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ABSTRACT 

Discrete pile rows are widely used for improving the stability of potentially unstable slopes, 

where columns of reinforced concrete are constructed in the ground to reinforce it and inhibit 

instability.  The method becomes more cost effective with wider pile spacings, but 

simultaneously there is also increasing risk that the soil will flow through the gap between 

adjacent piles, rather than arching across it.  The impact of pile spacing along the row, which 

is likely to have a significant effect on stability, is not clearly understood from a current 

design perspective.  In this study the effects of pile spacing on passive interaction with the 

slope are investigated using a series of geotechnical centrifuge model tests which are 

interpreted with a proposed theoretical framework. 

 

A total of 23 geotechnical centrifuge model tests were successfully carried out (Chapters 3 

and 4):  

• A plane strain model slope was subjected to up to 50 g centrifugal acceleration, with 

the upper layer of the slope tending to fail on an underlying predefined surface.  The 

model piles were instrumented to measure bending moment, and hence the shear 

force and pressure on the piles resulting from interaction with the unstable layer 

were deduced using a curve-fitting technique.  Cameras ‘on-board’ the centrifuge 

model allowed in-flight photogrammetry to be used to determine soil or pile 

displacement.  

• Pile spacing (s/d) was varied, which determined limiting pile-soil interaction for the 

row, and variation of other geometrical parameters (l/h) for the slope controlled the 

total load on the pile row.  

• A number of mechanisms of behaviour for the reinforced slope were identified 

ranging from a successfully stabilised slope to shallow and deeper slips passing 
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through the pile row, as well as slips which occurred upslope of the pile row and 

thus did not interact with it. 

A theoretical framework was developed and used to interpret the results (Chapter 5):  

• The centrifuge model test results have been successfully interpreted using the 

proposed analytical approach.  

• The centrifuge test results confirm previous numerical modelling results, and hence 

a simple theory which can be used for calculation of the maximum stabilising force 

available from interaction of the pile row with the slope.  

 

The work presented here also confirmed that another previous theoretical model, although 

quite widely used, is somewhat flawed.  Comparison with a field study where stabilisation 

has been successful (to date) indicated consistency with the experimental results and 

associated interpretation. 
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CHAPTER 1 

INTRODUCTION  

 

1.1 Research background 

Severe instability of slopes involves economic and safety implications for infrastructure such 

as roads or railways, damage to other assets located on or adjacent to the potentially unstable 

slopes, and potentially even loss of human life.  In particular, a significant proportion of UK 

transport infrastructure such as embankments or cutting slopes for motorways or railways 

may be at risk, due to their age, or from widening projects (Perry et al., 2003a and b).  

Climate change with potentially wetter winters and drier summers would pose a further 

threat. 

 

A variety of remediation techniques for stabilising a potentially unstable slope exist, for 

instance  

(1) alteration of the slope geometry to a more stable profile, 

(2) installation of drainage to reduce pore water pressure, 

(3) insertion of reinforcing inclusions (e.g. retaining walls, piles or geosynthetics) 

(4) ground improvement (e.g. grouting or lime mixtures).   

 

The technique of using a single or multiple rows of discrete piles to stabilise potentially 

unstable natural or man-made slopes is widely used both in the UK and abroad.  The solution 

is generally permanent and cost effective, and piles can be situated near the transport 

infrastructure (e.g. road or railway line) to provide direct protection to the asset. 
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As shown in Figure 1.1(a) the stabilising piles are installed to penetrate through a sliding soil 

mass into stable soil below the slip.  Each pile provides horizontal ‘passive’ restraint to the 

potentially unstable soil mass, transferring this load down the pile to the underlying stable 

ground, where it ‘actively’ resists the load.  This results in shear force and bending moments 

in the piles, which must have sufficient structural capacity to withstand the loading.  Note 

that the use of ‘active’ and ‘passive’ in this context does not correspond to earth pressures on 

a retaining wall.  ‘Passive’ implies that the soil moves relative to the pile and ‘active’ that the 

piles moves relative to the soil.  

 

However, the impact of important design factors related to effective performance of the pile 

row (e.g. spacing between piles) are not fully understood.  The cost effectiveness of the 

technique increases as wider pile spacing is used, but simultaneously there is increasing 

danger that the soil will ‘flow’ through the gap between piles, rather than arching across it 

(Figure 1.1(b) in which arching is a load-transfer mechanism by which stresses from the 

yielding parts of the soil mass (potentially unstable soil) are redistributed to the adjoining 

non-yielding regions (ultimately the stabilising piles in this case), and hence there is an 

improvement in stability of the slope.  Arching effects are much greater in sands than in silts 

or clays and are greater in dense sands than in loose sands).  These uncertainties potentially 

lead to conservative and uneconomical design.  

 

The present study focuses on the stabilisation of an inherently unstable slope having a pre-

existing translational slip.  This approach allows the pile row interaction and ultimate 

resistance for the unstable slope for any frictional soils (e.g. drained behaviour of clay, 

although the frictional angle would be lower) to be examined without further complication 

regarding the nature of instability through the depth of the slope.     
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(a) Contribution to slope stability

Stabilising pile

Assumed 
failure surface

Failing 
soil mass

Passive 
loading

Active 
loading

Arching (stress)
across the gap

Flow (displacement)
between piles

(b) Passive pile-soil-pile interaction  

Figure 1.1  -  Slope stabilisation using a discrete bored pile wall 
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1.2 Aim and objectives  

The general aim of the research is to investigate the behaviour of a piled slope (e.g. pile row 

interaction), to give an appraisal on the suitability of a row of discrete piles to stabilise the 

slope, and to give fundamental guidance on its design. 

 

The objectives can be specified as: 

• to conduct a series of centrifuge model tests on a piled slope  

• to examine behaviour of the model by comprehensive analysis of the test data 

• to propose a theoretical framework to facilitate interpretation of the results  

• to compare the interpreted centrifuge test data with previous work. 
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1.3 Layout of the thesis 

Chapter 2 summarises previous studies on the behaviour of piles for slope stabilisation, 

ranging from the conventional design method (limit equilibrium approach) to more complex 

methods (analytical, empirical and numerical approaches).  A review of critical factors 

affecting passive interaction is also presented.  

 

Chapter 3 describes the experimental methodology used for centrifuge modelling of a slope 

stabilised by a row of piles.  The experimental testing programme is first presented, and the 

NCG Geotechnical centrifuge facilities such as the centrifuge, model container, model 

components and digital image processing techniques are introduced.   

 

Chapter 4 presents an overview of typical centrifuge test data, focusing on profiles of ground 

and pile movements (based on image analysis), and pile moment, shear force and pressure 

profiles.  Preliminary discussion of test results is presented. 

 

Chapter 5 introduces the proposed theoretical framework for interpretation of the results.  

The framework is used to present centrifuge test data from all 23 tests, and the results are 

compared with selected previous work presented in the literature.   

 

Chapter 6 gives conclusions and suggestions for further work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

2.1.1 General aspects of analysis/ design 

Most design of piled stabilisation of slopes includes the following aspects (with some 

iteration): 

 

1. Evaluation of the total horizontal (or shear) force needed to increase the factor of 

safety of the slope by the desired amount 

2. Evaluation of the maximum stabilising force available from piles interaction with 

potentially unstable material, and comparison with (1) 

3. Consideration of other aspects such as 

3a. Other slips which do not interact with the piles (e.g. shallow slips upslope or 

downslope, or beneath the pile toes) 

3b. Whether the piles have sufficient active capacity in the underlying stable soil.  

This may also require a check on pile displacement, which will be governed 

mainly by active response – however since the calculation is inherently based on 

an enhanced factor of safety for the slope displacements may not be considered 

meaningful. 

3c. Structural design of the piles, based on shear forces and (particularly) bending 

moments derived from the passive and active pressure distributions. 
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(1) is normally based on routine slope stability analysis (e.g. method of slices), including the 

effect of a horizontal line load representing the total passive restraint from the piles.  (3a) is 

based purely on slope stability analysis.  Since this thesis primarily considers stabilisation of 

the slope, established methods of analysis for slope stability will not be considered in detail. 

 

(2) and (3b) are related topics, but since (2) has most direct impact on slope stability it will 

be the main focus of this thesis.  Since (3c) concerns structural design, it will not be 

considered in any detail. 

 

The design will need to consider the following characteristics of the piles: 

• the position of the piles in the slope (e.g. near the crest, midslope, or toe) 

• the diameter (d) and spacing (s), as well as other structural characteristics 

• the length 

Practicalities of construction will also impact on these aspects. 

 

The position of the piles in the slope will have some impact on (1) and (2) above, and thus is 

likely to be decided at an early stage, mainly based on practicalities of construction and (3a) 

(slips occurring upslope or downslope of the piles).  Section 2.6 below summarises existing 

information in the literature regarding the effectiveness of various locations. 

 

The spacing ratio (s/d) will have a large impact on (2), and this will be the main focus of the 

thesis.  The pile diameter and type of pile (structural capacity and flexural stiffness) are 

mainly related to (3c) and (3b) respectively.  The length of the piles is governed by (3a) 

(slips passing below the toe of the piles), and (3b). 
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Some authors refer to ‘coupling’ of (1) and (2) above.  Generally speaking, the most 

straightforward methods consider the various aspects independently (uncoupled), whereas 

more complex methods (e.g. 3-d finite element analysis) may claim to completely integrate 

(couple) all aspects.  However, such approaches are unlikely to be used in routine design. 

 

2.1.2 Structure 

It is difficult to categorise all references into well-defined groups.  However, in an effort to 

structure this the chapter is divided as follows: 

• 2.2  Lateral pile-soil interaction (both active and passive) 

• 2.3  Limit equilibrium methods  

• 2.4  More complex analytical methods 

• 2.5  Other references (e.g. lab and field studies) 

• 2.6  Review of critical factors 

• 2.7  Summary 
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2.2 Lateral pile-soil interaction 

Linear elastic and fully plastic (ultimate) responses are initially considered for an ‘isolated’ 

pile and piles in a row.  It is assumed that the ground surface is horizontal (not sloping). 

Finally, full response is considered for a row of piles.  

 

2.2.1 Elastic Response (isolated pile) 

Baguelin et al. (1977) derived an analytical solution for the lateral reaction of a rigid circular 

section (representing the cross section of the pile) displaced through an elastic medium 

(representing the soil) with a distant circular boundary about its centre (Figure 2.1(a)).  A 

plane strain section normal to the axis of the pile was considered (Figure 2.1(b)).  The 

following solution, based on relative pile-soil displacement in terms of basic elastic soil 

parameters, was derived:  

1
216 (1 ) 2 (3 4 ) ln

(3 4 )
p Dv v
G d v d

δπ
−

⎧ ⎫⎛ ⎞ ⎛ ⎞= − − −⎨ ⎬⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎩ ⎭
  (2.1) 

 

where 

 p = /P d = equivalent pressure acting on the pile section  

 P = force acting on the pile per unit length along the axis  

 d = pile diameter  

 δ = relative pile displacement  

 G = shear modulus for the elastic medium (soil) 

 v  = Poisson’s ratio of the elastic medium (soil) 

 D = diameter of circle defining the rigid boundary  
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The value of v can be varied for consideration of drained or undrained loading and soil 

properties whereas the value of G is not varied.  The value of (D/d) is somewhat arbitrary in 

practice, although it must be finite for there to be any resistance to the movement. It is now 

known that using a more realistic high stiffness at small strain would reduce this dependency 

on far-field effects. A value of 30 has been used by previous researchers to consider an 

‘isolated’ pile (i.e. one which is not significantly affected by any neighbouring piles) in 

conjunction with the linear elastic response. 

 

 

Figure 2.1  -  Fundamental analysis of pile-soil interaction 
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2.2.2 Ultimate Capacity (isolated pile and pile row) 

Single (isolated) pile 

For granular soils, Broms (1964) suggested an equation deduced from active lateral load 

tests on a single pile.  It was assumed that ultimate lateral force per unit length is equivalent 

to three times the passive earth pressure at all depths.  

'
ult p v3P K dσ=        (2.2) 

where, 

 Pult =  net ultimate lateral soil load per unit length of pile  

 Kp =  passive earth pressure coefficient equivalent to  )'sin1/()'sin1( φφ −+  

 '
vσ  =  vertical effective stress  

 d  =  pile diameter  

 

Fleming et al. (1994) proposed an empirical equation based on centrifuge test data for a 

laterally loaded pile (Barton, 1982) to predict the ultimate lateral load of a single pile.  It was 

considered that Pult increases in proportion to the square of Kp, giving 

 2 '
ult p vP K dσ=        (2.3) 

 

Other authors have proposed variation in proportion to 3
pK , and hence Equation (2.3) can be 

used as an ‘intermediate’ form of various approaches.  Additionally it gives results which are 

numerically quite similar to Equation (2.2) for practical values of Kp.  Numerical modelling 

by Durrani (2006) has also shown this value to be broadly appropriate for limiting 

interaction (although potentially slightly high). 
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Pile row 

The theory proposed by Ito and Matsui (1975) has been used in a number of publications for 

the purpose of calculating the ultimate lateral pressure due to passive pile loading.  It was 

developed on the basis of a mechanism of plastic deformation of the soil ‘squeezing’ 

between adjacent piles. Referring to Figure 2.2, a row of piles with diameter (d) at centre-to-

centre spacing (D1) was considered (the ‘clear’ spacing between piles is D2 = D1 - d).  The 

equivalent lateral pressure acting on a pile (p = P/d) for granular soils is calculated by 

Equation (2.4).  

1 2
2

2
exp tan tan

8 4
D Dzp A N D

N d D φ
φ

γ π φφ
⎧ ⎫⎡ ⎤−⎪ ⎪⎛ ⎞= + −⎨ ⎬⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
  (2.4) 

 

where 

 A  = 1
1

2

b
DD
D

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 b  = 1/ 2 tan 1N Nφ φφ + −  

 Nφ  = pK    =    2tan
4 2
π φ⎛ ⎞+⎜ ⎟

⎝ ⎠
 

 γ  = the unit weight of the soil 

 φ  = the friction angle of the soil 

 z = depth within the moving layer of soil 
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Figure 2.2  -  An Idealised piled slope system (after Ito and Matsui, 1975) 

 

The calculated lateral pressure on the pile(s) tends toward infinity as the pile spacing 

becomes a ‘contiguous wall’ (D2 → 0), whilst the lateral pressure approaches zero at very 

wide spacings (an ‘isolated single pile’).  Both these extremes of behaviour are clearly 

unrealistic for passive interaction in a slope.  Nevertheless, it has been proposed that the 

method is valid for a restricted range of ‘intermediate’ pile spacings (e.g. De Beer and 

Carpentier, 1976).  
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2.2.3 Full response (combined elastic and ultimate response) 

Liang and Zheng (2002) investigated the soil arching mechanism for ‘drilled shafts’ (piles) 

used for slope stabilisation using finite element analysis (PLAXIS).  It was reported that the 

arching effect reduced as the ratio exceeded three times the pile diameter.  Adjacent piles do 

no longer interact when the pile spacing is equal to or larger than eight times of the pile 

diameter. 

 

Chen and Martin (2002) studied the load-transfer mechanism of stabilising piles using plane 

strain numerical analyses (FLAC), focusing on arching development between adjacent piles.  

It was reported that tendency of arching becomes stronger as pile spacing get closer whereas 

it is likely to be diminished at higher (s/d) in the range 4 to 6.  It was also noted that the load 

transfer onto the piles is primarily caused by redistribution of the stresses upslope of the piles 

with rotation of the principal stress directions.   

 

Durrani et al. (2006) studied pile-soil interaction arising from relative lateral pile-soil 

movement, taking account of arching along a pile row in a horizontal section.  A translating 

pile was used on the basis that there is no fundamental difference between moving a pile 

relative to static remote boundaries, and moving remote boundaries relative to a static pile 

(e.g.  Figure 2.1).  (Consideration of a pile row rather than an isolated pile means that 

boundaries normal to a line along the row are not remote).  The situation was analysed using 

a 3-dimensional ‘constant overburden analysis’ (Figure 2.3).  This was proposed as an 

alternative to a plane-strain analysis, with the stress applied at the upper surface of the 

section representing the weight of overlying material.  It was found that for a purely 

frictional soil strength this gave more rational results than a plane-strain section which had 

previously been used by other authors, although the ‘thickness’ of the 3-d section could 

influence the results (Durrani et al., 2006). 
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Figure 2.3  -  ‘Constant overburden’ approach to modelling pile-soil-pile interaction (after 

Durrani et al., 2006) 

 

Figure 2.4 shows conceptual models for the behaviour of 

(1) an ‘isolated pile’ 

(2) a ‘continuous wall’ 

 

with corresponding earth pressures in the soil which is passively loading the pile or row, as 

proposed by Durrani et al. (2006).  The limits are based on Equation 2.3 and active and 

passive limits for a retaining wall in level ground respectively. 

 

Figure 2.5(a) shows the equivalent pressure on a pile at ‘ultimate’ conditions, (pp,ult, where 

relative pile-soil movement was sufficient to give a maximum interaction pressure), 
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normalised by the ‘constant overburden’ stress (Figure 2.3).  Variation with normalised pile 

spacing along the row is shown (s = centre-to-centre pile spacing, d = pile diameter). 

 

Equations derived from the conceptual models are also shown (see Chapter 5), and it can be 

seen that the data conform quite well to the conceptual models, with behaviour changing 

from a continuous wall to an isolated pile as spacing increases.  Durrani et al. (2006) 

proposed that the intersection of the lines was an approximate limit on arching between 

adjacent piles to give an equivalent wall.  

 

Figure 2.5(b) shows an equivalent pressure ‘along’ the pile row, pr = pp (d/s), which is more 

relevant to slope stability analysis in a vertical plane strain section.  It is now apparent that as 

pile spacing increases the ultimate pressure which the row can offer to resist soil movement 

reduces, as would be expected. 

 

 

Figure 2.4  -  Conceptual models of an isolated pile and a continuous wall 
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(a) Equivalent pressure for a pile at ‘ultimate’ condition 
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(b) Equivalent average pressure ‘along’ the pile row 

 

Figure 2.5  -  Ultimate equivalent pressures on a pile row and theoretical limits versus 

normalised pile spacing (after Durrani, 2006) 

Data from numerical analyses 
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2.3 Limit equilibrium methods 

Limit equilibrium analyses are widely used in the analysis of stability of earth structures with 

or without reinforcing members.  They account for the static equilibrium condition of forces 

and/or moments developed on potential failure surfaces in the soil. An average factor of 

safety along the failure surface is generally calculated by comparing the required shear 

strength to maintain a condition of static limit equilibrium with the available shear strength 

of the soil.  

