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Abstract

This research is concerned with adaptive, probabilistic single target tracking algorithms.

Though visual tracking methods have seen signi�cant improvement, sustained ability to

capture appearance changes and precisely locate the target during complex and unex-

pected motion remains an open problem. Three novel tracking mechanisms are proposed

to address these challenges.

The �rst is a Particle Filter based Markov Chain Monte Carlo method with sampled

appearances (MCMC-SA). This adapts to changes in target appearance by combining two

popular generative models: templates and histograms, maintaining multiple instances of

each in an appearance pool. The proposed tracker automatically switches between models

in response to variations in target appearance, exploiting the strengths of each model

component. New models are added, automatically, as necessary.

The second is a Particle Filter based Markov Chain Monte Carlo method with motion

direction sampling, from which are derived two variations: motion sampling using a

�xed direction of the centroid of all features detected (FMCMC-C) and motion sampling

using kernel density estimation of direction (FMCMC-S). This utilises sparse estimates

of motion direction derived from local features detected from the target. The tracker

captures complex target motions e�ciently using only simple components.

The third tracking algorithm considered here combines these above methods to im-

prove target localisation. This tracker comprises multiple motion and appearance models

(FMCMC-MM) and automatically selects an appropriate motion and appearance model

for tracking. The e�ectiveness of all three tracking algorithms is demonstrated using a

variety of challenging video sequences. Results show that these methods considerably

improve tracking performance when compared with state of the art appearance-based

tracking frameworks.



ii



iii

Published work

The following research papers have been produced from this thesis:

1. Tuan Nguyen, Tony Pridmore, Adaptive Tracking via Multiple Appearance Models

and Multiple Linear Searches, the 10th International Joint Conference on Computer

Vision, Imaging and Computer Graphics Theory and Applications (VISAPP) 2015,

Berlin, Germany. (Accepted)

2. Tuan Nguyen, Tony Pridmore, Adaptive Tracking via Multiple Appearance Models

and Multiple Linear Searches, British Machine Vision Conference (BMVC) Work-

shops 2014, Nottingham, United Kingdom. (Presentation)

3. Tuan Nguyen, Tony Pridmore, Tracking Using Multiple Linear Searches and Motion

Direction Sampling, 22nd International Conference on Pattern Recognition (ICPR),

Stockholm, Sweden, 2014.



iv



v

Acknowledgements

It is di�cult to overstate my gratitude to my supervisor, Professor Tony P. Pridmore.

With his enthusiasm, inspiration, and great e�orts to explain things clearly and simply,

he helped me to understand this di�cult topic and suggested some useful material for

my thesis. I thank him for the wealth of technical knowledge he has imparted and his

kindness in sparing time as well as his humour and perspective, to discuss my submitted

work and give valuable comments.

I want to say "thank you" to all of my friends, especially Stefan Mairhofer, Michael

Pound and Muhammad Haris Khan, who encouraged me to overcome problems when I

was working with this project.

Last but not least, a very heartfelt gratitude goes to my entire family for their constant

love, support and encouragement.



vi



Contents vii

Contents

1 Introduction 1

1.1 Motivation and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Tracking Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Deterministic Tracking Algorithms . . . . . . . . . . . . . . . . . . 9

2.2.2 Probabilistic Tracking Algorithms . . . . . . . . . . . . . . . . . . . 12

2.2.3 Fused Trackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Appearance Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Discriminative Models . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Combination Models . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Motion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Tracking with Multiple Generative Models 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Proposed Tracking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Appearance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Sampling Appearance Models . . . . . . . . . . . . . . . . . . . . . 47

3.2.4 Updating a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.5 Handling Occlusion & Re-detecting the Target . . . . . . . . . . . 51

3.2.6 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



viii Contents

3.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4.1 Appearance change handling . . . . . . . . . . . . . . . . . . . . . 66

3.4.2 Target location improvement . . . . . . . . . . . . . . . . . . . . . 69

3.4.3 Occlusion handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.4 Motion variation handling . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Tracking with Multiple Linear Searches 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Proposed Tracking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Appearance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.1 Smooth Motion Handling . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.2 Unexpected Motion Handling . . . . . . . . . . . . . . . . . . . . . 103

4.4.3 Distractor Handling . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.4 Occlusion Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4.5 Appearance Change Handling . . . . . . . . . . . . . . . . . . . . . 109

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 An Uni�ed Tracking Algorithm 113

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Proposed Tracking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.1 Appearance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.2 Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.3 Sampling Appearance & Motion Models . . . . . . . . . . . . . . . 116

5.2.4 Updating Appearance Model . . . . . . . . . . . . . . . . . . . . . 117



Contents ix

5.2.5 Handling Occlusion & Re-detecting the Target . . . . . . . . . . . 117

5.2.6 Updating Motion Model . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.7 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4.1 Handling Changes in Appearance . . . . . . . . . . . . . . . . . . . 138

5.4.2 Target Location Improvement . . . . . . . . . . . . . . . . . . . . . 141

5.4.3 Motion Variation Handling . . . . . . . . . . . . . . . . . . . . . . 146

5.4.4 Distractor Handling . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.4.5 Occlusion Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.4.6 Scale Change Handling . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Conclusion and Future Work 151

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Research Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A Algorithms 154

A.1 Kernel Mean-shift tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.2 Kalman �lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B Tracking Results for Chapter 3 157

C Tracking Results for Chapter 4 171

D Tracking Results for Chapter 5 185



x Contents



List of Figures xi

List of Figures

1.1 Overview of the proposed approach. . . . . . . . . . . . . . . . . . . . . . 3

2.1 Particle �ltering based methods and their problem. . . . . . . . . . . . . . 15

2.2 First order Markov Chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Object representation (Yilmaz et al. [2006]). . . . . . . . . . . . . . . . . . 24

2.4 Multi part representation (Maggio and Cavallaro [2005a]). . . . . . . . . . 25

2.5 Part based representation (Adam et al. [2006]). The target is divided into

multiple parts and each part associates with one histogram and votes for

the centre location of the target. . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Patched based Appearance Model (Kwon and Lee [2013]). . . . . . . . . . 26

2.7 (Enlarged) Histogram & Template. . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Dense Optical Flow (using Farnebäck [2003]). . . . . . . . . . . . . . . . . 28

2.9 Feature generation and selection process . . . . . . . . . . . . . . . . . . . 31

2.10 Online Boosting using feature selection . . . . . . . . . . . . . . . . . . . . 32

2.11 Tracking with Online AdaBoost . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Overview MCMC-SA framework. . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Building an appearance model. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Errors at each frame and accumulated errors over time of trackers for the

Rolling Ball sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Errors at each frame and accumulated errors over time of trackers for the

David2 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Errors at each frame and accumulated errors over time of trackers for the

Doll sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Errors at each frame and accumulated errors over time of trackers for the

Girl sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



xii List of Figures

3.7 Errors at each frame and accumulated errors over time of trackers for the

Boy sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Errors at each frame and accumulated errors over time of trackers for the

Animal sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.9 Errors at each frame and accumulated errors over time of trackers for the

Jogging sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.10 Errors at each frame and accumulated errors over time of trackers for the

Cup sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.11 Errors at each frame and accumulated errors over time of trackers for the

Bird2 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.12 Errors at each frame and accumulated errors over time of trackers for the

Jumping sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.13 Tracking results in selected frames of the Rolling Ball sequence. . . . . . . 66

3.14 Tracking results in selected frames of the David2 sequence. . . . . . . . . . 67

3.15 Tracking results of the Animal sequence. . . . . . . . . . . . . . . . . . . . 68

3.17 (Enlarged) Girl templates detected during tracking. . . . . . . . . . . . . . 68

3.16 Tracking results in selected frames of the Doll sequence. . . . . . . . . . . 69

3.18 Tracking results in selected frames of the Girl sequence. . . . . . . . . . . 70

3.20 (Enlarged) Boy templates detected during tracking. . . . . . . . . . . . . . 70

3.19 Tracking results in selected frames of the Boy sequence. . . . . . . . . . . 71

3.21 Tracking results in selected frames of the Bird2 sequence. . . . . . . . . . 71

3.22 (Enlarged) Bird templates detected during tracking of MCMC-SA. . . . . 71

3.23 Tracking results in selected frames of the Jogging sequence. . . . . . . . . 72

3.24 Tracking results in selected frames of the Jumping sequence. . . . . . . . . 73

4.1 Overview of the FMCMC framework. . . . . . . . . . . . . . . . . . . . . . 78

4.3 Optical �ow at Frame #2 of Football sequence. . . . . . . . . . . . . . . . 80

4.4 Features detected at Frame #1 of Football sequence. . . . . . . . . . . . . 81

4.5 Local motion estimates obtained via feature matching. The arrows show

the movement of features detected in two consecutive frames. . . . . . . . 82

4.6 Kernel Density Estimation of the motion direction distribution at Frame

#14 of the PETS2009 sequence. . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 A �xed motion direction. Lines are parallel. . . . . . . . . . . . . . . . . . 86

4.8 Sampling motion directions from KDE. . . . . . . . . . . . . . . . . . . . . 88

4.9 Errors at each frame and accumulated errors over time of trackers for the

Data11 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



List of Figures xiii

4.10 Errors at each frame and accumulated errors over time of trackers for the

Data12 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.11 Errors at each frame and accumulated errors over time of trackers for the

Bouncing1 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.12 Errors at each frame and accumulated errors over time of trackers for the

Bouncing2 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.13 Errors at each frame and accumulated errors over time of trackers for the

Tennis Match sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.14 Errors at each frame and accumulated errors over time of trackers for the

Emilio sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.15 Errors at each frame and accumulated errors over time of trackers for the

Animal sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.16 Errors at each frame and accumulated errors over time of trackers for the

Table Tennis sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.17 Errors at each frame and accumulated errors over time of trackers for the

Football sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.18 Errors at each frame and accumulated errors over time of trackers for the

PETS09 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.19 Errors at each frame and accumulated errors over time of trackers for the

Girl sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.20 Tracking results in a selected frame of the Data11 sequence. . . . . . . . . 102

4.21 Local motion directions at selected frames of the Data12 sequence. . . . . 103

4.22 Tracking results in selected frames of the Tennis match sequence. . . . . . 103

4.23 Local motion directions at a selected frame of the Bouncing1 sequence. . . 104

4.24 Tracking results in selected frames of the Bouncing2 sequence. . . . . . . . 104

4.25 Tracking results in a selected frame of the Data12 sequence. . . . . . . . . 105

4.26 KDE at Frame #22 of the Football sequence. Angles are calculated in

radian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.27 Tracking results in selected frames of the Football sequence. . . . . . . . . 107

4.28 Tracking results in selected frames of the PETS09 sequence. . . . . . . . . 108

4.29 Local motions at Frame #56 of the PETS2009 sequence. . . . . . . . . . . 108

4.30 Tracking results in selected frames of the Girl sequence. . . . . . . . . . . 110

5.1 Overview of the proposed approach. . . . . . . . . . . . . . . . . . . . . . 115

5.2 Errors at each frame and accumulated errors over time of trackers for the

Data11 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



xiv List of Figures

5.3 Errors at each frame and accumulated errors over time of trackers for the

Data12 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4 Errors at each frame and accumulated errors over time of trackers for the

Bouncing1 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5 Errors at each frame and accumulated errors over time of trackers for the

Table Tennis sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Errors at each frame and accumulated errors over time of trackers for the

Emilio sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 Errors at each frame and accumulated errors over time of trackers for the

Tennis Match sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.8 Errors at each frame and accumulated errors over time of trackers for the

Animal sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.9 Errors at each frame and accumulated errors over time of trackers for the

Football sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.10 Errors at each frame and accumulated errors over time of trackers for the

PETS09 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.11 Errors at each frame and accumulated errors over time of trackers for the

Bouncing2 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.12 Errors at each frame and accumulated errors over time of trackers for the

Rolling Ball sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.13 Errors at each frame and accumulated errors over time of trackers for the

Doll sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.14 Errors at each frame and accumulated errors over time of trackers for the

David2 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.15 Errors at each frame and accumulated errors over time of trackers for the

Boy sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.16 Errors at each frame and accumulated errors over time of trackers for the

Jogging sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.17 Errors at each frame and accumulated errors over time of trackers for the

Jumping sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.18 Errors at each frame and accumulated errors over time of trackers for the

Girl sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.19 Errors at each frame and accumulated errors over time of trackers for the

Bird2 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.20 Errors at each frame and accumulated errors over time of trackers for the

Cup sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



List of Figures xv

5.21 Errors at each frame and accumulated errors over time of trackers for the

Hand sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.22 Errors at each frame and accumulated errors over time of trackers for the

Tiger1 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.23 Errors at each frame and accumulated errors over time of trackers for the

Freeman1 sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.24 Tracking results in selected frames of the Boy sequence. . . . . . . . . . . 138

5.25 Tracking results in selected frames of the Girl sequence. . . . . . . . . . . 139

5.26 Tracking results in selected frames of the Bird2 sequence. . . . . . . . . . 139

5.27 Tracking results in the selected frame of the Rolling Ball sequence. . . . . 140

5.28 Tracking results in the selected frame of the Bouncing2 sequence. . . . . . 140

5.29 (Enlarged) Feature movement at the Frame #31 the Jumping sequence. . 142

5.30 Tracking results in selected frames of the Hand sequence. . . . . . . . . . . 143

5.31 Feature motion at the Frame #135 of the Hand sequence. . . . . . . . . . 144

5.32 Tracking results in selected frames of the Tiger1 sequence. . . . . . . . . . 145

5.33 (Enlarged) Bird templates detected during tracking of FMCMC-MM. . . . 145

5.34 Tracking results in selected frames of the Doll sequence(Part 1). . . . . . . 146

5.35 Tracking results in the selected frame of the Animal sequence. . . . . . . . 146

5.36 Tracking results in the selected frame of the Emilio sequence(Part 1). . . . 147

5.37 Tracking results in the selected frame of the Football sequence(Part 1). . . 147

5.38 Tracking results in selected frames of the David2 sequence. . . . . . . . . . 148

5.39 Tracking results in selected frames of the Jogging sequence. . . . . . . . . 148

B.1 Tracking results of the Rolling Ball sequence. . . . . . . . . . . . . . . . . 158

B.2 Tracking results of the David2 sequence. . . . . . . . . . . . . . . . . . . . 159

B.3 Tracking results of the Doll sequence (Part 1). . . . . . . . . . . . . . . . . 160

B.4 Tracking results of the Doll sequence (Part 2). . . . . . . . . . . . . . . . . 161

B.5 Tracking results of the Girl sequence. . . . . . . . . . . . . . . . . . . . . . 162

B.6 Tracking results of the Boy sequence (Part 1). . . . . . . . . . . . . . . . . 163

B.7 Tracking results of the Boy sequence (Part 2). . . . . . . . . . . . . . . . . 164

B.8 Tracking results of the Animal sequence. . . . . . . . . . . . . . . . . . . . 165

B.9 Tracking results of the Jogging sequence. . . . . . . . . . . . . . . . . . . . 166

B.10 Tracking results of the Cup sequence. . . . . . . . . . . . . . . . . . . . . . 167

B.11 Tracking results of the Bird2 sequence. . . . . . . . . . . . . . . . . . . . . 168

B.12 Tracking results of the Jumping sequence. . . . . . . . . . . . . . . . . . . 169



xvi List of Figures

C.1 Tracking results of the Data11 sequence. . . . . . . . . . . . . . . . . . . . 171

C.2 Tracking results of the Data12 sequence. . . . . . . . . . . . . . . . . . . . 172

C.3 Tracking results of the Bouncing1 sequence (Part 1). . . . . . . . . . . . . 173

C.4 Tracking results of the Bouncing1 sequence (Part 2). . . . . . . . . . . . . 174

C.5 Tracking results of the Bouncing2 sequence. . . . . . . . . . . . . . . . . . 175

C.6 Tracking results of the Tennis match sequence. . . . . . . . . . . . . . . . 176

C.7 Tracking results of the Emilio sequence (Part 1). . . . . . . . . . . . . . . 177

C.8 Tracking results of the Emilio sequence (Part 2). . . . . . . . . . . . . . . 178

C.9 Tracking results of the Animal sequence. . . . . . . . . . . . . . . . . . . . 179

C.10 Tracking results of the Table tennis sequence. . . . . . . . . . . . . . . . . 180

C.11 Tracking results of the Football sequence (Part 1). . . . . . . . . . . . . . 181

C.12 Tracking results of the Football sequence (Part 2). . . . . . . . . . . . . . 182

C.13 Tracking results of the PETS09 sequence. . . . . . . . . . . . . . . . . . . 183

C.14 Tracking results of the Girl sequence. . . . . . . . . . . . . . . . . . . . . . 184

D.1 Tracking results of the Data11 sequence. . . . . . . . . . . . . . . . . . . . 185

D.2 Tracking results of the Data12 sequence. . . . . . . . . . . . . . . . . . . . 186

D.3 Tracking results of the Bouncing1 sequence (Part 1). . . . . . . . . . . . . 187

D.4 Tracking results of the Bouncing1 sequence (Part 2). . . . . . . . . . . . . 188

D.5 Tracking results of the Table tennis sequence. . . . . . . . . . . . . . . . . 189

D.6 Tracking results of the Emilio sequence (Part 1). . . . . . . . . . . . . . . 190

D.7 Tracking results of the Emilio sequence (Part 2). . . . . . . . . . . . . . . 191

D.8 Tracking results of the Tennis match sequence. . . . . . . . . . . . . . . . 192

D.9 Tracking results of the Animal sequence. . . . . . . . . . . . . . . . . . . . 193

D.10 Tracking results of the Football sequence (Part 1). . . . . . . . . . . . . . 194

D.11 Tracking results of the Football sequence (Part 2). . . . . . . . . . . . . . 195

D.12 Tracking results of the PETS09 sequence. . . . . . . . . . . . . . . . . . . 196

D.13 Tracking results of the Bouncing2 sequence. . . . . . . . . . . . . . . . . . 197

D.14 Tracking results of the Rolling Ball sequence. . . . . . . . . . . . . . . . . 198

D.15 Tracking results of the Doll sequence (Part 1). . . . . . . . . . . . . . . . . 199

D.16 Tracking results of the Doll sequence (Part 2). . . . . . . . . . . . . . . . . 200

D.17 Tracking results of the David2 sequence. . . . . . . . . . . . . . . . . . . . 201

D.18 Tracking results of the Boy sequence (Part 1). . . . . . . . . . . . . . . . . 202

D.19 Tracking results of the Boy sequence (Part 2). . . . . . . . . . . . . . . . . 203

D.20 Tracking results of the Jogging sequence. . . . . . . . . . . . . . . . . . . . 204

D.21 Tracking results of the Jumping sequence. . . . . . . . . . . . . . . . . . . 205



List of Figures xvii

D.22 Tracking results of the Girl sequence. . . . . . . . . . . . . . . . . . . . . . 206

D.23 Tracking results of the Bird2 sequence. . . . . . . . . . . . . . . . . . . . . 207

D.24 Tracking results of the Cup sequence. . . . . . . . . . . . . . . . . . . . . . 208

D.25 Tracking results of the Hand sequence (Part 1). . . . . . . . . . . . . . . . 209

D.26 Tracking results of the Hand sequence (Part 2). . . . . . . . . . . . . . . . 210

D.27 Tracking results of the Hand sequence (Part 3). . . . . . . . . . . . . . . . 211

D.28 Tracking results of the Tiger1 sequence. . . . . . . . . . . . . . . . . . . . 212

D.29 Tracking results of the Freeman1 sequence. . . . . . . . . . . . . . . . . . . 213



xviii List of Figures



List of Tables xix

List of Tables

1 Abbreviations have been used in this thesis. . . . . . . . . . . . . . . . . . xxi

2.1 Common similarity functions. . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Testing video sequences and their challenges. . . . . . . . . . . . . . . . . 55

3.2 The Correlation Coe�cient . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 The centre location error (in pixels) averaged over all frames of each se-

quence. All data were presented in corresponding graphs listed below. . . 58

3.4 The overlap ratio between the predicted bounding box and the ground

truth bounding box for each testing video sequence. . . . . . . . . . . . . . 59

4.1 Testing video sequences and their challenges. . . . . . . . . . . . . . . . . 92

4.2 The centre location error (in pixels) averaged over all frames of each se-

quence. All data were presented in corresponding graphs listed below. . . 94

4.3 The overlap ratio between the predicted bounding box and the ground

truth bounding box for each testing video sequence. . . . . . . . . . . . . . 94

5.1 Testing video sequences and their challenges. . . . . . . . . . . . . . . . . 120

5.2 The centre location error (in pixels) averaged over all frames of each se-

quence. All data were presented in corresponding graphs listed below. . . 124

5.3 The overlap ratio between the predicted bounding box and the ground

truth bounding box for each testing video sequence. . . . . . . . . . . . . . 125

A.1 Kalman �lter algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



xx List of Tables



Abbreviations xxi

Abbreviations

The following table describes the signi�cance of various abbreviations and acronyms used

throughout the thesis.

Abbreviation Meaning

MCMC Markov Chain Monte Carlo

PF Particle Filter

MS Mean-shift

SSD Sum of Squared Di�erences

NCC Correlation Coe�cience

NCC Normalised Correlation Coe�cience

CCORR Cross Correlation

NCCORR Normalised Cross Correlation

MCMC-SA Markov Chain Monte Carlo with Sampled Appearances

FMCMC-C
Feature based Markov Chain Monte Carlo using a �xed direction of the

Centre position
FMCMC-S Feature based Markov Chain Monte Carlo using Sampled directions

FMCMC-MM Feature based Markov Chain Monte Carlo using Multiple Models

TT Template-based tracking

CDF Cumulative Distribution Function

Table 1: Abbreviations have been used in this thesis.
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Chapter 1

Introduction

1.1 Motivation and Approach

Visual tracking is an important computer vision task that has received much attention.

It is involved in a wide range of applications from air tra�c control (e.g. T. VomÃ¡cka

[2010]), surveillance (e.g. people tracking) (e.g. Smith et al. [2005]; Rowe et al. [2010];

Kuo et al. [2010]), wildlife tracking (e.g. Ramanan and Forsyth [2003]; Walther et al.

[2004]), motion capture (e.g. Horn and Schunck [1981]; Liu et al. [2013]), military ap-

plications (e.g. Berleant and Anderson [2007]), human computer interaction (e.g. Sears

and Jacko [2007]; Cipolla and Pentland [1998]) and biological and medical imaging (e.g.

Robb [2000]; Dhawan [2011]). Tracking is a time dependent problem. Its aim is to model

target appearance and use that model to estimate the state of a moving target, retriev-

ing its trajectory and maintaining its identity through an image sequence. The tracking

problem can be formulated as searching for the region with the highest probability of be-

ing generated from the appearance model. Key components of a tracker are therefore the

search method and the appearance model matching approach used. The search method

might be a sliding window (e.g. Grabner and Bischof [2006]) or sampling approach (e.g.

Kwon and Lee [2011]) or could use target motion modelling to hypothesise where the

target might be (e.g. Isard and Blake [1998]; Grabner et al. [2010]). The target appear-

ance model is typically constructed by extracting features from the �rst frame. These

are then compared to measurements recovered from incoming frames at candidate target

positions to estimate the most likely target state. In real world scenarios, targets' ap-

pearance can, however, vary over time as a result of illumination changes, pose variations,

target and/or camera movement, full or partial occlusions by other targets or by objects

in the background, target deformation and complex background clutter. Also, targets'
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appearance might be similar, or even identical to, objects in the local background, which

may attract the tracker.

To achieve long-term, robust tracking, many researchers have tried to develop richer

appearance models. This leads to the use of high-dimensional features to represent the

object, increasing computational cost and making the correctness of the model hard to

verify. These appearance models are also adapted during the tracking process to learn

appearance changes. A �xed appearance model cannot handle target appearance changes

well enough to support reliable visual tracking.

Two types of model are used to capture target appearance: generative and discrimina-

tive. Generative models try to learn the target's likely appearance, while discriminative

models try to include features that separate the target from its local surroundings. They

normally either maintain an appearance model or train an online classi�er by extracting

positive and negative samples around the current target position. This can be considered

a self-learning method. A wide variety of appearance models have been proposed and are

discussed in Chapter 2. Regardless of approach, adaptive appearance-based trackers face

a key problem: the model drift that occurs when background information contaminates

the model. The risk and degree of drift increases quickly if the tracked target is not well-

located. Several methods have been proposed to deal with the drift problem (discussed

in Chapter 2). Despite some success in alleviating drift, these struggle to react quickly

enough to large appearance variations. Building an e�cient tracking able to cope with

these issues is an important and challenging open task.

Trackers focusing on search, on the other hand, aim to enhance target prediction

and reduce search space. Rather than performing target detection and data association

on each and every frame, these trackers typically model target motion. Many methods

have been proposed, and are discussed in Chapter 2. Although they can improve target

localisation, these methods typically assume target appearance to be (approximately)

constant. It remains di�cult to model complex and unexpected target motion.

The key to the model drift problem is to locate the target precisely and carefully

control any updates made to the appearance model. Updates should not lose information

already learnt and must avoid re�ecting abnormal appearance changes. To this end, we

develop an online tracker capable of adapting to appearance changes without being too

prone to drifting, and able to recover from drift and partial or full occlusion. A number

of questions should be considered when constructing a tracking method:

• What appearance model(s) should be used?

• When should additional appearances be learnt?
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• How can complex target movement be recovered precisely?

In visual tracking, the best match at time t to appearance observed at time t − 1 may

not be the target, because of changes in visual properties. Thus, to reduce the risk

of adaptation drift, additional constraints or supervision of the appearance model are

needed. Figure 1.1 gives an overview of the proposed approach. The tracker contains

two crucial components: the �rst learns target appearance changes during tracking and

the second utilises features to enhance target prediction via multiple linear searches.

Figure 1.1: Overview of the proposed approach.

This simple yet e�ective method models appearance using a combination of two

popular generative models: templates and histograms. Each new template-histogram

pair re�ects a new appearance change and is maintained in a pool of appearance models

built over di�erent time periods. The tracker automatically switches among models

to select the most appropriate model for the current image data. During drifting or

occlusion, the tracker can detect the target's presence utilising the appearance model

pool and re-initialise the tracking process by selecting a suitable model.

The second component of the tracker aims to handle an unexpected and abrupt target

movement. A distribution of likely motion directions is constructed, providing an implicit

representation of complex target movements which are di�cult to model explicitly. The

motion model is constructed by motion directions of local features stored in a feature pool.

Each motion direction is formed from low-level target features detected and matched

between consecutive frames. The method can enhance target location without using a

complex motion model or models, and select an appropriate model with which to search.
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Each component is built, individually, into the Particle Filter based Monte Carlo

Markov Chain (MCMC) algorithm and thoroughly tested before combining them into a

single, uni�ed tracking mechanism.

1.2 Contributions

This thesis introduces a single target tracking algorithm using multiple models (FMCMC-

MM), containing two important components: an appearance model and search mecha-

nism, capable of adapting to changes in target appearance and handling motion varia-

tions. Given only an initial template representation of the target, the proposed tracker

can learn appearance changes in a supervised manner and generate appropriate target mo-

tions using the target's local features without knowing the target movement in advance.

During tracking, it automatically switches between models in response to variations in

target appearance, exploiting the strengths of each model component. New models are

added, automatically, as necessary. The e�ectiveness of the approach is demonstrated

using a variety of challenging video sequences.

1.3 Thesis Structure

The remainder of the thesis is organised as follows.

Chapter 2: Background

This chapter presents an introduction to tracking and overview of existing tracking

algorithms. It also discusses each component, appearance model and motion model of

a tracking framework and describes methods used to model target appearance and con-

struct target motion.

Chapter 3: Tracking with Multiple Generative Models

The �rst tracking mechanism using sampled appearances (MCMC-SA) is presented

and explained. An online appearance model learning mechanism is proposed which

utilises matched pairs of generative models: templates and histograms. These models

are learnt during tracking and maintained in an appearance pool. The dynamic selection

of appearance models for use in tracking is discussed.

Chapter 4: Tracking with Multiple Linear Searches
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The second tracking mechanism focusses on capturing target motion. Two varia-

tions, motion sampling using a �xed direction of the centroid position of the target

features (FMCMC-C) and motion sampling using kernel density estimation of direction

(FMCMC-S), are introduced and tested.

Chapter 5: An Uni�ed Tracking Algorithm

The �nal, uni�ed tracking algorithm with multiple models (FMCMC-MM) combines

the appearance model sampling presented in Chapter 3 and motion direction sampling

introduced in Chapter 4. Evaluation is conducted using a new data set and all the data

sets used during development of the earlier algorithms.

Chapter 6: Conclusion and Future Work

This �nal chapter reviews contributions made throughout this research, and proposes

improvements and directions for future research.
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Chapter 2

Background

2.1 Introduction

Visual tracking is a long-standing and challenging problem in computer vision with vari-

ous practical applications such as surveillance, robotics and human-computer interfaces.

It involves several tasks: modelling target appearance, detecting speci�ed targets, apply-

ing data association to match the detected target to previously tracked target, recovering

the target movement, etc.

Over the past few years, numerous methods addressing a wide range of issues in

data association and predictive �ltering have been devised for object tracking in image

sequences. These vary from simple methods such as frame di�erencing to complex meth-

ods such as fused trackers incorporating target motion models. This chapter presents

a general background review of some common tracking algorithms and their variations

(Section 2.2).

