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Abstract 

Understanding the modulation of contextual fear learning and memory by the 

neurotransmitter dopamine is important as it could lead to a greater 

understanding of the mechanisms underlying anxiety disorders.  The effect of 

D1 receptor antagonism during the contextual fear learning and memory 

stages was investigated.  In the first set of experiments the D1 receptor 

antagonist SCH 23390 (0.1mg/kg; i.p.) was administered systemically before 

or immediately after contextual fear conditioning to determine whether D1 

receptors are involved in the acquisition and/or consolidation stages.  This 

experiment was followed up by investigating the effects of SCH 23390 infusion 

into the dorsal hippocampus (5μg per side) or amygdala (2.5μg per side) on 

contextual fear acquisition.  The second set of experiments investigated the 

involvement of systemic SCH 23390 in the reconsolidation, retrieval, 

destabilization and extinction of contextual fear.  SCH 23390 was 

administered before or immediately after either a short reactivation or longer 

extinction session.  In the destabilization experiment SCH 23390 was 

administered prior to reactivation and the NMDA receptor antagonist MK-801 

(0.1mg/kg; i.p) immediately after to determine if SCH 23390 could rescue the 

amnesic effects of NMDA receptor antagonism.  It was found that systemic 

and intra-hippocampal but not intra-amygdala SCH 23390 reduced freezing 

during memory retention testing, twenty four hours and seven days after 

conditioning.  There was no effect of SCH 23390 when immediately given after 

conditioning.  There was also no effect of SCH 23390 when given either before 

or after reactivation or extinction sessions.  The destabilization experiment 

was inconclusive as MK-801 was not found to impair memory when 

administered after reactivation.  In conclusion, D1 receptors were found to be 

involved in the acquisition of contextual fear, and this modulation was found 

to occur in the dorsal hippocampus but not the amygdala.  D1 type receptors 

were not found to be involved in the consolidation, retrieval, reconsolidation 

or extinction of contextual fear. 
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1.1 Overview 

Learning and memory are essential for survival.  Acquiring knowledge and 

being able to store and recall that knowledge to obtain rewards such as food, 

or to avoid dangers such as predators, could mean the difference between life 

and death.  Learning and memory is therefore a fundamental requirement.  In 

a constantly changing world it is also important that memories can be 

adapted and modified when new and more relevant information about a 

situation becomes available.  Fear learning and memory can be divided into a 

number of different stages including acquisition, consolidation and retrieval.  

Acquisition is when an association or event is originally learnt, consolidation is 

where this learning is encoded into a stable long term memory representation 

and retrieval occurs when this memory representation is recalled at a later 

date.  Additional memory stages include reconsolidation and extinction.  

Reconsolidation is required to return a retrieved, unstable memory back to a 

stable form.  Extinction is where a new memory about an association or event 

is formed that competes with the original memory.  Fear learning and 

memory is very beneficial, however, if it becomes maladaptive then it can 

lead to increased stress and development of anxiety disorders.  Therefore 

understanding the basic mechanisms underlying fear learning and memory 

could lead to insight into such disorders and potentially help in the 

development of treatments. 

 

Associative learning is where two stimuli are experienced together and 

therefore become associated, so that if one stimulus is encountered the other 

stimulus is expected.  The Russian physiologist Pavlov was the first person to 

investigate associative learning (Pavlov, 1927).  He discovered that if a bell 

was rung while a dog was chewing on meat then with time the ringing of the 

bell alone without the meat was enough to cause the dog to salivate.  This 

indicated that the dog had learnt to associate the ringing of the bell with the 

delivery of meat.  This method is known as classical or Pavlovian conditioning.  

The bell is the conditioned stimulus (CS), the meat is the unconditioned 

stimulus (US) and the salivation resulting from the ringing of the bell alone is 
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the conditioned response.  Pavlov also found that if the bell was then 

subsequently rung numerous times without being followed by the meat, the 

dogs learnt to no longer associate the two stimuli and stopped salivating to 

the bell.  This is extinction (Pavlov, 1927).  Classical conditioning can also be 

used to investigate fear learning and memory.  Auditory fear conditioning is a 

modification of the method used by Pavlov, where a tone is paired with the 

delivery of an electrical shock, leading to the expression of fear behaviours in 

response to the tone alone.  Another type of classical conditioning is 

contextual fear conditioning (CFC; outlined in section 1.2).  Contexts are a 

multisensory set of circumstances that surround an event.  For example, a 

spatial context includes the space and arrangement of objects within the 

space.  Temporal, interoceptive, cognitive and social contexts also make 

important contributions to an experience (Maren et al., 2013). Contextual fear 

memory is where a particular context is associated with ‘unpleasant’ fear 

inducing stimuli.  During CFC a previously neutral context (the CS) is 

associated with a fear inducing stimulus (the US) so that the context alone 

induces a fear response.  In studies using rats the context is often a fear 

conditioning chamber and the fear stimulus an electrical footshock (Fanslow 

and Tighe, 1988). Fear conditioning is an excellent experimental method as it 

allows control over the different learning and memory stages and memory 

expression can be easily measured.  It has also been demonstrated in a wide 

array of species from sea snails to humans (Hawkins et al., 1983; Grillon et al., 

2006). 

Dopamine (DA; outlined in section 1.4) is a neurotransmitter that is widely 

distributed throughout the brain.  To exert its physiological responses 

dopamine binds to dopamine receptors that are located on neurons within 

specific brain regions.  There are two main families of dopamine receptors, 

the D1 receptor family and the D2 receptor family.  The activation of these 

receptors by dopamine leads to the initiation of intra-cellular signalling 

cascades resulting in altered gene and protein expression.  Previous research 

has shown that DA is important in fear learning and memory and the 
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development of drugs that modulate the effect of DA could potentially be 

used for pharmacological enhancement of psychological therapy used to treat 

anxiety.  The experiments undertaken in this thesis confirm and extend 

previous research by investigating the involvement of the D1 receptor 

signalling in the different contextual fear learning and memory stages. 

1.2 Anxiety Disorders and Contextual Fear Conditioning 

Brain regions thought to be important for contextual fear learning include the 

amygdala and hippocampus.  The neuroanatomy of these brain regions along 

with their intrinsic synaptic pathways and some of the numerous lesion and 

inactivation studies undertaken to ascertain their function during CFC have 

been outlined in sections 1.2.2 to 1.2.6.  The brain pathways thought to 

underlie CFC have been outlined in section 1.2.7 and human CFC in section 

1.2.8.  If human CFC becomes maladaptive then increased stress and the 

development of anxiety disorders such as post traumatic stress disorder 

(PTSD) can occur. These have been outlined below.   

It is potentially beneficial for future therapy advancement to understand the 

mechanisms and brain regions underlying CFC.  Extinction (outlined in section 

1.3) based treatments such as exposure therapy, are widely used to treat 

anxiety disorders.  Functional magnetic resonance imaging (fMRI), a non-

invasive method where increased blood flow is used as a measure of 

increased activity in different brain regions of interest,  was used in 

participants with PTSD to assess brain activity during extinction training and 

recall (Milad et al., 2009).  Participants first underwent fear conditioning to a 

background picture of a room in which a lamp was represented with different 

coloured lights (e.g. blue, red or yellow). Two of the lamp colours were paired 

with a shock to the hand and the other was presented without shock.  

Extinction training was then undertaken in which one of the coloured lamps 

which was previously associated with receiving a shock was represented in a 

different background picture and was this time presented without the shock.  

The next day extinction recall was tested by presenting the original 
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background pictures and lamp colours.  Skin conductance responses were 

used as a measure of fear.  It was found that PTSD patients had impaired 

extinction recall compared with controls (trauma exposed non-PTSD subjects).  

It was also found that PTSD patients had higher activation of the amygdala 

during extinction, whereas lower activation of the hippocampus was found 

during extinction recall (Milad et al., 2009).  One of the main problems with 

extinction based therapies is that the fear can often return.  This is also 

encountered in experimental extinction studies in the form of spontaneous 

recovery.  The reconsolidation process (outlined in section 1.3), in which the 

original memory trace can be modulated, is therefore also a potential 

treatment for anxiety disorders, either alone or in combination with 

extinction.   Spontaneous recovery of fear was found to be alleviated if 

extinction training was carried out within the reconsolidation time window 

(Schiller et al., 2010).  Extinction training conducted ten minutes, but not six 

hours, after reactivation was more effective at reducing fear as measured 

using skin conductance responses (Schiller et al., 2010).  This finding however 

was not replicated in another study (Kindt and Soeter, 2013), although it 

differed in the use of fear relevant conditioned stimuli (e.g. picture of a spider 

as opposed to geometric shapes) and behavioural measures (startle responses 

and expectancy ratings) which could explain the different results obtained 

(Kindt and Soeter, 2013). 

 

1.2.1 Anxiety Disorders  

There are a number of different types of anxiety disorders including simple 

phobias and PTSD (American Psychiatric Association, 2013).  These conditions 

involve uncontrollable, exaggerated and inappropriate fear responses that 

impede everyday living and functioning.  Simple phobias are where certain 

things (e.g. snakes or spiders) elicit a strong fear response.  Preparedness 

theory is the idea that fearful things are more likely to be learnt about and 

remembered because evolution prepared humans and animals for these types 

of stimuli, due to their potential danger.  PTSD is where exceptionally 

traumatic events have been experienced or witnessed.  Incidents of PTSD are 
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higher in war veterans and people who have suffered physical or sexual 

assault compared with the general population.  An estimated 3% of the UK 

population will suffer from PTSD at some point in their lives.  Traumatic 

learning underlies anxiety disorders such as phobias and PTSD and therefore 

some level of fear conditioning is involved.  CFC is thought to be particularly 

relevant in PTSD as the US is unpredictable and background cues that are 

present during the traumatic experience, when encountered later, are able to 

trigger the strong emotional responses.  For example, in a study examining 

contextual and cued conditioning in humans, it was found that CFC was 

stronger in an unpredictable context (Grillon et al., 2006).  In this study, the 

predictable virtual context was a particular room in which the switching on of 

a virtual lamp with a particular coloured light was paired with receiving hand 

shocks. In a second virtual room the delivering of shocks was unpredictable 

and a third ‘safe’ virtual room was not paired with any shocks.  Fear was 

measured using potentiated startle of the eye-blink reflex to a burst of white 

noise, behavioural avoidance assessed by which virtual room participants 

subsequently chose to enter to receive a monetary reward and self reports of 

subjective feelings of anxiety toward each of the three rooms.   It was found 

that CFC was stronger in the unpredictable context whereas cued fear was 

stronger in the predictable one (Grillon et al., 2006). 

1.2.2 The Neuroanatomy of Contextual Fear 

The amygdala and hippocampus (see Fig 1.1) are brain regions that have been 

shown to have an important role in CFC.  The work in this thesis focuses on 

these structures, which have therefore been outlined in detail below along 

with studies investigating the input and output pathways to these brain 

regions, thought to be active during CFC. 
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Fig 1.1 Coronal section of the rat brain showing the sub-regions of the 
hippocampus (DG dentate gyrus, CA1 cornu ammonis 1, CA2 cornu ammonis 
2, CA3 cornu ammonis 3) and amygdala (laAMY lateral nucleus, blAMY 
basolateral nucleus and bmAMY basomedial nucleus, cAMY central nucelus) 
(modified form Paxinos and Watson, 2009) 
 

 

1.2.3 The Amygdaloid Complex 

The amygdaloid complex is located in the medial temporal lobe (see Fig 1.1).  

It comprises around thirteen nuclei including the lateral (laAMY), basolateral 

(blAMY), basomedial (bmAMY; also known as the accessory basal), central 

(cAMY), cortical and medial nuclei as well as the lateral and ventral 

intercalated paracapsular islands (IPC) and the amygdala part of the bed 

nucleus of stria terminalias.  The laAMY, blAMY and bmAMY can be grouped 

together as the basolateral complex (BLA).  The amygdala nuclei can be 

further subdivided for example the blAMY and bmAMY can each be divided 

into magnocelluar and parvicellular subdivisions and the cAMY includes the 

lateral and medial subregions (Sah et al., 2003; Lee et al., 2013). 
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Information in the amygdaloid complex flows medially from the BLA, the main 

input structure, to the medial cAMY, the main output structure (see Fig 1.2).  

Unimodal and polymodal sensory information enters the amygdala via the 

laAMY or bmAMY.  The laAMY projects to and receives reciprocal projections 

from the bmAMY and blAMY.  The blAMY and bmAMY both project to the 

medial division of the cAMY.  The medial cAMY receives inputs from many 

amygdala nuclei but only sends sparse reciprocal projections (Sah et al., 

2003).  Information is trafficked between the BLA and cAMY via the IPCs.  The 

BLA, cAMY and IPCs are composed of different neuronal types.  The BLA 

contains mainly pyramidal-like glutamergic projection neurons, whereas 

cAMY contains medium spiny GABAergic projection neurons.  The IPCs are 

composed of GABAergic interneurons (Sah et al., 2003).  Under normal, non-

fearful conditions the BLA glutamergic projection neurons are kept under 

basal suppression by the GABAergic inhibitory neurons located in the laAMY 

and lateral IPC.  Likewise, the medial cAMY GABAergic projection neurons are 

inhibited by GABAergic neurons located in the lateral cAMY and ventral IPC 

(Lee et al., 2013). 

 

1.2.4 The Amygdaloid Complex and Contextual Fear Memory 

Lesion studies of the amygdala demonstrate that it is important for contextual 

fear memory.  Electrolytic lesions of the amygdala created by passing anodal 

current prior to CFC impaired freezing behaviour (a commonly used measure 

of fear, see section 1.2.7) immediately and twenty four hours later (Kim et al., 

1993; Phillips and LeDoux, 1992).  Excitotoxic BLA lesions using N-methyl D-

aspartate (NMDA) prior to or after conditioning impaired freezing to 

background context indicating that the BLA lesions result in both anterograde 

and retrograde amnesia (Maren et al., 1996a).  Inactivating the BLA 

temporally, using muscimol (a GABAA receptor agonist) prior to CFC also 

impaired freezing twenty four hours later (Helmstetter and Bellgowan 1994; 

Muller et al., 1997; Maren and Holt, 2004).  However other studies found that 

rats with lesions of the BLA can learn contextual fear with extensive over-

training (Maren, 1999; Ponnusamy et al., 2007).  Over-training on the other 
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hand, did not prevent retrograde amnesia (Maren, 1999; Ponnusamy et al., 

2007).  This implies that the BLA is normally required for the acquisition of 

contextual fear; however, if the BLA is inactivated rats can learn but do so 

inefficiently.  This would indicate that other brain structures are able to 

compensate for the loss of the BLA.  The bed nucleus of the stria terminalis 

(BNST) has been shown to be able to do this as lesions of both the BLA and 

BNST prevented acquisition of contextual fear after extensive over-training, 

whereas BLA lesions alone did not (Poulos et al., 2010).  As mentioned above, 

another crucial structure for CFC is the hippocampus, which is discussed in 

more detail below. 

 

1.2.5 The Hippocampal Formation  

The hippocampal formation (see Fig 1.1) is located in the medial temporal 

lobe and includes the hippocampus proper, dentate gyrus (DG), subiculum, 

presubiculum, parasubiculum and entorhinal cortex (EC) (Golgi et al., 2001).  

The three sub regions of the hippocampus proper are named cornu ammonis 

(CA1, CA2 and CA3).  The hippocampal formation can be divided into dorsal, 

intermediate and ventral regions (Fanselow and Dong, 2010).  The dorsal 

hippocampus (dHC) is thought to be predominantly associated with cognitive 

and spatial processes whereas the ventral hippocampus (vHC) with its direct 

projections to the amygdala is thought to be important for emotions such as 

fear (Fanselow and Dong, 2010). 

 

Information flows through the hippocampal formation via a unidirectional 

intrinsic pathway (see Fig 1.2).  Polymodal sensory information from the 

cortex (e.g. the perirhinal and postrhinal cortices) and subcortical (e.g. the 

thalamus) regions enters the superficial layer of the EC (Anderson et al., 

2007).  The EC projects to the DG via the perforant pathway. The DG granule 

cells extend their mossy fibres to the CA3 region which, in turn, projects to 

the CA1 via the Schaffer collaterals.  The CA1 projects to both the subiculum 

and the deep layers of the EC.  The subiculum also projects to the EC along 

with the presubiculum and parasubiculum.  The presubiculum and 
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parasubiculum send projections to subcortical regions whereas the EC 

projects back to the cortex, closing the pathway loop (Anderson et al., 2007).  

The principal neuronal type of the hippocampus proper, subiculum, 

presubiculum, parasubiculum and EC are glutamatergic pyramidal neurons, 

whereas the principal cells in the DG are the granule cells.  All regions of the 

hippocampal formation contain many different types of inhibitory GABAergic 

interneurons (Anderson et al., 2007). 

 

1.2.6 The Hippocampal Formation and Contextual Fear Memory 

Numerous studies have been undertaken in which permanent or transient 

lesions of the hippocampus have been used to assess its involvement in 

contextual fear.  These studies produced mixed findings however on balance 

it would seem that the dHC and most likely the vHC are important in 

contextual fear under normal circumstances.  Initial studies found that lesions 

of the dorsal or ventral hippocampus caused anterograde amnesia of 

contextual fear (Kim et al., 1993; Young et al., 1994).  Electrolytic (using 

anodal current) and neurotoxic (using NMDA) dHC lesions prior to 

conditioning impaired freezing twenty four hours later (Kim et al., 1993; 

Young et al., 1994).  Temporary dHC or vHC inactivation using muscimol was 

also found to impair CFC (Zhang et al., 2014).  Likewise, inactivation of the vHC 

using tetrodotoxin (Na+ channel inhibitor) or muscimol blocked CFC (Bast et 

al., 2001; Zhang et al., 2014).  Other studies, however, found that while dHC 

neurotoxic lesions (using NMDA) made after CFC produced severe retrograde 

amnesia, lesions made prior to conditioning did not (Maren et al., 1997).  

Muscimol infusions into either the dHC or the vHC prior to CFC were also not 

found to impair acquisition (Matus-Amat et al., 2004; Maren and Holt, 2004).  

Lesioned rats did not learn as efficiently as control rats but this was overcome 

with increased conditioning trials, whereas lesions made after conditioning 

resulted in complete retrograde amnesia (Wiltgen et al., 2006).  It would 

therefore seem that the training protocol strongly influences whether or not 

hippocampal lesions prior to conditioning produce anterograde amnesia.  Less 

challenging CFC protocols (i.e. with greater number of shocks and context 
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exposure) would appear to be able to be acquired without the hippocampus 

(Fanselow, 2010).  The dynamic memory systems theory postulates that under 

normal circumstances the hippocampus is important in contextual fear 

acquisition, however if the hippocampus is unavailable, other competing 

memory systems can compensate for its loss (Fanselow, 2010).  The 

infralimbic cortex (IL) and prelimbic cortex (PL) subregions of the medial 

prefrontal cortex (mPFC) have been proposed to be a competing memory 

system for contextual fear as dHC and IL or PL NMDA neurotoxic lesions prior 

to CFC resulted in impaired learning whereas dHC lesions alone did not 

(Zelikowsky et al., 2013). 

 

1.2.7 Fear Conditioning Pathways 

During CFC, contextual information inputs to the amygdala from the 

hippocampus. Somatosensory pain information from the spinothalamic tract 

terminates in the posterior thalamus which in turn projects to the amygdala.  

The amygdala has therefore been proposed to be a potential site of CS-US 

convergence during CFC (Fendt and Fanselow, 1999; LeDoux, 2000). The 

amygdala connects to brainstem regions involved in eliciting physiological 

responses and behavioural expression of fear (e.g. freezing behaviour, release 

of glucocorticoids; Fendt and Fanselow, 1999; LeDoux, 2000). This is discussed 

in more detail below.  

 

Input pathways: 

The amygdaloid complex receives both modality specific and polymodal 

sensory inputs and is therefore proposed to be the site of the CS-US 

association (LeDoux, 2000).  Polymodal inputs project to the amygdala from 

the hippocampal formation and prefrontal cortex (Sah et al., 2003).  Using the 

anterograde tracer Phaseolus vulgaris-leucoagglutinin (which is taken up by 

the cell bodies and transported by the axons to the synapses), extensive 

reciprocal connections between the ventral hippocampal formation and 

amygdaloid compex have been identified (Canteras and Swanson, 1992; 

Pikkarainen et al., 1999).  Heavy reciprocal projections exist between the BLA 
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and the EC which also projects to the cAMY but does not receive reciprocal 

projections from this amygdala subregion (Pikkarainen et al., 1999).  The 

blAMY and bmAMY project to CA3, CA2 and CA1 but these are only 

reciprocated by the CA1.  The subiculum projects to the BLA and cAMY and 

receives projections back from the blAMY and bmAMY (Pikkarainen et al., 

1999).  Hippocampal nuclei such as the DG that do not have direct 

connections with the amygdala can receive information via intra-hippocampal 

circuitry (Pitkanen et al., 2000).  In another study a recombinant virus that 

expressed channel rhodopsin (a protein that can be activated by light) fused 

with the fluorescent markers mCherry or eYFP was injected into the vHC.  

Dense fluorescent labelling was observed in the blAMY (Hubner et al., 2014).  

Both principal neurons and interneurons in the blAMY were shown to receive 

excitatory glutamatergic monosynaptic projections from the vHC (Hubner et 

al., 2014).  It has also been shown that high frequency electrical stimulation of 

the ventral angular bundle which projects between the hippocampus and BLA 

produced long term potentiation (LTP) in the BLA of anesthetized rats (Maren 

and Fanselow, 1995).  Likewise high frequency electrical stimulation in the 

BLA was found to produce LTP in the DG of the hippocampus (Abe et al., 

2003).  There are also extensive connections between the amygdala and the 

mPFC which includes the PL and IL regions.  The PL sends dense projections to 

the blAMY and cAMY and is thought to be important for fear expression 

whereas the IL projects to a wider distribution of amygdala nuclei including 

the BLA, cAMY and IPCs and is proposed to suppress fear (Vertes, 2004; 

Hubner et al., 2014). 

 

Modality specific nociceptive information from the spinothalamic tract has 

been shown to input to the amygdala via the posterior thalamus.  

Spinothalamic tract neurons have been shown to terminate in the posterior 

thalamus. The anterograde tracer wheat germ agglutinin-conjugated 

horseradish peroxidise was injected into the spinal cord and found to 

terminate in the posterior thalamus which includes the medial geniculate and 

the posterior intralaminar nucleus (LeDoux et al., 1987).  Lesions of the 
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posterior thalamus were found to block the acquisition of auditory fear 

conditioning (LeDoux et al. 1986).  Projections from the posterior thalamus, 

including the medial geniculate body and the posterior intra laminar nucleus 

have been shown to terminate in a number of amygdala nuclei including the 

laAMY, blAMY, bmAMY and cAMY (LeDoux et al. 1985; LeDoux et al., 1990).  

During fear conditioning local inhibitory circuits within the amygdala are 

thought to control the flow of information between the BLA and cAMY 

enabling activation of output pathways and expression of fear (see Fig 1.2). 

Cortical projections (most likely from the mPFC) suppress feedforward 

inhibition of the GABAergic neurons located in the lateral IPC thereby 

disinhibiting the glutamatergic projection neurons of the BLA.  The bmAMY 

and blAMY project to the medial cAMY leading to activation of GABAergic 

output neurons projecting to the periaqueductal grey (PAG) (Lee et al., 2013) 

discussed in more detail below. 
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Fig 1.2 Contextual fear conditioning circuitry  
During CFC US information inputs to the BLA via the posterior thalamus and 
contextual CS information inputs to the BLA from the EC and subiculum.  The 
inhibition of the BLA by the lateral IPC is disinhibited by projections from the 
mPFC.  The BLA projects to the cAMY which in turn projects to the PAG 
leading to the expression of freezing behaviour.  
 
 

Output pathways: 

The medial CE is thought to be the main output region of the amygdaloid 

complex and therefore has an important role in fear expression (LeDoux, 

2000).  The main behavioural measures of fear expression include freezing 

behaviour (see below), release of corticosteroids, hypoalgesia (pain 

reduction), increased arterial pressure and heart rate and suppression of 

appetitive responding.  Lesions of the corticomedial region of the rat 

amygdala, which includes the cAMY, resulted in reduced freezing responses to 

a natural predator (the cat) and to placement in a context previously 

associated with footshocks (Blanchard and Blanchard, 1972).  Lesions of the 

cAMY and BLA prior to CFC impaired conditional hypoalgesia and freezing 
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twenty four hours later (Helmstetter, 1992) and arterial pressure and heart 

rate were increased in rats following electrical stimulation of the cAMY (Iwata 

et al., 1987).   

 

Freezing behaviour is defined as no movement apart from that caused by 

respiration.  It is an adaptive fear response of rats as it makes them less likely 

to be observed and therefore attacked by predators.  Experimentally, freezing 

behaviour can be easily measured and is the method used in the experiments 

carried out in this thesis.  The assessment of freezing behaviour assumes that 

if a rat is moving (i.e. not freezing) then it is not afraid.  However some rats 

will express their fear in a more active form (i.e. try to escape the chamber).  