 

2.3.1 Slip circle methods 

In a slope reinforced with discrete piles a horizontal shear force resulting from soil-structure 

interaction is generally assumed to act where the piles intersect with a potential failure slip 

(Figure 2.6).  The presence of the reinforcing piles in an unstable slope can make a major 

contribution to overall stability of the slope by providing an additional resisting force against 

sliding. 

 

Slip circle methods for slope stability (normally based on the method of slices) are most 

frequently used in design, incorporating the interaction force as a horizontal line load (which 

acts on the slip surface which is critical prior to stabilisation).  Commercial software 

packages for slope stability e.g. SLOPE/W easily allow this approach.  

 

A number of authors (e.g. Lee et al, 1995; Hassiotis et al, 1997; Ausilio et al 2001) have 

inherently modified slip circle methods to incorporate the effect of passive interaction above 

the slip surface (for instance using Ito & Matsui’s limiting pressure).  It is shown (e.g. by 

Hassiotis et al, 1997) that inherently considering the stabilising force modifies the critical 

slip, and Durrani (2007) demonstrated that logically the critical slip becomes slightly deeper 
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for a given stabilising force.  However, for routine design any modification of the slip which 

is critical prior to stabilisation is normally ignored. 

 

 

Figure 2.6  -  Limit equilibrium analyses for a potentially unstable slope stabilised with piles 

 

Wang and Yen (1974) assumed that the ‘yielding’ (unstable) layer failed along a potential 

failure plane parallel to the slope, and that a row of stabilising piles was embedded in a firm 

underlying base (Figure 2.7).  The behaviour of the soil was assumed to be rigid-plastic.  The 

solution proposed two relative spacings (m = B/h), where B is the clear spacing between the 

piles and h is the thickness of the unstable layer: 

(1) optimum spacing (mm) at which soil arching is likely to be most effective 

(2) critical spacing (mcr) beyond which the piles are unlikely to provide any stabilisation.  
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However, three limitations of the theory are apparent:  

1. The pile row would behave as a ‘continuous wall’ at narrow spacing. This was not 

the ‘most effective’ spacing since arching may be developed even at a wider spacing. 

2. The infinite slope assumption might be an ‘oversimplification’ of a complex three-

dimensional problem, most particularly with regard to the upslope and downslope 

directions.  Additionally, the length of the shear zones (a-a') upslope of the piles is 

required to be used in the analysis.  Assuming the full upslope length of the slope 

can give unrealistic results (Hayward et al., 2000), whilst assumptions for a reduced 

length will be arbitrary. 

3. The pile diameter was not considered in arching development since only equilibrium 

of the soil between the piles was considered.   

 

Figure 2.7  -  Idealised pile-slope system (after Wang and Yen, 1974) 
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Viggiani (1981) proposed practical solutions to determine the maximum shear force 

provided by the pile on the slip surface and the bending moments acting on the pile for the 

different failure modes that may occur in practice.  The solutions only considered the 

ultimate state of purely cohesive soils and the cohesion of the unstable and stable soils were 

assumed to be constant with depth.  The pile-soil interaction in relation to spacings along the 

pile row was not reflected in the solutions.  

 

Some of the conclusions from these references are considered in Section 2.6. 
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2.4 More complex analytical methods 

Chen and Poulos (1997) and Poulos (1999) developed methods for computing lateral pile 

response based on a specified free-field soil movement profile using a simplified boundary 

element analysis or finite difference analysis.  The pile was modelled as a simple elastic 

beam and the soil as an elastic continuum.  It was concluded that a reasonable prediction was 

only made when the ratio of soil movement to pile diameter is smaller than about 10%.  

Lateral responses rely upon a ‘free field’ soil displacement for the unstable soil (in the 

absence of piles) as an input to the analysis, and thus are likely to have limited applicability 

in practice. 

 

Jeong et al. (2003) described a simplified numerical approach for analysing the lateral 

response of piles in a row.  Group interaction factors (representing the effect of pile-soil-pile 

interaction) were determined by comparing the maximum bending moment of a pile group 

with that of a single pile for a given free-field soil movement in finite element analysis 

(ABAQUS).  Bishop’s simplified method was used to determine the factor of safety of a 

slope without piles and the critical failure surface.  The non-linear characteristics of the pile-

soil interaction were modelled by a hyperbolic load transfer curve.  The ultimate lateral soil 

pressure for a pile in a row was calculated by multiplying the ultimate pressure for a single 

pile by the group interaction factor.  A computer programme (RSSP) was developed to 

perform a series of sequences of the proposed pile-slope stability analysis.  

 

A number of attempts have been made to identify the impact of various design factors 

influencing pile-soil interaction in a piled slope based on numerical approaches (e.g. finite 

element, finite difference).  Examples include Cai and Ugai (2000), Carder and Easton 

(2001), Won et al. (2005), Ang (2005) and Durrani et al. (2006). The soil behaviour is 

generally assumed to be characterised by an elasto-plastic Mohr-Coulomb failure criterion. 
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The factor of safety of the pile stabilised slope is usually calculated by the strength reduction 

technique (in which the soil shear strength is gradually reduced until the analysis indicates 

failure). 

 

‘Coupling’ of the pile-soil-pile interaction along the row with slope stability is inherently 

incorporated in 3-d analyses, or normal and shear ‘coupling springs’ are used in plane strain 

analyses.  In principle such approaches (particularly 3-d analysis) offer more realistic 

outcomes than less sophisticated methods.  However, the strength reduction technique is 

required to instigate failure, and the result may not be completely representative of actual 

failures instigated by other effects, and the suitability of constitutive models is always of 

some concern in numerical modelling.  Some of the authors compared the results of 

numerical analyses with equivalent modified Bishop analyses. 

 

Some of the conclusions in these references are considered in Section 2.6. 
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2.5 Other references 

Bosscher and Gray (1986) performed reduced-scale model tests in order to investigate the 

effect of soil arching in a sandy slope that was restrained by a series of ‘fixed gates’ and 

‘swing gates’.  The width of the swing gate is analogous to the open spacing between piles.  

It was observed that the effect of arching becomes less effective as the swing gate width 

increases.  

 

Adachi et al. (1989) attempted to investigate arching phenomenon by examining the 

deformation pattern of soil particles (e.g. particle A, B, and C in Figure 2.8) in a series of 

model tests using trapdoors.  Particles B and C within the arching zone of soil were not 

influenced by arching development, as opposed to soil particle A which was.  The lateral 

pressure is superimposed along the developed arch between the piles and transferred to the 

piles.  The loads acting on the piles increased with an increase of the pile spacing. However, 

the pile behaved like a single pile at (s/d) > 8 (indicating disappearance of any arching 

effect). 

 

Figure 2.8  -  Arching development and effect (after Adachi et al., 1987) 
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Poulos et al. (1995) and Chen et al. (1997) conducted laboratory model tests on single piles 

and pile groups embedded in calcareous sand and subjected to lateral soil movement.  The 

group effects of the piles were estimated using a dimensionless group factor (the ratio of 

ultimate soil pressures for a pile in the group to a single isolated pile).  It was reported that 

the group effects were diminished when the spacing between the piles exceeded 8 times the 

pile diameter.  

 

Hayward et al. (2000) reported a sequence of centrifuge tests on a model cut slope in clay 

without or with discrete piles spaced at 3.2, 4.2, and 6.3 diameters.  It was concluded that at 

a spacing of 3.2 and 4.2 diameters deep seated failure was prevented, but not at a spacing of 

6.3 or the unreinforced slope.  The limiting lateral pressure on the piles steadily increased as 

the pile spacing became larger.  A pile spacing of 4 d appeared to be critical for preventing 

the slope failure in this case. 

 

The centrifuge test results were compared with other methods for predicting the limiting 

lateral pressure.  The limiting lateral pressure profile at 6 diameter spacings for a given depth 

showed good agreement with the method proposed by Fleming et al. (1994) but the method 

proposed by Broms (1964) gave an overestimate.  Theoretical methods proposed by Ito and 

Matsui (1975) and Wang and Yen (1974) did not give agreement in many respects (e.g. the 

relationship of limiting pressure distributions versus pile spacing), indicating that they may 

not be suitable for use in analysis.  

 

Carder and Temporal (2000) presented a comprehensive review of the use of spaced piles to 

stabilise embankment and cutting slopes.  The report reviewed case histories, construction 

techniques where soil flow and arching occur, and earlier design methods for stabilising piles.  
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Boeckmann (2006) conducted a series of large scale model tests to study load transfer in 

micropiles used to stabilise a sandy slope.  Spacing ratios of 5, 10, 15, and 30 diameters were 

considered.  It was reported that there was a slight tendency for increase in the limiting 

lateral pressures with increasing reinforcement spacing ratio.  Piles whose head was 

restrained against lateral movement showed the greatest limiting pressure as expected. 

 

Thompson and White (2006) performed large scale lateral load tests to verify the use of 

drilled and grouted slender piles subject to uniform lateral soil movement.  From the results 

slender piles may become more cost effective than large diameter piles for particular slope 

failure conditions (e.g. shallow failure), considering the mobilised bending moment relative 

to maximum bending capacity of the pile.  However an increasing danger of structural failure 

of the pile and requirement for more piles compared to larger diameter piles should also be 

taken into account. 

 

Smethurst and Powrie (2007) presented bending behaviour of discrete piles used to stabilise 

a railway embankment at Hildenborough, Kent, UK.  The site is underlain by the Weald 

Clay to a depth of about 250 m.  Piles installed at a spacing of 4 diameters were considered, 

and the behaviour over four years after pile installation was monitored.  In the short term 

there was a significant change in bending moment measured in the piles whilst the longer-

term bending behaviour showed a relatively small subsequent variation.  Analysis of the 

piles using a simple elastic analysis (using soil displacement measured at the midpoint 

between piles, based on the program ALP) was conducted, and showed a reasonable match 

to the bending moment and pile displacement measured. 
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2.6 Review of critical factors 

Information available from the above references for aspects of analysis of a slope stabilised 

by a discrete pile wall are summarised as follows: 

• pile row location in the slope 

• pile spacing along the row 

• effect of the pile-soil interface roughness 

• effect of soil dilation 

 

2.6.1 Pile location in slope 

Figure 2.9 shows the effect of location (where the pile is most effective in stabilising a slope) 

proposed in various references (given in Table 2.1).  Here Lx is the horizontal distance from 

the toe of the slope to the pile position and L is the horizontal distance from the slope toe to 

the crest.  Hence for piles at the toe Lx/L = 0 and when the crest is reached Lx/L = 1. 

 

For a typical slip (Figure 2.9(a)) the largest improvement is achieved when the piles are 

placed at midslope or near the crest.  This is because the depth of the slip below the slope 

surface (indicating the depth and hence maximum magnitude of passive interaction) is 

similar at the midslope and nearer the crest, but much lower near the toe (Figure 2.10).  

 

However, Lee et al. (1995) argued that for a purely cohesive soil whose strength does not 

increase with depth the critical slip tends to become very deep, even passing beneath the pile 

tips.  The optimal position then becomes at the crest or the toe of the slope because this 

failure type readily occurs if the embedded depth of the piles is not sufficient (Figure 2.9(b) 

in which the improvement ratio (Nps = Fp/Fs) is the ratio of the improved factor of safety of 

the slope with piles (Fp), to the initial factor of safety of the slope without piles (Fs)).  
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However, this finding is specific to analysis using undrained soil strength which does not 

increase with depth. 

 

Ausilio et al. (2001) also argued that the critical slip can show increasing tendency to extend 

below the base of the slope if a log-spiral curve is used.  For this case, the optimal location of 

the pile in the slope was then proposed to be between the midslope and toe.  However, the 

probability of an upslope slip is then increased (Figure 2.9(c) in which K is the stabilising 

force normalised by (γH2/2) and η is the improvement ratio in the factor of safety). 

 

Durrani (2007) emphasised two important features of behaviour: 

(1) When the piles are near the toe of the slope the depth of interaction (and hence 

maximum interaction force) is small, or even zero for a slip occurring upslope of the 

pile row. 

(2) When the piles are near the crest, although the depth of interaction is quite large less 

passive loading was generated, presumably because the mass of soil which is 

‘above’ the piles was small. 

 

It is thus plausible that piles at the crest or toe are generally not as effective in stabilising the 

slope as at the midslope for a typical slip.  These generic observations do not take any 

account of the practicality of constructing piles at various locations in the slope, or the 

location of infrastructure at the crest or toe of the slope.  However, both these factors will 

also be of considerable importance in choice of location for actual design scenarios. 

 

Summary of the references considered herein is given in Table 2.1. 
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(a)  Optimal location of the pile for a typical rotational slip for comparison 
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(b)  Optimal location of the pile for a deep seated failure slip in cohesive soils 

(after Lee et al., 1995) 
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(c)  Optimal location of the pile for a log spiral slip (after Ausilio et al., 2003) 

Figure 2.9  -  Comparison of the optimal pile location in stabilising a slope 

 

 

Figure 2.10  -  Depth of slip measured at crest, midslope, and toe of a slope for a typical slip 
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   Carder and Easton (2001) 
   Jeong et al. (2003) 
   Won et al. (2005) 
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Log spiral slip: 
   Ausilio et al. (2003) 
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Table 2.1  -  Summary of references and optimal locations 

References Method Failure slip type 
Coupled / 
Uncoupled 

Optimum location 

Lee et al.  
(1995) 

Limit equilibrium (for slope stability) 
Modified boundary element (for pile response 
prediction) 

Deep seated failure 
slip (even passing 
beneath of the pile tip)

Uncoupled 
Crest and toe of a slope 
 

Hassiotis et al. 
(1998) 

Limit equilibrium (for slope stability) 
Ito and Matsui’s (for ultimate pile pressure 
prediction) 

Typical failure slip Coupled 
Near the crest of a slope 
 

3d finite element Typical failure slip 
Coupled 
(inherently) 

Midslope  
 Cai and Ugai 

(2000) 
Modified Bishop’s Typical failure slip Uncoupled Between midslope and the crest  

Ausilio et al. 
(2001) 

Limit analysis based on the upper- and lower bound 
theorems of plasticity 

Log-spiral curve type 
failure slip 

Coupled Between midslope and the toe  

Carder and Easton 
(2001) 

3d finite element  Typical failure slip 
Coupled 
(inherently) 

Between midslope and the crest  

Jeong et al.  
(2003) 

Bishop’s simplified (for slope stability) 
Finite element (for determining group interaction 
factors required to calculate the ultimate pressure) 
Numerical (for pile response prediction) 

Typical failure slip Uncoupled Between midslope and the crest  

FLAC 3D Typical failure slip 
Coupled 
(inherently) 

Midslope  
 Won et al.  

(2005) Modified Bishop’s (incorporated with Ito and 
Matsui’s solution for ultimate interaction pressure) 

Typical failure slip Uncoupled 
Near the crest of a slope 
 

Durrani (2007) FLAC 3D (3d constant overburden) Typical failure slip 
Coupled 
(inherently) 

Midslope 
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2.6.2 Pile spacing 

Pile spacing has a significant impact on two important issues: 

(1)  the improvement in stability of a slope reinforced with piles (considered herein) 

(2)  passive interaction with respect to development of arching (also previously 

considered in Section 2.2.3).  

 

The relationship of the safety factor (FoS) or the improvement ratio (Nps = Fp/Fs) of the slope 

with the normalised spacing (s/d) shows that the stability significantly decreases with an 

increase of pile spacing (Figure 2.11(a)).  This observation seems clearly reasonable – 

arching between piles becomes more effective as the pile spacing decreases whereas the 

tendency for flow between the piles increases at wider spacing (and hence there is the 

reduction in stability).   

 

Figure 2.11(b) also indicates that the pile head condition can influence the factor of safety of 

the slope, with a pile which is ‘hinged’ (restrained against horizontal movement at the head) 

being more effective than a pile which is ‘free’ (unrestrained) at the head.  The piles 

considered by Cai & Ugai are tubular, with quite low bending stiffness.  Thus the pile 

displacement exceeds the soil displacement near the soil surface, giving active rather than 

passive loading at the head of the pile. This effect is rather unusual in the context of piles 

which are stabilising the slope and reduces the total passive resistance which the flexible 

piles offer to a potential slip when horizontal movement is allowed at the head.  

 

Figure 2.11(c) (Durrani, 2007) shows a solid black line for comparison with results from a 

series of 3-d ‘constant overburden’ FLAC analyses.  The origins of this model of behaviour 

are described in Section 5.2.3.  Beyond a critical pile spacing (which is postulated to mark 

the upper limit of spacing for arching to occur) the improvement in FoS (ΔF) shown by the 
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solid black line reduces as (1/s), and it can be seen that the results show reasonable 

agreement with this trend, hence broadly quantifying this effect. 
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(a) Improvement ratio versus s/d (after Lee et al., 1995) 
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(c) Improvement in FoS versus s/d (after Durrani, 2007) 

Figure 2.11  -  Effects of pile spacing on the stability of a stabilised slope with the piles 
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2.6.3 Effect of pile/soil interface roughness 

The effect of pile/soil interface roughness on the ultimate capacity of a pile has been 

investigated for a pile spacing of 4 or 5 diameters by Chen and Martin (2002), and Durrani 

(2007).  The internal friction angle of the granular soil considered was 'φ  = 30º.  The 

ultimate equivalent pressure on the pile is plotted showing variation with the friction angle of 

the interface (Figure 2.12). The results show that there is some increase in the ultimate 

pressure up to 10˚ but very little effect thereafter.  This is probably attributable to the 

dominance of difference in normal stresses on the ‘front’ and ‘back’ of the piles rather than 

actual shear stress at the interface.  The results presented by Chen and Martin (2002) are 

inherently lower since they are based on a plane strain analysis rather than the ‘constant 

overburden’ approach used by Durrani. 
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Figure 2.12  -  Effect of interface roughness on ultimate equivalent pressure on the pile 

 



 

36 

 

2.6.4 Effect of soil dilation 

Figure 2.13 shows variation of the ultimate resistance with different dilation angles for 

(s/d)  = 3, 4, and 5; again showing data from Chen and Martin (2002), and Durrani (2007).  

