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Abstract 

This investigation explores the use of an approximate energy flow approach to provide 

a global modelling tool capable of predicting the pattern and level of vibrational 

energy flow in complex structures. The modelling approach is based on a differential 

control volume formulation which, by virtue of its simplified nature, describes the 

flow of mechanical energy within a structural component in a manner analogous to 

the flow of thermal energy in heat conduction problems. For complex structures the 

approach can be implemented using existing finite element software through an 

analogy between the thermal and vibrational systems. 

Energy flow predictions along simple beam structures, obtained using the energy flow 

approach, are compared to "exact" analytical solutions and experimental structural 

intensity measurements on real structures. This provides useful insight into the 

capabilities and requirements of the approach, such as the quality of model predictions 

at lower frequencies and the accuracy requirement for modelling parameters. 

The task of modelling the transmission of vibrational energy in practical engineering 

structures is complicated by the partial reflection of incident wave energy at structural 

discontinuities. Methods to account for this effect are discussed and an approach is 

developed which can be incorporated into the finite element global modelling scheme. 

This is used to model a complex multiple transmission path structure which illustrates 

the ability of the approach to form an effective transmission path ranking tool. 

Finally, the approach is used to build a representative energy flow model of a ribbed 

bulkhead structure typical of marine applications. A wavenumber measurement 

technique is used to assess the wave transmission characteristics of this structure 

which exhibit strong directional dependence. Predictions provided by the energy flow 

model are in good general agreement with energy flow measurements obtained from 

the real structure. 
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Throughout these modelling exercises particular attention is paid to the provision of 

suitable estimates of the parameters (damping. group velocity. power input and 

transmission efficiency) on which the accuracy of the model predictions rely. 

This investigation represents a significant contribution to current knowledge regarding 

the use of the energy flow approach and its ability to provide representative models 

of real structures. Although further research is still required. considerable progress has 

been made and the work documented here provides the framework for a global 

modelling tool using existing finite element software. 
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a 

c 

E 

f 
F 

h 

I 

k 

K 

L 

M 

p 

P 

q 

Q 

r 

R 

S 

t 
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acceleration 

phase velocity 

phase velocity for flexural motion in a beam 

group velocity 

phase velocity for longitudinal motion in a rod 

depth of a finite element 

vibrational energy density 

Young's modulus 

frequency 

force 

plate thickness, convective heat transfer coefficient 

second moment of area 
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thermal conductivity 
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power 
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vibrational energy flux 

thermal energy 
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u,U axial displacement 

v transverse velocity 

V strain energy density 

V .. , volume of a finite element 

w transverse displacement 

W width 

x distance 

X cross-spectral quantity 

z mobility 

11 hysteretic damping loss factor 

(} reflection efficiency 

'Y damping ratio 

6 heat per unit volume 

A. wavelength 

v Poisson's ratio 

p mass density 

0' stress 

cj> mode shape function, angular displacement 

t transmission efficiency 

(J) radian frequency 

(J)r natural frequency 

n angular velocity 
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Chapter 1 

Introduction 

For many years engineers and scientists have been concerned with the control of 

unwanted structural vibration. The primary aims of this have been to avoid possible 

damage due to excessive and repeated motion, or to reduce acoustic radiation into 

areas surrounding the structure. The latter is of great importance in the design of 

automotive vehicles, ships, aircraft and buildings. One area where radiated noise 

levels are of extreme concern is in the design of warships. Here, the emission of 

acoustic radiation into the sea is generally undesirable because it provides a target for 

hostile sensors and may also interfere with the vessels own detection systems. 

The major sources of vibration in ships are often attributed to running machinery 

within the vessel's engine spaces. This equipment generates noise which is 

transmitted through machinery mountings into the ship's structure. Ideally these 

vibrations should be reduced at source, although in many cases this can not easily be 

achieved. It is therefore inevitable that some vibrational energy will be carried 

through the ship's structure, via a number of structural or acoustic paths, resulting in 

the emission of unwanted noise into the sea. The ability to make some prediction of 

the levels of transmitted vibrational energy in marine structures, and in particular the 

ranking of potential vibration transmission paths, has been the driving force behind the 

research documented here. 

Traditionally, the study of structural dynamics has focused on the evaluation of the 

response of a structure to dynamic force excitation. For engineering structures this 

is usually achieved by modal analysis techniques, either experimentally, or analytically 

using finite elements. These modal approaches are based on the assumption of 

linearity and that response is made up of contributions from a number of individual 
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responses which correspond to the structure' s natural modes of vibration. The relative 

size of each contribution is dependent on the coupling between the mode shape and 

the distribution of excitation forces. together with the correlation between the natural 

frequency of the mode and the excitation frequency. 

The use of modal analysis techniques has. in the main. been aimed at the study of the 

fIrst few resonant modes of vibration because these usually dominate the response of 

the structure and often lead to the largest displacements. This is fortunate because. 

although modal analysis is not theoretically limited by frequency. in practice. both the 

experimental and analytical methods are restricted to use in the lower frequency 

ranges. covering perhaps the first fifty modes. 

Experimental modal analysis relies on the ability to identify resonant peaks in 

measured frequency response data. Two factors affect the quality of this data at 

higher frequencies. Firstly. the resonant frequencies are closer together and the peaks 

in the spectra tend to overlap. Secondly. these peaks become rounded because of the 

increased effect of damping. The net result of these effects is that the higher 

frequency response data becomes blurred and the identification of individual modal 

peaks becomes difficult, if not impossible to achieve. 

Analytical modal analysis using the finite element technique also suffers a drawback 

at higher frequencies. although in this case the problem is concerned with the cost of 

execution. As with all modal superposition techniques. in order to provide an accurate 

solution, the calculation requires information on all modes which contribute 

significantly to the response. At higher frequencies the number of these contributing 

modes must increase. This means that the detail of the finite element model needs to 

be increased to provide sufficient information to properly analyse the complex mode 

shapes attributed to the higher order modes. This process leads to rapidly increasing 

costs. both in terms of man hours and computer time. which normally limits the use 

of traditional finite element analysis to the lower frequency ranges. 
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The frequency limitation imposed on modal analysis techniques is of serious 

consequence in the case of the vibration transmission problem considered here. It is 

often the case that the frequency content of machinery induced excitation is beyond 

the lower order modal region of the structures concerned. It is also important to note 

that modal analysis provides information on the resonant behaviour of the structure. 

which is dominated by standing wave energy. For the task in hand. it would be more 

useful to identify the components of travelling wave energy which give rise to the 

transmission of vibration through the structure. This would also allow comparison 

between the ability of particular paths to transmit noise from a given source to the 

eventual sinks. giving rise to the concept of "transmission path ranking". These 

requirements lead to the idea of the evaluation of the vibrational energy flow through 

the structure in order to identify the more dominant energy flow paths. Given this 

information the engineer can address those paths which transmit the largest 

components of unwanted noise into the sea. 

This study 

The overall objective of this work has been to develop an analytical design tool which 

is capable of describing the way in which vibrational energy is transmitted through 

structures which are typical of marine construction. The major requirement of this 

tool is that it should be able to provide energy flow predictions at frequencies beyond 

the normal limits of the traditional modal analysis techniques at low computational 

cost In addition to this. it is essential that the approach maintains a wide field of 

application. 

In recent years an energy flow approach to vibration analysis has emerged which 

describes the flow of mechanical energy within common structural components in a 

simplified manner. The form of the equations governing this approach are analogous 

to those describing the flow of thermal energy in heat conduction problems. A 

primary aim of this research has been to assess the accuracy of the predictions 

provided by this approach and to investigate its use in the estimation of the levels of 

vibrational energy flow through a number of structural assemblies. 
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An important aspect in the development of a general modelling tool is the ability to 

assemble the analytical descriptions of the individual structural components to form 

a global model of the structure. The nature of the equations governing the energy 

flow approach makes it possible to draw an analogy between the vibrational and 

thermal cases and execute the analysis using a finite element technique. This property 

is seen to be a major advantage of the approach and one of the aims of this work has 

been to exploit this feature in the development of a general purpose design tool. In 

this form the analysis should be of most use to an engineer who requires predictive 

information about the vibration transmission characteristics of a structure during the 

early stages of its design. 

For convenience. a finite element approach has been developed which can be executed 

using existing thermal finite element packages. In this way the properties of the 

general approach can be examined without the expense of developing a dedicated 

computational framework in which to carry out the analysis. 

Throughout the modelling work particular attention has been paid to the provision of 

suitable estimates of the parameters required by the model. Where possible this 

information has been obtained experimentally from the real structures concerned 

ensuring that the parameters are representative of the real engineering situation. In 

a number of cases model predictions have been compared with experimental 

measurements of energy flow to assess the accuracy of the modelling approach. 

Layout of the thesis 

In all there are eight more chapters in this thesis. 

Chapter 2 contains a literature review discussing previous work concerning the 

evaluation of vibrational energy flow through complex structures. This includes a 

discussion of the principles and previous applications of some well established 

modelling techniques. as well as some more recent work which leads up to the energy 

flow modelling approach considered here. The development and application of 

techniques for the measurement of vibrational energy flow are also discussed. 
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Chapter 3 describes the development and principles of the energy flow approach in 

more detail. The main purpose of this discussion is to point out certain assumptions 

made in the development of the technique and highlight their possible effects on 

model predictions. 

Chapter 4 gives examples of the application of this technique to single beam structures 

to provide an insight into the capabilities and requirements of the approach. Model 

predictions are compared with measured energy flow in a beam to allow the accuracy 

requirements of some of the model parameters to be assessed. 

Chapter 5 discusses the problem of representing the connection between individual 

components to form models of built-up structures. This is followed by an example 

of the application of the energy flow approach to provide a model of a real connected 

beam structure. Experimental measurements are used to validate the model 

predictions. 

Chapter 6 presents an analogy between the equations governing the energy flow model 

and ·those relating to thermal energy flow. This allows an existing finite element 

package to be used to assemble the individual modelling expressions to form a global 

modelling tool. The use of this finite element approach is illustrated by creating a 

model of a multiple transmission path structure. This analysis highlights the 

transmission path ranking capabilities of the modelling approach. 

Chapter 7 describes an experimental study into the energy transmission characteristics 

of a section of ribbed bulkhead which is typical of marine construction. This includes 

an experimental assessment of the wavenumber characteristics of this structure and the 

measurement of vibrational energy flow levels across the bulkhead plate. 

Chapter 8 describes the creation of two energy flow models which are representative 

of the real bulkhead structure. The parameters used in these models are based on the 

findings of the experimental work presented in Chapter 7. Model predictions are once 

again compared to experimental results. 
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Finally. Chapter 9 discusses some of the more general aspects of the approach 

including a review of some very recent literature. This allows recommendations to 

be made concerning aspects of the approach requiring further attention and the 

direction which the future development of the technique might take. This discussion 

is followed by some concluding remarks. 
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Chapter 2 

Literature review 

2.1 Introduction 

This chapter presents a review of previous work aimed at quantifying the process of 

vibrational energy transmission in structures. The purpose of this review is to outline 

existing approaches at the outset of this project and to assess their potential to provide 

a suitable solution to the problem presented in Chapter 1. 

In Chapter 1 it was suggested that the principal task of the design tool should be to 

predict the general level of vibrational energy flow through a structure, rather than 

provide a detailed description of its structural response. Consequently this review 

concentrates on techniques within which vibrational energy is the primary quantity of 

interest It was established at an early stage that an important part of this project 

would be involved with the validation of model predictions against experimental 

measurements. It is appropriate therefore, that this review covers the development of 

both modelling and experimental techniques. 

The aim of the review is to provide a brief description of each approach and indicate 

the key stages in its development. Where possible this will be accompanied by an 

assessment of the technique's scope of application and level of accuracy, with 

particular reference to real engineering structures. 

2.2 Modelling methods 

An important feature of the required design tool is that it should provide an analytical 

framework within which one can create global models of a wide variety of structural 

configurations. The review of modelling methods will therefore focus on approaches 

which have the potential to model relatively complex structural geometries. These 
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include finite element analysis, statistical energy analysis and a number of approaches 

which can be gathered under the general heading of energy flow approaches. 

2.2.1 Traditional finite element analysis 

Finite element analysis (FEA) is now accepted as a standard engineering tool able to 

provide a detailed analysis of complex structures. There are currently a wide variety 

of well developed and tested commercial finite element codes readily available to the 

engineering community. Within these packages dynamic analysis is normally carried 

out as a two stage process. The first stage is to carry out a modal analysis calculation 

to determine natural frequency and mode shape information for the model. If response 

predictions are required, these are obtained in the second stage by a modal 

superposition technique. The resulting response information can be expressed in terms 

of displacement, velocity, acceleration, stress etc. Although in general, commercial 

packages only provide response predictions, the availability of this very extensive and 

well developed tool has prompted some investigators to post-process response data to 

calculate vibrational energy flow. 

Hambric (1990) used response predictions provided by the NASTRAN finite element 

code to calculate vibrational energy flow through beam and plate finite elements. 

Having obtained the natural frequency and mode shape information from the modal 

analysis, energy flow was determined on a frequency by frequency basis using stress 

and velocity values calculated at the nodes of the finite element mesh. Because of the 

detailed nature of the FEA calculation this approach was able to account for energy 

transmission due to flexural, longitudinal and torsional motion. 

Garvic et al (1990a, 1990b) presented two companion papers based on a similar 

approach, except in this case the energy flow was determined directly from modal 

parameters. The results of this analysis highlighted the importance of the higher order 

modes on the evaluation of vibrational energy flow, even at low frequencies. Modal 

truncation of the calculation was shown to significantly disturb the predicted energy 

flow pattern, sometimes providing misleading results. 
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This type of approach has advantages in that it is able to provide a very detailed 

description of the energy flow characteristics of a structure and be applied to a wide 

variety of structural geometries. Because the approach is based on a modal calculation 

it is also able to account for resonant behaviour. This is a useful feature because 

levels of vibrational energy flow often increase significantly around resonances, 

particularly in the lower frequency ranges. 

In the context of this project however, a major drawback of this approach stems from 

the fact that the results are obtained using the output of a standard dynamic FEA 

calculation. This means that in practice, this type of analysis would probably be 

limited to use in the lower frequency ranges due to the high computational costs 

involved in applying traditional FEA at higher frequencies. 

2.2.2 Statistical energy analysis 

Statistical energy analysis (SEA) is an analytical technique aimed at providing 

estimates of the vibrational response of complex structures at high frequencies. The 

development of SEA began in the 1960's because of the increase in large, lightweight 

aerospace structures, excited by high frequency broad-band loads. This resulted in a 

need for a higher order modal analysis technique which did not incur the high 

computational costs of the more deterministic techniques like FEA. 

In developing this approach it was recognised that the response of structures at high 

frequencies is highly sensitive to small details of geometry and construction. SEA 

modelling, as the name suggests, is therefore based on the assembly of statistical 

infonnation about groups of similar modes or sub-systems. Within the SEA 

framework connected sub-systems are compared to temperature baths because, on a 

frequency-averaged basis when many modes of the sub-systems are excited, the energy 

flow between them is proportional to the difference in their total modal energy levels. 

This behaviour is similar to that of two connected heat conductors. 

To create an SEA model one considers an energy balance for each sub-system which 

accounts for external power inputs, energy dissipated due to damping and the energy 
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transferred to and from other sub-systems in the model. These individual energy 

balances are then assembled to provide a global model of the structure. This global 

model takes the form of a set of simultaneous linear equations which can be solved 

to provide the individual sub-system energies. The total energy in each sub-system 

can then be converted into space and time-averaged estimates of response in terms of 

displacements. velocities. accelerations etc. Having obtained the sub-system energies 

it is also possible to determine the power transfer between sub-systems which allows 

the more dominant energy transmission paths to be identified. 

Lyon (1975) carried out much of the early research into the use of this approach and 

his book still stands as one of the most complete records of the development and 

principles of SEA. This text also includes a description of the parameters required by 

the SEA model and some approaches to calculate these parameters for a number of 

common structural components. 

The parameters required by an SEA model consist of loss factors and modal densities 

for each of the sub-systems. and coupling loss factors between each sub-system. The 

evaluation of these parameters is an area which has probably attracted the most 

attention over subsequent years. Clarkson and Pope (1981) described an approach to 

experimentally determine the modal densities and loss factors for plate and shell 

structures. Norton and Greenhalgh (1986) discussed several methods for the 

estimation of loss factors in lightly damped pipeline structures. 

Probably the most difficult aspect of the SEA procedure is the determination of the 

so called coupling loss factor which governs the amount of energy transferred between 

sub-systems. In many cases these coupling loss factors have been derived analytically 

from impedance or transmission efficiency information. Because of the complexity 

of these calculations simplifications are often made by representing finite structures 

by similar structures of infinite extent Pinnington and White (1981) showed that this 

approach could be justified at higher frequencies. 
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In many applications the coupling arrangements are too complicated to be treated 

analytically and coupling parameters must be determined experimentally. There have 

been numerous publications concerning this area over recent years. Some of the more 

notable, which address representative engineering situations, are those by Bies and 

Hamid (1980), Clarkson and Ranky (1984) and Langley (1990). 

Several applications of SEA to design problems have also been reported. Ghering and 

Raj (1987) compared SEA predictions with experimental measurements for a structure 

comprising a combination of plates, beams and a cylinder. They concluded that SEA 

was very effective at predicting trends in the response data, but reliable absolute levels 

of response could only be achieved by "benchmarking" model predictions against 

experimental results. This allowed model parameters determined for individual 

structural components to be adjusted to take account of the effects of their assembly 

into the complete structure. Rockwood et al (1987) applied SEA to the analysis of a 

number of marine structures. These structures included a fabricated beam structure, 

a marine gearbox and a steam turbine. This work highlighted the need to account for 

all the important mode types within the system if reliable predictions are to be 

obtained from an SEA model. As expected, the results of these analyses showed that 

the SEA predictions compared better with experimental measurements at higher. rather 

than lower frequencies. 

The generalised nature of the SEA model makes it ideally suited to providing a tool 

to estimate the vibrational characteristics of a complex structure at an early stage of 

the design process. The fact that it requires only a coarse representation of the 

physical system means that the analysis can be carried out before the details of the 

design have been finalised. It also employs relatively few parameters per sub-system 

which means that computational costs are relatively low compared to FEA. These 

features make SEA a useful analytical framework within which to carry out parametric 

studies to assess the effects of design changes on the global behaviour of the system. 

A major drawback of SEA is that the confidence limits of the predicted results are 

difficult to assess. The accuracy of the SEA model is dependent on the ability of the 
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analysis to satisfy a number of assumptions concerning the properties of the structure 

and the nature of the excitation. These assumptions are necessary so that the physical 

system can be represented in a simplified manner. For example the analysis requires 

that each sub-system exhibits many resonant modes within the frequency range of 

interest. This condition is easily satisfied in the case of acoustic problems, but is 

often difficult to satisfy for many structural components except at very high 

frequencies. These difficulties have lead to some scepticism of the approach within 

the engineering community and as a result, its use has mainly been limited to analysis 

at very high frequencies where the SEA assumptions are more readily satisfied. 

2.2.3 Energy flow approaches 

In many cases engineers are presented with problems where analysis by dynamic PEA 

would prove too expensive and the frequency range of interest is such that the 

requirements of SEA are difficult to satisfy. To tackle this type of problem a number 

of alternative approaches have been proposed which provide a description of the 

energy flow characteristics of the structure in a simplified manner. 

Early energy flow models 

Some of the earliest examples of this type of approach can be found in Russian 

literature. This work was prompted by the desire to model the energy transmission 

characteristics of complex ship structures in a relatively simple analytical form. Belov 

et al (1977) proposed an approach to estimate the transmission of vibrational energy 

through periodically ribbed plate structures in the direction perpendicular to the ribs. 

By assuming that the wave field within the plate was diffuse in nature they created 

an energy balance for a section of plate between two ribs. This energy balance 

contained a number of reflection and transmission coefficients which determined the 

proportion of energy crossing the ribs and the level of mode conversion between 

flexural and longitudinal motion. Belov et al then showed that after assembling the 

energy balance expressions for each section. the system of equations could be reduced 

to a second-order differential form. similar to that governing heat conduction. These 

equations were solved analytically to carry out a parametric study to determine the 

optimum thickness of a layer of damping material required to minimise energy levels 
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in the plate. 

Nikiforov (1975, 1990) provided a two-dimensional model for predicting vibrational 

energy flow through plate structures reinforced by ribs attached in the form of a grid. 

This analysis was aimed at higher frequency ranges, typically above 200-300 Hz for 

real ship structures, where the energy field could once again be assumed to be diffuse. 

The model was based on the hypothesis that under these conditions the structure could 

be represented by an "equivalent plate" having directionally dependent transmission 

properties which account for the attenuating effects of the ribs. Using this simplified 

approach Nikiforov proposed that the energy flow through the structure could be 

described by a two-dimensional second-order differential equation of the heat 

conduction type. The parameters which determine the "conductive" properties of the 

model were related to the rib spacing, the transmission coefficient across a rib and the 

group velocity of waves travelling across the plate. This model was used to provide 

predictions of the vibrational energy levels across a ship's deck at distances from a 

vibration source. These predictions compared well with measured results. 

Buvailo and Ionov (1989) implemented Nikiforov's equations numerically using an 

algorithm designed for thermal finite element analysis. This technique provided a 

more versatile tool which could also be used to model the effects of local variations 

in structural properties, like the application of localised damping treatments. This 

approach was used to build a finite element model of a reinforced raft structure which 

provided predictions which were in good agreement with measured results from the 

real structure, over a 200-2500 Hz frequency range. 

Nefske and Sung 

Up until this point simplified energy approaches had been used to provide models of 

large composite structures for which a more detailed analysis would prove too 

expensive or difficult to implement Nefske and Sung (1987) were the flfSt to employ 

this type of approach to the analysis of finite beam structures. Their approach was 

based on an energy balance equation for an elemental volume of material which was 

analogous to the treatment of an individual sub-system in SEA. In order to fully 
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define this energy balance Nefske and Sung made two assumptions based on the 

analogy with SEA. The first was to assume that the dissipation of energy due to 

damping is proportional to the local energy density of the system. The second, and 

perhaps the more important, was to assume that the flow of vibrational energy through 

the structure is proportional to the gradient of energy density. It can be argued that 

these assumptions were arrived at by simply applying the basic principles of SEA on 

a continuum basis. Having made these assumptions Nefske and Sung were able to 

express the energy balance in the form of a second-order differential equation 

analogous to the one governing heat conduction. 

The key issue in the development of this approach is the constitutive relationship 

between the power flux and the gradient of vibrational energy density. Nefske and 

Sung derived a constant of proponionality linking these quantities in a beam structure 

by considering far-field components of the wave motion. The use of this approach 

was then illustrated by the analysis of single and connected beam structures. 

The energy flow models used to carry out these analyses were created by modifying 

the properties of a NASTRAN structural finite element model. It was also suggested 

that a similar analysis could be implemented using a thermal finite element analysis 

via the analogy with the heat conduction equation. The finite element models 

provided smooth predictions for the structural response along the beams which were 

shown to agree well with the results of a classical model solution at very high 

frequencies. There were however, significant differences between the two solutions 

at the point of excitation and at the ends of the beams, although these were not 

commented upon in the publication. 

Nefske and Sung's finite element models were also used to show that this simplified 

approach was able to predict the response of a beam at frequencies where a traditional 

FEA model, with the same mesh density, provided poor results. It was also noted that 

these analyses could be carried out at a significantly reduced level of computational 

cost as compared to traditional PEA. 
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Another important feature illustrated by these examples was that the analysis was able 

to provide an indication of the spatial variation of energy and power along the beam 

structure which represented a significant improvement over the single mean value 

provided by SEA. This potential advantage, together with the ability to provide a low 

cost, high frequency finite element analysis, sparked off a wave of interest in this type 

of approach. 

Lase and Jezequel 

Lase and Jezequel (1990) introduced an approach which provides a complete 

description of the dynamics of a single rod structure purely in terms of energy 

quantities. The first of these quantities was the total local vibrational energy density 

used in Nefske and Sung's approach. Unlike Nefske and Sung however, they also 

included a "Lagrangian term" which represented the difference in the local kinetic and 

potential energy densities. The inclusion of the Lagrangian meant that the solution 

could incorporate resonant behaviour and satisfy various boundary conditions at the 

ends of the rod ego free-free, free-fixed etc. In effect, it meant that both active and 

reactive power components were accounted for in the solution which provided an 

accurate model at low, as well as high, frequencies everywhere in the rod. The final 

form of the model was shown to be a pair of coupled second-order differential 

equations linking active and reactive quantities. The solution to these equations was 

shown to be identical to the results obtained by a modal displacement solution. 

Lase and Jezequel showed that it was also possible to introduce a "smoothing 

function" into the solution which suppressed the resonant nature of the model to give 

a smoothed frequency-averaged estimate of the response. This approach therefore has 

the potential to provide accurate predictions at low frequencies, and in the interest of 

saving on computational cost, a simplified estimate of response at high frequencies. 

Burrell 

Burrell et al (1990) reformulated Nefske and Sung's expressions in a two-dimensional 

polar form and applied them to the analysis of a thin circular plate excited by a 

dynamic point force at its centre. An energy flow model of the structure was created 

by modifying the properties of the thennal analysis provided by the ANSYS finite 
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element package. The response predictions provided by this model were compared 

to those obtained by an analytical modal solution and traditional dynamic FEA. These 

results show that the energy flow solution compared well with the more "exact" 

analysis except in the region of the point excitation. Some improvement was obtained 

by including more elements close to the point of excitation, although the reasons for 

this was never really explained. 

Wohlever, Bouthier, Bernhard and Cho 

The work by Nefske and Sung (1987) and later by Burrell et aI (1900) showed that 

a simplified energy formulation could provide results which compared well with 

classical modal solutions. They also suggested a fmite element implementation of the 

approach which could be developed into a very versatile design tool. It must be noted 

however, that the examples provided in these publications showed results for a very 

limited number of cases at very high frequencies and under rather extreme conditions 

of damping. 

The central issue in developing this approach is the proportional relationship between 

the power flux and the gradient of energy density. In these publications this 

relationship was developed in a rather heuristic manner and was never proven 

explicitly. It is therefore impossible to assess the conditions under which this 

relationship holds and the nature of the solutions at frequencies other than those 

presented by the above authors. With these thoughts in mind, Wohlever (1988) looked 

more closely at the relationship between power flux and local energy in one

dimensional structures to determine the validity of the relationships assumed by 

Nefske and Sung. 

In this work Wohlever was the first to derive constitutive relationships between power 

and energy density in a way which is consistent with classical mechanics. He showed 

that for low levels of damping, the time-averaged power flux in a rod was indeed 

proportional to the gradient of the time-averaged energy density. He also showed that 

a similar relationship could be developed for beams if near-field terms were neglected 

and a form of space-averaging was carried out on the classical energy expressions. 
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These simplifications explained the smoothed nature of previous results presented by 

Nefske and Sung. and the failure of the approach to accurately predict energy levels 

near discontinuities. This work later formed part of a paper presented by Wohlever, 

Bernhard and Bouthier (1990) and again by Wohlever and Bernhard (1992). The 

latter also included some results relating to coupled rod and beam models. 

At the same time, Bouthier (1992) began work on developing similar relationships for 

two-dimensional membrane and plate structures. He showed that a constitutive 

relationship could be developed for membrane structures under conditions of space

and time-averaging. and similarly for plates. if near-field components are omitted from 

the analysis. This work also formed part of the earlier publication by Wohlever, 

Bernhard and Bouthier (1990) and a later paper by Bouthier and Bernhard (1992). 

The latter included a description of a finite element formulation dedicated solely to 

this type of analysis. 

The work by Wohlever on one-dimensional structures was continued by Cho and 

Bernhard (1990). They provided a dedicated finite element formulation for the 

development of rod models. This work also included further research into the problem 

of modelling the coupling conditions between dissimilar rod structures. This problem 

of coupling was once again addressed by Cho and Bernhard (1992) who provided an 

analytical solution, based on the energy flow approach, for the response of an angled 

beam model. Because of the angled nature of the beam this solution required the 

inclusion of both flexural and longitudinal wave energy quantities, as well as the 

necessary transmission and reflection coefficients which describe the partial reflection 

and mode conversion characteristics of the joint. Model predictions were in good 

agreement with an "exact" calculation obtained by a classical modal approach. 

