Williams et al., 2000). 

Konjac also has a low level of branching (≈8%) at the β-(1-6)-glucosyl units (Nishinari 

et al., 2007). There is also small fraction of galactose branching (≈5%) (Buckeridge et 

al., 2000).  

Xyloglucan has a cellulosic-like β-1,4-linked glucan backbone highly substituted with 

α-D-linked xylospyranosyl residues attached at O-6 which can be further substituted 

with other sugar residues. The proportion of glucose from the sugar analysis is much 

lower than would be expected as it should be at least a little higher than xylose. This 

is likely to be a result of incomplete acid hydrolysis as the cellulose backbone is much 

harder to break down than the other sugar side units. This would then explain the 

low sum value of 62.3% of the dried starting material. This sample of xyloglucan has 

no fucose side units as it is a storage polysaccharide from tamarind seeds rather than 

from the primary cell wall (Buckeridge, 2010). The fucosyl residues have been 

suggested to increase the adsorption affinity to cellulose (Hayashi et al., 1994) due to 

a flatter conformation of the polymer which increases its capacity to bind to cellulose 

(Levy et al., 1991). Therefore, in aqueous solution this xyloglucan will have a flexible 

random coil configuration (Ren et al., 2004). There is also quite a high degree of 

galactosylation which may further decrease interactivity with cellulose (de Lima and 

Buckeridge, 2001) although the fine structure distribution is important. Uneven 

distribution of galactose may favour a higher binding capacity if the galactosyl 

residues are at one side of the polysaccharide molecule which would expose the 

glucose backbone (de Lima and Buckeridge, 2001) whereas a uniform distribution of 

galactose side units would lead to a more twisted backbone and therefore lower the 

binding capacity (Levy et al., 1997). Tamarind seed xyloglucan is composed of a 

regular patter of Xly-substitution where the majority of the molecule is composed of 
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repetitive units of Glc4:Xyl3 (York et al., 1990). The sugar analysis results which show a 

xylose:galactose ratio of 2:1 may indicate that this xyloglucan has a repetitive subunit 

of XLLG + XLXG or XLLG + XXLG where X corresponds to α-D-Xyl-(1-6)-Glc, L 

corresponds to a xylose residue substituted at O-2 with β-Gal and G denotes an 

unbranched glucose residue (Buckeridge et al., 1992, Nishinari et al., 2007). There is 

also a smaller fraction of arabinose side units. The mannose is likely to be from other 

hemicelluloses that have not been removed. 

Fenugreek has the highest weight average molecular weight of the polysaccharides 

used (Table 6.3) and is much larger than LBG although it has a lower intrinsic viscosity 

in water. These results are in line with some authors such as Wu et al. (2009) who 

found that LBG  had a molecular weight of 2.08 x 106 g/mol and intrinsic viscosity of 

14.2 dl/g and that fenugreek had a molecular weight of 3.23 x 106 g/mol and an 

intrinsic viscosity of 15.10 dl/g.  Pollard et al. (2008) found that different commercial 

LBG samples had molecular weights in the range of 0.86 - 1.0 x 106 g/mol and 

intrinsic viscosities in the range of 12.4 -13.9 dl/g while Andrade et al. (1999) found 

that purifying LBG increased its molecular weight from 2.03 to 2.29 x 106 g/mol and 

intrinsic viscosity from 13.5-14.0 to 15.2-15.7 dl/g. Brummer et al. (2003) found that 

LBG had a molecular weight of 1.2 x 106 g/mol and an intrinsic viscosity of 14.38 dl/g 

while fenugreek had a larger molecular weight of 1.4 x 106 g/mol but a smaller 

intrinsic viscosity of 9.61 dl/g. The authors also found that LBG had a larger radius of 

gyration (Rg) than fenugreek, at 82.88 nm compared to 75.08 nm respectively. They 

account for this disparity between molecular weight and intrinsic viscosity by noting 

previous research which has found that the addition of galactosyl residues on the 

mannan backbone induces a reduction in chain dimensions (Petkowicz et al., 1998). 

Using molecular modelling, Wang and Somasundaran (2007) found that guar forms a 

more compacted helical structure than LBG (which has a stiffer chain) due to the 
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increase in galactose side chains which increases intra-molecular hydrogen bonding. 

Fenugreek is even more highly substituted than guar and so is likely to form an even 

tighter structure. For galactomannans with intermediate M:G ratios such as guar and 

tara the galactosyl distribution pattern is also of importance for overall conformation 

(Wu et al., 2012).  

Table 6.3 Molecular weights measured by SEC MALS and intrinsic viscosities measured by rotational 
rheometry, of each of the polysaccharides. The average of three replicates for each intrinsic viscosity 
is shown ± the standard deviation. 

 

Weight average 
molecular weight 

(106 g/mol) 

[η] in Water (dl/g) [η] in 
LiCl/urea/water 

(dl/g) 

LBG 2.72  17.5 ± 0.2 10.8 ± 0.1 

Fenugreek 4.045  15.2 ± 0.1 55.6 ± 2.8 

Konjac 2.06  15.7 ± 0.4 17.3 ± 0.4 

Xyloglucan 1.48  2.7 ± 0.1 5.1 ± 0.1 

 

Goycoolea et al. (1995) previously found that LBG had an intrinsic viscosity of 12.1 

dl/g in 1M NaCl but this decreased to just 5.2 dl/g in 1M NaOH. Upon neutralisation 

the viscosity substantially increased which showed the effects were not wholly due 

to depolymerisation. They suggested that LBG does not form completely molecular 

solutions but is in fact associated due to the unsubstituted regions of the mannan 

backbone. These associations or ‘hyperentaglements’ are broken by alkali resulting in 

a reduction in viscosity. They showed that guar also undergoes a slight decrease in 

intrinsic viscosity in alkaline conditions from 12.5 to 11.9 dl/g. The decrease is much 

smaller than LBG as there are fewer unsubstituted regions on the mannan backbone 

due to a higher galactose content.  

