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Abstract 

This thesis presents a series of experiments on the evolutionary ecology of the 

reproduction, behaviour, chemical and molecular characteristics of bethylid wasps in 

the genus Goniozus. Part One investigates host quality by varying host age after 

paralysis. The quality of paralyzed hosts declines with time since paralysis negatively 

influences life-history characteristics of Goniozus nephantidis. Assessment of host 

metabolomic profiles show which chemicals change as hosts age. Part Two 

investigates the effect of kin recognition on contest behaviour among adult females of 

GoniozU5 legneri. Competitive behaviour was thus used to study the basis of kin 

recognition mechanisms. Wasps that are genetic kin and wasps that are reared on the 

same host behave less aggressively towards each other than do non-kin and non­

hostmates. It is likely that cuticular hydrocarbon profiles are used by wasps in kin 

recognition. The environmental and genetic influences on wasp cuticular hydrocarbon 

profiles were explored: chemical composition differed according to both wasp species 

and host species. Part Three investigates genetic characteristics of Goniozus legneri 

populations on kin recognition behaviour. A molecular genetic marker system was 

developed for Goniozus species. Microsatellites showed clear polymorphism in six 

primer pairs and are likely to be a valuable tool in the future for closely related 

species. One of these markers was utilized to assess sex allocation at oviposition, thus 

avoiding potentially biasing influences of developmental mortality. Developmental 

mortality does not differ between the sexes but mortality increased sex ratio variance ., 
across offspring groups and can obscure relationships between sexual composition and 

group size that are present at oviposition. A tendency for Goniozu5 legneri to lay male 

and female eggs in spatial separation was also observed. Although the focus of these 

studies is on fundamental aspects of bethylid biology, advances in all of these areas 

have potential to enhance the deployment of these parasitoids in biological pest 

control. 

Impact statement 

The research reported here could enhance the economy and agricultural research in 

various aspects because GoniOZU5 is used in various biological programmes as well as 

in evolutionary ecology research. Thus exploring different behaviours, chemical and 

molecular aspects could further boost scientific knowledge and applied biology 
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potential. For instance the use of Nuclear Magnetic Resonance could help to save time 

and costs associated with using different tests to assess the nutritional properties of 

hosts used in mass rearing programmes. This methodology can be applied to many 

different host-parasitoid associations. The development of molecular markers and 

assessment of cuticular hydrocarbon profiles for Goniozus has the potential to 

facilitate insect identification (there are well over 100 species belonging to this genus) 

especially when species identification on the basis of morphology may require detailed 

taxonomic training and the number of qualified museum professions appears to be 

dwindling. Investigations on factors (e.g. host size, host age, female size) that affect 

clutch size decisions can form the basis for useful advice for biocontrol practitioners on 

how to increase the reproductive potential of parasitoids to control pests. 
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Chapter 1 : General introduction 

1.1 The aim of biological control 

The practice of human agriculture is thought to have started around 10,000 years ago 

(Tudge 1998, Hunter 2007). It is to be expected that agriculturalists will strive to 

improve both quality and production. In the present day, demand for enhanced food 

production is as topical as ever due to human population growth (Zeigler & Mohanty 

2010, Ronald 2011). There has been a 'Green Revolution', which started in the late 

1960s, to increase agricultural production around the World through adopting new 

strategies, such as the development of high-yielding varieties of cereal grains (Gaud 

1968); it is though that there is probably now need for a second phase to this 

revolution (Zeigler & Mohanty 2010, Lucas 2011). Global food security involved both 

improved pruduction and improved protection of agricultural products (Ronald 2011, 

Benton et al. 2011, Gregory & George 2011). High proportions of produce may be lost 

to agricultural pest, both pre- and post harvest. Strategies of pest control have thus 

attracted a great deal of attention. Chemical control for pests might achieve higher 

yields but a major problem is that their toxicity has a negative impact on both humans 

as well as the environment in general (Pimentel et al. 1980). There are further 

reasons for finding alternative methods of chemical pesticides. For instance if 

biodiversity in agroecosystems declines, many natural enemies as well as pest species 

will be killed. This can lead to a resurgence of pest problems in the absence of natural 

enemies. Secondly the poisonous residues on food raise a major concern for food 

safety. Finally applying of powerful chemical agents might cause the appearance of 

resistant strains making pesticide application a poor long term solution (Hajek 2004). 

Due to problems associated with chemical control, emphasis has been placed on 

alternative such as biological control. Biological control is the deliberate use of living 

organisms, termed natural enemies, to reduce the undesirable effects of pests and 

disease through regulating their population densities (Debach & Rosen 1991, Eilenberg 

et al. 2001). Natural enemies include parasitoids, predators and pathogens. The latter 

category includes micro-organisms such as fungi, nematodes, protozoa, bacteria and 

viruses (Lacey et al. 2001, Hajek 2004). Parasitoid species such as Bracon hebetor 

and Cotesia g/omerata while predators such as Coccinella septeumpunctata and 

Rodolia cardinalis have been frequently used. These natural enemies have the 
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potential to maintain the pest population below the economic damage threshold within 

the released environment. 

The use of biological control began to attain wide attention when introduction of the 

vedalia beetle, Rodo/ia cardinalis, against cottony cushion scale (Icerya purchase) 

infestations saved the Californian citrus industry in the late 19th Centuary (Caltagirone 

and Doutt 1989). In general biological control can be considered a relatively cheap 

method in which the benefits far outweigh the costs when it is successful with 

potentially minimal effects on the environment and little or no health risk to humans. 

1.1.1 Most selected organisms 

Hymenoptera parasitoids appear to be the most effective natural enemies and more 

than half successful biological control programmes conducted by these organisms 

(Greathead 1986, Murphy & Moore 1990, Debach & Rosen 1991, Wajnberg & Hassan 

1994, Mason & Huber 2001, Jervis 2005). Coccinellid beetles (order Coleoptera) are 

the most successful predators and have been introduced numerous times as a 

biological control agents to control arthropod pests in a range of agroecosystems 

(Caltagirone & Doutt 1989, Grill et al. 1997). 

Regarding the pathogenic groups, the bacteria Bacillus thuringiensis is considered not 

only the most successful pathogen but also the most sold biopesticide (Kharbade et al. 

1998, Hansen & Salamitou 2000, Lacey et al. 2001). Other microbial natural enemies 

such as fungus groups (espeCially, Beauvaria bassiana and Metarhizium anisop/iae) 

have been used extensively due to their ability to penetrate the target insect's 

integument (lhara et al. 2003, Akbar et al. 2004, Gindin et al. 2006). 

1.1.2 Risks and requirements in biocontrol agents 

Ecologists interested in the effect of biological control and its impact on the 

environment have shown that using this approach is not without its problems, 

especially during the implementation of classical biocontrol. In classical biological 

control, foreign natural enemies are deliberately imported from one region to another 

to control previously introduced, or native, pests. Indeed, the introduction of exotic 

natural enemies in order to control a specific pest species might have a negative 

outcome on the non-target species (Stiling & Simberloff 1999, Follett & Duan 2000) 

which in turn have intricate consequences on the ecosystem and food web linkages 
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(Simberloff 1992, McEvoy 1996, Thomas & Willis 1998, Louda et al. 2003, Memmott 

2000, Henneman & Memmott 2001, McCoy & Frank 2010). 

In order to evaluate the jeopardy associated with biocontrol programmes a series of 

tests was proposed to give an insight of how to establish a concrete strategy to make 

it more specific as well as safer (Frank 1998, McEvoy & Coombs 1999, Louda et al. 

2003, van Lenteren et al. 2003). Thus, there are certain basic criteria that should be 

available in the organism that will be used as a biocontrol agent, such as short 

development life cycle in accordance to the pest and their efficiency in reproduction 

(Huffaker & Messenger 1976, Debach & Rosen 1991). Furthermore, when natural 

enemies selected should take in consideration how feasible it is to mass rear them in 

the laboratory in order to be ready for release into the field when necessary. However, 

to achieve satisfactory results, it is always recommended to execute a sequence of 

investigation before their release in to the novel ecosystem (Waage 2001, Arnett & 

Louda 2002, Kidd & Jervis 2005). 

On the other hand, eventually if the natural enemies passed successfully through the 

tests another question will arise whether to release a single or multiple species to 

control the herbivorous pests (Smith 1929, Watt 1965, Myers et al. 1989, Denoth et 

al. 2002, Batchelor et al. 2005). Still it is not completely clear if expanding in the 

natural enemies' biodiversity will lead to stengthen or weakness in the method. 

Several researchers have compared single and multiple species releases (Denoth et al. 

2002, Matsumoto et al. 2003, Snyder et al. 2008). The supporters of single release 

justify their approach by stating that releasing multiple species will increase their 

interference and decrease their effectiveness (Myers et al. 1989, Ferguson & Stiling 

1996, Wen & Brower 1995, Rosenheim et al. 1999, Snyder & Ives 2001, Denoth et al. 

2002, Pedersen & Mills 2004, Batchelor et al. 2005, Batchelor et al. 2006). 

Consequently the combined effect of multiple species might negatively affect the 

biological control process rather than improving it. 

Those in favour of multiple releases defend their attitude on the basis that utilising a 

range of enemy species promote for each other which enriches the community 

stability when they operate additively with each other to suppress herbivorous 

densities and tend to attack different life stage of the host (Kindlmann & Ruzicka 

1992, Bogran et al. 2002, Wilby et al. 2005, Snyder et al. 2006). However, either type 
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of release might not be sufficient alone to suppress and regulate the pest's population 

below the economic threshold level. Thus, natural enemy release might usefully be 

combined with various pest management practices such as cultural and chemical 

control in a compatible manner. This offers long term solutions and helps to achieve 

the best management as a part of integrated pest management (IPM) (Hendricks 

1995, Miranda et al. 2005, Subaharan & Ravindran 2009). Further, improving the 

success rate of biological control might be achieved via an understanding of the 

evolutionary ecology of life-history and behavioural characteristics such as, contest 

behaviour, clutch size, sex ratio, effects of host quality and their consequences for 

population biology. 

1.2 Parasitoids and evolutionary studies 

Parasitoids occur in several different insect orders the Hymenoptera, Lepidoptera, 

Diptera and Coleoptera (Clausen 1940). However, hymenopteran parasitoids are by 

far the most numerically dominant group, with more than 65,000 species described 

(Gordh et al. 1999). 

Parasitoid wasps produce offspring by depositing their eggs on or in suitable host 

organisms. Female parasitoids usually paralyze the host prior to parasitism by 

injecting venom via the ovipositor in order to restrict the hosts' movement temporarily 

or permanently. In case of temporary paralysis (koinobiosis), the host continues to 

grow and feed so that the offspring's fitness (such as the adult size, longevity, 

searching ability and egg supplies) will be reliant on the host's growth. While with 

permanent paralysis (idiobiosis), the progeny must develop using the resource present 

at the time of attack (Askew & Shaw 1986, Godfray 1994). These parasitoids 

collectively are termed koinobiont and idiobiont respectively. 

Ectoparasitoids lay eggs onto hosts; because their development is external and they 

commonly live in protected places. Endoparasitoids develop inside the hosts and the 

host may be found in more exposed places. Both kinds of development can be either 

'solitary', when only one larva emerges from each host, or 'gregarious', when more 

than one offspring develop from a single host. Nevertheless, living alone or in groups 

the larvae would feed on the host to complete development and kill the host at the 

end. 
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Solitary parasitoids often display aggressive larval behaviour e.g. through the use of 

mandibles and high level of competition among progeny when more than one egg is 

laid into a host. Consequently only one larva can be successful and manage to survive 

to adulthood (Salt 1961, Godfray 1987, Marris & Casperd 1996, Mock & Parker 1997). 

In gregarious parasitoids within-brood competition is less intense and many 

individuals can develop successfully on the same host (Godfray 1994, Quicke 1997, 

Mayhew & Hardy 1998). 

In most parasitoid species the number of the offspring developing in or on the host is 

under the mother control during the oviposition but later lethal contest might interfere 

between siblings during their development stages and their number might reduce 

significantly. There are also other sources of development mortality that may operate 

such as encapsulation by hosts, infanticide by adult parasitoids or death due to 

intrinsic genetiC defects (Godfray 1994, Netting and Hunter 2000, Kapranas et al. 

2011). An interesting case of limited maternal control occurs in polyembryonic wasps 

when the mother deposit a single egg or two eggs but later their numbers will increase 

clonally to several, hundreds or even thousands of genetically identical individuals 

(Doutt 1947, Ode & Strand 1995). 

In accordance to the mode of egg production, parasitoids can be claSSified as: (1) Pro­

ovigenic, in which the life-time complement of eggs is matured ahead of adult 

emergence (jervis & Kidd 1986, Jervis & Copland 1996). The ecological condition 

behind this incidence such as the influence of the egg and adult size in relation to total 

resource allocation and travel costs has been tentatively Investigated by mathematical 

modelling (Ellers & Jervis 2004). (2) Synovigenic, when females have few ripe eggs 

upon emergence and can mature further eggs and maintain their egg supply during 

the life span. The majority of parasitoid species are synovigenic (Jervis et al. 2001, 

Ellers et al. 2000). 

Parasitoids can occur in different trophic levels of food chains with respect to the kind 

of host they attack. Primary parasitoids usually attack free-living hosts while 

secondary and tertiary parasitoids can hyper-parasitize both primary and secondary 

parasitoids subsequently (Godfray 1994, Harvey et al. 2009). In addition, facultative 

hyper-parasitoids can be distinguished from obligate hyper-parasitoids by their 

optional development on another parasitoid or on the free-living host, while the 
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obligate can develop only as hyper-parasitoids (Gordh 1981, SuI/ivan 1987, Perez­

Lachaud et al. 2004). 

With respect to host development, the immature stages (e.g. egg, larva, pupa) are 

usually more sensitive to attack by parasitoids, although a combination of more than 

one stage may be utilised. However, rarely some species might attack the adult stage 

(Clausen et al. 1927, Espinosa et al. 2009). Similar to developing on different host 

stages, some parasitoids can develop on different host species and called polyphagus 

parasitoids, while oligophagus parasitoids can develop on limited number of host 

species. Further, monophagus parasitoid can attack a single specific host species only. 

For all the aforementioned diversity in their behaviour, parasitoids are often regarded 

as good 'model' organisms in evolutionary studies. Thus, there has been enormous 

interest in examining the fitness consequences associated with variations in clutch size 

and sex ratio strategies in parasitoids. 

1.2.1 Clutch size 

Decades of research on clutch size in animals have provided valuable insights into 

both behavioural ecology and life-history strategies through testing hypotheses (Lack 

1947, Godfray et al. 1991, Hardy et al. 1992, Wilson & Lessel/s 1994, Renison et al. 

2002). 

The pioneering studies of Lack (1947) on birds opened wide scope for further 

investigation on the evolution of clutch size. The well known concept of the Lack clutch 

size assumes that a mother depositing a clutch of eggs should maximise the fitness of 

each group of young. Also the resource quality will affect the clutch decision; as a 

result smaller clutches are predicted for lower quality resources. Consequently this 

hypothesis was later applied to other taxa such as parasitoids (Charnov & Skinner 

1985, Parker & Begon 1986, Ives 1989, Godfray et al. 1991, Godfray 1994). 

When there is a trade-off between current and future reproductive success, mothers 

will be selected to depOsit smaller clutches than the Lack clutch size. For instance, 

when hosts were plentiful and there is a cost in time to depositing eggs, it is 

advantageous for the mother to spend less time producing each clutch and then seeks 

another host. As a result fewer eggs will be produced on each host (Charnov & 
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Skinner 1984, Skinner 1985). Reproduction of the parasitoids may also be constrained 

by the availability of eggs (Waage & Godfray 1985, Jervis 2005). 

Cluch size decisions are important to all animals, because the optimal number of eggs 

laid by the mother is closely associated with the progenies quality (Smith & Fretwell 

1974, Wilson 1994, Godfray 1994). Therefore, often when the number of eggs in a 

clutch is increased the individual's fitness (in terms of survivorship, body size and 

fecundity) will decrease, which indicates that better-provisioned offspring are fitter 

(Hardy et al. 1992, Stearns 1992, Mangel et al. 1994, Zaviezo & Mills 2000). 

A positive relationship between fitness and body size is often observed among insect 

parasitoids (Hardy et al. 1992, Godfray 1994, Vet et al. 1994, West et al. 1996, Ellers 

et al. 1998, Rivero & West 2002) and in turn body size might be used as a correlates 

to components of fecundity. 

1.2.2 Sex ratio 

The evolution of sex allocation is one of the most prolific domains of behavioural 

ecology research and investigates various factors that might influence an organism's 

reproductive decisions with respect to producing male and female progeny (Charnov 

1982, Hardy 2002, West 2009). Hymenopteran parasitoids have provided excellent 

opportunities to examine basic structure of sex determination due to (haplodiploid 

arrhenotoky) in which (in the majority of species) female offspring develop from 

fertilized (diploid) eggs inheriting both paternal and maternal genetic material, while 

males develop from unfertilized (haploid) eggs receiving only the maternal 

chromosomes (Flanders 1965, Crozier 1977, Cook 1993a, Ode & Hardy 2008, Mateo 

Leach et al. 2009). In view of the fact that mated female parasitoids store sperm in a 

spermatheca, as a result the decision to determine the sexes of their progeny to some 

extent will be mediated via opening or closing of the spermathecal valve to produce 

female or male offspring (e.g. Flanders 1965, Suzuki et al. 1984, Godfray 1994, Ode & 

Rosenheim 1998). 

Within haplodiploid arrhenotokous species, the optimal investment into female and 

male offspring is a sophisticated problem due to the occurrence of complex life 

histories of some species (Cook & Crozier 1995, Butcher et al. 2000b, Ode & Hunter 

2002, West 2009). Mating systems may be constrained by different genetic 
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mechanisms such as the presence of complementary sex determination (CSD) 

(Whiting 1939, Cook 1993a, Cook & Crozier 1995, Butcher et al. 2000a). Under CSD 

the sex of offspring is determined by allelic segregation either in single polymorphic 

locus termed (sICSD) or in multiple loci (mICSD) (Whiting 1943, Crozier 1977, Cook 

1993a, Ode & Hardy 2008, Zhou et al. 2006). 

As a result, diploid individuals that are heterozygous at one or more loci would 

produce female progeny, while diploid fertilized and haploid unfertilized individual 

would develop into males if they are homozygous or hemizygous at all of the sex 

determining loci. In addition, diploid male embryos might not survive development or 

reproduce as adults; adult diploid males posses diploid sperm would generate triploid 

progeny, which have both low viability and fitness (Whiting 1961, Petters & Mettus 

1980, Naito & Suzuki 1991, Ross et al. 1993, Cook & Crozier 1995, Liebert et al. 2005, 

de Boer et al. 2007). 

Due to the fact that diplOid males will occur only between matched mating (when the 

male and female share the same sex alleles) inbreeding for many generations can 

increase the chances of generating diploid males (Adams et al. 1977, van Wilgenburg 

et al. 2006, Heimpel & de Boer 2008, Ode & Hardy 2008). However, this is not the 

case for all parasitoid speCies, for instance continuously maintaining inbred lines of 

Goniozus nephantidis in laboratory for many generations did not establish any sign of 

diploid males or altered mortality which would indicate CSD (Cook 1993b)i many 

hymenopteran species utilize different sex determination systems which appear to 

have replaced CSD (Cook 1993a). Therefore, diploid detection in population can be 

quite straightforward though comparing brood size and sex allocation to both sexes 

between inbreeds and non-inbreeds (Beukeboom et al. 2000). 

VariOUS hypotheses concerning what might influence sex ratiOS have been explored 

since Darwin's time. In fact, the first well known and formal contribution in to sex 

allocation theory was by Fisher in which he assumed that a balanced sex investment 

ratio should evolve in any panmictic population regardless the cost associated with the 

production of each sex (Fisher 1930). A key further advance was developed by 

Hamilton (1967) when he linked sex allocation optima to variation within a mating 

system and explained the divergence from equal investment ratios often seen in some 

(mainly) invertebrate systems. Hamilton's theory predicts female biased sex ratios 

under moderate or high degrees of local mating competition (LMC), due to the fact 
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that such bias reduces competition among related males as well as increasing the 

availability of mates for sons (Ode et al. 1998). As in patches with surplus sons, the 

male competition for access to their sisters might escalate to fatal injuries during the 

combat (Murray 1987, Abe et al. 2003). Further, fragmented habitats would promote 

LMC; for example, high dispersal of host patches may result in low foundress numbers 

which in turn would promote low probability of finding non-siblings. On the other 

hand, under LMC, sisters that emerge in patches lacking brothers have zero fitness 

because they are constrained to producing only sons. Thus, mothers are predicted to 

reduce the bias in their progeny sex ratios (approaching 1: 1 ratio) when there are 

more mothers (foundresses) producing offspring in the patch (Hamilton 1967, Taylor 

1981). 

Another key sex allocation theory predicts the response to host quality (Charnov et aJ. 

1981). This model can be applied to many aspects of the host quality, such as age, 

size, nutritional status and host species. Thus, in accordance to hosts' quality and the 

rate of fitness returns by each sex, on low quality resource, the male would bring 

more fitness to the mother than the female while on high quality hosts daughters 

more likely to increase the rate of fitness return the mother (Charnov 1982). 

Furthermore, the correlation between host size and sex allocation has been 

demonstrated in many parasitoid species (King 1993, Godfray 1994, Napoleon & King 

1999, West 2009). Host age prior to parasitoid attack has also been shown to have a 

profound impact on sex allocation: a high proportion of females were deposited by the 

mother on younger hosts (King 1990, Ode & Strand 1995). 

Despite the above mentioned theories, there are many genetic distorters that might 

shift sex ratio in hymenopteran parasitoids towards the transmitted sex in favour of 

females (Skinner 1982, Rousset et al. 1992, Stouthamer & Kazmer 1994, Ode & Hardy 

2008 since the maternal genetic element would probably pass on to subsequent 

generation through egg cytoplasm (Bull 1983, Hurst 1993). 

Thus, the most apparent mechanism for over production of female progenies is usually 

associated with maternity inherited microbes transmitted via cytoplasm and target 

male offspring (Hurst 1991, Stouthamer & Kazmer 1994, Hurst et al. 2003). Further, 

many selected male killing organims such as Wolbachia and Arsenophonus nasoniae 

would function mostly during embryonic stages and infected foundress recording high 

degree of differential mortality among the progeny (Huger et al. 1985, Hurst 1991, 
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Stouthamer et al. 1993, Balas et al. 1996, Groenenboom & Hogeweg 2002, 

Engelstadter & Hurst 2007). 

The Wolbachia bacteria might cause another kind of distortion while present in the 

ovaries through sterile crosses termed as cytoplasmic incompatability (Breeuwer et al. 

1992, Stouthamer et al. 1993, Stouthamer et al. 1999). Thus, this would not only 

detect when mating process occurs between the uninfected eggs and infected sperms 

but also when crosses occur between both infected sexes harbouring different 

Wolbachia strains (Hoffman & Ture"i 1997, Werren & O'Neill 1997, Dedeine et al. 

2001). 

Alternatively, the inheritance of parental genetic material through sperm in few 

parasitoids might deviate the sex ratio or resource allocation towards male progenies 

only (e.g. Hunter et al. 1993, Stouthamer et al. 2001, Werren & Stouthamer 2003, 

Tram et al. 2006). Thus, diploid females would alter to haploid males due to losing the 

paternal chromosome during early development of fertilized eggs (Werren et al. 1987, 

1988, Nur et al. 1988). 

A" the evaluation of parasitoid sex ratios in the majority of studies has relied on 

counting the adult offspring of each sex based on morphological characteristics. 

However, sex ratio at maturity (termed secondary sex ratio) might not be the same as 

the sex ratio at sex allocation (the primary sex ratio) due to mortality of offspring at 

the egg, larval or pupal stages. Developmental mortality may alter the variance in sex 

ratios or may affect one sex more commonly than the other (Smith & Shaw 1980, 

Nagelkerke & Hardy 1994, van Baaren et al. 1999, Krackow et al. 2002, Kapranas et 

al. 2011, Khidr et al. submitted, Chapter 6). 

1.3 Parasitoid aggressive behaviour 

Parasitoids may be aggressive as adults as well as as Immature (Godfray 1994). The 

kinship between individuals might have potential impact on parasitoids behaviour in 

many aspects. Female parasitoids can evaluate and recognize their kin via both 

genetic and environmental signals (Gamboa 2004, Llze et al. 2012, Chapter 3). Kin 

selection theory suggests that a genetiC trait may be preferred even if it is not 

beneficial to the actors direct fitness, provided that the fitness of the recipient which 
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shared its genes would be adequately increased (i.e. indirect fitness) (Hamilton 

1964b, Grafen 1984, Frank 1998, Griffin & West 2002). 

The individual's relatives usually help each other to increase their fitness directly or 

indirectly in accordance to their level of relatedness. Thus, by assisting a close relative 

to reproduce, simultaneously an individual itself can Increase its inclusive fitness 

indirectly due to the fact that its genes would be carried by the progeny of its kin to 

the next generation (Hamilton 1963, 1964). This suggests that individuals should be 

less aggressive, and more altruistic, towards closer relatives. 

However, according to the model developed by (Taylor 1992, see also West et al. 

2001, 2002), an excessively high level of kin competition might occur due to resource 

competition. This might reduce the advantage of being relatives and show more 

aggressiveness towards each other in comparison with unrelated species. 

In general, to increase the survival rate or reproductive success in organisms, the 

contestants show agonistic behaviour towards conspecifics (Wilson 1975). The 

outcome of the contest might be resolved either when physical interaction involved in 

the behaviour such as biting, fighting or stinging in parasitoid wasps (Goubault et al. 

2007a) or when sending different signals such as chemical to settle the contest 

without any direct bodily involvement (Bossert & Wilson 1963, Wilson 1975). 

On the other hand, the ability to recognise and discriminate kin may [nfluence the 

interference between related individuals competing for a given resource. Thus, the 

intensity of aggressiveness might depend on the degree of relatedness between 

individuals involved in the interaction. The Influence of competition on altruism/selfish 

behaviour expression between related Individuals has been addressed [n few empirical 

studies (e.g. West et al. 2001, Giron et al. 2004, Segoli et al. 2009b). 

According to Gadagkar (1985) and Pfennig and Sherman (1995) kin discrimination can 

be either inherited genetically through allele's recognition and phonotypical cues or via 

Interaction between individuals within the environment. But it Is worth mentioning that 

the mechanism behind how insects can discriminate conspecifics In accordance to 

genetic relatedness and environmental cues is still not completely understood for 

many species, though was well explored in some such as social Polistes wasps 

(Gamboa et al. 1986a). In general different cues might be associated with this 
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recognition. Chief among these are olfactory cues that can be transferred through the 

food resource (Downs & Ratnieks 1999). 

The odour released from the host might assist parasitoids' orientation during their 

foraging and because of its small biomass they have capability to emit volatiles in the 

nanogram range (Turlings et al. 1995). Furthermore, parasitoids do not only display 

innate responses towards some food signals, but also they have capability to learn 

cues in order to Improve their efficiency in finding foods and hosts (Takasu & Lewis 

1995). Indeed, siblings developing on the same host can use smells associated with 

the host to recognise each other (Howard et al. 2001, Nash et al. 2008). Thus, 

discrimination between nestmate and non-nestmates did not occur when individuals 

were reared under similar controlled environmental conditions (Gamboa et al. 1986 

b). 

Cuticular hydrocarbons (CHCs), which primarily serve to reduce desiccation in insects 

(Edney 1977, Hadley 1981, Blomquist & Bagneres 2010), are considered as a vital 

element for kin recognition (Carlin & HoI/dobler, 1986, Tsutsul et al. 2003, Dronnet et 

al. 2006). Consequently, CHCs can be used in communication system for species, 

gender and colony recognition (Haverty et al. 1990, Smith & Breed 1995, Singer 

1998, Howard & Blomquist 2005, Lucas et al. 2005, Bagneres & Wicker-Thomas 

2010). 

The insect's integument (primarily the epicuticle) commonly consists of three major 

hydrocarbon compounds which are n-alkanes, olefins and methylalkanes (Lockey 

1991). In social insects, cues used in kin discrimination rely on olfaction and are 

frequently associated with epicuticular hydrocarbons (H511dobler & Michener 1980, 

Hepper 1986, Howard 1993, Lorenzi et al. 1997, Ozaki et al. 2005). The eusoclal 

paper wasp PO/istes fuscatus has the potential to distinguish nestmates from non­

relatives through nests' odour secreted by the queen (Singer 1998). 

Moreover, the learned odor would use by the wasp as a template to identify the 

relatives (Singer & Espelie 1992, 1996). The kin recognition between Pachycondy/a 

apicalis takes place by transferring secretions either by sexual meeting or interaction 

with older nestmates (Soroker et aJ. 1998). In addition, old nestmates preferred 

communication with mates exposed to nest hydrocarbons rather than when they 

emerge while the chemical is not present (Singer & Espelie 1996). 
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Their major role as recognition cues can be associated with their chemical stability, 

low volatility and structural diversity allowing a great variability in the cuticular 

compound composition (Blomquist et al. 1987, Dani et al. 2001). It is generally the 

more common and abundant chemical surface found on the cuticle (Blomquist et al. 

1987, Howard 1993). 

In addition, the CHCs might play a dynamic role as chemical camouflage through 

imitating the cuticular hydrocarbons of the host by the insect attacker, which the 

organism either biosynthesis the cuticular hydrocarbons or obtain it through contact 

with the host (vander Meer et al. 1982, vander Meer et al. 1989, Dettner & Liepert 

1994). Thus, some parasitoids hydrocarbons closely resemble the host they reared on 

and share majority of hydrocarbons in order to incorporate in to their life (Howard et 

al. 1980, Howard 1993, Howard et al. 2001). Nonetheless, both bethylid parasitoids 

Cepa/onomia waterstoni and Laelius utilis to some extent illustrate different 

hydrocarbon compositions from their hosts (Howard 1992). 

Furthermore, many researches revealed that the cuticular hydrocarbon composition of 

many parasitoid wasps was different between the sexes as well as different age 

classes (Howard 1992, Syvertsen et al. 1995, Howard & Infante 1996). Associations 

between social behaviour exhibition and family Bethylidae have been observed in 

some studies since early times (Evans 1964, Casale 1991). However, the profile 

changes of bethy/id wasps In response to cuticular hydrocarbons observed more 

clearly when the wasp reared on different host larvae (Howard & Perez-Lachaud 

2002). 

The aforementioned examples confirm that the cuticular hydrocarbon profile of Insects 

Is flexible and capable of transformation In accordance to environmental, ontogenetic, 

physiological and nutritional factors (Lockey 1988, Howard 1993, Howard et al. 1995, 

Howard & Perez-Lachaud 2002). 

