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ABSTRACT

Understanding how function relates to multiple layers of inactions between
biological entities is one of the key goals of bioinformatics research, in
particular in such areas as systems biology. However, the realisation of this
objective is hampered by the sheer volume and multi-level heterogeneity of
potentially relevant information. This work addressed this issue by develbping
a set of integration pipelines and analysis methods as part of an Ondex data
integration framework. The integration process incorporated both relevant data
from a set of publically available databases and information derived from

predicted approaches, which were also implemented as part of this work.

These methods were used to assemble integrated datasets that were of
relevance to the study of the model plant species Arabidopsis thaliana and
applicable for the network-driven analysis. A particular attention was paid to
the evaluation and comparison of the different sources of these data.
Approaches were implemented for the identification and characterisation of
functional modules in integrated networks and used to study and compare
networks constructed from different types of data. The benefits of data
integration were also demonstrated in three different bioinformatics research
scenarios. The analysis of the constructed datasets has also resulted in a better
understanding of the functional role of genes identified in a study of a nitrogen

uptake mutant and allowed to select candidate genes for further exploration.
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1 BACKGROUND AND INTRODUCTION

1.1  SUMMARY

Recent technological advances in biology have led to the increasingly fast pace
of data accumulation and a multitude of resources and strategies to manage it
and make it available to the research community. However research
applications often require data to be combined from these different resources
and representations in order to get a complete understanding of the living
system. This need gave rise to the disciple of data integration, which
researches strategies for effective management of the increasingly large body
of experimental information and ways to ensure that consistency, provenance
and intercompatibility between different resources is adequately realised. The
Ondex system is specifically targeted at addressing the data integration
requirements of the plant biology community. Ondex is designed around its
graph-based unified data model, which is the basis both for the construction of
the integrated datasets via Ondex workflow engine and their subsequent
analysis/visualisation using Ondex front end. The ability to provide both the
integration and visualisation capabilities as part of the same package, as well as
the ability to effectively capture complex data in its data model are the

strengths of the Ondex system that differentiate it from similar tools.

1.2 THESIS OUTLINE

The research presented in this work concerns the development of data
integration and network-driven bioinformatics analysis methods for the study
of a model plant species Arabidopsis thaliana. The practical relevance of the
developed approaches was demonstrated through three independent use-cases
presented in the chapters 4-6. Issues investigated therein include comparative
analysis of various Arabidopsis information resources, identification and
evaluation of functional modules and gene list dissection for the purposes of
candidate gene prioritisation. The reminder of this introductory chapter covers

the relevant background and introduces key concepts and formalisms. In
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particular the current paradigms and approaches used in biomedical data
integration are outlined. The data integration strategy realised in the Ondex
system is also explained. Ondex was the chosen platform for the
implementation of the supporting code base for this work and this system was

improved and had new capabilities added to it as a direct result of these efforts.

The developments to do with the improvements of the core Ondex
functionality are presented in chapter 2. Originally, the Ondex project was
founded to provide data integration capabilities to the plant research
community, and at the moment it still remains the only non-commercial, open-
source platform with such focus. Although the system was already developed
for some time prior to the start of this project, it also had several shortcomings
and limitations, which were identified and addressed as part of this work.
These developments have served to greatly facilitate the analysis reported in
the subsequent chapters and enabled seamless assembly of more complex

analyses pipelines which would not have been possible otherwise.

Chapter 3 describes a pipeline that was developed for the construction of the
coexpression networks from Affymetrix GeneChip microarrays. Its addition to
Ondex toolkit provided a new and powerful method for the analysis and
extraction of insights from large volumes of expression data. This development
was further supported by the addition of the module detection and functional

enrichment analyses, which were also added as part of the work on this thesis.

During this work, several integrated datasets of relevance to Arabidopsis and
plant biology community were developed. In addition to their practical value,
these datasets were used to study the strengths and shortcomings of the
individual data types and information sources. To maximise the benefit from
the integration, it is necessary to understand how different data relate to each
and how the comparative analysis can be leveraged to evaluate their quality.
To that end, a number of different information resources that provide the
Arabidopsis data to the research community were evaluated and compared.
This work is reported chapter 4 of this thesis. Additionally, it was also
published in Briefings in Bioinformatics journal; a full version of this paper is

enclosed in the Appendix.
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Chapter 5 describes functional similarity metrics used for the analysis of
functional modules identified in the networks constructed from different types
of “evidence of relatedness” between genes. It also presents the work
undertaken to evaluate a network-driven data integration strategy and its
application to the detection of functional groupings of Arabidopsis genes. The
results of the analysis demonstrated the benefits of considering multiple

evidence types when attempting to recover groups of genes with similar

functional annotation.

In chapter 6, the methods from the chapters 3 and 5 and the integrated datasets
from the chapter 4 are brought together in an applied setting by using them to
dissect a set of gene lists originating from an expression study. This example
also presents the visualisation methods developed to support the interactive
analysis of these data. By combining the coexpression, functional annotation
and the gene set-driven analysis, it was possible to suggest several promising
candidate genes that are likely to be of relevance for the understanding of the

nitrogen uptake and response to wounding in Arabidopsis.

1.3  AIMS AND OBJECTIVES

To gain systems-level understanding of complex biological systems it is
necessary to process together experimental data and prior knowledge into a
unified model. If this problem is approached from a network-driven

perspective, the task can be decomposed into:
- Definition of entities (nodes) of interest and identification of
corresponding entities in relevant data sources
- Definition and establishment of relationships between them
- Relating the model back to the real biological system studied

However, the realisation of these tasks is hampered by the sheer volume and
multi-level heterogeneity of potentially relevant information. Another
challenge lies in the poor compatibility of the tools and analysis software for
processing these data. The over-arching aim of this thesis is to address these
shortcomings by contributing to the development of modular software

architecture of inter-compatible integration and analysis methods. Due to the
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complex and multi-faceted nature of this task, it was broken down into a set of

more focused objectives:

- Development of a framework to support the integration of data
resources and the downstream analysis

- Creation of integrated datasets of relevance to the system-level
understanding of Arabidopsis biology with particular emphasis of
utilizing expression, functional annotation and protein-protein
interaction data

- Develop an understanding of the structure and limitations of the
individual data sources by establishing different evaluation procedures
to assess the integration results from a variety of different perspectives

- Development of visualisation and analysis methods for extraction of
biologically relevant insights from the integrated datasets produced

- Demonstrate the relevance of the resource, analysis methods and the
framework as a whole by applying them in a set of common

bioinformatics research scenarios

1.4  DATA INTEGRATION AND ITS ROLE IN BIOINFORMATICS

Recent technological advances have made it possible to generate vast amounts
of biological data. At the genome level, the rate at which new sequencing data
is being produced has proven to be a considerable both in terms of information
management and downstream bioinformatics analysis (Metzker, 2010). A large
number of diverse and separate resources have been developed to facilitate
access and support analysis of collected data. The Molecular Biology Database
Collection maintained by the journal Nucleic Acids Research (NAR) aims to
maintain an up-to-date set of references to the most important databases for
biological research. This repository listed just 226 resources in 2000
(Baxevanis, 2000); however this number increased to 858 (Galperin, 2006)
when this project was started in 2006, and continued to grow to reach 1230 in
2010 (Cochrane and Galperin, 2010). The development of these resources
responds to the need to make the large volumes of the ‘omics data available to
the research community. A number of ‘omics approaches now exist that allow
a large-scale sampling of cellular processes from a variety of different

perspectives (Lee et al., 2005), the most important of which are shown in the
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Figure 1.1 High-throughput technologies and corresponding ‘omics
approaches. Image from Lee et al. (2005)

overview in Figure 1.1.

Databases resources are often designed around particular sub-disciplines of
biology that concern themselves with a particular aspect of research e.g.
proteomics, metabolomics, transcriptomics, and interactomics (Goble and
Stevens, 2008). However, in the beginning of this decade it became
increasingly recognized that in order to gain further understanding into
biological complexity, living organisms need to be considered across all levels
of organisation (from molecules to organisms and up to ecosystems) and
across all domains of study (Kitano, 2000, Ge et al., 2003, Davidov et al.,
2003). This approach is known under the name of systems biology (Mesarovic,
1968). The main underpinning assumption behind it is that “the whole is more
than the sum of its parts” and in order to understand living organisms the data
collected using traditional approaches must be brought together and compiled
into models, ultimately fully quantitative and predictive ones (Kell and
Knowles, 2006). High-quality models can not only be used to make predictions
(Ideker et al., 2001) but also to explore the processes at higher levels of
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organisation — for example by building models at the scales of a cell

(Slepchenko et al., 2003) or a tissue (Swarup et al., 2005).

As biological systems are hierarchical and highly inter-related in nature (Ayton
et al., 2007, Southern et al., 2008), in order to characterise them large volumes
of heterogeneous information are often necessary. However, it is widely
recognised that the relevant data are often scattered across multiple
independent resources and possibly buried within seemingly unrelated data
(Joyce and Palsson, 2006, Ge et al.,, 2003, Hernandez and Kambhampati,
2004). The combination of these issues makes conducting the necessary
integration tasks manually increasingly foreboding, leading to the development
of a large number of computational approaches for automating this process;
reviewed in Sujansky (2001), Hernandez and Kambhampati (2004), Goble and
Stevens (2008) and Sorani et al. (2010). This need gave rise to the discipline of
biological data integration, which aims to facilitate the amalgamation of
disparate experimental information and develop better strategies for

representing and managing these data (Sujansky, 2001). As it is illustrated in
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Figure 1.2 Data integration as an essential data flow mediator at the core of
systems biology. Integration of experimental data allows construction of models
from the ‘omics data, which, in turn, are used to generate hypothesis for further
experiments. From Ge ez al. (2003).
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the

Figure 1.2, integration is an essential intermediate step for the formulation of

system-wide biological models (Ge et al., 2003).

The widely recognised challenges to the data integration process include the
size and variety of datasets, different types of heterogeneity and autonomy of
various data providers (Hernandez and Kambhampati, 2004). The set of
problems arising from the data variety include the potentially large size of
records (e.g. genomic sequences or protein 3D structures) and the multi-
domain and multi-scale organization of information. This makes it complex to
define the appropriate relationships that correctly identify often abstract
connections between these disparate data (Hernandez and Kambhampati,
2004). The heterogeneity of data is commonly divided into syntactic and
semantic sub-types (KGhler, 2004). The syntactic heterogeneity refers to
technical differences between resources, like formats, schemas and query
interfaces (Kohler, 2004). The semantic heterogeneity refers to more
fundamental differences in their conceptual representations, like different
formalisms or levels of abstraction, scope-specific naming conventions and
naming inconsistencies (KShler, 2004). Lastly, the autonomy of data providers
reflects the fact that differences between the needs of biological sub-disciplines
and other sociological boundaries (such as between funding agencies) result in
biological data being managed in a decentralized manner by a collection of
largely independently operating bodies (Goble and Stevens, 2008). This means
that data providers are free to ignore, re-interpret or re-invent data standards; to
unilaterally change their schema or content or even to withdraw access to their
data. Section 1.3.3 of this chapter explains how some of these issues are

managed in the Ondex data integration paradigm.

Integrated data resources are characterised by their ability to provide a standard
mode of access to information from a set of distinct heterogeneous data
sources (Hernandez and Kambhampati, 2004). This task can be realized by
either implementing a common data model (data warehousing) or a common
query model (federated databases and mashups) (Goble and Stevens, 2008).
User-driven on-demand approaches are also possible (integration workflows),

where a consumer constructs an integration pipeline to answer specific
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questions from a declared set of components using a workflow interface to
connect them (Curcin and Ghanem, 2008). Importantly, all data integration
approaches assume that there will be shared, common entities or “touch
points” between the integrated resources (Goble and Stevens, 2008). At some
stage in the integration process these entities are identified and these links then
allow the unified access to the information stored in these disparate resources.
In other words, the integration is enabled by the unambiguous identification of
entities or concepts being accessed. In those cases where there are established
and stable common identifiers, the integration is also often realised by the data
providers themselves — e.g. by hyper-linking each other’s entries (link

integration) (Goble and Stevens, 2008).

The set of formally defined terms to which the disparate entities can be
mapped is called a controlled vocabulary (Lacroix and Critchlow, 2003).
Often, it is also convenient to formally define the possible relationships
between the terms themselves, thereby formulating an ontology. Although
many possible definitions of ‘ontology” currently exist, for the purposes of this
thesis an ontology is defined according to Gruber (1993) as “a specification of
a conceptualisation”. The benefits of using ontologies for the formalization of
knowledge in the biological domain are becoming increasingly recognized
(Schulze-Kremer, 2002, Louie et al., 2007, Bodenreider, 2008, Jensen and
Bork, 2010). Their use facilitates the data integration process across different
data providers by creating high-quality, reliable cross-links within the data as
well as ensuring the internal consistency of the individual data resources

themselves (Jensen and Bork, 2010).

In the field of plant biology, systems approach and data integration are now
considered to be of great importance to the research community (Shinozaki and
Sakakibara, 2009). The systems approach is also believed to be of great
practical significance for development of new crop varieties. In a recent review
by Mochida and Shinozaki (2010) the integrated, multi-omics approach was
identified as an “effective strategy for clarifying molecular systems integral to
improving plant productivity”. For over 30 years, Arabidopsis thaliana has
been a key model species for the study of plant biology (Meinke et al., 1998).
Its importance was boosted first by the sequencing of its genome in 2000 (The
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Arabidopsis Genome Initiative, 2000) and then by the Arabidopsis 2010
initiative, which supported a wide range of projects with the overarching goal
of assigning the functional roles to all of the Arabidopsis genes by 2010
(Shinozaki and Sakakibara, 2009). In 2008, the “The 1001 genomes” project
was started that aims to describe the genomic variation in 1001 Arabidopsis
accession lines (Weigel and Mott, 2009). One of the possible Ways to support
this research from the bioinformatics perspective is to consolidate and re-
analyse the wealth of data produced by previous research efforts (Ferrier et al.,
2010, Vanholme et al., 2010, Katari et al, 2010). This project directly
contributes to this task through the development of an open, re-useable
integration and analysis tools that facilitate the exploration of these data all the
way from source databases and experimental data to network models and

insights into the underlying processes.

1.4.1 Networks as a tool for interpretation of complex biological data

As highlighted in the previous section, a number of integration approaches rely
on a common data model for providing access to the combined body of
information. The definition of a suitable data model is of pivotal importance
for the success of any integration effort — as this model must be both accessible
to the end-user and expressive enough to represent potentially complex
agglomerations of data of different types from a range of sources. Graphs or
networks are now a common formalism that many such models are built upon.
A graph representation is commonly applied to describe protein-protein
interactions, gene regulation networks and metabolic pathways (Junker and
Schreiber, 2008). A graph representation has a number of advantages as it
defines a formal framework through which biological systems can be explored
by computational and statistical means. Graph theory is the field of
mathematics concerned with networks, their properties and organization
(Diestel, 2005) and it is this field that has provided a number of the relevant

tools for the analysis of biological networks.

The nodes and edges of a network can be conceptually bound to a particular
schema, often represented as an ontology, which can themselves be described
in terms of graphs. One of the ontologies often used in bioinformatics is the

Gene Ontology (GO) (Ashbumner et al., 2000), which provides a controlled
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Figure 1.3 Biological function of a protein characterised using the Gene
Ontology. Image source: Saccharomyces Genome Database website
(http://www.yeastgenome.org).

vocabulary to describe the role of genes and proteins in terms of ‘biological
process’ to indicate the biological purpose of the entity, ‘molecular function’ to
identify its biochemical properties and ‘cellular component’ to specify its
cellular localization or functional component (Ashburner et al., 2000). In the
GO ontology, each of these three branches is an independent taxonomy.
Classified entities can have one or more assignments in each branch (Figure
1.3) and less specific terms higher in the hierarchy can be used if insufficient
information is available for more precise assignment. This ontology is

structured as a directed acyclic graph.

It has been demonstrated in a number of different studies (e.g. (Hwang et al.,
2005, Daigle and Altman, 2008, Troyanskaya et al., 2003, Zhou and Liu, 2008,
Lu et al., 2005), that combining data from different types of high-throughput
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experiments and knowledge about properties of biological systems can
increase accuracy, resolve ambiguity and help to get more useful information
from the data. In such studies, the representation of the data as a network graph
is now very commonly adopted as a convenient mathematical formalism both
for managing the data and driving the analysis itself. In general terms, the aims
of this approach are to determine the most probable biological network that fits
the data and then to make inferences about the biologically relevant

“unknowns” based on the available information.

Some types of biological data, like pathway information and protein-protein
interactions naturally lend themselves to network representation. Other types
of data, such as microarray expression profiling and proteomic assays, require
additional analysis and interpretation steps to enable their results to be
expressed in a graph formalism. For example, sets of gene expression
measurements can be represented as a network of coexpressed genes once the
similarities between expression signals have been identified and then converted
into distances between the genes, which can then represent edges in the
network. To maximise the scope of the data coverage offered by the data
integration system it is often necessary to supplement the straightforward data
conversion (or parsing) with more complex analysis methods. These methods
can (re-)interpret the raw information and deduce secondary properties that are
conformant to the common data model and can be added to the integrated
dataset. However, once the effort to fit the data into the unified data model has
been made, many of the post-integration data reduction tasks become easier.
For example, many network clustering and topology analysis methods (such as
measures of node centrality) that are used to group and identify important

entities, are designed around the notion of a network.

1.5  DATA INTEGRATION AND FUNCTION PREDICTION

Integration of biological data is of particular importance for predicting the
function of genes that have not yet been characterised experimentally (Re and
Valentini, 2010). These methods often take advantage of multiple types of
evidence both to increase the confidence in the assertions made and the
number of genes for which a prediction can be derived. They also often rely on

some form of a guilt-by-association principle, whereby function of a
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gene/protein is inferred on the basis of its association with other genes/proteins
that have been functionally annotated. Such methods may rely on one type of
data, like coexpression or sequence homology, or multiple types of data. In
either case, data integration plays an important part in this process, as even in
the cases where only one type of data is combined, it may still be advantageous
to bring together data of the same type from multiple sources. The ability to
predict function is particularly important for facilitating research into the
species other than model organisms (Goodstein et al., 2012), which are less
well-studied and consequently often have relatively small numbers of
experimentally determined functional annotations. This category includes crop
species of plants, which are of immense importance commercially (Schoof and
Karlowski, 2003). Even Arabidopsis, which is a main model species for plant
biology, still has as much as 26% of all genes have no known functional

annotation (TAIR, statistics derivation explained in chapter 4).

For this reason, computationally derived annotation methods are necessary for
filling in the gap, where the functional characterisation methods are at present
not capable of keeping up with the rate at which sequence data is being
accumulated (Edwards and Batley, 2004). The simpler methods predominantly
rely on the sequence homology information to derive predictions (Friedberg,
2006). Some prominent examples of such approaches include NetAffx (Liu et
al., 2003) pipeline, UniProt-GOA (Ensembl Compara (Vilella et al., 2009))
and Blast2GO (Conesa et al., 2005, Conesa and Gotz, 2008). The NetAffx
pipeline is used to provide annotation for sequences represented on Affymetrix
microarrays. Although predictions are based on the sequence-driven analysis
only, it also integrates a wide variety of annotations from different sources,
including Gene Ontology terms, protein domains, orthologous genes in other
species and OMIM terms. Blast2GO focuses entirely on generation of Gene
Ontology (GO) annotation based on statistical processing of BLAST output.
The authors of the method also maintained an up-to-date resource of the results
of Blast2GO analysis, which covered over 2000 different species. However,
this resource has not been updated since 2010, when Blast2GO software was
spun-out as a commercial service. The Ensembl Compara is a homology

detection pipeline and an integral part of the Ensemble (Flicek et al., 2012)
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framework. Transfer of GO annotations using orthology relations derived
using this method is the main source for automatically generated GO
annotations offered by UniProt and EBI. Both of these providers maintain

functional annotation sets for multiple plant species.

A number of resources and tools were also created for predicting gene
functions specifically for Arabidopsis and/or other plant species. Among them,
some also predominantly rely on sequence homology methods to predict
functional annotation. For example, PLAZA (Van Bel et al., 2012) resource
provides gene orthology information for 25 sequenced plant species derived
using OrthoMCL algorithm (Li ez al., 2003), which is also used to derive GO
annotations. More advanced methods and resource also use additional type of
information, which can considerably expand the set of available annotations, as
homology-based methods can only lead to a prediction in the cases where a
similar gene was already characterised experimentally. In this way, using
additional information of other types can increase coverage, but also improve
accuracy — e.g. by identifying additional evidence to support functional
annotations made. In particular, methods have been developed that can also use
co-occurrence of gene names in literature (Li et al., 2006), protein-protein
interaction data (Kourmpetis et al., 2011, Mostafavi et al., 2008, Lee et al.,
2010, Bradford et al., 2010), (co)expression (Kourmpetis et al, 2011,
Mostafavi et al., 2008, Wabnik et al., 2009, Li et al., 2006, Lee et al., 2010,
Bradford et al., 2010) and genetic context (Mostafavi et al., 2008, Lee et al.,
2010, Bradford et al., 2010) information for predicting gene function in plants.
All of the methods listed here use multiple types of data for the analysis, and
this set of examples demonstrates successful applications of both supervised
(Kourmpetis et al., 2011, Bradford et al., 2010, Wabnik et al., 2009, Li et al.,
2006, Lee et al., 2010) and unsupervised (Mostafavi et al., 2008) classification
strategies for realising the guilt-by-association principle for functional

inference.

1.6 THE ONDEX SYSTEM
The Ondex system (Koehler et al., 2005) is a realisation of a warehousing
approach to data integration. The original implementation of the system was a

re-imagining of the SEMEDA data integration system (Olson et al., 1999)
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although since that time Ondex has undergone considerable re-structuring and
re-development that has allowed it to take full advantage of the modern
software tools, libraries and software engineering paradigms. At the time of
writing, Ondex supports integration of data in excess of 40 different data
formats. A number of the parsers, which enable this flexibility, were
contributed as a result of the work undertaken to fulfil requirements from this

thesis.

