
AN INVESTIGATION ON THE ANT-BASED

HYPER-HEURISTIC FOR CAPACITATED VEHICLE

ROUTING PROBLEM AND TRA VELING SALESMAN

PROBLEM

Thesis submitted to the University of Nottingham for

the degree of Doctor of Philosophy

by

Zalilah Abd Aziz

School of Computer Science and Information Technology

The University of Nottingham

March 2013

Information Services

Ethos - Thesis for digitisation

Thesis details: Abd Aziz, Zalilah

'An Investigation on the ant-based hyper-heuristic for
capacitated vehicle routing problem and traveling
salesman problem'

Please exclude the following sections/ pages:

Pages: 24,25,36,38

Table of Contents

Chapter 1 Introduction

1.0 Background and Motivation .. 1

1.1 Scope and Aim of the Thesis .. 6

1.2 Outline of the Thesis ... 9

Chapter 2 Literature Review

2.0 Introduction ... 11

2.1 Optimisation Problem .. 12

2.1.1 Algorithms Complexity .. 13

2.1.2 The Classes of P, NP and NP complete 14

2.2 Heuristics ... 15

2.3 Metaheuristics .. 16

2.3.1 Genetic Algorithms ... 19

2.3.2 Tabu Search .. 20

2.3.3 Simulated Annealing ... 22

2.3.4 Greedy Randomized Adaptive Search (GRASP) 23

2.3.5 Variable Neighborhood Search (VNS) 25

2.3.6 Ant Algorithms ... 26

2.3.6.1 Ant Behavior .. 26

2.3.6.2 The Double Bridge Experiment 27

II

2.3.6.3 Pheromone Update .. 28

2.3.6.4 Heuristic Information ... 29

2.3.6.5 Number of Ants .. 29

2.3.6.6 Ant System .. 30

2.3.6.7 Elitist Ant System .. 30

2.3.6.8 Ant System Rank-Based 31

2.3.6.9 Max-Min Ant System .. 31

2.3.6.10 Ant Colony System (ACS) .. 31

2.4 Hyper-heuristic .. 32

2.4.1 Hyper-heuristic Classification ... 34

2.4.1.1 Heuristic Selection ... 35

2.4.1.2 Heuristic Generation .. 38

2.4.2 Constructive Hyper-heuristic ... 40

2.4.3 Perturbative Hyper-heuristic41

2.4.4 Low Level Heuristics ... 41

2.4.5 Hyper-heuristic in the literature ... 42

2.4.5.1 Random Search Hyper-heuristic .. 42

2.4.5.2 Greedy Hyper-heuristic .. .45

2.4.5.3 Monte Carlo Hyper-heuristic 45

2.4.5.4 Choice Function Hyper-heuristic47

2.4.5.5 Simulated Annealing Hyper-heuristic48

2.4.5.6 Tabu Search Hyper-heuristic .. 49

2.4.5.7 Genetic Algorithm Hyper-heuristic 51

2.5 Ant Algorithm Hyper-heuristic .. 52

2.5.1 Choosing a Heuristic .. 53

III

2.5.2 Pheromone Update ... 53

2.5.3 Visibility Update .. 56

2.6 Summary ... 58

Chapter 3 The Vehicle Routing Problem and the Traveling Salesman

Problem

3.0 Introduction ... 60

3.1 The Vehicle Routing Problem (VRP) .. 60

3.1.1 The VRP Variants .. 61

3.1.2 VRP with Time Windows (VRPTW) ... 62

3.1.3 Dynamic VRP (DVRP) .. 62

3.1.4 Time Dependent VRP (TDVRP) ... 62

3.1.5 VRP with Pickup and Delivery (VRPPD) 63

3.2 Capacitated Vehicle Routing Problem ... 63

3.2.1 Approaches to Solve the Capacitated Vehicle Routing Problem

(CVRP) .. 64

3.2.1.1 Heuristics for CVRP ... 65

3.2.1.1.1

3.2.1.1.2

Saving Heuristics .. 65

Sweep Algorithms .. 66

3.2.1.1.3 Cluster-first Route-second Algorithms 67

3.2.1.2 Metaheuristics for CVRP ... 67

3.2.1.2.1

3.2.1.2.2

3.2.1.2.3

Tabu Search ... 67

Simulated Annealing 68

Ant Algorithms ... 69

3.3 The Traveling Salesman Problem .. 70

IV

3.3.1 Tour Constructions .. 71

3.3.1.1 The Nearest Neighbour .. 71

3.3.1.2 Insertion Heuristics .. 72

3.3.2 Tour Improvement. .. 72

3.3.2.1 The 2-opt, 3-opt and k-opt Move 73

3.3.2.2 Lin-Kernighan Heuristic ... 74

3.4 Summary .. ft ••••• ft •••••••• ft •• ' ft •• If" ••••• ,., ff ••••••• , •• , ••• ft. ft., •• , •••••••••••• 75

Chapter 4 Ant-based Hyper-heuristic

4.0 Introduction ... 76

4.1 Design issues ... 77

4.2 Ant System Algorithms .. 80

4.3 Methodology ... 83

4.4 Initial Setup .. 91

4.5 Choosing a Heuristic .. 91

4.6 Pheromone Updates ... 93

4.7 Visibility Updates .. 96

4.8 Ant Colony (ACO) Hyper-heuristic ... 98

4.9 Summary .. ", , .. 101

Chapter 5 Application to the Capacitated Vehicle Routing Problem

5.0 Introduction ... 102

5.1 Problem Formulation " 103

5.2 Low Level Heuristics104

5.3 Experimental Setup :117

V

5.4 The Benchmark Datasets .. 119

5.5 Initial Solutions .. 120

5.6 Experiments for Determining Parameter Values 120

5.6.1 Experiments with Different Starting Position 121

5.6.2 Experiments with Different Pheromone and Visibility rate 124

5.6.3 Experiments with Different Evaporation Rate 126

5.7 Comparison of Ant Hyper-heuristics .. 127

5.8 Effectiveness of the Ant-based Hyper-heuristic 129

5.8.1 Heuristic Calls129

5.8.2 Experiments with Different Sets of Low Level Heuristics 133

5.9 Random Hyper-heuristic ... 135

5.10 Comparison with Other Methods .. 138

5.11 ACO Hyper-heuristic Applied to CVRP .. 142

5.12 Summary ... 144

Chapter 6 Application to the Travelling Salesman Problem

6.0 Introduction ... 146

6.1 Problem Fonnulation ... 147

6.2 Experimental Setup ... 148

6.3 Low level heuristics ... 149

6.4 Experiments .. 153

6.5 Summary ... 161

Chapter 7 Conclusions and Future Work

7.0 Introduction .. 162

VI

7.1 Evaluation of the Aims .. ,. 163

7.2 Contributions ... '" .169

7.3 Strengths and Limitation of the Algorithm ... 171

7.4 Future Work ... 172

Appendix

Appendix A ... 174

Appendix B ... 175

Appendix C ... 178

Appendix D. 179

Appendix E , 180

Appendix F..... 182

Appendix G... 184

Appendix H. 186

Appendix I... 187

Appendix J ... 188

References

VII

List of Figures

Figure 2.1: The GRASP algorithm (source from: Resende and Ribeiro 2003)

Figure 2.2: The VNS algorithm (source from: Hansen and Mladenovic 2001)

Figure 2.3: The framework for classification of the hyper-heuristic (source from: Burke et

al. 2010b).

Figure 2.4:

Figure 2.5:

Figure 2.6:

Figure 2.7:

Figure 2.8:

The general hyper-heuristic framework (source from: Burke et al. 2003a)

The framework for the heuristic generation (source from: Burke et al. 2010b)

Simple random algorithm (source from: Cowling et al. 2000)

Random descent algorithm (source from: Cowling et al. 2000)

Random permutation algorithm (source from: Cowling et al. 2000)

Figure 2.9: Random permutation descent algorithm (source from: Cowling et al. 2000)

Figure 2.10: Monte carlo hyper-heuristic (source from: Ayob 2005)

Figure 2.11: Choice function hyper-heuristic (source from: Cowling et al. 2001a)

Figure 2.12: Simulated annealing hyper-heuristic (source from: Soubeiga 2003)

Figure 2.13: Tabu search hyper-heuristic (source from: Kendall and Mohd Hussin 2004b)

Figure 3.l(a): Initial route

Figure 3.1(b): Alternative route

Figure 3.2: 2-opt Moves

Figure 3.3: 3-opt Moves

Figure 4.1: Ant arrives at city i, will choose to visit next city j based on the function of

pheromone values r I) and heuristic values 171)

Figure 4.2: The general hyper-heuristic framework

Figure 4.3: Fully connected graph V (the search space) with set of nodes E (set of low

VIn

level heuristics)

Figure 4.4(a): initial placement

Figure 4.4(b): heuristics selection

Figure 4.4(c): ants apply heuristics

Figure 4.4(d): ants complete their tour

Figure 4.5: Overview of ant-based hyper-heuristic

Figure 4.6: Overview of ACO hyper-heuristic

Figure 5.1 (a): initial tour

Figure 5.1 (b): resulting tour

Figure 5.2(a): initial tour

Figure 5.2(b): resulting tour

Figure 5.3(a): initial tour

Figure 5.3(b): resulting tour

Figure 5.4(a): initial tour

Figure 5.4(b): resulting tour

Figure 5.5(a): initial tour

Figure 5.5(b): resulting tour

Figure 5.6(a): initial tour

Figure 5.6(b): resulting tour

Figure 5.7(a): initial tour

Figure 5.7(b): resulting tour

Figure 5.8(a): initial tour

Figure 5.8(b): resulting tour

Figure 5.9(a): initial tour

Figure 5.9(b): resulting tour

IX

Figure 5.l0(a): initial tour

Figure 5.1O(b): resulting tour

Figure 5.11: The frequency chart of the low level heuristics

Figure 6.1 (a): initialtour

Figure 6.1 (b); resulting tour

Figure 6.2(a): initial tour

Figure 6.2(b): resulting tour

Figure 6.3(a): initial tour

Figure 6.3(b): resulting tour

x

List of Tables

Table 4.1:

Table 4.2:

Table 4.3:

Table 4.4:

Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4:

Table 5.5:

Table 5.6:

Table 5.7:

Table 5.7:

Table 5.8:

The comparison between the ant system and ant-based hyper-heuristic

The similarities of other ant algorithm hyper-heuristic (i and ii) to our approach

(iii and iv)

The differences of other ant algorithm hyper-heuristic (i and ii) to our approach

(iii and iv)

Value of pheromone left on the edge

The description and optimal solutions for Christofides et al. (Vehicle Routing

Datasets 2003)

Results for different starting position

Results of t-test for different starting position

Results for different pheromone and visibility rate

Results for different evaporation rate

Comparisons of three different ant hyper-heuristics

The frequency calls of low level heuristics for 100 customers

The frequency calls of low level heuristics for 100 customers (cont)

Comparison of performance for different combination number

of low level heuristics

Table 5.9: T-test for different combination number of low level heuristics

Table 5.10: Comparisons in the performance of ant-based hyper-heuristic (anthh) and

random hyper-heuristic (mdhh)

Table 5.11: T -test for comparing the performance of ant-based hyper-heuristic (anthh)

and random hyper-heuristic (mdhh)

XI

Table 5.12: Comparisons of ant-based hyper-heuristic to other methods

Table 5.12: Comparisons of ant-based hyper-heuristic to other methods (continue)

Table 5.13: Results of ACO hyper-heuristic and ant-based hyper-heuristic

Table 6.1: Ant-based hyper-heuristic - Experiments with different low level (TSP low

level heuristics and CVRP low level heuristics)

Table 6.2:

Table 6.3:

Table 6.4:

Table 6.5 :

T -test for different categories of low level heuristics, El (TSP

heuristics) and E2 (CVRP heuristics)

Comparisons between ACO hyper-heuristic and ant-based hyper-heuristic:

Experiments with TSP low level heuristics

T-test for El (ACO hyper-heuristic) and E2 (ant-based hyper-heuristic)

Comparisons of ant-based hyper-heuristic to other methods

XII

Abstract

A brief observation on recent research of routing problems shows that most of the methods

used to tackle the problems are using heuristics and metaheuristics; and they often use

problem specific knowledge to build or improve solutions. In the last few years, research on

hyper-heuristic has been investigated which aims to raise the generality of optimisation

systems. This thesis is concerned with the investigation of ant-based hyper-heuristic. Ant

algorithms have been applied to vehicle routing problems and have produced competitive

results. Therefore, it is assumed that there is a reasonable possibility that ant-based hyper­

heuristic could perform well for the problem.

The thesis first surveys the literature for some common solution methodologies for

optimisation problems and explores in some detail the ant algorithms and ant algorithm hyper­

heuristic methods. Furthermore, the literature specifically concerns with routing problems; the

capacitated routing problem (CVRP) and the travelling salesman problem (TSP). The thesis

studies the ant system algorithm and further proposes the ant algorithm hyper-heuristic, which

introduces a new pheromone update rule in order to improve its performance. The proposed

approach, called the ant-based hyper-heuristic is tested to two routing problems; the CVRP

and TSP. Although it does not produce any best known results, the experimental results have

shown that it is competitive with other methods. Most importantly, it demonstrates how

simple and easy to implement low level heuristics, with no extensive parameter tuning.

Further analysis shows that the approach possesses learning mechanism when compared to

random hyper-heuristic. The approach investigates the number of low level heuristics

appropriate and found out that the more low level heuristics used, the better solution is

XIII

generated. In addition an ACO hyper-heuristic which has two categories of pheromone

updates is developed. However, ant-based hyper-heuristic performs better and this is

inconsistent with the performance of ACO algorithm in the literature.

In TSP, we utilise two different categories of low level heuristics, the TSP heuristics and the

CVRP heuristics that were previously used for the CVRP. From the observation, it can be

seen that by using any heuristics for the same class of problems, ant-based hyper-heuristic is

seen to be able to produce competitive results. This has demonstrated that the ant-based

hyper-heuristic is a reusable method. One major advantage of this work is the usage of the

same parameter for all problem instances with simple moves and swap procedures. It is hoped

that in the future, results obtained will be better than current results by using better intelligent

low level heuristics.

XIV

Acknowledgement

First and foremost, I offer my sincerest gratitude to my supervisor, Professor Dr Graham

Kendall, who has supported me with his patience and knowledge in completing my whole

thesis and without him this thesis, too, would not have been completed or written. One simply

could not wish for a better or friendlier supervisor.

I wish to express my acknowledgement to Kementerian Pengajian Tinggi and University of

Technology Mara for the financial sponsorship throughout this study. In my daily work, I

have been blessed with friendly and cheerful fellow friends in ASAP group who have made

my time spent at the University of in Nottingham an enjoyable experience. I offer my regards

and blessings to all of those who have supported me in many ways during the completion of

this thesis.

Lastly, I wish to express my heartfelt thanks to my family, my parents, husband, Baharudin

and my six lovely children, Iman, Qutub, Habeebah, Zahraa, Khadijah and Hasif for their

endless patience, love and encouragement. I am glad that they had an enjoyable and great time

in England. Many thanks and may God bless us.

xv

Declaration

I hereby declare that this thesis has not been submitted, either in the same or different form, to

this or any other university for a degree.

Signature:

XVI

Chapter 1

Introduction

1.0 Background and Motivation '

Optimisation problems consist of a large set of problems and these problems are defined in a

class of problems called combinatorial optimisation problems. Lawler (1976) defined

combinatorial optimisation problems as follows:

"Combinatorial optimisation is the mathematical study of the arrangement, grouping, ordering,

or selection of discrete objects, usually finite in numbers."

The simplest approach to solve combinatorial optimization problems is to perform an exhaustive

search to all possible solutions, and return the best. However, for some problems, the number of

possible solutions is too many for an exhaustive search to be a practical option. For example a 10

city travelling salesman problem has about 181,000 possible solutions and a 20 city problem, has

about 10,000,000,000,000,000 possible solutions (Michalewicz and Fogel 2004). This type of

combinatorial explosion is what limits the option to use an exhaustive search as the size of the

problem instance increases. To measure the efficiency of search methods, the amount of

computing resources needed to perform the procedure which include the computing space and

1

time are taken into account. A search method is considered efficient (tractable) if it can perform

for any given number of inputs in a reasonable time (polynomial time algorithm). However, if it

can perform for small sizes of input and for larger sizes of input, the running time becomes

impractical; it is considered inefficient (intractable) or known as exponential time algorithm.

Many of combinatorial optimization problems are considered NP-hard which often cannot be

solved to optimality within polynomial time. More information on NP complete is presented in

chapter 2.

Among combinatorial problems which have been heavily studied are routing problems and

probably among the famous elements of these routing problems are the vehicle routing problem

(VRP) and travelling salesman problem (TSP). Researchers and practitioners have developed

models and algorithm that give them the ability to solve these problems. In general, routing

problems involved in optimizing a route of courier for a set of vehicles or traveling salesman go

round some customers or cities and returning back to a point of departure. The Vehicle Routing

Problem (VRP) was introduced by Dantzig and Ramser in 1959. It is a combinatorial problem

(Cordeau and Laporte 2005). The VRP is the generalization of the TSP and therefore, considered

to be in the class of NP-hard problems (Pardalos et al. 2002, Braysy et at. 2004). The objective of

VRP is to search for lowest cost routes from a depot to sets of other cities or customers. It has

been largely researched because of its importance in logistic and supply chains management. The

TSP is a problem of finding the shortest possible tour to visit each city exactly once and real­

world examples such as manufacturing, telecommunications, logistics and many more. The

history of TSP was believed to be found in 1920 in Vienna (Applegate et al. 1998). It is known

to be in the class NP-hard problems (Karp 1972).

2

A brief observation of the recent research on routing problems shows that most of the methods

used to tackle the problems are using heuristics and metaheuristics. These methods comprise

from simple heuristics to complicated metaheuristics and often use problem specific knowledge

to build or improve solutions (Braysy and Gendreau 2005a; 2005b). Some of these methods are

rarely implemented because they are complicated and not easy to code; too many parameters are

used which are difficult to understand and not often reusable (Cordeau et al. 2002). This

motivates the investigation of developing simple heuristics (such as simple swaps and moves) to

solve these routing problems.

Heuristics methods do not guarantee optimal solutions, however they often obtain good or near

optimal solutions at relatively low computational cost. An example of simple heuristic method is

the hill climbing technique. A good introduction to heuristic techniques is provided in

Michalewicz and Fogel (2004). One of the limitations in traditional heuristic methods (for

example the simple descent method) is their inability to make progress after becoming trapped in

local optimum (Hansen and Mladenovic 2003). Local optimum is the point search space where

all solutions points in the neighborhood are worse than the current solution (Burke and Kendall

2005). To prevent this problem, more advance methods called metaheuristics have been

researched. These methods have some form of learning mechanisms to store information as the

search process progresses and can be combined with different concepts to explore the search

space. Examples of these methods include greedy randomised adaptive search procedure

(GRASP), variable neighbourhood search (VNS), simulated annealing, tabu search, genetic

algorithms, memetic algorithms and ant colony optimisation. Metaheuristics often use problem

3

specific knowledge to build or improve solutions. It often requires sets of parameters to be tuned.

For example, tabu search requires an appropriate length of the tabu list, simulated annealing

requires an appropriate cooling schedule, genetic algorithms require a population size and

crossover probability.

Metaheuristics have been shown to work well on certain instance. However, for other instances,

it does not perform well and often, it is expensive to adapt to new instances and problems.

Furthermore, metaheuristics are often time-consuming and knowledge intensive processes that

require a deep understanding of the problem domain. This motivates the investigation of

developing an algorithm that can produce good quality solutions across different instances and

problems and which do not require extensive parameter tuning. In the last few years, research on

hyper-heuristic has been investigated (see chapter 2). It is specifically designed to raise the

generality of optimisation systems in such a way that the technique can be reused and applied to

other different problems. In contrast to metaheuristics that operate on search space of solutions,

hyper-heuristic operates on search space of heuristics. The idea of hyper-heuristic is to provide a

way to combine a few simple heuristics or to construct new heuristics from previous existing

heuristics to search for good solutions (Burke 2010a). Among hyper-heuristics developed are

monte carlo hyper-heuristic (Ayob and Kendall 2003), choice function hyper-heuristic (Cowling

et a1. 2000), simulated annealing hyper-heuristic (Bai and Kendall 2005; Bai et al. 2007;

Downsland et a1. 2007), tabu search hyper-heuristic (Kendall and Mohd Hussin 2004b; Burke et

al. 2003a; Burke and Soubeiga 2003 and Burke et al. 2005), genetic algorithm hyper-heuristic

(Cowling et a1. 2002a, 2002b, 2002d; Han et al. 2002; Han and Kendall 2003b, Ochoa et al. 2009

4

and Terashima-Marin et al. 2006) and ant algorithms hyper-heuristic (Burke et al. 200Sb and

Chen et al. 2007).

Ant algorithms are among the most recent metaheuristics developed (Dorigo and Di Caro

1999a). Ant-based hyper-heuristic are inspired by these algorithms. It is based on observation

about ant behaviour; the foraging behaviour of how they are able to find the shortest" path

between food sources and their nest. Ant algorithms have been applied to vehicle routing

problems and have produced competitive results (Bullnheimer 1999a, 1999c). Although ant­

based hyper-heuristic has been applied to two different scheduling problems (Burke et al. 200Sb,

Chen et al. 2007), it has never been applied to routing problems. Therefore, it is assumed that

there is a reasonable possibility that ant-based hyper-heuristic could perform well for the

problem. This thus motivates the investigation of a more general approach based on ant

algorithms that can solve different routing problems across different instances without extensive

parameter tuning and by using simple to implement low level heuristics.

In ant system (Dorigo and Di Caro 1999a) and the previous ant algorithms hyper-heuristics

(Burke et al. 200Sb, Chen et al. 2007), the key properties of these approaches are pheromone and

heuristics information (visibility) updating activities. In the algorithms, as ants travel, they

deposit a chemical substance called pheromone. The amount of pheromone corresponds to the

quality of the solution found by the ants; and visibility information represents some forms of

heuristic information, which is combined with the pheromone value in order to decide which city

to visit next (in this case, the TSP is used). This motivates the investigation of the influence of

these properties in the solutions for routing problems.

5

Following the ant algorithms, ant colony optimisation (ACO) algorithms have been developed.

The idea behind this approach is obtained from Dorigo and Di Caro (1999b; 1999c). ACO hyper­

heuristic applies the same methodology as ant algorithms however it differs in the updating of

the pheromone trail procedure. There are two procedures involved; the local and global update.

The global update will use the best solution found at the current iteration to update the

pheromone trail and the local update is performed after each ant performs a tour. This has lead to

better improvements in the solutions obtained in several problems (Dorigo and Di Caro 1999b;

1999c). The varieties of updating rules in pheromone trail have motivated the investigation of

these activities for improving the solutions for routing problems.

1.1 Scope and Aim of the Thesis

This thesis investigates the ant-based hyper-heuristic methodology. To observe the generality,

we apply the proposed methodology to two routing problems; the capacitated vehicle routing

problem (CVRP) and the travelling salesman problem (TSP). To our best knowledge, no other

work in this area has been published in the literature. It is not our aim to produce the best known

solutions, as this is not the overall aim of a hyper-heuristic approach. Rather, we aim to

investigate how the ant-based hyper-heuristic is able to operate across different problems using

simple to implement low level heuristics to produce competitive results when compared to other

approaches. Most importantly, we will use the same parameter settings across the two problems

we address in this thesis.

6

In order to accomplish these aims; our objectives are as follows:

• To place our work in the context of previous work by discussing the scientific

literature of related combinatorial optimization problems and the methodologies

that have been employed. These aims are discussed in chapter 2 along with an

investigation on approaches to solve two routing problems (capacitated routing

problem (CVRP) and travelling salesman problem (TSP). These aims are

discussed in chapter 3.

• To introduce simple heuristics to solve routing problems. A brief observation of

the recent research on routing problems shows that to solve these problems

involve complicated heuristics and metaheuristics. It often uses problem specific

knowledge to build or improve solutions which is rarely implemented because

they are complicated and not easy to code; too many parameters are used which

are difficult to understand and not often reusable. This research investigates

whether simple heuristics (knowledge poor heuristics with simple swaps and

moves) when combined together are able to generate good quality solutions.

Furthermore, whether they are reusable in solving problems of same class. These

heuristics are addressed in chapter 5 and chapter 6.

• To establish a hyper-heuristic algorithm based on ant algorithms that can produce

good quality solutions across different instances and problems and which do not

require extensive parameter tuning. This involves the observations on the

functions and key properties of the previous ant system algorithms and ant

7

algorithms hyper-heuristics. Research on how the framework of these approaches

is observed to form a basis for the general approach in solving the routing

problems. The details are discussed in chapter 4.

• To introduce a new pheromone and visibility update rule in order to enhance the

performance of ant based hyper-heuristic. The research investigates whether the

new pheromone and visibility update rule can generate solutions that are good

across all instances and different problems. The details are discussed in chapter 4.

• To develop an ACO hyper-heuristic to serve as mean of comparisons for the ant­

based hyper-heuristic. It differs from the ant based hyper-heuristic in the updating

of pheromone values. The research issue is to investigate to effect of local and

global updating procedure. The details are discussed in chapter 4.

• To implement our approach on the capacitated vehicle routing problem (CVRP).

The research issue is to see whether this approach can generate good solutions

across different instances with simple to implement low level heuristics. This aim

is addressed in chapter 5.

• To implement our approach on the travelling salesman problem (TSP). This

research investigates whether our approach is able to solve another problem of a

same class. This thus tested the generality of our approach and this aim is

explored in chapter 6.

8

1.2 Outline of the Thesis

The thesis is presented as seven chapters. This chapter discusses the background and aims of the

thesis. Chapter 2 outlines the main concepts and background for the work presented in this

thesis. We discuss combinatorial optimization problems, solution methods for these problems;

heuristics, metaheuristics and hyper-heuristic. Chapter 3 outlines discussion from domain

perspectives; we discuss the capacitated vehicle routing problem and travelling salesman

problem and related work for these problems.

We discuss the general design issue for the ant-based hyper-heuristic and ant colony (ACO)

hyper-heuristic methodology in Chapter 4. We analyse the ant system algorithms to observe the

functions and key properties of the algorithm. We further describe the similarities and

differences between previous ant algorithm hyper-heuristic and our hyper-heuristic methodology

in order to meet the objectives of this thesis.

In Chapter 5, we apply the proposed approach to the capacitated vehicle routing problem

(CVRP). We carry out sets of experiments to determine appropriate parameter values. We test

our approach on the capacitated vehicle routing problem and compare its performance with other

approaches. In addition, we carry out experiments utilizing different sets of low level heuristics

to determine a suitable number of low level heuristics. We develop a random hyper-heuristic to

serve as a means of comparison for our ant based hyper-heuristic. Finally, the ACO hyper­

heuristic was applied to observe the effect of different pheromone updates strategy.

9

In Chapter 6, we apply our approach to the travelling salesman problem (TSP) and compare it

with other approaches. We investigate the effectiveness of the high level selector by applying it

to two different categories of low level heuristics (TSP heuristics and CVRP heuristics).

Furthermore, the ACO hyper-heuristic was applied.

Finally, in Chapter 7, we discuss the overall performance of the ant-based hyper-heuristic and

outline directions for future research.

10

Chapter 2

Literature Review

2.0 Introduction

The aim of this chapter is to present necessary background information for the research in this

thesis. We survey the literature for some of the common solution methodologies for optimisation

problems. We discuss the definition of optimisation problems, the algorithm complexity; further

present the solution methods that have been used to solve the optimisation problems. Among the

methods discussed are genetic algorithms, tabu search, simulated annealing, the greedy

randomized adaptive search (GRASP) and variable neighborhood search (VNS). We also

describe ant algorithms in some detail as this forms the basis for the research presented in this

thesis. Different versions of ant algorithms are discussed; the ant system, the elitist ant, the rank­

based ant, the max-min ant and the ant colony system.

Furthermore, we discuss the concept of hyper-heuristic and survey some work done on hyper­

heuristic methods. We distinguish between the two categories of hyper-heuristic; the heuristic

selection and the heuristic generation. We end this chapter by discussing in detail the seminal

work of ant algorithm hyper-heuristic. This emphasises the motivation to develop a general

approach based on ant algorithm that can solve different problems across different instances

without extensive parameter tuning and by using simple to implement low level heuristics.

11

2.1 Optimisation Problem

Optimisation approach is a process of finding the best selection, arrangement or sequencing to

achieve some evaluation function. In optimisation problem, the evaluation function represents

the quality of a solution and the objective is either to minimise or maximise the evaluation

function. Optimisation problems consist of a large set of problems and we define these problems

in a class of problems called combinatorial optimisation problems. Examples of combinatorial

optimisation problems are scheduling problem, routing problem, assignment problem, resource

allocation, travelling salesman problem and etc. Blum and Roli (2003) defined combinatorial

optimisation P = (S, f) as :

• A set of variables X = {x" , X n } ;

• Variable domains D" , D n;

• Constraints among variables;

• An objective function fto be minimised or maximised where

f' DI X XDn ~ 91;

The set of all possible feasible assignments is:

S = {s = {(x" v I)' , (x n' V n)} I v lED /I S satisfies all the constraints}. S is usually a

search (or solution) space, as each element oj the set can be seen as a candidate solution. To

solve a combinatorial problem one has to find a solution s· E S with minimum objective function

value, that is j (s ') :s: j(s) 'if E S, s· is called a globally optimal solution oj (S.f) and the set S' c

S is called the set of globally optimal solutions.

12

As an example, in a facility location problem, a location is required for depots or service centres

and to be chosen from a set of potential locations. To seek optimal solution for an optimisation

problem, exact algorithm will be employed. Some examples of exact methods are linear

programming, branch and bound dynamic programming and langrangian relaxation method.

However, when processing, some exact algorithms are not bounded by polynomial time

complexity, thus making these algorithms inefficient and it is often computationally expensive to

find optimal solution in terms of time and storage. In such problem, heuristic or metaheuristic

approaches are usually used to achieve satisfactory solutions within reasonable time required.

2.1.1 Algorithms Complexity

To solve combinatorial optimisation problems, exhaustive search method is often used.

Exhaustive search works by enumerating all possible solutions and choose the best among these

solutions. As defined by Michalewicz and Fogel (2004), efficiency of an algorithm is considered

as the amount of computing resources needed .to perform the algorithm, which includes the

computing space and time. The computing space is concerned with the amount of memory

required to execute the algorithm and the computing time indicates the number of steps required

to execute the algorithm in order to obtain a result. In the theory of algorithm complexity, the

efficiency of an algorithm is expressed as the time complexity.

The time complexity function is described as the maximum time needed for an algorithm to find

a solution. Garey and Johnson (1979) defined the complexity of a problem as measured by time

complexity of the most efficient algorithm for the problem. An algorithm is considered efficient

13

(tractable) if it is a polynomial time algorithm where it can perform for any given number of

inputs in a reasonable time. An algorithm with exponential time is considered to be inefficient

(intractable) because it can only execute algorithm with small size of input and for larger size of

inputs. The running time, thus becomes impractical.

2.1.2 The Classes of P, NP and NP complete

A problem that has polynomial time complexity is said to be efficient. All efficient problems are

considered to be under class P (polynomial), which indicates that there is deterministic algorithm

that can solve this class of problems in polynomial time. However there are some problems for

which the flexibility is unknown. For this class of problems, it is said to be NP (non deterministic

polynomial) problems which indicate that there is a non deterministic algorithm that can solve

this class of problems in polynomial time. Therefore, we can say that P ~ NP. For example, for

the traveling salesman problem (TSP), we do not know if the problem is feasible, which means

that there is no polynomial time algorithm that will always determine the shortest route.

However, there is a class of problems that cannot be proven for any efficient algorithms exist to

solve it and therefore, it cannot be said to belong to NP class. This class of problems is referred

to as NP-hard problems which mean 'at least as hard as NP problems'. Another class of NP is

NP completeness. This class consists of all problems in NP which indicate that there is a

polynomial time algorithm for the problems, thus implying that all other problems in NP are

polynomial time solvability and therefore P = NP. Cook (1971), has introduced the concept of

NP completeness which proves that satisfiability problem can be solved in polynomial time if P

= NP. Exact methods are used to produce optimal solutions. However, for problems with a large

14

solution space, it will become computational expensive and methods such as heuristic and

metaheuristics are used to produce near-optimal solutions in reasonable time.

2.2 Heuristics

The word heuristic is derived from a Greek word which means to find or to discover. It is a

search technique that tries to find good quality solutions at a reasonable computational cost.