1.4 Bethylid parasitoids 

The Bethylidae is one of the most distributed families of aculeate wasps (order 

Hymenoptera) (Gordh et al. 1983, Gauld & Bolton 1988). The family is thought to 

include more than 4000 described and undescribed species (Gordh & M6czar 1990, 

Polaszek & Krombein 1994). Research by Evans (1964) suggests that those species 



mostly belong to four broad subfamilies which are Bethylinae, Pristocerinae, Epyrinae 

and Mesitiinae. In addition, the relationships between these subfamilies have been 

studied in accordance to their morphological characters (Sorg 1988, Carpenter 1999). 

However, more recently (and possibly accurately) the higher level phylogeny of 

bethylid wasps has been estimated using molecular analysis and divided the family to 

five major subtaxa (Carr et al. 2010). 

Mesitiinae 

Cephalonomiini 

Pri stoceri nae 

Epyrinae 

Bethylinae e.g. Goniozu5 

Figure 1.1 Bethylld phylogeny according to Carr et al. (2010). 

Bethylid species mostly develop gregariously on the immature stages of Lepidoptera 

and Coleoptera (Evans 1978, Hawkins & Gordh 1986, Gauld & Bolton 1988, Gordh & 

M6czar 1990). Besides, they are considered as beneficial Insects that have been used 

to attack a number of economically important crops and orchard pests worldwide; e.g. 

coffee, coconut, walnut, sugarcane, almond and palm. Consequently, bethylids have 

been used in a range of biological control programmes with some promising results 

(Legner & Silveira-Guido 1983, Greathead 1986, Murphy & Moore 1990, Smith et al. 

1994, Lyla et al. 2006). 

The females deposit eggs externally on paralyzed hosts, often with an attempt to lay 

them on preCise locations (Gordh & Hawkins 1981, Peter & David 1991). Eggs develop 

to immotile larvae which feed via punctures in the host's integument and within few 

days pupate near the host. Soon the adult wasp emerges, varying In size usually from 
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1 to 10mm depending on the species. Thus, Bethylid wasps have relatively short life 

cycle. The sex ratio of emerging progeny is usually female biased (Hamilton 1967, 

Griffiths & Godfray 1988, Hardy & Mayhew 1998, Hardy et al. 1998). Moreover, the 

distribution of sex ratio variance is usually less than binomial (Green et al. 1982, 

Griffiths & Godfray 1988, Hardy & Cook 1995, Hardy et al. 1998). 

Mothers of many bethylid species are distinguished by significant maternal care 

towards of their broods. They not only remain with the brood while it develops but 

also might aggressively defend their offspring against the action of both conspecific 

and allospecific females (Doutt 1973, Hardy & Blackburn 1991, Peterson & Hardy 

1996, Goubault et al. 2007b). Maternal care probably contributes towards the 

relatively low offspring development mortality among broods (Gordh & M6czar 1990, 

Hardy & Blackburn 1991, Hardy et al. 1998). 

1.4.1 Biology of Gonlozus nephantldls 

Goniozus nephantidis (Muesebeck) (Hymenoptera: Bethylidae) is a gregarious 

ectoparasitoid on the black headed caterpillar Opisiana arenosella (Walker). The 

caterpillar is a major pest that attacks different stages of coconut palms in India, Sri 

Lanka, Bangladesh and Myanmar (Cock & Perera 1987, Perera et al. 1988). The wasp 

can be reared on several substitute hosts; such as Corcyra cephalonica and Galleria 

me/onella (Hardy & Blackburn 1991, Cook 1993b, Chandrika & Shameer 2003, 

Venkatesan et al. 2004). Corcyra cephalonica has been tested and used to maintain 

the parasitoid in culture effectively in many laboratory based experiments over the 

past 20 years (Kapadia & Mittal 1986, Hardy & Blackburn 1991, Hardy et al. 1992, 

Humphries et al. 2006). Thus, regarded as appropriate and economically valuable host 

for Goniozus mass production (Venkatesan et al. 2007). 

On finding a suitable host, the female paralyzes the caterpillar and then lays between 

3-18 elongate eggs 1-3 days later onto the integument of the larva (Dharmaraju & 

Pradhan 1977, Hardy et al. 1992, Peterson & Hardy 1996). Females are capable of 

parasitizing more than one host and total eggs laid might reach more than 100 during 

the female's life time under laboratory conditions (Antony & Kurian 1960, Hardy et al. 

1992). After laying a clutch of eggs the female will typically guard the offspring during 

their development until the pupal stage (Antony & Kurian 1960, Cock & Perera 1987, 

Remadevi et al. 1981, Goubault et al. 2007b). Maternal care increases the 
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survivorship of developing offspring because O. arenosella larvae are susceptible to 

attack from different competitive pathogens, predators and parasitoids, including 

conspecific ovicide (Dharmaraju 1962, Cock & Perera 1987, Hardy & Blackburn 1991, 

Goubault et al. 2007b). The sex ratios of broods of G. nephantidis are typically highly 

female biased (proportion of offspring that are males is approximately 0.093) with low 

variance, almost certainly due to high levels of local mate competition (Hardy & Cook 

1995, Hardy et al. 1999). 

1.4.2 Biology of Goniozus legneri 

The parasitoid wasp Goniozus legneri Gordh (Hymenoptera: Bethylidae) is an idiobiont 

gregarious ectoparasitoid of many important crop pests In several new world agro­

ecosystems (Legner & Silveira-Guido 1983, Legner & Gordh 1992, Steffan et al. 2001, 

Zaviezo et al. 2007). Goniozus legneri are effective in attacking lepidopteran larvae 

especially of almond, pistachiO, apple and walnuts (Steffan et al. 2001, Zaviezo et al. 

2007). 

On finding a host a female deposits 1-20 eggs onto the host's surface approximately 

24h later after paralYSis with larger clutches laid onto larger hosts (Gordh et al. 1983, 

Hardy et al. 1998). Females remain with their broods for several days post-oviposition 

to protect them and their offspriong against the detrimental actions of conspecifics 

(Goubault et al. 2006, Bentley et al. 2009). Development to adulthood takes 

approximately two weeks, development mortality In this species Is estimated to be 

about 12% (Gordh et al. 1983, Hardy et al. 1998). Brood sex ratios are typically 

female biased (81-91% of adult offspring are female), with low variance, probably due 

to high levels of local mate compeition (Gordh et al. 1983, Hardy et al. 2008, 2000), 

but all-female broods are sometimes produced due to the development mortality of 

males (Hardy et al. 1998). Newly matured females usually disperse around 24h after 

eclosion to search for suitable hosts (Hardy et al. 2000). 

1.5 Contest behaviour 

Extensive evidence suggests that large numbers of animal species might compete with 

conspecific and allospecific individuals via direct agonistic Interactions. Many game 

theoretical models have examined factors resolving the contest outcomes between 

individuals (Hammerstein 1981, Maynard Smith 1982, Mesterton-Gibbons 1992, 
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Sigmund 1993). Fighting behaviour might vary in response to the target resource 

whether it is food, territories or mates (Huntingford & Turner 1987, Blanckenhorn 

1991, West at al. 2001, Kemp & Alcock 2003, Lindstrom & Pampoulie 2005, Kokko et 

al. 2006). 

Moreover, when pairs of animal compete for an indivisible resource, contest decisions 

are expected to be based upon resource value, ownership status, costs and benefits, 

relatedness between rivals as we" as fighting ability (Leimar & Enquist 1984, Enquist 

& Leimar 1987, West et al. 2001, Bentley et al. 2009). Usually there is positive 

relationship between fighting ability and body size, energy reserves, weaponry, 

acoustic signals that make it powerful fighter (Enquist & Leimer 1990, Mason 1996, 

Briffa & Elwood 2000, Taylor et al. 2001, Davidson & Wilkinson 2004, Hsu et a/. 

2006). 

On the other hand, even if the individual has a" the necessary requirements to be a 

good fighter, it seems sensible to consider carefully the relative costs and benefits 

behind this conflict. Thus, escalations of aggressiveness behaviour were envisaged in 

situation where the benefits of winning are potentially high relative to future 

expectation (Maynard Smith & Price 1973, Enquist & Leimar 1990). Some form of 

dangerous fighting might result in the death of one of the contestants (Hamilton 1979, 

Cook 2005). Other combats might cause injuries that affects individual's future fitness 

and posed it to the risk of predation (Clutton-Brock et al. 1979, Briffa & Sneddon 

2007). 

The combination of both ownership status (whether it is prior owner of the resource or 

intruder) and fighting ability components are termed resource-holding potential (RHP) 

(Parker 1974, Maynard Smith & Parker 1976, Hammerstein 1981). There are many 

models in response to RHPi for instance, the self-assessment model, which predicts 

that the individual wi" only assess the quality of their own RHP (Taylor et al. 2001, 

Prenter et al. 2006, Garland & Ke"y 2006). In this case weaker contestants, with 

smaller RHP, will be inclined to give up the combat autonomously and without 

gathering information on the rivals RHP. While the mutual-assessment model predicts 

that decision whether to continue the fight or not would be based on not only 

information about its own abilities but also on the quality of their opponents (Enquist 

& Jakobsson 1986, Stuart-Fox 2006). Individuals appear to evaluate their rivals' 

capabilities through cues and direct contact with each other during the fighst as they 
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escalate. Thus, they might withdraw from the combat when they estimate that they 

are unlikely to win. 

In addition, there is a cumulative assessment model which is similar to self 

assessment in which no direct strategies involved to evaluate opponent RHP, but they 

can still terminate their decision in accordance to information on opponents and 

greater RHP impose higher costs (Payne 1998, Briffa & Elwood 2000). So withdrawal 

and termination of the fight would depend on both contestants own RHP. 

The method by which contestants evaluate each other's fighting ability might be 

associated with signals without direct physical interaction (Wilson 1975). In fact, 

repeating signals several times might enhance the individual's accuracy regarding its 

opponent potential via transferring information (Enquist & Leimer 1983, Enquist et al. 

1990, Leimar et al. 1991). According to Payne and Pagel (1997), signals repeated by 

animals either to substitute earlier signals or to enhance the strength of previous 

signals. 

Consequently, an individual in possession of higher total RHP will tend to win the 

competition (Maynard Smith & Parker 1976). So, whenever asymmetry in RHP 

between contestants increased, less intense fighting behaviour with shorter contest 

duration is predicted (Wells 1988, Englund & Olsson 1990, Jennions & Backwell 1996, 

Taylor et al. 2001, Gammell & Hardy 2003, Taylor & Elwood 2003). 

Many other influential factors might interfere and alter the direction of the conflict 

settlement (Parker 1974, Grafen 1987), such as to what extent each contestant Is 

ready to take risks and defend the resource against the rival (Resource value, RV) 

(Parker 1974, Maynard Smith & Parker 1976, Enquist & Lelmar 1987). Hence, each 

contestant has a different perception of the available resource and the opponent that 

places greater value on the resource, either because they are particularly scarce or 

they yield higher fitness gains, Is more likely to exhibit more agonistiC behaviour 

during the encounter. AriSing out of this when asymmetry in RHP is not present, the 

contest is more likely to terminate In favour of the Individual that most value 

possession of the resource (Parker 1974, Hack et al. 1997). 
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1.5.1 Contest behaviour in Goniozus legneri and G. nephantidis 

Studies of parasitoid contest behaviour have provided a quite comprehensive 

investigation of factors influencing animal contests as well as the influence of animal 

contests on further aspects of parasitoid life histories and the consequence of these for 

population and community ecology. Competition between adult females has been 

demonstrated in several parasitoids while foraging for suitable hosts (Hardy & 

Blackburn 1991, Field & Calbert 1999, Batchelor et al. 2005, Bentley et al. 2009, 

Mohamad et al. 2010). Contests between Goniozu5 females over host involve biting 

and stinging but only rarely result in death. (Humphries et al. 2006, S.K.K. pers. 

obs.): in the majority of fights no direct indication of physical injuries was observed 

(Petersen & Hardy 1996). 

There Is positive association between the female weight and contest resolution. If the 

variable size increased probably the contestant fighting ability would improve and 

consequently lead to won the combat (Peterson & Hardy 1996, Stokkebo & Hardy 

2000, Humphries et al. 2006). In addition, contests between owners and Intruders are 

influenced by prior ownership status (Goubault et al. 2006 Figure 1.2, Bentley et al. 

2009). However, when both components are present simultaneously, ownership would 

be advantages and larger intruders might lose versus smaller owners (Peterson & 

Hardy 1996, Bentley et al. 2009). Though, the probability of intruder winning the 

resource from owner increases significantly with both intruder size and age 

(Humphries et al. 2006). The numbers of matured unlaid eggs possessed by 

contestants (termed egg load) can also Influence contest resolution, at least when 

other asymmetries are minimized or absent (Stokkebo & Hardy 2000). 
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Figure 1.2 Goniozus females competing for Corcyra cephalonica host from 

(Goubault et al. 2006). 

Previous studies have explored the value that contestant females place on the 

resource through varying contestant age, host size or offspring developmental stages 

at the time of agonistic interactions (Humphries et al. 2006, Goubault et al. 2007a & 

Bentley et al. 2009). Host size has an effect on contest outcomes, especially when 

asymmetries in ownership status are absent (Humphries et al. 2006). Among 

parasitoids in general, host size measurement can function as indicator for host's 

quality (Charnov et al. 1981, Godfray 1994). Hence, larger numbers of eggs are often 

laid on larger hosts (Hardy et al. 1992, Mayhew & Hardy 1998) and larger progeny 

can be produced on larger hosts (Hardy et al. 1992). When contests are over hosts 

already bearing broods, maternal defence was attuned to the vulnerability of the 

offspring to the actions of victorious intruders: for instance mothers of broods late­

stage larvae did not defend them as effectively as when larvae were younger but 

intuders effected little damage on well-developed larvae compared to the larvicide and 

ovicide they committed when gaining access to recently oviposited broods (Bentley et 

al. 2009). 
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1.6 Proton Nuclear Magnetic Reasonance (NMR) and data 

analysis 

A considerable amount of literature is available on the metabolite profiling technique 

known as Nuclear Magnetic Reasonance (NMR) with the study of chemical changes 

that occur in biological samples of human, animal, soil and plant (Griffin 2003, Harker 

et al. 2006, Teague et al. 2007, Moura et aJ. 2009, Fukuda et aJ. 2011). In the field of 

insects over the past two decades, NMR was utilized in various areas such as 

identifying chemical composition of the haemolymph (Thompson 1990, Lenz et al. 

2001, Moriwaki et al. 2003, Phalaraksh et al. 2008) or generating metabolic profile of 

the whole insect (Ivie et al. 1983, Heinstra et al. 1990, Thompson 2001, Trivedi et al. 

2010). In hymenopteran species NMR was mainly employed to Isolate compounds 

from the wasp's venom and to characterize their molecular structure (Karst et al. 

1990, Hori et aJ. 2001, Sforca et al. 2004, Saidemberg et al. 2010). 

NMR spectroscopy is sophisticated technique that is performed on atomic nuclei; the 

most employed nuclei are lH, 13e, 15N and 31p (Abraham et al. 1988, Ikura et al 1990, 

Thompson 1990, Adam et al. 2005, Arumugam et al. 2006). NMR spin-active nuclei 

have a characteristic magnetic moment when placed In a magnetic field will be 

absorbed and send a pulse with a range of radio frequencies (RF), generating signals 

that gives different peaks between magnetic energy levels (Norell 1984, Thompson 

1990). lH NMR is based on detecting all proton-bearing compounds such as 

carbohydrates, amino acids, amlnes, esters, ethers, lipids and fatty acids present with 

different constituents in biological cells, fluids and tissue extracts (Sumner et aJ. 2003, 

Phalaraksh et aJ. 2008). Thus, chemical study of a variety of low molecular weight 

compounds found in the metabolic pathway can be measured (Sands et al. 2009). 

lH NMR is considered as a powerful dynamic tool because it is non-destructive to the 

sample integrity and multiparametric analytiC techniques can be employed for data 

analysiS, which allows nonspecific evaluation of a large number of molecular 

metabolites without pre-selection or bias (Jardetzky & Roberts 1981, Keun et al. 2002, 

van Dorsten et al. 2006). Even though lH NMR is an advanced analytical method to 

profile metabOlites, it has some disadvantages due to comprising thousands of signals 

from various metabolites at high proton resonance frequencies, that might overlap 

and obscure the assignment procedure when applied to complex mixtures (Robertson 
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2005, Widarto et al. 2006). Thus, statistical data analysis techniques such as principal 

component analysis (PCA) have been frequently used in the analysis of metabolic 

profiles in a quantitative way (Gartland et al. 1991, Lindon et al. 2003, Robertson 

2005, van Dorsten et al. 2006). Multivariate statistic analysis facilitates the reduction 

of data complexity and makes optimal use of the information present in the spectrum 

for sample classification (Holmes et al. 2000, Lindon et al. 2003, Robertson 2005, 

Robertson et al. 2011). Hence, samples that have close biochemical structure would 

cluster together due to their spectral similarity (Robertson 2005). 

1.7 Microsatellite markers and parasitoids 

Molecular markers have proved to be valuable tool in various areas of research and 

have revolutionized the entire scenario of biological sciences in organisms. In 

entomology, numerous markers are available today to study taxonomic, phylogenetic 

relationships and population genetics (Loxdale & Lushai 1998, Caterino et al. 2000, 

Behura 2006). In hymenopteran parasitoids, phylogenetic reconstruction using 

molecular markers has allowed clarification of the relationship between families and 

other taxa (Dowton & Austin 1994, Ronquist 1999, Carr et at. 2010). 

One of the most important types of molecular marker is microsatellite markers which 

are also known as simple sequence repeats (SSRs). These basically consist of short 

DNA sequences that have tandem repeats of mono-, di-, trl-, tetra-, penta-, or hexa­

nucleotide, with an array up to around 200bp long in the genomes of organisms 

(Tautz 1989, Chambers & MacAvoy 2000, Ellegren 2004). They frequently known as 

variable number tandem repeats (VNTR) because they belong to high mutable 

genomic sequence class (Tautz & Renz 1984, Buschiazzo & Gemmel 2006). 

Microsatellite markers serve as prominent genetic markers for different applications 

due to their co-dominant, high level of allelic diversity per locus and Mendelian 

inheritance (Buford & Wayne 1993, Jarne & Lagoda 1996). More specifically 

microsatellites offer fascinating tools for studies on evolution and population genetic 

that can monitor the degree of inheritance and polymorphism in population, and could 

influence the success of biological control (Buford & Wayne 1993, Jarne & Lagoda 

1996, Sunnucks 2000, Luikart et al. 2003, Selkoe & Toonen 2006, Katabuchi et al. 

2008). Knowledge of the genetic variance of parasitoid species, native and Imported, 

against target insect pest species is important in control programmes in the longer 
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term because this would provide information about parasitoid effectiveness in 

combating the insect below damage thresholds, dispersal distances and gene flow 

rates. 

Moreover, they can identify high expected heterozygosity and high mutation rate 

(Jarne & Lagoda 1996, Hancock 1999, Katabuchi et al. 2008, Lavandero & Dominguez 

2010). The mutation rate of microsatellites is usually influenced by both allele length 

(Xu et al. 2000, Whittaker et al. 2003) and the number of repeat units (Chakraborty 

et al. 1997, Brinkmann et aJ. 1998). 

Despite numerous advantages of microsatellite markers, their development Is still 

challenging; it requires the construction of genomic libraries, screening and 

sequencing of clones (Queller et aJ. 1993, Jarne & Lagoda 1996, Zane et al. 2002, 

Beukeboom & Zwaan 2005). However, bioinformatic analysis might be used to 

recognize the marker if adequate information of the species genome sequence is 

present (Toth et al. 2000, Vidal et al. 2009, Mikheyev et al. 2010). Markers developed 

for a particular species can be employed for closely related species, but the 

percentage of amplified loci decreases with Increasing genetic distance making such 

markers less suitable for distantly related species (Hancock & Simon 2005, Barbara et 

al. 2007). Furthermore, non-amplifying a"eles (termed null alleles) that are caused by 

mutation in the primer binding region and prevent amplification of affected alleles 

might be detected in some loci and can Invalidate population studies because they 

create false homozygotes and affect population genetic analyses (Pemberton et al. 

1995). Null alleles are commonly found In populations with high effective population 

sizes such as Insects (e.g. Lehmann et al. 1997, Chapuis et al. 2005). 

Thus, primers specific for the sequences of parasltoids flanking microsatellite loci 

required in order to amplify the marker with polymerase chain reaction (PCR), later 

the amplified fragments can be visualized by using a technique called gel 

electrophoresis that stained with chemicals such as ethldium bromide or Silver stain 

(Vanlerberghe-Masuttl & Chavlgny 1997, Baker et al. 2003, Zhou et al. 2005, 

Douhovnikoff et al. 2006). 

SSRs (simple, tandemly repeated di- to tetra-nucleotide sequence motifs flanked by 

unique sequences) have been developed to deal with different genetic aspects in a 

number of parasitoids (e.g. Zavodna et al. 2002, Baker et al. 2003, Lozier et al. 2006, 
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Anton et al. 2006, Katabuchi et al. 2008, Pannebakker et al. 2010). These markers 

have been used to investigate mating systems and the sex determination in some 

hymenopteran species (Ratnieks & Keller 1998, Zavodna et al. 2002, Zhou et al. 

2005, Abe et al. 2009). 

1.8 From behavioural ecology to population biology and 

biocontrol 

There is substantial body of literature suggesting that behavioural ecology research on 

parasitoids will benefit biocontrol programmes. For instance, female biased sex ratio is 

valuable when parasitoids are mass released in the field because it is females that are 

responsible for finding and parasitizing suitable hosts (Luck 1990, Hardy & Goubault 

2007, Ode & Hardy 2008). In addition, studies on parasitoids' genetic distorters that 

alter population and species sex ratios would help to provide possible solutions to 

adopt successful breeding strategies making biocontrol agents more efficient 

(Stouthamer et al. 1990, Werren & Stouthamer 2003, Dedeine et al. 2001, Ode & 

Hardy 2008). Likewise, studies on clutch size and factors influencing development 

mortality within each species are considered important from the biological control 

point of view as they enhance natural enemies' effectiveness in pest suppression 

(Hardy et al. 1992, Hardy et al. 1998, Kapranas et al. 2011). 

Molecular markers have frequently been used to address population genetic structure 

In many hymenopteran parasitolds. For example, the dispersal ability of many species 

often revealed by utilizing genetic markers (Althoff & Thompson 2001, Zavodna et al. 

2005). Further, microsatellite markers were developed to understand the Influence of 

different geographic distribution on the population biology through genetic variation 

(Zavodna et al. 2005, Lozier et al. 2009). 

Sex allocation and the presence of diplOid males through breeding in population were 

shed light on by the markers (Zhou et al. 2005, Wu et al. 2003, Grillenberger et al. 

2008). Therefore, from biological pOint of view diploid males reduce the efficiency of 

the population because emerged diploid male from fertilized eggs would either die or 

unable to reproduce during adulthood (EI Agoze et al. 1994, Cook & Crozier 1995, de 

Boer et al. 2007). Thus, biological control might improve when more than one 

population from different geographic location is released in the field due to increasing 

allelic diversity of the population (Stouthamer et al. 1992, Cook & Crozier 1995). 
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In addition, host quality, especially host size, can be considered as another crucial 

factor which influences not only sex allocation but also clutch size decisions (Charnov 

et al. 1981, West 2009). Thus, in gregarious parasitoids fewer eggs are predicted on 

small size hosts with more tendencies to produce male progenies and vice versa 

(Charnov 1982, Hardy et al. 1992). Further, bigger progeny that have greater 

evolutionary fitness would usually emerge from bigger hosts (Hardy et al. 1992). 

Thus, releasing bigger females in the field would enhance biocontrol programmes 

through their better ability to find hosts (Kazmer & Luck 1995, West et al. 1996, Ellers 

et al. 1998). 

Furthermore, larger females expected to have better fighting ability to take over the 

resource during contests (Peterson & Hardy 1996, Stokkebo & Hardy 2000, Humphries 

et al. 2006). BeSides, contestant who placed more value on the resource is more likely 

to win the competition (Leimar & Enquist 1984). So, it is Important to perform a series 

of tests in order to understand factors that might affect the contest outcome between 

and within species before introduced to the field. For instance, releasing different 

parasitoid species of coffee berry borers could result In lethal contests between 

species that might reduce their efficiency as biocontrol agents (Batchelor et al. 2005). 

1.9 Summary of thesis structure 

In this thesis various aspect of behaviour, molecular and chemical properties of 

different parasitoid species belonging to the genus Goniozus were investigated. Thus, 

Bethylid wasps are used as model organisms to test basic theories and to Improve 

their efficacy in pest control. The structure of thesis Is as follows: 

1.9.1 Part one: Resource value, host quality and parasltold age 

Chapter 2. The effects of host age post-paralysis were explored. Laboratory studies 

were performed to test the reproduction and development of Goniozus nephantidis 

(Muesebeck) (Hymenoptera: Bethylidae) on hosts of different ages. Metabolic changes 

that occurred to the host after paralysation were evaluated by using proton Nuclear 

MagnetiC Resonance (NMR). Caterpillars extracted then the NMR spectra of the 

extracts were used to identify the chemical composition of hosts. 
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1.9.2 Part two: Kin recognition, aggressive behaviour and chemical 

cues 

Chapter 3. Kin recognition effects through both genetics and proxy cues on the 

aggressive behavior were explored by using different strains of GoniOZU5 legneri Gordh 

(Hymenoptera: Bethylidae). The strains were reared on the facultative host Corcyra 

cephalonica Stainton (Lepidoptera: pyralidae). Further, investigated the effect of 

resource value and degree of aggressiveness on contest resolution. An experimental 

movement of eggs between hosts were created non-siblings reared on same hosts and 

genetic siblings on different hosts. Later during the competition their aggressive and 

and non-aggressive behaviours were recorded. 

Chapter 4. The cuticular hydrocarbon profiles (CHC) of different species and 

populations were inspected through using Gas Chromatography-Mass Spectrometry 

(GC-MS) while rearing on Corcyra cepha/onica. Further, the CHC components of G. 

legneri U-strain developed on various hosts were tested to monitor profile changes 

due to host association cues and its influence on the chemosensory kin recognition. 

1.9.3 Part three: Molecular genetics and sex ratios 

Chapter S. The effect of direct genetic kinship between both G. legneri populations (U­

strain was obtained from a commercial insectary in the USA and C-strain collected 

from Chile) were addressed for relatedness [Chapter 3] by using molecular markers. 

Twenty four primers were designed for this species to test polymorphism between 

both U and C-strains. In addition, twelve other primers were developed for G. 

nephantidis in order to provide an Insight of genetic variation within population. 

Chapter 6. Precise sex ratio in G. legneri was examined by mlcrosatellite markers. To 

avoid any biased maternal or paternal Influence on the sex ratio reciprocal crosses 

were performed between both populations. The Polymerase Chain Reaction products 

of primer GISSR7 were run on MetaPhor agarose gel. The sex ratio was calculated at 

oviposition (primary sex ratio) as well as at emergence (secondary sex ratio). Direct 

assessment of primary sex ratios was thus coupled with comparison to secondary sex 

ratios and the influence of development mortality on sex ratio variance was examined. 
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Part one: Resource value, host quality and parasitoid age 
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Chapter 2: Post-paralysis declines in host quality 

assessed by parasitoid behaviour, development and 

metabolomics 

2.1 Abstract 

An immature parasitold obtains resources by feeding on a single host. The quality of a 

host can be defined in terms of how it affects the developmental success of immatures 

and their subsequent performance as adults. Similarly, the quality of an encountered 

host can affect the decisions of adult female parasitoids foraging for reproductive 

opportunities. Host quality may be determined by Intrinsic properties of the host, such 

as its species, size and developmental stage, which further Interact with extrinsic 

influences, such as the host's diet and any prior parasitism. Here we show that the 

quality of paralyzed but unparasitized hosts declines with time since paralysis, a little 

explored facet of host quality. We assess quality by observing the behavioural and life­

history responses of parasitoids to variation in host age: older hosts are accepted less 

frequently for oviposition, accepted hosts have smaller clutches laid onto them, the 

survivorship of offspring developing on older hosts is lower and surviving adults are 

smaller. Adult females also compete less successfully for older compared than for 

younger hosts. We use Proton Nuclear Magnetic Resonance to Investigate the 

underlying changes In the metabolomic state of aging paralysed hosts, for Instance, 

biochemicals aSSOCiated with energy decrease while metabolic waste products 

increase. While post-paralysis but pre-parasitism ageing Is an unusual component In 

many host-parasitoid Interactions, our metabolomlc analysis serves more broadly as a 

methodological example that can readily be employed to understand the biochemical 

basiS of a variety of host quality correlates across a wide range of host-parasltold 

associations. 
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2.2 Introduction 

Parasitoid wasps, by definition, obtain resources for immature development by feeding 

on just one host individual, usually another insect (Godfray 1994). Individual hosts 

vary in 'quality', which can be defined in terms of how properties of the host affect a 

parasitoid's evolutionary fitness. There is an extensive literature showing that many 

fitness-correlated aspects of the life-histories and behaviours of numerous parasitold 

species are affected by host quality. Important among these are host acceptance 

decisions (van Alphen & Visser 1990, Thiel & Hoffmeister 2009), behavioural defence 

of hosts (Humphries et al. 2006), dutch size (Zaviezo & Mills 2000, H~kkermann et al. 

2007, Kapranas et al. 2011), sex allocation (Ode & Heinz 2002, West 2009), 

parasitoid development (Wright & Kerr 1988, Hochberg 1991, Hofstetter & Raffa 1998, 

Otto & Mackauer 1998, Perez-Lachaud & Hardy 2001, Wang & Liu 2002, Cleary & van 

Ginkel 2004, Ueno 2004, Karsai et al. 2006, Hackermann et al. 2007, Hegazi & 

Khafagi 2008, Kapranas et al. 2011) and the size and subsequent longevity, fecundity 

and foraging success of parasitoid progeny (King 1998, Wright & Kerr 1988, Hardy et 

al. 1992, Vet et al. 1994, Otto & Mackauer 1998, Zaviezo & Mills 2000, Ueno 2004, 

Karsai et al. 2006, Lopez et al. 2009, Aruna & Manjunath 2010, Fand et al. 2011). 

Host quality itself usually has a multitude of contributing, and inter-connected, facets 

including the species of the host (Wright & Kerr 1998, Rivers & Denlinger 1995, Perez­

Lachaud & Hardy 2001, Cleary & van Ginkel 2004, Hackermann et al. 2007, Thiel & 

Hoffmeister 2009), its genetic composition (Kraaijeveld & Godfray 2009, Henry et al. 

2010), its developmental stage (Kidd & Jervis 1991, Harvey et al. 1994, Vet et al. 

1994, Otto & Mackauer 1998, Karsai et al. 2006, Thiel & Hoffmeister 2009, Fand et al. 