This thesis focuses on the commonly adopted region tracking approach. A region

tracker de�nes an image region that contains the target of interest, with the boundary

often being a bounding box or a simple polygon. Then, in the next image of a sequence,

it looks for a corresponding region of the image using a similarity measure to decide

on the best matching region. The regions can be de�ned manually (e.g. annotated

with bounding boxes or ellipses by a human) or automatically (e.g. speci�ed by object

detectors such as human (Dalal and Triggs [2005]) or face detectors (Viola and Jones

[2001])).

In general, there are two important components for a tracker: the appearance model

and the motion model. In order to track a target, its appearance should be well modelled,

since if the assumptions made by the appearance model are incorrect or inaccurate, the
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tracker may fail. Image data provides many features which can be exploited to de�ne

target appearance models e.g. colour, contours, texture, corners or combination of these

features. The use of features varies between di�erent tracking approaches. A single

tracker can use an appearance model which is de�ned by one feature or many. In other

cases, multiple trackers can be employed, each using a di�erent feature to track one

target, with these trackers interacting at a later stage to produce a �nal estimation.

Tracking performance depends not only on the appearance model, but also on the

environment surrounding the target of interest. During tracking, the target might change

its pose or produce unexpected and fast movements. Moreover, illumination changes, the

presence of clutter, i.e. unrelated objects similar to the target, partial or full occlusion

may play a major role in tracker failure. Ideally, trackers should be able to adapt their

models to deal with these problems. A common approach to the construction of an

adaptive tracker is to update the target appearance model. A key problem while updat-

ing the appearance model is model drift: the background information contaminates the

appearance model. This problem occurs when the tracker estimates the target location

incorrectly and tries to update the appearance model. Update methods and mechanisms

proposed to deal with the drifting problem are discussed in Section 2.3.

Some tracking approaches emphasise motion modelling, incorporating one or more

motion models to improve the estimation process. Without motion models, to constrain

their search, trackers must examine a larger area of the image. One approach is to

use a sliding window to search either the whole image or an area around the target's

previous location. Modelling target movements, however, is not easy, as targets can

exhibit complex and unpredictable target motion. Section 2.4 discusses common motion

models used in visual tracking.

The literature on visual tracking is large, and expanding quickly. A complete and

detailed review is impossible. This chapter highlights the more common tracking ap-

proaches, and appearance models most closely related to the work reported here.

2.2 Tracking Algorithms

Visual tracking algorithms can be roughly classi�ed into two categories: deterministic

methods and stochastic methods.
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2.2.1 Deterministic Tracking Algorithms

Deterministic methods typically track the target by performing an iterative search for the

local maximum (or minimum) of a similarity (or cost) function. There are two popular

approaches: template based tracking and kernel mean-shift tracking.

Template based tracking

Template-based tracking estimates target location by using similarity functions to search

the incoming image for the patch best matched to a �xed template image T , usually

extracted from the �rst frame of the sequence, and describing the target appearance.

The patch with the highest similarity score is treated as the new target location. The

simplest but least e�cient search strategy is exhaustive search or a sliding window tech-

nique. Basic steps that might be performed during template-based tracking algorithms

are described in Algorithm 1.

Algorithm 1 Basic steps in template based tracking algorithms (Adapted from Cannons
[2008]).

1. Initialise the template on the target region in the �rst frame.

2. Predict where the target will appear in the subsequent frame (optional).

3. Load the next frame

4. Match the template to image regions centred on the predicted target position and
within a surrounding neighbourhood search region by methods described in the
Table 2.1.

5. Select the location that provides the highest matching score as the current target
centre.

6. Update the target template (optional).

7. Repeat until the end of the image sequences.

To compare a template with an image patch, most common similarity functions have

been used in the literature such as Sum of Squared Di�erence (SSD) or Normalised

SSD (Kanade et al. [1995]; Hager and Belhumeur [1998]; Nickels and Hutchinson [2002];

Baker and Matthews [2004]; Okuma et al. [2004]); Correlation Coe�cience (CCOEFF) or

Normalised CCOEFF (Derpanis et al. [2006]); Cross Correlation (CCORR) or Normalised

CCORR (Brown et al. [2003]), etc. described in the Table 2.1 where I is the given image,

x, y are pixel locations in the image, T is the testing template and x′, y′ are pixel locations
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in the testing template. In practice, to handle intensity changes, normalised matching

methods have been widely used.

Method De�nition

Sum of Squared

Di�erences (SSD)
R(x, y) =

∑
x′,y′

(T (x′, y′)− I(x+ x′, y + y′))2 (2.1)

Normalised SSD R(x, y) =

∑
x′,y′(T (x

′, y′)− I(x+ x′, y + y′))2√∑
x′,y′ T (x

′, y′)2.
∑

x′,y′ I(x+ x′, y + y′)2
(2.2)

Correlation Co-

e�cience (CCO-

EFF)

R(x, y) =
∑
x′,y′

(T ′(x′, y′).I ′(x+ x′, y + y′)) (2.3)

T ′(x′, y′) = T (x′, y′)− 1

w.h
.
∑
x′′,y′′

T (x′′, y′′) (2.4)

I ′(x+ x′, y + y′) = I(x+ x′, y + y′)− 1

w.h
.
∑
x′′,y′′

I(x′′, y′′) (2.5)

Normalised CCO-

EFF
R(x, y) =

∑
x′,y′(T

′(x′, y′).I ′(x+ x′, y + y′))√∑
x′,y′ T

′(x′, y′)2.
∑

x′,y′ I
′(x+ x′, y + y′)2

(2.6)

Cross Correlation

(CCORR)
R(x, y) =

∑
x′,y′

(T (x′, y′).I(x+ x′, y + y′)) (2.7)

Normalised

CCORR
R(x, y) =

∑
x′,y′(T (x

′, y′).I(x+ x′, y + y′))√∑
x′,y′ T (x

′, y′)2.
∑

x′,y′ I(x+ x′, y + y′)2
(2.8)

Table 2.1: Common similarity functions.

Template-based tracking algorithms using similarity functions tend to lose the target

of interest when the target appearance changes or the target is occluded, though they

are less e�ected by illumination changes if using normalised similarity measures. The

advantage of the often large search area considered is that they can often recover the

target after occlusion if its appearance remains roughly constant.

A more advanced approach is to use gradient descent techniques. Given the tem-

plate T , take all pixels x from the template and warp them using the function W (x; p)

parameterised in terms of parameters p, a motion parameter vector, to the input image.

Assign the pixel value of the input image at the warped location to the template image.

The Lucas-Kanade algorithm is summarised in Algorithm 2.
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Algorithm 2 The Lucas-Kanade algorithm (adapted from Baker and Matthews [2004]).
Repeat

1. Warp I with a warp function W (x; p) to compute I(W (x; p)).

2. Compute the error image T (x)− I(W (x; p))

3. Warp the gradient 5I with W(x;p)

4. Evaluate the Jacobian ∂W
∂p at (x; p).

5. Compute the steepest descent image 5I ∂W∂p .

6. Compute the Hessian matrix H =
∑

x[5I
∂W
∂p ]

T [5I ∂W∂p ] .

7. Compute 4p = H−1
∑

x[5I
∂W
∂p ]

T [T (x)− I(W (x; p))].

8. Update the parameters p← p+4p

Until 4p < ε (i.e. ε is a small value to stop the iteration.)

The Lucas-Kanade algorithm assumes that:

1. only the object to be tracked appears in the template image.

2. the entire template is visible in the input image, i.e. there is no occlusion.

3. the image intensity of the object is always the same (brightness constancy).

These assumptions are not always true in real world video sequences.

Kernel Mean-shift tracking

Not all deterministic methods employ templates; colour histograms are a popular choice

and have been used to good e�ect in kernel mean-shift tracking (Comaniciu et al. [2003];

Collins [2003]). The idea of a basic colour histogram is to consider each colour in turn

and count the number of pixels across the target that are of this colour. Each bin within

a colour histogram can be constructed using:

p(u)y = C
n∑
i=1

δ (b(xi)− u) . (2.9)

where xi is a single target pixel, C is a constant to ensure that the histogram bins sum

to one, u is a particular histogram bin, n is the number of pixels in the region, b(xi) is
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a function to map the colour at xi to the histogram bin u, and δ is the Kronecker delta

function.

In mean-shift, however, the colour histogram is modi�ed to include a kernel weighting

function. The rationale behind the kernel function is to weight pixels depending on their

spatial location within the tracking window. Pixels at the centre of the window are more

likely to belong to the target and so are weighted highly. On the other hand, pixels near

the border of the tracking window have a higher chance of being part of the background.

They, therefore, receive lower weights. Moreover, the tracking window does not perfectly

adhere to the outline of the target, so that pixels near the border of the tracking window

do not greatly a�ect the histogram representing the candidate target. The Epanechnikov

kernel k(r) is widely used in mean-shift tracking (Comaniciu et al. [2003]).

The colour histogram py = {p(u)y }u=1...m at location y is

p(u)y = C

n∑
i=1

k

(∥∥∥y − xi
h

∥∥∥2) δ (b(xi)− u) . (2.10)

where h is the bandwidth of the kernel and the normalisation factor

C =
1∑n

1 k
(
‖y−xih ‖2

) . (2.11)

Similar to simple gradient ascent, the mean-shift algorithm seeks the modes of a

distribution using an estimate of the function's gradient. The modes of a distribution

are located by iteratively computing the mean-shift vector and translating the centre of

the kernel to the speci�ed location. Starting from the target's position in the previous

frame, these steps are repeated until convergence has been reached or a �xed number of

iterations have been executed. Algorithm 15 presents a summary of the kernel mean-shift

tracking algorithm of Comaniciu et al. [2003].

Kernel mean-shift tracking can easily be distracted from its target by background

clutter, causing the search to proceed in the wrong direction. Also, it is a hill climbing

search, i.e. it will stop the search when it �nds a peak, and so can be trapped by local

maxima. It is not easy for the tracker to recover from this error.

2.2.2 Probabilistic Tracking Algorithms

Stochastic methods have gained much attention because they can account for uncertainty

and ambiguity in a principled way. They use a state space to model the underlying dy-

namics of the tracking process, and transform the visual tracking task to a Bayesian infer-
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ence problem into which a number of hypotheses are generated to estimate and propagate

the posterior distribution of the state. Compared with their deterministic counterparts,

stochastic methods usually perform more robustly, but su�er a heavy computational

load due to the large number of hypotheses involved, especially in high-dimensional state

spaces.

In a linear-Gaussian model with linear measurement, there is always only one mode

in the posterior probability density function (pdf), the Kalman �lter (Kalman [1960])

propagates and updates the mean and covariance of the distribution. For nonlinear or

non-Gaussian problems, it is impossible to evaluate the distributions analytically and

many algorithms have been proposed to approximate them. One route to a solution is

the sequential importance sampling (SIS) algorithm, a Monte Carlo method commonly

known as bootstrap �ltering (Gordon et al. [1993]), the Condensation algorithm (Mac-

Cormick and Blake [1999]), or particle �ltering (Carpenter et al. [1999]).

Bayesian tracking is commonly de�ned in terms of a process model f and a measure-

ment model h:

xt = ft(xt−1, ut−1, wt−1). (2.12)

zt = ht(xt, vt). (2.13)

The symbol xt denotes the system state at time t and zt denotes the observation

made at time t. Both models are in general non-linear and time-dependent. The random

variables wt−1, vt represent the process and measurement noise and ut−1 is the control

input.

Kalman �lter

The Kalman �lter (Kalman [1960], Welch and Bishop [1995]) provides a means of op-

timally estimating the hidden state of a system by analysing observable measurements.

The Kalman �lter is only optimal when a certain set of assumptions hold true. Once

these assumptions are violated, the estimates provided by the Kalman �lter may no

longer be optimal.

The Kalman �lter assumes that the posterior density at every time step is Gaussian

and can be characterised by a mean and covariance. Let xt be the state of the system at

time t, and zt be the measurements. They are presented as transition and measurement

model equations below:

xt = Axt−1 +But−1 + wt−1. (2.14)
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zt = Hxt + vt. (2.15)

The random variables wt, vt represent the process and measurement noise. They are

assumed to be independent each other and drawn from normal probability distributions.

Matrix A speci�es the relation between target state at times t − 1 and t, B relates the

optional control input to the state xt, and H relates the state to the measurement zt. In

visual tracking, the control input u is usually omitted.

The Kalman �lter is a process of estimation using a form of feedback control (Welch

and Bishop [1995]): the �lter estimates the process state and then obtains feedback in

the form of (noisy) measurements. Two stages are de�ned: time update and measure-

ment update. During time update, the current state and error covariance estimates are

projected forward to obtain a priori estimates for the next time step. In the measurement

update, a new measurement is incorporated into a priori estimate to obtain an improved

a posteriori estimate. A complete Kalman �lter is presented in the Table A.1.

Kalman �ltering does not work well given non-linear equations. The Extended

Kalman �lter (EKF) (e.g. Bianchi and I.Tinnirello [2003]) allows the prediction and

correction models to be non-linear.

Particle �ltering

In visual tracking, assuming the target distribution is a unimodal Gaussian, as required

by the Kalman �lter, is not feasible. Tracking in cluttered or complex environments often

makes the distribution multi-modal. Particle �ltering, another state prediction method,

is a technique for implementing recursive Bayesian �lters by Monte Carlo sampling. A

recursive �ltering approach means that received data can be processed sequentially rather

than as a batch, so that it is not necessary to store the complete data set nor to reprocess

existing data if a new measurement becomes available (Arulampalam et al. [2002]). The

key idea is to use a set of random particles with associated weights to represent the

posterior density (pdf). Particle �ltering has become a tremendously popular tool with

which to perform visual tracking incorporating nonlinearity, which is the major restriction

of the Kalman �lter. Figure 2.1 shows some common Particle �ltering based methods

and their drawbacks. Each method is brie�y discussed below.

From a Bayesian perspective, given a series of observations, the aim of tracking is to

�nd the most likely state of a target at each time point. The state at time t is given by

xt = {x, y} where (x, y) is the target location, and the observations up to time t, z1:t.

The posterior pdf p(xt|z1:t) estimated in this approach consists of two essential stages:

prediction and update. The update operation uses the latest measurement to modify the
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Figure 2.1: Particle �ltering based methods and their problem.

prediction pdf. The assumption is that the initial pdf p(x0|z0) ≡ p(x0) of the state.
The prediction stage uses the system model Equation 2.12 to project the state pdf

forward from one measurement time to the next via the Chapman-Kolmogorov equation

2.16. Since the state is usually subject to unknown disturbances (modelled as random

noise), prediction generally translates, deforms, and spreads the state pdf.

p(xt|x1:t−1) =
∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (2.16)

The current state can be estimated, given that the previous state and all previous

observations are known, using the prediction equation. If assuming a Markov process of

order one, it allows us to consider the conditional density of the novel state as an integral

over its conditional density given the previous state.

A Markov process of order one (as in Figure 2.2) is used in Equation 2.16, the current

state of the target depends on the immediately previous state, i.e. p(xt|xt−1, z1:t−1) =

p(xt|xt−1). The probabilistic model of the state evolution p(xt|xt−1) is de�ned by the

system equation 2.12 and the known statistics of wt−1, a Gaussian noise.
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Figure 2.2: First order Markov Chain.

At time t, when a measurement zt is available, the prior is updated via Bayes' rule:

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
. (2.17)

where the normalising constant p(zt|z1:t−1) =
∫
p(zt|xt)p(xt|z1:t−1)dxt depends on

the likelihood function p(zt|xt) speci�ed by the measurement model (Equation 2.13).

In this case, the measurements depend only on the current state. In the update step

(Equation 2.17), the measurement zt is used to modify the prior density to obtain the

required posterior density of the current state.

The recursive relations Equation 2.16 and Equation 2.17 form the basis for the optimal

Bayesian solution. This recursive propagation of the posterior density is only a conceptual

solution. It cannot be determined analytically.

Sequential Monte Carlo (SMC):

SMC methods are very popular, e.g., Gustafsson et al. [2002], Hue et al. [2000], and

Thrun [2002], and used to make approximations in many �elds of research. This Monte

Carlo method is known as bootstrap �ltering (Gordon et al. [1993]), the Condensation

algorithm (MacCormick and Blake [1999]), or particle �ltering (Carpenter et al. [1999]).

As the number of samples becomes very large, this MC characterization becomes an

equivalent representation to the usual functional description of the posterior pdf, and

approaches the optimal Bayesian estimate. Their main advantage is their ability to

approximate complex high dimensional densities, i.e they can be used to approximate

states of non-linear dynamical models and non-Gaussian noise.

Let {xi0:t, wit} denote a randommeasure that characterises the posterior pdf p(x0:t|z1:t),
where {xi0:t}

Ns
i=0 is a set of support points with associated weights {wit}Ns

i=0 and x0:t =

{xj}tj=0 is the set of all states up to time t. The weights are normalised such that∑Ns
i=0w

i
t = 1. Then, the posterior density at t can be approximated as

p(x0:t|z1:t) ≈
Ns∑
i=1

witδ(x0:t − xi0:t) (2.18)
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We therefore have a discrete weighted approximation to the true posterior, p(x0:t|z1:t).

Sequential Importance Sampling (SIS):

Suppose p(x) ∝ π(x) is a probability density from which it is di�cult to draw samples

but for which π(x) can be evaluated. In addition, let xi ∼ q(x), i = 1, .., Ns be samples

that are easily generated from a proposal q(.) called an importance density. Then, a

weighted approximation to the density p(.) is given by

p(x) ≈
Ns∑
i=1

wiδ(x− xi). (2.19)

where

wi =
π(xi)

q(xi)
. (2.20)

is the normalised weight of the ith particle. Therefore, if the sample xi0:t were drawn

from an importance density q(x0:t|z1:t) then the weights in Equation 2.18 are de�ned by

Equation 2.20 to be

wi ∝ p(xi0:t|z1:t)
q(xi0:t|z1:t)

. (2.21)

If the importance density is chosen to factorise such that

q(x0:t|z1:t) = q(xt|x0:t, z1:t)q(x0:t|z1:t−1). (2.22)

then samples xi0:t ∼ q(x0:t|z1:t) can be obtained by augmenting each of the existing

samples xi0:t−1 ∼ q(x0:t−1|z1:t−1) with the new state xit ∼ q(xt|x0:t−1, z1:t) and p(x0:t|z1:t)
can be derived as

p(x0:t|z1:t) =
p(zt|xt)p(xt|xt−1)

p(zt|z1:t−1)
p(x0:t−1|z1:t−1) (2.23)

∝ p(zt|xt)p(xt|xt−1)p(x0:t−1|z1:t−1). (2.24)

The weight update can be shown to be

wit ∝
p(zt|xit)p(xit|xit−1)p(xi0:t−1|z1:t−1)
q(xit|xi0:t−1, z1:t)q(xi0:t−1|z1:t−1)

(2.25)

= wit−1
p(zt|xit)p(xit|xit−1)
q(xit|xi0:t−1, z1:t)

. (2.26)

Furthermore, if q(xt|x0:t−1, z1:t) = q(xt|xt−1, zt), then the importance density becomes

only dependent on xt−1 and zt. This is particularly useful in the common case when only
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a �ltered estimate of p(xt|z1:t) is required at each time step. Then, only xit needed to be

stored and xi0:t−1 and observations z1:t−1 can be discarded. The modi�ed weight is then

wit = wit−1
p(zt|xit)p(xit|xit−1)
q(xit|xit−1, zt)

. (2.27)

and the posterior �ltered density p(xt|zt) can be approximated as

p(xt|zt) ≈
Ns∑
i=1

witδ(xt − xit). (2.28)

Algorithm 3 The Sequential Important Sampling algorithm (adapted from Arulam-
palam et al. [2002]).

Given the {xit−1, wit−1}
Ns
i=1

1. For i = 1:Ns

(a) Draw xit ∼ q(xt|xit−1, zt).
(b) Assign the particle a weight wit according to Equation 2.27.

2. End For

A common problem with the SIS particle �lter is the degeneracy problem in which,

after a few iterations, a few particles will have negligible weight, and the variance of the

importance weights can only increase over time (showed in Doucet et al. [2000]). One

method to reduce the e�ects of degeneracy is to use resampling.

Sampling Importance Resampling (SIR)

The basic idea of resampling is to eliminate particles that have small weights and con-

centrate on particles with large weights. The resampling step involves generating a new

set {xi∗t }
Ns
i=1 by resampling (with replacement) Ns times from an approximate discrete

representation of p(xt|z1:t) given by

p(xt|z1:t) ≈
Ns∑
i=1

witδ(xt − xit). (2.29)

so that p(xi∗t = xjt ) = wjt . The resulting sample is in fact an i.i.d. sample from the discrete

density Equation 2.29; therefore, the weights are now reset to wit = 1
Ns
. Systematic

resampling (Kitagawa [1996]) is preferred and described in Algorithm 4, where U [a, b] is

the uniform distribution on the interval [a, b]. The index of the parent of each resampled
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particle x∗t is stored and denoted as ij .

Algorithm 4 The Sampling Importance Resampling algorithm (adapted from Arulam-
palam et al. [2002]).

Given the {xit, wit}
Ns
i=1

1. Initialise Cumulative Distribution Function (CDF): c1 = 0

2. For i = 2:Ns

- Construct CDF: ci = ci−1 + wit.

3. End For

4. Start at the bottom of the CDF: i = 1.

5. Draw a starting point u1 ∼ U [0, 1
Ns

].

6. For j = 1 : Ns

(a) Move along the CDF: uj = u1 +N−1s (j − 1).

(b) i = 1

(c) While uj > ci

- i = i+ 1

(d) End While

(e) Assign sample: xj∗t = xit.

(f) Assign weight: wjt =
1
Ns
.

(g) Assign parent: ij = i.

7. End For

The SIR algorithm can be easily derived from the SIS algorithm by an appropriate

choice of

1. The importance density q(xt|xit−1, z1:t), which is chosen to be the prior density

p(xt|xit−1)

2. The resampling step to be applied at every time step.

With the above choices made, the particle's weight is given by

wit ∼ wit−1p(zt|xit). (2.30)
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where the likelihood p(zt|xit) is available. Because the resampling is applied at every time
step, we have wit−1 =

1
Ns
,∀i, and the weight becomes

wit ≈ p(zt|xit). (2.31)

The weights given by the proportionality in Equation 2.31 are normalised before the

resampling stage. The SIR algorithm is given in Algorithm 5.

Algorithm 5 The Sequential Important Resampling algorithm (adapted from Arulam-
palam et al. [2002]).

Given the {xit−1, wit−1}
Ns
i=1

1. For i = 1:Ns

(a) Draw xit ∼ p(xt|xt−1)
(b) Calculate weight wit ∼ p(zt|xit).

2. End For

3. Calculate total weight: t =
∑Ns

i=1w
i
t

4. For i = 1:Ns

(a) Normalise: wit =
wi

t
t .

5. End For

6. Resample using Algorithm 4 to obtain new {xit, wit}
Ns
i=1

As Arulampalam et al. [2002] state, though the resampling step reduces the e�ects

of the degeneracy problem occurring in the SIS, it introduces other practical problems.

First, it limits the opportunity to parallelise, since all the particles must be combined.

Second, particles with high weights may be selected many times. This leads to a loss of

diversity among the particles as the resultant sample will contain many repeated points.

This problem, which is known as sample impoverishment, is severe in the case of small

process noise. A Markov Chain Monte Carlo (MCMC) approach is introduced to solve

this problem.

Markov Chain Monte Carlo (MCMC)

The Markov Chain Monte Carlo based particle �lter de�nes a Markov Chain over the state

space X , such that the stationary distribution π(x ) of the chain is equal to the sought pos-
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terior p(Xt |Z1 :t). One way to simulate the MCMC chain is via the Metropolis-Hastings

(MH) algorithm (Hastings [1970]) constructing a set of unweighted samples. Due to the

limitations of importance sampling in high dimensional state spaces, especially relevant

when seeking multiple targets, the Markov Chain Monte Carlo method is commonly ap-

plied in visual tracking (Khan et al. [2005]). Though MCMC has been designed to deal

with multiple objects, it can be used to track a single target because MCMC considers

only one target at each iteration of the MH algorithm. To simplify, the interaction model

which prevents trackers from di�erent objects converging onto a single object is ignored.

A candidate particle X ′t, sampled from the current sample Xt using a proposal

Q(X ′t;Xt) is accepted if the acceptance ratio (in Equation 2.32) exceeds 1.

a =
P (X ′t|Zt)Q(Xt;X

′
t)

P (Xt|Zt)Q(X ′t;Xt)
. (2.32)

The proposal density Q(X ′t;Xt) for one target is typically designed as a zero-mean

normal distribution and the observation likelihood is de�ned individually for each target.

In addition, the acceptance ratio is applied for one target at one time. Therefore, the

acceptance ratio in Equation 2.32 is simpli�ed to a ratio of observation likelihood of the

proposed state X ′t and the previous state Xt as in Equation 2.33. See (Khan et al. [2005])

for more details.

a =
P (Zt|X ′t)
P (Zt|Xt)

. (2.33)

A maximum a posterior (MAP) has typically been used to �nd a particle most likely

the target over N samples at each time t (Khan et al. [2005]). Algorithm 6 summarises the

MCMC-based Particle �lter. Note that when tracking one target, the state Xt contains

only a con�guration for that target at time t.

A burn-in period B is typically used to discard any bias introduced by the starting

position. During and after the burn-in period, the algorithm continues by performing

a search of the state space, by changing a single target's parameters at a time. These

changes are compared with the previous state, to ensure that the newer joint state rep-

resents an improvement over the previous. Improved states are likely to be accepted

(after a thinning period M which is used to select one particle out of M particles gener-

ated), and added to the sets of states in the Markov chain. This search approach allows

the algorithm to search a complex multi-dimensional joint state space, while remaining

computationally e�cient. A thorough description of the original MCMC tracker can be

found in (Khan et al. [2005]), along with experimental results detailing its accuracy and
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Algorithm 6 Particle �lter based MCMC (adopted from Khan et al. [2005]).

1. Initialise the MCMC sampler: randomly pick a sample X(r)
t−1 and move the target

using a motion model. The result is the initial state of the Xt Markov chain.

2. MCMC sampling step (Metropolis-Hasting): Repeat (B +MN) times, where B is
the length of the burn-in period and M is the length of the thinning interval:

(a) Sample from the proposal density: propose a new state X ′t for the target, by
sampling from the proposal density Q(X ′t;Xt).

(b) Compute the acceptance ratio a.

(c) If a ≥ 1, then accept X ′t: set the target in Xt to X ′t and update the cached
likelihood. Otherwise, accept with probability a. If rejected, leave Xt un-
changed.

3. As an approximation for the current posterior P (Xt|Z1:t), we return the new sample
set {X(i)

t }Ni=1, obtained by storing every Mth sample after the initial B burn-in
iterations above.

robustness.

2.2.3 Fused Trackers

A fused tracker is formed when two or more existing tracking algorithms are combined

to achieve a hopefully superior tracking algorithm. Combing two or more in an e�cient

manner may exploit their strengths while reducing their drawbacks. For instance, mean-

shift maintains only one hypothesis, and usually fails when the distance the target object

moves is greater than the allowed bandwidth. It, however, hill climbs e�ciently. Particle

�lters, on the other hand, need many particles to cover a given space thoroughly as the

particles are scattered randomly (according to its motion model(s)).

Maggio and Cavallaro [2005a] and Shan et al. [2004] combined Particle Filter and

mean-shift tracking algorithms, allowing each particle generated by the Particle Filter

to be clustered towards the local maxima by mean-shift. Multiple hypotheses are main-

tained by projecting a number of particles randomly around the prior position, and then

these particles hill climb towards the best target centre. This hybrid tracker requires a

smaller number of particles to carry out tracking successfully. The hybrid tracker shows

performance advantages over both Particle �lter and Mean Shift tracking. However, as

particles are randomly projected, we still need a good number to cover a given search

space. Running N mean-shift trackers, where N is the number of particles in the system,
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also makes the system computationally expensive. Furthermore, many of the particles

coalesce during the mean-shift phase, moving to the same hypothesis and making the

representation redundant. If Condensation tends towards an incorrect local maximum,

mean-shift will accelerate the process.

Recently, Kwon and Lee (Kwon and Lee [2010]; K. and Lee [2013]) proposed a tracker

sampling method to handle appearance and motion changes by generating multiple track-

ers and using the best state among these trackers to estimate new target locations. Their

framework performed appearance sampling by utilising image data from the last �ve

frames. Features of the target in these frames are extracted and the appearance model

is constructed using Sparse principal component analysis (SPCA). The idea is to select

the features that best separate the target from the local background. A similar idea was

used in Collins et al. [2005] but this work used a �xed set of (49) features. Santner et al.

[2010] proposed a tracker (PROST) which combines three simple trackers: Template

Matching (using NCC), Meanshift Optical �ow (FLOW) (Werlberger et al. [2009]) and

Online Random Forest (ORF) (Sa�ari et al. [2009]). FLOW is fast and accurately adapts

to appearance changes, so it is overruled by ORF if it is not overlapping and ORF has

a con�dence above a given threshold. ORF is updated only if it overlaps with NCC or

FLOW. The challenge raised by these works is how to ensure agreement among trackers.

2.3 Appearance Models

Before the tracking process is invoked, the likely appearance of the target of interest must

be modelled. One of the key factors in tracking is how to choose an appropriate method

to represent the object. A good representation should be robust to object rotation,

scale variation, partial occlusion, etc. Object representation methods should satisfy two

properties: discriminability and computational e�ciency. Several ways to represent the

target are reported in the literature. Representations are usually chosen to suit a speci�c

application domain. Yilmaz et al. [2006] provide the following synthesis:

• Points: The object can be represented by a centre point (Figure 2.3(a)) (Veenman

et al. [2001]) or by a set of points (Figure 2.3(b)) (Serby et al. [2004]). In general,

the point representation is suitable for tracking objects that occupy small regions

of the image.