Reeves (2003) defmed a heuristic as:

"a technique which seeks good (i. e. near optimal) solutions at a reasonable computational cost

without being able to guarantee either feasibility or optimality, or even in many cases to state

how close to optimality a particular feasible solution is ".

A good introduction to heuristic techniques is provided in Michalewicz and Fogel (2004).

Examples of heuristic methods are the hill climbing technique, greedy algorithm and simple

descent method. The heuristic method starts with an initial solution. A neighborhood solution is

explored and will be chosen only if the neighborhood solution is better that the current solution.

This process will iterate until a stopping criteria is met.

One of the limitations of heuristics is their inability to make progress after becoming trapped in a

local optimum (Hansen and Mladenovic 2003). Local optimum is points in the search space

where all the solutions point in the neighborhood are worse than the current solution (Burke and

Kendall 2005). To prevent this problem, more advanced techniques called metaheuristics have

been developed.

15

2.3 Metaheuristics

Metaheuristics are considered as intelligent search methodologies. All metaheuristics have some

forms of learning mechanism to store information as the search progresses and can be combined

with different concepts to explore the search space. Voss (2001) defined a metaheuristisc as:

"A metaheuristic is an iterative master process that guides and modifies the operations of

subordinate heuristics to efficiently produce high-quality solutions. It may manipulate a

complete (or incomplete) single solution or a collection of solutions at each iteration. The

subordinate heuristics may be high (or low) level procedures, or simple local search, or just a

construction method The family of metaheuristics includes, but is not limited to, adaptive

memory procedures, tabu search, ant systems, greedy randomised adaptive search, variable

neighborhood search, evolutionary methods, genetic algorithm, scatter search, neural networks,

simulated annealing, and their hybrids."

In Glover and Kochenberger (2003), metaheuristics are defined as:

"Solution methods that orchestrate an interaction between local improvement procedures and

higher level strategies to create a process capable of escaping from local optima and performing

a robust search of a solution space".

16

Osman and Kelly (1996) defined metaheuristics as:

"A metaheuristic is an iterative generation process which guides a subordinate heuristic by

combining intelligently different concepts for exploring and exploiting the search spaces using

learning strategies to structure information in order to find efficiently near-optimal solutions"

Osman (2000) defined metaheuristics as:

"A metaheuristic may combine intelligently different concepts for exploring the search space and

uses learning strategies to structure information".

Among the first classifications of metaheuristics are the constructive or local search based (Blum

and Roli, 2003, Bai, 2005). In a constructive method, we start with an incomplete solution and

gradually add to it until we have a complete and hopefully feasible solution. At each decision

pOint, a choice is made as to how best to add to the current, partial solution which will hopefully

lead to a good quality and feasible solution. An example of a constructive algorithm is the

nearest neighbor algorithm, in which a problem is represented as a graph and the algorithm will

randomly pick an initial city and iteratively add the closest city among the remaining cities.

The local search based or sometimes referred to as the neighborhood search is an iterative search

procedure, which starts from an initial feasible solution and progressively attempts to improve it

by applying a series of moves. At every iteration, the search moves to another (normally

feasible) solution, which is hoped to be an improvement on the current solution, although we

17

could accept worse moves under certain conditions. The acceptance rule to accept another

solution is either the best-improvement which chooses the neighbor solution with the largest

improvement or the first-improvement which chooses the first improved solution found.

Another classification of metaheuristics is single population and population-based methods.

Single population methods only maintain a single solution at each iteration. Examples of these

methods include greedy randomised adaptive search procedure (GRASP), variable

neighbourhood search (VNS), simulated annealing and tabu search. Population-based methods

maintain a population of solutions. These methods include genetic algorithms, memetic

algorithms and ant colony optimisation. Blum and Roli (2003) have summarized the

fundamental properties of meta-heuristics. Among them are:

i. Meta-heuristics are strategies that guide the search process

ii. The goal of meta-heuristics is to effIciently explore the search space in order to find

near-optimal solution

iii. It constitutes meta-heuristics algorithms range from local search procedures to

complex learning processes

iv. Meta-heuristics methods are approximate and non-deterministic

v. Meta-heuristics may incorporate mechanisms to avoid getting trapped in confined

areas of search space

vi. Meta-heuristics permit abstract level of description

vii. Meta-heuristics are not problem-specific but may use domain-specific knowledge in

the form of heuristics that will be controlled by an upper level strategy

18

viii. More advanced meta-heuristics use search experience embodied in some form of

memory to guide the search.

One important concept discussed in Blum and Roli (2003), is the diversification and

intensification strategy. Diversification strategy refers to the exploration of the search space and

intensification strategy refers to the exploitation of the accumulated search experience. More

information on metaheuristics is reviewed in Blum and Roli (2003), Glover and Kochenberger

(2003) and Gendreau and Potvin (2005b). In the following sections we briefly review some of

the common metaheuristics.

2.3.1 Genetic Algorithms

Genetic algorithms are population based evolutionary algorithms that can be used to solve

optimization problems. It was first proposed by Fraser (1957). These algorithms are inspired by

Darwin's theory of evolution. The basic idea is to produce a population of individuals and

through a number of generations; the population will evolve, and improve, by mimicking natural

selection. Reeves (2003) and Sastry et al. (2005) provide firm introduction to this methodology.

Genetic algorithms start by randomly generating an initial solution. It employs genetic operators

such as selection and mutation to manipulate individual solutions (chromosome). The

chromosome is usually fixed and each position is a gene and contains a value. This value could

be a binary digit, or it could be a much more complex data structure.

A crossover operator replaces some of the genes in one parent corresponding to the genes of

another. At each generation, the crossover operator creates one or more offspring from two

19

existing parents. The selection operator will select the best solution as parents in order to survive

for the fittest to survive from one generation to the next generation. Most commonly used

method for selection is the roulette-wheel method which uses probability distribution. Mutation

operator allows exploration of the search space in order to overcome the problem of two parents

having the same value of genes. Genetic algorithms have been successfully been applied to many

combinatorial optimization problem (Holland 1992, Aickelin 1998, Reeves 2003, Ross et al.

1998).

2.3.2 Tabu Search

Tabu search was first proposed by Fred Glover in 1987. Glover and Laguna (1997) defined tabu

search as:

"Tabu search is a meta-heuristic that guides a local heuristic search procedure to

explore the solution space beyond local optimality. "

Tabu search are used to prevent cycling when moving away from local optima through non­

improving moves (Gendreau and Potvin 2005a). It escapes from local optimum by implementing

an exploration search strategy guided by information from the previous search history. Tabu

search starts as a traditional local search. It will iteratively move from one solution to another by

selecting the best neighbour solution at each iteration until a termination condition is met. To

prevent cycling, a short-term memory which is known as a tabu list is used to store the most

recently visited solutions (or attributes to the solutions). Any moves that will take the search

back to a tabu position is forbidden. The search process is only allowed to visit solutions that are

20

not members of the tabu list. Once a solution is visited, it will be added to the tabu list and one

ofthe solutions that were already stored in the tabu list will be removed out from the list.

Two important strategies in tabu search; intensification strategy, which involves exploring the

neighborhood of current solution and diversification strategy, which allows the search process to

explore unvisited region of the search space in order to search out promising areas. The length of

the tabu list or tabu tenure determines the behavior of the search process. Smaller tabu tenure

indicates only small areas of the search space will be explored (intensification). Intensification

strategy involves exploring more thoroughly the search space that seems beneficial, in order for

the best solutions in these areas to be found. Larger tabu tenure allows the search process to

explore larger areas of the search space, thus allowing the diversification strategies to be

implemented. Diversification strategy involves in exploring the unexplored areas of the search

space. This action is performed when there are repetitions of solutions.

An aspiration criterion is introduced to allow a tabu list to be revoked. This is necessary if the

tabu list contains beneficial moves. An example of a simple aspiration criteria is a tabu move is

allowed when it produces a solution that is better than the current solution. Other criteria for

aspiration criteria are discussed in Reeves (2003). Gendreau and Potvin (2005a) outlined that the

key rule for a tabu to be revoked is when cycling does not occur. In order to produce good

performance of tabu search, appropriate parameter tuning for the size of tabu list is needed. Tabu

search has successfully been applied to several applications (Skorin-Kapov 1990; Gendreau et al.

1994; Chambers and Barnes 1996; Glover and Laguna 1997; Burke et al. 1999 and Gaspero and

Schaerf 2007). Detail overview on tabu search can be obtained from Hertz et al. (1995) and

Gaspero and Schaerf(2001).

21

2.3.3 Simulated Annealing

Simulated annealing was introduced by Kirkpatrick et aI. in 1983. It originates from statistical

mechanics (Metropolis algorithm) and is among the oldest metaheuristics approach that provides

a strategy to avoid local optimum. The gist behind Metropolis algorithm is that it will proceed in

small steps from one state to the next state and the temperature prevents the algorithm from

getting stuck by permitting the uphill moves (assuming minimisation problem) (Kirkpatrick et al.

1983).

Simulated annealing concepts are based on thermal process to obtain low energy states of a solid

in a heat bath. The process consists of two steps: the temperature of the heat bath is increased to

a maximum value where the solid melts. Then the temperature is decreased so that the particles

cool until it converges to a steady state (Aarts et al. 2005). With regard to the search process, this

algorithm allows for two important strategies: setting the temperature T initially high will allow

the exploration of the search space (diversification); the particles cool themselves until they

converge into a steady state, thus leading the search to converge to a local minimum

(intensification). Appropriate cooling schedule is crucial to balance between intensification and

intensification strategies (Osman 1993). However, the cooling schedule and the initial

temperature value depend on the problem instances since the structure of the search space varies

from one instance to other instances.

22

Simulated annealing always accepts improving solutions and non-improving solutions will be

accepted with a certain probability. The algorithm starts by heuristically or randomly generating

an initial solution. A temperature T (a control parameter of the cooling schedule) is initialised.

While a termination condition is not met, at each iteration, a candidate move is randomly

selected. The move will be accepted if it leads to a solution with an improved objective function,

(for example, in the case of minimisation,j(s j <j(s». However, a non-improving move (j(sj ~

j(s)) will always be accepted depending on the deterioration of the objective function value. The

move will be accepted based on a probability given by exp(-I1/T) (where L\ isf(s') - j(s), that is

the difference between the current and new solution) and T is the value of current temperature.

The algorithm is typically terminated when the temperature reaches zero.

Simulated annealing has been applied to a large number of application areas, often with good

quality results being achieved. However, it sometimes requires a large amount of computation

time (Aarts et al. 2005). It has successfully been applied to several problems such as vehicle

routing problem (VRP) (Osman 1993), quadratic assignment problem (QAP) (Connolly 1990)

and travelling tournament problem (TTP) (Lim et al. 2006). More detail descriptions on

simulated annealing are discussed in Henderson et al. (2003); Suman and Kumar (2006).Variants

of simulated annealing include the threshold accepting algorithm and the great deluge algorithm.

2.3.4 Greedy Randomized Adaptive Search (GRASP)

Greedy randomized adaptive search (GRASP) was first introduced by Feo and Resende (1989).

It is an iterative process that combines constructive heuristics and local search. It consists of two

procedures: solution construction and solution improvement. At each iteration, a solution is

23

otherwise value k will be incremented with 1 and a different neighborhood will be examined.

Detail implementation and applications of the algorithm can be seen in Hansen and Mladenovic

(2001, 2003, 2005). VNS has been successfully applied to several applications such as nurse

rostering problems (Burke et a1. 2004) and examination timetabling (Abdullah and Burke, 2006).

2.3.6 Ant Algorithms

Ant Algorithms are discussed here in some detail as it is the fundamental to work carried out in

this thesis. An ant algorithm is considered as constructive heuristic, where it builds the solution

from an initially empty solution (Dorigo and Stutzle 2003a). While navigating to and from the

food source, ants deposit a substance called pheromone. This trail permits communication among

the ants so that other ants can navigate to the food source utilizing the experience of others in

finding a shorter route.

2.3.6.1 Ant Behavior

The ant algorithm is based on an observation about ant behavior (Dorigo and Di Caro 1999a;

1999b; 1999c). They live in a colony and their behavior is directed more to the survival of the

colony, rather than individual survival. An important behavior of the ants is the foraging

behavior and how they are able to find the shortest path between food sources and their nest

despite being almost blind.

26

2.3.6.2 The Double Bridge Experiment

Deneubourg et a1. (1990) show that path selection to a food source by the Argentine ant is based

on self-organization. In their experiment, a food source is separated from the nest by a bridge

with two equally long branches. Initially, no pheromone exists on the branches. Therefore, they

have the same probability to be selected by the ants. Ants deposit pheromone as they travel from

nest to food source and vice versa. The principle of the algorithm is the shorter the path, the more

pheromone is left on the path. Ants will follow the path with a pheromone trail and will tend to

choose the path with higher amounts of pheromone.

They conducted an experiment to investigate the behavior of these ants towards the laying of

pheromone trails. In the first experiment, the two branches had an equal length. The ants were

left to walk freely between the nest and the food source. The percentage of ants that chose these

branches was observed over time. Eventually, all the ants used the same branch. This was

explained as follows; as there was no pheromone on the two branches when the experiment

started, the ants may choose any of the branches with equal probability. However, with the

assumption that the time scale is taken as consideration, the probability of ants choosing a branch

at a certain time depends on the total number of ants that used the branch until the time.

Since ants deposit pheromone while walking, the larger number of ants on a branch results in a

larger amount of pheromone on that branch. This larger amount of pheromone will motivate

more ants to choose that branch. As a result, the ants converge into a single path. This process is

categorized as positive feedback loop where the probability of an ant choosing a path increases

27

with the number of ants (Dorigo et a1. 1991). The second experiment set one of the branches to be

twice as long as the other. In this experiment, the ants converge to the shorter branch.

2.3.6.3 Pheromone Update

Ant algorithms are based on a positive feedback mechanism (Dorigo et a1. 1991). Depositing

pheromone allows good solutions to be retained for reinforcement. However, to avoid stagnation

(and premature convergence), inferior solutions, not very good solutions should not be ignored.

Pheromone evaporation is done in order to avoid the unbounded accumulation of pheromone.

This enables ants to slowly forget its past action and explore new search directions without being

influenced by past decisions. Ant algorithm is an iterative procedure as the amount of pheromone

is transferred from one iteration to the next. After an ant has built a solution, the quality of that

solution is used to compute the amount of pheromone the ant should Jay on a particular edge. For

example in the Travelling Salesman Problem (TSP), the pheromone trail refers to the desirability

of visiting city j after visiting city i. The amount of pheromone will be measured based on quality

of solution generated. In an ant system (AS), each ant lays some amount of pheromone inversely

Proportional to the solution generated (Dorigo et.al. 1996). Two different ways of updating the

pheromone trail are performed. The iteration-best updating is where the selected ant is the ant

that does the shortest tour in the current iteration while the global-best updating is the ant that

does the shortest tour since the beginning of the algorithm.

For a dynamic problem (routing problem) where the characteristics of the problem change

unpredictably during the course of the algorithm, pheromone updating is performed when there

28

is shorter path involved. Pheromone will be laid on that particular path, thus influencing the

decision of future ants (Di Caro and Dorigo 1997; 1998).

2.3.6.4 Heuristic Information

Heuristic information helps the ant's decision-making process by exploiting problem specific

knowledge. For a static problem, the knowledge is computed once during the initialization phase

and it remains the same during the run of the algorithm. For example, in TSP (Dorigo et al.

1991), the heuristic information is the inverse of the distance (1/dij) between city i and city j, and

the distance do not change as the algorithm executes. This has some advantages as it is easy to

compute and needs to be computed only once. It is also computationally efficient, as the values

do not have to be updated at each iteration. For a dynamic problem, the heuristic information is

changing throughout the execution time of the algorithm. It has to be continually computed each

time ant makes a tour, thus increasing the computational time.

2.3.6.5 Number of Ants

The number of ants in the algorithm is usually set depending on the dataset. For example for the

TSP (Dorigo et al. 1991) the number of ants is set to be the same number of cities exist in the

network. A single ant is capable of searching for solution. However, in Dorigo and Gambardella

(1997) and Dorigo and Stutzle (2003b), a colony of ants is proven to produce good results. Ants

cooperate by exchanging information through pheromone trail. For example in the work (Dorigo

and Gambardella 1997), a comparison between colonies of cooperating ants with a colony of

29

non-cooperative ants was done. CPU time was used to measure the performance. It was found

that cooperating ants have a higher probability to find quicker optimal solutions.

A single ant is capable of searching for solutions. However, in Dorigo and Gambardella (1997)

and Dorigo and Stutzle (2003b), a colony of ants is proven to produce good solutions.

Cooperating of ants is more desired particularly for geographically distributed system (Dorigo

and Stutzle 2003 b). This is because the difference of path length contributes to the difference of

pheromone trail and can be exploited well by the colony of ants.

2.3.6.6 Ant System

The original ant algorithm was named as Ant System (AS) (Dorigo et al. 1991; 1996). Three

different version of AS were developed: ant-density, ant-quantity and ant-cycle. The difference

between these algorithms is the way in which the pheromone values are updated. Ant-density

and ant-quantity manipulates local information. The trail intensity is updated after every move,

as opposed to waiting for a tour to be completed. More detailed explanation on how these

algorithms work can be found in Dorigo et al. (1991) and Maniezzo and Colomi (1994). More

descriptions for this algorithm are presented in Chapter 4.

2.3.6.7 Elitist Ant System

An improvement on AS, called elitist Ant System (EAS) was introduced in Dorigo et at. (1991).

The edge belonging to the best tour is rewarded with more pheromone values compared to other

30

edges. This activity is to provide additional reinforcemeht learning to good edges. Details can be

found in Dorigo et al. (1991).

2.3.6.8 Ant System Rank-Based

Ant System Rank-Based (ASrank) was introduced by Bullnheimer et al. in 1999. Ants are sorted

according to their tour lengths and the amount of pheromone that is deposited is carried out

according to the rank of the ants (Bullnheimer et al. in 1999b).

2.3.6.9 Max-Min Ant System

Max-Min Ant System was introduced in Stutzle and Hoos (2000). In their algorithm, the values

of the pheromone trails have an upper boundary value, Tmax , and a lower boundary, t'min' The

boundary is in the range of T min ~ T ij ~ T max' More details can be seen in Stutzle and Hoos

(2000).

2.3.6.10 Ant Colony System (ACS)

The Ant colony system (ACS) improves the AS via two mechanisms (Dorigo and Gambardella

1997; Dorigo and Di Caro 1999b). The first mechanism uses an elitist strategy to update

pheromone trails (only the ant that produced the best solution is allowed to update pheromone

trails). Secondly, the ant chooses the next city to move to by using the pseudo-random

proportional rule. More work on this algorithm can be seen in Alexandrov and Kochetov (1999);

Bell and McMullen (2004); Stutzle and Dorigo (1999) and Den Besten et al. (2000).

31

2.4 Hyper-heuristic

Metaheuristics are capable of producing good quality solutions. However, they often need to

perform some adjustment of relevant parameters in order to be applied to new problem or

different problem instances. Furthermore metaheuristics are often time-consuming and

knowledge intensive process that requires a deep understanding of the problem domain.

According to Burke et al. (2003b):

"Many state-of-the-art metaheuristics developments are too problem-specific or knowledge­

intensive to be implemented in cheap, easy-to-use computer systems".

Hyper-heuristic are specifically designed to raise the generality of optimisation systems in such a

way that the technique can be reused and applied to other different problems. A key motivation

of this method is to design a system that could automate and simplify the tuning of heuristics in

an optimisation problem. Burke et al. (2003b) defined the aim of hyper-heuristic as:

"The aim is not to develop a method which would 'beat' existing algorithms for a given

optimisation problem, but instead to develop a method which is capable of performing well­

enough, soon-enough, cheap-enough across a range a/problems and domains".

The idea of hyper-heuristic is; it provides a way to combine few simple heuristics or to construct

new heuristics from previous existing heuristics to search for good solutions. These simple

heuristics can be any k-opt moves, simple local searches that are problem dependent or rules

32

used by problem experts to construct solutions. Whenever new problem domains are to be

solved, the hyper-heuristic algorithm will only have to replace the set of these simple heuristics

and the evaluation function (solution quality).

Metaheuristics operate on search space of solutions. However, hyper-heuristic operate on search

space of heuristics. Problem owners normally would prefer simple, easy to implement heuristics

which do not require a large amount of resources and expertise for the development. Therefore

they should be cheaper to implement and easy to use and can produce good quality solutions. For

example in Cowling et al. (2002a), it has been demonstrated that hyper-heuristic has produced a

much better quality than manually scheduled problem of personnel scheduling in one of UK

academic institutions in a shorter time period (three weeks).

Hyper-heuristic approaches have started as early as in 1960s (Fisher and Thompson 1961, 1963;

Crowston et a1. 1963) (as discussed in Burke et a1. 2010). The term hyper-heuristic was first used

in 1997 (Denzinger et al. 1997) (discussed in Burke et al. 2010) to introduce the concept of

combining several artificial intelligence methods. In 2000, the hyper-heuristic term was formally

used to solve the scheduling of sales summit (Cowling et al. 2000). These approaches however

previously were not classified as hyper-heuristic; instead these approaches gave a root to hyper­

heuristic method. For example, in scheduling open-shop schedule (Fang et al. 1993), genetic

algorithm was used to search the space of heuristics for the problem. It produces some best

known results on the benchmark problems. Hart and Ross apply genetic algorithm to search for

heuristic combination to solve the dynamic job-shop scheduling problems (Hart and Ross 1998).

The method produced very good results on 12 instances. Gratch et al. presented a paper in 1993

which develop a method (COMPOSER system) to control the satellite communication schedules

33

which comprise a number of earth orbiting satellites and three ground stations (Gratch et a1.

1993; Gratch and Chien 1996). There is a learning system that searches a space of possible

control strategies. Statistics are used to evaluate the performance of the expected problem. In the

following section, we will discuss the hyper-heuristic classifications.

2.4.1 Hyper-heuristic Classifications

Basically hyper-heuristic are divided into two; the nature of search space and the types of

feedback received during the execution of the algorithm (Burke et a1. 20101a). These

classifications determine the methodologies for hyper-heuristic to solve optimisation systems.

Figure 2.3 illustrate the framework for these classifications.

Feedback Nature of the heuristic search space

Construction
Online Heuristic heuristics
learning Selection

Methodologies to
Perturbation

Offline Hyper- select
heuristics

learning heuristics

Heuristic Construction
No generation heuristics
learning

Methodologies to
generate Perturbation

heuristics

Figure 2.3: The framework for classification of the hyper-heuristic (source from: Burke et al.

2010b)

34

Hyper-heuristic is a learning algorithm when it involves some feedback during the search

procedure. Feedback is important to determine the kind of hyper-heuristic method that we want

to employ. For example in Cowling et al. (2001b) and Burke et al. (2003a), historical

performance of each heuristics is considered to select the right heuristics at each decision point.

There are three types of learning as follows:

• Online Learning - This type of learning requires the feedback to be recorded during the

execution of an algorithm. An example of online learning is the use of metaheuristics or

reinforcement learning as a high level selector to pick low level heuristics.

• Offline Learning - This type of learning requires the feedback to be recorded in the form

of rules from training instances. This feedback is generally used to solve unseen

instances.

• Without Learning - This type of learning does not require any feedback.

Hyper-heuristic operate on search spaces of heuristics instead of search space of solutions. A

hyper-heuristic classification is considered in the section below.

2.4.1.1 Heuristic Selection

The first category is a method where heuristics choose heuristics; this method will select a good

combination of low level heuristics to search for good solutions. There are several definitions for

hyper-heuristic of this category in the literature. Among them are:

35

The non-domain data flow in the framework stores information about each low level heuristic.

For example in the work of Kendall and Mohd Russin (2004a), the non-domain information

includes the heuristic number, recent changes in the evaluation function, CPU time taken by each

heuristic to obtain a solution and the heuristics tabu status, indicating how long a heuristic should

remain in the tabu list. For every iteration, at each decision point, a low level heuristic is

selected. For example in Cowling, Kendall and Soubeiga (2000; 2002a; 2002b), the choice of the

low level heuristic is based on the previous performance of each neighborhood. The performance

of the low level heuristics is evaluated by calculating the weighted sum of three components; the

recent performance of each low level heuristic, recent effectiveness of consecutive pairs of low

level heuristics and the amount of time since the low level heuristic was last called. A balance of

these three factors (represented as a, p, 8) allows the search space to be explored effectively.

Heuristic selection method was implemented based on constructive low level heuristics and

perturbative low level heuristics. The first method selects low level heuristics to build solution

incrementally from an empty solution until a complete solution is found. The second method

selects low level heuristic to improve a current solution. Further discussion on these approaches

will be discussed in the section below. The heuristic selection method was successfully tested on

several optimization problems; production scheduling (Vaquez-Rodriquez et at. 2007),

educational timetabling (Asmuni et at. 2004; Ross et al. 2004), bin packing problem (Bai et at.

2007), channel assignment problem (Kendall and Mohamad 2004a, 2004b), sales summit

scheduling (Cowling et al. 2000), project presentation scheduling (Cowling et al. 2002a) and

nurse rostering (Cowling et al. 2002a).

37

The basic framework of this method is to examine the available heuristics. These heuristics are

usually human-created heuristics. They will then be used as base heuristics to generate another

unknown heuristics. For example, we have a problem domain; the available heuristics will be

observed to get the generalization of the heuristics. At this stage, the heuristics will be

decomposed into their basic components. To generate new heuristics, the similar design issues as

the genetic programming approach will be considered. Furthermore, we need to analyze how

these heuristics will be applied to a dataset for a problem. In genetic programming, there exist a

terminal set and function set. Terminal set consists of variables and constants of the programs;

for example, commands such as forward, left or right. For the case of hyper-heuristic, this set of

variables will describe the problem. They can be considered as input variables and changes their

value as the problem state changes. Function set consists of the functions of program in genetic

programming. Examples of function set can be the arithmetic operators or conditional operators.

In hyper-heuristic framework, the function set will determine how the variables will be

composed together. Fitness function will need to be identified for a particular problem. Finally,

the genetic programming approach will be executed.

These categories of hyper-heuristic are based on constructive hyper-heuristic and perturbative

heuristics. Both approaches select or generate different heuristics at different stages of the search

procedure. The heuristics can be applied once or can be applied repetitively as long as it

produces a better solution. Hyper-heuristic does not necessarily have to beat existing methods.

Their prime motivation is to be a general method that works effectively across different problem

domains.

39

2.4.2 Constructive Hyper-heuristic

Constructive hyper-heuristic refer to an approach that employs a set low level heuristics in order

to produce high quality solutions from a given problem. They construct solutions from an empty

solution by selecting low level heuristics at each decision point of solution construction. This

process will continue until a complete solution is obtained. For example, in Qu and Burke (2005)

and Burke et a1. (2005a), to construct an educational timetabling, a list of constructive graph

heuristics such as color degree, largest degree, largest enrollment, largest weight degree,

saturation degree and random ordering method were used one by one to schedule slots into the

timetable. First, the least penalty slots will be scheduled into the timetable. The next heuristic in

the list will be used to schedule the remaining slots and the first set of the slots will be scheduled

into the timetable. This procedure continues until a complete timetable is produced.

In Burke et al. (200?), a tabu search is used to search for good permutation of graph coloring

heuristics within a graph-based hyper-heuristic to construct exam and course timetables. Asmuni

et al. (2004) use fuzzy rules to select graph heuristics to construct the exam timetables. More

examples of constructive hyperheuristic can be found in Terashima-Marin et al. (2006). Their

approach to solve a large-scale university examination timetable problem is by using different

sets of heuristic and a switch condition to move from one heuristic to another to construct a

feasible timetable. Constructive hyper-heuristic has been applied to several domains of

optimization problem such as vehicle routing problem (Garrido and Castro 2009), production

scheduling (Vaquez-Rodriquez et a1. 2007), educational timetabling (Asmuni et al. 2004, Ross et

al. 2004) and bin packing problem (Bai et a1. 2007).

40

2.4.3 Perturbative Hyper-heuristic

Perturbative hyper-heuristic refer to an approach that employs perturbative heuristics as low

level strategies to solve a problem. They start from an initial solution and repeatedly select

heuristics at each decision point in order to search for a better solution. Various work has been

presented based on these perturbative hyperheuristic. In Kendall and Mohd Russin (2004a), for

example, an initial solution for the examination timetable is constructed using the largest degree

or saturation degree. Tabu Search based hyper-heuristic will schedule the unscheduled exam

using the low level heuristics, thus exploring the neighborhood to search for better solutions by

selecting which heuristics to apply. Perturbative hyper-heuristic has been applied to several

domains of optimization problem such as channel assignment problem (Kendall and Mohamad

2004a, 2004b), personnel scheduling (Cowling et aI.2000), educational timetabling (Burke et al.

2003a, Burke et al. 2005a) and vehicle routing problem (pisinger and Ropke 2007).

2.4.4 Low Level Heuristics

In a hyperheuristic framework, a set of low level heuristics is combined in order to be chosen by

the hyper-heuristic. Kendall and Mohd Hussin (2004a) defines low level heuristics as:

"Low level heuristics are heuristics that allow movement through a solution space that require

domain know/edge and are problem dependent."

41

These low level heuristics are typically simple, easy to implement and carry out one specific

function, although, of course, they can be as complex as the designer desires. Usually, they

represent simple local search neighborhoods such as swap, move or rules that were used by the

user to construct solutions for their problems. However, low level heuristics can also be

complicated heuristics such as the metaheuristics. In a hyper-heuristic framework, these low

level heuristics will generate a new solution together with other information such as changes in

the evaluation function and CPU time taken to complete a task. For example, in the work of Bai

(2005), 5 low level heuristics that were easy to implement and straightforward were used to solve

the bin packing problem. By combining these heuristics, the search procedure was guided to

promising direction.

2.4.5 Hyper-heuristic in the literature

In the following section, we will discuss the available hyper-heuristic approaches that are

available in the literature.

2.4.5.1 Random Search Hyper-heuristic

The random search hyper-heuristic randomly selects the simplest and easiest heuristics to

implement in hyper-heuristic approaches. Random search hyper-heuristic are usually used as

benchmarks (comparison) for other hyper-heuristic. The drawback of these random search hyper­

heuristic is that the performance of each heuristic cannot be measured since it is randomly

generated.

42

There are four different approaches of random hyper-heuristic as defined in Cowling et a1.

(2000).

Simple random - this method will randomly pick a low level heuristic to apply at each

iteration until a stopping condition is met. The pseudocode for this algorithm is described as

in Figure 2.6:

Do
Select a low level heuristic at random and apply it once.

Until stopping condition is met

Figure 2.6: Simple random algorithm (source from: Cowling et a1. 2000)

Random Descent - This method will equally pick a low level heuristic at random. It will be

applied until there is no further improvement achieved (local optimum). This process repeats

until a stopping condition is met. The pseudocode for this algorithm can be described as in

Figure 2.7:

Do
Select a low level heuristic at random and apply it until no
further improvement achieved.

Until stopping condition is met

Figure 2.7: Random descent algorithm (source from: Cowling et al. 2000)

Random Permutation - This method produces a random permutation of low level heuristics.

The low level heuristics will then be applied repeatedly in the chosen permutation until a

stopping condition is met. The pseudocode for this algorithm can be described as in Figure

2.8:

43

Produce a random permutation of low level heuristics available
Do

Apply the low level heuristic in the permutation sequence at once
Until stopping condition is met

Figure 2.8: Random permutation algorithm (source from: Cowling et al. 2000)

Random Permutation Descent - This method produces a random permutation of low level

heuristics. The low level heuristics will then be applied in the chosen permutation until no

further improvement is achieved (local optimum). The pseudocode for this algorithm can be

as in Figure 2.9:

Produce a random permutation of low level heuristics available
Do

Apply the low level heuristic in the permutation sequence
until no further improvement achieved

Until stopping condition is met

Figure 2.9: Random permutation descent algorithm (source from: Cowling et al. 2000)

Random Descent (RD) hyper-heuristic has been applied in Kendall et al. (2002) to solve the

real world problem of project presentations problem at the University of Nottingham. Two

selection mechanisms were used: that is all moves (AM) and only improving moves (O/).

However, all types of random hyper-heuristic as above were applied to a sales summit problem

as in Cowling et al. (2001a) to investigate a more suitable strategy to automatically apply a

parameter in a choice function hyper-heuristic.