Doyle et al. (2009), using the same method as Goycoolea et al. (1995) but with 

fenugreek, found that the addition of 1M NaOH decreased the intrinsic viscosity from 

16.0 to 12.0 dl/g. With increasing NaOH concentration the intrinsic viscosity 
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decreased until levelling off at concentration of 3M. This was explained by the alkali 

causing the ionisation of the hydroxyl groups (from –OH to –O-) which caused 

electrostatic repulsion and inhibited hyperentanglement. As fenugreek is fully 

substituted and so does not have any part of the backbone free for mannan-mannan 

interaction, Doyle et al. (2009) proposed a new theory of hyperentanglement where 

there are transient associations in the crystallographic a plane where galactose side 

chains lay above or below one another exposing the mannan backbone for weak 

intermolecular associations as well as the more permanent mannan-mannan 

associations in the b crystallographic plane for less substituted galactomannan. 

Richardson et al. (1998) found that the addition of sucrose up to a concentration of 

10 wt% decreased the intrinsic viscosity of LBG which the authors suggested was due 

to an decrease in polymer/polymer associations again suggesting that the intrinsic 

viscosity in water is artificially high due to aggregates. There was an increase in the 

intrinsic viscosity for both LBG and guar at a sucrose concentration of 20 wt% which 

may have been due to an increase in the solvent quality but it was then subsequently 

decreased at a concentration of 40 wt% which may have been due to competition for 

water which enhanced polymer contraction. They also found that guar was more 

compact than LBG due to its higher galactose content.  

In this study, the decrease in LBG’s intrinsic viscosity is less than might be expected 

(17.5 to 10.8 dl/g) when compared to the work of Goycoolea et al. (1995). This might 

indicate that whilst intermolecular associations are disrupted there is also a decrease 

in intramolecular hydrogen bonding which expands the overall conformation of the 

individual LBG molecules. 

Konjac has a molecular weight of about 2 x 106 g/mol which is in the range that has 

previously been reported (Dave et al., 1998, Parry, 2010). Konjac is often described 
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as having a semi flexible coil conformation in aqueous solution (Kok et al., 2009, Li 

and Xie, 2006) although recent work has suggested that it has an ordered single helix 

in neutral, dilute solution although at high temperatures (>60oC), high NaOH 

(>0.45M) or high urea (>4.0M) the order is lost resulting in a random coil 

conformation (Wang et al., 2011).  

Storage xyloglucans are known to have high molecular weights of up to 2 x 106 g/mol 

(Mishra and Malhotra, 2009).  Xyloglucan decreases in its level of interaction with 

increased molecular weight (Lima et al., 2004). Lima et al. (2004) have suggested a 

mechanism where storage xyloglucans are first synthesised as low molecular weight 

polymers and then assembled into bigger complexes at the end of polysaccharide 

deposition.  

The zero shear viscosity of the polysaccharides was compared in pure water and in 

the LiCl/urea/water solution. Specific viscosity takes into account the differences in 

the solvent viscosities. By plotting concentration against zero shear specific viscosity 

on a log-log scale different solution regimes can be differentiated (McCleary et al., 

1985). All the polysaccharides used show a linear relationship between concentration 

and viscosity at low concentrations which then changes at a critical concentration 

(c*) to a power law relationship as the concentration increases due to the formation 

of an entangled polymer network.  

The viscosity at low concentrations (below 0.1 wt%) of LBG is lower in the 

LiCl/urea/water solution than water (Figure 6.1) which is in agreement with the 

decrease in intrinsic viscosity (Table 6.3). At higher concentrations, LBG’s viscosity is 

similar in both solvents. Fenugreek on the other hand has a much higher viscosity in 

LiCl/urea/water. Similarly xyloglucan also has a considerably higher viscosity in 
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LiCl/urea/water whereas there is only a minimal increase for konjac (Figures 6.2 and 

Table 6.3).  

 

Figure 6.1 The zero shear specific viscosity of fenugreek (triangles) and LBG (circles) in water (filled 
symbols) or the LiCl/urea/water solution (open symbols) at 25

o
C. 

Aqueous LiCl solutions have previously been found to not affect the intrinsic viscosity 

of guar up to a salt concentration of 4.1 mol/L (Ma and Pawlik, 2007). However, a 

saturated solution of LiCl increased the intrinsic viscosity of guar from 11.7 to 21.7 

dl/g. Urea had no effect on the intrinsic viscosity up to a concentration of 1 mol/L but 

at 4 mol/L concentration the intrinsic viscosity increased to 14.5 dl/g although, 

interestingly, the intrinsic viscosity decreased slightly for a saturated urea solution. 

Saturated solutions of cesium chloride (CsCl) decreased guar’s intrinsic viscosity. Ma 

and Pawlik (2007) account for these differences by the solvent quality of the different 

salt solutions. Saturated CsCl (a chaotrope and thus a water-structure breaker) is a 
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better solvent than water so fully solubilises guar by dissociating any aggregates 

between the unsubstituted mannan chains. They suggest that saturated LiCl and NaCl 

(kosmotropes) solutions actually increase the level of aggregation by the Li+ and Na+ 

binding water molecules into their hydration sheaths leaving little water to 

hydrate/solubilise the polymer chains thereby making polymer-polymer interactions 

more favourable than polymer-solvent interactions. This competitive hydration 

model does not correlate, however, with their results for urea. They suggest that the 

hydrogen bond breaking properties of urea do not occur at the low guar 

concentrations level they studied. The authors exclude conformation change as a 

possible cause in altering the intrinsic viscosity due to the non-ionic nature of guar 

and so insist there can be no screening of anionic functional groups.  