The import of the data from source files into the Ondex system is mediated via
a range of parsers, which convert the data from their native format into the
internal Ondex representation. The integration is achieved through the
application of appropriate mapping method(s) (Weigel and Mott, 2009),
allowing for the subsequent merging of equivalent entities. Another feature of
Ondex is that the integration process and subsequent analysis can be
formalised in the form of an Extensible Markup Language (XML)-formatted
workflow. The use of workflows ensures both the transparency and
simplification of the integration process through a user-friendly graphical
interface. Ondex is implemented in Java and this means that it can be run on a
variety of computer systems and the size of the datasets that can be effectively
manipulated is only limited by the available system resources, mainly available
memory. User interaction is further facilitated by the Ondex front end (Kohler
et al., 2006) application, which allows both interactive analysis and visual
exploration of integrated Ondex datasets. The integrated datasets can be
serialised in a proprietary format called OXL (Taubert et al., 2007) or exported
in a variety of commonly used representations such as Systems Biology Mark-

up Language (SBML) and tab-delimited files.

Ondex was selected as both the main tool for the analysis and as the basis for
the majority of the development efforts during the course of this project. Its
strengths and limitations have greatly influenced the work described in
subsequent chapters of this thesis. To put this work into an appropriate context,
key aspects of the system are introduced in the following three sections which
describe the organisation of the software, the data model and the capabilities of
the Ondex front end. An additional, in-depth introduction from a programming

perspective is also included in chapter 2, as it was felt this was necessary to
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explain important details in the work described therein.

1.6.1 The Ondex data model

Ondex uses a directed, typed multi-graph as the foundation for its data storage
model. The model imposes a restriction on the graph that postulates that only
one edge of the same type and the same direction can connect two concepts.
Additionally, the concepts can be assigned as a “tag” to a set of other concepts
or relations. This type of relationship is not visualised, but instead is used to
represent set-type relationships between parts of the graph without introducing
clutter. This formalism provides convenient way of selecting specific parts of
the whole network (e.g. pathways or user-specified lists on nodes) as well as
providing a handle for set-driven analysis (e.g. intersection, union and negation

types of operations on parts of the graph).

nitrate reductase: NIA1
nitrate reductase: NIA2
1.7.1.1
MNO;~ — - nitrite

Compounds
Compounds

Reaction

Enzyme classification number (EC)

Figure 1.4 A reaction from AraCyc (top) represented as an Ondex graph
(bottom) of information concepts and relations between them. The colors are
consistent between the two panels and indicate equivalent types of data
captured in the same concept classes.
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To be converted into this formalism, the information in the source data
resource is decomposed into a set of concepts and relationships between them
by a parser plug-in module. To ensure the compatibility of different parsers
and achieve some consistency in the way in which data are transformed into
the Ondex core data model, there are pre-defined sets of concept classes and
relationship types as well as accompanying guidelines for their use distributed
with the main Ondex application. Concept classes and relationship types are
arranged into a tree structured ontology with implied “is a” relationships
between them. The “Thing” concept class and “related to” relationship types

act as root terms for their respective ontologies. Each concept is only allowed
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Figure 1.5 Overview of Ondex attribute model. This diagram shows the possible
attributes on Ondex concept and relations, as well as the inner organization of
the more complex elements in the core data model. Multiple boxes indicate that
multiple instances of a particular attribute are allowed. Generalised data
structure (GDS) attribute is a special case, as multiple instances are only
allowed if they have different Attribute Name.
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to have an outgoing relation to one parent. The relation type imposes a
restriction on the multi-graph, in that just one relation of the same type and
direction is allowed between any two concepts. Figure 1.4 gives an example of
how biological pathway data can be interpreted in terms of concepts and

relations.

In addition to type-attributes, both concepts and relations can support a
selection of additional attributes that allow storage of additional information
about those entities. Some of these attributes are complex and are composed of
several fields — the complete set of allowed attributes is shown in Figure 1.5.
To facilitate integration, it is important to unambiguously identify pieces of
information and certain fields that are key to the integration process are bound
to specialised controlled vocabularies — those attributes are Evidence Types,
Data Sources (both fields that capture provenance of a concept and identify an
accession if it is present) and General Attribute Names. A set of general
attributes allows some flexibility in the storage of additional information. Any
number of attributes of this type is allowed, the only restriction being that the
Attribute Names must only be used once within a set associated with the same
concept. The collection of concept class and relation type ontologies and three
controlled vocabularies for their attributes are collectively known as “Ondex
metadata”. Although, as mentioned above, a base metadata is provided with
the main application, a user- and application-case-specific extension can be
made as and when necessary during the integration process. For this reason, a
separate, independent copy of the metadata is always associated with each
graph instance — both in the in-memory and in the OXL-serialised versions.
The graph structure, metadata and all of the information stored in various
attributes constitutes a single instance of the Ondex integrated dataset. The
data model itself is realised as a set of Java interfaces (implementation-
independent contract declarations). This software architecture allows
developers to build different implementations of system components which
can still be seamlessly substituted within the same framework. This allows
customized versions of Ondex to be built that extend or optimise aspects of
performance to support particular applications. For example, two separate

implementations of the Ondex data model can be used: an in-memory
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implementation, which is optimised for performance and a persistent
implementation, which minimises the amount of memory resources used but is
slower because it uses a database (Berkeley Database — Olson ef al. (1999)).
An optional indexing layer powered by Lucene (Prasad and Patel, 2005) is also
provided for accelerated searching required by some of the analysis and

integration methods.

1.6.2 Data integration, workflow engine and plug-ins

The Ondex data integration framework is made up of independent modules
(plug-ins), which can be chained together to form workflows that are executed
to realise required tasks. A new interface for composing, executing and storing
workflows was designed as part of the work on this thesis and is documented
in detail in chapter 2. This section introduces the five types of plug-ins allowed

in the Ondex system and their roles. It also provides an outline of the way data

Figure 1.6 An illustration of the sequence of operations performed by the
“relation collapser” transformer. (A) a network showing three connected
components with respect to the edge type (solid line) that will be used to collapse
the nodes. (B) the first group has been collapsed with all attributes from the
removed nodes re-assigned to the remaining one. (C) the second cluster has been
collapsed, note that in this case multiple edges have been re-assigned to
remaining node.(D) the last remaining cluster has been collapsed, the two
incoming edges have been merged to one edge.
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integration process is realised in Ondex.

The integrated graph schema is populated by the execution of parsers. Once all
of the data is converted into a common representation, the commonalities in it
can be identified by the application of mapping methods (Lysenko et al.,
2009¢). Mapping methods create the new relationships between the concepts
(nodes) within the networks by evaluating the values of the attributes on those
nodes (or in some cases — on the neighbouring entities). Some examples of
mapping methods currently implemented in Ondex include accession-based
(matches database accession identifiers on concepts), BLAST-based (creates
relations by extracting the sequence attributes of nodes, passing them to the

BLAST sequence comparison algorithm and parsing back the results).

Concepts identified as being equivalent entities through mapping methods can
be aggregated by the application of transformers. For example, the “concept
collapser” transformer copies all attributes and relationships from one concept
to another and removes the redundant concept entries from the graph. When
used in combination with appropriate mapping methods, this transformer can
be a powerful tool for resolving complex patterns of redundant data both in
terms of nodes, edges and their attributes. The illustration of this principle is
shown in Figure 1.6. The graph in this example contains two types of edges -
the solid line identifies the type of edges that is being “collapsed” (e.g. could
be an edge type indicating equivalence), whereas the dashed line indicates
another type of edges. At the first step, the transformer identifies all of the
connected components with respect to the edges of the type to “collapse” (A).
At the second step (B), a core node is created for each group that will inherit
all of the attributes and edge associations of all group members. The
transformer then proceeds to process each group at a time (panels B through
D). First, the attributes of all other group members are copied to the core node,
then the same is done for edges. Note that as Ondex data model only allows
one edge of the same type and direction between the same pair of concepts, it
is possible for the redundant edges to occur as well. In these cases, likewise
only one core edge is retained per such group of edges that inherits all of their
attributes. During the attribute-copying process the necessary checks for

uniqueness are performed as required by the Ondex attribute data model
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(outlined in the Figure 1.5) and all duplicates are discarded (e.g. in the cases of
data source or evidence type) or assigned a new, unique identifier (e.g.
multiple, but different protein sequences from two different data source that
contribute the two different concepts being merged). The combination of
“accession-based” mapping that creates equivalence relations between
concepts, followed by the “collapsing” on the “equivalent to” edge is one of
the most often-used types of graph transformations in Ondex and was used for

the construction of the datasets in chapters 4-6.

An additional use for transformers is to realise data abstraction. When this is
the case, the entities being collapsed are not necessarily semantically
equivalent. For example, if one data source annotates genes with GO terms and
another source assigns them to proteins a complete set may be obtained by
merging “Gene” and “Protein” concepts, given that one of the imported data
sources provides the “encoded by” relation to identify the connection between

them.

When Ondex is used for the construction of an integrated knowledge base, the
integration normally entails the application of the parsers, mapping methods
and transformers only. However, Ondex also supports a range of additional
transformers and filters that allow further analysis and data reduction of the
Ondex integrated schema. Some examples of tasks realised by such analyses
implemented as transformers are graph analysis methods and clustering
methods. Ondex filters allow data reduction by selectively removing entities
from the network that meet a set of criteria specified by the user - e.g. by
matching a combination of concept types or attributes or even by considering

the attributes of the neighbouring entities in the network.

The final step of the workflow usually involves exporting the results. This can
be done in the specialist OXL format, in which case the graph can be re-used
in future analysis, integration or explored interactively in the Ondex front end.
A range of other exchange formats can also be exported. For example, tab
delimited formats, Resource description framework (RDF) or SBML. Some of
the export plug-ins generate reports of the analysis performed on the graph, for
example summary statistics of the number of nodes and edge or core graph-

theoretic properties of the network. An overview of the key integration steps
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and parts of the system involved are shown in Figure 1.7. This example shows
the parsers and mapping methods used in Pesch et al. (2008), which used
Ondex to compare different approaches to transient mapping across different

data sources for the functional annotation of Arabidopsis proteins.

1.6.2.1 Ondex front end

The Ondex front end graphical user interface supports visualisation and
analysis of the graph structure of an Ondex knowledge base. The visualisation
engine uses the Jung graph library (White et al., 2004), which allows both
customisation of appearance for various graph elements and mediates the user
interaction with the graph. Similar to the Ondex workflow, the interactive
visualisation and analysis components are also realised as a set of plug-ins.
The front end allows some of the workflow plug-ins to be re-used — for
example, all of the filters are shared between the workflow engine and the
front end. However, in the front end the filters just change the visibility of
graph elements, whereas in the workflow they remove these elements from the
network. The tasks of changing colours, shapes and labelling of graph

elements is handled by a front end-only type of plug-ins called “annotators™.

As some of the networks are too large to visualise effectively, the Ondex front
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Figure 1.7 The organization of a typical Ondex workflow. This diagram breaks
down a typical Ondex data integration pipeline. Databases are imported via the
specialised parsers into the Ondex graph representation. The data can then be
further manipulated using the data integration methods, exported and
visualised in Ondex front end. Image from Pesch et al. (2008).
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end also supports a “distilled” view that displays useful summary information
from the knowledge base to be displayed as another as a network layout called
a “metagraph”. The metagraph only shows the types of concepts and relations
found in the graph and the relationships that exist between them. An edge is
drawn in the metagraph between pairs of nodes (representing concept classes)
if there is at least one instance in the actual graph of the edge of matching type,
direction and concept classes of source and target in the actual network. The
actual numbers of each occurrence are also counted and can be read by
clicking on respective graph elements. The counts of all the attributes are also
listed in tabbed panes, accessible from the main metagraph window. The
metagraph uses shapes and colours for concepts and relations that are
consistent with the main graph layout window and so it plays a supporting

function as a key to the main graph.

Another way to interact with the contents of an Ondex knowledge base is
through a command-line console. This interface was introduced during the
work on this project and is describe in detail in chapter 2. The command
console now supports approximately 250 different function calls. The
advantage of the command-line interface in the console is that it provides a
command scripting environment for more experienced users and also gives the
user the flexibility to customise the visualisation commands to suit their

specific needs.

1.7  DISCUSSION

Ondex data integration framework exists in an increasingly crowded ecosystem
of other data integration tools for biological data. However, only very small
number of tools offers the same degree of generic applicability, flexibility and
analysis options at a comparable level. Perhaps one of the strongest points of
the system from the practical perspective is the ease of deployment. The
system is implemented entirely in Java and none of the core functionality is
reliant on any external dependencies. This means that the installation is as
simple as unpacking the distribution and is completely platform-independent.
The Ondex system also includes both data integration and graph visualisation
components, which are designed to be interoperable and capable of exploiting

the same graph-based data model. Because Ondex offers both of these
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functionalities it actually competes with two different types of tools — data
integration/workflow environments and graph visualisation software. In the
first category, the two most prominent solutions that offer similar degree of
analysis power and flexibility whilst still offering a degree of platform
neutrality are Taverna (Hull et al., 2006) and Galaxy (Giardine et al., 2005).
The prominent examples in the latter category are Cytoscape (Smoot et al.,
2011) and Gephi (Bastian et al., 2009).

Taverna is a workflow management and execution system, which allows
construction of workflows from the web service based components. The
system is split up into three components Taverna Engine (workflow
execution), Taverna Workbench (GUI client) and Taverna Server (remote
workflow execution). The Taverna environment is more advanced than the one
offered as part of the Ondex system, and allows much greater complexity of
constructed workflows, which can be easily viewed and monitored via
interactive graph visualisation in the Taverna Workbench client. As the plug-in
components are webservice-based the overhead of implementing and
deploying them can be lower. This is because only generic and widely used set
of technologies are needed to implement them, as opposed to tool-specific
application programming interface (API), like Ondex. However, Ondex
workflow components can be packaged and distributed as files and run locally
on the user’s system. This may be advantageous in the situations where greater
security is necessary or large volumes of data need to be processed, as it does
not necessitates transfer of information via the Internet to pass it between
different remote services. Also, as Ondex plugins predominantly operate on the
Ondex graph representation, they are intercompatible with each other by
default, which makes it easier to re-use components between application cases
and reduces the overhead - it is normally not necessary to write converters to

bridge inputs and outputs of different components, as is the case in Taverna.

Galaxy offers a browser-based environment for workflow execution, with the
interface design largely similar to that of Ondex Integrator. Although it can be
argued that this makes the Galaxy server more difficult to deploy, from the
user’s perspective the access to the system is largely seamless and platform-

independent. Galaxy workflow components are very loosely restricted in terms
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of the types of data they operate on and place no format requirements at all in
terms of its format. This is a very different approach compare to Taverna (data
passed between workflow components must be wrapped in XML) and Ondex
(all data must be imported into Ondex graph data model). In fact, the workflow
components used in Galaxy are often just wrappers that delegate to various
external tools or even scripts. This can cause considerable complications when
it is necessary to make components available on a different server, as the
overhead would effectively be the same as having to re-deploy the underlying
tool or script. The loose typing also imposes considerable overhead of having

to write format converters.

In terms of graph visualisation tools, a very similar approach is taken by
Gephi, Cytoscape and Ondex frontend. All tools provide ways to visualise and
annotate networks (colour, shape and size), search for particular components
and alter their visibility. All three systems also provide a way to extend the
basic functionality by adding in additional plugins, which offer other analysis
methods. Gephi is unique in terms of being the first major Java-based graph
visualisation tool to implement full hardware acceleration, which is essential
for ensuring adequate performance when working with large networks.
Cytoscape has a very wide variety of plugins and is supported by a large
community of users. However, both of these tools operate on a very loosely
typed graph that only describes a basic graph structure and does not formally
specify any metadata about the attribute structure of nodes, edges or their
properties. It can be argued that the more complex data model of the Ondex
graph can more effectively model complex datasets and ensures greater

intercompatibility of graphs between different application cases.

Because of the investment into both workflow driven integration and graph
visualisation domains Ondex system has functionality that can complement
other tools in both of these domains. In 2008 further development of Ondex
was funded by the BBSRC SABR grant (BB/F006039/1). This allowed further
expansion of the system and part of these developments was to add greater
interoperability with other major bioinformatics tools. To that end, an
extension was developed that allowed Ondex workflow components to be

wrapped as Taverna-compatible web services. This enabled both the execution
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of Ondex-specific workflows in Taverna and the re-use of Ondex workflow
components independently of the rest of Ondex. From the perspective of
Taverna, Ondex was able to offer a persistent graph-based data management,
which was previously not readily possible as part of the system. The results of
this work are still being prepared for publication at the time of writing. There
was also a plugin developed that allowed the use of Ondex graphs in
Cytoscape (Weile et al., 2011). This implementation took advantage of Ondex
typing system for nodes and edges for constructing abstracted network views

in Cytoscape environment.

As is demonstrated by these two examples, Ondex system has additional
functionality that can complement other existing tools. However, there is also
one additional component of the system that differentiates it from similar tools
in both domains. This component is the underlying graph-based data model,
which is backed by a controlled vocabulary and supports typing of attributes,
nodes and edges. The assignment of the formally defined types provides a
common point of reference both for the data integration components of the
workflow system and plugins in the Ondex frontend. This simplifies the design
of complex operations on the graph, where it is often necessary to evaluate
grapil elements based on their meaning. For example, different types of
operations would be meaningful for nodes representing individual pathways as
opposed to those representing genes. Further discussion about Ondex data

model and its technical specification is included in chapter 2 of this thesis.
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2 EXTENSION OF ONDEX DATA INTEGRATION
SOFTWARE

2.1  SUMMARY

The work presented in this thesis has two main components. The first
component is the development of tools and methods to facilitate the integration
and analysis of biological data, which were realised as part of an open-source
software framework called Ondex. The second component demonstrates the
relevance of the methods developed through three different research
application cases. This chapter presents the two major technical contributions
made to the Ondex system as part of this work and explains how they fit into
the rest of the Ondex software architecture. The first such contribution was the
development of the GUI-driven tool for workflow construction. This
development was essential for effective management of a large and complex
collection of workflows necessary to generate and keep up-to-date the datasets
used in the subsequent chapters. The second contribution was the scripting
environment for the Ondex front end. The introduction of the scripting
functionality allowed analyses to be done on a much finer level of granularity
and with increased flexibility than was previously possible. This was
particularly important for the efficient interrogation of the integrated datasets

in Ondex front end.

2.2  INTRODUCTION

The Ondex data integration system (Kohler et al., 2006) supports the import of
a variety of data sources and exchange formats and offers a wide and ever-
increasing suite of tools to analyse, query and visualise these data. The work
described in this thesis has relied on many pre-existing features of the system.
However, there were also many areas where new functionality was necessary
to import additional sources of biological data, add novel analysis methods or
to improve the usability of the software itself. Many new features and
improvements were therefore introduced to the Ondex system as a direct
requirement of the work carried out during this project. Contributing to a
project under active development has also incurred some costs in the form of

having to provide support for the new features, contribute to its end-user
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documentation and update it to keep up with the changes of the code in the
main project it relies on. As Ondex is open-source software with a number of
academic users, these software development achievements constitute an
important contribution both to the wider research community and to the field

of tool development for bioinformatics as a whole.

The full extent of the changes made to the Ondex system during this study is
too broad and interwoven with the work of other developers working on Ondex
to be fully covered within this thesis. Therefore, only the developments that
constitute a complete and fully functional additions to the system, which were
initiated and realised as part of the work for this thesis, will be mentioned here.
For simplicity, the implementation of the more specific methods related to
particular aspects of the application cases are described in the corresponding
~ chapters. This chapter covers the extensions of general relevance only, such as
the analysis methods that are applicable to a wide range of data integration
problems or improvements that make the system more reliable and easier to
use. In this category, two important contributions were made to the Ondex
system: a new workflow management framework and the development of
Application Programmers Interfaces (APIs) to other programming
environments. Other smaller developments include a library of tools to
facilitate data exchange in the tabular format, integration of clustering tools,

statistical analysis methods and new visualisation approaches.

The needs of the application case have also pushed the limits of what was
technically possible in the Ondex system and this motivated the introduction of
a large number of new data representation formalisms and analysis methods
that went far beyond the original remit of Ondex as primarily a data integration
platform. Therefore, the work to extend the core functionality was chiefly
motivated by the need to be able to express and manage this newly introduced
complexity. For example, a more flexible workflow management solution was
required to effectively deal with the number of workflows and plug-ins
available, and scripting functionality provided by the interface to JavaScript
allowed an interactive creation of fine-grained analysis scripts tailored to
specific problems. Another important motivation was to increase the

productivity — if the repetitive and error-prone tasks can be automated, more
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time may be spent on the actual data analysis. Addressing these issues resulted
in a net gain in amount of work that was done on the biological application
case during the course of this project - although some time was spent on
development and support of these features, even more time was saved as a

result of having them in place.

2.3 DEVELOPMENT OF A NEW WORKFLOW MANAGEMENT AND
EXECUTION SYSTEM

It was identified very early in the project that an effective approach was needed
for creation and management of a large number of workflow files. As all of the
interactions with the data integration part of the Ondex system are mediated by
XML workflows, in excess of eight thousand workflows were created to
support the data integration, analysis and testing during development described
in this thesis. The primary reason for such a large number was the need to
accommodate the need of being able to refer back to the analysis done with a
particular version of Ondex or plug-in. Simplifying the management of this
complexity and making the workflow creation process simpler and less error-
prone was one of the main motivations for extending the existing Ondex
system. Another shortcoming of the original implementation was the severe
restrictions on the types and formats of data that can be operated on by a plug-
in. The former issue was dealt with by creating a user-friendly tool for creating
and editing workflows. This became known as the Ondex Integrator. The
latter issue was addressed by defining and implementing a generic Ondex
workflow API that generalised the original plug-in API and could be used to

define a more advanced workflow enactor system.

The original Ondex system offered basic functionality to script workflows
using a simple XML format. The workflow execution was handled with one
Java class that parsed this XML file, instantiated appropriate plug-ins and
executed them. The workflow parser relied on a specific package structure in
order to resolve the class names and locate the necessary plug-ins. Although
this solution allowed some data integration tasks to be performed, it also came

with a number of drawbacks that resulted in a considerable overhead.