Activation of cAMY type 1 cells, which display a prominent depolarizing after 

potential, results in suppression of cholinergic ventral forebrain neurons that 

are important for exploratory behaviour leading to passive expression of fear 

(e.g. freezing) whereas inhibition of these neurons leads to active fear 

responses (Gozzi et al., 2010).  Differences in the numbers of cAMY type 1 

cells could therefore potentially explain variation in freezing levels seen 

between rats given the same conditioning training (Gozzi et al., 2010). 

 

The cAMY projects to brainstem regions important for freezing behaviour for 

example the PAG.  The PAG has been shown to be required for freezing 

behaviour as lesions impaired freezing to footshock administration or the 

presence of a cat (Liebman et al., 1970; LeDoux et al., 1988; De Oca et al., 

1998) and stimulation of the dorsal PAG (dPAG) results in freezing and escape 

defensive behaviours in rats (Brandao et al., 1982).  The PAG is also important 

in suppression of pain; ventral and dorsal lesions impaired hypoalgesia (as 

assessed by tail flick; Helmstetter and Tershner, 1994).  PAG lesions do not 

however, affect arterial pressure (LeDoux et al., 1988; Helmstetter and 

Tershner, 1994), whereas lateral hypothalamus lesions do (LeDoux et al., 

1988).  The hippocampus and amygdala have been shown to be involved in 

PAG dependent freezing behaviour.  Lesions of the vHC but not dHC increased 

the threshold of dPAG stimulation that elicited freezing or escape responses 
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but did not impair freezing behaviour following dPAG stimulation (Ballesteros 

et al., 2014).  However, muscimol inactivation of the laAMY, BLA or cAMY had 

no effect on the freezing and escape thresholds but did impair post 

stimulation freezing (Martinez et al., 2006). 

 

1.2.8 Contextual Fear Conditioning in Humans 

A number of studies have been undertaken to investigate the involvement of 

the amygdala and hippocampus during CFC in humans.  These studies have 

yielded mixed results.  In one study, sustained contextual anxiety was found 

to increase cerebral blood flow in a number of regions including the 

hippocampus, PFC and PAG but not the amygdala.  In contrast, visual cues 

predicting shocks resulted in increased cerebral blood flow in brain regions 

including the PFC and amygdala but not the hippocampus (Hasler et al., 2007).   

The effect of CFC on hippocampal and amygdala volume was investigated in 

another study (Pohlack et al., 2012).  The conditioned contextual stimuli (CS+ 

and CS-) were two coloured backgrounds (orange and blue).  CS+ was paired 

with an electrical shock to the right thumb whereas CS- was unpaired.  It was 

found that participants with larger hippocampal volume were more efficient 

at acquiring contextual fear compared to those with smaller volumes and that 

the posterior hippocampus (equivalent to the dHC in rats) was most 

important for this.  Amygdala volume, however, was not found to affect CFC 

(Pohlack et al., 2012).  In another study using the same conditioning methods 

it was found that there was increased activity in the hippocampus and 

anterior cingulate cortex during early acquisition to the CS+ whereas the 

amygdala and inferior frontal cortext (part of the PFC) was found to be active 

during late acquisition.  Connectivity analysis showed correlated activity 

between the hippocampus and anterior cingulate cortex during acquisition 

(Lang et al., 2009).  Other studies used pictures of rooms as contextual stimuli.  

One study found that the hippocampus but not the amygdala was activated 

by CS+ presentation (Marschner et al., 2008).  However in another study the 

amygdala was found to be activated by the CS+ (LaBar et al., 1998).  Both the 

hippocampus and the amygdala showed increased activity in a study in which 
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virtual reality apparatus was used to create a more realistic context (Alvarez 

et al., 2008).  On balance the above studies indicate that the human 

hippocampus and amygdala, similar to that found for the rat, are involved in 

contextual fear memory processing.   
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1.3 Stages of Learning and Memory 

Learning and memory can be divided into a number of different stages; these 

include acquisition, consolidation, retrieval, reconsolidation, destabilization 

and extinction.  Learning or acquisition is the first stage in memory formation.  

In CFC this is where the animals learn to associate the fear conditioning 

chamber with the footshocks. Memory acquisition has been proposed to 

involve Hebbian mechanisms.  The induction of LTP fits with the Hebbian 

model of learning and is thought to underlie memory acquisition.  

Consolidation is where a short term memory (STM), which is unstable and 

vulnerable to manipulation, is converted to stable long term memory (LTM).  

This idea was first proposed in 1900 by Muller and Pilzecker who found, 

working with humans, that interference of new learning impaired original 

learning (McGaugh, 2000).  Further evidence supporting this theory came 

initially from rodent studies showing that electroconvulsive shock, if applied 

directly after memory acquisition, disrupted memory formation leading to 

retrograde amnesia. In contrast the central nervous system stimulant 

strychnine (which acts by blocking glycine receptors) led to memory 

enhancement (Duncan, 1949; McGaugh and Krivanek, 1970). 

 

Retrieval or recall is the activation of a previously consolidated memory trace.  

In fear conditioning, a CS-US association can be retrieved by presentation of 

the CS alone.  It has been shown using transgenic mice that some of the same 

amygdala neurons that were activated during auditory fear conditioning were 

also active during retrieval (Reijmers et al., 2007).  Expression refers to the 

behaviours that are associated with the memory when it is retrieved; for 

example, freezing is a classic fear behaviour that is expressed in mice and rats.  

Experimentally it can be difficult to distinguish between retrieval and 

expression.  Many experiments use expression (i.e. freezing behaviour) as a 

measure of retrieval and the terms are often used interchangeably. The term 

retrieval has been used in this thesis, although in most of the studies outlined 

it cannot be ruled out that expression, rather than retrieval, is being affected.  
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Retrieval and expression are independent processes and therefore caution 

should be taken when interpreting results (Barreiro et al., 2013). 

 

Reconsolidation is where a destabilized memory is returned to a stable form.  

It has been shown by numerous studies that if a consolidated memory is 

reactivated it can become labile and vulnerable to manipulation and therefore 

requires reconsolidation in order to be restabilized again.  For example, 

electroconvulsive shock applied after reactivation of a consolidated memory 

impairs that memory (Misanin et al., 1968), whereas strychnine application 

causes enhancement (Gordon, 1977).  This provided support for the proposal 

that memories either newly acquired or already consolidated should be 

classed as either being in an inactive state in which they are relatively stable 

or an active state in which they are vulnerable to manipulation (Lewis, 1979). 

The process of reconsolidation has been shown across a large number of 

memory paradigms and species, including humans (Walker et al., 2003).  

Reconsolidation has been shown to depend on many of the same but also 

some different macromolecules as consolidation.  For example, it was found 

using antisense oligodeoxynucleotides (which inhibit local protein synthesis) 

infused into the DH that the immediate early gene Zif268 and brain derived 

neurotrophic factor (BDNF) show doubly dissociable roles in reconsolidation 

and consolidation, respectively, of contextual fear memory (Lee et al., 2004). 

In rats infused with BDNF antisense oligodeoxynucleotides, consolidation of 

LTM was impaired, whereas Zif268 antisense oligodeoxynucleotides had no 

effect.  Zif268 antisense oligodeoxynucleotides infused rats, on the other 

hand, had impaired post reactive long term memory (PR-LTM; memory tested 

following a reactivation session) whereas BDNF antisense 

oligodeoxynucleotides infused rats did not (Lee et al., 2004).  Reconsolidation 

has been shown to be a separate process from extinction (Duvarci et al., 

2006).  In this study each rat was trained to have two different auditory fear 

memories by using two different CSs (a tone or white noise).  The next day 

one of the auditory memories was reactivated for a short time period to 

induce reconsolidation whereas the other auditory memory was reactivated 
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for a longer period to induce extinction.  Anisomycin was then infused into the 

BLA.  It was found that reconsolidation but not extinction was impaired 

indicating that the two processes are independent (Duvarci et al., 2006).  The 

process of reconsolidation has been extensively studied; however, in order for 

a memory to be restabilized it must first undergo a destabilization process.  

Recent studies have started to investigate this memory stage. 

 

Extinction is where repeated or prolonged presentation of an unreinforced CS 

results in a new memory being formed that competes with the previously 

learnt association to suppress conditioned behaviour (Pavlov, 1927).  For 

example, previously conditioned contextual stimuli presented for prolonged 

durations without footshocks are no longer feared, as measured by reductions 

in freezing behaviour.  Extinction is new learning and includes a number of 

stages, including acquisition, consolidation and retrieval (Quirk and Mueller, 

2008).  More recently it has been demonstrated that extinction memories can 

also undergo reconsolidation (Rossato et al., 2010).  Following extinction 

training, the original conditioned response can spontaneously recover with 

time.  Conditioned responses have also been found to be reinstated if the 

animal is exposed to the original unconditioned stimulus or renewed if the 

conditioned stimulus is presented in a different context to where extinction 

training occurred (Herry et al., 2010).  Because fear memories can undergo 

spontaneous recovery, renewal and reinstatement after extinction it has 

generally been accepted that extinction involves new learning that 

suppresses, rather than erases, the fear memory.    

 

Numerous neurobiological mechanisms have been demonstrated to be 

required during the different learning and memory stages.  These include LTP 

induction or reversal, protein synthesis or degradation, N-methyl D-aspartate 

(NMDA) and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

ionotropic glutamate receptor activation and synthesis of macromolecules 

such as cyclic AMP-response element binding protein (CREB).  Studies 

investigating the involvement of these mechanisms during acquisition, 
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consolidation, retrieval, reconsolidation, destabilization and extinction have 

therefore been outlined below. 

 

1.3.1 The Neurobiology of Acquisition 

Research has demonstrated that LTP induction and NMDA receptor (NMDAR) 

and AMPA receptor (AMPAR) activation are involved in the process of 

memory acquisition.  These studies have been outlined below. 

 

1.3.1.1 Acquisition and Long Term Potentiation  

In his influential book ‘Organization of Behaviour’ published in 1949, Hebb 

proposed that increased synaptic efficiency could be brought about by 

concurrent activation of pre- and post-synaptic neurons (Sejnowski, 1999).  A 

type of activity-dependent plasticity is LTP which is a lasting enhancement in 

synaptic efficiency in a post-synaptic neuron brought about by stimulation of 

both neurons and is a form of Hebbian plasticity.  LTP has been demonstrated 

in both the hippocampus (Bliss and Lomo, 1973) and amygdala (Rogan et al., 

1997) and has been produced in the DG by high frequency stimulation of the 

BLA (Abe et al., 2003).  It has been shown that LTP is induced in the 

hippocampus of rats by fear learning (Whitlock et al., 2006).  Theta (4-12 Hz) 

and gamma (30-100 Hz) oscillations precede electrically-induced LTP in the 

hippocampus of awake-behaving rats (Bikbaev and Manahan-Vaughan, 2008). 

 

1.3.1.2 Acquisition and NMDA Receptors  

LTP can be induced by activation of NMDARs (Malenka and Nicoll, 1999).  

NMDARs are ionotropic receptors that require binding of glutamate and 

sufficient depolarization leading to movement of Mg2+, opening up the pore 

and enabling the influx of cations, including Ca2+.  Because of this unique 

property of NMDARs they have been proposed to act as coincidence detectors 

and fit well with Hebb’s model of learning (Sejnowski, 1999). NMDARs are 

heterotetramers composed of GluN1 and GluN2 subunits.  Activation of 

NMDARs enables the influx of cations, including Ca2+, into the dendrite which 

is a critical trigger of LTP, leading to autophosphorylation of calcium-
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calmodulin-dependent protein kinase II (CaMKII); this process plays an 

important role in memory formation (Silva, 2003).  Studies using a variety of 

NMDAR antagonists have demonstrated that they are required during fear 

learning.  In one study, systemic administration of the non selective NMDAR 

antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-

imine maleate (MK-801) prior to conditioning impaired freezing to contextual, 

but not auditory stimuli twenty four hours later (Gould et al., 2002).  This 

effect was found to be mediated by the GluN2B subunit of the NMDAR as 

systemic administration of ifenprodil (GluN2B antagonist) impaired the 

acquisition of both auditory fear conditioning and CFC (Rodrigues et al., 2001).  

Intraventricular infusion of another NMDAR antagonist DL-2-amino-5-

phosphonovaleric acid (APV) has also been shown to impair the acquisition of 

CFC (Kim et al., 1991).  Studies in which the NMDAR antagonists were infused 

into the amygdala and hippocampus have shown that these brain regions are 

important in NMDAR mediated memory acquisition. Intra-amygdala infusion 

of APV blocked acquisition of second order fear conditioning (Gewirtz and 

Davis, 1997) and fear potentiated startle (FPS) (Miserendino et al., 1990).  

Second order fear conditioning involves two conditioned stimuli; for example, 

two distinct tones, one (CS1) of which is associated with a footshock so that it 

elicits a fear response.  CS1 is then associated with CS2 so that it then also 

elicits a fear response when presented alone.  FPS is where a salient stimulus, 

such as a footshock, is associated with a neutral stimulus, such as a light; the 

effect of then presenting the light alone with a startling noise is measured.  If 

an association between the shock and light has been learnt, then the light 

when presented with the noise will potentiate the startle reflex.  Intra-

amygdala APV has also been shown to block the acquisition of contextual fear 

(Maren et al., 1996b) and this was shown to involve the GluN2B subunit 

(Rodrigues et al., 2001).  Intra-hippocampal APV infusions were found to 

impair CFC (Young et al., 1994; Quinn et al., 2005).  Intra-hippocampal 

infusions of MK-801 also blocked contextual but not auditory cued fear (Bast 

et al., 2003).  In another study however, it was found that GluN2A-containing, 

rather than GluN2B containing, NMDARs are important for memory 
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acquisition (Dalton et al., 2012).  Systemic administration of NVP-AAM077 (a 

selective GluN2A antagonist), but not Ro25-6981 (a GluN2B antagonist), prior 

to conditioning was found to impair auditory fear acquisition (Dalton et al., 

2012).  It is also important to point out that not all LTP is dependent on 

NMDAR.  For example, LTP induction in the laAMY has been shown to be 

dependent on either voltage gated Ca2+ channels or NMDARs depending on 

the stimulation protocol used, with both likely contributing to memory 

formation in vivo (Bauer et al., 2002). Moreover, LTP in the BLA-DG pathway 

was found to be NMDAR independent (Abe et al., 2003).  

 

1.3.1.3 Acquisition and AMPA Receptors  

The AMPAR is a heteromer composed of various combinations of GluR1, 

GluR2, GluR3 and GluR4 subunits (Mayer, 2005).  During LTP induction 

AMPARs are phosphorylated by CaMKII.  This increases their channel 

conductance and boosts the numbers of GluR1 containing AMPARs trafficked 

to the dendrite spines (Malenka and Nicoll, 1999; Shi, 1999). Increased GluR1-

containing AMPARs were found in the dendritic spines of amygdala neurons 

following auditory fear conditioning (Rumpel et al., 2005; Nedelescu et al., 

2010).  Synaptic delivery of GluR1 containing AMPAR was also found to be 

required in the dHC for inhibitory avoidance acquisition (Mitsushima et al., 

2011).  Inhibitory avoidance involves the animal being initially placed in a safe, 

light compartment of the training apparatus.  When it first moves into the 

dark compartment a door shuts, preventing the animal from re-entering the 

safe area.  When the animal reaches the far end of the dark compartment it 

receives a footshock.  The animal’s memory is later tested by placing it back 

into the chamber and measuring its latency to enter the dark compartment.  

Mice in which the GluR1 subunit of the AMPAR had been knocked out showed 

an absence of LTP in the amygdala and impaired acquisition of contextual and 

auditory fear (Humeau et al., 2007).  Spatial working memory was also 

impaired in mice lacking the GluR1 subunit (Reisel et al., 2002). 
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1.3.2 The Neurobiology of Consolidation 

Studies have shown that memory consolidation requires protein synthesis and 

activation of different molecular pathways, leading to transcription of genes 

important for plasticity (e.g. changes to dendritic structure).  Synaptic tagging 

and capture is a theory for how early LTP (E-LTP) is converted to late LTP (L-

LTP), a process that could explain memory consolidation at the cellular level 

and has therefore been described in more detail below. 

 

1.3.2.1 Consolidation Requires Protein Synthesis 

Much of what is known about memory today was initiated by studies 

undertaken on a simple form of aversive learning in the marine snail Aplysia.  

Work carried out by Kandel and colleagues showed that the gill withdrawl 

reflex (a defensive reflex where stimulation of the siphon causes withdrawal 

of the gill) was enhanced when preceded by shocks to the tail (Hawkins et al., 

1983).  By reconstituting this reflex in cell culture they found that application 

of the neurotransmitter serotonin simulated the effect of tail shock with one 

application, producing short-term facilitation that lasted a few minutes, 

whereas five applications of serotonin induced long-term facilitation that 

lasted over twenty four hours.  Long-term, but not short-term, facilitation was 

found to require both protein and RNA synthesis as anisomycin and emetine 

(protein synthesis inhibitors), and actinomycin and α-amanitin (RNA synthesis 

inhibitors), blocked the actions of five applications of serotonin but not one 

(Montarolo et al., 1986).  This work was subsequently followed up with work 

in other animals including mice and rats.  It was found that mice administered 

anisomycin (a protein synthesis inhibitor) after auditory fear conditioning 

displayed reduced freezing to both context and cued stimuli twenty four 

hours later (Bourtchouladze et al., 1998).  In another study anisomycin 

infusion into the rat BLA immediately after auditory fear conditioning 

impaired LTM but not STM (Schafe and LeDoux, 2000).   Anisomycin infused 

after six hours however did not affect LTM (Schafe and LeDoux, 2000).  The 

mRNA synthesis inhibitor actinomycin-D was infused into the BLA prior to 

auditory fear conditioning.  Freezing to both tone and context stimuli were 
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impaired (Bailey et al., 1999).  Contextual fear and inhibitory avoidance 

memory were both impaired by anisomycin infusions into the hippocampus 

prior to training (Suzuki et al., 2004; Quevedo, 1999).  The object recognition 

memory paradigm takes advantage of a rat’s natural tendency to explore 

novel objects.  During training the rats are presented with a number of objects 

that they will explore.  During testing a new object is presented along with the 

previously explored object.  The time spent exploring the new object 

compared to the previously encountered object is used as a measure of the 

rats’ memory.  Object recognition memory was also found to require protein 

synthesis in the hippocampus; anisomycin infused immediately or three hours 

after training impaired subsequent recall (Rossato et al., 2007).    It could be 

argued that the above studies result from a retrieval deficit (i.e. a memory 

was formed but is not able to be retrieved), rather than protein synthesis 

inhibitors blocking the consolidation process.  However, this was shown not to 

be the case.  Hardt et al. (2009) demonstrated that protein blockade in the 

hippocampus results from a storage deficit rather than a retrieval deficit.  

They took advantage of the fact that NMDAR are needed for the first but not a 

second learning trial of contextual fear.  The NMDAR inhibitor APV disrupted a 

second learning trial when anisomycin had been administered immediately 

after the first learning trial, indicating that anisomycin had impaired 

consolidation of the first context memory trial and not its subsequent 

retrieval (Hardt et al., 2009). 

1.3.2.2 Consolidation and Molecular Pathways 

As highlighted above, LTM formation is dependent on de novo protein 

synthesis.  Extensive work has been undertaken to understand the molecular 

pathways that lead to this synthesis of new proteins during memory 

consolidation.  The first molecular pathways and molecules to be linked to 

memory formation were again discovered for simple learning in Aplysia.  Long 

term facilitation sets in action the cyclic adenosine monophosphate/protein 

kinase A (cAMP-PKA) molecular pathway (see Fig 1.4).  The second messenger 

cAMP was found to be required for facilitation (Schacher et al., 1988; Scholz 
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and Byrne, 1988).  cAMP activates PKA which moves to the nucleus where it 

activates the transcription factor cAMP response element binding protein 

(CREB).  CREB binds to cAMP response element (CRE) in the DNA promoter 

region, leading to protein synthesis (Dash et al., 1990; Bartsch et al., 1998).  

CREB can also be activated by the phospholipase C (PLC) pathway (see Fig 

1.4).  In this pathway, PLC hydrolysis of phosphatidylinositol 4,5-bisphosphate 

(PIP2) to inositol trisphosphate 3 (IP3) and diacylglycerol (Dg) which act as 

second messengers (Berridge, 1984).  Dg activates protein kinase C (PKC) 

whereas IP3 is liberated and binds to its receptors located in the endoplasmic 

reticulum, leading to intracellular release of Ca2+ and CREB activation. 

These molecular pathways have also been found to be important in fear 

conditioning in mice and rats. Intraventricular infusion of inhibitors of PKA 

activity impaired contextual and auditory fear memory (Schafe et al., 1999). 

To explore the role of PKA in the hippocampus during auditory fear 

conditioning, transgenic mice, in which PKA is knocked down in the 

hippocampus, were developed.  It was found that L-LTP was reduced in the 

CA1 of these mice and contextual and cued fear LTM, but not STM, was 

impaired (Abel et al., 1997).  Infusions of H89, a PKA inhibitor, into the 

hippocampus immediately after fear conditioning impaired memory twenty 

four and fourty eight hours later, whereas infusions of bucladesine, a cell 

permeable analog of cAMP, improved memory (Nassireslami et al., 2013).  In 

another study, injecting 8-Bromoadenosine-3',5'- cyclic monophosphate (8Br-

CAMP; a degradation resistant activator of PKA) into the hippocampus 

immediately after IA training using a weak footshock increased LTM two, 

seven and fourteen days later (Rossato et al., 2009).  Injecting PK1 (an 

inhibitor of PKA) after training with a strong footshock on the other hand, 

decreased LTM at these time points.  Interestingly, if 8Br-CAMP or PK1 are 

given twelve hours rather than immediately after training then fear memory is 

only affected at the seven and fourteen day time points (Rossato et al., 2009). 

8Br-CAMP infusions into the hippocampus three or six hours after inhibitory 

avoidance training also improved memory, whereas KT5720 (a PKA inhibitor) 
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impaired it (Bernabeu et al., 1997).  The amygdala also uses the cAMP-PKA 

pathway as infusions of Rp-cAMPS (an inhibitor of PKA activity) into the laAMY 

following auditory fear conditioning disrupted freezing levels twenty four 

hours later (Schafe and LeDoux, 2000). The BLA but not the cAMY nucleus of 

the amygdala has also been shown to require PKA and PKC during contextual 

fear memory formation (Goosens et al., 2000).  CREB is activated by 

phosphorylation on Ser 133.  Increased levels of phosphorylated CREB 

(pCREB) compared with controls were found three to six hours after 

contextual fear learning in the hippocampus and amygdala of mice (Stanciu et 

al., 2001).  Levels of pCREB were elevated immediately, three and six hours 

after training in the hippocampus (Bernabeu et al., 1997).  In a recent study 

blocking NMDARs in the hippocampus prior to CFC led to decreased levels of 

pCREB in the amygdala (de Oliveira Coelho et al., 2013).  Contextual and 

auditory fear consolidation was impaired in transgenic mice in which CREB 

repression was reversibly induced in specific regions including the 

hippocampus and amygdala (Kida et al., 2002).  Transgenic mice in which 

CREB had been knocked out were found to have reduced L-LTP in the 

hippocampus and impaired long term contextual and cued auditory fear 

memory (Bourtchuladze et al., 1994).  Infusion of lentivirus vectors containing 

a mutant form of CREB into the dHC also resulted in impaired contextual fear 

in rats (Kathirvelu et al., 2013).  However, contextual fear is not always 

impaired by disruption of hippocampal CREB, indicating that CREB-

independent fear memory formation is possible, perhaps due to 

compensation by other transcription factors or proteins (Balschun et al., 2003; 

Pittenger et al., 2002). 

 

1.3.2.3 Consolidation and Structural Change 

Changes to synaptic structure have been found to occur during consolidation. 

For example, increased varicosities and arbors were found in sensory neurons 

in Aplysia following fear learning (Bailey and Chen, 1988) and changes to 

dendrite spines occur in the laAMY following fear conditioning (Ostroff et al., 

2010).  Local protein synthesis has been shown to take place resulting in 
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structural changes that are specific to activated, rather than non-activated, 

Aplysia synapses (Martin et al., 1997). This local protein translation has been 

visualized directly using fluorescent translational reporters (Wang et al., 

2009).  The synaptic tagging and capture hypothesis postulates that during the 

induction of E-LTP active synapses are ‘tagged’ which allow them to later 

receive plasticity related proteins (PRP), enabling E-LTP to be converted to L-

LTP (Frey and Morris, 1997; Martin et al., 1997).  Evidence for this was first 

demonstrated in rat hippocampal slices and in cultured Aplysia neurons.  