 

Figure 6.2 The zero shear specific viscosity of konjac (squares) and xyloglucan (diamonds) in water 
(filled symbols) or the LiCl/urea/water solution (open symbols) at 25

o
C. 
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Recently, researchers have begun to dispute idea that water structure breaking and 

making is central to the Hofmeister series (Zhang and Cremer, 2006) and that rather, 

direct ion-macromolecule interactions are the major driving force. Using femto-

second mid-infrared pump-probe spectrocopy, Omta et al. (2003) found that the 

water strucutre outside the hydration shell of the ion was not influenced by the ion.  

A model of hydrogen bond breaking causing conformational change gives a more 

complete picture as to what may be happening in both the present chapter and the 

work of Ma and Pawlik (2007). The intrinsic viscosity of LBG does decrease in 

LiCl/urea/water due to the break-up of aggregates but conformational change 

increases the viscosity of fenugreek and xyloglucan. If competition for water was the 

major factor then konjac should also increase in viscosity to a similar level, but it does 

not as it does not undergo significant conformational change.  

In water all polysaccharides show viscoelastic liquid-like behaviour where the storage 

modulus (G’) is below the loss modulus (G’’) at low frequencies (Figure 6.3). At higher 

frequencies the systems have a solid-like behaviour with G’ higher than G’’ and there 

is less frequency dependence due to polymer entanglement (Clark and Ross-Murphy, 

2009). This feature is found for many random-coil polysaccharides in the 

concentrated regime (Wientjes et al., 2001).  

None of the polysaccharides used gel independently. The crossover frequency of 

fenugreek can be shifted to higher values when the protein content is reduced 

(Youssef et al., 2009). 

Native xyloglucan does not gel (Wang et al., 1997, Nishinari and Takahashi, 2003), 

however, tamarind xyloglucan has been found to gel by the removal of 35% of the 

galactose side chains (Shirakawa et al., 1998). Gels were formed upon heating but 
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returned to the sol state on cooling indicating that hydrophobic interactions were 

important, in a similar way to methylcellulose (Brun-Graeppi et al., 2010). Xyloglucan 

is also able to gel with the addition of alcohol (Yuguchi et al., 2004).   

 

Figure 6.3 The dynamic moduli G’ (filled symbols) and G’’ (open symbols) of 1 wt% polysaccharide 
solutions in water at 25

o
C. 

In the LiCl/urea/water solvent both fenugreek and konjac show a viscoelastic solid 

behaviour indicating a higher level of entanglement whereas LBG still has a liquid-like 

behaviour (Figure 6.4). This may be due to LBG’s smaller size in LiCl/urea/water 

caused by disaggregation leading to smaller molecules and therefore less 

entanglement. Xyloglucan also shows liquid-like behaviour which may be due to its 

lower molecular weight.  

 Recently, Horinaka et al. (2012) used 1-butyl-3-methylimidazolium chloride (BmimCl) 

to solubilise guar, tara and LBG. They found that concentrated solutions (5-20 wt%) 
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showed angular frequency dependence curves of the storage and loss modulus which 

is characteristic of entangled polymer chains in solution.  

 

Figure 6.4 The dynamic moduli G’ (filled symbols) and G’’ (open symbols) of 1 wt% polysaccharide 
solutions in LiCl/urea/water at 25

o
C. 
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(Figure 6.5). A possible explanation of this unusual behaviour is that fenugreek is 

amphiphilic (Garti et al., 1997, Yildiz and Oner, 2014). Fenugreek has been found to 

have adsorption isotherms (onto the oil/water interface) more characteristic of 

amphiphilic biopolymers than those of other gums (18mg/m2 compared to 2.8mg/m2 

for LBG and 4mg/m2 for guar) (Garti, 2005). To investigate this further, surface 

tension measurements were performed. 

 

Figure 6.5 LBG (left) and fenugreek (right) extruded from a capillary rheometer. Numbers next to each 
sample represents the concentration of polysaccharide. 

Surface tension is the ability of a liquid to resist an external force on its surface due 

to a greater attraction of the solvent molecules to each other than to the air. A useful 

way of measuring surface tension is the pendant drop method where a drop of liquid 

is suspended from the end of a tube. A camera measures any change in the shape of 

the droplet over time. Surfactants have the ability to lower surface tension by 

adsorbing at the interface between liquid and air.  

Fenugreek is known to be surface active although there is some disagreement as to 

how much the small protein fraction aids with this (Mathur, 2011, Mathur and 

Mathur, 2005, Brummer et al., 2003). There are also reports of LBG surface activity 

but to a much lower extent, for instance Wu et al. (2009) found that 0.5 wt% 

concentration of fenugreek reduced the interfacial tension of water to 58 mN/m 

whilst LBG was only able to reduce interfacial tension to 64 mN/m. Some studies 

have shown that after removing protein from LBG and fenugreek the surface activity 
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was not affected (Garti and Reichman, 1994, Garti et al., 1997) while other studies 

have reported that purified LBG shows no surface activity (Gaonkar, 1991). More 

recent studies have shown that the removal of protein from fenugreek does reduce 

surface activity but does not completley remove it (Youssef et al., 2009). Wu et al. 

(2009) have concluded that whilst protein contaminants will provide some surface 

activity they are not the major factor responsible for surface activity and that the 

M:G ratio and fine structure was the major cause.   

0.04 wt% fenugreek lowers the surface tension of water whereas  0.04 wt% LBG has 

no effect (Figure 6.6). The LiCl/urea/water solution has a higher surface tension than 

that of water which is shown by the increase of almost 20 mN/m (Figure 6.7). Both 

LiCl and urea increase the surface tension of water (Aveyard, 1982). At high 

concentrations of 10M at 20oC urea increases the surface of water to 75 mN/m 

(Šišková et al., 1985). Surface tension values as high as 180 mN/m have been found 

for concentrated solution of LiCl (Liu et al., 2011). The surface tension is related to 

how much the salts structure water (Weissenborn and Pugh, 1996). LiCl is therefore 

the major influencer on the overall surface tension.  