The ultimate resistance is likely to be less affected for a closely spaced pile ((s/d) = 3 in the 

analyses by Durrani), when the pile row behaves as a ‘wall’.  On the other hand, the higher 

dilation angle causes some increase of the ultimate resistance for more widely spaced piles, 

which seems reasonable since tendency for volumetric strain will increase the constraint on 

soil ‘squeezing’ through the gap between the piles. 
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Figure 2.13  -  Effects of soil dilatancy on ultimate resistance and passive interaction 
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2.7 Summary 

A number of studies of stabilisation of a slope using piles have been introduced:  

• limit equilibrium methods (Section 2.3)  

• analytical and/or numerical methods (Section 2.4)  

• model or field tests (Section 2.5)   

 

Some of the references have provided a reasonable appraisal of lateral pile-soil interaction 

(involving linear elastic and ultimate responses).  Many of the design methods presented 

have also attempted to provide geotechnical engineers with a generally acceptable prediction 

of lateral behaviour of the piles in practical design, but there are still some uncertainties 

regarding the impact of critical design factors.  

 

From general observation of critical factors available from the references, the following 

conclusions have been drawn: 

• The piles are generally most effective somewhere near the mid-height (or crest) of 

the slope.  However, practical constraints of construction and location of 

infrastructure also impact significantly on this aspect of design. 

• Arching between piles in a row becomes more effective as the pile spacing decreases 

whereas the tendency for flow between the piles increases at wider spacing.  Beyond 

a critical pile spacing (which is postulated to indicate the upper limit of spacing for 

arching to occur), the effect of the piles tends to reduce as (1/s) at wider spacings. 

• Pile/soil interface roughness and soil dilation appear to have relatively little effect on 

ultimate resistance.  
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CHAPTER 3 

CENTRIFUGE MODELLING: METHODOLOGY 

 

3.1 Introduction 

3.1.1 Centrifuge modelling: principles and scaling laws 

It is widely recognised that reduced scale physical models do not replicate the corresponding 

stress regime of a full-scale geotechnical situation.  This is a significant problem since the 

mechanical behaviour of soil is highly dependent on the magnitude of the current confining 

stress (and stress history).  Geotechnical centrifuge modelling overcomes this problem and is 

the most efficient and robust tool in laboratory simulation for practice and research.  

 

The principle of centrifuge modelling is that the particular full-scale stress regime can be 

approximately replicated by increasing centrifugal acceleration to N times Earth’s gravity in 

an 1/Nth scale model.  This approach works because (for the same soil density) the self-

weight increases by a factor N whilst the length scale is reduced by the same factor so 

that  σv = γz is correct.  Figure 3.1 presents the stress regime in a centrifuge model compared 

to that of the equivalent ‘prototype’ (a version of the model which is N times larger).  

 

The scale factors relevant to common geotechnical applications of the centrifuge are given in 

Table 3.1.  Further details on centrifuge modelling can be found in Schofield (1980) and 

Taylor (1995).  Errors associated with the inertial stress field are considered in Section 3.6.3. 
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Figure 3.1  -  Stress distributions for prototype and centrifuge model (after Schofield, 1980) 

 

Table 3.1  -  Centrifuge model scaling relationships 

Quantity Units Scaling factor 
(prototype / model) 

Acceleration m/s2 1/N 

Density kg/m3 1 

Unit weight N/m3 1/N 
   
Linear dimension m N 

Area m2 N2 

Volume m3 N3 
   
Stress N/m2 1 

Strain Dimensionless 1 

Force N N2 

Force / unit width N/m N 

Bending moment Nm N3 

Bending moment / unit width Nm/m N2 

Flexural stiffness Nm2 N4 

Flexural stiffness / unit width Nm2/m N3 
   
Void ratio Dimensionless 1 

Particle friction Dimensionless 1 

ω

r2ω  Model 

Inertial Stress

Depth
mh  

Prototype
g

Gravity Stress 

Depth 
ph
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3.1.2 Structure 

The Chapter is split into sub-sections as follows: 

 

• 3.2 Centrifuge test programme 

• 3.3 NCG Geotechnical Centrifuge facilities 

• 3.4 Test material (e.g. engineering properties of the test sand) 

• 3.5 Centrifuge test model (e.g. test model and model pile) 

• 3.6 Modelling considerations 

• 3.7 Test procedure 

• 3.8 Summary 
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3.2 Test programme 

The centrifuge model was designed to represent an unstable slope in a purely frictional 

(granular) soil, inclined at 30° to the horizontal (Figure 3.2).  The slope was comprised of a 

‘sliding’ (unstable) layer and ‘stable’ underlying material, separated by a prescribed failure 

surface.  The predefined failure surface was a translational slip plane parallel to the slope 

surface at 70 mm depth at model scale.  The model piles were installed in a row at discrete 

intervals across the slope.  The model was assumed to be plane strain (except the pile row, 

this will be discussed in Section 3.5.1).   

 

The model is somewhat idealised.  The failure interface separating the unstable and stable 

material has a very low sliding resistance (see Section 3.6.1), increasing the tendency for the 

upper portion of the slope to cause passive loading on the piles over a known depth, so that 

this aspect of behaviour could be studied in detail.  The model is intended to generically 

study this mechanism rather than to represent a specific prototype.  It is also worth noting 

that design procedures often do not exactly represent real life, and thus idealised generic 

approaches such as this can be at least as valuable in informing design as more ‘realistic’ 

(and hence specific) studies.  Likewise, sand has been used, but this is intended to represent 

any frictional soil (e.g. drained behaviour of clay, although the friction angle would be 

lower). 

 

Selection of the variables was based on combination of the following factors affecting the 

pile-soil-pile interaction (Figure 3.2): 

(1) the ratio of the upslope length to the thickness of sliding soil ground (l/h) which 

essentially controlled the total load on the pile row 

(2) the normalised centre to centre pile spacing along the row (s/d) which is a significant 

factor in determining limiting pile-soil interaction for the row. 
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Both (1) and (2) (the load on the piles and the limiting capacity) increase nominally in 

proportion to g-level.  Thus models were subjected to a variety of g-levels (in the range 10 to 

50), which is unconventional.  The aim was to explore the underlying principles controlling 

behaviour rather than consider a specific prototype.  The range of g-levels used did however 

give soil behaviour considerably more representative of full-scale behaviour (in general) than 

a 1-g model.  At the maximum acceleration of 50g the 70 mm thick unstable layer 

corresponded to 3.5 m. 

 

Initial tests were undertaken to refine the modelling approach.  The general arrangement and 

components are illustrated in Figure 3.2.  Table 3.2 and Figure 3.3 show the tests forming the 

final data set reported here.  
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Figure 3.2  -  Configuration of slope model with a row of piles 
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Figure 3.3  -  Centrifuge testing programme 

 

Table 3.2  -  Centrifuge testing programme 

s/d 
l/h 

2.5 3.6 4.5 5.9 8.9 

4 12a 11a 13d 15b - 

3 12b 15f 13b 13f - 

2.5 14a  14c  13c 13e 15d 

2 12c  12d  13a  14g 11c 

1.5 14b  14d  15e  15a  15c 

Note that boundary values of test programme were designed to cover the general ranges of 
pile spacing from critical spacing (3 to 4 s/d proposed by Hayward et al. (2000) and Durrani 
et al. (2006)) to the spacing at which the piles do not interact with the slope (8 s/d proposed 
by Liang and Zheng (2002)). 
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3.3 NCG geotechnical centrifuge facilities 

3.3.1 NCG geotechnical centrifuge 

The Nottingham Centre for Geomechanics (NCG) geotechnical centrifuge is a typical 

medium-size beam centrifuge with 2.0 m platform radius and a payload capacity of 500 kg at 

1.7 m nominal radius up to 100 g.  The centrifuge mainly consists of the following 

components: 

(1) a main body with rotating arms, 

(2) a swinging platform (cradle), 

(3) counterweight (fixed mass, adjustable position), supplemented by an in-flight 

automatic balancing system 

(4) electric motor 

(5) Data Acquisition System (DAS) cabinets for data transmission  

(6) slip rings for transmission of electrical signals and power, and fibre optic rotary joint 

for transmission of data 

 

Specification of the NCG geotechnical centrifuge and the components are given in Table 3.3 

and Figure 3.4.  Specific discussion of NCG centrifuge and DAS can be found in Ellis et al. 

(2006). 
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Table 3.3  -  Centrifuge specification 

Performance criteria Specification 

Manufacturer Thomas Broadbent & Sons 

Radius to platform in flight 2.0 m 

Max. size of payload 0.8 m wide (vertical in flight) 

 0.6 m wide (circumferential in flight) 

 0.9 m high (radius in flight) 

Max. platform payload 500 kg at nominal radius of 1.7 m up to 100g 

Max. acceleration 150g at nominal radius of 1.7m  

In-flight balancing +/- 50 kgm 

Motor 75 kW 3 phase induction motor 

 

 

 

Figure 3.4  -  NCG centrifuge components 
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3.3.2 In-flight digital image processing 

Technical specification 

Two digital cameras capable of recording low resolution video and high resolution digital 

still images were mounted on the centrifuge swinging platform and the model package.  The 

technical specification of the digital cameras, and relevant settings used in the tests are 

described in Table 3.4.  The cameras were controlled in real-time from a PC in the centrifuge 

control room using a direct USB connection via the slip rings. 

 

Table 3.4  -  Technical specification of the digital still camera in a test 

Performance criteria Specification  

Camera Model Name Canon PowerShot S70 

Dimensions 114 ×  57 ×  39 mm 

Resolution 3072 ×  2304 pixels (7.1 megapixels) 

Lens 5.8 – 20.7 mm 

Focal length  8.6 mm (range: 28 – 100 mm) 

Movie clips 640 ×  480 pixels 

Shooting mode Aperture- priority AE 

Shutter speed 1.0 sec (as required to give correct exposure) 

Av (Aperture value) 8.0 (chosen to give ‘robust’ focus at g) 

Light metering Spot (centre or linked to focusing frame) 

Exposure compensation + 2/3 

Sensitivity (ISO Speed)  ISO 50 

AF mode Single AF 

Drive mode Single-frame shooting 

Other features PC-controlled shooting via USB 
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Artificial visual ‘textures’ consisting of latex sprayed with dots or dyed sand were used on 

the front face of the test model and on the exposed slope surface respectively.  A sequence of 

digital images of these textures was used to infer ground movements using a digital image 

processing method based on particle image velocimetry (PIV).  The theoretical background 

and details of this technique were discussed by White et al. (2003). 

 

PIV analysis procedure 

Digital image processing based on PIV was carried out by the following steps: 

1. A sequence of digital images was taken during a test.  

2. A mesh of test ‘patches’, of size 75× 75 pixels, was generated in the first image to 

be analysed (Figure 3.5(a)).  

3. A ‘template launch file’ which includes the images to be analysed, analysis 

parameters to use, and location of the initial mesh of patches was set up.  

4. GeoPIV (programmed in Matlab, and supplied by White et al), tracked the 

displacement of test patches for each consecutive image pair and created text files, 

see Figure 3.5(b).  Texture has been lost over quite a large area of the slope face at 

the end of the test due to shallow slope movement.  However, more patches could be 

tracked earlier in the test, and the upper portion of the slope and the piles can still be 

tracked at the end. 

5. Unnecessary ‘wild’ (erratic or erroneous) displacement vectors were eliminated. 

6. Control point positions (known locations in object space) were defined on the first 

image (Figure 3.5(c)).  

7. Step (2) – (5) was repeated. 

8. Position and movements of the camera during a test were determined using Euler’s 

angle formula, focal length, and reference point locations.  

9. The programme converted the displacement vectors in image space (pixel 

coordinates) into object space (XYZ coordinates) 
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10. Contour plots of the displacement vectors between successive images were 

generated and average values of the vectors were displayed (Figure 3.5(d)).  

 

(a) Initial test mesh, of size 75× 75 pixels (b) Final test mesh 

(c) Control point positions (d) Contour plot at 5g 

Figure 3.5  -  Example of PIV analysis used in a test 
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3.3.3 Plane strain box 

The model container (internal dimensions: 400 mm high × 200 mm wide × 700 mm long) is 

designed to simulate earth structures under plane strain conditions (Figure 3.6).  The box has 

two end walls and flat base, a back face, and front window.  The back face (40 mm thick) 

and two vertical side-walls (50 mm thick) of the box are made of aluminium plate with high 

stiffness to prevent significant lateral deformation due to earth pressure at high centrifugal 

acceleration.  The front window is perspex 80 mm thick and allows observation of ground 

displacements and failure mechanisms occurring in the soil adjacent to the window. 

 

 

Figure 3.6  -  Plane strain box components 

Front window 
(Transparent Perspex) 

Back face 
(Aluminium plate) 
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3.3.4 Sand hoppers 

Spot/Line types hoppers 

Two types of sand pouring hoppers (‘spot’ and ‘line’), have been developed to construct 

centrifuge models at Nottingham (Figure 3.7).  The apparatus enables the model soil to be 

constructed in a uniform and repeatable manner by means of air pluviation.  A range of 

densities can be achieved by varying the rate and height of pluviation.  The major advantages 

of the technique (compared to other methods such as tamping or pouring) are higher dry 

density, no particle crushing, less effect of segregation, and better repeatability.  The 

technique has been verified by Takemura (1998) through cooperative experimental work 

undertaken in several centrifuge institutes.  It was reported that almost identical dry densities 

of sand were achieved by spot and line type hoppers.  

 

 

(a) Spot type hopper (b) Line type hopper 

Figure 3.7  -  Sand hoppers 
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Factors controlling dry density  

Factors which influence the density of air-pluviated samples are as follows: 

(1) the rate of pluviation (m, mass/time), which is controlled by the size and number of 

holes at the hopper outlet 

(2) travel speed of hopper (vs) during pouring 

(3) height of free fall from the hopper to the surface which the soil particles ultimately 

land on   

 

It is generally accepted that the density of the resulting model soil reduces as m increases.  

Increasing h increases density up to the point where the particles reach their terminal 

velocity during free-fall. 

 

The thickness of a sand layer deposited by a single ‘pass’ of the hopper, t, has been derived 

by Equation (3.1). This value can be normalised by dividing by the mean particle size d50 of 

the soil. 

 
s

mt
v bρ

=         (3.1) 

where,  

 t = thickness of layer (mm) 

 m = pouring rate (g/sec)  

 ρ = dry density of soil in model (g/ mm3) 

 b = width of deposition for hopper pass (normal to direction of travel) (mm) 

 vs = travel velocity of hopper (mm/sec) 

 

The relationship between the normalised thickness of a layer (t/d50) and the achievable 

relative density ((emax – e)/(emax – emin)) as derived in preliminary tests is shown in Figure 3.8.  

The relative density becomes greater as the thickness of the layer decreases, showing a good 
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consistency for all data.  This can be logically attributed to the argument that each layer is 

compacted by the impact of the subsequent layer, and it is accepted that thin layers are more 

readily compacted.  The data (except for some of Test 5) was attained at drop height of 0.5 m 

for different pouring rates (m) and/or travel velocity of hopper (vs).  Some of the data (in Test 

5) shows drop height of 1.0 m, which was sufficiently high that there was no increase in 

density for increased drop height.  
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Figure 3.8  -  Variation of relative density with thickness of layer for each pass of the hopper. 
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3.4 Test material: Leighton Buzzard sand 

3.4.1 Engineering behaviour of granular soils 

For granular soils which are not cemented, the strength is often assumed to be entirely 

frictional, with zero cohesion intercept.  However, the failure envelope of peak strength for a 

dense soil usually has some curvature at low mean effective stress due to the transient effect 

of dilation which enhances strength.  This feature can have significant implications in a 

reduced scale model, where confining stresses are small and hence the peak strength of the 

soil is unrepresentatively high – the use of centrifuge testing to overcome this has been 

discussed above. 

 

3.4.2 Test soil property 

Standard classification, particle density and limiting density tests were undertaken according 

to BS1377.  Details of triaxial testing to determine the strength parameters are given below.  

Results are shown in Table 3.5.   

 

Table 3.5  -  Properties of Fraction E Leighton Buzzard sand 

D10 (mm) D30 (mm) D50 (mm) Cu Cz Gs 

0.091 0.105 0.12 1.43 0.93 2.65 

ρs,max (kN/m3) ρs,min (kN/m3) emin emax  
'
peakφ  (º) '

critφ  (º) 

16.27 13.26 0.629 1.004 41 32 

 

Interface properties relevant to the model are reported in Section 3.6.1. 
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A series of drained triaxial tests on LB sand (e = 0.69, Id = 0.84) were conducted to 

determine the shear strength of the test soil. The procedure is outlined below: 

1. 38mm diameter test specimens were prepared by the dry tamping method in three 

sub-layers.  

2. The test specimen was saturated under a back pressure of 300 kPa for 2 hours. The 

pore pressure coefficient (B) was measured and checked as being at least 95 %.  

3. The fully saturated specimen was isotropically consolidated at a given mean 

effective pressure of 50, 80, 100, 200, 300 and 400 kN/m2. 

4. The sample was sheared under drained condition at a rate of 0.3 mm/min 

corresponding to 0.4 %/min, recording relevant data. 

 

In the following stress analysis of a triaxial test, the sand is assumed to be a purely frictional 

material with a corresponding failure criterion.  The state of stress is represented by drawing 

a series of Mohr circles on a (σ' : τ) plot.  A mobilised angle of shearing '
mobφ  corresponds to 

a mobilised stress ratio (τ / σ') during shearing.  This is defined by a tangent to the Mohr 

circle which passes through the origin and expressed as ( )' 1sin / 'mob t sφ −=  where 

' '
1 3( ) / 2t σ σ= −  and ' '

1 3' ( ) / 2s σ σ= +  (Figure 3.9(a)).  Taking the peak (maximum) and 

critical state ratio (τ / σ') during shearing for each test, the peak and critical state angles of 

shearing resistance were determined as '
peakφ = 41º and '

critφ = 32º (Figure 3.9(b)).  
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(a) Mohr circle of effective stress for a triaxial test 
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(b) Derived internal friction angles at peak and at critical state 

Figure 3.9  -  Stress analysis of a conventional triaxial test 
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3.5 Centrifuge test model 

3.5.1 Model slope  

Plane strain section 

The centrifuge model was designed to simulate the load transfer mechanism arising from 

passive interaction on a long row of discrete piles.  The plane strain boundaries are required 

to be lines of symmetry along the row, and hence were at a location equivalent to the 

midpoint between piles in a row extending to either side of the box (Figure 3.10). 