Using hippocampal slices, electrodes were positioned to stimulate three 

different synapses designated S1, S2 and S3; both S1 and S2 were from the 

same neuronal population, whereas S3 was from a separate neuronal 

population.  Firstly S1 was stimulated to induce L-LTP.  S2 and S3 were then 

stimulated but this time in the presence of the protein synthesis inhibitor 

anisomycin.  It was found that L-LTP occurred in S2 but not in S3.  This 

indicated that S2 had been tagged and that protein synthesis produced for L-

LTP at S1 could be captured for L-LTP induction of S2 from the same neuronal 

population, but not S3 from a different neuronal population.  Synaptic capture 

also occurs in Aplysia neurons.  Pulses of serotonin to one synapse can lead to 

long term facilitation at another synapse which has received only one pulse of 

serotonin and would normally only lead to short term facilitation (Martin et 

al., 1997).  Serotonin pulses applied to the soma, which do not normally lead 

to long term facilitation, can result in long term facilitation at a specific 

synapse if that synapse also receives one pulse of serotonin (Casadio et al., 

1999). 
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1.3.3 The Neurobiology of Retrieval  

Studies investigating the involvement of NMDA and AMPA receptors along 

with the molecular pathways thought to be important in memory retrieval 

have been outlined.  The retrieval deficit has also been discussed. 

1.3.3.1 Retrieval and the Involvement of NMDA and AMPA Receptors 

There have been mixed reports looking at the involvement of NMDA and 

AMPA receptors in memory retrieval.  Some studies have found that AMPARs 

are involved in the retrieval of fear in the BLA and that NMDARs are not.  

Infusion of the AMPAR inhibitor 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) 

into the BLA prior to auditory fear memory reactivation was found to block 

retrieval whereas infusions of the GluN2B antagonist ifenprodil and the 

NMDAR antagonist APV prior to reactivation did not (Ben Mamou et al., 

2006).  Intra-hippocampal infusion of CNQX impaired IA retrieval whereas APV 

infusion had no effect (Szapiro et al., 2000).  Milton et al. (2013) also found 

that AMPARs (using the AMPAR antagonist LY293558) in the BLA were 

important for the retrieval of auditory fear memory.  The AMPAR antagonist 

2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) was 

also found to block the retrieval of auditory fear when infused into the BLA or 

cAMY.  The NMDAR antagonist APV on the other hand, did not block retrieval 

(Zimmerman and Maren, 2010).  Intra-dHC infusion of APV did not affect the 

retrieval of contextual fear (Quinn et al., 2005).  Retrieval of taste aversion 

memory, in which a novel food is associated with stomach malaise (induced 

by injection of LiCl), was also found to be dependent on AMPARs in the BLA 

(Rodriguez-Ortiz et al., 2012; Garcia-DeLaTorre et al., 2014). Episodic-like 

memory retrieval was also found to be dependent on AMPARs but not 

NMDARs in the hippocampus (Day et al., 2003; Bast et al., 2005). Likewise, 

object recognition memory retrieval depended on AMPARs but not NMDARs 

in the perirhinal cortex (Winters and Bussey, 2005).  However, in experiments 

using the context signal model in the Chasmagnathus crab, in which retrieval 

and expression can be dissociated, the opposite was found.  AMPARs were 

not found to be involved in expression whereas NMDARs were. This was 
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shown by the fact that systemic CNQX did not impair expression, whereas APV 

did (Barreiro et al., 2013).  The context signal model involves placing the crabs 

individually into the training context, for example a round container.  A visual 

danger stimulus is then moved above the animal in both directions, this is 

repeated a number of times during which the crabs’ behaviour switches from 

an initial escape response to freezing behaviour.  The reduction in the crabs’ 

movement is used as a measure of fear (Barreiro et al., 2013).  Other studies 

have also found using APV that NMDA receptors in the BLA are important for 

the retrieval of contextual fear (Maren et al., 1996b), auditory fear (Lee et al., 

2001) and FPS (Fendt, 2001).  However APV impairs both GluN2A and GluN2B 

containing NMDARs.  Another study found that GluN2B expressing NMDAR 

were not important in the retrieval of auditory or context fear in the BLA 

(Rodrigues et al., 2001).  Therefore it would seem that, in the BLA at least, 

AMPARs are important for the retrieval of fear whereas NMDARs containing 

the GluN2B subunit are not.  In other studies systemic application of non-

specific NMDAR antagonists (e.g. MK-801 and APV) have been found to impair 

memory, indicating that NMDAR could be important for memory retrieval in 

brain structures other than the BLA. 

1.3.3.2 Retrieval and Molecular Pathways 

CREB and PKA have been implicated in the retrieval process.  Increases in 

activated pCREB were found in the amygdala following cued fear retrieval 

(Hall et al., 2001).  In another study neurons in the laAMY were found to be 

recruited into a memory trace if they had high CREB activity at the time of 

auditory fear conditioning (Han et al., 2007).  Fear retrieval was found to be 

impaired if these neurons were specifically ablated (Han et al., 2009) and 

activating these neurons was found to be sufficient to recall a fear memory 

without behavioural cues (Kim et al., 2014).    Increases in pCREB were not 

found in the hippocampus following cued fear (Hall et al., 2001) or inhibitory 

avoidance retrieval (Szapiro et al., 2000).  However it was found that infusions 

of the PKA inhibitor Rp-cAMP into the hippocampus impaired retrieval of 
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inhibitory avoidance whereas PKA activator SP-cAMP enhanced it (Szapiro et 

al., 2000). 

1.3.3.3 The Retrieval Deficit 

Many studies struggle to definitively show that agents that induce amnesia 

prior to or immediately after initial learning or reactivation sessions are 

affecting the actual memory trace, rather than just resulting in an inability to 

retrieve an otherwise intact memory; this is known as a retrieval deficit.  

Recent studies have started to investigate this and have found that memory 

retrieval can be dissociated from consolidation, reconsolidation and 

destabilization.  For example, it has been demonstrated that protein synthesis 

blockade of CFC using anisomycin in the dHC results in a storage deficit rather 

than a retrieval deficit (Hardt et al., 2009).  Infusions of the GABAA receptor 

agonist muscimol into the perirhinal cortex blocked retrieval of object 

recognition memory. However, reconsolidation of object recognition was 

impaired with anisomycin infusion even when retrieval was impaired with 

muscimol, indicating that retrieval and reconsolidation are independent 

processes (Balderas et al., 2013).  AMPARs were found to be important for the 

retrieval of auditory fear but not for its destabilization (Ben Mamou et al., 

2006; Milton et al., 2013). 

1.3.4 The Neurobiology of Reconsolidation 

New protein synthesis, NMDARs and activation of macromolecules such as 

CREB have been proposed to be important in the reconsolidation process, 

which is similar to findings for consolidation.  These have been outlined below 

along with studies looking at the potential functional role of reconsolidation. 

1.3.4.1 Reconsolidation Requires Protein Synthesis 

LeDoux and colleagues were the first to show that the process of 

reconsolidation requires de novo protein synthesis (Nader et al., 2000).  They 

found that reactivating a conditioned fear memory and then infusing 

anisomycin into the BLA resulted in amnesia.  After initial fear conditioning, 



32 

they reactivated the fear memory by presenting the CS alone (a tone) the 

following day and then injected anisomycin.  The freezing behaviour of the 

rats was tested twenty four hours later and found to be reduced compared 

with vehicle injected controls (Nader et al., 2000).  They then investigated 

whether the time at which the anisomycin was infused after reactivation was 

important and found that if it is given six hours after recall, as opposed to 

immediately after, no effect was observed indicating that like consolidation, 

reconsolidation requires time-dependent protein synthesis (Nader et al., 

2000). This work initiated a renewed interest in the process of 

reconsolidation and led to the publication of numerous other studies. 

Reconsolidation of contextual fear memory was blocked following systemic 

(Suzuki et al., 2004), intra-amygdala (Parsons et al., 2006), and intra-

hippocampal (Debiec et al., 2002; Lee et al., 2004) administration of 

anisomycin.  Reconsolidation of IA memory however, was found to be 

dependent on protein synthesis in the BLA (Milekic et al., 2007) but not the 

hippocampus (Taubenfeld et al., 2001).  Reconsolidation in Aplysia was also 

found to require protein synthesis as injection of emetine immediately 

following reactivation impaired the siphon withdrawal reflex (Lee et al., 2012).  

However, systemic anisomycin was not found to impair reconsolidation of 

Pavlovian conditioned approach (PCA) using a sucrose reward (Blaiss and 

Janak, 2007).  In PCA, presentation of 10% sucrose solution is paired with a 

neutral stimulus (CS+; i.e. a change of cage lighting).  Memory was tested by 

presentation of the CS+ or a CS- (i.e. a tone not associated with sucrose 

reward) and measuring entries into the sucrose delivery port (Blaiss and 

Janak, 2007).  

1.3.4.2 Reconsolidation and NMDA Receptors 

NMDAR have been reported to be important in memory reconsolidation.  A 

number of studies have shown that systemic, intra-amygdala and intra-

hippocampal administration of NMDAR antagonists prior to reactivation 

impaired reconsolidation.  In one study, appetitive goal-tracking was used to 

investigate the effect of different training levels on reconsolidation (Reichelt 
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and Lee, 2012).  In this paradigm two auditory stimuli (i.e. a click and a tone) 

were used to designate the CS+ and CS-, where the CS+ was always paired with 

delivery of three sucrose pellets into a magazine port located in the chamber, 

whereas the CS- was never reinforced.  Reactivation sessions consisted of 

three unrewarded presentations of  the CS+ and CS-.   PR-LTM was measured 

twenty four hours later by recording the number of entries into the magazine 

during the CS+ presentation.  Systemic administration of the NMDAR 

antagonist MK-801, prior to reactivation sessions, impaired PR-LTM if six, but 

not twelve or three, days of training were undertaken (Reichelt and Lee, 

2012). Systemic MK-801 prior to appetitive memory reactivation was also 

found to impair reconsolidation in another study (Lee and Everitt, 2008).  

Systemic MK-801 prior to cued auditory fear reactivation was found to disrupt 

PR-LTM, whereas systemic and intra-amygdala administration of the NMDAR 

partial agonist D-cycloserine enhanced it (Lee et al., 2006).  Systemic 

administration of MK-801 and intra-amygdala administration of another 

NMDAR antagonist, D-APV, impaired drug-seeking associative memory when 

given before reactivation (Milton et al., 2008).  Systemic administration of the 

NMDAR antagonist D-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid 

prior to reactivation impaired contextual fear memory reconsolidation in mice 

(Suzuki et al., 2004) and D-APV infused into the dHC prior to reactivation was 

found to impair contextual fear memory in rats (Lee and Hynds, 2013).   

 

There have been mixed findings when NMDAR antagonists were administered 

immediately after reactivation, rather than before.  Systemic MK-801 

immediately after reactivation impaired reconsolidation of contextual fear in 

mice (Charlier and Tirelli, 2011) and appetitive goal tracking in rats (Reichelt et 

al., 2013).  However, in another study systemic MK-801 immediately after 

appetitive memory reactivation did not impair reconsolidation (Lee and 

Everitt, 2008) and infusion of D-APV immediately after reactivation into the 

amygdala did not impair drug-seeking associative memory (Milton et al., 

2008).  MK-801 has been shown to exhibit drug-induced state dependency 

effects. Flint et al., (2013) found that MK-801 given immediately after 
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reactivation of passive avoidance impaired retention twenty four hours later 

when tested drug free.  However, when MK-801 was given after reactivation 

and then again twenty minutes prior to a twenty four hour retention test, 

memory was this time unaffected, indicating state dependency. Caution 

should therefore be taken when interpreting studies using this drug (Flint et 

al., 2013). 

1.3.4.3 Reconsolidation and Molecular Pathways 

There is evidence to suggest the involvement of both PKA and CREB in the 

reconsolidation process.  PKA activation in the BLA enhanced reconsolidation 

of auditory fear memory, whereas reconsolidation was impaired by PKA 

inhibition (Tronson et al., 2006).   Infusion of Rp-CAMP (PKA inhibitor) into the 

BLA of rats before reactivation reduced reconsolidation of conditioned taste 

aversion, leading to quicker onset of extinction (Koh and Bernstein, 2003).  

Intra-amygdala blockade of PKA immediately, but not six hours after, 

reactivation also impaired reconsolidation of cocaine associative memory 

(Sanchez et al., 2010).  PKA activity was found to be increased in the snail 

Lymnaea if memory was reactivated six hours, but not twenty four hours, 

after associative conditioning.  Moreover, PKA inhibition six hours but not 

twenty four hours after training impaired reconsolidation (Kemenes et al., 

2006).  Contextual and auditory fear reconsolidation was impaired in 

transgenic mice in which CREB repression could be reversibly induced in 

specific regions, including the hippocampus and amygdala (Kida et al., 2002).  

Contextual fear memory reconsolidation was found to be impaired in 

transgenic mice in which CREB function was disrupted.  pCREB was increased 

in the hippocampus and amygdala but not the mPFC following reactivation 

(Mamiya et al., 2009). 

1.3.4.4 Role for Reconsolidation 

Although reconsolidation has been shown to occur in many instances, not all 

memories undergo the process. Such situations are referred to as boundary 

conditions and include the strength and age of the memory (Lee, 2009).  For 
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example, it has been shown that weaker memories are more likely to undergo 

reconsolidation than strong memories (Suzuki et al., 2004; Rodriguez-Otiz et 

al., 2008). It has also been shown for some memory paradigms (e.g. inhibitory 

avoidance) that older memories are less likely to undergo reconsolidation 

than weaker ones (Milekic and Alberini et al., 2002).  Boundary conditions 

could be argued to support a proposed role for reconsolidation in memory 

updating, thereby enabling the relevance of a memory to be maintained (Lee, 

2009).  Lee and colleagues provided further evidence supporting this idea.  By 

taking advantage of the doubly dissociable molecular mechanisms underlying 

consolidation (BDNF) and reconsolidation (Zif268), they found that fear 

memory strengthening that occurred as a result of a second learning trial was 

dependent on reconsolidation rather than consolidation mechanisms.  

Knockdown with Zif268 antisense oligodeoxynucleotides blocked the increase 

in memory strength, whereas BDNF antisense oligodeoxynucleotide infusion 

did not (Lee, 2008).  It has also been shown that reconsolidation is required to 

update a neutral contextual memory to a contextual fear memory in the dHC 

(Lee, 2010).  This experiment made use of the context pre-exposure 

facilitation effect.  In this paradigm rats are placed into a novel chamber in 

order to gain familiarity to it.  The next day the rats are returned to the 

chamber (which reactivates the contextual memory) and immediately given a 

footshock.  An association between the reactivated contextual memory and 

the footshock is learnt so that in a subsequent re-exposure test the rat 

exhibits increased freezing behaviour (Biedenkapp and Rudy, 2004).  By 

infusing either BDNF or Zif268 antisense oligodeoxynucleotides it was shown 

that reconsolidation (Zif268) but not consolidation (BDNF) mechanisms are 

required for updating hippocampal memory (Lee, 2010). 

 

1.3.5 The Neurobiology of Destabilization 

Studies have found that destabilization is dependent on protein degradation 

and glutamate receptor signalling.  It has been proposed that prediction error 

could determine whether or not memories will be destabilized and therefore 

undergo reconsolidation. This is discussed in more detail below 
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1.3.5.1 Destabilization Requires Protein Degradation 

Destabilization has been shown to require ubiquitin proteasome-dependent 

protein degradation.  The ubiquitin proteasome system involves the tagging of 

proteins by ubiquitin and their degradation by proteasomes, which are a 

complex of enzymes able to break peptide bonds.  Injection of 

clastolactacystin β-lactone (an ubiquitin proteasome inhibitor) into Aplysia 

following memory reactivation prevented PR-LTM impairment produced by 

the protein synthesis inhibitor emetine (Lee et al., 2012).  This was found to 

take place at the same sensory-motor neuron synapse in which the original 

learning occurred (Lee et al., 2012).  Ubiquitin/proteasome-dependent 

protein degradation was found to be important for contextual fear memory 

destabilization in the CA1 region of mice (Lee et al., 2008).  Protein 

degradation was also found to occur during cocaine conditioned place 

preference (CPP) destabilization in the nucleus accumbens core but not shell 

(Ren et al., 2013).  During CPP the rats learn to associate a certain context 

with a drug reward, such as amphetamine, morphine or cocaine.  They show 

this by spending more time in the drug, compared to the vehicle, associated 

area when tested later without drug present. 

1.3.5.2 Destabilization and the Involvement of NMDA and AMPA Receptors 

The GluN2B subunit of the NMDAR has been shown to be important in 

memory destabilization.  In one study, the GluN2B antagonist ifenprodil was 

infused into the BLA prior to auditory fear reactivation and was found not to 

impair reconsolidation, whereas anisomycin infusion immediately after did.  

However, when ifenprodil was administered before reactivation and 

anisomycin immediately after, PR-LTM was unaffected.  This indicated that 

blocking the GluN2B subunit before reactivation prevented destabilization as 

the memory trace was not vulnerable to manipulation by anisomycin (Ben 

Mamou et al., 2006).  Another study also found that the GluN2B subunit was 

important for auditory fear memory destabilization in the BLA (Milton et al., 

2013).  A double dissociation between GluN2B and GluN2A was established, 

with GluN2B shown to be required for destabilization and the GluN2A subunit 
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for memory reconsolidation (Milton et al., 2013).  AMPAR have been found to 

participate in memory destabilization, with the transient exchange from Ca2+ 

impermeable AMPAR (GluA2 containing) to Ca2+ permeable AMPAR (no 

GluA2) having been shown to underlie destabilization of auditory fear 

memory in the laAMY (Hong et al., 2013). 

 

1.3.5.3 Destabilization and Prediction Error 

Prediction error occurs when there is discrepancy between expected and 

actual events.  Prediction error can be either positive or negative.  If a rat has 

previously undergone CFC and is returned to the conditioning chamber it 

would expect to receive a footshock in that context; if it does not, then 

arguably a negative prediction error could have occurred.  In regard to studies 

investigating reward, prediction error is positive if a reward is surprising or 

unexpected, whereas a negative prediction error occurs where a predicted 

reward is absent (Schultz, 2000).  Prediction errors can also be influenced by 

probability (e.g. what is the likelihood of gaining a reward) and by temporal 

elements (e.g. does the reward occur when expected or is it delayed) (Schultz, 

2000).  The presence of a prediction error would indicate that the memory 

needs to be updated, as the previously learnt association is no longer 

relevant.  Prediction error could potentially be important for modifying an 

existing memory trace, which occurs through the process of reconsolidation.  

In order for a memory to undergo reconsolidation the original trace needs to 

be destabilized.  It is possible that the occurrence of a prediction error 

determines whether or not a memory will be destabilized (Sevenster et al., 

2013).  Prediction error was found to be a requirement for fear memory 

reconsolidation in human subjects and was proposed to be a potential index 

for memory destabilization.  Reconsolidation of FPS was impaired by 

administration of propranolol, a beta-adrenergic antagonist that disrupts 

reconsolidation in several different paradigms, after reactivation but only in 

subjects where either positive or negative prediction error occurred.  In this 

experiment a positive prediction error was created by using partially 

reinforced training sessions (e.g. participants only received shocks some of 
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the time during the CS presentation and were then reinforced with a shock 

during the reactivation session).  The negative prediction error was created by 

always pairing the shock and CS together during training but not during the 

reactivation session (Sevenster et al., 2013).  In another study temporal 

prediction errors were also found to be important in determining whether or 

not a memory would be destabilized (Diaz-Mataix et al., 2013).  The timing 

between the CS and onset of the US was increased or decreased in duration 

compared with the timing used during training, therefore creating a temporal 

prediction error.  It was found that reconsolidation took place under 

conditions where temporal prediction error occurred, even for strong 

memories which can be subject to boundary conditions (see above), and that 

this could be blocked by infusions of anisomycin into the laAMY of rats (Diaz-

Mataix et al., 2013). 

 

1.3.6 The Neurobiology of Extinction 

Extinction, like consolidation, has been shown to require NMDAR activation, 

protein synthesis, and macromolecules such as CREB.  However more recent 

work has shown that weakening of the original memory also takes place in the 

form of reversed LTP or depotentiation (Pape and Pare, 2010).  These studies 

have been outlined below. 

 

1.3.6.1 Extinction and NMDA Receptors 

Acquisition of extinction, like acquisition of other types of memory, has been 

shown to require NMDARs.  Systemic administration of the NMDAR 

antagonists D-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid or MK-

801 impaired the extinction of contextual and auditory fear respectively 

(Suzuki et al., 2004; Baker and Azorlosa, 1996).  Systemic or intra-BLA 

administration of the NMDAR agonist D-cycloserine was found to enhance 

auditory fear extinction (Lee et al., 2006).  APV infused into BLA prior to non 

reinforced tone presentations blocked extinction of auditory fear, but not 

when infused into the cAMY (Zimmerman and Maren, 2010).  FPS extinction 
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also seems to be dependent on NMDARs in the BLA.  APV infusions were 

found to impair extinction (Falls et al., 1992) whereas D-cycloserine was found 

to enhance it (Walker et al., 2002).  Intra-BLA or dHC infusion of APV impaired 

extinction of inhibitory avoidance (Myskiw et al., 2010).  Systemic 

administration of the GluN2A antagonist NVP-AAM077 did not impair 

extinction of auditory fear, whereas the GluN2B antagonist Ro25-6981 did 

(Dalton et al., 2012).  It would seem that the laAMY and that GluN2B-

containing NMDARs (as opposed to GluN2A-containing NMDARs), are 

important for the acquisition of auditory fear extinction.  Ifenprodil (a GluN2B 

specific antagonist) infused into laAMY, but not the mPFC, prior to the 

extinction session impaired subsequent retention of auditory fear extinction 

(Sotres-Bayon et al., 2007).  Intra-laAMY infusions of ifenprodil immediately 

after extinction training did not impair extinction whereas intra-mPFC 

infusions did (Sotres-Bayon et al., 2009).  This indicates that GluN2B-

containing NMDARs within the laAMY are important for the acquisition but 

not the consolidation of auditory fear extinction, whereas in the mPFC 

GluN2B-containing NMDARs are important for consolidation of extinction but 

not its acquisition (Sotres-Bayon et al., 2009).  NMDARs were also found to be 

needed in the dHC for the extinction of IA (Szapiro et al., 2003). 

 

1.3.6.2 Extinction Requires Protein Synthesis 

Extinction consolidation, similar to other types of consolidation, has been 

shown to depend on protein synthesis in a number of brain regions depending 

on the type of memory paradigm used.  Application of the protein synthesis 

inhibitor cycloheximide one hour prior to a one hour extinction session 

reduced context fear consolidation in the Chasmagnathus crab (Pedreira and 

Maldonado, 2003).  Consolidation of auditory fear extinction was also found 

to require protein synthesis.  Infusions of anisomycin prior to extinction 

training into the lateral ventricle or the prefrontal cortex (PFC), but not the 

insular cortex of rats, blocked extinction retention the following day (Santini 

et al., 2004).  It would appear that the extinction of conditioned taste aversion 

however, does require protein synthesis in the insular cortex, as rats infused 
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with anisomycin prior to extinction sessions were found to have reduced 

extinction memory (Berman and Dudai 2001).  Protein synthesis also seems to 

be required in the BLA and hippocampus for fear memory extinction.  

Anisomycin infused into the BLA of rats prior to light alone presentations 

decreased FPS extinction (Lin et al., 2003b). Rats infused with anisomycin into 

the hippocampus immediately after the first of three retention tests showed 

impaired IA extinction compared with saline injected controls (Vianna et al., 

2001).  In another study intra-hippocampal protein synthesis inhibition was 

found to accelerate extinction (Fischer et al., 2004).  However, it could be 

argued that the drug infusions administered after the first three minute 

extinction session used in this study would have resulted in reconsolidation 

mechanisms being targeted rather than extinction. 

 

1.3.6.3 Extinction and Molecular Pathways  

CREB and PKA have been implicated in fear memory extinction.  Inhibitory 

avoidance extinction was impaired by intra-dHC infusions of Rp-cAMP (PKA 

inhibitor) before or after extinction training (Szapiro et al., 2003).  Intra-BLA or 

dHC infusion of Rp-cAMP also impaired acquisition of inhibitory avoidance 

extinction.  Increases in phosphorylated PKA were found in the dHC, but not 

the BLA, following extinction training (Myskiw et al., 2010).  Increases in 

pCREB were found in the mPFC and amygdala, but not the hippocampus, 

following contextual fear extinction training and reduction of CREB mediated 

transcription using CREB repressor mice impaired extinction (Mamiya et al., 

2009).  

 

1.3.6.4 Extinction and Synaptic Depotentiation 

Although it is generally accepted that extinction involves the formation of a 

new memory that competes with the original one, there is some evidence to 

suggest that extinction also results in some weakening of the original memory 

trace.  Depotentiation, a reversal in LTP, has been linked to memory extinction 

along with kinase dephosphorylation, impaired AMPAR endocytosis and 
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changes in dendrite structure.  Studies investigating these have been outlined 

below. 