In LiCl/urea/water fenugreek again reduces the surface tension (Figure 6.7). Over a 

much longer time period LBG does also reduce the surface tension slightly. It is 

possible that if the LBG in water had been left for a longer time it would also have 

reduced the surface tension of water to some degree as the surface tension was only 

measured for 1500 seconds in water but took 2000 seconds to start to decrease in 

LiCl//urea/water (Figure 6.7). The purification of the polysaccharides was only done 

using centrifugation to remove the bulk of the insoluble fraction so there is likely to 

still be some protein present in the samples, although protein content was not 

measured. These surface  tension measurements do show that fenugreek is a better 
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surfactant indicating it might have more of an amphiphilic characteristic than LBG. It 

would be useful for future work to assess the surface activity of xyloglucan as the 

main chain has been found to be partially hydrophobic  while the galactose moieties 

are hydrophilic (Umemura and Yuguchi, 2009).  

 

Figure 6.6 Tensiometer data showing the surface tension of 0.04 wt% galactomannans in water. 
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Figure 6.7 Tensiometer data showing the surface tension of 0.04 wt% galactomannans in 
LiCl/urea/water. 

 

β-1,4 glucans, β-mannans and β-xylans cause a much greater reduction in the 

freedom of movement of water molecules than α-galactans, α-mannans, α-xylans 

and α-glucans, which results in their surface minimisation and concomitant reduction 

in water solubility (Chaplin, 2003). Hydrophobic molecules prefer a less dense 

aqueous environment than hydrophilic molecules which prefer a denser aqueous 

environment. Low density water is therefore a good solvent for hydrophobic 

molecules as they need to order the water around them which tends to happen at 

low temperatures (Chaplin, 2000, Chaplin, 2001). Xylose units are more hydrophobic 

than galactose or glucose as they have one less OH group  (Picout et al., 2003). With 

the removal of some galactose side chains (>35%) using fungal β-galactosidase, 

concentrated xyloglucan solutions are able to gel at high temperature due to the 

aggregation of hydrophobic domains to minimise the hydrophobic surface area in 

contact with the bulk water (Brun-Graeppi et al., 2010). The mannan backbone of 
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fenugreek is sheilded by the galactose side chains resulting in the backbone being 

hydrophobic (Mathur, 2011, Dionísio and Grenha, 2012). 

Urea is able to disrupt hydrophobic interactions by disordering water structure (de 

Xammar Oro, 2001) although the influence of urea on hydrophobic interactions is 

controversial (Cho et al., 2006). Urea at a concentration of 7M was able to disrupt 

the hydrophobic domains of chitosan (Philippova et al., 2001). Urea may therefore be 

causing conformational change by both breaking hydrogen bonds and disrupting the 

hydrophobic domains of both fenugreek and xyloglucan which leads to the large 

increase in viscosity.  

Ivory nut mannan is an example of nearly pure mannan (Putaux, 2005). It is insoluble 

in water which is usually attributed to the strong mannan-mannan intermolecular 

associations. With increasing galactose content these interactions are weakened by 

the steric hindrance of the side units which increases aqueous solubility. LBG is able 

to form gels following a freeze-thaw treatment whereas the more highly substituted 

guar is not. Similarly to cellulose, mannan I is the native crystalline state which can be 

converted to mannan II after alkali treatment (Chanzy et al., 1979) although mannan 

II is also found in nature (Codium fragile) (Marchessault et al., 1990). In contrast with 

cellulose, native crystal forms of mannan have an anti-parallel chain packing of two-

fold helices (Chanzy et al., 1987). All galactomannans, regardless of their level of 

substitution have a broadly similar three-dimensional crystal structure with an anti-

parallel sheet stabilised by mannan-mannan hydrogen bonding (Song et al., 1989). 

Any spaces where a galactose molecule would otherwise be will be filled by a water 

molecule and thus a loss in crystallinity upon drying is found due to a collapse in the 

structure. Due to fenugreek’s higher galactose substitution it shows markedly less 

loss of crystallinity upon drying than LBG, tara or guar (Song et al., 1989).  
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13C CPMAS NMR is primarily used to identify order at the molecular level rather than 

crystalline structure (Gidley et al., 1991). Gidley et al. (1991) compared guar, LBG and 

konjac using 13C CPMAS NMR. They found that all the dry samples (8-10 wt% H2O) 

had broad spectral features with only limited resolution of signals (i.e. amorphous) 

and that hydration (30 wt%) led to narrower resonances and increased resolution. 

This hydration-induced conformational adjustment has also been seen for other 

polysaccharides such as agarose and kappa- and iota-carrageenan (Saitô et al., 1990). 

Ivory nut mannan, however, does have sharp resonances for the dry powder. These 

sharp signals indicate the crystalline structure of the mannan which has also been 

found with XRD (Atkins et al., 1988). Hydration broadened these features in CPMAS 

NMR and XRD which indicated a decrease in both crystalline and molecular order 

(Gidley et al., 1991).  

Samples of the treated and untreated polysaccharides were dialysed to remove the 

solvent and freeze dried. The 13C CPMAS NMR spectrum of the treated fenugreek 

sample has slightly more resolved peaks than those of the untreated sample (Figure 

6.8a) which indicates there was a small increase in molecular order. Whilst fenugreek 

is generally referred to having a M:G ratio of 1:1 (Mathur and Mathur, 2005), in this 

study it was found to be just higher at 1.11:1 (Table 6.2), which suggests 48% 

galactose substitution, so there may be enough free mannose to allow for very 

occasional hydrophobic ordering when the fenugreek contracts as the solvent is 

removed causing minor aggregates.  