Throughout this project, the Ondex system was under very active development
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and the behaviour, naming and arguments of the plug-ins changed frequently.
This made working with Ondex as a user and developer a challenge, and the
situation was made more challenging by the fact that the documentation was
not ready and was generally only to be found in the source code accessible as
comments or values of specific arguments. If, for example, the behaviour of
the plug-in was changed, the only symptom was usually the failure of a
. workflow to complete successfully or, worse still, incorrect modifications or
artefacts in the graph that were only evident in the later stage of the analysis —

and resolution of these issues would usually be very time consuming.

Another set of complications arose from the manual editing of the workflow
definition files. This process necessitated that the user either commits to
memory all of the correct identifiers of Ondex plug-ins and their arguments or
refers to the source code in order to find the correct parameters. However, the
number of Ondex plug-ins is now well past the one hundred mark and on
average they have around eight configurable options. Manual entry of such a

large number of parameters was also found to be particularly error-prone.

From the developer perspective, the close coupling of the workflow execution
to the process of parsing the workflow description file made the system
inflexible and difficult to improve, extend or debug. Although the API for the
definition of plug-ins allowed them to be easily executed programmatically,
this was not the case when the task necessitated the construction of a workflow
programmatically. It was clear that the implementation also constituted bad
practice from the object-oriented software design perspective, as it breaks two
of its core principles - encapsulation and separation of concerns (Wu, 2006).
The encapsulation principle calls for all the code and variables that are needed
to carry out a particular task to be enclosed within their modules, with only a
minimal number of well-defined inputs and outputs passing between the
modules. Separation of concemns requires each individual module of code to be

designed to carry out one particular task.

2.3.1 Overview of the new system architecture
The tasks of creating, input/output (IO) and executing workflows are realised

by three top-level modules. To support this architecture an additional level of
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workflow API is required — one set of classes that stores the definition of
available workflow components and another set that holds the bindings of
selected modules to the values of their arguments once they have been
configured. These sets of classes become the main form in which the
information is exchanged between three parts of the system. An additional
channel of communication is also necessary in order to capture and handle
possible errors that could arisevin any of the parts, and wherever possible are

collected and reported to the user by a unified set of error-handling classes.

The module that manages workflow creation also builds and maintains the
complete index of all available plug-ins, the associated documentation and the
name and specification of their arguments. A sub-module deals with keeping
track of individual workflows that were created, which take the form of a list
of selected components and the values of the arguments that have been set.
Although this module holds the references to all of the available components,
they are not instantiated until needed in order to keep the memory foot-print
low and keep the time needed for indexing to the minimum. This module also
has the functionality to carry out a set of input validation tasks — like checking
the integrity of the workflow structure (e.g. that there is no plug-in scheduled
to be executed that needs an Ondex graph instance before a plug-in that creates
one) or verification of individual arguments against their specifications (e.g.
that all of the required arguments have been set for all plug-ins and the correct
type of value was supplied for them). As this module is not coupled to a
particular input format, it allows the functionality of constructing the workflow
either dynamically or from a workflow description file. The information about
what plug-ins to run and the associated options is held internally in a task

description class.

The task description class holds the information in a form that is suitable for
interactive editing or being saved in the file. Internally, this representation
forms a tree data structure of the various elements corresponding to the levels
of organisation a workflow — e.g. workflow (root), workflow component,
workflow component parameter. The interactive creation of the workflow is
handled by populating the task description via the Ondex Integrator graphical

user interface (GUI). The task description format is also used by the export and
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parser classes that save and load the workflows from the XML-formatted
Ondex workflow file format. These two groups of classes constitute the

workflow creation and 10 modules.

The task description representation is converted to the workflow instance
representation that is used by the workflow enactor and also creates and
maintains the reference that links the components in the workflow instance to
the original specifications in task description. This reference can be used to
produce meaningful error reports, which relate users’ inputs to the problems

identified, and to provide feedback about the workflow execution progress.

To accommodate this new workflow representation, a new XML format to
describe Ondex workflows was developed. The implementation allowed for
backwards compatibility, and supported reading of the original workflow XML
format by parsing in to a workflow that conformed to the new formalism, but
realised original type of behaviour. This was possible because the new format
retained the same basic set of information needed to re-construct the workflow.
The only types of information that the older format did not provide were filled
in with by assuming that only one Ondex graph was being used and that (with
the exception of the Ondex graph) only the simple data types (e.g. string and

numbers) where passed to the workflow plug-ins.

2.3.1.1 Ondex Plug-in API and pre-existing functionalit

The Ondex plug-in API defines five types of plug-ins all of which implement
an AbstractONDEXPlugin interface. From the workflow enactor point of
view, the plug-in is seen purely in the terms of inputs that it requires and
outputs that it produces. The AbstractONDEXPlugin interface describes
the unifying features of all Ondex plug-ins — i.e. the inputs and outputs that all
of them must have. Therefore, all plug-ins need one instance of ONDEXGraph
and an object that holds the collection of arguments for that plug-in
(ArguemrntDefinition class) as inputs. The interface does not define
any inputs, so these must be handled based on a type of a plug-in. Some of the
code needed to run specific types of plug-ins is also externalised and is located
in another class. According to this scheme, the following steps are taken to
successfully execute an Ondex plug-in: create and instantiate an instance of a

plug-in class, get a plug-in specific argument container from it, populate the
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container with appropriate configuration arguments, pass the container back to
the plug-in, pass an instance of Ondex class to the plug-in, run the pre-amble

external code, execute the plug-in and run the post-amble external code.

2.3.1.2 Plug-in registry and workflow description API

Ondex plug-ins are available as separate optional modules and for this reason
any particular Ondex installation will not have the information in advance
about which plug-ins (and which versions) will be available. The loading of
plug-ins is therefore managed by the PluginRegistry class. Upon the
initialization of the PluginRegistry, specified plug-ins directories are
scanned for plug-ins and an index is assembled of everything that is available.
All plug-ins in the index are referenced using a special unique identifier field
and full record also holds relevant documentation, the list of arguments,
argument types and restrictions on them. This representation is a descriptive
read-only record that makes it possible to discern the correct set of
configuration options for that plug-in. The workflow is assembled by creating
a task entry instance that holds a reference to the original type of the plug-in as
well any configuration arguments supplied. The list of all tasks is then

deposited in the order they are to be executed in the Task class.

The Task class, task entry and plug-in descriptor are all generic and do not
require the instantiation of any of the actual Plug-in classes in order to work.
This allows the separation of the workflow execution from the workflow
assembly, configuration and storage tasks. In theory, using this API it is
possible to define a PluginRegistry implementation that resides on a
server and provides the plug-in descriptors to the client on a different
computer. The workflow can then be assembled and configured on the client-
side and task description sent back to the server for execution. As this
representation is independent form the plug-in execution API, the user
interface layer that uses it is not directly affected by the changes to the

workflow enactor and vice versa.

2.3.1.3 Workflow enactor

The Ondex workflow enactor system introduces an abstraction layer that
allows most the complexity of the plug-in execution process to be bypassed.

Like many other workflow implementations, the basic building blocks of the
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workflow enactor model are processors and data links. Task processors are
components of the workflow that carry out specific tasks and have multiple
inputs and outputs, whereas data links determine how outputs of one processor
are matched to the inputs of the other. When defined in this way, all of the
plug-ins can be executed in exactly the same manner and all the workflow
system needs to do is to do it in the correct order and pass the output and input
objects to the correct task processors. Although a much better solution would
have been to refactor the Ondex plug-in API to conform to this simple model
and fully encapsulate pre- and post-amble code inside the respective plug-ins,
this was not possible due to the amount of time that would have been needed
for such an extensive refactoring. Instead, the original system of plug-in
execution was modified to become more modular, the original Ondex plug-in
API left intact and the processor interface was added as a wrapper. This has
partially solved the problem of the original specification lacking some of the
necessary functionality — like the ability of plug-ins to create new data objects
as it became possible to define a new type of plug-in using the processor

interface directly.

2.3.1.4Ondex Integrator tool

The Ondex Integrator is a GUI that facilitates the tasks of workflow creation
and editing. It provides an easily accessible way for the user to browse through
the plug-ins that are currently available in their particular installation of Ondex
and an intuitive interface for maintaining and modifying the XML files, which
store Ondex workflows, It also allows workflows to be validated and executed

(Figure 2.1).

The first version of the workflow management GUI was released in 2007
under the name of “Ondex Workflow Launcher”. This tool was the first user
interface ever created for the Ondex data integration back end. This version
was integrated with the Ondex front end and allowed seamless exchange of the
graphs between the back end and front end parts of the Ondex system. It was
possible to run the analysis directly on the graphs loaded in the front-end or to
immediately visualise the results of the integration without the need for a

lengthy procedure of saving the graph on disk using the Ondex back end and

loading it in again in the front end.
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Figure 2.1 Ondex Integrator v1.0. This is a screenshot of the first version of the
Ondex workflow management tool, released in 2007. The panel on the left lists
all available plug-ins, which can be filtered using a combo box above it. In the
centre is a workflow editing tabbed pane. It lists currently loaded workflow files
in separate tabs and lists individual components and their configuration. New
elements can be added by selecting them from the list on the left, by dragging
and dropping them from another position in the workflow or by copying and
pasting existing elements. A list on the left holds the references of all previously
created graphs. These references can be used in subsequent workflows or
loaded for viewing in Ondex front end.

The graphical user interface works directly on the task description
representation. The advantage of this approach is that, since this representation
does not depend on any of the actual plug-in implementation classes, the
configuration and arguments can still be recovered even when the workflow
file is no longer in sync with the version of the plug-ins installed on the

system.

Workflows can be constructed by selecting a type of plug-in from the list —a
plug-in of that type is than added to the workflow at the position specified.
Each plug-in entry shows all of the valid arguments, their default values and
allows access to the available documentation. Any available documentation
about the plug-in itself and each of its arguments was displayed in the tooltips

of corresponding user interface elements. The GUI supports all of the common
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Figure 2.2 Ondex Integrator v2.0. In this version of Ondex Integrator the user
interface was streamlined by removing unused elements. The documentation
was moved from tooltips to a separate set of tabbed panes (bottom-left). The
plug-ins display was also changed to a tree, which made it possible to sort plug-
ins by status as well as type. The workflow execution progress is reflected by
the changes in the colour of the workflow component elements (displayed in
the tabbed pane on the right).

types of arguments currently defined as part of the Ondex plug-in API and can
provide a different input control that corresponds to each type — e.g. a multi-
line list where there can be several arguments of this type or a check box if the
argument can only take a value of “true” or “false”. The inputs and outputs of
plug-ins can also be assigned identifiers that determine the flow of resources
between different workflow components. The GUI interface delegates to the
other parts of the workflow API for validation of the workflows created, their

execution and saving and loading of files.

2.3.1.5 New features implemented in the Integrator 2.0

Ondex Integrator v2.0 (Figure 2.2) was released in 2009 and featured a number
of improvements to the interface. This version was no longer integrated into
the Ondex front-end and was instead released as a stand-along tool. The

interface was updated to make the best use of the new plug-in annotation
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framework, which was contributed by other developers on the Ondex project.
The annotation framework uses Java doclet technology to allow a more
structured description of Java class files. Unlike the standard JavaDoc
comments, this information can still be accessed at run-time. By introducing
this annotation, it was now possible to easily keep track of the plug-in
development state and sort them into “stable” and “experimental” categories in
the user interface. When more documentation is available, it is presented to the

user in several tabbed frames at the bottom-left of the main window.

2.4  SCRIPTING API FOR ONDEX

The plug-ins provide a high-level of customisability for the Ondex data
integration and analysis pipeline by allowing a number of commonly
encountered tasks to be solved by combining a number of generic reusable
components. However, packaging the necessary code as a plug-in introduces
additional costs in terms of Java code needed to implement the required
interface methods, declare required inputs and unwrap the arguments. In some
cases the amount of code required to set up an Ondex plug-in actually exceeds

the amount of code that actually tackles the task itself several fold.

To address this problem, the need for a lower-granularity interface was
identified. This would be more suited to tackling a wider variety of tasks using
more specific and simpler reusable components. Such capabilities can be
supplied by a scripting language and a library of appropriate functions.
Functions can easily be chained together in much the same way the workflow
components can, but are usually designed to be much more specific and have
much lower implementation overhead. For this reason, functions are a much
better choice for the implementation of application-case specific processing
and analysis routines. An additional advantage conferred by the scripting
interface is the ability to interactively access the code written in other
programming languages, without the need to re-implement it in Java or the
need to develop a specialized exporters and parsers to allow the round-trip data

exchange between Ondex and other tools.

The need to allow this type of interaction between Java and other programming

environments is well-recognised in the Java developer community and there
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are a number of interpreters and interfaces for other languages available for
Java. Nevertheless, realising a general scripting interface is still less than
straightforward, as different programming languages frequently have
incompatible semantics and mode of operation. The scripting language
libraries often only support part of the functionality - either in the core
implementation of the scripting language or in the way Java objects are
handled within it. This necessitates a creation of appropriate wrappers for the
set of classes to be scripted, which re-package the original Java representation
to make it compatible with the scripting library of choice. As creation and
maintenance of a complete set of wrappers is prohibitively time-consuming
and the types of the modifications needed are usually clearly defined, this
process was automated using a byte code generation solution (JavaAssist
v3.12.0). A byte code generator provides a way of creating and modifying Java
classes at run-time and can therefore provide a way of re-generating a set of
wrappers without the need to change the main application in any way.
Therefore, the source classes may be modified by other developers without the
need to update the bindings to the scripting interface, which will always be in
sync automatically. It also makes it possible to add additional functionality for
the scripting environment as add-on modules even after the main application

has been built.

The API defines and manages the execution of a set of abstract tasks needed to
load and maintain a scripting solution, like the initialisation of the scripting
environment, generation of wrappers, clean-up, user interaction and error
reporting. As the API itself only defines the generic structure of relating a
scripting solution to a set of core Ondex classes and provides some utility
methods to facilitate the process of defining an appropriate set of wrappers, a
number of different scripting solutions can be seamlessly supported within the
same framework. Any of the implemented scripting environments can be
accessed either by supplying a script as an argument to a scripting plug-in in
the Ondex workflow, or interactively, using a command console in the Ondex

front end.

2.4.1 JavaScript

JavaScript syntax and semantics are very similar to Java and since Ondex is
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Figure 2.3 Accessory methods from the delimited file parsing API. The
accessory methods provide a simple way of binding specific columns or
constant values to the entries in the Ondex data model. There is a method for
every possible attribute of concept or relation. To simplify the task for the user,
the entries from the Ondex controlled vocabulary are automatically resolved
from string values or added to it, if missing. Arguments shown in italic can be
omitted from the input, in which case the default values will be inserted
automatically (as all of the fields of the attributes always need to be present).

written in Java, it is one of the easiest languages to integrate. Although there
are several JavaScript scripting libraries for Java, currently one of the most
advanced and flexible solutions 1s Mozilla Rhino
(http://www.mozilla.org/rhino/), which now supports all of the features of
JavaScript 1.7. This implementation allows direct access to Java objects and
classes as well as “native” classes defined in JavaScript. The robust
performance of the framework is ensured by the compilation of the JavaScript
classes into Java byte-code. Therefore, once a JavaScript has been compiled
using Rhino, it becomes Java and can offer similar levels of performance. For

these reasons, this scripting solution was chosen to be one of the first to be
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added to the system via a newly developed scripting API.

A JavaScript wrapper implementation provides a straightforward method for
specifying a subset of classes to be made accessible via the scripting interface.
The only input required is the fully qualified name of the class to wrap. The
wrapper generator then scans all of the methods of this class and compiles a
list of other non-default classes it relies on either as an argument or a return
object from a method. These classes are then scanned in the same manner, until
all types required are resolved to the types natively supported by the Rhino
library. Optionally, it is possible to customise this process by specifying the set
of methods of the base class that need to be implemented or ignored in the
wrapper, as well as the new names for these methods or for the wrapper class
itself. All static methods encountered by the scanner are mapped to functions
by collecting all of them in a single class, which is then made available in the
global scope. Because JavaScript, unlike Java, is a loosely typed language,
wrappers also contain the code necessary to correctly resolve Java generics to

and from JavaScript representations and handle the type casting errors.

p = new PathParser(getActiveGraph(), new DelimitedFileReader("C:/test.tab", " "));
c1 = p.newConceptPrototype({defAccession(0, "UNIPROT"), defCC("Protein"), defName(2));

I
1
I
I
I
i }
1 €2 = p.newConceptPrototype(defAccession(1, "UNIPROT"), defCC("Protein”), defName(3));
' . )

I

p.newRelationPrototype(cl, c2, defGDS(4, "P-value", "NUMBER"));

: p.parse();
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Figure 2.4 Example of using delimited file parsing API. The small sample file
(bottom-left) was converted to the Ondex network (bottom-left) using the
parsing script (top). The example and image were adapted from Ondex tutorial.
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2.4.1.1 Example: delimited file parsing

One of the best examples of how scripting interface can be used to simplify
time-consuming tasks is the API for parsing delimited files. Delimited files
still remain one of the most commonly used exchange formats and the vast
majority of the data used during the work on this thesis was accessible in this
form. Despite their simple formalism, many delimited formats have additional
features or complex relationships between their elements and, for this reason,
developing a generic parser that supports most of the possible formats remains
a difficult task. Another level of complexity is introduced by the requirements
of normalization to a standard conceptual schema — a parser must resolve any
semantic or syntactic heterogeneity issues when data is imported into a unified
representation. In Ondex, this is done by matching the data elements in the
original data source to the entries in the controlled vocabulary and sorting data

into semantically defined fields.

Delimited file parsing API simplifies this process by allowing fast construction
of format-specific parsers from a set of simple components (Figure 2.3). The
set of methods allows the definition of concepts, relations and relationships
between them. Additionally, all values can be piped into appropriate attributes
on these nodes and edges. Where a field is subject to the restrictions of the
Ondex controlled vocabulary, it is possible to specify the correct static value to
be used or to dynamically fill it in by creating a look-up between the Ondex
controlled vocabulary term and regular expression patters that it must match in
the source file. Although this API is written entirely in Java and is also used
within other Ondex parsers (among them AtRegNet and TAIR interactome
parsers) that work with the delimited files, it is primarily intended for
interactive use from the scripting interface. As illustrated by the example in
Figure 24, a typical file may be imported with as little as three to five
commands. As an example of how this API improves the efficiency of an
Ondex user/developer when parsing a delimited file, consider the code size of a
pre-existing Ondex delimited file parser, such as the ‘tab’ parser
(v10.03.2008). This native Java parser implementation is over three hundred
and fifty lines long. By comparison, just four commands (lines) were needed

using the delimited file parsing API to handle exactly the same file format.
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Figure 2.5 Example of Ondex-R integration. In this example a graph was loaded
into the Ondex front end and the console was switched to R mode. Then an R
view object is created it holds a reference to an Ondex view object that contains
all concepts currently in a graph. This object can then be queried via a number
of pre-defined functions to get information that can be used in a subsequent
analysis in R —in this example it is protein names.

2.4.2 R statistical environment

As a cross-disciplinary research field, bioinformatics often draws upon the
methodology of other disciplines to solve biologically relevant problems. In
particular, statistical analysis is often necessary to evaluate the significance of
the findings or to formalise evaluate the sources of variation in the data being
used or the models being developed. The R software environment (R
Development Core Team, 2008) is a popular statistical computing and
visualisation solution that is often called upon to fulfil this need. The relevance
of this platform to the bioinformatics community is particularly evident by the
amount interest in Bioconductor (Gentleman et al., 2004), an R library for
genomics analysis. From the data in PubMed, this original methodology paper
for Bioconductor (from 2004) has been cited 3904 times by April 2012. The R
environment is implemented in C++, but also has its own high-level language
based on the S4 specification, although many analysis methods are

implemented in C++ directly and only use S4 for linking with other
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functionality in the R environment. Ondex and R, however, have different and
complementary strengths — Ondex facilitates data acquisition and defines a
unified generic schema for wide range of biologically relevant information
types, whereas the focus of R is primarily on the downstream analysis of
numerical data. An interface between these two tools would simplify the
exchange of data necessary to bring together these tasks and allow more

complex analysis pipelines to be developed with minimal effort.

As many analysis methods in R are implemented in C++ libraries, just having a
Java interpreter for S4 would not be sufficient to gain access to those libraries
— as those links require a fully functional R environment itself in order to
work. In order to access the full R functionality a link between Java and the R
implementation in C++ is required. Programs written in C++, however, are
compiled to native code before they are executed, which is operating system
and hardware specific. The only way this code can be directly accessed from
Java is through a specialised interfacing framework called Java Native

Interface (JNI).

Although there are other R-to-Java interfacing libraries currently available, the
twin libraries rJava and JRI are the only ones that use the JNI framework and
therefore offer the best performance. The rJava library allows calls to Java to
be executed from the R environment. Each instantiated class is wrapped in an
R object which maintains a reference to it. The method calls are possible by
calling a special function that takes in the class instance reference object, name
of the method and its arguments as input. This function only uses a base class
of the argument to correctly construct a method signature, so the class of the
argument often needs to be changed, which can be done using a casing
function. Calls to appropriate functions are also required in order to convert the
primitive data types returned by Java into their R equivalents. The JRI library
is the opposite of rJava and allows R environment to be accessed from Java. It
allows R commands to be executed from Java and makes the results of this
evaluation available from the Java program. When used in combination, these
libraries allow two-way communication between Java and R environments — a

‘call-back’.
Although rJava-JRI libraries are sufficient to realise Ondex-R integration, there
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are still considerable usability issues associated with using the rJava interface
directly. The functions it offers are very low-level and calls to Java methods
are very verbose and have a complicated syntax. The need to cast objects to the
correct type and to use conversion methods to convert return values to R data
types also add an unwelcome layer of complexity. This issue is dealt with by
using an additional set of wrapper object on the R side, which deal with all of
this complexity and present them to the user as a set of native R objects and
functions. Similarly, on the Java side when JavaScript-wrappers are generated
an additional matching S4 class is generated for each of them by executing the
S4 class creation commands using the JRI interface. Every method on the class
is then wrapped as an R function that takes this class as its argument. When
this interface is used, all objects necessary for accessing Ondex are
automatically wrapped as S4 classes at the point they are accessed through the
R interpreter. As each instance of the S4 class only holds a single reference to
the complementary instance of the Java class, this implementation is also
memory efficient. All data is still stored on Java-side and is only moved across
to R side upon request. Only supported data types can be moved to R — as the
wrapper generator completely resolves all Java class dependency trees, all Java
classes returned by method calls are guaranteed to be contained within an S4
wrapper. If a return type is supported, it will be automatically converted to the
matching R data type when it is returned by the function.