2011), its diapause status (Rivers & Denlinger 1993, 1994), Its size (Schmidt 1991, 

Hardy et al. 1992, Harvey et al. 1994, Otto & Mackauer 1998, Zaviezo & Mills 2000, 

Cleary & van Ginkel 2004, Ueno 2004) and Its age prior to parasltoid attack (Ode & 

Strand 1995, Hofstetter & Raffa 1998, King 1998, Sousa & Spence 2001, Wang & Liu 

2002, Ueno 2004, He & Wang 2006). Some of these 'intrinsic' quality components 

may interact with 'extrinsic' factors such as the quantity and chemical composition of 

the host's diet (Godfray 1994, Harvey et al. 1995, Vinson et al. 2001, Ode 2006), 

whether or not the host harbours endosymbionts (Cheng et al. 2010) or has been 

previously attacked by another (conspecific or allospecific) parasltoid (van Alphen & 
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Visser 1990, Goubault et al. 2007a, Moretti & Calvitti 2008, Thiel & Hoffmeister 2009) 

or by a pathogen (Hochberg 1991). 

In this study, I explore how the quality of envenomated and paralysed hosts is 

affected by the time since paralysis using a host-parasitoid association in which 

stinging and oviposition are temporally separate events. I assess quality by observing 

the behavioural and life-history responses of parasitoids to variation in host age and 

also by using Proton Nuclear Magnetic Resonance to investigate the underlying 

changes in the metabolomic state of aging paralysed hosts. 

2.2.1 Biology of the host-parasitoid study system 

Goniozus nephantidis (Muesebeck) (Hymenoptera: Bethylidae) is a gregarious larval 

ectoparasitoid for which many aspects of behaviour and life-history have been 

documented (e.g. Hardy et al. 1992, Cook 1993b, Hardy & Cook 1995, Humphries et 

al. 2006, Goubault et al. 2007a,b, 2008). It is naturally associated with the coconut 

pest, Opisina arenosefla Walker (Venkatesan et al. 2007), but can be reared on the 

larvae of several factitious hosts, such as the wax moth Galleria mellonella L. 

(Lepidoptera: Galleridae) (Mohan & Shameer 2003) and Corcyra cephalonica Stainton 

(Lepidoptera: Pyralidae) (Cook 1993b, Venkatesan et al. 2007). On encountering a 

host larva, the adult female parasitoid attacks It by Injecting venom. Host larvae 

become paralysed within minutes and their development Is arrested (idiobiosis). 

Rather than laying eggs onto the host Immediately, G. nephantidis females oviposit 

after 1-3 days (Jayaratnam 1941, Dharmaraju & Pradhan 1977), possibly using the 

intervening period to mature eggs (Stokkebo & Hardy 2000, but see Goubault et al. 

2007a). Eggs hatch about 1 day after oviposition and the larvae begin to feed on the 

host through punctures In its integument. 

During the period between paralysis and oviposition, females remain In close physical 

association with their hosts, aggressively guarding them against Intruding conspecific 

females which would otherwise utilize the unguarded host (Petersen & Hardy 1996). 

Although prior-ownership is an advantage In such host-ownership contests, other 

factors, especially body size differences, contribute to determining the outcomes of 

agonistic encounters (Petersen & Hardy 1996, Humphries et al. 2006) and prior 

owners can thus be driven away from hosts they have paralysed. As the host that the 

intruder has won may have been paralysed for three days and the Intruder may not be 
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physiologically ready to oviposit for several further days, hosts may have been 

paralysed for a considerable time before they are fed on. Further mutual interference 

interactions, which may be more likely when parasitoid population density is higher, 

could delay host exploitation repeatedly. The empirical investigations presented here 

explore change in the quality of unparasitized hosts as they age following paralysis. 

2.3 Material &. Methods 

All cultures and experiments were carried out in a climate room at 27°C, 12 L: 12D, 

with relative humidity maintained by evaporation from a water bath. Corcyra 

cepha/onica was used as the host and was reared on a diet of glycerol, honey, corn 

meal, wheat bran and yeast, as reported by Lize et a!. (2012). 

2.3.1 Part 1: Longevity of paralysed hosts 

The number of days that paralysed hosts are likely to live was explored. This 

facilitated subsequent Investigation (Parts 2-4) of the effects of host age across a wide 

age-range and allowed us to classify, in subsequent experimental deSign, hosts that 

had been paralysed for a given time as young, middle-aged and old relative to their 

life-expectancy. 

Fifty hosts of known weight were individually exposed to a female G. nephantidis in a 

vial until stung and paralysed. The wasp was removed before any eggs were laid. 

Paralysed hosts were inspected daily for signs of life (movement of the body in 

response to gentle stimulus with paint brush, movement of mandibles or legs, visible 

pumping of haemolymph) until the host died or when the Investigation was stopped. 

We stopped the Investigation after 26 days when only 5 hosts were alive: these were 

treated as censors in subsequent survival analysis. A further censor was generated 

after 3 days when a host was accidentally killed during Inspection. 

2.3.2 Part 2: Effects of host age on host weight, parasltold 

reproductive behaviour and life-history 

Hosts of known weight (range: 17.71-S0.9Smg, to an accuracy of 0.01mg) were 

placed individually in vials and allowed to be stung by an Initial female (the 'stinging 

wasp') which was then removed before laying eggs on to the host (as in Part 1). 

Because had have observed that older Goniozu5 Individuals attack presented hosts 
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more rapidly than do younger individuals, we used as stinging wasps the oldest 

females that were available in the culture at the time. 

Each paralysed host was then held in the vial for 1, 8 or 16 days, so generating three 

experimental treatment groups for host age ('young', 'middle-aged' and 'old'). 

Because substantial proportions of hosts would be likely to die before 8 or 16 days 

(Part 1, Figure 2.1), Iinitially allocated greater numbers of hosts to the middle-aged 

and, in particular, old treatment groups but the final sample sizes In this experiment 

inevitably had a stochastic element (39 young, 29 middle-aged, 74 old). At the 

appointed age, each (surviving) host was reweighed and presented to a second female 

(the 'laying wasp') in a vial. The response of these 142 laying wasps, and their 

offspring, to host age was the prime focus of the experiment. 

All laying wasps were females that had emerged from their pupal cocoons within 3-5 

days (the age at which most females disperse from their natal broods, Hardy et al. 

1999) and was confined in the vial until its death (long associations with each host are 

normal in G. nephantidis, Goubault et al. 2007 b). The contents of vials were then 

inspected daily and the presence and numbers of parasitoid eggs, larvae and pupae 

noted. The numbers, sexes and combined dry weight of any adult offspring developing 

from the host were also recorded. 

2.3.3 Part 3: Effects of host age on parasitoid contest behaviour 

I followed methods for assessing factors influencing female-female contest behaviour 

in G. nephantidis that are given In detail elsewhere (e.g. Petersen &. Hardy 1996, 

Humphries et a/. 2006). We set up 66 owner-owner contest dyads (Humphries et al. 

2006) In which closely weight-matched and age-matched (3-5 day old) paint-marked 

females (red or yellow), from different natal broods and with no previous experience 

of contest Interactions, had each been presented, 15-20 hours before the contest, with 

a host that had been stung and paralysed by a different wasp (as In Part 2) either 1 

day or 10 days previously, generating two host age classes. At the time of stinging, 

hosts weighed 30-60mg and were reweighed on presentation to the second female. At 

the start of each contest, one female was the owner of a younger host and the other 

female was the owner an older host and the effect of the host age difference on 

contest outcome was the focus of the experiment. 
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Contest behaviour was recorded on videotape for 90 minutes, then the winner of the 

interaction was noted (winning females were usually in close association with the 

hosts with losing females distant within the confines of the apparatus; however, there 

was no clear winner in 27/66 replicates and these were excluded from subsequent 

analysis). Both females were then reweighed immediately after the contest and these 

data were used to assess influences of contestant size (Humphries et al. 2006). 

Analysis of the data generated from the above experiment suggested an effect of host 

age might be obscured by the effects of host weight differences (within the clearly· 

won replicates mean±SO: 0.456±0.399 mg, see Results). We therefore repeated the 

experiment using hosts aged either 1 or 12 days and paying extra attention to 

minimising the weight difference between the young and the old host within each 

replicate: there were 60 dyads of which 49 had a clear winner and host weight 

differences within these clearly·won replicates were an order of magnitude smaller 

than in the initial experiment (0.047 ±0.039 mg). 

2.3.4 Part 4: Effects of host age on metabolomic state 

Living but paralysed hosts aged 1, 8 and 16 days (n = 15, 12 and 12, respectively) 

were prepared as in Part 1 and then snap-frozen In liquid nitrogen and stored at -20°C 

overnight to halt metabolic change. Extraction was then performed using a 

chloroform/methanol method based on Folch et al. (1957), during which hosts were 

transferred Individually into eppendorf tubes, methanol (1 ml) was added and samples 

were homogenised with a ball mill (2 min, 30 revolutions per second). The resultant 

homogenate was transferred to glass tubes, water (0.4 ml) and chloroform (2.5 ml) 

were added and samples were vortexed for 10 minutes. The resultant mixture was 

centrifuged (20 min, 10,000xg) until two layers formed. The two layers were 

separated with a Pasteur pipette and the aqueous extract dried down using a 

centrifugal evaporator (Thermo Scientific SpeedVac). 

Proton Nuclear Magnetic Resonance eH NMR) spectra of extracts were obtained using 

a Bruker Avance spectrometer, operating at 400.13 MHz lH resonance frequency and 

equipped with a 5mm quadruple nuclei probe (QNP), a BACS·120 autosampler and z­

axis gradients. All spectra were measured with 298K Internal probe temperature. Prior 

to acquisition of spectra, each sample (0.6 ml) was mixed with 0 20 (0.1 ml) and 

vortexed to ensure thorough mixing prior to being placed into 5mm o.d. NMR tubes. 
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In order to suppress the large water signal, spectra were acquired using a 

presaturation solvent suppression pulse sequence (NOESYPRESAT) with a relaxation 

delay of 1.5 Sf during which the water resonance was selectively irradiated. Typically 

128 transients were collected into 32k data pOints with a spectral width of 6000 Hz. 

Prior to Fourier Transform, exponential line broadening of 0.3 Hz was applied to free 

induction decays (FIDs) which were also zero-filled by a factor of 2. Spectra were 

manually phase and baseline corrected and chemical shifts were referenced internally 

to the lactate methyl doublet at 8 1.33 in TopSpin version 2.1 (Bruker, GMbH). 

Many of the IH NMR spectral peaks could be assigned by inspection based upon 

comparison with existing literature (Gibb et al. 1997, Bundy et al. 2001) in 

combination with an in-hose spectral database. Further confirmation of metabolite 

identification was made using a two-dimensional correlation (COSY) NMR spectrum 

that provides cross-peaks in a contour plot between the chemical shifts of spin­

coupled nuclei. Acquisition and processing parameters for COSY spectra included a 

relaxation delay of 1.86 Sf a spectral width in F1 and F2 of 5995.2 Hz, 2-k time 

domain pOints, 128 F1 increments, 64 transients per increment, and qsine apodization 

in F1 and F2 and with 2-k pOints In F1 and F2. 

2.3.5 Data analysis 

Data generated In Parts 1-3 were analysed using generalized linear modelling with 

Genstat statistical package (Version 8, VSN International, Hemel Hempstead, UK). 

Parametric cohort survival analysis (Crawley 1993) was used to assess survival time, 

age-dependency and the effect of host weight on the longeVity of paralysed hosts 

(Part 1). Effects of host age on parasitoid behaviour and developmental biology (Parts 

2 and 3) were explored using logistic analyses for proportional response variables 

(host acceptance, developmental mortality, contest outcome), log-linear analysiS for 

integer response variables (clutch size) and standard analysis for numerical responses 

(offspring weight) (Crawley 1993, Hardy and Field 1998, Wilson and Hardy 2002). In 

logistiC analysis of contest outcome the (ungrouped binary) response variable was 

defined as l=red wasp won or O=red lost (Petersen & Hardy 1996, Humphries et al. 

2006) and differences in wasp weight, host weight and host age and their Interactions 

were fitted as explanatory variables. In log-linear analysiS and analyses of grouped 

binary data, quasi-Poisson and quasi-binomial distributions of residuals were adopted, 

using empirically estimated scale parameters, to take potential overdispersion into 
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account (Crawley 1993, Wilson and Hardy 2002). Formal evaluations of deviation from 

binomial variance in sex ratio and developmental mortality used the Meelis test 

(Krackow et al. 2002). 

Metabolomic data from Part 4 in the spectral region of 5 0.5-10.0 were reduced to 

ASCII format using AMIX (Analysis of MIXtures, version 3.9.2, Bruker. GmbH, 

Germany). Each NMR spectrum was reduced to 238 discrete regions of equal width 

(0.04 ppm), and the integral of each region was determined (Holmes et al. 1998) 

resulting in a table of intensity. The region 8 4.3-5.1 was removed from all data 

because it contains the large water peak. Each remaining region was then normalized 

to the total spectral area (,block normalisation') to minimise the effects of 

concentration differences between the samples. 

Umetrics SIMCA-P (version 11) was used for multivariate analysis of data from Part 4. 

Two types of scaling were used, mean-centring (subtracting the calculated average of 

a variable from the data so that the mean for each variable is 0) and mean-centring 

followed by autoscaling (division of each variable by the standard deviation for that 

variable). The use of mean-centred, but not autoscaled, data in basic multivariate 

analyses such as Principal Component Analysis (PCA) often results in an emphasis on 

perturbation of the metabolites that are present in high concentrations, whereas 

autoscaled data convert each variable to a standard variable with equal weight and 

are more sensitive to changes in the levels of minor metabolites. For the purpose of 

illustrating the results of this study, autoscaling of the data Is reported. peA was used 

for initial visualization of the IH NMR spectra (Part 4); this reduced the dimensionality 

of a dataset, which had a large number of variables, while maintaining as much 

variation within the data as possible (Massart et al. 1988). The results of PCA are 

discussed in terms of component score vectors (observation coordinate along a PC) 

and loading vectors (direction coefficient of a PC). 

Partial least Squares (PLS) regression modelling (Geladl & Kowalski 1986) was applied 

to determine the covariance between the NMR spectra and host age: a regressive 

model was built by maximizing the covariance between a set of variables, X, and a 

dependent variable, Y and then used to predict values of Y for a given set of X 

variables. The number of latent variables (three) used to predict Y was chosen from 

when the least error in prediction was observed. The PLS model was validated by 

dividing the data set and using half of the spectra from each group of samples as a 
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'training set' for the model and the remaining half as a 'test set'. The process was 

repeated four times using different combinations of samples to form the training and 

test sets in order to evaluate stability of the model. 

2.4 Results 

2.4.1 Part 1: Longevity of paralysed hosts 

Some hosts lived for more than three weeks post-paralysis, but most had died by this 

age (Figure 2.1). We fitted two alternative initial models of survival time: an 

exponential model (estimating the rate of mortality but assuming to be constant over 

time) and a Weibull model (additionally estimating variation in mortality rate). The 

Weibull gave a significantly better fit (G1 = 21.2, P < 0.001) indicating that the daily 

probability of mortality increases significantly as hosts age (Figure 2.1). Adding host 

weight to this statistical model did not Improve the fit, indicating that there is no 

relationship between host size and longevity (G1 = 0.02, P> 0.1). 

These survival results were then used to choose and define three age classes of hosts 

for Part 2: as :::::90% of hosts died by 16 days, we defined hosts of 16-days since 

paralysis as 'old'. All hosts survived for at least one day post paralysiS and l-day old 

hosts were defined as 'young'. At the intermediate age of a-days ::::: 70% of hosts were 

alive and these were defined as 'middle aged'. For Part 3 we similarly defined 'older' 

hosts as those at 10- or 12-days post-paralysis, when :::::50% of hosts were alive, 

'younger' were defined as l-day post paralysis. It was thus the age classifications, 

rather than the hosts themselves, that were used In subsequent experiments. 
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Figure 2.1 Cohort survival of paralysed hosts. The arrows show the age-classes used 

as host age treatments in subsequent experiments. By week one ~14% of the hosts 

had died and by week two ~76% of the hosts died. 

2.4.2 Part 2: Effects of host age on host weight, parasitoid 

reproductive behaviour and life-history 

2.4.2.1 Host weight change 

The weight of individual hosts generally decreased between paralysis by the stinging 

wasp and presentation for oviposition (Figure 2.2). Weight loss was significantly 

greater for initially heavier hosts (F1, 136= 17.99, P< O.OOl) and for hosts that were 

stored for longer before, and were still alive at, presentation (F2,136 = 74.53, 

P<O.OOl); these effects also interacted significantly (F 2,136 = 3.70, P= 0.027) i.e. the 

graphs are not parallel. 
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Figure 2.2 The effects of initial weight and time since paralysis on the weight lost by 

surviving hosts. 

2.4.2.2 Host acceptance 

The probability that a female oviposited on a given host was not significantly affected 

by the weight of the host at presentation (G1 = 1.79, P = 0.181) or by an interaction 

between host weight and age (G2 = 2.73, P= 0.065) but was affected by the age of 

the host (G2 = 3.33, P = 0.036, all results from logistic analysis) with the probability 

of egg laying declining as host age increased (Figure 2.3). 

38 



E a. 
B 
u 
III 

J!l 
(/) 
0 .c 
'0 
c: 
0 
"€ 
0 a. e 

Q. 

0.8 

0.6 

0.4 

0.2 

o 

T 

1 

Young 

.. 

Mddlo-aged 

Host age 

Old 

Figure 2.3 Probability of egg laying by female G. nephantidis when presented with 

hosts at different ages since paralysis. Means ± (asymmetric) S.E.s are back 

transformed from log it-scale estimates. 

2.4.2.3 Clutch size 

The number of eggs laid on the host (Figure 2.4) by the 125 fema les that accepted the 

host for oviposition was positively related to host weight (log - liner analysis corrected 

for overdispersion: F1,121 = 21.10, P< O.OOl) and negatively to host age (F2,121 = 
22.87 , P<O.OOl) with no significant interaction between these variables F2,119 = 0.66, 

P= 0.516) . The sizes of clutches laid on young and middle-aged hosts were, however, 

statistically indistinguishable (aggregation of factor levels: F1,121 = 0.0005, P= 0.979). 
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Figure 2.4 Clutch size decisions in relation to host age and weight. 

2.4.2.4 Developmental mortality 

The probability of egg survival to adulthood was negatively influenced by host age and 

positively influenced by host weight and also by clutch size via an interaction with host 

age (Table 2.1). These results derive from 124 of the 125 clutches laid, as an 

unknown number of offspring escaped from a vial containing a brood of initially 11 

eggs. The mean probability of an egg developing successfully was 0.586 (S .E. ±0.06) 

on young hosts, 0.430 (±0.08) on middle-aged hosts and 0.273 (±0.06) on old hosts . 

Survival was unaffected by the weight of the host divided by the number of eggs laid, 

a rough index of the quantity of resource available to each offspring (F1•122 = 0.006, P 

= 0.978). 
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Table 2.1 Factors affecting egg-to-adult survival. Results are from backwards 

stepwise logistic ANCQVA, corrected for overdispersion as there was a strong 

tendency for eggs within a brood to survive to adulthood or die during development 

collectively (Meelis test: R = 3.88, U = 1S.0, P<0.001). 

Degrees of 
Source freedom F p 

Host age 

Host weight 

Clutch size 

Host age x Clutch size interaction 

Host age x Host weight Interaction 

Host weight xClutch size interaction 

Host age x Host weight xClutch size interaction 

Residual deviance 

2 

2 

2 

1 

2 

1 

2 

4.54 

4.69 

0.39 

4.30 

0.17 

0.00 

1.84 

0.013 

0.032 

0.535 

0.016 

0.843 

0.997 

0.164 

112 678.16 

Total deviance 123 896.09 

2.4.2.5 Sex ratio 

The sex ratios (proportion of adult offspring that were male) of broods that produced 

adult offspring (N=69) were unrelated to the age of the host at oviposition (logistic 

analysiS corrected for overdispersion: F2/68 = 0.06, P = 0.94) and qualitatively the 

same result was found if broods containing only male offspring (which are likely to 

have been produced by unmated mothers, Hardy & Cook 1995) were excluded (F2/so = 

0.47, P = 0.63). The mean sex ratio of broods containing females (indicating the 

mother had mated) was 0.129 (S.E. ± 0.2) and sex ratio variance was not 

significantly different from binomial (Meelis test: R= 0.833, U = -0.44, P>0.05). 

2.4.2.6 Offspring size 

Adults developing from broods containing females had greater dry weight than those 

In broods containing males only (Fl/6S = 5.80, P = 0.019). As males are known to be 

smaller than females when developing on hosts of unmanlpulated quality (e.g. Hardy 

& Mayhew 1998) and are usually the much rarer sex in broods produced by normal, 

mated, mothers (Hardy & Cook 1995 and see above), further analysis was restricted 

to the 44 broods containing entirely or largely females (sex ratios ranged between 0.0 

and 0.2). 
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Dry weight was positively influenced by host weight (F1,38 = 8.51, P = 0.006) and 

brood size (F1,38 = 24.35, P <0.001) and was negatively influenced by the age of the 

host at presentation (F2,38 = 3.49, P = 0.04) but there was no significant difference 

between the dry weights of wasps developing on young and middle aged hosts (F1,39 = 

0.01, P = 0.918, Figure 2.5). There were no significant interactions between the 

effects of host age, brood size and host weight. 
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Figure 2.5 Effect of host age on adult parasitoid mean dry weight (± S.E.D). 

Parasitoids developing on 1- and a-day old hosts had similar weights but those 

developing on 16-day old hosts were smaller. Parasitoid weight was also influenced 

by brood size and host weight (see text). 

2.4.3 Part 3: Effects of host age on parasitoid contest behaviour 

The probability of winning a contest was increased by both being the larger contestant 

and by being in initial possession of the larger host (wasp weight difference x host 

weight difference interaction: G1= 6.18, P= O.013) but not by the age of a contestant's 

host (G1= 1.44, P=0.231). However, a tendency for owners of younger hosts to win 
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contests was detected when host age was f itted in a model with wasp weight 

difference or fitted alone (host age: G1 = 4.62, P= O.032) . These latter indications lead 

to the repeat of the experiment with host weight differences minimised as far as 

practicably possible. This first series of replicates also generated one instance of fatal 

fighting between contestant females. 

Analysis of data from the second series of replicates indicated that probability of 

winning a contest was increased by being the larger contestant (G1 = 18.36, P< O.OOl, 

Figure 2.6a), by being in initial possession of the larger host (G1 = 19.77, P= O.002, 

Figure 2.6b) and by being the initial owner of the younger host (G1= 17.58, P< O.OOl, 

Figure 2.6a,b). There were no significant interactions between these main effects. 
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Figure 2.6 The influences of differences in wasp weight, host weight and host age on 

the outcomes of owner-owner contests. Panel (a) shows effects of wasp weight and 

host age differences while panel (b) shows effects of host weight and host age 

differences. The curves are the estimated probabilities of the red-marked wasp 

winning when it was the initial owner of either the young or the old host (see text 

section 2.3.3). The parameters for these graphs were estimated by separate logistic 

analysis of size and age and weight and age; the main text reports results from 

analysis of these three effects simultaneously. In cases of overlap, data points are 

shown vertically displaced to illustrate sample sizes. 
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2.4.4 Part 4: Effects of host age on metabolomic state 

The compounds identified within paralyzed hosts included free primary amino acids, 

sugars (such as glucose), citric acid cycle intermediates (such as citrate, a­

ketoglutarate and fumarate) and other organic acids including lactate, formate and 

acetate. A nucleotide derivative was observed and tentatively assigned as ATP on the 

basis of peak multiplicity: the downfield singlet observed at 8 8.61 was found to be 

present at 8 8.54 in the reference spectrum. Similarly, the resonance at 8 5.20 was 

tentatively assigned to trehalose (a sugar) on the basis of comparison with literature 

(Gibb et al. 1997) but due to peak overlap with glucose in the region 8 4-3, this 

identification is unconfirmed. Many other compounds within the spectrum remain 

unassigned, as is common with NMR spectra of biological samples. Figure 2.7 shows a 

typical 400 MHz lH NMR spectrum of an aqueous extract from a host 16 days post­

paralysis and the aSSignments of all identified peaks within the spectra are given in 

Table 2.2. 
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Figure 2.7 Typical 400 MHz NMR spectrum of aqueous caterpillar extract, 16 days-post 

paralysis. The lower figure shows the aliphatic spectral region (04.5 - 0.5), whereas 

the upper figure shows the aromatic spectral region (0 9.0-5.0). Amino acids are 

labelled according to the 3-letter code. 
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Table 2.2 Assignment of resonances observed in the lH NMR spectra of caterpillars. 

Chemical Shift (Multiplicity) 
0.94 (t), 1.01 (d), 1.25 (m), 1.45 (m) 
0.96 (t), 1.71 (m) 
0.99 (d), 1.04 (d), 2.28 (m) 
1.19 (d) 
1.19 (t) 
1.32* (d), 4.25 (m) 
1.33 (d), 4.11 (q) 
1.46 (m), 1.71 (m), 1.89 (m), 3.00 (t) 
1.69 (m), 1.91 (m), 3.23 (t) 
1.48 (d) 
1.92 (s) 
2.02 (m), 2.36 (m), 3.34 (m), 3.42 (m), 4.13 

(m) 
2.07 (m), 2.34 (m) 
2.13 (m), 2.44 (m) 
2.40 (s) 
2.44 (t), 3.00 (t) 
2.57 (ABX), 2.70 (ABX) 
2.75 (5), 3.63 (5) 
2.87 (s) 
2.88 (m), 2.94 (m), 4.00 (m) 
3.01 (s), 3.90 (s) 
3.25 (dd), 3.40 (t), 3.47 (ddd), 3.49 (t), 3.72 

(dd), 3.90 (dd), 4.64 (d) 
3.27 (5), 3.90 (s) 
5.14 (d) 
5.20 (d) 

3.36 (5) 
3.41 (t), 3.54 (dd), 3.71 (t), 3.74 (m), 3.84 

(ddd), 5.24 (d) 
3.53 (5) 
6.51 (s) 
6.92 (d), 7.19 (d) 
7.05 (5), 7.77 (5) 
7.21* (t), 7.54 (d), 7.74 (d) 
6.15 Cd), 8.28 (s), 8.61 (5) 
8.46 (s) 

Metabolite 
Isoleucine (lie) 
Leucine (Leu) 
Valine (Val) 
3-p-hydroxybutyrate 
Ethanol 
Threonine (Thr) 
Lactate 
Lysine (Lys) 
Arginine (Arg) 
Alanine (Ala) 
Acetate 
Proline (Pro) 

Glutamate (Glu) 
Glutamine (Gin) 
Succinate 
a-ketoglutarate 
Citrate 
Sarcosine (N-methylglycine) 
Trimethylamine 
Asparagine (Asn) 
Creatine 
p-Glucose 

Betaine 
Unassigned sugar 
Unassigned sugar, 
trehalose 
Methanol 
a-Glucose 

Glycine (Gly) 
Fumerate 
Tyrosine (Tyr) 
Histidine (His) 
Tryptophan (Trp) 

possibly 

Nucleotide derivative, probably ATP 
Formate 

*Resonance partially obscured due to peak overlap. Letters t, d, m & s stand for peak 

multiplicity, where t=triplet, d=doublet, m= multiplet & s=singlet. 
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Using three principal components, the PCA model had R2X (cum) of 0.383, where PCs 

1, 2 and 3 explained 20.3, 9.5 and 8.55 of the total spectral variation, respectively . 

The scores plot (Figure 2.8) shows clear separation between all three host-age groups 

across the first three principal components. Cross-validation of the partial least 

squares (PLS) regression resulted in R2X and R2y of 0.38 and 0.99, respectively; 

Q2(cum) was 0.74 (Table 2.3). The root mean square error of estimation (RMSEE) was· 

0.72 ±O.2, and the root mean square error of cross validation (RMSECV) was 4.74 

±1.9. 
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Figure 2.8 Scores plot from principal component analysis illustrating clustering of host 

metabolic composition according to host age. 
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Table 2.3 Cross-validation results from partial least squares regression 

Actual days post­
paralysis 

1 

8 

16 

Predicted days post­
paralysis 

(training set) 

1.09 ± 0.5 

7.94 ± 0.8 

15.92 ± 0.5 

Predicted days post­
paralysis 

(test set) 

3.40 ± 1.9 

9.78 ± 5.8 

15.76 ± 5.9 

The spectral regions in which the largest metabolomic changes between days were 

observed are shown in Table 2.4. The variable importance in the projection, VIP, values 

reflect the importance of spectral regions or 'buckets' in the PLS model both with respect 

to Y (the number of days post-paralysis of the hosts) and with respect to X (the NMR 

spectra), and the VIPs of different terms can be compared. Spectral regions with a VIP 

larger than 1 are the most relevant for explaining Y (the number of days post-paralysis). 

There were decreases in the levels of glucose and ATP, metabolites associated with energy 

release through aerobic respiration but an increase in citrate. There was also an increase in 

ethanol, a product of (non-animal) anaerobic respiration and in most of the detected amino 

acids (Table 2.4). 

48 



Table 2.4 Spectral regions with the largest between-day metabolomic changes 

Spectral 
'Bucket' 

(VIP 
coefficient) 1 

1.16 (1.328) 
1.2 (1.527) 
3.2 (1.595) 
3.24 (1.562) 
2.0 (1.149) 
2.04 (1.013) 
2.36 (1.096) 
2.52 (1.495) 
2.56 (1.696) 
2.84 (1.696) 
2.88 (1.824) 
2.92 (0.859) 
2.96 (0.772) 
3.16 (1.596) 
4.0 (1.652) 
7.08 (1.650) 
7.8 (1.002) 
3.4 (1.792) 
3.48 (1.791) 
3.72 (1.466) 
3.76 (1.689) 
3.84 (1.239) 
3.88 (1.468) 
5.24 (1.508) 
6.92 (1.757) 
7.2 (1.279) 
7.0 (1.268) 
7.6 (1.645) 
6.16 (1.112) 
8.28 (1.1921) 
8.64 (0.939) 

Metabolite 

Ethanol 

Unassigned 

Proline 

Citrate 

Asparagine 

Histidine 

Glucose 

Tyrosine4 

3-methyl histidineS 

Nucleotide 
derivative (ATP) 

Mean Fold Changei 

from 1 to 8 days 
% standard 
deviation 

1.08 ::I:: 0.00 

1.20 ::I:: 0.01 

2.31 ::I:: 0.17 

1.38 ::I:: 0.16 

0.86::1:: 0.11 

1.86::1:: 0.67 

<LOD 

0.70::1::0.17 

Mean Fold 
Change2 from 1 

to 16 days 
% standard 
deviation 

1.36::1:: 0.05 

1.43 ::I:: 0.02 

0.82::1:: 0.03 

2.15::1:: 0.24 

1.48::1:: 0.30 

2.13 ::I:: 0.50 

0.69::1:: 0.10 

3.36::1:: 1.49 

3.56::1:: 0.05 

0.77::1:: 0.06 

lThere is more than one spectral bucket value for each metabolite because more than one 
peak per metabolite is usually obtained. 
2Mean fold changes were calculated taking Into account all peaks for a particular compound 
and all caterpillars in the group: e.g. a fold change of 1.0 indicates no change, 2.0 Indicates 
a doubling of the metabolite and 0.5 indicates the metabolite has halved. 
3NC denotes no change. This has been noted where metabolite levels changed by :s 1 
standard deviation from their levels at day 1. 
~he intenSity of the tyrosine resonances are above the limit of detection (defined as 3x the 
noise level) in all samples but in some samples are below the limit of quantification (defined 
as lOx the noise level) hence the high S.D. of the measured fold change. 
SPeak is below the limit of detection (LOD) and quantification in extracts from hosts 1 and 8 
day old hosts. 
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2.5 Discussion 

There is clear evidence that the quality of a host is influenced by time since paralysis. 