Low frequency stimulation was found to result in depotentiation at the EC-

laAMY synapse in rat brain slices.  Application of cyclosporine A (inhibitor of 

calcineurin) was found to impair depotentiation, most likely by inactivating 

protein kinases important for synaptic plasticity.  In vivo quenching 

stimulation (low frequency laAMY stimulation) reduced FPS extinction in rats 

and systemic cyclosporine A administration prior to quenching stimulation 

impaired this (Lin et al., 2003a).  Calcineurin was increased in rat amygdala 

following FPS extinction and inhibitors of calcineurin, including cyclosporine A 

and FK-506, impaired extinction (Lin et al., 2003b).  Systemic administration of 

Tat-GluR23Y (a peptide that blocks the endocytosis of AMPAR) prior to 

unreinforced CS presentations was found to impair the acquisition of auditory 

fear extinction (Dalton et al., 2008). Systemic or intra-amygdala 

administration of 4-[2-(phenylsulfonylamino) ethylthio]-2,6-difluoro-

phenoxyacetamide (a potentiator of AMPARs) enhanced extinction but not 

reconsolidation of contextual fear in mice (Yamada et al., 2009).  Potentiation 

at the thalamic synaptic input to the laAMY was found to be reversed in brain 

slices taken from auditory fear extinction-trained rats.  Infusions of the Tat-

GluR23y peptide into the laAMY prior to a tone alone session impaired 

extinction (Kim et al., 2007).  Changes in dendritic spines were found to be 

altered in the frontal association cortex of mice following auditory fear 

training or extinction using transcranial two-photon microscopy; spines 

located on the same dendritic branch were either increased or decreased 

following either extinction or fear conditioning, respectively (Lai et al., 2012).  

Extinction along with the other learning and memory stages has been linked 

with DA transmission.  DA and its involvement in these processes, has 

therefore been outlined in the following sections. 
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1.4 Dopamine Transmission 

Previous research investigating DA transmission in memory acquisition, 

consolidation, retrieval, reactivation, destabilization and extinction has 

produced mixed results.  Some of this research has been outlined, along with 

studies investigating DA biosynthesis, metabolism and signalling.  The 

research in this thesis focuses on the involvement of D1 receptors (D1R) in the 

amygdala and hippocampus, studies showing the distribution of D1Rs and DA 

innervations of these brain regions have therefore also been outlined. 

1.4.1 Dopamine Biosynthesis and Metabolism 

DA was first identified as a neurotransmitter, rather than just a precursor for 

noradrenaline (NA), by Arvid Carlsson and colleagues (Carlsson et al., 1962).  

DA is a monoamine and member of the catecholamine family.  It is 

synthesised by the enzymes tyrosine hydroxylase (TH) and DOPA 

decarboxylase from tyrosine.  Tyrosine hydroxylase converts tyrosine to L-

DOPA, which, in turn is converted by DOPA decarboxylase into DA.  Once 

synthesized, DA is packaged into vesicles and released under conditions of 

depolarization.  DA is transported from the extracellular space in the synapse 

to the pre-synaptic terminal by the dopamine transporter (DAT), thereby 

controlling the levels of available DA in the brain.  The DAT is a plasma 

membrane protein with twelve transmembrane spanning helices, helice one 

and six form the active site. The DAT is a member of the solute carrier six 

transporter family of neurotransmitter transporters. The DAT couples inward 

DA transport with the movement of Na+ and Cl- down their electrochemical 

gradient (Vaughan and Foster, 2013; Pramod et al., 2013; Schmitt and Reith, 

2010).  Once back in the neuron DA is either repackaged into vesicles for 

reuse or metabolised into dihydroxphenylacetic acid (DOPAC) and 

homovanillic acid (HVA) by monoamine oxidase B (MAO) or catechol-O-

methyl transferase (COMT), respectively. 

http://en.wikipedia.org/wiki/Catecholamine
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1.4.2 Dopamine Innervations of the Amygdala and Hippocampus 

Fig 1.3 Horizontal section of rat brain showing DA innervations of the 
amygdala complex and hippocampal formation (modified from Paxinos and 
Watson, 2009)  

Dahlstroem and Fuxe (1964) were the first to determine the main 

catecholamine projections, DA and NA, in the brain and named them A1-A12.  

They used the Falck-Hillarp technique, which utilizes formaldehyde vapour to 

convert DA and NA to isoquinoline molecules which can then be visualized as 

a yellow-green fluorescence.  Dopaminergic neurons located within the 

midbrain were found in the retrorubral area, the substantia nigra (SN) and 

ventral tegmental area (VTA) and were designated A8, A9 and A10, 

respectively.  Early studies found that the neurons originating in the SN and 

retrorubral area formed the nigrostriatal pathway projecting to striatal 

regions such as the putamen and caudate nucleus, whereas neurons 

originating within the VTA formed the mesolimbic and mesocortical pathways 
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projecting to structures including the nucleus accumbens, amygdala, 

hippocampus and PFC.  However, the advance of more refined staining 

techniques such as immunohistochemistry, which can stain enzymes 

important in the synthesis of dopamine such as TH, has shown this to be an 

oversimplification (Bjorklund and Dunnett, 2007).  The SN not only 

contributes projections to the nigrostriatal pathway but also to the 

mesolimbic and mesocortical pathways and the VTA projects to the striatum 

as well as limbic and cortical structures (Fallon and Moore, 1978; Swanson, 

1982).  Studies using TH immunohistochemistry have revealed that the lateral 

division of the cAMY, the BLA and the IPCs receive substantial dopaminergic 

innervations from the SN-VTA complex (Asan, 1997; Brinley-Reed and 

McDonald, 1999; Fuxe et al., 2003; Pinard et al., 2008).  The IPCs and lateral 

division of the cAMY contain inhibitory interneurons which are important for 

the trafficking of information from the BLA to the medial cAMY and receive 

the highest DA innervations.  DA is therefore ideally placed to modulate this 

information flow (de la Mora et al., 2010).  Retrograde tracing using the 

fluorescent tracer fluoro-gold and anterograde tracing combined with 

immunocytochemistry staining for TH showed a modest dopaminergic 

projection from the SN-VTA complex to the hippocampal formation, with the 

CA1 and subiculum nuclei receiving the highest innervations (Gasbarri et al., 

1994).  Initial studies investigating DA projections in humans used Falck-

Hillarp fluorescence histochemistry and TH immunohistochemical staining of 

post-mortem brains and confirmed the A1-A12 distribution of catecholamines 

(including DA) previously outlined in animals (Olson et al., 1973; Pearson et 

al., 1979; Pearson et al., 1983).  However more recent studies have indicated 

that the mesolimbic pathway originates from both the SN and VTA and that 

an anatomical distinction between these regions is less apparent in humans 

compared with rats (Düzel et al., 2009). Multi-tensor diffusion tensor imaging 

was used to compare neural connectivity between the SN or VTA and 

different brain regions in humans.  Higher connectivity was found between 

the SN than the VTA for all brain regions assessed, including the amygdala 

(Kwon and Jang, 2014). 
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1.4.3 Dopamine Receptors 

DA receptors are comprised of seven transmembrane regions which are linked 

by protein loops and come together to form the ligand binding site.  They also 

have an intracellular carboxyl tail and are coupled to a GTP-binding protein 

(G-protein).  The initial classification of two families of DA receptors was 

based on findings from biochemical and pharmacological studies. It was found 

that while activation of some DA receptors led to adenylate cyclase 

dependent increases in the synthesis of cAMP, others did not.  It was also 

shown that selective drugs had high affinities for some DA receptors but not 

others (Kebabian et al., 1972; Kebabian and Calne, 1979).  Two classes of 

dopamine receptors were therefore named the D1Rs and the D2 receptors 

(D2Rs).   Activation of D1Rs leads to increased cAMP levels whereas D2R 

activation inhibits cAMP synthesis.  D1Rs are antagonised by benzazepine 

ligands such as R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-

tetrahydro-1H-3-benzazepine hydrochloride (SCH 23390), whereas D2Rs are 

antagonised by benzamides such as sulpiride (Kebabian and Calne, 1979). 

With the advance of molecular techniques in the late 1980s, gene cloning and 

the elucidation of the protein structures of the dopamine receptors was 

undertaken.  Five different DA receptors were identified and designated D1-D5.  

In this thesis the term D1R is used to describe the D1 receptor family which 

includes the D1 and D5 receptors and the term D2R is used to describe the D2 

receptor family which includes the D2, D3 and D4 receptors.  D1Rs were found 

to have no introns (the parts of the gene removed by splicing) in their genes. 

In contrast, the D2Rs do have introns (Zhou et al., 1990; Sunahara et al., 1991; 

Tiberi et al., 1991).  The protein structures also differ between the two 

families.  For example, the third intracellular loop and the carboxyl tail were 

found to be longer in the D1R family, compared with the D2R family (Strange, 

2000).  The classification of DA receptors into D1 and D2-like families, 

however, is over-simplistic.  Recent work has shown that subunits from D1Rs 

can come together with subunits from the same or different receptor families 

to form heteromers.  For example, the D1R has been shown to form 

heteromers with the NMDAR.  The GluN1 subunit of NMDA receptors can 
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form direct interactions with the D1R via protein-protein bonds (Nai et al., 

2010). These new combinations of receptor subunits can lead to alterations in 

activation of signalling pathways, can affect ligand binding leading to changes 

in the potency of agonists, and new binding sites can be created (Missale et 

al., 2010).  D1 and D2 receptors are widely distributed in the brain. They are 

located in the caudate, putamen, nucleus accumbens olfactory tubercle, SN, 

VTA, PFC, amygdala complex and hippocampal formation, with the density of 

D1Rs tending to be greater in most brain regions compared to D2Rs (Neve and 

Neve, 1997). 

 

1.4.4 Distribution of D1 Receptors in Amygdala and Hippocampus 

The localization of D1Rs within the amygdala and hippocampus are outlined in 

more detail below.  Quantitative autoradiographic methods using radioligands 

such as 3H-SCH 23390 and 3H-SKF-83566 (D1R antagonists) have been used to 

determine the levels of D1Rs in the rat brain.  High densities of D1R were 

found in the amygdaloid complex, with the ventral BL nucleus and the IPCs 

having the highest level. D1Rs were also located in the hippocampal complex, 

including the EC, parasubiculum, hippocampus proper and DG (Boyson et al., 

1986; Dawson et al., 1986; Köhler et al., 1991; Scibilia et al., 1992).  These 

studies were later confirmed by immunohistochemical localization of D1R in 

rat brain using a polyclonal antibody directed to the D1R (Huang et al., 1992; 

Perez de la mora et al., 2006).  In situ hybridization histochemistry (using a 

labelled complementary RNA probe for D1R mRNA) also showed D1R mRNA 

expression was present in the amygdala and hippocampus (Weiner et al., 

1991).  Electron microscopy has revealed that the D1 and D5 subtypes are both 

present in the same BLA neurons, with the D1 subtype predominantly found 

on the dendritic spines and the D5 subtype at dendritic terminals (Muly et al., 

2009).  The rat D1R gene is 92% identical to the human D1R gene (Zhou et al., 

1990) and D1Rs are located in the human brain, including in the amygdala and 

hippocampus (Mengod et al., 1991).  Reverse transcription polymerase chain 

reaction was used to ascertain the levels of D1R mRNA in the different 

subregions of the human amygdala; in contrast to findings in the rat, the 
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cAMY was found to have the highest level of D1R expression (Xiang et al., 

2008). 

 

1.4.5 D1 Receptor Signalling 

DA receptors are coupled to G-proteins which are composed of α, β and γ 

subunits.  D1Rs can be linked with different α subunits including Gαs, Gαolf or 

Gαq whereas D2Rs are linked to Gαi or Gαo.  G-proteins containing the Gαs, 

Gαolf or Gαq subunit have been shown to initiate the cAMP pathway (see Fig 

1.4).  The enzyme adenylate cyclase is activated by D1R stimulation and 

converts ATP to cAMP, which, in turn, activates PKA, leading to gene 

expression via transcription factors such as CREB and phosphorylation of DA 

and cAMP regulated phosphoprotein, 32kDA (DARPP-32).  DARPP-32 is then 

able to inhibit protein phosphatase 1.  PKA activation can lead to modulation 

of ion channels, including K+, Ca2+ and Na+ channels (Neve et al., 2004; Undieh, 

2010).  D2R activation on the other hand results in reduced levels of adenylate 

cyclase, leading to decreased PKA and DARPP-32 activation (Neve et al., 

2004).  G proteins containing Gαq can also lead to the activation of the PLC 

pathway which also results in activation of CREB. 
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Fig 1.4 D1R signalling 
DA is synthesised from tyrosine before being released into the synapse and 
binding to D1Rs.  D1Rs coupled to Gαs result in activation of the enzyme 
adenylate cyclase and increased levels of cAMP.  PKA is activated which in 
turn activates CREB.  D1Rs coupled to Gαq stimulated PLC leading to increased 
Dg and IP3.  Dg activates PKC whereas IP3 leads to release of Ca2+ from the 
endoplasmic reticulum and activation of CREB.  DA is returned to the neuron 
by the DAT where it is metabolised by COMT or MAO into DOPAC and HVA.  
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There is evidence to suggest that D1R activation in the amygdala and 

hippocampus is linked to the PLC pathway and D5 coupling to Gαq.  In the 

hippocampus and amygdala D1Rs were found to couple to Gαq but not Gαs 

(Jin et al., 2001).  D1R activation was found to increase IP3 formation in the 

amygdala and hippocampus (Undie and Friedman 1990).  D1 knockout mice 

had reduced cAMP production but inositol phosphate accumulation following 

D1R stimulation was unaffected.  Binding of 3H-SCH 23390 to Gαq subunit was 

also unaffected, whereas Gαs was reduced (Friedman et al., 1997).  

Conversely, D5 knockout mice were found to have deficient PLC signalling 

(Sahu et al., 2009).  It was also found that increased intracellular Ca2+ was 

released in cultured hippocampal neurons following D1R activation (Lezcano 

and Bergson, 2002) and that amygdaloid D1R activation did not increase 

cAMP (Leonard et al., 2003).  SKF 83959 is a selective D1R agonist that does 

not work by stimulating adenylyl cyclase but instead increases PLC mediated 

hydrolysis of phosphoinositide (Panchalingam and Undie, 2001).  Application 

of SKF 83959 to cultured hippocampal neurons resulted in a PLC-dependent 

increase in Ca2+ release from internal stores and also increased influx via Ca2+ 

channels (Ming et al., 2006). D1R signalling via Gαq coupling to the PLC 

pathway has also been demonstrated in the PFC of humans (Pacheco and 

Jope, 1997). 

 

1.4.6 Dopaminergic Modulation of Memory Acquisition 

DA has been shown to be an important modulator of memory acquisition.  

There is strong evidence from electrophysiological studies to suggest that 

D1Rs are involved in the induction of LTP in vitro and in vivo.  Application of 

the D1R agonists, 6-chloro-PB and dihydrexidine, prior to high frequency 

stimulation increased E-LTP in the CA1 of hippocampal slices whereas SCH 

23390 impaired this effect (Otmakhova and Lisman, 1996).  L-LTP in the CA1 

was also found to be blocked by application of SCH 23390 during but not 

after, high frequency stimulation (Frey et al., 1991; Huang and Kandel, 1995).  

In another study, a high frequency stimulation protocol that does not elicit 

LTP under control conditions was found to result in LTP induction in the 
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presence of the D1R agonist SKF 38393 in both regular-spiking and burst-

spiking subiculum neurons, an effect which was blocked by SCH 23390 

application.  This LTP induction was also found to be dependent on NMDARs, 

PKA and post-synaptic Ca2+ increases (Roggenhofer et al., 2010; Roggenhofer 

et al., 2013).  Slices taken from the brains of D1R knockout mice showed a 

reduction in hippocampal LTP (Matthies et al., 1997).  D1-NMDA receptor 

heterodimerization could be important for this as LTP was found to be 

impaired in cultured hippocampal cells in which D1-GluN1 coupling was 

disrupted with the interfering peptide D1-t2 (Nai et al., 2010).  In a study using 

awake-behaving rats, in vivo recording of LTP at the Schaffer collateral CA1 

synapse was undertaken. It was found that intra-ventricular administration of 

chloro-PB (D1R agonist) assisted the induction of LTP, whereas SCH 23390 

blocked this.  Short term potentiation (STP) was converted to LTP by exposure 

of the rats to an empty hole-board apparatus and this was also blocked by 

SCH 23390 administration (Lemon and Manahan-Vaughan, 2006).  Similarly, it 

was found that LTP could be induced by a weak high frequency stimulation 

protocol if the rats were allowed to explore a novel environment and this was 

also blocked by intra-ventricular SCH 23390 administration prior to testing (Li 

et al., 2003).  Reduced LTP was found in the CA3-CA1 Schaffer collaterals 

following high frequency stimulation in D1R knockout (D1R KO) mice and in 

control mice injected with small interfering RNA into the hippocampus to 

knock down D1R expression (Ortiz et al., 2010).  LTP has also been found to 

occur in the amygdala (Rogan et al., 1997).  L-LTP can be induced in the laAMY 

following both low and high frequency stimulation of fibres from the cortex 

(by stimulating the external capsule) in brain slice preparations (Huang and 

Kandel, 2007).  Application of the D1R antagonist SCH23390 before low 

frequency stimulation resulted in blockade of L-LTP (Huang and Kandel, 2007). 

However, in another study LTP induction in the laAMY was found to be 

modulated by the D2R but not the D1R (Bissiere et al., 2003).   

 

Numerous behavioural studies have investigated the role of DA in different 

types of memory acquisition including contextual and auditory fear 
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conditioning, object recognition, spatial, episodic-like memory and appetitive 

learning (Inoue et al., 2000; Pezze et al., 2002; Clausen et al., 2011; O’Carroll 

et al., 2006; Bethus et al., 2010; Hiroi and White, 1991).  Increased levels of 

DOPAC were observed in the amygdala following footshock administration 

(Herman et al., 1982). In another study DA levels in the hippocampus and 

DOPAC levels in the amygdala were found to be increased after CFC and 

following placement in the fear conditioning chamber without footshocks 

twenty four hours later (Inoue et al., 1994).  Object recognition was found to 

be impaired by D1R antagonism (Clausen et al., 2011).  Rats injected with SCH 

23390 prior to training spent less time exploring a novel object when tested 

five minutes later compared with saline injected controls (Clausen et al., 

2011).  D1Rs have also been shown to be important in the delayed matching-

to-place (DMP) water maze test.  In this test rats are tested on their ability to 

locate a hidden platform after one learning trial.  Swimming path lengths are 

used as an indication of memory, with shorter path lengths indicating better 

memory retention.  Intra-dHC SCH 23390 fifteen minutes before a new 

location trial, was found to impair memory in the DMP water maze thirty 

minutes (Pezze and Bast, 2012) and six hours later (O’Carroll et al., 2006).  

Episodic-like memory acquisition also requires DA.  In one memory paradigm 

rats were trained to associate a particular flavoured food pellet (e.g. banana) 

with a particular location in an event arena.  The rats then underwent probe 

tests in which they were either cued with a flavour or were not cued before 

being placed in the event arena. The time they spent digging at the correct 

location was used as an indication of memory performance; their episodic-like 

memory for ‘what’ and ‘where’ was therefore being tested.  Rats that were 

infused with SCH 23390 into the dHC prior to learning a new paired 

association had impaired memory twenty four hours, but not thirty minutes, 

later (Bethus et al., 2010). It was found that D1R KO mice had impaired spatial 

learning in the Barnes maze and Morris water maze (Ortiz et al., 2010; EL-

Ghundi et al., 1999).  In the Barnes maze the mouse is placed on the white 

circular surface with holes around the periphery, one of which leads to a drop 

box into which the mouse can escape the exposure of the table top.  The 
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mouse’s spatial memory is assessed on its ability to remember the location of 

the one hole which leads to the drop box.  It was also found that these mice 

had impaired inhibitory avoidance, contextual and auditory fear conditioning 

(Oritz et al., 2010) and D1R striatum specific KO mice were found to have 

impaired CFC (Ikegami et al., 2014).  However, in another study, D1R KO mice 

were found to have normal CFC and inhibitory avoidance acquisition (EL-

Ghundi et al., 2001).  The DA receptor agonist, apomorphine, was found to 

enhance two-way avoidance learning (Reis et al., 2004).  In this test 

presentation of a light stimulus is associated with the onset of a footshock.  

The rats can avoid being footshocked by quickly moving to a safe 

compartment when the light stimulus is turned on.  It was found that 

apomorphine injected rats learnt faster than the saline-injected controls (Reis 

et al., 2004).  Intra-nucleus accumbens and intra-striatum infusion of SCH 

23390 prior to two-way active avoidance training impaired subsequent 

retention (Wietzikoski et al., 2012).  D1Rs have also been implicated in the 

acquisition of CPP D1R mutant mice were found to have impaired acquisition 

of cocaine CPP (Chen and Xu, 2010).  Systemic administration of SCH 23390 

has been shown to block the acquisition of CPP to cocaine (Cervo and 

Samanin, 1995) and amphetamine (Hiroi and White, 1991).  Other studies 

have investigated the involvement of D1Rs in contextual and auditory fear 

acquisition.  Infusion of the D1R agonist SKF 82958 into the BLA was found to 

enhance CFC (Biedenkapp and Rudy, 2009).  DA antagonists given systemically 

or centrally have been shown to impair FPS (Greba and Kokkinidis, 2000), 

auditory fear conditioning (Pezze et al., 2002; Guarraci et al., 1999) and CFC 

(Inoue et al., 1996; Inoue et al., 2000; Calzavara et al., 2009; Bai et al., 2009).  

These studies are outlined in greater detail in chapters three and four.  It 

should be noted that due to the substantial DA innervations of the basal 

ganglia, a brain region important in the production of movement, most DA 

drugs especially when administered systemically can have non-specific effects 

on locomotion that could interfere with behavioural performance.  For 

example systemic SCH 23390 has been shown to impair total distance moved 
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in the open field (Gessa et al., 1985; Salmi and Ahlenius, 2000; Clausen et al., 

2011). 

 

1.4.7 Dopaminergic Modulation of Consolidation 

There are numerous studies indicating a link between DA and memory 

consolidation.  The protein synthesis-inhibiting drug anisomycin infused into 

the BLA immediately after auditory fear conditioning impaired memory 

(Schafe and LeDoux, 2000).  It has been argued that anisomycin induced 

amnesia could be a result of aberrant neurotransmitter release, rather than 

(or as well as) blockade of de novo protein synthesis, as large increases in DA 

have been shown in both the amygdala and hippocampus following 

anisomycin infusion (Canal et al., 2007; Qi and Gold, 2009). 

 

Studies using D1R antagonists and agonists have demonstrated the 

involvement of D1Rs in consolidation in many different memory paradigms.  

The effects of amphetamine, which causes the release of DA and NA from the 

pre-synaptic terminal, on the consolidation of morphine CPP was assessed 

(Blaiss and Janak, 2006).  It was found that injecting amphetamine 

immediately after training resulted in the enhancement of morphine CPP, 

indicating DA and/or NA involvement in its consolidation (Blaiss and Janak, 

2006).  CPP using cocaine was also found to result in increased D1R protein 

and mRNA expression in the hippocampus (Tanaka et al., 2011).  In another 

study the effect of infusing SCH 23390 and SKF 38393 (D1 agonist) into the 

PFC on the consolidation of object recognition memory was investigated 

(Maroun and Akirav, 2009).  Two groups of rats were used; one group had 

been habituated to the testing area and so had low arousal, while the other 

group were non-habituated rats that had high arousal levels and thus 

increased circulating corticosteroids and higher extracellular levels of DA.  

They found that the rats that had intermediate levels of D1R activation (i.e. 

H/SKF38393 and NH/SCH23390 rats) had optimum memory performance 

(Maroun and Akirav, 2009).  It was also found that systemic administration of 

SKF 38393 immediately after object recognition training enhanced memory, 
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whereas enhancement by the non-selective DA agonist apomorphine 

administered immediately after training was blocked when preceded by SCH 

23390 treatment, implying D1R involvement  (De Lima et al., 2011).  Other 

studies have shown the involvement of D1R in inhibitory avoidance 

consolidation.  It was found that dopamine deficient (DD) and D1R KO mice 

have impaired short-term (10 min) and long-term (24 hr) inhibitory avoidance 

memory (Fadok et al., 2009).  Restoration of DA levels in DD mice by 

administration of L-DOPA enabled memory formation if administered 

immediately after training, indicating the involvement of DA in memory 

consolidation.  DA restoration selectively in the BLA rescued STM, but not 

LTM, whereas VTA DA restoration rescued both STM and LTM (Fadok et al., 

2009).   

 

Methylphenidate (prevents reuptake of DA and NA) administration into the 

BLA immediately but not six hours after inhibitory avoidance training 

enhanced memory forty eight hours later (Zheng et al., 2008).  It was also 

found that D1R antagonist infused into the amygdala or hippocampus after 

inhibitory avoidance training impaired memory when administered at certain 

time points (LaLumiere et al., 2004; Bernabeu et al., 1997; Bevilaqua et al., 

1997; Rossato et al., 2009).  DA infusions into the BLA within three hours of 

training enhanced retention when tested forty eight hours later whereas SCH 

23390 administration resulted in impairment (LaLumiere et al., 2004).  SCH 

23390 was infused into the hippocampus immediately, nine or twelve hours 

after inhibitory avoidance training.  It was found that SCH 23390 injected into 

the hippocampus twelve hours after training impaired memory seven and 

fourteen, but not two, days later whereas SCH 23390 injected immediately or 

nine hours after training had no effect (Rossato et al., 2009).  Infusion of the 

D1R agonist SKF 38393 twelve hours after training, on the other hand, was 

found to increase memory seven and fourteen, but not two, days later 

(Rossato et al., 2009).  SCH 23390 infused into the hippocampus but not the 

amygdala three or six hours, but not immediately after inhibitory avoidance, 

impaired memory whereas SKF 38393 facilitated memory formation 
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(Bernabeu et al., 1997; Bevilaqua et al., 1997).  SCH 23390 administered into 

the CA1 immediately after inhibitory avoidance training did not affect LTM (24 

hr) but enhanced STM (1.5 hr).  Administration into the EC on the other hand, 

impaired LTM but not STM.  SKF 38393 into the CA1 and EC impaired STM but 

not LTM (Izquierdo et al., 1998).  Studies investigating contextual and cued 

fear memory consolidation however, have reported mixed results.  