 

Figure 3.10  -  Schematic arrangement of the test model assuming plane strain conditions 

 

The model soil was Leighton Buzzard sand (Fraction E) pluviated through air from a line 

hopper.  The sand is of consistent quality, and has been used extensively for geotechnical 

centrifuge testing in the UK.  The small particle size was chosen mainly to ensure that 
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particle size did not have any adverse effect on interaction or interface behaviour with the 

piles (this will be discussed in Section 3.6.2).  

 

An artificial interface made of 2.5mm thick aluminium sheet (on the bottom) and latex sheet 

(on the top) separated by silicon based grease were used to give a pre-defined failure surface 

at a depth of 70 mm (at model scale).  Adoption of a low friction interface allowed the soil 

above the artificial failure surface to generate significant load on the pile row so that 

‘ultimate’ interaction conditions could be observed.  25mm diameter holes in the sheet at the 

pile locations allowed the piles to pass through the interface and to move relative to it.  

 

Construction technique 

Components required for model construction are illustrated in Figure 3.11.  The plane strain 

box was positioned under the line hopper inclined at an angle of approximately 30º to the 

horizontal.  The drop height was approximately 1m at which terminal velocity was probably 

reached.  

 

Figure 3.11  -  Arrangement of the model construction components 
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Details of model construction are summarised as following:  

1. The stable underlying soil (Figure 3.12(a)) was constructed by air pluviation of 

sand to a required depth from a constant drop height.  The hopper was moved at 

approximately constant velocity by swinging it from the gantry. 

2. The exact profile of the underlying soil was ‘finished’ by hand to give the required 

shape and the ‘failure interface’ was inserted on the underlying soil (Figure 3.12(b)). 

3. Latex sheet which had been spray painted to provide visual ‘texture’ (for PIV) was 

applied to the front window above the slip plane (Figure 3.12(c)), and similar plain 

latex sheet was applied to the back face of the box (see section 3.6.1).  The silicone 

grease used to lubricate this interface acts to hold the latex on the vertical face 

during model construction.   

4. Model piles were embedded into the underlying (stable) soil by pushing through the 

holes in the failure surface interface (Figures 3.12(d) and (e)). 

5. The unstable soil layer was then pluviated onto the interface with pouring rate m = 

16 g/sec and travel velocity of hopper  vs = 260 mm/s for width b = 198 mm.  The 

finished slope was trimmed to the desired geometry (Figures 3.12(f) and (g)). 

6. Dyed sand was sprinkled over the slope surface to provide PIV texture (Figure 

3.12(h)). 

 

The relative density (ID) and the void ratio (e) of the unstable layer and the stable material, as 

calculated in each test from the dry density of the resulting models using Gs = 2.64, emax = 

1.004, and emin = 0.629 are summarised in Table 3.6.  It can be seen that the relative density 

was consistently in the range 70 to 80 %. 
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(a) Stable granular material 

 
(b) Interface installation 

 
(c) Control points and Latex installation 

 
(d) Model pile installation 

 
(e) Model without the upper soil layer 

 
(f) Upper soil layer construction 

 
(g) Upper soil layer without texture 

 
(h) Complete upper soil layer with texture 

Figure 3.12  -  Test model construction procedures 
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Table 3.6  -  Summary of unstable layer and stable material  

Unstable layer Stable material  
Test 

dγ (kN/m3) e DI  (%) dγ (kN/m3) e DI  (%) 

BSY11A 15.42 0.72 76 15.38 0.72 75 

BSY11C 15.38 0.72 75 15.38 0.72 75 

BSY12A 15.50 0.71 78 15.33 0.73 73 

BSY12B 15.33 0.73 73 15.33 0.73 73 

BSY12C 15.38 0.72 75 15.33 0.73 73 

BSY12D 15.38 0.72 75 15.33 0.73 73 

BSY13A 15.38 0.72 75 15.41 0.72 76 

BSY13B 15.50 0.71 78 15.41 0.72 76 

BSY13C 15.53 0.71 79 15.41 0.72 76 

BSY13D 15.55 0.70 80 15.50 0.71 78 

BSY13E 15.53 0.71 79 15.50 0.71 78 

BSY13F 15.50 0.71 78 15.50 0.71 78 

BSY14A 15.36 0.73 74 15.41 0.72 76 

BSY14B 15.26 0.74 71 15.41 0.72 76 

BSY14C 15.31 0.73 73 15.41 0.72 76 

BSY14D 15.26 0.74 71 15.31 0.73 73 

BSY14G 15.41 0.72 76 15.31 0.73 73 

BSY15A 15.26 0.74 71 15.36 0.73 74 

BSY15B 15.55 0.70 80 15.36 0.73 74 

BSY15C 15.26 0.74 71 15.36 0.73 74 

BSY15D 15.31 0.73 73 15.53 0.71 79 

BSY15E 15.26 0.74 71 15.53 0.71 79 

BSY15F 15.50 0.71 78 15.53 0.71 79 
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3.5.3 Model pile  

Specification 

The model piles were made from 9.53mm outer diameter aluminium tube with 0.914mm 

wall thickness (3/8" 20 SWG).  Allowing for ‘heat shrink’ later applied to the exterior of the 

pile the outer diameter was approximately 11 mm.  Their embedded length was 205 mm. 

 

The tube has second moment of inertia 226 mm4.  Taking the Young’s Modulus of 

aluminium as 70 kN/mm2 this gives a flexural stiffness of 16 MNmm2 = 16 Nm2.  Taking an 

‘intermediate’ g-level for the tests of 30g, the corresponding prototype diameter and flexural 

stiffness are 330 mm and 13 MNm2 respectively.  For a solid prototype pile this implies a 

Young’s Modulus of approximately 20 GN/m2 – an appropriate value for a cracked concrete 

section.  The pile diameter is also reasonable since 300 or 450 mm diameter piles would 

routinely be used for slope stabilisation. 

 

Pile instrumentation 

One of the model piles was instrumented to measure bending moment at 10 locations 

through its depth using fully active strain gauge bridges.  The gauges were attached to the 

exterior of the aluminium tube, and the 0.3mm thick wires also ran up the pile surface.  The 

positions of the Bending Moment Transducers (BMTs) on the pile are shown in Figure 3.13.  

The pile length in the upper sliding layer was 70 mm, with a length of 135 mm in the lower 

stable material, making the total embedded length 205 mm.  
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The external instrumentation was protected (against damage during installation and testing) 

by epoxy coating and a plastic ‘heat shrink’, which increased the outer diameter of the pile to 

approximately 11 mm.  The remaining (uninstrumented) model piles were also coated with 

heat shrink so that their diameter and surface properties were consistent with the 

instrumented pile.  

 

Figure 3.13  -  Instrumentation of the model pile 
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BMTs calibration  

The instrumented pile BMTs were calibrated using identical signal conditioning to that used 

during the test.  10V excitation was supplied to the BMTs and the magnitude of small signals 

produced was amplified using a gain of 250 in the signal conditioning.  The top end of the 

pile was fixed using a clamping block.  Small increments of load up to 2.5 kg were applied at 

the tip of the pile to cause a known bending moment at each transducer location.  Calibration 

gave linear voltage output in response to applied bending moment, and hence the calibration 

coefficients for specific transducers were derived. 

 

Pile installation 

Ideally, model piles should be installed during centrifuge flight by duplicating a field 

construction process to give a similar stress regime around the pile.  However, this is often 

impractical.  Furthermore, a number of researchers have demonstrated that the effects of 

installation methods and acceleration level at the time of installation for a laterally loaded 

pile are less significant than for an axially loaded pile (Craig, 1984; Dyson and Randolph, 

1998). 

 

Thus the model piles were initially inserted (driven) into the stable material, and sand was 

pluviated around them in the sliding layer at 1 g prior to testing.  Spacing between the piles 

for each test was carefully measured at the top and near the slip surface to ensure it was 

correct.  

 

Pile roughness 

As described above, the pile outer diameter consisted of plastic shrink wrap.  Pile roughness 

can have some effect on lateral interaction with the soil (Lyndon and Pearson, 1988; Chen 

and Martin, 2002), tending to make it ‘stiffer’.  However, Durrani (2006) showed (based on 
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numerical modelling) that provided the interface friction angle is greater than about 0.3 'φ  

there was not significant effect on the ultimate interaction capacity (which consists mainly of 

‘bearing’ on the piles rather than sliding at the interface).  Interface friction tests between the 

shrink wrap and sand (Figure 3.14) indicated that the roughness was comparable to values 

for actual piles: precast concrete pile (0.8 – 1.0 'φ ) and rough steel (0.7 – 0.9 'φ ) as 

recommended by Kulhawy et al. (1991).  Here the interface friction is about 0.75 'φ . 

 

Figure 3.14  -  Friction angle of interface between soil and pile 
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3.6 Modelling considerations  

3.6.1 Boundary effects 

The fundamental assumption of plane strain conditions in centrifuge modelling in principle 

requires that there is no friction at the side boundaries (normal to the zero strain direction).  

In practice this requires that the friction should be reduced to a practical minimum which 

does not have significant effect on the overall response of the model.  

 

Both the unstable layer above the failure surface interface and the stable material below have 

contact with the side boundaries of the model container.  Since there would be significant 

movement of the unstable layer it was important that side friction was minimal here.  

However, since the stable material would undergo relatively little movement, and have 

considerably less effect on the model in general there was no particular concern regarding 

this interface, and no particular precaution was taken to minimise friction here. 

 

However, a latex sheet interface was used to minimise interface friction for the unstable 

layer.  The latex sheet is directly in contact with the soil and is used to separate it from a 

layer of grease trapped between the latex and the inside of the model container (Figure 3.15).  

This technique is routinely used in centrifuge testing (Taylor, 1995). 

 

The latex sheet used in the study was sufficiently flexible (having a stiffness of 

approximately 1.0 kN/m width) that it would not restrict differential movement of the sand, 

which in any case would have tended to move ‘uniformly’ above the failure interface.  

However there was likely to be differential movement ‘upslope’ and ‘downslope’ of the pile 

row so two separate sheets were used on each face, overlapping but not joined at the pile row 

location. 
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Figure 3.15  -  Cross-section of side boundary lubrication at the edge of the plane strain 

section 

 

A set of modified shear box tests were undertaken to investigate the friction at interfaces: 

(1) the silicone-greased latex panel/aluminium interface 

(2) a sand/aluminium interface. 

 

The test configuration and test results are presented in Figure 3.16 (using relative density of 

82 %).  The results showed that the silicone-greased interface offered only 2° frictional 

resistance compared with up to 26° for sand/aluminium interface. 

 

The greased latex/ aluminium interface with high stiffness was also used at the base of the 

unstable ground (the failure interface).  The rationale for such an approach was described in 

Section 3.2. 
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(a) Modified shear box test 
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Figure 3.16  -  Comparison of friction at lubricated and non-lubricated interfaces 
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3.6.2 Particle size effects 

According to the centrifuge scaling laws, it could be argued that the typical particle size 

should be N times smaller in the model than in the prototype. However, it is generally 

accepted that the size of soil particles are not reduced in this way.  It is more normal to 

ensure that the particles are small enough (compared to the other model components) that 

individual particle will not affect the continuum behaviour. 

 

Garnier and Konig (1988) proposed that the diameter of a pile must be more than 100 times 

the average particle size to minimise any effect on shaft interface behaviour. In a similar 

study Foray et al. (1998) concluded that the model pile diameter should exceed 200 times the 

average grain size.  

 

However, as noted in Section 3.5.3 lateral pile-soil interaction is more dependent on 

‘bearing’ mechanisms than interface behaviour.  Equivalent guidance for bearing at the end 

of a penetrometer (Gui & Bolton, 1998) requires a pile diameter only 20 times larger than the 

particle size. 

 

The diameter of the pile and the smallest pile spacing (= 2.5d) used in the centrifuge tests 

was 90 times and 225 times larger than the d50 size of the sand respectively and thus it is 

considered extremely unlikely that there would have been any significant impact on 

behaviour.  
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3.6.3 Stress error  

It is generally assumed that the gravitational acceleration field is uniform and parallel to a 

unique ‘vertical’ direction for structures on the earth.  However, the inertial gravitational 

acceleration field in a centrifuge deviates slightly from this.  It is therefore necessary to 

assess the corresponding error for given model dimensions.  

 

Figure 3.17  -  Model dimensions for stress error calculation 
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Figure 3.17 shows specific dimensions for this study at the location of the pile row.  The 

inertial acceleration increases proportionally with radius (depth) in a centrifuge model.  Thus 

the profile of vertical stress with depth is slightly curved as shown in Figure 3.18 (for a soil 

density of 1552 kg/m3, and rotational speed of 16.6 rad/s corresponding to 50 g at a radius of 

1.77 m).  At the point of maximum under-stress the error compared to the ideal linear 

prototype distribution is 1 %.  At the failure plane the stress is correct, and at the base of the 

model the maximum over-stress is 4 % - however, behaviour at smaller depths is of 

considerably more interest.  The percentage errors are tolerably small (and independent of g-

level). 

 

The second error of the inertial field is that it always acts in a radial direction, and thus is 

inclined to the ‘vertical’ sides of the box.  The maximum inclination in these tests is 

approximately 10o at the sides, but reducing to zero at the centre of the model (where the 

most critical model components are situated). 
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Figure 3.18  -  Vertical stress distributions with depth in the centrifuge model at 50g and 
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3.7 Test procedure 

After completing preparation of a test model (as explained above) the test package was 

secured to the swinging platform (Figure 3.19), and the instrumentation was connected to the 

DAS and checked.  Two cameras were also mounted on the swinging platform and on the 

test package. 

 

During the test centrifugal acceleration was increased gradually in 1 g increment from 5 g to 

16 g.  After that, increments of 2 g from 16 g to 30 g, and then 4 g increments from 30 g to 

50 g.  A sequence of images was taken using the two digital cameras at every gravity 

increment.  
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(a) Arrangement of test  

 

 

(b) Complete test package on the centrifuge swing 

 

Figure 3.19  -  Complete arrangement of a test package in the centrifuge 
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3.8 Summary 

Geotechnical centrifuge modelling is widely recognised to approximately replicate a stress 

regime corresponding to an equivalent prototype in laboratory simulation.  A centrifuge 

model conventionally considers a specific prototype, and is subjected to the relevant scaling 

relationship.  

 

The NCG Geotechnical centrifuge is a typical medium-size beam centrifuge with 2.0 m 

platform radius and a payload capacity of 500 kg at 1.7 m nominal radius up to 100 g.  An 

advanced control and data acquisition system, and in-flight digital photography are available.  

 

The centrifuge model used represents an unstable frictional slope that is inclined at 30° to the 

horizontal.  A prescribed translational slip (with very low resistance) at 70 mm depth (model 

scale) was used to generate loading on a pile row.  The model piles (3/8'' 20 SWG aluminium 

tube) were installed in a row at a discrete intervals across the slope, penetrating through the 

unstable layer into stable underlying material.  Plane strain was assumed (except for the pile 

row).  The model soil was Leighton Buzzard Sand (Fraction E), and a silicon-greased 

aluminium sheet was used for the slip interface.  One model pile was instrumented to 

measure bending moment with 10 BMTs along the pile length.     

 

The modelling focused on pile-soil interaction in the unstable ground rather than the slope 

stability of a specific prototype.  The test programme was therefore established based on 

factors affecting this mechanism:  

(1) the ratio of the upslope length to the thickness of sliding soil ground (l/h)  

(2)  the normalised centre to centre pile spacing along the row (s/d).   

 

The centrifuge test results will be presented in Chapter 4. 



 

 

 

75

CHAPTER 4 

CENTRIFUGE MODELLING: TEST DATA  

 

4.1 Introduction 

This chapter presents the centrifuge test data, with some analysis and discussion of the 

results.  Further discussion and analysis are given in Chapter 5.  

 

4.1.1 Note on data presentation 

General 

In the present study, the centrifuge test model used focused on investigating the fundamental 

understanding of passive stabilisation behaviour rather than considering a specific prototype.  

Thus some of the data are discussed based on the centrifuge model at model scale, or in 

‘normalised’ terms in order to eliminate scaling effects. 

 

Some of the data is presented either at a specific point in time for a particular g-level, or as a 

continuous record of a particular variable with time (and g-level, which varied with time 

throughout the test).   
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Sign conventions 

Figure 4.1 shows general sign conventions and notation for position, displacements and 

loading in the test.  In Figure 4.1(a) positions of test components are denoted using xyz-

coordinates (see Chapter 3), and pile and soil displacements use the u-coordinates (v is the 

zero strain direction).  Rotation (θ) is positive in the anticlockwise sense.   

 

The convention for bending moment (M), shear force (S), and pressure (p) acting on the pile 

are shown in Figure 4.1(b).  The sign convention for the bending moment diagram is that 

compression on the downslope face of the pile is positive.  The pressure is positive when the 

net lateral pressure on the pile acts downslope. 

 

(a) Coordinate system and displacements 

 

(b) Positive sign conventions for bending moment, shear force, and pressure 

Figure 4.1  -  General notation and conventions for position, displacement and loading 
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4.1.2 Structure of the chapter 

Figure 4.2 illustrates the various geometries used in the tests in terms of the length of the 

upslope section compared to it’s thickness (l/h) (Figure 3.2) and centre-to-centre pile spacing 

compared to the pile diameter (s/d).  Table 3.3 also showed this information.  Examples 

having quite different (l/h) and (s/d) (Figure 4.2) have been selected to provide insight into 

the general behaviour of passive loading in sections 4.2 and 4.3:  

 

• 4.2 Ground and pile movement data (based on PIV analysis) 

• 4.3 Pile data (based on analysis of moment data and PIV analysis) 

• 4.4 Summary  

 

1
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l /
 h

s / d
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15a
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test programme

Tests considered in 
Section 4.2 and 4.3

 

Figure 4.2  -  Selection of representative examples (BSY12a and BSY15a) 
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4.2 Ground and pile movement data 

In-flight photography and digital imaging processing (based on PIV analysis) were used to 

monitor and deduce movements of the unstable soil mass in the cross sectional plane and on 

the ‘face’ of the slope during a test.  Results from two tests (Figure 4.2) will be considered 

below.   