Specifically, G. nephantidis eggs that were laid onto older hosts had a lower 

probability of developing to adulthood than eggs laid onto younger hosts and the 

surviving offspring were smaller as adults. Increased mortality is of obvious detriment 

to offspring fitness and smaller body size is associated with lower longevity and 

fecundity in adult G. nephantidis females (Hardy et al. 1992) and also with reduced 

success in 'dyadic' contests for resources that are vital for reproduction (Petersen & 

Hardy 1996, Humphries et al. 2006, this study). Further, adult G. nephantidis females 

are able to assess age-related components of host quality and attune their behaviour 

accordingly: older C. cephalonica larvae were accepted less frequently for oviposition 

and those accepted had smaller clutches laid onto them than did younger hosts of 

similar size. In addition, females guarding an older host tended to lose contests 

against females guarding a younger host, suggesting that the Importance that 

contestants place on retaining the host they are defending (resource value) declines 

with its age; this is in direct analogy to interpretations of the effect of host-weight 

differences in owner-owner contests in this species (Humphries et al. 2006). Our 

results (Figure 2.6) also show that contest outcomes are Influenced simultaneously by 

two aspects of resource value asymmetry (host age and size) plus asymmetries In 

resource holding potential (contestant size). Similarly, Figure 2.4 shows that clutch 

size decisions are influenced by host age and size simultaneously. 

Sex ratios in this study (mean = 0.129, variance ratio = 0.833) were quantitatively 

similar to previous estimates for G. nephantidis (e.g. 0.093 and 0.743, Hardy & Cook 

1995) and were the only assessed aspect of G. nephantidis reproductive biology that 

was unaffected by host age. This suggests that host age affects the mortality of both 

sexes equally and/or that ovipositing mothers do not attune their sex allocation 

decisions to the host age component of host quality: this Is not unexpected since, as a 

gregarious speCies, typically laying clutches of around 5-15 eggs, sexually differential 

investment returns in G. nephantidis are likely to be more strongly affected by 

population mating structure than by host quality (Godfray 1994, Hardy & Cook 1995, 

Mayhew & Godfray 1997, West 2009). Sexually differential developmental mortality 

also appears to be absent in this and other Goniozus species (Hardy & Cook 1995, 

Khidr et al. submitted, Chapter 6). 
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The assessment of host size by G. nephantidis has been shown in several previous 

studies, for instance Hardy et al. (1992) found that clutch size is adjusted to host size, 

whether experimentally measured as host length, width or weight, and there have 

been many other demonstrations of host-size dependent oviposition decisions in 

parasitoids (Schmidt 1991, Godfray 1994). The mechanisms by which parasitoids 

assess size include measuring the host by walking along it (Schmidt 1991) and G. 

nephantidis females spend the vast majority of the period between stinging a host and 

laying eggs on it, either motionless on or next to the host or moving slowly along its 

length on the host (e.g. Goubault et al. 2007b). 

In contrast, the assessment of host age since paralysis by G. nephantidis is a novel 

finding. There have been many prior reports of host age, prior to attack by 

parasitoids, influencing host quality and oviposition decisions (e.g. van Alphen & 

Drijver 1982, Ode & Strand 1995, King 1998, Husni & Honda 2001, Ueno 2004, Hegazi 

& Khafagi 2008). However to our knowledge, this Is the first study documenting the 

influence of the age of paralyzed but unparasitized hosts on the behaviour of adult 

parasitoids. For the majority of parasitoids there is little scope for post-paralysis age 

to affect host acceptance and oviposition decisions as these are usually made within 

minutes or even seconds of host encounter. Nonetheless, there are several thousand 

species of bethylids, and possibly other taxa, for which assessment of post-paralysis 

host age may have adaptive value. 

The post-paralysis host age effects we have found indicate that biochemical changes 

occur within paralysed hosts and that these are detected by adult G. nephantidis and 

influence the development of their progeny. The nutritional status of the host can be 

considered as of a central importance to parasitoid life-history strategies and the 

energy metabolism associated with these (Rivers & Denlinger 1995, Mackauer et al. 

1997). It is likely that G. nephantidis assesses host nutritional state via chemical 

sense organs on, for instance, its ovipositor, mandibles, tarsal and/or antennae, which 

are able to respond to amino acids and other chemicals: such structures and abilities 

are present in other parasitoid species (Schmidt 1991, Vinson 1991, Qulcke 1997). 

Observations G. nephantidis may non-destructively host feed and/or malaxate 

paralysed hosts suggest that it assessed host chemistry via taste. 

Idiobiont parasitoids tranquilize their larval hosts with venom. In Goniozus legneri, a 

congener of G. nephantidis, venom consists of low molecular weight proteins and 
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polypeptides including polyamines (e.g. putrescine), proline and dopamine (Skinner et 

al. 1990). Venom frequently disrupts host physiology and development by evoking 

paralysis, through inhibition of host moulting, and in some cases, by disrupting 

calcium homeostasis in specific host tissues (Rivers & Denlinger 1994, Thompson & 

Dahlman 1998, Parkinson & Weaver 1999, Rahbe et al. 2002, Rivers 2004). The 

impact of venom produced by ectoparasitoids on the nutrient composition of host 

haemolymph has been investigated in several parasitoid species. In general, venom 

induced changes to the host's metabolism involve freeing nutrients (such as fatty 

acids, Nakamatsu & Tanaka 2004, or free amino acids Guerra et al. 1993, into the 

host's haemolymph which enhances uptake by developing parasitoids and frees them 

from substantial metabolic costs of chemical breakdown (Garrett & Grisham 1999). 

The simple fact that envenomated C. cephalonica hosts cease to feed is probably a 

major influence on their metabolomic profiles. Harvey et al. (1995) found that smaller 

parasitoids emerged from lepidopteran hosts that had been starved prior to 

parasitism, and in Drosophila flies, starvation induces autophagy, whereby non­

essential proteins and organelles are recycled to generate amino acids for other 

purposes (Scott et al. 2004), a similar process is likely to account for our observations 

of increased amino acid levels in older C. cephalonica hosts (Table 2.4). Thompson 

(1981 and Quicke 1997) showed that parasitoids drawn from a wide array of 

hymenopteran taxa (though not including the Bethylidae) had absolute requirements 

for 10 amino aCids: arginine, histidine, isoleucine, leucine, lysine, methionine, 

phenylalanine, threonine, typtophan and valine. Eight of these were found In C. 

cephalonica (the exceptions are methionine and phenylalanine, Table 2.2) along with 

seven other non-essential amino acids. Amino acids can be used by wasps to 

synthesise carbohydrates and thus a general increase In amino acid levels might be 

expected to enhance, rather than decrease, the quality of C. cephalonica as hosts for 

G. nephantidis (see also Yazgan 1972). However, there were also large changes other 

(non-amino acid) metabolites as paralysed C. cepha/onica aged: glucose and ATP, 

both closely associated with energy, decreased and dietary glucose has been found to 

positively affect parasitoid growth (Thompson 1979, Hu et al. 2001). Citrate levels 

increased as hosts aged from 1 to 8 days post-paralysis and were also higher in 15-

day old hosts compared to i-day old hosts, but not so much as in 8-day hosts. Citrate 

is important as an intermediate in the citric acid cycle, and therefore occurs In the 

metabolism of all organisms and might also be produced by fermentation (see below). 
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In larvae of another lepidopteran species, the activity of midgut citrate synthase 

decreased when feeding ceased (Chamberlin & King 1998): in my study levels of 

citrate were higher after 8 days of starvation but then were not as high after a further 

8 days, suggesting a dome shaped relationship for the citrate component of host 

quality with time. The levels of ethanol in hosts also increased with age. Ethanol is a 

waste product of metabolism of microbes, such as yeast, and some plants, but not of 

animals. While some parasitoid species inject yeast-like organisms into their hosts 

which then develop in the intestines of feeding parasitoid larvae (Quicke 1997) we 

regard it as more likely that increased ethanol levels we detected are due to 

fermentation by yeast in the host's diet (see Materials and Methods). As ethanol acts 

as a toxin, levels of ethanol are likely to be negatively correlated to the nutritional 

quality of hosts. 

Post-paralysis but pre-parasitism ageing is a relatively unusual component of host­

parasitoid interactions, but our metabolomic analysis serves more broadly as an 

illustration of methodology that can readily be employed to understand the 

biochemical baSis of a variety of host quality correlates across a wide range of host­

parasitoid associations (see also studies that used NMR before: Thompson 1990, 

Thompson & Dahlman 1998, Thompson 2001) for Instance, hosts of different species 

are likely to have different metabolic profiles, making them suitable hosts for some 

parasitoid species but not for others. Similar arguments can be made for host 

developmental stage and most, if not all, of the facets of host quality listed In the 

Introduction. An advantage of NMR as an analytical approach Is that it allows 

exploration of the biochemical changes occurring without a priori focus on given 

classes of molecular nutrient metabolites (Jardetzky & Roberts 1981, Keun et al. 2002, 

Rahbe et al. 2002, van Dorsten et al. 2006) or the need to assay different sub-sets of 

the organisms sampled for different chemical classes. For Instance, Rivers and 

Denlinger (1994) carried out separate tests, on separate sets of hosts, for amino 

acids, proteins, keto acids, lipidS, glycogen and trehalose to Investigate the association 

between various changes in host's physiology with nutrient availability. In addition, 

nutrient identification into different sub-classes (e.g. lipids, carbohydrate and protein) 

might not be used equivalently for reproduction and maintenance (Strand & Casas 

2008). Thus, NMR has the potential to assess all of these biochemical components on 

the same time from a single host. 
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2.6 Conclusions 

Paralysed but unparasitized C. cepha/onica larvae are unable to feed but may not die 

for several weeks: during this period they have a 'shelf-life' in that their quality as 

hosts declines with time. This decline in quality is manifest in its effects on key life­

history components of G. nephantidis development (immature mortality and body size 

of surviving adults), and adult behavioural decisions (host acceptance, clutch size and 

contest outcomes). This decline in quality appears largely nutritionally based with 

decreases in energy-associated metabolite and increases in waste products playing the 

most likely roles. While post-paralysis but pre-parasitism ageing is an unusual 

component of host-parasitoid interactions, NMR analyses can be employed to 

understand the metabolomic basis of a variety of host quality correlates, such as 

developmental stage and species, across a wide range of host-parasitoid associations 

and are predicted to play an important future role In both biocontrol applications of 

parasitoids and further studies of their evolutionary and behavioural ecology. 
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Part two: Kin recognition, aggressive behaviour and chemical 

cues 
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Chapter 3: Two components of kin recognition 

influence 

competition 

3.1 Abstract 

parasitoid aggression in resource 

Kin recognition, defined as the ability to differentiate genetically related individuals 

from unrelated individuals, plays a key role in a range of biological processes ranging 

from mate choice to altruistic behaviours but kin-based altruism may be overridden by 

competition for resources. Here we explore kin recognition in a gregarious parasitoid 

wasp, Goniozus /egneri, which exhibits adult female-female contests for hosts. Contest 

behaviour was less aggressive when competitors were more closely related and also 

when females had developed on the same host (in nature, brood-mates will almost 

always be siblings). Goniozus legneri appears to be the only parasitoid species utilizing 

both genetically based (phenotype matching) and environmentally based (familiarity) 

mechanisms of phenotypic kin discrimination. While perceived resource value affects 

aggression in Goniozus, resource competition did not completely override kin 

recognition effects. 

Published as: Uze1 A, Khidr1 S K & Hardy ICW. 2012. Two components of kin 

recognition influence parasitoid aggression in resource competition. Animal Behaviour. 

83: 793-799. 

lThese authors contributed equally to the study 
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3.2 Introduction 

Kin recognition, defined as the ability to differentiate genetically related individuals 

from unrelated individuals, plays a key role in a range of biological processes ranging 

from mate choice (Ode et al. 1995, Pusey & Wolf 1996, Enigl & Schausberger 2004, 

Lihoreau et al. 2007, Metzger et al. 2010) to altruistic behaviours (Hamilton 1964a, 

Mateo 2004, Lize et al. 2006, Gardner & West 2007). Behaving altruistically toward 

relatives by definition involves costs to the altruist. Kin selection theory predicts that a 

genetic trait may be selected even if it does not generate an advantage to the actor 

(i.e. direct fitness), provided that it increases sufficiently the fitness of other 

individuals sharing the actor's genes (i.e. indirect fitness) (Hamilton 1964b, Grafen 

1984, Frank 1998, Griffin & West 2002). This suggests that Individuals should be less 

aggressive (more altruistic) towards closer relatives when conflicts of direct-fitness­

interest arise. 

Broadly, two categories of kin recognition mechanism exist; some species utilize 

phenotypic kin recognition, ultimately based on individuals' features while others may 

use non-phenotypic kin recognition (Waldman 1987, 1988, Holmes 2004). Non­

phenotypic kin recognition relies on cues associated with a common environment such 

as the nest or spatial location, rather than on the perception of phenotypic traits 

expressed by individuals themselves (Waldman 1987, Hepper 1991, Holmes 2004, Ruf 

et al. 2010). Phenotypic kin recognition relies on learning the traits expressed or 

borne by individuals and can operate by different mechanisms such as familiarity and 

phenotype matching. Familiarity refers to Interactions between Individuals regardless 

of genetic relatedness: any Individual will become familiar if It Is encountered often, 

whether or not it is a relative. By contrast, phenotype matching Involves the 

phenotypic cues of its siblings or Its own cues (Gadagkar 1985). Disentangling 

phenotype matching from familiarity would require related Individuals that have never 

met before to recognize each other as kin. 

Behavioural aggression is often manifested when Individuals compete for resources. 

However, influences of kin recognition on competition have been generally Ignored In 

ecological studies (Waldman 1988, Llze et al. 2006). Moreover, recent studies have 

suggested that an excessively high level of kin competition may cancel-out the 

benefits of being less aggressive toward related Individuals rather than non-relatives 

(West et al. 2001, 2002, Segoli et al. 2009a). While the ability to treat kin 
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differentially may influence interference between related Individuals competing for a 

given resource, only a few studies have tested this empirically: across fig wasp 

species, the level of fighting between adult males shows no correlation with the 

relatedness of interacting males (West et aJ. 2001) but is negatively correlated with 

future mating opportunities (the contested resource). In contrast, In the 

polyembryonic wasp genus Copidosoma attack by the larval soldier caste is unaffected 

by levels of resource competition but inversely correlated to competitor relatedness 

(Giron et al. 2004, see also Segoli et al. 2009b) and is mediated by kin recognition 

based on properties of the larval extra-embryonic membrane (Giron & Strand 2004, 

Segoli et al. 2009a). However, in the parasitoid wasp genus Mellitobia neither the 

value of the contested resource nor the relatedness of competitors Influence levels of 

aggression (Innocent et al. 2011). 

In this study, we explore the effect and basis of kin recognition among adult females 

on contest behaviour in the parasitoid wasp Goniozu5 legnerl Gordh (Hymenoptera: 

Bethylidae). Individual G. legner! females paralyze each host by stinging and, around 

24 h later, lay 1-20 eggs onto its surface (Hardy et al. 1998). The developing larvae 

then feed externally (ectoparasitically) and thus potentially encounter both kin and 

host cues. Maturing females tend to disperse around 24h after eclosion from the 

cocoon (Hardy et al. 2000). On finding and paralysing a host, a female typically 

remains with it for several days and defends It, and the developing brood, against 

conspecific intruders (sub-social behaviour, Choe & Crespi 1997, p3). Contests In 

Goniozu5 involve chases and escalated fights but are very seldom fatal. As predicted 

by game-theory, the outcomes of owner-intruder contests are Influenced by 

asymmetries in both body size (fighting ability) and prior ownership status (Goubault 

et al. 2006, Bentley et aJ. 2009). Two non-owner females encountering an undefended 

host simultaneously will also engage In direct competitive behaviour (see below). Such 

host-ownership contests may take place between closely or distantly related 

conspecifics. We therefore Investigated the Importance of competitor relatedness, 

alongside the influence of ownership and female size asymmetries, on agonistic 

behaviour and contest outcomes, and used larval transfer between hosts to explore 

any mechanisms of kin recognition. 
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3.3 Material &. Methods 

3.3.1 Parasitoids 

This study employed two strains of G. legneri. One was obtained in 2003 from a 

commercial insectary in the USA (the original material is believed to have been 

collected from southern Uruguay in 1978, Gordh 1982). This strain, which we term 'U', 

has been used in previous studies of contest behaviour (Goubault et al. 2006, Bentley 

et al. 2009) and was the only strain used in our first experiment. The other strain, 'C', 

was collected in May 2009 around Santiago, Chile, where a natural population had 

previously been found (Zaviezo et al. 2007). These two strains will readily interbreed 

in the laboratory and are thus conspecific but are also genetically distinct (evaluation 

of 24 microsatellite markers found inter-strain polymorphism at 6, S.K.K. unpublished 

data). Our second experiment used both strains. 

All parasitoids were reared on the facultative host Corcyra cephalonica Stainton 

(Lepidoptera: Pyralidae), following methods given in Stokkebo and Hardy (2000). 

Corcyra cephalonica was reared on a diet of glycerol, corn meal and wheat bran and 

yeast, as reported by Cook (1993), with the addition of honey In equal quantity to the 

glycerol. All cultures and experiments were carried out in a climate room at 27°C with 

and constant illumination and with high relative humidity maintained by evaporation 

from a water bath. 

3.3.2 Experiment 1: Identlfvlng determinants of aggression 

Contests were staged between pairs of females over possession of a host larva. In a 

3-way factorial design we varied Independently the relatedness between contestants, 

whether they had developed on the same or on a different host (termed 'host of 

origin') and whether the contest was between a prior owner and a non-owner 

(intruder) or between two non-owners (termed 'ownership'), each experimental factor 

had two treatment levels. In an attempt to achieve high statistical power (Smith et al. 

2011), we carried out between 16 and 24 replicates of each of the 8 combinations of 

the three factors (not including replicates that failed due to wasp developmental 

mortality, the individuals being males or adult females not Interacting during the 

observation period [~10% of replicates]), giving an overall sample size of 161. 
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Relatedness between contestants was varied by using either sibling females from the 

same clutch (theoretical relatedness ::::0.75 due to haplo-diploidy and maternal sib­

mating, Hamilton 1964a) or non-sibling females (from within strain U). Siblings 

developing on different hosts were created by removing, with fine seekers (Hardy et 

al. 1992), around half of the unhatched eggs from a parasitized host initially bearing 

10-14 eggs and placing them, in a separate vial, on another host that had been 

previously paralysed, but not parasitized (no eggs laid), by another female (which had 

been removed). We created broods of non-siblings by placing 5-7 eggs, each from a 

different clutch laid by a different mother, onto a previously paralysed but 

unparasitized host (prior to egg laying). Developing broods were checked frequently 

and as soon as adults were observed to have eclosed from their cocoons they were 

isolated from each other; post-eclosion association of adult females rarely exceeded 

six hours. Owners were created by placing i-day old female wasps with a healthy host 

larva 24h prior to the contest, whereas intruders were females that had not been 

given a host (Bentley et al. 2009). 

All contestant females were of the same age (ca. 48h post-ecloslon) and pairs of 

contestants were selected to be of Similar size: Individual females were weighed to an 

accuracy of O.Olmg prior to contests (the mean [±SD; range] size of females In this 

experiment was 1.128mg [±0.243; 0.24 to 1.81]) and within-replicate size differences 

ranged from 0.00 to 0.93mg (mean±SD: 0.144:1::0.172). None of the contestants had 

had previous experience of contest Interactions (but all of them had experienced 

sibling or non-sibling cues and the same or different host cues). Within each replicate, 

individual females were marked by painting a dot of yellow or red acrylic paint on the 

dorsal surface of their thorax (Driessen & Hemerlk 1992, Petersen & Hardy 1996); to 

achieve this, and for weighing, an anaesthetic (C02 gas) was utilized a day before the 

contest to minimize its effect on subsequent behaviour (Nicolas & Sillans 1989). 

Contests were staged in an opaque plastic block covered with clear Plexiglas and with 

three chambers connected by a slot filled with movable barriers (Petersen & Hardy 

1996, Goubault et al. 2006). In Owner-Intruder replicates, an owner and Its host were 

placed into the central chamber and an Intruder Into a peripheral, and initially 

separated, chamber. In Intruder-Intruder replicates, the host was placed In the central 

chamber while the two intruder females were Initially separated In a different 

peripheral chamber. After 30 minutes, the barriers were withdrawn sufficiently to 
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interconnect the three chambers. Wasp behaviour was recorded from above for 60 

minutes using a digital video camera, starting when both females were first present in 

the central chamber. Behavioural interactions, classified as non-aggressive 

interactions, chases, bites, attacks with a stinger and fights (Goubault et al. 2008), 

were counted and the identity of any winner, defined as the wasp that remained in the 

vicinity of the host while the other, the loser, had been excluded (Petersen & Hardy 

1996), was noted. 

3.3.3 Experiment 2: Focussing on kin recognition determinants of 

aggression 

Analysis of data from Experiment 1 suggested that the presence of ownership 

asymmetries influences the aggressiveness of behavioural interactions and also that 

size differences between contestants interacted with both relatedness and the host-of­

origin. These results suggest that sharing a host during larval development may act as 

a proxy for genetic relatedness. To focus more directly on whether less related 

individuals are more aggressive than more related ones, we carried out a second 

experiment in which relatedness and 'host-of-origin' varied. This followed the methods 

of Experiment 1 with four differences: (1) All contests were staged between pairs of 

non-owners (ownership asymmetries were thus absent). (2) We made greater efforts 

to minimise the size differences between females, resulting In within-replicate 

differences ranging from 0.0 to O.OSmg (mean::t:s.d.=0.0172:!:O.0149), an order of 

magnitude smaller than in Experiment 1 (the mean size of females In this experiment 

was 1.081mg (SD±0.lS5; range 0.77 to l.4S). (3) We Increased the likely variation of 

within-replicate relatedness by collecting and establishing the second, Chilean, strain 

of G. legneri: contestant females either belonged to different strains (C vs. U) or to 

the same strain in one of two ways (C vs. C, or U vs. U). Relatedness was thus Initially 

treated as a factor with three levels. (4) Broods of wasps from different strains were 

created by plaCing just one egg from each strain onto the previously paralysed, but 

unparasitized, host (each host thus received two eggs): this was necessary to ensure 

that a contest could subsequently be staged between wasps known to be from 

different strains. We carried out 12-14 (successful) replicates of each of the 6 

experimental combinations of relatedness and host of origin, giving an overall sample 

size of 80. 

61 



3.3.4 Statistical analysis 

Data were analysed using generalized linear modelling available In the Genstat 

statistical package (Version 12, VSN International, Hemel Hempstead, UK). Logistic 

analyses were employed for proportional response variables, where possible using 

empirically estimated scale parameters to account for potential overdispersion, and 

also with the caveat that hypothesis testing with generalized linear models is inexact 

when significance is marginal and small proportions of the deviance are explained 

(Crawley 1993, Wilson & Hardy 2002, Warton & Hui 2011). Because size differences 

between contestants are effectively impossible to eliminate completely and have 

conSistently been found to influence G. legneri contest outcomes In prior studies 

(Goubault et al. 2006, Bentley et al. 2009), the absolute weight difference between 

the females in each replicate was fitted as a continuous variable alongside the 

categorical factors. Analyses initially included these main effects and first order 

interaction terms in a maximal model and then established the minimum adequate 

model by backwards, stepwise model simplification, using deletion tests and factor­

level aggregation (Crawley 1993, Hardy & Field 1998, Wilson & Hardy 2002). All tests 

were 2-tailed. 

3.4 Results 

3.4.1 Experiment 1: Identifying determinants of aggression 

There were 1 to 91 (mean±SD: 17.78±16.83) behavioural Interactions between 

individual pairs of females during the 60-minute observation period. The proportion of 

interactions that were aggressive varied greatly between replicates and was Influenced 

by relatedness, by ownership asymmetries and by whether the females had developed 

on the same or different hosts, via an Interaction with body size (absolute difference In 

weight); size difference also interacted with relatedness while other Interactions were 

non-significant (Table 3.1). 
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Table 3.1 Influences on the proportion of behaviours that were aggressive 

Source d.f. Deviance F-ratio P %Deviance 
explained 

Relatedness 1 20.566 5.40 0.021 2.89 

Host of origin 1 1.929 0.51 0.478 0.27 

Ownership 1 64.231 16.87 <0.001 9.02 

Size difference 1 0.001 0.00 0.987 0.00 

Relatedness x Host of origin 1 0.003 0.00 0.978 0.00 
interaction 

Relatedness x Ownership 1 10.111 2.66 0.105 1.42 
interaction 
Host of origin x Ownership 1 7.650 2.01 0.158 1.07 
interaction 

Size difference x Relatedness 1 26.178 6.87 0.010 3.67 
interaction 

Size difference x Host of origin 1 30.275 7.95 0.005 4.25 
interaction 

Size difference x Ownership 1 0.169 0.04 0.834 0.02 
interaction 

Residual 150 571.258 

Total 160 711.577 

P-values of significant explanatory variables are shown in bold font. 

Around 20% of the variation In aggressiveness was explained by the significant terms 

in the statistical model. The proportions of behavioural Interactions that were 

aggressive were higher when females were non-siblings than when they were siblings 

(Figure 3.1a), when females had developed on different rather than the same hosts 

(Figure 3.1b) and when one female was a prior owner than when both were non­

owners (Figure 3.1c). Increasing size differences increased the difference In the 
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proportions of aggressive behaviour based on relatedness (Figure 3.1a) and host of 

origin (Figure 3.1b). 
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Figure 3.1 Aggressiveness of female-female encounters. Proportion of aggressive 

behaviour in relation to (a) relatedness and body size difference, (b) whether 

contestants had developed on the same host and body size difference, and (c) 

ownership status of wasps. In (c) means and S.E.s are back-transformed from log it­

scale estimates from 78 Owner-Intruder and 83 Intruder-Intruder replicates. 

Contests had a cl ear resolution (a winner and a loser) in 128 of the 161 replicates 

(79.5%). The colour of the paint mark had no influence on contest outcome (red 

marked wasps won 66/128 contests, Binomial test, P= 0.759). The probability of 

contest resolution was higher when one female was a prior owner (91.0%) than when 

both females where initially non -owners (68 .6%; G1 = 13.02, P<O.OOl, Deviance 

explained = 7.9%) but was not significantly influenced by size difference, relatedness, 

host of origin or any interactions between the main effects. Among th ese 128 

replicates, contest outcome (the identity of the wining wasp) was not influenced by 

any of the four main effects or their interactions. However the non -significant effect of 

body size difference (G1 =2.87, P= 0.09) was suggestive of an advantage of larger body 

size (as found in previous studies and also in Experiment 2, see below). 
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3.4.2 Experiment 2: Focussing on kin recognition determinants of 

aggression 

There were 4 to 103 (mean±SD: 24.71±19.71) behavioural interactions between 

individual pairs of females. The proportion of these interactions that were aggressive 

was significantly higher when females had developed on different host compared to 

the same host (Table 3.2, Figure 3.2a). The proportion of aggression was also 

influenced by relatedness (Table 3.2, Figure 3.2b). The initial three-level classification 

of relatedness could not be simplified by aggregation (Crawley 1993, p190) of 'C vs. C' 

and 'U vs. U' replicates into a common category of 'same strain' (F1,76=7.14, P=0.009) 

but a re-classification according to whether or not the replicate contained at least one 

female from strain C lead to a more parsimonious model (F1,76=0.28, P=0.596), 

suggesting that Chilean wasps are the more aggressive strain and Inter-replicate 

variation in agonistic behaviour is determined by this difference rather than by an 

effect of genetic relatedness. There was no significant effect of the size difference 

between the females nor were there any significant interaction terms (Table 3.2). 

Around 14% of the variation in the proportion of behaviour that was aggressive was 

explained collectively by relatedness and host of origin (Table 3.2). 

Table 3.2 Kin recognition components Influenced the proportion of 

behaviours that were aggressive 

Source 

Relatedness 

Host of origin 

Size difference 

Relatedness x 
interaction 
Size difference 
interaction 
Size difference 
interaction 
Residual 

Total 

d.f. 

2 

1 

1 

host of origin 2 

x relatedness 2 

x Host of origin 1 

70 

79 

Deviance 

56.419 

30.636 

0.359 

21.592 

1.366 

1.068 

513.174 

624.404 

F-ratio P 

3.85 0.026 

4.18 0.045 

0.05 0.826 

1.47 0.236 

0.09 0.911 

0.15 0.704 

OIoDeviance 
explained 
9.03 

4.90 

0,06 

3.45 

0.22 

0.17 

P-values of significant explanatory variables are shown in bold font.Note that the 3-
way categorization of relatedness can be further simplified according to the 
geographical origin of the contestant females (see text). 
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Figure 3.2 Effects of host sharing and genetic strain on the aggressiveness of female­
female encounters. Panel (a) illustrates how aggressiveness is influenced by whether 
contestants had developed on the same host (38 different host replicates and 42 
same host replicates) and Panel (b) shows how aggressiveness is influenced by the 
strains involved (28 C vs. C replicates, 26 C vs. U replicates and 26 U vs. U replicates). 
Means and S.E.s are back-transformed from logit-scale estimates. Strain C derived 
from a population in Chile and strain U was obtained from laboratories in the USA with 
probable origins in Uruguay. 
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Contests had a clear resolution in 69/80 replicates (86.2%). The probability of contest 

resolution was not significantly affected by size difference (G1 =0.66, P=0.42), host of 

origin (G1=0.60, P=0,44) or the relatedness between the wasps (G2=2.63, P=0.07) or 

any interactions between these main effects. However, the marginally non-significant 

effect of the three-level classification of relatedness suggested the possibility of 

between-strain differences: subsequent aggregation of levels within this factor showed 

that, as above, relatedness could not be simplified to 'same strain' (G1 =3.96, 

P=0.047) but a re-classification according to whether the replicate contained strain C 

was possible (G1 =0.01, P=0.94). As above, this suggests that contests involving 

Chilean wasps are more likely to be resolved due to higher levels of aggressive 

behaviour (50/54 [92.6%] contests involving strain C wasps were resolved and 19/26 

[73%] involving only strain U were resolved). Among the 69 resolved contests, the 

colour of the mark did not influence contest outcome (red wasps won 35/69 contests, 

Binomial test: P=0.905). Contest outcome was not influenced by host of origin 

(G1=0.05, P=0.82) or the relatedness between the wasps (G2=0.38, P=0.68) or by 

any interaction terms. Contests were, however, significantly more likely to be won by 

the larger individual (G1=4.46, P=0.035, Deviance explained =4.66%, fitted logistic 

regression equation: probability of winning = 1/[1+{1/(exp([23.4xWeight 

difference]+O.l11»} D. 