When using this interface a user is presented with a direct link to R via the JRI
interface (Figure 2.5). The console looks and functions exactly like an R
console would. The only difference is that it is actually an integral part of the
Ondex front-end, has an additional set of S4 classes to mediate interaction with
Ondex and all objects in the main application, such as graphs and views, can

be accessed and manipulated using the R environment syntax.

The integration of R in Ondex provides a far superior functionality compared
to other graph visualisation or data integration tools where such a link has been
realised. For example, a link to R was available in older version of Cytoscape
via the CytoTalk plug-in (Reiss et al., 2005). With this extension it was
possible to access the Cytoscape API from an R console, but this

implementation was relatively low level, has a complex syntax and is no
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longer available in the latest version of Cytoscape. A better implementation
was realised in GUESS (Adar, 2006 ), a robust graph analysis tool for social
networks, which also has its own scripting language based on Jython, but no
data integration capabilities. This implementation allows switching between
the R and native scripting language, it is possible to send the data to R and
receive it back, but the graph can be queried or updated with the changes only
when in native mode. Both of these implementations use socket-based

approach, which is much slower than passing the data directly through the JNIL

2.4.3 Jython/Python

Python is a powerful and versatile scripting language with a very active
bioinformatics user community. Unlike the situation with JavaScript, Python
syntax and formalisms are very distinct from Java, but at the same time is more
succinct (e.g. more can operations can be performed with less code) and comes
with an extensive collection of libraries. Several of these, are aimed at
addressing the needs of the bioinformatics research community. These include
NetworkX (Hagberg et al., 2008a) for graph analysis and visualisation and
NumPy/SciPy (Peterson, 2009) which is a library of scientific mathematics,
science, and engineering numerical analysis methods. Python is particularly
popular within the bioinformatics community where it has overtaken Perl as
the preferred scripting language. This was revealed in a 2007 survey conducted
by Bioinformatics Organization, Inc. (www.bioinformatics.org). They found
that 23% of bioinformatics researchers questioned were interested in learning
Python, compared to 19% for Perl and 16% for Java. A number of Python-
based projects are specifically developing tools to support bioinformatics
research - for instance, Biopython (an extensive open source library for
computational molecular biology) (Cock et al., 2009), GenomeDiagram (a
toolkit for visualisation of large genomic datasets) (Pritchard et al., 2006),
PySCeS (modelling solution for cellular systems) (Olivier et al., 2005),
Sarment (hidden Markov model implementation) (Gueguen, 2005) and SIR
(collection of tools for working with biological databases) (Ramu, 2001). By
adding a Python environment to the Ondex system it was possible to take

advantage of these tools and analysis methods.

Currently two solutions allow interoperability between Python and Java. The
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first one is JPype, which integrates the two environments at a virtual machine
level. Although promising, this project is still at a very early development
stage and is primarily targeted at web developers. Another solution is Jython
(formerly known as JPython), which is a Python interpreter implemented in
Java. Jython allows full access to Java classes from the Python environment
and allows them to be used alongside the Python data structures. In this way all
of the functionality of Java can be accessed from within a Python-like coding
environment. As a pure Java implementation, Jython can also be very easily
added to any Java application. For these reason Jython was considered to be

the better choice of interpreter for use within the Ondex system.

Jython scripting environment in Ondex was implemented in a very similar way
to that used for JavaScript. The entry point for the Jython scripting
environment is an interpreter class that wraps the actual interpreter from the
Jython. This class handles errors and mediates interactions with the core
Ondex classes and methods accessible from the scripting environment. A
wrapper generator is used to wrap these classes and methods to be more
compatible with the Python environment. In Jython, the Java collections API
maps to native data structures, whereas in Ondex API, arrays are used more
commonly than collections. To improve the usability, wrappers perform
backwards and forwards conversion between array and list data structures. As
the example in the next section illustrates, the implementation also allows
import of external libraries and their use in conjunction with the Ondex data

model.

2.4.3.1 Example: interaction with the NetworkX v0.99 library

NetworkX is a graph analysis and visualisation library for Python. Its primary
goal is to allow fast and flexible construction of classical graph representations
from the source data. These graphs can then be analysed using a number of
standard network analysis algorithms or converted to publication-quality
vector images. The NetworkX data structure is designed to be very simple and
straightforward to use and therefore it is much quicker to prototype and test
analysis algorithms than working with the native Ondex schema. NetworkX
also has many more graph analysis methods than currently available in Ondex

itself. The real advantage that is gained from using NetworkX, however, comes
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Figure 2.6 Using the NetworkX Python library to Analyse an Ondex graph. The
console queries in Jython mode were used to find the largest connected graph
component. An empty NetworkX graph was created and populated with a
subgraph of all nodes that are connected by a relation with “PSI” attribute — the
same subgraph is also visible in the background. A method on the NetworkX
graph was then used to get all connected components, and the largest one was
identified by iterating through them.

from the ability to easily switch between different graph types. For example, in
different situations it may be preferable to represent a network as a graph with
direct or undirected edges or to assign a weight to them. Some of the analysis
methods, like shortest path, will produce different results depending on the
type of the graph they are applied to. In order to capture the full complexity of
biological data, the Ondex graph representation is one of the more complex
types and has a number of non-standard extensions that make it more than a
pure mathematical graph. If the Ondex graph data structure is mapped onto one
of the more basic representations provided by NetworkX library certain types
of analysis can be carried out that are specific to that network representation.
Conversion to the required formalism makes subsequent analysis more

transparent, easier to follow and, therefore, less error-prone.

To use any non-default Python libraries from the Jython scripting environment

they must first be installed on the user’s system. This process is identical to the
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installation of libraries for a standard Python distribution — they all need to be
correctly deployed in a directory (usually “lib” under the Python installation)
along with any dependencies. In order to be accessible from Jython this
directory must be provided to the Java application as part of its command line
arguments. After that, the library may be imported via a command in the
interpreter. The example in Figure 2.6 illustrates how NetworkX can be used to
interactively find a largest connected component in an Ondex graph using
functionality from the NetworkX library. The first line creates an undirected
weighted graph view of the Ondex network. To do this, an attribute needs to be
specified, which will be used as a weight for edges. The view created uses the
original Ondex identifiers for all nodes and edges. After the analysis is run,
these identifiers can be used to refer back to the Ondex entities in the largest

connect component and may be employed for further processing.

This example illustrates how simple set functions can be used to map an
Ondex network to any of the graph types supported by NetworkX. This
representation can then be used to interactively analyse the network. The
results of the analysis can then be used to generate analysis reports or written
back to the Ondex graph. Alternatively, a graph can be exported using one of
the NetworkX exporters and analysed further using other graph analysis tools.

2.4.4 SPARQL and semantic web

As biological data are becoming available in ever-increasing quantities, one of
the challenges faced by the research community is to efficiently mine and
share the accumulated knowledge. Although web technologies are now widely
used as a means of providing easy access to this information, integration and
computer-driven analysis over large number of heterogeneous resources still
remains an on-going challenge. One of the possible ways to enable such an
analysis is through the use of the Semantic Web technologies, which define a
framework for unambiguously identifying and categorising resources available
on the Internet. The Resource Description Framework (RDF) format (Lassila
et al., 1998) is used to make statements about these resources in the form of
triples (subject, predicate and object). These statements can be used to express
relationships between the resources in a format suitable for computational

processing. Data represented in RDF can be interpreted as a graph where RDF

63



resources (nodes) are linked to each other by predicates (edges). RDF also
enforces the use of globally unique identifiers and has an option of binding
data to a structured schema by creating references to appropriate ontologies. A
number of standards and ontologies for representing biological data have now
been developed and several prominent biological data providers provide their

data in RDF format.

Semantic Web approaches address a similar set of problems to those tackled by
Ondex, in the sense that they aim to provide a framework to integrate and
analyse disparate data. However, Semantic Web technologies were primarily
designed to work with the federated approach to data integration, where data is
distributed across potentially many online resources and is queried and linked
dynamically upon request. For this reason, the Ondex approach of importing
data via a set of parsers and working on a well-defined and usually local set of
source data files is not readily compatible with the real-time and unbounded
nature of RDF data stores. One possible way to reconcile these approaches and
bring some of the functionality of Ondex to semantic web based resources is to
make the parsing process in Ondex query-driven. By having a generic parser
for the results of a query against a set of online RDF data stores, a much wider
variety of resources can be imported with minimal effort. An additional benefit
of this approach is that the data imported in such way would be compatible
with the RDF specification by default and can be worked on using the same set
of tools, thus also addressing the need for a query language for the Ondex
graph itself. The ability to query the Ondex graph via a formalised and
efficient language has the potential to both improve the usability of the system
and facilitate sharing of the Ondex-based datasets with the wider research
community. SPARQL Protocol and RDF Query Language (SPARQL)
(Prud'Hommeaux and Seaborne, 2006) is a language for querying RDF graphs.
SPARQL allows graph patterns to be defined using an SQL-like syntax, which
can then be resolved against the content of an RDF data store. The result of a

query can be either a collection of data fields or a sub-network in RDF format.

In order to be able to use the data available on the Semantic Web, an
application needs to be able to connect to the external resources, support the

construction and execution of SPARQL queries against them and interpret the
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results. In the Ondex implementation, the former two requirements were
addressed by linking the Jena library to the Ondex scripting environment. Jena
is a Java framework for construction of Semantic Web applications (McBride,
2001). As well as SPARQL engine, Jena also provides a Java API for working
with RDF data, IO capabilities and deployment of RDF resources. As the
Ondex SPARQL engine implementation required a direct access graph model
whereas the other scripting solutions only needed to exchange the data via a set
of pre-defined methods, the design of this API is very different from the
previously described Ondex scripting solutions. Rather than allowing access to
a set of Ondex objects and functions, this implementation is in essence an on-
demand parser, which executes SPARQL queries and imports results into an

Ondex graph. This is possible because, with the exception of some advanced
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Figure 2.7 Dynamic import of RDF data using SPARQL. The Ondex SPARQL
query engine was used to fetch data from a MyExperiment RDF Endpoint. Two
queries were made to get the entities associated with dataflow components 85
and 86. The graph loaded in the background shows the results of the import.
Note the entities common to both queries were only imported once
(‘http://rdf.myexperiment.org/workflows/versions/1’,  ‘WorkflowComponent’
and ‘Resource’) had run and the results of both queries were merged using the
unique identifiers on these entities.
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features, an Ondex graph is compatible with the RDF formalism. Each RDF
resource can be interpreted as an Ondex concept, with literals (e.g. strings and
numbers) as attributes and predicates as relations between them. As RDF
identifiers are designed to be globally unique, if an RDF identifier is
encountered that is already in the Ondex graph, this pre-existing node will be
used and linked to any new data contributed by the query. In this way an
application-specific Ondex dataset can be created from the information

collected from different RDF data stores.

Another capability gained by adding SPARQL to the Ondex system is the
ability to query standard Ondex graphs in a generic manner. Prior to this
development, the only option for extraction of data from them involved
creation of specialised exports and transformers that employed a set of simple
API methods to realise each operation. Using an exporter to RDF (contributed
by another Ondex developer) any Ondex graph can be exported in a SPARQL-
compatible format. The Ondex SPARQL query engine can then be used to
mine these data and visualise the results in the Ondex user client. Although it
is also possible to load this data into other SPARQL-enabled environments, the
Ondex client is one of the few tools that allows the results of the RDF queries
to be visualised and also supports a wide range of other analysis methods for
graphs not available on other platforms. Data imported in this manner is also

compatible with Ondex Integrator plug-ins.

Figure 2.7 illustrates how information from several RDF queries can be
dynamically integrated by executing SPARQL queries in the Ondex user
client. The implementation of the Ondex SPARQL query engine is still at an
early prototype stage and it is recognised that the necessity to export the data
before the queries can be run on it constitutes a suboptimal solution.
Nevertheless, it does demonstrate the utility of using SPARQL for working
with Ondex graphs and provides a means to query the data - which was not
possible prior to the introduction of this engine. As will be demonstrated in the
subsequent chapters, an ability to find matching patterns in the graph underpins
many of the analysis methods implemented for this thesis. Currently, efforts
are underway to bring Ondex and RDF data models more closely together and,

when complete, the export step will no longer be necessary. However, due to
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the major re-engineering required, this refactoring is beyond the scope of this

project.

2.5  DISCUSSION

The Ondex framework addresses many of the challenges of dealing with large
and complex biological information. The Ondex approach is built upon two
key principles — configurability and reusability. Rather than encoding a set of
pre-defined solutions to common data integration problems, the system
provides a large number of generic modules from which application-specific
workflows can be assembled. The development of a workflow management
API and the Ondex Integrator tool have simplified the process of managing
these modules from the perspectives of both developers and users. The
Workflow API was developed to overcome the shortcomings of the Ondex
Plug-in API by defining a unified interface for all possible types of Ondex
plug-ins, which helped to standardise and optimise execution of Ondex
workflows. The plug-in descriptor/task entry and supporting classes also
allowed all meta-data about the plug-ins to be assembled in one place from
which it can be made readily available to the end-user through the GUI Based
on these two developments, an Ondex Integrator tool was built, which has
greatly simplified the process of workflow creation and management.
Together, these developments allowed for greater productivity when using the
system and enabled more complex analyses to be realised within Ondex

workflow than was practically achievable beforehand.

The development of an Ondex scripting framework made the system just as
customisable at a lower level of component granularity. It supported the
introduction of functions, designed to handle a simpler set of data integration
and analysis tasks that were too small to be sensibly realised using the plug-in
architecture. An analysis script could then be built from these functions by
executing them consecutively and linking together their inputs and outputs in a
way that is more accessible and intuitive for many bioinformaticians. On top of
this functional layer, a set of other capabilities could then be implemented,
where native Java components could be seamlessly combined with those
implemented in a less restrictive scripting environment like Python or

JavaScript. It was also possible to take advantage of ready constructed
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bioinformatics analysis tools available as libraries built in these languages and
use them as part of Ondex-driven analysis pipeline. It has also enabled the use
of a SPARQL interpreter to dynamically query Semantic Web resources and
thus successfully combine the warehousing-based and federated-based data
integration approaches in the same system. The SPARQL implementation has
also provided a general mechanism and query language for interrogating an
Ondex graph. This fulfils a requirement that has been considered by many

developers as a major shortcoming of the Ondex system.

All of these developments have allowed easier management of complex
analysis pipelines developed for this thesis and also increased the productivity
when using the system. Through use of clearly defined formalisms, like plug-
ins and functions analyses were made more transparent, easier to understand
and reproduce. By using these reusable components, the analysis methods can
also be more readily reconfigured for use on species other than Arabidopsis or
on different datasets. From the point of view of this project, the greatest benefit
from these developments was that they have made it possible to manage data
in a proactive way. Biological data is constantly updated, new data providers
enter the scene and new formats are defined for exchange of these data.
Therefore, during the four years of this project one of the major challenges was
to keep up with these changes and to update the datasets used for this project
accordingly. This process required changes to be made to some parts of the
data integration pipeline and analysis to be re-done on a regular basis. Through
the use of functions and plug-ins these changes could be restricted to the set of

affected components, thus making the update process more manageable.

The usability improvements have also helped to expand the Ondex user
community and support collaborative efforts of other developers. The Ondex
Integrator user interface has sigm'ﬁcantl& improved access to the system and
has simplified the process of getting to grips with Ondex for the new users. For
example, the Integrator interface shows all of the available plug-ins,
information about them and all valid configuration options, whereas previously
this type of information could only be accessed by looking through the Java
source code of appropriate plug-ins. The addition of Python, R and SPARQL

have also opened up Ondex to the users of these languages — as well as
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enabling a wider range of bioinformatics problems to be tackled by bringing in
the functionality developed under those environment into the system. Both the
Ondex Integrator and scripting environment have been a core part of the
Ondex tutorial since their introduction in 2007; this reflects their importance

for the Ondex user community.
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3 COEXPRESSION NETWORK CONSTRUCTION

3.1  SUMMARY

The expression levels of multiple genes can be measured simultaneously using
a number of different DNA microarray approaches. Due to the large number of
measurements, often under a set of different conditions, it is often useful to
summarise such data in the form of a coexpression network. In such
representation, the nodes represent individual genes and links represent a
measure of similarity between their expression profiles. To allow incorporation
of expression data as part of the integrated dataset used in the Ondex system, a
coexpression analysis pipeline was implemented as part of this work. The
analysis pipeline combines several well-established methods for each step of
the coexpression analysis, automates the handling of bad data entries and
mediates the flow of information between different analysis steps. Java-based,
parallelised implementations for the calculation of weighted Pearson
correlation and a network structure based threshold selection were also

produced as part of this work.

3.2  INTRODUCTION

Changes in the types and quantities of proteins in the cell (proteome) are
fundamental ways that living organisms use to respond to changes in the
environment and realize their progression through the lifecycle (Kitano, 2002).
One of the possible ways to control protein levels is at the stage of
transcription, by regulating the number of mRNA copies for the particular
genes (Schena et al, 1995). Amounts of the specific mRNA types
(transcriptome) can serve as an indicator of the quantities of corresponding
proteins present in the cell (Gygi et al., 1999). Because the transcriptome is
more amenable to quantification using current technologies than the proteome,
this trend has been of great importance and was the main reason that DNA
microarrays were adopted so enthusiasticallyy. DNA microarray-based
approaches have been actively used since mid-1990s (Rockett and Hellmann,
2004) and by re-analysing the these data it is often possible to extract novel
insights that were not an intended target of research in the original microarray

experiments (Jen et al., 2006).
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Most of the approaches for analysis of expression data rely on the principle of
“guilt-by-association”, whereby genes that have corresponding levels of
expression across multiple conditions are likely to be biologically linked
(Wolfe et al., 2005). However, this link may be an indication of one or more
different types of associations. Possible interpretations include involvement in
the same metabolic pathway (DeRisi et al., 1997), protein-protein interaction
of the respective gene products (Ge et al., 2001) and an association with a
common regulatory mechanism (Ideker et al., 2002) or biological process
(Stuart et al., 2003). The groups of co-expressed genes are commonly
recovered from all-versus-all coexpression matrixes using clustering and
principle component analysis methods to yield gene lists for further study
(Korenberg, 2007).

Coexpression data can also be conceptualised as a network, where nodes are
genes and edges indicate similarity of expression profiles. The steps commonly
undertaken to construct such a representation are explained in detail in the
Section 6.1.1. Network representation is suitable for clustering as well as for
application of methods from graph theory (Butenko et al., 2009) and may be
leveraged to allow the interactive visual exploration of large and complex
biological datasets (Shannon et al., 2003, von Mering et al., 2003, Kohler et
al., 2006). Network visualisation is potentially important, as it allows
presentation of extensive datasets in an intuitive and easily accessible form.
This makes it possible for non-technical experts (e.g. experimental biologists)
to more easily benefit from the results of data integration and bioinformatics
analysis. Therefore, networks can serve as a useful communication tool
between biologist and bioinformatics researchers and facilitate cross-
disciplinary research. Such interaction is particularly important as, at present,
most biological knowledge is still not available in a structured form; therefore
facilitating easier access to the data can enable discoveries not attainable by

purely computational means (Kohler et al., 2006).

As a means of visualising networks was already provided as part of the Ondex
system, only limited extensions to the existing visualisation methods were
necessary to enable viewing of expression networks. However, what was

missing from the system were the straightforward methods for import of the
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expression data and its interpretation as a network. This chapter describes the
work that was done to develop such an analysis pipeline and explains all of the
steps involved in the process. The next section introduces the microarray
technology and reviews the selection of the relevant current methods with the
view of providing a justification for the selection of the individual analysis

components to be part of this pipeline.

3.2.1 Transcriptome analysis using microarrays

DNA microarray technologies exploit the property of DNA hybridisation,
whereby the complementary single DNA strands will form a double helix
under a particular set of conditions (Deonier et al., 2005). As described by
Deonier et al. (2005), the analysis usually involves the following steps. In most
approaches for transcriptome profiling the mRNA in the sample is converted to
the complementary DNA (cDNA). These single-stranded cDNA molecules
(targets) hybridise to complementary components fixed to a solid substrate
(probes). The probes are densely grouped at particular locations (spots), so that
each group only contains the probes with an identical sequence. The array is
brought into contact with the sample to allow probes to hybridise with their
targets, after which all unhybridised cDNA is washed away. The targets are
integrated with a fluorescent marker that allows their relative abundance to be
evaluated by measuring the intensity of the fluorescence at a particular location

on the array.

Presently, there are two widely used types of microarrays for the profiling of
-gene expression — spotted cDNA (Schena ef al., 1995) and oligonucleotide-
based (Pease et al., 1994) arrays. The spotted arrays use longer probes of about
~200 nucleotides-longs, usually with one probe sequence per matched target
sequence. In oligonucleotide arrays each target is matched to a set of shorter
probes that match different parts of the target sequence, between 25 and 60
nucleotides in length (Deonier et al., 2005). The oligonucleotide arrays are
now more common, although both types are still currently in use (Kawasaki,

2006).

The raw fluorescence measurements are affected by noise both from the

technical and biological steps of the protocol (Kohane et al., 2003). Therefore
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Figure 3.1 Number of samples (individual slides) in the GEO database for all
platforms used to study Arabidopsis thaliana that have more than 100 samples.

statistical processing is commonly applied to the reported values in order to
account for these effects, commonly referred to as “normalisation” (Kohane et
al., 2003). The work in this thesis primarily concerns the analysis after this
stage and only uses well-known and established methods for microarray
normalization. Therefore, the detailed description of the normalisation methods
or their benefits and drawbacks is not provided here because of their limited
relevance. The choices used were primarily guided by the works of Reimers
(2010) and Korenberg (2007) and the references for the selected normalisation
approaches and implementations are included in the appropriate method

sections.