• Primitive geometric shapes: A rectangle or ellipse is used to represent an object

shape (Figure 2.3(c), (d)) (Comaniciu et al. [2003]). This type can be used for

simple rigid and nonrigid objects.
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• Object silhouette and contour: Contour representation de�nes the boundary of an

object (Figure 2.3(g), (h)). The region inside the contour is called the silhouette of

the object (see Figure 2.3(i)). Silhouette and contour representations are suitable

for tracking complex nonrigid shapes (Yilmaz et al. [2004]).

• Articulated shape models: Articulated objects (e.g. the human body) are composed

of body parts that are held together with joints. The relationship between the parts

are governed by kinematic motion models, for example, joint angle, etc. In order to

represent an articulated object, one can model the constituent parts using cylinders

or ellipses as shown in Figure 2.3(e).

• Skeletal models: This model is commonly used as a shape representation for recog-

nising objects (Ali and Aggarwal [2001]). Skeleton representation can be used to

model both articulated and rigid objects (see Figure 2.3(f)).

Figure 2.3: Object representation (Yilmaz et al. [2006]).

Part- or patch-based methods have been used in several works (e.g Maggio and Cav-

allaro [2005b]; Adam et al. [2006]; Kwon and Lee [2013])). In Maggio and Cavallaro

[2005b], seven parts (Figure 2.4) are used to represent an object: a whole (2.4(a)), four

parts (2.4(b)) designed to help recognise rotations, and a size-sensitive division into two

further parts (2.4(c)). The complete representation is shown in (2.4(d)). In Adam et al.

[2006], the target is represented by multiple parts as shown in Figure 2.5. To handle

partial occlusions, each part votes for the target location. Kwon and Lee [2013] generate

and select patches (Figure 2.6) by calculating scores of the Hessian Matrix for each pixel.

Patches do not overlap and their sizes are random. This method is designed to handle
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drastic geometric appearance changes. Target location is determined by combining the

vote maps of all patches.

Figure 2.4: Multi part representation (Maggio and Cavallaro [2005a]).

Figure 2.5: Part based representation (Adam et al. [2006]). The target is divided into
multiple parts and each part associates with one histogram and votes for the centre
location of the target.
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Figure 2.6: Patched based Appearance Model (Kwon and Lee [2013]).

Each object representation normally comes with an appropriate appearance model.

A number of excellent reviews of appearance models exist (e.g. Yilmaz et al. [2006];

Cannons [2008]; Li et al. [2013]). Recent years have seen an increased focus on appearance

modelling, often including an element of machine learning. Appearance models can be

broadly categorised into two types: generative and discriminative. Generative models

try to learn the appearance of an object, while discriminative models try to build and

train a classi�er to distinguish the object from the background.

2.3.1 Generative Models

Many features are available for use in visual tracking: colour, corners or points, gradient

orientation, motion, contour, texture, etc. Selecting the right features plays a critical

role in tracking performance (Yilmaz et al. [2006]). A number of questions should be

considered while selecting features for tracking (Collins et al. [2005]):

• How many features will be selected;

• What type(s) of features are used;

• What are the feature selection mechanisms;

• When during tracking should feature selection be made.

Colour features are widely used in tracking. They are typically represented in the

form of colour distributions or colour histograms (e.g. Comaniciu et al. [2000]; Perez

et al. [2002]; Nummiaro et al. [2003]; Czyz et al. [2005]; Adam et al. [2006]; Kwon and

Lee [2013]). Colour histograms (e.g. Figure 2.7b) are constructed by splitting the range
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of colours into equal-sized bins. Then for each bin, the number of colour pixels from the

image data that fall into each bin are counted. They allow for signi�cant data reduc-

tion, and can be computed e�ciently; Moreover, discarding colour spatial distribution,

colour histograms are robust to noise, small object deformation, scaling and rotation,

and partial occlusions. Conversely, without spatial or shape information, similar objects

of di�erent colour may be indistinguishable based solely on colour histogram compar-

isons. By choosing di�erent colour spaces such as RGB, HSV or rgb (normalised) colour

spaces could make the colour histogram di�erent. It, however, depends on the nature of

the video sequences and applications. Also, selecting which colour components in which

colour spaces has been addressed by several works such as feature selections. The basic

idea is that making the target appearance di�erential to the background appearance.

To reduce e�ect of local background such as (partial) occlusion or clutter, by assigning

smaller weights to pixels farther from the target centre, Comaniciu et al. [2000] incor-

porated a kernel (e.g. Epanechnikov kernel) into the calculation of colour histograms.

To preserve spatial information, Maggio and Cavallaro [2005a]; Adam et al. [2006]; Sha-

hed Nejhum et al. [2008]; Kwon and Lee [2013] used colour histogram computed over

local patches to represent the target. These methods need a mechanism to combine all

votes for the target (centre) location.

Another approach is to use a template image (e.g Figure 2.7c) of an object as an

appearance model. An advantage of a template is that it carries both spatial and ap-

pearance information. Templates, however, only encode the object appearance generated

from a single view. Thus, they are only suitable for tracking objects whose pose does not

vary considerably during the course of tracking Yilmaz et al. [2006]. Some works (e.g.

McIntyre et al. [2009]) tried to integrate geometric transformations of templates into

tracking. These methods could help to reduce the number of templates used in track-

ing. They, however, need to specify how the template is transformed and are speci�c

applications.

(a) Image (b) Histogram (c) Template

Figure 2.7: (Enlarged) Histogram & Template.
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Colour correlograms (Huang et al. [1998]) have also been used in tracking (e.g. Zhao

and Tao [2005, 2007]). These express how the spatial correlation of pairs of colours

changes with distance. Informally, a correlogram of an image is a table indexed by colour

pairs, where the kth entry row (i, j) speci�es the probability of �nding a pixel of colour j

at a distance k from a pixel of colour i in this image. In other words, a colour correlogram

contains not only colour statistics, but also its spatial distribution. It, however, is more

suitable for use in content-based image retrieval because of its computational complexity

and memory consumption.

The Gaussian Mixture Model (GMM), a weighted sum of m component Gaussian

densities, has been applied in several works (e.g. McKenna et al. [1997]; Kim et al.

[2014]). Expectation-maximisation (EM) (Dempster et al. [1977]) is typically used to

estimate GMM parameters. The resulting mixture model will depend on the number of

components m; and the initial choice of parameters for these components.

Motion (e.g. optical �ow) is another feature used in visual tracking. Optical �ow

produces a dense �eld of displacement vectors which de�nes the translation of each pixel

in a region (Horn and Schunck [1981]; Lucas and Kanade [1981]; Farnebäck [2003]). It

is computed using the brightness constraint, which assumes brightness constancy of cor-

responding pixels in consecutive frames, and assumes neighbouring pixels have similar

motion. Optical �ow is commonly used as a feature in motion-based segmentation and

tracking applications. Kristan et al. [2009] incorporated the motion into the target ap-

pearance model to handle the problems arising when the target is close or occluded by

a visually similar object. The method assumed that the target does not signi�cantly

change its motion during the occlusion. Figure 2.8 shows an example of a dense optical

�ow.

(a) #3 (b) #4 (c) Optical �ow

Figure 2.8: Dense Optical Flow (using Farnebäck [2003]).

Local features (e.g. Kim [2008]) used corner features (Förstner and Gülch [1987]),

Zhou et al. [2009] used SIFT (Lowe [1999]), He et al. [2009] used SURF (Bay et al.
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[2006]) are also used to represent the target appearance. These features are detected

inside the target boundary and tracked in consecutive frames. The target position can

be estimated according to local feature locations. Local features are reliable and robust to

illumination and appearance changes. The performance of the tracker, however, degrades

if too few features are detected or mis-tracked. Moreover, some outlier features can give

an incorrect target location estimation.

In contrast with methods using a single feature, multiple feature fusion approaches

try to integrate two or more features into single tracking algorithms or multiple tracker

fusion methods. No single visual feature is robust and general enough to deal with changes

of environment (Spengler and Schiele [2001]). Combining multiple features to describe

the object may make the tracker more robust. In single tracking algorithms, Wu and

Huang [2004] integrated colour and shape to form a richer target representation, while

Maggio et al. [2007]; Han et al. [2011] combined colour and orientation features; Wang

and Suter [2006]; Shen et al. [2003] combined colour and edges; Triesch and Malsburg

[2001] integrated �ve cues (motion, colour, position, shape and contrast).

Taking a multiple tracker fusion approach, each cue in Wei and Justus [2008] is

tracked individually and modelled by a Hidden Markov Model (HMM). All HMMs are

presented in a Linked Hidden Markov Model (lHMM) to show the interaction between

pairs of HMMs. In Noguer [2005] the output of one cue (colour) is used for propagation

of other cues (contours).

In general, multiple feature fusion work has demonstrated that the approach makes

tracking more robust. The challenge, however, raised by these works is how to estimate

the contribution, i.e. the relative weight, of each feature when estimating target state.

Adapting to the reliability of each feature is important since di�erent features respond

in di�erent ways a�ects to changes in an object's appearance, such as motion blur,

illumination change, etc.

In most applications and for long time periods, it, however, is crucial to update the

target representation or model to account for appearance variations. Without adaptation,

tracking is reliable only over short periods of time when the appearance does not change

signi�cantly. While much progress has been made, it is still di�cult to get an adaptive

appearance model to avoid drift.

Several methods have been proposed to deal with the drift problem (e.g. Matthews

et al. [2004]). Though it allows fast reaction to appearance changes, naive update is rarely

used since it can easily harm the model. A simple linear update of the reference model

was introduced in Nummiaro et al. [2003]. They used a �xed adaptation speed, making it

suitable in some situations. Collins et al. [2005] proposed to anchor the developing model
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on the original one, but the method could not react quickly enough to large variations,

such as the appearance of a hidden part.

2.3.2 Discriminative Models

In this approach, background information is incorporated to select the best features to

distinguish the target from its local background. This method is also known as tracking

by detection. A feature selection method is commonly used to discard irrelevant or

redundant features in pattern classi�cation, where an optimal subset of features is chosen

from a feature set (i.e. feature pool) according to a certain criterion. The discriminative

model maintains these discriminative features of the objects and updates them during

tracking since the prominent feature set can di�er from frame to frame due to the changes

of the local background or of the target. To search for the target, a deterministic approach

or sliding window is typically used.

Collins et al. [2005] maintains 49 colour features in a feature pool. These features are

linear combination of R, G, B components and speci�ed by F ≡ {w1R+w2G+w3B|w ∈
[−2,−1, 0, 1, 2]}. For each feature f , normalised histograms Hf

obj , H
f
bg with n bins for the

target and the local background respectively are calculated. Then m best features are

selected according to how well the object is separated from the local background using

Equation 2.34.

V R(L;Hobj , Hbg) ≡
var(L; (Hobj +Hbg)/2)

[var(L;Hobj) + var(L,Hbg)]
. (2.34)

where

var(L;Hobj) = E[L2]− (E[L])2 =
∑

HobjL
2 − [

∑
HobjL]

2. (2.35)

L = log

(
max(Hobj , δ)

max(Hbg, δ)

)
. (2.36)

and δ is a small value to prevent dividing by zero or taking the log of zero.

For each selected feature, the log likelihood ratio values (Equation 2.36) are back-

projected into the image to produce a weight image for use during tracking. In perfect

situations, the object pixels contain positive values and background pixels contain neg-

ative values. The colours shared by both the target and background tend towards zero,

and it is easy to choose a threshold to separate object and background. However, in real

video sequences, the colour distributions of object and background are seldom completely

separate. Finally, the mean-shift algorithm (Comaniciu et al. [2003]) is applied to this

weighted image to estimate the target location in the current frame.

Figure 2.9 summarises the process of generating and selecting features for a given
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target. In general, the Collins et al. [2005] approach is slow and some visual informa-

tion may be lost during back-projection. This approach also assumes that object and

background do not change quickly from one frame to the next.

Figure 2.9: Feature generation and selection process (Collins et al. [2005]).

Other approaches used Boosting (Schapire [2002]) to build a discriminative model.

Boosting has emerged as a very popular and e�cient technique in machine learning

and computer vision. O�ine training methods have been used and achieved promising

results in classi�cation tasks and object detection (e.g. Viola and Jones [2001]). In o�ine

techniques, all training data must be available during a separate training stage. An o�ine

technique, however, is not best suited to tracking, since not all target appearances are

known a priori. Tracking requires adaptation to variations in the target, i.e the ability

to capture target appearance changes online, as much as possible.

Recently some attention has been given to online Boosting. Online learning has

advantages, since it needs only some data at the beginning of tracking and can learn

as new data arrive. Oza [2005] showed that if o�ine and online boosting are given the

same training set, the weak classi�ers returned by online boosting converge statistically

to the one obtained by o�ine Boosting when the number of iterations N → ∞. For

more details see (Oza [2011]). In online boosting, the number of weak classi�ers is �xed

at the beginning and one sample is used to update all weak classi�ers, whereas in the

o�ine case all samples are used to update one weak classi�er. Online AdaBoost has been

proposed for use in tracking using feature selection, e.g. by Grabner and Bischof [2006].

The idea of AdaBoost is to construct a strong classi�er H(x) (Equation 2.37) as a linear

combination of T weak classi�ers ht(x). A weak classi�er performs slightly better than

a random guess. In binary class, the error rate must be less than 50%. During training,

AdaBoost focuses on hard samples, i.e. increases the weight for the wrongly classi�ed

samples and decreases the weight for correctly classi�ed samples.
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H(x) = sign(f(x)). (2.37)

f(x) =
T∑
t=1

αtht(x). (2.38)

where

ht(x) : X → {−1; 1}. (2.39)

and αt is the weight of the tth weak classi�er ht(x) contributing to the label prediction

of the strong classi�er H(x).

Figure 2.10: Online Boosting using feature selection Grabner and Bischof [2006].

Given a set ofM weak classi�ers with hypothesis Hweak = hweak1 , ..., hweakM , a selector,

thought of as a classi�er, selects exactly one of those weak classi�ers. Haar features are

used in this framework. The main idea (Figure 2.10) is to apply Online AdaBoost not di-

rectly to the weak classi�er but to the selectors. Training a selector means that each weak

classi�er is trained or updated and the best weak classi�er, i.e. with lowest estimated
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error is selected. Algorithm 7 describes the training process in Online AdaBoost.

hsel(x) = hweakm (2.40)

where m is chosen according to an optimisation criterion. The estimated error ei of each

weak classi�er hweaki ∈ Hweak such that m = argminiei.

In online learning methods tracking (Figure 2.11) is viewed as a classi�cation problem,

with the classi�er which represents the object being continuously updated to keep it

discriminative. Suppose that the object is detected in the current frame at time t, and

is represented by an image region.The initial classi�er is built using that region as a

positive sample and patches in the local neighbourhood as negative samples.

Figure 2.11: Tracking with Online AdaBoost (Grabner and Bischof [2006]).

At time t + 1, the current classi�er is used to evaluate the position of the object in

a region of interest around the previous detection. The region surrounding the previous

position of the target is divided into several patches. Each patch is evaluated by using

current classi�er to provide a con�dence score which is entered in a con�dence map. The

con�dence map is analysed and the tracking window is shifted to the most likely target

position. The classi�er is then updated and the process continues.

The update step will help to learn the discrimination between object and the current

background. If the appearance of the object changes, then the update process can capture

these changes and keep the classi�er valid even though the appearance has changed.

Online AdaBoost is applied in the update process.

Each weak classi�er in (Avidan [2007]) is a linear hyperplane in an 11D feature space
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composed of R,G,B colour and a histogram of gradient orientations (8 bins). The ensem-

ble of weak classi�ers is combined into a strong classi�er using AdaBoost. The strong

classi�er is then used to label pixels in the next frame as either belonging to the object

or the background, giving a con�dence map. The peak of the map is considered the new

target position, and is found using mean-shift. In the update phase, the algorithm keeps

the best K weak classi�ers and removes T −K poorly performing weak classi�ers. Be-

fore adding the new weak classi�ers, the remaining K weak classi�ers have their weights

updated.

Despite its high e�ciency and quick adaptation, online learning relies heavily on

precise object localization, because it utilises previously learnt classi�ers to select positive

and negative training samples and then update the current classi�ers with the selected

training samples. Consequently, any tracking errors will gradually accumulate.

Recently, multiple instance learning (Babenko et al. [2011]) has been proposed in

order to handle location ambiguities of positive samples. Samples are extracted and put

into bags which are provided a label. The bag is positive if one or more instances in

it are positive while the bag is negative when all of the instances in it are negative.

Samples near the tracking location are put into the positive bag while samples far from

the tracking location are put into the negative bag. This method can achieve robust

tracking results but may lose accuracy if the image patches do not precisely capture the

object appearance information, i.e. select less informative features.

Another approach is to use Semi-supervised learning, providing a general framework

to learn a classi�er for di�erent types of objects which may not have enough labelled

data. Tracking is treated as a semi-supervised learning problem. Grabner et al. [2008]

proposed Semi-supervised boosting to break the self learning loop in Online Boosting

(Grabner and Bischof [2006]) by adding a prior. All the samples provided to train this

classi�er are unlabelled. Despite some success in alleviating drift, this framework does

not handle target changes well, because if the appearance change is di�erent from the

prior, the tracker is likely to drift o� the target. Stalder et al. [2009] extended Grabner

et al. [2008] to include a slowly evolving adaptive prior in combination with a �xed prior

from the �rst frame. This method, however, does not cope with sudden appearance

changes.

2.3.3 Combination Models

Generative and discriminative models each have their own advantages and disadvantages

and are complementary to each other. Provided with su�cient training data, the discrim-
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inative approach is expected to yield superior accuracy as compared to generative models

(Lasserre et al. [2006]). Conversely, if the model is accurate, the generative approach can

perform better with less data (Ng and Jordan [2001]).

Several works have sought to combine generative and discriminative models. Woodley

et al. [2007] used a generative model to guide online feature selection and address the

occlusion problem. If a region is labelled as occluded, the local features in this region

are discarded and new features from non-occluded regions are added. The classi�er is

trained using the method of Grabner and Bischof [2006]. If the likelihood of one region

is below a given threshold value, it is treated as an outlier (i.e. occluded). Similarly,

Yu et al. [2008]; Dinh and Medioni [2011] proposed a co-training approach to handle

occlusion. The generative model uses a number of low dimensional linear subspaces to

describe the appearance of the object. A discriminative classi�er is implemented as an

online support vector machine, which is trained to focus on recent appearance variations.

In the co-training approach, a principled semi-supervised training method (Blum and

Mitchell [1998]), is utilised. The basic idea is to train two classi�ers on two conditionally

independent views of the same data (with a small number of exemplars) and then use

the prediction from each classi�er to enlarge the training set of the other. It is shown

that co-training can �nd an accurate decision boundary, starting from a small quantity

of labelled data, as long as the two feature sets are independent. Currently, this tracker

cannot handle the case when there is an abrupt change during occlusion because there

is no learned knowledge to predict the changes in the hidden region given the revealed

one. Partial occlusions are often regarded as non-object by this method. This is a safe

strategy, in that it avoids updating the model with the wrong appearance instances.

Tang et al. [2007] also used a co-training framework to train classi�ers. The object

was represented using independent features (colour histograms and histograms of ori-

ented gradients) and an online support vector machine (SVM) built for each feature.

The predictions from di�erent features are fused by combining the con�dence map from

each classi�er. A semi-supervised learning approach used the output of the combined

con�dence map to generate new samples and update the SVMs online. This approach

increases the robustness of the tracker. It, however, does not handle large variation in

appearances.

In general, how to combine generative and discriminative methods into a coherent

framework is a classic question within machine learning and needs more research (Yang

et al. [2011]), though several works have been done to reduce the drift problem and have

achieved promising results.
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2.4 Motion Models

Without a target motion model, trackers can only locate the target by detection in each

and every frame. Once targets have been detected, data association can be performed

to link the object tracks to the currently detected targets. The continuous detection

approach is, however, somewhat wasteful (Cannons [2008]). If other information (e.g.

motion direction, velocity) or information from previous frames (e.g. the estimated target

position), is incorporated the prediction can be made more accurate and the search space

reduced drastically. Target location should also become more accurate because it will

have less chance to be locked on clutters or distractors.

Some trackers (e.g. Perez et al. [2002]) use a random walk motion model to search

for the target. Random walk assumes that the target's velocity is a white noise sequence

and so is temporally completely uncorrelated. It describes target dynamics best when

the target performs radical accelerations in random directions. When the target moves

in a consistent direction (which is often the case in, e.g. surveillance), random walk

performs poorly, and is easily trapped in local extrema. Okuma et al. [2004] describes

a proposal distribution mixing hypotheses generated by an AdaBoost detector and a

standard autoregressive motion model. This approach needs an o�-line training step and

searches the whole image to detect all possible targets.

Predictive motion models based on previous estimates of target state are widely used,

and several works have proposed methods which switch between (Isard and Blake [1998])

or combine multiple motion models. Kristan et al. [2010] proposes a two-stage dynamic

model integrating a liberal and a conservative component. The liberal model allows

larger perturbations in the target's dynamics and is able to account for motions between

random walk dynamics and nearly constant velocity dynamics. This is achieved by ex-

plicitly modelling the target's velocity as a non-zero mean Gaussian Markov process.

The conservative model assumes smaller perturbations in the velocity and is used to con-

strain the liberal model to the target's current dynamics. This approach can handle short

occlusions well. They, however, are not designed for unexpected and abrupt motions.

Particle Swarm Optimization (PSO) (Kennedy and Eberhart [1995]), a new popu-

lation based stochastic optimisation technique, has been used in some work (e.g Zhang

et al. [2008]). In PSO, particles interact locally with others and with their environment.

Each particle has its �tness value and a relevant velocity. In each iteration, each particle

moves with its adaptable velocity according to the best state found by itself and the

best state found by all particles. Particles move about the search space and cluster in

the regions where the optima are located. The advantages of this mechanism are the
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simplicity and low cost of the computation associated with each particle. Several param-

eters, however, must be tuned, (including acceleration constants, maximum velocities)

to control how particles move. Moreover, maintaining the su�cient diversity within the

particle set can be di�cult.

Instead of combining or switching between motion models, Kwon and Lee [2011];

K. and Lee [2013] proposed a sampling method to sample a motion model from a set of

motion models, estimates made over the target's recent history, to be used in one tracker.

A mechanism allowing trackers to interact with each other should be designed.

The integration of contextual information indirectly modelling the target movement

can achieve considerable improvements. Grabner et al. [2010] and Dinh et al. [2011] used

Supporters, i.e. local key-points or features (e.g. Harris points (Harris and Stephens

[1988])) around the target whose motion is correlated with the target's over a short

time period, to predict target locations. In a similar manner, Yang et al. [2009] de�ned

auxiliary objects, i.e. regions which have persistent co-occurrence with the target, con-

sistent motion correlation to the target and are easy to track. This method relied on

segmentation mechanisms to exploit auxiliary objects and a brief propagation algorithm

was applied to a star topology which connects the target at the centre to other auxil-

iary objects and no connections among auxiliary objects, to estimate the target location.

These methods can handle occlusions or target appearance changes. They, however, as-

sume that supporters or auxiliary objects should lay on objects moving dependently and

smoothly with the target.

2.5 Summary

In this chapter, some common tracking approaches were brie�y reviewed. Deterministic

methods are usually computationally e�cient but they easily become trapped in local

minima. On the other hand probabilistic methods are usually more robust, but they

su�er a large computational load, especially in high-dimensional state spaces. Although

considerable work has already been done above, a more e�ective optimisation method is

still needed to support robust visual tracking.

Object representations and appearance models are crucial to tracking. The back-

ground is generally unknown in advance, and target appearance may change over time.

Adaptive trackers try to capture variations in target appearance, but face the model drift

problem if they try to update the target appearance model using non-target regions or

when the target is occluded. Combining di�erent features can support the tracker and

help it to estimate the position more accurately in uncertain situations such as clutter,
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fast motion, even though distractors. These methods, however, need a mechanism to

ensure consistency between the measurements generated by di�erent features, and it is

hard to assign blame when something goes wrong.

Many state of the art discriminative online learning based tracking methods have been

developed and achieved promising results because of their quick adaptation to appearance

changes. They are, however, a�ected by model drift quicker than generative models, and

they typically estimate target positions directly from exhaustive search-based methods

or a sliding window. It would be reasonable and inspiring to integrate these methods

into a stochastic inference framework.

Several works have been proposed to handle drift with prior (e.g. semi-supervised

learning) or co-training, but cannot adapt well to appearance changes. Some build a

complex motion model with the hope of allocating particles in a particle �lter framework

to positions which correctly estimate the posterior distribution of the target. Though

this approach has achieved promising results, it is limited to speci�c motion types. In

reality, it is very hard to model target motion precisely, especially during fast movements

and unexpected changes in motion direction.

In this study, we focus �rst on building a rich appearance model to capture all possible

target appearance changes without being too prone to drifting. After de�ning a target

model, a search method (based on target motion) is needed to select the candidate

target locations to be evaluated against the model. A motion estimation approach is

introduced which can handle motion variations and enhance target prediction. These

two contributions are incorporated in a single particle-�ltering based tracking framework,

built on Markov Chain Monte Carlo (MCMC). The next chapter describes in detail the

proposed target appearance model.
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Algorithm 7 Online AdaBoost for feature selection (Grabner and Bischof [2006]).
Require: Training example (x, y), y ∈ −1,+1
Require: strong classi�er hstrong (initialised randomly)
Require: weights λcorrn,m , λ

wrong
n,m (initialised with 1)

Initialise the important weight λ = 1
//for all selectors
for n = 1, 2, .., N do
//update the selector hseln
hweakn,m = update(hweakn,m , (x, y), λ)
//estimate errors
if hweakn,m (x) = y then
λcorrn,m = λcorrn,m + λ

else
λwrongn,m = λwrongn,m + λ

end if
en,m =

λwrong
n,m

λcorrn,m+λwrong
n,m

end for
//choose weak classi�er with the lowest error
m+ = argminm(en,m)
en = en,m+ ;hseln = hweakn,m+

if en = 0 or en > 1
2 then

exit
end if
//calculate voting weight

αn = 1
2 ln
(
1−en
en

)
//update important weight
if hseln (x) = y then
λ = λ. 1

2.(1−en)
else
λ = λ. 1

2.en
end if
//replace worst weak classi�er with a new one
m− = argmaxm en,m
λcorrn,m− = 1;λwrong

n,m− = 1;

get new hweakn,m−

end for
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Chapter 3

Tracking with

Multiple Generative Models

3.1 Introduction

The previous chapter presented an overview of common tracking approaches and de-

scribed two important components of a tracker. Though the appearance model is a key

component and contributes signi�cantly to the success of a tracking framework, main-

tenance of an e�ective appearance model remains an open problem. Existing methods

using sophisticated image observation models tend to be e�ective but computationally

intensive, or e�cient but vulnerable to false alarms. Without e�ective veri�cation, the

tracker is likely to drift away gradually or fail.

Appearance-based trackers typically construct an appearance model of the target

using features extracted from the �rst frame, comparing it to measurements recovered

from incoming frames at candidate target positions to estimate the most likely target

state. Targets, however, move in complex environments and targets' appearance can vary

over time as a result of illumination changes, pose variations, full or partial occlusions,

deformable targets, etc. It can be di�cult to segment the target from its background in

real image sequences.

A �xed appearance model, as in Isard and Blake [1996], Birch�eld [1998], can soon

become insu�cient. To achieve long term tracking, many researchers have tried to learn

appearance models - to adapt the model to match changes in the target. Two classes

of model are used to capture targets' appearance: generative (Comaniciu et al. [2003],

Ross et al. [2008], Nummiaro et al. [2003]) and discriminative (Grabner and Bischof

[2006], Collins et al. [2005], Babenko et al. [2011]). Regardless of approach, adaptive
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appearance-based trackers face a key problem: the model drift that occurs when back-

ground information contaminates the model. The risk and degree of drift increase quickly

if the tracked target is not well-located. Several methods have been proposed to deal

with drift, as discussed in Section 2.3 (Chapter 2). Despite some success in alleviating

drift, they do not adapt well to large or sudden appearance changes.

The goal of the work reported here is to produce an online tracker capable of adapting

to fast appearance changes without being too prone to drifting, and able to recover

following drift and partial or full occlusion. It is not necessary to update the target

appearance model at every image frame, as a tracker with one �xed appearance model is

likely to track the target well over short periods. Knowing when and where to update an

appearance model and how to choose an appropriate appearance model are important

questions for an adaptive tracker.

A target representation should be descriptive enough to disambiguate the object from

the background, while allowing enough �exibility to cope with changes of target scale,

pose, scene illumination and partial occlusions. My simple yet e�ective method builds

appearance models which are a combination of two popular generative models: templates

and histograms.

Templates can provide stable matching and good localisation, due to the detailed

spatial information they carry. Though templates are very vulnerable to appearance

changes, they provide a solid clue that the target has changed its appearance and the

tracker should update the appearance model (e.g. a template based tracker should update

the template). Histograms, in contrast, do not maintain spatial information and so are

more robust to rotation, scaling and partial occlusion. Histograms can be thought of as a

more abstract model, as many templates can produce a given histogram. The relative lack

of precision of histogram-based representations allows them to capture target appearance

during changes in the spatial distribution of target features.

During tracking, especially in unconstrained environments, appearance changes are

unpredictable. A �xed set of templates cannot be relied upon to capture the variations

that might arise. With careful use, templates and histograms can complement each other.