 

4.2.1 Displacements in the cross sectional plane 

Displacement profiles of the unstable soil layer in the ‘exposed’ cross sectional plane were 

deduced via PIV analysis of latex sprayed with a ‘texture’, as viewed through the transparent 

front window of the model at elevated g-level during the test.  Separate pieces of latex were 

used upslope and downslope of the pile row to allow discontinuity of displacement here if 

there was a tendency for this to occur.   

 

A sequence of images for BSY12a ((s/d) = 2.5, and (l/h) = 4.0) were taken from a digital 

camera mounted on the swing platform at 1, 10, 20, and 30 g (Figure 4.3).  The predefined 

failure interface is at 70 mm depth below the surface of the slope at model scale. The 

movement of the slope in the plane strain direction is zero at the window interface, which 

represents a line of symmetry in terms of pile-soil-pile interaction along the row.  

 

Figure 4.3 shows images taken for processing.  The unstable layer is clearly distinguished by 

the black latex used at the edge of this layer adjacent to the window (a similar arrangement 

was used at the interface with the inside back face of the box).  The position of the pile row 

is shown by a dotted yellow line. 
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Without PIV analysis it was hard to identify typical deformation characteristics.  

Nevertheless two features can be observed (referring to Figure 4.3(e)): (1) separation of the 

upslope and downslope latex panels at the pile row location, and (2) bulging of the toe of the 

slope downslope of the pile row.  At the end of the test, a ‘passive wedge’ mechanism can be 

seen immediately upslope of the pile row as indicated in red – further discussion of this will 

be given later.   

 

Figure 4.4 shows a series of contour plots of soil displacement in the downslope direction 

derived after PIV analysis, corresponding to the images in Figure 4.3.  As anticipated the 

unstable soil layer tends to slide downwards along the predefined interface, and significant 

soil movements (up to 40 mm) are observed downslope of the piles.  Movement upslope of 

the piles is considerably restrained by the pile row. 

 

A ‘passive wedge’ developed above the pile row can be identified in the PIV analysis 

(Figure  4.4(c)).  Displacement of the soil immediately behind the pile row is relatively small, 

but it is higher at the crest.  This implies two aspects of behaviour: 

1. Restraint of soil immediately behind the pile row.  Since the soil is loading the pile 

row there is analogy with a ‘passive wedge’ 

2. Increasing possibility of a potential slip upslope of the passive wedge which does not 

interact with the pile row 

 

The upward bulge immediately behind the pile row in Figure 4.3(e) supports both these 

hypotheses, and the mechanisms potentially ‘interact’ since the bulge could either be 

attributed to the passive wedge, or a ‘toe bulge’ for the upslope mechanism. 

 

This kind of failure mechanism tended to develop with an increase of (l/h) for a given (s/d) 

and decrease of (s/d) for a given (l/h).  The former increases the probability of a mechanism 
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upslope of the piles, whilst the latter implies greater resistance from the pile row 

corresponding to the passive wedge loading the row. 

 



CHAPTER 4. CENTRIFUGE MODELLING: TEST DATA 

 

 

81

(a) 1 g (b) 10 g 

(c) 20 g (d) 30 g 

  
(e) Typical deformation characteristics (taken at 50 g) 

Figure 4.3  -  Example of the cross sectional plane view for BSY12a ((s/d) = 2.5, (l/h) = 4.0) 
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Figure 4.4  -  Contours of downslope movement (mm at model scale) for BSY12a ((s/d) = 

2.5, (l/h) = 4.0) 
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Figure 4.5 and Figure 4.6 show equivalent images and contours for BSY15a ((s/d) = 5.9, 

(l/h) = 1.5).  Note that the unstable layer does not extend to the top of the interface since (l/h) 

= 1.5 < 4.  In fact the latex panel extends beyond the top of the unstable sand layer, and thus 

it misleadingly appears that (l/h) is somewhat greater than 1.5.  The results are generally 

similar to BSY12a, except that there is no significant evidence of a ‘passive wedge’ upslope 

of the pile row at 30g.   

 

Figure 4.6 illustrates the upslope movement derived from images taken in the cross sectional 

plane with increase of g-level.  Generally speaking the upslope displacement tends to 

increase with (s/d) for a given (l/h), and for a given (s/d) displacement tends to increase with 

(l/h).  This is a reasonable trend of behaviour, as would be anticipated. 

 

In summary, the ground movements in the cross sectional plane are satisfactorily deduced 

using digital image processing (PIV analysis) on a series of images taken during a test, 

including some important features of ground deformation.   
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(a) 1 g (b) 10 g 

(c) 20 g (d) 30 g 

Figure 4.5  -  Examples of the cross sectional plane view for BSY15a ((s/d) = 5.9, (l/h) = 1.5) 
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Figure 4.6  -  Contours of downslope movement (mm at model scale) for BSY15a ((s/d) = 

5.9, (l/h) = 1.5) 
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4.2.2 Movement of the slope face 

Displacements of the slope surface (mainly ‘upslope’ of the pile row) were obtained by 

image analysis of the dyed sand texture in a view of the model approximately perpendicular 

to the face.  Figure 4.7 shows visual observations of the unstable soil layer in BSY12a at 1, 

10, 20, and 30 g.  Seven piles were installed at spacing of 2.5d, and the ratio of upslope 

length and sliding mass thickness was 4.0.   

 

The bulge at the toe of the slope and passive wedge upslope of the pile row (already 

described in Section 4.2.1) are indicated on the figure.  In Figure 4.7(d), the back of the 

passive wedge is clearly visible as a black line – the orientation of the lighting in the test 

causes a shadow along this feature.   

 

A series of contour plots of downslope movement above the pile row at 10, 20, and 30 g 

(Figure 4.8) indicate some tendency for increase in movement nearer the crest (further from 

the piles), but deformation is fairly uniform.  It was impossible to obtain reliable soil 

displacement data in the zone of local shallow surface failure due to significant loss of 

texture on the slope surface.  Therefore the mean values (averaging the available 

displacement vectors) are used to estimate the nominal upslope displacement.   
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(a) 1 g (b) 10 g 

(c) 20 g (d) 30 g 

 
(e) post-test 

Figure 4.7  -  View of the slope face for BSY12a ((s/d) = 2.5, (l/h) = 4.0) 
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Figure 4.8  -  Contour plots of downslope movement (mm, model scale) on the slope face for 
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Variation of the average upslope and downslope movement (normalised by the pile 

diameter) for BSY12a are compared in Figure 4.9, showing increase with g-level.  As 

expected, it appears that there is significant differential displacement between the upslope 

and downslope.  Up to 22 g the stabilising effect of the pile row on the upslope compared to 

the downslope is clearly evident.  The events resulting in significant upslope movement at 22 

and 38 g are likely to be associated with failure of a passive wedge above the pile row. 

 

At low g-levels (8 and 14 g) significant downslope movement events are observed in the 

absence of corresponding upslope movement.  This seems to indicate failure events 

downslope of the piles (but not upslope).  At higher g-levels (22 and particularly 38 g) 

significant upslope and downslope events occur simultaneously.  This indicates a failure 

mechanism upslope of the piles (Section 4.2.1), but also more general widespread movement 

of the slope probably including ‘flow’ through the piles which causes downslope movement 

in response to the upslope movement. 
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Figure 4.9  -  Upslope and downslope displacement (δ) normalised by pile diameter (d) 

showing variation with g-level for BSY12a ((s/d) = 2.5, (l/h) = 4.0) 
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Figure 4.10 and Figure 4.11 illustrate the case for which three piles were spaced at 5.9 pile 

diameters and (l/h) = 1.5 (BSY15a).  There is no evidence of passive wedge failure above the 

pile row.  In contrast to BSY12a, there is a smaller zone of uniform upslope displacement 

(Figure 4.11), reflecting the smaller (l/h).  Again ‘shallow surface failure’ is indicated by loss 

of the surface texture applied by sprinkling dyed sand on the slope.  This kind of failure is 

broadly observed in the whole area upslope of the pile row, especially when (l/h) is small. 

This is likely to be caused by the deformed slope angle being oversteepened at the end of the 

test (exceeding the critical state friction angle of the sand – Figure 4.12).  This shallow 

sliding material is also probably responsible for the loss of texture below the pile row. 

 

(a) 1 g (b) 10 g 

(c) 20 g (d) 30 g 

Figure 4.10  -  View of the slope face for BSY15a ((s/d) = 5.9, (l/h) = 1.5) 
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Figure 4.11  -  Contours of upslope movement (mm, model scale) on the slope face for 

BSY15a ((s/d) = 5.9, (l/h) = 1.5) 
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Figure 4.12  -  Shallow surface failure 

 

Figure 4.13 shows comparison of the upslope movement with g-level for the two examples 

discussed previously.  The upslope displacement for BSY12a increases gradually up to 22 g 

but there are dramatic rises between 22 and 24 g and between 38 and 42 g where a passive 

failure is believed to occur immediately upslope of the pile row.  A more steady increase of 

displacement is shown for BSY15a, without significant events causing sudden increase in 

movement.  Nevertheless there has been quite significant normalised displacement at the end 

of the test.  

 

From the above results, it can be seen that the ratio of the upslope length to the failure slip 

thickness is also an important factor in stabilising a slope with the piles, as well as the pile 

spacing.  For a slope with a higher (l/h) ratio, there is a greater mass of upslope material 

loading the pile row.  Thus piles at a wider spacing initially gave similar upslope 

deformation with smaller (l/h).  As the test proceeds upslope failures actually mean that the 

closer spacing (and greater upslope length) gives larger deformation.  The relationship 

between (l/h) and (s/d) is considered further in Chapter 5. 
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Figure 4.14 shows the upslope movement as it increases with g-level for all tests.  Generally 

speaking the upslope displacement tends to increase with (s/d) for a given (l/h), and for a 

given (s/d) displacement tends to increase with (l/h).  This is a reasonable trend that would 

be anticipated.   

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60

N
or

m
al

is
ed

 u
ps

lo
pe

 m
ov

em
en

t, 
δ u

/ d

g-level

12a (s/d = 2.5, l/h = 4.0)

15a (s/d = 5.9, l/h = 1.5)

δu / d = 1

 

Figure 4.13  -  Upslope displacement (δu) normalised by pile diameter (d) showing variation 

with g-level for BSY12a and 15a 
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Figure 4.14  -  Upslope displacement (δu) normalised by pile diameter (d) showing variation 

with g-level for all tests 
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4.2.3 Ground deformation characteristics 

Characteristics of behaviour 

Figure 4.15 illustrates typical types of behaviour, depending on the combination of (l/h) and 

(s/d): 

1. ‘Upslope failure’ with passive wedge and probably potential upslope slip above the 

wedge at high (l/h) and small (s/d).  The displacement is also prone to show 

discontinuous ‘jumps’ (Figure 4.4) seemingly corresponding to specific upslope 

failure events. 

2. ‘Flow’ through the piles with large deformation at high (l/h) and (s/d)  

3. ‘Stable’ condition (with small deformation) at small (l/h) and (s/d)  

4. ‘Potentially shallow surface failure’ passing through the piles or ‘ravelling’ between 

the piles at small (l/h) and high (s/d)  

 

For many cases behaviour was a combination of two types of behaviour described above.  

However, the specific mechanisms referred to above become dominant at each ‘corner’ of 

the test boundary (see Figure 4.15). 
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Figure 4.15  -  Typical characteristics of passive yielding behaviours 
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Arching and/or flow between piles 

As described in Chapter 2 the efficiency of discrete pile ‘walls’ relies primarily on passive 

interaction between adjacent piles – maximising arching whilst simultaneously minimising 

flow between the piles.  Direct evidence of arching/flow between adjacent piles was limited 

due to loss of surface texture in the zone immediately above and below the piles.  

Nevertheless, contour plots at low gravity levels (e.g. 5 and 6 g) did give some indication of 

this behaviour.  BSY12a ((l/h) = 4.0, (s/d) = 2.5) is used to illustrate arching action whereas 

BSY15d ((l/h) = 2.5, (s/d) = 8.9) illustrates flow. 

 

For closely spaced piles (BSY12a) Figure 4.16 shows an arch-shaped deformation that is 

progressively developed between the piles.  Displacement above the arching zone (referred 

to Figure 1.1(b) in Chapter 1) was relatively small compared to that below it.  The soil shows 

a tendency to flow between the widely spaced piles (BSY15d) in Figure 4.17.  This is in 

good agreement with general expectation for pile-soil-pile interaction.  These deformations 

are only known at the soil surface, and unfortunately do not give direct evidence of the 

presence of arching or otherwise at greater depth. 
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Figure 4.16  -  Investigation of arching development between the piles for BSY12a 
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Figure 4.17  -  Flow action between the piles for BSY15d ((l/h) = 2.5, (s/d) = 8.9) 
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4.2.4 Pile head displacements  

Pile head displacement has been deduced using PIV analysis of a series of images of the 

slope face.  Figure 4.18 shows that the pile head displacement (δp, results normalised by pile 

diameter) increases with an increase of gravity level (N) and (s/d) for a given (l/h), and with 

(l/h) for a given (s/d).  These trends all seem reasonable. 

 

‘Normalisation’ of this data in this respect is considered in Figure 4.19, by dividing by the 

product of all three variables above.  It can be seen that the normalised displacements for all 

tests generally tend toward consistency regardless of N, (s/d) and (l/h), although the value 

tends to be slightly higher at low g-level in some tests.  At higher g-level the results tend 

towards an approximately unique value. 

 

In fact the series of ‘normalising’ parameters reflect the total load on a single pile, which 

tends to increase in proportion to N, (s/d) and (l/h) – this idea is pursued further in the 

theoretical framework which is developed in Chapter 5.  This indicates that the piles show 

broadly consistent active response to loading throughout the tests, and have sufficient active 

capacity in the underlying stable soil (significant active failure at any stage would 

presumably have been indicated by increase of the ‘normalised’ secant displacement).   
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Figure 4.18  -  Pile head displacements with g-level for all tests 
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Figure 4.19  -  ‘Normalisation’ of pile displacement with g-level for all tests 

 

 

 



CHAPTER 4. CENTRIFUGE MODELLING: TEST DATA 

 

 

102

4.2.5 Relative pile-soil displacement 

‘Relative’ pile-soil displacement (δr) is often used in the analysis of passive behaviour.  

Figure 4.20 shows the general concept of δr that is employed frequently in numerical analysis. 

Here the difference between the upslope soil movement observed at the ground surface (δu) 

and the pile head movement (δp) is taken as a broad indicator of relative pile-soil 

displacement.  

 

Figure 4.21 shows results of relative pile-soil displacement for all tests – δr tends to increase 

as both (s/d) and (l/h) increase.  Note that the upslope soil movements were estimated by 

averaging the available displacement vectors (upslope of the piles) in a test due to significant 

loss of texture on the slope (also previously stated in Section 4.2.2).  This trend seems to 

logically indicate that: 

1. Passive restraint of the stabilising piles to sliding of the slope becomes less effective 

at wider (s/d) for given (l/h) 

2. Large (l/h) generates greater passive loading for a given (s/d).   

 

Figure 4.20  -  General definition of relative pile-soil displacement in numerical analysis 
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Figure 4.21  -  Relative pile-soil displacement with g-level 
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4.3 Pile moment data 

Bending moment transducers (BMTs) were used to the measure the moment at discrete 

points along the length of the pile (see Section 3.4.3).  A curve-fitting technique was then 

used to approximate continuous profiles of moment, shear force, and pressure from the 

measured moment data. 

 

4.3.1 Variation of moment with time 

The continuous variations of electrical signals from each strain gauge location were recorded 

for the pile during a test.  Figure 4.22 shows typical variations of moment (differential output 

voltages multiplied by a calibration factor) with time for BMT 6 (located at the elevation of 

the interface) slip.  Gravity level was increased throughout the test and the increments used 

are also labelled. 

 

Both results (BSY12a and BSY15a) show similar behaviour – larger increments in gravity 

level at the end of the test tend to give correspondingly larger increments in moment.  

Generally, the immediate response to increasing g-level (and hence passive loading) is 

usually sizable, although there is also generally a surprisingly large time-related response 

(particularly at low g-levels) given that the soil is dry sand.  Each g-level was normally held 

constant for approximately 5 minutes, so that an asymptotic value was approached.  The 

origins of the time-related behaviour were not established with certainty, but it seems likely 

that creep in the greased interface caused ongoing downslope movement of the soil with time. 
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4.3.2 Moment, shear force, and pressure profiles with depth 

The pile is embedded through the unstable soil (passive loading) and into the stable material 

(active loading) beneath.  There is continuity of bending moment and shear force in the pile 

across the predefined failure interface (i.e. silicon-greased latex/aluminium interface).  

However there is a discontinuity of lateral pressure at the slip, due to the discontinuity of soil 

displacements (and corresponding change from passive to active loading).  

 

A form of spline curve-fitting technique was therefore employed, with separate polynomials 

used to fit the measured bending moment data in each layer.  The use of this technique is 

advantageous in reducing the order of polynomials required to achieve satisfactory results, 

and allowing pressure discontinuity at the slip.  The polynomials were constrained to give: 

(1) continuity of moment and shear force in the pile at the slip 

(2) zero moment and shear force at the pile head and tip, and  

(3) zero lateral pressure at the pile head (where the overburden stress is zero and hence 

the strength of a cohesionless soil tends to zero).  

 

The method of least squares is often used to give a unique ‘best fit’ of a polynomial to data.  

Partial derivatives are derived to minimise the error between the data and the polynomial fit, 

and the resulting equations give a unique solution via solution of simultaneous equations (i.e. 

inversion of a matrix). 

 

A cost function is a popular alternative technique for optimisation of mathematical problems, 

which generally requires considerably more computational effort, but avoids the necessity of 

deriving an explicit set of equations by hand to be solved.  The additional computational 

effort for a problem such as this is not that onerous by today’s standards, and the approach 

offers considerable flexibility and convenience.  The resulting solution is not strictly unique, 
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but provided it has been obtained ‘correctly’ any such analysis would give a similar 

optimised result. 

 

Here a ‘cost function’ was implemented as follows: 

• Derive the value of the polynomial multipliers an (passive zone) using one of the 

methods described below.  These values would then remain fixed. 

• Make an initial arbitrary assumption regarding the value of the polynomial 

multipliers bn (active zone) (see Figure 4.23 below). 

• Define the total error in fitting the bending moment data at discrete depths as the 

sum of the square errors for all data points compared to the polynomial fit. 