The absolute measurements of expression levels from the oligonucleotide
microarrays (of the same platform) tend to be consistent between different
experiments (Shippy et al., 2004, Petersen et al., 2005, Piper et al., 2002).
Consequently, the data from them can be more readily combined and tend to
be less affected by the intra-experimental discrepancies. With its ability to
detect over 23 750 different transcripts, the Affymetrix Arabidopsis
oligonucleotide microarray ATH1-121501 (Redman et al., 2004) provides
very good genome coverage when compared to other platforms. As illustrated
in Figure 3.1, this platform is currently the most widely used for studying

expression in Arabidopsis thaliana. For the reasons outlined above, the ATHI-
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121501 platform was predominantly used in this work. The results from the
selected experiments using other microarray types were also integrated for
particular use-cases in the form of the differehtially expressed gene lists.
Although the choice to base the coexpression analysis pipeline on the
Affymetrix oligonucleotide array was made in order to get access to the largest
possible set of expression data for Arabidopsis, the data importer for the
Ondex system was implemented in a generic manner and the pipeline can be

used for the analysis of other Affymetrix oligonucleotide arrays.

3.2.2 Construction of networks from expression data

3.2.2.1 Profile similarity functions

Expression levels of genes under a set of different conditions (gene expression
profiles) can be interpreted as a network where the nodes are genes and edges
represent the similarity between their expression profiles (Stuart et al., 2003).
When supported by other types of data, coexpression networks can be a
powerful tool for the interpretation of microarray data (Eisen et al., 1998,
Marcotte et al., 1999). In order to construct such a representation from the
vectors of raw gene expression values, a function is required to produce a
similarity (distance) measure for every pair of vectors in the dataset. Most
commonly used measures include Pearson correlation, Euclidean distance,
Spearman rank correlation and mutual information (Steuer ef al., 2002, Butte
and Kohane, 2000). The Pearson correlation metric can differentiate between
negative and positive associations, whereas mutual information and Spearman
correlation can also recover non-linear dependencies between the vectors. A
number of studies have also suggested refinements (Zhang and Horvath, 2005,
Cherepinsky et al., 2003, Watson-Haigh et al., 2010, Balasubramaniyan e al.,
2005) or novel metrics (Yona et al., 2006, Kim et al., 2007, Nguyen and Lio,

2009) specifically tailored for evaluating gene expression profiles.

From the perspective of this work, there were clear advantages in using one of
the more widely adopted metrics, both in terms of the more straightforward
comparison to other works, increased confidence in the approach, greater
relevance of findings to the research community and being able to benefit from
the applicable methodology refinements. Although the studies introducing new

metrics tend to present some sort of evaluation to illustrate their superior
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performance, such evaluations are usually limited in scope and the uptake of
such new measures by the research community remains low. As was recently
highlighted by Boulesteix (2010) and Jelizarow et al. (2010), independent and
large-scale evaluations are imperative for determining the real benefit of novel
bioinformatics analysis methods. This is especially true in the case of selecting
the most suitable measure for expression profile similarity — as the
performance of different distance measures was shown to be very sensitive to
the choice of the microarray evaluation set (Yona et al.,, 2006, Li and Wang,
2009, Daub et al, 2004). However, so far there have been no such
comprehensive studies to compare the performance of the newly developed
measures and conducting one was considered to be outside the scope of this
- work. For these reasons, it was decided that the best strategy was to adopt one

of the more established and better-understood metrics.

The more commonly used measures have now been evaluated in several
independent studies. Among them, the comparisons performed by Yona et al.
(2006), Li and Wang (2009) and Daub et al. (2004) appear to be among the
most comprehensive ones. However, there appear to be some differences
between the results obtained. Most notably, the performance appears to vary
greatly depending on the choice of the microarray set. Nevertheless, a number
of useful insights can still be derived from these works. In particular, it is
possible to observe that, depending on the dataset, Spearman correlation and
the Euclidean distance often either massively over- or under perform other
metrics (Yona et al., 2006, Li and Wang, 2009). Mutual information and
Pearson correlation tend to perform more consistently and were not found to
under-perform as frequently as the former two measures (Daub et al., 2004).
Daub et al. (2004) has concluded that there was no difference in the
performance between the latter two measures. For more than half of all the
microarray sets investigated in these three works there were negligible
differences between most metrics, however very substantial differences were
observed in a minority of cases — but no clearly superior metric or a strategy
for selecting one was apparent for those instances. Based on this information,
Pearson correlation was chosen for this work, as it tends to perform

consistently and can be calculated faster than the mutual information methods.
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3.2.2.2Threshold selection approaches

As any two vectors have a distance value, a coexpression network is a fully
connected, weighted graph. Although such a representation can also be used
directly (Zhang and Horvath, 2005), analysing data in this raw form may
become very computationally intensive as many graph analysis algorithms
work faster on the more sparse graph representations. For this reason, it is a
common practise to remove some of the edges from the network, leaving only
the ones that capture the most biologically meaningful connections. To that
end, a number of filtering strategies have now been developed, which can be
loosely grouped in several categories. The simplest of the methods involve an
ad-hoc selection of an arbitrary stringent threshold (Zhou et al., 2002),
applying an arbitrary cut-off to a rank-transformed coexpression values
(Obayashi and Kinoshita, 2009, Ruan et al, 2010) or evaluating the
significance of the detected similarities (Lee et al., 2004a). Other, more
complex approaches rely on a statistical analysis of the data, whereas others

draw upon other knowledge.

Purely statistical approaches focus on the analysis of the set of expression
values themselves to identify the edges to be retained (Markowetz and Spang,
2007). These methods are based on the notion of determining statistical
independence of individual profiles (Markowetz and Spang, 2007). The tools
implementing this type of analysis include BANJO (Yu et al., 2004),
ARACNE (Margolin et al, 2006), NIR/MNI (Gardner et al., 2003, di
Bemardo et al., 2005), BNarray (Chen et al., 2006a), GNA (de Jong et al.,
2003) and BNFinder (Wilczynski and Dojer, 2009). These methods make it
possible to infer an underlying gene regulatory network (GRN) and even
recover the direction of the regulatory relationships between the genes.
However, their utility is often limited by the type and amount of available data.
From the theoretical perspective, a ‘perfect’ resolution of the GRN is only
possible if the number of measurements is greater than the number of genes
being studied (Markowetz and Spang, 2007). As this is rarely the case in
microarray profiling studies, additional simplifying assumptions or
workarounds are often necessary to compensate for it (Markowetz and Spang,

2007). Even with these strategies, the performance of such algorithms is often
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low when the number of genes considered is >5000. For example, of the three
different network inference methods evaluated by Bansal et al. (2007), the best
performing (ARACNE) achieved only 0.14 precision and 0.35 sensitivity on a
set of 7907 genes, whereas in another study PCIT algorithm was reported to
out-perform ARACNE with the score of just 0.08 precision and 0.2 sensitivity
on a set of 7750 genes (Reverter and Chan, 2008).

The thresholding strategies that rely on prior knowledge work try to optimise
the number of links in the network that are known to correspond to meaningful
biological relations. Associations commonly used for such verification include
confirmed transcription factor-target relationships, pairs of proteins of similar
function, proteins known to interact or assigned to the same metabolic
pathway. Another possible strategy is to optimise the threshold according to
some properties derived from the dataset, which are known to be representative
of such associations. For example, in Elo et al. (2007) the threshold was
chosen according to the clustering coefficient (defined further down) of the
resulting network, whereas Zhang and Horvath (2005) have advocated the use

of the scale-free topology property as such an indicator,

For this work, the method proposed by Elo et al. (2007) was selected. It is
clearly superior to simpler, ad-hoc approaches as it attempts to maximise a
graph property demonstrated to be a good indicator of biologically meaningful
relationships. The study presents convincing evidence to that effect, both on
real and simulated data and shows that this method makes it possible to
achieve the best balance between true and false positive rates. Another possible
alternative was to use the functional similarity of genes directly to derive the
cut-off threshold. However, as was reported in chapter 3, only about 60% of
the Arabidopsis genes have at least one functional annotation. It is also
challenging to ascertain whether the currently known annotation sets capture
all of the real functions for particular genes and there is also no manually
reviewed negative control datasets of sufficient size currently in existence.
Under these circumstances, the use of functional annotation is likely to lead to

many false-negatives due to the missing information.

3.2.2.3 Extraction of insights from coexpression datasets

Once the coexpression relationships between the genes have been determined,
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the next step is to relate these patterns back to the underlying biological
processes being investigated. This step is often very open-ended and may be
less formalised because of the need for human input for the interpretation of
the more complex patterns observed. Therefore, a range of approaches have
been developed ranging from the computationally driven ones to the ones that

focus on enabling user-driven interactive query and evaluation.

One of the simpler and often-used methods for summarising these data are
expression plots that help to identify related genes or sets of condition where
the link between them manifests itself. A number of expression data resources
offer this functionality, for example NASC-Arrays repository (Craigon et al.,
2004) offers the two-gene scatter plot functionality and ACT (Manfield ef al.,
2006, Jen et al., 2006) supports the construction of gene co-correlation plots.
Other commonly applied types of analysis involve the detection of modular
structure, like clique-finding (Shi et al., 2010, Zheng et al., 2010, Manfield et
al., 2006, Jen et al., 2006) and clustering approaches (Eisen et al., 1998, Mao
et al., 2009, Wu et al., 2002). In Ondex, the clique-finding and other network
query methods were added by enabling use of the NetworkX library from the
console in the Ondex front end. The implementation of this link was developed
as part of the work for this thesis and was presented in chapter 2. Additionally,
an implementation of the Markov Cluster algorithm (MCL) was also wrapped
in Java and made accessible both in the form of an Ondex workflow plug-in

and a function from the console in Ondex front end.

Individual coexpression links and modules often need to be related to the other
types of data for their interpretation. STRING (von Mering et al., 2003) and
ATTED-II (Obayashi ef al., 2007) resources provide two contrasting examples
of different strategies for managing and integrating this supporting
information. The STRING representation has multiple, typed links supported
by the different sources of evidence such as interaction, coexpression or
pathway membership. These evidence types can be combined using a special
scoring system to attain a confidence value for the association. ATTED-II
shows the data from other sources (presented as a network) alongside the
coexpression, however it is left up to the user to manually review and relate

this information to the coexpression patterns. In the Ondex system all data is
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integrated into a generic schema, therefore there are no restrictions on the
representations and types of the information combined with the coexpression
networks. Consequently, once integrated, data can be transformed into either of
these representations, if and when needed. The interactive exploration of the
network used in this work was supported by the pre-existing filtering methods
of Ondex for the selection of particular gene sets and making the comparisons
between them. A new type of analysis was also implemented to identify and
process the semantic motifs that correspond to the transcription factor-target
coexpression patterns. Visualisation functionalities in the Ondex front-end
were also extended and used extensively for manual examination of the

networks constructed.

Another commonly used approach is to apply summarisation methods to this
information, e.g. by determining the enrichment of particular functional role(s)
in a module (Mentzen and Wurtele, 2008, Shi ef al., 2010, Mao et al., 2009).
One such method was developed for this work and was presented in the
chapter 3 of this thesis. For the application cases presented here, it was used in
combination with Fisher’s enrichment analysis to identify the predominant and

statistically overrepresented GO functions in the modules respectively.

3.3 IMPLEMENTATION OF THE COEXPRESSION ANALYSIS PIPELINE

To support the coexpression analysis, the Ondex data integration system was
extended with a new set of parsers that can import the expression data in
various formats. In particular, one of the goals was to investigate whether the
selection of an appropriately targeted subset of expression studies can result in
a larger number of links relevant to the set of responses of interest. As the main
biological focus of this thesis is to explore the regulatory mechanisms of
responses to nitrate, the relevance of the dataset was evaluated by comparing
the number of known relevant genes which were connected by edges in
different coexpression networks. To carry out this comparison, a parser was
created to import data from two databases that allow bulk download of
coexpression data — ATTED-II and COEXPRESdb (Obayashi and Kinoshita,
2011). Although, as was mentioned in the previous section, other resources
also provide coexpression data for Arabidopsis, they only allow a limited

number of coexpression values to be obtained at a time, which was found to be
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prohibitively slow and therefore unsuitable for the purposes of this work.

Alongside the support for these databases, a new analysis pipeline was
developed to construct coexpression networks from the raw expression data.
Coexpression analysis can be both memory and CPU-intensive, therefore this
pipeline was implemented in two different implementations — a stand-alone
Java-based program, which can export datasets at various stages of the analysis
(coupled with a set of parsers to import this data into Ondex), and an Ondex
plug-in that encapsulated the same analysis routines and could be run as part of
an Ondex workflow. The rationale behind this design was that the re-usability
of the analysis pipeline was maximised and the development process was
simplified. Ondex is more complex to build and assemble into an executable
program, whereas the stand-alone version could be compiled and deployed

very easily and was more suitable for prototyping and rapid development.

3.3.1 Implementation overview

An overview of the pipeline is provided in Figure 3.2. To start the analysis, a
list of microarray experiments from one of the three supported databases needs
to be provided by the user. Currently three prominent microarray data

warehouses are supported — NASC-Arrays (Craigon et al, 2004),
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Figure 3.2 Overview of the coexpression analysis pipeline. Optional steps are
highlighted with the dashed outlines, manual steps — in green and R steps — in
violet.

80



ArrayExpress (Brazma et al.,, 2003) and GEO (Barrett et al., 2005) . The
analysis is designed to work from the raw expression data in the Affymetrix
.CEL file format. For each of the experiment identifiers the appropriate FTP
URL is constructed and the associated .CEL files are downloaded and
decompressed from archives of ZIP or GZIP format from one of the three

providers.

The download step is followed by the normalization, after which a table of
normalized gene expression values can be saved to a file for further analysis.
After that, the Pearson correlation coefficients are calculated, a complete
matrix of which can also be optionally be saved. The final step of the process
is import of data into Ondex. This can be done either directly from the in-
memory representation produced at the end of this analysis or from a

previously created file.

This pipeline implements and combines a number of established methods for
analysis of coexpression data. All of the methods that were implemented de
novo as part of the work on this thesis are described in the sections 3.3.2 and

3.3.3 below.

3.3.2 Calculation of correlation values

Calculation of the correlation values follows the protocol used by the
COEXPRESdb and ATTED-II databases, as described on their websites. The
array normalization was conducted in R/Bioconductor (Gentleman et al.,
2004), where each of the downloaded .CEL files is verified, loaded into the
expression set object and normalised using Robust Multichip Average method
(RMA) (Irizarry et al., 2003). The main Java application delegates to R by
generating a necessary script in the S4 language according to the user-specified
parameters, which is then passed to the R environment. The particular steps
performed on the R side include the initialisation of the required affy library
(Gautier et al., 2004), loading of the .CEL files, detection and exclusion of the
problematic samples and running the RMA analysis itself. The implementation
produces a combined table of normalized expression values for all of the .CEL
files in all of selected experiments. This table is saved by the R part of the

pipeline, which then passes the control back to the main Java application where
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this table is read into a Java-based array data structure. At this stage, the
dataset is centred by calculating the average expression of each gene and
subtracting it from individual expression values. The Affymetrix probe set
identifiers are resolved using the corresponding mapping file for the array
platform and the measurements for the ambiguous probe sets can either be
pulled together and averaged or excluded from the subsequent steps of the

analysis.

Optionally, this step can then be followed by a calculation of a redundancy
weight for each of thé slide. This weight can be used to reduce the effects of
replication on the Pearson correlation values. Depending on this choice, either
the standard or weighted Pearson correlation coefficient is calculated for all
gene pairs. In the former case the correlation coefficient is calculated using the

following formula:

T, (ki=E)(=T) G.1)

rkl = n - n
‘jzm(ki-k)zzi:l(z.-—l)z

In this instance, k and [ represent the expression vectors (n samples in length)
of the two different genes and k and [ are the corresponding mean values. The
correlation coefficient is calculated for all possible pairs of profiles, resulting
in a symmetric matrix. If the option to select a weighted version of the
correlation coefficient is chosen, first a matrix of similarities of individual
samples is calculated. This is done using the same formula, however k and [
become two different sample expression profiles, which are n genes long. The
weight wy, for the sample profile p is calculated by evaluating the following
equation across all possible pairings of p and all other samples in the set
(Obayashi et al., 2007):

Wy = 1 3.2)

sz max(0rps =€)
j=1 1-C

The constant C was set to 0.5, as this value was reported to be optimal in the

original study. The weight can then be incorporated into the original equation for
Pearson coefficient of correlation in order to reduce the effects of the very similar

samples (i.e. likely replicas) on the statistic (Obayashi et al., 2007):
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As this step of the analysis is computationally intensive, the implementation
was designed to be executed in parallel in order to take advantage of all
available computational power. Both the redundancy weight for each possible
pair of slides as well as the correlation values itself between every possible pair
of genes can be calculated independently from other pairs in respective
categories, although as can be evident from the formula, the calculation of
weights does need to be finished first. This was achieved by partitioning the
total set of vector pairs across several queues, which are worked on by
different threads. The result is written into the correct position of the right
triangular results matrix object within the thread where the calculation was

performed, which can then be exported as a compressed, tab-delimited file.

3.3.3 Threshold selection

The threshold selection approach that was implemented for the coexpression
analysis pipeline was first proposed by Gupta et al. (2006) and further refined
by Elo et al. (2007). In the latter study the method was evaluated both on real
and simulated datasets and it was found that this strategy of threshold selection
has performed comparatively better on real datasets and has consistently
matched the best precision/recall trade-off in the simulated data. One of the
clear advantages of this method it that it was demonstrated to maximise the
number of biologically meaningful links without the need for a hard-to-get
“gold standard” to derive the optimum cut-off value. Unless specified
otherwise, the implementation of the Elo et al. (2007) was used for the
selection of optimum threshold in all analysis described in this thesis unless
otherwise stated. One of the graph properties suggested to be useful for
determining a suitable cut-off is the clustering coefficient. The local clustering
coefficient C; of a node is defined as a ratio of existing and all possible fully
connected triples in a connected neighbourhood of that node. The global
clustering of a network, C was defined by Watts and Strogatz (1998) as the

average of all local clustering coefficients in the network.

One of the refinements introduced by Elo et al. (2007) was intended to
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eliminate an error-prone and non-automatable step of manually selecting the
cut-off based on the shape of the plot of clustering coefficient against different
cut-off values. This was done by suggesting a fully automated and unbiased
approach of locating the local minima based on the changes in real clustering
coefficient compared to a change in the randomised control as the cut-off
threshold was gradually increased. Under this scheme, the control is a
randomly generated network with the same node degree distribution as the real
network, but with randomly reassigned edges. An expected clustering
coefficient in such a network can also be determined using the following

formula from Elo et al. (2007):

were k = %Zf’:l k; and k? = %Zf’ﬂ k;?

To minimise the effect of possible noise, the values are put through a median
filter before the comparison is made. The threshold value is gradually increased
in 0.01 increments and the optimal cut-off threshold (t) is defined as the one that

resulted in local minima in the difference, formally defined as:
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Figure 3.3 Threshold selection example. The graph presents the output from
the threshold select algorithm applied to the ATTED-II data. The real data is
shown in blue and simulated data is shown in red.
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t = miny{r;: €(r;) = Co(r;) > C(7j41) = Co(1j41)}:

0.5 <7r<10;154, =1;+0.01

(3.5)

This approach was implemented in Java as one of the optional components of
the coexpression analysis pipeline. A typical output from this analysis can be
seen in Figure 3.3, which illustrates the process of cut-off determination for the
in ATTED-II database. It is possible to see that as the cut-off level gets higher
relatively more cliques are recovered from the real network compared to its
random counterpart. The line also becomes more uneven as more features are
present in the network and the analysis method is designed to identify the very
first such occurrence. The original study demonstrated that this method was
successful in finding a cut-off value that provided the best trade-off between
false and true positives for proteins that share the same function both for real

and simulated data (Elo et al., 2007).

3.3.4 Coexpression data in an Ondex representation

As coexpression datasets can get very large, the conversion process can
optionally use the information already present in the network during the
loading process in order to reduce the time and memory needed to integrate the
coexpression data. This is achieved by indexing all of the nodes on the same
type of accession as the one used in the coexpression network. This allows to
selectively create edges that have corresponding nodes already present in the
graph. Another possible additional condition is to only create the coexpression
edge in the cases where there already is another type of edge already in
existence. The default approach is the threshold-based network construction,
whereby coexpression edges are created only when an absolute value of
Pearson correlation coefficient is above the specified threshold and nodes are
created for genes that have at least one coexpression edge. Optionally, this
subset can be constrained by forgoing the creation of new nodes and only
creating the links between the nodes already present in the graph (i.e. by
matching the user-specified gene accessions). Another option is to restrict the
dataset even further and only create a coexpression edge if there is already an
edge of a particular type linking the nodes. The latter approach may useful for

the application cases where it is necessary to look at the relationship of
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coexpression and another shared property — for example, shared pathway or

protein-protein interaction.

Once the coexpression data is loaded into the Ondex system, it can be
combined with additional information, mined further using -clustering
approaches and graph analysis methods and explored interactively in the
Ondex front end. To facilitate visual exploration of the coexpression data, a
“colour by value” annotator was extended. The updated version of the
annotator allows the size and colour of the edge to be changed to represent the
magnitude of the coexpression and also incorporates a number of other

convenience features, like filtering or re-colouring of unrelated graph entities.

The analysis pipeline presented in this chapter describes how a set of different
pre-existing methods for the construction of the coexpression networks were
combined in a novel and flexible way. Together with the time-saving benefits
from the encapsulation and automation of the several time-consuming steps
necessary to acquire and process expression data, an additional benefit of this
work was to make the coexpression data readily available in a semantically
consistent representation adopted by the Ondex system. From this format, it
can be easily combined with other relevant data (e.g. pathway and ontology
annotation) or exported further into other data exchange formats like RDF or
OXL. The next chapter will further illustrate how the networks produced using
this method can be combined with other integrated datasets constructed for this
thesis in order to gain better understanding of nitrogen-responsive processes in

Arabidopsis.

34  CONCLUSION

Microarray data available in open-access repositories like NASC-Arrays and
ArrayExpress contains observations of Arabidopsis transcriptome under a
diverse range of experimental conditions. This data has the potential to provide
even more information about how gene expression is regulated. The widely
used oligonucleotide array platforms are of particular importance for this task,
as they allow expression levels of individual genes to be compared between
different studies. To this extent, a number of strategies have been developed to

mine and summarise this data, for example Gene Expression Atlas
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(Kapushesky et al.,, 2010), and a number of other resources that allow
coexpression values to be calculated for a small set of genes. The coexpression

network for the whole set is also available from the ATTED-II database.