3.5 Discussion 

This study set out to discover whether competitor relatedness affects contest 

behaviour in a parasitoid wasp: it does. While contestant behaviour was generally 

aggressive, it was more aggressive when competitors were less closely related. In the 

second experiment genetiC relatedness effects may be explained by inter-strain 

differences in aggressiveness but such differences were not present in the first 

experiment, suggesting that these parasitoids can recognise kin using individuals' 

genetically-based phenotypic properties as cues. Both experiments also Indicate that 

environmentally-based properties are used by interacting females as a proxy cue for 

kinship. 

Our results thus provide evidence that adult females of a sub-social parasltoid species 

are able to recognize other females as kin, whether or not they developed on the 

same host, and are also able to recognize brood-mates, whether or not they are kin. 
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In nature, individuals that have developed on the same host will almost always be full 

siblings, due to brood guarding by mothers and infanticide or host rejection by 

successful intruders (Bentley et al. 2009), so brood-mate recognition will serve as an 

effective means of recognizing kin. These results are similar to those for the 

gregarious parasitoid Bracon hebetor in which adult females recognize brood-mates 

and discriminate against them to avoid genetic disadvantages of inbreeding, but in B. 

hebetor there appears to be no genetic component of phenotypic kin recognition (Ode 

et al. 1995). The opposite is reported from a solitary species, Venturia canescens, in 

which there are no brood-mates and mate choice is influenced by genetic kin 

recognition (Metzger et al. 2010). Several other recent empirical studies of adult 

parasitoid wasps have found no evidence for kin recognition effects on mate choice 

(Bourdais & Hance 2009, Ruf et al. 2010), sex allocation behaviour (Reece et al. 2004) 

or male-male combat (Innocent et al. 2011). At present, G. legneri appears to be the 

only parasitoid wasp reported to employ both genetic and environmental mechanisms 

of phenotypic kin discrimination. However, G. /egneri is classed as sub-social due to 

brood care (Choe & Crespi 1997) and the use of both phenotypic and non-phenotypic 

kin recognition cues as determinants of aggression by social PO/istes wasps (non­

parasitoids) is well known (Gamboa et al. 1986a,b, Bura & Gamboa 1994). 

Because G. legneri contests for hosts occur after dispersal from the common 

developmental site, reduced aggression towards prior brood-mates Is unlikely to be 

mediated by non-phenotypic kin recognition but Instead fits the definition of 

phenotypic kin recognition via familiarity. Two pOSSible, and mutually non-exclusive, 

means of achieving this are the use of cues deriving from the host and of cues 

deriving from brood-mates. Our results cannot distinguish between these potentials 

but a simple mechanism would be for females to learn the cues of conspeclfic brood­

mates to form a recognition template and then match it to labels expressed by 

females encountered during contests (phenotype matching). Learning the cues of 

brood-mates (which normally are siblings) rather than hosts would also lead to the 

recognition of genetically related females that have not previously been encountered 

(having developed on a different host), and G. /egneri does behave less aggressively 

towards unfamiliar kin than towards unfamiliar non-kin. However, females may learn 

several cues related to their host and/or brood-mates leading to the formation of 

different templates being used when they encounter familiar and unfamiliar females. 

Individuals could also learn their own cues (self-referent phenotype matching, Llze et 
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al. 2006, 2007, Metzger et al. 2010) for the recognition of unfamiliar but related 

females. According to Newey (2011), colonial insects may use two types of cues to 

distinguish nest-mates from non-nest-mates: the individual's innate odour and the 

shared colony odour. While further experiments are needed to Identify which kin 

recognition cues are used by G. legneri females, these cues must have been learned 

during the pre-imaginal stages and/or within the few hours after adult emergence 

from the cocoon (in our experiments females were isolated within ::::6h post­

emergence and, under laboratory conditions, disperse within 24h, Hardy et al. 2000). 

Our results indicate that Goniozu5 legneri females use genetically-based recognition as 

well as familiarity, because related but unfamiliar females were less mutually 

aggressive than were unrelated unfamiliar females. Although recognition alleles 

('greenbeard effects', Dawkins 1976) could also explain our results, they are in 

general expected to be rare due to invasion by cheaters and also, when they do occur, 

to be difficult to detect due to having gone to fixation in a population (Gardner & West 

2010). For these general reasons it seems unlikely that our results are mediated by 

greenbeard effects. Phenotype matching relies on the genotype of individuals being 

expressed through their phenotype, in contrast to familiarity In which phenotypic cues 

may derive from genotypes and/or the environment. Familiarity and phenotype 

matching are thus considered different perceptual mechanisms but phenotype 

matching could be an extension of familiarity (Holmes 2004, Mateo 2004, 

Schausberger 2007). The former requires an exact match to an Individual template, 

whereas the latter generalizes from individual templates that have been formed from 

individuals sharing phenotypic traits to a common representation of kin (Mateo 2004). 

However, the lack of Significant interactions between genetiC relatedness (suggestive 

of phenotype matching) and host-of-origin (familiarity) suggests that female G. 

legneri utilize two different recognition mechanisms, rather than the phenotype 

matching mechanism being an extension of familiarity. Different recognition 

mechanisms may be used in different social contexts (Mateo 2004, Schausberger 

2007). Both mechanisms are used by the same individuals in Belding's ground 

squirrels (Holmes & Sherman 1982, Mateo & Johnston 2003, Mateo 2004), lambs 

(Ligout & Porter 2003), social paper wasps (Gamboa et al. 1986b, Bura & Gamboa 

1994, Gamboa 2004). Among invertebrates, mainly social Hymenoptera have been 

shown to use recognition mechanisms based on familiarity and phenotype matching 

(reviewed in Gamboa 2004). However, an individual may use different ways of 
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assessing relatedness in the same context as for female G. legneri. To our knowledge, 

G. legneri is the only example of a sub-social wasp able to use two mechanisms of kin 

recognition in the same context (i.e. during contests for resources). Understanding the 

functional advantage of the use of these two mechanisms would be valuable for our 

knowledge of social evolution. 

Favouring related individuals at the expense of less related or unrelated ones might be 

overridden by a high level of competition between siblings (West et al. 2001). In G. 

legneri, and in other host-guarding parasitoid species, prior ownership of hosts is 

associated with a greater value being placed on the resource and also higher levels of 

aggression (Petersen & Hardy 1996, Stokkebo & Hardy 2000, Humphries et al. 2006, 

Goubault et al. 2006, 2008, Mohamad et al. 2010, this study). Although the presence 

of ownership asymmetries explains more deviance than any other fitted variable 

(Table 3.1) aggressive behaviour is still tempered by kin recognition. In other wasp 

systems resource competition appears to override kin selection effects completely 

(West et al. 2001). Theory suggests that the evolution of kin-based altruism, in this 

case less aggressive behaViour, may be suppressed in populations unless dispersal 

occurs which allows the beneficiaries of altruism to compete for resources against non­

relatives (Taylor 1992, Queller 1994, West et al. 2002) or unless mistakes In kin 

discrimination are evolutionarily costly (Segoll et al. 2009a). These concepts in turn 

suggest that G. !egneri has Imperfect kin discrimination abilities and/or that 

populations are not so viscous that competing females are frequently close relatives 

but there is almost no information available on patterns of dispersal beyond that from 

the remains of the natal host (Hardy et al. 2000). 
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3.6 Conclusion 

Goniozus legneri females appear able to recognize kin via two phenotypic 

mechanisms, one genetically-based (phenotype matching) and the other 

environmentally-based (familiarity) which operate together additively rather than 

interactively. Kinship and perceived kinship are both associated with lower levels of 

inter-contestant aggression. This is expected from classic theory (Hamilton 1964a,b) 

but more recent theory and comparative evidence (West et al. 2001, 2002) suggests 

that in hymenoptera with viscous population structures, resource competition may 

suppress the evolution of less aggressive, more altruistic, behaviours. In other 

hymenopteran systems resource competition is less important and altruism operates 

apparently due to a mixture of pre-competition dispersal from the natal patch and 

(possibly limited) kin recognition. Goniozus legneri appears to be intermediate 

between these extremes, possibly suggesting an intermediate degree of population 

viscosity, as females behave more aggressively when resource competition is more 

manifest but the level of aggression is also mediated by the recognition of kin. 
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Chapter 4 : Cuticular hydrocarbon profiles of Goniozus 

species and of hosts influence wasp aggressiveness 

4.1 Abstract 

The cuticular hydrocarbon profiles of insects are well known to be highly variable. 

Variation may be due to genetic or environmental influences, or both. The majority of 

prior studies have focused on social insects, mainly those in the Hymenoptera, and 

have shown that hydrocarbons play an important role mediating social behaviour, 

particularly via kin recognition. Here we assess the cuticular hydrocarbon profiles 

(CHC) of three species of parasitoid wasps in the genus Goniozu5 (Hymenoptera: 

Bethylidae), some of which are known to attune their behaviour according to both 

environmentally based and genetic based recognition of kin. We find that CHC profiles 

vary according to both genetic background (wasp species) and the developmental 

environment (host species) thus showing that kin recognition Is likely to be based on 

CHC profiles in these parasitoids as it is in social hymenoptera. Because the CHC 

profiles of different species within the genus Goniozus are dissimilar, we also conclude 

that chemical analysis can be used as a taxonomic tool alongside morphological and 

molecular genetic identification for Goniozu5 and other species. 

Submitted as Khidr SK, Unforth RST & & Hardy leW. Genetic and environmental 

influences on the cuticular hydrocarbon profiles of Gonizu5 wasps (Hymenoptera: 

Bethylidae). (Entom%gia Experimentalis et Applicata). 2012. 
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4.2 Introduction 

Insects' exoskeletons consist of many layers of cuticle secreted by the epidermal cells 

(Hillerton et al. 1982, Reynolds 1987). Cuticular hydrocarbons (CHCs) are present in 

the exoskeleton of the majority of insect taxa (Blomquist et al. 1987, Howard 1993, 

Blomquist & Bagneres 2010) and the integument commonly consists of complex 

mixture of three major hydrocarbon compounds, which are n-alkanes, olefins and 

methyl alkanes (Lockey 1991, Martin & Drijfhout 2009). An insect's fitness might be 

associated with its cuticular hydrocarbon composition as CHCs serve as a prime barrier 

against desiccation (Edney 1977, Hadley 1981, 1984, Blomquist & Bagneres 2010), 

microorganism penetration and parasitoid and predator attack (Koidsumi 1957, David 

1967). 

Cuticular hydrocarbons can also affect insect fitness via influence on behaviour: due to 

their chemical stability, low volatility and structural diversity, variability In CHC 

composition has great potential to convey information and CHCs act as 

semiochemicals, serving as pheromones, kairomones and allomones (Blomquist et al. 

1987, Howard 1993, Gamboa et al. 1996, Holldobler 1999, Dani et al. 2001, Denis et 

al. 2006, Grillet et al. 2006, Rani et al. 2006, Ruther et al. 2011, van Wilgenburg et al. 

2012). For instance, some parasitic wasps have the ability to distinguish gender­

specific host CHCs which assists in the identification of hosts suitable for oviposition 

(Colazza et al. 2007, Lo Giudice et al. 2011). Further, CHCs function Importantly In 

insect communication systems, serving as cues for specles-, colony- and gender­

recognition (Howard & Blomquist 2005, Haverty et al. 1990, Bagneres & Wicker­

Thomas 2010, Lahav et al. 1999, Smith & Breed 1995) and the social behaviours, 

such as aggression and altruism, of many organisms have been correlated with the 

cuticular hydrocarbon profiles of actors and recipients (Jutsum et al. 1979, Lahav et 

al. 1999, Lenoir et al. 2001, Howard & Blomquist 2005, Dalecky et al. 2007, Ugelvlg et 

al. 2008, Guerrieri et al. 2009, Drescher et al. 2010, EI-Showk et al. 2010). For 

example, experimental work has shown that the Intensity of aggression can be 

affected by the application of synthetic hydrocarbons to nest-mates in social insects 

(Lahav et al. 1999, Guerrieri et al. 2009) or by manipulating Inert materials with 
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artificial or natural hydrocarbons (Akino et al. 2004, Greene & Gordon 2007, Martin et 

al. 2008). 

The cuticular hydrocarbon profiles of individual insects usually have a genetic 

component, meaning that they can be used in kin-recognition by insects (Gamboa 

2004, Howard & Blomquist 2005, Dronnet et al. 2006, EI-Showk et al. 2010) and also 

as taxonomic indicators by researchers (Carlson & Yocom 1986, vander Meer 1986, 

Bagneres et al. 1990, Uva et al. 2004). CHC profiles usually also have an 

environmentally determined component; this means that they can be used by insects 

as indicators to determine relationships within and between populations (e.g. as a 

proxy for kinship, Lahav et al. 1999, Howard & Blomquist 2005, Dronnet et al. 2006, 

EI-Showk et al. 2010, Helantera et al. 2011) and also by researchers as Indicators of 

the geographical or developmental origin of examined specimens (Dapporto et al. 

2009, Perdereau et al. 2010). 

In this study we investigate cuticular hydrocarbon profiles of three species of bethylid 

wasps. The CHC profiles of 5 bethylid species, belonging to the sub-family Epyrinae, 

have been reported previously: there are well over 100 different hydrocarbons found 

across these species, with most hydrocarbons occurring only In one species and with 

around 30-70 hydrocarbons present per species (Howard 1992, 1998, Howard & 

Infante 1996, Howard & Perez-Lachaud 2002). Here we examine three species 

belonging to the sub-family Bethylinae, Goniozus legnerl Gordh, G. nephantidis 

(Muesebeck) and an unidentified Goniozus species from Oman, and also examine 

whether these vary according to genetic and environmental factors. 

The reproductive and behavioural biologies of G. nephantidis and G. legneri are 

relatively well known. Both are gregarious ectoparasitoids of lepidopteran larvae, both 

exhibit maternal care of their progeny via aggressive brood guarding and both have 

been deployed as agents of biological pest control; G. legnerl In the New World and 

the middle-east and G. nephantidis In and around the Indian sub-continent (e.g. 

Legner & Silveira-Guido 1983, Gothilf & Mazor 1987, Goubault et al. 2007b, Bentley et 

al. 2009, Venkatesan et al. 2009). The species from Oman, which for convenience we 

refer to here tentatively as Goniozus sp. indet., is less well known but exhibits similar 

life-history and behavioural characteristics to G. legneri and G. nephantidis, and Is 

also a natural enemy of agricultural pests (Abbas et al. 2008; ICWH pers. obs.). As 

this species has not been formally described it could be more closely related to, or 
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even synonymous with, either G. legneri or G. nephantidis. While these two described 

species are congeners, G. nephantidis was previously classified as Paraseriola 

nephantidis before the genera were merged by Gordh & Evans (1976) and It may be 

that further taxonomic revision based on new (e.g. molecular, Carr et al. 2010) 

evidence re-establishes an intra-genus distinction. One of the motivations for this 

study was thus to attempt to utilize CHC profiles as a species Identification 

characteristic. Identifying the likely taxonomic position of Goniozu5 sp. Indet.would 

help to establish whether it is a species for which the biology is already well known or 

a relatively unexplored species with biology still needing to be investigated, for 

instance, to assist with developing its potential as an agent of biological pest control. 

Behavioural research on Goniozus legneri has found that adult females In situations of 

resource competition attune their aggression according to competitor relatedness, with 

relatedness apparently assessed both via actual genetiC Similarity and via sharing the 

same individual host during development (which serves as a proxy for genetiC 

relatedness because in nature brood-mates will almost always be siblings) (Lize et al. 

2012, Chapter 3). It seems likely that such kin-recognition operates via the expression 

and detection of cuticular hydrocarbons, and that the CHe profile expressed Is 

influenced by both the genetiC composition of the wasps and the chemical composition 

of the developmental environment (Gamboa et al. 1986b, Dronnet et al 2006, Nehring 

et al. 2010). Another motivation for this study was to explore whether Goniozus CHC 

profiles correlate with relatedness within species (using different strains of G. legnerl 

and also different sexes of G. legneri and G. nephantidis) and according to the Identity 

of the host (using four different host species). 

4.3 Material &. Methods 

4.3.1 Parasltoids 

Goniozus Jegneri Gordh attacks a number of species of lepidopteran larvae which are 

pests of walnuts, pistachio nuts, almonds and apples (Steffan et al. 2001, Zavlezo et 

al. 2007). In 2003 we obtained a laboratory strain from a commercial Insectary In the 

USA but the original material Is believed to have been collected from a population In 

southern Uruguay in 1978 (Gordh 1982, Gordh et al. 1983, Legner & Silveira-Guido 
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1983): we term this strain 'U'. Two other strains of G. legneri were brought to the UK 

from Santiago, Chile, in 2009. One strain was collected directly from walnut trees, and 

is termed 'Chile field', while the other strain, termed 'Chile lab', had been maintained 

in a Chilean insectary since the discovery of the natural populations in apples and 

walnuts in 2003 (Zaviezo et al. 2007). Goniozus nephantidis (Muesebeck) attacks the 

coconut pest Opisina arenosella Walker in the Indian sub-continent (Venkatesan et al. 

2007) and our strain has been maintained in culture for more than 10 years after 

having been obtained from an Indian insectary. The unidentified species, Goniozus sp. 

indet. attacks the larvae of the lesser date moth Batrachedra amydrau/a (Meyrick) In 

the Sultanate of Oman (Abbas et al. 2008). 

4.3.2 Culturing 

Goniozus legneri and G. nephantidis were maintained on a factitious host, the rice 

moth Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) on an artificial diet 

consisting of glycerol, corn meal and wheat bran and yeast, following methods 

reported in Lize et al. (2012). We did not culture Goniozus sp. Indet. In our laboratory: 

hexane extractions (see below) were delivered from Oman where the parasltoid had 

been reared on larvae of the wax moth, Galleria mellonella L (Gallerldae: 

Lepidoptera) . 

In further work on strain 'u' of G. legneri, we reared It on three host species additional 

to C. cephalonica: the Indian meal moth Plodia interpunctella (Hubner), the 

Mediterranean flour moth Ephestia kuehniella Zeller and the tropical warehouse moth 

(almond moth) Ephestia cautella (Walker). These three moth species were all reared 

on the same diet as C. cephalonica. 

All cultures were maintained in a climate room at 27°C with relative high humidity 

maintained by evaporation from a water bath. 

4.3.3 Sampling programme 

To compare CHC profiles of female parasitolds across strains and species reared on C. 

cephalonica, we analysed extracts from a total of 20 Individuals (4 from each strain or 

species). To explore inter-sexual differences In CHC profiles we analysed extracts from 

a total of 18 individuals (3 males and three females from G. nephantldls and G. legnerl 

strains U and C lab). Further, two pooled samples of concentrated extract from eight 
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individuals of each of G. nephantidis and G. legneri U strain were to ascertain the peak 

identity of the chemical compounds. To examine the effect of host species on the CHC 

profiles of females within a strain we analysed extracts from total of 16 G. legneri U 

strain individuals (4 from each host species). 

4.3.4 Sample extraction 

Cuticular hydrocarbon extractions were obtained using methods based on Howard et 

al. (1978): adult wasps that had been reared on separate hosts (i.e. from different 

broods) were placed individually in 1.5ml glass vials containing 5001J1 of n-hexane, 

1001J1 of decane (Sigma Aldrich) and 1lJg/sample of n-alkane C24 as an Internal 

standard. Vials were shaken gently and the insects were removed after 10 minutes 

and discarded. Extractions in solvent were then either concentrated under a gentle 

stream of N2 or left to evaporate at room temperature, In either case resulting In 

volumes ca. SOIJI. These samples were transferred to 2S01J1 vials for analysis by gas 

chromatography-mass spectrometry. 

4.3.5 Cuticular hydrocarbons analysis 

All chemical analysis used gas chromatography - mass spectrometry (GC-MS). Sample 

analysis was performed using Trace GC Ultra equipped with Z6-5 capillary column 

(30m long, 1IJm film thickness)(Phanomenex, Macclesfield) connected to DSQll-Mass 

Spectrometer (Thermo, Hemel Hempstead) and Xcalibur data system. The Injector 

port and transfer line were set at 280°C and 11J1 of the sample was injected in splitless 

mode (split cfosed for lOs) using an AS3000 autosampler. The oven temperature was 

programmed with an initial temperature of 100°C then increased to 330°C at a rate of 

6°C min-i. Helium was used as a carrier gas at a linear flow rate of 1.2ml min-1 

constant flow. 

The DSQll-MS was used in the total ion scan mode with scan mass ranges from m/z 
45-500 In order to detect Individual components (Wack 1976, Nels 1978). For each 

specimen, the relative abundance of each compound was normalized by dividing the 

area of each compound by the area of the Internal standard in the same 

chromatogram. Compound Identification was based on mass spectral comparison of 

spectra with those of a standard library of mass spectra (NIST MS Search Version 

78 



2.0). Further, the chemical identities were confirmed by comparison to the profiles of 

other bethylids, as published in Howard (1992) and Howard & Perez-Lachaud (2002). 

4.3.6 Statistical analysis 

Principal Components Analysis (PCA), based on sums of squares and products, was 

used to explore the influences of host species and parasitoid sex, strain and species on 

the CHC profiles of parasitoids (Quinn & Keough 2002, Martin & Drijfhout 2009, Kather 

& Martin 2012). Formal evaluation of the effects host species, parasitoid species and 

strain was carried out using MANOVAs (Everitt & Dunn 1991, Quinn & Keough 2002). 

Because results of multivariate analyses combine the effects of CHC profile 

components and the prevalence of individual components may be biologically 

important (Martin & Drijfhout 2009), we also present the results of ANOVAs carried 

out on the quantity of each individual hydrocarbon, with significance thresholds 

adjusted due to multiple comparisons to control Type I error rates (Quinn & Keough 

2002). PCA and ANOVAs were carried out in the Genstat statistical package (Version 

12, VSN International, Hemel Hempstead, UK) and MANOVAs were carried out in 

StatView (version 5.0.1). 

4.4 Results 

Cuticular hydrocarbon profiles were determined for the three species; Goniozus 

nephantidis, G. legneri CU' and both 'c' strains) and the unidentified species here 

termed Goniozus sp. indet. (Figure 4.1). There were Inter-specific differences In CHC 

profiles In terms of both composition (qualitative differences) and relative abundances 

(quantitative differences) (Figure 4.1, Table 4.1). There was one compound (C23 

alkene) found in G. nephantidis but not In G. legnerl and G. sp. Indet. and there were 

three compounds found In G. legnerl but not In the other two species (Table 4.1). 

While no detected compound was unique to G. sp. Indet., one (C27 alkane) was 

absent from this speCies and present in the other two (Table 4.1). The cuticular 

hydrocarbon composition of the adult female was mainly n-alkanes (C23, C25, C27 

and C29) and alkenes. Principal components analysis generated a separate cluster for 

each Goniozus species (Figure 4.2a) illustrating these Interspecific differences. C2S 

alkene 2 had a large influence on the first principal component (Figure 4.3a) and Its 

prevalence of In G. nephantidis (Table 4.1, Figure 4.1a) was Important in separating 

G. nephantidis from the other species (Figure 4.2a). Similarly, the C27 alkene 2 
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particularly influenced the second principal component (Figure 4.3a) and its high 

presence in G. legneri (Table 4.1, Figure 4.1c) was important in separating G. legnerl 

from Goniozus sp. indet. (Figure 4.2a). 

For G. legneri there was no qualitative variation across strains and no significant 

quantitative difference overall (MANOVA) or in seven of the individual hydrocarbons 

(ANOVAs); also the two compounds that differed significantly according to separate 

ANOVA analysis (C25 alkene 2 & C29 alkene) were not Interpreted as different when 

multiple comparisons corrections were applied (Table 4.1). PCA also illustrates that G. 

legneri strains cluster together (Figure 4.2a). There were, however, significant 

differences between the CHC profiles of G. legneri males and females within both 

evaluated strains (Table 4.2). In contrast, G. nephantidis males and females have 

similar CHC profiles (Table 4.2). PCA generated separate clusters male and female G. 

legneri; while in G. nephantidis females clustered closely to the males (Figure 4.2b). 

The CHC profiles of female G. legnerl CU' strain) were significantly quantitatively 

affected by the species of host on which they had developed (Table 4.3) but 

qualitative differences were absent (I.e. the same chemicals were present in all 

females). PCA generated a separate cluster for females that had developed on C. 

cephalonica and for females from E. kuehniella hosts but females that had developed 

on P. interpunctella or E. cautella mainly clustered together (Figure 4.2c). Both 

principal components were strongly Influenced by variation In the composition of C25 

hydrocarbons (Figure 4.3b). 
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Table 4.1 Inter-specific and inter-strain CHC profile variation. Mean relative abundance ± SO of cuticular hydrocarbon composition of adult 
females belonging to different Goniozu5 species and strains, reared on Corcyra cepha/onica hosts. Cross-strain MANOVA (G. /egneri): Wilks' Lambda = 
0.001, F(18,2) = 3.520, P=0.2611. Cross-species MANOVA: Wilks' Lambda = 0.001, F(20,16) = 25.995, P<O.OOOl. Because up to 10 ANOVA tests were 
carried out within cross strains and species, we adjusted the Significance criterion according to the Bonferroni procedure to be 0.05/10, i.e. <0.0050: p-
values less than this value are indicated with an asterisk. 

G. G.sp. G.legneri 
nephantidis indet. 

U C field C lab 

Compound, Molecular Retention time G. legneri cross- Cross-Species 
(carbon chain weight,Oa (min) strain ANOVAs 

length) ANOVAs 

F(2,9) P F(2,17) P 

Alkene (C23) 322 30.61 0.15±0.04 0.00 0.00 0.00 0.00 176.616 <0.001* 

Alkane (C23) 324 30.85 0.26±0.04 0.06±0.02 0.15±0.05 0.12±0.03 0.11±0.02 1.460 0.282 34.285 <0.001* 

Alkene 1 (e25) 350 33.49 0.00 0.00 0.69±0.19 0.69±0.13 0.62±0.05 0.403 0.679 1022.758 <0.001* 

Alkene 2 (C25) 350 -33.59 3.26±0.95 0.53±0.09 0.97±0.16 0.75±0.OS 0.59±0.22 5.365 0.029 54.111 <0.001* 

Alkane (C25) 352 33.79 0.11±0.04 0.05±0.01 0.34±0.09 0.33±0.07 0.32±0.01 0.076 0.927 60.237 <0.001* 

Alkene 1 (C27) 378 36.24 0.00 0.00 0.30±0.06 0.43±0.11 0.39±0.05 2.737 0.117 67.216 <0.001* 

Alkene 2 (C27) 378 36.34 0.11±0.04 O.OS±O.04 1.32±0.36 1.39±0.25 1.30±0.50 0.061 0.941 47.042 <0.001* 

Alkane (C27) 3S0 36.48 0.09±0.03 0.00 O.l1±O.04 0.09±0.03 0.09±0.O4 0.835 0.465 17.916 <0.001* 

Alkene (C29) 406 38.90 0.00 0.00 0.13±0.04 0.26±0.05 0.26±0.09 6.091 0.021 23.323 <0.001* 

Alkane (C29) 408 39.01 0.07±O.04 0.02±0.01 O.07±O.O5 0.OS±0.03 0.OS±0.03 0.111 0.S96 4.310 0.030 
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Table 4.2 Inter-sexual CHC profile variation. Mean relative abundance ± SO of cuticular hydrocarbons of adult male and female Goniozus 
nephantidis and Goniozus legneri (U & C lab strains) reared on Corcyra cepha/onica. Because 9 ANOVA tests were carried out within each species, we 
adjusted the significance criterion according to the Bonferroni procedure to be 0.05/9 = 0.0055: P-values less than this value are indicated with an 
asterisk. 

G. nephantidis G. legneri U G. legneri C lab 

Female Male ANOVAs Female Male ANOVAs Female Male ANOVAs 
Compounds F(1.4) P F(1.4) P F(1.4) P 

Alkene (C23) 0.14±0.03 0.10±0.03 3.250 0.145 0.00 0.00 0.00 0.00 

Alkane (C23) 0.26±0.05 0.30±0.03 1.714 0.260 0.16±0.05 0.06±0.04 6.00 0.070 0.12±0.02 0.04±0.03 15.55 0.016 

Akene 1 (C25) 0.00 0.00 0.63±0.16 0.10±0.00 31.60 0.004* 0.61±0.06 0.11±0.01 235.06 <0.001* 

Alkene 2 (C25) 2.85±0.58 1.98±0.13 6.298 0.066 0.91±0.14 0.38±0.03 43.71 0.002* 0.52±0.21 0.20±0.04 6.59 0.062 

Alkane (C25) 0.10±0.03 0.10±0.01 0.32 0.866 0.31±0.08 0.09±0.01 24.97 0.007 0.32±0.01 0.08±0.01 504.10 <0.001* 

Alkene 1 (C27) 0.00 0.00 0.32±0.06 0.02±0.00 79.02 <0.001* 0.38±0.05 0.04±0.01 123.34 <0.001* 

Alkene 2 (C27) 0.10±0.05 0.03±0.03 4.809 0.093 1.09±0.14 1.07±0.01 151.76 <0.001* 1.01±0.24 0.11±0.01 41.82 0.002* 

Alkane (e27) 0.09±0.03 0.05±0.01 2.793 0.170 0.10±0.03 O.OHO.Ol 24.04 0.008 0.07±0.02 O.OHO.OO 36.12 0.003* 

Alkene (C29) 0.00 0.00 0.13±0.05 0.00 21.55 0.009 0.23±0.08 0.01±0.01 23.12 0.008 

Alkane (C29) 0.06±0.04 0.04±0.01 0.364 0.579 0.07±0.05 0.02±0.01 2.08 0.222 0.07±0.02 0.02±0.01 15.00 0.017 
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Table 4.3 Variation in CHC profile according to host species. Mean relative abundance ± 
SO of cuticular hydrocarbons of adult female Goniozu5 legneri (strain U) reared on different host 
species. MANOVA: Wilks' Lambda = 0.001, F (27,12) = 4.156, P=0.0048. Because 9 ANOVA 
tests were carried we adjusted the significance criterion according to the Bonferronl procedure: 
P-values less than 0.0055 value are indicated with an asterisk. 