Amphetamine infusion into the dHC immediately after auditory fear 

conditioning was found to increase freezing (i.e. improved memory) to 

background context but not to tone presentation (White and Salinas, 2003).  

SCH 23390 infused into the CA1 immediately after CFC, attenuated the 

enhancement in CFC brought about by systemic corticosterone, indicating 

that D1R are involved in modulating the actions of glucocorticoids in the 

hippocampus (Liao et al., 2013).  Administration of SCH 23390 immediately 

after CFC had no effect (Inoue et al., 2000; Bai et al., 2009).  These studies are 

outlined in chapter three in more detail. 

 

D1Rs have also been proposed to be important in the synthesis of PRPs as 

outlined by the synaptic tagging and capture hypothesis (see above).  It has 

been proposed that D1Rs are involved in the synthesis of PRPs (Wang et al., 

2010; Sajikumar and Frey, 2004).  Protein kinase Mζ, an isoform of PKC, has 

been proposed to be a PRP that is induced by DA activity (Navakkode et al., 

2010).  In another study, L-LTP was induced in one synapse S1 in hippocampal 

slices.  SCH 23390 was then applied followed by stimulation of a second 

synapse S2.  L-LTP occurred normally in both S1 and S2, indicating that D1R 

activated proteins whose synthesis was initiated by S1 stimulation can be 

used for L-LTP at S2 (Sajjkumar and Frey, 2004).  It has also been shown that L-

LTP inducing stimulation of one pathway in the presence of SCH 23390 (which 

would normally impair it) was rescued by stimulation of a different pathway 

prior to SCH 23390 application (Wang et al., 2010).  In the behaving animal it 

was found that novel exploration, which has been shown to result in 

increased DA release, prior to episodic-like memory formation in the presence 

of SCH 23390 can rescue that memory (Wang et al., 2010). 
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1.4.8 Dopaminergic Modulation of Retrieval 

Studies investigating the involvement of DA in the retrieval of memory have 

produced mixed results.  In one study rabbits underwent auditory fear 

conditioning where presentation of a tone (CS+) was associated with a shock 

to the pinna.  Recordings from DA neurons in the VTA of rabbits showed that 

the majority of these neurons increased in activity following CS+ presentation 

whereas other neurons decreased their activity (Guarraci and Kapp, 1999).  

Intra-mPFC infusion of cis-flupenthixol (D1/D2R antagonist) was found to 

impair the retrieval of auditory fear (Pezze et al., 2003).  In another study 

electrical stimulation of the VTA was found to increase FPS amplitudes 

(Borowski and Kokkinidis, 1996). However, intra-VTA administration of SCH 

23390 or SKF 38393 prior to FPS testing was not found to affect retrieval (De 

Oliveira et al., 2009).  Likewise systemic or intra-amygdala infusion of SCH 

23390 had no effect (Greba and Kokkinidis, 2000).  Infusions of SCH 23390 or 

SKF 38393 into the hippocampal formation had no effect on retrieval of 

inhibitory avoidance (Izquierdo et al., 1998).  However, in another study, CA1 

and EC infusions of SCH 23390 impaired retention of inhibitory avoidance 

whereas SKF 38393 enhanced it but intra-amygdala infusions had no effect 

(Barros et al., 2001).  D1Rs appear to be required for the retrieval of object 

recognition memory in some circumstances (Hotte et al., 2005).  The D1R 

agonist SKF 81297 was administered systemically prior to testing of object 

recognition either fifteen minutes or four hours after training.  It was found 

that at the fifteen minute delay SKF 81297 at high or low doses left the rats 

unable to recognise the familiar object and therefore exploration of both 

novel and familiar objects was similar compared with controls, who explored 

the novel object more.  At the four hour delay however, rats given the high 

dose of SKF 81297 showed enhanced object recognition retrieval compared 

with the rats administered a low dose or saline (Hotte et al., 2005).  Western 

blot analysis showed that phosphorylated DARPP-32 levels in the PFC were 

increased in SKF 81297 treated rats following the four hour but not the fifteen 

minute delay (Hotte et al., 2006).  Other research has shown the involvement 

of the D1Rs in the retrieval of fear using a second order conditioning paradigm 
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(Nader and LeDoux, 1999).  SCH 23390 was infused directly into the BLA prior 

to the CS1 being paired with the CS2 and this resulted in impairment of 

second order fear conditioning, indicating that D1Rs are needed for retrieval 

(Nader and LeDoux, 1999).  D1R activation in the mPFC was found to be 

important in the retrieval of olfactory fear-conditioning (Lauzon et al., 2009).  

Systemic administration of SCH 23390 was not found to impair the retrieval of 

contextual fear (Inoue et al., 2000).  However other research has shown that 

SCH 23390 infused into the shell sub-region of the nucleus accumbens and 

anterior cingulate cortex increased rather than decreased freezing during 

contextual fear retrieval (Albrechet-Souza et al., 2013) and the DA agonist 

amphetamine was found to impair the retrieval of auditory fear (Pezze et al., 

2003).  

 

1.4.9 Dopaminergic Modulation of Reconsolidation 

There have not been many previous studies looking at the involvement of DA 

in the reconsolidation of fear memories.  However object recognition, passive 

avoidance memory in chicks and PCA have been investigated with mixed 

findings.  The effects of infusing SCH 23390 (D1R antagonist) and SKF 38393 

(D1R agonist) into the PFC on the consolidation and reconsolidation of 

recognition memory was tested using habituated (low arousal) and non-

habituated (high arousal) rats with low and high corticosteroid, and therefore 

DA levels, respectively (see above).  It was found that the habituated group 

had impaired reconsolidation when infused with SKF 38393 but SCH 23390 

infusion had no effect, whereas reconsolidation was impaired by both drugs in 

the non-habituated group (Maroun and Akirav, 2009).   The effect of SCH 

23390 on reconsolidation in day old chicks using the single-trial passive 

avoidance task was studied.  This involved training the chicks with balls 

covered in the aversive tasting methyl anthranilate.  The chicks were then 

injected with SCH 23390 five minutes before reactivation.  Their memory was 

tested by assessing their subsequent pecking rate on a dry ball.  It was found 

that memory was impaired, implying that D1Rs are critically involved in the 

reconsolidation of passive avoidance in chicks (Sherry et al., 2005).  
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Amphetamine however, was not found to have an effect on reconsolidation of 

PCA using a sucrose reward (Blaiss and Janak, 2007). In another study 

however, it was found that injecting amphetamine immediately after 

reactivation resulted in enhancement of morphine CPP, indicating DA and/or 

NA involvement (Blaiss and Janak, 2006). 

 

1.3.10 Dopaminergic Modulation of Destabilization 

Research undertaken using reward paradigms, has shown the involvement of 

dopamine neurons in the VTA in learning mediated by prediction error.  

Prediction error has been proposed to be required for memory destabilization 

(see above), indicating that DA could be important in the destabilization 

process.  DA neurons in the midbrain, including the SN and VTA, of monkeys 

have been shown to respond in a bidirectional way to positive and negative 

reward prediction error.  Positive prediction error leads to these neurons 

increasing their activity whereas negative prediction errors result in neuronal 

depression (Schultz, 2013).  A linear relationship between the probability of a 

prediction error occurring was also found in these neurons (Fiorillo et al., 

2003).  Other research using fMRI has shown that human brain regions which 

have strong DA projections such as the putamen (part of the striatum) and 

nucleus accumbens are activated by reward prediction errors.  In one study a 

delayed incentive task was used where a cue represented the probability of 

obtaining a monetary reward if the subjects completed a simple task 

correctly.  It was found that nucleus accumbens activity was high during the 

maximum level of positive prediction error (e.g. when the participants won 

despite only being cued with a 25% probability of winning) and was lowest 

during the minimum level of negative prediction error (e.g. when the 

participants lost despite being cued with a 75% probability of winning) (Abler 

et al., 2006).  In another study human participants were trained to associate a 

light presentation with delivery of juice six seconds later.  To test temporal 

prediction errors ‘catch events’ were introduced in which the juice reward 

was delayed to ten seconds after the light presentation.  Therefore a positive 

prediction error was created at the ten second time point (as participants 
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received an unexpected reward) and a negative prediction error was created 

at the six second time point (as the participants expected to gain a reward but 

did not).  It was found that activity in the left and, to a lesser extent, right 

putamen was increased during the positive prediction error and decreased 

during the negative prediction error (McClure et al., 2003).  Bilateral ventral 

striatum activation was correlated with both positive and negative reward 

prediction errors.  L-DOPA (DA metabolic precursor) was found to enhance 

the blood oxygen level dependent signal compared with haloperidol (D2R 

antagonist), for the positive but not the negative prediction error (Pessiglione 

et al., 2006).  Other research has used the Pavlovian over-expectation method 

in rats (Takahashi et al., 2009).  In this task the rats first learnt to associate 

two auditory cues and one visual cue with delivery of three sucrose pellets 

into a food cup.  The rats then underwent compound conditioning in which 

the visual cue and one of the auditory cues were paired together, resulting in 

delivery of three sucrose pellets for both cues rather than for each cue 

individually that the rats had been used to receiving.  A negative prediction 

error was therefore created.  After this the rats were tested for the amount of 

time they placed their noses in the food cap following presentation of all the 

cues individually.  It was found that the rats spent less time waiting for the 

cues that had been compounded, indicating that they had learnt that these 

cues were no longer rewarded as well as the others.  Inactivation of DA 

neurons in the VTA prior to compound conditioning resulted in these rats not 

altering their response to the less well rewarded cues during testing, 

indicating that the VTA is important for learning following negative prediction 

error (Takahashi et al., 2009).  In another study using an appetitive goal-

tracking paradigm it was found that a mix of muscimol and baclofen (GABAB 

receptor agonist) infused into the VTA prior to reactivation prevented the 

normally amnesic effect of systemic MK-801 when administered after 

reactivation (Reichelt et al., 2013).  This indicated the involvement of VTA 

neuronal activity in destabilization following negative prediction error.  The 

VTA however, was not thought to be the site of this destabilization as intra-

VTA APV or Mk-801 prior to reactivation did not mimic the effects of systemic 
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MK-801 administration and impair memory reconsolidation, implying that 

other brain regions are involved in the process (Reichelt et al., 2013). 

 

1.3.11 Dopaminergic Modulation of Extinction 

Researchers have started to investigate the role of DA in associative memory 

extinction.  These studies have utilized dopamine agonists and antagonists 

and genetic knockout mice and have yielded mixed results.  In one study 

methylphenidate was administered systemically prior to or immediately after 

contextual fear extinction training.  It was found to improve subsequent 

retention (Abraham et al., 2012).  Systemic administration of the DA agonist’s 

amphetamine or cocaine or the D1R agonist SKF 38393 prior to FPS extinction 

training blocked extinction, leading to fear enhancement (Borowski and 

Kokkinidis, 1998).  D1R KO mice were found to have impaired extinction of 

passive avoidance and contextual fear (EL-Ghundi et al., 2001).  Auditory fear 

extinction was impaired by intra-PFC, but not intra-BLA, infusion of SCH 23390 

(Hikind and Maroun, 2008).  Intra-CA1 infusion of SCH 23390 impaired and 

SKF 38393 enhanced the extinction of both inhibitory avoidance and 

contextual fear (Fiorenza et al., 2012).  Intra-BLA and intra-mPFC infusions of 

SCH 23390 and SKF 238393 on the other hand, had no effect on contextual 

fear extinction.  Intra-BLA and intra-mPFC SCH 23390 impaired the extinction 

of inhibitory avoidance but SKF 38393 had no effect (Fiorenza et al., 2012).  

Extinction of CPP using cocaine was also found to depend on D1Rs (Fricks-

Gleason et al., 2012).  Systemic SCH 23390 was administered immediately 

following subsequent unreinforced extinction sessions.  It was found that SCH 

23390 increased the time for extinction to occur (i.e. no preference for the 

drug associated compartment), indicating the involvement of D1Rs in the 

extinction of appetitive memory (Fricks-Gleason et al., 2012).  However, other 

studies have failed to find an involvement of DA or D1Rs in fear memory 

extinction.  Systemic administration of amphetamine at high or low doses was 

not found to enhance extinction of auditory fear memory (Mueller et al., 

2009; Carmack et al., 2010) and D1R KO mice were not found to have 

impaired extinction of contextual or auditory fear (Ortiz et al., 2010).  In the 
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reward literature negative prediction error following reward omission has 

been proposed to result in extinction learning (Schultz, 2000).  This has been 

shown in a study where rats that had previously been trained to associate a 

tone with delivery of sucrose, underwent extinction training which involved 

sucrose omission.  A negative prediction error was therefore created.  It was 

found that if DA neurons within the VTA were optogenetically activated 

during this prediction error (e.g. when these neurons would normally 

decrease their firing rates) then extinction learning was reduced (Steinberg et 

al., 2013).  

 

1.3.12 Dopaminergic Modulation of Anxiety Disorders 

The involvement of DA in anxiety disorders is starting to be investigated.  It 

was found that the SLC6A3 3’ variable number tandem repeat polymorphism 

of the DAT gene, which is linked to increased DA levels, was higher in PTSD 

compared with trauma-exposed non-PTSD controls (Segman et al., 2002).  

Plasma DA levels were also found to be increased in PTSD (Hamner and 

Diamond, 1993). In another study, homozygotes for the Val allele (Val/Val) of 

the val158met polymorphism of the COMT enzyme, which is associated with 

greater COMT activity, showed greater reacquisition (fear conditioning 

conducted after extinction has occurred) when extinction training was 

conducted six hours, but not ten minutes, after reactivation (Agren et al., 

2012). 
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1.5 Aims and Objectives 

The aims for the work carried out in this thesis were to investigate the role of 

D1Rs in the different learning and memory stages of contextual fear.  The D1R 

selective antagonist SCH 23390 was therefore used.  In the first set of 

experiments outlined in chapters three and four, the effects of systemic 

(chapter three) and central (chapter four) administration of SCH 23390 on 

acquisition and consolidation was investigated.  It has already been 

demonstrated that systemic SCH 23390 impairs acquisition but not the 

consolidation of contextual fear (Inoue et al., 2000).  The experiments 

undertaken in chapter three replicated this work.  Previous research has 

shown that intra-dHC SCH 23390 impairs the acquisition of other types of 

memory, such as spatial (O’Carroll et al., 2006) and episodic-like (Bethus et al., 

2010), however working memory in the radial maze was not impaired 

(Wilkerson and Levin, 1999).  Intra-BLA infusion of the D1R agonist SKF 82958 

was found to enhance the acquisition of contextual fear (Biendenkapp and 

Rudy, 2009), whereas it was found that intra- BLA SCH 23390 impaired the 

acquisition of FPS in one study (Greba and Kokkinidis, 2000) but not another 

(De Oliveira et al., 2011).  It has not previously been shown if central 

administration of SCH 23390 into the BLA or dHC impairs the acquisition of 

contextual fear.  The experiments undertaken in chapter four therefore 

extend previous research by administering SCH 23390 into either the dHC or 

BLA prior to CFC. 

 

In the second set of experiments, outlined in chapters five and six, the effects 

of systemic SCH 23390 on contextual fear retrieval, reconsolidation, extinction 

and destabilization are investigated.  Previous systemic research has shown 

that SCH 23390 did not impair contextual fear retrieval (Inoue et al., 2000). 

The reconsolidation of passive avoidance was impaired by systemic SCH 

23390 administration (Sherry et al., 2005).  Systemic administration of the 

non-selective DA agonist methylphenidate before and after contextual fear 

was found to improved auditory fear extinction (Abraham et al., 2012) 

whereas amphetamine did not (Mueller et al., 2009; Carmack et al., 2010) and 
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systemic SCH 23390 impaired the extinction of CPP (Fricks-Gleason et al., 

2012).  The experiments in chapters five therefore repeat previous research 

by testing the effect of systemic SCH 23390 prior to the retrieval of contextual 

fear. They also extend previous research by testing the effect of systemic SCH 

23390 administration prior to and immediately after reconsolidation and 

extinction sessions.  In chapter six, the effect of SCH 23390 on the 

destabilization of contextual fear was investigated as this has not been tested 

before.  
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Chapter Two 
General Methods and Validation Studies 
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2.1 General methods 

The general methods used for the experiments discussed in this thesis have 

been outlined below.  Validation studies were carried out to determine the 

CFC parameters to be used.  The first validation study determined the most 

suitable number of footshocks to use.  The second and third validation studies 

investigated the effect of systemic NMDAR antagonism on CFC and its 

reconsolidation. 

 

2.1.1 Animals 

Male Lister hooded rats (Harlan, UK), weighing 250-400g were housed in 

groups of four on arrival to the animal unit and kept on a twelve hour 

light/dark cycle (lights on at 6:30am) with ad libitum food (standard chow) 

and water.  They were habituated to handling (three days for two minutes 

each) before experiments were undertaken.  The rats that were implanted 

with guide cannulae (see chapter 4) were housed separately after surgery and 

allowed at least five days to recover prior to behavioural testing.  All methods 

used were conducted in accordance with the Animals (Scientific Procedures) 

Act 1986.  A total of three hundred and twenty animals were used for the 

experiments carried out in this thesis. 

 

2.1.2 Drugs 

For systemic administration studies, SCH 23390 (Tocris, UK) and MK-801 

(Sigma-Aldrich, UK) were made up fresh on the morning of use to the required 

concentration (0.1mg/kg) by dissolving in sterile saline (0.9%; 1 ml/kg).  These 

doses of SCH 23390 and MK-801 have previously been shown to impair fear 

conditioning or fear memory reconsolidation (Inoue et al., 2000; Lee et al., 

2006).  SCH 23390 or MK-801 was injected either thirty minutes before or 

immediately after conditioning, reactivation or extinction sessions (see 

below). Controls received saline injections.  All systemic drug administration 

experiments in this thesis used i.p. injections.  Details on central drug 

infusions are presented in chapter four. 
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2.1.3 Behavioural Procedures  

Contextual fear conditioning:  

Fear conditioning took place in two chambers from Med Associates (base: 30 

x 24 cm, height: 30 cm) connected to an electric shock generator which 

delivered constant current shocks via the metal grid floor.  A speaker and light 

were mounted on the side of the chamber.  The light came on at the 

beginning of the conditioning and memory testing sessions and stayed on 

throughout, this added to the contextual background.  White noise (60 dB) 

was also played throughout to lessen the impact of outsight noise.  The 

chambers were decorated with either stripes or spots and cleaned with 40% 

ethanol solution to provide a distinctive contextual background for the rats. 

 

During conditioning the rats were individually placed into either one of the 

two chambers.  In the first validation study, the rats waited two minutes 

before receiving either four or six unsignalled footshocks (one minute inter-

trial interval (ITI)) and were removed two minutes after the last shock (see 

below).  In all subsequent experiments the rats received four footshocks 

during conditioning.  For the systemic drug injection experiments, the 

footshocks were half a mA and lasted for half a second. The duration of the 

footshocks was increased to one second for the central drug infusion 

experiments because rats with implants are less sensitive to footshock 

administration.   For the acquisition and consolidation experiments, the rats 

were returned to the same chamber twenty four hours and seven days after 

conditioning for a two minute LTM retention test, during which their 

behaviour was digitally recorded.  Videos were later analysed for freezing 

behaviour.  Freezing behaviour (defined as no movement apart from that 

required for respiration) was scored manually by observation at three-second 

intervals and calculated as a percentage of the two minute test sessions.  The 

animals were randomly assigned to groups and the scoring was carried out 

blind to condition by two observers. 
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For the reconsolidation and destabilization experiments, the rats were 

conditioned as above. However, they received a two minute reactivation 

session twenty four hours later, where they were returned to the same 

chamber before undergoing two minute PR-LTM retention tests twenty four 

hours and seven days after the reactivation session.  Behaviour was digitally 

recorded during each session and freezing behaviour was assessed during the 

last two minutes of the conditioning session, the reactivation session and the 

twenty four hours and seven day PR-LTM retention sessions. 

 

For the extinction experiments the rats were conditioned as above, however, 

they then underwent an extinction session twenty four hours later, where 

they were returned to the same chamber as conditioning for twenty minutes 

without receiving any footshocks.  They then underwent retention testing 

twenty four hours and seven days after the extinction session.  Behaviour was 

digitally recorded during each session and freezing behaviour was assessed 

during the last two minutes of the conditioning session, the first and last two 

minutes of the extinction session, and the twenty four hour and seven day 

retention sessions.  

 

Open Field:  

Some of the same rats that were fear conditioned were later tested in the 

open field (black perspex, base: 100 x 100 cm, enclosing wall: 50 cm high) to 

examine the effects of SCH 23390 on locomotor activity and innate fear.  All 

rats were introduced into the apparatus at the same peripheral location and 

the testing was conducted in a dimly lit room for ten minutes.  Behaviour was 

recorded with a video camera positioned directly above the arena for later 

analysis (see below). The rats that were given SCH 23390 or vehicle 

systemically were placed individually into the open field arena either thirty 

minutes or twenty four hours later.  The rats that were infused with SCH 

23390 or vehicle into the dHC or BLA were placed individually into the arena 

ten minutes after microinfusion (see below). Open field data were analysed 
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using Ethovision software and the following variables were quantified: total 

distance moved, rearing, and time spent in the centre. 

 

Shock Sensitivity: 

Some of the same rats that were fear conditioned were later assessed for 

their shock sensitivity threshold.  The rats were injected with SCH 23390 or 

saline thirty minutes before being placed into a novel chamber and, after ten 

minutes of habituation, were administered ten footshocks (one minute ITI) 

increasing in intensity from 0.05-0.5 mA.  Behaviour was recorded and the 

threshold for the first flinch (raising hind paws briefly off the bars) and first 

audible vocalization following footsock administration was assessed in each 

rat (Quick et al., 2000). 

 

2.2 Validation Studies 

The first validation study was carried out to assess the optimal number of 

footshocks to administer during conditioning in order to obtain moderate (i.e. 

40-50%) freezing levels during subsequent memory retention tests;  this was 

to avoid potential floor or ceiling effects.  In the second validation study the 

NMDAR antagonist MK-801 was administered systemically (i.p.) prior to 

conditioning in order to assess the injection procedure and to replicate 

previous findings showing impaired conditioning with this treatment. In the 

third validation study MK-801 was administered systemically prior to 

reactivation to assess the effects of NMDAR antagonism on reconsolidation. 

 

2.2.1 Four vs Six Footshocks on Contextual Fear Conditioning 

 

Methods 

The contextual fear apparatus and procedure have been outlined in detail in 

section 2.1. Half the rats (n=10) received six footshocks, whereas the other 

half (n=10) received four footshocks during conditioning.  Two-way mixed 

analysis of variance (ANOVA) was used to analyse the freezing levels, with 

footshock (four or six) as the between-subject factor and memory testing 
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session (e.g. conditioning (COND), reactivation (REACT), 24 hr and 7 d) as the 

within-subject factor.  All data are presented as the mean + standard error of 

the mean (SEM). 

 

Results 

Both six and four footshocks led to freezing behaviour after the last shock 

during the conditioning session, during reactivation (also equivalent to LTM 

testing 24hrs after conditioning), and during PR-LTM testing twenty four hours 

and seven days after reactivation (see Fig 2.1).  A two-way mixed ANOVA 

revealed no main effect of footshock (F(1,18)=0.393, P>0.05) and no footshock x 

time interaction (F(3,54)=0.292, P>0.05).  Both six and four footshocks resulted 

in freezing behaviour of ~80% in the last two minutes of the conditioning 

session and for the reactivation session 46% and 54% respectively.  Six 

footshocks resulted in freezing levels of around 30% during the twenty four 

hour and seven day PR-LTM retention sessions, whereas four footshocks 

resulted in freezing levels of 38% and 36%  during the twenty four hour and 

seven day PR-LTM retention sessions respectively. 
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Discussion 

An optimum freezing level of 40-50% during reactivation (i.e. LTM testing) was 

achieved by administering four footshocks during the conditioning session, 

freezing did not differ significantly between rats conditioned using four or six 

shocks.  To minimise unnecessary suffering experienced by the rats and 

Fig 2.1 The effect of six vs four 
footshocks (FS).  There were 
no differences in freezing 
between six and four FS 
during contextual fear 
reactivation (REACT), PR-LTM 
24 hr after reactivation (PR-
LTM1) and PR-LTM 7 d after 
reactivation (PR-LTM7) 
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because strong conditioning has previously been shown to be more resistant 

to undergoing reconsolidation (Suzuki et al., 2004), the experiments in this 

thesis were therefore all conducted using a four footshock CFC protocol. 