The NMR spectra show a large difference between the treated and untreated LBG 

samples (Figure 6.8b). Although both samples were in pure aqueous solution before 

drying as all the salts should have been removed by dialysis the treated LBG sample 

appears to have much greater molecular order than the untreated sample as shown 
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by the sharper peaks. The spectrum seen in Figure 6.8b for the treated LBG is very 

similar to that of mannan II from Codium fragile (Marchessault et al., 1990). This 

could be interpreted as the galactose residues have been removed during treatment 

leaving behind almost pure mannan chains that are able to crystallise but this is not 

born out from the FTIR spectra in Figure 6.9b where there is almost no change 

meaning there has been very little, if any, chemical modification. As seen by the 

decrease in intrinsic viscosity the LBG aggregates are broken by the LiCl/urea/water 

solvent. When the solvent is replaced by water these smaller LBG molecules will once 

again aggregate due to the unsubstituted regions on the LBG mannan backbone 

which are hydrophobic (Picout et al., 2003).  However due to their smaller starting 

size they will be able to produce greater molecular order. β-glucans have been found 

to gel faster and produce gels with greater G’ values as the molecular weight 

decreases (Brummer et al., 2014). 
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Figure 6.8 
13

C CPMAS NMR spectra of polysaccharide samples that were either treated in 
LiCl/urea/water and dried (grey) or untreated (black), for (a) fenugreek (b) LBG (c) konjac and (d) 
xyloglucan. 
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Guar has a crystalline structure in a relative humidity (RH) range of 40-80% where the 

mannose backbone and galactose side chains form antiparallel planar sheets (Cheng 

et al., 2002). Cheng et al. (2002) found that under low osmotic pressure urea did 

break the hydrogen bonding structure of the native guar crystalline structure but at 

high osmotic pressure urea seemed to be able to hydrogen bond to the guar to form 

a new crystalline structure. It may also be possible therefore that the crystal 

structure of LBG, seen by NMR, was actually produced before dialysis and drying.  

The peak at 99-100 ppm can be assigned to the xylose C1 of xyloglucan (Whitney et 

al., 1995, Bootten et al., 2008) and does not shift for the treated samples (Figure 

6.8d). The chemical shift at 82.5 ppm is assigned to the C4 glucan chain (Ha et al., 

1997). The peak at 105.8 ppm for the untreated xyloglucan corresponds to the C1 

(1,4-Glc) region of the glucose backbone (Dick-Pérez et al., 2011) shifts to 103.8 ppm 

after treatment. A parallel can be drawn from starch as the C1 region of starch is 

known to shift from about 102 ppm to 105 ppm as it becomes more amorphous 

(Gidley and Bociek, 1988, Gidley, 1992). If the xyloglucan has become more 

crystalline then its conformation is expected to change somewhat.  

Early XRD studies of crystalline tamarind seed xyloglucan found that it had a flat, 

ribbon-like two-fold helical conformation for the main chain (Taylor and Atkins, 

1985). The main chain of the oligomer XXXG has been found to have a twisted 

conformation in aqueous solution (Picard et al., 2000). Using a model with 12 glucose 

residues as the main chain and 6 galactose and three xylose residues as side chains 

Umemura and Yuguchi (2005) found that in aqueous solution, xyloglucan had either a 

flat restricted or twisted backbone both had a tendency to contract which was 

caused by side chains binding to the main glucan chain through intra molecular 

hydrogen bonding.  
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Figure 6.9 FTIR spectra of polysaccharide samples that were either treated in LiCl/urea/water and 
dried (grey) or untreated (black), polysaccharides for (a) fenugreek  (b) LBG (c) konjac and (d) 
xyloglucan. 
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The addition of the LiCl/urea/water will break the intramolecular hydrogen bonding 

which will allow the cellulosic backbone to have a flatter, more extended 

conformation. As the salt is removed by dialysis the xyloglucan chains may aggregate 

in a more uniform way due to the extended conformation which is shown by the 

increase in molecular order from the NMR results.  

During dialysis konjac underwent gelation (Figure 6.10). Gelation of konjac can be 

achieved by alkali treatment, causing deacetylation (Penroj et al., 2005). This does 

not appear to be the cause of gelation for this system as the pH of the 

LiCl/urea/water solution was 6.3 and gelation occurred during the removal of the 

salts. Figure 6.11 shows acetyl carbon peaks for both the untreated and treated 

konjac samples at 22 ppm (Bootten et al., 2004). While the data is noisy the peaks 

appear to be the same size for both samples which indicates that the acetyl groups 

have not been removed during treatment. Gelation has been reported for non-

deacetylated konjacs at concentrations of 7 wt% or higher (Zhang et al., 2001). 

During dialysis the concentration is likely have decreased from its initial 1 wt% so it is 

extremely unlikely to have exceeded 7 wt% at any point. It has been reported that 

konjac solutions above 1 wt% can form gels at ambient temperature but this is over 

the time scale of months (Williams et al., 2000). 
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Figure 6.10 Image of konjac gelation after LiCl/urea/water treatment and subsequent dialysis. 

 

Figure 6.11 
13

C CPMAS NMR spectra of the acetyl region for LiCl/urea/water treated (grey) and 
untreated (black) konjac. 

Whilst the LiCl/urea/water solvent does not deacetylate konjac it does appear to 

negate the effect of the acetyl groups which may be due to ionic screening which 

thus enables it to gel over time (Winzor et al., 2004). Although konjac does produce 

order (gel) during dialysis the order is lost upon drying as there is little difference in 

the NMR spectra of the treated and untreated samples (Figure 6.8d).   
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FTIR is a useful method to identify any chemical or physical changes. Both fenugreek 

and LBG appear to undergo no chemical changes during treatment as the treated and 

untreated spectra are very similar (Figures 6.11a and 6.11b). There is an increase in 

absorption at 1024 cm-1 which is due to C-O stretching in the C-O-C linkage which 

may indicate an increase in order (Savitha Prashanth et al., 2006) as well as an 

increase at 1077 cm-1 which are complex vibrations that relate to the linkage 

between the galactose residue and the mannan main chain (Risica et al., 2005). 