• Add to this terms for ‘error’ in continuity of moment and shear force at the interface, 

with an increased ‘weighting’ compared to fitting the data.  Conditions at the head 

and toe of the pile are inherently incorporated as described below, and hence do not 

need to be considered in the cost function. 

• Use optimisation functions in Matlab to minimise the total error from fitting the data 

and continuity at the interface by adjusting the values bn.  The increased weighting 

for continuity at the interface means that this is satisfied accurately whilst the data is 

subject to a ‘least squares’ fit. 

 

The precise result obtained will depend on the technique for optimisation and the number of 

iterations, as well as the weighting factor given to continuity at the interface.  However, 

provided there is sufficient iteration and the weighting factor is sufficiently large without 

allowing even very small errors at the interface to have undue influence on the solution, the 

result should be reasonable.  The Matlab code to do this was developed in house (Cox, 2006). 

 

One problem in polynomial curve fitting is the selection of an appropriate order for the 

polynomial.  It can be argued that in principle the use of higher order of polynomials 
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provides a more detailed profile, allowing greater freedom of curve fitting.  However the 

results are generally unsatisfactory since high order curves tend to ‘oscillate’ between the 

data points and are highly sensitive to relatively small variations (or errors) in moment.  In 

fact, the lowest order polynomial which gives a reasonable fit to the data is often most 

suitable. 

 
Figure 4.23  -  Bending moment, shear force, and lateral pressure acting on the pile 

 

Figure 4.23 shows a schematic diagram for the curve-fitting technique used here.  BMT1 to 5 

are in the passive zone (section a) and BMT 7 to 10 are in the active zone (section b).  BMT6 

is at the interface.  Two different vertical co-ordinates systems are used (za and zb), measured 

from the head and toe of the pile respectively.  This offers considerable convenience in 
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points. 

 

Unstable upper layer 
BMT 1 

za 

 

Predefined failure slip

Underlying stable material 

BMT 6 

BMT10 

Sliding 
direction 

zb 

 Section a  

(Passive zone) 

 Section b  

(Active zone) 



CHAPTER 4. CENTRIFUGE MODELLING: TEST DATA 

 

 

109

Table 4.1 summarises the polynomials P1 and P2 used in the passive zone (za), and P3 used in 

the active zone (zb).  In the passive zone either the P1 or P2 approach was used – not both 

simultaneously.  In fact the initial polynomials describe the pressure distribution, and are 

integrated to give shear force and bending moment.  However no constants of integration are 

introduced since shear force and bending moment are zero for za and zb = 0, and these 

constraints are inherently incorporated.  The assumption of zero lateral pressure at the pile 

head also implies that there is no a0 term in P1 and P2. 

 

The P1 approach allows ‘direct derivation’ of the only polynomial multiplier a1 based only 

on the value of bending moment at the interface (BMT 6).  The P2 approach used a true 

‘least squares’ approach by inversion of a 2×2 matrix to obtain a1 and a2 based on all 

bending moment data above the interface.  The values bn were then optimised using a cost 

function as described above. 

 

Table 4.1 Curve fitting functions used for deriving moment, shear force, pressure profiles 

P1 approach (direct derivation from BMT 6) P2 approach (least squares matrix inversion)
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Derived profiles of moment, shear force, and pressure from the P1 and P2 approaches are 

illustrated in Figure 4.24 and Figure 4.25 for typical data at 10, 20, and 30 g, where the red 

dashed line shows the P1 data fit and the blue solid line is the P2 data fit.  Use of the P1 or P2 

curve in the passive zone also affects the P3 curve in the active zone due to the condition of 

continuity of shear force at the interface.  The numerical values of the polynomial terms 

which have been derived for the moment data fit are recorded on the plots.  ‘AAE’ is the 

Average Absolute Error in fitting the data, whilst ‘RMSE’ is the root mean square error.  

Both are expressed as a percentage of the maximum moment in the pile.  The values shown 

refer to the P2 (rather than P1) data fit. 

 

Figure 4.24 shows reasonable consistency between the P1 and P2 data fits in all derived 

profiles for BSY12a. However, in Figure 4.25 the P1 data fit for BSY15a gives problems in 

the passive zone when the moment data at mid-depth in the passive zone is low, and the 

cubic moment curve does not allow sufficient curvature as the moment data increases rapidly 

towards the bottom of the passive zone. 

 

Problems with the P1 data fit for BSY15a persist below the interface since the shear force at 

the interface has potentially been underestimated, and hence the shear force is initially 

approximately constant immediately below the interface (compared to reduction with depth 

for the P2 data fit).  This implies approximately zero pressure immediately below the 

interface for the P1 data fit, increasing rapidly with depth.  This does not seem consistent 

with the general mode of pile deformation and the assumption that the soil below the 

interface undergoes little movement.  The pressure profile in the active zone given by the P2 

data fit (in the passive zone) seems more reasonable. 

 

In the passive zone a triangular distribution of limiting stress might be anticipated, 

corresponding to increase of nominal overburden stress with depth.  The greater than linear 
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increase with depth shown for the P2 data fit in Figure 4.25 seems unlikely - somewhat less 

than linear increase indicating some reduction in mobilisation compared to the ultimate value 

with depth would be more plausible. 

 

In general, 11 tests with a large (l/h) and small (s/d) gave similar (satisfactory) curve-fitting 

to BSY12a, but the others (12 tests) with small (l/h) and large (s/d) tended to give similar 

problems to BSY15a.  This corresponds to the postulated mechanism of ‘shallow failure 

passing through the piles’ in Figure 4.15.  It seems likely that the surface of the slope may 

actually have become slightly lower at the location of the pile row in these tests.  This could 

explain the difficulty in obtaining a good fit to the bending moment data using the P1 

approach, since the nominal position assumed for the soil surface was no longer completely 

accurate.  With large (l/h) and small (s/d) a ‘bulge’ of soil tended to form behind the row 

(Figure 4.3(e)), and hence there was less tendency for the level of the soil surface to drop, 

and the P1 curve fit gave better results. 

 

In conclusion, the P1 approach is considered to be more ‘robust’ in the passive loading zone 

and less sensitive to any error in position of the soil surface, or inaccuracy in small moment 

measured at mid-depth in passive zone.  Hence it will be used in preference to the P2 

approach in the remainder of the thesis when considering passive loading. 

 

From Figure 4.24 and Figure 4.25, it can be seen that the general trends of behaviour do not 

change with g-level.  Passive loading (positive pressure, Figure 4.1) increases with depth and 

shows a maximum value at the slip – the rather unlikely shape of the P2 data fit in some 

cases was discussed above.  Below this loading is actively resisted (negative pressure) in the 

stable ground with a point of pressure reversal near the toe of the pile in the active zone to 

give moment equilibrium of the pile.  The bending moment reaches a maximum in the active 

zone where the shear force is zero.   
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Figure 4.25  -  Moment, shear force, and pressure profiles for BSY15a (s/d = 5.9, l/h = 1.5) 
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4.3.3 Derived and idealised pile displacements with depth 

The pile displacement profile with depth can be derived by integrating the moment 

polynomials (see Table 4.1) twice, as follows: 
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The total four constants of integration (A1, A2, B1, and B2) are obtained by assuming: 

(1) the pile deflection at the head is equal to the pile head displacement deduced from 

image analysis in the test. 

(2) continuity of gradient (rotation, θ) at the interface. 

(3) continuity of pile displacement (u) at the interface. 

(4) the point of pressure reversal in the active zone is assumed to correspond to zero 

absolute pile deformation.  In fact, this point is associated with zero differential 

displacement between the pile and soil.  However, this assumption will be 

acceptable since lateral soil displacement is likely to be very small at this depth.   
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This allows four independent equations to be written in terms of the four unknown constants 

of integration.  Hence a unique solution exists and can be derived (see Appendix A). 

 

For convenience the profile of pile displacement with depth could be idealised assuming that 

the pile is completely rigid.  The idealised linear profile is assumed to be defined by the pile 

displacement at the pile head, and zero absolute pile displacement at the point of pressure 

reversal near the tip.   

 

The resulting pile displacement (normalised by pile diameter) for BSY12a at 30 g (Figure 

4.26) shows a typical results.  The pile deflects downslope (the positive direction) – rotation 

and flexure of the pile both contribute to this movement.  The linear profile overestimates the 

displacement above the point of pile rotation, which is around 40 % higher than the value 

derived including the effect of flexure at the predefined slip. 
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Figure 4.26 Derived and idealised pile displacement profiles with depth (BSY12a at 30g) 
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4.4 Summary 

Movements of the unstable soil mass in the cross sectional plane and on the face of the slope 

during tests were successfully deduced from In-flight photography and digital image 

processing (PIV analysis), including some important aspects of ground deformation.  

General trends of displacement of the slope and the pile head can be described as follows: 

• the ground and pile head displacements, and relative pile-soil displacement increase 

with (s/d) for a given (l/h) and with (l/h) for a given (s/d)   

• ‘upslope failure’ with a passive wedge above the pile row occurred for high (l/h) and 

low (s/d) 

• flow through the piles with large displacement occurred for high (l/h) and (s/d) 

• shallow surface failure passing through piles occurred for low (l/h) and high (s/d) 

• the slope was stable with small displacement at low (l/h) and (s/d) 

 

Continuous distributions of moment, shear force, and pressure were derived from the 

measured moment data using a curve-fitting technique (combined with the least squares 

matrix inversion method or direct derivation in the passive zone and cost function in the 

active zone).  General behaviour of the piles can be summarised as follows: 

• the bending moment increases with depth and reaches a maximum in the active zone 

where the shear force is zero 

• the pressure in the passive zone increases approximately linearly with depth, 

showing a maximum at the slip 

• below the slip the pressure is actively resisted in the stable material with a point of 

pressure reversal in the active zone to give moment equilibrium of the pile 

 

Interpretation of the centrifuge test data will be presented in Chapter 5 
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CHAPTER 5 

CENTRIFUGE MODELLING:  

INTERPRETATION AND COMPARISON 

 

5.1 Introduction 

This chapter presents a theoretical framework that is based on analysis of a semi-infinite 

slope.  The centrifuge test data are interpreted by comparison with the proposed framework.  

Some of the previous work presented in Chapter 2 is then compared with the framework.  

 

5.2 Theoretical framework for a piled slope 

A theoretical framework (based on a conventional analysis of a semi-infinite slope under 

‘plane strain’ conditions) is proposed to enhance generic understanding of slope stabilisation 

using a row of piles.  The framework primarily considers stabilisation of a potentially 

unstable layer, focusing on evaluating the force required to stabilise the layer upslope of the 

piles and the maximum stabilising force available from passive interaction.   
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5.2.1 Problem definition 

A uniform slope inclined at an angle β° to the horizontal is considered.  A translational 

failure slip has developed on a plane parallel to the surface of the slope and at a depth h m 

below it (Figure 5.1).  The l m long failing upslope soil block above the pile row (ABCD) 

was considered to represent the effect of a failing mass of soil acting on the pile row.  The 

analogy with the centrifuge test approach (described in Chapter 4) is clear. 

 

The end forces P1 and P2 due to the earth pressure on the interfaces AD and BC are assumed 

to be equal and opposite (P1 does not include the effect of pressure on the piles, which will 

be considered in due course).  It is probable that the earth pressure will be close to active at 

both these locations.  The material downslope of the piles was unstable but active earth 

pressure represents minimum support to the upslope material from the downslope material. 

 

Figure 5.1  -  Idealisation of a piled slope problem for semi-infinite slope 
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The factor of safety (in terms of force equilibrium) is generally calculated by comparing 

resisting forces with driving forces, and defined as  

r

d

Resisting forces ( )FoS =
Driving forces ( )

F
F

      (5.1) 

 

Here resisting forces are the shear strength of the soil along the failure plane, and resistance 

induced from any reinforcing members.  An additional small component of resistance results 

from side friction in the centrifuge tests.  The driving force is the component of the gravity 

load of the soil mass acting down the slope.  

 

The weight of the upslope block of the failing soil (for a width b normal to the plane strain 

section along the pile row) is given by 

γlhbW =         (5.2) 

where,  

 l = length of upslope ‘block’ 

 h = thickness of slip (from the surface to the slip) 

 b = width into page 

 

The ‘disturbing’ component of this force will be taken as the component acting ‘down’ the 

slope, giving  

d sinF W β=         (5.3)  

 

Movement of the failing upslope block in the centrifuge model is resisted by friction 

mobilised on the ‘front’ and ‘back’ sides Ts (assumed to act parallel to base), as well as 

friction on the base, Tb.  The general magnitude of these effects will be considered before 

proceeding to consider resistance from the pile row.  
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2
s s s s s s s

1 1
2 2

hT N K h l K W
b

μ μ γ μ= = =     (5.4) 

and 

 b b b b cosT N Wμ μ β= =       (5.5) 

 (assuming Nb = Wcosβ by resolving perpendicular to the base) 

where,  

 Ts, Ns = Shear and Normal forces on each side  

 Tb, Nb = Shear and Normal forces on base 

 μs, μb = Coefficients of friction on sides and base (=  tan δ) 

 Ks = Coefficient of earth pressure on sides 

 

The total resistance from friction on the sides and base opposing the driving force Fd is 

Fμ = (2Ts + Tb) (there are 2 sides).  Thus expressing this relative to the nominal value of Fd  

 μ s b
s s b

d

2 1 cos
sin sin

F T T hK
F W b

μ μ β α
β β

+ ⎛ ⎞= = + =⎜ ⎟
⎝ ⎠

  (5.6) 

where α is the total frictional resistance expressed relative to the driving force. 

 

For a truly plane strain situation μs is effectively zero, so that 

 μ b

d tan
F
F

μ
β

=         (5.7) 

corresponding to the normal equation for an infinite slope in purely frictional soil. 

 

Coefficients of friction on the sides and base, μs and μb, have been determined by shear box 

tests in the lab, e.g. μs = μb ≈ 0.03 (for '
intφ ≈ 2° in Section 3.6.1) but this is likely to vary in 

the test models to some extent.  Since the soil is assumed not to deform in the plane strain 

direction, Ks may be estimated using the earth pressure coefficient at rest ( '
0 1 sinK φ= − ).  

Considering an upper bound on the effect of friction, taking μs = μb ≈ 0.1 (corresponding to 
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'
intφ ≈ 6°), Ks = 0.47 (for 'φ  = 32°), and h/b = 0.36 (for h = 0.07 m and b = 0.196 m), α ≈ 0.1, 

resulting mainly from the friction on the base. 

 

Now consider the effect of a stabilising (shear) force S acting on the unstable soil mass, 

compared to the disturbing force.  The forces are pragmatically assumed to act upward along 

the slip and hence can be directly compared (assuming that S maintains equilibrium by 

resisting the driving force after subtracting the effect of friction). 

 d μ d (1 )S F F F AWα= − = − =     (5.8) 

where 

 (1 )sinA α β= −        (5.9) 

 

Note that the total horizontal stabilising force required for equilibrium is sometimes 

considered (e.g. two part wedge method in HA68/94; Department of Transport, 1994) so that 

tanβ replaces sinβ.  However, for typical values of β for soil slopes there is little practical 

difference between these results. 

 

5.2.2 Stabilising (shear) force  

A stabilising (shear) force that each pile can provide to resist sliding of the slip is now taken 

into account.  A triangular passive load distribution is assumed and hence the stabilising 

interaction force on a pile is given by  

2
p mob

1
2

S B h dγ=        (5.10) 

where,  

 Sp = total stabilising interaction force on a pile (normal to the pile), 

equivalent to the shear force at the sliding interface 
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 Bmob = lateral interaction stress on pile / nominal vertical stress, assumed 

constant with depth 

 

This normalised lateral interaction stress (Bmob) may be proposed to tend to a value such as  

Kp
2 (as proposed in Equation (2.3)) as the interaction reaches its ultimate state.  

 

For stability of the slope the required stabilising force (Equation 5.8) and the interaction 

forces for n piles across the width b can be equated: 

 2
p mob

1
2

S nS B h nd AW Albhγ γ= = = =    (5.11) 

 

Rearranging the above equation gives 

 mob 2 l bB A
h nd

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 

Substituting for pile spacing s = (b/n): 

mob 2 l sB A
h d

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

      (5.12) 

 

This relationship shows how the lateral interaction stress on the piles (expressed as Bmob) 

required for stabilising the slope increases in proportion to: 

1. A which incorporates the slope angle (β) and any reduction in ‘driving’ force due to 

friction in the model  

2. the length of the upslope soil block above the pile row relative to the thickness of 

the sliding block (l/h) 

3. the centre-to-centre spacing relative to the pile diameter (s/d) 
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5.2.3 Pile row interaction 

The general behaviour of a pile row due to passive interaction can potentially be specified by 

considering the following concepts of limiting interaction capacity for a pile in a row 

(Durrani, 2006): 

 

• The pile behaves as an ‘isolated pile’, with the ultimate lateral resistance predicted 

by (Fleming et al., 1994, Figure 5.2(a)) 

2 '
p,ult p v0p K σ=        (5.13a) 

 

• The pile behaves as if it is part of a ‘continuous wall’ (i.e. arching is effective, 

Figure 5.2(b)), with passive and active earth pressure in front of and behind it 

respectively.  In some cases there may be complete loss of support rather than active 

earth pressure.  However numerically (Kp – Ka) and (Kp – 0) are quite similar.  If the 

piles are not required for stability the upslope and downslope earth pressures may be 

equal.  Hence the equivalent pressure on the pile itself is given by  

 '
p,ult p a v0( ) sp K K

d
σ ⎛ ⎞= − ⎜ ⎟

⎝ ⎠
      (5.13b) 

where,  

 pp,ult
 = ultimate equivalent pressure on the pile (defined as the load per unit 

length along the pile divided by the diameter) 

 Kp, Ka = the passive and active earth pressure coefficients respectively 

a
1 sin '
1 sin '

K φ
φ

−
=

+
 

p
a

1 1 sin '
1 sin '

K
K

φ
φ

+
= =

−
 

 σ'v0
 = the nominal vertical effective stress in the soil for a given depth 
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 s = centre-to-centre pile spacing 

 d = pile diameter 

 

The ultimate equivalent pressure on the pile can be normalised by the initial vertical stress in 

the soil since this term appears in both equations.  