2.3 Measurement techniques 

It has been established that in parallel with the development of a modelling tool it will 

be necessary to employ experimental measurement techniques to determine the levels 

of vibrational energy flow in real structures. The purpose of this part of the review 

is to describe the development of these experimental techniques since work began on 
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them over two decades ago. 

Time domain measurement 

Noiseux (1970) was one of the first investigators to recognise the value of quantifying 

the travelling component of vibrational energy as a means of identifying the more 

dominant vibration transmission paths in structures. This paper introduced the 

quantity "structural intensity" which was defined as the vibrational power per unit 

width or area of cross-section. Noiseux' s analysis showed that the structural intensity 

in a plate in flexure comprises both shear force and moment contributions. These 

components are obtained from the product of the force or moment vectors at some 

cross-section of the structure with their corresponding velocity vectors. In regions far 

from boundaries and discontinuities these two power components were shown to be 

equal. This allowed Noiseux to determine the total intensity in a plate by 

measurement of the moment component only. 

Noiseux also showed that in the far-field of plate and beam structures the internal 

moment could be related to the translational motion at their surface. This relationship 

allowed Noiseux to make measurements of the structural intensity in a plate using two 

accelerometers mounted at right angles on a block attached to the its surface. One 

accelerometer provided a measure of the translational motion of the plate and the 

second a measure of the rotational motion at the point of attachment, by virtue of the 

displacement of its axis from the plate'S centre line. Using this simple combination 

of transducers, together with an analogue integrating circuit, Noiseux was able to 

measure structural intensity in the two in-plane directions across the plate. This 

information was processed to give a vector representation of energy flow which 

clearly identified the location of the source of excitation and the flow of energy 

towards a sink. 

Pavic (1976) derived a general expression for structural intensity through a section of 

plate experiencing flexure. The important feature of this expression was that intensity 

was expressed entirely in tenns of spatial derivatives of the surface motion of the 

plate. Pavic showed that these spatial derivatives could be estimated by a finite 
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difference approach which required an array of accelerometer measurements around 

the point of interest. This finite difference approach effectively removed the need for 

the accelerometer mounting block employed earlier by Noiseux. 

This general expression for plate intensity is valid everywhere in the plate, including 

areas which are influenced by near-field effects. It does however, require the use of 

an eight accelerometer array to evaluate all the spatial derivatives contained in the 

expression. Pavic showed that in certain circumstances, such as far-field conditions 

or if measurements are made on a beam, the number of accelerometers in the array 

could be reduced. For example. the measurement of far-field intensity in a beam 

could be achieved using just two accelerometers. 

Frequency domain measurement 

The increased availability of FFT signal processing equipment encouraged Verheij 

(1980) to investigate methods for the measurement of structural intensity using 

frequency domain techniques. He showed that the expressions developed earlier by 

Pavic could be implemented in the frequency domain using cross-spectral quantities. 

This allowed greater flexibility with respect to frequency resolution and eliminated the 

need to develop specialised signal processing circuitry to evaluate structural intensity. 

Verheij's interest centred on beam and pipe structures and he proposed a number of 

two-accelerometer techniques to measure structural intensity in these one-dimensional 

structures experiencing fleXUral, longitudinal and torsional motion. This work 

represented a major breakthrough in the area of structural intensity measurement 

because it provided techniques which could be implemented using tools which were 

already available to the engineering community. 

Following these early papers interest in the evaluation of structural intensity grew. 

although the basic principles laid down by Pavic and Verheij remained virtually 

unchanged. There were a number of publications on the subject over the next decade. 

mostly relating to detailed aspects of the approach or reporting its successful 

application to engineering problems. Some examples of these were provided by 

Pinnington et al (1981). Redman-White (1984). Zhao (1987). Sato and Honda (1988) 
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and Carrol and Clark (1989). A useful summary of the progress made in the field up 

to the late 1980's was provided by Linjama and Lahti (1989). This included a 

description of a set of experiments carried out to study the practical application of 

various measurement techniques to the evaluation of structural intensity in beam 

structures. 

Wavenumber measurement 

Up to this point the majority of work in the area of structural intensity measurement 

was still based on the original proposals by Pavic and Verheij. There were however. 

a few techniques which moved away from these original fonnulations. Meyer et al 

(1990) developed a technique for measurement of the far-field structural intensity in 

a plate in flexure which involved the measurement of wavenumber. It was shown that 

wavenumber measurements in anyone direction could be obtained using a linear array 

of three accelerometers. In order to measure wavenumber. and hence structural 

intensity. in both in-plane directions of the plate, Meyer et al used a five

accelerometer array in a cross configuration. 

A similar approach was used by Wagstaff et al (1990) to measure the flexural 

wavenumber in a beam. In this paper Wagstaff et al also proposed a novel technique 

which involved the evaluation of structural intensity from signals referenced to a 

measurement made close to the source of excitation. The aims of this technique were 

to eliminate the effects of unwanted noise and to identify components of intensity 

associated with multiple source excitation. These techniques were also identified as 

being more appropriate for the measurement of structural intensity in lightly damped 

structures. 

Laser vibrometry 

All the techniques described above rely on the use of accelerometers attached to the 

surface of the structure. In recent years there has been a rapid increase in the 

application of laser technology to the study of structural vibration. Laser vibrometry 

has an advantage over the use of contacting transducers in that it does not interfere 

with the dynamics of the structure. This is particularly important in the case of light-
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weight structures where the added mass of accelerometers may have significant 

effects. Laser techniques also have the potential to make measurements on structures 

which are ho~ rotating or have limited accessibility. 

Hayek et al (1990) showed that Pavic's finite difference expressions could be adapted 

to accommodate velocity measurements obtained by a scanning laser vibrometer. 

Baker et al (1990) showed that the need for finite difference approximations could be 

eliminated altogether by employing an optical technique which is able to provide a 

measurement of the gradient of the surface velocity. These techniques reduce the 

level of approximation and eliminate some of the difficulties inherent in the 

accelerometer methods. They do however, require the use of very expensive and often 

cumbersome equipment. It remains to be seen how well further development of these 

techniques can reduce these limitations in future years. 

Practical limitations 

The major drawback of structural intensity measurement is that its use is limited to 

cases where mechanical quantities within the structure such as shear force and 

momen~ can be directly and simply related to the motion at the surface. Such 

structures include beams. plates. and shells which allow wave propagation only in the 

direction parallel to their surface in the frequency ranges of interest. This feature has 

been, and still is, a major obstacle to the development of generally applicable 

measurement techniques. 

There are also a number of practical problems associated with the use of 

accelerometers which require special attention in order to achieve reliable 

measurements. One of these is related to transducer phase mismatch. The expressions 

for structural intensity require a measurement of the phase differences between the 

motion at a closely spaced array of points on the surface of the structure. In some 

cases, particularly when damping levels are low, these phase differences are 

comparable with the phase tolerances of the accelerometers and signal conditioning 

equipment which can lead to large errors in the results. 
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These errors can be reduced using calibration techniques to account for phase 

differences in the signals which are not related to the motion of the structure. The 

idea of calibration seems very straightforward in principle. but is often very difficult 

to achieve in practice. This is because of the difficulty in providing both 

accelerometers with exactly the same excitation during the calibration process. In the 

case of a two-transducer technique. phase mismatch can be removed quite 

conveniently by "switching" the accelerometers during the measurement process and 

averaging the two signals. In doing this, any phase bias due to accelerometer 

mismatch is effectively cancelled out This approach cannot however, be employed 

if more than two accelerometers are involved. In general it can be concluded that the 

greater the number of accelerometers used to make the measurements, the more 

difficult it is to eliminate the effects of these phase mismatch problems. 

These measurement techniques also suffer from errors introduced by finite difference 

approximations. Again. these can be accounted for in the case of two-accelerometer 

measurements, but are more difficult to remove as the number of transducers in the 

array increases. 

It is apparent that some of the above problems are being addressed by the introduction 

of laser based techniques. The use of lasers should also enable data to be collected 

with greater precision and speed than can be achieved using the traditional 

accelerometer methods. It is still unclear however. if the increase in hardware costs 

will make this avenue prohibitively expensive to the general user. 

Because of the practical problems involved in structural intensity measurement its 

development has progressed rather slowly over the past 20 years. For the majority of 

this time measurements have been confined to the laboratory and restricted to use on 

simple beam and plate structures. Recently however, there have been a few very good 

examples of the use of structural intensity measurement in the real engineering 

environment Verheij (1993a. 1993b) presented two such examples relating to the 

transmission of vibrational energy along propeller shafts in ships. It remains to be 

seen whether this type of work will result in an increased recognition of the value of 
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structural intensity measurement to the wider engineering community. 

2.4 Summary 

In this chapter the work by previous investigators to provide a means of measuring 

or predicting vibrational energy flow in structures has been outlined. The main points 

relating to this area are as follows: 

1. The adaptation of traditional finite element analysis to provide energy flow 

predictions results in a very detailed and complete description of the wave 

transmission characteristics of a structure. This technique is however, limited 

to use at lower frequencies due to rapidly increasing computational costs. 

2. Statistical energy analysis provides a good global model for the analysis of 

structures at high frequencies if the model parameters are known. Over the 

years the evaluation of these parameters has proved the most difficult aspect 

of SEA. although a number of analytical and experimental techniques are 

available. The major limitation of SEA is the ability of the structure to satisfy 

the statistical nature of the assumptions used in its development in the low to 

medium frequency ranges. 

3. The simplified continuum energy flow approaches have the potential to bridge 

the frequency gap between traditional finite element analysis and SEA. After 

a number of approximations are made. the energy governing equations reduce 

to a second-order differential form, analogous to that of the heat conduction 

equation. The ability to solve this equation using finite element techniques 

indicates a potential for this approach to provide energy flow estimates through 

relatively complex structures over a wide frequency range. 

4. The development of structural intensity measurement techniques has been 

limited by the difficulty in obtaining information about internal shear forces 

and moments of a structure from measurements of the motion at its surface. 

There are also significant errors induced due to transducer phase mismatch and 
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the use of finite difference approximations In the analysis. As a result, 

previous applications of this technique have been mainly limited to simple 
-

structural geometries and carried out under laboratory conditions. Very recently 

however, there have been a few good examples of the application of these 

techniques to real engineering applications. 
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Chapter 3 

Theoretical development 

3.1 Introduction 

In this chapter the theoretical basis of the energy flow approach will be presented in 

more detail. It will be shown that by considering the conselVation of energy in an 

enclosed volume of material and applying steady state conditions, a second-order 

differential equation can be developed which governs the flow of vibrational energy 

within a general structural component. The exact form of this equation is determined 

by the relationship between vibrational power flux and energy density, which in turn 

is dependent on the type of Structure under consideration. These relationships have 

been developed by Wohlever (1988) for rods and beams and Bouthier (1992) for 

membranes and plates. Although these expressions will not be derived fully here, 

their development will be described in some detail to highlight the impact of certain 

assumptions made in simplifying the relationships. 

3.2 The energy balance equation 

Consider the elemental volume of material shown in Fig.3.2.1, which possesses some 

form of vibrational energy quantified by energy density, e. The power dissipated by 

damping is denoted pJiss and q represents a power flux crossing the boundary. Using 

the principle of the conselVation of energy, the rate of change of energy within the 

system must be equal to the algebraic sum of the net power crossing the boundary and 

the power dissipated by damping. This leads to an instantaneous energy balance 

governing the conduction and dissipation of vibrational energy within the system, 

given by: 

ae at - - V.q - PJj# (3.2.1) 
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For steady state conditions, the time derivative is zero and the energy balance 

becomes: 

- V.q - PJiss = 0 (3.2.2) 

An expression to detennine the value of the dissipated power P Jill due to material 

damping has been developed in a number of ways. Wohlever (1988) developed an 

expression through a detailed study of the damping mechanisms within a rod model. 

Bouthier (1992) provided a more general analysis based on the classical hysteretic 

damping model described by Cremer (1973). Nefske and Sung (1987) simply 

borrowed an expression from SEA and applied it to the energy flow model in a 

continuum manner. In all cases it was concluded that the time-averaged effects of 

damping in a general structural element can be effectively modelled using the 

expression: 

(3.2.3) 

where 11 represents the hysteretic damping loss factor for the material and 0) is the 

radian frequency of vibration. 

The fundamental principles behind the energy flow approach is to assume that the 

energy flows from regions of high energy density to regions of lower energy density 

and that the rate of energy flow is proportional to the energy gradient between those 

points. These assumptions can be expressed in equation fonn as: 

qoc-Ve (3.2.4) 

Substituting (3.2.3) and (3.2.4) into (3.2.2) gives: 

(3.2.5) 

which is the general fonn of the differential equation providing a simplified 

description of the conduction and dissipation of vibrational energy within a structural 

component 
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The constant of proportionality, C, is dependent on the nature of the component 

concerned, ie whether it can be considered as a rod, beam or plate. The form of this 

parameter in each of these cases has been determined by Wohlever (1988) and 

Bouthier (1992) by developing a relationship between power flux and the gradient of 

energy density similar in form to (3.2.4), from classical wave theory. In each of these 

cases the proposed relationship is of the general form: 

(3.2.6) 

where c, is the group velocity of waves which is dependent on the type of structure 

and the nature of the wave motion involved. 

It should be noted that in the case of rod structures q and e are time-averaged 

quantities. In the cases of beam and plate structures, the above relationship can only 

be formed if q and e are both space- and time-averaged and relate only to far-field 

conditions. These simplifications will be explained in more detail in the following 

sections. 

The relationship between vibrational power flux and energy density (3.2.4) forms the 

central core of the energy flow approach. As mentioned earlier, this relationship has 

been developed for common structural components from basic wave theory. An 

understanding of the development of these expressions is vital in order to appreciate 

the limitations and applicability of the energy flow approach to the analysis of real 

structures. The development of the expressions relating to rod, beam and plate 

structures will be looked at in some detail here so that the impact of the assumptions 

made to simplify the analysis are fully understood. 

Before embarking on this discussion it is necessary to point out some differences in 

nomenclature between the expressions used here and those appearing in earlier work. 

The analysis for rods and beams presented here is based on the work by Wohlever 

(1988), although the expressions used are slightly different from those which appear 

in Wohlever's original text. Here. the quantity energy density, e, is interpreted as 
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energy per unit volume in units of [J/m3
]. In keeping with expression (3.2.6), q must 

represent a power flux defined as the rate of energy flow per unit area having units 

of [W/ml]. Wohlever's expressions for energy density were expressed in terms of 

energy per unit length, although a relationship of the same form as (3.2.6) was still 

obtained because his power quantity, q, was expressed in units of watts. 

3.3 Theoretical development for rod structures 

Before focusing on the relationship between power flux and energy density it is 

appropriate to introduce the solution to the wave equation for a rod structure 

experiencing longitudinal harmonic motion. This solution, together with its 

counterpart relating to flexural motion in a beam, will feature regularly throughout this 

thesis. 

3.3.1 The wave equation of motion for a rod 

Consider the section of rod shown in Fig.3.3.1. Assuming that sections of the rod 

remain plane during motion and that the stress over these sections is uniform, the 

equation of motion for a section of length Ox, given by Newton's second law, is: 

(3.3.1) 

where U represents the displacement of the rod section, S denotes its cross-sectional 

area and p the mass density of the rod material. 

The stress, a, is related to the strain in the rod aU/iJx by: 

au 
a=E

ax 
(3.3.2) 

where E represents the Young's modulus for the rod material. Using this relationship 

the equation of motion becomes: 

(3.3.3) 
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For steady state harmonic motion, the longitudinal displacement, U, is a function of 

both space and time and can be expressed as: 

U(X,t) = u(x) ei
l1)l 

(3.3.4) 

Substituting (3.3.4) into (3.3.3) gives: 

()2u(X) + pOOl u(x) = 0 
ox l E 

(3.3.5) 

At this point it is necessary to introduce some well established quantities relating to 

wave motion. These are wavenumber, k, and phase speed, e, which are described in 

some detail by Cremer (1973) and Fahy (1985). 

Wavenumber, k, is given by: 

00 
k =

e 

and the phase speed for longitudinal motion, eL' is given by: 

e = Ie 
L ~~ 

Using (3.3.6) and (3.3.7) above, (3.3.5) reduces to: 

which has the general solution: 

u(X) = Ae -ikx + Beikx 

(3.3.6) 

(3.3.7) 

(3.3.8) 

(3.3.9) 

The complete solution for longitudinal motion, as a function of space and time, from 

(3.3.4) is: 

U(X,t) = ( Ae-ikx + Be ikx 
) e iwl (3.3.10) 

where A and B are dependent on boundary conditions and represent complex wave 

amplitudes which correspond to waves propagating in the positive and negative x 
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directions respectively. This expression will be used extensively throughout this thesis 

to describe harmonic longitudinal wave motion in one-dimensional- structures. 

3.3.2 Damping 

Damping can be introduced into the equation of motion by replacing the modulus of 

elasticity. E. by a complex modulus dermed by Ec = E(1+i11), where 11 is the 

hysteretic damping loss factor. In doing this the wavenumber also becomes complex 

and is given by: 

(3.3.11) 

In most practical cases 11«1 and it can be shown that: 

(3.3.12) 

The significance of this complex wavenumber becomes apparent when it replaces k 

in the wave solution (3.3.10), so that: 

(3.3.13) 

This expression indicates that the introduction of dampin.g causes the wave amplitudes 

to decay exponentially with distance at a rate of exp(-0l1lx/2cL)' 

3.3.3 Power flux and energy density relationship for rods 

The vibrational power flux at any point in the rod is given by the product of axial 

force per unit area and axial velocity. Expressing these quantities in terms of the axial 

displacement yields: 

q = _ E au au 
ax 01 
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Goyder and White (1980) showed that under hannonic conditions. a time-averaged 

power quantity can be obtained from: 

< p > = < (force)(velocity) > = .!.. Re [ (force)(velocity)a] (3.3.15) 
2 

where < > indicates time-averaging and a denotes a complex conjugate . 

. 
Using (3.3.13), (3.3.14) and (3.3.15) the time-averaged power flux. < q >, can be 

expressed as: 

< q > = .!. mEk. [ IA 12e1Y - IB 12e -V:r ] 
2 (3.3.16) 

- mEk2 [ Im(AB a) cos 2k.x - Re(AB a) sin 2k.x ] 

The total energy density is given by the sum of the strain and kinetic energy densities. 

denoted by V and T respectively. In the case of a rod: 

V = !. E (CJU)2 
2 CJx 

(3.3.17) 

and 

(3.3.18) 

Following the procedure used to derive the time-averaged power flux and summing 

the two energy components. the total energy density is given by: 

< e > =.!.. {IAI2eV:r + IBI 2e-V:r} {Elkl2 + pr02} 
4 

- ~ {Re(ABa) cos2k.x + Im(AB a
) sin2k.x} {Elkl 2 

- pr02} 
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At present there seems to be no simple relationship between equations (3.3.16) and 

(3.3.19). However, if the assumption is made that the damping in the structure is light 

ie. 11 « 1, then Ik ,I » Ik21 and the expression for power flux, equation (3.3.16), 

reduces to: 

(3.3.20) 

This assumption also means the expression for wavenumber, equation (3.3.11), reduces 

to: 

(3.3.21) 

and hence 

(3.3.22) 

Substituting (3.3.22) into (3.3.19) provides an approximate time-averaged total energy 

density given by: 

(3.3.23) 

Differentiating (3.3.23) with respect to x and dividing (3.3.20) by this differential 

results in the relationship: 

2 
CL d<e> 

<q>=- -
1100 dx 

(3.3.24) 

This shows that if damping is assumed to be light, the time-averaged power flux in 

a rod is proportional to the gradient of the time-averaged energy density as assumed 

in (3.2.4). Noting that for longitudinal waves c, = CL then (3.3.24) compares directly 

with the more general expression (3.2.6). 
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3.4 Theoretical development for beam structures 

The treatment of the theory relating to beam structures will be carried out in a similar 

manner to that for rods. The expressions describing the relationships between 

mechanical quantities in a beam are more complicated than those relating to a rod 

because of the increased complexity of the motion involved. As a consequence, a 

simple relationship between power flux and energy density is more difficult to 

establish. It is possible however, to develop a relationship of the same form as (3.2.4) 

if certain components of the expressions relating to flexural motion are neglected. 

These simplifications will be described in some detail in the following sections. 

Before looking at the development of the relationship between power flux and energy 

density, the solution to the wave equation of motion for a beam will be introduced. 

As with the case of the rod solution this expression will feature regularly throughout 

this thesis. 

3.4.1 The wave equation of motion for a beam 

Using a similar approach to the one employed earlier in the rod analysis, Fahy (1985) 

showed that the equation of motion for a small section of beam experiencing harmonic 

flexural motion is a fourth-order relationship of the form: 

(3.4.1) 

where w(x) represents the transverse displacement of the beam section. By following 

similar steps to those described in section 3.3.1, the complete solution to this equation 

under harmonic conditions is: 

(3.4.2) 

where wavenumber. k. is given by: 

(3.4.3) 

and the constants A,B,C and D are dependent on boundary conditions. 
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3.4.2 Near-field and far-field effects 

It is evident from the above expressions that the fourth-order nature of the equation 

of motion results in a solution which contains four terms. The first pair of terms 

represent flexural waves propagating in the positive and negative x directions, with 

wave amplitudes A and B respectively. These terms are similar to those appearing in 

the solution for longitudinal motion in a rod. The remaining terms, containing C and 

D, represent non-propagating fields with amplitudes which decay exponentially with 

distance. Cremer (1973) explained that these terms are required to satisfy equilibrium 

and continuity conditions at a structural discontinuity. In this context, a discontinuity 

could take the form of an end condition, the coupling point between two beams or the 

location of the driving force. 

The displacement solution (3.4.2) shows that these terms decay with distance at a rate 

of exp( -kx). This decay function can also be expressed in terms of the wavelength of 

vibration. Since: 

the decay function becomes: 

k = 21t 
A 

(3.4.4) 

(3.4.5) 

Fig.3.4.1 shows this function plotted against distance from a discontinuity expressed 

in terms of wavelength. It can be seen that!(x) decays almost completely within the 

distance of one wavelength. For this reason the terms containing C and D in (3.4.2) 

are normally considered negligible at distances greater than one half of a wavelength 

from a discontinuity. Because these terms are only important close to discontinuities 

they have become known as the "near-field" part of the solution. In contrast, the 

tenns containing A and B describe propagating waves which are important everywhere 

in the beam. These terms have subsequently become known as the "far-field" part of 

the solution. 
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3.4.3 Power flux and energy density relatio~hip for beams 

The strain and kinetic energy densities, V and T, for a transversely vibrating beam are 

given by: 

V = ~ EI (a2w)2 
2 s axl 

(3.4.6) 

and 

(3.4.7) 

Using the displacement solution (3.4.2) and carrying out time-averaging in a similar 

manner to that applied to rods, these quantities can be expressed as: 

and 

1 <V>=_ 
4 

EIIPl2 Re [ ( Ae-ih + Be ih - Ce-h - De h ) 

S 

(Ae-ih + Be ih - Ce-h - De h r ] 

< T > = ..!. pOOl Re [ ( Ae-ih + Be ih + Ce-h + De h ) 
4 

( Ae-ih + Be ih + Ce-h + De h r ] 

(3.4.8) 

(3.4.9) 

When these expressions are evaluated they result in relationships which are 

considerably more complicated than the ones obtained during the rod analysis 

presented earlier. Using the assumption of low damping, Wohlever (1988) showed 

that the total energy density, given by the sum of the above expressions, can be 

reduced to: 

< e > = ~ pOOl [ IA 12eUr + 
2 

IBlle-U,r + IClle-U 
.... + IDlleu .... ] 

+ pOOl [ Re(ABe) cos 2k1x + Im(ABe) sin 2k
1
x ] 

+ pOOl [ Re(eDe) cos 2k~ + Im(CDe) sin 2krt ] 

(3.4.10) 

where the real and imaginary components of wavenumber, k, and k2, result from the 



introduction of damping using the complex modulus of elasticity. 

There are several differences between this equation and the equivalent expression for 

rods. Firstly. there are near-field terms containing C and D which are only important 

close to the discontinuities. There is also a harmonic far-field component: 

pOO2 [ Re(AB·) cos 2kaX + Im(AB -) sin 2kaX ] (3.4.11) 

Wohlever (1988) showed that this part of the function could be removed if a space

averaged energy density is obtained by integrating (3.4.10) over one wavelength. 

If in addition near-field components are neglected. the space- and time-averaged 

energy density in the far-field of the beam becomes: 

(3.4.12) 

where e is the space-averaged energy density. < > indicates time-averaging and the 

suffix if shows that only far-field components are retained in the analysis. 

Vibrational power in a beam is transmitted by two separate mechanisms. one related 

to shear force and the other to bending moment. The time-averaged power flux 

associated with the shear force component is: 

< q > =..!. Re [( El ~) (OW)- ] 
$ 2 S ox3 lTt 

(3.4.13) 

and similarly. for the moment component: 

< q > = ~ Re [( EI i)2W) (- i)2W J ] 
'" 2 S ox1 iJxiJt 

(3.4~14) 
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Using the displacement expression (3.4.2), neglecting near-field tenns and carrying out 

space-averaging, Wohlever showed that the far-field space- and time-averaged power 

flux in a beam can be expressed as: 

(3.4.15) 

Differentiating (3.4.12) with respect to x and dividing (3.4.15) by this differential 

gives: 

_ 4c: d<i>u 
< q >g = - 110) dx 

(3.4.16) 

which is the assumed relationship given by equation (3.2.4). Noting that for flexural 

wave motion in a beam c, = 2c", (3.4.16) becomes identical to the more general 

relationship (3.2.6). 

3.5 Theoretical development for plate structures 

The analysis developed by Bouthier (1992) for the relationship between vibrational 

power flux and energy density in a finite thin plate follows a similar procedure to that 

. for rods and beams presented by Wohlever (1988). With the inclusion of damping, 

the equation of motion for a thin unifonn plate is of the fonn: 

(3.5.1) 

where 11 represents the damping loss factor for the plate material and D is the bending 

stiffness of the plate section given by: 

(3.5.2) 

Bouthier explained that due to its biharmonic nature (3.5.1) is not separable and a 

general solution cannot be obtained in closed form. To overcome this difficulty he 

made use of an approximate expression for the wave motion in a plate structure which 

consists of the superposition of two far-field plane waves. 
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Using this approach the wave solution for the transverse displacement of the plate is 

given by: 

(3.5.3) 

where the suffix ff shows that this expression is only valid in the far-field. 

Bouthier substituted this expression into those for power flux and energy density in 

a thin plate provided by Timoshenko (1955). After time-averaging and neglecting 

terms containing sinusoidal functions of wavenumber ( equivalent to space-averaging), 

he showed that: 

c2 

< q > = - , V < e >fI 
If 11 co 

(3.5.4) 

This expression is of course, only valid far from discontinuities because the far-field 

components of the wave equation were neglected at the outset of the analysis. 

3.6 Discussion 

In developing the simplified energy balance governing the flow of mechanical energy 

through a structural component, it was assumed that vibrational power flux is 

proportional to the gradient of the energy density between points in the structure. If 

the level of material damping is low, it has been shown that for the case of a rod 

experiencing longitudinal motion, this direct relationship can be obtained. For beams 

and plates however, this proportional relationship can only be obtained by carrying out 

some form of space-averaging and neglecting near-field components. 

The assumption that damping is low can be justified for most engineering structures 

because the majority of marine, aerospace and automotive structures, where this 

technique is potentially most useful, are constructed from steel or aluminium. The 

damping loss factors for these materials are typically less than 0.01. 
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In the case of plate and beam structures a necessary simplification to the analysis was 

achieved by neglecting near-field components of the displacement solutions. This 

simplification should only be detrimental to the solution for parts of the structure 

within a distance of one half of a wavelength from a structural discontinuity. In most 

cases it will be possible to make some judgement of the proportion of the structure 

which is affected by this simplification at a given frequency. This infonnation will 

be important when assessing the applicability of this modelling technique to the 

particular structure concerned. 