 

2.2.2 Systemic NMDA Receptor Antagonism during Contextual Fear 

Conditioning 

 

Introduction 

The second validation study was undertaken to assess the systemic injection 

procedure and to determine if conditioning using the four footshock protocol 

could be effectively impaired by NMDAR antagonism.  Previous research has 

shown that NMDA receptor antagonists impair many different types of 

memory acquisition.  For example, systemic injection of MK-801 was found to 

impair the acquisition of tasks in the Morris water maze, T-maze, passive 

avoidance and object recognition (van de Staays et al., 2011) and CFC (Gould 

et al., 2002). MK-801 or vehicle was injected thirty minutes prior to CFC.   

 

Methods 

The methods for this experiment are outlined in detail in section 2.1.  Briefly, 

MK-801 (n=8) or vehicle (n=7) was injected i.p. thirty minutes prior to CFC.  

Two minute LTM retention sessions were conducted twenty four hours and 

seven days later, during which freezing behaviour was assessed.  Two-way 

mixed ANOVA was used to analyse the freezing levels, with drug (MK-801 or 

vehicle) as the between-subject factor and memory testing session (e.g. 

COND, 24 hr and 7 d) as the within-subject factor.  All data are presented as 

the mean + SEM. 

 

Results 

It was found that, compared to vehicle, systemic MK-801 given prior to CFC 

impaired freezing during the last two minutes of the conditioning session and 

during subsequent memory retention sessions twenty four hours and seven 

days later (See Fig 2.2).  Analysis of freezing behaviour using a two-way 
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ANOVA revealed a significant main effect of drug (F1,13=5.974, P<0.05) but no 

drug x time interaction (F2,26=1.369, P>0.05).  
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Discussion 

It was found that systemic NMDA receptor antagonism impaired the 

acquisition of contextual fear.  MK-801 given prior to conditioning led to 

reduced freezing at the end of the conditioning session and during the LTM 

retention sessions twenty four hours and seven days later.  This is in 

agreement with a previous study showing that systemic and intra-

hippocampal MK-801 prior to conditioning impaired contextual but not 

auditory fear (Gould et al., 2002; Bast et al., 2003).  Other studies using the 

NMDA receptor antagonist APV were also found to impair CFC with intra-

ventricular (Kim et al., 1991) intra-amygdala (Maren et al., 1996b) and intra-

hippocampal (Young et al., 1994) infusion.  This study demonstrates that the 

injection procedure was carried out correctly and that the conditioning 

procedure using four footshocks gives an optimum level of freezing behaviour 

that is able to be reduced by NMDAR antagonism. 

 

 

 

 

 

Fig 2.2 The effect of NMDA 
receptor antagonism on 
contextual fear conditioning.  
MK-801 prior to conditioning 
decreased freezing in the last 
two minutes of the conditioning 
session (COND) and during the 
retention sessions (*P<0.05) 
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2.2.3 Systemic NMDA Receptor Antagonism during Contextual Fear 

Reactivation 

 

Introduction 

The third validation study was undertaken to determine if the conditioning 

paradigm allows for pharmacological disruption of reconsolidation.  Previous 

research has shown that NMDAR antagonists impair reconsolidation.  For 

example, systemic injection of MK-801 was found to impair auditory fear 

reconsolidation (Lee et al., 2006).  MK-801 or vehicle was injected thirty 

minutes prior to contextual fear memory reactivation.  To the best of our 

knowledge this has not been tested before, for contextual fear. 

 

Methods 

The methods for this experiment are outlined in detail in section 2.1.  Briefly, 

MK-801 (n=9) or vehicle (n=9) was injected i.p. thirty minutes prior to 

contextual fear reactivation.  Two minute PR-LTM retention sessions were 

conducted twenty four hours (PR-LTM1) and seven days (PR-LTM7) later, 

during which freezing behaviour was assessed.  Two-way mixed ANOVA was 

used to analyse the freezing levels, with drug (MK-801 or vehicle) as the 

between-subject factor and memory testing session (e.g. COND, REACT, PR-

LTM1 and PR-LTM7) as the within-subject factor.  All data are presented as 

the mean + SEM. 

 

Results 

It was found that, compared to vehicle, systemic MK-801 given prior to 

contextual fear reactivation impaired freezing behaviour (see Fig 2.3).  

Analysis of freezing behaviour using a two-way ANOVA revealed a main effect 

of drug (F(1,15)=5.747, P<0.05) and a drug x time interaction (F(3,45)=3.364, 

P<0.05).  Post hoc analysis using independent t-tests indicated that freezing 

behaviour was significantly decreased during the reactivation session and PR-

LTM1 twenty four hours later (P<0.05).  As only three groups were used and a 

significant F value was obtained the max type one error rate is held at the 
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chosen level of 5% and therefore the post hoc analysis does not need to be 

corrected for repeated measures (Cardinal and Aitken, 2006). 
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Discussion 

Systemic administration of MK-801 prior to reactivation was found to impair 

contextual fear reconsolidation.  Freezing behaviour was reduced in the drug 

group during post reactivation testing sessions twenty four hours later.  This 

has, to the best of our knowledge, not previously been demonstrated and 

indicates the involvement of NMDARs in the reconsolidation of contextual 

fear.  This finding is in agreement with research undertaken using other 

memory paradigms.  Systemic MK-801 prior to reactivation impaired 

reconsolidation of auditory fear (Lee et al., 2006), appetitive memory (Lee and 

Everitt, 2008) and drug seeking associative memory (Milton et al., 2008).  In 

another study systemic MK-801 prior to reactivation of an appetitive goal 

tracking task was found to impair PR-LTM if six, but not twelve or three days 

of training were given (Reichelt and Lee, 2012). This result indicates that the 

CFC procedure used in our experiment was not too strong and therefore able 

to undergo reconsolidation and also that a reactivation session of two 

minutes was adequate for reconsolidation to occur. 

 

 

 

Fig 2.3 The effect of NMDA 
receptor antagonism on 
contextual fear 
reconsolidation. MK-801 prior 
to reactivation impaired 
freezing levels during 
reactivation (REACT) and PR-
LTM 24 hr (PR-LTM1) but not 7 
d (PR-LTM7) later (*P<0.05) 
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Chapter Two Summary 

The effect of administering four vs six footshocks was tested in order to 

determine what CFC protocol to use for the experiments undertaken in this 

thesis.  Both four and six footshocks led to optimal freezing levels of around 

50% during the reactivation session, therefore in order to minimise rat 

suffering, a four footshock protocol was used for all subsequent experiments 

outlined in this thesis.  The effect of systemic NMDAR antagonism on 

contextual fear was also investigated.  It was found that MK-801 administered 

prior to CFC impaired its acquisition in agreement with previous research.  It 

was also found that MK-801 administration prior to contextual fear 

reactivation impaired reconsolidation.  To the best of our knowledge this has 

not previously been demonstrated.  These results validate the i.p. injection 

procedure, the MK-801 dose and the contextual fear behavioural parameters 

used in the experiments contained within this thesis. 
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Chapter Three 
Systemic D1 Receptor Antagonism during 

Contextual Fear Acquisition and 

Consolidation 
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3.1 Introduction 

Activation of D1Rs has been shown to lead to the initiation of a number of 

molecular pathways that are thought to be involved in initial fear memory 

formation.  D1R stimulation results in the activation of adenylate cyclase 

which leads to increased levels of cAMP which, in turn, activates PKA.  It was 

found that intraventricular infusion of PKA inhibitors impaired contextual fear 

memory consolidation (Schafe et al., 1999).  Both the cAMP/PKA and PLC 

pathways culminate in the activation of the transcription factor CREB, which 

can initiate synthesis of new proteins and lead to modulation of ion channels.  

It has been shown that CREB KO mice also have impaired CFC (Bourtchouladze 

et al., 1994).  Other evidence for the involvement of DA in fear memory 

acquisition has also been obtained using transgenic mice.  D1R KO mice have 

been shown to have reduced contextual and cued fear conditioning (Ortiz et 

al., 2010), and DA deficient and D1R KO mice were found to have impaired 

inhibitory avoidance memory (Fadok et al., 2009). 

 

Previous research using DA, and D1R antagonists and agonists, has also been 

undertaken.  In one study withdrawal from chronic amphetamine prior to 

conditioning was found to enhance memory formation; freezing behaviour in 

amphetamine pre-treated rats was increased during conditioning and 

subsequent tone alone memory testing sessions (Pezze et al., 2002).  Another 

DA agonist, apomorphine, was found to enhance two-way avoidance learning 

as apomorphine injected rats learnt faster than saline injected controls (Reis 

et al., 2004).  Other studies have made use of the selective D1R antagonist 

SCH 23390.  Systemic SCH 23390 prior to fear training has been found to 

impair FPS (Greba and Kokkinidis, 2000) and two-way avoidance learning (Reis 

et al., 2004).  It has been previously demonstrated that systemic 

administration of SCH 23390 given before CFC impairs freezing behaviour 

twenty four hours later (Inoue et al., 2000; Calzavara et al., 2009), whereas 

SCH 23390 administered immediately after CFC does not impair freezing 

behaviour twenty four hours later (Inoue et al., 2000; Bai et al., 2009). 
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Chapter Three Aims 

The experiments in this chapter re-examine previous research looking at the 

effects of systemic SCH 23390 administrations either before or immediately 

after CFC in rats.  To eliminate the possibility that the effect of SCH 23390 on 

fear learning was a result of non-specific effects on locomotion or pain 

sensitivity, the rats were also tested in the open field thirty minutes and 

twenty four hours after drug administration and had their shock sensitivity 

threshold assessed. 

3.2 Methods 

The methods used in this chapter have been outlined in chapter two.  Briefly, 

in the CFC experiments, SCH 23390 or saline was injected either thirty minutes 

before (SCH 23390 n=10, saline n=10) or immediately after (SCH 23390 n=10, 

saline n=10) CFC (four 0.5mA, half second footshocks; one minute ITI).  The 

rats underwent a two minute retention test twenty four hours and seven days 

after conditioning.  Freezing behaviour at the end of conditioning and during 

LTM testing was subsequently scored.  In the open field experiments, SCH 

23390 or saline was injected either thirty minutes (SCH 23390 n=11, saline 

n=9) or twenty four hours (SCH 23390 n=9, saline n=9) prior to placement in 

the open field arena for ten minutes.  The total distance moved and time 

spent in the inner-zone of the arena for each rat was obtained using Ethovison 

software.  Rearing behaviour was assessed manually by the experimenter at 

the time of testing.  In the shock sensitivity threshold experiment, rats were 

injected with SCH 23390 (n=10) or saline (n=10) thirty minutes prior to 

placement in novel chambers, where they received ten footshocks increasing 

in intensity from 0.05-0.5 mA.  Behaviour was recorded and the rats’ 

thresholds to flinch and to vocalize were both assessed.  

 

Two-way mixed ANOVAs were used to analyse the freezing levels, with drug 

(SCH 23390 or vehicle) as the between-subject factor and memory testing 

session (24 hr and 7 d) as the within-subject factor in the CFC experiments.  In 

the pain sensitivity experiment drug was the between-subject factor (SCH 
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23390 or vehicle) and shock intensity was the within-subject factor (flinch and 

vocalize).  Open field data were analysed using Ethovision software.  Unpaired 

t-tests were used to compare the total distance moved, the rearing frequency 

(defined as lifting of front paws into the air or onto the wall of the arena) and 

percentage of time spent in the centre of the open field between the drug and 

saline treated groups.  All data are presented as the mean + SEM.  

 

3.3 Results 

3.3.1 Effect of Systemic D1 Receptor Antagonism on Contextual Fear 

Administration of SCH 23390 thirty minutes before CFC impaired freezing 

behaviour twenty four hours later (see Fig 3.1).  Analysis of freezing behaviour 

when drug was given before conditioning using a two-way ANOVA revealed a 

significant main effect of drug (F(1,18)=5.578, P<0.05) and drug x time 

interaction (F(1,18)=14.039, P<0.01).  Post hoc analysis using an independent t-

test indicated that freezing behaviour was significantly decreased during LTM 

testing twenty four hours later (P<0.01).  As SCH 23390 was found to effect 

behaviour in the open field when administered thirty minutes prior to testing 

(see below), the data for freezing behaviour during the last two minutes of 

the conditioning session were not included in the analysis as non-specific 

effects of the drug could not be ruled out. 
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Administration of SCH 23390 immediately after CFC had no effect on freezing 

behaviour during memory retention sessions twenty four hours and seven 

 

Fig 3.1 The effect of D1R 
antagonism during contextual 
fear conditioning.  SCH 23390 
prior to conditioning decreased 
freezing during memory 
retention 24 hr later               
(** P<0.01).   
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days later (see Fig 3.2). Analysis revealed no significant main effects of drug 

(F(1,18)=0.224, P>0.05) and no drug x time interaction (F(2,36)=0.808, P>0.05). 
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3.3.2 Effect of Systemic D1 Receptor Antagonism on Behaviour in the Open 

Field 

To eliminate the possibility that the effects of SCH 23390 on CFC were due to 

non-specific effects of the drug on locomotion or innate fear, behaviour in the 

open field was assessed (see Fig 3.3 and 3.4).  SCH 23390 administered 

systemically thirty minutes prior to open field testing reduced total distance 

moved (t(12)=4.04, P<0.01), rearing frequency (t(18) =2.76, P<0.05) and time 

spent in the inner-zone (t(16) =2.16, P<0.05). 

 

Fig 3.2 The effect of D1R 
antagonism after contextual 
fear conditioning.  SCH 23390 
immediately after conditioning 
did not alter freezing during 
memory retention sessions. 
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However, administration of SCH 23390 twenty four hours prior to open field 

testing did not affect total distance moved (t(16)=0.266, P>0.05), rearing 

frequency (t(16)=0.478, P>0.05) or time spent in the inner-zone (t(16)=0.484, 

P>0.05). 

 

Fig 3.3 The effect of D1R antagonism 
on behaviour in the open field.  SCH 
23390  30 min prior to testing 
significantly reduced the A) total 
distance moved, B) rearing 
frequency and C) time spent in the 
inner-zone (** P<0.01, * P<0.05). 
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3.3.3 Effect of Systemic D1 Receptor Antagonism on Pain Sensitivity 

To eliminate the possibility that the effects of SCH 23390 on contextual fear 

were due to side effects of SCH 23390 on the pain experienced by the rats, 

their shock sensitivity threshold was assessed (see Fig 3.5).  A two-way 

ANOVA revealed no significant main effect of drug on shock sensitivity 

threshold (F(1,18)=0.010, P>0.05). 

 

S
h

o
c

k
 I

n
te

n
s

it
y

 (
m

A
)

f l in c h v o c a liz e

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5 S a lin e

S C H  2 3 3 9 0

 

 

Fig 3.4 The effect of D1R antagonism 
on behaviour in the open field.  SCH 
23390 24hrs before testing did not 
affect the A) total distance moved, 
B) rearing frequency or C) time spent 
in the inner-zone. 

Fig 3.5 The effect of D1R 
antagonism on pain sensitivity.  
SCH 23390 did not alter the rats' 
threshold to flinch or vocalize in 
response to footshock. 
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3.4 Discussion 

Systemic D1R antagonism during CFC was found to impair acquisition.  This 

indicates that DA acting at the D1 receptor is required during the initial 

formation of contextual fear memories.  In contrast SCH 23390 administered 

immediately after contextual fear memory had no effect on subsequent 

memory retention.  Administration of SCH 23390 thirty minutes prior to open 

field testing reduced total distance moved, rearing frequency and the time 

spent in the inner-zone, whereas administration twenty four hours prior to 

open field testing had no effect on these behaviours.  The shock sensitivity 

thresholds were similar between the drug and saline treated rats, indicating 

that SCH 23390 does not affect the pain experience of the footshock and thus 

the rats’ ability to associate it with the fear conditioning chamber due to 

impaired nociception. This confirms previous findings indicating that D1R 

antagonism has no effect on shock sensitivity (Inoue et al., 2000). 

 

3.4.1 Systemic D1 Receptor Antagonism during Acquisition  

The finding that systemic administration of SCH 23390 impairs the acquisition 

of contextual fear when administered prior to CFC is in agreement with 

previous research (Inoue et al., 2000, Calzavara et al., 2009).  Inoue and 

colleagues (2000) found that systemic SCH 23390 thirty minutes prior to CFC 

reduced freezing twenty four hours later (Inoue et al., 2000; Inoue et al., 

2005).  This reduction in freezing was found to be increased by administration 

of the D2R antagonist haloperidol at the same time, indicating D2R, as well as 

D1R involvement (Inoue et al., 2005).  Systemic SCH 23390 fifteen minutes 

prior to conditioning was also found to reduce freezing twenty four hours 

later in both spontaneously hypertensive rats and normotensive Wistar rats. 

The D2R antagonist metoclopramide, on the other hand, did not affect 

freezing in either group (Calzavara et al., 2009).  SCH 23390 also weakly 

antagonises 5-HT2 receptors (Hyttel, 1983); however, it has been shown that 

the 5-HT2 antagonist ICI169369 did not impair contextual fear acquisition, 

indicating that the effects of SCH 23390 on contextual fear acquisition result 
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from the antagonism of D1Rs and not 5-HT2 receptors (Inoue et al., 1996).  It 

can be difficult to determine if a drug given before conditioning is having an 

effect specifically on acquisition, short term or long term consolidation 

processes (Bast et al., 2001).  However, because in our study freezing 

behaviour was impaired in the last two minutes of the conditioning session, 

and SCH 23390 given immediately after conditioning did not affect freezing 

levels, it is most likely that the acquisition, as opposed to short or long term 

consolidation processes, were affected by D1R antagonism.  The shock 

sensitivity thresholds were similar between the drug and saline treated rats, 

indicating that the effects of SCH 23390 on the acquisition of contextual fear 

are a result of impaired memory acquisition rather than due to differences in 

the pain experienced by the rats. 

 

There are mixed results on the effect of SCH 23390 given prior to training in 

other fear memory paradigms. For example, administration before 

conditioning to a light stimulus paired with foot shocks reduced freezing to 

the light stimulus alone but did not affect the FPS response (De Oliveira et al., 

2006), whereas other research showed that SCH 23390 prior to fear 

conditioning did impair FPS (Greba and Kokkinidis, 2000).  Systemic SCH 23390 

prior to training was found to impair short term object recognition memory 

formation (Clausen et al., 2011).  The conflicts with previous research are 

possibly due to the memory paradigms used.  For example object recognition 

tasks may involve more complex cognitive functions as they measure the rats’ 

choices (e.g. explore or do not explore an object).  One the other hand, in CFC 

and retention testing the rats are placed into a conditioning chamber for a set 

period during which they cannot escape (i.e. they have no choice).  Therefore 

these memory paradigms likely involve different neural pathways and/or 

neurochemical mechanisms that rely differently on local D1R activation.   

The synaptic tagging and capture hypothesis postulates that during the 

induction of E-LTP active synapses are ‘tagged’ which allow them to later 

receive PRPs, enabling E-LTP to be converted to L-LTP (Frey and Morris, 1997).  
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It has been proposed that D1Rs are involved in the synthesis of PRPs (Wang et 

al., 2010; Sajikumar and Frey, 2004).  It could be that SCH 23390 given prior to 

CFC impairs the initiation of PRP synthesis and so E-LTP is not being converted 

to late L-LTP.  Therefore the rats do not remember the association between 

the fear conditioning chamber and the footshock twenty four hours later. 

3.4.2 Systemic D1 Receptor Antagonism during Consolidation 

The finding that systemic administration of SCH 23390 after CFC did not 

impair freezing behaviour twenty four hours or seven days later is in 

agreement with previous research (Inoue et al., 2000; Bai et al., 2009).  It 

would therefore seem that D1R signalling is not involved in contextual fear 

consolidation.  In one study, SCH 23390 injection thirty minutes after CFC was 

not found to impair freezing behaviour twenty four hours later (Inoue et al., 

2000).  In another SCH 23390 administered three times after CFC did not 

impair memory twenty four hours or eight days later (Bai et al., 2009).  It has 

also been shown that while SCH 23390 application during high frequency 

stimulation in CA1 slice preparations resulted in reduced LTP, SCH 23390 

application immediately after high frequency stimulation had no effect (Frey 

et al., 1991).  One possible explanation for the lack of effect of D1R 

antagonism immediately after CFC could be that D1R activation had already 

initiated PRP synthesis by the time SCH 23390 was administered.  That is, the 

mechanisms had already been set in motion and impairing D1R activity after 

CFC is too late to interfere with this.   

 

3.4.3 Systemic D1 Receptor Antagonism and Behaviour in the Open Field  

The finding that systemic SCH 23390 administered thirty minutes prior to 

open field testing significantly reduced total distance moved and rearing 

frequency is in agreement with previous research (Gessa et al., 1985; Salmi 

and Ahlenius, 2000; Clausen et al., 2011).  SCH 23390 has also been shown to 

reduce locomotion induced by D2R agonists such as the non-selective D2R 

agonist apomorphine or the selective D2R agonist Ru 24213 (Molloy et al., 

1986).  It has been proposed that high doses of SCH 23390 reduce locomotion 
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and rearing behaviour but that low doses can increase locomotion (Bruhwyler 

et al., 1991).  SCH 23390 administered thirty minutes prior to testing for ten 

minutes in the open field decreased peripheral and central ambulation at high 

doses (0.1 and 0.3mg/kg) but increased them at low doses (0.01 and 0.03 

mg/kg) (Bruhwyler et al., 1991).  However another study found that a dose of 

0.1mg/kg did not reduce locomotion (De Oliveira et al., 2006).  SCH 23390 

administered twenty four hours before open field testing did not affect total 

distance moved, rearing frequency or time spent in the inner-zone of the 

arena.  This finding indicates that SCH 23390 is no longer affecting the rats 

twenty four hours later when they undergo contextual fear memory testing, 

in agreement with the short half-life (thirty minutes) of this drug (Andersen 

and Gronvald, 1986).  The reduction in freezing behaviour observed during 

the twenty four hour and seven day memory retention sessions was therefore 

unlikely to be a consequence of non-specific effects of SCH 23390 on 

locomotion.  Given that SCH 23390 reduced the total distance moved in the 

open field it is difficult to draw conclusions on the time spent in the inner-

zone on, for example, drug induced increases in anxiety as the reduction could 

be a result of reduced locomotion overall. 

 

3.4.4 Chapter Three Summary 

The effect of systemic D1R antagonism on contextual fear was investigated.  It 

was found that SCH 23390 administered prior to CFC impaired acquisition as 

memory retention was significantly impaired twenty four hours later.  On the 

other hand SCH 23390 administered immediately after conditioning had no 

effect.  These results are in agreement with previous research.  This 

impairment of CFC acquisition by D1R antagonism is unlikely to be a result of 

non-specific effects of the drug on locomotion as administration of SCH 23390 

twenty four hours prior to open field testing did not affect total distance 

moved.  It is also unlikely to be a result of non-specific effects of the drug on 

nociception as both SCH 23390 and saline injected rats flinched and vocalized 

at the same level of footshock administration.  The experiments outlined in 
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chapter four extend these findings by exploring where in the brain this effect 

of D1R antagonism on contextual fear could be taking place. 
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Chapter Four 
D1 Receptor Antagonism in the 

Hippocampus and Amygdala during 

Contextual Fear Acquisition 
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4.1 Introduction 

The experiments outlined in chapter three showed that systemic 

administration of SCH 23390 prior to conditioning impairs the acquisition of 

contextual fear.  The logical next stage was therefore to try to determine 

which brain regions were mediating this effect.  The dHC and BLA nucleus of 

the amygdala were chosen as previous research has linked these brain regions 

with DA modulation of fear learning.  Evidence for involvement of the dHC 

and BLA in fear memory acquisition has been demonstrated using lesion 

methods.  Pre-training lesions of both the dHC (Kim et al., 1993; Young et al., 

1994) and BLA (Kim et al., 1993; Phillips and LeDoux, 1992) have been found 

to impair freezing to contextual stimuli.  These studies indicate that these 

regions are important in contextual fear acquisition under normal 

circumstances (Fanselow, 2010).  The hippocampus and amygdala receive 

dopaminergic projections from the SN-VTA forming part of the mesolimbic DA 

pathway.  Injections of [3H] leucine (an anterograde tracer) and horseradish 

peroxidase (a retrograde tracer) into VTA showed projections to the amygdala 

including to the BLA (Simon et al., 1979).  Retrograde tracing using fluorescent 

tracers such as fluoro-gold and immunocytochemistry staining for TH showed 

that dopaminergic neurons from the VTA project to the hippocampal 

formation (Gasbarri et al., 1994).  D1R are expressed in both the hippocampus 

and amygdala (Boyson et al., 1986; Weiner et al., 1991; Huang et al., 1992). 