44

2.4.5.2 Greedy Hyper-heuristic

Greedy hyper-heuristic consider the objective function produced by each low level heuristic. The

solution will be compared with the current solution. The low level heuristic that produces the

best solution will be applied as long as it produces an improvement.

For example, Ayob (2005) in her thesis applied three random approaches of greedy search hyper­

heuristic. The random hyper-heuristics are:

• Random descent - this method randomly picks a low level heuristic and accepts

the first improved heuristic.

• Random move - this method picks a randomly chosen heuristic without bothering

about the quality of the solutions as long as it maintains the best solutions.

• Steepest descent - picks the best heuristic available in the neighborhood.

This type of hyper-heuristic is normally applied as a comparison for performance of algorithms.

2.4.5.3 Monte Carlo Hyper-heuristic

Monte Carlo hyper-heuristic was introduced in Ayob and Kendall (2003). It randomly picks a

low level heuristic. Improved solutions are always accepted. In order to, escape the local

optimum, worse solutions are accepted with a certain probability based on Monte Carlo

acceptance criteria. The probability decreases as the quality of the solution gets worse. A basic

Monte Carlo hyper-heuristic algorithm from Ayob (2005) is described as in Figure 2.10:

45

Step 1: Initialisation

a. Choose a starting solution So E S;
b. Record the best obtained solution, Shest = Soandf(SbesJ= f(So);

Step 2: Choice and termination

a. Choose Sc E n(So);
b. Compute 8 = f(Sc) - f(So)
c. If g ~ 0 then accept Sc and proceed to Step 3
d. Else: Accept Sc with a probability that decreases with increases in o. If Sc is

rejected and stopping condition = false, then return to step2(a);
e. Terminate by a stopping condition.

Step 3: (Update)

Re-set So = Sc and iff(Sc) <f(Sbest), return to Stepl (b).
Return to Step2 if stopping condition = false.

Figure 2.10: Monte carlo hyper-heuristic (source from: Ayob 2005)

Ayob and Kendall (2003) investigate three types of acceptance criteria of the algorithm based on

this approach: Linear Monte Carlo (LMC), Exponential probability function (EMC) and

Exponential Monte Carlo with counter (EMCQ). They apply these hyper-heuristic to optimise

the component placement sequencing in printed circuit board assembly. The objective is to

improve the efficiency of the multi head placement machine. The Linear Monte Carlo acceptance

probability is computed by (M- g). M is a constant value between 0 and 100. The Exponential

probability function is computed by e-6
•

The probability of accepting worse solution decreases as the 0 decreased. New solution Sc will

be accepted if the generated random number is less than e -6 • The Exponential Monte Carlo with

counter (EMCQ) is computed bye-BIT, where () = o· t (t is a computation time) and T = p(Q).

46

New solution Sc will be accepted if the generated random number is less thane- il/f
• For more

detailed work on Monte Carlo hyper-heuristic, see Ayoh (2005).

2.4.5.4 Choice Function Hyper-heuristic

Choice function hyper-heuristic was introduced in Cowling et al. (2000). The low level heuristics

in a choice function hyper-heuristic are ranked based upon the historical performance of the

heuristics, a learning mechanism that combines the intensification and diversification procedure

during the search. A pseudocode for choice function hyperheuristic is shown in Figure 2.11:

Do
Select the low-level heuristic that maximizes choice function f and apply it.
Update choice function fs parameters using an adaptive procedure

Until Stopping condition is met.

Figure 2.11: Choice function hyper-heuristic (source from: Cowling et at 2001a)

For example, in Cowling et al. (200 1 a), the choice function considers three different criteria: the

recent performance of the low level heuristics (Ji), the recent improvement for consecutive pairs

of the low level heuristics (fi) and the amount of time elapsed since the given heuristic has been

called (fj). The value of jj and h are considered as an element to guide the intensification

procedure and.f3 provides an element of diversification, which guides the search into considering

the low level heuristics that have not been applied for some time. Full detailed of this method is

presented in Soubeiga (2003).

In terms of performance, Kendall et a1. (2002) investigate the choice function hyper-heuristic and

compared it with a range of heuristics and hyper-heuristic. They reported the choice function

47

hyper-heuristic can produce effective and realistic combination of low level heuristics. Further

improvement on results produced by this method (choice function all moves) can be found in

Cowling et al. (2002c). Choice function hyper-heuristic has been applied on several different

problem domains such as the sales summit scheduling (Cowling et al. 2001a) and the nurse

scheduling problem (Kendall et aI. 2002)

2.4.5.5 Simulated Annealing Hyper-heuristic

Simulated annealing hyper-heuristic always accepts low level heuristic that produce improving

solutions and low level heuristics with non-improving solutions will be accepted with certain

probability. Initially. the probability of accepting new solution is high to allow more search space

to be explored and it decreases as the search progresses. In Soubeiga (2003), the acceptance

probability is controlled by a geometric cooling schedule. The pseudocode of a basic algorithm is

as in Figure 2.12.

Do
Choose a low level heuristic uniformly at random and apply it to generate a new solution
Calculate Improvement
Accept new solution with probability
Update temperature

Until stopping condition is met.

Figure 2.12: Simulated annealing hyper-heuristic (source from: Soubeiga 2003)

Simulated annealing hyper-heuristic was first applied to shelf allocation problem (Bai and

Kendall 2005). Furthermore, Bai et al. (2007) solve three scheduling problems: nurse rostering,

university course timetabling and one-dimensional bin packing problem by using this method.

Stocastic heuristic selection was adopted to determine the capabilities of different heuristics

48

during the search. Simulated annealing acceptance criteria (AM and 01) is used to decide

whether to accept a heuristic or not. Results showed that this method can produce competitive

results. Another work on simulated annealing hyper-heuristic can be seen in Downsland et al.

(2007).

2.4.5.6 Tabu Search Hyper-heuristic

In order to select which low level heuristic to apply at a decision point, tabu search based hyper-

heuristic manipulates tabu list and adaptive memory to learn the performance and behavior of the

low level heuristics. Tabu search hyper-heuristic keeps the non-domain specific information such

as the number of heuristics, recent changes in the evaluation function, the CPU time required to

implement the heuristic and the tabu duration.

Basically, the idea of this approach is that hyper-heuristic will rank a set of heuristics according

to their performance in the search process. Similar to the tabu search concept, certain heuristics

will be kept tabu at certain stage of the search process. At each iteration, the highest non-tabu

will be the current solution until a termination condition is met. An example of pseudocode in

their algorithm is as in Figure 2.13:

Construct initial solution
Do

Consider heuristics that are not tabu.
Apply chosen heuristic and make the heuristic tabu.
Update Solution.

Until terminating condition

Figure 2.13: Tabu search hyper-heuristic (source from: Kendall and Mohd Hussin 2004b)

49

Kendall and Mohd Hussin (2004b) make tabu the list of heuristics that have been used too many

times in order to permit other heuristics to have a fair opportunity to be selected by the hyper­

heuristic. The tabu duration maintains how long a heuristic should stay in the list and will not be

applied during the current iteration. For each iteration, the tabu duration value for each heuristic

will be decremented until it reaches zero where the heuristic now is tabu inactive. The work was

tested on eight examination datasets. For each dataset, different tabu durations and stopping

conditions were investigated. Their result did not produce the best solutions, however, it can

produce good feasible solutions and proved that tabu search based hyper-heuristic can be applied

to different problem instances. For more work on tabu search hyper-heuristic can be seen in

Hussin (2005).

Burke et al. (2003a) have successfully used the tabu search hyper-heuristic to solve the course

timetabling and the nurse rostering problem. They make tabu the heuristics that do not improve

the solution. The heuristics compete with each other by using rules based on reinforcement

learning. A ranking mechanism dynamically sorts the low level heuristics used. The heuristic

with the highest rank will then be applied. The non-performing heuristics will be moved to the

tabu memory to prevent it from being chosen. For the nurse rostering problem as in Burke and

Soubeiga (2003), the hyper-heuristic produced solution of acceptable quality and achieved

optimality in some cases. Furthermore, in Burke et a1. (2005c), the tabu search hyper-heuristic

with fixed size of tabu list was used to solve the space allocation and timetabling problems and

has produced results of acceptable quality.

50

2.4.5.7 Genetic Algorithm Hyper-heuristic

Genes in a chromosome represent low level heuristics in a Genetic algorithm (GA) hyper­

heuristic. In Cowling et al. (2002a), a direct GA with a fixed length of chromosome is developed

to solve the trainer scheduling problem. The low level heuristics contain a combination of

operators such as adding, swapping and deleting events in the schedule. The crossover and

mutation operators will randomly select some positions in one chromosome and mutate it to

evolve new values. The new evolution of these procedures is a sequence of low level heuristics

that will be applied to the problem in the sequence stated. In (Cowling et al. 2002b), an adaptive

length of chromosome is further investigated to allow a dynamic removal and insertion of

heuristics. This method was tested on a geographically distributed training staff and course

timetab ling.

In addition to adaptive length of chromosome in (Cowling et al. 2002b), a guided adaptive length

of chromosome is applied to allow for efficient operation of dynamic removal and insertion of

heuristics, thus evolving a quality sequence of heuristics to obtain a good solution. The work is

tested on a student project presentation scheduling problem. Cowling et al. (2002d) perform a

hyper-GA (an adaptive length chromosome) to a trainer scheduling problem. For each individual

in the popUlation encodes a sequence of low level heuristics to be applied and has proved to

produce good results. The work was extended to introduce the dynamic length of the

chromosome (Han et al. 2002). This is to allow for dynamic removal and insertion of heuristics

which aim to find a good chromosome length. The work was applied to geographically

distributed training staff and course timetabling problems and has produced good quality

51

solution. Furthermore, in order to enhance the efficiency of each gene in the chromosome, a tabu

list is introduced (Han and Kendall 2003b). The role of the tabu list is to prevent the non

performing low level heuristics to be applied in specific chromosomes (penalise the genes that do

not change the objective function), thus improving the efficiency of each low level heuristics

call. The results are improved in terms of computational time.

A sequence of dispatching-rules was presented as low level heuristics to solve the hybrid flow

shop problem (Ochoa et al. 2009). Genetic algorithm was used as a high level search to search

for two possible heuristics for each of six assignments. A landscape analysis was conducted in

this work and concluded that search space of heuristics is effective to search solutions for

production scheduling. In Terashima-Marin et al. (2006). a genetic-based method with a variable

length representation was used to search for combinations of condition-action rules in order to

produce a general hyper-heuristic to solve the two-dimensional cutting stock problems. The

method was tested on large set of benchmark problems and has produced excellent results.

2.5 Ant Algorithm Hyper-heuristic

In an ant algorithm hyper-heuristic, a problem is represented as a directed graph where the nodes

represent low level heuristics. Initially, ants travel the graph with initial solutions. To travel to

the next node in the graph. an ant makes decision based on certain probability value. Once an ant

arrives at a node (heuristic), it will apply the low level heuristic at the particular node of which a

heuristic can be applied more than once. An example of a detailed algorithm can be obtained

from O'Brien (2007). In the following section, a detailed procedure of this method is presented.

52

2.5.1 Choosing a Heuristic

This is the most important state in the algorithm as it chooses which heuristic to implement to

produce a solution. A combination of pheromone and visibility determines the selection of a

heuristic. In ant algorithm hyper-heuristic, pheromone value corresponds to the value of

improvement produced by a heuristic performed by an ant (Burke et al. 2005b, Chen et al. 2007).

A higher pheromone level indicates the confidence level for other ants to apply the same

heuristics. Visibility value corresponds by the amount of CPU time a heuristic took to complete

its task. Low CPU time to implement a heuristic is much preferred. In Chen (2006), the decision

to move to another node (apply another heuristic) is based on the ant system transition rule

(Dorigo et al. 1991). The probability of all nodes will then be summed up to generate a new node

destination for the ants according to Roulette Wheel Selection algorithm. After visiting a node,

the low level heuristics will be applied and a solution is obtained. Burke et al. (2003c) investigate

the possibility of getting negative values for the pheromone and visibility values, thus calculating

the positive values according to the RouletteFunction. More details of the calculation can be

obtained from O'Brien (2007).

2.5.2 Pheromone Updates

As ants travel, they lay a chemical substance called pheromone (Dorigo et at. 1991). For both

O'Brien (2007) and Chen (2006), the pheromone value is laid based on improvements made by

the heuristics. O'Brien (2007) calculates the improvement as the difference between the best

quality found during the current journey and the best quality found during the previous journey).

To avoid the pheromone value goes unbounded, an evaporation process is applied where edges

53

corresponding to the heuristics will be punished by not receiving any pheromone. O'Brien

(2007) further suggested that pheromone laid on the path after a certain number of heuristics is

based on the improvement of the quality solution during a journey. A tenn 'cycle' is used to

identify the journey between all ants beginning their path and all ants completing their path. The

algorithm can iterate for as many cycles as required. An edge is not given any pheromone value

if it perfonns badly.

The amount of pheromone trl} on each edge at time t as in O'Brien (2007) is as follows:

tr.(/)=(I.) .(t-m.n)+ ~ #1j(Pk (t»).l(Pk (t»
Ij p T}1j ~ T(P

t
(I»

where:

p

m

n

~(t)

#1} (Pt(t»

I(Pt(t)

T(~(t»

pheromone evaporation coefficient

number of ants in the colony

heuristic calls

path ant k travel during the cycle ending at time t.

number oftimes an edge (iJ) occurs during path Pt(t)

improvement produced by heuristic ant k during its last path.

CPU time taken

Good heuristics are always being rewarded with higher level of pheromone and this will lead to

unsuccessful heuristic not being visited. Thus there is the potential of the algorithm to be trapped

in the local optima. According to Chen et al. (2007):

54

"It is more important that the overall sequence of steps consisting of 'good' and 'bad'moves

generate an appreciable improvement than to find individually 'good'moves.

Burke et al. (2003c) suggested that ants should not make any decision immediately after each

move instead after the journey has been completed. They tested various lengths of journey and

concluded that the length equal to the number of node (low level heuristics) is good. They

implemented the same transition probability as in Dorigo et al. (1996) and with a new quantity of

pheromone laid on edge (iJ):

A _ Q.I.N
uf' --­

Ij L
k

where:

Q a constant

I total improvement of ant k over its journey

N number oftimes the edge was traversed.

Lk length of ant k's journey

Chen et at. (2007) applies the following formula to lay pheromone on their work:

Otherwise

Where:

Q a constant

Lk length of ant k's journey

Ik total improvement of ant k over its journey

55

2.5.3 Visibility Updates

The visibility information together with the pheromone value helps in making the decision

(probability calculation). Visibility in a TSP is the inverse value of the distance between node i

to node j. However, in the algorithm, an ant has no information about each heuristic capability.

Therefore, the visibility value is dynamic and continually adaptive. For example, the visibility

value can be a value of how well heuristics work together or CPU time required to obtain a

solution. It is updated each time ants visit a node (heuristic). O'Brien (2007) uses the choice

function as in Soubeiga (2003) to determine the visibility function. The choice function was

based on solo and sequential performance of the heuristics. The choice function used has

included a diversification strategy which motivates the heuristics not recently used to be selected.

The visibility function (17 J) is calculated as follows:

where:

m number of ants in the colony

Ikj(t) improvement produced by heuristicj on ant k's current solution at time t

Tkj(t) amount of CPU time heuristic j took to run ant k's current solution at time t

A. a constant weight of recent performance with a value between 0 and 1.

Burke et al. (2003c) have suggested that the value visibility should be calculated as an inverse

function of CPU time taken to implement a heuristic. However, Chen et a1. (2007) have

experimented that the visibility value as follows has resulted in a better solution.

S6

where:

p

Ikj(t)

A.

~j(t)

num(i,j)

A/tj(l)

constant between 0 and 1 to provide decay

improvement of ant k current solution

a static number to convert negative value to positive value

amount of time needed to obtain a solution on heuristicj at time t

number of edges an ant has travels.

Population of ants as hyper-heuristic agents constructed sequence of low level heuristics guided

by the pheromone and visibility values. This has drawn some similarities with genetic algorithms

hyper-heuristic (Cowling et al. 2002a) where a popUlation of chromosomes is constructed and

genes represent low level heuristics. Ant algorithm hyper-heuristic has been applied to a project

presentation scheduling problem and travelling tournament problem (Burke et a!. 2005b, 2003c)

and travelling tournament problem (Chen et at. 2007), however it has never been applied to

routing problems. This motivates the investigation of the hyper-heuristic approach based on ant

algorithm to solve different routing problems.

57

2.6 Summary

We have reviewed some of the solution methods for solving optimisation problems in the

literature. The best method to find optimal or good quality solution for optimisation problems is

the exact methods. However, due to a large amount of computation time needed to solve large

problems, heuristic methods are used. Heuristic methods are search technique that tries to find

for good quality solutions at a reasonable computational cost. For the last twenty years, a more

advanced technique which combines the basic heuristic methods with high level framework to

efficiently search the search space was developed (Blum and Roli 2003). This technique is

known as metaheuristics. It is considered as intelligent search methodologies. They have some

form of learning mechanism to store information as the search progresses and can be combined

with different concepts to explore the search space. We have presented a few metaheuristics

methods in this chapter. Metaheuristics have been shown to work well on certain instances

however, for other instances, they do does not perform well and often, they are expensive to

adapt to new instances and problems. On the other hand, problem owners normally would prefer

simple, easy to implement heuristics which do not require a large amount of resources and

expertise for the development.

Therefore, hyper-heuristic methods were proposed to raise the generality of metaheuristics. The

generality is demonstrated by selecting appropriate heuristics according to different problems

and ins~ances, utilising simple heuristics and allowing these heuristics to compensate each

other's weaknesses. We have presented in this chapter several hyper-heuristic approaches and we

58

detailed the ant algorithm hyper-heuristic which provides a fundamental framework to our work

throughout this thesis. In chapter 4, we shall introduce the ant-based hyper-heuristic and adapt it

to routing problems. If ant-based hyper-heuristic produces good results in project presentation

scheduling problem (Burke et al. 2005b) and the travelling tournament problem (Chen et al.

2007), we hypothesise that this algorithm will also work well on routing problems. We will

present the routing problems (vehicle routing problems and travelling salesman problem) in the

next chapter.

59

Chapter 3

The Vehicle Routing Problem and the Traveling Salesman Problem

3.0 Introduction

Among the most popular problems in routing problems are the vehicle routing problem (VRP)

and the traveling salesman probJem (TSP). The VRP involves in finding the lowest cost routes

from a depot to a set of other cities or customers. The problem of TSP is to find a minimum

length tour that visits each city exactly once and returns back to the starting city. This chapter

discusses both the VRP and the TSP. Previous work on these problems is then reviewed.

3.1 The Vehicle Routing Problem (VRP)

The Vehicle Routing Problem (VRP) is a combinatorial problem (Cordeau et al. 2005) that was

introduced by Dantzig and Ramser in 1959 (Dantzig and Ramser 1959). It has been largely

researched because of its importance in the logistic and supply chains management. The VRP is

the generalization of the traveling salesman problem (Pardalos et aJ. 2002).

60

Laporte (Laporte 2009) describes the VRP as:

"a problem of designing least-cost delivery routes from a depot to a set of geographically

scattered customers, subject to side constraints ".

The customers are referred as a stop or centre for delivery or pick up. Each customer will be

served by only one vehicle. Example of real life applications includes the delivery of

newspapers, the delivery of fresh goods or transportation of people. Each of these problems has

its own set of constraints that have to be respected.

3.1.1 The VRP Variants

VRP consists of several variants. These variants are either constrained by the limit of capacity or

on time windows. Limit on hours of a driver can work, the limit on length on route or limit on

the service time a customer is served can create a variant. Among the variants are; the

capacitated vehicle routing problem (CVRP), the VRP with time windows (VRPTW), dynamic

VRP (DVRP), time dependent VRP variant (TDVRP) and VRP with pickup and delivery

(VRPPD). We briefly describe these variants and discuss the CVRP in more detail as we will

appJy our work for this variant.

61

3.1.2 VRP with Time Windows (VRPTW)

VRPTW is associated with a time interval or time window. A general description of the problem

is; there are vehicles with capacity q and each customer i with demand d!. Each customers i has a

time window [ai"bd. The depot's time window is [ao,bol, where a vehicle can only leave the

depot after time ao. The service for a customer i can start within a time window [ai"btl and a

vehicle has to arrive at customer i before time bi' An excellent overview of approaches tackled

for VRPTW can be found in Braysy and Gendreau (2005a, 200Sb).

3.1.3 Dynamic VRP (DVRP)

The basic VRP deals with customers with a known schedule in advance. This schedule includes

the service time for each customer and the drivers' driving time. However, in real life

application, this information often is undetermined or not known in advance. Furthermore,

information can change after schedule has been produced. DVRP or online VRP will have to

accommodate these new requests into an already planned schedule. A good survey on DVRP can

be obtained in Gendreau and Potvin (1998).

3.1.4 Time Dependent VRP (TDVRP)

The objectives of this variant is to minimize the total time travelled and the number of tours

travelled. Unlike many other variants, the travel time for TDVRP is dependent on time. The

travel time between two customers is calculated between the points and the time of the day.
I

There may be time window to constrain the time for serving the customers. The application of

62

this variant is common in many cities where the time travelled depends on the traffic that exists

at the place. An optimisation procedure is normally performed to search for best starting times.

Research done on TDVRP is presented in Ishoua et al. (2003) and Donati et al. (2003).

3.1.5 VRP with Pickup and Delivery (VRPPD)

In VRPPD, nodes in a graph can be represented either as pickup locations or delivery locations.

Goods are required to be moved from these delivery or pickup locations. The objective of

VRPPD is to find the optimal routes for the vehicles to visit these locations. Customers may have

both delivery and pickup services. For example in grocery stores, reusable containers of certain

goods need to be picked up and at the same time, goods have to be delivered. More information

on VRPPD can be obtained from Dethloff (200 I).

3.2 Capacitated Vehicle Routing Problem (CVRP)

CVRP is a NP-hard problem since it includes the TSP (Braysy et al. 2004). We can assume

CVRP is related to two optimization problems; the TSP and the bin packing problem (BPP).

CVRP is related to multiple TSP in such a way that if customers are assigned to a route, it is

solved similar to solving the TSP i.e. to produce the shortest tour possible in a tour. The

objective of BPP is to find the minimum number of bins required to solve a problem. VRP is

similar to BPP in finding the minimum number of vehicles required to deliver demands for each

customer.

63

The CVRP is a version of the vehicle routing problem (VRP) where a fleet of m vehicles with

limited capacity Q has to visit a set of customers with specific demands. The sum of demands on

any route should not exceed the vehicle capacity Q. The objective is to minimize the total travel

distance. The CVRP can be formulated as follows: a connected graph G = (V.EJ of n+ I nodes,

with a set of customers with demand qi is represented as Vi E V, i = 1 n with Vo as the depot.

The CVRP problem is to find a set of lowest cost vehicle routes so that the foHowing constraints

are satisfied:

1. Each vehicle's route starts and ends at the depot.

2. The total demand does not exceed the vehicle capacity Q for every route.

3. Each vertex except the first vertex (depot), Vo, is served exactly once by exactly

one vehicle.

3.2.1 Approaches to Solve the Capacitated Vehicle Routing Problem (CVRP)

Various methods have been applied to solve the VRP. Survey on exact methods for VRP is

described in Laporte (1992). Among the most efficient exact methods to solve the CVRP are the

branch and cut methods. The earliest branch and cut methods were introduced by Christofides

and Eilon (1969). Good results produced for CVRP with branch and cut methods are presented in

Naddef and Rinaldi (2002), Ralps et al. (2003) and Lysgaard et al. (2004). We will not discuss in

detail the exact approach for solution methods for CVRP. We will however, present some

heuristics and metaheuristics approaches used to solve the CVRP.

64

3.2.1.1 Heuristics for CVRP

Heuristics method for CVRP produces feasible solutions at reasonable time. Laporte and Semet

(2002) classify heuristics for CVRP into two categories; classical heuristics and metaheuristics.

Classical heuristics were proposed forty years ago which include the saving heuristics (Clarke

and Wright 1964) the sweep algorithms (Gillet and Miller 1974) and cluster-first route-second

algorithm (Fisher and Jaikumar 1981). Metaheuristics include the tabu search (Osman 1993);

simulated annealing (Osman 1993, Taillard 1993, Gendreau et al. 1994) and ant algorithms (Bell

and McMullen 2004, Bin et al. 2009).

3.2.1.1.1 Saving Heuristics

The saving heuristic introduced by Clarke and Wright (1964) often produced relatively good

solutions and normally is used to generate initial solutions. The savings are calculated by joining

two routes into one route. The concept is illustrated in Figure 3(a) and Figure 3(b).

o o

Figure 3.l(a): Initial route Figure 3 .1 (b): Alternative route

65

In Figure 3.l(a), customers i and} are initially visited on separate routes. As an alternative to this

initial route, we can visit these two customers in one route as illustrated in Figure 3.1 (b). The

total cost of route in Figure 3.1 (a) is calculated as:

Da = Cot + CiO + COj + CjO

And the total cost of route in Figure 3.1 (b) is calculated as:

Db = COi + Cij + Cjo

By joining the two routes, the savings can be calculated as:

Sij = Da - Db

These savings will then be sorted in decreasing order, customers i and} with the highest saving

and without violating any constraint will be merged until no further merges are possible.

3.2.1.1.2 Sweep Algorithms

In this algorithm, an initial node is selected, and other nodes will be sorted accordingly to the

angles from the initial node. The sweep algorithm introduced by Gillet and Miller (1974) is

briefly described as follows:

Step 1: The polar coordinates of each node are calculated and sorted in increasing order.

Step 2: Starting from an initial node, feasible routes are created by rotating the angles starting

from the smallest angle. The nodes are clustered in a vehicle route k such that the total

capacity of each route does not exceed the capacity Q.

We will use this method to generate the initial solution for capacitated vehicle routing problem

(CVRP) in this thesis.

66

3.2.1.1.3 Cluster-first Route-second Algorithms

In this algorithm, customers were first clustered into feasible routes; subsequently actual route

will be constructed. Fisher and laikumar (1981) introduced the concept of this method by

locating clusters based on some seeds. An example to select the criteria for these seeds is

described in Baker and Sheasby (1999). The objective is to minimize the total distance in these

clusters without violating any constraint. For each cluster, a route is constructed similar to

solving the TSP.

3.2.1.2 Metaheuristics for CVRP

Metaheuristics for VRP were introduced last fifteen years ago. Compared to classical approach,

metaheuristics allow wider search on the solution space, accepting low quality solutions and

infeasible solutions. Several metaheuristics approaches will be discussed below.

3.2.1.2.1 Tabu Search

Tabu search is one of the popular approaches used to solve CVRP. A solution space is explored

by moving from the current solution to the best solution found in the neighborhood. Solutions

that were previously found will be kept tabu to avoid cycling for a number of iterations. Tabu

search features such as short term memory where solutions posses certain attributes of current

solution are declared tabu for a number of iterations to avoid cycling. However, if there is a new

best solution among all known solutions that posseses the attribute found, the new solution is

67

accepted. Osman's algorithm in Osman (1993) used a fixed length of tabu tenure with no long

term memory and intensification strategy. The work has produced significantly improved results

on benchmark datasets. The taburoute algorithm introduced by Gendreau et al. (1994) utilizes a

continuous diversification scheme and two types of intensification scheme. A Taillard algorithm

which has produced 12 best known results out of 14 CMT instances is the best tabu search

heuristics for CVRP (Taillard 1993). It employs a decomposition scheme that utilizes the parallel

computing processors. Customers are partitioned into sectors centered at the depot. Solutions are

searched within these sectors by different processors. A detailed description on tabu search

applied for VRP is provided in Cordeau and Laporte (2005).

3.2.1.2.2 Simulated Annealing

In a simulated annealing, non-improvement solutions will be accepted with certain probabilities,

which are determined by a control parameter (n, a temperature that is controlled by a

deterministic cooling schedule. The simulated annealing algorithm for CVRP implemented in

Osman (1993) utilizes the non-monotonic cooling schedule which requires specific information

such as starting and final temperature, a decrement rule to updated the temperature after each

iteration, an update rule to reset the parameter if the system freezes and a stopping condition.

This method implements the I-interchange moves (Osman 1993) to generate new solutions. The

algorithm is tested on 17 benchmark problems from the literature and produces 10 new best

solutions.

68

3.2.1.2.3 Ant Algorithms

In ant algorithms (Ben and McMullen 2004), a colony of ants is used to construct routes for

CVRP. An individual ant acts as a vehicle and will select customers starting from the depot until

all customers are selected. It will return back to the depot when the capacity constraint is met. To

select a customer, the ant follows a probabilistic rule and to improve the selection of customers

in next iteration, the pheromone trail will be updated based on the previous performance. A value

to control the evaporation rate is given. After a number of iteration, a global updating rule on the

pheromone value is enforced on the trails. This approach has produced good results (l % of best

known results) on small instances, however for larger instances, the results are not efficient. An

improved version of this algorithm (Bin et al. 2009) introduced a new method to update the

pheromone trail (ant-weight strategy) and mutation operators to solve the CVRP. The new ant­

weight strategy updates the pheromone trail by combining both the global pheromone increment

and the local pheromone increment. The global increment solution is related to the total length of

the solution and the local pheromone is related to the contribution of the specific trail to the

solution. The mutation operators applied mimic the genetic algorithm which alters the nodes

(customers) at a predefined probabiJity. This is to reach further solutions in the search space.

Results produced from this algorithm are competitive with the results in the literature.

69

3.3 The Traveling Salesman Problem (TSP)

The TSP involves finding the shortest tour in a route; searching for an order in which each city

should be visited, starting from the first city, visiting each city exactly once and returning to the

starting city. The history of TSP was believed to be found in 1920 in Vienna (Applegate et al.

1998). Later in 1954, a formal description ofTSP was formulated (Dantzig et al. 1954). The TSP

is involved in many applications in real life. A simple example is the delivery service where a

postman would like to find the shortest route to cover his daily task. The objective of the TSP is

to find a minimum length tour that visits each city exactly once and returns back to the starting

city (Gutin and Punnen 2002). Mathematically, it can be represented as adapted from Helsgaun

(2000) as follows:

Given a cost matrix C = (Cij) where cij represents the cost of travelling from city i to city}. We

will find a permutation (i], i2, b,in) of the integers from 1 through n that minimizes the

quantity Cili2 + eW3 + + Cinll

The properties of the cost matrix can be defined as follows:

• If cij = cji for all i and}, the problem is said to be a symmetric problem.

• If the triangle inequality holds (Cik ~ cij + Cjk for all i, j, and k) the problem is said to be

metric (that is for any cities a, b, c, the distance between a and C must be at most the

distance from a to b plus the distance from b to c).

• If cij are points in a plane geometry, it is a Euclidean problem.

70

TSP has been solved using numerous methods. It can be categorized into two; the tour

construction and tour improvement. These methods will be discussed as below.

3.3.1 Tour Constructions

A constructive heuristic builds a tour from scratch. The algorithm stops when a solution is found

and no attempt is made to improve the solution. Examples of constructive heuristic approaches

for the TSP can be seen in a paper by Bentley (1992).

3.3.1.1 The Nearest Neighbour

The nearest neighbor method is considered as one of the simplest and straightforward TSP

heuristics. The method visits the nearest city that has not been visited yet. Once all cities have

been visited, the tour is completed by returning to the starting city.

The algorithm, more formally, is as follows:

1. Select a random city.

2. Find the nearest unvisited city and move to it.

3. If there are any invisited cities left, repeat step 2.

4. Return to the first city.

71

3.3.1.2 Insertion Heuristics

A basic insertion heuristic starts with a tour of a subtour of all cities, then inserts the remaining

cities utilising some heuristics. The initial subtour is often a triangle or a convex hull. The tour

can also start with a single edge as a subtour.

The algorithm is as follows:

1. Select the shortest edges and make a subtour of it.

2. Select a city that is not in the subtour, that is the shortest distance to anyone of the

cities in the subtour.

3. Find an edge in the subtour where the cost of inserting the selecting city is minimal

between the edges.

4. Repeat step 2 to step 3 until all cities have been inserted.

The set of cities which make up the starting subtour is usually chosen at random.

3.3.2 Tour Improvement

Once a tour has been constructed, we can improve the tour using tour-improvement heuristics.

Among the most common for the TSP are 2-opt, 3-opt and the generalisation to k-opt moves and

the Lin-Kernighan heuristic.