Compound Molecular Host sQecies ANOVAs 
weight 

(Carbon Corcyra Plodia Ephestla Ephestia F(3.12) P 
chain Da cephalonica Interpunctella cautella kuhniella 

length} 

Alkane 324 0.20:t:0.03 0.17:t:0.01 0.17:t:0.02 0.15:t:O.01 4.348 0.027 
(C23) 

Alkene 1 350 0.55±0.07 0.29:t:0.06 0.35:t:0.10 0.45:t:0.11 6.466 0.007 
(C25) 

Alkene 2 350 0.80:t:0.09 0.38:t:0.02 0.40±0.12 0.29:t:0.10 24.304 <0.001* 
(C25) 

Alkane 352 0.25:t:0.02 0.60:0.03 0.54:t:0.13 0.37:0.13 11.525 0.008 
(C25) 

Alkene 1 378 0.17:0.04 0.14%0.04 0.13:t:0.03 0.16:0.06 0.792 0.521 

(C27) 

Alkene 2 378 0.77±0.14 0.68:0.19 0.62:0.11 0.44:0.14 3.970 0.035 

(C27) 

Alkane 380 0.09:t:0.02 0.lUO.03 0.08:t:0.02 0.08:0.01 2.381 0.120 
(C27) 

Alkene 406 0.10:t:0.02 0.13±0.06 0.10±0.03 0.09±0.02 1.152 0.368 
(C29) 

Alkane 408 0.04:0.00 0.06±0.01 0.06:t:0.01 0.04:0.01 4.736 0.021 
(C29) 
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Figure 4.1 Total ion chromatogram examples showing the cuticular hydrocarbons of 
an adult fema le of (a) G. nephantidis (b) G. sp. indet. and (c) G. legneri. 'IS' denotes 
internal standard. 
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Figure 4.2 Two dimensional scores plots from Principal components analysis of the 
cuticular hydrocarbon profiles from (a) females of three different species of Gonlozus 
parasitoid reared on the same host (b) both sexes of G. nephantldls and G. legneri (U 
& C-Iab strains) (c) females of G. legner; U-strain reared on four different host 
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Figure 4.3 Two-dimensional loading plots from principal components analysis of the 

cuticular hydrocarbon profiles from (a) females of three different species of Goniozus 

parasitoid reared on the same host (b) females of G. /egnerl U-strain reared on four 

different host species. Panels (a) and (b) correspond to the scores plot shown In Fig. 

2a and 2c respectively. The loading plot associated with Fig. 2b is not shown as it is 

essentially the same as panel (a) of this figure. 
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4.5 Discussion 

The identified cuticular hydrocarbons from the three species of Goniozus revealed that 

there were major differences between adult females of the three different species. As 

these wasps had been reared on the same species of host and thus the environmental 

conditions were effectively constant, we conclude that there is a genetic component to 

cuticular hydrocarbon profiles within Goniozus. This broadly accords with the results of 

Lize et al. (2012, Chapter 3) who found that aggression between G. legneri females is 

attuned to their relatedness as it seem likely that relatedness Is assessed by 

interacting wasps using CHC profiles (e.g. Gamboa et al. 1986b, Nehring et al. 2010). 

Lize et a/"s (2012, Chapter 3) experiments were focussed on G. legnerl, and thus 

suggest that there is intra-specific variation in CHC profiles (and molecular genetic 

studies also show that these G. legnerl strains are genetically distinct In some of the 

microsatellite markers we have evaluated, Khidr SK, Mayes S, Zaviezo T & Hardy ICW 

unpublished, chapter 5). We did not, however, find convincing between-strain 

variation in the CHe profiles of G. legneri females. Within some other wasp species 

there are positive correlations between genetic relatedness and chemical profile 

similarities (Dapporto et al. 2009, Drescher et al. 2010) and heritable components of 

CHe profiles have similarly been found in other Insect taxa (e.g. Dallerac et al. 2000, 

Thomas & Simmons 2008). 

We found variation in CHe profiles between male and female G. legneri, In both strains 

examined, but no inter-sexual differences for G. nephantldis. Gender-based 

differences in CHCs have been detected In other parasltold species and may be used In 

gender recognition (Howard 1992, Sullivan 2002, Howard & Baker 2003, Ruther et al. 

2011) leading to changes in behaviours such as sex allocation decisions (Darrouzet et 

al. 2010) and courtship (Steiner et al. 2006). In Goniozus nephantidis and G. legneri 

mating is thought to occur predominantly between siblings before dispersal from the 

natal site and there is no prolonged courtship behaviour (Hardy et al. 1999, 2000): 

given that the mating systems of these two species appear to be very similar, we have 

no current explanation for the absence of gender differences in CHC profiles in one 

speCies and the presence in the other. 

The host species on which female G. legneri developed also influenced their CHC 

profiles. As these females belonged to the same strain and thus genetic Influences 

were effectively constant, we conclude that there Is an enVironmental component to 
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Goniozus cuticular hydrocarbon profiles. Again, this accords with Lize et al.'s (2012, 

Chapter 3) result that aggression between G. /egneri females is attuned to whether or 

not they had developed on the same or different individual hosts and the notion that 

females use host derived chemical cues to assess relatedness (e.g. Ross & Gamboa 

1981, Shell mann & Gamboa 1982, Pfennig et al. 1983, Gamboa et al. 1986b, Ode et 

al. 1995, Liang & Silverman 2000, Florane et al. 2004). The strength of 

correspondence between parasitoid CHC profiles and the chemical composition of their 

hosts can vary greatly: in the bethylid Cephalonomia hyalinipennis the degree of total 

cuticular hydrocarbon composition of the parasitoids which resemble their hosts is less 

than 40% (Howard & Perez-Lachaud 2002) but is more than 90% in the Eucharitid 

Kapa/a sulcifacies (Howard et al. 2001). Lize et al.'s (2012, Chapter 3) experiments 

used only C. cephalonica larvae as hosts and thus suggest that the influence of host 

identity on parasitoid CHC profiles operates in a finer scale than just the species of the 

host fed upon (as also suggested by Ode et al.'s, 1995, study on parasitoid mating 

behaviour): further work will be required to assess how Individual hosts of a given 

species influence CHC profiles. 

While analysis of cuticular hydrocarbons has greatly assisted the understanding of 

social behaviour, particularly in hymenopterans, it has also been suggested and 

utilized as a tool for taxonomic identification of species (Kather & Martin 2012). Our 

CHC analyses revealed that the unidentified species of Goniozus from Oman, Goniozus 

sp. indet., showed closer resemblance to G. nephantidis than to G. legnerl. This 

species is, however, chemically distinct, both qualitatively and quantitatively, and thus 

very unlikely to be synonymous with either congener studied here. Further research 

on the application of Goniozus sp. indet. to pest control problems should proceed on 

this basis. There are around 160 described species of Gonlozus (Gordh & M6cZi3r 

1990) and further work on their chemical profiles may help establish the taxonomic 

identity of Goniozus sp. indet. as well as potentially revealing currently cryptic 

distinctions and synonymies within the genus. 
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4.6 Conclusion 

We carried out this investigation for two reasons: to discover whether Gonlozus CHC 

profiles varied according to genetic relatedness and environmental influences and also 

to evaluate whether CHC profiling might be utilized as a tool for taxonomic 

identification of Gonlozus species. We find both genetic (wasp species) and 

environmental (host species) influences on CHC profiles. While we have examined 

cross-species differences in both wasps and hosts, rather than differences between 

siblings and non-siblings reared from the same or different Individual hosts of the 

same host species, our findings support the expectation, arising from the results of 

Llze et al. (2012, Chapter 3), that Gonlozus CHC profiles would vary according to both 

genetic background and developmental environment. Because the CHC profiles of 

different species within the genus Goniozus are dissimilar, we also conclude that 

chemical analysis can be used as a taxonomic tool alongside morphological and 

molecular genetic identification and thus aid researchers who need to obtain an 

identity for parasitoids that they have collected from the field. 
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Part three: Molecular genetics and sex ratios 
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Chapter 5: The development of molecular genetic 

markers in bethylid wasps 

5.1 Abstract 

Genetic markers work as indicators to reveal differences between genotypes by 

focussing on the presence of alleles of target loci. Detecting association between 

phenotype and the genotype of the markers involves dividing the population into 

different groups depending on a particular marker locus and testing for significant 

differences between groups with respect to the trait being measured. Markers can also 

be used to randomly sample the genome and infer information regarding the genetic 

relationships between individuals. Twelve primer pairs for the south Asian bethylid 

wasp Goniozu5 nephantidi5 and 24 for its New World congener Goniozu5 legnerl were 

designed to investigate polymorphism between and within populations, using samples 

of 85 individuals of both species and including three putatively different strains of G. 

legneri. Annealing gradient tests (50-65°C) were conducted for these primers, to 

study the quality of the PCR amplification across an annealing temperature gradient 

using a mixed genotype DNA template from each species separately. Seven primer 

pairs which amplified clear products of approximately the expected size of G. 

nephantidis and 18 of G. legneri were then selected for capillary analysis for fragment 

size determination on a Beckmann CEQ 8000. Neither G. nephantidis nor G. legnerl 

were polymorphic within populations. However, there were 6 primer pairs that show 

polymorphism between Goniozus legner; populations that originate from different 

geographical areas within South America; Uruguay and Chile. Further, one primer pair 

showed diversity between the two strains collected within Chile. Knowledge of these 

genetic polymorphisms is potentially useful to investigations of a range of questions In 

evolutionary and applied ecology and one of the makers developed here has already 

been used to provide unbiased assessment of primary sex ratio in G. legnerl. 
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5.2 Introduction 

Among the natural enemies of agricultural pest species, parasitoid wasps are 

considered as one of the most important classes of biological control agent and are 

also widely used in studies of evolutionary ecology and basic population biology 

(Godfray 1994, Jervis 2005, Hochberg & Ives 2000, Wajnberg et al. 2008). The 

distributions and population structures of parasitoids may be influenced by a wide 

range of factors, such as geological and geographical components, ecological 

processes, evolutionary and genetic aspects (Zink 2002, Bond & Stockman 2008). 

Successful population genetic, ecological and evolutionary studies can be achieved 

through the availability of suitable molecular markers as they are regarded as 

important indicators of relationships between both Individuals and populations 

(Carvalho 1998). These markers have the ability to reveal differences between 

genotypes through the application of a range of random markers, not linked a priori to 

traits. 

Among the classes of genetic markers are 'microsatellite' markers, which are also 

known as simple sequence repeats (SSRs). Microsatellites essentially consist of short 

repeated units of around two to six base pairs In length with an array up to around 

200bp long and can be found in both coding and non-coding regions In all prokaryotic 

and eukaryotic genomes (Tautz 1989, Arcot et al. 1995, Beukeboom & Zwaan 2005). 

Frequently, microsatellite loci have been isolated from partial genomic libraries of the 

species of interest through screening several thousand clones through colony 

hybridization with repeat containing probes (Rassmann et al. 1991). SSRs (simple, 

tandemly repeated di- to tetra-nucleotide sequence motifs flanked by unique 

sequences) have been developed In a number of parasitoids (Baker et al. 2003, Anton 

et al. 2006, Lozier et al. 2006). Mlcrosatellite markers have many advantages over 

other marker types because not only do they generally have a high number of alleles 

per locus which can identify polymorphism but they also have high expected 

heterozygosity and high mutation rates (Hancock 1999). 

Thus, microsatellite markers have been used to determine the genetic diversity and 

differentiation between populations through measuring the degree of heterozygosity In 

parasitoid speCies (e.g. 0.378-0.063 in Cotesia melitaearum, 0.171-0.629 In Neotypus 

melanocephalus and 0.170-0.367 in Lysiphlebus hirticornis; Kankare et al. 2005, 

Anton et al. 2007, Nyabuga et al. 2010) and the degree of gene flow and dispersal 
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between populations (Avise 1994, McCoy et al. 2001, Molbo et al. 2003, Kankare et al. 

2005, Zavodna et al. 2005, Drescher et al. 2010, Nyabuga et al. 2010). 

This study set out to design a microsatellite marker system for screening two species 

of bethylid wasps for genetic polymorph isms within and between populations. In 

principle such markers could prove useful for pest control applications (Aebi et al. 

2008, Ugelvig et al. 2008, Lozier et al. 2009, Zygouridis et al. 2009, Nicholls et al. 

2010, Lavandero et al. 2011), evaluating the effect of kinship on social behaviours 

(Lize et al. 2012, Chapter 3) and for measuring population parameters, such as levels 

of inbreeding, which have not been directly evaluated but are Important In the 

understanding of reproductive decisions (Hardy & Cook 1995, Hardy et al. 1998, 1999, 

2000). However, the first direct application of these markers has been to provide 

assessment of the sex of individual eggs to evaluate maternal sex allocation without 

the biasing influence of developmental mortality (Khidr et al. submitted, Chapter 6). 

S.2.1 Biology of bethylids 

The Bethylidae is a family of parasitoid wasps which has been thought to comprise 

four extant subfamilies: Bethylinae, Epyrinae, Prlstocerlnae and Mestitiinae (Evans 

1964) with over 2000 described species (Gordh & M6czar 1990). Recently the higher 

level phylogeny of bethylids has been estimated using molecular data of 33 species 

resulting in a split of the sub-family Mestitilnae Into two separate sub-families; the 

Mestitiinae and the Cephalonomiini (Carr et al. 2010). Bethylld wasps attack almost 

exclusively the immature stages of coleopterans and lepldopterans, many of which are 

pests of Important agricultural commodities such as coffee, coconut, sugarcane, apple, 

walnut and almonds (Gordh 1982, Batchelor at al. 2005, Venkatesan et al. 2007, 

Zaviezo et al. 2007). In this study we focus on Goniozus nephantldls (Muesebeck) a 

parasitoid of the lepidopteran larvae the coconut pest (Opisina arenosella Walker), and 

G. legner; Gordh, a parasitoid of several lepidopteran pests. Both G. nephantldls and 

. G. legner; have each been used In biocontrol programmes (Dharmaraju 1963, Legner 

& Silveira-Guido 1983, Gothilf & Mazor 1987, Lyla et al. 2006) and In a range of 

behavioural ecological studies (e.g. Hardy & Cook 1995, Goubault et al. 2006, 2007a, 

Humphries et al. 2006, Bentley et al. 2009, Lize et al. 2012, Chapter 3). Their basic 

life-histories are similar; both are gregarious Idlobiont ectoparasitolds exhibiting sub­

social behaViour, such as maternal care and defence of the developing brood (Hardy & 

Blackburn 1991, Bentley et al. 2009), and appear to conform closely, but probably not 
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exactly, to single foundress Local Mate Competition (Hamilton 1967, Hardy & Cook 

1995, Hardy et al. 1998, 1999, 2000). Males usually emerge before females and have 

effectively unlimited mating capacity to inseminate their sisters (Hardy et aJ. 1999, 

2000) and, as with many other bethylids, the sex ratios of these species are generally 

female biased with low variance (Green et al. 1982, Hardy & Mayhew 1998, Hardyet 

al. 1998, Khidr et aJ. submitted, Chapter 6). 

5.3 Material &. Methods 

5.3.1 Parasitoid origins and cultures 

Goniozus nephantidis (Muesebeck) is a natural enemy of the coconut pest Opisina 

arenosella Walker in the Indian sub-continent (Venkatesan et al. 2007). Our culture 

has been maintained in the laboratory for more than 20 years on the facultative host 

Corcyra cephalonica Stainton (Lepidoptera: Pyralidae), following methods given in Uze 

et al. (2012). 

We used three strains of Goniozus legneri Gordh. One, termed strain 'U', was obtained 

from a commercial insectary in the USA and kept in our laboratory for more than eight 

years. The original material is believed to have been collected from a population in 

southern Uruguay in 1978 (Gordh 1982, Gordh et al. 1983, Legner & Silveira-Guido 

1983). Two further strains of G. legneri were brought to our laboratory In May 2009 

from Santiago, Chile. One strain was collected directly from walnut trees and Is 

termed 'C field' while the other strain is termed 'C lab' as It had been maintained in a 

Chilean insectary for several years following collection from the field near to Santiago 

(Zaviezo et al. 2007). Corcyra cepha/onica was used as a facultative host for all three 

strains of G. /egneri. In the field it is known to attack a range of lepidopteran species 

that are pests of walnuts, pistachio nuts, almonds and apples (Steffan et al. 2001, 

Garrido et al. 2005, Zaviezo et al. 2007). All cultures were maintained In a climate 

room at 25-27°C, 12 L: 12D with high relative humidity maintained by a water bath. 

5.3.2 Design and preparation of the primers 

Microsatellite-enriched genomic libraries were created essentially according to Kloda et 

al. (2004) with the final sequencing step being carried out through use of barcoded 
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adaptors and a 1/16th run of non-titanium reagents Roche 454 Pyrosequencing (as 

part of a mixture of 9 different libraries). The generated Fasta files were separated in 

silico to identify the individual libraries and those for G. legneri and G. nephantidis 

were searched for microsatellite motifs using the MISA.pl script (pgrk.lpk­

gartersleben.de/misa/misa.html). Primer pairs flanking the simple sequence repeats 

were designed either by Primer 3 (Rozen & Ska/etsky 2000) and/or WebSat (Martins 

et al. 2009) for G. legneri (Table 5.1) and for G. nephantidis (Table 5.2). Primers were 

syntheSised by MWG Eurofins with a forward primer 5' extension consisting of the M13 

sequence, to allow labelling of the final product through a three primer reaction 

(Schuelke, 2000) and prepared to 1000x concentration using Sigma molecular biology 

grade water (to create primer stocks of 200pmol/lJl). After vortexing and spinning, 

tubes were placed on ice for 30 min. Primers were kept in a freezer at -20°C and to 

produce a lOx primer stock; 51J1 of the 1000x stock was mixed with 495 IJI sterile 

distilled water (SOW) for both Forward and Reverse primers into separate tubes on 

ice. The third primer (M13) was ordered from Sigma Aldrich and labelled with dye 04 

(blue; WellRed dyes) and the sequence used was 5'-TGTAAAACGACGGCCAGT-3'. 
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Table 5.1 Primers designed for G.legneri 

Name product size SSR length sequence F length sequence R 

GISSR1 183 (AG)18 24 GCAGAAAGTTTTCACGAGCGATTT 18 TACCCGGTACCCCGTTCC 

GISSR2 142 (CT)6 25 CCCTTAAATCGACATCGGTTATCCT 24 CGAAAACAAAGCTCGCTCCATTAC 

GISSR3 158 (AG)9aaagg(GA)8 24 CGCCGAGTTCTTTCTCTCGTTTTA 24 TCGAAGTTATACGCATCCCGAAAC 

GISSR4 113 (CA)13 24 TCTTGCTTACGGGTGGACTAACAA 22 AACGCTCCACCTCGTGTGTGTG 

GISSRs 205 (GA) 11 24 GGCTTCAACCTTGCGATTCTATTG 27 CCTTGCAT AATAATAACGTACACTCTC 

GISSR6 118 (GA)12a(AG)7 23 GGTAGCTGCGAGCGAAAAGAGAG 23 GTCCCGTCTCACTAACCCCTCCT 

GISSR7 120 (GA) 13 24 AGGGTATCATTACGCGAGACCGTA 24 CCACTCTCTCGTTACACCGCGTAT 

GISSR7* 142 (GA)13 19 CGAGGGTATCATTACGCGA 20 GGCCACTCTCTCGTTACACC 

GISSR8 178 (GA)14 24 TACACACACGCTGCATTGTGACTT 24 TAGCGAAACCTACGCGTCTACCTC 

GISSR9 138 (GA)14 22 CATTATCGCTGCGCCGAAAGTC 24 ACGCTCGGTGCTCTCTCATTCTAC 

GISSR10 80 (GA)9 24 ATGAGAATGCGTAGAGGGGGTAGA 24 GCGCTATCGGACGAACTACTCTCA 

GISSR11 107 (GC)8 27 ACCCTCGATGCTCGTTTGATTG 24 GCGCGAGACTGTATGAGCTTGTAA 

GISSR12 101 (TG)8 25 CAATGTAAGATGCGGTAATCGATGAAT 24 TTACGAGATGCACGGAGAGAAAAA 

GISSR13* 121 (AG)10 20 CGCCACGGTTTTGATTAAGT 19 GCGCTATTCGGCACTCTCT 

GISSR13 151 (AG)10 19 GCGATATGCGATTGACAGG 19 GCGCTATTCGGCACTCTCT 

GISSR14* 134 (AG)ll 20 CGTGAACAAATCGAACGAAA 22 GACCGAACGTACTAACCAACCT 

GISSR14 138 (AG)ll 20 CGTGAACAAATCGAACGAAA 20 TCCCGACCGAACGTACTAAC 

GISSRls*a 162 (GA) 12 22 TCAGCGAAATCGAGAGCTAAAT 22 GGCTAATTGCGTTATACTCCGT 

GISSR1S*b 117 (GA)12 19 AGTCTCCGGTTTATGCCGT 22 GGCTAATTGCGTTATACTCCGT 
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GISSRI6*a 152 (GA)13 18 ATTATGCCCTCGTTGCCT 22 CTCTTTCTCTCCTTCTCTCCGT 
GISSRI6*b 141 (GA) 13 20 CCACCGGCATGGATTTCTTT 27 GGGAGGTCGCTTATTCTAACTCTTTCT 

GISSR16 176 (GA) 13 19 GCTGCATTATGCCCTCGTT 26 GGGAGGTCGCTTATTCTAACTCTTTC 
GISSRI7* 164 (GT)8 18 CAGAAGGGGCATCCTTGA 25 CTTGAAACTTACTGCGCTAATACAC 
GISSR17 155 (GT)8 20 ATCCTTGACGACGGCCTAAC 26 GCTTGAAACTTACTGCGCTAATACAC 
GISSRI8* 102 (Te)l! 21 ACGTAGTCCTGCATCACGAAA 22 AGACGAAGATACGAAGAGTCGG 
GISSR18 201 (Te)l! 20 AGGTGAGCCGAGCTTTATTG 22 GGATTCCTTCGAGAGAGAGAGA 
GISSRI9*a 125 (Te)l! 18 GACGCAACGCCATCCATA 22 CACCGAGTAGAGTTTCATTCCG 
GISSRI9*b 102 (Te)l! 22 ACCAAATAGAGTCGAAAATGCG 22 CACCGAGTAGAGTTTCATTCCG 

GISSR19 179 (Te)l! 22 CGAGTCGATGATAAATCCCTGT 21 CACCGAGTAGAGTTTCATTCC 
GISSR20* 112 (AC)6 22 TGTCACGTTGCCAGTTAGAAGA 18 CGTGTGTGTGCGTGTGTG 

GISSR20 182 (AC)6 20 TTTCAGGTGCGGGAAAGAAC 20 GTGCGTGTGTGCAATCATCT 

GISSR21* 162 (AG)9 18 GGTGTCCCAGGCGTCTTT 18 GTCTCCCTCCCCTCCACC 

GISSR22* 108 (AG)15 22 ACGCGACAATTTCTTTCTTCTC 20 CCCGACGTGTCTTCTCTCTT 

GISSR22 168 (AG)15 20 CGTTCCTCACTCCTCTCATC 20 CCCGACGTGTCTTCTCTCTT 

GISSR23 126 (AG)22 20 GCTCGAGATAATTGCCGTCT 20 GTCCGTCTCGTTCGTCTCTC 

GISSR24 102 (GA)9 20 AGCAATAACATTGCGGAGGA 21 GCGCTATCGGACAACTACTCT 

*Denotes primers designed using WebSat, in some cases there were two versions designed for a particular fragment length denoted by a or b. The 
remainder of the primers were designed using Primer 3. 
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Table 5.2 Primers designed for G. nephantldls 

Name product 
SSR length sequence F length sequence R size 

GCACGTGAATTlATGAACGAG CTAGGGACCGTGCAGAAAACT 
GnSSR1 173 (AC)13 24 GAA 24 ACG 

TTCTGAGGGTTATCTCGGTGTT TCCGTCGGACGTAACTACACCT 
GnSSR2 89 (AC)17 24 CG 23 C 

GGATAAGCTCGTGAAAGCTTC GATCATAGGAACGGACGAACG 
GnSSR3 104 (AC)8 24 GTC 24 AAC 

CGGGTAACGTGATTAATTCCTC GGCAATTTCACGGGGTTACAG 
GnSSR4 114 (AC)8 26 TTlC 24 TTA 

AGCAGCAGCATACTCACACACA CGCGCTTGAATCGCATATAAAT 
GnSSRS 138 (AC)9 24 GA 24 CT 

ACCGAGCAGCGTTGTATGATGT ACCATTGTAAAATCTTCGCGGG 
GnSSR6 111 (AC)9 23 C 24 TA 

GATTGTCGGTAAGGGGACAAT TGGACTAGGCTCGAATCGTTCA 
GnSSR7 163 (AC)9 24 GAG 23 C 

(ACGA)Stagaa(AG GATCATAGGAACGGACGAACG TATATCTGGACGACGATGGGG 
GnSSR8 158 )10 24 AAC 24 AAC 

ACGAGGATTGGAAGAGAGTCG CCTACAGTTTACGTACCCACTC 
GnSSR9 136 (AG)8 24 AAG 26 TCTC 

GnSSR1 CCCTGTTTCAGGCTTACAGATA GTTCCCGCGTGGACTAACAATT 
0 173 (AG)lO 24 GA 24 AC 

GnSSRl GGGTGGTAAAGCAAGAAGAAA 
1 97 (AG)10 24 GCA 21 AAGACACGACAATTCATTACG 

GnSSR1 AGCGGTATAGAGGACTTCGGG CGATAAAGTCGCACACGCAAAT 
2 188 {AG)lO 24 AAC 24 AC 

5.3.3 DNA extraction 

A sample size of 85 individuals was used for capillary testing (section 5.3.7). We 

examined 17 individuals of G. nephantidis and a total of 68 Individuals for the different 

strains of G. legneri (25 of 'u' strain, 22 of 'C lab' strain and 21 Individuals of the Ie 
field' strain). In addition, five pooled samples of 20 Individuals were used for the 

annealing gradient test. 

Individual females or pooled samples were placed in 1.5 ml eppendorf tubes 

(Sarstedt) then immersed into liquid nitrogen and crushed using a mini pestle to start 

the extraction. Genomic DNA was then extracted either by using a GenE/ute plant 

Genomic kit (Sigma Aldrich) or by following, with some modifications, methods given 
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in Sambrook et al. (1989) and Vogler and Desalle (1993) before elution/resuspenslon 

into 50-601-/1 of sterile distilled water and storage at -20°C. 

5.3.4 Polymerase Chain Reaction (peR) 

PCR reactions were carried out in either a Thermo Hybaid Express PCR machine 

(Electron Corporation, Milford, MA, USA) or in an ABI PCR 9700 Thermocycler machine 

(ABI, Carlsbad, CA, USA). The Thermo Hybaid Express PCR was used for annealing 

gradient tests and run with a 15°C gradient by using a total volume of 201-/1 for one 

reaction through mixing different components consisting of 21-/1 of lOx Forward primer 

& 21-/1 of lOx Reverse primer (2 pmol/I-/I final);21-/1 of lOX PCR buffer; 0.161-/1 of dNTP's 

(mixed dNTP 25mM final concentration per nucleotide); 21-/1 of DNA template (mixture 

of many individuals); 0.101-/1 ofTaq DNA polymerase (5 units/I-/I) and finally 11.741.11 of 

SDW. Thus, the optimal annealing temperature was determined for each pair of 

primers according to following program: 

Initial denaturation: 94°C for 3 min 

Main cycle (denat): 94°C for 1 min 

} 35 cycles Annealing temp grad: 

Polymerase extension: 72°C for 2 min 

Final Extension: 72°C for 10 min 

For samples amplified in the ABI PCR 9700 Thermocycler the aforementioned 

programme was used but the determined optimum temperature of the annealing used 

was 60°C for the majority of the primers unless stated otherwise (section 5.4.2). PCR 

reactions consisted of 0.21-/1 of lOX Forward primer and 21.11 of lOx Reverse primer (2 

pmol/1.I1 final), 21-/1 (lOx) PCR buffer, 0.161011 dNTP's (each In a 25mM final 

concentration), 0.041-/1 M13 Blue Taq of 1000x (53.8 nM concentration), 21011 of 

Individual genomic DNA (approximately 5ng/IJI), 0.10 Taq DNA polymerase (5 

units/I-/I) and 13.51-/1 SOW. Thus, a fluorescently-Iabelled M13 tall sequence was added 

to the 5'-end of the Forward primer (Schuelke 2000) to be used for capillary 

sequencing. 
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5.3.5 Agarose Gel Electrophoresis 

Samples to be loaded on the gel were mixed with 6x gel loading blue buffer (Promega) 

in the ratio of one part sample to one part loading buffer. The mixture was added to 

each well of the plates from the PCR machine and was spun briefly. Then 101-11 from 

each well were loaded onto a submerged gel that consisted of a 2% concentration of 

agarose (Molecular Grad, Bioline) prepared in 0.5x TBE (Tris- Borate- EDTA) buffer, 

followed by addition of 21J1 of ethidium bromide stock before pouring (10mg/mi; 

Promega corporation). Each primer pair reaction was loaded onto one row of the gel 

(each primer pair having 12 reactions across a 150C annealing gradient). Alongside 

appropriate size marker (51J1 of 2-log DNA ladder; New England Biolabs, Ipswich, MA, 

USA) was loaded in the first lane of each primer pair, then the gel was run at 90V for 

approximately 1 hour. After electrophoresis, results were visualised and photographed 

under UV-light in a Bio-RAD Gel Doc 2000 gel box. 

5.3.6 Quantitation test of DNA templates and Gonlozus Individuals 

DNA extractions were quantified by comparison with known uncut lambda DNA 

(BioLabs) (50ng/lJl) loaded in the following amounts; 101J1, 51-11 and 2.51-11 and 1.51-11, to 

represent fluorescence comparison with the unknown samples. Thus, the 1% agarose 

gel was run at 90V for 75 min then different individuals of both species were 

quantified, tested for DNA integrity by ensuring that genomic samples largely ran at 

limiting mobility. Good quality samples were used as DNA templates. 

5.3.7 Capillary sequencing: Preparing fragment samples for analYSis 

The CEQ 8000 Fragments Analysis Software Version 8 was used to measure and 

analyse the fragment sizes of the PCR products. The preparation of the sample In half­

reactions was described as below: 

First, for each row of 8 samples 2151J1 of SLS (sample loading solution) was added to 

21-11 of SS 400 (Standard size) mixed by vortexing and spun briefly. Then 271-11 of this 

mixture was added to each well in the row and 21-11 of multiplexed PCR product was 

added later. Finally the mixture in each well was overlaid Immediately with a drop of 

mineral oil and placed in the CEQ machine. Later, cluster analysis between different 

populations of Goniozus legneri was generated by Multi Variate Statistical Package 

(MVSPi Kovachs) version 3.2. 
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5.4 Results 

5.4.1 Primer design in the Microsatellite library 

Genomic libraries consisting of 273 sequences containing microsatellite motifs were 

screened to design primers for Goniozus legneri. Among the best 24 microsatellites 

were considered to be clearly unique sequences with adequate flanking sequence 

length to design primer pairs flanking the repeat unit. The remaining fragments 

shared the same SSR sizes, or the SSRs were located at the end of the fragments 

leaving insufficient flanking sequences for primer design, or the SSRs appeared in 

compound formation. The dinucleotide (GA)n was the predominant marker followed by 

(AG)n and (TC)n' While the tri- and tetra-nucleotide microsatellites were frequently in 

complex forms. 