 

Figure 5.2  -  Concepts of limiting interaction capacity for a pile in a row 

 

For sloping ground Kp and Ka can be sometimes expressed as a function of slope angle (β°) 

and internal friction angle of soil ( 'φ ).  In Equation (5.13a) the term Kp is associated with 

inherent limiting strength for a Mohr circle of stress, and modification of the value due 

sloping ground would not be consistent with the basis of the formula.  In Equation (5.13b) 

the value of pp,ult derived using unmodified earth pressure coefficients is ‘conservative’, 

whereas using values modified for a slope could potentially be ‘non-conservative’ (giving a 

higher value of ultimate interaction).  It is therefore considered pragmatic to use the 

‘standard’ (unmodified) values of Kp and Ka. 

 

The relationship between two equations (Equations (5.13a) and (5.13b)) proposes a rational 

approach for predicting a critical spacing, (s/d)crit  where the two equations intersect, and is 

given by (Durrani, 2006) 

pK

aK

(b) Continuous wall 

2
pK  

(a) Isolated pile 
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2
p

crit p a

Ks
d K K

⎛ ⎞ =⎜ ⎟ −⎝ ⎠
       (5.14) 

 

This expression represents a ‘general’ limit of the spacing ratio (s/d) at which arching is 

effective.  At wider spacings the piles are supposed to behave approximately as an isolated 

pile (at least in terms of ultimate capacity).  For instance for 'φ = 32°, (s/d) = 3.6 - this value 

shows good general correspondence with generally accepted limits on the critical spacing for 

arching to occur when using discrete pile rows for slope stabilisation.   

 

5.3 Interpretation and comparison 

Throughout this section, the centrifuge test results will be interpreted and compared with the 

theoretical framework proposed in Section 5.2.   

 

5.3.1 Interpretation of test data 

Interpretation of the centrifuge test data will focus on the effect of the stabilising force at the 

pre-defined slip interface (see Section 4.3.2), in order to determine the two variables A and 

Bmob:  

 

1. The total stabilising interaction force on an instrumented pile is derived from the 

bending moment measured at the pre-defined slip interface (Mint), assuming that the 

lateral force acts at a distance of (h/3) above the interface (corresponding to a 

triangular distribution of load on the pile over the height h of unstable material, 

Figure 5.1).  Thus 

int
p, int ( / 3)

MS
h

=  (N)      (5.15) 
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2. The weight of the upslope unstable soil block above the pile row (W) is calculated by 

considering the volume, density, and centrifugal acceleration (Ng),  

W lbh lbh gNγ ρ= =    (N)     (5.16) 

For the purposes of this calculation any small change (reduction) in l due to 

movement of the upslope block is neglected. 

 

3. The value A is calculated using the following relationship where n is the number of 

the piles in the test, 

p,intnSSA
W W

= =        (5.17) 

 

According to the model of behaviour proposed this value is theoretically given by 

Equation (5.9) as (1 - α) sinβ and thus correspondence with the model can be tested. 

 

4. The value of Bmob is determined directly by substituting the derived stabilising force 

into Equation (5.10)  

p,int p,int
mob 2 2

2 2S S
B

h d gNh dγ ρ
= =        (5.18) 

 

Again this theoretical value is given by Equation (5.11) as 2A(l/h)(s/d) and thus 

correspondence with the model can be examined.      
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5.3.2 Variation of A and B with g-level in each test 

Figure 5.3 and Figure 5.4 show variation of the values of A and Bmob derived from the test 

data (Mint and hence Sp,int) as described above, and plotted against increasing g-level in all the 

tests.  Each subplot shows a particular value of (l/h), whilst the various lines show various 

(s/d). 

 

Generally speaking, A is approximately constant with g-level for each test (Figure 5.3).  This 

is reasonable since the effect of g-level is accounted for by the γ term in Equation (5.16).  

The maximum value is approximately 0.3 to 0.4, which is broadly consistent with the 

theoretical value (according to Equation (5.9) Amax ≈ 0.45 for μb = μs ≈ 0.1 used in Section 

5.2).  Tests with high (s/d) can show lower values due to the effect of Bmax – further 

discussion will be given in Section 5.3.4. 

 

Again, it can be seen that Bmob is approximately constant with g-level for each test 

(Figure 5.4) since this effect is again accounted for by the γ term in Equation (5.18).  The 

maximum value observed in any of the tests is Bmax ≈ Kp
2.  This normalised value is constant 

with depth for the approximately triangular distribution of stress over the depth of passive 

loading (Section 4.3.2), but this observation is probably associated with the use of a pre-

defined low friction failure interface.  In a more general situation the passive pressure is 

likely to reduce more gradually to zero at some depth.  Generally speaking for a given value 

of (l/h) Bmob tends to increase with (s/d), and for a given value of (s/d) Bmob tends to increase 

with (l/h) – this is consistent with Equation (5.12). 
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Figure 5.3  -  Variation of A with g-level for all tests 
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Figure 5.4  -  Variation of Bmob with g-level for all tests 
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5.3.3 Variation of A and Bmob with (s/d) 

The values of A and Bmob deduced from all the tests are compared with the proposed 

theoretical model in Figure 5.5 and Figure 5.6 respectively.  The plots show variation with 

(s/d) for a given (l/h). 

 

As previously noted the value of A throughout a test showed relatively little variation 

(Figure 5.3).  The ‘representative’ value of A shown in Figure 5.5 as a data point was taken 

over the range from 6 g to 10 g where the values were less affected by upslope displacement 

and passive failure – this was also often the maximum value observed in the test.  The 

approximate upper limit (AUL) and lower limit (ALL) of Amax for the data are taken as 0.4 

and 0.3 respectively, with the mean value of Amax also plotted at 0.35.  As noted previously 

this value shows reasonable correspondence with the theoretical estimate (Equation (5.9)). 

 

In fact, the model of behaviour developed earlier in this Chapter indicates that the ‘true’ 

theoretical maximum value of A may not be observed in the pile loading.  Re-arranging 

Equation (5.12) in terms of Bmob (although it is more fundamentally related to Sp,int in terms 

of it’s derivation from the data): 

 mob
max2( / )( / )

BA A
s d l h

= ≤       (5.19a) 

 

For low (s/d) or (l/h) Amax will be observed, with a corresponding value of Bmob loading the 

piles.  In other words the action of the unstable soil mass dictates the load on the piles. 

 

However, if the limiting interaction pressure (Bmax) is mobilised this limits the value of A 

which is ‘observed’ in the test 

 max
max2( / )( / )

BA A
s d l h

= <       (5.19b) 
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This also implies that the interaction has reached its ultimate ‘failure’ state.  Taking Bmax as 

2
pK  = 10.6 this curve is plotted at high (s/d) in Figure 5.5.  The interaction of this line with 

Amax is given by 

 max

int max

1 1
2 ( / )

Bs
d A l h

⎛ ⎞ =⎜ ⎟
⎝ ⎠

      (5.20) 

 

and hence tends to increase as (l/h) reduces.  Based on the model, for a given (l/h), as (s/d) 

increases initially Bmob increases (see Equation 5.21 below), since there are less piles to carry 

the same load.  Eventually Bmax is reached, with subsequent increase in (s/d) leading to 

reduction in A as deduced from the limiting interaction. 

 

The data points representing the tests in Figure 5.5 generally represent (s/d) less than the 

intersection value (particularly for low (l/h)), and hence Amax is observed in the test.  

However, there is some evidence of tendency for A to reduce as the intersection point is 

approached and exceeded. 

 

The ‘representative’ value of Bmob was obtained from Figure 5.4 in the same way as 

described above for A.  The results are plotted as data points in Figure 5.6.  The 

corresponding form of the equation for the model of behaviour is: 

 mob max max2 s lB A B
d h

⎛ ⎞⎛ ⎞= ≤⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

     (5.21) 

 

As (s/d) or (l/h) increase Bmob tends to increase until the limiting value of interaction is 

reached.  The value of (s/d) where the limit Bmax is reached is the same as above. 
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Again the data generally represent (s/d) less than the intersection value (particularly for low 

(l/h)).  In fact the data have been derived from the same value of Sp,int and thus show the 

same relationship with the proposed model of behaviour as in Figure 5.5. 

 

Plotting the data in this way it is evident that for BSY15b ((s/d) = 5.9 and (l/h) = 4.0) Bmob 

somewhat exceeds the proposed value of Bmax, whilst for BSY15c ((s/d) = 8.9 and (l/h) = 1.5) 

it is somewhat less.  Nonetheless the centrifuge test data derived generally shows good 

agreement with the theoretical lines. 
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Figure 5.5  -  Variation of A with various (s/d) for a given (l/h) 
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Figure 5.6  -  Variation of Bmob with (s/d) for a given (l/h) 
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5.3.4 Relationship between pile row interaction, (s/d) and (l/h) 

Figure 5.7 summarises the previous observations regarding variation of A and Bmob as (s/d) 

changes for given (l/h). 

 

Re-arranging Equation (5.21) above: 

 mob

max

1 1
2 ( / )

Bl
h A s d

⎛ ⎞ =⎜ ⎟
⎝ ⎠

      (5.22) 

 

Thus expressing the value of (l/h) theoretically required to mobilise a given value of B in 

terms of pile-soil interaction for a given value of (s/d).  It is assumed that Bmob ≤ Bmax, and 

thus A  =  Amax = 0.35. 

 

Figure 5.8 shows this relationship for Bmob = Kp
2 and Bmob = Kp.  As above, the former value 

is proposed as the limiting interaction stress (for an ‘isolated’ pile).  The latter value is a 

‘factored’ value of interaction which represents reduced mobilisation of interaction (Durrani, 

2006).  In fact the model of behaviour proposed by Durrani incorporates a minimum value of 

(s/d) below which ‘isolated’ behaviour is no longer applicable, and the limiting resistance 

offered by the pile row shows no further increase (the pile row acts as a ‘continuous wall’).  

This limit is given by Equation (5.14), and is shown on Figure 5.8.  The value of (l/h) for 

each value of Bmob shows no further increase as (s/d) reduces beyond this point.   

 

For the purpose of simplification three labels are defined on the plot (Figure 5.8): 

A. small interaction pressure required for stability 

B. increasing interaction pressure required for stability 

C. proposed ultimate interaction pressure exceeded 
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Figure 5.7  -  Concept of the pile row interaction in terms of A and Bmob 
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Figure 5.8  -  Concept of the pile row interaction in terms of (l/h) and (s/d) 
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Figure 5.9 attempts to correlate the amount of interaction which is ‘mobilised’ in a test 

(based on the proposed model of behaviour) with the normalised relative displacement 

measured at 50 g on the plot of (l/h) and (s/d).  Different data symbols have been used to 

show different amounts of displacement, with corresponding line colours showing lines of 

approximately equal displacement.  Generally speaking deformation tends to increase with 

mobilisation as expected.  This shows good agreement with the deformation characteristics 

presented in Section 4.2.3 (see Chapter 4).  
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Figure 5.9  -  Comparison of test results with the theoretical lines for relative displacement 
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Figure 5.10 plots the normalised relative displacement at 50 g in all tests against the 

(approximately constant) value of Bmob in the test.  Separate data series show each value of 

(s/d) used in the tests.  Moving along a data series from left to right shows increase of (l/h) in 

various tests, and hence increasing load on the pile row.  The movement cannot be 

interpreted directly as equivalent prototype values since it accumulated at a variety of g-

levels.  However, the results from the various tests can be compared. 

 

With the exception of one value at very large relative displacement as noted above Bmob tends 

to a maximum value of approximately 10, approximately equal to Kp
2.  It could be argued 

that a larger value would have been observed at higher δr.  This would have required a test 

with (l/h) > 4.  However, the test package would not allow this, and in any case there would 

have been very significant tendency for failure upslope of the piles, thus limiting interaction 

with the piles.  

 

For a given magnitude of Bmob less than the limiting value it can be seen that the value of 

(s/d) does not have significant impact on the corresponding magnitude of δr.  This supports 

another observation by Durrani (2006) that piles spaced wider than the critical value still 

offer support to the upslope material – it is just that the equivalent value per metre along the 

slope drops in proportion to (1/s) for a given value of Bmob. 
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Figure 5.10  -  Variation of Bmob with relative soil-pile displacement at 50 g showing results 

from all tests  
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5.4 Comparison with previous works 

It is not possible to give direct comparison of the current work with all the references in 

Chapter 2.  However, it is possible to consider the interaction pressure on piles as it varies 

with (s/d), and the design for a case study. 
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5.4.1 Ito and Matsui (1975) 

Ito and Matsui’s theory has been specifically discussed in the literature review (Section 

2.2.2).  The theory considered the following relationship to determine the equivalent lateral 

pressure acting on a pile (p = P / d) for granular soils: 

1 2
2

2
exp tan tan

8 4
D Dzp A N D

N d D φ
φ

γ π φφ
⎧ ⎫⎡ ⎤−⎪ ⎪⎛ ⎞= + −⎨ ⎬⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
  (5.23) 

where 

 A = 1
1

2

b
DD
D

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 D1 = centre-to-centre spacing between piles 

 D2 = 1D d−  

 d = pile diameter  

 b = 1/ 2 tan 1N Nφ φφ + −  

 Nφ  = pK    =    2tan
4 2
π φ⎛ ⎞+⎜ ⎟

⎝ ⎠
 

 γ  = the unit weight of the soil 

 φ  = the friction angle of the soil 

 z = depth within the moving layer of soil 

 

Here the soil is assumed to be purely frictional and rigid piles spaced at various intervals 

were considered.  The following values are used for the purpose of comparison: 

• Friction angle of the soil 'φ  = 32°  

• Unit weight of the soil γ = 16 kN/m3  

• Pile diameter  d = 0.011 m  

• Thickness of the slip  z = 0.07 m 
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Figure 5.11 plots the ultimate pressure (pp,ult) on the pile normalised by the nominal 

overburden stress (σ'v0 = γz) at any depth, which can be derived directly from Equation 

(5.23).  Expressing Equation (5.23) in this way all terms are non-dimensional (D1 and D2 are 

normalised by d).  Hence model-scale values can be used and are applicable to any g-level in 

the centrifuge tests. 

 

Normalising pp,ult in this way is equivalent to Bmob in the centrifuge tests (Equation (5.18)), 

which was indeed found to be approximately constant in each test (Section 5.3.2).  Hence 

data corresponding to Figure 5.6 is plotted in Figure 5.11 for comparison.  Equivalent limits 

proposed by Durrani (2006) (Figure 2.5: ‘continuous wall’ and ‘isolated pile’) are also 

shown. 

 

Referring to Figure 5.11 some consistency between the centrifuge test data and Durrani’s 

limits is evident.  The ‘isolated pile’ limit is reached at wide spacing except when (l/h) = 1.5, 

where presumably the upslope material was insufficient to generate full passive resistance 

even at wide pile spacing.  The widest spacing for (l/h) = 4 somewhat exceeds the isolated 

pile limit.  However, at lower spacing this data supports the ‘continuous wall’ limit proposed 

by Durrani.  For smaller (l/h) it would appear that the upslope material is again insufficient 

to generate the full ‘continuous wall’ load. 

 

However, from Figure 5.11 it can be seen that the Ito & Matsui method predicts the opposite 

of the general trend observed from the centrifuge tests and Durrani’s method.   The result 

was found to tend toward the lower ‘factored limit’ proposed by Durrani as spacings get 

wider.  This is because the solution includes Nφ  = Kp (the same as the factored limit for an 

isolated pile proposed by Durrani).  In conclusion, as noted by previous authors and 

confirmed here, this method does not appear to give reasonable predictions of ultimate 

resistance at small pile spacings (where the lateral force on the piles tends to infinity) and at 
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wide spacings (where it tends to zero).  At intermediate spacings (3 to 5d) the general trend 

of behaviour with pile spacing is questionable, but the general magnitude of results from the 

method are comparable with the centrifuge tests, particularly for low (l/h) (which has 

inherently limited the value of Bmob as described in Section 5.2.3). 
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Figure 5.11  -  Comparison of ultimate equivalent pressure on pile (Bmob) with (s/d) for 

purely frictional soil ( 'φ = 32°) 
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5.4.2 Chen and Martin (2002); Ang (2005); Durrani et al (2006) 

Three references based on numerical analysis are selected for comparison with the proposed 

theoretical limits.  Figure 5.12 shows schematic boundary conditions adopted in the 2d and 

3d numerical models used.  The plane strain model (Chen and Martin, 2002) was used to 

examine a particular aspect of arching between two piles (principal stress rotation), by 

applying a constant small velocity to both end boundaries.  The horizontal slice model (Ang, 

2005) was similar to the constant overburden approach used by Durrani et al. (2006) (see 

Section 2.2.3), except that pile-soil displacement was generated by moving the end 

boundaries relative to a static pile rather than moving the pile relative to static boundaries.  

Note that Chen and Martin have not exploited the line of symmetry at the mid-point between 

piles - the reasons for this are not clear, and although it has doubled the computation required 

in their analyses it does not effect the validity of the results. 

 

Comparison of the numerical models is summarised in Table 5.1. 
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Table 5.1  -  Analysis specification for comparison 

 Chen and Martin 
(2002) Ang (2005) Durrani (2006) 

Method FLAC using 2d 
plane strain 

3d FEM using a 
horizontal slice 

FLAC using 3d 
constant 
overburden  

Cohesion, c  
(kN/m2) 0 0.1 0 

Friction angle, 
'φ  30  30 30 

Unit weight, γ  
(kN/m3) 

21 21 18 

Soil 
properties 

Dilation, ψ  0 0 0 

Pile diameter (m) 1 1 1 

Corresponding depth (m) 3 3 1.5 
 

Figure 5.13(a) and (b) show the ultimate equivalent pressure on a pile (pp,ult) and on the pile 

row (pr) respectively, normalised by σ'v0 showing variation with the spacing ratio (s/d).  The 

two results are simply related by pr = pp,ult(d/s).  The limits initially proposed by Durrani 

(2006) – see Section 2.4, are also shown.  It is not surprising that Ang’s results are very 

similar to Durrani’s since both use an analogous conceptual modelling approach (although 

the former uses a finite element technique, whilst the latter uses FLAC – which is a finite 

difference solution technique).  The result of a plane strain model underestimates the 

ultimate resistance (Durrani, 2006), and this is seen to be the case here. 