Templates allow the tracker to produce suitable histograms, while histograms allow the

tracker to estimate the new target location which in turn allows new templates to be

sought, and used to cope with changes in target appearance.

In the proposed method, each new appearance is learnt and maintained in a pool

of appearance models. Storing multiple template-histogram pairs allows the tracker to

handle variations by automatically switching among models, using template matching to

select a histogram which captures target appearance in the current frame. This reduces
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the risk of drifting, since it is possible to check the similarity between the new and previ-

ous appearances before updating or adding a new appearance model to the pool. Instead

of computing appearance changes between temporally adjacent frames, or between the

current frame and the �rst frame, this tracking method evaluates the change by com-

puting di�erences between the current appearance and a number of learnt models that

previously appeared in the image sequence. In case of drifting or occlusion, the tracker

can re-initialise the tracking process by selecting a new model from the pool.

This approach to appearance modelling is built into the Markov Chain Monte Carlo

(MCMC) based particle �lter (Khan et al. [2005]). We extend the proposal distribution

of the standard MCMC to propose both the new location, and the histogram that should

be used. On completion of each Markov chain, each histogram is assigned a weight

re�ecting how frequently it was accepted during that chain. The new target location

is estimated by identifying particles which have the highest weight and use the most

common histogram. This strategy is adopted because, if the chain runs for long enough,

the most suitable histogram will be used most.

The rest of this chapter is organised as follows. In Section 3.2, we describe the pro-

posed method. Experimental results and discussions presented and discussed in Section

3.3 and Section 3.4 respectively. Finally, some conclusions are drawn in Section 3.5.

3.2 Proposed Tracking Algorithm

Figure 3.1 shows the main steps in the proposed method, Markov Chain Monte Carlo

based Particle �lter using sampled appearances (MCMC-SA). This method mainly fo-

cuses on the appearance model and assumes that target movement is smooth. The issues

raised by more complex motion are addressed in Chapter 4.

In this proposed approach, each appearance model (constructed to represent the

target appearance at a speci�c time) is maintained in an appearance pool. During the

MCMC based tracking process, the tracker accesses the appearance pool and selects an

appropriate appearance model with which to estimate new target locations. The new

target appearance is extracted from the estimated target location and the tracker makes

a learning decision on this new appearance. If the new appearance is accepted, it is

stored into the appearance pool for future use. These above processes are repeated for

each incoming image frame.
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Figure 3.1: Overview MCMC-SA framework.

3.2.1 Motion Model

Dynamic models describe the likely movement of the target between successive frames.

Denote the target state at time t by Xt = {xt, st} where xt = (u, v) is the centre target

location and st ∈ (1..k) is the index of the selected appearance model at time t, k is the

total number of appearance models in the appearance pool.

The �rst order auto regressive model described by Equation 3.1 is adopted for the

dynamics of target locations over time which proposes a new target's state Xt based on

the previous states Xt−1. This model captures smooth movements of the target within

the range of the process noise.

xt = A · xt−1 + wt. (3.1)

where xt is the target location of the state at the time t, xt−1 is the target location

at the time t − 1, A is an identity matrix in all experiments of this study and wt is the

process noise, a Gaussian noise with zero mean N(0, σ).

The st of the target state Xt selected at the time t will be discussed in Section 3.2.3.
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3.2.2 Appearance Model

Visual appearance is critical for tracking since the target is tracked or detected based

on the match between the observed visual evidence (or measurements) and the visual

appearance model. If the assumptions made by the appearance model are incorrect or

inaccurate, the tracker may fail. In the current implementation, targets are selected by

manual annotation of the �rst frame in the image sequence. Automatic initialisation

could be used to select the target. Target detectors should be trained or modelled; for

example Dalal and Triggs [2005] used histograms of oriented gradient (HOG) to detect

humans, Viola and Jones [2001] trained AdaBoost with Haar features for face detection,

Okuma et al. [2004] used AdaBoost to detect hockey players, Breitenstein et al. [2009]

combined object detectors (Implicit Shape Model detector (Leibe et al. [2008]) or HOG

detector (Dalal and Triggs [2005])) with a classi�er (Grabner and Bischof [2006]) to

detect and track multiple people. These techniques are designed for speci�c objects and

applications. Our work, however, focuses on general methods and a rectangle is used to

de�ne the target representation. The method is computationally convenient and general

enough to allow tracking of di�erent types of targets.

Once target location is speci�ed, its template is extracted and added to the appear-

ance pool. For each template, a histogram model is constructed - an Epanechnikov kernel

weighted colour histogram (Comaniciu et al. [2003]). This integrates a kernel into the

histogram construction process, assigning a smaller weight to pixels farther away from

the target centre location and so more likely to belong to the local background. Integrat-

ing the kernel is to reduce background information contaminating the target (histogram)

appearance model, i.e. they contribute less weight to the appearance model. Colour

is chosen here as a simple, but powerful and reliable feature widely used to model ap-

pearance when tracking objects against complex backgrounds. Templates are not robust

to rotations or pose changes. They can, however, be used to detect whether the target

changes its appearance with an assumption that the tracker locates the target correctly.

Figure 3.2 shows an example of building an appearance model and adding it into the ap-

pearance pool. Template-histogram pairs will be used to evaluate target state hypotheses

and �nd the most likely target location in each frame.

The colour histogram p = {p(u)}u=1..bc denotes the target model, where bc is the

number of colour histogram bins. A histogram of a candidate target qy = {q(u)y }u=1..bc

at location y is de�ned as
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Figure 3.2: Building an appearance model.

p(u)y = C

n∑
i=1

k


∥∥∥y − xi∥∥∥

h

 δ (b(xi)− u) (3.2)

where y is the target centre location, xi is the pixel location, n is the number of pixels

in the region, the function b(·) maps the pixel location to the corresponding histogram

bin, δ(·) is the Kronecker delta function as de�ned in Equation 3.3, h =
√
H2 +W 2 is

used to adapt the size of the region, H and W are the target size which are �xed in this

implementation, and the normalisation factor C = 1∑n
1 k
(
||y−xi||

h

) .
The Kronecker delta function is de�ned as

δ(a) =

 1 if a = 0,

0 otherwise.
(3.3)

The Epanechnikov kernel is given by

k(r) =

 1− r2 if r < 1,

0 otherwise.
(3.4)

where r is distance to the centre.

To compare the reference histogram qt at time t of the target with the candidate

histogram pt of the state vector Xt at time t, we use the Bhattacharyya distance
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dt =
√
1− ρ[qt, pt]. (3.5)

where ρ[qt, pt] =
∑bc

u=1

√
q(u) · p(u) is the Bhattacharyya coe�cient.

We assume Gaussian density with a constant σ for the likelihood function of the

measurement histogram as follows. This function assigns more weight to a candidate

target if its histogram is close to the reference histogram.

p(zt|xt) ∝ N (dt; 0, σ
2) =

1

σ
√
2π
exp

{
− d2t
2σ2

}
(3.6)

When comparing template and image data or pairs of templates, we use the Nor-

malised Correlation Coe�cient (NCC) (de�ned in Table 2.1 (Chapter 2)) to reduce the

e�ect of intensity and illumination changes, though any method in Table 2.1 could be

used.

The e�ectiveness of using multiple template-histogram pairs maintained in an ap-

pearance pool is examined in Section 3.2.4.

3.2.3 Sampling Appearance Models

The appearance models presented here are embedded into the MCMC method of Khan

et al. [2005]. MCMC methods de�ne a Markov Chain over the state space X . A candidate

particle X ′t, sampled from the current sample Xt using a proposal Q(X ′t;Xt), is accepted

if the acceptance ratio (in Equation 2.32 (Khan et al. [2005])) exceeds 1. MCMC inherits

the advantages of particle �ltering outlined in Chapter 2. Moreover, each particle can be

evaluated at any time; whenever it is accepted, its state is updated. This is in contrast

to CONDENSATION, in which all particles are evaluated together, only after all have

been generated. This characteristic is needed here. Beside the change of position, a new

state proposal comprises a candidate appearance model. If this new state is accepted, the

appearance model of the previous state is updated to this candidate appearance model

and the weight for this appearance model is increased in the next proposal step. Use of

MCMC allows the appearance model to be varied during search.

A maximum a posterior (MAP) has typically been used to �nd a particle most likely

the target over N samples at each time t . At each time step t, an appearance pool

containing templates Tt = {T j}j=1..k and equivalent histogram models Ht = {Hj}j=1..k

is given, where k is the current size of the pool.

Information from previous frames can be used to improve the accuracy of the predic-

tion and reduce the search space; the target's previous location has been used in many
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trackers. In our approach, two pieces of information are used when predicting target

location. First, the previous target location is used to decide the centre of the search

area. The search area S is double the target size to reduce computational cost intro-

duced by NCC, i.e. to only focus on the area immediately around the target. Second, the

con�dence score matrix Cj = NCC(T j , I) is calculated by using NCC to compare each

template T j from Tt to each location I(x, y), belonging to S, of image sequence I. It is

assumed that the movement displacement of the target between two consecutive frames

is not greater than twice of the target size. Also, a sliding window is used to build the

con�dence score matrix using templates, so that the size of the search area should be at

least equal to the size of the template used.

Tracking begins with the initialisation of an MCMC chain via the Metropolis Hastings

algorithm (Hastings [1970]). The starting position is the location where the maximum

con�dence score Cj(x, y) ≥ θd. If no location satis�es these conditions because no previ-

ously learnt templates produce a con�dence score which is greater than θd, the starting

position is determined using the �rst order auto regressive motion model (as de�ned in

Section 3.2.1). Note that the selected starting point is considered to be the predicted lo-

cation of the target. Though it may be a little arbitrary, the burn in period of the MCMC

algorithm will discard any bias introduced by the starting point. The initial appearance

model is the histogram associated with the template that best matches the last recorded

target location. The NCC is a measure of the similarity between the image and the

template and the score is between (−1; 1). We only consider the value between (0; 1).

Because the larger the value, the more similar the image and template are. Selecting

values for the threshold θd may a�ect the initial location because the initial position is

selected at a location having the highest con�dence score when comparing each template

with the image region in the search area using NCC. If the threshold is too high, the

correct initial position could be discarded. If the threshold is too low, it may not a�ect

the initial position if the highest con�dence score is still greater than this threshold but

a low threshold will a�ect the addition of a new template, as discussed in Section 3.2.4.

As the MCMC chain progresses, new states are proposed according to the proposal

density Q(X
′
t , Xt). The proposal comprises changes in position according to the motion

model (Section 3.2.1), and an appearance model (histogram) randomly selected from the

appearance pool. The proposal density is designed by

Q(X ′t;Xt) = P (X ′t|Xt) = P (x′t|xt)P (s′t|W ). (3.7)

where W = {W j}j=1..k contains a set of weights associating to each appearance model.
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P (x′t|xt) describes the motion model as in Equation 3.1, and P (s′t|W ) presents an ap-

pearance model randomly selected as described in Algorithm 8. In Algorithm ??, each

appearance model has its own weight. A random number is drawn in the range between

[0; 1] which is used to determine the index of the appearance model based on Cumulative

Distribution Function.

Each appearance model has an associated weight, which records the number of times it

was selected and accepted within the chain. Intuitively, the model that most improves the

state hypothesis, and so can be assumed to best describe the target, will have the highest

weight. Model selection takes this weight into account, better models are more likely to

be selected as the chain develops. Each generated particle records its hypothesised target

position, the weight associated with its appearance model, and the Bhatacharya distance

between that model and the local image data. At the end of the MCMC process, the

most highly weighted appearance model is identi�ed. The particle generated using the

model that has the best �t to the local image data provides the new estimate of target

location. The motion model is then reapplied and templates matched to the estimated

location to initialise processing into the next time frame. The process is summarised in

Algorithm 9.

Algorithm 8 Sampling one histogram model from the appearance pool algorithm.

Given the set of the total times that one histogram model is selected {Si}ki=1

1. Calculate each histogram model's weight in the appearance pool W i = Si∑k
i=1 S

i
.

2. Initialise Cumulative Distribution Function (CDF): c1 =W 1

3. For i = 2:k

- Construct CDF: ci = ci−1 +W i.

4. End For

5. Draw a random number u ∼ U [0, 1]

6. i = 1.

7. While u > ci

- i = i+ 1

8. End While

9. Return i (i.e. an index of one histogram model)
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3.2.4 Updating a Model

Updating an Existing Model

After locating the target in a given frame, a new template is constructed from the local

image data, compared to the current template and the NCC computed. If the correlation

score is greater than a (high) threshold θmax, the histogram model is updated; i.e. the

histogram associated with the current template is replaced by the histogram of the new

estimated target location. The e�ect is to update a generative model (the new histogram)

while anchoring it with a related, earlier template. Use of the template to select the initial

histogram in the MCMC chain allows the combined model to adapt without excessive

risk of drift. The approach is conservative in two ways: the histogram is only updated if

new data is a close match to the current best model, and the template remains �xed.

In this approach, templates learnt during tracking are �xed and only corresponding

histograms are updated. A high threshold is used to make sure that the histogram does

not change signi�cantly from the histogram �rst constructed by the template. A simple

linear update of the reference model (e.g. Nummiaro et al. [2003]; Collins et al. [2005])

could be used in this case. Adding a new model (histogram + template) is discussed in the

next section and captures other appearance changes, compensating for this conservative

approach.

Adding a New Model

When the new template di�ers from both the current selected model and the members

of the current appearance pool a new model is created and added to the pool, i.e. if

the score returned by NCC is between (θmin, θd). Using thresholds is necessary because

it is redundant to add a new appearance which is fairly similar to appearances already

learnt. E�ective tracking with a single histogram is possible when target appearance is

also (approximately) �xed. Adding more appearance models, however, allows the tracker

to respond to future changes in target appearance.

The θd and θmin are used to respectively set the upper bound and lower bound of

similar levels between a new template and templates maintained in the appearance pool.

The θd is used with two purposes: one, removing image noise. Second, if the con�dence

score returned by NCC when comparing the new template to (any) one template in the

pool is greater than θd, this new template should not be added into the pool. Similarly,

if all con�dence scores returned by NCC is less than θmin, this new template should not

be added into the pool as well.

In general, by using (θmin, θd), the tracker learns a new template if this new template
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is not too similar or too di�erent to previously learnt templates (i.e. appearances). The

longer di�erence between θmin and θd, the more templates are added. Section 3.3.2

discusses the technical aspects of (θmin, θd) selection.

Together, these mechanisms extend the third strategy, Template Update with Drift

Correction, of Matthews et al. [2004]. Existing models are kept unchanged, as they may

support e�ective tracking in later frames, and the overall appearance model is updated

implicitly by modifying its components. If a poor model is added, the tracker still has

a chance to recover by selecting other, more correct appearance models. The proposed

update method is di�erent from those mentioned in Section 2.3 of Chapter 2, which

contain and explicitly update a single appearance model.

As discussed in Chapter 2, researchers have tried to integrate a reference model or a

prior into the update process to alleviate the drift problem. These methods have been

shown to deal with drifting but are slow to adapt to appearance changes. Our approach

extends the use of one prior (e.g. semi online learning) to multiple priors by using multiple

templates to deal with variations of appearance and reduce drift. This approach is also

di�erent from the online learning approach (e.g. Online AdaBoost) because it does not

discard all information learnt so far. In online learning, when a new image (i.e. sample)

is provided, the appearance model is updated according to the new information and most

of the information already learnt is discarded.

It is worth to mention that this framework does not neither discard any information

learnt from the target appearance nor use any geometric transformations of templates

because this framework is trying to apply in general tracking purpose. Moreover, there

is no mechanism to predict which target information is invalid in the subsequent frames.

Therefore, the tracker needs more time to select an appropriate appearance model to

track the target at the current frame. However, storing more target information can help

the tracker relocate the target after drift or occlusion.

3.2.5 Handling Occlusion & Re-detecting the Target

Occlusion is detected when both the NCC of the current template and location estimate,

and the Bhattacharya distance between the current model histogram and the histogram

computed around the location estimate, fall below a threshold, θtc and θhc respectively.

When this occurs a sliding window technique, commonly applied in tracking by detection

and trackers with no prediction mechanism, is used, together with all pooled appearances,

to re-detect the target. The location with the best match is taken as the position of the

re-appeared target. Note that in our implementation, we have not distinguished occlusion
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from drifting. We used simple similarity functions (i.e. NCC and Bhattacharya distance)

in appearance model comparisons. With the limitations of these functions, thresholds

have been selected to decide whether the target is in occlusion or drifting. An advanced

occlusion detection, e.g. employing Semi Boosting (Grabner et al. [2008]), could be

embedded into this framework. In this case, one appearance model would contain a

template, a histogram model and a semi boosting model.

3.2.6 Algorithm

De�ne N as the number of particles of the MCMC chain, M as the thinning interval

before accepting one particle, B as a burn in period. The tracking process is then as

described in Algorithm 9.

Algorithm 9 Appearance model sampling algorithm (MCMC-SA).
1. Initialise the starting point as described in Section 3.2.3.

2. Initially assign an equal weight for each appearance model.

3. Repeat B +N ×M times

(a) Randomly select one model from the appearance pool for this target.

(b) Propose a new state Q(X ′t;Xt).

(c) Compute the acceptance ratio a (in Equation 2.32).

(d) If a ≥ 1, then accept Xt: Set the target in Xt to X ′t and update the cached
likelihood. Otherwise, accept with probability a. If rejected, leave Xt un-
changed.

(e) Update the weight for each appearance model as described in Section 3.2.3.

4. The set of particles is obtained by storing N best particles.

5. The current posterior P (Xt|Z1:t) is approximated by using MAP as described in
Section 3.2.3.

6. Check if the target is in occlusion as in Section 3.2.5.

7. Update the target model as in Section 3.2.4.
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3.3 Experiments and Results

3.3.1 Data

We used video sequences described in Table 3.1 for experimental evaluation. All were

synthesised by Wu et al. [2013], except the Ball and Cup sequences which were from

Klein et al. [2010] and the Bird2 sequence from Yang et al. [2014]. The ground truth

of the target in each video sequence has been manually annotated to capture the visible

part of the target by a rectangular bounding box. The test data can be grouped into

two categories: one well suited to tracking using histograms, the other better served by

templates. These videos show the target appearance and motion changing smoothly.

Unexpected movement can occur, but the target appearance does not change drastically.

When the target re-appears after occlusion, its appearance is not completely di�erent

from its previous appearance.

Sequence Challenge Frames Video frames

Ball
In-Plane rotation, scale

changed, partial occlusion
601

Doll
In-Plane rotation, pose

changes, partial occlusion,

fast motion

3872

David2
Illumination and pose

variation
427
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Table 3.1 � continued from previous page

Sequence Challenge Frames Video frames

Boy

Fast motion, in-plane

rotation, face expression

changed often

602

Animal Fast motion, clutter 71

Jogging
Pose variation, full

occlusion, deformation
307

Jumping
Fast motion, face

expression changed often,

Distractor

313

Girl
Scale changed, face

expression changed,

rotation

500
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Table 3.1 � continued from previous page

Sequence Challenge Frames Video frames

Bird2
Deformation, rotation,

occlusion
98

Cup Scale changed, clutter 629

Table 3.1: Testing video sequences and their challenges.

3.3.2 Experimental Settings

We compared our proposed method MCMC-SA with the following existing methods:

conventional MCMC (our implementation), Template-based tracking (TT, our imple-

mentation), Online AdaBoost (OAB) (Grabner and Bischof [2006]), Semi Boosting (SB)

(Grabner et al. [2008]), and IVT (Ross et al. [2008]). OAB, SB and IVT rely heavily on

rich appearance models to �nd the target and they update the target appearance during

tracking.

We used 300 particles, 3 for the thinning interval, 30 for a burn in period and an 8

bin histogram for each colour channel in MCMC-SA and MCMC. In our experiments,

these parameters allowed convergence within a reasonable time and produced repeatable

results.

In MCMC-SA, we set the parameters of motion model A to [1.0 1.0]T , standard devi-

ation of the process noise σu to
√
8.0 and σv to 2.0 because in most of our video sequences,

the target moves faster in the horizontal direction than in the vertical direction. The σ

of the likelihood function (Equation 3.6) is set to 0.4 which allows the function to return
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values between (0; 1). The threshold on to histogram updates θmax = 0.95; Thresholds

to detect the target θd = 0.4; Thresholds to detect occlusion θtc = 0.1 and θhc = 0.6;

Thresholds to add a new (template + histogram) model between (θmin, θd) = (0.17, 0.4).

Note that it is not necessary to have a threshold θd to detect the target, but if used,

the detected location is more reliable. Table 3.2 presents rules of thumb useful when

interpreting values of the Correlation Coe�cient (adopted from Taylor [1990]; Dancey

and Reidy [2011]; Rumsey [2011]).

We have tested θd with one template selected from the �rst frame of our test video

sequences to select a reasonable value θd (i.e. this is our Template-based tracking). As

mentioned before, more templates will be added if the value of θd is set too high since

they are sensitive to appearance changes.

Values selected for θmin are empirical. We manually extracted templates in successive

image frames, compared them using NCC and chose a suitable value among comparison

scores.

Note that we only did this with two sequences (randomly picking the Jogging and

Girl video sequence). These thresholds (θmin, θd) can vary across video sequences. In

our experiments, all values, however, are �xed for all testing video sequences. It would

be interesting if the tracker could vary the values of (θmin, θd) automatically.

Value Strength of Correlation

1 Perfect

0.7 - 0.9 Strong

0.4 - 0.6 Moderate

0.1 - 0.3 Weak

0 Zero

Table 3.2: The Correlation Coe�cient

In the Template tracking, we used Normalised Cross Correlation (NCC) to compare

a template with a region in each image frame as described in Section 2.2.1 of Chapter

2. The location whose highest con�dence is greater than θd = 0.4 is labelled as the new

target location.

The search areas of OAB and SB were set to twice the target size (i.e. samples

extracted from this range are not too far from the target) and of IVT were set 40 × 40

pixels (the maximum displacement of the centre of the target from one frame to the next).

In OAB and SB, we used 100 feature selectors. Each selector maintained 10 features.

In IVT, the standard deviation for the noise of the transition model for the bounding
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box scales along the horizontal and vertical dimensions is 0.005 and 0.005, respectively;

the forgetting factor is 0.99; a standard deviation of 0.25 for the observation likelihoods.

All values for parameters for compared trackers (e.g. SB, OAB, IVT) are selected as

reported by their authors.

3.3.3 Result

Tables 3.3 and 3.4 summarise the results obtained. The numbers in Table 3.3 give the

centre location error (in pixels) averaged over all frames of each sequence, i.e the average

distance of the predicted bounding box from the centre of the ground truth bounding

box. The lower a number is, the better the result. The numbers in Table 3.4 indicate

the percentage of successfully tracked frames (score>0.5), where the score is de�ned by

the overlap ratio between the predicted bounding box Bp and the ground truth bounding

box Bgt and calculated score =
area(Bp ∩Bgt)
area(Bp ∪Bgt)

(Everingham et al. [2010]). The higher

a number is, the better the result. Each sequence was run three times with each tracking

framework. The best result are marked in bold and the second best underlined. Note

that frames showing full occlusion are excluded from the comparison but frames following

occlusions are still counted.

Table 3.3 shows that MCMC-SA performs most accurately on 4 best of 10 sequences

and 5 second best of 10 sequences. Table 3.3 also shows that the combination of template

and histogram in one tracker outperforms comparable trackers using them independently.
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Sequence MCMC TT MCMC-SA OAB SB IVT

Rolling Ball
(Figure 3.3)

6.34 47.13 6.30 159.21 168.81 98.79

David2
(Figure 3.4)

5.74 137.39 3.55 4.78 15.47 67.39

Doll
(Figure 3.5)

9.78 16.48 9.75 151.76 141.28 122.95

Girl
(Figure 3.6)

36.79 13.04 12.64 3.49 35.55 609.99

Boy
(Figure 3.7)

105.43 11.93 4.19 2.63 235.01 210.88

Animal
(Figure 3.8)

272.67 55.45 14.22 361.61 48.50 8.67

Jogging
(Figure 3.9)

29.66 13.32 7.37 161.31 55.98 90.84

Cup
(Figure 3.10)

4.62 79.86 4.80 159.09 54.59 154.62

Bird2
(Figure 3.11)

22.54 91.37 31.65 7.59 174.02 164.07

Jumping
(Figure 3.12)

111.17 10.28 52.60 196.15 77.93 158.79

Table 3.3: The centre location error (in pixels) averaged over all frames of each sequence.
All data were presented in corresponding graphs listed below.
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Sequence MCMC TT MCMC-SA OAB SB IVT

Rolling Ball 0.81 0.49 0.83 0.16 0.17 0.11

David2 0.73 0.19 0.93 0.74 0.36 0.24

Doll 0.65 0.7 0.58 0.05 0.17 0.05

Girl 0.51 0.76 0.50 0.96 0.40 0.13

Boy 0.51 0.94 0.97 0.99 0.31 0.19

Animal 0.07 0.82 0.75 0.04 0.38 1.00

Jogging 0.67 0.9 0.98 0.25 0.71 0.25

Cup 1.00 0.41 0.96 0.13 0.59 0.08

Bird2 0.49 0.49 0.25 0.98 0.38 0.04

Jumping 0.06 0.93 0.06 0.05 0.07 0.08

Table 3.4: The overlap ratio between the predicted bounding box and the ground truth
bounding box for each testing video sequence.

The following Figures 3.3 - 3.12 show tracking errors for each tracker. Results of

some trackers were removed from the �gures because those trackers drifted o� the target

and that produced very high errors comparing to others. Appendix B shows in detail

tracking results of trackers at selected frames for each video sequence.
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Figure 3.3: Errors at each frame and accumulated errors over time of trackers for the Rolling Ball sequence. (Note: IVT, SB, OAB trackers were
removed because they drifted o� the target).
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Figure 3.4: Errors at each frame and accumulated errors over time of trackers for the David2 sequence.(Note: IVT, TT were removed because they
drifted o� the target).
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Figure 3.5: Errors at each frame and accumulated errors over time of trackers for the Doll sequence.(Note: OAB, SB, IVT were removed because
they drifted o� the target).
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Figure 3.6: Errors at each frame and accumulated errors over time of trackers for the Girl sequence. (Note: IVT was removed because they drifted
o� the target).
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Figure 3.7: Errors at each frame and accumulated errors over time of trackers for the Boy sequence.(Note: MCMC, IVT, SB were removed because
they drifted o� the target).
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Figure 3.8: Errors at each frame and accumulated errors over time of trackers for the Animal sequence.(Note: MCMC, OAB, SB were removed
because they drifted o� the target).
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Figure 3.9: Errors at each frame and accumulated errors over time of trackers for the Jogging sequence.(Note: OAB, IVT were removed because they
drifted o� the target).
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Figure 3.10: Errors at each frame and accumulated errors over time of trackers for the Cup sequence.(Note: IVT, OAB were removed because they
drifted o� the target).
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Figure 3.11: Errors at each frame and accumulated errors over time of trackers for the Bird2 sequence.(Note: SB, IVT were removed because they
drifted o� the target).
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Figure 3.12: Errors at each frame and accumulated errors over time of trackers for the Jumping sequence.(Note: IVT was removed because they
drifted o� the target).
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3.4 Discussion

3.4.1 Appearance change handling

OAB, IVT, SB and MCMC-SA were designed to handle appearance changes. SB uses a

prior to control updating the appearance model. OAB is an example of a self-learning

tracker. Haar features are generated from the target providing training data for OAB. It

selects and learn features which separate the target from the background. As a result, it

can quickly adapt to target changes if these changes stay inside the boundary specifying

the target. It tracks the target by searching for the highest (positive) con�dence score

in its search area. OAB worked well in the Boy (Figures B.6 and B.7), Girl (Figure

B.5) and Bird2 (Figure B.11) sequences. In the Bird2 sequence, though the boundary

de�ning the target contained more background information, OAB still located correctly

the target because it can ignore features belonging to its local background. In the Boy

sequence, despite the target moving unexpectedly, OAB could track the target because

all appearance changes are still inside the boundary specifying the target.

(a) #63 (b) #66 (c) #73

(d) #190

Figure 3.13: Tracking results in selected frames of the Rolling Ball sequence. MCMC-SA
((dashed)black), MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta).

OAB, however, did not perform well on other sequences. In the Ball sequence (Figure

B.1), for example, the ball's appearance constantly changes whilst it is rolling. OAB

tracked the target until Frame #190 (Figure 3.13) but could not detect the target beyond

that point. In the David2 sequence (Figure B.2), it located the target incorrectly (e.g.

Frames #154, #195 (Figure 3.13)) when the target looked down. In the Cup sequence
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(a) #36 (b) #154 (c) #195

(d) #334 (e) #340 (f) #402

Figure 3.14: Tracking results in selected frames of the David2 sequence. MCMC-SA
((dashed)black), MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta).

(Figure B.10), the background is complex; OAB therefore locked onto the background

object instead of the target and could not re-locate the target because it updated the

target's appearance model with image data not belonging to the target. In the Animal

sequence (Figure B.8), it could track the target until Frame #3 (Figure 3.15) and lost

the target at Frame #4 (Figure 3.15) . In the Doll sequence (Figure B.3), it wrongly

estimated the target location at Frame #212 (Figure 3.16) and tracked the poster in

successive image frames (e.g. Frame #338 (Figure 3.16)).