However such resources, like ATTED-II, that combine a wide range of
measurements from a wide range of large-scale experiments may result in
some of the important observation being missed. As some coexpression
relationships only come into play under very specific conditions, they may be
drowned or drowned out in a larger, more general datasets. The examples
presented in this chapter confirm this hypothesis — the ATTED-II dataset
provided far fewer coexpression links relevant to the gene list from the nar2.1

study than the more specialised dataset constructed for this work.

However, the approach that involves construction of more focused
coexpression datasets does come with its own problems and disadvantages.
Compare to one general, publicly accessible coexpression resource, it can
result in greater computational cost (as datasets need to be generated for
specific application cases), semantic and syntactic compatibility of data (if
different methods are implemented by different research groups), and
heterogeneous levels of accuracy (e.g. if different critical value cut-offs are
used). The implementation described here addresses these difficulties by
leveraging the capabilities of the Ondex system for managing different data
formats and takes advantage of the latest developments in the study of
coexpression. The resulting method provides an optimum trade-off between

scalability, accuracy, portability and consistency.

The scalability was achieved through extensive use of analysis parallelisation
and delegation to more efficient implementations, like R/Bioconductor, where
it was applicable. Accuracy was ensured by addressing the possible biases —
namely by using slide redundancy weighting and network topology-driven
approach for threshold selection. Portability of the implementation and the
datasets was mainly addressed by incorporating the analysis pipeline into the
Ondex framework. As Ondex can operate on a variety of different platforms
and is relatively easy to deploy, the analysis pipeline can be installed and run
with minimal effort. Output format produced can also be parsed into Ondex,

which can then convert it into a wide range of other representations — OXL,
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RDF, delimited file or even allow direct access to the data via a range of
Taverna-compatible web services. As a lot of analysis steps are optional or

configurable, the analysis can be adapted to suit a wide range of possible user

preferences.
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4 INTEGRATION AND EVALUATION OF THE RELEVANT
DATA SOURCES

4.1  SUMMARY

The development of a systems based approach to problems in plant sciences
requires integration of existing information resources. However, the available
information is currently often incomplete and dispersed across many sources
and the syntactic and semantic heterogeneity of the data is a challenge for
integration. This chapter explains how the Ondex system can be used to study
and quantify the differences between resources and dissect different aspects of
complex biological data. This analysis is presented in the context of designing
the optimal data integration strategy for each combination of resources and
types of data used in this thesis. Key genomic, proteomic, functional and
localisation datasets used in the subsequent chapters are also presented and the

steps and decisions taken during the integration process are explained.

4.2  INTRODUCTION

As was outlined in the introduction to this thesis, a data integration process
allows heterogeneous data to be brought together through the identification of
common identifiers and creation of mappings between them. The interpretation
of the data and resolution of heterogeneities between different data sources are
essential prerequisites to this process. Better understanding of the different
ways to represent biological data and how they can be reconciled is vital for
the continued improvement of the standards and frameworks for management
of ever-increasing quantities of biological data. This type of analysis provides
valuable insight for the development of tools and approaches to characterize
and manage diverse assortment of information, which is currently identified as
one of the major unsolved problems in bioinformatics research (Hamdi-Cherif;,
2010). The work presented in this chapter has made a contribution to this area
of research and some of these findings have now been published in a the
Briefings in Bioinformatics journal (Lysenko ez al., 2009). Full version of this
publication is included in the Appendix. Additionally, several of the datasets
described here were used to support other analysis described in the subsequent

chapters.
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4.3 ARABIDOPSIS THALIANA GENOMIC REFERENCE DATASET

4.3.1 Arabidopsis thaliana genomic and proteomic data

Although the Arabidopsis thaliana genome has now been sequenced, the
identification of genes and their correspondence to proteins is still an on-going
process. The Arabidopsis thaliana genome information resource, maintained
by the TAIR initiative (Rhee et al., 2003) is still being continuously refined
and updated and at the time of writing, the 10™ release of the genome was
being prepared for release. Although these refinements are necessary, they are
also posing an additional set of challenges when attempting to manage a set of
integrated datasets. TAIR gene and splice accessions are often used as primary
identifiers for Arabidopsis gene and protein sequences. In different releases of
TAIR, some of the identifiers used for gene loci and protein splice variants
where often updated. However, the process of updating the identifiers by the
other providers is often delayed and in some instances may not be possible

altogether.

It was clear from the very early stages of this project that in order to support
the rest of the integration process, a strategy was needed for constructing a
base reference dataset for the Arabidopsis genome and proteome. TAIR and
UniProt (Apweiler et al., 2004) were identified as the two resources that
provided accession numbers that were widely used by the other data providers.
In particular, TAIR provides gene locus and splice variant identifiers, while
UniProt maintains its own set of protein sequence accession numbers. An
important feature of both of these resources is that they also provide cross-

references to other major databases.

Additionally, some heterogeneities of semantic nature also frequently occur -
for example, in different resources, GO terms may be linked to either gene or
protein records. Yet another complication arises from the existence of
splice/sequence variants and mutations, which can lead to several protein

products being associated with the same gene locus.

4.3.2 Reference set construction
Import of the data was done by using two of the pre-existing Ondex parsers for
TAIR and UniProt resources. TAIR parser imports data from the flat files in
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delimited and FASTA formats, specifically it uses the files holding the
publication, protein-coding ¢cDNA and protein sequences, domain mapping,
locus history and mappings from TAIR AGI locus/protein identifier to UniProt
and NCBI ones. For this work, the TAIR9 release of the resource was used and
all of the necessary files were imported from the ftp://ftp.4rabidopsis.org/. The
import has produced a set of 33410 protein-coding genes associated with a
unique TAIR locus identifier. Additionally, these genes were also annotated to
publication, domain and protein concepts. All of the entities except protein and
gene concepts were removed by using a concept class filter, which removed all
entities of a particular type from the graph. Then these two sets of concepts
were merged by combining all connected groups on the “encoded by” relation.
This step has produced a graph containing a set of 29271 merged concepts
with a unique TAIR locus identifier (from the “gene” concept) and one or more

TAIR protein/UniProt identifier (from the “protein” concepts).

The UniProt data was imported into the graph by using an Ondex UniProt
XML format parser. The data file containing both TrEMBL and SwissProt
parts of the database was produced by using the web interface of the
UniProtKB website and selecting all protein records corresponding to the
NCBI taxonomic identifier of 3702. The UniProt parser creates protein
concepts with one primary UniProt identifier and zero or more secondary
identifiers, as well as concepts holding additional annotation pertaining to that
protein, e.g. publications, enzyme commission numbers, Gene Ontology terms
and Pfam protein domains. All of the entities of types other than “protein”
were removed using a concept class filters. For Arabidopsis entries, UniProt
also provides TAIR splice variant identifiers and cross-references to the TAIR
loci, which are also imported by the Ondex UniProt parser. However, the

presence of these additional identifiers is not guaranteed.

The corresponding entities between the TAIR and UniProt parts of the dataset
were identified using an accession-based mapping. Three passes were
performed, matching on UniProt, TAIR locus and TAIR splice variant
identifiers. The accession-based mapping created a relation of type “equivalent
to” between all concepts that share matching identifiers of particular type.

After that, all of the concepts from UniProt that did not match any concepts

91



Parser: UniProt Filter: Concept class p——
Mer, n “encoded b
Parser: TAIR elgg oie CS ¥ Filter: Concept class
relation
Accession-based mapping Accession-based mapping Accession-based mapping
on UniProt identifier on TAIR splice variant on TAIR locus
Mer -
i ) RO.Q1Y £ Filter: data Generate
equivalence o Export to OXL
source statistics reports
relation

Figure 4.1 A schematic representation of the workflow processing steps for
ARA-REF set creation and analysis.

from TAIR on any of these accessions were removed from the network. The
combined entities were created by applying a “relation collapser”, which has
merged all entities within connected components with respect “equivalent to”
relations. In this way, all entitles remaining in the graph had at least one,
unique TAIR locus identifier complemented by a list of (also unique) UniProt
and TAIR splice variant identifiers associated with this locus entry in both
TAIR and UniProt databases. The outline of the integration process is

provided in Figure 4.1.

The integration process resulted in 2.9% of concepts that had more than one
TAIR locus identifier. This was due to a small number of UniProt-TrEMBL
entries that matched several possible entities with a unique TAIR locus during
one of the accession-based mapping applications. As the number of such
entries was relatively small and they were unlikely to cause major adverse
effects for subsequent analysis, it was decided to retain them in the datasets to
preserve the idea that these represented a complete current proteome set as
captured by both by TAIR and UniProt databases and contained a full set of
representative accession numbers from both resources. In total, this dataset had

26937 concepts and from this point on is referred to as ARA-REF.

4.4 PROTEIN-PROTEIN INTERACTION DATA
Protein-protein interactions (PPI) are the foundation of many essential

regulatory processes and define higher levels of organisation of individual
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proteins into complete functional units. PPI data are provided by a number of
sources, but only one of them (curated TAIR interactome) specialises in
Arabidopsis. There is a great deal of interest in finding methods for
understanding the relationship between protein interactions and coexpression
among genes as the basis for making more accurate predictions of biological
function from high throughput experiments and for easier identification of
metabolic and regulatory networks that underlie biological responses (e.g. to
disease, environmental stress etc.). This investigation concentrated on the three
most relevant PPI databases and has assessed the coverage they provide in

terms of both individual interactions and protein content.

Interactions from the following data sources were integrated using methods
supported in the Ondex system: IntAct (Kerrien et al., 2007), The Arabidopsis
Information Resource (TAIR) (Swarbreck et al, 2008) and BioGrid
(Breitkreutz et al., 2008). Although STRING (von Mering et al., 2005) and
Bind (Bader et al., 2003) databases also include Arabidopsis data, they could
not be considered here due to very restrictive licensing and access policies
implemented by the data providers. The data from IntAct and BioGrid was
imported into Ondex using a dedicated PSI-MI format parser, which was
created as part of this work. The PPI data from TAIR were provided in tabular
format, and was imported using the tab-delimited API of the Ondex scripting

interface, which was described in chapter 2.

4.4.1 PPI dataset construction.

Two of the data sources currently support a PSI-MI XML format, which is an
established format for the exchange of the data for protein-protein interaction
experiments. The import of this data into Ondex was mediated by a new PSI-
MI parser, which was created as part of this work. Internally, the parsing and
validation of the source file is delegated to the PSI-MI XML 1.0-beta4 library,
which is maintained by the Proteomics Standards Initiative and is freely
available for download from http://sourceforge.net/psidev website. The parser
itself only handles the index and mapping of the fields in the file to the Ondex
data model. Briefly, in the PSI-MI model, data is grouped into experiments,
which can have one or more different interactions that can have one or more

different participants (proteins as well as other biological entities). The all of
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these groups can be linked to various metadata that specify provenance, types
(of experiments/interaction and interaction participants) and cross-reference to

relevant resources.

The parser mediates the transformation of data from this experiment-centric
perspective to the network-centric one, where it is decomposed into a set of
interacting entities and interaction edges between them. To allow the flexibility
of transformation, the parser allows to specify different levels of verbosity —
for example, it is possible to create edges of types specifying different types of
interactions or just one type of edges of type “interacts with”. This may be
desirable where the end-goal is a homogeneous network, as the common type
will greatly simplify subsequent processing and analysis steps. It is also
possible to specify a “spoke” versus “clique” model of representing
interactions, which are discussed in more detail further in this section. The
PSI-MI parser was used to import the IntAct and BioGrid sets of interaction
data for Arabidopsis, which was downloaded from the respective resources on

16/08/2009.

The PSI-MI parser also created a publication concept where the interaction was
reported and created different typed concepts for different types of interaction
participants, (e.g. protein, DNA, RNA, small molecule etc.). As these entities
were not required for the planned analysis they were removed by applying a

concept class filter.

TAIR curated interactome file “TairProteinInteraction” was downloaded from
ftp://ftp.Arabidopsis.org, as this file is tab-delimited, it was parsed using the
scripting console functionality. The most recent version of this file available at
the time was used for this work, which was dated 27/05/2009. The parsing
process generated the identical data representation with the one produced by
the PSI-MI parser in order to allow comparison and one general “interacts

with” edge was created for every pair of proteins in the source file.

Additionally, Arabidopsis protein data was imported from the TAIR resource,
similar to the way already described in 4.3.2, except that in this case, the
collapsing on the “encoded by” relation was not performed. Instead, after the

import stage, all of the concepts except the protein concept containing a TAIR
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Figure 4.2 Generation of the protein-protein interaction and coexpression
dataset.

protein identifier were filtered out. This was done because the TAIR parser
also captures the locus history information and adds the now-obsolete

identifiers to the protein concepts as secondary, cross-reference accessions.

The last resource to be parsed was ATTED-II coexpression database. This
resource provides the entire coexpression matrix calculated over 1388 arrays
for download as a set of five compressed files. A new parser was created to
allow import of this data into Ondex. The ATTED-II database uses the TAIR
locus identifiers and provides an option of parsing data in a content-aware
mode. In that mode, when the parser is started, the graph is queried for the
existing TAIR loci accession and the coexpression edges are created only for
the concepts that have a matching accession. In addition to this option being
used, the ATTED-II parser was also configured to only create edges for the
cases where an absolute value of Pearson correlation exceeded 0.6. Similar to
the previously describe procedure; the data was integrated using a combination
of accession-based mapping and merging of equivalent concepts identified.

The simplified sequence of steps for this process is shown in the Figure 4.2.

4.4.2 Overlap of protein interaction data sources

The intersection between the data from these three data sources is shown in
Figure 4.3. The number of proteins (nodes) in the integrated network was 2741
but only 503 out of 5480 interactions in the integrated protein-protein

interaction network are common to all 3 sources, with the IntAct database
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Figure 4.3 The number of protein identities (A) and interactions (B) found in
three major protein-protein interaction resources for Arabidopsis (IntAct,
Biogrid and TAIR Interactome).

contributing many more proteins than either TAIR interactome or BioGrid.

It 1s apparent from Figure 4.3 that each of these sources makes a significant
unique contribution to the complete network. The presence of a non-redundant
component of protein interactions in each of the sources indicates that data
from different subsets of PPI publications has been curated by each of the
resources and highlights the value of developing an integrated dataset for

maximum coverage of a data domain.

An important consideration when analysing protein-protein interaction data is
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Figure 4.4 The frequency distribution of protein interactions associated with
named experimental methods taken from the integrated data from IntAct,
BioGrid and TAIR Interactome databases. The upper panel shows how the
experimental method used to establish the interaction can be represented by the
edge colour. Multiple colours in the same edge show where data from more than
one experimental technique is available.
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the range of experimental methods that have been used to identify a protein
interaction. In the integrated dataset each experimental method used in the
source database is represented as a type of evidence, which is stored as a
property on the edges (relationships) of the graph. Figure 4.4 shows the
frequency distribution of the number of evidence types in the integrated
database. It is evident that most interactions have been confirmed by just one
experimental method. The example shown in the upper panel of Figure 4.4
offers an illustration of how this type of data can be visualized as a network
using the Ondex front end tool. The largest connected component of the
integrated network has been selected to show how the experimental method
used to establish the interaction can be represented by the colour of the edge.
Multiple colours in the same edge show where data from more than one
experimental technique is available. It is possible to see that one prominent
network cluster (green edges, lower right) is supported by the same evidence
type. This pattern is indicative of data from a targeted (or fishing) study

devoted to finding all possible interactors for a limited number of bait proteins.

The frequency of the various evidence types found in the Ondex database is

shown in Figure 4.5, which illustrates how integration reveals an inconsistent

2500
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Figure 4.5 The number of protein interactions with a particular evidence type as
indicated in the source database calculated for the whole integrated PPI
network. Only the 12 most frequent evidence types are shown but in total there
are 66 distinct controlled vocabulary terms.
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use of controlled vocabularies. Although the vast majority of the interactions
among all three sources were established using the yeast two-hybrid method,
these are not named consistently among the databases. For example, it is
recorded as “2 hybrid” in IntAct and “yeast two hybrid assay” in the TAIR
curated interactome. The term “2 hybrid” used in the IntAct controlled
vocabulary is formally defined in PSI-MI ontology (MI:0018), whereas the
term “yeast two hybrid assay” in TAIR interactome is not formally defined and
appears to be used in a broader sense to specify both classical two-hybrid
system and a wider range of related techniques. Therefore, it is not a
semantically exact match to the definition in IntAct. An important aspect of the
different experimental methods is their reliability at detecting a protein
interaction. Although this topic is outside of the intended scope of this work,
others have developed network analysis methods that take this into account

(see for example (Deane et al., 2002)).

A #ID(s) interactor A ID(s) interactor B Alt. ID(s) interactor A Alt.
uniprotkb:082663|intact :EBI-533277 uniprotkb:Q94146| intact:EBI-533315
uniprotkb:082663|intact:EBI-533277 uniprotkb:Q8LBZ7|intact :EBI-533300
uniprotkb:082663|intact:EBI-533277 uniprotkb:Q9LXC4| intact:EBI-533326
uniprotkb:082663|intact:EBI-533277 uniprotkb:Q95X77| intact:EBI-533310
uniprotkb:082663 | intact :EBI-533277 uniprotkb:Q8LBO2| intact:EBI-533287

B = <mteraction 1d="713">

+ <names></names>
+ <xref></xref>
+ <experunentList></experunentList>
= <participantList>
+ <partiapant 1d="715"></participant>
+ <particaapant 1d="717"></participant>
+ <particapant id="719"></partiapant>
+ <partiapant 1d="721"></participant>
+ <particapant 1d="723"></participant>
+ <particapant 1d="725"></participant>
<fparnapantList>
+ <mteractionType></mteractonType>
+ <attmbuteList></attuibuteList>
</mteraction>

Figure 4.6 An example network derived from data from the same experiment
represented in two different formats exported from the IntAct database (A) —
tab delimited, (B) PSI-MI v2.5 (XML) version 2.5. It illustrates that different
formats can sometimes lead to different interpretations of the same information.
If the tab delimited representation is used (A) the network consists of only five
binary interactions with one hub node, whereas in (B) all six proteins are
grouped in the same interaction element, so interactions between all of the
members are inferred.
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In addition to the issue of reliability, the experimental methods for detection of
protein-protein interactions can have an impact on the number of relations and
overall network structure. The interpretation of integrated datasets is further
complicated by the fact that some experimental techniques do not establish the
actual interactions between individual proteins, but rather their membership in
a particular protein complex. This poses problems for how to interpret such
information in terms of binary protein-protein interactions, as the true
interaction pairs are unknown. In some cases, where all of the proteins in the
complex form a long-term stable interaction, a fully connected cluster of
interactions may be an appropriate representation. In addition to the usual
challenges of technical or semantic heterogeneity between the data sources,
different export file formats from the same database can lead to different
interpretations and can potentially result in the incorrect representation of the
experimental interactions. Figure 4.6 illustrates how this situation can arise
because of the different data formats used to extract the data about a particular
PPI experiment. The figure shows information from Eubel et al. (2003)
downloaded from IntAct in both PSI-MI and tab-delimited file formats. The
PSI-MI representation groups all of the proteins in the same interaction
element, which according to the relevant documentation is interpreted as a
clique. In tab-delimited format the same information is represented as a set of
five binary interactions where 082663 interacts with all of the other proteins.
Both of the representations are actually misleading, as the original paper only
identified these proteins as a complex, but did not measure any interactions
between them. In general the clique representation may well be acceptable, if

the definition of interaction is expanded to include the indirect interactions.

4.4.3 Combining protein interaction and coexpression information

Bringing together multiple types of biological data can aid in the construction
of functional networks (Lee et al., 2004b), since proteins involved in the same
functional role should be linked by evidence from more than one class of
biological information. However, the utility of these approaches is dependent
on the information available. For Arabidopsis, there are large collections of
data from gene expression studies, and resources such as the ATTED-II

database (Obayashi et al., 2009, Obayashi et al., 2007) provide information on
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coexpressed Arabidopsis genes from some 58 microarray experiments. There
is, however, much less information available on protein-protein interactions
from Arabidopsis and the integrated dataset constructed included only 2741
proteins, with 5480 interaction pairs in total. This set was integrated with the
coexpression information in order to explore the extent to which interacting

proteins also display similar expression profiles.

From a total of 5157 edges in the integrated PPI network that were considered
coexpressed only 253(4.9%) edges in the integrated dataset were both
coexpressed and involved in a protein-protein interaction. This number is
somewhat contradictory to the previous work by other researchers who have
demonstrated that coexpression to be a strong predictor of protein-protein
interactions (Kemmeren et al., 2002, von Mering et al., 2002). However, a
permutation test would be necessary to conclusively prove that the result
observed here is statistically significant, though such a test could not be done
in this case as the data was no longer available at the time this thesis was
written. Another possible explanation for this observation could be that it
reflects a high number of transient interactions recorded in the dataset. In
Jansen et al. (2002) it was found that no transiently interacting proteins had an
average correlation coefficient higher than 0.4; which is below the threshold of
0.6 that was used for coexpression network construction. Evaluating the
influence of different thresholds on the structure of the integrated data set is

deferred to future work.

Constructing functional networks in plants is currently limited by the lack of
data for some classes of biological information such as protein-protein
interactions, where few experiments have been conducted. Such approaches,
however, do have the potential to provide additional insight by suggesting new
relationships between proteins, especially when complemented by visualisation
tools that facilitate manual inspection of the resulting networks and dissection
of the sources of evidence that contribute to suggesting putative functional
modules. This application of the coexpression and PPI data is further explored

in the chapters 5 and 6 of this thesis.
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4.4.4 Conclusions

In this case study, several protein-protein interaction resources providing
Arabidopsis data where integrated and compared. They were expected to be
more typical of independently developed databases and this was indeed the
case. During the analysis, the most obvious of semantic integration problems
were identified — that of inconsistent use of terminology to describe the
experimental methods by BioGrid, IntAct and TAIR Interactome. This type of
heterogeneity is difficult to deal with automatically. While it would be easy to
resolve inconsistent naming such as “2 hybrid” and “yeast two hybrid assay”,
some of the other methods can have multiple variants and different names and
will require someone with expert knowledge to identify these correctly. This
example illustrates first-hand the importance of using common ontologies for
representing common entities. If these three databases followed the ontology
for describing the experimental methods, there would not have been the

diversity of terms used to name the yeast two-hybrid method in Figure 4.5.