 

Previous research has shown a link between memory acquisition and DA 

modulation in the amygdala and hippocampus.  DA levels in the hippocampus 

and DOPAC levels in the amygdala were found to be elevated following 

footshock administration (Inoue et al., 1994).  LTP is a proposed cellular model 

of memory formation and has been demonstrated in both the hippocampus 

(Bliss and Lomo, 1973) and amygdala (Rogan et al., 1997).   D1R antagonism 

has been shown to impair both E-LTP (Otmakhova and Lisman, 1996) and L-

LTP (Huang and Kandel, 1995) in the hippocampus.  Studies using D1R 

agonists and antagonists have investigated the involvement of DA in 
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numerous memory paradigms, including spatial (O’Carroll et al., 2006; Pezze 

and Bast, 2012) and episodic-like memory (Bethus et al., 2010).  The 

involvement of amygdala and hippocampal DA modulation of inhibitory 

avoidance has also been investigated.  DA deficient mice were found to have 

impaired inhibitory avoidance memory and this could be rescued by 

restoration of DA levels by L-DOPA administration in the amygdala (Fadok et 

al., 2009).  There have also been studies undertaken looking at the 

involvement of D1Rs in the acquisition and consolidation of Pavlovian fear 

memory.  Intra-BLA infusion of SCH 23390 prior to training was found to 

impair FPS acquisition (Greba and Kokkinidis, 2000).  SCH 23390 and SKF 

82958 (D1 agonist) infused prior to auditory training into the cAMY prior to 

auditory training resulted in freezing impairment and enhancement 

respectively, to both background context and tone presentations twenty four 

hours later (Guarraci et al., 1999).  Infusion of SKF 82958 into the BLA was 

found to enhance CFC (Biedenkapp and Rudy, 2009). 

Chapter Four Aims 

The aim of the experiments in this chapter was to determine if the 

impairment in the acquisition of contextual fear resulting from systemic D1R 

antagonism could be taking place in either the dHC or BLA.  Although the dHC 

and BLA are necessary under normal circumstances for contextual fear 

acquisition, the role of DA in this process remains unclear.  Therefore the 

effects of intra-dHC and intra-BLA SCH 23390 administration prior to CFC were 

examined. To eliminate the possibility that the effect of SCH 23390 on fear 

learning could result from non-specific effects on locomotion, the rats were 

also tested in the open field following intra-dHC and intra-BLA SCH 23390 

infusions. 

 

4.2 Methods 

4.2.1 Surgery 

Sixty two rats were habituated to the animal unit for one week before being 

implanted with bilateral guide cannulae (26 gauge) and stylets (33 gauge) 
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aimed at the dHC or BLA.  Anaesthesia was induced with 4-4.5% isoflurane in 

air and maintained on 1-3%.  They were placed in a stereotaxic frame and 

implanted with bilateral cannulae aimed at the following coordinates: dHC: 

4.5 mm posterior and 3 mm lateral from bregma, 3 mm ventral to the brain 

surface; BLA: 2.8 mm posterior and 4.7 mm lateral from bregma, 6.4 mm 

ventral to the brain surface.  The cannulae were secured to the skull with four 

stainless steel screws and dental cement.  For analgesia, the rats were 

injected with bupenorphine (0.05mg/kg) at the start of surgery, between six 

to eight hours later and the following morning; they were also injected with 

meloxicam (2mg/kg) at the end of surgery and received it orally for four days 

post surgery.  They were allowed to recover for at least five days before 

undergoing behavioural testing, during which time they were habituated for 

the drug microinfusions by gentle restraint followed by removal and 

reinsertion of their cannulae stylets. 

 

4.2.2 Drugs 

SCH 23390 was made up to a concentration of 5μg/μL in sterile saline.  This 

concentration of SCH 23390 has been used previously to examine the role of 

hippocampal D1R signalling in spatial memory processing (O’Carroll et al., 

2006).  In the dHC, SCH 23390 (5μg in 1 μL per side) was infused over a two 

minute period. In BLA, SCH 23390 (2.5μg in 0.5 μL per side) was infused over a 

one minute period.  The injectors, which extended 0.5mm (dHC) or 1mm 

(BLA) from the cannulae, were left in place for a further one minute to allow 

for drug diffusion before being removed.  The rats were returned to their 

home cages for ten minutes before undergoing behavioural testing. 

 

4.2.3 Histology 

After behavioural testing was finished, the animals were deeply anesthetised 

and then underwent cardiac perfusion with 0.9% saline followed by 4% 

paraformaldehyde.  The brains were kept in 4% paraformaldehyde before 

being sectioned at 200μm or 60µm and stained for the presence of 

acetylcholinesterase (Koelle and Friedenwald, 1949).  
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4.2.4 Behavioural Procedures 

The behavioural procedures used in this chapter have been outlined in 

chapter two.  Briefly, in the contextual fear experiments SCH 23390 or saline 

was infused into the dHC or BLA ten minutes prior to CFC (four 0.5mA, one 

second footshocks).  The rats underwent two minute retention tests twenty 

four hours and seven days later.  These were video recorded and the rats’ 

freezing behaviour was subsequently scored.  In the open field experiments, 

SCH 23390 or saline was infused into the dHC or BLA ten minutes prior to 

placement in the open field arena for ten minutes.  The total distance moved 

and time spent in the inner-zone of the arena for each rat was obtained using 

Ethovison software.  Rearing behaviour was assessed manually by the 

experimenter at the time of testing.  

 

4.2.5 Data Analysis  

Two-way mixed ANOVA was used to analyse the freezing levels, with drug 

(SCH 23390 or vehicle) as the between-subject factor and memory retention 

session (24 hr and 7 d) as the within-subject factor.  Open field data were 

analysed using unpaired t-tests to compare the total distance moved, the 

rearing frequency and percentage of time spent in the centre of the open field 

between the drug and saline treated groups.  All data are presented as the 

mean + SEM. 

 

4.3 Results 

4.3.1 Cannulae Placements in the dHC and BLA  

Out of the sixty two rats used in these experiments nineteen were excluded 

due to illness after surgery (n=1), missed placements (n=10), or poor histology 

(due to using inappropriate equipment) leading to inability to see the 

cannulae tips (n=8).  Schematic representations of the cannula placements in 

the dHC and BLA are presented in Fig 4.1. 
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4.3.2 Effect of Intra-dHC D1 Receptor Antagonism on Contextual Fear 

Acquisition 

The effects of intra-dHC SCH 23390 or saline infusion ten minutes before 

conditioning are presented in Fig 4.2.  Analysis of the intra-dHC experiment 

(SCH 23390 n=12, saline n=11) using a two-way mixed ANOVA revealed a main 

effect of drug (F(1,21)=5.153, P<0.05) but no drug x time interaction 

(F(1,21)=0.863, P>0.05).  As SCH 23390 was found to effect behaviour in the 

open field when administered into the dHC thirty minutes prior to testing (see 

Fig 4.1 Placement diagrams showing 
location of cannulae tips in (A) the 
DH and (B) the BLA 
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below), the data for freezing behaviour during the last two minutes of the 

conditioning session was not included in the analysis as non-specific effects of 

the drug could not be ruled out. 
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4.3.3 Effect of Intra-BLA D1 Receptor Antagonism on Contextual Fear 

Acquisition 

Analysis of intra-BLA infusion of SCH 23390 (n=9) ten minutes before 

conditioning compared with saline (n=11) revealed no significant main effect 

of drug (F(1,17)=0.964, P>0.05) and no drug x time interaction (F(1,17)=0.050, 

P>0.05) (Fig 4.3).  As SCH 23390 was found to effect behaviour in the open 

field when administered into the BLA thirty minutes prior to testing (see 

below), the data for freezing behaviour during the last two minutes of the 

conditioning session was not included in the analysis as non-specific effects of 

the drug could not be ruled out.  Baseline freezing behaviour was decreased in 

the animals with BLA cannulae.  This could be due to partial BLA damage 

resulting from the implants. 

 

Fig 4.2 The effect of intra-DH 
D1R antagonism on contextual 
fear.  SCH23390 prior to 
conditioning impaired memory 
during retention sessions         
(* P<0.05). 
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4.3.4 Effect of Intra-dHC D1 Receptor Antagonism on Behaviour in the Open 

Field 

The effect of intra-dHC or intra-BLA SCH 23390 infusions on behaviour in the 

open field was tested (see Fig 4.4 and 4.5).  For intra-dHC infusions, unpaired 

t-tests revealed that SCH 23390 (n=13) compared with saline (n=10) 

significantly decreased the total distance moved (t(21)=3.254, P<0.01), rearing 

frequency (t(21)=4.595, P<0.01) and time spent in the inner-zone (t(16)=5.371, 

P<0.01). 

T
o

ta
l 

d
is

ta
n

c
e

 m
o

v
e

d
 (

c
m

)

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0
S a lin e

S C H  2 3 3 9 0

* *

T
im

e
 s

p
e

n
t 

in
 i

n
n

e
r
-z

o
n

e
 (

s
)

0

2 0

4 0

6 0
S a lin e

S C H  2 3 3 9 0

* *

A

C

B

0

2 0

4 0

6 0

8 0

R
e

a
r
in

g
 F

r
e

q
u

e
n

c
y

S a lin e

S C H  2 3 3 9 0

* *

 

Fig 4.3 The effect of intra-
BLA D1R antagonism on 
contextual fear.  SCH23390 
prior to conditioning did not 
affect freezing during 
memory retention sessions. 

Fig 4.4 The effect of intra-DH D1R 
antagonism on behaviour in the 
open field. A) Total distance, B) 
Rearing frequency and C) Time 
spent in the inner-zone were all 
decreased by SCH 23390 
(**P<0.01) 



95 
 

4.3.5 Effect of Intra-BLA D1 Receptor Antagonism on Behaviour in the Open 

Field 

For the intra-BLA open field experiment total distance moved was found to be 

reduced in SCH 23390 group (n=8) compared with the saline group (n=10).  

Unpaired t-tests revealed a significant effect on total distance moved 

(t(16)=4.410, P<0.01) but not rearing frequency (t(16)=1.735, P>0.05) or time 

spent in the inner-zone (t(16)=0.163, P>0.05).  
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4.4 Discussion 

D1R antagonism in the dHC impaired contextual fear memory acquisition. 

Administration of SCH 23390 into the dHC prior to CFC resulted in reduced 

freezing behaviour during LTM retention testing twenty four hours and seven 

days later.  Conversely, D1R antagonism in the BLA was not found to impair 

contextual fear memory acquisition.  Intra-BLA SCH 23390 administered prior 

to CFC did not reduce freezing during LTM testing.  Both intra-dHC and intra-

Fig 4.5 The effect of intra-BLA D1R 
antagonsim on behaviour in the 
open field. A) Total distance moved 
was decreased by SCH 23390 
(**P<0.01). B) Rearing frequency 
and  C) Time spent in the inner-zone 
were not affected by SCH 23390. 
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BLA infusions of SCH 23390 reduce total distance moved in the open field ten 

minutes after administration. 

 

4.4.1 D1 Receptor Antagonism in the Hippocampus during Contextual Fear 

Acquisition 

Intra-dHC SCH 23390 infusion prior to CFC was found to impair contextual fear 

acquisition.  To the best of our knowledge this has not been investigated 

before.  It has been proposed that D1Rs are involved in the synthesis of PRPs 

(Wang et al., 2010; Sajikumar and Frey, 2004).  It could be that intra-dHC SCH 

23390 prior to CFC impairs the initiation of PRP synthesis and so E-LTP is not 

being converted to late L-LTP, leading to impaired LTM.  An alternative 

explanation could be that attention is required during acquisition for the 

initial association between CS and US or for contextual encoding itself to 

occur and D1R antagonism could be impairing this.  It has been shown that 

attention increases stability of hippocampal place fields and that SCH 23390 

interferes with this (Kentros et al., 2004).  The finding that intra-dHC SCH 

23390 impairs CFC acquisition is in agreement with previous research 

investigating spatial and episodic-like memory.  Intra-dHC SCH 23390 fifteen 

minutes before a new location trial in the DMP watermaze was found to 

impair memory six hours later (O’Carroll et al., 2006).  In a modification of the 

DMP water maze which included an additional more sensitive measure 

(search preference), SCH 23390 infusions before training were also found to 

impair memory thirty minutes later (Pezze and Bast, 2012).  Episodic-like 

memory was also impaired by Intra-dHC SCH 23390 prior to training during 

retention tests twenty four hours but not thirty minutes later (Bethus et al., 

2010).  However, previous research investigating the effects of SCH 23390 in 

the hippocampus on other memory paradigms including object recognition 

and the radial arm maze, found that D1R antagonism did not impair initial 

memory formation, in disagreement with our findings.  SCH 23390 infusions 

into the hippocampus before or after training did not impair object 

recognition memory (Balderas et al., 2013; Rossato et al., 2013).  Intra-dHC 
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infusions of SCH 23390 prior to working memory in the radial-arm maze was 

not affected by SCH 23390 infusions into the vHC (Wilkerson and Levin, 1999). 

 

4.4.2 D1 Receptor Antagonism in the Amygdala during Contextual Fear 

Acquisition 

Intra-BLA infusion of SCH 23390 was not found to affect the acquisition of 

contextual fear memory.  This is not in agreement with another study which 

found that SCH 23390 impaired the acquisition and retention of auditory and 

background contextual fear when infused into the amygdala (Guarraci et al., 

1999).  However, drug infusions were made into the cAMY of female Long 

Evans rats in that study, as opposed to the BLA of male Lister hooded rats in 

the present study; these variations could explain the different results 

obtained.  Also, in the Guarraci et al. (1999) study contextual freezing 

behaviour was measured in response to the background context during the 

interval between tone presentations.  Therefore it is difficult to say whether 

the rats were freezing due to cued associations induced by the tone or strictly 

to the contextual associations of the chamber.  There are mixed findings on 

the effects of amygdala D1R antagonism in other memory paradigms.  In one 

study, FPS acquisition was not impaired by intra-amygdala SCH 23390 

administered prior to training (De Oliveira et al., 2011) whereas another study 

found that intra-amygdala SCH 23390 prior to FPS training did impair 

subsequent memory retention (Greba and Kokkinidis, 2000).  The lack of 

effect of intra-BLA SCH 23390 prior to CFC could potentially be due to 

compensation by other brain regions.  The dynamic memory theory 

postulates that the hippocampus and amygdala under normal circumstances 

are necessary for contextual fear acquisition; however, when damaged other 

competing brain regions can compensate (Fanselow, 2010).  The bed nucleus 

of the stria terminalis has been shown to be able compensate for loss of the 

BLA (Poulos et al., 2010).  Lesions of both the BLA and the bed nuclei of stria 

terminalis prevented acquisition of contextual fear after extensive over 

training whereas BLA lesions alone did not (Poulos et al., 2010).  In another 

study, infusions of SKF 38393 (D1R agonist) concurrently into both the 
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amygdala and mPFC were required to overcome the object recognition 

memory impairment produced by VTA inactivation (Rossato et al., 2013). 

 

4.4.3 D1 Receptor Antagonism in the Hippocampus and Amygdala on 

Behaviour in the Open Field 

Intra-dHC or intra-BLA SCH 23390 infusions ten minutes prior to open field 

testing resulted in a reduction in total distance moved.  Intra-dHC SCH 23390 

also led to reduced rearing frequency and time spent in the inner zone of the 

open field, whereas intra-BLA SCH 23390 did not affect these behaviours.   

These results are in conflict with previous research.  Liao et al. (2013) found 

no effect of intra-CA1 SCH 23390 on locomotion in the open field, but a lower 

dose (30 ng) was used in their study as opposed to the 5µg per side used in 

our experiment (Liao et al., 2013).  SCH 23390 was also not found to reduce 

locomotion and rearing behaviour when infused into the vHC (Gimenez-Llort 

et al., 2002) but again a lower dose of SCH 23390 was used and drug infusions 

were made into the ventral as opposed to the dHC.  Other studies have also 

shown no effects of SCH 23390 on locomotion in the open field when infused 

into BLA or the IPCs before testing (de Oliveira et al., 2011; De la Mora et al., 

2005).  Again, lower doses of SCH 23390 were used in these studies which 

could explain why the results differ from ours.  The time spent in the inner-

zone of the open field is hard to interpret given that both intra-dHC and intra-

BLA SCH 23390 infusions were found to reduce total distance moved; 

therefore the reduction seen with intra-dHC SCH 23390 is most likely a result 

of decreased locomotion rather than drug induced increases in anxiety. 

 

4.4.4 Chapter Four Summary 

The effect of D1R antagonism in the dHC and BLA on contextual fear 

acquisition was investigated.  It was found that SCH 23390 infusions into the 

dHC but not the BLA impaired freezing behaviour during LTM retention 

sessions.  D1R activation during contextual fear acquisition in the dHC could 

be required for the initial synthesis of PRP (Wang et al., 2010; Sajikumar and 

Frey, 2004).  It is likely that D1Rs in the dHC are important for the encoding of 
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spatial representations of the fear context.  It is also possible that the dHC has 

a role in the association of the context with the US.  The experiments outlined 

in this chapter have not previously been undertaken for contextual fear 

memory and therefore extend the existing literature.   
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Chapter Five 

Systemic D1 Receptor Antagonism during 

Contextual Fear Retrieval, 

Reconsolidation and Extinction 
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5.1 Introduction 

The cAMP/PKA and PLC molecular pathways which are regulated by D1Rs 

both lead to the activation of the transcription factor CREB.  CREB activation 

initiates the synthesis of new proteins that can be used for plasticity related 

changes such as synthesis of structural proteins or ion channel modulation.  

Previous research has shown CREB to be involved in the processes of retrieval, 

reconsolidation and extinction.  In one study increases in CREB occurred in the 

hippocampus and amygdala following contextual and auditory fear 

reactivation (Kida et al., 2002; Mamiya et al., 2009).  However, another study 

found increased pCREB in the amygdala but not the hippocampus following 

cued fear retrieval (Hall et al., 2001).  Activation of neurons which had high 

CREB activity at the time of conditioning was found to be sufficient to retrieve 

an auditory fear memory without behavioural cues (Kim et al., 2014) and 

ablation of these specific neurons impaired retrieval (Han et al., 2009).  

Transgenic mice in which CREB was repressed in the hippocampus and 

amygdala were found to have impaired contextual and auditory fear 

reconsolidation (Kida et al., 2002).  CREB repressed mice were found to have 

impaired contextual fear extinction (Mamiya et al., 2009) and pCREB was 

increased in the mPFC and amygdala but not hippocampus following 

extinction training (Mamiya et al., 2009).   

 

There are mixed findings for the role of D1Rs in memory retrieval.  In one such 

study systemic SKF 81297 (D1R agonist) enhanced the retrieval of object 

recognition at a delay of four hours whereas at a delay of fifteen minutes the 

opposite was found, with the drug impairing retrieval (Hotte et al., 2005).  

SCH 23390 infused into the nucleus accumbens shell lead to enhanced 

retrieval of contextual fear (Albrechet-Souza et al., 2013).  SCH 23390 

infusions into either the VTA or the amygdala on the other hand, had no 

effect on the retrieval of FPS (De Oliveira et al., 2009; Greba and Kokkinidis, 

2000).  Intra-hippocampal SCH 23390 was not found to impair the retrieval of 

inhibitory avoidance in one study (Izquierdo et al., 1998), whereas another 
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study found that it did, but that intra-amygdala SCH 23390 did not (Barros et 

al., 2001).  Other research showed the involvement of D1Rs in the retrieval of 

fear using second order auditory fear conditioning (Nader and LeDoux, 1999).  

It has previously been shown that systemic D1R antagonism is not required 

for the retrieval of contextual fear (Inoue et al., 2000). 

 

The role of systemic D1Rs in the reconsolidation or extinction of contextual 

fear has not, to the best of our knowledge, been investigated before.  

However, studies testing other memory paradigms using D1R agonists and 

antagonists have produced mixed results, some of which have been outlined 

below.  Systemic amphetamine administration immediately following a 

reactivation session was not found to affect reconsolidation of PCA (Blais and 

Janak, 2007) but did enhance the reconsolidation of CPP (Blais and Janak, 

2006).  Systemic SCH 23390 was found to impair the reconsolidation of 

passive avoidance in chicks (Sherry et al., 2005) and SCH 23390 infused into 

the mPFC of non-habituated, but not habituated, rats resulted in impaired 

object recognition reconsolidation (Maroun and Akirav, 2009).  In one study 

investigating the involvement of D1Rs in extinction using transgenic mice, D1R 

KO mice did not have impaired contextual or auditory fear extinction (Ortiz et 

al., 2010), whereas another found that extinction of contextual fear and 

passive avoidance was impaired (EL-Ghundi et al., 2001).  Systemic 

administration of MPD before or after contextual fear was found to improve 

extinction (Abraham et al., 2012).  Other studies found no effect of systemic 

amphetamine on auditory fear extinction (Mueller et al., 2009; Carmack et al., 

2010).  Auditory fear extinction was found to be impaired by intra-PFC but not 

intra-BLA infusion of SCH 23390 (Hikind and Maroun, 2008).  But another 

study found that intra-PFC and BLA infusions of SCH 23390 did not affect the 

extinction of contextual fear or inhibitory avoidance, whereas intra-

hippocampal infusions did (Fiorenza et al., 2012).  Systemic SCH 23390 was 

found to impair the extinction of CPP (Fricks-Gleason et al., 2012) and D1R 

agonists, including SKF 38393, blocked FPS extinction (Borowski and 

Kokkinidis, 1998) 
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Chapter Five Aims 

The experiments in this chapter extend previous research by investigating the 

effects of systemic D1R antagonism on the reconsolidation and extinction of 

contextual fear in rats.  The aim was to test the effect of administration of SCH 

23390 prior to or immediately after either a short memory reactivation 

session or a longer extinction session. 

 

5.2 Methods 

The methods used in this chapter have been outlined in chapter two.  Briefly, 

in the reconsolidation experiments SCH 23390 or saline was injected thirty 

minutes before (SCH 23390 n=10; saline n=10) or immediately after (SCH 

23390: n=9; saline n=8) a reactivation session in which the rats were returned 

to the conditioning chamber for two minutes in the absence of footshocks.  

The rats had their memory tested twenty four hours and seven days later by 

again returning them to the chamber for two minutes.  As SCH 23390 or saline 

was injected before reactivation in some rats, this enabled memory retrieval 

to also be tested.  For the extinction experiments SCH 23390 or saline was 

injected thirty minutes before (SCH 23390: n=9; saline: n=9) or immediately 

after (SCH 23390: n=10; saline: n=9) a twenty minute extinction session in 

which the rats were returned to the conditioning chamber in the absence of 

footshocks.   

 

For the reconsolidation experiment, a two-way mixed ANOVA was used to 

analyse the freezing levels, with drug (SCH 23390 or vehicle) as the between-

subject factor and memory testing session (REACT, PR-LTM1 and PR-LTM7) as 

the within-subject factor.  For the extinction experiment in which SCH 23390 

or saline was administered prior to the extinction session, drug effects on 

extinction and its retention were examined separately. Two separate two-way 

ANOVAs were used, with drug (SCH 23390 or vehicle) as the between-subject 

factor and testing session (early or late extinction) as the within-subject factor 

in the first analysis, and extinction retention (24 hr and 7 d) as the within-

subject factor in the second analysis.  For the extinction experiment in which 
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SCH 23390 or saline was administered immediately after the extinction 

session, a two-way ANOVA was used with the within-subject factor being 

extinction retention (24 hr and 7 d). All data are presented as the mean + 

SEM. 

 

5.3 Results 

5.3.1 Effect of Systemic D1R Antagonism on Contextual Fear Retrieval and 

Reconsolidation 

Administration of SCH 23390 thirty minutes prior to contextual fear 

reactivation did not impair freezing behaviour during reactivation or PR-LTM 

testing twenty four hours or seven days later (see Fig5.1).  Analysis using a 

two-way ANOVA revealed no main effect of drug (F(1,18)=0.888, P>0.05) and no 

drug x time interaction (F(3,54)=1.780, P>0.05).  Likewise, SCH 23390 

administered immediately after reactivation had no effect on freezing twenty 

four hours or seven days later, as there was no main effect of drug 

(F(1,15)=0.545, P>0.05) and no interaction between drug and time (F(3,45)=1.536, 

P>0.05). 
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Fig 5.1 The effect of D1R antagonism on contextual fear reconsolidation.  SCH 23390 
A) prior to or B) immediately after reactivation (REACT) did not impair freezing 24hrs 
(PR-LTM1) or 7days (PR-LTM7) later. Conditioning (COND); arrow denotes time of 
drug administration. 
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5.3.2 Effect of Systemic D1R Antagonism on Contextual Fear Extinction 

There was also no difference between freezing behaviour in the drug and 

saline groups during early and late extinction with no main effect of drug 

(F(1,16)=0.817, P>0.05) and no drug x time interaction (F(1,16)=0.241, P>0.05).  

Administration of SCH 23390 thirty minutes prior to contextual fear extinction 

did not impair freezing behaviour twenty four hours or seven days later (see 

Fig5.2).  Analysis using a two-way ANOVA revealed no main effect of drug 

(F(1,16)=0.139, P>0.05) and no drug x time interaction (F(1,16)=0.570, P>0.05).  

Likewise SCH 23390 administered immediately after the extinction session 

had no effect on freezing twenty four hours or seven days later, as there was 

no main effect of drug (F(1,17)=1.079, P>0.05) and no drug x time interaction 

(F(1,17)=0.049, P>0.05).  
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5.4 Discussion  

Systemic D1R antagonism was not found to effect contextual fear memory 

retrieval, reconsolidation, or extinction.  This indicates that DA acting at the 

D1R is not required during these memory stages. 