In developing the relationships for plate and beam structures, it was necessary to 

remove the sinusoidal variation of the far-field power flux and energy density 

expressions by a space-averaging technique. As a result, the analysis provided by this 

approach will lack some of the detail present in the exact solutions. although the 

general level of power and energy density will be provided in the fonn of a space

averaged estimate. This greatly reduces the numerical complexity of the solution at 

the cost of introducing some level of approximation into the result. This trade off is 

in keeping with the requirements of the modelling tool set out in Chapter 1. 

3.7 Summary 

This chapter outlined the theoretical basis of the energy flow approach proposed by 

Nefske and Sung (1987), Wohlever (1988) and Bouthier (1992). The key points 

concerning this analysis are as follows: 

1. The equation governing the flow of vibrational energy within a structural 

component is developed by considering the steady state energy balance for an 

elemental volume of material which is capable of both dissipation and 

transmission of vibrational energy. 

By assuming that the dissipated energy is related to the local level of energy 

density and that the transmission of energy is proportional to the energy 

gradient, this governing equation becomes a second-order differential equation 
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of the fonn: 

(3.7.1) 

2. By considering the expressions for the energy and power in a rod structure 

Wohlever (1988) showed that if damping levels are low: 

2 
Cg d<e> 

<q>=--
COll dx 

where < > indicates a time-averaged quantity. 

(3.7.2) 

3. Wohlever (1988) and Bouthier (1992) showed that similar relationships could 

be developed for beam and plate structures in flexure if, in addition to the 

condition of low damping, the expressions involved are space-averaged and 

near-field tenns are omitted from the analysis. 
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Fig.3.4.1 Decay of near-field components related to number of 

wavelengths from a discontinuity 
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Chapter 4 

Application to beam structures 

4.1 Introduction 

In this chapter the energy flow approach is applied to the analysis of beam structures. 

The first study describes the development of an energy flow model to provide an 

estimate of the response of a simply supported beam structure experiencing harmonic 

force excitation applied at its mid-section. This work provides useful insight into the 

nature of the predictions obtained from the energy flow approach which are influenced 

by the simplifications outlined in the previous chapter. The quality of the model 

predictions is assessed by comparison with a modal response solution for this type of 

structure. 

The second study describes the use of the energy flow approach to build a 

representative model of a real beam structure. This structure consists of a freely 

supported perspex beam with shaker excitation at one end. Energy flow predictions 

from the model are compared with measured values obtained along the length of the 

beam using a far-field Structural intensity technique. This work serves to determine 

the quality of energy flow predictions obtained from the model and allows the 

accuracy requirement of modelling parameters (eg. power input and damping) to be 

assessed. 

4.2 Energy flow analysis for a simply supported beam structure 

Fig.4.2.1 shows a simply supported beam structure excited by a point harmonic force 

at its mid-section. An energy flow model of this structure will be developed to 

provide some insight into the nature of the predictions obtained by the energy flow 

approach. This information will also be useful in assessing how this technique might 

best be applied to the analysis of real structures. 
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4.2.1 The energy now solution 

The energy flow model used to represent the simply supported beam structure is 

shown in Fig.4.2.2. In this model. the supply of vibrational energy provided by the 

excitation is represented by a power input, P, applied at the centre of the beam. It is 

assumed that energy does not flow into the simple supports, which gives rise to 

boundary conditions such that the power flux, q. at each end of the beam is equal to 

zero. 

It was shown in Chapter 3 that the differential equation governing the steady state 

flow of vibrational energy within a structural component is: 

Equation (3.4.16) shows that for a beam structure in flexure: 

Combining (4.2.1) and (4.2.2) gives: 

1 
4c" 

C=-
TIro 

(4.2.1) 

(4.2.2) 

(4.2.3) 

This is the governing equation for flexural energy conduction and dissipation within 

the beam model. It should be remembered that due to the assumptions described in 

Chapter 3, the energy density value, e, is a space· and time·averaged quantity and 

related only to far·field conditions. 

Rearranging (4.2.3) gives: 

- a2 e = 0 (4.2.4) 
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where, 

(4.2.5) 

Equation (4.2.4) has a general solution of the form: 

e(x) = A cosh(ax) + B sinh(ax) (4.2.6) 

where the constants A and B can be found from the boundary conditions applied to 

the model. 

The symmetry of the energy flow model allows the solution (4.2.6) to be obtained for 

each symmetric half of the Structure in turn. The energy flow solution for the left

hand half of the beam, defined by O~ L12, is obtained by considering the boundary 

conditions at each end of this section. These are related to the power flux values 

defined by: 

q(x) = (4.2.7) 

Using (4.2.6) this equation becomes: 

q(x) = - 2c
b 

[ A sinh(ax) + B cosh(ax) ] (4.2.8) 

At the left-hand end of model, x = 0, the power flux, q, is zero. Applying this 

condition to (4.2.8) shows that in this case B = o. 

At the point of excitation, x = Ln.. the power flux is: 

p 
q(Ln.) = - -

2S 

where S represents the cross-sectional area of the beam. 
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Applying this condition to (4.2.8) yields: 

A = P 
4c bS sinh( oLI2) 

(4.2.10) 

Substituting these values for A and B into the general solution (4.2.6) gives: 

p cosh(ax) 
e(OSr5Ll2) = 4c

b
S sinh(aLI2) 

A similar analysis for the right-hand half of the beam gives: 
(,' (. 

e(LI2~) = ~ { ~inh(ax-aL) } 
4c bS sinh( -aL/2) 

(4.2.11) 

(4.2.12) 

In this analysis comparisons between the energy flow and modal solutions will be 

made in tenns of displacement response. Cremer (1973) showed that the potential and 

kinetic energy density values in the far-field region of a beam are equal. It follows 

that the total energy density can therefore be expressed as twice the kinetic energy 

density, thus: 

e(x) = P v 2(x) 
(4.2.13) 

where v represents the transverse velocity of the beam. 

For harmonic conditions displacement is related to velocity by: 

(4.2.14) 

hence the displacement response along the beam can be calculated from: 

w(x) = J e(X~ 
P 0)-

(4.2.15) 

where e(x.) is the energy density value obtained by either (4.2.11) or (4.2.12) above. 
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4.2.2 The modal solution 

For comparison with the energy flow solution the displacement response for a simply 

supported beam excited at its centre has been obtained by a classical modal 

superposition calculation. The derivation of this modal solution is described fully in 

Appendix A and for brevity only the final expressions will be provided here. 

The analysis shows that the rms value of the displacement response at a distance x 

from the left-hand end of the beam is given by: 

W(X)'ltlS = 1 2F E cp,(a) cp,(x) Z; 
{i pSL,. 1 

(4.2.16) 

where CPr(x) is the mode shape function for a simply supported beam, given by: 

cP ,(x) 
. ntx 

= Sln_ 
L 

(4.2.17) 

and Z; is a complex quantity which takes account of the presence of damping and is 

given by: 

Z· = , 
ro; - ro2(1+112) + i(11ro;) 

(co; -rolf + 111C04 
(4.2.18) 

Here F is the magnitude of the sinusoidal force applied at a distance a from the end 

of the beam, ro, is the eigen frequency of the ,Jh mode, p is mass density of the beam 

material and L is the length of the beam. 
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4.2.3 Results and discussion 

For the purposes of this analysis the properties and dimensions of the beam structure 

are as follows: 

Length = 1.2 m 

Depth = 10.3 mm 

Width = lO mm 

Mass density = 7800 kg/m3 

Young's modulus = 209 GN/m2 

The value for the loss factor will initially be set at 0.2. This rather high value 

contradicts the assuinption of low damping required to develop the governing 

expressions for this approach, but allows direct comparison with the earlier results 

presented by Nefske and Sung (1987). 

In order to evaluate the energy flow solutions (4.2.11) and (4.2.12) one requires a 

value for the mechanical power input to the beam, P. This can be obtained using the 

driving point impedance of the structure which is defined as the ratio of excitation 

force to the resulting velocity at the point of excitation. Using this definition Cremer 

(1973) showed that the nns power imparted to a structure by a harmonic force of 

magnitude F is: 

(4.2.19) 

where z is the driving point impedance. 

Pinnington and White (1981) showed that at higher frequencies, the point impedance 

of a finite structure approximates to that calculated for an equivalent infinite structure. 

This property was employed by Nefske and Sung (1987), who obtained a value of z 

for their beam model using: 

(4.2.20) 

which corresponds to the point impedance of an infinite beam, derived by Cremer 

(1973). 
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Mean displacement values for the beam calculated by the modal approach over a 

frequency range of O-tO kHz are shown in Fig.4.2.3. The corresponding response 

estimates provided by the energy flow solution using the infinite beam approximation 

for power input are also shown in this figure by a dotted line. This line agrees well 

with the modal values above 1 kHz, but does not reflect the variation in response 

around resonances in the lower frequency region. As a consequence, significant 

discrepancies are evident between the two results. These differences stem from the 

fact that equation (4.2.20) relates to an infinite structure which does not possess modal 

behaviour. Moreover, equation (4.2.20) takes no account of the level of damping in 

the structure and further investigation has shown that good agreement between the two 

solutions is only obtained for loss factors of around 0.2. For example, when the 

damping factor is reduced to 0.02, which is more representative of steel structures, the 

comparison between the two solutions becomes very poor indeed, see Fig 4.2.4. 

For this analysis it is more representative to obtain the value for the driving point 

impedance of the beam from the modal solution, which is more representative of the 

behaviour of the structure, particularly at lower frequencies. This value of impedance 

can be determined from: 

F z=_ (4.2.21) 
ioow 

where w represents the displacement response of the beam at the point of excitation 

given by the modal solution described in section 4.2.2. 

Using this improved value for the point impedance, the power input parameter used 

in energy flow solution is able to reflect the resonant behaviour of the structure and 

include the effects of damping. As a result there is significant improvement in the 

response estimates provided by the energy flow approach over the full frequency 

range, see Figs.4.2.3 and 4.2.4. This exercise highlights the fact that the quality of the 

predictions obtained by this approach is critically dependent on the power input 

parameter, P. If reliable estimates are to be obtained from an energy flow model, then 

a realistic value for this parameter must be provided. 
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So far only mean response at a particular frequency has been considered. Another 

aspect to be investigated is the ability of the model to predict the response profile 

along the length of the structure. Nefske and Sung (1987) showed that at a frequency 

of 10 kHz and with a damping loss factor of 0.2. the energy flow approach is able to 

predict the general shape of the response profile calculated by the modal technique. 

The corresponding result using the analysis presented here is shown in Fig.4.2.5 and 

compares well with the one published earlier by Nefske and Sung. It can be seen that 

the profile provided by the energy flow approach does indeed reflect the general 

pattern of the modal response over the majority of the beam. There are differences 

however. near to the supports and in the region of the excitation. These differences 

are due to the fact that the near-field components of the wave expressions, which 

become important near discontinuities, have been neglected in developing the energy 

flow modelling expressions. For this particular structure at a frequency of 10 kHz. 

near-field effects are only important in regions within SO mm from a discontinuity. 

This explains the close agreement between the two solutions over the majority of the 

length of the beam. 

The effects of this simplification 'become more evident at lower frequencies. Fig.4.2.6 

shows a comparison between the energy flow and modal solutions at a frequency of 

159 Hz. At this frequency near-field effects are important over the entire length of 

the beam and in the absence of this part of the solution, the energy flow approach 

cannot be expected to provide a close match to the modal response solution. 

Nevenheless the energy flow solution does provide a good estimate of the level of 

response. This explains the good general agreement between the mean response 

values obtained by the two solutions which is evident in Figs.4.2.3 and 4.2.4. 

This investigation has shown that the energy flow solution provides a good indication 

of the mean energy level along the length of a beam structure over a wide frequency 

range. The ability of the approach to predict the shape of the response profIle along 

the structure is dependent on the proportion of the beam which is strongly influenced 

by near-field effects. This proportion is reduced at higher frequencies leading to a 

subsequent improvement in results. 
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Despite the neglect of near-field effects this approach does provide a good estimate 

of the mean response of a structural component, even at low frequencies. This feature 

represents a potential advantage over SEA which can become very difficult to apply 

in the lower frequency regions. 

4.3 Energy flow model of a real beam structure 

In the previous section the energy flow approach was used to provide response 

predictions which compared well with those obtained from a modal superposition 

calculation. Confidence in the use of the energy flow approach would be further 

increased by comparing predictions from an energy flow model with measured levels 

of energy flow in a real beam structure. This would also enable the accuracy 

requirement for the parameters used as input to the model to be determined. With this 

in mind, energy flow measurements made along the length of a freely suspended 

perspex beam, shown schematically in Fig.4.3.1, will be compared with predictions 

provided by a representative energy flow model of this structure. 

A beam was chosen for these comparisons because the nature of vibrational energy 

transmission in this type of structure is well understood. It is also possible to measure 

structural intensity in beams with confidence using well established accelerometer 

array techniques. Perspex was chosen as the beam material because of its relatively 

high level of material damping. This property serves to: 

a) reduce reverberation in the structure which increases the reliability of the 

measurement technique. 

b) ensure a marked reduction in the level of power flux along the length of the 

beam which will aid in assessing the ability of the model to accurately predict 

the effects of damping. 

4.3.1 The energy flow model 

The energy flow model used to represent the perspex beam is shown in Fig.4.3.2. In 

this model the energy provided by the shaker is represented by a power input, P, 

applied at the left hand-end of the beam. The boundary conditions for the model are 

expressed in terms of power flux, q. At the point of excitation, x=O, the power flux 
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entering the beam has a value of PIS, where S represents the cross-sectional area of 

the beam. At x=L, the fact that energy cannot flow away from a free end means that 

the power flux, q, must be equal to zero. 

Earlier work has shown that the general solution for the energy density profile along 

the length of the beam is given by: 

e(x) = A cosh(ax) + B sinh(ax) (4.3.1) 

where, 

(4.3.2) 

Using the boundary conditions given in Figo4.3.2 and the expression for power flux 

in the beam: 

2 
4Cb de 

q(x)=-_-
TlO> dx 

the unknowns A and B can be shown to be: 

and 

A = Pr)o> cosh(aL) 
4c;a.S sinh(aL) 

B = 

Substituting (4.304) and (4.3.5) into (4.3.1) gives: 

e(x) = Pr)o> {COSh(ax - aL) } 
4c~aS sinh(aL) 
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and using (4.3.3): 

q(x) = _ !.. { sinh(ax - aL) } 
S sinh(aL) 

(4.3.7) 

It can be seen that three parameters are required to evaluate the energy density and 

power flux profiles along the length of the beam. namely power input, p. damping 

loss factor. TI. and phase velocity, c". In order to provide a representative model of 

this structure these quantities will be detennined by experimental measurement. 

4.3.2 Experimental arrangement 

A schematic of the experimental setup is shown in Fig.4.3.3. The perspex beam is 

freely supported on flexible elastic cords to approximate free-free conditions. 

Excitation is provided by a shaker attached to the left-hand end of the beam. A force 

gauge and accelerometer are located at the shaker connection to measure the power 

input to the structure. Pairs of accelerometer mounting studs are located at 5 positions 

along the beam. marked A to E. to facilitate structural intensity measurements using 

an FFr-based frequency domain technique. 

4.3.3 Power input measurement 

In the frequency domain mechanical power at a point in the structure is given by the 

conjugate product (or cross-spectrum) of the Fourier transfonned force and velocity 

values, ie: 

p(j) = { u(j) . F(j)· } (4.3.8) 

where u and F are complex quantities and * indicates a complex conjugate. 

Verheij (1980) showed that if mechanical power due to a point force is measured by 

a combination of a force gauge and an accelerometer. (4.3.8) becomes: 

1 
P(j) = - 1m {X FA} 

CI) 

53 

(4.3.9) 



where 1m {XFA } represents the imaginary part of the cross-spectrum between the force 

gauge and accelerometer outputs. The measured power input is represented by P in 

keeping with the expressions obtained for the energy flow model described in section 

4.3.1. 

4.3.4 Damping loss factor measurement 
The second parameter required by the energy flow model is a measure of the 

structure's ability to dissipate energy by damping. In previous chapters the damping 

parameter, 11, has been defined to as the "hysteretic" or "material" damping loss factor. 

This quantity is purely a material property which characterises the energy loss within 

a volume of material due to the hysteretic relationship between stress and strain (see 

Cremer et al (1973) p.177). 

If one considers the dissipation of energy within a structural component, as well as 

hysteretic effects, energy is also dissipated by other mechanisms such as friction and 

radiation. Moreover, these effects are often dependent on the nature of the response 

which may lead to some frequency dependence. 

For practical purposes in most modelling work one generally considers the total 

dissipation of energy within a structural component due to the combined effects of the 

various damping mechanisms. A similar approach will also be adopted here for the 

development of an energy flow model to represent the perspex beam. For the 

purposes of this particular study the "structural" damping loss factor will be estimated 

using two experimental techniques, modal analysis and decay time measurement 

Modal analysis 

Experimental modal analysis is a widely used technique for determining the natural 

frequencies and mode shapes of real structures. Most modal analysis software also 

provides an estimate of the modal damping loss factor at each natural frequency. De 

Clerk et al (1992) showed that a frequency dependent loss factor obtained by a power 

flow approach formed a smooth curve through the values obtained by modal analysis. 

It should therefore be possible to estimate loss factor over a frequency range by 

interpolation between modal values. 

Modal analysis software was used to analyse measured frequency response data 

obtained at ten points along the perspex beam. This software provides an estimate of 

the modal damping loss factor, llr ' directly from its curve fitting algorithm. 

Excitation was provided using an impact hammer, rather than a shaker, to avoid any 

sources of damping which are external to the beam. The natural frequencies and modal 

loss factors obtained over a 0-2 kHz range are shown in Table 4.3.1 overleaf. 
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Bending mode Natural frequency Modal loss factor 
number (Hz) 

1 15.5 0.088 
2 * lie 

3 93.2 0.067 
4 152.0 0.054 
5 226.4 0.050 
6 319.3 0.048 
7 422.7 0.049 
8 539.4 0.058 
9 680.2 0.050 

10 822.0 0.046 
11 977.5 0.045 
12 1158.5 0.052 
13 1340.0 0.040 
14 1531.8 0.043 
15 1737.0 0.035 
16 1960.4 0.033 

lie not analyzed due to poor quality of measured data in this region. 

TABLE 4.3.1 

Decay time measurement 

Norton and Greenhalgh (1986) discussed several methods for the estimation of 

frequency band averaged loss factors in lightly damped pipeline systems for use in 

SEA. One of these methods is the measurement of the time taken for band-filtered 

response to decay by 60 dB. Lyon (1976) showed that this 60 dB decay time. T 60' is 

related to the loss factor by: 

(4.3.9) 

where /; is the central frequency of the band of interest in Hz. Both texts suggest that 

this technique is more reliable in regions of high modal density and that a minimum 

of 5 modes should be present within the frequency band of interest 

Excitation was applied to the beam over a wide range of frequencies by a sharp 

hammer tap applied close to its mid-section. A high- and low-pass filter set was used 
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to obtain band-pass-filtered response data from accelerometers mounted at a number 

of positions along the beam. These filters were set up for the 7 frequency ranges 

listed in Table 4.3.2 below. These frequency ranges were chosen so that they each 

contain 5 modes, in line with the recommendations made by Norton and Greenhalgh 

(1986). Plots showing the decay of time domain response data were used to estimate 

a value of T 60 in each frequency range of interest. The average loss factors obtained 

using equation (4.3.9), for each of the 7 frequency bands, are given in Table 4.3.2 

below. 

Frequency Band (Hz) Centre Frequency (Hz) Loss factor 

0-250 125 0.028 
100-500 300 0.031 
200-700 450 0.017 

400-1000 700 0.040 
600-1400 1000 0.038 
900-1800 1350 0.032 
1100-2000 1550 0.039 

TABLE 4.3.2 

The values for 11 obtained by the two measurement techniques are compared in 

Fig.4.3.4. It can be seen that above 400 Hz the two sets of data compare well. At 

lower frequencies however, the comparison is not so good, although it should be noted 

that the time decay measurement technique was suggested for use with SEA which is 

normally employed in the higher frequency ranges. 

The results of these measurements suggest that a reasonable estimate for a structural 

damping loss factor for this beam would be between 0.035 and 0.055 over most of the 

frequency range. A blanket value of 0.045 will be used as an initial estimate for the 

energy flow model. 
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4.3.5 Phase velocity 

The phase velocity for a beam in flexure is given by: 

c = ~ Elm' 
" pS 

(4.3.10) 

Density, p, for perspex is given as 1200 kgJm3 in the material data supplied by the 

manufacturer. Values for the Young's modulus, E, are not so readily available. For 

the purposes of this analysis E can be obtained by matching analytical modal 

solutions. giving the natural bending frequencies of a beam, to the results obtained by 

the experimental modal analysis. 

Bishop and Johnson (1960) showed that the natural frequencies of a free-free beam 

can be calculated from: 

where AIL = 4.730 

~L = 7.853 

AJL = 10.996 

)..,.L = 14.137 

A-,L = 17.279 

"->sL= (r+~)7t 

(4.3.11) 

Using the measured natural frequencies of modes 3 to 8 and equation (4.3.11) above, 

the calculated values of E for the perspex beam are given in Table 4.3.3 below. 

Mode Number Frequency (Hz) E (ONtm2) 

3 93.2 5.39 
4 152.0 5.31 
5 226.4 5.25 
6 319.3 5.42 
7 422.7 5.36 
8 539.4 5.29 

TABLE 4.3.3 
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The average of these E values is 5.34 GN/m2 and will be used for the energy flow 

model. 

4.3.6 Structural intensity measurements 

Predictions provided by the energy flow model will be compared with measured 

energy flow obtained by a structural intensity measurement technique. Pavic (1976) 

showed that structural intensity in the far-field of a beam can be measured using two 

accelerometers mounted a small distance apart on its surface. This approach employs 

a finite difference approximation which allows rotational components of the motion 

to be estimated by translational measurements on either side of the point of interest. 

This technique is only accurate when measurements are made at locations far enough 

away from discontinuities for near-field effects to be neglected. This is because a 

two-accelerometer technique can only provide a measure of the moment component 

of vibrational power. In the far-field however, the total power can be evaluated from 

this single component because the shear and moment components are equal. 

Verheij (1980) showed that for frequency domain measurements the structural 

intensity in the far-field of a beam can be obtained from: 

p(f) = - 2[iipS Irn/Y } 
flor "T"ZI 

(4.3.12) 

where 1m {XZI } represents the imaginary part of the cross-spectrum between the 

outputs of two accelerometers fixed a small distance fl apart on the beam. 

It is evident from equation (4.3.12) that structural intensity is related to the phase 

difference between the two accelerometer signals which is quantified by the imaginary 

part of the cross-spectrum. Measurement of this imaginary component has been a 

source of difficulty for practitioners employing this technique, particularly for lightly 
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damped structures. This is because when damping levels are low the phase difference 

between motion at two closely spaced points on a beam may be comparable with the 

phase tolerance of the transducers and signal conditioning equipment. As a result, 

accurate measurement of the imaginary part of the cross-spectrum becomes very 

difficult. 

A number of techniques have been proposed to overcome this inherent phase error, 

some of which are described in detail by Linjama and Lahti (1989). The most 

straightforward of these, when only two accelerometers are involved, is known as 

"switching". This method consists of obtaining the cross-spectrum between the two 

accelerometers and then switching their position to obtain a second measurement. 

Averaging these results eliminates the effects of inherent phase differences between 

the two transducers. Care must be taken to ensure that the accelerometers are located 

at exactly the same positions on the beam during the two measurements. For this 

reason stud-mounted accelerometers were employed in these experiments. 

A second source of error inherent in these measurements is due to the finite difference 

approximation used to derive equation (4.3.12). Troshin et al (1990) showed that the 

error involved in the measurement of the moment component of intensity, eM' is: 

(4.3.13) 

where k represents the bending wavenumber for the beam and fl is the accelerometer 

spacing. For a given structure and accelerometer spacing, this error increases quite 

dramatically with frequency. 

Structural intensity measurements were made at 300 mm intervals along the beam, at 

locations marked A to E on Fig.4.3.3. The accelerometer spacing, fl, was chosen as 

30 mm which gives rise to a 9% finite difference error at 1000 Hz. Phase errors in 

the cross-spectrum were removed using the switching technique described earlier. 
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Because these measurements are to be used as a datum for comparison with model 

predictions, measurements were limited to the 0-1 kHz frequency range so that finite 

difference elTors remain below 10%. 

4.3.7 Results and discussion 

The objective of this exercise is to match predicted levels of vibrational power to 

those obtained experimentally. Before doing this however, it would be useful to look 

at the experimental results to check that they are of a sensible nature. Fig.4.3.5 shows 

the power input and structural intensity measurements obtained along the beam. It can 

be seen that each measurement downstream of the power input indicates a general 

reduction in power level caused by the dissipation of energy by damping. This type 

of result is to be expected and suggests that the structural intensity measurements 

obtained here should provide a good datum against which to compare model 

predictions. 

Figs.4.3.6 to 4.3.10 show comparisons between the structural intensity measurement 

at positions A to E and the prediction for vibrational power at these points given by 

the energy flow model. It can be seen that throughout this series of results the model 

gives predictions which are very close to the measured results over the majority of the 

frequency range. 

Some differences in the form of the spectra can be observed below about 100Hz. 

This can be explained by the fact that the two-accelerometer structural intensity 

technique is only accurate at points in the beam where near-field effects can be 

neglected. It was shown in section 3.4.2 that the distance required for near-field 

effects to decay is dependent on the wavelength of the motion, which in tum is related 

to frequency. At lower frequencies the near-field region requires a greater distance 

to decay and a smaller proportion of the beam is subject to true far-field conditions. 

This effect leads to some fluctuation in the structural intensity measurements at lower 

frequencies which is particularly evident in' these ~~its below 100 Hz. The form of 

the energy flow spectra provided by the model is the same at all points along the 

beam because these are related to the power input measurement which is not affected 
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by the far-field assumption. 

It has generally ~n accepted that accurate measurements of the damping level within 

a structure are difficult to obtain. It is evident from FigA.3.5 that there is a significant 

reduction in power flowing along the beam due to structural damping. The fact that 

the model predictions are able to reflect this reduction accurately at each point shows 

that the model is able to represent this behaviour adequately and that the loss factor 

estimate used here is of sufficient accuracy to give a representative prediction. To get 

an idea of the degree of accuracy required for this damping factor, energy flow 

predictions have been calculated for different values of". Fig.4.3.11 shows that 

variation of the value of" between 0.01 and 0.1 does not cause the result to deviate 

much from the one obtained using the estimated value of 0.045. The effects of greater 

variation are shown in Fig.4.3.12. At these relatively low levels of damping, a gross 

underestimation of Tl ( by a factor of 10 ), does not greatly affect the energy flow 

prediction when plotted on a log scale. However, if the loss factor is set to a very 

high value, ego 0.45. the energy flow model provides a very poor prediction. This 

exercise suggests that for this particular structure. with the levels of damping present, 

an order of magnitude estimate of the damping level is adequate. This level of 

accuracy is well within the capability of the two damping measurement techniques 

employed here. 

Although a relatively simple structure was chosen for this piece of work it must be 

remembered that the main object of this exercise was to assess the ability of the 

modelling approach to predict the level of vibrational energy flow in a real structure. 

Excellent agreement has been obtained between measurement and prediction which 

provides confidence for the extension of this approach to the analysis of more 

complex structures. It is imponant to note however, that good model predictions can 

only be obtained if the model is provided with representative values for the modelling 

parameters, in this case power input and damping loss factor. It is also worth noting 

that the upper frequency limit for these comparisons was dictated by the limitations 

of the measurement technique rather than the validity of the model. Previous work 

suggests that at higher frequencies this type of model should provide an even better 
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representation of the dynamics of a structure. 

4.4 Summary 

This chapter describes the application of the continuum energy flow approach to 

provide representative models of beam structures. The main points arising from these 

investigations are as follows. 