Stretching peaks of the –CH3 groups at 1736 cm-1 are assigned to the aceto groups in 

konjac (Figure 6.9c) (Maeda et al., 1980). There is little difference between the 

treated and untreated sample again indicating the acetyl groups have not been 

removed. There is a slight increase in the absorption band at 1636 cm-1 which has 

previously identified as intra-molecular hydrogen bonds (Li et al., 2011). The 

characteristic absorption bands of mannose are between 810 and 880 cm-1 and do 

not change (Xiao et al., 2001). The peaks at 1080 and 1022 cm-1 are assigned to the 

stretching of C-O-C where there is a small decrease in intensity.  

FTIR results suggest that none of the polysaccharides undergo any chemical 

modification during treatment indicating that the differences seen between the 

solvents are as a result of conformational changes. Fenugreek has the largest 

molecular weight of the polysaccharides tested yet has a comparatively low viscosity. 

Due to its high level of galactose substitution it has a very compacted structure as the 

galactose side chains form intramolecular hydrogen bonds (Petkowicz et al., 1998, 

Wang and Somasundaran, 2007). When dissolved in the LiCl/urea/solvent these 

intramolecular hydrogen bonds are broken which allows the molecule to expand to a 

much larger conformation. The intermolecular associations between LBG molecules 

are broken resulting in a decrease in intrinsic viscosity. Whilst the number of 

intramolecular hydrogen bonds will be less for LBG due to the low number of 
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galactose side chains, their breakage will also result in a slight expansion which 

explains why there is no overall decrease in viscosity at semi-dilute and concentrated 

solution regimes. Konjac is a linear molecule with only a very low level of branching 

which may explain why there is only a slight increase in the viscosity in 

LiCl/urea/water. Xyloglucan is highly branched and thus has a compacted 

conformation. It behaves in a similar way to fenugreek in the LiCl/urea/water solvent 

where intramolecular hydrogen bonds are broken and hydrophobic regions are 

disrupted resulting in a large increase in viscosity.  

Whitney et al. (1998) used bacterial cellulose to investigate interactions between 

cellulose and mannans. Konjac was found to form highly heterogeneous structures 

with bacterial cellulose with the glucomannan cross-linking the cellulose ribbons in a 

similar way to that seen by xyloglucan (Carpita and Gibeaut, 1993). Whitney et al. 

(1998) also found that galactomannan interaction followed the order of galactose 

substitution, so that LBG with the lowest substitution had greater interaction that the 

fully substituted fenugreek indicating that the galactosyl substitution was a 

significant barrier to incorporation with cellulose fibrils. The unsubstituted mannan 

backbone is able to adopt the extended cellulose conformation so LBG was also able 

to form cross-links between the cellulose fibrils. 

Investigations on the adsorption onto the surface of talc revealed that the most 

important driving force for both LBG and guar was hydrogen bonding as urea, a 

hydrogen bond breaker, markedly reduced adsorption and that both polymers were 

found to adsorb flat on the solid to increase the number of OH groups that were in 

contact with the surface (Wang and Somasundaran, 2007). There was no effect of 

M:G ratio on adsorption. Wang and Somasundaran (2007) also found by computer 

modelling that in an aqueous environment both polymers had a helical structure but 
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guar had a more complicated structure than LBG because of the increase in galactose 

units along the mannose chain.  

Figure 6.12 shows confocal micrographs of microcrystalline cellulose (MCC) and 

fenugreek in water. Figure 6.12c shows that the fluorescently labelled fenugreek 

binds to the surface of MCC. The following confocal micrographs (Figures 6.14-6.19) 

will show the labelled polysaccharide so as to provide a clearer picture. There will 

also be galactomannan in solution that is not bound to the cellulose; however, the 

bound galactomannan will be much more concentrated meaning that it is more 

visible in the micrographs.  

 

Figure 6.12 Confocal micrographs of MCC and fenugreek in water where (a) is the optical light 
microscopy showing the cellulose (b) is the fluorescent image showing the fluorescently labelled 
polysaccharide and (c) is a combination of the two. 

LBG has previously been found to bind to cellulose (Mishima et al., 1998). In water 

both LBG and fenugreek (Figures 6.14a and 6.14b) appear to bind to the surface of 

the cellulose fibres (CF). With no quantitative values it is not possible to state if there 

is any difference between the two galactomannans. From the work of Whitney et al. 

(1998) it would be expected that fenugreek would bind to a much lesser degree than 

LBG but visually there appears to be little difference between the galactomannans. In 

the LiCl/urea/water solution LBG is still bound to the cellulose (Figure 6.13c) whereas 

there seems to be no interaction between the fenugreek and cellulose (Figure 6.13d). 

a b c 
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It should be noted, however, that the fluorescently labelled fenugreek was far less 

soluble in LiCl/urea/water which can be seen by the bright specs.  

 

Figure 6.13 Confocal micrographs showing galactomannans and CF in different solvents (a) LBG in 
water (b) fenugreek in water (c) LBG in LiCl/urea/water solution and (d) fenugreek in LiCl/urea/water 
solution. Scale bar is 50 μm. 

A comparative experiment was undertaken, now using MCC instead of CF and in 

water both LBG and fenugreek appear to bind to MCC (Figure 6.14). In 

LiCl/urea/water LBG appears to bind to a lesser extent to MCC than it did to CF (c.f. 

Figures 6.14c and 6.15c). This may be as a result of MCC’s higher crystallinity. 

Fenugreek does not bind to MCC at all in LiCl/urea/water (Figure 6.14d).  

a 

d c 

b 
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Figure 6.14 Confocal micrographs showing galactomannans and MCC in different solvents (a) LBG in 
water (b) fenugreek in water (c) LBG in LiCl/urea/water solution and (d) fenugreek in LiCl/urea/water 
solution. 