 

5.4.1 Systemic D1 Receptor Antagonism during Retrieval 

Systemic administration of SCH 23390 was not found to affect the retrieval of 

contextual fear.  This is in agreement with previous research for contextual 

Fig 5.2 The effect of D1R antagonism on contextual fear extinction.  A) SCH 23390 
prior to or B) immediately after extinction (EXT) had no effect on memory retention 
24hrs and 7days later. Conditioning (COND), early extinction (E-EXT), late extinction 
(L-EXT), arrow denotes time of drug administration. 
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fear (Inoue et al., 2000).  This is also in agreement with previous research 

looking at FPS.  SCH 23390 infused into either the VTA (De Oliveira et al., 

2009) or the amygdala (Greba and Kokkinidis, 2000) was not found to effect 

FPS retrieval.  Intra-hippocampal SCH 23390 was not found to affect the 

retrieval of inhibitory avoidance, in agreement with the present results 

(Izquierdo et al., 1998).  However in another study intra-hippocampal SCH 

23390 impaired retrieval of inhibitory avoidance, whereas intra-amygdala SCH 

23390 did not (Barros et al., 2001).  Other research is also not in agreement, 

SCH 23390 infused into the nucleus accumbens shell enhanced the retrieval of 

contextual fear (Albrechet-Souza et al., 2013) and intra-BLA SCH 23390 

impaired the retrieval of cued fear (Nader and LeDoux, 1999). 

 

5.4.2 Systemic D1 Receptor Antagonism during Reconsolidation 

Systemic SCH 23390 administered prior to or immediately after reactivation 

was not found to affect contextual fear reconsolidation.  This has not been 

shown before to the best of our knowledge.  These findings are not in 

agreement with previous systemic research investigating the reconsolidation 

of passive avoidance in chicks (Sherry et al., 2005).  SCH 23390 infused into 

the mPFC was also found to impair the reconsolidation of object recognition 

in non-habituated rats (Maroun and Akirav, 2009).  However intra-mPFC SCH 

23390 infusions did not affect the reconsolidation of object recognition in 

habituated rats (Maroun and Akirav, 2009), in agreement with the present 

findings.   

 

5.4.3 Systemic D1 Receptor Antagonism during Extinction 

Systemic administration of SCH 23390 prior to or immediately after extinction 

was not found to affect extinction acquisition or subsequent extinction 

memory retention twenty four hours and seven days later.  These findings are 

not in agreement with previous systemic research where SCH 23390 was 

found to impair the extinction of CPP (Fricks-Gleason et al., 2012).  Other 

studies have found that intra-PFC SCH 23390 impairs the extinction of 

auditory fear (Hikind and Maroun, 2008), but not inhibitory avoidance 
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(Fiorenza et al., 2012).  Intra-BLA SCH 23390 was not found to affect the 

extinction of auditory fear (Hikind and Maroun, 2008) or inhibitory avoidance, 

whereas intra-hippocampal infusions did (Fiorenza et al., 2012). 

 

It is possible that the dose of SCH 23390 used in the experiments carried out 

in this chapter was not strong enough to produce an effect.  However, the 

same dose was found to impair the acquisition of contextual fear (Chapter 3) 

and also reduced locomotion in the open field (Chapter 3) indicating that this 

is most likely not the case.  It is also possible that SCH 23390 is having 

opposite effects in different brain regions and therefore no net effect is seen 

when the drug is administered systemically.  This could be resolved by future 

studies in which SCH 23390 is administered centrally into different brain 

regions such as the hippocampus and the effect on contextual fear retrieval, 

reconsolidation and extinction determined. 

 

5.4.4 Chapter Five Summary 

It was found that D1R antagonism is not involved in the retrieval, 

reconsolidation and extinction of contextual fear.  This could be because DA is 

not involved or it is possible that the dose of SCH 23390 used in the 

experiments was not high enough to affect the modulation of these 

processes.  It is also possible that D2Rs are important instead.  Previous 

research has implicated D2Rs in the retrieval of FPS (De Oliveira et al., 2006), 

the reconsolidation of CPP (Yan et al., 2013) and the extinction of auditory 

fear (Mueller et al., 2010; Holtzman-Assif, 2010; Ponnusamy et al., 2005).  

Future studies could investigate the role of D2Rs in contextual fear retrieval, 

reconsolidation and extinction. 
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Chapter Six  

Systemic D1 Receptor Antagonism during 

Contextual Fear Memory Destabilization 
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6.1 Introduction 
Memory destabilization occurs when a previously consolidated memory is 

retrieved and becomes unstable.  It has been proposed that prediction error, 

which occurs with a discrepancy between expected and actual events, is 

required to engage the process of destabilization (Ben Mamou et al., 2006).  

Once a memory has been destabilized it must undergo the process of 

reconsolidation in order to be stabilized again.  It was recently demonstrated 

that FPS memory reconsolidation in humans only occurred where a positive or 

negative prediction error was present during the reactivation session 

(Sevenster et al., 2013).  Normally strong memories are less likely to undergo 

reconsolidation.  However the presence of a temporal prediction error 

resulted in destabilization and subsequent impairment of reconsolidation 

even for strong memories (Diaz-Mataix et al., 2013).  The VTA was also shown 

to be important for Pavlovian over-expectation learning following a negative 

prediction error (Takahashi et al., 2009). 

 

The first study to investigate the destabilization process showed that NMDARs 

are important in the process (Ben Mamou et al., 2006).  They developed a 

method in which it was possible to show that the process of destabilization 

had been engaged by using the drug anisomycin.  Anisomycin is a protein 

synthesis inhibitor which has been shown to impair PR-LTM when 

administered immediately following a reactivation session (Nader et al., 

2000).  They therefore argued that if the NMDAR antagonist ifenprodil 

administered before the reactivation session was able to prevent the memory 

impairing effect of administration of anisomycin immediately after 

reactivation, then the destabilization must have been blocked by ifenprodil, 

indicating the requirement for NMDARs in the process (Ben Mamou et al., 

2006).  Using this method but replacing anisomycin with MK-801 it was 

recently shown that VTA activity is involved in the destabilization of appetitive 

goal-tracking memory (Reichelt et al., 2013).  Due to this building evidence 

demonstrating an involvement of prediction error in the destabilization 

process and evidence showing DA is required for prediction error (Schultz, 
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2013), we hypothesised that D1Rs could be important in the destabilization of 

contextual fear memories. 

 

Chapter Six Aims 

The aim of the study undertaken in this chapter was to investigate the effect 

of systemic SCH 23390 administration before and MK-801 immediately after a 

reactivation session, to test if impairing D1R activity would protect the 

memory from subsequent disruption by MK-801 and therefore indicate a role 

for D1Rs in contextual fear memory destabilization.  For this to be relevant it 

must also be shown that MK-801 administered immediately after reactivation 

impaired reconsolidation. 

 

6.2 Methods 

The methods used in this chapter have been outlined in chapter two.  Briefly, 

rats underwent CFC and were injected systemically twenty four hours later, 

with the SCH 23390/MK-801 group (n=9) receiving SCH 23390 thirty minutes 

before and MK-801 immediately after a reactivation session in which they 

were returned to the conditioning chamber for two minutes.  The saline/MK-

801 group (n=8) received saline before and MK-801 after the reactivation 

session and the saline/saline group (n=10) received saline both before and 

after.  The rats had their PR-LTM tested twenty four hours and seven days 

later by again returning them to the chamber for two minutes. A two-way 

mixed ANOVA was used to analyse the freezing levels, with drug group (SCH 

23390/MK-801, saline/MK-801 or saline/saline) as the between-subject factor 

and memory testing session (REACT, PR-LTM1 or PR-LTM7) as the within-

subject factor.  All data are presented as the mean + SEM. 

 

6.3 Results 

There were no differences between any of the groups during retrieval or PR-

LTM (see Fig6.1).  Analysis using a two-way ANOVA revealed no main effect of 

drug (F(1,24)=0.316, P>0.05) and no drug x time interaction (F(6,72)=0.302, 

P>0.05). 
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6.4 Discussion 

It was found that SCH 23390 prior to reactivation and MK-801 immediately 

after had no effect on PR-LTM twenty four hours and seven days later.  

However, because administering saline before and MK-801 immediately after 

reactivation also had no effect, it is not possible to draw any conclusions on 

the role of D1R antagonism in contextual fear destabilization.  The study 

depended on the Saline/MK-801 group having impaired PR-LTM but this was 

not found.  Previous work has shown that systemic MK-801 administered 

after reactivation impaired contextual fear reconsolidation in mice (Charlier 

and Tirelli, 2011).  It has also previously been shown that systemic MK-801 

administered after reactivation impaired appetitive goal tracking 

reconsolidation in rats (Reichelt et al., 2013).  These studies are not in 

agreement with our findings.  However, in another study systemic MK-801 

prior to reactivation of appetitive memory did not affect reconsolidation, in 

agreement with our findings (Lee and Everitt, 2008). 

 

Fig 6.1 The effect of D1R antagonism on contextual fear memory destabilization.  
There was no difference in freezing behaviour between the SCH 23390/MK-801, 
saline/saline and saline/MK 801 groups 24hrs (PR-LTM1) or 7 days (PR-LTM7) 
later.  Conditioning (COND), reactivation (REACT). 
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The lack of effect of MK-801 on contextual fear could be due to the 

reactivation session being too long in duration, leading to extinction rather 

than reconsolidation being engaged, or too short in duration, leading to 

destabilization only being partially induced (Bustos et al., 2009).  It could also 

be that the 0.1mg/kg dose of MK-801 used was not sufficient to effect the 

reconsolidation of contextual fear.  However, in our initial validation study 

(Chapter 2) we found that a 0.1mg/kg dose of MK-801 administered before a 

two minute reactivation did block reconsolidation, which would indicate this 

is most likely not the case.  However, future studies could explore further the 

parameters under which MK-801 given after reactivation might disrupt 

reconsolidation.  A weaker conditioning procedure could be used, the length 

of the reactivation session could be altered, and/or a higher dose of MK-801 

could be administered.  These procedural changes might potentially result in 

blockage of reconsolidation by MK-801 administration immediately after 

reactivation.  Alternatively, future studies could replace MK-801 with a drug 

that impairs contextual fear reconsolidation when administered after 

reactivation to determine whether or not D1Rs are involved in contextual fear 

destabilization.  Possible drug options are the GluN2A preferring NMDAR 

antagonist NVP-AAM077, the noradrenergic β-blocker propranolol or 

midazolam which enhances the effects of GABA at the GABAA receptor 

(Milton et al., 2013; Debiec and LeDoux, 2004; Bustos et al., 2009). 
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Chapter Seven 

General Discussion 
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7.1 Summary 

The role of D1Rs in contextual fear learning and memory was investigated.  

The experiments outlined in chapters three and four found that systemic and 

intra-DH administration of SCH 23390 impaired contextual fear memory 

acquisition whereas intra-BLA SCH 23390 did not.  The effect of intra-dHC and 

intra-BLA D1R antagonism during CFC acquisition has not been investigated 

before, therefore these findings advance the current literature. 

 

The experiments outlined in chapter five found that systemic administration 

of SCH 23390 was not involved in the reconsolidation, retrieval or extinction 

of contextual fear memory.  The effect of systemic D1R antagonism during 

CFC reconsolidation and extinction has not been investigated before and 

advances the understanding of the role of DA in these processes. 

 

The experiments outlined in chapters two and six found that systemic 

administration of MK-801 impaired contextual fear reconsolidation when 

administered prior to, but not immediately after, memory reactivation.  This, 

to the best of our knowledge, has not previously been demonstrated in rats 

and therefore extends the literature on the role of NMDARs in 

reconsolidation. 

 

The experiment outlined in chapter six, looking at whether D1Rs are involved 

in contextual fear memory destabilization, was inconclusive.  Future studies 

that could resolve these have therefore been outlined below, along with a 

discussion of the all the findings presented in this thesis. 

 

7.2 MK-801 Effects on Acquisition and Reconsolidation 

The finding that systemic MK-801 administration prior to CFC impairs 

subsequent memory retention is in agreement with previous systemic 

research (Gould et al., 2002).  The finding that systemic MK-801 

administration prior to CFC reactivation impairs reconsolidation has not, to 

the best of our knowledge, been tested before.  This finding is in agreement 
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with previous research for auditory fear (Lee et al., 2006), appetitive memory 

(Lee and Everitt, 2008) and associative drug-seeking memory (Milton et al., 

2008).  There are, however, a number of alternative explanations for the 

above findings which are worth discussing.  Firstly, it could be that reduction 

in freezing behaviour in the MK-801 injected rats during the reactivation 

sessions are a result of non-specific side effects on locomotion.  Previous 

studies have found that MK-801 increases locomotion in the open field and 

Morris water maze at a dose of 0.1mg/kg (Wegener et al., 2011).  Secondly, it 

is possible that the effects of MK-801 on memory retention twenty four hours 

after conditioning or reactivation could be due to state-dependency, which 

has previously been shown to occur for passive avoidance memory using MK-

801 (Flint et al., 2013).  A future study could test this by administering MK-801 

prior to LTM or PR-LTM, testing to see if memory is still impaired by MK-801 

administration prior to conditioning or reactivation, respectively.   

 

Thirdly, a bigger difference between the freezing behaviour of MK-801 and 

saline groups at twenty four hours, compared with seven days after 

conditioning and reactivation, was found in both experiments and is a trend 

seen throughout the experiments presented in this thesis.  This could be 

because extinction occurred due to the rats being exposed to the chamber 

without footshock, resulting in the rats forming a new competing non-fearful 

memory of the chamber.  It could also be because the saline injected rats 

forgot their conditioning experience due to the passing of time.  To test 

whether the rats had forgotten due to the passing of time, an experiment 

could be carried out in which the rats only have their memory tested seven 

days after conditioning (i.e. instead of both 24 hr and 7 d after conditioning).  

If the rats had a similar level of freezing to the rats in our experiment, then 

this would indicate that the rats forget the conditioning experience after a 

week.  To test whether the rats had undergone extinction, one group of rats 

could be fear conditioned and then returned to the chamber for two minute 

sessions without footshock, on two occasions within a week (similar to the 

reconsolidation experiment), and another group could undergo one return 
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session (similar to the consolidation experiment).  If the rats had similar levels 

of freezing to the rats in our experiment, then this would indicate that 

extinction had occurred. 

 

The finding that systemic MK-801 administration immediately after CFC 

reactivation does not impair reconsolidation in rats has not previously been 

tested and is in agreement with work carried out on appetitive memory (Lee 

and Everitt, 2008).  However, other research has found that MK-801 

immediately after CFC reactivation did impair reconsolidation in mice (Charlier 

and Tirelli, 2011) and appetitive goal-tracking memory in rats (Reichelt et al., 

2013).  It is possible that these differences could be because of the 

experimental parameters used.  It could be that reconsolidation is not being 

engaged in our experiment because the footshock protocol used during 

conditioning was too strong.  Strong memories have been shown to be less 

likely to undergo reconsolidation then weaker ones (Suzuki et al., 2004).  

However, we found that MK-801 administered prior to reactivation impaired 

reconsolidation under the current footshock protocol (Chapter 2).  It could be 

that the two minute reactivation session used in our experiments was not 

engaging the reconsolidation process.  It has previously been shown that if the 

memory reactivation session is too short then contextual fear reconsolidation 

does not take place (Bustos et al., 2009).  However, we found that MK-801 

impaired reconsolidation using a two minute reactivation session when it was 

given before reactivation (Chapter 2).  In conclusion, NMDARs are important 

for the initial acquisition of CFC and reconsolidation of CFC when MK-801 is 

administered systemically prior to, but not immediately after, reactivation. 

 

7.3 Systemic and Central SCH 23390 Effects on Acquisition 

Systemic D1R antagonism was found to modulate contextual fear memory 

acquisition.  Administration of SCH 23390 prior to CFC, led to reduced freezing 

behaviour during subsequent retention tests twenty four hours later.  This 

finding is in agreement with previous research (Inoue et al., 2000, Calzavara et 

al., 2009) and is most likely not due to side effects of SCH 23390 on 
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locomotion or pain sensitivity.  SCH 23390 was not found to effect behaviour 

in the open field when administered twenty four hours prior to testing.  SCH 

23390 was also not found to affect the pain sensitivity threshold of the rats 

compared with saline injected controls.  It is possible that D1R activation 

during contextual fear acquisition could be involved in the synthesis of PRPs.  

These proteins, such as kinase Mζ (Navakkode et al., 2010), have been 

proposed to be important for the conversion of E-LTP to L-LTP as describe by 

the synaptic tagging and capture hypothesis (Frey and Morris, 1997).  A bigger 

difference between the controls and drug group at twenty four hours 

compared with seven days was observed.  This is similar to what was found 

when MK-801 was administered prior to conditioning (Chapter 2).  This could 

be due to the saline injected controls simply forgetting with the passing of 

time or it could be due to extinction as a result of the rats being exposed to 

the chamber without footshocks.  Future experiments that could address this 

have been outlined above. 

 

Infusion of SCH 23390 into dHC prior to CFC was found to impair freezing 

behaviour during LTM retention.  This indicates that DA modulation in the 

dHC is important during the acquisition of contextual fear.  This is in 

agreement with previous research investigating spatial and episodic-like 

memory (O’Carroll et al., 2006; Pezze and Bast, 2012; Bethus et al., 2010). It is 

possible that D1R activation in the dHC during contextual fear acquisition 

could lead to the synthesis of PRPs, such as PKMζ, which are involved in the 

conversion of E-LTP to L-LTP as describe by the synaptic tagging and capture 

hypothesis (Frey and Morris, 1997).  Similar to the findings for systemic SCH 

23390 prior to CFC there was a bigger difference between the control and 

drug groups at twenty four hours compared with seven days when SCH 23390 

was administered centrally.  Future experiments that could address this have 

been outlined above. 

 

Infusion of SCH 23390 directly into the BLA prior to CFC was not found to 

impair acquisition, thus indicating that DA modulation in this brain region is 
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not involved in CFC.  This conflicts with previous research undertaken on 

auditory fear (Guarraci et al., 1999) and CFC (Biedenkapp and Rudy, 2009).  

There are mixed findings for the involvement of BLA DA modulation in the 

acquisition of FPS.  One study found that FPS was impaired (Greba and 

Kokkinidis, 2000) whereas another study found that it was not, in agreement 

with our findings for contextual fear (De Oliveira et al., 2011).  The lack of 

effect of intra-BLA SCH 23390 to modulate contextual fear acquisition could 

also be because other brain regions such as the BNST and IL are compensating 

(Fanselow, 2010).  These brain regions receive DA innervations and express 

D1Rs (Swanson, 1982; Gustafson and Greengard, 1990; Lu et al., 1997) and 

are involved in contextual fear acquisition (Poulos et al., 2010; Zelikowsky et 

al., 2013). 

 

In conclusion, SCH 23390 was found to impair contextual fear acquisition 

when administered systemically and centrally into the dHC but not when 

administered into the BLA.  Understanding the role of contextual fear 

acquisition potentially provides insight into the mechanisms involved in the 

development of anxiety disorders such as PTSD.  For example it could be that 

individual differences in D1R signalling in the dHC could determine why some 

people are more susceptible to the development of PTSD compared with 

others. 

 

7.4 Systemic SCH 23390 Effects on Consolidation, Retrieval, Reconsolidation 

and Extinction 

Systemic D1R antagonism was not found to modulate contextual fear 

consolidation or retrieval.  Systemic administration of SCH 23390 immediately 

after CFC had no effect on freezing behaviour during retention tests twenty 

four hours or seven days later.   Retrieval of contextual fear memory was not 

found to be affected by SCH 23390 administered prior to reactivation.  These 

results are in agreement with previous literature (Inoue et al., 2000).  It was 

also found that SCH 23390 administered either prior to, or immediately after, 

a short two minute reactivation session or longer twenty minute extinction 
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session, did not impair freezing behaviour during the reactivation session or 

during subsequent retention tests.  This indicates that D1Rs are not involved 

in contextual fear memory reconsolidation or extinction, which has not 

previously been shown. 

 

It could be that D2Rs rather than D1Rs are important for these contextual fear 

memory stages.  Previous studies using D2Rs agonists and antagonists have 

indicated that D2R are important in other types of memory paradigms, some 

of which have been outlined below.  Intra-BLA infusion of the D2R antagonist 

sulpiride was found to impair the consolidation of inhibitory avoidance 

(Lalumiere et al., 2004).  Other research has shown the involvement of D2Rs 

in FPS retrieval.  Systemic administration of the D2R agonist quinpirole 

impaired FPS retrieval (De Oliveira et al., 2006).  Intra-VTA infusions of 

quinpirole were also found to impair FPS (Borowski and Kokkinidis 1996; De 

Oliveira et al., 2009).  It has been suggested that quinpirole could be affecting 

pre-synaptic auto receptors resulting in decreased DA levels at VTA DA 

neuronal terminal fields (De Oliveira et al., 2009).  One such terminal field is 

the BLA of the amygdala.  Intra-VTA quinpirole was found to decrease DA 

levels in the BLA (De Oliveira et al., 2011).  Intra-BLA infusion of the D2R 

antagonist sulpiride impaired FPS (De Oliveira et al., 2011).  D2Rs have also 

been implicated in the reconsolidation of CPP to cocaine.  Systemic 

administration of PG01037, a selective antagonist of the D3 receptor, was 

found to impair reconsolidation of CPP when administered following memory 

reactivation (Yan et al., 2013).  Systemic or intra-nucleus accumbens 

administration of haloperidol was found to impair auditory fear extinction 

(Holtzman-Assif et al., 2010).  Systemic or intra-infralimbic administration of 

the D2/3 receptor antagonist raclopride impaired auditory fear extinction 

(Mueller et al., 2010).  Another study found that auditory fear extinction in 

mice was enhanced by sulpiride (D2R antagonist) and partially impaired by 

quinpirole (D2R agonist) (Ponnusamy et al., 2005). 
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In conclusion D1Rs were not found to be involved in the consolidation, 

retrieval, reconsolidation or extinction of contextual fear.  Understanding the 

involvement of D1Rs in reconsolidation and extinction is particularly 

important, given the potential of these memory stages in the treatment of 

anxiety disorders.  The work in this thesis shows that D1Rs do not modulate 

these contextual fear processes, thus providing useful information for future 

hypothesis generation. 

 

7.5 Systemic SCH 23390 Effects on Destabilization 

The experiments carried out to determine whether D1R antagonism is 

involved in contextual fear destabilization were inconclusive due to the 

finding that MK-801 did not impair reconsolidation when administered 

immediately after contextual fear reactivation.  In this study MK-801 was 

being used as a ‘tool’ in order to tease apart the role of D1Rs in 

destabilization.  Conclusions therefore cannot be drawn regarding the lack of 

effect observed when SCH 23390 was administered prior to and MK-801 

immediately after contextual fear reactivation.  Future studies could replace 

MK-801 with an alternative ‘tool’ drug that does impair contextual fear when 

administered immediately after reactivation.  Potential options have been 

discussed below.   

 

One possibility would be a protein synthesis inhibitor such as anisomycin; 

however, systemic application of this drug has been reported to cause 

sickness in rats and is therefore probably best avoided.  It has been 

demonstrated that GluN2A containing NMDARs are engaged in the 

reconsolidation process, whereas GluN2B containing NMDARs are involved in 

destabilization (Milton et al., 2013).  Therefore rather than using MK-801, 

which is a non-selective NMDAR antagonist binding to both subunits, it might 

be sensible to use a GluN2A preferring NMDAR antagonist such as NVP-

AAM077.  This drug has previously been shown to impair the reconsolidation 

of auditory fear when administered into the BLA prior to reactivation (Milton 

et al., 2013) and other studies have used this drug systemically in rats and 
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mice (Chaperon et al., 2003).  Alternative options are the noradrenergic β-

blocker propranolol or the short-acting benzodiazepine midazolam, which 

enhances the activity of GABA at the GABAA receptor.  Systemic and intra-

amygdala administration of propranolol has previously been shown to impair 

the reconsolidation of auditory fear when administered after reactivation in 

rats (Debiec and LeDoux, 2004).  Likewise, systemic administration of 

midazolam immediately after contextual fear reactivation blocked 

reconsolidation in rats (Bustos et al., 2009).  

 

7.6 Conclusion 

In conclusion, the main findings of this thesis are that systemic and intra-dHC 

D1R antagonism impairs the acquisition of contextual fear, whereas 

administration into the BLA did not.  Systemic D1R antagonism, on the other 

hand, was not found to impair the reconsolidation or extinction of contextual 

fear.  These findings are novel and advance the current literature on the role 

of D1Rs during contextual fear learning and memory.  This research aids in 

understanding the underlying causes of anxiety disorders such as PTSD and 

could shed light on why some people may be more susceptible to the 

development of such disorders depending on the modulation of fear learning 

by D1Rs.  This could potentially be useful in the development of preventative 

therapies.  Given that D1Rs were not found to have a role in contextual fear 

reconsolidation and extinction, which could be targeted for treatment, it 

would advisable that future research pursues alternative hypotheses, for 

example, investigating the role of D2Rs in contextual fear reconsolidation and 

extinction. 
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