1. The simplified nature of the energy flow approach gives rise to a smoothed 

estimate of the energy profile along the length of the beam structure. At high 

frequencies this profile compares well with response profiles predicted by 

exact solutions. At lower frequencies the response estimate represents a good 

mean value of response. The analysis is unable to describe the response of the 

structure close to boundaries and other discontinuities because near-field 

effects have been neglected in the development of the equations governing the 

approach. 

2. The far-field structural intensity technique provides sensible measurements of 

the vibrational power levels at points along a beam structure. In order to 

interpret these measurements correctly the problems of transducer phase 

mismatch and frequency limitations imposed by the finite difference 

approximations must be fully understood. 

3. An energy flow model was able to provide very good predictions of the power 

levels at a number of points in the beam provided that good estimates of 

power input and beam properties were supplied to the model. In particular this 

analysis showed that the model was able to accurately reflect the effects of 

damping on energy flow levels along the beam. 

4. A sensitivity study on the accuracy requirement of the damping parameter 

showed that experimental modal analysis can provide damping estimates of 

sufficient accuracy for use with this modelling technique. 
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Fig.4.2.1 Simply supported beam structure 
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Fig.4.2.2 Energy flow model 
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Chapter 5 

Application to connected beam structures 

5.1 Introduction 

In the previous chapter the energy flow approach was applied to the analysis of 

individual beams. In order to extend this work to consider more complex multiple 

component structures there is a need to establish a means of representing the 

connection between these individual components. In most cases a structural 

connection introduces a discontinuity, such as a change in section, a change in 

material properties, the presence of a flange or a bend. These discontinuities often 

give rise to partial reflection of incident wave energy which leads to a reduction in net 

energy flow through the structure. These partial transmission characteristics are an 

important feature of the global transmission properties of the structure and must be 

included in a transmission path ranking tool. 

This chapter introduces the problem of developing a boundary condition that is able 

to model the way in which wave energy is partially transmitted through a structural 

discontinuity. This analytical relationship must be representative of the real situation 

and at the same time fit into the energy flow approach with a view to implementation 

using a finite element technique. The problem of developing this boundary condition 

is discussed in the frrst part of the chapter and a number of alternative approaches are 

described. This investigation results in the selection of a joint model which best suits 

the overall objectives of this work. 

The latter part of the chapter describes the application of an energy flow model to the 

analysis of a structure consisting of two beams connected by a flanged joint. A major 

component of this work is the experimental determination of the transmission 

efficiency across the flange using a wave decomposition approach. This case study 

74 



serves to assess the ability of the energy flow approach to provide a representative 

model of a real connected beam structure and provides further examples of the 

evaluation of representative modelling parameters. 

5.2 The joint model 

The overall objective of this work is to develop a general design tool which utilises 

the energy flow approach and takes advantage of its potential to be implemented using 

finite elements. This criterion will be important in the selection of a scheme to 

represent the connection between individual sub-structures. A number of approaches 

have already been proposed by previous investigators to provide a joint boundary 

condition for inclusion in an energy flow model. A discussion of these approaches 

will be presented in the following section, resulting in the development of a joint 

model which is best suited for adaptation into finite element fonn. 

5.2.1 The joint boundary condition 

The analysis of connected structures and the nature of the required joint boundary 

condition can be illustrated using the simple two beam energy flow model shown in 

Fig.S.2.1. According to the analysis for a single beam described in section 4.2.1, the 

energy density profile along each section of beam is of the fonn: 

e".(x) = Ana cosh(a",x) + B". sinh(a",x) m = 1,2 (5.2.1) 

where Am and B". are unknowns and a". is given by equation (4.2.5). 

The solution to this problem requires the detennination of four unknowns which can 

be obtained using boundary conditions prescribing power flux values at each end of 

the beam sections, as shown in Fig.S.2.2. For this model it is assumed that the values 

for the power flux entering beam }, ql ill' and leaving beam 2, q2nut' are known. These 

provide the first two boundary conditions. 
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The third boundary condition can be developed by assuming conservation of energy 

across the joint. Assuming that no energy is lost in the joint, an energy balance across 

it becomes: 

(5.2.2) 

where S, and S2 are the cross-sectional areas of beams 1 and 2 respectively. 

To establish the fourth boundary condition it is necessary to determine the rate of 

energy flow across the joint, denoted Pjoifll. Previous investigators have approached 

this problem in a number of ways. Some of these will be described in the following 

sections. 

Wohlever 

Wohlever (1988) described two approaches for the determination of the rate of energy 

transfer across a joint in connected rod and beam structures. The fIrst required the use 

of mobility expressions which are dependent on the nature of the structural 

components and the type of connection concerned. Using these mobilities it is 

possible to establish an expression for the flux crossing the joint in tenns of the 

power input to the structure. This approach has the advantage that it is able to take 

account of the modal behaviour of the structure which has an effect on the level of 

energy flow across the joint. The form of the expressions developed using this 

approach however, were too complex for adaptation into finite element form. 

A second approach employed by Wohlever involved the development of an SEA 

model of the structure which provided the energy flow between sub-systems given 

knowledge of the coupling loss factor at the joint. Under these circumstances, the use 

of an SEA model seems rather contrary to the aim of the development of a model 

based on the energy flow approach. It is also evident that, like the previous method, 

this approach does not provide a boundary condition which is suitable for 

implementation using a finite element technique. 
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Nefske and Sung 

In their earlier work Nefske and Sung (1987) proposed an alternative expression for 

the boundary condition at the joint which fits more readily into a finite element 

formulation. In this approach they considered the net power transfer across the joint 

as the algebraic sum of the power entering from each side. see Fig.5.2.3. Using this 

approach they showed that: 

(5.2.3) 

The transmissive properties of a structural discontinuity are often described using its 

transmission efficiency. 'to This quantity is defined as the ratio of the wave power 

transmitted through a discontinuity to the wave power incident to it. Cremer (1973) 

showed that in an infinite structure. local energy density can be related to vibrational 

power by: 

p = cg S e (5.2.4) 

Using this expression. together with the definition of transmission efficiency. Nefske 

and Sung proposed that the energy flow across the joint could be obtained from: 

(5.2.5) 

and assuming reciprocity at the joint, ie. 't12 = ~I = 'to (5.2.5) becomes: 

(5.2.6) 

Cho and Bernhard 

A similar analysis was carried out by Cho and Bernhard (1992). although in this case 

they considered the conditions in the beam sections on either side of the joint. This 

analysis also employed equation (5.2.4) which relates local energy density and power 

flux. In this case however. they justified the use of this relationship because, on a 

frequency-averaged basis. the response of a finite structure approaches that of a similar 

structure of infinite extent. 
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In this approach one considers the connection between two semi-infinite beams where 

the incident waves approaching from each side of the joint are both partially reflected 

and partially transmitted across it, see Fig.s.2A. Using the definition of transmission 

efficiency and assuming reciprocity at the joint, the net vibrational energy flow away 

from the joint in each direction can be shown to be: 

q; = (l-t) q; + t q,.- (5.2.7) 

and 

(5.2.8) 

It is important to note the (l-t)q tenns which represent a proportion of the incident 

energy which is reflected back by the discontinuity. This aspect was not properly 

dealt with in Nefske and Sung's earlier model. 

From this point Cho and Bernhard went on to establish relationships required for the 

analysis of an angled beam structure, which included the effects of conversion 

between flexural and longitudinal motion. Here, equations (5.2.7) and (5.2.8) will be 

used as the starting point for the development of a more general boundary condition 

to describe the power transfer across the joint, similar in form to equation (5.2.6). 

The important feature of this expression is that it lends itself to inclusion in a finite 

element formulation. 

This study 

It follows from (5.2.7) and (5.2.8) that the net vibrational power transmitted away 

from the joint in each direction is: 

(5.2.9) 

and 

(5.2.10) 
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The total power at a point in beam 1, close to the joint, is: 

(5.2.11) 

and similarly 

(5.2.12) 

Assuming that the relationship between the local energy density and power flux given 

in equation (5.2.4) holds for the power flux in each direction, it follows that: 

and (5.2.13) 

Using (5.2.9), (5.2.10) and (5.2.13), expressions (5.2.11) and (5.2.12) become: 

(5.2.14) 

By definition 

(5.2.15) 

and 

(5.2.16) 

Using (5.2.7), (5.2.8) and (5.2.13) these can be expressed as: 

(5.2.17) 

and 

(5.2.18) 
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Solving (5.2.14), (5.2.17) and (5.2.18) simultaneously gives: 

(5.2.19) 

This relationship has the same general form as Nefske and Sung's boundary condition 

(5.2.6), but differs by the denominator term 2(1-t). This difference occurs because 

the reflected component of power at the joint was not properly included in the earlier 

formulation by Nefske and Sung. The consequences of this omission will be 

illustrated in the following section. 

5.2.2 Connected beam energy flow model 

The solution to the boundary condition problem related to a two beam energy flow 

model is provided in Appendix B. This solution will be used to illustrate the 

consequences of adopting Nefske and Sung's joint boundary condition for use in an 

energy flow model. The form of the energy flow model, together with the beam 

dim~nsions and material properties are shown in Fig.S.2.S. 

The fundamental problem with expression (5.2.6) is that it implies that there must 

always be an energy difference across the joint to sustain power transmission, even 

if t=1. This is intuitively incorrect because a total transmission condition across the 

joint implies that the beam should be effectively continuous and that a step in the 

energy level across it should not exist. The magnitude of this error can be examined 

by comparing the results of the two beam model, with t set to unity, to those obtained 

from a continuous beam model of identical dimensions. Fig.5.2.6 shows this 

comparison at a frequency of 1000Hz and damping loss factor of 0.01. The 

remaining parameters for this analysis are given in Fig.5.2.5. Here the energy step at 

the joint is clearly illustrated, together with the magnitude of the error in both the 

energy density and power flux profiles. Although these errors are relatively small 

under these conditions the difference between the two solutions becomes larger with 

an increase of either frequency or damping, as illustrated in Figs.5.2.7 and 5.2.8. 
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This error is eliminated if (5.2.19) is used as the boundary condition across the joint. 

In this expression. as t tends towards unity the quotient in front of the brackets tends 

to infinity and in the limit, the energy difference across the joint becomes 

infinitesimally small. The solution thus approaches that for a continuous beam. This 

has been proved using the solution to the connected beam problem provided in 

Appendix B with a t value set to 0.999. Under these conditions the jointed model 

provides results which are indiscernible from those obtained from the continuous beam 

solution. 

This discussion has outlined a number of approaches used by previous investigators 

to model the effects of structural discontinuities within the energy flow approach. The 

earlier approaches which rely on mobility expressions or the development of an SEA 

model cannot be easily incorporated into a finite element technique. The alternative 

approaches which relate the power transmission across the joint to the difference in 

energy density between the connected sections provide simpler expressions which can 

be more readily adapted into a finite element form. Of these. the original proposal by 

Nefske and Sung fails to satisfy the physics of the problem which is highlighted when 

the transmission efficiency value is close to unity. The improved expression. based 

on the work by Cho and Bernhard. is intuitively correct and although still relatively 

simplified. incorporates the general effects of partial reflection at the joint. This 

model will therefore be adopted for use within this work. 

5.3 Energy flow model for a real connected beam structure 

The previous section developed an energy flow model for a general connected beam 

structure. In order to test this approach the predictions obtained from this type of 

model will be compared with measured results obtained from a real structure. 

The structure chosen for this study consists of two beams. one steel the other 

aluminium. connected by a bolted flange joint, see Fig.5.3.l. Each beam is 1.5 m 

long and has a cross-section of 16.5 mm x 16.5 mm. Excitation is provided by a 

shaker sited at the free end of the steel beam. The free end of the aluminum beam 

is buried in sand to provide an energy sink. This sand termination results in an 
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increase in the level of vibrational energy flow along the beam and reduces 

reverberation. Both these factors lead to improvement in the quality of structural 

intensity measurements. 

5.3.1 The energy flow model 

The energy flow model used to represent the connected structure described above is 

shown in Fig.5.3.2. In accordance with the theory for a single beam structure 

developed in Chapter 4, the energy density and power flux profiles along each beam 

are given by: 

e".(x) = A", cosh(a",x) + 8", sinh(a",x) (5.3.1) 

and 

4 c; ",s a 
PIII(x) = - Tl".C:' '" { A", sinh (a,,1) + 8 m cosh (a,,1) } (5.3.2) 

where m=l,2 and refers to beams 1 and 2 respectively. The quantity a", was defined 

earlier by equation (4.2.5). 

The boundary conditions which provide solutions for the unknowns A .. and B .. are 

obtained given knowledge of the flux values at the ends of the beams and the 

boundary condition at the joint. In this case ql ;11 is obtained from the measured power 

input at the shaker, Pi' At the other end, q2 (tfIl is obtained from a structural intensity 

measurement made at point 3, just before the sand termination, see Fig.5.3.I. The 

flux values at either side of the joint are determined using the joint modelling 

expression (5.2.19) described earlier. A full description of the energy flow solution 

for this model is provided in Appendix C. 
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In order to obtain realistic energy flow predictions from this model, representative 

values for five modelling parameters must be determined. These parameters can be 

summarised as follows: 

a) the power input measured at shaker, Pi' 

b) the rate of energy flow out of the structure into the sand termination. Po' 

c) the phase velocity for the beam sections, cIt. 

d) the structural damping loss factors for each beam, TI. 

e) the transmission efficiency at the flanged joint, t. 

For this model, the values for Pi and Po have been obtained using the measurement 

techniques already described in sections (4.3.3) and (4.3.5) respectively. The phase 

velocities, c", can be calculated from: 

C=_40)"! (
EI) 1 1 

" pS 
(5.3.3) 

using the dimensions and material properties given in Fig.5.3.1. The experimental 

determination of the remaining parameters, 11 and t, will be discussed in the following 

sections. 

5.3.2 Damping loss factor measurement 

It was shown in Chapter 4 that a reasonable estimate of the damping loss factor 

parameter for an energy flow model can be obtained using modal analysis. 

Consequently, this approach has been used to establish the modal damping loss factors 

for each of the beams which make up this structure. For this purpose, the beams were 

separated and tested individually using a modal analysis technique identical to that 

described earlier for the perspex beam. 

In contrast to the case of the perspex beam however, the lower levels of damping 

present in these materials necessitate the application of exponential windowing to the 

measured response data to avoid leakage error in the FFf analysis. This windowing 

has the effect of appearing to introduce additional damping into the modal analysis 
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calculation. In order to estimate the true values of the damping loss factors of the 

beams, the modal analysis results were COITeCted using the technique described in 

Appendix F which removes the effects of windowing. 

The natural frequencies and corrected loss factors for the steel and aluminium beams 

are given in Tables 5.3.1 and 5.3.2 below. 

Mode Number Natural Frequency Corrected 
(Hz) Loss Factor 

1 99.3 0.0040 
2 194.0 0.0023 
3 321.2 0.0030 
4 479.0 0.0050 
5 667.5 0.0040 
6 888.6 0.0041 
7 1142.5 0.0029 
8 1421.6 0.0028 
9 1735.3 0.0024 

TABLE 5.3.1 Modal loss factors for the steel beam 

Mode Number Natural frequency Corrected 
(Hz) Loss Factor 

1 98.2 0.0027 
2 192.8 0.0018 
3 318.3 0.0051 
4 474.5 0.0097 
5 662.2 0.0067 
6 880.6 0.0060 
7 1131.3 0.0030 
8 1410.8 0.0028 
9 1714.8 0.0040 

TABLE 5.3.2 Modal loss factors for the aluminium beam 

84 



It was shown in section 4.3.6 that the model predictions are relatively insensitive to 

small changes in damping parameter. It was therefore decided that the mean values 

of the aforementioned adjusted loss factors would be used as representative values in 

the energy flow model over the entire 0-2 kHz frequency range. These values are 

0.0034 and 0.0046 for the steel and aluminium beams respectively. 

5.3.3 Transmission efficiency measurement using wave decomposition 

The transmission efficiency parameter, t, has been introduced into the joint boundary 

condition (5.2.19) to include the effects of partial reflection of incident wave energy. 

In a number of simple cases a value for the transmission efficiency at the joint can be 

derived analytically given knowledge of the boundary conditions at the discontinuity. 

A number of examples of this type of calculation have been provided by Cremer 

(1973). In many practical cases however, these boundary conditions are difficult to 

determine exactly and an experimental study may provide more realistic information. 

David-Taylor (1990) provided the basis for a technique which is able to determine the 

amplitudes of the near- and far-field wave components in a beam from measurements 

made using four closely spaced accelerometers. This approach is referred to as the 

"wave decomposition technique" and was illustrated using a terminated beam structure, 

like the one shown in Fig.5.3.3. In this diagram A and B represent the amplitudes of 

the rightward and leftward travelling far-field waves and C and D are the amplitudes 

of the decaying near-field effects associated with the discontinuities. In his paper 

David-Taylor used this approach to determine the reflection coefficient and impedance 

of a real beam termination from the decomposed wave amplitudes A, B, C and D. 

The reflection coefficient, r, of a termination is defined as the ratio of the reflected 

to incident wave amplitudes. In the case of the beam structure illustrated in Fig.5.3.3. 

if the effects of damping are neglected, then r is given by the ratio BIA. 
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Given knowledge of this reflection coefficient it is also possible to calculate the 

transmission efficiency using: 

t = 1 - 1 r 12 (5.3.11) 

It should be noted that to detennine r. one only requires knowledge of the far-field 

wave amplitudes, A and B, which can be obtained by making measurements at two, 

rather than four, accelerometer locations. 

A full derivation of the analysis required to determine the reflection coefficient of the 

termination is given in Appendix D. This shows that the auto-spectra of the 

decomposed wave amplitudes. XM and XBB• can be extracted from the measured auto

and cross-spectral values obtained using accelerometers placed at distances Xl and x2 

from the termination. 

These decomposed auto-spectra can then be used to calculate the reflection coefficient, 

T, using: 

(5.3.12) 

If required, the decomposed wave spectra can also be used to determine the net far

field structural intensity in the beam. which is given by: 

p = 2Efk
3 

(X - X ) 
3 M BB ro 

(5.3.13) 

For the connected beam structure considered here. each beam can be attributed with 

a pair of travelling wave amplitudes as shown in Fig.5.3.4. If it is assumed that the 

sand acts as a non-reflective termination and that damping in the beam is so low that 

it can be safely neglected. this technique can be used to determine the transmission 

efficiency across the flanged joint. For this purpose auto- and cross-spectral 

measurements were obtained over a 0-5 kHz frequency range using an accelerometer 

pair mounted at point 2 (Fig.5.3.4) on the steel beam. Decomposition of this data 
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using the matrix equation given in Appendix D provides the necessary auto-spectra 

X,u and XBB required to calculate the transmission efficiency, 't, using equations 

(5.3.11) and (5.3.12). For this calculation the origin x=O was assumed to be at the 

flange so that the distances XI and X2 represent the distance of the accelerometers from 

the joint. 

Before looking at the transmission efficiency across the flange it would be useful to 

make a comparison between the structural intensity value calculated from the 

decomposed spectra using (5.3.13) and that obtained by processing the measured data 

directly using the more traditional structural intensity calculation provided by equation 

(4.3.12). This comparison is shown in Fig.5.3.5. It can be seen that the two spectra 

are almost indistinguishable, validating the relationships developed in Appendix D. 

Some difference between the two results can be detected above 3 kHz. This 

difference is probably due to finite difference errors which occur in the directly 

measured result and grow as frequency increases. The wave decomposition results are 

free from this effect because finite difference approximations are not used in the 

derivation of equation (5.3.13). 

The measured transmission efficiency spectrum obtained using (5.3.11) and (5.3.12) 

is shown in Fig.5.3.6. It can be seen that the measured value remains between 70% 

and 95% over the majority of the frequency range. The very low values of 't below 

300 Hz can be attributed to the influence of near-field effects which are not included 

in the theoretical development. Use of equation (3.4.5) shows that at 300 Hz the 

magnitude of the near-field component at this location is still at 17% of its maximum 

value at the flange. 

The spike in the data around 1900 Hz coincides with the very low levels of energy 

flow along the beam indicated by the structural intensity measurements shown in 

Fig.S.3.5. It is likely that under these conditions of low energy flow the signal-to

noise ratio of the measured data is poor, leading to errors which have been carried 

through into the transmission efficiency calculation. 
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The exact reason for the reduction in energy flow around 1900 Hz cannot be 

established from these experimental results, although this phenomenon was also 

observed in other experiments involving sand terminated shaker driven beams. This 

observation suggests that this characteristic may be a result of shaker-structure 

interaction. 

5.3.4 Model results 

Having obtained the necessary parameters listed in section 5.3.1, the energy flow 

solution (5.3.2) can be employed to provide predicted power levels along the length 

of the beams. This modelling was limited to the 0-1.5 kHz frequency range because 

of unreliable power input data between 1.7 and 2.1 kHz. This frequency range 

corresponds to the region of the very low levels of energy flow indicated by the 

structural intensity measurements. Under these conditions poor signal-to-noise ratios 

are likely to have also degraded the power input measurement 

A comparison between model prediction and measured power level at location 2 is 

shown in Fig.5.3.7. Excellent agreement between the two spectra confinns the ability 

of this model to provide realistic predictions, given representative values for the 

modelling parameters. Some differences between the spectra are evident at lower 

frequencies due to the influence of near-field effects. 

5.3.5 Discussion 

Having established the transmission efficiency across the flange by measurement, it 

is interesting to compare these results with some theoretical values for arrangements 

of this type. Cremer (1973) provided analytical solutions for the reflection and 

transmission coefficients across a number of common structural discontinuities. These 

solutions are based on the boundary conditions present at the junction between two 

semi-infinite structures. Two cases are of particular interest here. The effect of a 

change in material properties at the junction and the blocking mass effect of a flange. 
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Cremer showed that the flexural transmission efficiency for the junction between two 

beams of identical cross-sectional dimensions. but dissimilar materials. is given by: 

(5.3.14) 

where 

and 

The above expressions lead to a frequency independent value for t, which in the case 

of the transition from steel to aluminium. has a value of 98%. 

The second analysis of importance relates to the effect of a blocking mass between 

two beam sections. The inenial effect of the added mass results in an expression for 

transmission efficiency of the form: 

t = (5.3.15) 

where 

and 

Here p. S and k" represent the mass density. cross-sectional area and flexural 

wavenumber for the beam sections. M and R denote the total mass and the radius of 

gyration of the blocking mass. This expression yields a value for t which is heavily 

frequency dependent. The general form of the characteristic is shown in Fig.5.3.8. 

The blocking mass effect is often likened to that of a "low pass filter". Initially the 

wave motion is transmitted relatively unhindered up to a frequency where total 

transmission occurs (ie. t = 1). Above this frequency the characteristic rapidly decays 

resulting in significant attenuation of the transmitted wave. The point at which this 
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total transmission condition occurs is heavily dependent on the inertial effect of the 

blocking mass. It is obselVed that as the inertia of the mass increases the "pass band" 

in the characteristic narrows and attenuation starts to occur at a lower frequency. 

This analysis is not exactly suited to the real connected beam structure used in these 

experiments because it assumes that the beams on either side of the blocking mass 

have identical material properties. However, evaluation of (5.3.15) shows that the 

general characteristic is relatively insensitive to the difference in material properties 

relating to aluminium and steel, particularly below the total transmission frequency. 

Equation (5.3.15) can therefore be used to determine the theoretical blocking mass 

effect of a flange of this size, and in particular, a prediction for the frequency at which 

attenuation should start to occur. The results of this analysis are shown in Fig.5.3.9. 

It can be seen that the theoretical model predicts that for either material, the "pass 

band" extends to around 12 kHz and within this range the transmission efficiency 

remains above 95%. 

Comparing this result with the measured characteristic shown in Fig.5.3.6 it can be 

seen that even with the combined effects of the change in material properties and the 

blocking mass effect of the flange, the measured transmission efficiency is 

significantly lower than the theoretical predictions. One possible reason for this is that 

some wave energy is being reflected back from the sand tenninated end of the 

structure and passes through the joint to contribute to the amplitude of B., marked on 

Fig.5.3.4. This process would lead to a reduction in the effective transmission 

efficiency at the joint. 

In order to confirm this idea it would be useful to be able to decompose the wave 

amplitudes at point 3 (Fig.5.3.1) to determine the relative amplitude of the reflected 

wave, 8 2• Revisiting the theoretical development behind the wave decomposition 

technique given in Appendix D, it is evident that since in this case only the far-field 

wave amplitudes are required, the choice of the origin x = 0 is arbitrary. It is 

therefore possible to use the relationships developed by this analysis anywhere in the 

far-field of a beam structure, so long as appropriate values for XI and x2 are used. For 
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general measurements on a beam a convenient origin for the calculation is the mid

point between the accelerometers, so that: 

(5.3.16) 

where I:l is the accelerometer spacing. 

At the time of the experiments sufficient data was obtained to carry out this alternative 

fonn of the decomposition at points 1, 2 and 3 on the beam structure over a 0-2.5 kHz 

frequency range. A comparison between the measured ratio (X.,IXAJ for 

measurements at points 1 and 2 on the steel beam shows good agreement, see 

Fig.5.3.10. However, decomposition of the measured spectra at point 3 on the 

aluminium beam resulted in negative auto-spectral values being returned from the 

decomposition calculation, but by definition, auto-spectra must always be real and 

positive. Inspection of the raw data obtained at point 3 revealed some instability in 

the sign of the imaginary part of the cross-spectrum of the accelerometer outputs 

which could be the cause of the poor wave decomposition results obtained at this 

location. Unfortunately time constraints do not allow these measurements to be 

repeated before completion of this thesis. The consistency of the results obtained for 

the steel beam however, does show the ability of this technique to establish the 

relative magnitudes of the leftward and rightward travelling wave components in the 

far-field of a beam. For the case of this two beam structure, given reliable data at 

point 3 it should have been possible to determine whether a reflected component 8 2 

was responsible for the difference between the theoretically predicted and measured 

transmission efficiency values at the flange. 

This investigation highlights the importance of reflections when building up a global 

model of a structure based on information concerning the transmission efficiency of 

its individual joints. In the case of the energy flow model for this connected beam 

structure. the measured result is the effective or net transmission efficiency across the 

joint, taking the downstream conditions into account It therefore represents a better 

value for calculating the global energy flow through the structure than one obtained 
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from a calculation with no regard for effects downstream of the joint. 

This exercise has also demonstrated that the wave decomposition technique has great 

potential for the study of transmission and reflection at structural discontinuities in 

beams. It is capable of providing far more information than a simple measurement 

of the net energy flow obtained by the direct application of structural intensity 

measurement techniques. 

It is also worth noting that the far-field part of the solution to the wave equation for 

flexural motion in a beam, used as the starting point for this analysis, is identical in 

form to the solution for longitudinal wave motion. The matrix relationships between 

measured data and decomposed spectra given in Appendix D will therefore also hold 

for measurements made along the axis of a beam transmitting longitudinal waves. 

This observation highlights the potential for this technique in the study of wave 

transmission through angled or branched beam structures where conversion between 

flexural and axial wave motion occurs. In these cases knowledge of the relative 

amplitudes of each type of wave is potentially very useful in understanding the 

process of mode conversion. 

5.4 Summary 

This chapter describes the application of the energy flow approach to provide 

representative models of connected beam structures. The main points arising from this 

investigation are as follows: 

1. It is difficult to select a boundary condition to model the power transmission 

across a structural discontinuity which is representative of true physical 

conditions and, at the same time, suitable for implementation using a finite 

element formulation. An expression which provides the best balance of these 

requirements has been obtained using an approach based on a model presented 

by Cho and Bernhard (1992). This expression includes the effects of partial 

reflection at the discontinuity via a transmission efficiency parameter and is 

suitable for implementation in a finite element form. 
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2. The energy flow approach has been used to develop a representative model of 

a structure consisting of two beams connected by a flanged joint. The majority 

of the parameters required by this model can be estimated using techniques 

described in Chapter 4. The evaluation of transmission efficiency at the joint 

is a new problem in the context of this work and is achieved experimentally 

using a wave decomposition approach. 