SB uses an online semi-supervised boosting method, training the classi�er with Haar

features and adopting search methods similar to OAB. The di�erence is that all samples

extracted from incoming frames are unlabelled; only the sample at the beginning of the

sequence is known to be a positive one. It showed that it can alleviate drift and can

re-detect the target if the target appearance is similar to what it learns at the beginning

of the sequence. For that reason, when the target changes its appearance, it fails. For

example, it could not detect the target in the Ball sequence at Frame #63 (Figure 3.13)

when the ball rotated. It could only re-detect the ball, e.g. in Frame #66 (Figure 3.13)

when its appearance returned to the one it had learnt.

IVT is very sensitive to pose changes and/or partial/full occlusion. Therefore, if it

has not learnt these changes, it drifts o� the target. It only performed well in the Animal

sequence (Figure B.8) because the deer head does not change pose while it is running.

In the other sequences, when the target started changing pose, it drifted o�. In the Ball
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(a) #3 (b) #4 (c) #7

(d) #9

Figure 3.15: Tracking results of the Animal sequence. MCMC-SA ((dashed)black),
MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta).

sequence (Figure B.1), it tracked the target until Frame #66 (Figure 3.13) when the ball

started moving.

MCMC-SA handles appearance changes by maintaining multiple template-histogram

pairs in an appearance pool. MCMC-SA could detect appearance changes and select

appropriate appearance models to track the target. So that it performed better than

MCMC did in the David2 (Figure B.2), Ball (Figure B.1), Boy (Figure B.6), Girl (Figure

B.5) and Doll sequence (Figures B.3 and B.4) whilst the target changed its appearance.

Figure 3.17 shows example templates extracted by MCMC-SA. Note that Figures 3.17j,

3.17k still contain the target. However, the tracker has not included any method to

handle the scale change, therefore when the target moves toward to the camera, i.e. its

size increases, the tracker could not capture the whole target.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 3.17: (Enlarged) Girl templates detected during tracking of MCMC-SA.

TT uses only one template, so that it is easy to lose the target when the target

changes its appearance and can re-detect the target where it �nds the highest con�dence

score returned by NCC. Such that in the Doll sequence (Figures B.3 and B.4), it tracked

the target until Frame # 390 (Figure 3.16) and lost the target at Frame #440 (Figure

3.16). It could re-detect the target at Frames #456, #874 (Figure 3.16).
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(a) #212 (b) #338 (c) #390

(d) #440 (e) #456 (f) #874

(g) #945 (h) #1420 (i) #1715

Figure 3.16: Tracking results in selected frames of the Doll sequence. MCMC-SA
((dashed)black), MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta).

MCMC uses a �xed kernel weighted colour histogram. It could track the target in the

Ball, Doll, David2 sequence because colour distributions (i.e. histograms) representing

the target do not change signi�cantly comparing to colour distributions of the target

stored in the �rst frame. It, however, lost the target when the target changed its ap-

pearance (e.g. Frames #84, #189 (Figure 3.18) of the Girl sequence, Frames #320,#339

(Figure 3.19) of the Boy sequence). MCMC, by chance, could re-track the target at

Frame #294 (Figure 3.18) of the Girl sequence.

3.4.2 Target location improvement

Although MCMC and TT could track the target in the David2, Doll, Boy and Ball

sequences, MCMC-SA could locate the target more accurately by using templates to

predict target locations, e.g. in Frames #36, #334, #340, #402 (Figure 3.14) of the

David2 sequence; Frames #945, #1420, #1961 (Figure 3.16) of the Doll sequence (Fig-
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(a) #84 (b) #189 (c) #294

Figure 3.18: Tracking results in selected frames of the Girl sequence. MCMC-SA
((dashed)black), MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta).

ures B.3 and B.4); Frames #128, #138, #203, #320, #403 (Figure 3.19) of the Boy

sequence (Figures B.6 and B.7). In the Animal sequence (Figure B.8), the target moved

in unexpected directions. It, however, did not change its pose much. With the help of

templates, MCMC-SA still tracked the target correctly, while MCMC failed to follow the

target (e.g. Frames #7, #9 (Figure 3.15)). Figure 3.20 shows templates extracted by

MCMC-SA during tracking.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.20: (Enlarged) Boy templates detected during tracking of MCMC-SA.

Templates can give an incorrect location estimation (e.g. Frame #2794 of the Doll

sequence (Figure B.4)), when the con�dence score of a background object is higher than

that of the target. MCMC-SA, however, could recover tracking (e.g. Frame #2804) after

loss.

In the Bird2 sequence (Figure B.11), the boundary de�ning the target contained

more background information. MCMC-SA cannot eliminate features belonging to the

local background so it treated them as describing the target region. The new template

extracted at the target location of Frame #58 (Figure 3.21), for instance, contains more

background information but it is still added into the appearance pool because the new

template still satis�ed the appearance learning conditions. This a�ected the performance

of MCMC-SA in subsequent image frames. Figure 3.22 shows templates detected by

MCMC-SA. One solution is to increase thresholds controlling addition of a new template

into the appearance pool. A better solution is to try to locate the target correctly.
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(a) #128 (b) #138 (c) #203

(d) #320 (e) #339 (f) #403

Figure 3.19: Tracking results in selected frames of the Boy sequence. MCMC-SA
((dashed)black), MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta).

(a) #58

Figure 3.21: Tracking results in selected frames of the Bird2 sequence. MCMC-SA
((dashed)black), MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta).

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o)

Figure 3.22: (Enlarged) Bird templates detected during tracking of MCMC-SA.
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3.4.3 Occlusion handling

The target is occluded by a pillar in the Jogging sequence at Frame #69 (Figure B.9).

OAB stopped tracking while IVT, MCMC, TT, SB and MCMC-SA tried to �nd the

target. IVT, however, could not. TT and SB track by searching for the highest con�dence

score, and so can implicitly handle occlusion while MCMC-SA has an explicit occlusion

detection step. It is obvious to use thresholds to decide whether the target is in occlusion

because appearance models are mainly based on generative models and simple similarity

functions are used. SB and MCMC-SA could re-track the target at Frame #79 (Figure

3.23) by using a sliding window technique. However, SB lost its target in several frames

(e.g. Frames #95, #113 (Figure 3.23)) because the target changed her pose. MCMC had

a chance to re-locate the target at Frame #162 (Figure 3.23) and continued to track the

target until the end of the sequence, because it did not update the target's appearance

model.

(a) #69 (b) #79 (c) #95

(d) #113 (e) #162

Figure 3.23: Tracking results in selected frames of the Jogging sequence. MCMC-SA
((dashed)black), MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta).

3.4.4 Motion variation handling

In the Animal sequence (Figure B.8), the target moved in unexpected directions. It,

however, did not change its pose much. MCMC still lost the target from Frame #9

(Figure 3.15) because its random walk motion model could not handle abrupt motions.
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On the other hand, templates in MCMC-SA improved the target location estimate. This

handled motion variations implicitly with assumptions that the target moves abruptly

in the tracker's search area and does not change its appearance signi�cantly. Similarly

in the Boy sequence, the target moved unexpected directions. MCMC-SA learnt target

appearance changes and maintained them in an appearance pool. Templates in the

appearance pool provided accurate target locations for MCMC-SA.

In the Jumping sequence (Figure B.12), most trackers (e.g. MCMC, MCMC-SA,

SB and OAB) were a�ected by abrupt target motions. They lost the target at Frame

#31 (Figure 3.24) when the target started to jump. MCMC-SA could not handle this

situation because templates provided incorrect target location estimates, i.e. the location

has highest con�dence score but it does not belong to the true target. TT uses a whole

image as its search area. It, therefore, could re-locate the target frequently, though it

mis-located the target several times (e.g. Frames #33, #42 (Figure 3.24)).

(a) #31 (b) #33 (c) #42

Figure 3.24: Tracking results in selected frames of the Jumping sequence. MCMC-SA
((dashed)black), MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta).

3.5 Summary

We have proposed an appearance-based approach which combines two popular generative

models, utilising their advantages and complementing each other to improve tracking per-

formance. The MCMC based tracker uses a pool of template-histogram pairs to provide

the best �t appearance model, switching among them using a sampling mechanism. Ap-

pearance changes are automatically detected and corresponding templates are extracted.

These templates are carefully checked for similarity to other templates maintained in

the pool before adding them to it. Our appearance model update approach allows the

tracker to adapt to target appearance changes and reduces the drift problem by main-

taining multiple templates. It does not discard all information learnt so far as the online
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learning approach does because this information is useful in future frames.

Experiments showed the MCMC-SA to have performance advantages over other track-

ers including those using one generative component. IVT is very sensitive to occlusion

and pose changes. It is likely to drift o� the target when the target changes its appear-

ance. OAB can work well if the target appearance changes are still inside the target

boundary. SB could not handle the target appearance changes well because it updates

the target appearance according to its prior provided in the �rst frame. MCMC-SA

can adapt to the target appearance better if changes and target movements are smooth.

Templates provide a good prediction for target locations and allow the tracker to be able

to re-locate the target when mis-locating the target occurs. Occlusion can happen dur-

ing tracking. By selecting an appropriate (template and histogram) appearance model,

the tracker can re-track the target. A mechanism is, however, needed to handle motion

variations and enhance the target location prediction to alleviate mis-locations caused

by con�dence scores returned by NCC. This issue is addressed in Chapter 4.
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Chapter 4

Tracking with

Multiple Linear Searches

4.1 Introduction

Tracking is an iterative process of model building and search. Emphasis has recently

been placed on appearance modelling, and in particular on adapting appearance models

to changes in target pose, scale, and illumination (as discussed in Section 2.3 of Chap-

ter 2). Adapting to these changes, however, exposes the tracker to model drift. Many

methods have been proposed to construct a rich appearance model with goals to capture

appearance variations, distinguish the target from background and alleviate the drift

problem. It is, however, computationally expensive and complex to verify the correct-

ness of the appearance model. One approach to the drift problem is to improve target

location through more e�ective search strategies which correctly capture the movement

of the target, reducing the search space and the e�ect of distractors. Search strategies

in predictive trackers rely on estimates of target motion.

The tracking algorithms presented in this chapter build upon the Markov Chain

Monte Carlo (MCMC) based particle �lter (Khan et al. [2005]). One drawback of con-

ventional MCMC tracking is its reliance on a random walk. If the variance of the process

noise associated with the random walk does not cover the movement of the target, track-

ing is likely to fail. If, however, the variance of the noise is too great the search space

increases needlessly, increasing the number of particles needed for e�ective search (and

so processing time).

More importantly, large process noise values increase the risk of the tracker being

trapped by distractors. The algorithm can report a local, rather than the global, maxi-
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mum when the prior distribution is peaked. A mechanism is needed which allows particles

to explore all the areas where the target might be, while not being so widely spread that

the tracker might lock onto distractors. Ideally, particles should only be generated close

to the true target. Unfortunately, determination of the areas on which search should be

focussed requires the entire space to be searched. Questions addressed here are

• How to estimate target movements using current evidence (i.e. image data in the

current frame)?

• How can the search for the target be reduced via target motion models whilst still

providing an accurate estimation of target location?

• How can motion models adapt quickly to best �t the current target motion, which

may exhibit sudden changes in direction and velocity?

Variations in target motion can be captured by single or multiple motion models learnt

from past tracking results (as described in Section 2.4 of Chapter 2). Models learnt from

past results, however, may not provide accurate estimates of current movement. Multiple

motion models can provide increased numbers of predictions, but can also reduce tracking

performance if these predictions are inconsistent. Moreover, these motion models require

parameters to be tuned and may only be suitable for speci�c types of motions.

The approach presented in this chapter combines bottom-up and top-down techniques

to search for the target. The top-down component uses motion models to generate

hypotheses (particles). The bottom-up component extracts local motion estimates which

inform the motion models, supporting top-down search. Local features of the target are

identi�ed, and matched between adjacent frames. These features are stored in a feature

pool. While individual feature matches may be incorrect, the distribution of likely motion

directions supplied by feature matching provides valuable information that can be used to

guide the search. Each feature match constitutes a hypothesis as the direction of motion

of the target. The distribution of motion directions provides an implicit representation

of complex target movements which are di�cult to model explicitly. In the proposed

tracking algorithms, the search space is modelled as multiple potential directions and

one-dimensional searches are performed in those directions to �nd the target, reducing

and carefully targeting the search.

The remainder of the chapter is organised as follows: Two novel tracking algorithms

based on our approach, one using a single �xed motion direction, which is the motion

direction of the centroid of target features detected named as FMCMC-C, and one sam-

pling motion directions, which are sampled from the motion distributions constructed
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by motion directions of target features named as FMCMC-S, are presented in Section

4.2. Experiments are evaluated in Section 4.3 and followed by discussions in Section 4.4.

Finally, conclusions are drawn in Section 4.5.

4.2 Proposed Tracking Algorithm

Figure 4.1 shows the main steps in the proposed method, FMCMC. In this approach, a

feature pool maintains features detected and matched between two consecutive frames. It

is assumed that the target appearance is approximately �xed. It may change slightly due

to illumination, pose and scale changes and rotation but will not become signi�cantly

di�erent from the appearance model stored at the beginning of the tracking process.

Adapting the target appearance model as well could improve tracking performance fur-

ther. This issue is addressed in Chapter 5.

Given the location of the target in the �rst frame, the tracker extracts local features

inside the target boundary. At the current frame, local features of the previous frame

are tracked to produce local features at the current frame. These two sets of features

are maintained in a feature pool. During the MCMC-based tracking process, matching

between previous and current features constructs feature based motion estimates. The

target is sought along directions sampled directly from these feature based motion esti-

mates. After the target location is estimated, features are re-detected and the feature

pool updated. These processes continue until the end of the video sequence.
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Figure 4.1: Overview of the FMCMC framework.

4.2.1 Appearance Model

In the current implementation, targets are selected by manual annotation of the �rst

frame in the image sequence. The (Epanechnikov) kernel weighted colour histogram

(as described in Section 3.2.2 of Chapter 3) is used in all experiments reported in this

chapter. The target maintains a �xed histogram model during tracking. To compare the

reference histogram q of the target with the candidate histogram pt of the state vector

Xt at time t, we use the Bhattacharyya distance (Equation 3.5). A Gaussian density

function (Equation 3.6) is used for the likelihood function of the measurement histogram.

4.2.2 Motion Model

A random walk motion model (as used in the Chapter 3) assumes that the target's

velocity is a white noise sequence and is thus temporally completely non-correlated. It

describes the target's dynamics best when the target performs radical accelerations in

random directions. When the target, however, moves in a certain direction, random walk

performs poorly and motion is better described by the nearly constant velocity model.

This assumes that velocity is temporally strongly correlated and changes in velocity only

arise due to the (white) noise of the acceleration.

To cover a range of di�erent motions, a common solution is to choose either a random

walk or a nearly constant velocity model and increase the process noise to account for
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the unmodelled dynamic. An obvious drawback of this approach is that poorly modelled

dynamics can signi�cantly reduce the tracker's performance. Another drawback, in the

absence of additional solutions, is that an increase in process noise requires an increase

in the number of particles which can, in turn, slow down the tracking.

The methods discussed above can be considered to take a top down approach. Image

data, however, can provide bottom-up cues to target movement.

(a) Frame #1 (b) #2

Figure 4.2: Two consecutive frames of the Football sequence.

Optical �ow can be used in motion detection and estimation. Figure 4.3 shows esti-

mated movements of each pixel from Frame #1 to Frame #2 as reported by two popular

approaches: Horn and Schunck [1981] and Farnebäck [2003]. These approaches consider

all pixels in a region; many of which may not describe target movements correctly. These

approaches, however, raise an interesting question: how can inappropriate pixel move-

ments be eliminated while keeping the useful movements constructed by reliable pixels?

To that end, local features have been selected in our approach.

Instead of using local features to represent the object (e.g. Zhou et al. [2009] used

SIFT features, He et al. [2009] used SURF features, Kim [2008] used corner features),

our approach utilise them to model the target movement because local features are not

detected enough to cover the whole object. Besides that, it is hard to decide the object

boundary based on positions of (few) local features. Feature matching, however, provides

clues where the target might go. Figure 4.4 shows di�erent types of features detected on

the Frame #1 of the Football sequence.

In this section, a new approach is proposed which models target movement implicitly

but can handle target motion variations correctly. In the current implementation, after
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(a) Horn and Schunck [1981] (b) Farnebäck [2003]

Figure 4.3: Optical �ow at Frame #2 of Football sequence.

manually selecting a target in the �rst frame in the image sequence, target features are

extracted by applying the method of Shi and Tomasi [1994] within the target's bounding

box. Shi and Tomasi proposed an a�ne model which proved adequate for region matching

and provides the repeatable interest points needed to support robust tracking (Serby et al.

[2004]).

Features are de�ned as f i = (xi, yi, dxi, dyi) where f i is the ith feature, (xi, yi) is

the location of the feature, and (dxi, dyi) gives its displacement relative to horizontal

and vertical axes. The target maintains a feature pool Ft = {F pt−1, F ct } at each time

t which contains features detected in the previous tracked frame F pt−1 = {f it−1}i=1..m

and features matched F ct = {f it}i=1..m in the current frame, where m is the number of

features considered.

Each feature point extracted from the target in each frame is matched with features

identi�ed in the subsequent frame using a pyramidal implementation of the Kanade −
Lucas − Tomasi tracker (Bouguet [2000]) forming a set of vectors Vt = {vit}i=1..m linking

matched features. This approach was selected for its ability to handle large movements.

Each match hypothesises the movement of one feature from one frame to the next. The

directions are calculated as di = atan2(dy/dx) to specify the angle of the movement
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(a) FAST (Rosten and Drummond [2006]) (b) (Harris and Stephens [1988]) corners

(c) SURF (Bay et al. [2006]) (d) Good features (Shi and Tomasi [1994])

Figure 4.4: Features detected at Frame #1 of Football sequence.

vector of one feature. The direction is de�ned as

arctan 2(dy, dx) =



arctan
(
dy
dx

)
if dx > 0,

arctan
(
dy
dx

)
+ π if dy ≥ 0, dx < 0,

arctan
(
dy
dx

)
− π if dy ≤ 0, dx < 0,

+π
2 if dy > 0, dx = 0,

−π
2 if dy < 0, dx = 0,

undefined if dy = 0, dx = 0

(4.1)
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All the features whose motion is estimated are assumed to arise from the target and

provide hypotheses as to the direction of motion of the target. Note that we assume only

that features associated with the target will move in broadly the same direction. Figure

4.5 shows motion directions of features detected.

(a) Animal (b) Table tennis

(c) Tennis sequence (d) Football sequence

Figure 4.5: Local motion estimates obtained via feature matching. The arrows show the
movement of features detected in two consecutive frames.

We use Gaussian kernel density to estimate the motion direction distribution based

on the available local feature matches:

g(x ) =
1

m

m∑
i=1

1

h i
K

(
x− xi
hi

)
(4.2)

K (X) =
1

σ
√
2π
exp

{
−X

2

2

}
(4.3)

where h is the bandwidth of the Kernel Density Estimation (KDE), and m is the number

of motion directions considered, each of which is measured in radians.

Algorithm 10 shows steps in constructing motion direction distribution. Figure 4.6
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illustrates the construction of the motion direction distribution from a CCTV image

sequence. h = 0.1 means that the di�erence between two consecutive motion direction

is around 5.7 in degree. The idea is that only directions having a similar angle will be

clustered into one group. Also, the more directions of features in one group, the more

chance the target might go into these directions.

Algorithm 10 Building a motion direction distribution.

Given the feature sets detected in the previous frame F pt−1 = {f it−1}i=1..m

1. Match features F pt−1 in the current frame using KLT to �nd F ct = {f ct }i=1..m

2. Calculate vectors Vt = {vit}i=1..m

3. Set angle = π (i.e. angle ∈ (−π;π])

4. While angle ≥ −π

• KDE[angle] = g(angle) (i.e. using Equation 4.2, and the bandwidth h = 0.1)

• angle = angle− 0.1

5. End While

6. Normalise KDE.

Rather than searching the image in two dimensions, the proposed approach divides

the search space into multiple linear segments corresponding to directions in which the

target might move. In what follows we discuss two speci�c algorithms, both using the

distribution of motion directions obtained from feature matching to support tracking.

In each method, search in a given direction starts from the best state of the previously

selected (and searched) direction. We adopt y = slope× x+ intercept to specify search

lines. The detecting and matching feature process is repeated after the target location is

estimated and a new image sequence arrives. This implicitly updates the target motion

model.

4.2.3 Algorithm

Denote the most likely state at time t of the target by Xt = {xt, dt} where xt = (u, v) is

the target location and dt is the selected motion direction at time t. De�neX ′t as the most

likely state at time t of the target within a selected linear segment. Note that while our

experiments focus on single target tracking performance, both the method and current

implementation, being MCMC-based, support multiple (independent) target tracking.
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(a) Matched features
(b) Histogram

(c) KDE

Figure 4.6: Kernel Density Estimation of the motion direction distribution at Frame #14
of the PETS2009 sequence.

Xt is the most likely state at time t of the target, X ′t = {x′t, d′t} and X ′′t = {x′′t , d′′t }
are the most likely state at time t of the target within a selected linear segment.

The proposal densities Q1(X
′
t;Xt), Q2(X

′′
t ;X

′
t) are de�ned by

Q1(X
′
t;Xt) = P (X ′t|Xt) = P (x′t|xt)P (d′t|KDE). (4.4)

P (x′t|xt) ∼ x′t = A · xt +N(0, σ). (4.5)

Q2(X
′′
t ;X

′
t) = P (X ′′t |X ′t) = P (x′′t |x′t, d′t). (4.6)
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P (x′′t |x′t, d′′t ) ∼

u′′t = u′t +N(0, σu)

v′′t = tg(d′t) · u′′t + b.
(4.7)

b = v′t − u′t · s. (4.8)

s = tan(d′t). (4.9)

where P (x′t|xt) describes the changes of the location, A is an identity matrix and a

Gaussian noise with zero mean N(0, σ). The proposal density Q1(X
′
t;Xt) considers the

changes in location x′t and the direction d′t.

KDE contains a motion direction distribution constructed by feature based motions,

P (d′t|KDE) represents a randomly selected motion direction as described in Algorithm

11. In Algorithm 11, each direction has its own weight. A random number is drawn in

the range between [0; 1] which is used to determine the index of the direction based on

Cumulative Distribution Function.

s (Equation 4.9) and b (Equation 4.8) are the slope and intercept respectively of the

line.

In summary, given a state Xt, sample one direction from the KDE and one position

X ′t belonging to that direction using Q1. Within the sampled direction, search for the

best state X ′′t .

De�ne M as the thinning interval before accepting one particle, B as a burn in

period, Nl is the number of particles used to search one line, L is the total number of

lines considered.

Fixed Motion Direction (FMCMC-C)

Algorithms employing a motion direction distribution can exploit that information in a

variety of ways, depending upon the assumptions they make about the target. This al-

gorithm assumes rigid motion through a potentially noisy image sequence, i.e. that most

of the feature points will move in a similar direction. The method therefore maintains

only one direction.

The local motion estimates are clustered on motion direction and the largest group

selected. The convex hulls of the two feature point sets concerned (in the current and

previous image) are obtained, and their centre points computed. The displacement of

the centre point provides a single direction df summarising the motion of the feature

group. The target is sought along multiple, parallel lines with this direction as Figure
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Algorithm 11 Sampling one motion direction model from motion distribution algorithm.
Given the target's feature pool containing two set of features Ft = {F pt−1, F ct }

1. Compute motion direction distribution as in Algorithm 10.

2. Initialise Cumulative Distribution Function (CDF): c1 = KDE1.

3. For i = 2:m

(a) Construct CDF: ci = ci−1 +KDEi.

4. End For

5. Draw a random number u ∼ U [0, 1].

6. i = 1.

7. While u > KDEi

- i = i+ 1

8. End While

9. Return i (i.e. an index of one motion direction in the angle (−π;π])

4.7. The motion direction in Figure 4.7 is the vector between two centroids.

Note that in case of a �xed motion direction, the direction drawn from P (d′t|KDE)

(Equation 4.4) is d′t = df . Details of this search method are given in Algorithm 12.

Figure 4.7: A �xed motion direction. Lines are parallel.
Red dots are the best states of lines. Yellow dots are states generated.
The green dot is the most likely target state. All motion directions
sampled from KDE are similar.
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Algorithm 12 Linear search with a �xed motion direction.
1. Detect and match features and compute the motion direction distribution as de-

scribed in Section 4.2.2 and Section 4.2.3.

2. Initialise the start state Xt for the target to its current location.

3. Repeat L times

(a) Propose a new location x′t according to Q1(X
′
t;Xt).

(b) Calculate the intercept b for the line using the slope s and new x′t

(c) Repeat B +M ·Nl times

i. Generate x′′t of X
′′
t from x′t according to the s and b using Q2(X

′′
t ;X

′
t).

ii. Compute the acceptance ratio a =
P (X′′t |Zt)Q2(X′t;X

′′
t )

P (X′t|Zt)Q2(X′′t ;X
′
t)
≈ P (Zt|X′′t )

P (Zt|X′t)

iii. If a ≥ 1, then accept X ′′t : Set the target in X ′t to X
′′
t and update the

cached likelihood. Otherwise, accept with probability a. If rejected, leave
X ′t unchanged.

(d) If the state X ′t is better than Xt then move Xt to X ′t.

4. The set of particles is obtained by storing Nl best particles at each direction.

5. The current posterior P (Xt|Z1:t) is approximated using MAP.

6. Re-detect features for each target.

Sampling Motion Directions (FMCMC-S)

Non-rigid objects, and those undergoing complex 3D motion, often exhibit features which

move in di�erent directions. Here the cluster selection approach becomes problematic,

as there may be many similar and small clusters and it is unclear how one should be

selected. In this algorithm, we allow the tracker to explore a wider range of possible

motion directions by sampling directly from the motion direction distribution as shown

in Figure 4.8. This sampling approach gives higher weight to directions with higher

probability re�ecting target motion. Details of this search method are given in Algorithm

13.
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Figure 4.8: Sampling motion directions from KDE.

Red dots are the best states of lines. Yellow dots are states generated.
The green dot is the most likely target state. Motion directions are
sampled from KDE. The Dark dot is the best state of one motion
direction but that state is not accepted.

4.3 Experiments and Results

4.3.1 Data

We used 11 video sequences (described in Table 4.1) for experimental evaluation: Data11,

Data12, Bouncing1, Bouncing2, Table Tennis, Tennis match, Football are from own our

collection; Emilio face from Maggio and Cavallaro [2005a]; Hand from AVSS2007; Ani-

mal from Kwon and Lee [2010]; PETS 2009 from http://www.cvg.rdg.ac.uk/PETS2009.

Note that Bouncing1, Bouncing2, Table Tennis, Tennis Match and Football sequence are

public videos that we selected because of their �t to our research experiments.

The arti�cial Data11 and Data12 video sequences show several objects moving about

a scene with a noise �lled background. Moving objects are each governed by the �rst order

auto-regressive Xt = Xt−1+N (0, σ) with larger direction and velocity changes which can

be manipulated manually. The background contains several static objects with di�erent

sizes and shapes. The colour of the moving and static objects are randomly generated.

The size of those objects remains constant throughout each sequence. Some objects come

into close proximity, some introduce partial occlusion.

The test data forms three groups: synthesised (Data11, Data12, Bouncing1 and

Bouncing2), indoor (Table Tennis, Emilio, Hand and Girl) and outdoor environments

(Tennis Match, Animal, Football and PETS2009). Tracked targets in these videos do

not change their appearance signi�cantly compared to their appearance in the �rst frame.

All these image sequences are challenging. The targets' motions are complex, i.e. they
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Algorithm 13 Linear search with motion direction sampling.
1. Detect and match features and compute the motion direction distribution as de-

scribed in Section 4.2.2

2. Compute Motion Direction Distribution (Algorithm 10).

3. Initialise the start state Xt for the target to its current location.

4. Repeat L times

(a) Randomly select one direction from KDE of this target using Algorithm 11

(b) Calculate the slope s of the selected direction.

(c) Propose a new state Q(X ′t;Xt).

(d) Calculate the intercept b for the line using the slope s and new X ′t.

(e) Repeat B +M ·Nl times

i. Generate X ′′t from X ′t according to the s and b.

ii. Compute the acceptance ratio a =
P (X′′t |Zt)Q2(X′t;X

′′
t )

P (X′t|Zt)Q2(X′′t ;X
′
t)
≈ P (Zt|X′′t )

P (Zt|X′t)

iii. If a ≥ 1, then accept X ′′t : Set the target in X ′t to X
′′
t and update the

cached likelihood. Otherwise, accept with probability a. If rejected, leave
X ′t unchanged.

(f) If the state X ′t is better than Xt then move Xt to X ′t.

5. The set of particles is obtained by storing Nl best particles at each direction.

6. The current posterior P (Xt|Z1:t) is approximated by using MAP.

7. Re-detect features for each target.

can move either smoothly or variably in unexpected directions. Also, the backgrounds

contain objects of similiar appearance which come close to and partially occlude the

target.

The ground truth of the target in each video sequence has been manually annotated

to capture the visible part of the target by a rectangular bounding box.

Sequence Challenge Frames Video frames
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Sequence Challenge Frames Video frames

Data11
Smooth movement,

clutter
101

Data12
Smooth movement,

clutter, occlusion
101

Bouncing1
Fast & unexpected

movement, deformation
654

Table Tennis Unexpected movement 138

Animal Fast motion, clutter 71
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Sequence Challenge Frames Video frames

Football Fast motion, clutter 124

PETS2009 Smooth motion, clutter 221

Emilio
Fast & unexpected

motion, scale changed,

occlusion

280

Tennis Match
Unexpected movement,

deformation
1650

Bouncing2
Fast & unexpected

motion, rotation
90
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Sequence Challenge Frames Video frames

Girl
Scale changed, face

expression changed,

rotation

500

Table 4.1: Testing video sequences and their challenges.