72

3.3.2.1 The 2-opt, 3-opt and k-opt Move

The 2-opt move removes two edges from a tour, breaking it into two segments. The tour is then

reconstructed by re-joining the two segments. There is only one way (apart from the original

tour) to reconnect the two segments so that it will produce a valid tour. This will be done if the

new tour is shorter than the current tour. This process will he repeated (removing and

reconstructing) until no further 2-opt improvements can be found and the tour is now 2-optimal.

Figure 3.2 illutrates the 2-opt moves for a symmetric TSP. A 2-opt move represents an

improvement to the current tour ifd(a,b) + d(a},b}) < d(a,a) + d(b,bJ).

b
al

a bI

Figure 3.2: 2-opt Moves

The 3-opt move is an extension of 2-opt. Instead of removing two edges, we remove three edges

from the tour. An example to illustrate the moves is shown in Figure 3.3. To form a valid tour,

there are two ways of reconnecting the three paths. A 3-opt move can also be seen as two or

three 2-opt moves. This process will be repeated (removing and reconstructing the tour) until no

further 3-opt improvements are found and the tour is now 3-optimal and also 2-optimal.

73

Figure 3.3: 3-opt Moves

An extension of 3-opt is the 4-opt or the k-opt move. As k increases the moves will take more

time.

3.3.2.2 Lin-Kernighan Heuristic

The Lin-Kernighan heuristic is based on a generalisation of k-opt moves. It is known to be an

effective method to obtain optimal and near-optimal solutions for the symmetric travelling

salesman problem. It decides which k is the most suitable at each iteration step.

Lin-Kernighan neighborhood moves are based on the observation that a k-opt move can be

constructed sequentially by performing a sequence of tour reversals such as 2-opt moves. The

search space can be reduced significantly by considering only moves with positive gains. For a

more in-depth study ofthe Lin-Kernighan heuristic, see Lin and Kernighan (1973).

74

3.4 Summary

The study on VRP and TSP has been researched for more than 50 years ago. We present in this

chapter several solution methods for both problems. For VRP, these include the heuristics and

metaheuristics methods used to solve the problem. For TSP, the solution methods presented are

heuristics for tour construction and tour improvement.

75

Chapter 4

Ant-based Hyper-heuristic

4.0 Introduction

Our aim in this thesis is to develop a method that can be applied to many routing problems or

problem instances. We have discussed the concept of hyper-heuristic in chapter 2. In section 2.5,

two ant algorithm hyper-heuristic (Burke et al. 2003c, Chen et at. 2007) were presented. The

framework of these approaches is observed and the drawbacks are analysed to form a basis for

our general approach in solving the routing problems.

In this chapter we present two descriptions for the ant-based hyper-heuristic. The general design

of the proposed approach is presented in section 4.1. In section 4.2, the ant-based hyper-heuristic

is described by examining the ant system algorithm (Dorigo et al. 1996). In ant system algorithm,

the key properties of these approaches are the pheromone and heuristic information (visibility)

updating activities. We investigate how to present this information and address the comparison

between the ant system algorithm and our approach. Furthermore, we present the similarities and

differences of our approach to another ant algorithm hyper-heuristic as in Burke et al. (2003c)

and Chen et at. (2007).

76

The key process of any ant algorithm is the pheromone and visibility updating rules. We observe

these procedures and propose new updating rules. Secondly, in section 4.8, to further expand our

work, a new updating rule for the pheromone rule is presented to compare the effectiveness.

4.1 Design issues

Soubiega (2003) was the first to address the design of hyper-heuristic methods. To select low

level heuristics, several approaches can be used to guide the hyper-heuristic. If no learning

mechanism is needed, selection will be based on random selection. However to perform an

intelligent selection, some learning mechanism is required. In our work, we use ant-based hyper­

heuristic as our learning mechanism. So far, we are aware that there are only two previous works

which have investigated the ant-based hyper-heuristic (Burke et al. 2005, Chen et al. 2007).

In an ant algorithm, a given problem is represented as directed graph and the set of nodes is the

candidate's solution to a given problem. For example in the TSP, the node represents the

candidate city for the salesman to visit. Each edge has an associated distance (visibility) from

city i to city j. Several ants are needed to perform a tour in order to achieve the objective function

(that is to find the shortest route). These ants will traverse the edges guided by some information;

the pheromone value which is a chemical substance that was left by the ant after it has performed

a tour and the distance between cities i to city j is the visibility (heuristic information) that helps

the ant to make decisions. More detailed explanation on how the ant algorithm work can be seen

in section 2.3.6. Figure 4.1 illustrate the concept.

77

j

i
j

Pheromone f'if and visibility 17lj from city i to city J

Figure 4.1: Ant arrives at city i, will choose to visit next city j based on the function of
pheromone values T if and heuristic values 1llj

We adopt the general guideline for hyper-heuristic design as in (Soubeiga 2003). This is

presented in Figure 4.2.

Input description of problem:
Objective function
Initial solution
Stopping condition

1
COMPLETE SOLUTION
HYPER-HEURISTIC BLACK BOX

Select and apply an appropriate
heuristic to the current solution
Stop when stopping condition holds

1
Output Solution to the problem

Input low-level heuristics
which can operate in solution

space

Figure 4.2: The general hyper-heuristic framework

78

The necessary input for this framework includes:

1. The objective function - is a measure of quality for a solution. In our work, we

represent the objective function of each problem as an input to the hyper-heuristic

framework.

2. Initial solutl'on - in our work, we choose to deal with complete solutions. In the

beginning of the algorithm, ants carried with them the initial solution. These initial

solutions are constructed by some heuristic methods of which the quality is often poor

but fast to construct.

3. Stopping condition - stopping condition is determined and input by the user. Usually,

the stopping condition can be expressed as a number of iterations or the cpu time

allocated for the execution of the algorithm. In our work, we set the stopping

condition when there is no improvement in the solutions after certain number of

iterations (for example no improvement after 100 iterations). This is in order to reflect

the generality of the algorithm.

4. Low level heuristics - Low level heuristics are simple neighbourhood moves or

simple heuristics that are problem dependent used to solve a specific problem.

Hyper-heuristic communicates with low level heuristics based on non-domain

specific information such as cpu time and the objective function passed over by these

low level heuristics. Soubeiga (2003) addressed issues regarding the number of low

level heuristics that a hyper-heuristic framework should employe in a certain study.

He concludes that if the number of low level heuristics is too few, there will be no

point in employing a hyper-heuristic approach. However, if there were too many low

79

level heuristics used, it will be computationally expensive. We will carry out

experiments to investigate how many low level heuristics are appropriate in chapter 5.

4.2 Ant System Algorithms

In this section, we present in detail the ant system algorithm. It is important that this section is

included in this chapter as it is the basis of our work for this thesis. An ant system was the first

algorithm to illustrate the bahaviour of the artificial ants (Calami et al. 1992, Dorigo et aI. 1991,

1996, Costa and Hertz 1997). It was initially applied to the TSP and it works as follows:

A number of m ants are initially placed randomly on n nodes. It is usually the case that m = n,

where the number of ants is set equal to the number of nodes (cities). The ant builds a tour

incrementally by applying a state transition rule. A pheromone value, which is a desirability

measure between each node, will be maintained by the ants. Once all ants have completed a tour,

the pheromone value will be updated. Ants prefer to move to nodes which are connected by

short edges (often referred to as visibility) and have a high amount of pheromone (i.e. more

desirable). and there is a parameters setting (a and p) to find a balance between the pheromone

values on the edges and the visibility.

In order to avoid unlimited accumulation of pheromone, an evaporation mechanism is added.

This is implemented by multiplying the pheromone by a value between 0 and 1 at given times in

the algorithm. This results in the desirability of edges becoming reduced if no new pheromone is

added. More formally the algorithm can be described as follows. Let r Ij (I) be the intensity of

80

pheromone trail on edge (i, j) at time t. At time t, each of the ants will choose to move to another

node. Once the ants complete a tour (i.e. visited every city), this is regarded as one iteration.

The probability Pij of an ant moving from node i to node j, at time t, is given by the following

formula (Dorigo et a1. 1996):

if j e allowed (1)

o otherwise

where:

1'/ J value of pheromone from node j to node j

1]1} heuristic information (this is given by the inverse distance, I1dlj, where dlj is the distance

between node i and node j)

a the relative influence of pheromone from node; to node j

f3 the relative influence of heuristic information (l/dij) from node i toj

Ants will continue visiting cities until a tour is complete. Once a tour is generated, the length of

the tour is calculated and the best length tour is recorded. For each tour, each ant k will deposit a

quantity of pheromone value. This pheromone updating mechanism allows a greater amount of

pheromone to be laid on shorter tours. The formula for trail updating 1', j is as follows:

81

T, j (I + 1) = p.T, j (I) + Il T, j (t, t+ 1) (2)

m

where Il Tij (I, 1+1) = LL\r; (1,1+1)
k-I

The p value indicates coefficient (l - p) which represents the evaporation of pheromone trail

laid on edge (iJ) between time (I) and (t + 1). The Il T ij (t, t+ I) is a pheromone value laid on

edge (iJ) by k-th ant between time t and t+ 1.

In TSP a city can only be visited once. Therefore to satisfy the contraint, a data structure (tabu

list) is maintained. The tabu list saves the cities that has already been visited up to time t and

forbids the ants from visiting them again before n iterations have been completed. After a tour is

completed, the tabu list will be emptied and the ant's current solution (distance travelled) is

computed. Visibility 7Ji) is a heuristic information which is an inverse of the distance (lldij)

between city i and j. In ant system, the visibility information remains the same throughout the

algorithm.

82

4.3 Methodology

In ant-based hyper-heuristic framework, the search space is represented as directed graph where

the nodes represent low level heuristics. Each edge will have an associated weight. In this

environment, we will assume the edge will represent non-domain specific information. There are

actually two edges between each node, representing the pheromone and the visibility values.

Figure 4.3 illustrate the network.

1 3

4

Figure 4.3: Fully connected graph V (the search space) with set of nodes E (set of low
level heuristics)

In Table 4.1, we present the comparison between the ant system algorithm and our ant-based

hyper-heuristic. For the ant system, the TSP is taken as a problem domain to illustrate the

comparison.

83

Difference Description Ant system (AS) Ant-based
hyper-heuristic

a Relative influence 1 (this parameter has We carried out
of pheromone trail resulted in good experiments to

performance for AS investigate the best
(Dorigo and Stutzle value of a
2004) see section 5.6.2

fJ Relative influence 2 - 5 (this parameter We carried out
of visibility has resulted in good experiments to
(heuristic performance for AS investigate the best
information) (Dorigo and Stutzle value of f3

2004) see section 5.6.2

Number of ants Ants are agents to The number of ants The number of ants is
search for good is always set equal to set equal to the number
solutions. the number of cities of heuristics available

Initial placement Initial placement is Initially, ants are We carried out
of ants where the ants are placed randomly on experiments to

placed at the the cities available investigate the best
starting of the initial placement of the
algorithm ants, see section 5.6.1

Choices of nodes Ant choose to Ant chooses to move Ant chooses to move
move to one node based on probability based on probability
after another in a transition rule which transition rule which is a
tour is a function of the function of the visibility

visibility (distance) (cpu time) and
and pheromone pheromone value (based
value on the improvement

made). Detailed
information of this
procedure is shown in
section 5.6.2

Pheromone An activity to Pheromone trails are Pheromone trails are
update/deposit determine how updated after all ants updated after all ants

much the have constructed have constructed their
pheromone value their tours. In this tours (in this context, a
should be left on a context, a tour is tour is equivalent to the
particular path considered when an number of low level

ant has completed heuristics available in
visiting all cities the algorithm)

84

available in the
problem

Visibility An activity to The distance The cpu time between
(heuristic determine what is between city i and heuristic i and heuristic
information)update visibility and how city j. These values j. These values are

it is updated remain static dynamic, changing as
during the throughout the the algorithm progresses
execution of the algorithm
algorithm

Visited nodes Already visited Ants are prohibited A node (heuristic) is
nodes to make a visit to allowed to be visited as

already visited cities many times as possible
until a tour is
completed

Evaporation rate (An activity to We carried out
decrease the value p=0.5 experiment to

p) of pheromone so investigate the best
that it does not value of p
grows unbounded see section 5.6.3

Table 4.1: The comparison between the ant system and ant-based hyper-heuristic

Initially, ants will be placed at a node on the search space (the directed graph). Our ant-based

hyper-heuristic uses the same idea as in Chen (2006). The nodes on the graph represent the low

level heuristics. The number of ants used in this experiment is set to be equal to the number of

nodes in the network and each ant carries an initial solution. Each ant will perform a tour by

visiting a sequence of nodes by selecting a node being guided by the pheromone and visibility

values. Once an ant arrives at a particular node, it will apply the low level heuristic to its

solution. The solutions are continuously modified whenever an ant arrives at a new node. Unlike

the TSP, a node is allowed to be visited several times during a tour. After a given number of

tours, the ants will report the best solution found. The methodology is illustrated below.

85

4

Figure 4.4(a): initial placement

3

Figure 4.4(b): heuristics selection

2

i) There is a network with four nodes

(low level heuristics). Initially two

ants are placed on any of the nodes as

a starting position. They carry with

them an initial solution.

ii) With probability transition rule (eq.l) the

ants choose the next heuristic to visit. Ant a

has chosen to move to heuristic 2 and ant b

has chosen to move to heuristic 4. When

they arrive at thei~ destination, the ants will

apply the heuristic to their solution. If the

current solution obtained is better than the

previous solution, it will replace the solution

carried by the ants. These new solution will

be carried to the next iteration.

86

Figure 4.4(c): ants apply heuristics

a

2

~
b

Figure 4.4(d): ants complete their tour

2

iii) For the next iteration, these ants will

traverse the nodes. For example, ant a has

chosen to remain at the same node

(heuristic 2) and will apply this heuristic.

An ant can stay (or return) at the same

heuristic. Ant b has chosen to move to

heuristic 2 and applies the heuristic to

modify its current solution.

iv) A tour is considered when an ant has

completed its journey through several

sequences of heuristics. For this study, we

consider a tour to be equivalent to the number

of heuristics available. The stopping condition

is set if no improvement is made for 100

iterations. The best solution will be reported

when the stopping condition is met.

87

In Table 4.2 and Table 4.3, we further present the similarities and differences between the

previous approach of ant algorithm hyper-heuristic in Burke et al. (2003c) and Chen et al. (2007)

and our approach. We run experiments with these algorithms and the results will be presented in

the next chapter. Detailed explanation of our approach will be described in the following

sections.

88

Activities i. Burkeet al. ii. Chen et at. iii. Ant-based iv. Ant colony
(2003c) (2007) hyper-heuristic hyper-heuristic

Function Explore search space of Explore search space of Explore search space of Explore search space of
solution solution solution solution

Low level heuristics Vertices represent low Vertices represent low Vertices represent low Vertices represent low
level heuristics level heuristics level heuristics level heuristics

Heuristic selection: see section 2.5.1 see section 2.5.1 see section 4.5 see section 4.5
Each decision point,
ants select next vertex
to visit, apply heuristic
on current solution

Table 4.2: The similarities of other ant algorithm hyper-heuristic (i and ii) to our approach (iii and iv)

89

Activities i. Durkeet al. ii. Chen etal. iii. Ant-based iv. Ant colony
(2003c) (2007) hyper-heuristic hyper-heuristic

Problem domain 1. Project presentation 1. Travelling 1. Vehicle routing 1. Vehicle routing
scheduling problem tournament problem problem

2. Travelling problem 2. Traveling salesman 2. Traveling salesman
tournament problem problem problem

Number of ants Not specified Not specified Ants are set to be the Ants are set to be the
same number of same number of
heuristics available in the heuristics available in the
network network

Pheromone updates: Only edges that Only edges that All visited edges will be There are two procedures
After ants have visited contribute to contribute to given some amount of involved; the local and
a certain number of improvement to current improvement to current pheromone. The global update. The global
heuristics, they pause solution are rewarded solution are rewarded distribution of update will reward edges
to analyse the path and with pheromone. (see with pheromone (see pheromone values will be that produce the best
lay amount of section 2.5.2) section 2.5.2) distributed proportioned solution. Local update is
pheromone according to the performance done performed after each ant
on improvement on the by the ants (see section performs a tour. (see
quality of the solution 4.6) section 4.8)

I

Visibility updates: experimented the experimented the measured as measured as
Visibility is visibility value as in visibility value as in computational time computational time
continuously adaptive section 2.5.3. section 2.5.3. taken for a heuristic to taken for a heuristic to
since it does not have complete its task (see complete its task (see
the knowledge of section 4.7) section 4.7)
heuristic's potential.

Table 4.3: The differences of other ant algorithm hyper-heuristic (i and ii) to our approach (iii and iv)

90

4.4 Initial Setu p

A tour counter t is set to the same number of low level heuristics available. A tour is considered

as to how many heuristics are allowed for an ant to finish its tour. We set the terminating

condition to 1000 iterations. However, if the algorithm does not meet any improvement for 100

iterations, it will be terminated and the best result will be returned. To determine the appropriate

setting for visibility value 171) and the pheromone T/} value, an experiment is conducted in

following chapter (section 5.6.2), Initially, each ant k is supplied with an initial solution S k' S b

which carries the best solution is set to null. Pheromone evaporation rate is an important activity

to avoid the pheromone values grows unbounded. We conduct experiments to determine the

evaporation rate (section 5.6.3). We follow the ant system as in Dorigo (1991), where the

number of ants is set equal to the number of heuristics. We experiment the best initial placement

ofthe ants in chapter 5 (section 5.6.1).

4.5 Choosing a Heuristic

An important issue concerning the design of our hyper-heuristic is how the ants make decisions

as to which heuristic to visit next. The decision will be made based on the probability transition

rule as defined in the Ant System (Dorigo et at. 1996), but suitably adjusted for our hyper­

heuristic framework. The probability transition rule as defined in the Ant System is shown (eq.

1).

91

In this thesis, we follow (eq. 1), however the representation of each parameter is adjusted to our

framework. The probability transition rule refers to the probability of ant k choosing heuristic j

from heuristic i. This probability function combines the value of pheromone T/ J that exists on

path (iJ) at time t and visibility 17 is the heuristic information of the quality of heuristic j. The

a value represents the weight for the pheromone value and f3 value represents the weight for

the heuristic information. The a and f3 parameters define the relative importance of these

values. In our work, a heuristic is allowed to be visited more than once however in (eq. 1), a

node is not allowed to be visited more than once, and thus we define the representation as

follows:

t'/ j value of pheromone from heuristic i to heuristic j

7]1} heuristic information (this is given by cpu time between heuristic i and

heuristic))

a the relative influence of pheromone from heuristic i to heuristic j

f3 the relative influence of heuristic information from heuristic i to heuristic j.

(3)

92

4.6 Pheromone Updates

As ants travel. they deposit a chemical substance called pheromone. After all ants have

completed their tour, they will update the pheromone values. In a standard Ant System, the

amount of pheromone corresponds to the quality of the solution found by the ants. In this

respect, the hyper-heuristic algorithm mirrors the original ant algorithm. In our framework, the

amount of pheromone corresponds to the quality of the solution found by the ants, as such that

the quality is considered as improvement value between previous solutions and current solutions

made by each ant in a tour. A tour for each ant is considered when the ant has completed its visit

to several sequences of heuristics on the network. Once a tour has been completed by an ant, the

improvement of the entire tour is computed. In the previous ant hyper-heuristic (Burke et al.

2003c and Chen et a1. 2007), only edges that contribute to improvements to the current solution

are rewarded with pheromone values. However, in our approach, we are concerned with giving

all the edges visited with some amount of pheromone, regardless the edges contributed to

improvements or vice versa. We believe that poor-performing visited edges might produce better

solutions in the future and therefore should be considered in the decision making. The

distribution of pheromone values will be distributed proportioned to the performance done by the

ants. The pheromone deposited on each edge is calculated as follows:

93

(4)

where:

1'~ (I) value of pheromone from heuristics i to heuristic} at time t

lie} (I) improvement made by ant k on heuristic} at time t

An example to determine the value of pheromone left on the edge is presented below:

There are improvements made by three ants, ant 1 = 154.17, ant 2 = -130.76, ant 3 = 76.67; we

take the minimum absolute value of these improvements, ant 2 = abs(-130.76) + 1 and normalize

all the values; ant 1 = 285.93, ant 2 = 1, ant 3 = 208.43. We then compute the total summation of

these improvements, total = (154.17 + 130.76 + 76.67 = 495.36). The pheromone value is then

calculated: ant 1: 285.93/495.36 = 0.577217, ant 2: 11495.36 = 0.002019, ant 2: 208.43/495.36 =

0.420765. This is simplified in Table 4.4.

94

Ant Improvement Normalised Value of
between previous values of the pheromone left on
solution and improvements the edge
current solution of I ki (t)tr. I hI (/)
ant k, [ki (/)

Ant 1 154.17 285.93 0.578

Ant 2 ~130.76 1 0.002

Ant 3 76.67 208.43 0.420

Table 4.4: Value of pheromone left on the edge

These values measure the pheromone quality which indicates that higher improvements represent

higher pheromone levels while smaller improvements represent smaller pheromone values.

These values are then used in (eq. 5) to increase the pheromone T'j on each edge of the tour.

(5)

'" where !:J.Tij(/, t+l) = LL\T; (/,1+1)
k-1

The p value indicates a coefficient (1 - p) which represents the evaporation of pheromone trail

laid on edge (ij) between time (t) and (t + 1). The ~ T IJ (I, 1+ 1) is a pheromone value left on

edge (iJ) by k-th ant between time t and t + 1.

95

4.7 Visibility Updates

In addition, we consider the visibility information which represents some forms of heuristic

information, which is combined with the pheromone value in order to decide which heuristic to

visit next. In an ant system algorithm (Dorigo et al. 1996), the heuristic information was the

distance between two cities (as it was tackling the travelling salesman problem). As such, it

remained static throughout the algorithm. In our algorithm we consider the heuristic information

by how well two heuristics work together. This is measured as the computational time and, as

such, it is now a dynamic value over the course of the algorithm.

1]ij = l/cpu time (6)

where the cpu time is measured in seconds.

96

Figure 4.5 presents the ant-based hyper-heuristic that we developed.

1: t= 0

2: counter = 0

4: 171) = 1

5: Set Sk and Sb as null

6: Place m ants on n heuristics

I is the tour counter. A lour is equivalent to
the number of low level heuristics available in
the algorithm.

user defined counter for stopping condition

c is an initial value of pheromone value l' Ij given for

every edge (iJ)

visibility 1] ij is initially given value 1 for all heuristics

Sk is each ant's solution, Sb is best solution

7: For k = 1 to m place the starting node of the ants.
Repeat until ants complete a journey

For k = 1 to m do
Select the next heuristic (node}) to apply based on pheromone and visibility
Move the k-th ant to heuristic j
Apply heuristic} to Sk to obtain new solution S '.
If(S'k < Sb)

Sb =S'.
Update visibility 1] Ij visibility is updated after a heuristic is applied

t = I + 1
end for

counter ++

8: If(t = = n) a tour for all ants is completed
Update pheromone value 'fli
counter = 0
If (any best solution is in this cycle)

For all ants S.= Sb
Endif

Endif

9: If (t = tmax)

Output best solution Sb found
Stop

Figure 4.5: Overview of ant-based hyper-heuristic

97

4.8 Ant Colony (ACO) Hyper-heuristic

In this section, we describe the second framework for our ant-based hyper-heuristic. We

developed the ant colony hyper-heuristic (ACO hyper-heuristic). The idea behind this approach

is obtained from Dorigo and Di Caro (1999b; 1999c). Our ACO hyper-heuristic applies the same

methodology as the ant-based hyper-heuristic; however it differs from the above methodology in

the updating of the pheromone trail procedure. There are two procedures involved; the local and

global update. The global update will use the best solution found at the current iteration to update

the pheromone trail. This action is intended to reward the path that produces the best solution.

The path (i* j*) that belongs to the best solution S b found by m ants will be updated with the

new pheromone values given by the following equation:

'Ct· r = (1 - a). 'Ct· r + a (L)-l (7)

where:

!'t· r pheromone value for the path (i* j*) that belongs to the best solution S b

a the evaporation rate for the pheromone

L the total solution for the tour

98

The motivation for global update procedure is to encourage the use of good-performing edge and

increase the probability of choosing the specific path. Local update is performed after each ant

performs a tour. The procedure is similar to pheromone updates as in section 4.6. This is to

simulate the evaporation procedure in order to ensure that the pheromone values do not go

unbounded. The following equation is used:

Tij = (1 - a). Tif + (a). To (8)

where:

Til pheromone value that exists on the particular path (i})

a the evaporation rate for the pheromone

To initial pheromone value assigned to all paths in the network

Figure 4.6 presents the ACO hyper-heuristic that we develop.

99

I: t= 0

2: counter = 0

4: 1]ij = I

5: Set Sk and Sb as null

6: Place m ants on n heuristics

t is the tour counter. A tour is equivalent to
the number of low level heuristics available in
the algorithm.

user defined counter for stopping condition

c is an initial value of pheromone value T Ij given for

every edge (iJ)

visibility 1]1} is initially given value} for all heuristics

Sk is each ant's solution, SIJ is the best solution

7: For k = 1 to m place the starting node of the ants.
Repeat until ants complete a journey

For k = 1 to m do
Select the next heuristic (node}) to apply based on pheromone and visibility
Move the k-th ant to heuristic j
Apply heuristic j to Sx to obtain new solution S 'x
If(S'" < Sb)

Sb = S'"
Update visibility 1]1} visibility is updated after a heuristic is applied

t=(+}
end for
Update pheromone T I}

counter ++

pheromone is updated after a tour is completed by ant k

(local update)

8: If (t = = n) a tour for all ants is completed
If (any best solution is in this cycle)

Update pheromone value T Ii to best edge that produces best solution (global update)

counter = 0
For all ants Sk= Sb

Endif
Endif

9: If (t = tmax)

Output best solution Sb found
Stop

Figure 4.6: Overview of ACO hyper~heuristic

100

4.9 Summary

In this chapter, two descriptions for the ant-based hyper-heuristic are presented. Firstly, a

comparison between the ant system (Dorigo et al. 1996) and the proposed ant-based hyper­

heuristic is listed. This section provides information on how the necessary input is represented.

In the ant algorithm hyper-heuristic (Burke et al. 2003c and Chen et al. 2007), only edges that

contribute to improvement to current solution are rewarded with pheromone values. However, in

our approach, we are concerned with giving all the edges visited with some amount of

pheromone, regardless the edges contributed to improvement or vice versa. The distribution of

pheromone values is distributed proportioned to the performance done by the ants. The visibility

value in the algorithm is dynamic throughout the algorithm. It is represented by the cpu time of

each heuristic when it is applied. A heuristic is allowed to be visited as many times as possible

compared to the original ant algorithm where a node is prohibited to be visited more than once.

The second algorithm, the ACO hyper-heuristic, uses the similar approach. It, however, differs in

the way the pheromone values are updated. It introduces the global and local pheromone update.

The global update uses the path that produces the best solution found at the current iteration to

update the pheromone trail. This is to encourage the use of good-performing path and to increase

the probability of choosing the specific path. The local update is performed after each ant

performs a tour. This is to ensure that the pheromone values do not go unbounded. Both of these

algorithms are used subsequently in the thesis. It is hoped that this chapter can be a reference for

the experiments in the following chapters.

101

Chapter 5

Application to the Capacitated Vehicle Routing Problem

5.0 Introduction

In chapter 5, we have developed the ant-based hyper-heuristic. In this chapter, we will apply this

approach to our first application problem; the capacitated vehicle routing problem (CVRP). The

aim of this chapter is to demonstrate that our approach works well on the problem, using little

domain knowledge of the problem and does not require extensive parameter tuning.

Ants are guided by pheromone trails and visibility values. Initially, we will conduct experiments

to set the values of these parameters together with experiments to determine the starting positions

for the ants and the evaporation rate values. The structure of this chapter is as follows; in section

5.1 we introduce the CVRP and its problem descriptions. Section 5.2 describes the low level

heuristics that we utilize. Section 5.3 describes the experimental setup for the approach and

section 5.4 presents the benchmark datasets that we use for the problem. In section 5.5, we

present the solution method that we use to generate the initial solution. Section 5.6 describes

experiments for establishing suitable parameters values for the algorithm. In section 5.7, we

present the comparisons between our approach and previous ant algorithm hyper-heuristics.

Section 5.8 presents the experiments to observe the effectiveness of our method. In order to

identify the effects of these values, we have developed a random hyper-heuristic to serve as a

102

means of comparison with our framework. This is presented in section 5.9. The performance of

ant-based hyper-heuristic is evaluated by comparing it with other methods. This is presented in

section 5.1 O. Section 5.11 applies the ACO hyper-heuristic to the CVRP and finally, section 5.11

concludes the chapter.

5.1 Problem Formulation

The capacitated vehicle routing problem can be described as a fleet of vehicles p with capacity Q

goods have to be delivered to customers i E N = {1 n} from a central depot {O}. The sum of

demands on any route should not exceed the vehicle capacity Q. The objective of the CVRP is to

minimize the total travel distance. The CVRP can be formulated as follows: a connected graph G

= (V,E) of n+ 1 nodes, with a set of customers with demand qt is represented as' Vi e V, i = 1 n

with Vo as the depot. The mathematical formulation is as follows:

p=~U Rp =N

r.iERp d i < Q

Rp () Rq = 0, Vp '* q E V

'tip E V

C(S) = r.pEV C (Rp)

where:

v

v

Rp

C(Rp)

S

C(S)

number of vehicles

set of vehicles V= (l. ... v)

set of customers being served by vehicle p

cost of individual tour length (route)

feasible solution of S = {R i Rp }

total cost of each individual tour length C (Rp)

103

5.2 Low Level Heuristics

Low level heuristics are held in the nodes of the graph. Usually, they represent simple

neighborhood structures such as swap, move or rules that were used by the user to construct the

solutions. Initially, ants will be placed at a node on the search space (the directed graph).

Referring to chapter 4, each ant will perform a tour by visiting a sequence of low level heuristics

(nodes) by selecting a node after being guided by some information, the pheromone (evaluation

function) and the visibility values (cpu time). Once an ant arrives at a particular node, it will

apply the low level heuristic to its solution and generate a new solution. We have implemented
..

20 simple low level heuristics. Most of them are based on 2-opt moves. A 2-opt move deletes

two edges, divides a tour into two parts, then reconnects the path in a number of ways. Other low

level heuristics involve simple swap and moves which are based on route construction for VRP

(Braysy and Gendreau 2005a). These moves will be performed if they satisfy the constraint.

The low level heuristics are described below:

1. CVRP_Hl - choose a route at random and reverse a part of a tour between two randomly

selected customers. For example, customer 2 and 7 are selected. The customers in

between these customers will be reversed.

Initial tour: 0 1 2 3 4 5 6 7 8 0

ReSUlting tour: 0 1 2 6 5 4 3 7 8 0

104

7 2 7 2

3 6
3

5 4

Figure 5.1(a): initial tour Figure 5.1 (b): resulting tour

2. CVRP_H2 - choose a route at random and perform 2-opt moves on the route. The

procedure is done for every customer starting from the first customer after the depot. For

example, edges between customer 2 and customer 3 and customer 6 and customer 7 are

selected. 2-opt moves are done on the route.

Initial tour : 0 1 2 3 4 5 6 7 8 0

Resulting tour: 0 1 2 6 5 4 3 7 8 0

o

2

7

Figure 5.2(a): initial tour

o

2

7

3
6

5 4

Figure 5.2(b): resulting tour

3. CVRP_H3 - 2 opt procedure will be performed on all route. The procedure is

demonstrated in the example above (no 2).

105

4. CVRP_H4 - Swap 2 customers on a randomly selected route until no further

improvement is made. For example, customer 2 and 7 are selected and will swap

positions.

Initialtour : 0 1 2 3 4 5 6 7 8 0

Resulting tour: 0 1 7 3 4 5 6 2 8 0

2

o

4

5

6
Figure 5.3(a): imtial tour

2

o

5

Figure 5.3(b): resulting tour

106

5. CVRP_H5· 2 routes will be selected at random. A customer will be chosen randomly on

each route. We pick adjacent customers for the chosen customers on both routes. These

adjacent customers will then be swapped. For example, customer 4 is chosen from the

first route and customer 15 is chosen from route 2. Adjacent customer 5 will swap

positions with customer 16 on the next route.