3. Comparisons between model predictions for energy flow along the beam and 

measured values obtained by a structural intensity technique show that the 

model is capable of providing good predictions given realistic estimates of the 

modelling parameters. 

4. Comparisons between measured transmission efficiency and those calculated 

using theoretical expressions indicate that reflection from downstream 

discontinuities may have a significant effect on the net transmission 

characteristics of the joint. 

5. Reassessment of the theory relating to the wave decomposition approach shows 

that it can be used to separate far-field flexural and longitudinal wave 

components in beam structures. This indicates a potential for the technique to 

be applied to the analysis of more complicated beam structures containing 

bends and branches. 
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Chapter 6 

Finite element implementation of the energy flow 

approach 

6.1 Introduction 

From the outset of this work the potential to implement the energy flow analysis using 

finite elements has been regarded as a principal advantage of the approach. In 

previous chapters, examples of energy flow models for beam structures have been 

created using an analytical approach. For the case of two-dimensional or multiple 

component structures, this type of solution becomes much more difficult or even 

impossible to implement. In these cases, the use of a fmite element approach to 

assemble and solve the equations relating to each section of the model provides a very 

attractive solution to this problem. 

The use of finite elements also offers additional modelling capabilities which are not 

easily achievable using an analytical approach. These include the ability to investigate 

the effects of loeal variation of structural properties such as damping, and the ability 

to model a wide variety of structural configurations using the same computational 

framework. 

For the purposes of this project, finite element energy flow models will be created by 

modifying a commercially available finite element package. The use of existing finite 

element software has a number of practical advantages over the development of a 

dedicated finite element solution aimed solely at implementing the energy flow 

approach. The major advantage of this technique is that it greatly reduces the time 

required for writing and testing what would become a rather extensive piece of 

software. Use of existing coding allows the principles and capabilities of the energy 

flow approach to be investigated without incurring high development overheads. It 
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also provides the possibility of using a number of pre- and post-processing packages 

designed for use with standard codes which make mesh generation and presentation 

of results less labour intensive. 

Finally, it is important to note that finite element packages are already widely 

distributed amongst the engineering community so that the framework of the analysis 

is already in place. Adaptation of these existing tools to implement the energy flow 

approach allows the user to carry out additional analysis without an increase in capital 

costs. 

In order to implement the analysis using existing finite element coding it is necessary 

to draw an analogy between the equations governing the energy flow approach and 

those relating to steady state heat conduction. This chapter describes this analogy and 

outlines the approach required to develop energy flow models using the ABAQUS™ 

finite element package. To illustrate the use of this technique as a quantitative 

transmission path ranking tool, the finite element approach is used to develop an 

energy flow model of a multiple transmission path structure. Although this work is 

canied out using the ABAQUS™ finite element suite, the principles involved should 

be generally applicable to most commercially available packages which cater for 

steady state thermal analysis. 

6.2 Implementation of the energy now approacb using nnlte elements 

In the context of the energy flow approach, the differential equation governing the 

flow of vibrational energy within a structural component is of the general form: 

(6.2.1) 

This equation is of the same fonn as the equation governing temperature distribution 

in steady state heat conduction, often expressed as: 

(6.2.2) 

where K represents the thermal conductivity of the material, T is temperature and 8 

represents heat generation or loss per unit volume of material. The above expression 
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fonns the basis of the steady state thennal analysis provided by most commercially 

available finite element packages. 

The technique developed here for the creation of finite element energy flow models 

is based on drawing an analogy between the vibrational energy density, e, in equation 

(6.2.1) and temperature, T, in equation (6.2.2). Having done this, the thermal 

parameters in the finite element package can be replaced by equivalent vibrational 

terms. 

The first tenns in equations (6.2.1) and (6.2.2) relate to the transport of energy 

through the system. Noting the analogy between T and e. it can be seen that the 

chennal conductivity parameter, K, is equivalent to the parameter C in the energy flow 

approach. The parameter C was introduced in Chapter 3 in the development of a 

relationship between the power flux and the gradient of the energy density. After a 

number of simplifications had been made and under space- and time-averaged 

conditions it was shown that: 

(6.2.3) 

anywhere in a rod and in the far-field of a beam or a plate. This quantity must be used 

to replace K in the finite element analysis. 

The second terms in equations (6.2.1) and (6.2.2) relate to a change of the internal 

energy of the system. In terms of the analogy, the loss of vibrational energy due to 

material damping can be modelled using convective heat transfer away from the 

system. In the thermal finite element analysis, convective heat transfer is governed 

by: 

e = h s~/ ( T - T, ) (6.2.4) 

where e is the rate of energy loss (in watts), h is the convective heat transfer 

coefficient, S,/ is the surface area of the element in contact with the surrounding fluid, 

T is the temperature of the material and 1j is the temperature of the fluid. 
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The equivalent dissipation of vibrational energy within an element of material due to 

damping is: 

P diu = co 11 V"' e = co 11 d", S", e (6.2.S) 

where V"' and d", represent the volume and depth of the finite element respectively. 

Comparing (6.2.4) and (6.2.5) it can be seen that the analogy can be maintained by 

setting: 

h = co 11 d", and (6.2.6) 

Fmally. in order to build up connected structures using this approach. the joint 

boundary condition introduced in Chapter S must also be implemented within the 

fmite element scheme. The joint boundary condition is of the fonn: 

t 
P = (c Se-c Se) 

joilll 2( 1 -t) ,I I I , 2 2 2 
(6.2.7) 

In the case of a one-dimensional two-noded thennal finite element. the transmission 

of thennal energy is based on the relationship: 

KS 
Q = - ( TI - T2 ) 

I", 
(6.2.8) 

where S and I", are the cross-sectional area and length of the finite element. TI and T2 

are the temperatures at each node and K represents the thermal conductivity. The 

resulting conductivity matrix incorporated into the finite element calculation is always 

symmetrical and of the form: 

KS [ 1 -1] 
[K) = T -1 1 ", 

(6.2.9) 

Using (6.2.7) the equivalent "conductivity" matrix for a two-node "joint element" is: 

t [c, IS. -c, ~l ] 

[ Kj ] = 2(1-t) -c S c·~ 
,I I , :t"'2 
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If the structural components on either side of the joint are identical, the joint matrix 

will be symmetrical and can be created using a standard thermal finite element with 

a conductivity value set to: 

't C, I 
K"'",!",,!,,~~ 

2(I-t) 
(6.2.11) 

If however, the values of either c, or S are not the same on either side of the joint, say 

for the case of two beams having different sections, a standard thermal finite element 

cannot be used. Within the ABAQUS™ finite element package this problem can be 

overcome by creating a "USER" element for which matrix members can be freely 

defined. In this way a general two-noded "joint finite element" can be created where 

the terms in the conductivity matrix are set individually according to equation (6.2.10). 

To test the validity of this analogy the solutions to finite element energy flow models 

of single and connected beam structures, created using ABAQUS™, were compared 

with those obtained by the analytical models presented in Chapters 4 and 5. In all 

cases, the finite element results were within 0.2% of those provided by the analytical 

solutions. 

6.3 Energy now analysis of a multiple transmission path structure 

The ability to implement the energy flow analysis using finite elements provides the 

opportunity to analyse more complex, multiple component structures which are more 

representative of those found in engineering applications. In the marine environment, 

transmission of vibrational energy along pipework systems is often difficult to assess 

because of their relatively complicated geometries and the complex dynamics of 

cylindrical shells which comes into play at higher frequencies. Although the 

complexity of pipe vibration is beyond the scope of the energy flow approach at this 

stage in its development, the finite element implementation of the approach is well 

suited to the treatment of multiple transmission path geometries typical of those found 

in pipes. 
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To illustrate this the finite element approach will be used to build a global energy 

flow model to represent the general transmission characteristics of the branched 

pipework system shown in Fig.6.3.1. The flow of vibrational energy through this 

system is divided between two paths. The first consists of a straight section of pipe 

containing a valve and the second is a section containing a number of 600 bends. 

Because at this stage the energy flow approach is unable to accommodate pipe 

behaviour, the pipe sections will be represented by solid sections to make use of the 

expressions already developed for energy flow in rods and beams. This simplification 

should not detract from the main objective of this exercise which is to assess the 

ability of the energy flow approach to form a quantitative transmission path ranking 

tool for the analysis of multiple transmission path structures. Having made this 

simplification, the pipework system is effectively reduced to a framework structure 

shown in Fig.6.3.2. 

The major influence on the global energy flow through the structure will be the partial 

ttansmission of wave energy across the joints and the valve. The valve represents a 

mass between two beam sections and will exhibit a blocking mass effect which is 

heavily dependent on frequency. This situation is rather like that of the flanged joint 

discussed in Chapter 5. The angled joints will also cause panial reflection of wave 

energy, which in this case, will also be accompanied by mode conversion between 

flexural and longitudinal motion. This is a new feature which has not yet been 

included in the energy flow modelling presented here. 

'.3.1 The finite element energy flow model 

The finite element energy flow model of this structure was created using the 

ABAQUS™ finite element package. The general form of this model is shown in 

Fig.6.3.3. Pipe sections are represented by one-dimensional thermal beam elements. 

It will be shown in the next section that the conductivity values for these elements are 

dependent on the proportions of flexural and longitudinal wave energy they possess. 

Because this will alter depending on the mode conversion and reflection characteristics 

at each joint, these values may not necessarily be the same on either side of the joint. 
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As a result, the joint elements must be created using the "USER" element facility 

which allows for non-symmetrical conductivity matrices defined according to equation 

(6.2.10). 

In order to encourage a distinct flow of energy through the system an energy source 

and sink have been attached to the ends of the structure. The source consists of a 

beam. of identical dimensions to those of the other sections. with a concentrated 

power flux applied at its remote end. The sink is of a similar geometry but has a 

material damping factor set at ten times that of the sections representing the pipes. 

Both source and sink are joined directly to the ends of the pipework system giving 

100% power transmission through the connections (ie. 'tlllJ). 

The finite element model requires a number of parameters to describe the transmission 

of vibrational energy through each modelling element. These parameters are as 

follows: 

1. The net transmission efficiency value for each joint element which allows for 

partial transmission across the joint and conversion between wave types. 

2. The "conductivity" value of each beam element dependent on the proportion 

of each wave type. 

3. The convective heat transfer coefficient for each beam element to include the 

. effects of damping. 

The latter of these parameters is detennined using equation (6.2.6). In the case of this 
" . 

illustrative example the value for the damping loss factor. 11, was chosen as 0.01. 

The rust two parameters are directly related to the individual transmission efficiencies 

and the degree of mode conversion at the joints in this structure. In order to calculate 

these, it is first necessary to detennine the transmissive characteristics of each joint 

in isolation from the rest of the structure and then assemble this infonnation to 

establish their net effects. Having achieved this. a value for the conductivity of each 

section can be calculated based on the proportion of each wave type it transmits. 
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These calculations will be described in the following sections. 

U.l Wave transmission through angled and branched jOints in beams 

The initial stage in the development of this example consists of a study of the 

transmission properties of the joints in isolation from the rest of the structure to 

detennine their individual transmission and mode conversion characteristics. In the 

case of the angled and branched joints contained in this model, the analysis is based 

on an approach described by Homer and White (1990). Here one considers the joint 

u a cylindrical mass connecting a number of semi-infinite beams which can be 

arranged at arbitrary angles. This configuration is shown in Fig.6.3.4. The incident 

wave approaching the joint along beam 1 is assumed to be either flexural or 

longitudinal in nature. As a result of the equilibrium and continuity conditions at the 

joint. part of this wave is reflected back along beam 1 and the remainder is transmitted 

into beams 2 and 3. This partial reflection is also accompanied by mode conversion. 

so that the incident wave can generate both flexural and longitudinal wave components 

in each of the three beam sections. 

Assembly of the equilibrium and continuity expressions at the joint yields a 9 x 9 

system of simultaneous equations which can be solved to provide values for the 

transmission efficiencies. t, and reflection efficiencies, p, for each wave type, as 

shown in Fig.6.3.4. The suffices attached to these parameters distinguish between the 

various combinations of incident and resultant wave types. The rust suffix relates to 

the nature of the incident wave and the second to the nature of the resulting wave 

after ttansmission or reflection. For example, tv represents the transmission efficiency 

of a flexural wave resulting from an incident longitudinal wave at the joint. 

Horner and White (1990) provided a full set of equilibrium and continuity expressions 

relating to this problem in the form of a 9 x 9 matrix equation. However, in working 

through their analysis as part of this study, some of the tenns in their equilibrium and 

continuity equations differed from those developed here. This is probably due to 

differences in the conventions used in the two analyses, although this is difficult to 

establish because the conventions employed by Homer and White were not described 
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in detail in their publication. 

For completeness. the solutions to the three-branched joint model developed as pan 

of this study are provided in Appendix E. This is accompanied by similar solutions 

for the two-branched joint models shown in Fig.6.3.5. which are also required for the 

analysis of this structure. Beam dimensions and material properties chosen for this 

example are shown in the Figs.6.3.4 and 6.3.5. 

6.3.3 Wave transmission across the valve 

For the purposes of this example the valve is represented by a cylindrical mass with 

its polar axis in line with that of the beams. see Fig.6.3.6. The resulting solutions for 

the transmission efficiency of both flexural and longitudinal waves across this joint 

are similar to those developed for the two-branched joint model shown in Fig.6.3.5. 

In this case however. the angle 8 is set to 00 and the term which includes the moment 

of inertia of the joint has been modified to take account of the change in orientation 

of the cylinder. 

Once again. details of this solution are given in Appendix E. The dimensions and 

material properties chosen for the valve model are shown in Fig.6.3.6. 

6.3.4 Net transmission efficiency and the etTect of multiple reflections 

The preceding sections deal with the transmission characteristics of the joints in 

isolation from the remainder of the structure. In finite structures the transmission 

characteristics across a joint are also affected by the reflective nature of other 

discontinuities downstream from it. This is because wave energy reflected by a 

downstream joint is partially transmitted back through the first, reducing its net or 

effective transmission efficiency. This effect was identified as a possible cause of the 

difference between measured and theoretical values for the transmission efficiency 

across the flanged joint discussed in Chapter S. It follows that to representatively 

model the way in which vibrational energy flows through real structures, the effects 

of these multiple reflections between structural discontinuities must be taken into 

account. 
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Homer and White (1990) also addressed this problem and considered the net power 

transfer into a section bounded by two discontinuities, like the one shown in Fig.6.3.7. 

'I1ley showed that if the effects of damping were neglected, an expression for the net 

power transfer into the section could be obtained from the sum of an infinite series 

and the net transmission efficiency becomes: 

(6.3.1) 

where t., Pl and PJ are defined in Fig.6.3.7. 

To apply the above expression to the beam sections within this branched model, the 

calculation must be expanded to account for mode conversion and simultaneous 

transmission of flexural and longitudinal motion. In this case, each transmission and 

reflection efficiency value shown in Fig.6.3.7 must be broken down into four values 

to account for mode conversion at the discontinuities, see Fig.6.3.8. 

The individual t and P values required for this model can be obtained from the 

analytical solutions given in Appendix E. where the incident wave is of a single type. 

In order to combine these tenns to calculate the net transmission efficiency, some 

knowledge of the ratio of flexural to longitudinal energy flow in the previous element 

must be assumed. For the purposes of this analysis • will be used to represent the 

amount of flexural wave power as a proportion of the total transmitted wave power 

and 'If will represent the corresponding proportion of longitudinal wave power. 

Having defined these tenns it is possible to obtain mixed mode values of t l , ~ and 

p, used in equation (6.3.1), by superposition of the contribution from each wave type 

in the following way. 

For the ilb element shown in Fig.6.3.8: 

(6.3.2) 
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The nature of the wave now approaching discontinuity 2 will now be characterised by 

x, and x, which are given by: 

(6.3.3) 

Using the above expressions, ~ can be calculated from: 

(6.3.4) 

and the resulting reflected wave approaching the rust discontinuity will be 

. characterised by: 

(6.3.5) 

and finally: 

(6.3.6) 

This provides the values for t l , P2 and Pl' given by (6.3.2), (6.3.4) and (6.3.6), which 

can be inserted into (6.3.1) to obtain a value for tIN, into each section of the model. 

6.3.5 Element conductivity 

Previous models described here have only dealt with the transmission of vibrational 

energy by flexural waves. In the case of this branched system however, mode 

conversion at the joints makes it necessary to consider the simultaneous transmission 

of both flexural and longitudinal wave energy. 

In the context of the energy flow approach the differential equation governing the 

steady state conduction and dissipation of flexural energy in a beam structure is: 

(6.3.7) 
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and the corresponding expression for longitudinal motion in a rod is: 

(6.3.8) 

In order to model the simultaneous transmission of these two wave types it is 

necessary to incorporate the effects of the above governing equations in a single finite 

element fonn. Ideally this should be done in such a way that the flow of longitudinal 

energy is governed by the gradient of the longitudinal energy density and similarly for 

the flexural energy. To achieve this however. the model requires two independent 

primary variables to represent the individual energy components. This type of 

approach has been used by eho and Bernhard (1992) to create an analytical model of 

an angled beam using the energy flow approach. 

Within the context of the modelling work carried out here however. the use of an 

existing thennal finite element package means that only one primary variable is 

available. Given this limitation 'one approach is to combine the governing equations 

for the two energy components to form a "hybrid" expression, thus: 

(6.3.9) 

where <p and", denote the proportions of flexural and longitudinal wave power defined 

earlier. 

The use of this modelling expression is not unreasonable within the context of the 

energy flow approach because the quantities involved are considered to be of a space

and time-averaged nature. However, because of the frequency dependence of Cb the 

use of the above expression should really be limited to frequency ranges where Cb and 

115 



CL are of the same order of magnitude. It should also be noted that this rather 

simplified expression becomes more difficult to apply to structures which are more 

complex than the straight beams considered here, say for example the case of curved 

beams where the flexural and longitudinal wave quantities are coupled. 

Using the analogy described in section 6.2 and the "hybrid" expression (6.3.9) above, 

the appropriate conductivity values for the thermal finite elements representing the ilh 

section of beam in this model are given by: 

2 ., 
( q,; 4ch ; + 'V; ci i ) K= ______ _ (6.3.10) 

where cb, the bending wave speed for a beam, is given by: 

c = ~ E/oo' 
h pS 

(6.3.11) 

and cL is the longitudinal wave speed, obtained from: 

(6.3.12) 

The factors q, j and 'Vi can be calculated given knowledge of the u·ansmission and 

reflection efficiencies at the ends of each section. This calculation is based on 

detennining the net transmission of each type of wave within the structure as a factor 

of the total transmission. Again some knowledge of the proportion of the power 



carried by each wave type in the previous section. 4»;.1 and "'i./. must be assumed. 

Using Fig.6.3.9. the flexural power transmitted into the ilb section is given by: 

(6.3.13) 

and the equivalent longitudinal power is: 

(6.3.14) 

In the absence of damping. a proportion of each of the above will be reflected by 

discontinuity 2 to fonn a reflected flexural power quantity given by: 

(6.3.15) 

and similarly. the reflected longitudinal power will be given by: 

P, rtf I = ~fll P, 'raM + ~1I1 P, 'raM (6.3.16) 

At the first discontinuity partial reflection will occur once again and the proportion of 

power reflected back will be: 

(6.3.17) 

and. 

(6.3.18) 

Since damping has been neglected. this process continues indefinitely and the net 

transmission of flexural power through the element is: 

(6.3.19) 

and for longitudinal power. 

P,., = P, 'NIU - P, rtf I + P, rtf 2 - ..... (6.3.20) 

Investigation has shown that values of Pn{2 are much smaller than P'raM and subsequent 

tcnns in the above series can be neglected. 
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Thus. the proportion of the net flexural and longitudinal power transmitted through the 

illl section of the structure can be obtained from: 

cI»; = __ P_'_IW_'_ 
PI/W' + P, /w' 

P, /w' 
'1'; = ---

PI IW, + P, III' 
(6.3.21) 

These values have been used to calculate the conductivity of the finite elements 

representing each beam section in the model. 

They have also been used to obtain a value for the group velocity, c,' required to 

calculate the elements of the joint conductivity matrix defined by equation (6.2.10). 

This value is given by: 
ell = <I> 2c" + '" C L (6.3.22) 

Which, like (6.3.9), should only be used in frequency ranges where c" and cL are of 

the same order of magnitude. 

6.3.6 Model results 

Having established methods for detennining the effective transmission characteristics 

of the joint and beam elements when they fonn part of the assembled structure, the 

finite element model described in section 6.3.1 can be used to provide a global energy 

flow model. The main objective of this exercise is to illustrate the use of this energy 

flow model as a quantitative transmission path ranking tool. 

The main factor affecting the global transmission properties of this structure is the 

balance between the effective transmission efficiency values in each of the two 

possible transmission paths. Because the inertia of the valve is relatively high in 

comparison to the stif!ness of the beams, its transmission characteristic is governed 

by a blocking mass effect which is heavily dependent on frequency. This 

characteristic, obtained by the analysis described in Appendix E. is shown in 

Fig.6.3.10. It can be seen from this figure that significant attenuation of both flexural 

and longitudinal wave power is predicted above 1 kHz. Conversely. the transmission 

characteristics of the branched and angled joints are relatively insensitive to changes 

in frequency because the cylinder used to model the joint has a much lower inertia 

than that used to represent the valve. In this case. the major factor affecting the 
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transmission characteristics across joints of this type is the angular displacement of the 

limbs. which are fixed for the purposes of this model. 

In order to present two cases where the balance between the transmission efficiency 

values in the two transmission paths is very different, the analysis has been canied out 

at frequencies of 1000 Hz and 5000 Hz. Fig.6.3.10 shows that the t values calculated 

for the valve model at the higher frequency are very much lower than those at the 

lower frequency. This result influences the net transmission efficiencies calculated for 

the seven joints in the energy flow model. These values. at the two frequencies 

studied. are presented in Table 6.3.1 below. 

Joint Net Transmission Efficiency 
Number 

1000 Hz 5000 Hz 

1 0.245 0.074 
2 0.747 0.220 
3 0.381 0.438 
4 0.403·W; 0.539 
5 0.363 . 0.536 
6 0.431 0.618 
7 0.302 0.390 

Table 6.3.1 Net transmission efficiency values for joint elements 

It can be seen from the table. that the reduction in the individual t values across the 

valve at 5 kHz results in a significant reduction in the net transmission efficiencies of 

joints 1 and 2 in the energy flow model. (These joint numbers are defined in 

Fig.6.3.3) 

The results of the finite element analysis at the two frequencies are shown in 

Fig.6.3.11. The values shown represent the level of vibrational power transmitted 

through the element at the mid-point of each beam. as a percentage of the total power 

input at the source. At 1000 Hz transmission via the section containing the valve is 
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marginally higher than that through the section containing the bends. At 5000 Hz 

however, as a result of the reduction in transmission efficiency across the valve, there 

is a significant shift in energy flow towards the section containing the bends. 

Although this general effect might be predicted from inspection of the individual 

transmission characteristics of the joints, this model quantifies the relative transmission 

capabilities of each path, thus forming an effective transmission path ranking tool. 

6.4 Discussion 

This model represents the first application of this approach to provide a quantitative 

transmission path ranking tool. The energy flow theory forms the core of the analysis 

and acts to assemble the individual transmission characteristics of the component parts 

of the structure to provide a global picture of the energy transmission through the 

system. The creation of this type of model has been one of the fundamental aims of 

this work and has influenced certain aspects of the way that the approach has been 

developed. This is particularly true in relation to the boundary condition chosen in 

Chapter 5 to represent transmission across joints. 

A common feature of the models described so far is that the form of the energy flow 

model has remained very general. The structural components are described only by 

a representative value of their "conductive" properties and a measure of their ability 

to dissipate energy by damping. Similarly, the joint elements are characterised only 

by a transmission efficiency value which governs the proportion of the incident energy 

that flows into subsequent sections of the structure. As a result of this, the modelling 

approach has the potential to be applied to any general assembly of components. This 

is made possible because the detailed characteristics of each particular structural 

feature are considered outside the realms of the energy flow model. 

The form of this modelling approach can be illustrated using the schematic shown in 

Fig.6.4.1. It can be seen that the basic energy flow analysis developed by Wohlever 

(1988) and Bouthier (1992) forms the core of the model, whether it be implemented 

analytically or using finite elements. In order to use these relationships to provide a 

realistic model, representative values for the basic parameters must be established. 
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These parameters, which relate to the type of structure, the power input, the level of 

damping and the joint characteristics, are shown in the second level of this schematic. 

The third level shows the techniques used within this work to establish values for 

these parameters. This level represents a methods library from which the best 

estimates of the modelling parameters can be obtained. There is no limit to the extent 

of this library since new methods must be added as new structural configurations are 

considered in the analysis. The information contained in this library will be essential 

for predicting vibrational energy transmission through structures which may still be 

at the very early stages of design. 

The quality of the predictions obtained using this approach can, of course, only be as 

good as the estimates of the modelling parameters used in the model and will always 

be limited by the simplified nature of the energy flow analysis. The results of this 

modelling exercise do however, show that the approach does have the potential to 

provide a good indication of the energy flow characteristics within a complex structure 

at low computational cost. They also show that even if the absolute levels of 

vibrational energy in each section may not be determined exactly, this approach can 

provide a quantitative assessment of the relative efficiencies of various transmission 

paths in a complex structure. In this form, the model provides a very effective 

quantitative transmission path ranking tool. 

6.S Summary 

This chapter describes the implementation of the energy flow approach using finite 

element analysis. The main points arising from this work are as follows: 

1. The equations governing the energy flow approach are of a similar form to 

those relating to steady state heat conduction. This feature allows an analogy 

to be drawn between temperature and vibrational energy density which makes 

it possible to use an existing finite element package to model structures having 

complex geometries. 
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2. This approach is used to develop an energy flow finite element model of a 

multiple transmission path structure. The finite element model serves to 

assemble the infonnation concerning the individual transmission characteristics 

of the components in the structure to provide a global picture of the energy 

flow through the system. This model is used to assess the global effect of 

variations in the transmission characteristics of the individual components of 

the structure. In doing this. the model acts as an effective transmission path 

ranking tool. 
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Fig.6.3.3 Finite element energy flow model 
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Chapter 7 

Experimental investigation into vibrational energy 

flow through a ribbed bulkhead structure 

7.1 Introduction 

This chapter describes a section of work aimed at assessing the vibrational energy 

flow characteristics of a ribbed bulkhead structure. This type of structure is a 

common feature of ship construction and normally consists of a section of plate, 

reinforced in one major direction by a number of parallel beam-like ribs. This 

configuration gives rise to rather complex wave transmission characteristics which 

have strong directional dependence. 

The study of wave transmission through reinforced plate structures has been addressed 

in a number of ways. Belov et al (1977) and Nikiforov (1990) described simplified 

energy conduction models to predict the global transmission of vibrational energy 

through this type of structure at higher frequencies. Nikiforov's approach in 

particular. is aimed at assessing attenuating effects which result from partial reflection 

of wave energy at the ribs. 

Lindqvist and Fahy (1976) and Nilsson (1976) approached this problem from a more 

analytical standpoint. These analyses are based on the conditions of equilibrium and 

continuity at the junction between the plate and the reinforcing ribs. This type of 

approach leads to a very detailed mathematical model of the structure which is able 

to account for flexural, longitudinal and torsional motion, but only in the direction 

parallel to the ribs. 

The work described here consists of an experimental investigation into the vibration 

transmission characteristics of a section of ribbed plate which is representative of a 
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real marine bulkhead. The first part of the study involves experimental wavenumber 

measurement to determine the directionality of the structure's energy transmission 

characteristics. This is followed by a series of structural intensity measurements to 

provide an indication of the general pattern of vibrational energy flow through this 

rather complex structure. 

A major incentive behind this experimental work is to obtain information on which 

to base the development of a two-dimensional energy flow model of the structure. It 

will also provide experimental results for comparison with model predictions. This 

modelling work will be described later in Chapter 8. 

7.2 The test structure 

The general form of the bulkhead structure is shown in Figs.7 .2.1 and 7.2.2. These 

photographs are complemented by a schematic of the structure given in Fig.7.2.3. 