4.3.2 Experimental Settings

We compared our proposed methods FMCMC-C and FMCMC-S with the following exist-

ing methods: conventional MCMC (our implementation), Semi Boosting (SB) (Grabner

et al. [2008]), FragTrack (Frag) (Adam et al. [2006]), and IVT (Ross et al. [2008]). SB,

FragTrack and IVT rely heavily on rich appearance models to �nd the target. We se-

lected these to investigate the extent to which our proposed motion model, applied to

only a basic appearance model, can provide high-performance tracking.

We used 300 particles, 3 for the thinning interval, 30 for a burn in period and an 8

bin histogram for each colour channel in FMCMC-C, FMCMC-S, and MCMC. In our

experiments, these particles in FMCMC-C, FMCMC-S, and MCMC allowed them to

converge and produced result consistently via multiple running times.

In MCMC, FMCMC-C and FMCMC-S, the σ of the likelihood function (Equation

3.6) is set to 0.4, parameters of motion model A to [1.0 1.0]T , standard deviation of a

process noise is σu to
√
8.0 and σv to

√
4.0 since the target moves in horizontal direction

more than in the vertical direction. All values are �xed for all testing video sequences.

The search areas of SB were set to twice the target size (i.e. samples extracted from

this range are not too far from the target) and of IVT and FragTrack were set 40x40

pixels (the maximum displacement of the centre of the target from one frame to the

next). In SB, we used 100 feature selectors. Each selector maintained 10 features.

In IVT, the standard deviation for the noise of the transition model for the bounding

box scales along the horizontal and vertical dimensions is 0.005 and 0.005, respectively;

the forgetting factor is 0.99; a standard deviation of 0.25 for the observation likelihoods.
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All values for parameters for compared trackers (e.g. SB, FragTrack, IVT) are selected

as reported by their authors.

4.3.3 Result

Tables 4.2 and 4.3 summarise the results obtained. The numbers in Table 4.2 give the

centre location error (in pixels) averaged over all frames of each sequence, i.e the average

distance of the predicted bounding box from the centre of the ground truth bounding

box. The lower a number is, the better the result. The numbers in Table 4.3 indicate the

percentage of successfully tracked frames (score>0.5), where the score is de�ned by the

overlap ratio between the predicted bounding box Bp and the ground truth bounding box

Bgt and calculated as score =
area(Bp ∩Bgt)
area(Bp ∪Bgt)

(Everingham et al. [2010]). The higher a

number is, the better the result. Each sequence was run three times with each tracking

framework. The best result is marked in bold and the second best underlined.

Table 4.2 shows that FMCMC-S performed more accurately on 8 of the 11 sequences

and 2 second best, including the two most challenging outdoor examples. FMCMC-C

worked best on 4 of the 11 sequences and 3 second best. On arti�cial data, or sequences

containing rigid objects, there was little di�erence between FMCMC-C and FMCMC-

S: most features moved to the same direction and so individual and cluster sampling

produce the same directions. When tracking non-rigid objects and in the presence of

distractors, however, FMCMC-S performed very well, its sampling strategy increasing

the likelihood that it would investigate the target's true direction of motion. FMCMC-C

used a local average direction, which approximates but might not correspond to the true

motion direction.
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Sequence FMCMC-C FMCMC-S MCMC SB Frag IVT

Data11
(Figure 4.9)

2.00 2.00 2.04 317.78 1.91 315.45

Data12
(Figure 4.10)

2.67 2.67 2.90 4.61 3.87 7.93

Bouncing1
(Figure 4.11)

3.84 3.84 8.78 28.61 4.30 5.49

Bouncing2
(Figure 4.12)

1.94 1.93 34.80 216.21 56.56 161.86

Tennis Match
(Figure 4.13)

7.16 7.14 7.28 141.65 11.83 101.99

Emilio
(Figure 4.14)

8.34 7.79 8.99 226.87 206.40 68.46

Animal
(Figure 4.15)

10.65 10.63 272.67 48.50 62.13 8.67

Table Tennis
(Figure 4.16)

3.32 3.33 3.59 153.26 13.36 251.10

Football
(Figure 4.17)

59.22 8.55 76.24 60.78 31.32 114.11

PETS2009
(Figure 4.18)

269.91 4.39 308.52 180.41 7.44 5.85

Girl
(Figure 4.19)

65.99 66.10 36.79 35.54 6.84 609.99

Table 4.2: The centre location error (in pixels) averaged over all frames of each sequence.
All data were presented in corresponding graphs listed below.

Sequence FMCMC-C FMCMC-S MCMC SB Frag IVT

Data11 1.00 1.00 1.00 0.02 1.00 0.04

Data12 1.00 1.00 1.00 0.92 0.93 0.84

Bouncing1 1.00 1.00 0.94 0.86 0.96 0.99

Bouncing2 1.00 1.00 0.76 0.21 0.46 0.01

Tennis Match 0.96 0.96 0.95 0.23 0.55 0.01

Emilio 0.77 0.81 0.76 0.08 0.11 0.27

Animal 0.92 0.90 0.07 0.38 0.39 1.00

Table Tennis 1.00 1.00 1.00 0.06 0.74 0.14

Football 0.31 0.67 0.18 0.06 0.41 0.07

PETS2009 0.24 0.97 0.21 0.19 0.99 0.92

Girl 0.15 0.15 0.51 0.40 0.75 0.13

Table 4.3: The overlap ratio between the predicted bounding box and the ground truth
bounding box for each testing video sequence.
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The following Figures 4.9 - 4.19 show tracking errors for each tracker. Results of some

trackers were removed from the �gures for a better view because those results had very

high errors comparing to others. Tracking results are shown in more details in Appendix

C.
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Figure 4.9: Errors at each frame and accumulated errors over time of trackers for the Data11 sequence.(Note: IVT, SB were removed because they
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Figure 4.10: Errors at each frame and accumulated errors over time of trackers for the Data12 sequence.
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Figure 4.12: Errors at each frame and accumulated errors over time of trackers for the Bouncing2 sequence.(Note: IVT, SB were removed because
they drifted o� the target).
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Figure 4.13: Errors at each frame and accumulated errors over time of trackers for the Tennis Match sequence.(Note: IVT, SB were removed because
they drifted o� the target).
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Figure 4.14: Errors at each frame and accumulated errors over time of trackers for the Emilio sequence.(Note: IVT, SB, FragTrack were removed
because they drifted o� the target).
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Figure 4.15: Errors at each frame and accumulated errors over time of trackers for the Animal sequence.(Note: MCMC, SB, FragTrack were removed
because they drifted o� the target).
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Figure 4.16: Errors at each frame and accumulated errors over time of trackers for the Table Tennis sequence.(Note: IVT, SB were removed because
they drifted o� the target).
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Figure 4.17: Errors at each frame and accumulated errors over time of trackers for the Football sequence.(Note: MCMC, SB, IVT were removed
because they drifted o� the target).
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Figure 4.18: Errors at each frame and accumulated errors over time of trackers for the PETS09 sequence.(Note: MCMC, FMCMC-C, SB were
removed because they drifted o� the target).
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Figure 4.19: Errors at each frame and accumulated errors over time of trackers for the Girl sequence.(Note: IVT was removed because they drifted
o� the target).
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4.4 Discussion

4.4.1 Smooth Motion Handling

SB, IVT, and FragTrack rely on the appearance model to �nd the target in their search

area. Though the target in the Data11 sequence (Figure C.1) is rigid and has a smooth

movement and the displacement between two consecutive frames are still inside their

search area, SB and IVT failed to track the target in Data11 sequence in the �rst few

frames. They started to track the occluded object at Frame #4 (Figure 4.20)

(a) #4

Figure 4.20: Tracking results a selected frame of the Data11 sequence. MCMC(blue),
FMCMC-C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).

MCMC used a random walk motion model, FMCMC-C and FMCMC-S with a pro-

posed motion model also worked well in the Data11, Data12 sequences. The accuracy

of FMCMC-C and FMCMC-S are similar because local motions of features detected are

moving in similar directions, though they are more slightly correct than MCMC at several

frames as shown in Figure 4.9(a) and Figure 4.10(a).

In the Data12 sequence (Figure C.2), when the target occluded a similar appearance

object at Frame #92, some outlier motion directions were introduced (Figure 4.21(a)).

FMCMC-C and FMCMC-S still tracked the target well because FMCMC-C discarded

these outliers by only considering dominant motion directions. While motion directions

with high weight had more chance to be selected in FMCMC-S. With motion directions

correctly selected, FMCMC-C and FMCMC-S could avoid the distractor at Frame #96

(Figure 4.21(b)).

In Tennis Match sequence (Figure C.6), the target does not change its appearance

signi�cantly but move smoothly, i.e. it does not quick change its direction or velocity.

IVT, however, lost the target at Frame #38 and could not recover the tracking. SB lost

the target at Frames #99, #193, #973 (Figure 4.22) when the target changed its pose

and re-tracked at Frames #105, #237 (Figure 4.22) when the target returned to the

appearance similar to what SB learnt. Therefore, SB and IVT rely on appearance model
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(a) Frame #92 (b) #96

Figure 4.21: Local motion directions at selected frames of the Data12 sequence.

to track the target regardless on its motion.

(a) #38 (b) #99 (c) #105

(d) #193 (e) #237 (f) #973

Figure 4.22: Tracking results in selected frames of the Tennis match sequence.
MCMC(blue), FMCMC-C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan),
SB(magenta).

4.4.2 Unexpected Motion Handling

In Bouncing1 (Figure C.3 and C.4), Bouncing2 (Figure C.5), Emilio (Figure C.7 and

C.8) and Animal sequence (Figure C.9), most trackers (e.g. MCMC, FragTrack, SB)

su�ered when the target moved in unexpected directions and acceleration variations,

i.e. the target can change directions and velocities at any time. With the use of feature

based motion modelling, FMCMC-C and FMCMC-S, however, predicted target locations

correctly.
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In the Bouncing1 sequence (Figures C.3, C.4), only FMCMC-C and FMCMC-S cap-

tured the target at Frame #611 (Figure 4.23) or Frame #643 when the ball jumps up.

The remaining trackers could not use a search area large enough to cover the whole target

without risking being trapped in local extrema. The two stage (local feature matching

- direction selection) approach of the FMCMC algorithms allows a large search space

to be used for local motion estimation, safe in the knowledge that the search will be

constrained by the linear searches that follow selection. Note that the ball changes shape

(deform) during this part of the sequence.

(a) Frame #611

Figure 4.23: Local motion directions at a selected frame of the Bouncing1 sequence.

In the Bouncing2 sequence (Figure C.5), MCMC and FragTrack lost the target at

Frame #3 (Figure 4.24) when the ball quickly moved up and they tracked the target by

chance at Frame #24 (Figure 4.24).

(a) #3 (b) #24

Figure 4.24: Tracking results in selected frames of the Bouncing2 sequence.
MCMC(blue), FMCMC-C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan),
SB(magenta).

Recently, Kwon and Lee (Kwon and Lee [2008]) proposed the Wang-Landau Monte

Carlo sampling method to handle abrupt target motion. The image is divided into mul-
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tiple subregions, and Density of State (DoS) used to control jumps from one subregion

to another. DoS allows the tracker to spend more time in subregions with a higher likeli-

hood of containing the target. The search used here is, in comparison, less �exible. While

the use of carefully selected linear search areas allows our method to track e�ectively, it

would be interesting to incorporate the Wang-Landau method into our algorithms. We

anticipate that this would lead to further performance gains.

4.4.3 Distractor Handling

In Data12 sequence (Figure C.2), SB, IVT, and FragTrack worked well until Frame #95

(Figure 4.25) because they locked on distractors whose appearance are most similar to

their target.

(a) #96

Figure 4.25: Tracking results in a selected frame of the Data12 sequence. MCMC(blue),
FMCMC-C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).

MCMC used a kernel based colour histogram to model the appearance of the target.

Colour histograms record colour distribution but lose spatial information. Trackers using

this representation can easily be distracted by other objects with the same colour distri-

bution. This was demonstrated in the PETS2009 (Figure C.13) and Football sequences

(Figure C.11). In the Football sequence, the football, socks and shorts of the player

have similar appearance. SB and MCMC locked onto the player's ankle. FMCMC-C

estimated the football's motion direction wrongly because it took the average direction,

which also indicated the player's ankle (Figure 4.26a).

Figure 4.26 explains why FMCMC-S performs well on the Football sequence. Figure

4.26a shows the initial local motion estimates. Figure 4.26b shows the KDE resulting from

these local motions. During motion direction sampling, most of the selections (around

90% from Accumulated Probability) will be angles in the range (-1.9;-1.5) radians. These

point downwards, towards the ground beneath the ball, rather than towards the player's

ankle.

FragTrack tracked the target better, but became trapped on the player's socks and
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shorts in frames #55, #72, #86, #93 (Figure 4.27) and mis-located the target in

Frames#52, #72 - #76 (Figure 4.27) when the ball changed direction.

(a) Features detected

(b) KDE (c) Accumulated Prob.

Figure 4.26: KDE at Frame #22 of the Football sequence. Angles are calculated in
radian.



4.4. Discussion 107

(a) #52 (b) #55 (c) #72

(d) #76 (e) #86 (f) #93

Figure 4.27: Tracking results in selected frames of the Football sequence(Part
2). MCMC(blue), FMCMC-C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan),
SB(magenta).
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(a) #70 (b) #80 (c) #186

Figure 4.28: Tracking results in selected frames of the PETS09 sequence. MCMC(blue),
FMCMC-C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).

In PETS2009 (as shown in Figure C.13), FMCMC-C was distracted by the person in

the crowd since it estimated the movement of the target incorrectly as shown in Figure

C.13j. FragTrack could track the target correctly since it represented the target by

multiple patches which contain spatial information. In frames #70 to #186 (Figure 4.28),

however, the target slightly changed its size that made FragTrack estimated incorrectly

the target. FMCMC-S could track the target more precisely at Frame #56 because it

performed a restricted search in the true direction of motion of its target (Figure 4.29).

Figure 4.29: Local motions at Frame #56 of the PETS2009 sequence.

4.4.4 Occlusion Handling

IVT is very sensitive to partial occlusion, e.g. in the PETS2009 sequence (Figure C.13),

and could not handle the pose changes in the Tennis sequence well (Figure C.6). It

lost the target and could not recover it. As the targets in these video sequence display

variable motion they are hard to recover once lost. Moreover, IVT blindly updates the

target appearance model, therefore, the appearance model is invalid when it mis-locates
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the target and wrongly updates the appearance model.

FMCMC-C and FMCMC-S rely on features detecting and matching to generate the

target motion model to support target estimation. The motion model is updated im-

plicitly by re-detecting and matching features. Therefore, if the target is occluded, most

of the features detected do not belong to the true target. In consequence, the tracking

performance decreases.

4.4.5 Appearance Change Handling

FMCMC-C and FMCMC-S assume that during tracking, the target appearance does

not become signi�cantly di�erent from the one learnt at the beginning of the sequence.

Adaptive appearance model should be considered. This is demonstrated in the Girl

sequence (Figure C.14). FMCMC-C and FMCMC-C lost the target since Frame #90

(Figure 4.30). They could not relocate the target because their motion models were

updated by features not belonging to the true target. MCMC, however, had a chance to

re-track the target at Frame #303 (Figure 4.30) because it used a random walk motion

model and the target was not too far away where the tracker drifted o� the target.

FragTrack represents the target appearance more �exible by dividing the target into

multiple parts voting for the target location. Multiple part approach can help FragTrack

locate though it does not update the target appearance. FragTrack, however, can fail

to track the target if the target appearance changes signi�cantly and are not inside its

search area.

SB could not handle well when the target deformed because SB used an online semi-

supervised boosting method. It could work well in the Data12 (Figure C.2), Bouncing1

sequence (Figure C.3) where the target does not change appearance much compared to

the appearance at the �rst frame. It also could work at several frames of other sequences

when the target appearance returned to the appearance that it has learnt before such as

in Frames #173, #189 (Figure 4.30) of the Girl sequence (Figure C.14).

4.5 Summary

We have proposed an approach which relies upon the distribution of motion directions

of local image features to locate a target during visual tracking. These local motion

directions are extracted directly from two consecutive frames and provide information

used to guide an MCMC-based search for rigid and deformable objects. Two algorithms,

FMCMC-C and FMCMC-S, have been proposed. FMCMC-C only considers the group
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(a) #90 (b) #173 (c) #189

(d) #303

Figure 4.30: Tracking results in selected frames of the Girl sequence. MCMC(blue),
FMCMC-C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).

containing the largest number of features going in similar directions. The search direction

is estimated from the average direction of this group. FMCMC-S has the potential to

search any and all possible directions making up the motion direction distribution.

Experiments showed the FMCMC-S algorithm to have performance advantages over

other trackers relying on rich appearance models. There is little di�erence in accuracy

when FMCMC-S and FMCMC-C tracked rigid objects on arti�cial and recorded video se-

quences. When tracking non-rigid targets, FMCMC-S outperformed FMCMC-C because

it allowed the tracker to investigate more motion directions and increase the chance that

some of which are close to the target's true motion direction. Moreover, the FMCMC-S

algorithm can handle target motion variations without using any more prior knowledge of

movement than FMCMC-C. In constrast, SB and FragTrack do not have motion models

and blindly search the target by detecting a location with highest con�dence score. So,

they do not handle motion variations explicitly.

In the presence of distractors, other objects whose appearances are similar to the

target, MCMC and SB easily get distracted. In FMCMC-S, the search is guided by

following directions which have the high probability as the target movement and help

the tracker be able to avoid distractors. In some cases, FMCMC-C wrongly estimates
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the target motion via an average direction.

If the target appearance changes, a �xed kernel weighted histogram FMCMC-C and

FMCMC-S might not be able to follow the target. When occlusion occurs, features

detected are not belong to the true target and this makes FMCMC-C and FMCMC-S

could not recover to the true target because they rely on feature based motions. These

issues are addressed in Chapter 5.
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Chapter 5

An Uni�ed Tracking Algorithm

5.1 Introduction

In Chapter 3, the MCMC-based tracking algorithm (MCMC-SA) contains an appear-

ance pool which maintains multiple examples of the target's appearance. The appear-

ance model is updated by modifying the existing histogram models and adding new

template-histogram pairs to the appearance pool. Experiments have shown that it can

handle appearance changes well if the target moves smoothly. When the target move-

ment is complex, however, the algorithm locates the target incorrectly. Another issue is

con�dence scores returned by NCC can result in mis-locating the target.

On the other hand, the FMCMC tracker proposed in Chapter 4 has a motion esti-

mation component which supports multiple linear searches, replacing the random walk

search strategy in MCMC. The motion model is updated implicitly by redetecting target

features and maintaining a feature pool. Experiments have demonstrated this tracker

handles target motion variations well without using any prior knowledge of movement.

It, however, assumes the target appearance does not change signi�cantly from the ap-

pearance learnt at the beginning of tracking.

In this chapter, a new uni�ed tracking method is proposed which combines the adap-

tive appearance and motion models developed in previous chapters to utilise the ad-

vantages of each: adapting to target appearance changes and capturing target motion to

enhance target prediction, which in turn supports appearance model update and learning.

During MCMC-based tracking, at each search iteration, a motion direction is sampled

directly from the motion direction distribution. The proposal density proposes a new

state along the selected direction. The proposal comprises changes in position and an

(histogram) appearance model index which is randomly selected from the appearance
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pool. The new target location is estimated by identifying particles which have the high-

est weight and use the most commonly accepted histogram.

During drifting or occlusion, the tracker stops updating the motion models (i.e. up-

dating target features) and re-initialises the tracking process by selecting an appropriate

appearance model from the appearance pool.

The rest of this chapter is organised as follows. In Section 5.2, we describe the

proposed method. Experimental results are presented in Section 5.3 and discussed in

Section 5.4. Finally, conclusions are drawn in Section 5.5.

5.2 Proposed Tracking Algorithm

Figure 5.1 shows the main steps in the proposed method, Feature based Markov Chain

Monte Carlo using multiple models (FMCMC-MM). This approach maintains one ap-

pearance pool which contains appearance variations learnt during tracking and one fea-

ture pool to support target motion estimation.

Given the target boundary in the �rst frame, the tracker extracts a target template

and constructs a corresponding histogram. This template-histogram pair is entered into

the appearance pool. Local target features are extracted and stored in the feature pool.

During tracking, features in the previous frame are tracked to identify features in the

current frame, linking sets of previous and current features to build a motion direction

distribution. At each search iteration, a motion direction is sampled directly from the

motion direction distribution. An appearance is also sampled from the appearance pool

to support the search for the target

After the new target location is estimated, a new template and its corresponding

histogram are extracted. A learning appearance step is invoked to decide whether this

new template should be added into the appearance model (pool). A feature update

process is executed to update the model of the target's motion.

5.2.1 Appearance Model

As in Chapter 3, targets are selected by manual annotation of the �rst frame in the

image sequence. Once the target location is speci�ed, its template is extracted and

added to the appearance pool. For each template, an Epanechnikov kernel weighted

colour histogram (Comaniciu et al. [2003]) is constructed. To compare the reference

histogram pt of the target with the candidate histogram qt of the state vector Xt at time

t, we use the Bhattacharyya distance. A Gaussian density function (Equation 3.6) is used



5.2. Proposed Tracking Algorithm 115

Figure 5.1: Overview of the proposed approach.

for the likelihood function of the measurement histogram. When comparing template and

image data or pairs of templates, we use the Normalised Correlation Coe�cient (NCC).

5.2.2 Motion Model

Each feature extracted from the target is represented as presented in Section 4.2.2 of

Chapter 4. Features are matched using a pyramidal implementation of the Kanade -

Lucas � Tomasi tracker (Bouguet [2000]), forming a set of vectors Vt = {vit}i=1..m at time

t. Gaussian kernel density is applied to estimate the motion direction distribution. The

motion direction sampling approach from Section 4.2.3 of Chapter 4 is selected because

it is more general and �exible than the framework using one �xed motion direction.

It allows the algorithm to search in any and all possible directions without an explicit

direction selection step.
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5.2.3 Sampling Appearance & Motion Models

The motion and appearance models presented here are embedded into the MCMCmethod

of Khan et al. [2005]. At each time t, an appearance pool containing templates Tt =

{T j}j=0..k, equivalent generative modelsGt = {Gj}j=0..k and feature pool Ft = {F pt−1, F ct }
are given, where k is the current size of the pool.

In this approach, three pieces of information are used when predicting target lo-

cation. First, the previous target location is used to decide the centre of the search

area. The search area S is double the target size. Second, the con�dence score matrix

Cj = NCC(T j , I) is calculated by using NCC to compare each template T j from Tt to

each location I(x, y) of image sequence I belonging to S. Third, features matched from

the previous image are used to improve the initial location of an MCMC chain. De�ne

mf =
∑m

i=1(f
i ⊂ P ) as the number of features in the current frame belonging to an

image patch P de�ned by the target's bounding box.

Tracking begins with the initialisation of an MCMC chain. The starting position is

determined where the con�dence score at that location Cj(x, y) ≥ θd and contains the

maximum number ofmf . Simply taking the location with the maximum con�dence score

can cause mis-locations as demonstrated in experiments of Chapter 3. Integrating target

features enhances the predicted position, using the threshold θd reduces the e�ect of image

noise. If no location satis�es these conditions because no available templates produce a

con�dence score which is greater than θd, the starting position is determined using the

previous target location. The initial appearance model is the histogram associated with

the template that best matches the last recorded target location.

As the MCMC chain progresses, new statesX
′
t are proposed according to the proposal

density Q1(X
′
t , Xt). The proposal from Q1 comprises changes in position according to

the motion model, from which a motion direction is randomly selected (Section 5.2.2).

The target is sought along the selected direction. New states X
′′
t are proposed using

the proposal density Q2(X
′′
t , X

′
t). The proposal from Q2 comprises changes in position

according the motion direction selected and an appearance model (histogram) randomly

selected from the appearance pool. Each appearance model has an associated weight,

which records the number of times it was selected and accepted within the chain.

At the end of the MCMC process, the most highly weighted appearance model is

identi�ed. The particle generated using the model that has the best �t to the local

image data provides the new estimate of target location. The motion direction sampling

is then reapplied and templates matched to the estimated location to initialise processing

into the next time frame. The tracking process is described in Algorithm 14.
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5.2.4 Updating Appearance Model

Updating an existing model and adding a new model have been discussed in Section 3.2.4

of Chapter 3.

5.2.5 Handling Occlusion & Re-detecting the Target

Occlusion detection has been mentioned in Section 3.2.5 of Chapter 3. The occlusion

detection step is necessary because the target motion relies on feature detection. Suc-

cessful occlusion detection prevents features lying on the occluding object over-ruling

those belonging to the true target.

5.2.6 Updating Motion Model

The target motion model depends on feature detection and matching. Features help the

tracker handle motion variation and abrupt motion naturally by allowing the tracker de-

velop a good sense of where the target might be. The features used should be updated as

tracking progresses, as some will become invisible and others appear over time. Features

are only updated if there is no occlusion.

A bounding box does not always provide a good �t to the target boundary, and

some detected features may be outliers, i.e. belong to the local background. The motion

direction sampling method can overcome this problem, assuming that most of the features

considered lie within the true target boundary.

5.2.7 Algorithm

Given a target state Xt = {xt, dt, st} where xt = (ut, vt) is the target location, dt is

the direction considered, st ∈ (1..k) is the selected appearance model at time t, k is the

number of appearance models in the appearance pool. Xt is the most likely state at time

t of the target, X ′t = {x′t, d′t, s′t} and X ′′t = {x′′t , d′′t , s′′t } are the most likely state at time t
of the target within a selected linear segment. The tracking process is then as described

in Algorithm 14.

The proposal densities Q1(X
′
t;Xt), Q2(X

′′
t ;X

′
t) are designed by

Q1(X
′
t;Xt) = P (X ′t|Xt) = P (x′t|xt)P (d′t|KDE). (5.1)

P (x′t|xt) ∼ x′t = A · xt +N(0, σ). (5.2)
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Q2(X
′′
t ;X

′
t) = P (X ′′t |X ′t) = P (x′′t |x′t, d′t)P (s′′t |W ). (5.3)

P (x′′t |x′t, d′′t ) ∼

u′′t = u′t +N(0, σu)

v′′t = tan(d′t) · u′′t + b.
(5.4)

b = v′t − u′t · s. (5.5)

s = tan(d′t). (5.6)

where P (x′t|xt) describes the changes of the location, A are constants (i.e an identity

matrix) and a Gaussian noise with zero mean N(0, σ). The proposal density Q1(X
′
t;Xt)

considers the changes in location x′t and the direction d′t. The s
′
t of X

′
t are similar as st

of Xt.

KDE contains a motion direction distribution constructed by feature based motions,

P (d′t|KDE) presents a motion direction randomly selected as described in Algorithm 11.

P (s′′t |W ) describes an appearance model randomly selected as described in Algorithm

8, s (Equation 5.6) and b (Equation 5.5) are the slop (i.e. gradient) and intercept

respectively of the selected line, W is a set of each histogram model's weight in the

appearance pool.

In summary, given a state Xt, sample one direction from the KDE and one position

X ′t belonging to that direction using Q1. Within the sampled direction, search for the

best state X ′′t . During the search, one appearance model of the target state is sampled

to be evaluated with the current image data at the sampled position.

De�ne B as the burn in period, M as the thinning interval before accepting one

particle, Nl as the number of particles used to search one line, L as the total number

of lines considered, T = {T i}ki=0 as a pool of templates and G = {Gi}ki=0 as a list of

corresponding histogram models.
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Algorithm 14 Multiple appearance models and motion direction sampling (FMCMC-
MM).

1. Detect and match features and compute the motion direction distribution KDE
as described in Section 5.2.2

2. Initialise the start state Xt for the target using features detected and templates in
the pool as described in Section 5.2.3.

3. Initialise equal weight for each histogram model.

4. Repeat (l = 1..L) times

(a) Propose a new location x′t according to Q1(X
′
t;Xt).

(b) Randomly select one direction from the KDE of the target.

(c) Calculate the slope s of the selected direction.

(d) Calculate the intercept b for the line using the slope s and new X ′t.

(e) Repeat B +M ×Nl times

i. Generate x′′t of X
′′
t from x′t according to the s and b using Q2(X

′′
t ;X

′
t).

ii. Propose a candidate appearance model for X ′′t according to the appear-
ance weight.

iii. Compute the acceptance ratio a =
P (X′′t |Zt)Q2(X′t;X

′′
t )

P (X′t|Zt)Q2(X′′t ;X
′
t)
≈ P (Zt|X′′t )

P (Zt|X′t)

iv. If a ≥ 1, then accept X ′′t : Set the target in X
′
t to X

′′
t , increase the weight

for the selected histogram and update the cached likelihood. Otherwise,
accept with probability a. If rejected, leave X ′t unchanged.

(f) If the state X ′t is better than Xt then move Xt to X ′t (i.e. P (Zt|X ′t) ≥
P (Zt|Xt)). Otherwise, keep Xt unchanged.

5. The set of particles is obtained by storing Nl best particles at each direction.

6. The current posterior P (Xt|Z1:t) is approximated by using MAP.

7. Check if the target is in occlusion as in Section 5.2.5.

8. Update the target model as in Section 5.2.4.

9. Re-detect features for the target (i.e. update motion model).
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5.3 Experiments and Results

5.3.1 Data

We used the test video sequences described in Tables 3.1, 4.1 and a new set of video se-

quences summarised in Table 5.1 for experimental evaluation, all synthesised by Wu et al.