Initial tour: route 1: 12345678 route 2: 91011 121314151617

Resultingtour: route I: 123416678 route2: 9101112131415517

1

2

3

4

Route 1

17

5

Figure S.4(a): initial tour

11

12

13

Route 2

107

1

2

3

4

Route 1

17

5

Figure 5 .4(b): resulting tour

10

11

12

13

Route 2

6. CVRP_H6 - The same procedure as CVRP_H5 is done on CVRP_H6 but on two

adjacent routes. (See example as above procedure (no 5».

7. CVRP_H7 - 2 routes will be selected at random. Swap end portion of a route with the

first portion of another route. For example. customer 8 from route 1 and customer 9 from

route 2 are selected and will swap positions.

Initial tour: route 1: 1 2 3 4 5 6 7 8 route 2: 9 1 0 II 12 13 14 15 16 1 7

ReSUlting tour: route 1: 1 2 3 4 5 6 7 9 route 2: 8 10 11 12 13 14 15 16 17

108

Route 1

1

2

3

2

3

4

Route 1

17

7

Figure 5.5(a): initial tour

8

9

6:\)
11

12

8

Figure 5.5(b): resulting tour

15 Route 2

14

16

15

Route 2
14

13

109

8. CVRP_H8· Move a customer from a random route to the nearest customer of another

random route. In this procedure, we have developed a function to identify the nearest

customer in another route to a selected customer. For example, customer 6 from route 1

will be moved to the front of customer 12 from route 2.

Initial tour: route 1: 1 2 3 4 5 6 7 8 route 2: 9 10 11 12 13 14 15 16 17

Resulting tour: route 1: route 2: 9 10 11 6 12 13 14 15 16 17

3

Route 1

3

Route 1

1

5

10

11

Figure 5.6(a): initial tour

1

6

5

10

11

12

Figure 5.6(b): resulting tour

17

16

15

13
Route 2

12

17

16

Route 2

13

110

9. CVRP_H9 - Choose 2 random routes. Move the last customer of the route to the first

position of another route. For example, customer 8 from route 1 will be moved to the first

position of route 2.

Initial tour: route 1: 1 2 3 4 5 6 7 8 route 2: 9 10 11 12 13 14 15 16 17

Resulting tour: route 1: 1 2 3 4 5 6 7 route 2: 8 9 10 11 12 13 14 15 16 17

1

2
Route 2

12

6
Route 1

Figure S.7(a): initial tour

1

2
Route 2

16

12

7

6
Route 1

Figure 5.7(b): resulting tour

III

10. CVRP_HIO - Choose 2 random routes and swap 2 customers (all) for the routes. For

example, customers from route 1 will be interchangely swapped with all customers from

route 2. In the example below, customer 6 will swap position with customer 13.

Initial tour: route 1: 1 2 3 4 5 6 7 8 route 2: 9 10 11 12 13 14 15 16 17

Resulting tour: route 1: 123451378 route 2: 9 10 11 12 61415 1617

9

1

3

Route 1

4 14 Route 2

Figure 5.8(a): initial tour

1

7
3

17

Route 1

4 14 Route 2

Figure 5 .8(b): resulting tour

112

11. CVRP_Hll - In this procedure, 2 adjacent routes will be chosen and 2 customers will

swap position. An example of this procedure is the same as CVRP_HIO except that it is

performed on adjacent routes.

12. CVRP H12 - Choose 2 adjacent routes. The last customer of a random route will be

moved to the first position of another random route. An example of this procedure is the

same as CVRP_H9 except that it is performed on adjacent route.

13. CVRP_H13 - Choose 2 random routes and swap a customer from the route with the

nearest customer of another route. An example of a diagram for this procedure is the

same as CVRP_HIO. This, however, this is done for the nearest customer of another

route.

14. CVRP_H14 - Choose 2 random routes. Select a random customer and move a customer

from a route after the nearest customer of another random route. For example, customer 5

is chosen to be moved after the nearest customer (customer 14) of another route.

Initial tour: route 1: 1 2 3 4 5 6 7 8 route 2: 9 10 11 12 13 14 15 16 1 7

Resulting tour: route 1: 1 2 3 4 5 7 8 route 2: 9 10 11 12 6 13 14 1 5 16 17

113

11 10 9

1 • •
2

14
13

Route 2

5
Route 1

Figure S.9(a): initial tour

11 10 9

1 • •
2

14
13

Route 2

5
Route 1

Figure 5 .9(b): resulting tour

15. CVRP_H15 - Choose a random route. Move a customer from a random route after the

nearest customer of adjacent routes. An example of a diagram for this procedure is the

same as CVRP_H14.

114

16. CVRP_H16 - Choose 2 routes at random. Move a customer from a route into another

random position of another route. An example of a diagram for this procedure is the same

as CVRP_H14.

17. CVRP_H17 - Move a customer from a random route into another random position of

another adjacent route. For example, customer 6 is chosen from the first route and

customer 13 is chosen from another random route. Customer 6 will be moved into the

position of customer 13. An example of a diagram for this procedure is the same as

CVRP_H14.

18. CVRP_H18 - 2 routes will be selected randomly. A customer will be chosen randomly

on each route. We pick adjacent customers for the chosen customers on both routes.

These chosen customers of route 1 will be swapped with adjacent customers of another

route. An example of a diagram for this procedure is the same as CVRP_HIO.

19. CVRP_H19 - The same procedure as CVRP_H18 is done on CVRP_H19 but on two

adjacent routes. Refer to the example above; procedure (no 18).

115

20. CVRP_H20 - 2 routes will be selected randomly. A customer will be chosen at random

on each route. We pick adjacent customers for the chosen customers on both routes. Both

customers from route 1 will be swapped with customers on route 2. For example,

customer 4 is chosen from the first route and customer lOis chosen from route 2. Their

adjacent customers will be selected and aU these customers will swap positions.

Initial tour: route 1: 12345678 route 2: 9101112 13 14 15 16 17

Resulting tour: route 1: 1 2 3 10 11 6 7 8 route 2: 9 4 5 12 13 14 15 16 17

8

Route 1 1

3

2

9

17

Figure 5.l0(a): initial tour

12

14

Route 2
16

116

Route 1 8

1

2

3

14

15
9

Route 2

17
16 •

Figure 5.10(b): resulting tour

5.3 Experimental Setup

Our algorithm is coded in C++ using Microsoft Visual Studio 2008. All experiments are run on a

PC Pentium R 3.4 GHz with 1 GB RAM running on Microsoft Windows 2000. Our ant-based

hyper-heuristic are tested on a well known dataset which is described in the next section. We

tested all experiments on 100 customers except for experiment to compare the results with

random hyper-heuristic. We chose 100 customers as it is not a small and not a large dataset for

the problem. In this work, all solutions generated are required to be feasible, that is all the Jow

level heuristics will operate on a feasible search space. The results will be compared with the

117

best known or optimal solution reported in the literature. To reflect the generality of our

approach we set the terminating conditions for this algorithm to 1000 iterations. However, if the

algorithm does not meet any improvement for 100 iterations, it will be terminated and the best

result will be returned. Among the objectives of experiments conducted in this chapter are:

• To demonstrate a relationship between the high and low level domain of hyper-heuristic.

• To establish appropriate parameter settings, both for the pheromone and visibility. It also

identifies the appropriate value for evaporation for the pheromone values.

• To determine a suitable starting position for the artificial ants.

• To investigate the performance of the algorithm with different sets of low level

heuristics.

• To investigate whether the artificial ants follows the path guided by the pheromone and

visibility values or whether the artificial ants select paths randomly.

• To demonstrate that the algorithm can effectively select low level heuristics at each

decision point.

• To demonstrate that the algorithm can produce competitive results when compared to

other methods.

118

The null hypotheses used in the experiments are listed below:

• HI: the three starting position are not significantly different from each other.

Experiments are presented in section 5.6.1.

• H2: Different numbers of low level heuristics are not significantly different from each

other. Experiment is presented in section 5.8.2.

• H3: The results for ant-based hyper-heuristic are not significantly different from random

hyper-heuristic. The experiment is done in section 5.9.

5.4 The Benchmark Datasets

The algorithm is tested on 7 problems from Vehicle Routing Datasets (2003). Problem sizes

ranging from 50 - 199 customers in this dataset are well known problems that are benchmark

comparison for CVRP. The data with customer locations are described by coordinates. The first

node in this dataset is the depot. The dataset consist of two classes of problem~ randomly

distributed problems and clustered problems. The number their classes of customers, the capacity

of each instance and their optimal solutions are shown in Table 5.1.

119

Problem Size Type Capacity Vehicles Optimal
Solution

E-n51-k5 50 random 160 5 524.61

E-n76-klO 75 random 140 10 835.26

E-nlOl-k8 100(a) random 200 8 826.14

M-nI51-kI2 150 random 200 12 1028.42

M-n200-kI7 199 random 200 17 1291.5

M-nlOl-kl0 100(b) clustered 200 10 819.56

M-n121-k7 120 clustered 200 7 1042.11

Table 5.1: The description and optimal solutions for Christofides et al. (1969)
(Vehicle Routing Datasets 2003)

5.5 Initial Solutions

The initial solutions for the CVRP have been generated using the sweep algorithm (Gillet and

Miller 1974). The algorithm is described in chapter 3 (section 3.2.1.1.2).

5.6 Experiments for Determining Parameter Values

Ants apply probability transition rules (refer chapter 4.6) to construct a tour. In order to start a

tour, there are certain characteristics an ant has to adopt:

120

1. a starting heuristic (node) where the ants will be placed.

ii. to construct a tour, ants are guided by the pheromone and heuristic values. a

represents the influence of pheromone trail. The p represents the influence of

visibility value.

iii. To reduce the influence of pheromone values on an edge, there is a need for

evaporation procedures. This process is required so that the pheromone values do not

grow unbounded. Furthermore, it helps in reducing the influence of pheromone in the

early stages of search, where ants typically build poor solutions.

We conduct experiments to determine appropriate parameter setting for our approach. In Burke

et al. (2005b), the number of ants was set to be equal to the number of nodes in the network.

However, in our work, we set the number of ants to 10 (except for the experiment in section

5.6.1, we use 20 ants) as we assume if we set the ants to be equivalent to the number of nodes

(heuristics), the method will consume more computational time. Too few ants will limit the

exploration of the search space; therefore, we set the number of ant to 10 ants as we consider it is

not too many and not too few to explore the search space of heuristics.

5.6.1 Experiments with Different Starting Positions

In this experiment, the aim is to analyse the influence of starting positions of the ants. As part of

the investigation, we use 20 ants and place the ants at three distinct places:

121

i. all ants are placed on the first heuristic (CVRP_Hl)

ii. randomly placed on any heuristics

iii. place one ant on each heuristic.

This experiment was done on dataset with 100 customers (E-n 1 01-kS). Each different starting

position was run for 1000 iterations. However, if it does not give any improvement for 100

iterations, the algorithm will terminate. The best, worst, average solution and the standard

deviation for 30 runs are recorded. The results for each placement are presented in Table 5.2.

Experiment Starting Best Worst Average Std
position Dev

1 Random 842.34 879.60 866.96 9.S4

2 Heuristic I 857.91 965.80 883.55 21.57

3 Each heuristic 854.95 916.00 882.82 15.35

Table 5.2: Results for different starting positions

As shown in this table, placing the ants randomly on heuristics available produced good

solutions compared to other starting positions. To evaluate the null hypotheses HI (see section

5.3), a t-test with 95% confidence level is performed and the results are compared and presented

in Table 5.3. Here, the comparison is performed between the various placing to observe any

effects of the initial placement for the ants. The data used for these tests are shown in Appendix

A.

122

Experiments Random Heuristic 1 Each heuristic

Random - reject reject

Heuristic 1 - - accept

Each heuristic - - -
..

Table 5.3: Results oft-test for dIfferent startmg posItions

As shown in table 5.3, null hypotheses Hi is rejected for experiment 1. This shows that by

placing the ants randomly as starting position is significantly different compared to the other two

placements which indicates that it has an influence of guiding the ants to have better explorations

on the search space. Placing all ants on the first heuristic or placing the ants individually on each

heuristic does not show to be any statistically different from each other (null hypotheses Hi is

accepted), This implies that placing the ants on these two positions has produced results that are

not different from each other. Therefore, we chose to place the ants randomly subsequent for all

experiments.

123

5.6.2 Experiments with Different Pheromone and Visibility Rates

Ants communicate with each other via pheromone trails. While travelling from one node to

another, ants leave some pheromone trails on the path they travel. Ants sense the pheromone and

choose probabilistic path with strong pheromone trails. Visibility is heuristic information that

helps the ants build good quality tours. For example, in the TSP, the visibility value is

represented by inversely proportioning the distance between city i and city j. We perform

parameter test to obtain suitable setting for pheromone trails and visibility values. Basically in

an ant algorithm, shorter paths receive more pheromone trails left by the ants. The a value

represents the influence of pheromone trails. The p value represents the influence of visibility

value. If a = 0, only heuristics with low computation time will be selected thus restricting the

search space to be explored more thoroughly. If p = 0, the only path with strong trail of

pheromone will be selected. This will lead all ants to follow the same path, hence resulting in

quick convergence.

In this experiment, all ants will be placed randomly on any heuristics. Higher improvements on

the objective function will reward higher pheromone trail on the path travelled. Visibility in this

algorithm is presented by the cpu time taken by each ant to complete its task. The lower the cpu

time taken, the higher the visibility value given to the node. Each combination of pheromone and

visibility values is run for 10 times for each of the 1000 iterations. The best, worst, average

solutions and the standard deviation are recorded.

124

a p best worst average Std dev

0.1 0.9 860.29 888.14 871.26 8.16

0.2 0.8 861.58 873.71 866.97 4.09

0.3 0.7 849.19 892.02 871.64 7.93

0.4 0.6 858.85 908.71 876.30 10.87

0.5 0.5 842.34 879.60 872.30 10.87

0.6 0.4 864.95 888.30 872.99 6.84

0.7 0.3 859.13 878.88 869.03 3.73

0.8 0.2 855.13 885.61 871.89 9.37

0.9 0.1 859.55 897.53 874.00 8.60

Table 5.4: Results for different pheromone and visibility rate

In can be seen in Table 5.4 that the combinations of a = 0.5 and p = 0.5 have produced good

solution compared to other combinations; therefore, we chose these values to present the

pheromone trail and visibility values throughout all experiments.

125

5.6.3 Experiments with Different Evaporation Rates

Pheromone evaporation is an important activity to determine the level of trails existed on a

particular path. We perform parameter tests to identify the best setting for the evaporation rate of

the pheromone values. Each evaporation rate is run for 10 times for 1000 iterations each. The

best, worst, average solutions and the standard deviation are recorded.

Evaporation best worst average Std
rate dev
0.1 846.49 880.74 862.51 12.80

0.2 850.27 884.80 867.46 10.10

0.3 843.63 876.86 868.07 9.40

0.4 859.75 881.51 867.60 8.00

0.5 847.14 879.55 863.40 8.00

0.6 862.82 913.80 877.23 17.30

0.7 866.85 891.42 877.12 8.70

0.8 862.54 886.57 873.81 7.20

0.9 851.31 880.57 869.95 9.80

Table 5.5: Results for dIfferent evaporation rate

Results in Table 5.5 show that evaporation rate 0.3 is the best setting to obtain best solutions

among other rates. We will use 0.3 as evaporation rate throughout all other experiments.

126

5.7 Comparisons of Ant Hyper-heuristics

The objective of this section is to compare previous approaches in Burke et al. (2003c) and Chen

et a1. (2007) to our approach. We utilise the same parameter values for all approaches (a = 0.5,

f3 = 0.5 and evaporation rate is 0.3). The experiment was conducted on 50 customers (E-n51-k5)

with 30 runs. The results are presented in the following Table 5.6. We can see that our ant-based

hyper-heuristic has outperformed both the ant algorithms hyper-heuristic in tenus of best known

results, average and standard deviation. Chen et al. (2007) performed better than Burke et a1.

(2003c). The time taken by our approach is also better than the two approaches. This shows that

the performance of ant hyper-heuristics can be improved by introducing new pheromone updates

where the distribution of pheromone values is deposited proportioned to their quality of solutions

to all visited edges. The visibility values measured are the computational time taken for a

heuristic to complete its task.

127

Chen et. Burke Ant-
al time et al. time based hh time

549.341 85.6 687.81 33.6 539.681 3.2

546.552 79.0 712.455 31.5 532.996 10.7

546.383 110.5 714.408 22.0 542.639 4.8

543.594 105.2 758.814 25.8 539.681 6.6

543.594 118.4 591.864 62.7 542.47 4.8

552.089 64.8 692.996 31.9 543.594 3.2

546.552 91.1 777.376 22.9 543.594 6.5

551.257 95.8 599.312 18.0 540.224 4.8

543.594 114.1 765.838 18.8 543.594 3.2

543.594 72.1 679.081 46.0 541.864 1.5

543.594 75.2 714.071 31.5 532.996 7.3

545.971 87.1 572.95 66.6 542.639 3.2

546.552 107.7 785.334 17.2 543.594 4.9

543.594 131.8 547.809 170.1 542.639 3.2

546.552 81.9 702.383 11.7 539.681 3.2

543.594 67.5 543.013 71.3 542.47 3.2

547.809 70.1 693.441 30.9 542.639 4.9

543.594 100.4 689.459 32.5 539.681 3.2

559.224 47.1 546.383 68.3 543.594 6.5

543.594 97.4 572.722 232.3 532.996 20.6

543.013 65.3 756.822 11.3 539.681 4.9

547.809 106.5 672.183 25.0 539.681 4.9

556.106 102.0 769.029 12.8 543.594 3.2

546.383 105.4 720.868 16.6 543.594 3.2

543.594 76.7 751.013 26.1 543.594 6.5

546.383 82.1 584.393 45.6 532.996 5.8

559.224 65.1 740.478 34.0 548.209 3.1

543.594 98.4 666.405 16.6 543.594 3.2

543.594 87.7 547.809 75.6 539.681 3.3

547.809 93.5 599.068 183.6 539.681 4.9

best 543.013 47.13 543.Ql3 11.34 532.996 1.54
worst 559.224 131.84 785.334 232.30 548.209 20.57

averaf!e 546.94 89.52 671.85 49.76 540.919 5.08
std dev 4.52 19.15 79.98 53.38 3.71 3.45

Table 5.6: Compansons of three dIfferent ant hyper-heuristics

128

5.8 Effectiveness of the Ant-Based Hyper-heuristic

In this section, we conduct experiments to determine the effectiveness of our framework. We

first perform an experiment to determine the frequency at which the low level heuristics are

applied by the hyper-heuristic. Furthermore, the outcome of this experiment will determine our

selection o~ how many low level heuristics are required to produce good quality solutions in the

next experiment. We then introduce random hyper-heuristic to serve as a comparison for our ant­

based hyper-heuristic. In this random hyper-heuristic, all heuristics (nodes) will have the same

probability to be selected by the ants. In the experiments, we will investigate whether the

pheromone trails and visibility play some role in guiding the ants to select good heuristics.

Lastly, we present our results and compare them with other approaches available in the literature.

5.8.1 Heuristic Calls

In this section, we perform experiments to determine which heuristics are frequently being

applied and also heuristics that are less frequently applied. At the beginning of the search, a set

of low level heuristics is selected to be applied to the initial solution which is the current solution

at the time. The algorithm starts with a feasible solution. Each ant will select a series of low level

heuristics. The total number of low level heuristics applied by an ant is considered as a tour. The

new solution obtained after employing the low level heuristics will replace the previous solution

and it is the best solution among the current solution available. The process is repeated for 1000

iterations and will stop when it meets the termination criterion or if it does not give any

improvement for 100 iterations. Table 5.7 presents the results together with t~e average and the

129

standard deviation and plots a frequency chart to observe the behaviour of these heuristic calls.

Figure 5.11 demonstrates the frequency chart of the low level heuristics for dataset with 100

customers. In Figure 5.11, the x-axis represents the frequency calls of the low level heuristics

and y-axis represents the low level heuristics being employed throughout the search. We observe

that CVRP_Hl has been called the most frequent. CVRP_H7 is the second frequent being called.

Other frequent heuristic that are being called are CVRP_H2, CVRP_H5, CVRP_H9,

CVRP_HIO, CVRP_Hll. The least call of this low level heuristic is heuristic 20. Other least

called heuristics are CVRP_H16 and CVRP_H17. We will further adopt these findings in the

following section.

130

run I hI I h2 I h3 I h4 I h5 I h6 I h7 I h8 I h9 I hlO

I 3036 I 2826 I 2878 I 2832 I 2903 I 2880 I 2963 I 2781 I 2840 I 2808

2 I 2977 I 2831 I 2836 I 2817 I 2804 I 2815 I 2962 I 2969 I 2812 I 2853

3 I 2933 I 2909 I 2791 I 2891 I 2850 I 2864 I 2900 I 2775 I 2841 I 2883

4 I 2973 I 2839 I 2826 I 2821 I 2854 I 2815 I 2869 I 2928 I 2880 I 2796

5 I 2973 I 2861 I 2980 I 2854 I 2816 I 2812 I 2858 I 2790 I 2878 I 2876

6 I 2942 I 2924 I 2835 I 2813 I 2983 I 2958 I 2845 I 2831 I 2914 I 2867

7 I 2902 I 2909 I 2759 I 2829 I 2846 I 2824 I 2942 I 2850 I 2891 I 2899

8 I 2970 I 2833 I 2937 I 2799 I 2780 I 2828 I 2866 I 2882 I 2827 I 2871

9 I 2977 I 2951 I 2775 I 2813 I 2886 I 2857 I 2924 I 2909 I 2927 I 2905

10 2945 2889 2918 2923 2925 2915 2803 2793 I 2874 I 2846

average }~~.-p6~ ~- ',~8.-.;p.. 'NIt: ;:fj£~ ... =g4." ~·€~~~.9. ~ i1-2.~Y~~ ~. :2.;8.:fi~,:Z~ ~ ... ;~. '8.~~ ~.~~§1" Mg{{8Jlf~~8~~.~ .. ~ . f'~Y \" .~ ~ '-..-r~; ,~a ~~ ... p.o,'l,"'if ~.~"_,..,- ... ,J<",.,. ~ •. ?-~. ~~
"~ .. 1Il .~ :n c.. II I ""'-~ . ,,,,;,-,,,' ,,-.~ W! ,~, ,.-: "" '" ~ .;O(r. G ~ _ "'''''~ , ,~. , ;;r~..,
_____ ~ ~,-", "P"'<>->- _~ ,.,... " .~ _ ~,- -" "",,_ ,~ 'n.-. ~ SJ. ~. ... ~. ' ,L

std dev I 35.52 I 45.01 I 73.13 I 39.29 I 60.98 I 49.02 I 53.75 I 68.59 I 37.62 I 35.81

Table 5.7: The frequency calls of low level heuristics for 100 customers

131

hll h12 h13 h14 hIS h16 h17 hIS h19 h20

2887 2784 2769 2808 2871 2761 2842 2778 2829 2924

2879 2858 2836 2885 2806 2820 2797 2899 2799 2828

2819 2827 2870 2791 2857 2848 2765 2840 2724 2735 I

2954 2902 2797 2814 2771 2757 2806 2795 2812 2761

rntMBr~ t ·~~~~ V7~~ ~-~~{~. _~o~ 4'18@'0'! ~lF2~~ ~ ... &4t r:n~'g!Jj] r ~8~t· ~~ ·0 , i~ o

~~. ,~ ~
~'. ~ =-' i:":i' .. ,~ . - ~. _o;.", \OO!' ~~ id.'!"~,

l~~ ~~f.; ~ :. .-
,. til 0 ••

,. ~;~ - .'.~ "
~ .II\i .. -/~<~. .' ·:· .. ·.·~/ ... ··:-jci

~ . 't. « ~ ." ~ !-. ' "" - Jt 1"~ ' ~ :If. . _ - ~~. -7"-_ .. I ... ~ ,

39.76 46.56 31.00 52.73 65.76 45.19 62.74 58.76 44.20 58.66

Table 5.7: The frequency calls of low level heuristics for 100 customers (continued)

132

1 2 3 4 5 6 7 8 9 1 ~ 11 12 13 14 15 16 17 18 19 20

heuristic

Figure 5.11: The frequency chart of the low level heuristics

5.8.2 Experiments with Different Sets of Low Level Heuristics.

We further investigate the best number of low level heuristics required to produce good

solutions. We test the algorithm with four different categories of heuristics based on their

performance. In order to identify these categories, an experiment to capture the call s of every

heuristic is done in the above section (section 5.8.1). Set A consists of ten most frequent

heuristics being called (heuristic 1,2,3,5,6,7,8,9,10,11). Set B consists of ten heuristics that are

less being called during the procedure (heuristic 4,12,13 ,14,15,16, 17,18,19,20). Set C consists of

ten heuristics that are chosen intuitively which we predict to perform well in exploring the search

133

space (heuristic 1,2,3,4,5,10,13,14,16,19). Set D is the combination of the twenty heuristics

available. We include heuristics in set B (bad performing heuristics) as well as to encourage the

search to explore other promising areas of search space. The experiment was conducted on 100

customers (E-nlOl-k8) with 30 runs for each category. Table 5.8 presents the best, worst,

average results and the standard deviation for each experiment.

Heuristics Best Worst Average Std Dev

SetA 863.96 916.24 884.03 12.64

SetB 879.83 986.11 920.31 25.63

SetC 838.65 889.29 871.10 11.20

SetD 842.34 879.60 863.60 9.90

Table 5.8: ComparIson of performance for different cOmbInatIOn number
of low level heuristics

The results demonstrate that the algorithm perform best when we use ten intuitive heuristics (set

C). However, we observe that overall twenty combinations (set D) of all low level heuristics

have better solutions even though their best solution is slightly worse than ten intuitive

heuristics. The worst, average results and standard deviation of combination of these low level

heuristics are better than set C heuristics. To further assess null hypotheses H2 (describe in

section 5.3), statistical test (t-test) with 95% confidence level is conducted for each experiment.

The results of these statistical tests are summarised in Table 5.9. The data used for these tests are

shown in Appendix D.

134

Experiments SetA SetB SetC SetD

SetA X reject H2 reject H2 reject H2

SetB X X rejectH2 rejectH2

SetC X X X rejectH2

SetD X X X X

..
Table 5.9: T-test for different combmatIOn number oflow level heurIstics

As shown, for all experiments, null hypotheses H2 are rejected indicating that all these

combinations are statistically different to each other. This implies that varying the number of low

level heuristics has an influence in generating good solutions. Finally, we conclude that higher

number of heuristics used in this approach will guide the ants to better solutions.

5.9 Random Hyper-heuristic

We develop random hyper-heuristic to serve as a comparison for our ant-based hyper-heuristic.

In this random hyper-heuristic, all heuristics (nodes) will have the same probability to be

selected by the ants. Our aim in the experiment is to investigate whether the pheromone trails

and visibility play some roles in guiding the ants to select good heuristics. We apply the random

hyper-heuristic on all datasets. The experiment is run for 30 runs. Table 5.10 presents the best,

worst; average results and the standard deviation for the random hyper-heuristic and we make

comparisons with our approach. From the table, for all tested datasets, it can be seen that ant-

135

based hyper-heuristic clearly outperformed the random hyper-heuristic in the best solutions

found. However, in terms of average and standard deviation; out of seven datasets tested, results

show that ant-based hyper-heuristic has outperformed the random hyper-heuristic in five

datasets. This probably shows that ant-based hyper-heuristic shows better consistency than

random hyper-heuristic. To further investigate. the similarity of these algorithms, we apply a

statistical test (t-test) to access the null hypotheses H3 (as described in section 5.3). The null

hypotheses H3 for this experiment are that the results of the ant-based hyper-heuristic algorithm

are not significantly different from the random hyper-heuristic. The results of this statistical test

with 95% confidence interval are presented in Table 5.11. The data used for these tests are

shown in Appendix E.

As shown for most of the experiments, null hypotheses H3 are rejected, except in experiment 4

for dataset 1 OO(b). It is demonstrated that these algorithms have no similarity. However, for

dataset with lOO(b) customers, it is found that the ant-based hyper-heuristic does not have

significant difference with the random hyper-heuristic. Datasets with 1 OO(b) customers are

clustered problems which with initial value generated with sweep algorithm do not perform too

well. This is in line with our expectation. This indicates that the ant-based hyper-heuristic does

not randomly pick low level heuristics; instead we can conclude that it is guided by the

pheromone and the visibility values.

136

Dataset Anthh Anthh Anthh Anthh Rndhh Rndhh Rndhh Rndhh

best ave worst Std dev best ave worst StdDev
,

50 532.99 540.92 548.21 3.71 542.82 554.66 584.59 12.07

75 863.84 875.02 889.58 6.24 870.34 907.90 949.80 23.35

100(a) 842.34 863.60 879.60 9.90 864.81 886.94 923.81 17.13

100(b) 910.85 963.84 988.13 22.61 911.65 961.75 987.31 21.24

120 1107.77 1224.65 1293.39 49.91 1140.54 1202.51 1260.60 32.57

150 1076.21 1097.55 1115.04 9.54 1084.77 1103.75 1155.46 14.73

199 1371.11 1397.06 1436.76 14.57 1387.98 1419.97 1491.16 21.23

Table 5.10: Comparisons in the performance of ant-based hyper-heuristic (Anthh) and random hyper-heuristic (Rndhh)

137

~tbh
mdhR 50 75 100(a) 100(b) 120 150 199

50 rejectH3 X X X X X X

75 X reject H3 X X X X X

100(a) X X rejectH3 X X X X

100(b) X X X accept H3 X X X

120 X X X X rejectH3 X X

150 X X X X X reject H3 X

199 X X X X X X reject H3

Table 5.11: T-test for comparmg the performance of ant-based hyper-heurIstic (anthh) and
random hyper-heuristic (mdhh)

5.10 Comparisons with Other Methods

In this section, we compare our ant-based hyper-heuristic to other metaheuristics such as tabu

search, simulated annealing, genetic algorithm and the ant algorithm. Our results and deviations

to best known together with computations times are shown in Table 5.12. In the table, the best

known result for the problem is presented in bold. Our results do not produce any better results.

For some datasets, however, we are able to produce better results than some other methods. Our

approach performs better than the ant system for datasets with 75, 100(a) (problem 3), 150 and

199 customers. For datasets with 120 and 199 customers, we produce better results than the

simulated annealing algorithm. For random distributed problems (problems: 1,2,3,6,7), we are

able to produce solutions that have average deviation less than 6% from the best known solutions

138

while for clustered problems (problem: 4,5), our approach only manage to produce solutions

with average deviation less than 11%. We conclude that even though our approach does not

produce the best known results, we have managed to produce good results by only using only

simple low level heuristics (simple 2-opt procedure and simple move and swap procedure).

Furthermore, our approach does not involve extensive parameter tuning. In the beginning of the

approach, we have done a parameter setting and have used it throughout the run of every dataset.