This schematic shows the major dimensions and certain features of the structure which 

will be referred to later in the text 

It can be seen from these figures that the bulkhead section is essentially a plate, 

stiffened in the vertical direction by a number of beam-like ribs. Extra localised 

stiffness has been introduced in the horizontal direction around a section which 

represents a machinery mounting platform. The lower portion of the structure is 

buried in sand to provide an energy sink. 

For ease of reference throughout this chapter "the vertical direction" will be used to 

denote the direction parallel to the major ribs and "the horizontal direction" to denote 

that perpendicular to the major ribs. This notation is illustrated in Fig.7.2.3. 

Excitation is provided by a shaker located towards one comer of the structure. This 

location has been chosen because it presents a clear energy flow path to the sand 

which is not interrupted by the machinery mounting platform. Because of this, the 

initial flow of vibrational energy away from the source should be influenced only by 

the presence of the ribs, rather than the machinery mounting platform which may have 
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more complicated effects. 

The shaker is connected to the plate via a mounting block assembly shown in 

Fig.7.2.4 and in schematic form in Fig.7.2.5. This assembly was designed to allow 

a force gauge and accelerometer to be mounted back-to-back at the shaker connection 

to measure the mechanical power imparted to the block. Because of the geometry of 

the block this power is converted into a combination of force and moment components 

which excite flexural waves in the bulkhead plate. It should be noted that this 

arrangement is unable to detect components of power imparted to the block due to 

bending of the shaker push rod. An assessment of the likely influence of this effect 

based on the properties of the real structure has shown that the bending moment in the 

rod contributes less than 1 % of the total moment exciting the plate in the frequency 

range considered here. It can therefore be safely neglected for the purposes of this 

study. 

7.3 Modal analysis of the structure 
Before studying energy flow in this bulkhead structure it is essential to develop an 

understanding of its general dynamic characteristics. Much of this can be achieved 

by studying the natural mode shapes of the structure provided by experimental modal 

analysis. 

Response measurements made over the surface of the bulkhead plate were used to 

provide a modal analysis of the structure over a 0-2.5 kHz frequency range. This 

analysis gives natural frequencies, mode shapes and modal damping loss factors for 

the flrst 30 modes of vibration. Examination of this data shows that the mode shapes 

of the structure are predominantly flexural up to a frequency of about 1000 Hz. One 

strong torsional mode is evident around 750 Hz. Beyond 1000 Hz the mode shapes 

become more complex, but do exhibit strong components of flexural behaviour. 

The dominance of flexural motion suggests that the behaviour of this structure can be 

approximated to an equivalent plate-like structure in flexure. Unlike a simple plate 

however, the bulkhead is greatly stiffened in one direction by the presence of the ribs. 

This means that the equivalent plate structure must possess orthotropic stiffness 

properties in order to properly represent the characteristics of the bulkhead plate. 

The assumption of plate behaviour means that the level of vibrational energy flow 

through the structure can be measured using a structural intensity technique which has 

previously been applied to plates. The use of this technique will inevitably lead to 

some degree of error in the measured results because the motion of the bulkhead plate 
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is unlikely to be purely flexural, particularly at high frequencies. Nevertheless, the 

use of such an approach is necessitated because more exact techniques for the . 

treatment of complicated structures do not yet exist. Despite the approximate nature 

of the measurement technique it should be able to provide an assessment of at least 

. the general level of energy flow for comparison with model predictions. 

7.4 Wave transmission characteristics of the structure 

In the previous section it was suggested that the behaviour of the bulkhead section 

could be approximated to that of an equivalent orthotropic plate. The first part of this 

study is aimed at assessing the directionality of the global transmission properties of 

the structure by establishing its wavenumber characteristics in each of the major 

directions. This information will be generally useful in assessing the wave 

transmission characteristics of structures of this type and in particular, it should be 

able to provide some measure of the effective stiffness of the structure which is 

influenced by the presence of the stiffening ribs. 

The determination of wavenumber will also have a role later in the development of 

a representative energy flow model of this structure. This is because wavenumber can 

be directly related to the group velocity, which is one of the parameters required to 

determine the "conductive" properties of the elements in the energy flow model. 

7.4.1 Wavenumber for ribbed plates 

Wavenumber. k, is a well established quantity used to characterise the transmission 

of harmonic wave energy through a structural or acoustic medium. Cremer (1973) 

provides expressions for calculating this quantity for simple beams and plates. In the 

case of this bulkhead however. which comprises a combination of beam and plate 

sections, the calculation of wavenumber is significantly more difficult. 

Nilsson (1976) produced an analytical solution to determine the wavenumber for a 

structure of this type as part of an investigation into noise transmission in ships. In 

his analysis the bulkhead was broken down into a number of I-shaped sections 

consisting of a strip of hull plate with a central stiffening rib, illustrated in Fig.7.4.1. 
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The dimensions given in the figure correspond to the bulkhead used in the present 

study. 

By considering equilibrium and continuity of a single beam-like section experiencing 

flexural and longitudinal motion. Nilsson was able to obtain the wavenumber 

characteristic for transmission in the direction parallel to the ribs. This analysis 

predicted that the wavenumber of the structure at lower frequencies remained very 

close to that for simple beam bending of the I-shaped section. At higher frequencies 

the wavenumber increased more rapidly with frequency and tended towards the value 

corresponding to flexure of the hull plate in isolation from the ribs. 

This analysis gives some insight into the likely transmission characteristics of the 

bulkhead section in the direction of the ribs. It does not however. provide any 

infonnation about the transmission of energy in the direction perpendicular to the ribs. 

For the purposes of this investigation it is convenient to obtain an estimate of 

wavenumber in each direction by a more general approach. 

7.4.2 Flexural wavenumber measurements on beams and plates 

The use of flexural wavenumber measurements on beam structures for the evaluation 

of structural intensity has been described by Meyer et al (1990) and Wagstaff et al 

(1990). These analyses rely on the assumption that the measurements are made in the 

far-field region where the acceleration. a. at any position. x, can be expressed as: 

(7.4.1) 

differentiating (7.4.1) twice with respect to x, gives: 

(7.4.2) 
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Substitution from (7.4.1) gives: 

(7.4.3) 

The spatial derivative of the transverse acceleration at a point in the structure can be 

evaluated using a finite difference technique. In the case of a second-order derivative. 

the finite difference approximation is: 

(7.4.4) 

where a •• a1 and Q3 are the outputs of a three accelerometers placed in a linear array 

at a small distance II apart. see Fig.7 .4.2. 

Substituting (7.4.4) into (7.4.3) and noting that the central acceleration a1 coincides 

with the general value a, yields: 

(7.4.5) 

By multiplying top and bottom of (7.4.5) by the complex conjugate of ~ it can be 

rewritten in tenns of auto- and cross-spectral quantities. ie: 

(7.4.6) 

In general. the ratio (X"", I X"""J is the frequency response function, H """ between two 

dynamic signals. Hence (1.4.6) becomes: 

(7.4.7) 
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or. 

(7.4.8) 

Meyer et al (1990) suggested that this approach could also be used for measuring 

flexural wavenumber in any given direction in a plate. Having established that the 

motion of the bulkhead can be approximated to that of a plate in flexure. this 

technique should be able to provide a measurement of wavenumber in its two major 

directions. 

The results of these measurements will of course be affected by the fact that the 

motion of the bulkhead plate is not purely flexural. particularly at higher frequencies. 

It must also be remembered that the analysis assumes that measurements are made 

under far-field conditions. whereas the complicated nature of the present structure 

makes it difficult to identify areas where true far-field conditions exist. Despite these 

limitations. the technique should be able to capture at least the trend of the 

wavenumber characteristic from which a representative values can be estimated. 

Wavenumber measurements were made at a number of locations across the bulkhead 

plate using the three-accelerometer technique described above. The axes of the arrays 

were aligned both vertically and horizontally to establish the wavenumber 

characteristics in each direction. Only a selection of these results will be presented 

here for discussion. These examples correspond to measurements made at six 

locations marked in Fig.7.4.3. 

7.4.3 Results of the wavenumber measurements 

The results of the wavenumber measurements made in the direction parallel to the ribs 

are shown in Figs.7.4.4 to 7.4.7. Also shown in these figures are the theoretical 

wavenumber values for beam flexure of the I-shaped section. shown in Fig.7.4.1. and 

flexure of the bulkhead plate in isolation from the ribs. 
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These values are denoted by kb and k,. respectively and are given by: 

k = ( pS )~ co ~ 
b £1 

(7.4.9) 

and 

(7.4.10) 

where I and S correspond to the second moment of area and cross-sectional area of 

the I-shaped section shown in Fig.7.4.1. h represents the thickness of the bulkhead 

plate and v is Poisson's ratio. 

The measured results show some instability when compared to the theoretical values. 

This is probably due to the fact that the motion of the structure at the point of 

measurement is more complex than that of pure far-field flexural motion. on which 

the derivation of equation (7.4.8) was based. Despite this. trends in the data can be 

clearly identified from which an estimate of the wavenumber characteristic can be 

obtained. 

Figs.7.4.4 and 7.4.5 show measurements obtained in the direction parallel to the ribs 

at locations 31 and 39, which are identified in Fig.7.4.3. These results show that at 

lower frequencies. in this case below about 2.5 kHz, the wavenumber of the structure 

remains close to the value corresponding to flexure of the I-shaped section shown in 

Fig.7.4.1. Above this frequency the measured characteristic moves towards the value 

which corresponds to flexure of the plate in isolation from the ribs. These 

observations are in line with those predicted by Nilsson (1976). 

Figs. 7 .4.6 and 7.4.7 show measurements obtained in the same direction at locations 

30 and 38. These results show a similar trend to the ones obtained at 31 and 39 

although at higher frequencies, the characteristic remains closer to that of the I-shaped 

beam rather than tending towards that for the plate. This observation can be 

explained by the fact that these points correspond directly with the positions of 
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stiffening ribs. It is not surprising therefore, that the motion in these areas is strongly 

influenced by the ribs throughout the frequency range. 

Although there is some difference in the characteristics obtained at these four points 

at higher frequencies. the measured results below 2.5 kHz compare well with the value 

calculated for flexure of the I-shaped beam section shown in Fig.7.4.1. This result 

will have a direct bearing on the development of the energy flow model which will 

be described in the next chapter. Firstly it implies that at lower frequencies, in this 

case below 2.5 kHz. the wave transmission characteristics in the vertical direction are 

approximately uniform across the width of the plate. Secondly, it shows that k" is a 

good estimate of the wavenumber characteristic in this direction. This quantity will 

be used to calculate a representative value for the "conductive" properties of the 

elements in the energy flow model in the vertical direction. 

Wavenumber measurements made in the direction perpendicular to the ribs are shown 

in Figs.7.4.8 and 7.4.9. These results show that throughout the frequency range, the 

measured wavenumber in this direction remains close to the value calculated for the 

flexure of the bulkhead plate in isolation from the ribs. This suggests that the ribs 

have little effect on the stiffness of the plate in the horizontal direction. They also 

show that kl' provides a good estimate of the wavenumber for motion across the 

bulkhead plate for use in the development of the energy flow model. 

7.S Structural intensity measurements on the bulkhead plate 

The second part of this experimental study involves structural intensity measurements 

made at a number of locations over the surface of the bulkhead plate. The purpose 

of this exercise is two-fold: firstly. to attempt to build an experimental picture of the 

way in which vibrational energy is transmitted through this rather complex structure, 

secondly, to provide a datum against which model predictions can be compared. 

7.5.1 The measurement approach 

In attempting to make these measurements one immediately comes up against the 

problem of finding an appropriate measurement technique, given the complexity of 
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this structure. Techniques for measuring structural intensity in simple beam and plate 

structures are well established. In the case of more general structures however, such 

techniques do not yet exist. To assess the level of vibrational energy flow in this 

bulkhead it is once again necessary to assume that the motion of the bulkhead plate 

can be approximated to that of a simple plate in flexure. Earlier examination of the 

mode shapes of this structure showed that the validity of this assumption is good 

below a frequency of about: tOOO Hz. Beyond this frequency the mode shapes become 

more complicated and the level of approximation increases. For this reason, structural 

intensity measurements made on the bulkhead plate will be limited to an upper 

frequency of 1250 Hz. 

Linjama and Lahti (1989) showed that the measurement of far-field structural intensity 

in a plate experiencing flexure, in any chosen direction, can be achieved using a two

accelerometer technique similar to the one previously employed on beams. In this 

case however, the structural intensity is evaluated in terms of power per unit width of 

plate and given by: 

2 El'ph '! 

( J 

I 

= -- 1m X p flro2 (l-v2) ( 21) 
(7.5.1) 

where Im(X11) is the imaginary part of the cross-spectrum between the outputs of the 

two accelerometers placed a small distance, fl, apart. r represents the second moment 

of area of the plate section pel' unit width. 

It is important to note that this expression is only strictly valid if measurements are 

made under far-field conditions. Given the complexity of this structure it is difficult 

to detennine the extent of near-field effects. In the 0-1000 Hz frequency range 

however, the wavelength of flexural motion in this structure is generally significantly 

larger than the distance between the ribs. This suggests that any local effects of the 

ribs in disturbing the wave motion in this structure are not so important at these lower 

frequencies. Instead, their major effect can be considered as an increase in the global 

stiffness of the bulkhead in the vertical direction. This being the case, the major 
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discontinuities in the structure are likely to be limited to the site of the power input. 

the machinery mounting platfonn and the edges of the bulkhead plate. In regions 

away from these major discontinuities this far-field technique should be able to 

provide a good measure of the structural intensity in the plate. Elsewhere in the 

structure it should be possible to at least establish the general level of structural 

intensity. despite the influence of near-field effects. 

The wavenumber measurements clearly indicate that at lower frequencies the bulkhead 

plate exhibits orthotropic wave transmission properties. This difference in properties 

is a result of the extra stiffness provided by the ribs. which acts predominantly in the 

vertical direction. In order to calculate structural intensity from cross-spectral 

measurements using equation (7.5.1). this difference in stiffness must be accounted 

for. 

For the horizontal direction. the wavenumber measurements suggest that the effective 

stiffness of the bulkhead is comparable to that of the bulkhead plate in isolation from 

the ribs. This is given by: 

( EI' ) = Eh
3 

htlriz U (7.5.2) 

where h represents the thickness of the plate. 

In the vertical direction. the wavenumber characteristic of the plate/rib combination 

was found to be comparable with that of an I-shaped beam. It follows that the 

effective stiffness in this direction (per unit width of plate) is: 

( ') E/~_ EI - ~~ 
I-m 0.11 

(7.5.3) 

where I ~_ is the second moment of area of I -section shown in Fig 7.4.1 and 0.11 is 

the width (in metres) of the section of bulkhead that this strip represents. 

Structural intensity measurements were made using accelerometer pairs mounted at 41 

locations over the surface of the bulkhead plate. The position and orientation of these 
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measurements are shown in Fig.7 .5.1. 

In using equation (7.5.1) to evaluate structural intensity it is useful to assess the errors 

introduced by employing finite difference approximations. Equation (4.3.13) shows 

that finite difference errors are related to the quantity leA. In this case, the 

accelerometer spacing II was nominally set at 20 mm. Using the wavenumber 

information obtained in section 7.4. the maximum expected finite difference errors are 

less than 10% at the upper frequency limit of these measurements. Phase mismatch 

errors were eliminated from these measurements using the switching technique, 

described in section 4.3.5. 

7.5.2 Results of the structural intensity measurements 

Having established the effective stiffness of the structure in each direction using 

equations (7.5.2) and (7.5.3), the structural intensity at points in the structure can be 

evaluated from cross-spectral measurements using equation (7.5.1). A number of these 

results will be used to provide an indication of the way in which vibrational energy 

flows through this structure from source to sink. 

The structural intensity spectra presented here are not continuous. This is due to the 

presence of negative spikes in the measured cross-spectral data, which generally 

occurred away from the resonances of the structure where the level of energy flow is 

relatively low. At these low levels of energy flow, the signal-to-noise ratio of the 

measured data is poor and measurement errors are difficult to avoid. In calculating 

structural intensity, only the parts of the spectra which indicate energy flow away from 

the source were retained. This approach generally retained the peaks in the spectra 

which correspond to the natural frequencies of the structure. Despite the 

discontinuous nature of the spectra. the general level of energy flow at each point in 

the structure can still be clearly identified. particularly around resonances. 

An indication of the energy flow characteristics of the structure can be obtained by 

making comparisons between the spectra obtained at various points around the shaker 

location. In making these comparisons the spectrum showing vertical energy flow 

141 



through point 6 will be used as a common datum. 

Fig.7.5.2 shows that the energy flowing downwards from the source, measured at point 

6, is generally much higher than that flowing upwards, through point 2. This result 

is to be expected since it indicates that the energy is predominantly flowing towards 

the sink. It is more surprising however, to compare the measured spectra at points 5 

and 7, directly over the ribs, with that measured at point 6. Figs.7 .S.3 and 7.S.4 

clearly indicate that the energy flow at points 5 and 7 are very much lower than that 

measured at 6. This observation suggests that the energy in this area is concentrated 

in the section of plate between the two ribs. This suggestion is reinforced by the fact 

that the energy flow levels measured in the horizontal direction at locations 4 and 8 

are also very much lower than that flowing vertically through 6. These comparisons 

are made in Figs.7.5.5 and 7.5.6. 

At points in the structure closer to the sand there is evidence that the above effect 

diminishes. Fig.7.5.7 shows that the energy flow at location 31, directly below 6, is 

significantly lower than that closer to the shaker. This suggests that the energy 

contained between the ribs, measured at point 6, has spread across the plate as it 

progresses towards the sink. This suggestion is backed up by comparisons of the 

levels of energy flow at points 30, 31 and 32, shown in Figs.7.5.8 and 7.5.9. These 

figures show that there is only a relatively small difference between the levels of 

energy flow at adjacent points. Similar characteristics were exhibited by all the results 

obtained along this lower line of measurement points from 29 to 41, indicating that 

the energy flow becomes more evenly distributed across the structure in regions closer 

to the sand. 

To check the quality of these structural intensity measurements it would be useful to 

be able to compare them to the power input measurement made at the shaker. 

Unfortunately, this is not immediately possible because of a disparity in the units, the 

power input being measured in units of watts whereas the structural intensity is 

evaluated in tenns of watts per unit width of plate. 

142 



It is possible to make a direct comparison however, if one considers the total energy 

flow across a boundary around the shaker attachment. The boundary chosen for this 

calculation is shown in Fig.7.S.10, together with the locations and directions of four 

structural intensity measurements which were chosen as being representative of the 

level of energy flow across each edge of the boundary. Assuming that the flow of 

energy across the boundary is uniform along each edge, these four measurements can 

be used to calculate a value for the total vibrational power crossing the boundary. 

Because a "representative length" has been attached to each measurement, a value for 

the total power can be obtained in units of watts and compared directly to the power 

input measurement. 

The comparison between the power input measurement and the calculated power 

crossing the boundary is shown in Fig.7.S.II. It can be seen that the general form of 

the two spectra compare very well, particularly above 300 Hz. This shows that there 

is good coherence between the structural intensity and power input measurements. 

Over the latter half of the spectrum however, the calculated power crossing the 

boundary is higher than the measured power input, which cannot realistically occur. 

One possible cause for this discrepancy could be linked to the neglect of near-field 

effects when making structural intensity measurements in this area. A more likely 

reason however, can be identified from the wavenumber measurement made in the 

vertical direction at point 31, shown in Fig.7.4.4. This plot indicates that below about 

2.5 kHz, the measured wavenumber on the vertical line through point 6 is slightly 

higher than that calculated for the I-shaped beam section. This implies that the 

effective stiffness of the structure in this region is actually somewhat lower than the 

value used in the structural intensity calculation. Having adopted an over-estimate of 

the effective stiffness of the section at the point of measurement, an over-prediction 

of the structural intensity at this point will inevitably result. 

It should be noted that this feature was not observed in measurements made in other 

regions of the structure. In most cases the measured results, although possessing 

scatter, correspond more closely to the value of k" in the 0-2.5 kHz frequency range. 

This is illustrated in Figs.7.4.5 and 7.4.7. It is difficult to determine whether this 
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variation in the measured wavenumber characteristics is due to experimental problems, 

or actually reflects variations in the stiffness of different regions of the structure. The 

latter is certainly possible because of features like the machinery mounting platfonn 

and would explain the discrepancy observed in Fig.7.S.ll. 

This analysis shows that the two-accelerometer structural intensity technique does 

provide sensible measurements of the energy flow through the plate in this region and 

should therefore be able to reflect the general level of energy flow around the 

structure. It is also evident however, that some uncertainty in the absolute value of 

these measurements must be accepted due to the difficulty in establishing a 

representative value for the stiffness of the structure at the point of measurement. 

7.6 Discussion 

The work described in this chapter has shown that. given some sensible 

approximation. it has been possible to experimentally detennine the general energy 

flow characteristics of this rather complex ribbed bulkhead structure. 

These measurements have identified a means of obtaining a representative estimate of 

wavenumber for structures of this type which ties in well with earlier theoretical work. 

They also served to quantify the global stiffening effects of the ribs. which provided 

a measure of the effective stiffness of the structure for use in the structural intensity 

calculation. It will be shown later that this wavenumber information will also be 

useful in the development of an energy flow model of the structure. 

It is clear from the quality of the structural intensity measurements that they are 

subject to some degree of uncertainty. This uncertainty is mainly due to: 

a) the assumption of pure flexural motion at the point of measurement. 

b) neglect of near-field effects. 

c) likely variations in the effective stiffness of the structure. 

These measurements do however. reflect the general level of energy flow around the 
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structure and although their absolute values may be subject to error, they are very 

useful in building up comparative observations concerning energy flow. These 

comparisons were able to identify an initial concentration of energy close to the source 

which spreads out more evenly as the energy flows towards the sink. 

It should be remembered that the observations extracted from these results are subject 

to interpretation and cannot be considered as entirely conclusive. In attempting to 

clarify some of the uncertainties identified in the course of this work, it would be 

useful to apply these experimental techniques to a more uniform ribbed structure, 

where the effects of near-field contributions and variations in structural stiffness could 

be more easily assessed. Once the effects of these features are better understood 

attention could perhaps be turned to the study of the attenuating effects perpendicular 

to the ribs. This feature could not be included in this work due to the insensitivity of 

the measurement techniques. 

7.7 Summary 

This chapter described an experimental study to assess the way in which vibrational 

energy is transmitted around a ribbed bulkhead structure. The main points arising 

from this work are as follows: 

1. The results of an experimental modal analysis showed that the behaviour of the 

structure could be approximated to that of an orthotropic plate in flexure. This 

approximation meant that existing measurement techniques could be used to 

make measurements of flexural wavenumber and structural intensity over the 

surface of the bulkhead plate. 

2. A three-accelerometer technique was able to provide wavenumber 

measurements which agreed well with earlier theoretical work. They were also 

able to quantify the orthotropic wave transmission properties of the bulkhead 

and provide effective stiffness values for use in the structural intensity 

calculation. 
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3. The results of structural intensity measurements made over the surface of the 

bulkhead plate were subject to a significant amount of scatter due to the 

assumption of pure flexural motion and the neglect of near-field effects. 

Despite this scatter, it was possible to estimate the general level of energy flow 

at points in the structure which was used on a comparative basis to establish 

the general pattern of energy flow. 
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Fig.7.2.1 Front view of the bulkhead structure showing the location of the 
shaker and machinery mounting platform 
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Fig.7.2.2 Rear view of the bulkhead structure showing the rib pattern 
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149 

e 
~ -



Fig.7.2.4 The shaker mounting arrangement 
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Fig.7.2.5 Shaker mounting block assembly 
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Chapter 8 

Energy flow modelling of a ribbed bulkhead 

structure 

8.1 Introduction 

This chapter describes the development of finite element energy flow models which 

are representative of the bulkhead structure described in Chapter 7. The initial aim 

of this is to develop a model to provide energy flow predictions which can be 

compared with the structural intensity measurements reported in Chapter 7. This is 

followed by further development of the model in an attempt to show how one might 

create a model suitable for higher frequency analysis, where the blocking effects of 

the ribs become more important 

The experimental work described in the previous chapter shows that the behaviour of 

the bulkhead can be approximated to that of an orthotropic plate in flexure. This 

assumption is carried through into this modelling work so that the plate formulations 

developed by Bouthier (1992) can be used to create the energy flow models. 

8.2 Modelling at low frequencies 

The aim of this first modelling exercise is to investigate the ability of the finite 

element implementation of the energy flow approach to create a representative two

dimensional model of the bulkhead structure described in Chapter 7. The quality of 

this model will be assessed by comparing its results with the structural intensity 

measurements made over the surface of the bulkhead plate. Limitations of the 

experimental techniques used to obtain these measurements meant that reliable results 

could only be obtained over a 0-1250 Hz frequency range. The properties of this 

initial model will therefore be chosen in accordance with experimental observations 

which are appropriate to this frequency range. 
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In creating a representative energy flow model of a complex structure it is important 

to identify the features of the structure which have the greatest influence on the energy 

flow in the frequency range of interest In the case of this bulkhead structure, the 

wavenumber measurements indicate that below 2.5 kHz the bulkhead exhibits 

orthotropic wave transmission characteristics due to the global stiffening effects of the 

reinforcing ribs. This is an important feature of the structure at these lower 

frequencies and will be included in the energy flow model. 

A second important feature which must be considered is the possible effects that the 

ribs may have in blocking the transmission of wave energy in the horizontal direction. 

Some judgement as to the importance of this effect can be obtained by considering the 

wavenumber characteristics of the structure reported in the previous chapter. These 

show that the motion of the structure in the horizontal direction has similar 

characteristics to that of the bulkhead plate in isolation from the ribs. Using this 

result it can be shown that the wavelength of flexural motion in a plate of this 

thickness, at a frequency of 1000 Hz, is more than twice the distance of the rib 

spacing. In general, one would expect that localised blocking effects caused by 

discontinuities like the ribs, wou.Id be significant only when the wavelength of the 

motion is much less than the distance between them. In the case of this structure, the 

experimental evidence suggests that this condition will only occur at frequencies much 

higher than 1000 Hz. For this reason, no attempt will be made to include any 

localised modelling features to represent the ribs in this lower frequency model. 

8.2.1 The orthotropic plate model 

The ABAQUS™ finite element model used to represent the bulkhead at lower 

frequencies is shown in Fig.8.2.1. The model takes the form of a plate consisting of 

a block of 14 x 28 four-noded, two-dimensional thermal finite elements. 

To account for the difference in the transmission properties in the two directions, the 

"conductive" properties of the finite elements must be orthotropic. In accordance with 
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the analogy presented in Chapter 6 the conductive parameter is given by: 

(S.3.1) 

This expression requires a value for the group velocity of waves travelling through the 

structure. which can be obtained given knowledge of its wavenumber characteristics. 

For flexural wave motion in a plate. the relationship between wavenumber and group 

velocity is: 

2m c =_ 
g k 

(S.2.2) 

The wavenumber measurements described in the previous chapter provide 

representative estimates of the wavenumber characteristics of the bulkhead structure 

in both the vertical and horizontal directions. These values can be used to calculate 

the cOITesponding values of c, from the equation above. In the case of this bulkhead 

model. the difference in the wavenumber characteristics in the two directions results 

in a conductivity value in the vertical direction which is about ten times greater than 

that· in the horizontal direction. 

Power input to the model is prescribed by a thermal flux value (in watts) applied at 

the node which corresponds to the shaker attachment position. This value was 

obtained using the force and acceleration measurements made at the shaker push rod. 

Energy dissipation due to damping is modelled using convective heat loss from the 

finite elements. The dissipative properties of the elements can be calculated using 

equation (6.2.6). A damping loss factor of 0.01 was chosen as being representative 

of the plate material. Additional damping is included for those elements which are 

assumed to be immersed in the sand. This is achieved by increasing their loss factor 

to a value of 0.2. 

The boundary conditions around the edges of the plate are shown in Fig.S.2.1. In 

general. the power flux values nonnal to the edges of the plate are zero. An 
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additional boundary condition is applied at nodes along the lower edge of the model 

to ensure that the energy level at the extremity of the sink is also zero. 