[2013] from recent literature, except the Hand sequence which was from (AVSS2007). The

idea is to compare the performance of all proposed tracking methods developed in Chap-

ter 3 and Chapter 4. Ground truth data was generated by manually annotating the

sequence, capturing the visible part of the target with a rectangular bounding box.

Sequence Challenge Frames Video frames

Tiger1

Fast motion, target

rotates, occlusion,

appearance deformed

354

Freeman1
Scale changed, Face

expression changed,

rotation

326

Hand
Fast motion, Deformation,

Clutter, Scale changed
334

Table 5.1: Testing video sequences and their challenges.
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5.3.2 Experimental Settings

We compared our new proposed method FMCMC-MM to MCMC-SA developed in Chap-

ter 3, FMCMC-C and FMCMC-S implemented in Chapter 4 and other existing methods:

conventional MCMC (our implementation), Template matching (TT) (our implementa-

tion), Online AdaBoost (OAB) (Grabner and Bischof [2006]), Semi Boosting (SB) (Grab-

ner et al. [2008]), FragTrack (Frag) (Adam et al. [2006]), IVT (Ross et al. [2008]) and

Visual Tracking Decomposition (VTD) (Kwon and Lee [2010]).

OAB, SB, FragTrack and IVT rely heavily on rich appearance models to �nd the

target. VTD contains multiple basic observation model (4 in their implementation),

representing speci�c appearances of the target and constructed by sparse principle com-

ponent analysis (SPCA), and multiple basic motion models (2 in their implementations),

covering di�erent motion types, to form multiple trackers. Each tracker contains one ba-

sic observation model and one basic motion model. This tracker was selected because it

used sampling methods to generate appearance and motion models to construct trackers.

Although their approach is di�erent from ours, their sampling strategy is similar.

All settings for FMCMC-MM, MCMC-SA, FMCMC-C, FMCMC-S, MCMC, TT were

as in previous chapters. We used 300 particles, 3 for the thinning interval, 30 for a burn

in period and an 8 bin histogram for each colour channel in MCMC-SA and MCMC.

In FMCMC-MM and MCMC-SA, we set the parameters of motion model A to

[1.0 1.0]T , standard deviation of a process noise σu to
√
8.0 and σv to 2.0. The σ of

the likelihood function (Equation 3.6) is set to 0.4 which allows the function to return

values between (0; 1). Thresholds to allow update of a histogram θmax = 0.95; Thresh-

olds to detect the target θd = 0.4; Thresholds to detect occlusion θtc = 0.1 and θhc = 0.6;

Thresholds to add a new (template + histogram) model between (θmin, θd) = (0.17, 0.4).

In Template tracking (TT), the threshold is set 0.4 and the search area is the whole

image.

The search areas of OAB and SB were set to twice the target size (i.e. samples

extracted from this range are not too far from the target) and of FragTrack and IVT

were set 40x40 pixels (the maximum displacement of the centre of the target from one

frame to the next). In OAB and SB, we used 100 feature selectors. Each selector

maintained 10 features.

In IVT, the standard deviation for the noise of the transition model for the bounding

box scales along the horizontal and vertical dimensions is 0.005 and 0.005, respectively;

the forgetting factor is 0.99; a standard deviation of 0.25 for the observation likelihoods.

Parameter values for SB, OAB, IVT, FragTrack and VTD are as reported by their
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authors.

5.3.3 Result

Tables 5.2 and 5.3 summarise the results obtained. The numbers in Table 5.2 give the

centre location error (in pixels) averaged over all frames of each sequences, i.e the average

distance of the predicted bounding box to the centre of the ground truth bounding box.

The numbers in Table 5.3 indicate the percentage of successfully tracked frames (score

>0.5), where the score is de�ned by the overlap ratio between the predicted bounding box

Bp and the ground truth bounding box Bgt and is calculated as score =
area(Bp ∩Bgt)
area(Bp ∪Bgt)

(Everingham et al. [2010]).

Each sequence was run three times with each tracking method. The best result is

marked in bold and the second best underlined. Note that, (X) in the cell of Table 5.2

and Table 5.3 means that this tracking method could not be applied to this video because

runtime errors occurred in the original implementation.

Table 5.2 shows that FMCMC-MM performed more accurately on 10 of the 22 se-

quences and was second best 4 times. MCMC-SA was second best on 3 of the 22 se-

quences. FMCMC-C performed more accurately on 2 of the 22 sequences and was second

best on 6. FMCMC-S performed more accurately on 2 of the 22 sequences and was second

best on 9.

Table 5.3 shows that FMCMC-MM overlapped the true target to a greater degee on

11 of the 22 sequences and was second best on 9. MCMC-SA overlapped the true target

precisely on 4 of the 22 sequences and was second best on 2 sequences. FMCMC-C

overlapped the true target precisely on 7 of the 22 sequences and scored on one second

best. FMCMC-S overlapped the true target more precisely on 6 of the 22 sequences and

was second best on 4.

Overall, FMCMC-MM outperformed in most of testing video sequences. Tracking

results are listed in Appendix D. The following Figures 5.2 - 5.23 show tracking errors

in each video sequence for each tracker. Results of some trackers were removed from the

�gures for a better view because those results had very high errors comparing to others.
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Sequence FMCMC-MM FMCMC-C FMCMC-S MCMC SB Frag IVT VTD OAB MCMC-SA TT

Data11

(Figure 5.2)
2.71 2.00 2.00 2.04 317.79 1.91 315.45 2.47 319.59 2.66 13.01

Data12

(Figure 5.3)
3.17 2.67 2.67 2.90 4.61 3.87 7.93 2.07 5.40 5.08 7.54

Bouncing1

(Figure 5.4)
3.00 3.84 3.84 8.78 28.61 4.30 5.49 11.87 28.07 7.12 3.00

Table Tennis

(Figure 5.5)
3.46 3.32 3.33 3.59 153.26 13.36 251.10 380.51 642.12 3.54 46.75

Emilio

(Figure 5.6)
6.67 8.34 7.79 8.99 226.87 206.40 68.46 20.30 235.37 8.46 22.29

Tennis Match

(Figure 5.7)
7.14 7.16 7.14 7.28 141.65 11.83 101.99 (X) 13.59 9.36 11.01

Animal

(Figure 5.8)
11.12 10.65 10.63 272.66 48.50 62.13 8.67 208.14 361.61 14.22 55.45

Football

(Figure 5.9)
5.73 59.22 8.55 76.24 60.78 31.32 114.11 34.92 60.56 6.48 98.30

PETS2009

(Figure 5.10)
5.81 269.91 4.39 308.52 180.41 7.44 5.85 3.23 258.89 6.32 146.03

Bouncing2

(Figure 5.11)
2.32 1.94 1.93 34.80 216.21 56.56 161.86 153.59 152.34 2.38 43.93

Rolling Ball

(Figure 5.12)
5.66 6.33 6.40 6.34 168.81 8.84 98.79 33.24 159.21 6.30 47.13

Doll

(Figure 5.13)
6.39 8.51 11.17 9.78 141.28 10.22 122.95 (X) 151.76 9.75 16.48

David2

(Figure 5.14)
2.11 4.25 5.48 5.74 15.47 55.07 67.39 3.60 4.78 3.55 137.39
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Table 5.2 � continued from previous page

Sequence FMCMC-MM FMCMC-C FMCMC-S MCMC SB Frag IVT VTD OAB MCMC-SA TT

Boy

(Figure 5.15)
2.67 4.31 7.90 105.43 235.01 39.19 210.88 2.68 2.63 4.19 11.93

Jogging

(Figure 5.16)
5.08 160.51 160.51 29.66 55.98 15.55 90.84 92.40 161.31 7.37 13.32

Jumping

(Figure 5.17)
8.89 53.18 15.28 111.17 77.93 6.38 158.79 71.83 196.15 52.60 10.28

Girl

(Figure 5.18)
6.76 65.99 66.10 36.79 35.54 6.84 609.99 7.28 3.49 12.64 13.04

Bird2

(Figure 5.19)
15.78 22.02 22.14 22.54 174.02 29.03 164.07 111.83 7.59 31.65 91.37

Cup

(Figure 5.20)
5.18 4.61 4.63 4.62 54.59 8.73 154.62 5.36 159.09 4.80 79.86

Hand

(Figure 5.21)
6.27 56.65 13.11 54.03 127.28 94.08 95.10 86.86 124.87 47.28 47.73

Tiger1

(Figure 5.22)
23.43 24.35 23.77 24.52 122.26 63.17 280.84 109.22 63.25 29.71 41.18

Freeman1

(Figure 5.23)
14.01 16.99 17.63 93.15 93.31 10.07 854.54 10.64 149.42 11.72 75.65

Table 5.2: The centre location error (in pixels) averaged over all frames of each sequence. All data were presented in corresponding graphs listed
below.
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Sequence FMCMC-MM FMCMC-C FMCMC-S MCMC SB Frag IVT VTD OAB MCMC-SA TT

Data11 0.99 1.00 1.00 1.00 0.02 1.00 0.04 1.00 0.02 1.00 0.93

Data12 0.98 1.00 1.00 1.00 0.92 0.93 0.84 1.00 0.92 0.70 0.89

Bouncing1 1.00 1.00 1.00 0.94 0.86 0.96 0.99 0.93 0.88 0.98 1.00

Table Tennis 0.99 1.00 1.00 1.00 0.06 0.74 0.14 0.06 0.06 0.98 0.91

Emilio 0.87 0.77 0.81 0.76 0.08 0.11 0.27 0.65 0.08 0.79 0.68

Tennis Match 0.96 0.96 0.96 0.95 0.23 0.55 0.01 (X) 0.57 0.64 0.87

Animal 1.00 0.92 0.90 0.07 0.38 0.39 1.00 0.06 0.04 0.75 0.82

Football 0.94 0.31 0.67 0.18 0.06 0.41 0.07 0.45 0.14 0.87 0.20

PETS2009 0.97 0.24 0.97 0.21 0.19 0.99 0.92 0.99 0.22 0.97 0.39

Bouncing2 1.00 1.00 1.00 0.76 0.21 0.46 0.01 0.01 0.01 1.00 0.67

Rolling Ball 0.83 0.80 0.80 0.81 0.17 0.72 0.11 0.50 0.16 0.83 0.49

Doll 0.71 0.65 0.65 0.65 0.17 0.68 0.05 (X) 0.05 0.58 0.7

David2 1.00 0.80 0.74 0.73 0.36 0.33 0.24 0.87 0.74 0.93 0.19

Boy 0.99 0.94 0.90 0.51 0.31 0.51 0.19 0.98 0.99 0.97 0.94

Jogging 0.96 0.25 0.25 0.67 0.71 0.75 0.25 0.25 0.25 0.98 0.90

Jumping 0.61 0.06 0.18 0.06 0.07 0.80 0.08 0.11 0.05 0.06 0.93

Girl 0.78 0.15 0.15 0.51 0.40 0.75 0.13 0.64 0.96 0.50 0.76

Bird2 0.72 0.51 0.5 0.49 0.38 0.32 0.04 0.13 0.98 0.25 0.49

Cup 0.98 1.00 0.99 1.00 0.59 0.84 0.08 0.96 0.13 0.96 0.41

Hand 0.92 0.41 0.80 0.53 0.04 0.14 0.01 0.09 0.12 0.27 0.51

Tiger1 0.53 0.46 0.48 0.48 0.41 0.34 0.01 0.18 0.47 0.36 0.74

Freeman1 0.2 0.11 0.1 0.08 0.16 0.2 0.01 0.22 0.15 0.07 0.19

Table 5.3: The overlap ratio between the predicted bounding box and the ground truth bounding box for each testing video sequence.
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Figure 5.2: Errors at each frame and accumulated errors over time of trackers for the Data11 sequence.(Note: SB, IVT, OAB, TT were removed
because they drifted o� the target).

Frames
0 20 40 60 80 100 120

E
rr

o
rs

0

10

20

30

40

50

60
Errors at each frame of the Data12 sequence

FMCMC-MM

FMCMC-C

FMCMC-S

MCMC

SB

Frag

IVT

VTD

OAB

MCMC-SA

TT

(a)

Frames
0 20 40 60 80 100 120

A
c
c
u

m
u

la
te

d
 E

rr
o

rs

0

100

200

300

400

500

600

700

800

900
Accumulated errors over time of the Data12 sequence

FMCMC-MM

FMCMC-C

FMCMC-S

MCMC

SB

Frag

IVT

VTD

OAB

MCMC-SA

TT

(b)

Figure 5.3: Errors at each frame and accumulated errors over time of trackers for the Data12 sequence.
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Figure 5.4: Errors at each frame and accumulated errors over time of trackers for the Bouncing1 sequence.
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Figure 5.5: Errors at each frame and accumulated errors over time of trackers for the Table Tennis sequence.
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Figure 5.6: Errors at each frame and accumulated errors over time of trackers for the Emilio sequence.(Note: SB, Frag, OAB, IVT were removed
because they drifted o� the target).
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Figure 5.7: Errors at each frame and accumulated errors over time of trackers for the Tennis Match sequence.(Note: VTD, IVT, OAB, SB, FragTrack
were removed because they drifted o� the target).
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Figure 5.8: Errors at each frame and accumulated errors over time of trackers for the Animal sequence.(Note: MCMC, VTD, FragTrack, SB, OAB
were removed because they drifted o� the target).
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Figure 5.9: Errors at each frame and accumulated errors over time of trackers for the Football sequence.(Note: IVT was removed because they drifted
o� the target).
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Figure 5.10: Errors at each frame and accumulated errors over time of trackers for the PETS09 sequence.(Note: MCMC, FMCMC-C, SB, OAB, TT
were removed because they drifted o� the target).
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Figure 5.11: Errors at each frame and accumulated errors over time of trackers for the Bouncing2 sequence.(Note: SB, IVT, VTD, OAB were
removed because they drifted o� the target).
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Figure 5.12: Errors at each frame and accumulated errors over time of trackers for the Rolling Ball sequence.(Note: SB, IVT, OAB were removed
because they drifted o� the target).
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Figure 5.13: Errors at each frame and accumulated errors over time of trackers for the Doll sequence.(Note: SB,IVT,VTD,OAB were removed because
they drifted o� the target).
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Figure 5.14: Errors at each frame and accumulated errors over time of trackers for the David2 sequence.(Note: TT was removed because they drifted
o� the target).
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Figure 5.15: Errors at each frame and accumulated errors over time of trackers for the Boy sequence.(Note: MCMC, SB, IVT, FragTrack, TT were
removed because they drifted o� the target).
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Figure 5.16: Errors at each frame and accumulated errors over time of trackers for the Jogging sequence.(Note: FMCMC-C, FMCMC-S, IVT, VTD,
OAB were removed because they drifted o� the target).
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Figure 5.17: Errors at each frame and accumulated errors over time of trackers for the Jumping sequence.(Note: MCMC, IVT, OAB were removed
because they drifted o� the target).
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Figure 5.18: Errors at each frame and accumulated errors over time of trackers for the Girl sequence.(Note: IVT was removed because they drifted
o� the target).
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Figure 5.19: Errors at each frame and accumulated errors over time of trackers for the Bird2 sequence.(Note: SB, IVT, VTD were removed because
they drifted o� the target).
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Figure 5.20: Errors at each frame and accumulated errors over time of trackers for the Cup sequence.(Note: IVT, OAB, SB, TT were removed
because they drifted o� the target).
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Figure 5.21: Errors at each frame and accumulated errors over time of trackers for the Hand sequence.(Note: SB, OAB, IVT, TT were removed
because they drifted o� the target).
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Figure 5.22: Errors at each frame and accumulated errors over time of trackers for the Tiger1 sequence.(Note: SB, IVT, VTD were removed because
they drifted o� the target).
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Figure 5.23: Errors at each frame and accumulated errors over time of trackers for the Freeman1 sequence.(Note: IVT, OAB were removed because
they drifted o� the target).
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5.4 Discussion

5.4.1 Handling Changes in Appearance

FMCMC-MM's behaviour in handling appearance change is similar to MCMC-SA's, as

their appearance models are alike. FMCMC-MM, however, located the target more

accurately. This aspect is discussed more detail in the next section.

Compared to OAB, FMCMC-MM could not quickly adapt to appearance changes

in the Boy (Figure Figure D.19) (e.g. Frame #475 of Figure 5.24), Girl (Figure D.22)

(e.g. Frame #386 of Figure 5.25), and Bird2 (Figure D.23) (e.g. Frame #18 of Fig-

ure 5.26)sequences because the appearance model in OAB is updated blindly. Whilst

FMCMC-MM only updates the appearance model in a supervised manner, i.e. FMCMC-

MM updates or adds a appearance model when this model is di�erent from appearance

models stored in the appearance pool. FMCMC-MM, however, worked better than OAB

in the rest of the video sequences and always followed the target as demonstrated in

Table 5.2. OAB needs precise locations to extract good features to represent the target.

(a) #339 (b) #475

Figure 5.24: Tracking results in selected frames of the Boy sequence. FMCMC-MM
(black), MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-
S (red), FragTrack (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta), VTD ((dashed) blue).
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(a) #386 (b) #404 (c) #490

Figure 5.25: Tracking results in selected frames of the Girl sequence. FMCMC-MM
(black), MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-
S (red), FragTrack (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta), VTD ((dashed) blue).

(a) #16 (b) #18 (c) #46

(d) #48 (e) #91

Figure 5.26: Tracking results in selected frames of the Bird2 sequence. FMCMC-MM
(black), MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-
S (red), FragTrack (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta), VTD ((dashed) blue).

VTD worked better than FMCMC-MM in four video sequences (Data11 (Figure D.1),

Data12 (Figure D.2), PETS2009 (Figure D.12) and Freeman1 (Figure D.29)). In those

videos, the target slightly changed its appearance. Its multiple SPCA based appearance

models allows VTD locate the target slightly better than FMCMC-MM. VTD, however,

did not work better than FMCMC-MM in the other sequences because when VTD drifts

o� the target, as it did in several frames, it selects features which do not represent the

target. VTD lost the target in Frame #193 (Figure 5.27) of the Rolling Ball sequence

(Figure D.14); Frame #2 of the Bouncing2 (Figure D.13) and Frame #16 (Figure 5.26)

of the Bird2 sequence (Figure (Figure 5.28) D.23).
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(a) #194

Figure 5.27: Tracking results in the selected frame of the Rolling Ball sequence. FMCMC-
MM (black), MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-
S (red), FragTrack (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta), VTD ((dashed) blue).

(a) #2

Figure 5.28: Tracking results in the selected frame of the Bouncing2 sequence. FMCMC-
MM (black), MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-
S (red), FragTrack (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta), VTD ((dashed) blue).

Updating the appearance model when the target does not change or only slightly

changes its appearance can reduce tracking performance, especially in cases of incorrect

target location and when target scale decreases. Such that MCMC-SA and FMCMC-

MM could not track better than FMCMC-C, FMCMC-S in the Data11 (Figure D.1),

Data12 (Figure D.2) and Cup (Figure D.24) sequences because the the target's size

slightly increases/decreases when the target comes close or moves away from the camera.

Knowing precisely when to update is still an open issue, though using thresholds to decide

updating appearance model is one solution. It is better if these thresholds are adaptive

during tracking. Thresholds need in FMCMC-MM because the appearance model is

updated in supervised manner. This is the reason why it does not quick update to the

changes of target appearance as OAB does. However, it allows the tracker not update

the appearance model when there is uncertainty in the tracking result.
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5.4.2 Target Location Improvement

FMCMC-MM improved tracking performance signi�cantly when compared to MCMC-SA

in the Hand (Figures D.25, D.26, D.27), Emilio (Figures D.6, D.7), Doll (Figures D.15,

D.16), David2 (Figure D.17), Girl (Figure D.22), Bird2 (Figure D.23), and Jumping

(Figure D.21) sequences. MCMC-SA predicted the target location where it has the

highest score returned by NCC when comparing each template to regions in the image.

This can work well, e.g. in Bouncing2 (Figure D.13), Emilio and Football (Figures D.10,

D.11) sequences. It, however, failed to track the target in Jumping (e.g. Frame #31)

(Figure D.21) because the region with the highest score does not belong to the target.

This can happen because a template model is a generative model and it easily gets

distractors. Feature detection helps FMCMC-SA located the target correctly. Figure

5.29 shows features detected and matched at Frame #31 of the Jumping sequence. The

cyan arrows show the target movement between two consecutive frames. These motions

help FMCMC-SA �nd the correct location (e.g. the search moves down the image to �nd

the target instead of going up like MCMC-SA).
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(a) Tracking results (MCMC-SA (dashed) black,
FMCMC-MM (black)

(b) Feature Motion at #31

Figure 5.29: (Enlarged) Feature movement at the Frame #31 the Jumping sequence.

In the Hand (Figure D.25 and Figure D.26) sequence (e.g. Frames #181, #196 of

Figure 5.30), when the target (i.e. the hand) moved from the right toward the left at

Frame #135, MCMC-SA lost the target. FMCMC-MM, however, tracked well. Figure

5.31 shows tracking results and feature motions at Frame #135. In Frame #141, MCMC-

SA could track the target again when the target returned the place where MCMC-SA

lost the target because the tracker still maintained the correct target appearance model

in the appearance pool.
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(a) #40 (b) #127 (c) #141

(d) #157 (e) #181 (f) #196

Figure 5.30: Tracking results in selected frames of the Hand sequence. FMCMC-MM
(black), MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-
S (red), FragTrack (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta), VTD ((dashed) blue).

In the Tiger1 (Figure D.28) sequence, MCMC-SA incorrectly estimated the target

location at Frames #123, #135, #166, #329 (Figure 5.32) when the target moved fast

from the right to the left. Whereas FMCMC-MM captured the target correctly.
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(a) Tracking results (MCMC-SA (dashed) black,
FMCMC-MM (black)

(b) Frame #135

Figure 5.31: Feature motion at the Frame #135 of the Hand sequence.
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(a) #66 (b) #105 (c) #123

(d) #135 (e) #166 (f) #329

Figure 5.32: Tracking results in selected frames of the Tiger1 sequence. FMCMC-MM
(black), MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-
S (red), FragTrack (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta), VTD ((dashed) blue).

In the Bird2 sequence (e.g. Frames #46, #48, #91 (Figure 5.26)) (Figure D.23),

without the support of features, MCMC-SA located the target incorrectly. Therefore,

the templates extracted by MCMC-SA were not useful. MCMC-SA tracked the bird's

head more often after Frame #46 than FMCMC-MM did. Figure 5.33 shows templates

gathered while tracking the Bird2 sequence by FMCMC-MM. These templates represent

the target precisely compared to the templates detected by MCMC-SA (Figure 3.22o of

Section 3.3).

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o)

Figure 5.33: (Enlarged) Bird templates detected during tracking of FMCMC-MM.

Frame #1689, #1915, #2794 (Figure 5.34) of the Doll sequence (Figures D.15 and

D.16) and Frame #404,#490 (Figure 5.25) of the Girl sequence (Figure D.22) also show
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FMCMC-MM working better than MCMC-SA.

(a) #1689 (b) #1915 (c) #2794

Figure 5.34: Tracking results in selected frames of the Doll sequence. FMCMC-MM
(black), MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-
S (red), FragTrack (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta), VTD ((dashed) blue).

5.4.3 Motion Variation Handling

FMCMC-MM with motion sampling approach performed better than MCMC-SA did

on the Bouncing1 (Figure D.3 and D.4), Bouncing2 (Figure D.13), Emilio (Figures D.6

and D.7), Animal (Figure D.9) and Hand sequences (Figure D.25). Moreover, FMCMC-

MM tracked the target more accurately than FMCMC-S when the target changes its

appearance, e.g. in Frame #127, #157 (Figure 5.30) of the Hand sequence (Figures D.25

and D.26), Frame #339 (Figure 5.24) of the Boy sequence (Figure D.19).

(a) #5

Figure 5.35: Tracking results in the selected frame of the Animal sequence. FMCMC-
MM (black), MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-
S (red), FragTrack (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta), VTD ((dashed) blue).

VTD had multiple basic motion models. It, however, could only handle smooth

movement. VTD could track the target in the Data11 (Figure D.1), Data12 (Figure D.2)

and PETS2009 (Figure D.12) sequences. When the target suddenly moved in a di�erent

direction or changed its velocity such as at Frame #40 of the Hand sequence (Figure

D.25), Frame #5 (Figure 5.35) of the Animal (Figure D.9), Frame #57 (Figure 5.36)

of the Emilio sequence (Figure D.6), it lost the target. FMCMC-MM with the motion
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direction sampling component, however, predicted target locations correctly.

(a) #57

Figure 5.36: Tracking results in the selected frame of the Emilio sequence(Part 1).
FMCMC-MM (black), MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow),
FMCMC-S (red), FragTrack (green), IVT (cyan), SB (magenta), TT ((dashed) green),
OAB ((dashed) magenta), VTD ((dashed) blue).

5.4.4 Distractor Handling

The features used in FMCMC-S help avoid distractors by providing a reasonable search

area as an initial estimate of target location. FMCMC-MM is built on top of FMCMC-

S, so it can avoid distractors. MCMC-SA could avoid distractors because of the use of

template to enhance the target location as shown in Frame #22 (Figure 5.37) of the

Football sequence (Figure D.10).

(a) #22

Figure 5.37: Tracking results in the selected frame of the Football sequence(Part 1).
FMCMC-MM (black), MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow),
FMCMC-S (red), FragTrack (green), IVT (cyan), SB (magenta), TT ((dashed) green),
OAB ((dashed) magenta), VTD ((dashed) blue).

FMCMC-MM and MCMC-SA could avoid distractors at Frames #224, #334, #340

(Figure 5.38) of the David2 sequence D.17 whilst FragTrack, IVT and TT locked onto

the board or the monitor.
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(a) #224 (b) #334 (c) #340

Figure 5.38: Tracking results in selected frames of the David2 sequence. FMCMC-MM
(black), MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-
S (red), FragTrack (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta), VTD ((dashed) blue).

5.4.5 Occlusion Handling

FMCMC-MM and MCMC-SA have been designed to detect occlusion and re-detect the

target following occlusion. They rely on scores returned by simple similarity functions

(NCC and Bhatacharya distance). A more sophisticated occlusion could, however, be

embedded into these methods to make them more �exible.

FMCMC-C and FMCMC-S did not work well after occlusion at Frame #69 (Figure

5.39) of the Jogging sequence (Figure D.20) because feature based motions after the

occlusion did not re�ect motions of the true target. VTD could also not track the

target after the occlusion because features selected from past frames did not represent

the target appearance, and the target moved beyond the search area covered by multiple

basic motion models of VTD. Note that in VTD, there is no mechanism to estimate the

target's velocity. Also, the target's velocity could help if it does not change dramatically

before and after occlusion occurs.

(a) #69 (b) #79

Figure 5.39: Tracking results in selected frames of the Jogging sequence. FMCMC-MM
(black), MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-
S (red), FragTrack (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB
((dashed) magenta), VTD ((dashed) blue).



5.5. Summary 149

Similarly, VTD and OAB tracked the background object (leaf) after the target was

occluded at Frames #66, #105 (Figure 5.32) of the Tiger1 sequence (Figure D.28).

FMCMC-MM and MCMC-SA could track the target after occlusion because of using

templates learnt.

5.4.6 Scale Change Handling

A scale sampling approach is used in many approaches employing a rectangle to de�ne

the target boundary (e.g. IVT, VTD). FMCMC-MM and MCMC-SA could employ

the scale sampling approach to handle scale change. Size among templates should be,

however, equivalent when using NCC to compare them. This limitation results it di�cult

for FMCMC-MM and MCMC-SA to apply scale handling. A �exible similarity function

should be considered in this case.

5.5 Summary

We have proposed a single tracking algorithm (i.e. without fusing multiple trackers)

applicable to both rigid and deformable targets. The appearance model combines two

popular generative models, utilising their complementary advantages to improve tracking

performance. The tracker uses a pool of template-histogram pairs to provide the best

�t appearance model, switching among them using a sampling mechanism. Appearance

changes are automatically detected and new, corresponding templates are extracted.

These templates are checked in a supervised manner for similarity to other templates

maintained in the pool before adding them to it. The MCMC-based search uses the

distribution of motion directions of local image features from the feature pool to enhance

target prediction. These local motion directions are extracted directly from two consec-

utive frames. The algorithm can also handle variation in the motion of a target without

using any prior knowledge of movement.

Experiments showed the FMCMC-MM tracker to have performance advantages over

other trackers and signi�cantly improve tracking accuracy compared to MCMC-SA,

FMCMC-C and FMCMC-S. It could capture the target appearance changes in targets

displaying complex movements. MCMC-SA could only handle appearance changes when

the target had smooth movement. The explicit occlusion detection step of FMCMC-MM

reduced the risk of updating the pool with features not belonging to the target. FMCMC-

MM could avoid distractors by searching for the target along motion directions close to

the true target motion. A robust similarity function could be employed to replace NCC
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when dealing with scale changes.
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Chapter 6

Conclusion and Future Work

6.1 Contributions

The work reported in this thesis has made the following contributions:

• A new approach has been proposed which handles appearance changes by main-

taining and selecting from a pool of template-histogram pairs. Templates provide

solid landmarks, supporting accurate prediction of target location and allowing the

tracker to decide when to learn a new appearance model, alleviating the drifting

problem. Histograms are used to handle appearance changes and model target ap-

pearance during search. This approach implicitly updates the appearance model

by maintaining multiple appearance models and adding a new appearance model

when necessary. Each appearance model presents a change of the target appear-

ance. During tracking, the tracker automatically selects and switches among ap-

pearance models maintained in the appearance pool to �nd a suitable appearance

model to describe the target.