Now investigating the interaction between LBG and fenugreek with physically 

processed ball milled (BM) MCC LBG and fenugreek both appear to bind in 

LiCl/urea/water (Figure 6.15). The arrows point to a part of each image where there 

is no cellulose. For the LBG sample this area is dark as the majority of the LBG has 

bound to the cellulose whereas in the fenugreek sample there is still a significant 

amount of polymer that is not bound.  

The confocal micrographs of galactomannan and cellulose suggest that by decreasing 

the crystallinity of cellulose the binding of galactomannans increase. de Lima and 

Buckeridge (2001) found the opposite trend where MCC was able to bind three times 

a 

c d 

b 
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as much xyloglucan as cellulose fibres which the authors accounted for by the 

increase in surface area.  

 

Figure 6.15 Confocal micrographs of BM MCC in LiCl/urea/water with (a) LBG and (b) fenugreek. The 
light micrographs of the same image are shown on the right. The arrows point to a part of each image 
where there is no cellulose. 

In this study, in water, xyloglucan does not bind to either MCC (Figure 6.16) or CF 

(Figure 6.17). This is likely due to the absence of fucose side chains which have been 

shown to aid interaction due to the flatter conformation on the main chain (Levy et 

al., 1991, Hayashi et al., 1994). Xyloglucan has a tightly bound conformation in water 

but in LiCl/urea/water the side chains unfold as intramolecular hydrogen bonds are 

broken. This exposes the glucose backbone and enables the xyloglucan to bind to 

cellulose (Figures 6.17 and 6.18, bottom row of micrographs). de Lima and 
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Buckeridge (2001) found there was a slightly higher interaction between cellulose 

and xyloglucan at a pH of 6.0 (between the range of pH 2-8) whilst temperature had 

no effect between the range of 5-60oC. The pH of the LiCl/urea/water solvent is 6.3 

so the change in pH may also increase the level of binding of xyloglucan but this is 

unlikely to be the sole reason, as the increase found by de Lima and Buckeridge 

(2001) was small. 

 

Figure 6.16 Confocal micrographs showing xyloglucan with MCC in water (top) or in LiCl/urea/water 
(bottom). 

 
 



214 
  

 

Figure 6.17 Confocal micrographs showing xyloglucan with CF in water (top) and LiCl/urea/water 
(bottom). 

Due to problems drying the fluorescently labelled konjac there was a large amount 

that remained undissolved (the very bright specs on each image) (Figure 6.18). It is 

therefore difficult to be completely confident with the images. However, the confocal 

micrographs appear to suggest that konjac does not bind to cellulose in either water 

of LiCl/urea/water. As there are minimal solvent effects for konjac (Figure 6.2), it 

might be expected that it would behave in a similar manner in both solvents. The 

acetate groups that provide konjac with its water solubility may also inhibit 

interaction with cellulose. It would be interesting to see if konjac would bind to 

cellulose during dialysis in a similar way to its gel formation shown in Figure 6.10 

when the acetate groups are screened.  
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Figure 6.18 Confocal micrographs of CF with konjac in water (top) and LiCl/urea/water (bottom). 

The confocal micrographs only provide a qualitative understanding of the polymer-

cellulose binding so it would be useful to quantify this in future work. This could be 

achieved using the method of Mishima et al. (1998) where they packed columns with 

cellulose and solutions of each polysaccharide were then applied to the column and 

the amount of carbohydrate eluted was measured calorimetrically.    

 

6.4 Conclusion 

LiCl/urea/water appears to be able to break both intra and intermolecular hydrogen 

bonds and disrupts hydrophobic domains. This may result in the conformational 

change from tightly bound and compact in water to a more extended conformation 
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in LiCl/urea/water for fenugreek and xyloglucan which are both highly branched. LBG 

aggregates are also broken lowering its intrinsic viscosity. At high concentrations the 

expansion of the smaller molecules results in no overall change in viscosity. Konjac, 

which is only minimally branched, does not undergo any significant conformational 

change from water to LiCl/urea/water.  

Both the fluorescently labelled LBG and fenugreek bind to cellulose in water. The 

conformational change of fenugreek in LiCl/urea/water seems to inhibit binding to 

cellulose whereas xyloglucan does bind to cellulose in LiCl/urea/water but does not 

in water. The results of konjac binding are inconclusive but suggest that it does not 

bind to cellulose in either water or LiCl/urea/water. It is, however, unclear as to what 

affect the fluorescent labelling may have on the properties of these polysaccharides 

so further work needs to be done using alternative fluorescent markers to confirm 

the results. 

LiCl/urea/water is a useful solvent for hemicelluloses as it disrupts many of the 

intramolecular associations. Branched polysaccharides therefore may have a larger 

hydrodynamic volume resulting in a higher viscosity when compared to water whilst 

disaggregation will result in a reduction in viscosity. 
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Chapter 7. Conclusions and 
future work 
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7.1 Conclusions and future work 

Cellulose is the most abundant natural polymer on earth but due to its insolubility in 

water and most common solvents has seen little use in the construction of advanced 

materials in its native state (Klemm et al., 2005); however, this is rapidly changing 

with the increasing interest in nano-cellulose and renewable matrix polymers 

(Eichhorn et al., 2010, Habibi et al., 2010, Moon et al., 2011, Klemm et al., 2011). This 

work has focussed on gaining a better understanding of the affects of different 

mechanical and chemical pre-treatments on cellulose and other plant 

polysaccharides.  