In G. nephantidis there were 3356 SSRs of which 12 were chosen to design primers 

for the investigation of polymorphism within the population . The dinucleotide 

microsatellite repeat motifs (GA)n and (AG)n were the most common repeat category 

in the library. 

5.4.2 Annealing gradient tests 

PCR analysis was performed to optimise annealing gradients for the 12 new G. 

nephantidis primer pairs and 24 primer pairs for G. legneri strains . Sometimes a 

number of primer pairs were designed to the same microsateliite repeat sequence to 

increase the probability of success. The process was repeated several times to test the 

reliability of the new primers. Representative results of the annealing electrophoresis 

gels are shown in Figure 5.1 and Figure 5.2. 

Figure 5.1 Annealing gradient for G. legneri primers (primer labels correspond to 

those in Table 5.1) 
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Figure 5.2 Annealing gradient for G. nephantidis primers (primer labels correspond to 

those in Table 5.2) 

Primers showing clear bands in annealing tests were selected for PCR amplification 

and polymorphism testing. In addition the best annealing temperature for each primer 

was recorded in order for this to be used for the PCR. According to the results of the 

annealing tests, the best temperature for all G. nephantidis primers was 60°C except 

for primer GnSSRll at 56°C. No amplification was observed for primers GnSSR1, 2, 3, 

4 and 10 in the test. In G. legneri, the optimum temperatures were 54°C, 56°C and 

58°C for primers GISSR 14, 5 and 22, respectively . The remainder of the primer pairs 

had optimal annealing temperatures close to 60°C, allowing simultaneous amplification 

in the same thermoblock. The following primers were excluded from further work 

GISSR1, 4, 6,10, 19*b, 20*,21*,22* and 23. 

5.4.3 DNA quality test 

DNA quality tests were conducted for Goniozu5 that were to be used as a template and 

diluted for annealing tests (Figure 5.3). However, DNA preparations from Individual 

wasps for use in PCR did not need dilution because they were less than 62.5 ng 

lambda DNA (Figure 5.4). 
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Figure 5.3 Quality and quantity test for Goniozus DNA templates 

Figure 5.4 Quality and quantity test for individual Gonlozus DNA templates 

5.4.4 Second round of peR runs 

Primers chosen in the annealing test were amplified on the AB! PCR machln at 

different temperatures according to their annea ling test optima. The gel 

electrophoresis results were visualized using UV light. Some primers were r ject d 

before capillary test due to not amplifying in an annealing test or, If they amplifi ed, 

not showing clear/discrete single bands on the gel. Representative results of the PCR 

electrophoresis gels are shown in Figure 5.5 and Figure 5.6. 
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Figure 5.5 Gel plate of PCR product for different primers of G. legneri 

Figure 5.6 Gel plate of PCR product for different primers of G. nephantldls 

5.4.5 Capillary sequencing 

The results of the capillary fragment analysis were processed using the B ckmann 

CEQ 8000 software to determine fragment size. Neither G. nephantldis nor G. legnerl 

were polymorphic within strains. Nonetheless, there were six primers that showed 

clear inter-strain polymorphism in G. legneri (Table 5.3). For instance, primer GISSR7 
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showed a large size difference between strains: while U-strain was 137bp both Chilean 

populations were 153bp. Further, primer GISSR5 showed a different size allele at 

228bp for both U and 'C lab' strains, with 224bp for the 'C field' strain. Variability In 

individuals between G. legner; strains ranged between two and 16 bp (e.g Figure 5.7 

and Figure 5.8) the product sizes from all the PCR amplifications were less than 

300bp. 

Table 5.3 The six polymorphic primers for G. /egnerl strains 

Primers Strength T range BestT 'U'size 'C lab' size 'C field' expected Polymorphism 
size size test 

GISSR3 Medium 50°C-65°C 60°C 176 174 174 158 Yes 

GISSR5 Strong 50°C-65°C 58-60 228 228 224 205 Yes 

GISSR7 Medium 50°C-65°C Any 137 153 153 120 Yes 

GISSR8 Strong 50°C-65°C Any 193 195 195 178 Yes 

GISSR13 Strong 50°C-65°C Any 178 182 182 151 Yes 

GISSR22 Medium 50°C-65°C 58-60 190 192 192 168 Yes 
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Figure 5.7 Examples of capillary tube analysis of primer 7 for different genotypes of G. 

legneri strains (2'U' +2'C lab' + 2'C field'). 
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Figure 5.8 Examples of capillary tube analysis of primer 8 for G./egneri strains (2'U' 

+2'C lab' + 2'C field '). 
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Moreover, the dendogram showed clearly the differences between both populations 

from different geographical locations (Uruguay and Chile) as well as polymorphism 

within the two strains collected in Chile CC lab' & 'C field'). However, both strains were 

still more closely related to each other rather than Uruguay strain (Figure 5.9). 

U 

C-Iab 

C-field 

I I I I I I 

3.6 3 2.4 1.8 1.2 0.6 o 

Degree of relatedness 

Figure 5.9 Dendogram showing relationship between and within populations of 

Goniozus legneri. 
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5.5 Discussion 

This study set out to develop molecular markers for bethylid wasps with the Idea of 

subsequently using these markers in evolutionary ecology and agricultural research. 

In general, the percentage of amplified loci decreases with Increasing genetic distance 

making such markers most suitable for closely related species, such as congeners 

(Hancock & Simon 2005, Barbara et al. 2007). We note that there are well over 100 

described species of Goniozus (Gordh & M6czar 1990). 

Our molecular data show a lack of variation within our strains of Goniozus nephantidis 

and G. legneri. Potential reasons for this include a loss of genetic diversity during 

laboratory maintenance (e.g. due to relatively small populations in culture or 

occasional population crashes) (Unruh et al 1984, Shields 1993, Cook 1993b, Henter 

2003). However, this explanation would most likely apply to G. nephantidis and the U­

strain of G. legneri as these have been maintained in culture for many more years 

than the strains of G. legneri from Chile (C lab and C field). The fact that we did not 

find polymorphisms within the much more recently collected Chilean strains thus does 

not fit with a genetic drift due to small population and 'time in culture' effect. An 

alternative explanation is that there is limited genetic variation within each of the 

populations from which field collections were made. Genetic homozygosity can result 

from inbreeding because relatives mate more frequently than expected by chance 

given the overall size of the population (Henter 2003, Elfas et al. 2010, Mazzl et al. 

2011) and both species of Goniozus are known to exhibit high levels of pre-dispersal 

sibling mating in the laboratory (Hardy et al. 1999, 2000) and have sex ratioS that 

largely conform to theoretical expectations under such 'local mate competition' (Gordh 

et al. 1983, Hardy & Cook 1995, Hardy et al. 1998, Khldr et al. submitted, Chapter 6). 

It is further known that G. nephantidis does not exhibit inbreeding depression In terms 

of effects on developmental mortality or sex ratio control (Cook 1993b). Nonetheless, 

the post-dispersal mating behaviour of neither species has been directly evaluated and 

the details of the natural mating systems of these wasps are likely to have a large 

effect on the evolution of their sex ratiOS (Hardy 1994, Hardy & Cook 1995, Hardy & 

Mayhew 1998, Hardy et al. 1998). The lack of within-strain genetiC polymorphism we 

observed provides a degree of evidence that Sibling-mating Is the predominant feature 

of the natural mating system of these Goniozus species. 
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For G. legneri strains collected within the same geographical region of Chile, 'C lab' 

and 'c field', we observed a genetic difference in just one developed primer. This could 

relate to the fact that the field strain was collected from carob moth larvae 

(Ectomye/ois ceratoniae Zeller, Lepidoptera: Pyralidae) feeding on walnuts while the 

laboratory strain was derived from a mixture of individuals collected from both carob 

moth on walnuts and codling moth larvae (Cydia pomonella L., Lepidoptera: 

Tortricidae) feeding on apples (Zaviezo et al. 2007, T.Z. pers. obs., I.C.W.H. pers. 

obs.). Genetic diversity in several other parasitoid species has been found to be 

associated with host and host plant species (e.g. Kavallieratos et al. 2004, Stireman et 

al. 2006). 

There were six primers that showed clear microsatellite polymorphism between G. 

legneri strains (U and C field). Genetic differences between these strains could arise 

due to differences in the species of insect host or host plant they were collected from 

(see above) and also to differences between the geographical regions of their 

collection (Menken 1981, Ruiz-Montoya et al. 2003, Stireman et al. 2006, 

Pannebakker et al. 2008, Phillips et al. 2008, Lozier et al. 2009, Lavandero et a/. 

2011). Various biological traits and genetic diversity might associate with populations 

from different geographic localities due to being geographically isolated, Influenced by 

different climatic effects and thus experienced different selection pressures (Diehl & 

Bush 1984, Hopper et al. 1993, Thompson 1994, Goodisman et al. 2001, Hufbauer et 

al.2004). 

Establishing that there is genetic polymorphism within parasitold species opens up a 

number of possibilities for the use of genetic markers. For instance, molecular markers 

have been used to show that the host searching behaviour of different Agathis sp. 

populations was not affected by geographical structure and they have the ability to 

disperse for long distances (Althoff & Thompson 2001) and reciprocal crossing of two 

geographically and host-species distinct strains of Aphellnus albipodus showed 

reproductive compatibility and no reduction in fecundity (Wu et al. 2004). Further, 

genetic relatedness is a crucial factor in the evolution of social behaviours between 

individuals (Hamilton 1964a,b, Mateo 2004, Lize et al. 2006, Gardner & West 2007) 

and relatedness between insects can usefully be assessed using microsatelllte markers 

(Buczkowski et al. 2004, Trindl et al. 2004, Jaquiery et al. 2005, Drescher et al. 2010) 

leading to key insights into behaviours such as kin-based altruism and aggression 
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assays (Giraud et al. 2002, Tsutsui et al. 2003, Drescher et aJ. 2010, EI-Showk et al. 

2010). In my own study system the developmental of microsatellite markers provides 

useful support for empirical work on kin recognition mechanisms (Llze et al. 2012, 

Chapter 3), as they confirm the assumption that females from different strains of G. 

legneri derive from populations with different genetic backgrounds, and are thus not 

as closely related as are females from within the same strain. In general, genetic 

recognition cues will usually associate with the level of polymorphism (Ratnleks 1991, 

Buczkowski et al. 2004) and the degree of aggressive behaviour between encountered 

individuals is attuned to the level of genetic diversity recognition loci (Giraud et al. 

2002, Drescher et al. 2010). 

A further use of microsatellite markers has been to identify the sex of eggs In several 

studies of wasp sex ratios (Ratnieks & Keller 1998, Abe et al. 2009). Assessment of 

the primary sex ratios of the parasitoid Melittobia australica showed that sex allocation 

is under precise control with the sexes produced in a regular sequence throughout the 

period of oviposition (Abe et al. 2009). The microsatellites we have developed have 

also been directly applied to the molecular-genetic detection of haploid (male) and 

diploid (female) eggs in G. legneri (Khidr et al. submitted, Chapter 6). This provides 

an evaluation of primary sex ratios that is unbiased by developmental mortality (a 

longstanding obstacle in sex allocation research on many species, e.g. Fiala 1980, 

Hardy & Cook 1995, Hardy et al. 1998, Krackow & Neuh~user 2008, Abe et al. 2009). 

We used the consistent between-strain polymorphisms (U and C field) and cross­

mated mothers, such that haploid and diploid eggs had different marker compositions. 

This work showed, for instance, that relationships between sex ratio and group size 

can be obscured by developmental mortality when the sex of eggs Is not assessed 

directly and also that male and female eggs may tend to be laid In spatial separation 

(Khidr et al. submitted, Chapter 6). 
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5.6 Conclusions 

In summary, the G. nephantidis laboratory culture evaluated here was not 

polymorphic in terms of the 12 microsatellite markers developed. This may be a 

reflection of limited genetic variability within this population or due to a prolonged 

period in laboratory culture. For G. legneri, no polymorph isms were found within 

strains using the 24 designed markers; as some strains were recently collected from 

the field this suggests natural genetiC variation is locally limited. However, there were 

six primers that showed clear between-strain marker polymorphism in Goniozus 

legneri: six markers differed between strains collected recently in Chile and strains 

believed to originate from Uruguay several decades ago, while the two Chilean strains 

differed in only one microsatellite marker. These markers are useful for experimental 

work on kin recognition mechanisms, as they show that females from different strains 

genuinely derive from populations with a different genetiC background, and also for 

studies on sex allocation strategies as consistent between strain polymorphlsms allow 

the molecular-genetic detection of haploid (male) and diploid (female) eggs of cross· 

mated mothers. 
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Chapter 6: Primary and secondary sex ratios in a 

gregarious parasitoid 

6.1 Abstract 

Haplodiploid sex determination affords female parasitoids mechanistic control over the 

sex ratios of their progeny. Strongly female-biased sex ratios, with low between group 

variance, are selected for when single mothers produce groups of sib-mating progeny. 

While the sex of progeny is determined at oviposition (primary sex ratio) the selective 

value of given sexual compositions is often only apparent when offspring mature and 

mate (secondary sex ratio). As developmental mortality can alter the sexual 

composition of given offspring groups its occurrence can select for mothers to adjust 

their (primary) sex allocation strategies in insurance. Empirical assessment of primary 

sex ratios is problematic when male and female eggs are Indistinguishable. Here we 

apply DNA microsatellite markers to evaluate primary sex ratios In the gregarious 

parasitoid Goniozus legneri Gordh (Hymenoptera: Bethylldae) and compare these with 

secondary sex ratios. We find that sexually differential mortality Is absent or weak but 

mortality acts to increase sex ratio variance and to obscure Initially present 

relationships between sex ratio and group size. In some groups of offspring, there Is a 

tendency for males and females to be laid In spatial separation. Our direct 

assessments of the sex of eggs avoids problems Inherent In utilizing sub-sets of 

matured offspring groups with no mortality as representative of overall primary sex 

ratios but in this instance also confirms interpretations made by studies constrained to 

employ methods which are strictly incorrect. 

Submitted as Khidr SK, Mayes S & & Hardy lew. Primary and secondary sex ratios In a 

gregarious parasitoid. (Behavioral Ecology). 2012. 
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6.2 Introduction 

Sex allocation is one of the most productive domains of behavioural ecology and has 

led to a sophisticated understanding of factors that influence an organism's 

reproductive decisions (Charnov 1982, Hardy 2002, West 2009). Parasitold wasps 

have proven to be useful study systems for sex allocation research due, In particular, 

to variation around a relatively simple core life-history (Godfray 1994) and the fact 

that in these arrhenotokous species female offspring usually develop from fertilized 

(diploid) eggs while males develop from unfertilized (haploid) eggs (Flanders 1965, 

Crozier 1977, Cook 1993a, see Ode and Hardy 2008 and Mateo Leach et al. 2009 for 

details on some exceptions). Mated females, which store sperm In their spermathecae, 

can thus have a large degree of behavioural control over the sexes of their progeny at 

oviposition, via the release or retention of sperm (e.g. Flanders 1965, Suzuki et al. 

1984, Godfray 1994, Ode and Rosenheim 1998). 

There are several major classes of circumstances when It might be evolutionarily 

advantageous to control progeny sex ratios (Godfray 1994, West 2009). One of these 

is offspring developing in relatively isolated and ephemeral population sub-groups, and 

tending to mate with each other before dispersing as adults: strongly female-biased 

sex ratios are selected when small numbers of mothers contribute progeny to each 

group (Local Mate Competition theory: Hamilton 1967, West 2009). In the extreme 

case that each offspring group is produced by a single mother, males develop 

successfully and have effectively unlimited mating capacity, and all mating occurs 

prior to dispersal, the optimal sexual composition of groups Is one male with the 

remainder of offspring being female: I.e. the optimal sex ratio (the proportion of 

offspring that are male) is the reciprocal of offspring group Size (Green et al. 1982, 

Griffiths and Godfray 1988). It also follows that the distribution of sex ratios across 

offspring groups is selected to have low (~ zero) variance, termed sex ratio preCision 

(Green et al. 1982, Hardy 1992, Morgan and Cook 1994, Nagelkerke 1996). 

While precise and strongly female-biased sex ratios may combine to maximize the 

number of mated daughters dispersing from each group (~ maternal fitness), 

maternal decisions are more complicated when sex ratio at offspring maturity and 

mating (termed 'secondary sex ratio' or 'brood sex ratio') might not be the same as at 

sex allocation (the 'primary sex ratio' or 'clutch sex ratio') due to developmental 

mortality at the egg, larval or pupal stages. Stochastically acting mortality Is expected 
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to increase initially precise sex ratio variance during development (Hardy et a!. 1998) 

and, as insurance against broods containing no males and thus producing only 

unmated daughters (with ::::: zero fitness), mothers should increase their allocation to 

sons when male mortality is more common and/or clutches of eggs are larger (Green 

et a!. 1982, Heimpel 1994, Nage/kerke and Hardy 1994). For a given mean probability 

of mortality the maternal primary sex ratio response should, however, be reduced 

when the distribution of mortality across offspring groups has higher variance 

(Nagelkerke and Hardy 1994). 

Empirical assessment of parasitoid primary sex ratios is often problematic because the 

sexes of immature offspring are generally not morphologically distinct (see 

Discussion). Moreover, the sex ratio of surviving gender-distinct adults cannot 

correctly be used to estimate the primary sex ratio because any sexually differential 

mortality will bias the sample of surviving offspring in favor of the sex with lower 

mortality (Fiala 1980, Krackow and Neuhauser 2008). Sexually differential 

developmental mortality may be expected due, for instance, to exposure of all 

deleterious mutations among haploids but not diploids (Smith and Shaw 1980) or to 

sexually asymmetric resource competition under some parasitoid life-histories (e.g. 

Ode and Rosenheim 1998, Giron et al. 2007, Kapranas et a!. 2011). Separate 

assessment of male and female developmental mortality is thus challenging yet 

desirable as, for instance, it is only male mortality that Is predicted to Influence 

maternal primary sex ratio optima under extreme Local Mate Competition (Nagelkerke 

and Hardy 1994). Only a few prior studies have been able to provide direct 

assessment of parasitoid primary sex ratiOS coupled with comparison to secondary sex 

ratios (e.g. van Dijken et al. 1993, Ueno and Tanaka 1997, Hardy et al. 1998, Ode 

and Rosenheim 1998, Abe et al. 2009). 

Here we apply microsatellite markers to investigate the primary sex ratio of Gonlozus 

legner; Gordh (Hymenoptera: Bethylidae) a gregarious parasitold of lepidopteran pests 

in several new world agro-ecosystems (Legner and Silveira-Guido 1983, Legner and 

Gordh 1992, Steffan et al. 2001, Zaviezo et al. 2007). The behavioural and 

reproductive biology of G. legneri has been relatively thoroughly explored (e.g. Gordh 

et al. 1983, Legner and Warkentin 1988, Lee 1992, Hardy et al. 1998, 2000, Goubault 

et al. 2006, Bentley et a/. 2009, Lize et a/. 2012, Chapter 3). Each host is stung and 

paralyzed by an adult female which guards it against utilization by other females 
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(Goubault et al. 2006, Lize et al. 2012) and lays eggs externally onto the host 

approximately one day later. Larger clutches of eggs are laid on larger hosts (Gordh et 

al. 1983, Lee 1992, Hardy et al. 1998), with ca. 72% of eggs on the host's dorsal 

surface, ca. 26% on the lateral surface and ca. 2% on the ventral surface (Gordh et 

al. 1983). Brood guarding and conspecific Infanticide (Bentley et al. 2009) lead to 

groups of offspring developing on the same host being the offspring of a one mother 

(single 'foundress' broods, Hamilton 1967). Development to adulthood takes 

approximately two weeks, with around 88-93% of eggs surviving to maturity (Gordh 

et al. 1983, Hardy et al. 1998). Sibling mating Is strongly prevalent prior to dispersal 

from the remains of the host but some degree of outbreeding may occur (Hardy et al. 

2000). Brood sex ratiOS are female biased (9-19% of adult offspring are male) and 

have low variance (Gordh et al. 1983, Hardy et al. 1998) qualitatively conforming to 

expectation under single foundress Local Mate Competition (Hamilton 1967, Krackow 

et al. 2002, West 2009). Mated females are able to produce around 17 broods before 

becoming sperm depleted (Gordh et al. 1983), thereafter producing all-male broods. 

The genetic mechanism of haplo-diploid sex determination Is unevaluated but Is likely 

to be similar to that of Goniozus nephantidis which has been shown not to operate by 

complementary sex determination (which is thought to be ancestral to the 

Hymenoptera), probably as an evolved response to Inbreeding (Cook 1993b, Asplen et 

al. 2009). 

6.3 Material It Methods 

6.3.1 Host and parasitoid rearing 

Two strains of Goniozu5 /egneri Gordh (Hymenoptera: Bethylldae) were utilized In this 

study. The first strain, which we term 'u' had been cultured In our laboratory for at 

least seven years and prior to this it had been maintained In commercial Insectaries In 

the USA (the original material is believed to have been collected from southern 

Uruguay in 1978 Gordh et al. 1983, Legner and Silveira-Guido 1983). While the other 

strain, which we term 'C', was brought into our laboratory in 2009, following field 

collections in Santiago, Chile, where a natural population had previously been reported 

(Zavlezo et al. 2007). 

Both strains were reared on a facultative host, the rice moth Corcyra cepha/onlca 

Stainton (Lepidoptera: Pyralidae), following the method reported In Stokkebo and 
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Hardy (2000). Corcyra cephalonica was reared on a diet of glycerol, corn meal, wheat 

bran and yeast, following Cook (1993b) but with the addition of honey In equal 

measure to the glycerol. All cultures and experiments were carried out In a controlled 

climate room at 27°C with relative humidity maintained by evaporation from a water 

bath. 

For primary and secondary sex ratio evaluation, eight to ten virgin C-straln females 

were placed with one to two U-strain males for 2-3 days to allow mating and C-straln 

males were similarly allowed to mate with U-strain females. We obtained 186 cross­

mated females which were then individually provided with a host weighing 30-50mg 

then monitored for 1-2 days until eggs were laid on the host's Integument. Fifty five of 

these 186 replicates were then used for molecular genetiC evaluation of the primary 

sex ratio and the remaining 131 were allocated to one of two secondary sex ratio 

evaluation treatments (see below). 

6.3.2 Primary sex ratio 

6.3.2.1 Egg laying and DNA extraction 

Once clutches had been laid I counted the eggs and noted their positions on the hosts. 

DNA was extracted separately from each egg (N = 639 eggs) using methods based on 

those of Abe et al. (2009): under a dissecting microscope, the contents of each egg 

were squeezed with the rounded tips of insect pins onto parafllm (Pechlney Plastic 

Packaging, Chicago, IL, USA) and 2J.l1 of 10 mg/ml Proteinase K (Macherey-Nagel, MN, 

USA) was placed onto the egg contents then mixed with 451J1 of buffer (10 mM Trls, 

1mM EDTA, 25 mM NaCI) followed by incubation overnight at 55°C. The extracted DNA 

was stored in a -20°C freezer. 

6.3.2.2 Establishment of a microsatellite marker for egg sexing 

Six polymorphic primers for G. legneri had previously been designed and assessed for 

polymorphism via a Beckmann CEQ 8000 capillary sequencer (S.K.K. unpublished 

data). Primer GISSR7 was selected due to having the largest between-strain variation 

in allele size (16bp) at a given locus, such that alleles could be differentiated on 

MetaPhor agarose (Bio Whittaker Molecular, Rockland, ME, USA). The primer 

sequences were GISSR7F 5'-CGAGGGTATCATIACGCGA-3' and GISSR7R 5'-
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GGCCACTCTCTCGTTACACC3-' and the original microsatellite repeat sequence had a 

(GA)13 repeat motif. 

An examination of the alleles sizes present in a large sample (n > 100) of Individuals 

of the U-strain and C-strain revealed that the U-strain carried only the 143bp allele of 

GISSR7, while the C-population carried the 159bp allele of GISSR7. Thus, by making 

crosses between the two strains it was possible to determine which eggs were female 

(heterozygotye diploids) and which were male (hemizygotes). Note that while diploid 

males occur in some Hymenoptera due to complementary sex determination 

mechanisms, these are extremely unlikely to operate in G. legneri (Cook 1993a,b). 

6.3.2.3 Polymerase Chain Reaction and gel preparation 

PCR reactions were carried out in a 20111 reaction mixture containing forward and 

reverse primer (2 pmol/Ill final), 2111 (lOx) PCR buffer, 0.21l1 dNTP's (each at a 2SmM 

final concentration), 6111 genomic DNA (approximately 3ng/IlI), 0.2 Taq DNA 

polymerase (5 units/ill) and 7.61l1 Sterile Distilled water. 

Samples were amplified in an ABI PCR 9700 Thermocycler (ABI, Carlsbad, CA, USA) 

with an initial 3 minutes denaturation at 94°C, followed by 35 cycles of 1 minute at 

94°C (denaturation), 1 minute at 60°C (annealing) and 72°C for 2 minutes (extension) 

with a final extension of 72°C for 10 minutes at the end of the program. 

The PCR products from the first clutch of eggs were also sized on a Beckmann CEQ 

8000 capillary sequencer, using standard techniques. For routine determination of 

alleles from GISSR7, PCR products were run on 4% MetaPhor agarose (BiO Whittaker 

Molecular, Rockland, ME, USA) prepared In 0.5 x TBE and run for 2 hours at 90V on a 

BloRad sub-cell GT gel kit. Bands were visualized under UV-lIght In a BloRad Gel Doc 

2000 gel box after adding 21.J1 of Ethidium bromide stock (lOmg/mli Promega 

corporation) before the gel was poured. 

6.3.2.4 peR products visualized on MetaPhor gel electrophoresis 

While the results of the capillary analysis confirmed that females and males can be 

determined using GISSR7 if crosses are made between the U- and C-stralns, the cost 

of running capillary analysis on large numbers of offspring were prohibitive. For this 

reason, we determined conditions for MetaPhor agarose gels which would allow an 
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unambiguous determination of heterozygotes from hemlzygotes, which flow d h 

presence of hybrids between the strains to be determined (Figure 6.1) On th basis 0 

the ploidy and strong inference on mating system and genetic sex det rmln tlon 

(Cook 1993b, Hardy et al. 2000), eggs were determined to be male or f m Ie. In 

smafl number of cases PCR needed to be repeated before clear results wer obt In d. 

(a) 

(b) 

iif _ .... 

..... ir=iaIi,-, ... lML. 
Figure 6.1 Molecular evaluation of clutch sexual compo Itlon. Two clut h 

reciprocal crosses visualized on MetaPhor gels. Each clutch cont In 7 ' m I 

male egg laid by (a) a U-strain female mated with C-str In m I 

crossed with U-strain males. Females are inferred by th pr 

(heterozygotes) and males by the presence of a sing I b nd (h 

carries the 143bp allele of GISSR7R and Strain C th 159bp 

of two 

column shows the 2-log DNA ladder (New England Bioi b ,Ip wlch, MA, U A) . 

6.3.3 Secondary sex ratio 

For the majority of the clutches used for secondary sex ra io v lu 

mother was removed and laid eggs counted after 1-2 days ( s wi 11 

for evaluation of the primary sex ratio) and the offspri ng w r Ilow 

maturity. For the other 39 replicates, the mother was allow d 0 

for a further 24 hours, then removed, and the numb r of 99 on 11 

recounted: this served as a check that oviposition decisions by mo h 

n U 

h nd 

), h 

u 

at the time that mothers were removed from thei r clu ch s du In v lu Ion of 
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primary sex ratios and also in the other secondary sex ratio evaluation treatment. The 

sexual composition of all 131 broods (secondary sex ratio) was determined after the 

emergence of adults from their cocoons based on external morphology (males are 

smaller than females and do not possess stingers). 

6.3.4 Data analysis 

Offspring group composition data were analyzed using generalized linear modelling 

within the Genstat statistical package (Version 12, VSN International, Hemel 

Hempstead, UK). Log-linear analyses were utilized to explore Influences on clutch size 

and male number (small integer response variables) and logistic analysis was used for 

factors influencing proportional response variables (proportion developmental 

mortality = proportion of eggs that failed to become adults, sex ratio • proportion of 

offspring that were male) (Crawley 1993, Wilson and Hardy 2002). logistic 

Generalized Linear Mixed Modeling (Bolker et al. 2008) was used to explore sex ratiO 

differences between sub-groups of offspring laid onto the same host. In log-linear 

analYSis and analyses of grouped binary data, quasi-Poisson and quasi-binomial 

distributions of reSiduals, using empirically estimated scale parameters, were adopted, 

respectively, to take potential over- and under-dispersion Into account (Crawley 1993, 

Wilson and Hardy 2002) we also note that these statistical models do not return exact 

probability estimates (Crawley 1993). The Meelis test statistic, U, was used to assess 

the significance of any deviation from blnomlallty for sex ratiO and mortality data and 

the variance ratiO, R, was used as a quantification of variance (Krackow et al. 2002). 

6.4 Results 

6.4.1 Clutches laid 

Larger clutches were laid on larger hosts (Fl ,18l = 31.27, P < 0.001) but clutch size 

was unaffected by whether the mother belonged to the U-strain or the C-straln (F1,ln 

= 1.35, P = 0.246). Of the 39 mothers left with hosts after oviposition was apparently 

complete, one subsequently added eggs to the clutch: 5 eggs were added to an Initial 

clutch of 6. As this suggests that only $::11% (5/477) eggs would have been omitted 

from our remaining primary and secondary sex ratio evaluations, we conclude that 

data on the sexual composition when mothers were removed after 1-2 days are a very 
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close match to underlying maternal decisions and we do not consider the distinction 

between the two secondary sex ratio evaluation treatments further. 

6.4.2 Primary sex ratio 

Gel analysis indicated that six of the 55 clutches evaluated contained males only: as 

this indicates that the mother probably had not mated, these clutches were excluded 

from further sex ratio analysis (following Hardy and Cook 1995). In two mixed sex 

clutches DNA extraction for egg sexing was not completely successful so these data 

were also excluded from analysis. Consequently, data from 47 clutches were used In 

the analysis of primary sex ratio. 

The mean sex ratio (proportion of offspring that were male) of the 47 clutches was 

0.118 (+S.E. = 0.012, -S.E. = 0.011). Overall distribution of sex ratio across clutches 

was significantly under-dispersed (R = 0.439, Table 6.1). Overall, primary sex ratios 

were significantly greater in larger clutches (F1,45 = 9.71, P .. 0.003, Figure 6.2A) but 

sex ratio was unaffected by the strain of the mother (F1,44 = 0.06, P == 0.807) or by an 

Interaction between strain and clutch size (F1,43 = 0.08, P = 0.781). The mean number 

of males per clutch was 1.362 (+S.E. = 0.181, -S.E. == 0.160) and Increased 

significantly with clutch size (FI ,45 = 24.80, P < 0.001, Figure 6.2B) but was not 

Influenced by strain (strain: Fl,44 = 0.03, P = 0.862; strain x clutch size Interaction: 

F1,43 = 0.05, P = 0.826). 