All three databases considered hold information about PPI experiments
gathered or supported by the scientific literature. The selection of the literature
and curation methods inevitably creates differences between the databases.
Furthermore, there is a difference between what has been established in an
interaction experiment and what is considered as an established fact. For
example out of 12 proteins listed as members of the Arabidopsis RNA
polymerase II complex by KEGG (accessed via the web interface) only 5 were

found in the integrated PPI database from all three sources.

Given the differences between the data collection methods used in the three
interaction databases, it was notable that the data integration process generated
a more complete resource with the number of proteins catalogued as involved
in interactions increasing by 27% over the single most comprehensive
database, which was IntAct. The number of interactions was also increased by
a similar amount relative to IntAct (25%). This clearly demonstrates the

potential advantage of integration in this data domain.

It was interesting to note that a relatively small number of proteins were
present in all three databases (20%) and an even smaller number of interactions

were found in common (11%). One possible explanation of this observation
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may be that it reflects differences between the data collection and curation
strategies of the three databases however, other, more systematic, differences

cannot be discounted either, without further investigation.

Another potential benefit of integration of data across multiple datasets is to
increase confidence in noisy data by combining multiple ‘hints’ from
independent sources. This is especially relevant for protein-protein
interactions, as many of the currently used detection methods have limited
accuracy. This analysis showed that relatively small numbers of interactions
are supported by multiple sources of evidence. The presence of these multiple
evidence can be visualized in Ondex front end environment in order to provide
an easy overview of interaction relationships and how specific patterns emerge

from the data using particular approaches, such as targeted interaction fishing.

There is an active research interest in Bioinformatics for using indirect
evidence that could be used to indicate interactions, including gene
coexpression (Jansen et al.,, 2002, Bhardwaj and Lu, 2005) and inference of
interactions from sequence homology (Goffard et al., 2003, Huang et al,
2004). The problem of introducing such indirect evidence is that some
numerical measure of confidence, like accuracy of particular interaction
detection methods, is required and it is often not provided by the source
databases. Another difficulty lies in resolving the provenance of data in order
to avoid counting the same piece of evidence captured by multiple sources
several times. This is a promising direction for follow-up to this work and
therefore maximising the set of protein interactions supported by multiple
direct measurement methods is a useful resource for calibrating the methods

for combining computationally predicted and measured interaction data.

4.4.4.1Implications of PPI detection methods on data interpretation

Due to their importance for understanding the behaviour of biological systems,
the discovery and characterisation of protein-protein interactions is a subject of
intense research interest. A number of different experimental methods have
been developed that allow detection of interaction events and the identification
of the participating proteins. Several of these approaches, like “yeast two
hybrid” (Fields and Song, 1989) and co-immunoprecipitation (Phizicky and
Fields, 1995) can now be applied in a high-throughput manner. However, there
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is now some evidence that some of the methods are likely to produce

substantial amount of false positive detections (Deng et al., 2003).

The interpretation and management of experimental protein interaction data
poses a considerable challenge for bioinformaticians. A number of different
resources have been established to host this type of data for Arabidopsis and
make it available to the research community. Another major achievement in
this area was the development of a set of standards and an exchange format
that allows unambiguous documentation of PPI experiments — i.e. the PSI-MI
format defined by the Human Proteome Organisation (HUPO). However,
many protein interaction resources have not adopted the PSI-MI standard and
still provide data in a tabular format, which may not always capture adequate

information about the findings from the experiment.

An important complexity in protein interaction data arises because some
experimental techniques cannot completely resolve the nature of the
interactions. In some methods, like co-immunoprecipitation, a “bait” protein is
tagged and extracted together with all of its binding partners. In such methods,
it is not possible to unambiguously resolve the direct binary interactions
between multiple interaction partners using this method alone. This introduces
a need for further analysis to interpret these results as well as a requirement for
a suitable descriptive framework capable of modelling potentially complex

information about what is actually known about any given interaction.

It is recognised that the data currently captured in PPI databases only describes
the finding of the experiments rather than the true links in the protein-protein
interaction network, and this may have consequences for downstream
computational analysis. However, this problem cannot be adequately addressed
based on the information currently captured in the PPI exchange formats. In
this work this ambiguity of direct versus transient interactions was partially
addressed by using the “spoke” and “matrix” models of (Bader and Hogue,
2002). In a spoke model the assumption is that only one protein has a link to
each of the partners for the methods where bait protein can be identified. A
“matrix” model is used to represent the assumption that every interaction
participant has a link to every other participant for methods where no “bait”

protein is used and a set of all proteins is extracted instead.
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4.5  FUNCTIONAL ANNOTATION DATASET

Annotation of genes and proteins with their functional role and cellular
localisation information is an essential step both for validating the results of
analyses and making new inferences from data. It is therefore of great
importance that any annotation datasets used are as accurate and as complete
as possible. For this work, the functional dataset was constructed primarily by
bringing together data from different providers. Although other means of
expanding the existing datasets using computational approach are also
possible, they were not attempted in this project. The rationale behind this
decision was that current bioinformatics resources are supported by a number
of diverse and sophisticated analysis pipelines and specialised curation teams
and it is unlikely that it will be possible to match this level of quality with the

resources of this project

The functional annotation dataset presented here was assembled from the GO
Biological Process annotations provided by TAIR, GOA-EBI (Barrell et al.,
2009) and UniProt and transcription factor annotation from DATF (Guo et al.,
2005), AtTFDB (Palaniswamy et al., 2006) and PInTFDB (Riano-Pachon et
al., 2007). The protein localisation dataset combined the experimentally
determined GO Cellular Component annotation from TAIR, GOA-EBI and
UniProt, as well as annotation from the SUBA database (Heazlewood et al.,
2007).

4.5.1 SUBA database

Subcellular localisation for Arabidopsis proteins database (SUBA)
(Heazlewood et al, 2007) is an integrated resource that collects cellular
localisation data from compiled from external sources literature-curated
annotations (Swiss-Prot, AMIGO and TAIR), inferred locations from gene
descriptions as well as providing data from original localisation studies that
use either chimeric fluorescent protein fusion and mass spectrometry studies.
This resource is highly focused both in terms of species and type of
information and provides non-derived and possibly unique information, but at
the same time uses a very simple data model both for defining a compohent
(14 categories including “unclear” and “any location” terms) and capturing

provenance information (5 possible provenance codes). The annotations
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offered by SUBA are equivalent to the more widely used GO Cellular
Components ones, which are also provided by such prominent resources like
TAIR and UniProtKB. From this point of view, it is a quite common example
of a smaller, highly specialised resource and as such it offers an interesting
example for a case-study. One possible question considered here are to
quantify if SUBA provides additional annotation not captured by other larger,
more organised but at the same time less focused annotation projects. And the
other point of interest is to use the data integration capabilities of Ondex to
create a mapping between the SUBA-GO and SUBA-Ondex provenance
capture system and dissect the differences between SUBA and other resources

in a greater detail.

4.5.2 Gene Ontology annotation formalism

Gene Ontology provides one of the most commonly used controlled
vocabularies for unambiguous annotation of genes and proteins. It is structured
as a directed acyclic graph (DAG) of terms organised in three independent
aspects: “Cellular Component” (CC), “Biological Process” (BP) and
“Molecular Function” (MF), these names also correspond to those of the root
term for each of those aspects. The edges of the graph are typed according to
the nature of the relationships between the terms, which include “is a”, “part
of”, “regulates”, “negatively regulates” and “positively regulates”. The “is a”
type of edge indicates a sub-typing association between the terms. Each of the
terms must be connected to at least one other terms via an “is a” type of
relationship, and due to the formalism of a DAG it also must be transitively be
connected to the root term and each term can have more than one parent and
child. The root term is considered to be most general in the ontology, and the
specificity of the terms increases with their distance from the root. The “is a”
edge is transitive — therefore, if an entity is annotated to a child term, it is by

extension considered to inherit the annotation of all of its parents.

The hierarchical structure of GO introduces several complications when it is
necessary to evaluate the quality of annotation provided by a particular source.
As “is a” relationship is purely semantic the distance from the root only
provides a very rough indication of terms accuracy. This problem can be

addressed by quantifying the accuracy of terms by the information content,
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Table 4.1 GO evidence codes arranged by type. The indent level is used to
indicate the codes which are a specialisation of another code.

EXP Inferred from Experiment

Tg o IDA Inferred from Direct Assay
& g IPI  Inferred from Physical Interaction
fg. % IMP Inferred from Mutant Phenotype
o IGI  Inferred from Genetic Interaction
IEP  Inferred from Expression Pattern
ISS  Inferred from Sequence or Structural Similarity
@ ISO Inferred from Sequence Orthology
% ISA  Inferred from Sequence Alignment
s ISM Inferred from Sequence Model
Tc" IGC Inferred from Genomic Context
'% IBA Inferred from Biological aspect of Ancestor
'é_ IBD Inferred from Biological aspect of Descendant
E | IKR Inferred from Key Residues
o

IRD Inferred from Rapid Divergence
RCA inferred from Reviewed Computational Analysis

TAS Traceable Author Statement

NAS Non-traceable Author Statement

Literature-
based

IC Inferred by Curator

IEA Inferred from Electronic Annotation

Unreviewed

ND  No biological Data available

which is derived from the probability (p) of encountering that particular

annotation using the formula: -log(p) (Resnik, 1999). In this case, the
probability can be determined by considering the frequency of encountering a
term in a combined set of all annotations of a relevant context. The annotation
of GO terms with information content was implemented as one of the analysis

methods in Ondex as part of this work.

As well as maintaining the ontology itself, the GO consortium has also defined
a tabular exchange format for the annotation of genes and proteins to it (GAF
currently - v2.0). This format allows an arbitrary external accession to be
linked to a GO identifier and also allows to capture some information about the

nature of identifier, species, aspect of GO and provenance to be captured.
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One of the ways in which provenance is captured is by associating each entry
with one of the evidence codes from GO controlled vocabulary (Table 4.1).
The GO consortium annotation guidelines only attempt to capture the very
broad, qualitative properties of evidence. The evidence codes can be divided
into four categories, of “experimentally determined”, “computationally
inferred, curator-reviewed”, “curator/author inferred” and “computationally
inferred non-reviewed”. Although there is some general agreement about the
reliability of these four categories, at present there is no general agreement
about the accuracy of the more specific ones. It was also identified in Jones et
al. (2007), there is also some variation in accuracy between the different codes
for the information from different data providers. The problem with
quantifying this confidence lies in a requirement for a “gold standard” dataset
of the correct functional assignments and since the GO annotation process uses
expert curation, a reference standard that surpasses it is difficult to find. For
this reason, when quality of annotation was compared, the actual evidence
codes where evaluated based on the comparison between the categories they

belonged to.

By considering these characteristics of GO and the way annotation is
structured described in this section, different annotation resources can be
compared in terms of: (i) coverage, (ii) specificity of annotation and (iii)

quality of supporting evidence.

4.5.3 Data integration methodology

The key integration steps for creation of the combined annotation dataset are

shown in

Figure 4.7. The first part is identical to the integration done to create the ARA-
REF dataset, with the exception of the filtering step of the UniProt data. As
UniProt parser creates the concepts to represent GO terms and relations
connecting them to proteins, this step was adjusted to retain them. The other
two GO annotation sets were imported using a pre-existing GAF 2.0 parser. A
limitation of the Ondex data model is that it only allows one set of unattributed
evidence for edges in the “Evidence Type” attribute. As this was the way GO

evidence codes were stored it was necessary to extract this information into a
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l Parser: TAIR —}—-v Merge on @cgded Filter: Concept class
by relation

I Parser: UniProt Hﬁer: Concept class l————

GAF 2.0 parser: EBI

GOA Create GO Accession-based mapping
evidence attribute on TAIR locus
GAF 2.0 parser: TAIR l
GOA Accession-based mapping

TAI |
| 0BO parser: GO I on TAIR sp;ce variant
Accession-based mapping
Delimited parser: curated I SUBA parser }—“‘—’— on UniProt identifier

matches: SUBA:GO !
Merge on Accession-based mapping
“equivalence” relation on GO identifier
|
3
Accession-based mapping Accession-based mapping
on SUBA identifier on GO identifier
i
Export to OXL o] Generate . Calculate Filter: Unmapped to ARA-
statistics reports information content REF

Figure 4.7 High-level overview of the workflow steps used to generate the
Arabidopsis functional annotation dataset.

special, general-purpose attribute. This was step was done by creating a new
type of Ondex plug-in specifically for this task. As the GAF 2.0 format only
stores the links between the GO terms and gene/protein identifiers and not the
relationships between the terms, the structure of the ontology was imported
via an OBO format (GO, 2004) parser. Additionally, SUBA database was
imported using a specially written parser and a manually created mapping file
of matching SUBA compartments to GO Cellular Components was imported

using a tab-delimited parser.

As each of these resources created its own set of gene, protein, GO terms and
SUBA compartment concepts, the resulting network was subject to
considerable redundancy. This redundancy was resolved through the multiple
applications of accession-based mapping and equivalence merging plug-ins in

a sequence shown in

Figure 4.7. The SUBA:GO mapping file was imported after this step to
preserve the unique identity of these concepts but allow the correspondence to
be represented via the equivalence relations. At the end of this process all gene
and protein entities that were not mapped to the ARA-REF component of this
dataset were filtered out. After that, all GO and SUBA terms were annotated
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Figure 4.8 Relationship between the evidence type and the information content
of GO terms annotated by it.

by creating an information content attribute, which was calculated using a
complete, non-redundant set of all annotations to ARA-REF. Then, a specially
written analysis/report plug-in was run to collect the range of statistics

presented in the next section.

4.5.4 Results and discussion

GO allows for the simultaneous existence of multiple annotations that may
have either different levels of specificity or different level of confidence.
Therefore, when several sources of annotations are considered, they are likely
to differ not only due to the numbers of annotated entities and instances, but
with respect to these other factors as well. This introduces an additional level
of complexity when comparing these resources — as they could be different
with respect to all of these factors and the decision about which one is more

important is likely to have some effect on all the others.

To gain a better understanding of the relationship between the specificity of
annotations and the quality of the supporting evidence for different
annotations, a measure of information content (IC) was calculated for all the
terms in the BP aspect of GO using the combined set of all annotations. The
proportion of annotations for each evidence code that fall within a particular IC
range is presented in Figure 4.8. It is possible to see that experimental evidence

types tend to be associated with the more informative whereas computationally
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Figure 4.9 Use of the different evidence codes by the three GO annotation
resources. The experimental codes are shown in blue colors and literature-
derived ones — in green. The red segment is “No data” code, used to indicate
that a search for reported functional annotation was done by a curator but has
returned no results.
determined evidence types correlate with the less informative terms. Evidence
types from author and curator inferences do not show any obvious bias.
However, it is important to note that the number of annotations is also very
different (shown in brackets in the figure legend) — and even though most of
the IEA annotations are associated with the terms in the 3.6-4.8 IC range, there
are still some annotations in the high IC range as well and, in absolute terms,

this number is much greater than the number of experimentally established

annotations in the same IC range.

Figure 4.9 shows the distribution of these evidence types from the UniProt,
GOA-EBI and TAIR resources, which have 24686, 27967 and 34743
annotations respectively. Interestingly, the UniProt and GOA-EBI appear to

have a very similar composition, even though GOA-EBI was actually found to
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have 3281 more annotations. TAIR also has a very sizable proportion of ND
annotation. This evidence code is used to indicate that the curators attempted
but did not succeed in finding any meaningful annotations in this aspect of GO.
According to the guidelines, it should only be used to support annotation to a
root of one of the aspects of GO. As all of the terms in that aspect inherit its
annotation, by extension it implies that no data was located for any of them. If
these 9219 entries are excluded, TAIR provides 25524 meaningful annotations,
which is comparable to other resources. Another thing to note is that the
distribution of evidence types in TAIR appears to have a lot less
computationally derived evidence types, but also the largest set of reviewed
computationally derived annotations (ISS). However, even if the IEA and ISS
annotations are combined, this number is still much less than those found in
either UniProt or GOA-EBI. If the ND annotations are disregarded, it is also
evident that TAIR actually has the most experimentally annotations (47.42%
of all non-ND entries, versus 39.51% and 39.76% for UniProt and GOA-EBI
respectively). Overall, it appears that TAIR has the best annotation with
respect to evidence quality, but slightly lower coverage than the other two

resources.

The comparison of redundancy and annotation specificity between the sources
is shown in the upper panel of Figure 4.10, whereas the lower panel shows the
comparison of evidence quality for each of the possible cases — i.e. more, less
or the same specificity of annotation. The tiers on the lower panel compare the
evidence codes according to their membership in higher level groups, where
the quality relationship is assumed to be EXP > ISS > Curator/author statement
> IEA. This comparison shows that TAIR has the largest proportion of the
unique annotations, although if the ND annotations are excluded from this
count, this number is reduced to 3481. This is still substantially higher than the
next best — UniProt with 1229. Although UniProt and GOA-EBI have a very
similar composition of evidence types, there appear to be some differences in
the actual annotations made by the two resources — e.g. although GOA-EBI
have more annotations overall, UniProt has more than twice the number of

unique entries.

The lower panel of the Figure 4.10 provides some further insight into the
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Figure 4.10 Comparison of the annotation specificity between different
resources (upper panel) and evidence type confidence for the annotations in
common (lower panel). The colouring is consistent between the two panels. The
tiers refer to the quality of the evidence supporting the annotation. For example
the “higher tier” means that another resource has a better evidence code to
support an identical GO function assignment.

supporting evidence for all of these three categories. It appears that in the cases
where TAIR had the more specific annotation, it was also the case that it was
supported by the better quality type than the one found in either of the two
sources. For the cases where the annotation term was matched exactly, the
evidence source was also predominantly the same, possibly indicating data
sharing between the resources. In the cases where a more general annotation is
made, there also appears to be a much higher proportion of cases where the
evidence type used for it was weaker — as indicated by a much higher
proportion of ‘lower tier’ entries compare to the ‘better’ or ‘the same’ cases. In
all three situations, TAIR appears to have the largest proportion of better
quality entries, most likely due to the generally higher numbers of stronger

evidence types present in the resource.
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As only one, non-redundant set of annotations is required for subsequent
analyses, after the data was integrated it was necessary to remove some of the
annotations so that no entity was left annotated by both parent and child GO
terms. It emerges from the above discussion; there are two possible strategies
for doing this filtering. The first would be to maximise evidence quality and
only keep the more confident annotations. The second would attempt to
maximise the precision and retain the lowest-level and most informative terms.
It was decided that the latter strategy was more appropriate for the purposes of

this thesis. The rationale behind this choice was that the annotations to the

35000 @ Automatically-assigned m Author/Curator Statement
m Computational Analysis m Experimental Evidence
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25000 - S5 =

20000 - |
13648 | 13654
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Number of annotations

Uniprot GOA-EBI TAIR Combined

Figure 4.11 Comparison of the evidence types found in the datasets after the
redundancy was removed. All sets were filtered by removing the more general
GO annotations, if a descendant term was also used.

higher level term are still retained due to the semantic relationship between
them and as was demonstrated in Figure 4.8, there is a trend for more
informative annotations to be associated with the better evidence types. Figure
4.11 compares the contribution from the different evidence types in the final
integrated non-redundant dataset with the three contributing resources. Note
that for this comparison the internal redundancies within the individual
datasets were resolved first and ND annotations were discarded. As expected,
the integrated data set benefits from the unique annotations found in all of the
sources. There is a very slight reduction in overall quality of evidence in all of
the cases when the combined dataset is compared to TAIR. However, the
number of IEA annotations is also smaller than in UniProt and GOA-EBI

indicating that there was some kind of internal re-shuffling among the four
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evidence categories.
4.6 TRANSCRIPTION FACTOR ANNOTATION

4.6.1 Overview of relevant data sources

It order to use information about annotations of transcription regulator function
in combination with coexpression networks to predict possible regulatory links
(chapter 5) it is important to maximise the number of proteins annotated as
potential transcriptional regulators. This was achieved by integrating three
additional specialised resources for this type of annotation: AtTFDB (Davuluri
et al., 2003), DATF (Guo et al., 2005) and PInTFDB (Riano-Pachon et al.,
2007). The first two of these resources specialise in Arabidopsis only, whereas
PInTFDB contains data for other plant species. The AtTFDB resource is part
of AGRIS family of resources and also provides data about transcription-
factor-to-target-gene relationships and predicted cis regulatory sites via

AtRegNet and AtCISDB databases respectively (Palaniswamy et al., 2006).

4.6.2 Data integration methodology

All of these transcription factor information resources provide their data as one
or more tabular files. In the cases where the exported data was presented as a
set of multiple, interlinked files (AtTFDB and PInTFDB) specialised parsers
were written to import data from in to Ondex. As all of these resources use
TAIR locus identifiers for their genes, this accession was used to merge the
data with the ARA-REF dataset. From the combined set of all TAIR loci
accessions, only 62 did not have any matches to ARA-REF and were removed
using a data source-based filter. The evaluation of the information contributed
by the different resources was simpler in this case because annotation as a
transcription factor is used in its broadest sense and does not require
hierarchical structure to model. Therefore, the only evaluation possible was a
direct comparison of data content. From the perspective of gene ontology, the
transcription factors are identified by the annotation term “regulation of gene
expression” — or any of its descendants. The comparison to GO-BP also
investigated the coverage of each subset by this overarching term and all of its
descendants, and provided an additional check that the definitions of a

“transcription factor protein” used by each of these resources still
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corresponded to the correct functional role.

In addition to the annotation data, all available experimentally confirmed TF-
to-gene relationships from AtRegNet were also imported and retained in the
dataset. The dataset of all of these annotations plus the content of the
AtRegNet database in Ondex is referred to as TF-ALL in subsequent parts of
this thesis.