Ball milling is a useful method of mechanical disrupting the crystalline structure of 

cellulose (Paes et al., 2010, Avolio et al., 2012, Abbaszadeh et al., 2014). The main 

findings from the first section of this work are that: 

 Ball milling results in the loss of crystalline structure and reduction in the  

viscosity average degree of polymerisation (DP) and degradation 

temperature 

 In excess water, the presence of seed crystals results in partial 

recrystallisation back to type I cellulose, while completely amorphous 

cellulose will recrystallise to a type II crystal structure 

 The degradation temperature is related to DP and to a lesser extent 

crystallinity 

 Unlike traditional calorimetric methods, Flash differential scanning 

calorimetry (DSC) is able to measure a glass transition (Tg) for amorphous 

cellulose 

 Hot pressing is unable to disrupt the particulate structure of amorphous 

cellulose which is likely to be due to recrystallisation before it is able to flow 
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To further investigate ways of utilising cellulose to create structures, freeze dried 

foams, reinforced with cellulose were compared. Two galactomannans were chosen; 

locust bean gum (LBG) which is able to undergo cryogelation (Patmore et al., 2003, 

Goff et al., 1999) and fenugreek which does not form a cryogel due to its fully 

substituted backbone. Results show that: 

 Molecular weight is more important than cryogelation in the strength and 

stiffness of galactomannan foams 

 A large amount of cellulose (up to six times as much cellulose as 

galactomannan matrix) was able to be incorporated into the galactomannan 

foams which added greater reinforcement by increasing the strength and 

stiffness of the foams 

 The level of galactomannan/cellulose interaction is related to cellulose 

crystallinity and surface roughness 

 Increased interaction results in stronger foams 

 Microfibrillated cellulose (MFC) provided the greatest reinforcement due to 

its larger surface area and fibrillated structure 

 Extrusion is able to fibrillate cellulose  

Further work is needed to assess the most suitable parameters, such as; screw speed 

and configuration, barrel length, water flow rate and temperature, but extrusion of 

cellulose composites will be a more cost effective and quicker fabrication method 

than freeze drying. It would be of great interest in the future to see if galactomannan 

foams could be produced using extrusion and co-processed with cellulose as it is 
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being fibrillated which should increase the level of interaction and therefore have 

superior mechanical properties. In future work it would also be useful to assess the 

reinforcement properties of cellulose nanowhiskers in galactomannan foams. 

A further method of utilising cellulose is through the use of a swelling treatment. 

Work by Tatarova et al. (2010) has shown that a LiCl/urea/water solution is able to 

swell regenerated cellulose to the same extent as traditional alkali treatments but it 

has the advantage of being recyclable. In this work we have looked at a range of 

native celluloses in LiCl/urea/water which have shown that: 

 There is a reduction in crystallinity 

 Cellulose is ‘activated’ during the initial heat with LiCl/urea/water 

 The ability of amorphous cellulose polymer chains, located on the surface of 

the fibres, to change conformation is likely to be limited by their DP 

 At ambient temperature the cellulose dispersions formed a weak gel-like 

network  

 This structure is melted out at 60oC due to a change in cellulose 

conformation from predominantly hydrophilic to hydrophobic surfaces 

 Starch granules are eroded from the outside rather than swollen, as seen 

with ionic liquids, which allows for complete dissolution 

It would be useful to explore further the changes in cellulose conformation using 

molecular modelling. 

Straw, which contains lignin and hemicelluloses as well as cellulose, was shown to 

swell in LiCl/urea/water which may open up new ways of structuring plant cell wall 

material. To produce these structures it is important to understand what effect the 

solvent has on different hemicelluloses.  
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In this work, four hemicelluloses were chosen; LBG, fenugreek, konjac and 

xyloglucan. Fenugreek and xyloglucan, which are highly branched have a tightly 

bound conformation in water due to the high number of intramolecular associations, 

however, in LiCl/urea/water many of the inter and intramolecular associations may 

have been broken resulting in their relative viscosity increasing compared to their 

viscosity in water. Konjac which is predominantly linear with little branching did not 

change in conformation and so there was little change in viscosity. LBG has large 

unsubstituted regions of its backbone which results in the mannan regions 

aggregating, often referred to as hyperentanglement (Doyle et al., 2009). In 

LiCl/urea/water these aggregates are broken causing a decrease in viscosity 

(Goycoolea et al., 1995). When the LBG was subsequently dried the aggregates were 

able to reform resulting in an increase in molecular order. This work shows that: 

 LiCl/urea/water breaks many of the inter and intramolecular associations of 

the hemicelluloses used in this work 

 In LiCl/urea/water intramolecular associations may be broken resulting in 

conformational change and an increase in viscosity for branched polymers 

 LiCl/urea/water may also causes disaggregation due to the breakage of 

intermolecular associations which leads to a decrease in viscosity for 

aggregated polymers 

It would be useful in future work to measure the radius of gyration of the 

polysaccharides in the different solvent environments to confirm that there is a 

conformational change.  

Confocal microscopy was used to identify any interaction between the 

hemicelluloses (which were fluorescently labelled) and cellulose. Both LBG and 

fenugreek appeared to bind to the surface of cellulose fibrils in water. It is, however, 
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unclear as to what affect the fluorescent labelling may have on the properties of 

these polysaccharides. By changing the conformation of fenugreek using 

LiCl/urea/water it is no longer able to bind to cellulose fibres. Xyloglucan on the 

other hand is unable to bind to cellulose in water, but by changing its conformation it 

will bind to the surface of cellulose fibrils. Due to problems with the drying process of 

fluorescently labelled konjac the results are less clear, although it appears that in 

both water and LiCl/urea/water konjac does not interact with cellulose, however, as 

konjac has been shown to gel during the removal of the solvent, it would be useful to 

investigate whether it will interact with cellulose as it gels. 

It would also be useful to investigate other branched polymers such as ‘hairy’ pectin 

to further show that the conformational changes shown above are due to the 

breakage of intramolecular associations. This work opens up the possibility of 

increasing the interaction between certain polymers and cellulose. It would also be 

interesting to see if these interactions were carried over into the dry state which 

would provide a new route to designing novel materials.  

This work has attempted to show that by using chemical or mechanical treatments 

there is huge potential in utilising native cellulose to create composite structures that 

are renewable and biodegradable but also could have properties that are as good if 

not better than traditional oil based materials.   
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