In 21 clutches the mother laid eggs in spatially separate batches on the host. In the 

majority of these cases most eggs (8-15) were on the dorsal and lateral surfaces of 

the host larvae with a much smaller number (1-3) laid on the ventral surface: we term 

these 'major sub-clutches' and 'minor sub-clutches' respectively. Sex ratios within 

minor sub-clutches were significantly higher than among major sub-clutches (Logistic 

GLMM with host Identity fitted as a random effect: FI ,3S -15.53, P < 0.001, Figure 

6.3). Sex ratiOS of major sub-clutches Increased significantly with Increase In the size 

of the sub-clutch while those of minor sub-clutches decreased (clutch type x sub­

clutch size interaction: FI ,3S = 8.61, P < 0.006): eggs In the smallest minor sub­

clutches were usually male. 
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6.4.3 Secondary sex ratio 

Among the 131 broods allocated to evaluate secondary sex ratio, the mean proportion 

of eggs that developed to adulthood was 0.924 (+S.E. = 0.009, -S.E. = 0.011). 

Developmental mortality was uninfluenced by clutch size (F1,129 = 0.12, P = 0.73) but 

there was a weak tendency for the offspring of C-strain females to survive better 

when developing on larger hosts while survivorship in U-strain broods decreased 

slightly (Host size x strain interaction: F1,127 = 7.52, P < 0.007, Deviance explained = 

0.05%). Developmental mortality was highly overdispersed across broods (R = 8.677, 

U = 39.2, P < 0.001) but all members failed to mature In just one of these broods. 

In 17/130 replicates with surviving offspring, all eclosed adults were male, Indicating 

maternal virginity and these were excluded from further sex ratiO analysis. 

A significantly higher proportion of eggs survived to adulthood among these all-male 

broods than among the broods containing mainly females (respective means: 0.971, 

+S.E. = 0.012, -S.E. = 0.020; 0.923, +S.E. = 0.009, -S.E. = 0.011; F1,128 = 4.67, P = 

0.033); while suggestive of sexually differential mortality, It should be noted that this 

distinction accounted for only 3.5% of the deviance and the P value, estimated from 

logistic analysis, is both inexact and close to the conventional slgnlflcance/non­

significance threshold. 

The mean sex ratio of the remaining 113 broods (containing at least one female at 

adult eclosion) was 0.133 (S.E. ±0.008) and the overall distribution of brood sex 

ratios was significantly underdlspersed (R = 0.572, Table 6.2). Secondary sex ratio 

was not significantly affected by brood size (F1,111 = 1.01, P = 0.318, Figure 6.2C), 

strain (F1,110 = 0.01, P= 0.936) or by an Interaction between strain and brood size 

(F1,109 = 0.07, P = 0.795). 

To explore relationships between developmental mortality and brood sexual 

composition, we classified the 113 broods according to whether or not all eggs 

survived to adulthood. We note that sex ratio comparisons between sub-sets of data 

with and without mortality must be made with caution but can generate useful Insights 

(Fiala 1980, Krackow and Neuhauser 2008). The mortality distribution among these 

broods was overdispersed (R = 2.684, U = 13.9, P < 0.001), further suggesting a 

categorical distinction might be informative. There was no significant sex ratio 

difference between broods with some mortality (n = 53) and broods in which all eggs 

123 



survived to adulthood (n = 60; F1,111 = 0.02, P = 0.897) nor was there a significant 

interaction between mortality occurrence and brood size (FI,110 = 2.13, P = 0.147) but 

we illustrate the observed trends in these sub-sets of data on Figure 6.2C to aid the 

comparison of primary and secondary sex ratio patterns (see below). The same 

conclusions were reached when exploring mortality in terms of the number of eggs 

that died in each clutch rather than whether or not it occurred. These results 

collectively imply that G. legneri developmental mortality is not dependent on the 

primary sex ratio (Krackow and Neuhauser 2008). The sex ratio variance of the sub­

set of broods in which some mortality occurred was, however, greater than In the sub­

set without mortality, such that the variance among broods with mortality was not 

significantly different from binomial (without mortality: R = 0.467, U = 2.5, P < 0.05; 

with mortality: R = 0.678, U = 1.26, P> 0.05). 

In terms of number of males among the 113 broods containing at least one female at 

adult eclosion, there was a significant increase with brood size (Fl ,111 = 24.60, P < 

0.001, Figure 6.20) with no influence of strain (Fl,110 = 0.00, P = 0.952) or strain x 

brood size interaction (F1,109 = 0.00, P=0.963). The mean number of males per brood 

was 1.513 (+S.E. = 0.111, -S.E. = 0.103). 
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Table 6.1 Primary sexual composition of clutches laid by mated Gonlozus 

iegneri 

Frequencies of number of males per 
clutch R U 

Clutch size Frequency 0 1 2 3 4 5 

1 

2 

3 

4 

5 

6 

7 

8 4 2 2 0.711 -0.540 

9 4 1 3 0.364 -0.972 

10 8 2 6 0.309 -1.464 

11 8 2 3 1 2 1.173 0.320 

12 7 4 3 0.227 -1.445 

13 8 1 2 5 0.431 -1.145 

14 5 1 3 1 0.292 -1.072 

15 1 1 

16 1 1 

17 0 

18 1 1 

Totals 47 8 21 13 4 1 

Approx. proportion 17% 45% 28% 9% 2% 

Overall: R=0.439, U=2.39, p<O.Ol 
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Table 6.2 Secondary sexual composition of broods produced by mated 

Goniozus Jegneri 

Frequencies of number of males per brood R U 

Brood size Frequency 0 1 2 3 4 5 

1 

2 1 1 

3 

4 2 2 

5 

6 4 1 3 0.381 -0.957 

7 1 1 

8 10 4 3 3 0.960 -0.122 

9 10 6 4 0.226 -1.775 

10 13 6 5 2 0.875 -0.354 

11 14 6 5 3 0.430 -1.544 

12 13 2 2 8 1 0.541 -1.197 

13 20 2 6 8 4 0.577 -1.374 

14 10 1 4 3 2 0.659 -0.776 

15 8 1 3 2 2 0.519 -0.947 

16 3 1 1 1 0.410 -0.629 

17 4 1 1 2 1.133 0.153 

18 

Totals 113 19 38 38 15 3 

Approx. proportion 17% 34% 34% 13% 3% 

Overall: R=O.572, U=2.87, P<O.Ol 
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6.4.4 Comparison between primary and secondary sex ratios 

Broods in which no mortality occurred have identical primary and secondary sexual 

compositions (and brood size = clutch size): with the caveat that these broods are a 

self-selected sub-set of secondary sex ratio data, we compared the sex ratios of the 

60 broods with no mortality to those of the 47 clutches used for primary sex ratio 

evaluation. The significant increase in sex ratio with clutch size (Fl,los = 12.27, P < 

0.001, as expected from Figure 6.2A,D) did not differ between these data sets (Fl ,104 

= 0.41, P = 0.522) nor was there a significant interaction between data origin and 

clutch size (F1,103 = 1.52, P = 0.210). In this instance, primary sex ratios appear to be 

closely represented by the self-selected sub-set of broods without mortality, 

suggesting the absence of sexually differential mortality. 

Heuristically combining all 113 broods used for secondary sex ratio analysis with the 

47 primary sex ratio replicates indicated that sex ratio increases with offspring group 

size among broods with no mortality and among primary clutches but appeared to 

decline weakly among broods with some mortality (brood size x data sub-set 

interaction: F2,lS4 = 3.24, P = 0.042). As above, there was no significant distinction 

between broods with no mortality and primary replicates (aggregation of factor levels: 

F2,lS6 = 0.89, P = 0.414) but sex ratios of these were significantly different from those 

of broods with some mortality (Fl,lS7 = 5.39, P = 0.022). Although this analysis 

suggests that the non-significant distinction Illustrated In Figure 6.2C may be 

biologically present, the Interpretation relies on the Inclusion of an outlying brood of 

one male and one female adult offspring (upper left hand corner of Figure 6.2C) that 

survived from an initial clutch of 10 eggs: repeating the analysis without this brood 

suggested no significant distinction between the sex ratios of the three sub-sets of 

data (F2,l55 = 0.40, P = 0.668) and an overall Increase In sex ratio with offspring 

group size (Fl ,lS7 = 6.77, P = 0.01). As mortality has no convincing effect on sex ratio 

in this analysis or In those above (beyond increasing sex ratio variance) we conclude 

that sexually differential mortality Is absent or weak. 
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6.5 Discussion 

Several methods have been developed to assess primary sex ratios directly. In some 

species maternal movements during egg-laying make it apparent which sex of egg Is 

being laid (Cole 1981, Suzuki et al. 1984, van Dijken and Waage 1987, Strand 1989, 

Luck et al. 2001) and hence primary sex ratios can be assessed visually (Ode and 

Rosenheim 1998, Yamada and Kawamura 1999). In other species, male and female 

eggs are laid in, or migrate after hatching to, different locations within the host 

(Flanders 1950, Luck et al. 1982, Walter 1983, Espinoza et al. 2009). Other developed 

methods have been genetic. Dijkstra (1986), van Dljken (1991) ,van Dijken et al. 

(1993) and Ueno and Tanaka (1997) have identified the sexes of laid eggs through 

counting stained chromosomes within cells In the metaphase of mitotic division. This 

methods is reliant on the presence of twice as may chromosomes being present In 

fertilized (diploid) female eggs in comparison to unfertilized (haploid) male eggs and 

thus cannot distinguish females from the diploid males that are occasionally produced 

in some species with complimentary sex determination (CSD: Cook 1993a, 2002, Ode 

and Hardy 2008) and can also be difficult to apply If the tissue to be sexed has 

developed somatic polyploidy (Aubert 1959) and when parasltold eggs have thick 

chorions (van Dijken 1991). More recently, DNA genetic markers, such as 

microsatellites, have been used to Identify the sex of eggs In a small number of wasp 

species (Ratnieks and Keller 1998, Abe et al. 2009). Genetic markers have the 

potential to distinguish between diploid males and females under CSD as males will be 

homozygous for the sex allele while female are heterozygous. Furthermore, genomic 

DNA can be extracted from different types and ages of eggs, making genetic markers 

powerful and accurate tools for evaluating sex ratios In haplo-diplold organisms. 

Using a genetic-marker method has allowed us to evaluate primary sex ratio patterns 

while avoiding the problems inherent In using a sub-set of offspring groups In which all 

offspring have survived (Fiala 1980, Krackow and Neuhauser 2008). Our primary sex 

ratio data show that sex ratios also have significantly lower than binomial variance 

across offspring groups (R=0.439) and are female biased overall, but less female 

biased in larger groups of offspring (because the number of male eggs per clutch 

increases rapidly with increase In clutch size, Figure 6.28). Using equations provided 

by Heimpel (1994) for optimal sex allocation under single foundress strict Local Mate 

Competition, we calculate that, with the observed mean developmental mortality of 
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7.6%, the optimal number of males per clutch will not exceed 1 until clutch sizes 

exceed 18 eggs. In fact, under the assumptions of these calculations male mortality 

would have to exceed 50% before ~4 males should optimally be laid In clutches of 18 

eggs (the fitted regression on Figure 6.26 predicts ca. 4.5 males per 18 egg clutch). 

The observed increase number of males is thus unlikely to be due to Insurance against 

male mortality (Green et al. 1982, Heimpel 1994, Nagelkerke and Hardy 1994) but 

could be due to the occurrence of non-local mating in G. legneri populations (further 

discussed by Hardy et al. 1998, 2000). 

Primary sex ratio analysis also shows, for the first time, that when G. legnerl mothers 

lay offspring in spatially discrete sub-clutches, the sex ratios of major sub-clutches are 

female biased while those of minor sub-clutches are male biased. Although the 

sequence of sex allocation during oviposition of a clutch Is unknown for G. legneri, In 

several other gregarious species of bethylids male eggs tend to be laid last (reviewed 

in Hardy 1992). Such comparative evidence suggests that minor sub-clutches are laid 

after major-sub clutches in G. legneri. This would also accord with lee's (1992) 

observation that female G. legneri females sometimes add extra eggs to a clutch (in 

Lee's study this occurred when some eggs had been removed). Further, the ventral 

surface of the host is reported to be the least frequent location for G. legnerf egg 

deposition (Gordh et al. 1993) potentially Implying that males tend to be laid In 

'inferior' locations. As developing bethylids do not usually engage In aggressive Inter­

larval competition (Mayhew and Hardy 1998), which could be reduced by phYSical 

separation and result in the less strongly competitive sex developing In an Inferior 

location (e.g. Espinoza et al. 2009), we currently have no clear adaptive explanation 

for the tendency towards spatial separation between male and female offspring on 

some hosts. We do, however, note that as our data are weakly suggestive of lower 

mortality among males when developing on separate hosts from females the 

possibility that males in mixed sex G. legnerl broods are laid spatially separately to 

reduce intersexual competition deserves future attention. 

Our data on secondary sex ratios also show that sex ratios are female biased overall 

but, in contrast to data on primary sex ratios, sex ratio Is unrelated to offspring group 

size (because the number of male eggs per broods Increases Insufficiently rapidly with 

increase in brood size; compare panels 6 and 0 of Figure 6.2): similar results have 

been found in previous studies on G. legneri (Gordh et al. 1983, Hardy et al. 1998). 
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We further found that sex ratio variance is precise, with a variance estimate 

(R=0.572) almost identical to that obtained by previous evaluation based on more 

than three times as many broods (R=0.S6, Hardy et al. 1998). 

Comparing our results for primary and secondary sex ratios Indicates that 

developmental mortality, with a mean of 7.7% (as estimated from mixed-sex broods), 

obscures initially present relationships between sex ratio and offspring group size. 

Mortality also increased sex ratio variance (from R=0.439 at oviposition to R=0.S72 at 

eclosion) but not so much that initially precise sex ratios would be classified as 

binomial on offspring maturity. Note however, that when secondary sex ratio data 

were separated according to whether or not any members of the brood died during 

development, sex ratio variances were significantly lower than binomial with no 

mortality and not significantly different from binomial when mortality occurred). 

Higher levels of mortality (ca. 57%) obscure Initially precise sex ratios In the 

gregarious parasitoid Co/poc/ypeus florus (Hardy et al. 1998), in which primary sex 

ratios have been evaluated by cytology (Dljkstra 1986). In accord with both of these 

results, further within-species and cross-species evidence shows that sex ratio 

variance is correlated with the frequency of parasltoid developmental mortality (Hardy 

et al. 1998, Kapranas et al. 2011). Such empirical observations do not contradict 

Fiala's (1980) and Krackow and Neuhauser's (2008) predictions that sex ratio variance 

will be unaffected by developmental mortality, as these authors assume that primary 

sex ratios are binomially distributed. In contrast, It Is Intuitively to be expected (Hardy 

et al. 1998) that initially precise sex ratios In G. legnerl, C. florus and other parasltold 

species will be assessed as less precise after the stochastic action of mortality. 

One reason for estimating primary sex ratios directly Is to evaluate potential sexually 

differential mortality while avoiding methodological bias (e.g. Ueno and Tanaka 1997, 

Abe et al. 2009). Mortality Itself Is often straightforward to assess In ectoparasltolds 

but separating this into male and female components usually Is not. Our comparison 

of Independently estimated primary and secondary sex ratios Indicated little or no 

difference between male and female developmental mortality. Our additional 

comparison of mortality of all-male broods produced by virgin mothers and female­

biased broods produced by mated mothers (which approximates a test for sexually 

differential mortality, Hardy and Cook 1995, Ueno and Tanaka 1997) suggested that 

males survive better than females but the distinction was very weak. We conclude, 
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overall, that sexually differential mortality is effectively absent: previous estimates for 

G. legneri and other species of bethylids have drawn similar conclusions (Legner and 

Warkentin 1988, Hardy et a!. 1998), as have other studies that provide direct 

comparison of primary and secondary sex ratios in further parasitold taxa (e.g. Ueno 

and Tanaka 1997, Abe et al. 2009) although there is less direct evidence for sexually 

differential mortality in some parasitoid species (reviewed In Nagelkerke and Hardy 

1994). 

Finally, we return to the problem that the sex ratio of surviving offspring cannot 

correctly be used to estimate the primary sex ratio because any sexually differential 

mortality will bias the sample of surviving offspring In favor of the sex with lower 

mortality (Fiala 1980): this has proven worrisome In the sex ratio literature either 

because authors are unaware of the problem (reviewed by Krackow and Neuhiiuser 

2008) or because they are aware but do not possess a fully valid method to assess 

primary sex ratios. Authors in the latter category have compared sex ratios of broods 

with no mortality with those of broods In which some developmental mortality 

occurred, along with the stated caveat that their conclusions may not strictly be valid 

(e.g. Morgan and Cook 1994, Hardy et al. 1998, Kapranas et al. 2011). Our data 

allowed us to evaluate sex ratio patterns both correctly (using a direct estimate of 

primary sex ratio) and, strictly, Incorrectly (using sub-sets of secondary sex ratio data 

with and without mortality). Secondary sex ratios from broods with no mortality were 

similar to primary sex ratios In terms of the relationship between sex ratio and clutch 

size and sex ratio variance (R= 0.467 and 0.439 respectively) and comparisons 

between sub-sets of secondary sex ratio data with and without mortality lead to 

similar conclusions to comparisons between primary and secondary sex ratios. We 

make no claim that the concerns raised, correctly, by Fiala (1980) and Krackow and 

Neuh~user (2008) are unimportant; rather we note that direct assessment of G. 

legneri primary sex ratios has not led us to conclusions that differ greatly from those 

tentatively obtained using strictly Incorrect methods (Hardy et al. 1998): this situation 

would, however, likely be different If mortality In G. legnerl were strongly differential 

between the sexes. 
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6.6 Conclusions 

Independent assessment of primary and secondary sex ratios in G. legneri Indicates 

that sexually developmental mortality does not differ between the sexes but does 

increase sex ratio variance across offspring groups between oviposition and maturity 

and can lead to initially present relationships between sex ratio and offspring group 

size being obscured. Direct assessments of primary sex ratios are desirable as these 

are methodologically more correct than indirect methods and can reveal new facets of 

sex ratio biology and maya/so serve to confirm tentative conclusions drawn from 

indirect analyses. 
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Chapter 7 : General Discussion and Conclusions 

7.1 Summary of results 

This project has investigated various aspects of metabolomlc, behavioural, chemical 

and molecular properties of Goniozu5 species. The results of these Investigations can 

be summarised into a number of main pOints. 

• The metabolomic properties of hosts change with time after paralysis. Nuclear 

Magnetic Resonance revealed that the metabolites associated with energy, 

such as glucose, decreased while amino acids were liberated from proteins and 

ethanol, a waste product, increased (Chapter Two). 

• Host age since paralysis negatively influenced parasitold reproductIve 

behaviour and life-history characteristics, such as progeny survivorshIp 

(Chapter Two). 

• Resource value appears to influence contest outcomes: contest Interactions 

were more often resolved in favour of wasp In possession of high-quality hosts 

(younger and bigger) (Chapter Two). 

• Resource holding potential affects contest outcomes: the probability of winning 

a contest was higher for the larger contestant (Chapters Two and Three). 

• Kin recognition behaviour in Goniozus females appears to operate via both 

genetically-based (phenotype matching) and environmentally-based 

(familiarity) cues, which revealed during contest Interactions (Chapters Three, 

Four and Five). 

• Chemical analysis revealed that various species of Gonlozus exhibit dissimilarity 

in the cuticular profiles and also that the host species on which female G. 

legneri developed on also influenced their CHC profiles (Chapter Four). These 

results accord with those from kin recognition studies (Chapter Three), In that 

the mechanism of kin recognition Is likely to be CHC profile similarity with both 

genetiC and environmental components. 
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• Molecular genetic markers were developed for G. legneri. These can be a useful 

tool to address many questions of interest in the future and can be employed 

across closely related species as well (Chapter Five). 

• The assessment of primary sex ratio, using genetic markers developed In 

Chapter Five, revealed that that secondary sex ratio variance Is higher than 

primary sex ratio variance due to developmental mortality and also that 

relationships between sex ratio and offspring group size that are present at 

oviposition can be obscured by developmental mortality (Chapter Six). 

Each of the aforementioned empirical chapters has their own discussion, thus in the 

remainder of this chapter I briefly recap the objectives of the work and suggest 

directions for future research. 

7.2 Post-paralysis host age influence on Gonlozus nephantldls 

fitness 

When host quality varies, parasitold wasps are expected to oviposit selectively In hlgh­

quality hosts. Whilst the influence of resource value e.g. host age prior to attack by 

parasitoids has been frequently studied (King 1998, Husnl & Honda 2001, He & Wang 

2006), no investigation has assessed the impact of envenomated and paralysed host 

age on parasitoid behavioural and life-history strategies. In accordance to our 

expectations the host quality declined significantly with time since paralysis: this Is 

directly reflected in parasitold behaviour, as females In possession of younger hosts 

fight more aggressively to win the contests for hosts. This behaviour Indicates that 

they value younger hosts more greatly than older hosts. 

Hosts started to lose weight continuously after paralysis and metabolic profiling 

showed that levels of glucose and ATP decreased with time, and waste products 

increased with time. These nutritional changes probably make older hosts less 

reproductively valuable to the wasps because, for Instance, glucose Is considered as 

an important factor associated with parasltold growth (Thompson 1979, Hu et 211. 

2001). Hence, the host's quality started to deteriorate and the required metabolic 

processes to continue their survival began to decrease. 

Further studies would involve chemical manipulation of the nutritional profile of young 

hosts via injection or diet supplements of glucose and/or ethanol. Then the female's 
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fitness can be explored in terms of offspring production and mortality while reared on 

hosts receiving different treatments. Further, contest behaviour between females In 

possession of glucose-enhanced hosts or ethanol enhanced hosts versus control 

(unmanipulated) hosts can be performed. In fact, such studies have already been 

carried out (but are not presented in this Thesis) and show that ethanol-enhanced 

hosts are treated similarly to older hosts by female parasitoids, but glucose treatment 

has no discernable effect. 

Another suggested research area is that Goniozus nephantJdis can be reared 

successfully on Corcyra cephalonica but it cannot be reared on Plodia Interpunctella. 

Thus, hosts of different species are likely to have different metabolic profiles, making 

them suitable hosts for some parasitoid species but not for others. Chemical profile 

differences and similarities between different host species can be screened through 

Proton NMR. This might be especially revealing for ectoparasltolds that do not have 

intimate immunological interactions with their hosts, because they cannot be 

encapsulated, but may have co-evolutionary interactions via hosts 'fighting back' via 

their metabolomic profiles. Thus, this might provide Insight Into the molecular 

metabolites which make some host less suitable for female parasltolds than others. 

Similar to studies on host age, the technique can be employed to explore the wasp's 

metabolic composition during different ages but first the method needs optimization to 

obtain a profile of the individual wasp which might be challenging due to their small 

sizes. 

7.3 Agonistic behaviour In association with recognition and 

resource value in Goniozu5 /egnerl 

Despite the tremendous amount of research that has focussed on the Influence of 

relatedness on animal contests, few experiments have assessed the Influence of 

competition on aggressiveness between related Individuals (e.g. West et al. 2001, 

Giron et at. 2004, Innocent et al. 2011). Thus, we explored the effect and basis of kin 

recognition among adult females of Gonlozus legneri on contest behaviour and the 

mechanism involved in this recognition. 

The sub-social female wasp Goniozus legneri was able to employ two mechanisms to 

assess relatedness for recognition behaviour. Genetically-based recognition between 
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relatives as well as environmentally based cues between individuals whether or not it 

is a relative. The previous researches usually suggested that recognition either was 

based on genetic components that affected mate choice decision In Venturia canescens 

(Metzger et al. 2010) or was environmental based properties for brood mate 

recognition in Bracon hebetor species (Ode et al. 1995). However, might depend on 

both properties in social insects such as the paper wasps (Gamboa et al. 1986b, Bura 

& Gamboa 1994, Gamboa 2004). 

Previous studies of G. legner; contests have minimised variation In relatedness 

asymmetries between competing females (competitors were always non-sibling 

females from strain U) and have found effects of asymmetries In both body size and 

prior ownership status on aggression and on contest outcomes (Goubault et al. 2006, 

Bentley et al. 2009). As with prior studies, we found effects of size and ownership 

asymmetries on aggression and that larger contestants tend to win contests. 

The evaluation of recognition behaviour cues in G. legner; was based on behavioural 

observations during female contests in the laboratory. Therefore, future Investigation 

should direct towards assessing the role of these cues on Gonlozus population In 

general and on contest interaction particularly within field environment. Hence, we can 

build more solid interpretation for recognition behaviour. 

In addition, further studies are required to Identify the possible envIronmental 

chemical cues in G. legneri females and whether It Is Individual's Innate odour or the 

shared host odour or both. Also Inspection In the laboratory can be performed to find 

out whether the crossed strains of G. legnerJ (U and C) can enhance wasp's effiCiency 

and fitness such as, Increasing clutch size or decreasIng mortality rates In the 

subsequent generation. 

7.4 Cuticular hydrocarbons In Gonlozus sp 

The main objective of this study was to explore how environmental cues Impact on 

resource competition behaviour In parasItiC wasps. In Gonlozus species It Is likely that 

odours are acquired from the host during development and used by Interacting 

females as a proxy for relatedness (Chapter Three): this was presupposed because kin 

recognition is mediated by cuticular hydrocarbon biosynthesis In a diversity of taxa 
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(Carlin & Holldobler 1986, Lahav et al. 1999, Tsutsul et al. 2003, Gamboa 2004, 

Howard & Blomquist 2005, Dronnet et al. 2006, EI-Showk et aJ. 2010). 

The surface chemistry profiles of Goniozus legneri U-straln females differ when they 

develop on different host species. Also, the three Investigated species of Gonlozus 

have different chemical profiles even when developing on the same host species, 

supporting the assertion that chemical cues are used to assess relatedness. Hence, 

our finding might show that sister wasps growing up on different hosts 'smell' 

different, which is what our aforementioned experiment would suggest. However, this 

study was performed on a broader scale (cross-species differences rather than cross­

brood differences) but in the future the same technique, or more refined versions of It, 

can be applied to evaluate differences between siblings and non-siblings. 

Since CHCs can be used as a reliable taxonomic tool for species Identification (Carlson 

& Yocom 1986, Uva et al. 2004, Kather & Martin 2012), an attempt to Identify a 

species of Goniozus from Oman which we termed Gonlozus sp. Indet. confirms that It 

was neither G. nephantidis nor G. legner'. However, because of the limited samples 

we received from Oman we only examined CHC profiles of few Individual females. 

Therefore, obtaining further samples from Oman and Investigating further aspects of 

the biology of this putative species would be useful. 

Further, it is very Important to find a suitable factitious host for this unknown species 

so It can be used for mass rearing. Currently In Oman the wax moth Galleria 

mel/onel/a L has been utilized. However, there are some problems with using this host 

In the laboratory: wax moth larvae are quite aggressive and larger larvae often kill the 

parasltold rather than vice versa (I.C.W. Hardy pers. comm.). I have tried to rear a 

few females on Corcyra cephalonlca Stalnton but was not successful. Therefore, 

testing further hosts such as Plodla Interpunctella (Hubner), Ephest/a cautella 

(Walker), Pectinophora gossyplella (Saund.), and Phthorlmaea opercu/ella (Zeller) 

would be useful In the future to maintain the species more efficiently In culture. Later, 

the next potential step would be collecting samples from different Gonlozus species to 

compare the hydrocarbon profile In an attempt to establish a general Idea of the 

chemicals that correspond with species Identity. 
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7.5 Microsatellite markers and Goniozus species 

The specific aim of the study was to elucidate the genetic cues that Impact on 

resource competition behaviour in parasitic wasps. A further aim was to develop a 

microsatellite marker system for bethylld wasps as, to my knowledge, there Is no 

previous marker present for this genus and only few designed for the family 

Bethylidae (Carr et al. 2010). The occurrence of polymorphic primers between 

Goniozus legneri populations CU' and 'C') provides supporting Information for the 

recognition behaviour experiment (Chapter Three), In essence that the crossed strains 

are genetically different from each other. 

The primers designed for Goniozus species can be applied In further studies such as 

investigations of correlates of genetic dIversity of G. /egner/ populations: whether 

diversity is based only on geographical distance, host plant speCies, continuous 

Inbreeding, genetic elements or an interaction between these factors, as found in 

other speCies (e.g. Kavallieratos et al. 2004, Stlreman et al. 2006, Pannebakker et al. 

2008, Phillips et al. 2008, lazier et al. 2009, lavandero et al. 2011). This can be 

achieved by collecting this species from different localities and on variOUS host plant 

speCies. 

The genomic DNA sequence enriched library for G. legner/ microsatellites, constructed 

by 454 Pyrosequencing, contained Inadequate fragments that restrict us to design only 

24 primers to this speCies with ultimately six molecular markers. Thus, either an 

attempt to develop another library by using different sequencIng, such as standard 

(Sanger) sequencing, though this might be expensive, or perhaps testing G. 

nephantldls primers on G. legnerl might be worth research attention In the future. 

Designing primers for G. nephantldls and G. sp. lndet. may also be useful. Another 

option would be to try using the prImers that are already designed on the other 

Gonlozus species on G. sp.lndet. as finding molecular markers for this species might 

further assist better understanding the species Identity and phenotypIc traits. 
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7.6 Precise sex allocation in parasitoid wasp 

This study set out to evaluate offspring sex ratio at oviposition (primary sex ratio) of 

the parasitoid wasp Goniozu5 legner! (using molecular markers), compare this with the 

sex ratio at emergence (secondary sex ratio) and thus to test the Influence of 

developmental mortality on the gender composition of GoniOZU5 wasp broods. Similar 

comparisons have been made in only a few other species (e.g. Ueno & Tanaka 1997, 

Abe et al. 2009). Mortality increased sex ratio variance across offspring groups but 

sexual differential mortality was not observed. Further observation regarding the 

position of eggs on the host showed that eggs laid spatially separately, In 'minor 

clutches', tend to be male. It seems likely that these are also the temporally last laid 

eggs. The exact sequence of sex allocation during oviposition of a clutch In this species 

would require further observation during eggs deposition and perhaps by recording It 

on video tapes. Further it would be useful to use molecular markers to evaluate the 

relative contributions, in terms of numbers and sex ratios of eggs, of different mothers 

to broods In bethyJid species that have a more communal breeding system, such as 

Scelodermus guanl in which several wasps collaborate to sting the host then guard the 

broods while their offspring develop. These Investigations would apply techniques 

developed In this thesis for studying sub-social Gonlozu5 to the understanding of the 

biology of bethylids that exhibit more advanced degrees of social behaviour. 
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