• A novel bottom-up approach to motion modelling and location prediction in which

likely target movement is captured implicitly by a set of local feature-based motion

vectors. Features are detected and matched between consecutive frames to form a

motion direction distribution. This method can handle target motion variations and

unexpected movements without embedding target motions in advance, which are

di�cult to model precisely. The motion model then supports the target search via

multiple linear searches by sampling a motion direction from the motion direction

distribution.

• These components have been combined to produce a tracking algorithm integrating
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the appearance model sampling approach and multiple linear searches. This tracker

can not only handle target motion variations but also deal with appearance changes.

The uni�ed tracker has been evaluated on a variety of challenging image sequences.

6.2 Research Outcomes

Tracking targets in real world situations is a challenging problem due to dynamic and

complex backgrounds, target appearance changes and unpredictable motion of the objects

of interest. Many approaches (as discussed in Chapter 2) have addressed the problem

of varying appearance by building a rich appearance model using one or fusing mul-

tiple features. These approaches (e.g. online learning methods) can quickly adapt to

appearance changes. They, however, face a key issue: model drift. Regardless of the ap-

pearance modelling approach (e.g. use of generative or discriminative models) adopted,

these methods rely on an anchor or a prior (e.g. a simple linear update of the reference

model, a �xed adaptation speed, semi online learning, co-training). These, however,

cannot adapt quickly to appearance changes.

In Chapter 3, a new approach has been proposed to handle appearance changes by

employing multiple appearance models stored in an appearance pool. This technique re-

moves the tracker's reliance on a single appearance model carefully designed and selected

at implementation time. As reported in Chapter 3, this method can handle appearance

changes well if the target moves smoothly, reducing the likelihood of model drift. When

drift does occur, the mechanism increases the likelihood that the tracker will re-locate

the target; the appearance pool provides a large set of learnt appearance models from

which a more appropriate one is selected.

To reduce the search space and enhance target predictions (i.e. improve correct-

ness of target locations), motion models have been normally used in predictive tracking

frameworks. Most of the methods presented in Chapter 3 modelled the target motion

explicitly. These motion models are suitable for speci�c applications, particularly those

which deal with smooth movements. A new motion model method in Chapter 4 has

been developed to handle motion variations and unexpected movements. Experiments

in Chapter 4 have shown this approach can enhance target prediction. Note also that

there is no motion learning mechanism in FMCMC-MM. The target motion is derived

by detecting and matching sparse features. These matches could be used to enhance

learning of target motion.

Several works have used multiple appearance models and multiple motion models,

often combining them to formm multiple trackers. The approach presented in Chapter
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5 integrates multiple motion and appearance models, both of which are created during

tracking, into a single uni�ed tracking algorithm using the sampling techniques described

in Chapter 3 and Chapter 4. The proposed technique successfully deals with appearance

changes and motion variations and signi�cantly improves tracking performance,

6.3 Future Work

A number of improvements to the methods described in Chapter 3, 4 and 5 could be

considered if more �exible trackers are to be produced:

• In the current implementations, simple similarity measures (i.e. NCC and Bhat-

tacharya distance) have been used and thresholds have been employed to decide

whether a new appearance model is added. Should the target change its appear-

ance often during a long image sequence, many models may be stored, some of

which will become irrelevant. A more robust similarity function and improved se-

lection mechanism are needed to improve the quality and reduce the number of

appearance models added. In addition, a mechanism is needed to discard out of

date appearance models.

• Occlusion detection is an important step, as the motion modelling and prediction

mechanisms proposed here rely on the detection and matching of low-level features

detected. A robust occlusion detection mechanism could be employed within these

tracking algorithms.

• Scale changes are not handled well in the trackers presented here because the track-

ers use a rectangle to specify a target and templates. It would be both reasonable

and inspiring to address scale changes.

• Interaction among targets in multiple target applications can cause issues for track-

ers, especially when targets occlude each other. By learning target appearances

before occlusions occur, a tracker can re-acquire targets afterwards. The trackers

described in this thesis have been built upon the MCMC algorithm, providing a

natural extension to multiple target tracking.
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Appendix A

Algorithms

A.1 Kernel Mean-shift tracking

Algorithm 15 The mean-shift algorithm (adapted from Comaniciu et al. [2003]).
Given the target model {q̂}u=1...m and its location ŷ0

1. Initialise the location of the target in the current frame with ŷ0, compute
{p̂u(ŷ0)}u=1...m, and evaluate ρ[p̂(ŷ0), q̂] =

∑m
u=1

√
p̂u(ŷ0)q̂u

2. Derive the weights {w}i=1...n according to Equation A.2.

3. Find the next location of the target candidate

ŷ =

[∑n
i=1 x

∗
iwig(‖

ŷ0−x∗i
h ‖2)∑n

i=1wig(‖
ŷ0−x∗i
h ‖2)

]
(A.1)

wi =
m∑
u=1

δ (b(xi)− u)

√
q̂u

p̂u(ŷ0)
(A.2)

where g(x) = k
′
(x) is the derivative with respect to x of tracking kernel pro�le k,

ŷ0 is the current position of the target, ŷ is the new location and wi is the weight
of the ith pixel.

4. Compute {p̂u(ŷ1)}u=1...m, and evaluate ρ[p̂(ŷ1), q̂] =
∑m

u=1

√
p̂u(ŷ1)q̂u.

5. While ρ[p̂(ŷ1), q̂] < ρ[p̂(ŷ0), q̂]
Do ŷ1 ← 1

2(ŷ0 + ŷ1).
Evaluate ρ[p̂(ŷ1), q̂].

6. If ‖ŷ1 − ŷ0‖ < ε Stop. (ε is a small number to stop the iteration.)
Otherwise Set ŷ0 ← ŷ1 and go to the Step 2.
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A.2 Kalman �lter

Time Update ("Predict") Measurement Update ("Correct")

1. Project the state ahead.

x̂−t = Ax̂t−1 +But−1. (A.3)

The x̂− a prior state estimate or the
predicted state.

2. Project the error covariance ahead.

P̂−t = APt−1A
T +Q. (A.4)

P̂−t is the covariance estimate, Q is
the covariance of the noise
associated this state prediction
process.

1. Compute the Kalman gain.

Kt = P−t H
T (HP−t H

T +R)−1. (A.5)

R is the noise associated with
measurement process

2. Update estimate with measurement.

x̂t = x̂−t +K(zt −Hx̂−t ). (A.6)

The x̂ is a posterior estimate

3. Update the error covariance.

Pt = (I −KtH)P−t . (A.7)

Table A.1: Kalman �lter algorithm (Welch and Bishop [1995]).
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Appendix B

Tracking Results for Chapter 3
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(a) Frame #54 (b) #63 (c) #66

(d) #67 (e) #78 (f) #80

(g) #86 (h) #90 (i) #102

(j) #108 (k) #117 (l) #144

(m) #166 (n) #194 (o) #214

(p) #229 (q) #259 (r) #299

(s) #340 (t) #379 (u) #581

Figure B.1: Tracking results of the Rolling Ball sequence. MCMC-SA ((dashed)black),
MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta).
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(a) Frame #1 (b) #36 (c) #60

(d) #87 (e) #98 (f) #104

(g) #110 (h) #133 (i) #152

(j) #154 (k) #165 (l) #195

(m) #224 (n) #298 (o) #334

(p) #340 (q) #363 (r) #389

(s) #392 (t) #402 (u) #425

Figure B.2: Tracking results of the David2 sequence. MCMC-SA ((dashed)black),
MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta).
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(a) Frame #188 (b) #205 (c) #212

(d) #338 (e) #367 (f) #440

(g) #456 (h) #760 (i) #874

(j) #895 (k) #945 (l) #1048

(m) #1087 (n) #1233 (o) #1420

(p) #1451 (q) #1583 (r) #1659

(s) #1689 (t) #1714 (u) #1715

Figure B.3: Tracking results of the Doll sequence (Part 1). MCMC-SA ((dashed)black),
MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta).



161

(a) Frame #1886 (b) #1915 (c) #1946

(d) #1961 (e) #1991 (f) #2237

(g) #2347 (h) #2398 (i) #2399

(j) #2753 (k) #2778 (l) #2785

(m) #2794 (n) #2804 (o) #2911

(p) #2925 (q) #2936 (r) #2996

(s) #3183 (t) #3307 (u) #3328

Figure B.4: Tracking results of the Doll sequence (Part 2). MCMC-SA ((dashed)black),
MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta).
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(a) Frame #83 (b) #84 (c) #90

(d) #97 (e) #107 (f) #117

(g) #128 (h) #173 (i) #189

(j) #303 (k) #328 (l) #355

(m) #386 (n) #404 (o) #490

Figure B.5: Tracking results of the Girl sequence. MCMC-SA ((dashed)black), MCMC
(blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta).
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(a) Frame #60 (b) #78 (c) #87

(d) #96 (e) #107 (f) #114

(g) #122 (h) #128 (i) #138

(j) #147 (k) #154 (l) #172

(m) #184 (n) #196 (o) #203

(p) #207 (q) #210 (r) #218

(s) #225 (t) #244 (u) #256

Figure B.6: Tracking results of the Boy sequence. MCMC-SA ((dashed)black), MCMC
(blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta).
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(a) Frame #272 (b) #284 (c) #300

(d) #320 (e) #339 (f) #357

(g) #363 (h) #386 (i) #403

(j) #421 (k) #431 (l) #463

(m) #475 (n) #491 (o) #505

(p) #523 (q) #546 (r) #564

(s) #581 (t) #593 (u) #599

Figure B.7: Tracking results of the Boy sequence. MCMC-SA ((dashed)black), MCMC
(blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta).
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(a) Frame #1 (b) #2 (c) #3

(d) #5 (e) #6 (f) #7

(g) #9 (h) #10 (i) #11

(j) #15 (k) #19 (l) #22

(m) #23 (n) #24 (o) #25

(p) #29 (q) #34 (r) #39

(s) #43 (t) #49 (u) #58

Figure B.8: Tracking results of the Animal sequence. MCMC-SA ((dashed)black),
MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta).
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(a) Frame #1 (b) #6 (c) #9

(d) #65 (e) #70 (f) #78

(g) #79 (h) #87 (i) #93

(j) #104 (k) #113 (l) #118

(m) #162 (n) #198 (o) #279

(p) #285 (q) #288 (r) #302

Figure B.9: Tracking results of the Jogging sequence. MCMC-SA ((dashed)black),
MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta).
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(a) Frame #43 (b) #49 (c) #52

(d) #58 (e) #72 (f) #80

(g) #108 (h) #224 (i) #237

(j) #240 (k) #281 (l) #292

(m) #341 (n) #393 (o) #416

(p) #469 (q) #545 (r) #593

(s) #599 (t) #612 (u) #628

Figure B.10: Tracking results of the Cup sequence. MCMC-SA ((dashed)black), MCMC
(blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta).
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(a) Frame #1 (b) #4 (c) #5

(d) #8 (e) #10 (f) #11

(g) #14 (h) #16 (i) #18

(j) #21 (k) #30 (l) #35

(m) #46 (n) #48 (o) #50

(p) #58 (q) #62 (r) #69

(s) #72 (t) #91 (u) #97

Figure B.11: Tracking results of the Bird2 sequence. MCMC-SA ((dashed)black), MCMC
(blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta).
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(a) Frame #5 (b) #15 (c) #16

(d) #21 (e) #22 (f) #29

(g) #31 (h) #32 (i) #33

(j) #36 (k) #42 (l) #45

(m) #56 (n) #61 (o) #65

(p) #116 (q) #181 (r) #230

Figure B.12: Tracking results of the Jumping sequence. MCMC-SA ((dashed)black),
MCMC (blue), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta).
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Appendix C

Tracking Results for Chapter 4

(a) Frame #1 (b) #2 (c) #3

(d) #4 (e) #10 (f) #31

(g) #61 (h) #71 (i) #91

Figure C.1: Tracking results of the Data11 sequence. MCMC(blue), FMCMC-C(yellow),
FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).
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(a) Frame #1 (b) #19 (c) #25

(d) #55 (e) #56 (f) #57

(g) #58 (h) #74 (i) #89

(j) #90 (k) #91 (l) #94

(m) #95 (n) #96 (o) #98

Figure C.2: Tracking results of the Data12 sequence. MCMC(blue), FMCMC-C(yellow),
FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).
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(a) Frame #7 (b) #20 (c) #28

(d) #45 (e) #546 (f) #551

(g) #552 (h) #583 (i) #584

(j) #585 (k) #586 (l) #587

(m) #588 (n) #609 (o) #610

(p) #611 (q) #612 (r) #614

(s) #615 (t) #623 (u) #624

Figure C.3: Tracking results of the Bouncing1 sequence (Part 1). MCMC(blue),
FMCMC-C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).
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(a) Frame #625 (b) #626 (c) #627

(d) #628 (e) #629 (f) #630

(g) #631 (h) #632 (i) #638

(j) #639 (k) #640 (l) #641

(m) #642 (n) #643 (o) #644

(p) #645 (q) #646 (r) #647

(s) #652 (t) #653 (u) #654

Figure C.4: Tracking results of the Bouncing1 sequence (Part 2). MCMC(blue),
FMCMC-C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).
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(a) Frame #1 (b) #2 (c) #3

(d) #11 (e) #18 (f) #23

(g) #24 (h) #25 (i) #30

(j) #34 (k) #39 (l) #44

(m) #45 (n) #46 (o) #47

(p) #51 (q) #54 (r) #57

(s) #61 (t) #62 (u) #63

Figure C.5: Tracking results of the Bouncing2 sequence. MCMC(blue), FMCMC-
C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).
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(a) Frame #1 (b) #23 (c) #26

(d) #27 (e) #33 (f) #38

(g) #99 (h) #100 (i) #105

(j) #167 (k) #193 (l) #237

(m) #566 (n) #600 (o) #605

(p) #911 (q) #973 (r) #1184

(s) #1232 (t) #1517 (u) #1600

Figure C.6: Tracking results of the Tennis match sequence. MCMC(blue), FMCMC-
C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).
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(a) Frame #17 (b) #22 (c) #24

(d) #26 (e) #27 (f) #29

(g) #30 (h) #31 (i) #32

(j) #33 (k) #36 (l) #37

(m) #40 (n) #41 (o) #42

(p) #43 (q) #45 (r) #47

(s) #55 (t) #57 (u) #58

Figure C.7: Tracking results of the Emilio sequence (Part 1). MCMC(blue), FMCMC-
C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).
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(a) Frame #59 (b) #60 (c) #62

(d) #63 (e) #65 (f) #67

(g) #68 (h) #69 (i) #70

(j) #71 (k) #72 (l) #74

(m) #81 (n) #97 (o) #102

(p) #116 (q) #129 (r) #145

(s) #176 (t) #220 (u) #236

Figure C.8: Tracking results of the Emilio sequence (Part 2). MCMC(blue), FMCMC-
C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).
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(a) Frame #1 (b) #2 (c) #3

(d) #5 (e) #6 (f) #7

(g) #9 (h) #10 (i) #11

(j) #15 (k) #19 (l) #22

(m) #23 (n) #24 (o) #25

(p) #29 (q) #34 (r) #39

(s) #43 (t) #49 (u) #58

Figure C.9: Tracking results of the Animal sequence. MCMC(blue), FMCMC-C(yellow),
FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).
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(a) Frame #1 (b) #3 (c) #6

(d) #8 (e) #10 (f) #15

(g) #19 (h) #21 (i) #26

(j) #34 (k) #45 (l) #52

(m) #69 (n) #72 (o) #79

(p) #86 (q) #92 (r) #99

(s) #107 (t) #116 (u) #137

Figure C.10: Tracking results of the Table tennis sequence. MCMC(blue), FMCMC-
C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).
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(a) Frame #1 (b) #2 (c) #3

(d) #4 (e) #9 (f) #10

(g) #11 (h) #13 (i) #20

(j) #21 (k) #22 (l) #23

(m) #24 (n) #26 (o) #29

(p) #36 (q) #39 (r) #40

Figure C.11: Tracking results of the Football sequence (Part 1). MCMC(blue), FMCMC-
C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).
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(a) Frame #41 (b) #43 (c) #52

(d) #54 (e) #57 (f) #60

(g) #73 (h) #76 (i) #78

(j) #79 (k) #85 (l) #90

(m) #91 (n) #93 (o) #99

(p) #112 (q) #115 (r) #124

Figure C.12: Tracking results of the Football sequence (Part 2). MCMC(blue), FMCMC-
C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).
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(a) Frame #1 (b) #27 (c) #37

(d) #42 (e) #43 (f) #45

(g) #49 (h) #52 (i) #55

(j) #58 (k) #60 (l) #63

(m) #67 (n) #70 (o) #75

(p) #78 (q) #80 (r) #149

(s) #186 (t) #208 (u) #216

Figure C.13: Tracking results of the PETS09 sequence. MCMC(blue), FMCMC-
C(yellow), FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).
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(a) Frame #83 (b) #84 (c) #90

(d) #97 (e) #107 (f) #117

(g) #128 (h) #173 (i) #189

(j) #303 (k) #328 (l) #355

(m) #386 (n) #404 (o) #490

Figure C.14: Tracking results of the Girl sequence. MCMC(blue), FMCMC-C(yellow),
FMCMC-S(red), FragTrack(green), IVT(cyan), SB(magenta).
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Appendix D

Tracking Results for Chapter 5

(a) Frame #1 (b) #2 (c) #3

(d) #4 (e) #10 (f) #31

(g) #61 (h) #71 (i) #91

Figure D.1: Tracking results of the Data11 sequence. FMCMC-MM (black), MCMC-
SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), FragTrack
(green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta),
VTD ((dashed) blue).
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(a) Frame #1 (b) #19 (c) #25

(d) #55 (e) #56 (f) #57

(g) #58 (h) #74 (i) #89

(j) #90 (k) #91 (l) #94

(m) #95 (n) #96 (o) #98

Figure D.2: Tracking results of the Data12 sequence. FMCMC-MM (black), MCMC-
SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), FragTrack
(green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta),
VTD ((dashed) blue).
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(a) Frame #7 (b) #20 (c) #28

(d) #45 (e) #546 (f) #551

(g) #552 (h) #583 (i) #584

(j) #585 (k) #586 (l) #587

(m) #588 (n) #609 (o) #610

(p) #611 (q) #612 (r) #614

(s) #615 (t) #623 (u) #624

Figure D.3: Tracking results of the Bouncing1 sequence (Part 1). FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #625 (b) #626 (c) #627

(d) #628 (e) #629 (f) #630

(g) #631 (h) #632 (i) #638

(j) #639 (k) #640 (l) #641

(m) #642 (n) #643 (o) #644

(p) #645 (q) #646 (r) #647

(s) #652 (t) #653 (u) #654

Figure D.4: Tracking results of the Bouncing1 sequence (Part 2). FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #1 (b) #3 (c) #6

(d) #8 (e) #10 (f) #15

(g) #19 (h) #21 (i) #26

(j) #34 (k) #45 (l) #52

(m) #69 (n) #72 (o) #79

(p) #86 (q) #92 (r) #99

(s) #107 (t) #116 (u) #137

Figure D.5: Tracking results of the Table tennis sequence. FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #17 (b) #22 (c) #24

(d) #26 (e) #27 (f) #29

(g) #30 (h) #31 (i) #32

(j) #33 (k) #36 (l) #37

(m) #40 (n) #41 (o) #42

(p) #43 (q) #45 (r) #47

(s) #55 (t) #57 (u) #58

Figure D.6: Tracking results of the Emilio sequence (Part 1). FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #59 (b) #60 (c) #62

(d) #63 (e) #65 (f) #67

(g) #68 (h) #69 (i) #70

(j) #71 (k) #72 (l) #74

(m) #81 (n) #97 (o) #102

(p) #116 (q) #129 (r) #145

(s) #176 (t) #220 (u) #236

Figure D.7: Tracking results of the Emilio sequence (Part 2). FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #1 (b) #23 (c) #26

(d) #27 (e) #33 (f) #38

(g) #99 (h) #100 (i) #105

(j) #167 (k) #193 (l) #237

(m) #566 (n) #600 (o) #605

(p) #911 (q) #973 (r) #1184

(s) #1232 (t) #1517 (u) #1600

Figure D.8: Tracking results of the Tennis match sequence. FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #1 (b) #2 (c) #3

(d) #5 (e) #6 (f) #7

(g) #9 (h) #10 (i) #11

(j) #15 (k) #19 (l) #22

(m) #23 (n) #24 (o) #25

(p) #29 (q) #34 (r) #39

(s) #43 (t) #49 (u) #58

Figure D.9: Tracking results of the Animal sequence. FMCMC-MM (black), MCMC-
SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), FragTrack
(green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta),
VTD ((dashed) blue).
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(a) Frame #1 (b) #2 (c) #3

(d) #4 (e) #9 (f) #10

(g) #11 (h) #13 (i) #20

(j) #21 (k) #22 (l) #23

(m) #24 (n) #26 (o) #29

(p) #36 (q) #39 (r) #40

Figure D.10: Tracking results of the Football sequence (Part 1). FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #41 (b) #43 (c) #52

(d) #54 (e) #57 (f) #60

(g) #73 (h) #76 (i) #78

(j) #79 (k) #85 (l) #90

(m) #91 (n) #93 (o) #99

(p) #112 (q) #115 (r) #124

Figure D.11: Tracking results of the Football sequence (Part 2). FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #1 (b) #27 (c) #37

(d) #42 (e) #43 (f) #45

(g) #49 (h) #52 (i) #55

(j) #58 (k) #60 (l) #63

(m) #67 (n) #70 (o) #75

(p) #78 (q) #80 (r) #149

(s) #186 (t) #208 (u) #216

Figure D.12: Tracking results of the PETS09 sequence. FMCMC-MM (black), MCMC-
SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), FragTrack
(green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta),
VTD ((dashed) blue).
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(a) Frame #1 (b) #2 (c) #3

(d) #11 (e) #18 (f) #23

(g) #24 (h) #25 (i) #30

(j) #34 (k) #39 (l) #44

(m) #45 (n) #46 (o) #47

(p) #51 (q) #54 (r) #57

(s) #61 (t) #62 (u) #63

Figure D.13: Tracking results of the Bouncing2 sequence. FMCMC-MM (black), MCMC-
SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), FragTrack
(green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta),
VTD ((dashed) blue).
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(a) Frame #54 (b) #63 (c) #66

(d) #67 (e) #78 (f) #80

(g) #86 (h) #90 (i) #102

(j) #108 (k) #117 (l) #144

(m) #166 (n) #194 (o) #214

(p) #229 (q) #259 (r) #299

(s) #340 (t) #379 (u) #581

Figure D.14: Tracking results of the Rolling Ball sequence. FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #188 (b) #205 (c) #212

(d) #338 (e) #367 (f) #440

(g) #456 (h) #760 (i) #874

(j) #895 (k) #945 (l) #1048

(m) #1087 (n) #1233 (o) #1420

(p) #1451 (q) #1583 (r) #1659

(s) #1689 (t) #1714 (u) #1715

Figure D.15: Tracking results of the Doll sequence (Part 1). FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #1886 (b) #1915 (c) #1946

(d) #1961 (e) #1991 (f) #2237

(g) #2347 (h) #2398 (i) #2399

(j) #2753 (k) #2778 (l) #2785

(m) #2794 (n) #2897 (o) #2911

(p) #2925 (q) #2936 (r) #2996

(s) #3183 (t) #3307 (u) #3328

Figure D.16: Tracking results of the Doll sequence (Part 2). FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #1 (b) #36 (c) #60

(d) #87 (e) #98 (f) #104

(g) #110 (h) #133 (i) #152

(j) #154 (k) #165 (l) #195

(m) #224 (n) #298 (o) #334

(p) #340 (q) #363 (r) #389

(s) #392 (t) #402 (u) #425

Figure D.17: Tracking results of the David2 sequence. FMCMC-MM (black), MCMC-
SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), FragTrack
(green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta),
VTD ((dashed) blue).
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(a) Frame #60 (b) #78 (c) #87

(d) #96 (e) #107 (f) #114

(g) #122 (h) #128 (i) #138

(j) #147 (k) #154 (l) #172

(m) #184 (n) #196 (o) #203

(p) #207 (q) #210 (r) #218

(s) #225 (t) #244 (u) #256

Figure D.18: Tracking results of the Boy sequence (Part 1). FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #272 (b) #284 (c) #300

(d) #320 (e) #339 (f) #357

(g) #363 (h) #386 (i) #403

(j) #421 (k) #431 (l) #463

(m) #475 (n) #491 (o) #505

(p) #523 (q) #546 (r) #564

(s) #581 (t) #593 (u) #599

Figure D.19: Tracking results of the Boy sequence (Part 2). FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #1 (b) #6 (c) #9

(d) #65 (e) #70 (f) #78

(g) #79 (h) #87 (i) #93

(j) #104 (k) #113 (l) #118

(m) #162 (n) #198 (o) #279

(p) #285 (q) #288 (r) #302

Figure D.20: Tracking results of the Jogging sequence. FMCMC-MM (black), MCMC-
SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), FragTrack
(green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta),
VTD ((dashed) blue).
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(a) Frame #5 (b) #15 (c) #16

(d) #21 (e) #22 (f) #29

(g) #31 (h) #32 (i) #33

(j) #36 (k) #42 (l) #45

(m) #56 (n) #61 (o) #65

(p) #116 (q) #181 (r) #230

Figure D.21: Tracking results of the Jumping sequence. FMCMC-MM (black), MCMC-
SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), FragTrack
(green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta),
VTD ((dashed) blue).
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(a) Frame #83 (b) #84 (c) #90

(d) #97 (e) #107 (f) #117

(g) #128 (h) #173 (i) #189

(j) #303 (k) #328 (l) #355

(m) #386 (n) #404 (o) #490

Figure D.22: Tracking results of the Girl sequence. FMCMC-MM (black), MCMC-
SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), FragTrack
(green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta),
VTD ((dashed) blue).
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(a) Frame #1 (b) #4 (c) #5

(d) #8 (e) #10 (f) #11

(g) #14 (h) #16 (i) #18

(j) #21 (k) #30 (l) #35

(m) #46 (n) #48 (o) #50

(p) #58 (q) #62 (r) #69

(s) #72 (t) #91 (u) #97

Figure D.23: Tracking results of the Bird2 sequence. FMCMC-MM (black), MCMC-
SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), FragTrack
(green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta),
VTD ((dashed) blue).
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(a) Frame #43 (b) #49 (c) #52

(d) #58 (e) #72 (f) #80

(g) #108 (h) #224 (i) #237

(j) #240 (k) #281 (l) #292

(m) #341 (n) #393 (o) #416

(p) #469 (q) #545 (r) #593

(s) #599 (t) #612 (u) #628

Figure D.24: Tracking results of the Cup sequence. FMCMC-MM (black), MCMC-
SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), FragTrack
(green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta),
VTD ((dashed) blue).
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(a) Frame #1 (b) #18 (c) #26

(d) #34 (e) #40 (f) #43

(g) #51 (h) #60 (i) #65

(j) #70 (k) #81 (l) #94

(m) #100 (n) #103 (o) #109

(p) #114 (q) #119 (r) #123

(s) #127 (t) #132 (u) #135

Figure D.25: Tracking results of the Hand sequence (Part 1). FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #139 (b) #141 (c) #143

(d) #147 (e) #149 (f) #154

(g) #157 (h) #161 (i) #164

(j) #171 (k) #176 (l) #181

(m) #184 (n) #191 (o) #196

(p) #202 (q) #206 (r) #208

(s) #221 (t) #225 (u) #231

Figure D.26: Tracking results of the Hand sequence (Part 2). FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).



211

(a) Frame #240 (b) #243 (c) #250

(d) #257 (e) #260 (f) #267

(g) #275 (h) #281 (i) #289

(j) #293 (k) #298 (l) #303

(m) #311 (n) #315 (o) #325

(p) #330 (q) #344 (r) #349

(s) #354 (t) #357 (u) #364

Figure D.27: Tracking results of the Hand sequence (Part 3). FMCMC-MM (black),
MCMC-SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), Frag-
Track (green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) ma-
genta), VTD ((dashed) blue).
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(a) Frame #2 (b) #6 (c) #13

(d) #24 (e) #33 (f) #52

(g) #62 (h) #66 (i) #71

(j) #78 (k) #85 (l) #96

(m) #105 (n) #123 (o) #135

(p) #148 (q) #160 (r) #166

(s) #222 (t) #285 (u) #329

Figure D.28: Tracking results of the Tiger1 sequence. FMCMC-MM (black), MCMC-
SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), FragTrack
(green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta),
VTD ((dashed) blue).
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(a) Frame #1 (b) #5 (c) #38

(d) #51 (e) #64 (f) #77

(g) #90 (h) #100 (i) #116

(j) #136 (k) #146 (l) #164

(m) #180 (n) #197 (o) #214

(p) #229 (q) #242 (r) #265

(s) #283 (t) #298 (u) #314

Figure D.29: Tracking results of the Freeman1 sequence. FMCMC-MM (black), MCMC-
SA ((dashed)black), MCMC (blue), FMCMC-C (yellow), FMCMC-S (red), FragTrack
(green), IVT (cyan), SB (magenta), TT ((dashed) green), OAB ((dashed) magenta),
VTD ((dashed) blue).
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