 

Nevertheless, all the results indicate that the equivalent pressure on a pile generally increases 

with pile spacing up to a certain spacing where behaviour of an isolated pile becomes 

dominant.  This pattern is consistent with that observed in the centrifuge tests.   
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 (a) Plane strain model (after Chen and Martin, 2002) 

 

 

 

 

(b) Three-dimensional horizontal slice model (after Ang, 2005) 

 

Figure 5.12  -  Boundary conditions of 2d and 3d numerical models used 
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(b) Equivalent average pressure along the pile row 

Figure 5.13  -  Ultimate equivalent pressures on a pile and on a pile row with theoretical 

limits 
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5.4.3 Davies et al. (2003) 

The reference is based on stabilisation works for a large slip on a Southerly section of the 

M25, Surrey.  ‘Section C’ which is the area of the greatest apparent movement will be 

considered (Figure 5.14(a)).   

 

A translational failure slip (approximately parallel to a slope surface, inclined at 11° to 15° to 

the horizontal) was developed between 8 – 10 m depth below ground level, extending from a 

steep backscarp about 80 m up the slope, down to the motorway hard shoulder.  The slip was 

within weathered or unweathered Gault clay, with overlying head deposits covering the 

upper portion of the slope (Figure 5.14(b)).  Properties of soils comprising of the slope are 

given in Table 5.2. 

 

Table 5.2  -  Geotechnical material properties 

Design parameters Other properties 
c' 'φ  cu PI W/C Material 

kPa  kPa   

Head 0 14 50  40 

Gault clay 1 24 100 45 35 

Residual Gault clay 0 14 50   
 

The lowest FoS for Section C obtained using a slip circle method (Slope/W software) was 

0.93.  The pile row was designed to provide an additional stabilising force required for 20% 

increase in the FoS, based in part on Viggiani’s method (see Chapter 2).   

 

The total weight of the unstable material upslope of the pile row can be estimated as about 

γlh = 20 × 50 × 8 = 8,000  kN/m (see Figure 5.14(b)), with a ‘driving’ component acting 

down the failure surface of about 8,000  ×  sin11° = 1,500 kN/m.  The stabilising force used 
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(Figure 5.14(c)) was 250  kN/m, which corresponds to about 250 / 1500 × 100 % = 17 % of 

the driving force, and is thus broadly consistent with a 20 % increase in FoS.  

 

A row of discrete bored piles (1.05 m diameter and 16 m long) was installed at (s/d) = 2.5, 

and positioned at approximately one third of the way up the failure (25m from the back of 

the motorway kerb).  In order to give an additional enhancement of stability, a drainage 

system was designed to reduce the groundwater level.  

 

The following properties were used for comparison:  

• passive earth pressure Kp = (1+sin 'φ ) / (1-sin 'φ ) =  2.37 for 'φ  = 24° (taking 

standard soil strength for the soil above the residual shear surface) 

• active earth pressure Ka = (1-sin 'φ ) / (1+sin 'φ ) =  0.42 

• groundwater level after drainage installation hw = 3 m above the slip  

 

For stability of the slope the total stabilising force for n piles across the width b (Equation 

(5.11) is slightly modified to include the effect of the pore water pressure u due to the 

groundwater above a slip):  

 2
p mob u

1 (1 )
2

S nS B r h ndγ= = −      (5.24) 

where ru is the pore pressure ratio that (the ratio of the pore water pressure to the total 

vertical stress).  At the slip surface ru = u/(γh) = (γwhw)/(γh) = (10×3)/(20×8) =  0.2.  In fact ru 

varies with depth, but this value will be considered representative for the entire depth, and is 

slightly conservative since it is actually the maximum value over this depth provided the 

drainage remains effective.  

 



CHAPTER 5. CENTRIFUGE MODELLING: INTERPRETATION AND COMPARISON 

 

 

151

The equivalent stabilising force per unit width along the pile row due to passive interaction is 

derived by dividing by b = ns, and is required to be 250 kN/m (as above): 

2
mob u

1ˆ (1 )
2

S S dS B r h
b ns s

γ= = = −   =  250 kN/m  (5.25) 

 

Hence Bmob  =  250×2/{(1-0.2)×20×82×(1/2.5)}  =  1.2.  This value is plotted in Figure 5.15, 

which also shows the critical pile spacing, and the ‘unfactored’ (Kp
2) and ‘factored’ (Kp) 

limits on interaction pressure for individual piles.  The spacing is slightly less than the 

critical value, and quite significantly less than the factored limit on interaction pressure.  The 

impact of passive limiting drained interaction on the stability was not considered in the 

design (since this effect was not reflected in Viggiani’s method which was used), and thus 

this results in excessively over-conservative design from the perspective of pile soil 

interaction (but not necessarily structural capacity etc).  Thus it appears that the proposed 

design is much more robust in this respect so that it can potentially be used to assess the 

effect of pile spacing for a given load in practice.  
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(a) Geomorphological map 

 
(b) Schematic layout of cross-sectional plane section 

 
(c) Stabilising force versus improved factor of safety  

Figure 5.14  -  Geomorphological mapping and schematic layout (after Davies et al., 2003) 
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Figure 5.15 Comparison of Bmob with the ‘factored’ and ‘unfactored’ theoretical limits 
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5.5 Summary 

Based on analysis of a semi-infinite slope under conditions of plane strain, a theoretical 

method has been established for interpreting the centrifuge test data.  The proposed method 

embodied two important variables A and Bmob as follows:  

•  loading on the pile row 

A is the proportion of the weight of the upslope material loading the pile row 

(Equation 5.8).  It is related mainly to the inclination of the pre-defined failure 

interface, with some reduction due to friction on this interface and the sides of the 

plane strain section. 

 

• the corresponding interaction pressure on a pile in the row 

Bmob is the corresponding interaction pressure mobilised on a pile, expressed as a 

dimensionless factor normalised by the nominal vertical effective stress in the soil at 

a given depth (Equation 5.12).  This value tends to increase with the weight of the 

upslope material, and pile spacing. 

 

The above relationships were compared with the centrifuge test data, and showed very good 

correspondence in general: 

• The maximum value of A was observed for low (s/d) or (l/h), and corresponded quite 

well with the theoretical prediction.  The corresponding Bmob was less than the 

ultimate interaction pressure.  However, A tended to reduce relative to its maximum 

value as the limiting interaction pressure was mobilised (i.e. Bmob = Bmax), for higher 

(s/d) or (l/h), generally indicating inability of the pile row to maintain stability of the 

upslope material, with corresponding significant displacement.   
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• The ultimate value of interaction was found to be Bmob = Kp
2 as proposed by Fleming 

et al. (1982).  It could be argued that the limiting interaction pressure would be 

increased due to the inclination of the upslope soil loading the piles.  However the 

limiting value does not appear to be significantly increased, and it is in any case 

conservative to ignore this potential effect in design.  In the centrifuge tests the 

presence of a pre-defined low friction interface meant that this pressure was 

observed through the full depth of unstable material as an approximately triangular 

distribution.  However, in a more general situation the passive pressure is likely to 

reduce more gradually to zero at some depth. 

 

• According to numerical analyses conducted by Durrani et al (2006) the Kp
2 limit on 

interaction (for an isolated pile) could be used to propose a limit on centre-to-centre 

spacing (s) where behaviour of the pile row ceases to be a ‘wall’ and becomes more 

like individual piles at larger spacing.  This limiting interaction pressure was verified 

in the tests. 

 

• For a given magnitude of Bmob less than the limiting value the value of (s/d) does not 

have significant impact on the corresponding magnitude of relative pile-soil 

displacement.  This supports another observation by Durrani (2007) that piles spaced 

wider than the critical value still offer support to the upslope material – it is just that 

the equivalent value per metre along the slope drops in proportion to (1/s) for a given 

value of Bmob. 

 

• There was some evidence that for closely spaced piles the reduction in limiting 

pressure predicted by Durrani et al (2006) for the ‘wall’ (as opposed to isolated 

piles) was observed.  It could be argued that greater loading on the pile row would 

have been required to prove this conclusively, but the test package would not allow 
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this, and in any case there would have been very significant tendency for failure 

upslope of the piles, thus limiting interaction with the piles. 

 

Comparison of the centrifuge test results with some of the references reviewed in Chapters 2 

was made, focusing on the effect of pile row interaction.  Ito and Matsui’s approach did not 

give accurate predictions of the ‘full’ ultimate resistance – especially at low (s/d), where the 

trend of behaviour is incorrect.  However, as above, the references based on numerical 

approaches (particularly the ‘constant overburden approach’, Durrani et al, 2006) showed 

consistency with the centrifuge test results.  

 

Comparison with a field study indicated that the scheme (which has performed satisfactorily 

to date) was designed with an appropriate pile interaction pressure for the desired 

improvement in factor of safety. 
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CHAPTER 6 

CONCLUSIONS  

 

6.1 Work reported in the thesis  

6.1.1 Centrifuge model tests 

A total of 23 centrifuge model tests (based on plane strain except the pile row) were 

undertaken, modelling a purely frictional slope comprising sliding (unstable) ground and 

stable underlying material, separated by the presence of a predefined failure surface.  The 

predefined surface was a translational slip parallel to the slope surface at 0.07m depth at 

model scale, having a very low shear resistance to increase the tendency for the upper 

portion of the slope to cause passive loading on the piles over a known depth. 

 

The model piles were installed in a row at a discrete intervals across the slope, with the total 

embedded length 205 mm (at model scale) to give sufficient active pile resistance against 

lateral passive loading.  The pile was instrumented to measure bending moment at ten 

locations through its depth.  The ground displacements (in the cross sectional plane and of 

the slope face), and the pile head displacement, were measured using in-flight photography 

and digital image processing (based on GeoPIV).  The maximum acceleration used in the 

centrifuge tests was 50 g, at which point the thickness of sliding material corresponded to 

3.5 m at ‘prototype’ scale, and the pile length was 10.3 m. 

 

The idealised model is intended to investigate the underlying principles controlling passive 

stabilisation behaviour at a realistic prototype scale rather than to consider a specific 
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prototype.  The ratio of the upslope length to the thickness of unstable soil (l/h) and the 

normalised pile spacing (s/d) were used for this purpose.  

 

Ground and pile head movements during a test were satisfactorily measured via geoPIV 

analysis, and ground deformation features were characterised by combination of the ratios 

(l/h) and (s/d): 

• the ground and pile head displacements, and relative pile-soil displacement, tend to 

increase with (s/d) for a given (l/h), and for a given (s/d) displacements also tend to 

increase with (l/h) 

• upslope failure with a ‘passive wedge’ at large (l/h) and small (s/d) 

• flow through the piles with significant deformation at large (l/h) and (s/d) 

• a stable condition with small deformation at small (l/h) and (s/d) 

• shallow surface failure passing through the piles at small (l/h) and large (s/d)  

 

Back analysis of bending moment data was largely successful in deriving distributions of 

shear force and lateral pressure, using a number of curve-fitting techniques: 

• the bending moment increases with depth until a maximum in the active zone is 

reached where shear force is zero 

• the pressure in the passive zone increases approximately linearly with depth and 

shows a maximum value at the predefined slip depth.  This observation is related to 

the imposition of the low friction pre-defined slip.  In a more general situation the 

passive pressure would probably reduce more gradually to zero at some depth. 

• the passive pressure is actively resisted in the stable ground, with a point of pressure 

reversal in the active zone to give moment equilibrium of the pile 
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6.1.2 Analytical model 

An approximate analytical model (based on a limit equilibrium method) was developed to 

enhance generic understanding of slope stabilisation using a row of piles, and particularly to 

allow interpretation of the centrifuge test results, based on:  

• The stabilising force required for the unstable material depending on (1) the mass of 

the soil upslope of the pile row, (2) the inclination of the predefined failure surface, 

and some adjustment for friction on the failure surface and sides of the model.   

• The amount of passive interaction for the pile row corresponding to the above 

loading.   

 

The proposed method gave a logical framework for interpretation of the data, and showed 

good correspondence with the centrifuge test results. 

 

6.2 Implications for design 

• The ultimate value of interaction was found to be Bmob = Kp
2 as proposed by 

Fleming  et al. (1982).  It could be argued that the limiting interaction pressure 

would be increased due to the inclination of the upslope soil loading the piles.  

However the limiting value does not appear to be significantly increased, and it is in 

any case conservative to ignore this potential effect in design.  In the centrifuge tests 

the presence of a pre-defined low friction interface meant that this pressure was 

observed through the full depth of unstable material as an approximately triangular 

distribution.  However, in a more general situation the passive pressure is likely to 

reduce more gradually to zero at some depth. 
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• According to numerical analyses conducted by Durrani et al (2006) the Kp
2 limit on 

interaction (for an isolated pile) could be used to propose a limit on centre-to-centre 

spacing (s) where behaviour of the pile row ceases to be a ‘wall’ and becomes more 

like individual piles at larger spacing.  This limiting interaction pressure was verified 

in the tests, and hence the following relationship; 

2
p

crit p a

Ks
d K K

⎛ ⎞ =⎜ ⎟ −⎝ ⎠
      (5.14) 

 

• For a given magnitude of Bmob less than the limiting value the value of (s/d) does not 

have significant impact on the corresponding magnitude of relative pile soil 

displacement.  This supports another observation by Durrani (2006) that piles spaced 

wider than the critical value still offer support to the upslope material – it is just that 

the equivalent value per metre along the slope drops in proportion to (1/s) for a given 

value of Bmob. 

 

• There was some evidence that for closely spaced piles the reduction in limiting 

pressure predicted by Durrani et al (2006) for the ‘wall’ (as opposed to isolated 

piles) was observed.  It could be argued that greater loading on the pile row would 

have been required to prove this conclusively, but the test package would not allow 

this, and in any case there would have been very significant tendency for failure 

upslope of the piles, thus limiting interaction with the piles. 

 

Comparison of the centrifuge test results with some of the references reviewed in Chapter 2 

was made, focusing on the effect of pile row interaction.  Ito and Matsui’s approach did not 

give accurate predictions of the ‘full’ ultimate resistance – especially at low (s/d), where the 

trend of behaviour is incorrect, which does not give confidence in the use of this approach.  

Wang and Yen’s approach relies on specifying uncertain geometrical parameters, and there 
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is no dependency on pile diameter, so the use of this approach is not recommended in 

practical design.  However, as above, the references based on numerical approaches 

(particularly the ‘constant overburden approach’, Durrani et al, 2006) showed consistency 

with the centrifuge test results.  

 

6.3 Recommendations for future work 

Recent numerical modelling (Durrani 2006) improved generic understanding of interaction 

for a passively loaded pile row, and this work has now been supplemented and confirmed by 

physical modelling in a geotechnical centrifuge.  Areas for further work mainly consider 

more detailed aspects of behaviour associated with design in specific circumstances; for 

instance movement of soil and piles.  These areas are generally complicated by the inherent 

assumptions made in design, such as calculating displacements which are associated with a 

factor of safety for the slope which is in excess of 1.0, and therefore arguably not relevant to 

a serviceability calculation.  Nevertheless some areas where further work could be 

undertaken are listed below: 

• Horizontal restraint at the pile head can have significant benefit in reducing bending 

moments in the pile and corresponding displacement.  However, there is not likely to 

be significant effect on the limiting interaction pressure derived from this work. 

• The effect of orientation or multiple rows of piles (e.g. miniplies) in a slope could be 

investigated – particularly with regard to the limiting interaction pressure.   

• Use of a lower slope angle compared to the soil friction angle would reduce potential 

issues with shallow surface failures, also improving PIV on the face of the slope. 

• The impact of flexibility of the piles or active behaviour depending on the embedded 

depth below a slip could be examined.  However, such aspects of behaviour are 

closely related to the wider study of laterally loaded piles. 
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• Relative pile-soil displacement in relation to Bmob was considered in Chapter 5, but 

the movement cannot be interpreted directly as equivalent prototype values since it 

accumulated at a variety of g-levels.  This aspect of behaviour could be studied in 

more detail. 
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APPENDIX 

A. Derivation of pile displacement profile with depth 

Figure A.1 shows general sign conventions and notation for displacement and rotation of a 

pile, where subscript ‘i’ denotes the position of an interface and ‘l1’ is the distance from a 

pile tip to a point of pressure reversal.  Rotation (θ) is positive in the anticlockwise and 

downslope displacement (u) of a pile is positive (see Figure 4.1) 

Figure A.1 General definitions and conventions for pile rotation and displacement 

Interface 

l1

zb,i Point of pressure reversal 
 

za,i Sliding direction 
za 

zb 

Pressure distributions 
 

Initial position of a pile 
 

Deformed position 
of a pile 
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The pile displacement profile with depth can be derived by integrating the moment 

polynomials twice, as follows: 

 

1. Passive zone (based on P2 approach) 

3 4

1 2( )
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a
z zM z a a= +       (A1a) 
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1 2 1
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∫  
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2. Active zone (based on P3 approach) 
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Assuming the following conditions the total four constants of integration (A1, A2, B1, and B2) 

are derived by: 

• the pile deflection at the head, u(za,head), is equal to the pile head displacement 

measured from image analysis in the test (δp), ,( )a head pu z δ=  

2 ,( )a head pA u z δ= =  

• continuity of gradient (rotation) at the interface, , ,( ) ( )a i b iz zθ θ=  

, 1 , 1 0a i b iA Bθ θ+ + + =  

1 , , 1( )a i b iA Bθ θ= − + +  

 

• the point of pressure reversal in the active zone (zb = l1) corresponds to zero absolute 

pile deformation, 
1,( ) 0b lu z =      

1, 1 1 1 2( ) 0b lu z ub B l B= + + =  

2 1 1 1( )b bB u B l= − +  

 

• continuity of pile displacement at the interface, , ,( ) ( )a i b iu z u z=  

, 1 , 2 , 1 , 2a i a i b i b iu A z A u B z B+ + = + +  

1 , , 2 , 1 , 2b i b i a i a iB z u B u A z A= + − − −  

1 , , 1 1 1 , , , 1 ,( ) ( )b i b i b a i a i b i a i pB z u u B l u B zθ θ δ= − + − + + + −  

1 , 1 , , 1 , , , ,( ) ( )b i a i b i b a i a i b i a i pB z l z u u u zθ θ δ+ − = − − + + −  

, , ,, 1 ,
1

,1,

( )a i a i a i pb i b b i

a ib i

u u u z
B

z l z
θ θ δ− − + + −

=
+ −

 

 

This allows four independent equations to be written in terms of the four unknown constants 

of integration.  Hence a unique solution exists and can be derived.  
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