139

Best Tabu- Simulated

Problem Dataset known TaiUard Time route Time Anealing Time

1 51 524.61 524.61 1.12 524.61 6.0 528 2.79

2 76 835.26 835.26 1.18 835.32 53.8 838.62 107.2

3 100(a) 826.14 826.14 11.25 826.14 18.4 829.18 155.6

4 100(b) 819.56 819.56 6.79 819.56 16 826 10.53

5 120 1042.11 1042.11 23.31 1042.11 22.2 1176 5.26

6 150 1028.29 1028.42 51.25 1031.07 58.8 1058 83.54

7 199 1291.45 1298.79 32.88 1311.35 90.9 1378 38.64

Table 5.12: Comparisons of ant-based hyper-heuristic to other methods

140

Genetic Ant I.ant

Problem Algo Tune system Time system Time Rndhh Time Anthh Time

1 524.61 <1 524.61 0.6 524.61 0.1 542.82 3.57 532.99 7.28

2 835.26 3.06 870.58 2.4 844.31 1.3 870.34 10.56 863.84 6.13

3 826.14 8.28 879.43 11.3 832.32 3.8 864.81 49.26 842.34 17.74

4 819.56 - 819.96 10.1 819.56 5.0 911.65 32.26 910.85 16.09

5 1042.11 35.72 1072.45 16.2 1065.21 9.2 1140.54 29.43 1107.77 30.43

6 1030.46 32.58 1147.41 28.5 1061.55 18.4 1084.77 45.75 1076.21 17.74

7 1296.39 56.07 1473.4 82.2 1343.46 87.6 1387.98 138.69 1371.11 54.39

Table 5.12: Comparisons of ant-based hyper-heuristic to other methods (continued)

141

5.11 ACO Hyper-heuristic Applied to CVRP

Finally we applied the ACO hyper-heuristic to the CVRP. The aim of this section is to evaluate

the effect of the global and local updating rules for the pheromone values. We compare the

results to the ant-based hyper-heuristic and present both results in Table 5.13. From the findings,

we observe that in most datasets, ant-based hyper-heuristic has outperformed the ACO hyper­

heuristic. However, for datasets 1 OO(h) and 150 customers, ACO hyper-heuristic has

outperformed the ant-based hyper-heuristic. In terms of average results, ant-based hyper­

heuristic performed better than the ACO hyper-heuristic in four datasets (datasets 50, 75, 100(a),

120). For standard deviation, however, ACO hyper-heuristic performs better in four datasets

(datasets 50, 120, 150, 199). ACO hyper-heuristic has obtained the worst solution in five datasets

(datasets 50, 75, 1 OO(a), 100(b». These observations indicate that ant-based hyper-heuristic

performs better than ACO hyper-heuristic. It appears that ACO hyper-heuristic does not take into

account the global and local updating procedure. This is inconsistent with the performance of

ACO algorithm in the literature where by modifying the process of updating the pheromone

values, the results are better (Dorigo and Di Caro 1999c). This is probably because of the

difference in the search space between the metaheuristics and hyper-heuristic. Metaheuristics

operate in the search space of solutions however hyper-heuristic operate in the search space of

heuristics. Heuristics perform differently at each decision point, thus there is no guarantee that

the same heuristic will perform the same or better for the next iteration. Therefore, it can be seen

that by enforcing global and local updates of pheromone values does not appear to contribute to

any success in obtaining better results than ant-based hyper-heuristic

142

Best Average Worst StdDev Best Average Worst StdDev

Datasets Anthh Anthh Anthh Anthh ACOhh ACOhh ACOhh ACOhh

50 532.99 540.92 548.21 3.71 539.7 543.6 548.5 1.9

75 863.84 875.02 889.58 6.24 868.9 885.7 900.0 7.4

100(a) 842.34 863.6 879.6 9.9 854.6 876.6 906.5 11.6

100(b) 910.85 963.84 988.13 22.61 851.1 911.7 988.5 33.4

120 1107.77 1224.65 1293.39 49.91 1116.0 1226.8 1297.1 47.6

150 1076.21 1097.55 1115.04 9.54 1068.9 1080.0 1088.6 4.5

199 1371.11 1397.06 1436.76 14.57 1377.9 1393.5 1410.0 8.3

Table 5.13: Results of ACO hyper-heuristic and ant-based hyper-heuristIc

143

S.12 Summary

In this chapter, we applied our proposed approach to solve the CVRP. Although results presented

in this paper do not produce any better results than in the literature, we have proposed a new

algorithm that tries to find a general approach to solve the CVRP. In this work, we present an

antwbased hyperwheuristic as a high level selector to pick and combine several low level

heuristics. One major advantage of this work is we use simple swap and move, knowledge of

poor low level heuristics that do not require expertise in the problem domain and the same

parameter for all problem instances. In addition, we have done some experimental work to

observe the effects of pheromone and visibility values in guiding the ants to explore the search

space. We compare the technique with random hyperwheuristic where all heuristics will have the

same probability to be selected. Statistical tests show that these two techniques are statistically

significant, except for dataset 1 OO(b) customers, where there is no statistical significance

between these two techniques. The dataset with 1 OO(b) customers represents clustered problems

which with initial value generated with sweep algorithm does not perform too well.

Further research on investigating the number of heuristics needed to produce good solutions is

done. Results show the number of heuristics is important to find good solutions for CVRP. It

indicates that the larger the number of low level heuristics used, the better the average and the

standard deviation. We investigate the performance of ACO hyper-heuristic compared to ant­

based hyper-heuristic and the findings show that ant-based hyper-heuristic perform better in most

datasets. Ant-based hyper-heuristic updates pheromone values on all visited edges. The

144

distribution of pheromone is proportioned to the quality of improvement performed by the ants.

In contrast to the ACO hyper-heuristic, the global updates of pheromone intend to update

pheromone on the best performing edge and local pheromone update is performed after each ant

performs a tour. A hyper-heuristic operates in the search space of heuristics. At each decision

point, the heuristic performs differently. Bad tours become highly unfavoured and ants search

only in the neighbourhood of good solutions, thus limiting the exploration of promising

heuristics in bad tours. By enforcing the same updating rule on all visited edges in an ant-based

hyper-heuristic, no specific edges are dominant, thus giving fair choices for the ants to select

promising edges. In the next chapter, to investigate the generality of our approach, we apply our

approach to another routing problem, the TSP.

145

Chapter 6

Application to the Travelling Salesman Problem (TSP)

6.0 Introduction

In the previous chapter, we have applied the ant-based hyper-heuristic to the capacitated vehicle

routing problem (CVRP). The algorithm is seen to be effective for solving a variety of CVRP

instances. In this chapter, we aim to investigate the generality of our approach to the travelling

salesman problem (TSP). To our knowledge, ant-based hyper-heuristic have never been applied

to the TSP. TSP is the problem of finding the shortest or cheapest way of visiting all cities in a

tour and returning to the starting city. Related work with respect to the TSP is presented in

chapter 3. This chapter is structured as follows; section 6.1 describes the problem. Section 6.2

presents the experimental setup we use for the TSP. Section 6.3 describes the low level heuristics

utilised and section 6.4 presents the computational experiments. Section 6.5 concludes the

chapter.

146

6.1 Problem Formulation

The TSP is to find a tour for a given number of cities, to visit the cities once and returning to the

starting city. The objective of the problem is to minimise the tour length. Some solution methods

for TSP are discussed in chapter 3. The problem can be defined as follows:

A salesman is required to visit a sequence of cities 1, ... , n. He will start at an initial city, visits

each city once and returns back to the initial city. Let dij (i =1= j, = 0, 1, 2, , n) be the tour

length for the problem. We want to minimise the tour length. The mathematical formulation as

adapted from Bryant and Benjamin (2000) is presented below:

l:oSi l:jsn dijXlj

Subject to

1:[=0 i*j xi} = 1

l:j=o j:i:i Xij = 1

(j = 1, , n)

(i = 1, , n)

where Xli are non-negative integers. The constraint Xi} is required to be 1 so that the relationship

between these two cities exists which can be expressed as: the salesman's tour from city i to city

j if and only if Xli = 1.

147

6.2 Experimental Setup

We implement our experiments on PC Pentium R 3.4 GHz with 1 GB RAM running on

Microsoft Windows 2000. The ant-based hyper-heuristic is tested on well known datasets from

the TSP library (The Travelling Salesman Library 2008). We tested our approach on instances of

sizes n = (30, 76, 51, 100), where n = the number of cities. We chose these cities to enable us to

make comparisons with the scientific literature. The initial solution is generated using the same

sweep algorithm as we used for the CVRP problems (see section 3.2.1.1.2). The parameters

(initial placement of the ants, the influence rate for pheromone values (a), the influence rate for

visibility values (f3) and the evaporation rate (p) are set to the same values as those used for the

CVRP problem (chapter 5). We use the same values in order to test the generality of the

algorithm. In all experiments, the approach is run for 1000 iterations, or until the algorithm fails

to find an improvement for 100 iterations. The best result found is returned as the final solution.

In this chapter, we utilise 10 low level heuristics (we refer to these heuristics as TSP heuristics).

They are based on 2-opt. Furthermore, we also include the 20 heuristics for the CVRP (we refer

to these heuristics as CVRP heuristics; as in section 5.2) to further investigate the behaviour of

our approach. The objectives of the experiments conducted in this chapter are the following:

148

• To demonstrate that the ant-based hyper-heuristic can be applied across different problem

domains and instances.

• To investigate if the algorithm can select appropriate low level heuristics at each decision

point.

• To demonstrate that the algorithm can produce competitive results when compared to

other methods.

6.3 Low level heuristics

In this section, we developed ten simple low level heuristics for the TSP and most of them are

based on 2-opt _moves as they are easy to imple~ent (Tsp_hl - Tsp_hlO). The TSP heuristics

are described below. The other set is the low level heuristics used for the CVRP problem, as

described in section 5.2. CVRP heuristics operate on a tour in a single route or tours from

different routes.

1. Tsp_hl: Two cities are selected and part of the tour is reversed between these two

selected cities. This is done on every city, starting from the initial city. For example, as

below: city 2 and 7 were selected. The customers in between these cities will be reversed.

Figure 6.1 (a) and Figure 6.1 (b) illustrate the example.

Initialtour: 1 2 3 4 5 6 7 8

Resulting tour: 1 2 6 5 4 3 7 8

149

8 8

7 7

6 6

4 5 4 5

Figure 6.1(a): initial tour Figure 6.1 (b): resulting tour

2. Tsp_h2: 2 pair of cities will be selected from the tour. This is done on every city, starting

from the initial city. For example, city and city 3 with city 2 and city 6 and city 7 are

selected. 2-opt moves are done on the route. Figure 6.2(a) and Figure 6.2(b) illustrate the

example.

Initial tour: 0 1 2 3 4 5 6 7 8 0

Resulting tour: 0 1 2 6 5 4 3 7 8 0

o o

2 2
7

7

3
6

5 4
Figure 6.2(a): initial tour Figure 6.2(b): resulting tour

150

3. Tsp_h3: 2-opt moves will be carried out, but with the cities being chosen randomly. The

example is illustrated as above Figure 6.2(a) and Figure 6.2(b).

4. Tsp_h4: Two cities are selected randomly and they will swap positions. For example;

city 2 and 7 are selected. City 2 and 7 will swap positions. Figure 6.3(a) and Figure

6.3(b) illustrate the example.

Initial tour: 1 2 3 4 5 6 7 8

Resulting tour: 1 7 3 4 5 6 2 8

8

4
Figure 6.3(a): initial tour

1

8

4

Figure 6.3(b): resulting tour

151

5. Tsp_h5: Tsp_h5 operates the same as Tsp_h2. The first move that produces an

improvement over the current solution will be accepted.

6. Tsp_h6: Two cities are selected and reverse a part of a tour between these two selected

cities. The example is as in Tsp_hl, however, the procedure is done on random selected

cities.

7. Tsp_h7: Two cities are selected randomly and they will swap positions. The example is

as in Tsp_h4. This procedure will repeatedly being applied until no further improvement

is made.

8. Tsp_h8: Two cities starting from two ends will be selected and swap positions. The in­

between cities will be reversed. This procedure will be done on all cities. The example is

as in Tsp_h2. The best improvement will be recorded.

9. Tsp_h9: Two cities starting from two ends will be selected and swap positions. This

procedure will be done on all cities. The example is as in Tsp_h4. The best improvement

will be recorded.

10. Tsp_hlO: Two cities starting from two ends will be selected and the in-between cities

will be reversed. This procedure will be done on all cities. The example is as in Tsp_hl.

The best improvement will be recorded.

152

6.4 Experiments

The aim of this section is to test the effectiveness of our approach. We utilize two different sets

of low level heuristics in these experiments. The first set is the TSP heuristics which operates

only on the tour produced. We apply our approach to the TSP instances from the TSP library

(The Travelling Salesman Library 2008). In this experiment, we utilise 10 low levels heuristic

(Tsp_hl - Tsp_hlO); as described in section 6.3 and use 10 ants (equal to the number of low

level heuristics) and initially placed the ants randomly on heuristics available on the network.

The second experiment utilises the second set of low level heuristics which are used for the

CVRP problem (as described in section 5.2). CVRP heuristics operate on a tour in a single route

or tours from different routes. The aim of this experiment is to investigate the behaviour of our

approach when applied to CVRP low level heuristics. These experiments were run for 30 times

with 1000 iterations each or until no improvement for 100 iterations. The best, worst, average

results, time and standard deviation are recorded. The results are presented in Table 6.1.

153

Datasets Best Worst Average Std Dev Average Best Worst Average StdDev Average I
(TSP (TSP (TSP (TSP time (CVRP (CVRP (CVRP (CVRP time ,

heuristics) heuristics) heuristics) heuristics) (TSP heuristics) heuristics) heuristics) heuristics) (CVRP
heuristics) heuristics)

Oliver30 427.90 429.43 429.07 0.58 10.92 427.90 429.90 429.27 0.44 8.94

Eit51 435.47 451.58 440.24 4.14 15.35 434.85 462.39 447.31 5.61 12.50

Eil76 559.33 585.09 569.56 7.19 47.81 569.12 595.00 584.94 5.79 34.49

KroAlOO 21458.50 23183.00 22039.33 393.93 95.59 21704.70 22593.30 22070.94 227.12 74.29

--- - --- ----_._- - -

Table 6.1: Ant-based hyper-heuristic - Experiments with different low level heuristics (TSP low level heuristics and
CVRP low level heuristics)

154

From the results, it can be seen that TSP heuristics perform better than CVRP heuristics in two

datasets. For dataset 1 (Oliver30) both heuristics performed equally, however, in terms of

average time and standard deviation, the CVRP heuristics have performed better. The best results

for dataset 3 (Eil76) and dataset 4 (KroAIOO) are obtained by TSP heuristics which are based on

2-opt procedure, operating on a single tour. The average results obtained by TSP heuristics also

demonstrate superior results than those obtained by CVRP heuristics. However, when compared

to computational time, CVRP heuristics appear to take less time than the TSP heuristics. This is

probably due to less heuristics are appropriate to explore the search space for the TSP (many of

CVRP heuristics operate on different route/tour; TSP problem, however, only involves one

route/tour). Furthermore, we also conduct statistical tests (t-test) to further analyse the similarity

of these experiments. The null hypotheses Ho , (E1 is not significantly different to E2) are

tested. Hl are experiments for TSP heuristics and E2 are experiments for the CVRP heuristics.

We perform a statistical test (t-test) with 95% confidence level for each datasets and the results

are presented in Table 6.2. The data used for these tests are shown in Appendix H and Appendix

I.

~ Ez Oliver30 EilSl Eil76 KroAlOO

Oliver30 accept Ho X X X

Eil51 X rejectHo X X

Eil76 X X reject Ho X

KroAIOO X X X accept Ho

Table 6.2: T-test for dIfferent categones oflow level heUrIstIcs, El (TSP heuristIcs)
and E2 (CVRP heuristics)

155

The findings in Table 6.2 show that for Oliver30 dataset and KroA100, we accept Ho and for the

Eil51 and Eil76 datasets, the results are found to be significantly different where we reject the

null hypotheses Ho for both heuristics categories. From the table, we observe that for small

instance (30 cities) and large instance (l00 cities), both TSP and CVRP heuristics do not perform

any differences. For medium instances (51 cities and 76 cities), the approach has shown

differences for both datasets. Therefore, it can be seen that for medium instances, our approach

shows better consistency in identifying appropriate heuristics. By using any datasets, ant-based

hyper-heuristic is seen to be able to produce competitive results. From this observation, the ant­

based hyper-heuristic has demonstrated that it is a reusable method; given different sets of low

level heuristics for the same class of problem.

We further conducted the third experiment which aims to make comparisons between ant-based

hyper-heuristic and ACO hyper-heuristic on TSP instances. ACO hyper-heuristic are different

from the ant-based hyper-heuristic in terms of pheromone updating procedure. Detail

descriptions are presented in section 4.7. In this experiment, we use the TSP heuristics. The

results are presented in Table 6.3.

156

Datasets Best Worst Average Std Dev Average Best Worst Average Std Dev Average I
Anthh Anthh Anthh Anthh time ACOhh ACOhh ACOhh ACOhh time

Anthh ACOhh
Oliver30 427.90 429.43 429.07 0.58 10.92 427.90 429.90 429.46 0.48 9.37

Eil51 435.47 451.58 440.24 4.14 15.35 429.70 463.45 439.41 9.84 52.19

Eil76 559.33 585.09 569.56 7.19 47.81 568.89 594.26 582.41 6.33 160.92

KroAI00 21458.50 23183.00 22039.33 393.93 95.59 21704.70 22562.50 22069.16 223.01 74.48

- ----- ----- '------ ----------- -------- - _. -- - --_._--_ .. _----

Table 6.3: Comparisons between ACO hyper-heuristic and ant-based hyper-heuristic: Experiments with TSP low level heuristics

157

Observations of the table show that the best results for two out of four datasets are produced by

the ant-based hyper-heuristic. For dataset 1 (Oliver30) both approaches perform the same. This

indicates that modifications on the process of updating the pheromone value do not have an

influence to guide the hyper-heuristic to pick better heuristics. This is in line with our

experiments in the previous chapter (section 5.10). Further null hypotheses Ho are tested to

ascertain these effects and listed below:

Null hypotheses, Ho represent HI is not significantly different from H2 • El is the experiments for

ACO hyper-heuristic and H2 is the experiments for the ant-based hyper-heuristic. We perform a

statistical test (t-test) with 95% confidence level for each dataset and the results are presented in

Table 6.4. The data used for these tests are shown in Appendix G and Appendix I.

~ Ez Oliver30 EilS1 Eil76 KroA100

Oliver30 reject Ho X X X

Eil51 X accept Ho X X

Ei176 X X reject Ho X

KroAlOO X X X accept Ho

Table 6.4: T-test for El (ACO hyper-heuristic) and E2 (ant-based hyper-heuristic)

From the above table, for datasets Oliver30 and Ei176, the null hypotheses Ho are rejected which

shows that there is a difference between these experiments, which indicates that modifications on

158

local and global updates for the pheromone values for ACO hyper-heuristic do have some

influence on the solutions produced for these datasets. However, the results of ACO hyper­

heuristic are not better than the ant-based hyper-heuristic. Datasets EilS1 and KroA 1 00 are found

to have no significant difference in these two experiments, thus indicating that the modifications

do not have an influence in guiding the ACO hyper-heuristic to search for better solutions. It

appears that in dataset EilSl, the result produced is better (1.3%) than the ant-based hyper­

heuristic. However, the worst solutions for ant-based hyper-heuristic are better compared to

ACO hyper-heuristic. The time and standard deviation required to obtain a solution is also better

for ant-based hyper-heuristic. This shows that ant-based hyper-heuristic demonstrate better

consistency than the ACO hyper-heuristic. As shown in the experiments, modifying the process

of updating the pheromone values does not result in giving good solutions for the TSP although

for dataset EilS1, ACO hyper-heuristic produce better solutions.

In our next work, we compare our results to several other methods. The methods are ant colonies

(ACS), genetic algorithm (GA). evolutionary programming (EP), tabu search (TS), adaptive tabu

search (ATS) simulated annealing (SA) and annealing-genetic algorithm (AG). The results are

presented in Table 6.5. The best known results for these datasets are obtained from The

Traveling Salesman Library (2008). Results for ACS, EP, SA and AG are obtained from Dorigo

and Gambardella (1997). Results for GA, TS and ATS are obtained from Suwannarongsri and

Puangdownreong (2012). The results for best known, SA and AG are presented in integer

values.

159

Datasets Anthh ACS GA EP TS ATS SA AG Best
known .

Oliver30 427.90 423.74 N/A 423.74 N/A N/A 424 420 424

Eit5l 435.47 427.96 441.46 427.86 445.05 438.12 443 436 426

Eil76 559.33 542.31 548.26 549.18 582.62 540.17 580 561 538

KroAlOO 21458.50 21285.44 22875.42 N/A 23664.18 21526.56 N/A N/A 21282

. .
Table 6.5: ComparIson of ant-based hyper-heufJstlc to other methods .

Our results are found to be competitive to other methods although they do not produce any best

known solution. We observed for Eil51 and Eil76 dataset, the result is better than simulated

annealing (SA) and annealing-genetic (AG) algorithm. For KroAlOO dataset, the result is better

than genetic algorithm (GA), tabu search (TS) and adaptive tabu search (ATS). Therefore, we

conclude that ant-based hyper-heuristic are comparable to other problem specific methods.

160

6.5 Summary

In order to test the generality of an ant-based hyper-heuristic, we applied it to another routing

problem; the TSP. TSP is a NP-hard problem and has been one of the most widely studied areas

for research in combinatorial problems. Numerous methods have been applied to TSP such as

heuristics and meta-heuristics. However, to our knowledge, hyper-heuristic has not been applied

to the problem. We investigate the performance of ant-based hyper-heuristic and it appears that it

can solve four different instances and capable of producing competitive results with results

published in the literature. To further investigate the behaviour of the algorithm, we apply it to

two different sets of low level heuristics; the TSP heuristics and the CVRP heuristics. It appears

the TSP heuristics have outperformed the CVRP heuristics for two out of four datasets. However

the differences are very small. The time consumed by the CVRP heuristics is less than the TSP

heuristics and it is also has very minimal differences. From the observation, we suggest that the

ant-based hyper-heuristic is a reusable method due to its capability to select appropriate low level

heuristics; given heuristics for the same class of problems.

The ACO hyper-heuristic were developed to observe the effect of local and global updating of

pheromone values. The comparison was made and it appears that this activity does not give any

influence on the performance of the algorithm. Although the ant-based hyper-heuristic does not

produce any best known results in the literature, it is able to outperform some other popular

methods. The advantage of this approach is it does not need any parameter tuning and the low

level heuristics utilised are simple and easy to implement.

161

Chapter 7

Conclusions and Future Work

7.0 Introduction

This thesis describes the development of a more general approach based on ant algorithms. The

idea of this approach is to provide a way to combine few simple heuristics that can solve

different optimisation problems across different instances without extensive parameter tuning

and by using simple and easy to implement low level heuristics. In an ant algorithm, the ability

to find solution is guided by pheromone and visibility values (heuristic information). This

process thus involves determining ants as hyper-heuristic agents to make decision of which

heuristics to choose at each decision point and how to present the pheromone and visibility

values for the approach. Previous ant algorithm hyper-heuristic in Burke et al. (2003c) and Chen

et a1. (2007) are analysed and the key properties and functions are identified. As a result, a new

ant-based hyper-heuristic is developed. The resultant approach will be applied to two routing

problems of which, to our best knowledge, have not been applied to any routing problems.

162

7.1 Evaluation of the Aims

This thesis is concerned with the investigation of ant-based hyper-heuristic. We apply the

approach to two routing problems; the capacitated vehicle routing problem (CVRP) and the

travelling salesman problem (TSP). In section 1.1 (chapter 1), the aims and objectives of the

thesis are outlined into four parts. In this section, these objectives will be evaluated based on the

work presented in this thesis.

Placing our work in the context of previous work

The first objective is to investigate the concepts and background for the work done in this thesis.

Chapter 2 is divided into four sections. In the first section (section 2.1), the definition of

combinatorial optimisation problem, the algorithm complexity; how the efficiency of an

algorithm is measured and the NP complete classes are presented. In order to understand the

solution methods for optimisation problems, a few solution methods are presented in the second

section. Problem specific solution methods are reviewed to identify how these approaches

construct and improve solutions, thus finding ways to escape from local optimum. Among the

methods discussed are genetic algorithms, tabu search, simulated annealing, greedy randomised

adaptive search (GRASP) and neighbourhood search (VNS). In the third section (section 2.3.6),

ant algorithms are highlighted in some detail; which is based on the observation of how ants are

able to find the shortest path between food sources and their nest, further adapting this bahaviour

to construct solutions. The different versions of ant algorithms; the ant system, elitist ant, rank­

based ant, max-min ant and ant colony system are presented. As a result, it is determined that

163

pheromone and visibility (heuristic information) are two important factors in the process of

decision making for the algorithm. In the fourth section (section 2.4), the concept of hyper­

heuristic and their previous work are then explored. The difference between two categories of

hyper-heuristic; the heuristic selection and the heuristic generation are presented. Furthermore,

two categories of hyper-heuristic methods; constructive hyper-heuristic and perturbative hyper­

heuristic are discussed. In contrast to metaheuristics approaches, hyper-heuristic should consider

to solve different problems and instances. Several hyper-heuristic approaches; focusing on the

heuristic selection methodology, are presented. In section 2.5, ant algorithm hyper-heuristic are

outlined in detail; the properties and functions of two ant hyper-heuristics (Burke et al. 2005b,

Chen et al. 2007) are investigated. Such properties include the mechanism of choosing heuristics,

pheromone and visibility update are explained. As opposed to an ant algorithm, this method

should consider the non-domain specific knowledge to represent the pheromone and visibility

values. The fifth section (chapter 3), the routing problems, the VRP and TSP which will be the

problem domain tested for the proposed algorithm are examined. Various variants of VRP were

presented and they differ from each other, either constrained by the limit of capacity or time

windows. Several solution methods on CVRP are outlined. The TSP is further reviewed;

heuristics to construct solution and heuristics to improve the solution are discussed.

Establishing the hyper-heuristic algorithm based on ant algorithms

Heuristics and metaheuristics often use problem specific knowledge to build or improve

solutions. They have been shown to work well on certain instances. For other instances,

however, they do not perform well and often, they are expensive to adapt to new instances and

164

problems. Furthermore, they are often time-consuming and involve knowledge intensive process

that requires deep understanding of the problem domain. This motivates the investigation of

developing a methodology (hyper-heuristic) that can produce good quality solutions across

different instances and problems and which do not require extensive parameter tuning. The main

goal of hyper-heuristic is to produce more generally applicable search methodologies. In this

thesis, we develop a generalised heuristic method (hyper-heuristic) based on ant algorithms

(Dorigo et al. 1991, Dorigo et a1. 1996) and ant algorithm hyper-heuristic (Burke et al. 2003c,

Chen et al. 2007). What inspire us is the interesting behaviour of the ants; in their ability to find

the shortest path between their nests and the food source. Hyper-heuristic can be classified in two

ways; the heuristic generation and the heuristic selection. Our work is concerned with heuristic

selection methods, where heuristics are used to choose heuristics

In ant algorithms, a given problem is represented as directed graph and the set of nodes is the

candidate solutions to a given problem. Each ant will perform a tour by visiting a sequence of

nodes by selecting a node after another guided by some information; the pheromone and the

visibility values. The pheromone and visibility values rely on the problem specific knowledge of

the problem being solved. In our approach, in order to produce a generalized approach, the

pheromone and visibility values should consider a non-domain specific knowledge where the

amount of pheromone corresponds to the quality of the solutions found by the ants, where we

take the improvement made between two heuristics i and j as the quality of the solution. In

existing ant algorithm hyper-heuristic (Burke et al. 2003c, Chen et al. 2007), the amount of

pheromone corresponds to the quality of the solution found by the ants. To non-performing

heuristics, however, no pheromone is rewarded. In this thesis, we propose to provide all visited

165

heuristics with some amount of pheromone. The distribution of pheromone values will be

distributed proportioned to the performance done by the ants. This is to encourage the

exploration of new edges that might lead to better solutions. Visibility values are measured as to

how well two heuristics work together. This is represented as the computational time between

two heuristics i and j. A heuristic is allowed to be visited as many times as possible compared to

the original ant algorithms where a heuristic is prohibited to be visited more than once. Further

ACO hyper-heuristic is developed. The difference between the first approach and ACO hyper-

heuristic is in the context of pheromone updating procedure. ACO uses the global and local

updating rule. The global update uses edges that produce the best solution found at a current

iteration to update the pheromone trail. This is to encourage the use of good-performing path and

to increase the probability of choosing the specific path. The local update is performed after each

ant performs a tour. This is to ensure that the pheromone values do not go unbounded. The aim is

to determine competitive solutions as well as to investigate the generalisation of the proposed

algorithms when applied to these two different routing problems.

Implementing our approach on the capacitated vehicle routing problem
(CVRP)

Our approach for the first time is applied to capacitated vehicle routing problem (CVRP). To our

best knowledge, at the time this thesis is written, the approach has not been applied to any

capacitated vehicle routing problems (CVRP). Ant algorithms have been applied to CVRP

(Bullnheimer et at 1999a, 1999c) and have produced competitive results. Therefore, it is

assumed that there is a reasonable possibility that ant-based hyper-heuristic could perform well

for the problem.

166

Initially, the setting of parameters was established to determine the appropriate values. The work

proposes three different parameter settings; the starting position, the pheromone and visibility

rates and finally the evaporation rate values. Furthermore, to demonstrate the effectiveness of

the ant-based hyper-heuristic, series of experiments are conducted. Below are some observations

and conclusions from the work. The ant-based hyper-heuristic uses 20 different low level

heuristics, which utilises 2-opt moves with simple move and swap neighbourhood moves. We

test our approach with different number of low level heuristics. The experiment demonstrates

that higher number of heuristics used will guide the ants to generate better solutions. Statistical

tests also show that ant-based hyper-heuristic is statistically different from random hyper­

heuristic which demonstrate that there is possibility that ants are guided by pheromone and

visibility; in contrast with random hyper-heuristic which selects heuristics at random. We believe

that this shows ant-based hyper-heuristic incorporates some learning mechanisms.

The experimental results on CVRP have shown that it is competitive with other methods

although it does not produce any best known results. Most importantly, it demonstrates how

simple and easy it is to implement low level heuristics, with no extensive parameter tuning. Our

approach performs better than the ant system for datasets with 75, 100(a), 150 and 199

customers. For datasets with 120 and 199 customers, we produce better results than the simulated

annealing algorithm. For random distributed problems (problems: 1,2,3,6,7), we are able to

produce solutions that have average deviation less than 6% from best known solutions while for

clustered problems (problem: 4,5), our approach only manage to produce solutions with average

deviation less than 11 %.

167

The comparison between the ACO hyper-heuristic further shows that ant-based hyper-heuristic

perform better despite the sophisticated procedure of pheromone updating in ACO hyper-

heuristic. This is inconsistent with the performance of ACO algorithm in the literature where by

modifying the process of updating the pheromone values, the results are better (Dorigo and Di

Caro 1999c). Heuristics perform differently at each decision point. Bad tours become highly

unfavoured and ants search only in the neighbourhood of good solutions thus limiting the

exploration of promising heuristics in bad tours. Therefore, it can be seen that enforcing global

and local updates of pheromone values does not appear to contribute to any success in obtaining

better results than ant-based hyper-heuristic

Investigating the generality of our approach by applying it on another routing
problem, the Travelling Salesman Problem (TSP).

To test the generality of our approach, we apply it to another routing problem; the TSP. Our

results are found to be competitive compared to other methods although they do not produce any

best known solutions. We observe that for Eil51 and Eil76 dataset, the results are better than

simulated annealing (SA) and annealing-genetic (AG) algorithm. For KroAIOO dataset, the

results are better than genetic algorithm (GA). In addition, we test the effectiveness of our

approach by utilising two different sets of low level heuristics (TSP heuristics and CVRP

heuristics). The average results obtained by TSP heuristics also demonstrate superior results than

those obtained by CVRP heuristics. However, when compared to computational time, CVRP

heuristics appear to take less time than the TSP heuristics. This is probably due to less heuristics

are appropriate to explore the search space for the TSP (many CVRP heuristics operate on

168

different routes/tours; TSP problem, however, only involves one route/tour). From this

observation, it can be seen that by using any low level heuristics appropriate for the same class of

problems, ant-based hyper-heuristic is seen to be able to produce competitive results. This has

demonstrated that the ant-based hyper-heuristic is a reusable method.

ACO hyper-heuristic is further applied to TSP problems which aim to make comparisons

between ant-based hyper-heuristic and ACO hyper-heuristic on TSP instances. Observations of

these results show that best solutions for two out of four datasets are produced by ant-based

hyper-heuristic. For dataset 1 (Oliver30) both approaches perfonn the same. This is in line with

our experiments in the previous application in CVRP which indicates that modifications on the

process of updating the pheromone values do not have any influence to guide the hyper-heuristic

to pick better heuristics.

7.2 Contributions

The work carried out in this thesis has the following contributions:

• We had developed a hyper-heuristic methodology based on ant algorithm. We introduced

a new pheromone and visibility update rule; which proved to produce a better solution

than the previous two ant algorithm hyper-heuristic (Burke et a1. 2003c and Chen et al.

2007). In previous ant algorithms hyper-heuristics, after ants have visited a certain

number of heuristics, they paused to analyse the edges and lay some amount of

pheromone according to improvements of the solutions. Only edges that contributed to

169

improvement to current solution are rewarded with pheromone whereas in our approach,

all visited edges will be given some amount of pheromone. The distribution of

pheromone values will be distributed proportioned to the performance done by the ants.

This is to ensure that all visited edges will be given pheromone values according to their

performance. Visibility values are represented as computational time between two

heuristics i and j. This has shown that our approach has further improved the solutions of

previous ant algorithms hyper-heuristic.

• We had developed ACO hyper-heuristic which had new pheromone updating rule as in

ACO algorithm. We had tested it to the problems and it showed that it did not contribute

to any better solutions. This was inconsistent with the performance of ACO algorithm in

the literature (Dorigo and Di Caro 1999c).