8.2.2 Results and discussion 

Comparisons between model predictions and the measured structural intensity results 

will be made at four frequencies (340 Hz, 580 Hz, 780 Hz and 930 Hz), over the 

measurement range. These frequencies were chosen because they correspond to peaks 

in the structural intensity spectra and generally avoid regions of poor data acquisition. 

Using these frequency values it was possible to obtain a value for structural intensity 

at the majority of the measurement locations across the bulkhead plate. 

Measured structural intensity values are compared with model predictions in Figs.8.2.2 

to 8.2.9. These comparisons are made along lines AA. BB and CC marked on the 

model shown in Fig.8.2.1. These lines incorporate the majority of the points where 

structural intensity measurements were obtained over the surface of the bulkhead plate, 

see Fig.7.S.I. 

The model predictions for the energy flow in the vertical direction show similar 

characteristics at each of the four frequencies studied. see Figs.8.2.2 to 8.2.5. Along 

AA the predicted power is significantly higher in the region of the source than across 

the remainder of the plate. Further down the structure. along BB and ce. the energy 

becomes more evenly distributed across the plate and the power profile is almost flat. 

These figures also show the measured power levels at the appropriate points on the 

structure. obtained by the structural intensity technique. There is a significant amount 

of scatter associated with these measured results due to the approximate nature of the 

measurement approach. It can be seen however, that model predictions are generally 

representative of the level of energy flow obtained by measurement. 

Similar comparisons for the levels of energy flow in the horizontal direction are 

shown in Figs.8.2.6 to 8.2.9. Along lines AA and BB the predicted power levels in 

the horizontal direction are generally higher than those obtained by measurement. 

Further down the structure the predictions along line ec are in much better agreement 
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with the measured results. 

Now that the measured results have been shown for a single frequency value at 

neighbouring points in the structure. the degree of measurement scatter becomes more 

evident The major source of this scatter is linked to the use of the two-accelerometer 

structural intensity technique on a structure of this complexity. The formulation 

behind this technique is only strictly valid if measurements are made on a plate 

experiencing pure flexural motion. It must also be assumed that near-field effects can 

be safely neglected in the region of the measurement Because of the complexity of 

the structure is difficult to determine how well these assumptions are satisfied. The 

use of this measurement technique can however. be justified because more exact 

methods for the treatment of complicated structures do not yet exist. It should also 

be noted that before the two-accelerometer approach was employed, considerable 

effort was invested in establishing the general characteristics of the structure through 

modal analysis and the use of wavenumber measurement As a result of these 

investigations, it was evident that the behaviour of the bulkhead structure could be 

approximated to that of an orthotropic plate and the use of plate fonnulations 

represents a good engineering solution to this problem. 

A second area of uncertainty was highlighted while making a comparison between 

power input and structural intensity measurements. This comparison identified the 

problem of choosing a representative value for the effective stiffness of the structure 

at the point of measurement Wavenumber measurements suggest that the 

characteristics of the structure may vary over the surface of the plate. This is not 

surprising when one considers the possible effects of the machinery mounting platfonn 

which were not included in this study. 

Having accepted that there is some degree of uncertainty in the measured data, there 

are also a number of other factors which may lead to the differences between the 

measured and predicted results. The fIrSt of these is linked to the localised 

concentration of vertical energy flow detected by the measurements in the region of 

the shaker. It is clear from the vertical energy flow profiles shown in Figs.8.2.2 to 
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8.2.5, that the measured power levels directly below the shaker are generally higher 

than those predicted by the energy flow model. It is also evident that the model tends 

to over-estimate the horizontal flow of energy along lines AA and BB. These 

observations suggest that the model could be made more representative of the real 

structure if its properties were modified to encourage more energy to flow vertically 

downwards in the region of the energy source, so that less energy is allowed to flow 

across the upper part of the plate. This would certainly be more in keeping with the 

experimental observations reported earlier. 

Further differences between measured and predicted results could stem from the fact 

that the power input value used in the model was measured at the shaker push rod. 

In doing this it is assumed that all the power fed into the structure by the shaker 

contributes to the flexural wave energy of the bulkhead plate. In reality however, 

some of this energy must be imparted to the panels on the top and at the sides of the 

plate which are not included in the energy flow model. It is also likely that some of 

this energy will be carried in other forms, ego longitudinal and torsional wave motion, 

as a result of conversion at discontinuities. 

Despite the limitations of the measurement technique and some areas where the details 

of the real structure have not been included in the model, the energy flow model has 

provided predictions which are generally comparable with the measured results. The 

general conclusion at this stage therefore. is that the idea of approximating the 

bulkhead to an orthotropic plate represents a reasonable engineering solution to the 

problem. In order to obtain this solution it is important to provide the model with 

representative values for the modelling parameters and ensure that the level of 

approximation involved in developing the model is well understood. 

8.3 Modelling at higher frequencies 

In the lower frequency model, aimed at the 0-1250 Hz frequency range, no attempt 

was made to account for the presence of the stiffening ribs explicitly. although their 

global effects naturally influenced the estimation of suitable conductivity values. At 

higher frequencies, where the wavelength of the motion is smaller, blocking mass 

170 



effects of the ribs may be expected to become more significant and perhaps to exert 

important local influences on the energy flow paths within the bulkhead structure. It 

is therefore appropriate to attempt to incorporate the blocking mass effect of the ribs 

into the energy flow model to more accurately represent the behaviour of the real 

structure at higher frequencies. 

To include these effects in the model, it is necessary to develop a two-dimensional 

equivalent to the joint element introduced in Chapter 6. This is an important step in 

the development of the general modelling approach because it extends its applicability 

to include partial transmission across various types of joints in two-dimensional 

stnlctures. 

8.3.1 The two-dimensional joint element 

A two-dimensional joint element can be developed by considering the joint between 

two plate sections shown in Fig.8.3.I. This joint takes the fonn of a strip of two

dimensional elements with conductivities Kl and K2 in each of the two major 

directions. In order to model the effect of the joint, the transmission of energy 

through this strip of elements must only talce place in the direction of K •. 

The development of a one-dimensional joint element between two similar beams using 

standard thennal finite elements was described earlier in Chapter 6. It was shown that 

the appropriate value for the conductivity of these elements is: 

(8.3.1) 

where Irl represents the length of the finite element in the direction of the energy flow. 

To create the corresponding effect in a two-dimensional sense, the conductivity Kl 

must be set to: 

K = t c, Irl 

I 2(l-t) 
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and the conductivity in the other direction, K2, must be set to zero so that the presence 

of the joint element does not affect the energy flow in this direction. 

8.3.2 The jointed plate model 

To illustrate the use of these two-dimensional joint elements and to show how one 

might include the blocking mass effects of the ribs at higher frequencies, the energy 

flow model described earlier has been modified to include two-dimensional joint 

elements at the rib positions, see Fig.8.3.2. 

It should be noted that the putpOsc of this analysis is purely illustrative and that the 

parameters used may not be entirely representative of the properties of the real 

structure at the frequencies considered. Where possible, the values of these 

parameters will be based on the findings of the experimental work described earlier. 

The remainder will be chosen arbitrarily, but sensibly, to complete the illustration. 

The analysis will be carried out at a frequency of 10 kHz. The choice of the 

conductive properties of the plate elements at this frequency is based on the 

wavenumber measurements reported in section 7.4. These show that the wavenumber 

characteristics in both the horizontal and vertical directions are comparable to those 

calculated for the bulkhead plate in isolation from the ribs. This property is used to 

provide values for group velocity and element conductivity, using equations (8.2.1) 

and (8.2.2). 

The value for transmission efficiency across the joint will be set arbitrarily to 0.5. In 

order to provide a more representative model at this frequency. further analysis would 

be required to estimate a value of 't based on the properties of the real structure. 

In the absence of a power input measurement, the power flux applied to the node 

corresponding to the shaker position is set to 1 watt. The damping parameters remain 

the same as those for the lower frequency model described earlier. 
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8.3.3 Results and discussion 

To show the effect of including these joint elements at the db locations the predictions 

. from the jointed model will be compared to those provided by a continuous plate 

model having the same parameters. 

Vertical power profiles at points along lines AA and BB, marked on the model in 

Fig.8.3.2. are shown in Fig.8.3.3. It is clear from these profiles that the restriction to 

energy flow across the ribs imposed by the joint element introduces large differences 

between the vertical energy flow levels in adjacent plate sections across AA. This 

results in a concentration of energy flow parallel to the ribs close to the energy source. 

It can also be seen that this effect was less marked at points along BB. 

These observations are complemented by the horizontal energy flow profiles shown 

in Fig.8.3.4. These show that along AA the energy flow across the jointed model is 

significantly less than that predicted for the continuous model, due to the restriction 

imposed by the joints. Along BB however, the reverse is true. This is because at this 

section in the continuous plate model. the energy is fairly evenly distributed across the 

width of the model leaving little difference to drive the flow. In the jointed model 

however, there remains a more significant energy gradient along BB to drive the flow 

across the joints. 

The investigation using this jointed model has illustrated how the blocking effects of 

the ribs at higher frequencies can be incorporated into an energy flow model. The 

results suggest that the ribs might introduce significant differences in the vertical 

energy flow down adjacent sections of the structure due to the reduction of energy 

flow in the horizontal direction. Although these results have not been confmned 

experimentally, they are nevertheless generally in accordance with intuition and 

indicate the potential for the application of the energy flow modelling approach to the 

analysis of two-dimensional jointed structures. 

It should be noted that the jointed model does not include the transmission path 

provided by the panel running along the top of the bulkhead section. When the 
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blocking effects of the ribs become significant, in reality, this panel may act as an 

alternative flow path which could feed energy across the structure without it having 

to negotiate the ribs. This effect is likely to lead to a more even distribution of energy 

flow down the structure than the jointed energy flow model predicts. 

8.4 Summary 

This chapter described the development of two-dimensional energy flow models of the 

bulkhead structure to represent its behaviour under different frequency regimes. 

Where possible the parameters used in these models were based on the findings of the 

experimental investigation described in Chapter 7. The main points arising from this 

work are as follows: 

1. From the information gained in the experimental investigation it was possible 

to calculate the necessary modelling parameters to create an energy flow model 

which is representative of the bulkhead structure at frequencies below about 

2.5 kHz. This model consisted of a block of two-dimensional plate finite 

elements having orthotropic conductive properties. Predictions obtained from 

this model were generally comparable to the levels of energy flow obtained by 

measurement. Some differences between prediction and measurement were 

identified which are thought to be linked to localised features of the real 

structure which were not included in the energy flow model. 

2. In the lower frequency model possible blocking effects which could reduce the 

flow of energy across the ribs were neglected. At higher frequencies however, 

these effects are likely to become more important and must be included in a 

representative energy flow model. To investigate this aspect, two-dimensional 

joint elements were developed and inserted into the existing model to introduce 

the effects of partial transmission across the ribs. The introduction of these 

joint elements resulted in a concentration of vertical energy flow in the 

elements close to the power source and a significant reduction of energy flow 

horizontally across the plate. 
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Chapter 9 

Concluding discussion 

9.1 Introduction 

This final chapter summarises and discusses some of the more general aspects of the 

work carried out during the course of this project The discussion also includes a 

description of some very recent research presented by other workers which provides 

further insight and possible improvement to the basic energy flow formulation. This 

is followed by some recommendations for further work which stem directly from the 

research documented here. Finally, the thesis is rounded off with some concluding 

remarks. 

9.2 The modelling approach 

The underlying objective of this work has been to develop a modelling tool which is 

capable of predicting the level of vibrational energy flow in relatively complex 

structures. It was envisaged that the primary task of this tool would be to 

quantitatively rank the ability of various paths to transmit vibrational energy through 

a structure. Such information is potentially useful during the design of a structure, or 

as a means of providing further insight into a structure's vibration transmission 

characteristics for development purposes. This task has been subject to a proviso that 

the analysis technique should be implemented at low computational cost in frequency 

ranges where traditional experimental and analytical modal analysis techniques have 

proved difficult or expensive to apply. 

In developing a tool to meet these requirements a conflict exists between the desire 

to provide an analysis for a wide variety of structures at low cost and the need to 

ensure that the model is sufficiently representative of realistic structures for practical 

purposes. In this situation an increase in generality inevitably leads to higher levels 
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of approximation. 

The philosophy behind the development of the modelling technique has been to 

maintain its generality by keeping the detailed characteristics of the structure outside 

the realms of the' energy flow analysis. To achieve this, the properties of the energy 

flow model are entirely described by four general modelling parameters, namely power 

input, damping. group velocity and transmission efficiency, which are chosen in 

accordance with a detailed analysis of the individual components making up the 

structure. For example. the transmission characteristics of a joint are described only 

by a value for its transmission efficiency which defines the ratio of transmitted to 

incident wave power at the joint This can be obtained from a detailed local analysis 

of the joint characteristics which is entirely separate from the energy flow model. The 

function of the energy flow model therefore, is to provide a framework within which 

all this localised information can be assembled to form a global description of the 

energy flow characteristics of the entire structure. This generalised type of approach 

is not dissimilar to that used in SEA. 

Within this work, the field of application of the energy flow analysis has been greatly 

increased through the use of a finite element scheme. which allows the assembly of 

a number of beam. plate and joint elements to form a wide variety of structural 

configurations. For the models developed here, the analysis was carried out by 

adapting an existing finite element package. This approach was favoured because it 

eliminated the need to develop a dedicated computational framework within which to 

test the general modelling approach. It also meant that models could be created using 

software which is already accepted by and widely available to the engineering 

community. 

In order to provide a tool for high frequency analysis at low computational cost it was 

necessary to employ an approach which describes the dynamics of the structure in a 

simplified manner. This is achieved by describing the energy flow within a structural 

component on a space- and time-averaged basis. neglecting near-field effects. As a 

result of these simplifications, the model is unable to provide a detailed description 
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of the energy distribution within a structure. but can provide a good indication of the 

general pattern and level of energy flow through it This feature was particularly well 

illustrated using the multiple transmission path structure described in Chapter 6. 

The computational efficiency of the approach stems from the second-order differential 

fonn of the simplified equations which have been used to describe the energy flow. 

In contrast to traditional modal solutions which take the fonn of a summation of 

frequency dependent modal contributions. the differential form of the energy flow 

expression is dependent on a single frequency term. If the behaviour of the structure 

at a particular frequency is required. the analysis incurs the same level of 

computational effort as that associated with "static" analysis. rather than that normally 

required for traditional "dynamic" techniques. 

An important issue connected with the use of the energy flow approach is its range 

of application with respect to frequency. SEA has traditionally been limited to usc at 

very high frequencies due to the difficulty in satisfying its rather rigorous assumptions 

in the lower frequency range. On the other hand traditional PEA, like all modal 

analysis techniques, is limited to the lower frequency range because of the need to 

model the structure using a fine mesh if many modes are involved. Although 

approximate. the energy flow approach is able to predict the general level of energy 

flow within a structure at low frequencies and, at higher frequencies the complexity 

of the calculation does not increase. This type of analysis therefore. has the potential 

to bridge the frequency gap between the more traditional analysis techniques. 

In any modelling exercise the key to creating a realistic model of a structure is to 

provide representative values of the modelling parameters. This has been of primary 

concern throughout the course of this project and. where possible, a large proportion 

of these parameters have been obtained by experimental measurement. Within the 

SEA environment this part of the procedure is often considered the most difficult, 

mainly because the analysis is aimed at high frequencies where the measurement of 

the modelling parameters becomes difficult The same difficulties also apply in the 

case of the energy flow approach, although during this project the task of parameter 
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estimation was made easier because the analyses were carried out over relatively low 

frequency ranges where reliable measurement techniques do exist. 

At the outset of this project very little information existed concerning the quality of 

the predictions which could be obtained using the energy flow approach, particularly 

in relation to its application to real structures. Some example analyses did exist, but 

were provided only for very high frequency cases, where the approximations made in 

developing the approach have least impact on the quality of the results. During the 

course of this project it has been shown that the predictions obtained using the energy 

flow approach at lower frequencies are of a similar quality to those normally 

associated with SEA. It must be remembered however, that these predictions have 

been obtained at frequencies where SEA is considered very difficult to apply. 

There are also some other features of this approach which can be considered as 

advantages over SEA. One of these is the way in which the model takes a form 

which is physically representative of the real structure, rather than an abstract 

assembly of sub-systems as used in SEA. This avoids the task of breaking down the 

structure into appropriate sub-systems which would be very difficult, for example in 

the case of the bulkhead structure studied here. Another feature of the approach is 

that it allows localised variation of the modelling parameters, like damping and power 

input, which cannot be accommodated in SEA. 

9.3 Experimental work 

Much of the experimental work undertaken during the course of this project was 

aimed at obtaining measurements of energy flow in real structures for validation of 

model results. This involved the use of existing frequency domain structural intensity 

approaches and the results of these measurements have been well documented in 

previous chapters. 

Other phases of experimental work were carried out to obtain representative values for 

the parameters required by the model (eg. power input, damping, transmission 

efficiency and group velocity). During the course of these measurements two 
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techniques were used very effectively to provide an assessment of the wave 

transmission characteristics of real structures which might not have been so readily 

available through calculation. 

In Chapter 5 the wave decomposition technique proposed by David-Taylor (1990) 

proved very successful in separating the leftward- and rightward-travelling flexural 

wave amplitudes in a beam. This enabled the effective transmission efficiency 

characteristic of a flanged joint to be obtained in a way which also took downstream 

effects into account Following this work it was noted that with some adaptation the 

approach is also applicable to the analysis of longitudinal wave motion. This 

observation creates a potential for the application of this technique to the analysis of 

angled and branched one-dimensional structures which is an area where experimental 

evidence would be useful to validate a number of existing analytical solutions. 

An example of a novel application of an existing technique appeared in Chapter 7. 

Here a wavenumber measurement technique originally proposed for simple plate 

sttuctures was applied to the analysis of a section of ribbed bulkhead. These 

measurements were very effective in determining the directionality of the wave 

transmission characteristics of this rather complex structure and provided an indication 

of how these characteristics vary with frequency. This exercise showed that 

techniques developed for simple structures can be applied in more complicated 

situations providing the nature and level of the approximations involved are well 

understood. In many cases this type of approach is useful because more exact 

methods for the treatment of complicated structures do not yet exist. 

9.4 Recent literature 

The possibility of developing an approximate energy flow approach to bridge the gap 

between SEA and traditional FEA has attracted increasing attention over recent years. 

During the course of this project there has been a significant amount of new work 

carried out by other researchers in this area, much of which has already been 

summarised in Chapter 2. 
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Very recently however, two very important pieces of work have emerged which merit 

discussion before completion of this thesis. This is because they provide further 

insight into the interpretation of previous work and may also ha~e a significant impact 

on the future development of techniques of this type. 

Langley 

The first piece of work is by Langley (1993), who has camed out an in-depth 

investigation into the fundamental validity and accuracy of the energy flow 

formulation for two-dimensional structures. Langley began his investigation by 

deriving the energy flow equation for a plate structure based on the assumption that 

its response can be described by a linear superposition of plane wave components. 

This represents a generalised fonn of the analysis presented by Bouthier (1992). 

outlined in section 3.5 of this thesis. 

Having obtained the general solutions to this equation he showed that the energy flow 

approach does not properly describe the way in which vibrational energy flows 

through a plate. In particular, he highlighted the case of a damped point-excited plate 

where the energy flow solution predicts that far-field vibrational energy decays in 

proportion to l/(r)lll. where r is the radial distance from the point of excitation. This 

characteristic is in contradiction to the response profile given by an exact solution in 

which the energy level decays in proportion to l/r. As a reSUlt, the energy flow 

approach under-predicts the decay of vibrational energy away from the power input 

and can severely over-predict the level of energy density in the vicinity of the plate 

boundaries. It was pointed out that the latter could have a serious effect when 

modelling connected structures. 

The effects of this were illustrated using an example based on a simply supported 

plate model with a damping factor of 0.3. Under these conditions there was clearly 

a significant difference between the energy density profiles provided by the energy 

flow analysis and those obtained by an exact modal calculation. It should be noted 

however, that such differences become less apparent in models possessing a much 

lower level of damping, which is more representative of that found in engineering 
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structures. Under these conditions there is very little appreciable decay in the 

response across the plate and the prediction provided by the energy flow approach 

represents a good average level of this response which is almost flat in nature. 

Langley concluded that the response predictions provided by the energy flow approach 

do give a good estimate of the average energy density in the structure which, under 

certain conditions, may be in good agreement with exact results. The approach 

however, may not be robust under all conditions and some doubt must exist as to its 

general applicability to two-dimensional cases. 

There is no doubt that this work raises important questions regarding the validity and 

applicability of the two-dimensional energy flow modelling expressions developed by 

Bouthier (1992). In particular, it shows that the problem stems from the use of the 

plane wave description of motion for a plate as the starting point of the analysis. The 

impact of the shortcomings identified by Langley will be dependent on the nature of 

the study being undertaken. Certainly, there is some doubt as to the accuracy of the 

approach when applied to the analysis of single well damped plate Structures. As part 

of a global model however, with relatively low levels of damping these problems may 

not have such a dramatic effect, particularly when One considers the approximate 

nature of the overall approach. 

For engineering purposes the suitability of the energy flow approach will be dependent 

on the type of information required from the model and the problem being considered. 

In the case of the modelling tool developed here, the use of the two-dimensional 

analysis devel~ped by Bouthier (1992) could be considered as less than ideal because 

it does not properly deal with the "exact" form of the energy expressions governing 

plate structures. Alternatively the approach could be judged as adequate because of 

its ability to make predictions of the general level of energy flow in realistic Structures 

with an accuracy that matches that of current measurement techniques. 
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Carcaterra and Sestieri 

The second of these very recent studies was presented by Carcaterra and Sestieri 

(1993). In the quest for an approach to bridge the gap between SEA and FEA, they 

developed the theoretical basis for an approach which provides a space-averaged 

indication of the energy level along beam structures. The energy profile in this case 

is obtained through a quantity tenned the "envelope energy". 

This envelope energy is obtained using a smoothing function which incorporates the 

Hilbert transform. When this smoothing or "envelope" function is applied to the exact 

energy expressions describing flexure in a beam it provides a space-averaged trend of 

the energy level profile along it, similar in principle to that provided by the energy 

flow solution developed by Wohlever (1988). The important difference between this 

and Wohlever's approach however, is that Carcaterra and Sestieri were able to 

incorporate near-field terms within their energy flow solution. 

The added complexity of retaining these near-field components in the envelope energy 

approach results in a fourth-order expression rather than the second-order relationship 

which forms the basis of the energy flow approach. This leads to some increase in 

mathematical complexity, although this is offset by improvements in the accuracy of 

the results close to discontinuities. An important feature of this envelope energy 

approach is that, like the energy flow approach, the dimension of the numerical 

problem is independent of frequency. The computational costs involved are therefore 

once again comparable with the "static" rather than the "dynamic" problem. 

The characteristics of this novel approach were demonstrated by comparing energy 

level predictions along the length of simple beam models with those obtained using 

an "exact" modal solution and those provided by the energy flow approach. In regions 

away from discontinuities, the energy flow approach and the envelope energy 

approach provided identical results. Close to discontinuities however, the envelope 

energy solution gave a much better indication of the exact energy profile because it 

includes the near-field part of the exact solution. 
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There is little doubt that the envelope energy approach does provide a better indication 

of the level of vibrational energy along simple beam structures when compared to 

those obtained using the energy flow approach. This advantage is however, offset to 

some extent by an increase in mathematical complexity of the solution. Further 

potential advantages of this approach may become evident in the analysis of built up 

structures, where an improved estimate of the level of energy close to a joint will be 

of obvious benefit This aspect. together with the application of the approach to plate 

structures, are current areas of research. 

9.5 Furtber study 

The use of approximate energy flow approaches to model discrete structural elements 

is still in a relatively early stage of development Following its original proposal by 

Nefske and Sung over six years ago, there has been a rapid increase of interest in 

developing techniques of this type. 

In the past three years research in this area has begun to move down a number of 

paths. Some studies, including this one, have concentrated on the application of the 

energy flow approach to provide a practical engineering tool. Others have taken a 

step back from these original formulations and considered the theoretical basis on 

which the approach is based. In some cases this has resulted in the proposal of 

improved approaches which are "less approximate" in nature. At this point in time 

it would be useful to make a careful assessment of the relative merits of various 

branches of the approach. In doing this one must not lose sight of the quest for a 

global modelling technique able to cope with one- and two-dimensional elements in 

a three-dimensional configuration. To achieve this it is inevitable that some degree 

of approximation will be necessary. An important aspect of future work should be an 

assessment of the level of approximation which can be tolerated from a practical point 

of view. 

At present there is very little work linking the application of approximate energy flow 

analysis to other more established approaches like SEA and FEA. In future studies 

it will be important to include this type of comparison if the approach is to be shown 
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to be effective in bridging the gap between these more widely used techniques. It is 

also becoming apparent that examples of the application of the approach are not being 

provided in such a way that they can be compared with the results of alternative 

techniques. To do this one needs to adopt a non-dimensional frequency scale so that 

terms like "low, medium and high frequencies" become less ambiguous and 

comparisons can be made on a common basis. For this purpose a quantity like the 

"modal overlap factor" used widely in SEA would seem appropriate. 

One of the major difficulties in developing a modelling approach is to decide on what 

basis one should judge its results. In the work carried out here, energy flow 

measurements obtained from real structures have been used successfully in lower 

frequency regions to provide a benchmark for comparison with model predictions. 

Having identified this energy flow modelling approach as one which is also very 

effective at higher frequencies, there is a need to establish measurement techniques 

which are better suited to the higher frequency ranges. The development of such 

techniques may be assisted by the increase in the use of laser-based measurement 

which promises better data acquisition capabilities. 

An interesting area of study which stems directly from experimental work carried out 

here is the application of wave decomposition techniques to the analysis of jointed and 

branched framework structures. This would provide much needed validation of 

existing analytical models and supply a useful library of data for use with future 

energy flow modelling and SEA. 

Finally, having studied energy flow in the ribbed bulkhead structure it is evident that 

there is a potential to obtain a considerable amount of insight into the characteristics 

of structures of this type through experimentation. A useful step in the further 

development of these experimental techniques would be to use a less complicated 

structure consisting of a section of plate reinforced in only one direction. This should 

allow clarification of some of the uncertainties which exist concerning the measured 

results presented within this work, which could be linked to localised features of the 

structure like the machinery mounting platform. Having established a firm basis for 
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these measurement approaches under controlled conditions, one would be in a good 

position to extend this work to the analysis of realistic engineering structures 

containing localised features which have the potential to disturb the pattern of energy 

flow. 

9.6 Concluding remarks 

This work set out to develop a general purpose analytical tool based on a simplified 

energy flow approach introduced originally by Nefske and Sung (1987). Considerable 

progress has been achieved during the period of this study and, although further 

research is still required, this work provides the framework for this modelling tool 

using an existing finite element technique. 

A summary of the most important aspects of this work is as follows: 

1. It provides a realistic assessment of the ability of the energy flow approach to 

predict the level of vibrational energy in a structural component under various 

conditions of damping and frequency. 

2. It provides a significant contribution to current knowledge relating to the use 

of the simplified energy flow approach in relation to its ability to provide 

representative models of real structures, particularly in the area of parameter 

estimation. 

3. It describes a technique which allows commercially available software to be 

used to implement the energy flow approach using finite elements. 

4. It introduces the ''joint finite element" for use with this approach which allows 

the partial reflection characteristics at structural connections to be represented 

within the energy flow model. 

5. It illustrates the ability of the approach to provide an effective transmission 

path ranking tool for the analysis of multiple transmission path structures. 
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6. It describes the use of existing experimental techniques to estimate the 

wavenumber and energy flow characteristics of a marine bulkhead structure. 

This represents a good solution to the type of problem encountered in the real 

engineering environment. 

In general, the approach developed here satisfies the requirements for the transmission 

path ranking tool laid down in Chapter 1. It provides a cost effective method for 

globally estimating the level of vibrational energy flow in a variety of structures which 

is not limited by frequency. 

In order to carry out the analysis at low computational cost it was necessary to employ 

an energy flow formulation which describes the vibrational characteristics of the 

structure in a simplified manner. This means that the model is unable to provide a 

detailed description of response, but can provide a good estimate of the general pattern 

and level of energy flow within individual or assembled components. 

The field of application of this modelling approach can be greatly increased through 

implementation by a finite element method. During the course of this work the use 

of existing finite element software has resulted in an enormous saving in the time 

required to develop a global modelling scheme. At the same time however, this has 

presented a problem in that only one primary variable is available for modelling 

purposes. This feature imposes constraints on the way in which the approach can be 

adapted to model some of the more complex wave transmission characteristics like the 

simultaneous transmission of two wave types. This problem was overcome to some 

extent for the case of straight beam assemblies, but will inevitably become an area of 

increasing difficulty when modelling general stmctures. In the light of these findings 

the development of a dedicated computational framework within which the different 

wave energy quantities can be represented independently is considered to be a 

worthwhile investment in order to increase the versatility of the approach for future 

development purposes. 
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In recent months some interesting work by Langley (1993) has identified shortcomings 

in the way in which the approach models energy flow in two-dimensional components. 

The impact of these shortcomings is likely to be dependent on the nature of the study 

being undertaken and the type of infonnation required from the model. In order to 

realistically assess how these findings might affect future two-dimensional modelling 

using the energy flow approach further research is required to identify conditions 

under which the model provides an adequate representation of the energy flow 

characteristics of two-dimensional components when they fonn part of a complex 

structural assembly. 

Although the concept of a global modelling scheme based on an approximate energy 

flow approach is still relatively new. there are already some good examples of the 

application of such techniques including those reported here. During the course of this 

work improvements to the fonnulations which form the basis of the analysis have 

been proposed elsewhere. These improved formulations provide a better indication 

of the variation of vibrational energy within individual components but it is still not 

known how well such approaches will lend themselves to the development of global 

modelling schemes. 

In its current form, the modelling scheme described here might be considered as less 

than ideal because it is based on a simplified analysis which does not deal "properly" 

with near-field effects. It has also become evident that the use of existing foote 

element software may limit the versatility of the approach when dealing with the 

simultaneous transmission of more than one wave type. An alternative viewpoint is 

to judge the approach on its ability to make useful predictions for realistic structures 

with an accuracy which matches that of available measurement techniques. On this 

basis the work presented here shows considerable promise and it is believed that with 

some further detailed development the method has potential as a future engineering 

tool. It is also believed that continued work in this direction should lead to an 

optimised form of the energy flow approach which will be able to bridge the gap 

between SEA and traditional FEA. 
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Appendix A 

Modal response solution for a simply supported beam 

The general equation of motion governing the forced vibration of a uniform beam, 

neglecting the effects of shear and rotary inertia, is: 

where, 

p = mass density 

S = cross-sectional area 

E = Young's modulus 

I = second moment of area 

The forcing term F(x,t) can be expressed in the form: 

F(x,t) = p(x)!(t) 

(At) 

(A2) 

and for a continuous system, the displacement response w(x,t) can be expressed as: 

(A3) 
r 

where ,Ix) is a mode shape function of the ~ mode for a uniform beam, of the 

general form: 

4»r(x) = C1 sin ArX + C2 COSArX 
(A4) 

+ Cl sinh ArX + C. cosh ArX 

208 



and 

The coefficients CI' C'l. C3 and C. are dependent on boundary conditions. 

Substituting equations (A2) and (A3) into (AI) and carrying out the differentiation 

gives: 

(AS) 

• p(x)f(t) 

Pre-multiplying (A4) by another mode shape function ',x) and integrating over the 

length of the beam gives: 

(A6) 
L 

" f(t) f ',(x) p(x) dx 
o 

where L is the length of the beam. 

It can be shown that mode shape functions are orthogonal. which means that: 

L 

f '.r(x) ,,(x) dx = 0 for r ¢ s (A7) 
o 

It can also be shown that: 

(A8) 
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Substituting these relationships into (A6) gives: 

(A9) 
L 

= f(t) f ,,(x) p (x) dx 
o 

Damping can be introduced into the beam model by replacing E by the complex 

modulus E(1 +;11), where 11 is the hysteretic damping factor. 

For free vibration, the forcing tenn is zero and it can be shown that: 

'i,(t) = - CJ)~ q(t) (A 10) 

Applying the free vibration condition to one term of the summation (A9) and 

including the damping term gives: 

L L 

- CJ)~pS f'~(X)dX + E(I +i11)/A: f'~dx = 0 (All) 
o 0 

or, 

L 

EIA: f'~(X)dX = 
o 

2 L 

CO,. P S f'~(X) dx 
(1+111) 0 

(A 12) 
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Substituting (A12) into (A9) gives: 

~s f 4>~(X) d_},(/) + (1 ~~TJ) ~ S f '~dX) q,(/) 

(AI3) 
L 

= f(t) f,,(X)P(X)dX 
o 

Rearranging gives: 

L 

0)2 

ii,(r) + (I + ~11) q,(t) 

f ',(x)p(x)dx 
= _o----:~ __ 

L 

pS f'~(X)dX 
f(t) (AI4) 

o 

or 

0)2 

ii,(t) + (I + ~11) q,(t) = P, f(t) (AI5) 

For single frequency sinusoidal excitation: 

j(t) = eictll (AI6) 

and q,(t) will be of the fonn: 

q,(t) = Q,. ei
.' (AI7) 

where Q., is complex due to the presence of damping. 

Using the (A16) and (AI7), (AIS) becomes: 

2 

- ro2 Q. + ro, Q,. = 
, (1 + i11) P, 

(AIS) 

21~ 



which on rearrangement becomes: 

(A19) 

or 

Q; = P z· r r (A20) 

where 

(A2l) 

Equations (A14) and (AtS) define Pr as: 

L 

f 4»r(x)p(x)dx 

Pr = _0 __ :-----
L 

(A22) 

pS f 4»~(x)dx 
o 

For a simply supported beam: 

+,(x) - sin (r~x ) (A23) 

which means that: 

for all r (A24) 

For point excitation of magnitude F applied at coordinate x = a: 

L 

f 4»r(x) p(x) dx = 4» (0) F (A25) 
o 

212 



Substituting (A24) and (A25) into (A22) gives: 

2 ',(a) F p = 
, pSL 

Thus, combining (A 17), (A20) and (A26) gives: 

(I) = 2 ',(a) F Z· eiOll 

q, p SL ' 

which. when substituted into (A3) gives: 

w(x,r) :: (~ E ,,(x) ',(a) Z; ) eiml 

pSL , 

For the sinusoidal quantity above, the rms value of displacement is given by: 

W(X)nns = 1 2F E ',(a),,(x)Z: 
.fi pSL , 

where ,,(x) and Z', are given by equations (A23) and (A21) respectively. 

213 

(A26) 

(A27) 

(A28) 

(A29) 



Appendix B 

Energy now solution for a connected beam model 

The aim of this analysis is to provide an energy flow solution to describe the 

transmission of vibrational energy through a structure consisting of two beams 

connected by a joint having a transmission efficiency t. The form of the energy flow 

model representing this structure is shown in Fig.B 1. 

It was shown in Chapter 4 that the general solution for the energy density profile 

along each beam is given by: 

e = A,.. cosh(a",) + B". sinh(a",t) (BI) 

where 

a - COTl". ,.. --
2c"". 

(B2) 

Here m = 1, 2 and refers to beams 1 and 2 respectively. 

The boundary conditions in this problem relate to the power flux. q. at the ends of 

each beam, given by: 

1 4c,,,. de 
q=---

T'I".OO dx 
(B3) 
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Combining equations (81) and (83) and applying the boundary conditions shown in 

Fig.8 I, results in the following relationships: 

For beam I, the condition that q = PiS, at x = - L, gives: 

(84) 

and if q = ql at x = 0: 

(8S) 

Similarly for section 2, q = q2 at x = 0 gives: 

(86) 

and if q = 0 at x = L2: 

(B7) 

The remaining boundary conditions are related to the ttansmission characteristics of 

the connection. In this analysis the boundary condition will be expressed so that 

either the Nefske and Sung expression (5.2.6), or the improved relationship (5.2.19), 

can be included in the model by using the appropriate substitution for f. Noting that 

for flexural motion in a beam c, = 2cb2, the power flux leaving beam 1 is: 

p.. { ch " S } q=~=r c e- #0 2e 
I S hi I S 2 

I I 

(88) 
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and similarly, the flux entering beam 2 is given by: 

p. . { Cb IS} q =~=r le-c 
Z S Sib z ez 

z z 

where 

r=2t 

when implementing the Nefske and Sung boundary condition (5.2.6), or 

r=~ 
(l-t) 

when implementing the improved boundary condition (5.2.19). 

Using (88) and (B9) at x = 0 gives: 

and 
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(BIO) 

(Btl) 

(B12) 

(BI3) 



Assembling equations (B4) , (B5), (B6), (87), (B12) and (B13) to fonn a matrix 

equation gives: 

Al Pj11.Cl) 

BI 4c; lalSI 

Al 0 
(B14) 

[M] = 0 
Bl 

0 
ql 

0 
q'l 0 

where [M] is a 6 x 6 matrix of the fonn: 

sinh( -aILI) cosh( -aILI) 0 0 0 0 

0 
4c: la l 0 0 1 0 

11 1Cl) 

0 0 0 
4c:2~ 

0 1 
111Cl) 

0 0 sinh(¥2) cosh(¥2) 0 0 

- relt I 0 
rCb~2 0 1 0 

SI 

relt lSI 
0 reb 2 0 0 1 

S2 

Solving this matrix equation provides values for the unknown parameters AI' BI , A2 

and 8 2, Substituting these values into equation (81) provides the energy density 

profiles along each beam in the structure. 
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Combining equations (B 1) and (B3) and noting that the vibrational power at any point 

in the structure is given by: 

(BIS) 

gives: 

4c7,~ a 
p(x) = - ~"'; '" { A", sinh(a.,x) + B", cosh(a",t) } (816) 

which on substitution of AI' B •• A7, and B7,. provides power profiles along each beam 

in the structure. 
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q=q q=q 
1 2 

q=O 
• ---- - -

Beam 1 Beam 2 
x=o 

Fig.B 1 Connected beam energy flow model 
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Appendix C 

Energy now model for the real connected beam structure 

The energy flow model for the real connected beam structure described in section 5.3 

is shown in Fig.Cl. The energy flow solution for this model is identical to the one 

presented in Appendix B, except in relation to the boundary condition applied at the 

end of beam 2. In this case, Fig.Cl shows that when x = L2• q = P,/S2' Applying this 

condition to the expression for the vibrational power profile along a beam yields: 

(Cl) 

Substituting this expression into the matrix solution given in Appendix B and using 

expression (5.3.19) to provide the boundary condition at the joint gives: 

Pi1'1 ICO 

A. 4c: lalSI 

B. 0 

A2 0 (C2) [M] = 
8 2 Po1'1 l CO 

q. 4c: 2«.zS:z 

q2 0 

0 
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where [M] is a 6 x 6 matrix of the form: 

sinh( -<l.L.) cosh( -<l.Lt ) 0 0 0 0 

0 
4c;.(l. 

0 0 1 0 
11 l co 

0 0 0 
4c; l<ll 

0 1 
112CO 

0 0 sinh(¥l) cosh(¥l) 0 0 

'tc" I 0 'reb ~2 0 1 0 
(l-'t) (l-'t)SI 

'tCb ,SI 
0 

'tCb 1 
0 0 1 

(l-'t)Sl (l-'t) 

Solution of this matrix equation provides the unknowns AI' B1, Al and Bl , which can 

be used to calculate the energy density and power profiles along the beam using the 

approach described in Appendix B. 
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• 

Beam 1 

q=q 
1 

x=o 

q=q 
2 

• 

Beam 2 
x=L 2 

Fig.Cl Energy flow model for the real connected beam structure 
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Appendix D 

The wave decomposition approach 

The wave decomposition technique was introduced by David-Taylor (1990) as a means 

to determine the amplitudes of near- and far-field flexural wave components in a beam 

from measurements made using accelerometer arrays. The analysis presented here is 

limited only to the detennination of the far-field wave components which can be used 

to calculate the reflection coefficient at a discontinuity. 

Consider the beam shown in Fig.Dt, tenninated at x = 0 with a sinusoidal force input 

at x = - L. For harmonic flexural motion the acceleration at distance x", from the 

tennination can be expressed in terms of wave amplitude variables: 

" A-ih Bih e-b Db u= e -+ e-+ e-+ e-
'" 

(D1) 

where A and B are the leftward and rightward far-field travelling wave amplitudes, and 

e and D are the near-field wave amplitudes associated with the discontinuities. k is 

the bending wavenumber for the beam. 

At points which are sufficiently far from the discontinuities for the near-field 

components to become negligible, (01) reduces to: 

(D2) 

In the frequency domain. the auto-spectrum of a Fourier transformed acceleration 

signal is defined as: 

X ( .. Me ) '"'" = U",' UIff 
(D3) 

where the * indicates a complex conjugate quantity. 
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The cross-spectrum between two signals is defined as: 

x"". = ( a .. . a; ) (04) 

which, being a complex quantity can be expressed in the form: 

x =c +iQ "". "". ..,. (OS) 

Using expressions (D2) and (03), the auto-spectrum at position XI is given by: 

and by employing the following trigonometric identities: 

equation (06) reduces to: 

ei9 = cos 8 + i sin 8 

cos (-8) = cos 8 

sin (-9) = - sin 9 

XII = AA· + 88- + 8A - { cos (2ktI ) + i sin (2ktI ) } 

+ A8- { cos (2u
l
) - ; sin (2ktI ) } 

Using equations (03) and (05), it follows that: 

and 

It can also be shown that: 

M- - X - M 

88- = XBS 

(8A -) = (A8 -)-

224 

(06) 

(07) 

(08) 

(09) 

(DlO) 

(011) 

(012) 



Using (09) to (012) above. (08) can be re-written as: 

XII = XM + X" + { 2 cos (2b) } CAB + { 2 sin (2kx.) } Q
AB 

(013) 

Similarly. the auto-spectrum at position x2 is given by: 

The same type of analysis can be used to detennine the cross-spectrum between 

accelerations at x = x. and x = x2- Using expressions (D2) and (04), 

Employing the identities (07) once again. and noting that: 

cos e cos , ± sin e sin , = cos ( e • til ) 

sin e cos , ± cos e sin til = sin ( e ± til ) 

equation (015) reduces to: 

XI2 = X M { cos k(xl -X2) - i sin k(x.-x2) } 

+ X" { cos k(x.-x2) + i sin k(x.-x2) } 

+ 2 CAB cos k(xt +x2) + 2 QAB sin k(x. +x2) 

Using expression (05), (017) can be separated into real and imaginary parts: 

Cl2 = { cos k(x.-x2) } XAA , + { cos k(x.-x2) } XIB 

+ { 2 cos k(x. +x2) } CAS + { 2 sin k(xt +x
2
) } Q

AB 

and 
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(DI6) 

(DI7) 
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Combining equations (013). (DI4). (018) and (019) in matrix fonn. the spectral 

components measured at two points on the beam can be expressed in tenns of spectral 

combinations of the far-field wave amplitudes. ie. 

XM XII 

XBB Xu (D20) [M] = 
CAB Cn 
QAB Q'l 

where [M] is a 4 x 4 transfer function matrix of the fonn: 

1 1 2 cos (2kx,) 2 sin (2u,) 

1 1 2 cos (2ktl) 2 sin (2kxl) 

cos t(x,-x2) cos t(x, -x,) 2 cos t(x, +x2) 2 sin k(x, +x2) 

l- sin k<l', -x,) sin t(x,-xl) 0 0 

Structural intensity 

Noiseux (1970) showed that the far-field structural intensity for a beam in flexure can 

be obtained from: 

p = 2 Re {XOII} (021) 

where XOM represents the cross-spectrum of angular velocity and bending moment. 
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Euler bending theory shows that: 

(022) 

and 

aM = _ El an 
at ax (023) 

Substituting (022) into (023) and transfening into the frequency domain, the bending 

moment can be expressed as: 

(024) 

Now the transverse velocity at a point in the beam obtained by integrating (02) is: 

1 .~ b U = _ ( Ae -I.... + Bel • ) 
ItI i co 

(02S) 

Differentiating (025) with respect to x and substituting into equation (D22) and (024) 

respectively. gives: 

and 

n = - ~ ( Ae -ih. + Beia
• ) 

ro 
(026) 

(027) 

Substituting (D26) and (027) into (D21) and employing (07). (09) and (010), gives: 

{ 
Elk3 } 

P = 2 Re c;;r ( X"" - X" ) 
(028) 
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and since auto-spectra are always real quantities, the far-field structural intensity for 

a beam in flexure can be obtained from: 

= 2Efk
3 

(X - X ) 
p m1 AA BB 

(029) 

ReOection coefficient 

For the case of the connected beam structure described in Chapter S the reflection 

coefficient, r, at the structural discontinuity is of primary interest. This quantity is 

defined as: 

r = 

It follows that: 

I r I = 

reflected wave amplitude :: B 
incident wave amplitude A 

B 
A 

(030) 

(D31) 

Thus, having obtained the decomposed wave spectra it is also possible to detennine 

the magnitUde of the reflection coefficient at the discontinuity. 
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x=-L 

x = O 

Fig.Dl Tenninated beam model showing wave amplitude comp nent 
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Appendix E 

Wave transmission through joints in beams 

To use the energy flow approach to create a global model of the multiple transmission 

path structure described in Chapter 6, it is fU'St necessary to detennine the individual 

wave transmission characteristics of each joint in isolation from the rest of the 

structure. 

The analytical models presented here predict the necessary transmission and reflection 

efficiencies at the junction of branched and angled beams when the incident wave is 

either flexural or longitudinal in nature. Adaptation of this analysis also provides a 

model to predict the blocking effect of a cylindrical mass which is used in Chapter 6 

to represent the valve. 

El. Flexural wave transmission through an angled T.jolnt 

Consider the joint between three beams arranged at arbitrary angles as shown in 

Fig.El. If a flexural wave having amplitude AI is incident at the joint, because of the 

angled nature of the beams this wave will be scattered into both flexural and 

longitudinal wave components in each of the three beam sections. In this situation the 

motion of each beam can be expressed in lennS of the wave amplitude variables 

relating to it, ie: 

Beam 1 

(E1.I) 
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Beam 2 

Beam 3 

w
2
(x,t) = ( C

2
e -itt" + D

2
e -~'¥ ) eitM 

U
2
(X,t) = L

2
e -itL'¥ e;tM 

w
3
(x,t) = ( C

3
e -;t/3 + D3e -tp ) eifM 

U
3
(x,t) = L3eikL9 e iml 

(El.2) 

(E1.3) 

where A and C represent the amplitudes of propagating far-field flexural waves. D the 

amplitude of decaying near-field waves and L the amplitude of longitudinal waves. 

The suffices f and L refer to flexural and longitudinal motion respectively. 

Assuming that the joint can be represented by a rigid cylinder. the equilibrium and 

continuity conditions relating to it are as follows: 

Force equilibrium 

(E1.4) 

(E1.S) 

Moment equilibrium 

(El.6) 

Slope continuity 

(E1.7) 

(E1.8) 
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Displacement continuity 

(El.9) 

(El.IO) 

(E1.11) 

(EI.12) 

mj is the joint mass is given by: 

p.7t L2 W 
m. I: _J;....-~_ 

J 4 
(E1.13) 

where L represents the length of the joint and W represents its width, see Fig.El. It 

follows that ~, the moment of inertia of the joint, is given by: 

m. L2 
J. = ~J:--

J 8 
(E1.14) 

The displacement expressions (E1.I), (E1.2) and (E1.3) can be related to axial force. 

shear force and bending moment using Euler beam theory, which shows that: 

F = EAi- v • _ Eld'w 
dX' 

(E1.IS) 

Using the displacement expressions (E1.I) to (El.3) and the relationships given in 

(E1.IS) above. the continuity and equilibrium conditions (81.4) to (E1.12) can be re

written in terms of the wave amplitude variables. These equations can be assembled 

into a 9 x 9 matrix equation of the fonn: 

(E1.16) 
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Assuming that the beams have identical cross-sectional dimensions and material 

properties. the non-zero members of matrix [M] are as follows: 

Mil = kj 

MIS = kj 

M21 = kj 

M23 = ik, 

M = Ele + mlJ)2 (1 + Lk,) 
31 f I 2 

M = m qjl + i (ml J)2
Lk

, - Elk}) 
33 I 2 

3 
M3S = Elk,cos'll 

M 37 = i ESk L sin'll 

M" = sm9 (1+ ~,) 
M .. = - cose 

MSI = 1 

Lk 
Mss = - cos'll - -2. (1 +cos,!,) 

2 

MS7 = sin,!, 

MQ ~ ElkJ (1+ ~, J 

M .. = - Elk; (1 +i ~,) 

M .. • - ElkJ (1 + j ~, J 

M,. = - simI' (1 + j ~,) 

MI3 • ikj 

MI6 -= ik, 

Mn -= k, 

M'JA • ik, 

M'2 • Elk}cos8 

M34 • - i Elk}cos8 

M]6 • - i Elk}cos'V 

M38 • - i ESkLsin8 

M .. • sine (1 + j ~,) 
M49 • 1 

M" • 1 
Lk 

MS6 • - cos'V -; 21 (1 +cos'V) 

MOl • IJuI'k, - Elk; (1 + ~f ) 

(
EILk] ) 

M6] • Elk} + I 2 f + 1,lJllk, 

M" • Elk; (1 + ~' ) 
M" • - sm'V (1 +!f ) 

M 77 • - cos'll 
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M79 = 1 Mal =1 

Lk 
M82 = - cos9 - -1. (1 +cos9) Mil III 1 

2 

M = - cos9 - i Lk, (1 +cos9) Maa • - sine 
84 2 

M92 = - Elklsin9 M94 • ; Elklsin9 

M95 == Elk}sinV M96 • -i Elklsinv 

M97 = - i ESkLcosV M98 III - i ESkLcos9 

M99 = mJJJY - i ESkL 

The values in column vector (x)~ which represent the ratio of scattered wave 

amplitudes to the incident wave amplitude, are: 

D D2 C C D 
x = I x2 

X" I x. 2 x. 3 I - =- l - .. - 5 -AI AI AI Al Al 

C L L L x III 3 X III 3 X. 2 x. I 
6 - 7 - a - 9 -AI AI Al AI 

and the non-zero tenns of column vector {y), are: 
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Transmission and reflection efficiencies are related to the power transmitted through 

the beam sections. 

Flexural power can be obtained from: 

(E1.16) 

and longitudinal power is given by: 

(E1.17) 

where A and L represent amplitudes of the propagating flexural and axial waves 

respectively. 

At this point it is necessary to define a convention to distinguish between various 

forms of transmission and reflection efficiencies. Bach term will have two suffices. 
The first refers to the incident wave type and the second to the resultant wave type 

after transmission or reflection. As an example ;, represents the transmission 

efficiency of longitudinal motion resulting from an incident flexural wave at the joint 

Since the reflection efficiency is the ratio of reflected to incident wave power: 

(EI.18) 

and using (El.16) and (El.17): 

(E1.19) 

Similarly transmission efficiency is the ratio of transmitted to incident wave power, 

hence for beam 2: 

(EI.20) 
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and for beam 3: 

(E1.21) 

E2. Longitudinal wave transmission through an angled T -Joint 

Fig.E2 shows an identical joint to the one considered in section B I, except that the 

incident wave is now of a longitudinal nature having an amplitude Lo. The 

expressions for the motion of beam 1 are now of the fonn: 

WI(x.t) = ( Cleik,r + Dlek,r ) e ilM 

UI (X.I) = ( Loe -ikt! + LleiY ) eieu 
(82.1) 

The remainder of the analysis is identical to the previous case and the expressions for 

the motion of beams 2 and 3 remain unchanged. as do the equilibrium and continuity 

equations (81.4) to (B1.12). 

The final 9 x 9 matrix solution can be expressed as: 

(E2.2) 

where the matrix [M] is identical to the one obtained for the case of an incident 

flexural wave. 

In this case the tenns in the column vector {X)L are: 

_ DI D CI C D 
XI X = 1 X =- X. :I x. 3 -- :I - 3 L .. - s -Lo Lo 0 Lo Lo 

C Ll L L 
X = 3 X:I: 1 X, • ...!. 6 -

X, a_ a -
Lo Lo Lo Lo 
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and the non-zero tenns in {y} L are: 

Using the expressions for the power transmitted in the beams, (E1.16) and (E1.17), 

the reflection efficiencies in beam I are: 

(El.3) 

SimiJarly the transmission efficiencies in beam 2 are: 

(El.4) 

and for beam 3: 

(El.S) 

E3. Wave transmission through an angled joint 

Analytical models which provide transmission and reflection efficiency values for 

angled joints in beams can be extracted from the more general solutions for the T

joints described in sections E I and E2. 

For the case of the angled joint between two beams shown in Figs.E3 and E4, with 

either flexural or longitudinal incident wave motion, the analytical model takes the 

form of a 6 x 6 matrix equation of the form: 

[M] { x } = {y } (E3.1) 
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The members of the 6 x 6 matrix [M] can be obtained by removing rows 1. S and 7 

and columns 5. 6 and 7 from the 9 x 9 matrix derived in section E 1. The 

corresponding rows must also be removed from the column vectors (xl and (yl. 

E4. Wave transmission across the valve 

For the purposes of the energy flow model described in Chapter 6 the valve is 

represented by a rigid cylinder with its polar axis in line with that of the beams. see 

Fig.E5. The analysis for this joint is however, almost identical to that for the angled 

joints described in section E3. The only differences are that the angle e is always (f 

and the expressions for the mass and moment of inertia of the joint must be replaced 

by: 

p.1t W 1 L 
m. = ...;..J_~_ 

J 4 
(84.1) 

and 

I . • m. ( W
1 

+ !!.. ) 
I I 16 12 

(84.2) 

to take account of ·the orientation of the cylinder. 
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Beam 2 

L W 

joint detail 

Beam 1 
U 1 

~-+---x 

Beam 3 

e 

Fig.EI Angled T-joint with incident flexural wave Al 
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Beam 2 

L W 

joint detail 

Beam 1 

~_+--_x 

Beam 3 
0) 

Fig.E2 Angled T-joint with incident longitudinal wave L 0 
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Beam 2 

Beam 1 
U I 

Fig.E3 Angled joint with incident flexural wave Al 
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Beam 2 

Beam 1 

Fig.E4 Angled joint with incident longitudinal wave L 0 
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I. L .1 

Fig.E5 Valve representation 
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Appendix F 

Windowing effects on modal analysis results 

When carrying out experimental modal analysis it is often necessary to apply 

exponential windowing to impact response data in order to avoid leakage error. This 

process has the effect of appearing to introduce extra damping into the system which 

is carried through into the modal analysis results. The purpose of this analysis is to 

show how modal loss factor values obtained under these conditions can be adjusted 

to account for windowing effects. 

The modal analysis package used to provide estimates of the loss factors for the steel 

and aluminium beams described in Chapter 5 relies on a single degree of freedom 

curve fitting approach. The effect of the windowing on the analysis can therefore be 

examined by considering the response of a single degree of freedom system to impulse 

excitation. This response is given by: 

y(t) =: A exp (- ''(0),1) sin ( co, 11-'" t) (Fl) 

where co, is the undamped natural frequency of the system and 'Y is the damping ratio. 

The exponential window function applied by the FFr analyzer is of the form: 

W(t) = exp (- ~) (F2) 

where T is the time constant defined by the operator. 
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When the window is applied to the response data the resulting captured response is 

of the form: 

y'(t) = A exp (- "(m.t - ; ) sin ( ro. J 1 -"I' t) (F3) 

and the apparent system damping is: 

If damping is low, the loss factor, 11, is related to the damping ratio, "'(, by: 

11=2"'( 

Hence, the relationship between measured and actual loss factors is: 

or rearranging: 

_ 2 
l1<1('tuQ/ - 11~/U - -r 

00, 

(F4) 

(F5) 

(F6) 

(F7) 

This expression can be used to correct the damping loss factor values obtained by the 

modal analysis to remove the artificial effects of the windowing. 
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