• Our approach had shown to have reusable methods; and using simple and easy to

implement low level heuristics can produce competitive solutions compared to other

problem specific approaches. To our best knowledge, at the time we wrote this thesis, it

presented first investigation of ant-based hyper-heuristic on two routing problems; the

Capacitated Vehicle Routing and the Travelling Salesman Problem.

170

7.3 Strengths and Limitation of the Algorithm

The strengths and limitations of our approach are listed below:

• The approach is able to produce competitive results in both CVRP and TSP problems by

using simple moves and swap procedure and without extensive parameter tuning. The

ant-based hyper-heuristic shows the capabilities of having a learning mechanism which is

guided by the visibility and the pheromone values. We have compared it with the random

hyper-heuristic which has no learning mechanism.

• Although using different sets of low level heuristics for the same class of problem (CVRP

and TSP), the approach has demonstrated its reusability.

• The limitation of this approach is the amount of time needed to produce solutions for

larger instances. This is probably due to the number of ants utilised to search for

solutions. Decreasing the number of ants might lead to promising search space not being

explored.

171

7.4 Future Work

The following suggestions for future work are given:

• In this thesis, we develop the ant-based hyper-heuristic that adapt the ant algorithm (ant

system) behaviour. The approach produces good results however, it does not produce any

best known results for both problems (CVRP and TSP). It is worthwhile that other variant

of ant algorithms being investigated in order to produce better competitive results.

Among the variants that are worth investigating is elitist ant system, ant system rank­

based and max-min ant system. Instead of enforcing the global and local pheromone

updates as in ACO hyper-heuristic which do not contribute to any improvement, it may

be worth to investigate the effects of sorting the ants according to their performance and

pheromone is deposited according to the rank of the ants. Further investigation would be

to introduce the upper and lower boundaries of the pheromone trails. This might help to

obtain better quaJity solutions.

• The drawback of this approach is the amount of time needed to produce solutions for

larger instances. It would be beneficial to extend the work by investigating ways to

improve the computational time needed to produce solutions; especially on larger

instances. It is worthwhile that the number of ants utilised being investigated. Possibly

the idea of introducing multiple colonies of ants that have separate pheromone deposits

for each colony could also be investigated. This would consider the benefit of using

172

separate pheromone trails which result in the need to separate the most likely edge to

better solutions.

• The parameter setting for this approach is set to be static throughout all experiments. It is

worth investigating if these parameters continue to be adaptive (dynamic) based on the

information obtained while the approach is being executed. This will improve the

performance of the approach.

• Hyper-heuristic produces solutions that are soon enough, good enough, cheap enough for

variety of problems and problem instances. In most industries, problem owners would

prefer simple to-implement problem solving methods that could solve problems quickly

enough. In this thesis, we utilise simple move and swap low level heuristics. However, it

would be interesting to compare the performance of these heuristics to several complex

intelligent low level heuristics.

• Finally, we would like to apply this ant-based hyper-heuristic to other problems to

demonstrate the generality of the approach and classify which problem domains that ant­

based hyper-heuristic seems to work well and for which they do not.

To conclude this chapter, it is interesting to note that with a single method, several optimisation

problems can be solved, without having to deal with extensive parameter tuning. We hope that in

the future, more generalised method are investigated to raise the level of generality of a search

method.

173

Appendix A

Results for different starting positions (heuristicl, each heuristic, random)

Heuristic 1 Each heuristic Random

868.49 896.78 877.4
859.03 854.95 857.9
864.05 909.82 877.4
882.21 868.81 867.9
885.38 860.21 864.0
877.37 865.52 857.9
867.97 878.97 857.9
878.97 885.38 879.0
867.87 896.78 842.3
872.08 865.52 864.0
857.91 857.91 867.9
877.37 877.37 857.9
896.78 878.97 867.9
867.87 885.38 857.9
909.82 878.97 868.8
882.21 885.38 868.8
885.38 916.00 859.0
877.37 877.37 879.6
867.87 896.78 857.9
878.97 878.97 857.9
885.38 878.97 877.4
909.82 877.37 857.9
867.87 916.00 868.8
896.78 882.21 885.4
965.80 878.97 877.4
909.82 877.37 879.0
882.21 896.78 867.9
868.81 882.21 879.0
885.38 896.78 868.8
909.82 882.21 857.9

174

Appendix B

Results for different pheromone and visibility rates

pheromone = 0.1 pheromone = 0.2 pheromone = 0.3
visibility = 0.9 visibility = 0.8 visibility = 0.7

solution solution solution

860.33 864.101 872.751
860.29 861.582 875.226

870.667 869.782 849.186
888.139 873.709 864.557
866.464 869.346 878.738
865.262 869.893 878.019
878.974 864.542 892.021
864.064 868.028 870.478
883.75 862.77 868.674
868.358 865.948 870.049
878.974 869.346 883.75
869.782 862.77 870.667
878.974 869.782 873.709
865.262 869.346 865.262
883.75 864.064 873.709

865.262 869.346 864.064
861.582 873.709 868.358
868.358 865.262 869.346
883.75 869.782 864.064
864.064 864.064 865.262
878.738 860.33 869.782
867.793 860.29 865.262
865.262 862.77 881.398
881.398 873.709 869.782
869.782 869.346 881.398
881.398 865.262 873.709
869.539 864.064 869.346
865.326 862.77 878.974
868.358 869.782 869.893
864.064 873.709 873.709

175

pheromone = 0.4 pheromone = 0.5 pheromone = 0.6
visibility = 0.6 visibility = 0.5 visibility = 0.4

solution solution solution

883.606 858.483 888.299
908.714 864.177 880.076
875.185 859.908 873.399
887.763 870.812 864.95
883.47 875.547 881.398
861.097 865.487 869.539
858.853 859.925 865.326
881.066 860.421 868.661
859.69 865.653 878.738
880.92 852.434 867.793
881.066 852.788 865.326
861.097 875.852 873.709
867.793 862.608 881.398
881.066 877.978 869.539
878.738 844.67 869.782
880.92 853.718 867.793
880.92 866.724 869.346

864.064 860.979 888.299
875.185 842.34 865.262
887.763 863.448 864.95
865.262 874.206 881.398
881.066 859.237 869.782
878.738 874.501 864.064
865.262 878.426 864.064
881.398 865.96 881.398
869.782 851.286 867.793
867.793 879.60 869.539
880.92 863.215 865.326
883.47 872.659 880.076

869.782 854.973 867.793

176

pheromone = 0.7 pheromone = 0.8 pheromone = 0.9
visibility = 0.3 visibility = 0.2 visibility = 0.1

solution solution solution

871.846 879.91 897.526
872.099 864.14 866.594
878.881 869.724 859.708
859.125 881.649 868.519
871.863 876.892 871.318
870.071 865.666 859.552
872.405 879.147 872.186
867.812 855.127 880.644
868.595 885.608 875.384
865.176 866.572 877.171
869.539 865.666 876.892
869.782 876.892 879.147
868.595 879.147 877.171
873.399 885.608 885.608
867.793 865.262 868.519
872.405 881.066 879.147
864.95 876.892 876.892

867.793 859.69 865.666
865.326 880.92 881.066
868.595 855.127 859.708
873.399 876.892 879.147
867.812 866.572 871.318
868.595 879.147 876.892
865.176 855.127 872.186
867.793 879.147 879.147
865.326 865.262 859.552
873.709 881.066 885.608
869.782 865.666 876.892
867.793 865.262 872.186
865.326 879.147 868.519

177

Appendix C

Results for different evaporation rates

0.1 0.2 0.3 0.4 0.5
876.49 867.60 876.86 864.09 865.84
860.37 874.28 870.18 873.49 855.37
870.71 850.27 871.52 860.48 880.47
846.49 861.66 866.69 863.38 874.28
853.89 865.42 872.86 866.60 847.14
863.44 867.03 865.84 859.75 869.37
875.39 874.27 843.63 864.21 853.89
848.60 873.87 868.29 881.51 879.55
849.03 855.37 868.31 882.01 860.48
880.74 884.79 878.55 880.43 872.41

0.6 0.7 0.8 0.9
863.65 872.85 878.64 880.57
867.24 890.12 879.82 868.67
880.47 869.37 868.91 851.31
864.81 873.44 872.58 864.88
913.80 891.42 873.84 879.25
872.41 882.89 864.70 872.66
901.05 866.85 886.57 889.58
887.31 872.22 875.47 879.20
878.73 870.64 875.25 876.18
862.82 881.38 882.54 857.24

178

AppendixD

Results for different combination number of low level heuristics

10 20

10 good time 10 bad time intuitive time combine time

884.126 10.28 894.641 3.23 866.544 27.82 858.483 41.40

875.576 31.59 966.013 2.50 868.411 18.43 864.177 51.96
885.981 12.26 901.516 1.86 879.026 11.01 859.908 20.19
867.271 23.46 918.523 3.29 876.108 6.09 870.812 22.98

916.237 10.47 924.595 3.71 871.081 9.87 875.547 29.62

889.12 14.10 879.827 4.97 860.253 12.84 865.487 16.89

865.489 13.98 896.58 4.96 868.604 17.26 859.925 31.11
880.469 33.69 922.881 4.65 878.159 5.33 860.421 34.46
884.978 26.36 902.99 2.96 889.291 11.32 865.653 24.67
889.053 14.51 923.601 2.67 847.835 13.l9 852.434 26.91
887.408 10.42 920.383 1.80 860.253 13.04 852.788 21.14
888.818 12.98 931.791 6.05 875.496 8.79 875.852 16.54
891.774 25.52 921.994 3.78 873.885 16.24 862.608 22.64

895.088 43.75 951.741 1.59 880.195 13.67 877.978 41.68

889.517 12.97 931.879 1.92 873.907 14.52 844.67 19.51
872.722 12.21 886.969 4.66 862.707 12.69 853.718 29.80
885.237 10.32 933.768 1.17 866.662 7.72 866.724 13.51
874.583 15.15 934.71 2.62 838.653 17.98 860.979 25.35
872.879 30.82 907.705 1.95 859.114 18.02 842.34 17.74
906.662 9.19 916.225 3.70 861.95 13.08 863.448 19.67
899.209 14.31 884.152 3.30 881.363 9.28 874.206 11.48
875.492 8.55 986.109 2.33 877.475 11.91 859.237 25.04
873.835 14.58 933.605 2.63 877.763 8.44 874.501 13.34
884.529 26.94 908.813 2.29 879.442 15.95 878.426 18.49

881.343 11.14 922.608 1.34 878.658 6.13 865.96 37.21
878.101 43.80 881.591 3.33 887.62 11.08 851.286 18.61
888.277 14.60 908.l4 2.92 879.702 11.25 879.6 32.45
866.062 23.51 961.125 1.70 863.171 12.90 863.215 28.03
907.128 11.49 950.964 2.56 867.34 12.38 872.659 24.61
863.963 24.18 903.934 1.85 882.425 6.74 854.973 38.40

179

Appendix E

Results for Random Hyper-heuristic on CVRP

SO 7S 100(a) 100(b)

customers time customers time customers time customers time

561.904 4.10 880.89 10.94 869.28 38.16 911.649 32.26

566.869 6.05 936.93 4.81 884.88 13.41 968.135 9.93

544.332 5.37 889.65 6.51 894.20 11.33 986.122 9.47

550.377 5.96 883.22 12.61 896.82 9.09 937.474 25.94

549.922 4.41 894.81 5.57 888.76 17.71 959.669 11.13

543.594 2.84 937.16 9.38 866.70 31.83 955.555 13.38

566.396 2.71 897.26 9.79 885.64 14.12 987.051 10.89

542.819 2.77 870.34 10.56 870.38 13.59 967.27 12.28

584.59 3.16 881.71 5.34 889.09 20.62 948.34 17.97

564.54 4.15 894.90 7.82 885.05 28.48 986.784 4.59

556.722 4.77 928.88 11.43 876.51 27.42 919.324 10.99

542.819 4.54 944.62 4.70 876.99 26.06 965.001 11.01

562.404 2.29 910.54 5.23 909.25 30.32 987.314 8.59

581.133 4.77 899.40 3.61 878.67 35.43 975.339 15.95

543.594 2.64 935.06 6.09 909.83 14.96 948.758 8.81

543.594 3.23 928.15 3.33 887.55 19.31 918.348 19.16

562.74 4.97 906.28 5.66 869.34 49.79 967.227 21.63
547.585 2.69 893.68 11.80 864.81 49.26 986.083 6.88
543.594 3.00 875.49 7.66 868.54 27.70 960.882 6.02
556.106 2.25 899.08 8.56 920.51 26.71 971.366 5.11

566.962 3.70 921.59 11.51 885.98 28.83 943.495 6.77

547.488 5.66 903.69 7.22 900.21 12.63 981.08 16.65

547.896 4.27 944.39 4.07 904.04 10.60 974.514 7.53
554.564 2.81 898.44 4.71 899.72 25.13 971.323 4.61

574.502 2.80 890.71 6.38 912.30 17.33 984.486 6.72

555.731 4.43 914.84 6.66 864.98 22.54 958.682 6.21

542.819 3.57 949.80 6.42 886.84 23.52 946.051 17.65
539.681 3.53 886.13 11.71 923.81 16.41 958.736 10.99
542.819 3.01 942.80 8.58 867.15 35.91 981.449 17.87
543.594 6.09 896.59 5.04 870.35 20.56 945.060 8.19

180

120 ISO 199
customers time customers time customers time

1242.57 29.71 1105.17 70.24 1409.00 56.09
1154.22 48.33 1112.02 24.78 1387.98 138.66
1230.53 24.90 1101.28 35.12 1397.26 52.95
1179.52 67.80 1097.10 14.68 1408.88 73.24
1225.67 45.96 1105.23 35.50 1415.98 56.55
1165.37 33.16 1132.69 51.02 1391.21 74.81
1208.93 60.86 1094.69 14.17 1416.95 123.38
1207.75 28.70 1114.63 37.71 1442.78 53.17
1213.34 62.30 1112.11 100.35 1421.05 94.00
1184.91 47.66 1l06.57 46.90 1413.55 1296.33
1235.97 29.66 1108.42 33.30 1398.73 51.88
1184.88 54.84 1084.77 45.75 1419.40 30.57
1145.61 66.90 1090.83 23.35 1413.90 26.11
1214.55 39.75 1092.85 51.87 1407.09 27.77
1198.57 71.08 1086.52 39.79 1430.43 25.34
1140.54 29.43 1155.46 21.44 1446.30 54.66
1244.22 33.79 1103.46 39.72 1416.50 58.10
1230.29 18.83 1114.77 19.52 1413.50 109.91
1165.43 23.89 1088.35 36.63 1403.60 70.39
1221.15 24.09 1100.83 39.77 1442.38 54.00
1206.45 23.77 1114.26 27.78 1449.68 34.50
1239.60 23.48 1103.65 43.08 1438.98 41.28
1221.11 27.55 1088.18 48.42 1430.24 163.01
1160.69 28.47 1107.32 17.08 1411.54 36.86
1190.51 30.60 1103.93 61.09 1403.87 62.64
1260.60 32.61 1109.35 49.05 1404.65 36.80
1152.69 56.01 1088.32 66.46 1436.59 77.52
1218.31 28.23 1092.47 31.58 1491.16 19.37
1208.320 26.52 1109.43 26.77 1405.31 114.59
1223.000 30.58 1087.84 28.25 1430.59 58.93

181

Appendix F

Results for Ant-based Hyper-heuristic for CVRP

50 75 100(8) IOO(b)

customers time customers time customers time customers time

539.681 3.22 867.35 6.04 858.483 41.40 927.749 15.72

532.996 10.73 880.64 7.69 864.177 51.96 976.538 15.76

542.639 4.84 871.78 6.10 859.908 20.19 949.324 16.50

539.681 6.58 864.04 4.42 870.812 22.98 912.397 16.62

542.47 4.83 866.82 6.08 875.547 29.62 984.838 15.96

543.594 3.18 869.77 4.33 865.487 16.89 980.749 15.79

543.594 6.53 875.77 7.84 859.925 31.11 987.158 16.42

540.224 4.81 863.84 6.13 860.421 34.46 983.928 16.11

543.594 3.20 875.80 7.71 865.653 24.67 986.795 16.95

541.864 1.54 873.18 7.82 852.434 26.91 982.305 16.66

532.996 7.28 870.78 6.10 852.788 21.14 987.158 16.34

542.639 3.15 881.49 7.73 875.852 16.54 959.350 16.32

543.594 4.89 872.45 7.70 862.608 22.64 965.887 16.64

542.639 3.21 881.44 7.99 877.978 41.68 988.126 16.76

539.681 3.21 880.16 6.12 844.67 19.51 910.851 16.09

542.47 3.16 867.93 7.85 853.718 29.80 967.817 16.90

542.639 4.85 876.00 7.85 866.724 13.51 970.321 16.45

539.681 3.19 876.96 6.08 860.979 25.35 983.013 15.84

543.594 6.52 877.65 6.12 842.34 17.74 982.437 16.14

532.996 20.57 889.58 7.80 863.448 19.67 968.908 16.81

539.681 4.88 878.53 6.21 874.206 11.48 933.486 16.87

539.681 4.88 879.14 7.81 859.237 25.04 969.703 16.56

543.594 3.18 876.88 6.08 874.501 13.34 955.091 16.14

543.594 3.23 869.34 7.71 878.426 18.49 966.646 16.29

543.594 6.53 874.79 7.81 865.96 37.21 965.034 15.74

532.996 5.78 883.44 6.11 851.286 18.61 955.114 19.47

548.209 3.14 880.38 6.16 879.6 32.45 925.843 19.34

543.594 3.21 883.11 7.75 863.215 28.03 956.963 18.46

539.681 3.26 872.77 9.53 872.659 24.61 983.001 19.00

539.681 4.85 868.74 7.80 854.973 38.40 948.790 20.02

182

120 150 199

customers time customers time customers time

1160.79 14.01 1082.96 31.36 1388.03 40.64

1276.77 24.20 1083.93 28.02 1404.33 43.17

1186.90 25.88 1079.04 27.79 1413.17 41.49

1254.77 24.23 1102.52 26.41 1410.37 65.13

1293.39 24.90 1079.67 19.28 13.99.84 39.48

1199.69 24.43 1082.07 18.55 1381.77 41.61

1243.30 25.39 1085.76 17.24 1399.35 49.88

1281.94 24.05 1076.21 17.74 1405.13 54.79

1107.77 30.44 1084.07 18.35 1387.39 53.03

1276.77 24.20 1106.51 19.37 1397.90 56.24

1208.09 24.43 1079.32 19.76 1389.73 53.26

1281.48 25.90 1088.33 19.47 1390.62 54.95

1253.94 24.46 1115.04 18.66 1396.09 57.17

1231.03 27.15 1087.66 19.44 1390.07 49.77

1203.80 25.15 1088.16 18.79 1394.36 59.48

1262.10 25.62 1098.87 19.15 1401.48 52.26

1249.97 26.73 1098.37 17.73 1386.19 54.06

1276.77 24.20 1101.43 17.60 1377.71 58.74

1264.88 26.09, 1079.08 19.29 1400.82 59.80

1183.11 25.71 1081.41 17.60 1390.12 52.49

1205.60 26.28 1084.96 17.11 1382.12 58.59

1191.83 25.78 1080.58 17.70 1371.11 54.39

1198.60 32.65 1092.98 18.46 1400.55 52.40

1141.14 29.38 1092.36 18.24 1392.21 58.43

1164.56 30.34 1089.26 19.29 1393.84 53.60

1151.44 29.81 1079.55 17.79 1407.42 59.04

1285.73 29.10 1083.48 17.69 1424.28 63.49

1276.77 24.20 1079.28 19.94 1422.60 68.49

1218.19 25.81 1079.00 21.02 1436.76 48.01

1208.320 26.52 1084.62 27.62 1376.31 54.34

183

Appendix G

Results of ACO for CVRP

50 75 100(a) 100(b)

customers time customers time customers time customers time

543.594 5.9 878.938 8.5 875.908 5.9 957.015 32.4

543.594 6.4 887.819 11.2 874.528 3.5 988.536 15.8

548.534 6.1 885.025 11.0 875.153 6.6 916.123 19.0

543.594 6.4 885.025 11.0 859.619 8.7 923.867 18.2

543.594 6.8 887.031 11.9 884.312 4.1 893.092 27.7
543.594 6.2 888.75 8.0 882.322 3.6 932.294 17.7

543.594 6.9 881.462 21.1 866.957 11.1 895.662 25.7

543.594 6.4 895.308 12.7 876.594 2.8 949.828 26.0

548.534 9.7 896.704 8.4 878.582 2.8 910.01 21.2
543.594 5.6 894.351 9.7 854.631 9.7 943.168 46.9
543.594 10.1 899.975 U.8 864.736 6.3 907.511 16.6
546.383 6.4 888.14 12.4 863.208 5.9 896.092 36.8
543.594 5.8 886.217 12.1 884.1 3.0 851.062 74.6
543.594 5.7 868.882 8.7 882.24 5.1 924.401 18.5
543.594 5.7 886.217 14.7 879.992 8.2 939.059 26.5
543.594 6.7 883.295 6.4 880.83 8.1 920.538 34.0
539.681 7.0 889.203 10.5 888.644 7.3 872.96 26.4
543.594 10.6 882.28 8.9 873.603 9.1 954.133 15.9
543.594 5.9 879.461 8.9 885.346 3.3 890.486 33.3
543.594 7.7 881.987 9.0 875.217 4.7 878.018 26.3
543.594 6.9 888.15 7.3 876.405 4.5 876.112 28.5
543.533 5.6 899.447 8.4 873.042 6.0 898.973 18.5
543.594 5.7 882.756 15.2 906.546 3.4 907.741 49.8
543.594 5.5 886.661 11.6 861.067 10.3 962.909 26.2
539.681 5.7 887.381 8.6 900.326 3.2 937.972 19.1
539.681 7.3 871.48 9.0 871.146 7.0 863.489 29.2
543.594 5.7 887.904 ll.8 891.751 8.8 872.69 47.8
543.594 5.9 881.848 12.4 863.671 6.8 927.597 29.9
543.594 5.5 886.971 7.4 880.993 9.0 885.349 14.8
543.594 6.1 871.036 10.2 865.796 13.9 873.41 40.1

184

120 150 199
customers time customers time customers time

1293.49 43.0 1072.66 32.2 1401.23 73.9

1196.29 89.3 1077.89 50.5 1393.02 80.1

1155.17 42.9 1088.46 31.6 1381.66 80.3

1228.15 139.4 1076.89 30.3 1377.91 164.5

1149.48 51.8 1076.89 42.6 1386.61 101.8

1250 69.5 1079.8 39.3 1394.52 115.4

1190.67 68.7 1076.84 51.8 1387.34 169.8

1297.12 14.0 1080.24 49.2 1386.48 132.5

1160.79 40.3 1080.79 39.5 1399.81 41.9

1248.46 25.9 1082.72 30.8 1382.1 112.6

1186.9 24.2 1083.94 30.7 1395.29 84.0

1254.77 24.9 1078.45 33.6 1397.14 54.4

1293.39 24.4 1082.83 25.9 1399.84 46.5

1199.69 25.4 1075.44 47.7 1409.45 53.3

1243.3 24.1 1084.95 25.8 1385.59 112.0

1281.94 24.9 1080.87 33.6 1402.85 52.9

1115.97 24.2 1085.87 58.5 1392.43 60.6

1276.77 24.4 1077.14 31.1 1389.83 85.0

1208.09 25.9 1078.44 32.0 1388.25 104.2

1281.48 24.5 1076.41 32.8 1403.85 54.5

1253.94 27.2 1082.55 28.1 1395.32 69.1

1231.03 25.1 1081.42 38.0 1387.3 136.4

1203.8 25.6 1078.3 69.9 1401.72 73.9

1262.1 26.7 1088.55 33.1 1386.25 51.7

1249.97 24.2 1083.98 34.9 1399.29 71.9

1246.98 26.1 1080.87 24.6 1410 74.7

1264.88 25.7 1068.86 65.7 1388.18 119.6

1183.11 26.3 1077.19 29.7 1384.05 135.7

1205.6 25.8 1085.52 46.5 1399.5 90.0

1191.83 0.0 1076.18 30.2 1397.48 77.5

185

Appendix H

Results for ant-based hyper-heuristic with TSP heuristics

Oliver30 time EilS1 time Eil76 time KroAlOO time

429.425 10.0 435.823 16.3 559.533 56.2 21508.8 112.4

427.899 15.8 445.079 15.0 574.446 46.4 21870.3 111.0
429.425 10.1 443.527 16.1 564.562 52.0 22590.5 112.6

429.425 9.7 435.472 16.4 560.791 53.2 21679.6 98.4
429.425 10.2 441.498 9.1 571.105 35.9 22639.3 103.7

427.899 9.9 441.498 17.2 584.411 45.8 21705.2 103.9
429.425 9.8 435.823 17.3 573.14 35.3 21687.3 111.1
429.425 10.2 443.527 16.8 568.304 54.8 21792.4 100.2

429.425 10.6 441.955 16.4 564.079 51.4 21881 109.8
429.425 10.3 436.089 16.0 567.318 50.3 22583.2 113.3
429.425 10.7 443.527 12.8 567.838 50.5 22288.1 102.0
429.425 9.3 441.955 16.6 570.104 49.5 21998.2 71.9
428.85 9.8 435.823 16.3 568.639 51.9 22054.2 110.1

427.899 10.4 436.336 16.0 573.542 48.7 21839.6 92.4
429.425 10.8 445.058 15.1 567.519 50.2 21458.5 84.7
427.899 15.4 435.823 15.7 585.093 43.7 22007.2 57.9
429.425 10.2 442.526 15.7 559.334 53.8 21482.7 108.2
429.425 9.6 445.264 13.5 566.589 41.1 21756.5 105.3
428.85 9.8 451.579 15.8 567.39 51.3 22170.1 82.4
429.425 10.9 438.78 15.2 567.206 51.5 21879.3 60.4
427.899 17.0 436.604 15.4 562.938 47.1 22327.6 68.2
429.425 11.5 436.109 16.1 576.991 45.9 22266.5 77.0
429.425 9.5 437.355 10.9 563.311 47.7 22439.6 71.1
428.85 14.6 436.109 15.7 581.244 49.5 23183 103.3
428.85 10.8 437.035 15.1 567.206 51.7 21812.4 106.4
429.425 9.8 441.498 15.4 559.334 53.3 22394.5 101.7
428.85 10.9 443.796 16.1 584.411 42.5 21879.3 60.5
429.425 9.8 436.089 15.8 568.304 53.1 21782.3 109.9
429.425 9.9 444.172 15.4 571.1 34.5 22005.4 104.5
429.425 10.5 441.498 15.4 571.105 35.5 22217.4 113.4

186

Appendix I

Results for ant-based hyper-heuristic with CVRP heuristics

Oliver30 time EUS1 time Eil76 time KroA1OO time

429.425 8.2 455.684 13.1 584.451 28.1 22052.2 57.9

429.425 8.2 445.058 13.6 586.41 41.3 21704.7 62.4

429.425 8.3 455.93 9.1 583.246 29.5 22059.6 61.2

429.425 9.5 444.172 11.5 586.589 26.0 22059.6 56.2

429.902 11.2 445.534 13.9 582.902 22.7 21903.5 84.2

429.425 10.0 449.159 11.5 582.573 35.6 22059.6 64.2

427.899 10.3 448.233 15.3 580.828 35.1 22393.7 69.7

429.425 9.0 442.937 8.3 577.447 49.6 21903.5 78.9

429.668 8.3 447.607 7.2 580.062 61.8 22524.2 49.9

429.425 8.2 459.416 11.5 590.852 25.1 21879.3 51.8

429.425 8.4 444.422 9.8 578.423 22.0 21927.8 81.5

429.425 8.2 449.237 9.3 595.003 21.9 22012.4 78.7

428.85 11.6 449.237 8.7 575.682 26.8 21704.7 113.8

428.85 9.0 448.911 8.8 584.35 26.8 21856.3 71.0

429.425 8.7 445.684 15.5 585.301 21.7 21952.5 86.4

429.425 8.0 444.2 17.8 591.166 23.2 22067.7 53.1

429.425 8.5 442.264 17.8 585.033 31.3 21991.18 53.7

429.425 9.4 448.615 18.0 588.261 25.1 22115.3 95.5

429.425 8.7 443.217 18.3 569.119 56.7 22271.4 62.2
429.425 8.6 443.546 18.5 587.62 37.3 22226.5 54.8
428.85 8.0 447.975 9.7 595.003 21.2 21911.6 110.8

429.425 9.2 449.594 7.8 585.285 44.1 21905.3 54.4

427.899 10.6 462.386 6.9 593.422 21.3 22271.4 97.0

429.425 8.7 447.607 11.4 578.716 45.5 22562.5 47.0

429.425 8.3 448.372 15.4 586.661 38.4 22123.4 114.1

428.85 9.2 446.345 8.8 582.999 61.2 22593.3 103.1
429.425 8.7 444.9 14.6 583.536 43.1 22162.5 58.4

429.425 9.3 434.846 18.0 587.052 36.6 21856.3 98.9
429.425 8.0 446.688 8.0 588.655 21.4 22016.6 87.9
429.425 8.2 437.621 17.1 591.661 54.0 22059.6 70.1

187

Appendix J

Results for ACO hyper-heuristic with TSP heuristics

Oliver30 time Eil51 time Eil76 time KroAlOO time

429.902 8.6 434.026 32.0 575.866 239.9 22059.6 64.2

428.85 10.4 442.441 60.9 583.976 177.9 22393.7 69.7

429.425 9.7 444.125 64.2 586.185 133.9 21879.3 51.8

429.425 9.6 439.374 35.3 581.368 186.7 22067.7 53.1

429.425 7.1 434.982 51.5 572.128 238.9 22052.2 57.9

429.902 7.4 436.093 39.4 594.258 86.2 21903.5 84.2

429.425 9.3 436.278 81.5 584.093 158.7 21704.7 62.4

429.902 8.0 434.989 63.8 586.356 108.3 21856.3 71.0

427.899 9.2 431.387 87.0 580.076 158.9 22059.6 70.1

429.425 8.1 438.567 46.7 594.177 83.1 22059.6 61.2

429.425 9.4 435.206 90.0 581.212 148.9 22271.4 62.2

429.425 9.3 430.811 72.2 584.093 112.2 21991.8 53.7

429.425 8.5 458.629 34.2 570.248 240.6 22115.3 95.5

429.425 10.7 434.069 32.0 590.485 84.3 22226.5 54.8

429.902 13.5 435.792 25.0 584.451 105.2 21911.6 110.8

429.902 9.0 429.699 63.1 568.892 260.6 21905.3 54.4

429.902 7.5 443.382 44.9 583.714 128.7 22123.4 114.1

429.902 9.1 429.699 63.1 587.514 81.4 21704.7 113.8

429.425 8.5 463.451 25.1 586.185 163.4 21927.8 81.5
429.425 7.7 434.069 35.6 575.866 239.9 21903.5 78.9

429.425 9.7 439.076 72.9 586.185 117.2 21952.5 92.2

429.425 11.1 435.792 24.8 575.866 223.2 22059.6 56.2

429.425 11.1 430.811 72.2 586.185 165.1 22016.6 87.9

428.85 7.6 435.279 25.8 581.368 153.4 22539.3 103.1

429.425 9.0 435.206 90.9 586.185 150.5 22012.4 78.7

429.902 12.8 439.076 73.1 586.185 150.5 22562.5 47.0

428.376 12.2 463.451 25.1 586.185 145.5 22271.4 97.0

429.902 9.1 439.076 72.9 575.866 242.6 21856.3 98.9

429.902 9.2 434.069 35.6 581.368 168.4 22162.5 58.4

429.425 8.5 463.451 25.1 575.866 173.2 22524.2 49.9

188

References

Aarts E., Korst J. & Michiels W. (2005). Simulated Annealing. In Burke E.K. & Kendall

G. (eds), Search Methodologies: Introductory Tutorials in Optimization and Decision

Support Techniques, (pp. 187-210). Springer.

Abdullah S. & Burke E. K. (2006). A Multi-start Large Neighbourhood Search Approach

with Local Search Methods for Examination Timetabling. In Long D., Smith S. F.,

Borrajo D., and McCluskey L., (eds.), Proceedings of the International Conference on

Automated Planning and Scheduling (ICAPS 2006) (pp. 334-337).

Aickelin U. (1998). Nurse Rostering with Genetic Algorithms. In Proceedings of Young

Operational Research Conference (12). University of Surrey. Guilsford.

Alexandrov D.A.& Kochetov Y.A. (1999). The Behaviour of the Ant Colony Algorithm

for the Set Covering Problem (pp. 255-260). Operation Research Proceedings.

Applegate D., Bixby R., Chvatal V. & Cook W. (1998). On the Solution of Traveling

Salesman Problems. In Mathematica (Extra Volume ICM, Chapter 3, pp. 645-656).

189

Asmuni H., Burke E. K., & Garibaldi J. M. (2004). Fuzzy Multiple Ordering Criteria for

Examination Timetabling. In Proceedings of the 5th International Conference on the

Practice and Theory of Automated Timetabling (PATAT), (pp. 51-66).

Ayob M. (2005). Optimisation of Surface Mount Device Placement Machine in Printed

Circuit Board Assembly. PhD Thesis, School of Computer Science and Information

Technology, University of Nottingham.

Ayob M. & Kendall G. (2003). A Monte Carlo Hyper-heuristic to Optimise Component

Placement Sequencing for Multi Head Placement Machine. In Proceedings of the

International Conference on Intelligent Technologies (lnTech'03, pp. 132-141).

Bai R. (2005). An Investigation of Novel Approaches for OptimiZing Retail Shelf Space

Allocation. PhD Thesis, School of Computer Science and Information Technology,

University of Nottingham.

Bai R. & Kendall O. (2005). An Investigation of Automated Planograms using a

Simulated Annealing Based Hyper-heuristics. In Ibaraki, T., Nonobe, K., & Yagiura, M.

(Eds.), Metaheuristics: Progress as Real Problem Solvers. Operations Research/Computer

Science Interfaces, (Vol. 32, pp. 87-108). Springer: Berlin, Heidelberg, New York.

190

Bai R., Blazewicz J., Burke E. K., Kendall G. & McCollum B. (2007). A Simulated

Annealing Hyper-Heuristic Methodology for Flexible Decision Support. In Technical

Report NOTTCS-TR-2007-8. School of Computer Science, University of Nottingham.

Baker B.M. & Sheasby J. (1999). Extensions to the Generalized Assignment for Vehicle

Routing. In European Journal of Operation Research., (volume 119, pp. 147-157).

Bell J.E. & McMullen P.R. (2004). Ant Colony Optimization Techniques for the Vehicle

Routing Problem. In Advanced Engineering Informatics, (volume 18, pp. 41-48).

Bentley J.L. (1992). Fast Algorithms for Geometric Traveling Salesman Problems. In

ORSA Journal of Computing (volume 4(4), pp. 387 411).

Bin Y., Zhang-Zhen Y. & Yao B. (2009). An Improved Ant Colony Optimization for

Vehicle Routing Problem. In European Journal of Operation Research, (volume 196, pp.

171-176).

Blum C. & Roli A. (2003). Metaheuristics in Combinatorial Optimisation: Overview and

Conceptual Comparison. In ACM Computing Surveys, (volume 35(3), pp. 268-308).

Braysy O. & Gendreau M. (2005a). Vehicle Routing Problem with Time Windows, Part

I: Route Construction and Local Search Algorithms. In Transportation Science, (volume

39, pp. 104-118).

191

Braysy O. & Gendreau M. (2005b). Vehicle Routing Problem with Time Windows, Part

II: Metaheuristics, In Transportation Science (volume 39, pp. 119-139).

Braysy 0., Dullaert W. & Gendreau M. (2004). Evolutionary Algorithms for the Vehicle

Routing Problem with Time Windows. In Journal of Heuristics, (volume 10, pp. 587-

561).

Bullnheimer B., Hartl R.F. & Strauss C. (1999a). Applying the Ant System to the

Vehicle Routing Problem, In MetaHeuristics: Advances and Trends in Local Search

Paradigms for Optimization, Kluwer Academic.

Bullnheimer B., Hartl R. F. & Strauss C. (1999b). A New Rank Based Version of the Ant

System - A Computational Study. In Central European Journal of Operations Research,

(volume 7, pp. 25-38).

Bullnheimer B., Hartl R.F. & Strauss C. (1999c). An Improved Ant System Algorithm

for the Vehicle Routing Problem. In Annals of Operations Research, (volume 89, pp.

319-328).

Burke E. K. & Soubeiga E. (2003). Scheduling Nurses using a Tabu-Search

Hyperheuristic. In Proceedings of the 1 st Multidisciplinary International. Conference. on

Scheduling: Theory and Applications (MISTA 2003), (volume I, pp. 197-218).

192

Burke E. K., De Causmaecker P. & Vanden Berghe O. (1999). A Hybrid Tabu Search

Algorithm for the Nurse Rostering Problem. In Lecture Notes in Artificial IntelJigence,

Springer, (volume 1585, pp. 187-194).

Burke E. K., De Causmaecker P., Petrovic S. & Vanden B.G. (2004). Variable

Neighborhood Search for Nurse Rostering Problems. In Resende M.O.C. and De Souza

J.P. (eds.), Metaheuristics: Computer Decision Making, Combinatorial Optimization,

Kluwer, (pp. 153-172).

Burke E. K., Dror M., Petrovic S. & Qu R. (2005a). Hybrid Graph Heuristics Within a

Hyper-heuristic Approach to Exam Timetabling Problems. In Golden B. L., Raghavan S.,

and Wasil E. A., (eds.), The Next Wave in Computing, Optimization, and Decision

Technologies Conference Volume of the 9th Informs Computing Society Conference,

Springer, (pp. 79-91).

Burke E. K., Kendall G., Landa-Silva J. D., O'Brien R. & Soubeiga E. (200Sb). An Ant

Algorithm Hyperheuristic for the Project Presentation Scheduling Problem. In

Proceedings of the 2005 IEEE Congress on Evolutionary Computation, (volume 3,

pp.2263-2270).

193

Burke E.K. & Kendall G. (2005). Search Methodologies: Introductory Tutorials in

Optimization and Decision Support Techniques (pp. 5-18). Springer.

Burke E.K., Hyde M., Kendall G., Ochoa G., Ozcan E. & Qu R. (201Oa). Hyper­

heuristics: A Survey of the State of the Art. In Technical Report No. NOTTCS-TR-SUB-

0906241418-2747. School of Computer Science and Information Technology, University

of Nottingham, Computer Science.

Burke E.K., Kendall G. & Soubeiga E. (2003a). A Tabu-search Hyperheuristic for

Timetabling and Rostering. In Journal of Heuristics, (volume 9(6), pp. 451-470).

Burke E.K., Kendall G., Newall J., Hart E. & Ross P. (2003b). Hyper-heuristics: An

Emerging Direction in Modem Search Technology. In Glover F. & Kochenberger G.A.

(eds), Handbook of Metaheuristics (pp. 457-474). Kluwer Academic Publishers.

Burke E.K., Kendall G., O'Brien R.F.J., Redrup D. & Soubeiga E. (2003c). An Ant

Algorithm Hyper-heuristic. In Proceedings of the Fifth Meta-heuristics International

Conference (MIC2003).

Burke E.K., Landa-Silva J.D. & Soubeiga E. (200Sc). Multi-objective Hyper-heuristic

Approaches for Space Allocation and Timetabling. In Meta-heuristics: Progress as Real

Problem Solvers, (pp. 129-158).

194

Burke E.K., Hyde M., Kendall G., Ochoa G., Ozcan E., & Woodward J. (2010b). A

Classification of Hyper-heuristics Approaches, In Gendreau M. & Potvin J-Y. (eds.),

Handbook of Metaheuristics, International Series in Operations Research &

Management Science, (pp. 449-468). Springer.

Chambers J.B. & Barnes J.W. (1996). Tabu Search for the Flexible-routing Job Shop

Problem. In Technical Report Series ORP 96-10. Department of Mechanical Engineering,

University of Texas at Austin.

Chen P. (2006). Hyper-heuristic Ant Algorithm for the Traveling Tournament Problem.

PhD Thesis. University of Nottingham, UK.

Chen P., Kendall G. & Berghe G.V. (2007). An Ant Based Hyper-heuristic for the

Travelling Tournament Problem. In Proceedings of IEEE Symposium of Computational

Intelligence in Scheduling (CISched 2007), (pp. 19-26).

Christofides N. & Eilon S. (1969). An Algorithm for the Vehicle Dispatching Problem. In

Operation. Research. Quart, (volume 20, pp. 309-318).

Clarke G. & Wright J.W. (1964). Scheduling of Vehicles from a Central Depot to a

Number of Delivery Points. In Operations Research, (volume 12, pp. 568-581).

195

----Colorni A., Dorigo M. & Maniezzo V. (1992). An Investigation of Some Properties of

An Ant Algorithm. In Proceedings of PPSN-II, Second International Conference on

Parallel Problem Solving from Nature Conference, (pp. 509-520). Elsevier, Amsterdam.

Connolly D.T. (1990). An Improved Annealing Scheme for the QAP. In European

Journal of Operational Research, (volume 46, pp. 93-100).

Cook S.A. (1971). The Complexity of Theorem-proving Procedures. In Proceedings of

3rd Annual ACM Symposium on Theory of Computing, Association for Computing

Machinery (pp. 151-158). New York.

Cordeau J.F., Gendreau M, Laporte G., Potvin J-Y. and Semet F. (2002). A Guide to

Vehicle Routing Heuristics. In The Journal of Operational Research Society, (volume S3(

5), pp. 512-522).

Cordeau J-F. & Laporte G. (2005). Tabu Search Heuristics for Vehicle Routing Problem.

In Metaheuristic Optimization via Memory and Evolution, (volume 30, pp. 145-163).

Costa D. & Hertz A. (1997). Ants can colour graphs. In The Journal of the Operational

Research Society, (volume 48, pp. 295-305).

Cowling P., Kendall G. & Soubeiga E. (2000). A Hyperheuristic Approach to Scheduling

a Sales Summit. In Burke E. K. & Erben W. (eds.), Practice and Theory of Automated

196

Timetabling III: Third International Conference (PAT AT 2000), Lecture Notes in

Computer Science 2079, (pp. 176-190). Springer-Verlag.

Cowling P., Kendall G. & Soubeiga E. (2002a). Hyperheuristics: A Robust Optimisation

Method Applied to Nurse Scheduling. In Seventh International Conference on Parallel

Problem Solving from Nature, PPSN, (pp. 851-860). LCNS Springer.

Cowling P., Kendall G., & Han L. (2002b). An Adaptive Length Chromosome

Hyperheuristic Genetic Algorithm for a Trainer Scheduling Problem. In Proceedings of

the 4th Asia-Pacific Conference on Simulated Evolution and Leaming (SEAL'02), (pp.

267-271).

Cowling P., Kendall G., & Soubeiga E. (2002b). Hyperheuristics: A Tool for Rapid

Prototyping in Scheduling and Optimisation. In Cagoni S., Gottlieb J., Hart E.,

Middendorf M., & Goenther R.(eds.), Applications of Evolutionary Computing:

Proceeding ofEvo Workshops, Lecture Notes in Computer Science,(volume 2279, pp. I-

10). Springer-Verlag.

Cowling P., Kendall G. & Han, L. (2002d). An Investigation of a Hyperheuristic Genetic

Algorithm Applied to a Trainer Scheduling Problem. In Proceedings of the Congress on

Evolutionary Computation 2002 (pp. 1185-1190), CEC 2002. Morgan Kaufman.

197

Cowling P., Kendall G., & Soubeiga E. (2001a). A Hyperheuristic Approach to

Scheduling a Sales Summit. In selected papers from the 3rd International Conference on

the Practice and Theory of Automated TimetabIing (PATAT 2001), Springer.

Cowling P., Kendall G., & Soubeiga E., (200Ib). A Parameter-free Hyperheuristic for

Scheduling a Sales Summit. In Proceedings of the 4th Metaheuristic International

Conference (MIC 2001), (pp. 127-131).

Crowston W.B., Glover F., Thompson G.L. & Trawick J.D. (1963). Probabilistic and

Parametric Learning Combinations of Local Job Shop Scheduling Rules. In ONR

research memorandum. Cernegie-MelJon University Pittsburgh.

Dantzig G.B., Fulkerson R. & Johnson S.M. (1954). Solution of a large-scale Traveling

Salesman Problem. In Operations Research 2, (pp. 393-410).

Dantzig G.B. & Ramser J.R. (1959). The Truck Dispatching Problem. In Management

Science, (volume 6(1), pp. 80-91).

Den Besten M., Stutzle T. & Dorigo M. (2000). Ant Colony Optimization for the Total

Weighted Tardiness Problem. In Proceedings of the Parallel Problem Solving from

Nature Conference, (pp. 611-620). Springer Verlag.

198

Deneubourg L., Aron S., Goss S. & Pasteels J.M. (1990). The Self Organizing

Exploratory Pattern of the Argentine Ant. In Insect Behaviour, (volume 3, pp. 159-168).

Dethloff J. (2001). Vehicle Routing and Reverse Logistics: The Vehicle Routing Problem

with Simultaneous Delivery and Pick-up. In OR Spectrum, (volume 23, pp. 79-96).

Di Caro G. & Dorigo M. (1997). AntNet: A Mobile Agents Approach to Adaptive

Routing. In Technical Report IRIDIAl97-12. Universite Libre de BruxeUes, Belgium.

Di Caro G. & Dorigo M. (1998). AntNet: Distributed Stigmergetic Control for

Communications Networks. In Journal of Artifcial Intelligence Research, (volume 9, pp.

317-365).

Donati A.V., Montemanni R., Casagrande N., Rizzoli A.E. & Gambardella L.M. (2003).

Time Dependent Vehicle Routing Problem with a Multi Ant Colony System. In

Technical Report TR-17-03. Idsia, Galleria 2, Manno, 6928, Switzerland.

Dorigo M. & Di Caro G. (1999a). Ant Algorithms for Discrete Optimization. Artificial

Life, (volume 5, pp. 137-172).

Dorigo M. & Di Caro G. (1999b). The Ant Colony Optimization Meta-heuristic. New

Ideas in Optimization (pp. 11-32). Mc Graw Hill.

199

Dorigo M. & Di Caro G. (1999c). Ant Colony Optimization: A New Meta-heuristic. In

Proceedings of the Congress on Evolutionary Computation, (pp. 1470-1477). IEEE Press.

Dorigo M. & Gambardella L. M. (1997). Ant Colony System: A Cooperative Learning

Approach to the Travelling Salesman Problem. In IEEE Transaction on Evolutionary

Computation, (volume I, pp. 53-66).

Dorigo M. & Gambardella L.M. (1995). Ant-Q - A Reinforce Leaming Approach to the

Traveling Salesman Problem. In Proceedings ofML-95, Twelve International Conference

on Machine Leaming, (pp. 252-260). Morgan Kaufmann.

Dorigo M. & Stutzle T. (2004). Ant Colony Optimization. MIT Press.

Dorigo M. & Stutzle T. (2003a). Handbook of Metaheuristics, Glover F. &

Kochenberger G.A. (eds) (pp. 251-285). Kluwer Academic Publishers.

Dorigo M. & Stutzle T. (2003b). The Ant Colony Optimization Metaheuristic:

Algorithms, Applications and Advances. Handbook of Metaheuristics, Kluwer Academic

Publishers, (pp. 251-285).

Dorigo M. & Stutzle T. (2004). From Real to Artificial Ants. Ant Colony Optimization

(pp. 1-23). The MIT Press.

200

Dorigo M., Maniezzo V. & Colomi A. (1991). Positive feedback as a Search Strategy. In

Technical Report No 91-016. Dipartimento di Eletronica, Politecnico di Milano, Italy.

Dorigo M., Maniezzo V. & Colomi A. (1996). Ant system: Optimisation by a Colony of

Cooperating Agents. In IEEE Transactions on Systems, Man and Cybernetics, (pp. 26,

29-41).

Dorigo, M. & Gambardella L.M. (1997). Ant Colonies for the Travelling Salesman

Problem. In Biosystems, (volume 43, pp. 73-81).

Dowsland K. A., Soubeiga E. & Burke E. K. (2007). A Simulated Annealing Hyper.

heuristic for Determining Shipper Sizes. In European Journal of Operational Research,

(volume 179(3), pp. 759-774).

Fang H., Ross P. & Come D. (1993). A Promising Genetic Algorithm Approach to Job

Shop Scheduling, Rescheduling and Open-shop Scheduling problems. In Forrest S. (ed),

Fifth International Conference on Genetic Algorithm (pp. 375·382), Morgan Kaufmann,

San Mateo.

Feo T.A. & Resende M.G.C. (1989). A Probabilistic for a Computationally Difficult Set

Covering Problem. In Operation Research Letters, (volume 8, pp. 67· 71).

201

Fisher H & Thompson G.L. (1961). Probabilistic Learning Combinations of Local Job­

shop Scheduling Rules. In Factory Scheduling Conference. Carnegie Institute of

Technology.

Fisher H & Thompson G.L. (1963). Probabilistic Learning Combinations of Local Job­

shop Scheduling Rules. In J.F. Muth & G.L. Thompson (eds), Industrial Scheduling, (pp.

225-251). Prentice-Hall, Inc, New Jersey.

Fisher M.L. & Jaikumar R. (1981). A Generalized Assignment Heuristic for the Vehicle

Routing Problem. Networks, (volume 11, pp. 109-124).

Fraser A.S. (1957). Simulation of Genetic Systems by Automatic Digital Computers. In

Australia Journal of Biological Sciences, (volume 10, pp.484-491).

Gambardella L.M., Taillard E. & Dorigo M. (1999). Ant Colonies for the Quadratic

Assignment Problem. In Journal of Operational Research Society, (volume SO, pp. 167-

176).

Garey M.R. & Johnson D.S. (1979). Computers and Intractabiliy: A Guide to the Theory

of NP-Complete ness, W.H. Freeman.

202

Garrido P. & Castro C. (2009). Stable solving of CVRPs using Hyperheuristics. In

Genetic and Evolutionary Computation Conference (GECCO'09) (pp. 255-262). ACM,

Montreal, Canada.

Gaspero L.D & Schaerf A. (2007). A Composite-neighborhood Tabu Search Approach to

the Travelling Tournament Problem. In Journal of Heuristics, (volume 13(2), pp. 189-

207).

Gaspero L.D. & Schaerf A. (2001). Tabu Search Techniques for Examination

Timetabling. In Lecture Notes in Computer Science, (volume 2079, pp. 104-117).

Gendreau M. & Potvin J. (2005a). Tabu Search. In Burke E.K. and Kendall G. (eds),

Search Methodologies: Introductory Tutorials in Optimization and Decision Support

Techniques, (pp. 165-186). Springer.

Gendreau M. & Potvin 1. (2005b). Metaheuristics in Combinatorial Optimization. In

Annal of Operations Research, (volume 140, pp. 189-213).

Gendreau M. & Potvin J-Y. (1998). Dynamic Vehicle Routing and Dispatching. In

Crainic T.G. and Laporte G. (eds), Fleet Management and Logistic, (pp. 115·226).

Gendreau M., Hertz A. & Laporte G. (1994). A Tabu Search Heuristic for the Vehicle

Routing Problem. In Management Science, (volume 40(10), pp. 1276-1290).

203

Gillet B.E. & Miller L.R. (1974). A Heuristic Algorithm for the Vehicle Dispatch

Problem. ill Operations Research, (volume 22, pp. 340-349).

Glover F & Kochenberger G.A. (2003). Hyper-heuristics: An Emerging Direction in

Modern Search Technology. Handbook of Metaheuristics, Kluwer Academic Publishers.

Glover F. & Laguna M. (1997). Tabu Search. Kluwer Academic Publisher.

Gratch J. & Chien S. (1996). Adaptive Problem-solving for Large-scale Scheduling

Problems: a Case Study. In Journal of Artificial Intelligence Research. (volume 4, pp.

365-396).

Gratch J., Chien S. & Dejong G. (1993). Learning Search Control Knowledge for Deep

Space Network Scheduling. In Proceedings of the Tenth International Conference on

Machine Learning (pp. 135-142). Amherst, MA.

Gutin G. & Punnen A.P. (2002). The Traveling Salesman and Its Variations. Springer.

Han L. & Kendall G. (2003b). Investigation of a Tabu Assisted Hyper-heuristic Genetic

Algorithm. In Proceedings of the Congress on Evolutionary Computation (CEC2003),

(volume 3, pp. 2230-2237).

204

Han L., Kendall G & Cowling. (2002). An Adaptive Length Chromosome

Hyperheuristics Genetic Algorithm for a Trainer Scheduling Problem. In Proceedings of

the 4th Asia Pasific Conference on Simulated Evolution and Leaming, (pp. 267-271).

SEAL02. Singapore.

Hansen P. & Mladenovic N. (2001). Variable Neighborhood Search: Principles and

Applications. In European Journal of Operational Research, (volume 130, pp. 449-467).

Hansen P. & Mladenovic N. (2003). Variable Neighborhood Search. In Glover F. &

Kochenberger G.A. (eds), Handbook of Metaheuristics (pp 145-184). Kluwer Academic

Publishers.

Hansen P. & Mladenovic N. (2005). Variable Neighborhood Search. In Burke E.K. &

Kendall G. (eds), Search Methodologies: Introductory Tutorials in Optimization and

Decision Support Techniques (pp. 211- 238). Springer.

Hart E. & Ross P. (1998). A Heuristic Combination Method for Solving Job-shop

Scheduling Problems. Parallel Problem Solving from Nature, In Eiben AE., Back T.,

Schoenauer M. & Schwefel HP. (eds), Lecture Notes in Computer Science, (volume

1498, pp.845-854). Springer-Verlag.

20S

Helsgaun K. (2000). An Effective Implementation of the Lin-Kernighan Traveling

Salesman Heuristic. In European Journal of Operational Research, (volume 126, pp. 106-

130).

Henderson D. Jacobson S.H. & Johnson A.W. (2003). The Theory of Simulated

Annealing. In Glover F. & Kochenberger G.A. (eds), Handbook of Metaheuristics,

(pp.287-319). Kluwer Academic Publishers.

Hertz A., Tail1ard E. & De Werra D. (1995). A Tutorial on Tabu Search. In Proceeding of

Giornate di Lavoro AIRO'95, (Entreprise Systems: Management of Technological and

Organizational Changes), (pp. 13-24).

Holland J.H. (1992). Genetic Algorithms. Scientific American, July, (volume 267(1), pp.

66-72). .

Russin N. M. (2005). Tabu Search Based Hyper-heuristic Approaches for Examination

TimetabHng. PhD thesis. School of Computer Science and Information Technology,

University of Nottingham.

Ichoua S., Gendreau M. & Potvin J-Y. (2003). Vehicle Dispatching with Time-dependent

Travel Times. In European Journal of Operational Research, (volume 144(2), pp. 379.

396).

206

Karp R.M. (1972). Reducibility Among Combinatorial Problems. Plenum Press, (pp. 85-

103).

Kendall G & Mohamad M. (2004a). Channel Assignment in Cellular Communication

Using Great Deluge Hyper-heuristic. In Proceeding of the 2004 IEEE International

Conference on Network (ICON2004) (pp. 769-773), Singapore.

Kendall G & Mohamad M. (2004b). Channel Assignment Optimization Using Hyper­

heuristic. In Proceeding of the 2004 IEEE Conference on Cybernetic and Intelligent

Systems (CIS2004) (pp. 780-795), Singapore.

Kendall G. & Mohd Hussin N. (2004a). An Investigation of a Tabu Search Based Hyper­

for Examination Timetabling. In Kendall G., Burke E. K., & Petrovic S. (eds.) Selected

Papers from MISTA 2003. Kluwer Publication.

Kendall G. & Mohd Hussin N. (2004b). Tabu Search Hyper-heuristic Approach to the

Examination Timetabling Problem at University Technology MARA. In Burke E. K. &

Trick M. (eds.) Proceedings of the 5th international Conference on the Practice and

Theory of Automated Timetabling (PAT A T), (pp. 199-217).

Kendall G., Cowling P. & Soubeiga E. (2002). Choice Function and Random

Hyperheuristics. In Proceedings of the 4th Asia-Pacific Conference on Simulated

Evolution and Leaming, (pp. 667-671).

207

Kirkpatrick, S. Gelatt, C.D. & Vecchi, M.P. (1983). Optimization by Simulated

Annealing, In Science, (volume 220, pp. 671-380).

Koza JR. & Poli R. (2005). Genetic Programming. In Burke E.K. & Kendall G. (eds.),

Search Methodologies: Introductory Tutorials in Optimization and Decision Support

Techniques, (pp.l27-164). Kluwer, Boston.

Lawer, E.L. (1976). Combinatorial Optimization: In Networks and Matroids. New York:

Holt, Rinehart and Winston.

Laporte G. (1992). The Vehicle Routing Problem: An Overview of Exact and

Approximate Algorithms. In European Journal of Operational Research, (volume 59, pp.

345-358).

Laporte G. (2009). Fifty Years of Vehicle Routing. In Transportation Science, Articles in

Advance, (pp. 1-9).

Laporte G. & Semet F. (2002). Classical Heuristics for the Capacitated VRP. In Toth p.

and Vigo D. (eds), SIAM Monographs on Discrete Mathematics and Applications,

Chapter 5, (volume 9, pp. 109-128),

208

Lim A., Rodrigues B. & Zhang X. (2006). A Simulated Annealing and Hill-climbing

Algorithm for the Traveling Tournament Problem. In European Journal of Operational

Research. (volume 174(3), pp. 1459-1478).

Lin S. & Kernighan B.W. (1973). An Effective Heuristic Algorithm for the Traveling­

Salesman Problem. In Operations Research, (volume 21, pp. 98-516).

Lysgaard J., Letchford N. & Eglese R.W. (2004). A New Branch-and-Cut Algorithm for

Capacitated Vehicle Routing Problem. In Mathematical Programming, Ser. A, (volume

100: pp.423-445).

Maniezzo V. & Colomi A. (1994). The Ant System Applied to the Quadratic Assignment

Problem. In Technical Report 94/28. IRIDIA, Universite Libre de Bruxelles, Bruxelles,

Belgium.

Martins S.L., Pardalos P.M., Resende M. O.C. & Ribeiro C. (1994), Greedy Randomized

Adaptive Search Procedure for the Quadratic Assignment Problem. In DIMACS Series

on Discrete Mathematics and Theoretical Computer Science, (volume 16, pp.237-261).

American Mathematical Society.

Michalewicz Z. & Fogel D.B. (2004). How to Solve it: Modem Heuristics. Springer.

209

Naddef D. & Rinaldi G. (2002). Branch and Cut Algorithms for the Capacitated VRP. In

Toth P. and Vigo D. (eds), The Vehicle Routing Problem (SIAM), (pp. 53-84).

O'Brien R.F.J. (2007). Ant Algorithm Hyperheuristic Approaches for Scheduling

Problems. PhD Thesis, University of Nottingham. UK.

Ochoa G., Vazquez-Rodriguez JA., Petrovic S. & Burke E. (2009). Dispatching Rules

for Production Scheduling: A hyper-heuristic Landscape Analysis. In Proceedings of the

IEEE Congress on Evolutionary Computation (CEC 2009), (pp. 1873-1880).

Osman I.H. (1993). Metastrategy Simulated Annealing and Tabu Search Algorithms for

the Vehicle Routing Problem. In Annals of Operations Research, (volume 41 (4), pp. 421·

451). Springer Netherlands.

Osman I.H. (2000). Meta-heuristics: A General Framework. In Proceedings of the

International Workshop on Algorithm Engineering, (pp. 117-118). Research Institute for

Mathematical Science, Kyoto University, Japan.

Osman I.H. & Kelly J.P. (1996). Meta-heuristics: Theory and Applications. Dordrecht,

Netherlands, Kluwer.

Pardalos P.M., Migdalas A. & Burkard R.E. (2002). Combinatorial and Global

Optimization. W orId Scientific.

210

Pisinger D & Ropke S. (2007). A General Heuristic for Vehicle Routing Problems. In

Computers and Operations Research, (volume 34, pp. 2403-2435).

Qu R. & Burke E.K. (2005). Hybrid Variable Hyperheuristics for Exam Timetabling

Problems. In The Sixth Metaheuristics International Conference, (pp. 22-26).

Ralphs T.K., Kopman L., Pulleyblank W.R. & Trotter L.E. (2003). On the Capacitated

Vehicle Routing Problem. Math Program, (volume 94, pp. 343-359).

Reeves C. (1995). Modern Heuristics Techniques for Combinatorial Problems. McGraw

HilI.

Reeves C. (2003). Genetic Algorithms. In Glover F. and Kochenberger G.A. (eds),

Handbook of Metaheuristics, (pp. 55-82). Kluwer Academic Publishers.

Resende M.G.C. (1995). Greedy Randomized Adaptive Search Procedures. In Journal of

Global Optimization, (volume 6, pp. 109-133).

Resende M.G.C. & Ribeiro C.C. (2003). Greedy Randomized Adaptive Procedures. In

Glover F & Kochenberger (eds), Handbook of Metaheuristics (pp.219-249). Kluwer

Academic Publishers.

211

Ross P., Hart E. & Come D. (1998). Some Observations about GA-based Exam

Timetabling. In Burke E.K. & Carter M. (eds), Practice and Theory of Automated

Timetabling II, Lecture Notes in Computer Science, (volume 1408, pp. 115-129).

Springer-Verlag.

Ross P., Marin-Blazquez JG. & Hart E. (2004). Hyper-heuristics Applied to Class and

Exam Timetabling Problems. In Proceeding of the 2004 IEEE Congress on Evolutionary

Computation, (pp. 1691-1698). IEEE Press, Portland, Oregon.

Sastry K., Goldberg D. & Kendall G. (2005). Genetic Algorithms. In Burke E.K. &

Kendall G. (eds), Search Methodologies: Introductory Tutorials in Optimization and

Decision Support Techniques, (pp. 97-125). Springer.

Skorin-Kapov J. (1990). Tabu Search applied to the Quadratic Assignment Problem. In

ORSA Journal on Computing, (volume 2(1), pp. 33-45).

Soubeiga E. (2003). Development and Application of Hyperheuristics to Personnel

Scheduling. PhD thesis. School of Computer Science and Information Technology,

University of Nottingham.

Stutzle T, & Hoos H.H. (2000). MAX-MIN Ant System. In Journal of Future Generation

Computer Systems, (volume 16, pp. 889-914).

212

Stutzle T. & Dorigo M. (1999). ACO Algorithms for the Quadratic Assignment Problem.

New Ideas in Optimization (pp. 33-50), McGraw Hill.

Suman B & Kumar P. (2006). A Survey of Simulated Annealing as a Tool for Single and

Multiobjective Optimization. In Journal of Operational Research Society, (volume

57(10), pp. 1143-1160).

Suwannarongsri S. & Puangdownreong D. (2012). Adaptive Tabu Search for Traveling

Salesman Problems. In International Journal of Mathematics and Computer in

Simulation, (volume 6(2».

T .H. & Wonnacott RJ. (1990). Introduction S~atistics for Business and Economics, (pp.

196-203). John Wiley.

Taillard E.D. (1993). Parallel Iterative Search Methods for Vehicle Routing Problem. In

Networks, (volume 23, pp. 661-673).

Terashima-Marin H., Zarate CJF., Ross P. And Valenzuela-Rendon M. (2006). A GA­

based Method to Produce Generalized Hyper-heuristics for the 2D-regular Cutting Stock

Problem. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary

Computation, GECCO 06 (pp. 591-598). ACM Press, New York, USA.

The Traveling Salesman Library. (2008). Website: http://www.tsp.gatech.edul

213

Vazquez-Rodriquez lA., Petrovic S. & Salhi A. (2007). A Combined Meta-heuristics

with Hyper-heuristic Approach to the Scheduling of the Hybrid Flow Shop with

Sequence Dependent Setup Times and Uniform Machines. In Proceedings of the 3rd

Multiciplinary International Scheduling Conference: Theory and Applications (MISrA

2007).

Vehicle Routing Datasets. (2003). Website: http://www.coin-

or.org/SYMPHONY IbranchandcutIVRP/data.

Voss S. (2001). Meta-heuristics: The State of the Art. In Lecture Notes in Computer

Science, (volume 2148, pp. 1-23). Springer BerlinlHeidelberg.

Whitley D., Starkweather T. & Fuquay D. (1989). Scheduling Problems and Traveling

Salesman: The Genetic Edge Recombination Operator. In J. Schaffer (ed), Proceedings of

the Third International Conference on Genetic Algorithms Morgan Kaufmann (pp. 133·

140), Los Altos, CA.

214