4.6.3 Coverage analysis and statistics
At the time of writing, AtRegNet contained only 1451 transcription factor-

target interactions for just 24 transcription factors. As such, this data only

AtTFDB

(1825)

PInTFDB

(2186)

DATF

(1918)

Figure 4.12. Comparison of annotation of Arabidopsis proteins as transcription
factors by three databases. The percentage in brackets indicates which
proportion of this number is also annotated to the “regulation of gene
expression” GO term.
covered about 1% of all proteins annotated as “transcription factors” in all
three databases. The shortage of curated data or experimentally verified data of
this nature was evident from the very start of this project and was one of the

main motivations for the development of the coexpression analysis pipeline

(described in chapter 3). Interestingly, all of the resources have contributed
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some unique annotations and had a considerable overlap with the
corresponding GO categories (Figure 4.12). The smallest number of
annotations to the corresponding GO category (“regulation of gene
expression”) was found to be for the “AtTFDB only” subset. However as
AtTFDB uses the most conservative definition of a transcription factor,
combined with the most complex analysis pipeline and manual curation of all
entries, the most likely explanation for this observation is likely to be the
higher sensitivity of their method that can detect the most transcription factors

missed by all other approaches.
4.7 CELLULAR LOCALISATION ANNOTATION

4.7.1 Overview of relevant data sources

The quality of the interactomes is frequently evaluated (and improved) by
looking at the proportions of proteins that are known to co-localise together
(von Mering et al., 2002) (Sprinzak et al., 2003) (Geisler-Lee et al., 2007).
This because no interaction will be possible if they are never found together in
the same place. Since proteins may be localised to more than one area of the
cell, it is particularly important to assemble as complete as possible set of
annotation in order to minimise the false negative assertions in the cases were
localisation of one of the interaction partners to the compartment is not known.
Protein localisation information is also available in the GOA format as a set of
annotations from the Cellular Component (CC) aspect of the GO ontology and
was acquired from the same three data provides (TAIR, GOA-EBI and
UniProt). One of the shortcomings of the CC aspect of GO, however, is that
the terms are arranged conceptually and the structure of the GO ontology is not
designed to provide clear semantics for how different parts of the cell fit
together and which components can have a common interface. Therefore,
either additional information from other sources or a good understanding of
cellular structure needs to be used in combination with the CC aspect of GO
when using this information to determine which groups of proteins can come
into contact with each other. The GO CC annotations have been used for the
verification of the protein-protein interactions in Arabidopsis by (Geisler-Lee
et al., 2007) who compared the semantic similarities scores of interactors.

However this study also used SUBA annotation as another method of
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evaluation and (Lin et al., 2010) has also used SUBA for this validation.

SUBA offers a simpler classification of protein localisation than GO CC and
uses only 13 different categories that correspond to major cellular
compartments or structures. This resource is also backed by extensive curation
from the literature, integrates information from other annotation sources and
uses a number of computational annotation methods from a large selection of
available approaches that predict protein cellular localisation. The higher
granularity of localisation terms used in SUBA is more suitable for the PPI
verification, as it provides a clear and unambiguous ways of defining co-
localised groups. Both GOA-formatted annotations and SUBA annotations

here were combined to construct the protein localisation dataset on Ondex.

4.7.2 Manual versus automatic term matching

As GO and SUBA cellular localisation definitions have different semantics, a
manual identification of the corresponding terms was required. This list of
pairings was then imported into Ondex as a set of equivalence relations

between the terms of the two controlled vocabularies.

However, the possibility of recovering the same correspondence without the
manual intervention was also investigated. For this purpose, a special filter was
written that looked at the sets of genes that were annotated in both schemes,
identified corresponding terms and filtered them based on a specified levels of
coverage (relative all annotations by a particular SUBA term) and information
content (relative to all annotations in the corresponding resource). In the case
of GO, only the direct annotations and ‘part of* descendants were used to
compute this coverage level in order to minimise the effects of the hierarchical

semantic dependence between the terms in GO

The most optimum result achieved is shown in the Table 4.2, with the manually
selected GO term pairings highlighted in bold. This match was produced by
only considering GO terms with the minimum coverage threshold of 40%, e.g.
at least 40% of all genes annotated by a particular SUBA terms must also be
annotated by that GO term in order for it to be included in the list of march
candidates. It is possible to see that in all of the cases it was possible to recover

a correct match, with the exception of “extracellular” category. Although there
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is a corresponding term in GO, which was identified manually, there were no
annotations made to it in any of the three resources. Even though in some cases
the matching was relatively straightforward, it is evident that in more complex
cases like “cell plate” and “endosome” both the coverage and information
content criteria were needed to find the correct association. Using this pairing
of terms, a new association between all entities that had an experimental
annotation to one of these GO terms (or its descendants) and the corresponding
SUBA component. This new association was also linked to the original

resource that had contributed it to allow further comparative analysis.

118



611

* 8 %ELTL €T’e auesquiaw o} |esgajul 1209T00:09 11
* S %St°St 10'8 awosopud 89£5000:09 11 awosopud
* L %t9°€9 6€°€ suelquaw ewse|d ¥065000:09 11
) . uo13[9y501A2
* ST %88 9V 91, 3INqnIosIW 0€£9ST00:09 143
* 6T %8€"6S 08'8 3sejdowSesyd ¥256000:09 143 ate1d 192
* LT %ET'ES 6€°€E aueiquaw ewse|d ¥065000:09 ve
0z %0S°29 Lt wse|dolAd LELS000:09 143
8T %SC'9S 659 U013|34s01Ad 9585000:09 142
. . U013J2%S03Ad .
* 6S %2809 9T°'L —— 0€95100:09 10T UOIB[ASOMD
* 147 %L TV LT wse|dolfd L€15000:09 10T
* 8vT %8t°TS 00°L awosixosad 8186700:09 L6C swosixo.ad
* SZ1 %09°LS €TE aueiquiaw 0} |ed8a3ul 1209100:09 61¢
vet %YT'LS v0'C aueiquiawl 0209100:09 61T 1803
* 891 % LL 68°S snjejedde i8j09 ¥6.5000:09 61¢
* 1SL %85°08 STV elipuoyd0w 6€L5000:09 ZL6 uolpuoyI0}IW
* 88y %96°LS L1 wse|do3Ad LELS000:09 T8 |0503Ad
* 349 %LS €9 6€'€E sueiquidw ewse|d £065000:09 9/8 sjonaea
* vov %89t ST'S ajondea €£,5000:09 9/8
aueiquiaw
* 9LLT %69°SS 6€°€ sueiquidw ewsejd ¥065000:09 TI€E ewse;d
* rd2:31 %IT'1I8 06'C isejdouojyd £0S6000:09 0S€2 piseld
* 9181 %T19°8L 9T snapnu ¥€95000:09 2844 snajpnu
* veT %83 TV v0'Z suelqwaw 0Z09100:09 €2¢ wnjnoiad
* 62 %T18"LL 85°S e €8.5000:09 €€ dlwsejdopud
:oads 10 Juajuod
num“E | 0} _uuumuwcc< a8eJan0) uoinew.oju| wia1 09 134RuUspL Ul 09 uj mcwwmumo:c< wiR vans

"SuLd) 0N Juduedwo)) Jenj) Surpuodsatiod d3y) o) syuduodwod ten|dd vgns Jo Suidde 7'y slqe L




4.7.3 Results and discussion

Figure 4.13 shows the sources of evidence reported by SUBA for the
experimental fraction of the database. The reported sources include TAIR and
UniProt, which were also integrated in this study as well as Gene Ontology
Consortium annotation (AMIGO), which had previously been omitted from
this study because it appears to defer to TAIR as a source of its Arabidopsis
annotations. The inclusion of both sources by SUBA is likely to be an artefact
from using older versions of these annotations, which were incorporated before
AMIGO and TAIR were so closely linked. However, the largest fraction of
annotations appears to come from the curation of mass-spectrometry and GFP
experiments from the scientific literature, which constitute the largest part of
all SUBA annotations. Most of the annotations are also only supported by just

one evidence source.

8000 - # Has additional evidence
B Only evidence source

7000 -

5000

Nubmer of annotations

Ms

Figure 4.13 Provenance of the experimentally determined subset of the SUBA
database.
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UNIPROTKB TAIR

Figure 4.14 Comparison of the annotations to the 13 SUBA localisation terms
between the four sources. Visualized using VENNY tool (Oliveros, 2007).

After the GO terms corresponding to the SUBA categories were identified, it
was possible to compare the annotations by mapping all of the GO annotations
onto the thirteen SUBA categories. The results of this comparison are
presented in Figure 4.14, which was constructed by looking at the exact
matches of protein-term pairs. SUBA appears to have 6778 unique annotations
not found in any of the other resources. Surprisingly there are also very few
differences between the other three resources, with neither of them having any
unique annotations and the vast majority being found in the sets in common
among all of them. However, as this representation does not use the original
GO annotation to derive these statistics and excludes some of the annotations
that are not covered by the 13 terms corresponding to SUBA categories, some

of the differences between the resources may have been missed. Figure 4.15
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Figure 4.15 Annotations to each of the terms by the four data sources.

shows the counts of the annotations made to each of the thirteen terms. Again,
it 1s possible to see a great deal of similarity between UniProt, GOA-EBI and
TAIR, whereas SUBA appears to provide many more categories with the
exception of “cytosol”, “cell plate” and “endosome™. The “cytosol” is the most
striking, with SUBA having ~2000 less compared to other resources. As the
combined number of annotations in these three cases is still much smaller than
the 3560 unique annotations from Figure 4.14, the additional resources are also
providing some unique annotations in the categories where SUBA has more

annotations overall.

4.8 DISCUSSION

The analysis of the different annotation sources have revealed that data
integration is essential for assembling representative datasets with the best
possible coverage. Although a number of initiatives are in place between data
providers to exchange data with each other, there are still considerable
differences evident in their content. In almost all of the cases investigated in
this chapter each of the sources was found to provide at least some unique
information of appropriate type. One notable exception was the use of Cellular
Component aspect of GO (GO-CC) annotation set, which was found to be very
similar between the three providers. However, considering that the SUBA

database held many more Cellular Component annotations, the likely
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explanation is that the curation of this type of annotation by most resources is
of a lower priority than that describing Biological Processes. Therefore, fewer
differences develop between the updates that incorporate data curated by other

sources of annotation.

The study in this chapter has looked at general data providers, which cover
many species and data types (e.g. UniProt), species-specific data providers
(e.g. TAIR) and data-type specific ones (e.g. IntAct or SUBA). This
comparative analysis indicated that there is no clear relationship between the
type/focus of a resource and its comprehensiveness for particular data type or
species. This highlights the need for the continued monitoring and
investigation of the emergent complexity of the biological data management
such as the one published from this thesis (Lysenko et al., 2009) and the rest of
the work presented in this chapter, in order to both provide guidance for
biological researchers and to improve the quality of information management

in life-sciences.

Both the specialist and more general protein annotation resources were found
to be important for the construction of the most comprehensive datasets
possible, however it was also found there are considerable differences between
the semantic models used by different data providers. The major, general data
providers like EBI and UniProt now appear to be favouring the use of
ontologies as a set of controlled terms to drive their annotation efforts. The
smaller, often specialised data providers appear to prefer simpler and less
expansive sets of annotation terms (SUBA) or forego such categorisation
altogether (AtTFDB). However, although at first glance they appear to lack the
resolution of annotation that comes from the use of ontologies, they often make
up for it in coverage due to the use of more sophisticated, specialised
annotation pipelines and curation teams. For example, the entire set of the GO
transcription factor annotations from three major providers was subsumed and
exceeded by combining the predictions form the three transcription factor
databases. Likewise, SUBA resource contained records for ~6500 more
experimentally determined subcellular localisations than were available from a

combined set of all GO-CC annotations.
Another vital component that enables navigation among the wealth of data
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from different providers is the use of cross-references by different resources;
where one data provider offers a set of accession numbers from another
provider(s) which provide other information for the same entity (Draghici et
al., 2006) (Kohler et al., 2003). However the standard accession numbers are
often used inconsistently by different resources and despite the wide
recognition of this issue by the bioinformatics research community (Pruitt et
al., 2005) (Draghici et al., 2006) (Cote et al., 2007), it was found that the
problem of ambiguous protein identifier cross-references still remains. In the
ARA-REF set there were 2.9% of entries that were found not to have a unique
TAIR locus identifier after the TAIR protein-coding gene set was combined
with that of UniProt. As mapping across the cross-references is often at the
heart of many data integration pipelines, this situation is a source of an on-

going concern.

Another topic investigated in this chapter was the management of provenance
i.e. the sources of data and the evidence that supported it, provided by different
data providers. Provenance is of particular importance when it is necessary to
assemble datasets of high confidence entries or to make accurate comparisons
between different resources (Zhao et al., 2009). This is the case with the GO
evidence types or IntAct experiment types, where provenance can often be
employed to produce an estimate of reliability of the particular piece of
information. Even in the cases where only the source of the data is retained,
e.g. a reference to a paper, it is possible to assemble a higher quality dataset by
only including the assertions supported by multiple independent pieces of

evidence.

Ideally it is preferable to have knowledge about both the source of the evidence
and the method used to obtain it. This makes it possible to identify the cases
where an assertion was independently confirmed using the same method. Of all
the data providers looked at in this chapter, the best provenance management
was provided by IntAct, which used the PSI-MI XML format. This format
allows an unambiguously defined set of accession numbers to be provided for
each original publication, as well as several fields that capture controlled
vocabulary terms for the experimental methods used. IntAct extended this

structure by using an ontology of PPI detection methods, rather than just using
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the controlled vocabulary of method names, as is the case in TAIR and
BioGrid. The GOA tab-delimited format endorsed by the GO consortium for
distribution of GO annotation allows some information about the method to be
captured (through the use of evidence codes) as well as a field for supplying a
reference to the original source. However, as the latter is free-form, this
information is very difficult to consistently extract computationally. Evidence
codes are also too high-level, and do not allow for further dissection and post-
processing. For example, it was already discussed in the context of the PPI data
that different experimental methods appear to have different degree of
confidence. However, in GOA format all of this complexity is concealed

behind just one experimental evidence code of “IPI”.

The complexity of the current biological methodology itself requires
increasingly more sophisticated formats that capture as much metadata as
possible about each documented fact (Quackenbush, 2004). This has led to the
recent development of a number of relevant standards for exchanging
biological data — most notably MIAME for microarray experiment description
(Brazma et al, 2001), PSI-MI for the protein-protein interaction data
(Hermjakob et al., 2004), BIOPAX for pathway data (Demir et al., 2010) and
SBML for biological models (Hucka et al., 2003). However, these standards
have not been universally adopted and smaller, less well-funded data resource
providers cannot always afford the extra effort needing to capture these more
extensive sets of metadata. However, their data still remains valuable and
important because they often contribute specific, unique information of

relevance — albeit, in a non-standard format(s).

As was highlighted by the GO-BP integration example, datasets of the same
type may be different in three different ways — in terms of provenance,
coverage and specificity of their annotation. Any data integration system that is
to be of practical value therefore must not only provide the functional depth (in
that the integrated representation captures the largest possible amount of
information from the original source) but also breadth (i.e. support the largest
possible number of formats and data sources). Additionally, the integration
process itself needs to be tractable and reproducible (Oinn et al., 2004). This is

because experimental biological data is continuously updated and so it follows
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that the data integration process also needs to be re-run to keep the combined
datasets consistent with the most up-to-date information. As was evident from
the investigations described in this chapter, the Ondex data integration system
can adequately manage most of these issues, allowing the integration and
comparative analysis of different data sources, as well as the investigation and
resolution of semantic heterogeneity between them. In the subsequent chapters,
the integration methods and datasets presented here will be further utilized two
different contexts, including the identification of functional modularity in gene
expression networks (chapter 5) and interpretation of experimental data for

prediction of candidate genes (in chapters 6).
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5 ASSESSING THE FUNCTIONAL COHERENCE OF
MODULES FOUND IN MULTIPLE EVIDENCE NETWORKS

5.1 SUMMARY

Combining multiple evidence-types from different information sources has the
potential to reveal new relationships in biological systems. The integrated
information can be represented as a relationship network, and clustering the
network can suggest possible functional modules. However, one of the
challenges inherent to this process is the quantification of the functional
coherence of modules in relationship networks. For this work, the functional
coherence of modules was defined with respect to the Gene Ontology (GO) by
considering two complementary aspects: (i) the fragmentation of the GO
functional categories into the different modules and (ii) the most representative
functions of the modules. These metrics were evaluated in a number of
different relationship networks constructed from the data available for
Arabidopsis thaliana. The types of data used for this analysis included protein-
protein interaction, coexpression, co-occurrence of protein names in scientific
literature abstracts and sequence similarity and a combined network with all
four types of information. The analysis resulted in a number of novel
observations about how functional annotation relate to the structure of different
networks. Some of the metrics defined as part of this work were subsequently

used as part of the applied application case presented in chapter 6.

The previous chapters have described how the Ondex system was extended to
support more complex analyses and presented a range of new resources added
to the network. This chapter consolidates this work by using this functionality
to construct several different types of relationship networks for Arabidopsis
proteins. A new set of methods was also implemented to quantify the
functional coherence of the modules and gain better understanding of the effect
of using multiple evidence-types. A novel metric (AIC-MICA) was also
developed to explore the degree of trade-off between coverage and

informativness of GO annotation for a given set of protein.
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5.2 INTRODUCTION

The ever-increasing availability of high-volume proteomic, genomic and
transcriptomics datasets has led to multiple studies aimed at the systems-level
interpretation of this information using biological and relationship networks.
Biological networks in this context are graphs where the nodes are molecules
and edges indicate interactions between them (Alon, 2003, Aittokallio and
Schwikowski, 2006). As explained in (Alon, 2003), in this type of network an
allowance can be made for “suppression of detail”, e.g. the intermediate
components of some interactions may be omitted and instead represented by an
edge. Most commonly this type of abstraction is used to represent gene
regulation, where the DNA-protein interaction, transcription and translation are
represented by just one edge between the regulator and its target protein.
Relationship networks (Chen and Sharp, 2004) are a superset of biological
networks, where there is no longer a restriction that an edge must represent
actual real-life processes that link the two molecules, but instead may indicate
a shared property, such as two proteins having the same type of protein domain

or being mentioned in the same publication.

The types of data used for construction of such networks include, but are not
limited to: sequence similarity (Weston ef al., 2004), shared sequence features
(Lee et al., 2010, Mostafavi and Morris, 2010), genetic interactions (Mostafavi
and Morris, 2010, Bork et al., 2004, Han et al., 2004, Tong et al., 2004, Gabow
et al., 2008), gene coexpression (Mostafavi and Morris, 2010, Lee et al., 2010,
Myers et al., 2005, Mao et al., 2009, Mentzen and Wurtele, 2008, Wei et al.,
2006), protein-protein interaction (Lee et al., 2010, Mostafavi and Morris,
'2010, Bork et al., 2004, Dittrich et al., 2008, Bu et al., 2003, Myers et al.,
2005, Myers and Troyanskaya, 2007, Jensen et al., 2008), domain interaction
(Pandey et al, 2010, Pandey et al, 2008) and term co-occurrence in the
scientific literature (Lee et al., 2010, Chen and Sharp, 2004, Ponomarenko et
al., 2010, Myers et al., 2005, Gabow et al., 2008). These types of information
can be analysed independently or integrated together in order to encompass a
wider range of biological mechanisms, provide additional evidence of
association between entities in the network and connect disjoint parts of the

network. In these studies, different techniques have been developed for the
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analysis of relationship networks but they follow the same methodological
pattern: partitioning the network into modules, identifying the graph-theoretic
properties of the network and relating these to biological function. For the
work described in this chapter, a similar approach was adopted and a set of
metrics was devised for quantifying the functional coherence of the modules in
order to explore the effect of using multiple evidence-types in an integrated

relationship-network of Arabidopsis thaliana proteins.

Clustering approaches work by identifying densely interconnected areas within
a network (Aittokallio and Schwikowski, 2006) and are commonly used to
detect modular structure in graphs. In the context of biologically relevant
networks, these groups are often referred to as functional modules (Bork et al.,
2004, Aittokallio and Schwikowski, 2006). Functional modules in biological
networks are groups of molecules that are more linked to the other members of
the group than to non-members and have similar function (Alon, 2003). The
modular structure can be used to infer function of as yet unannotated proteins
(Bu et al., 2003), to discover previously unknown roles of proteins in diseases
(Chuang et al., 2007) as well as for better understanding the regulation and
interrelationship between different elements of complex biological systems
(Mao et al., 2009). The function of a module is commonly identified from the
annotation of its members with respect to the Gene Ontology (GO) (Ashburner
et al., 2000).

GO consists of three separate categories - Biological Process, Molecular
Function and Cellular Component, where each category consists of a controlled
vocabulary of terms structured as a directed acyclic graph with qualified edges
describing the semantic relationship between these terms. Each protein can be
annotated with multiple GO terms and inherits the annotation of the parent
terms and this makes it challenging to quantify and analyse the functional
similarity between GO annotations. This has stimulated a number of studies
that have explored these problems in detail; in particular, the importance of the
quantitative characterisation of GO-term specificity. One of the most well-
known of these uses information content, (IC) as described by Lord (Lord et
al., 2003) and based on this metric, several pair-wise quantitative

measurements were developed that take into account the structure and
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properties of the Gene Ontology (reviewed in (Pesquita et al., 2008)). In a
number of related but separate studies, metrics have been devised to measure
the semantic consistency among the functional annotations for sets of proteins
with the aim of identifying those which were significantly enriched. In this
context, the enrichment can provide an indication of how over-represented
particular function is in the module. Therefore, can be used pick out most
important associations turned out by the analysis out of an often-extensive list
of all annotations, many of which are just as likely to occur in that number by

chance.

These studies, typically, did not take into account hierarchical structure of GO
and although useful, these methods have a number of limitations. Zheng and
Lu (2007) pointed out the problems of sensitivity suffering as a result of
inconsistent annotation, failure to pick up on the importance of biologically
meaningful links between functions and sensitivity to the relative size of the
sets, which may lead to much greater importance being given to very rare
annotations. Khatri and Draghici (2005) have also discussed the impacts of
annotation completeness and correctness on this type of analysis and further
identified inability to consider functions in an appropriate context as a limiting
factor. Additionally, Khatri and Draghici (2005) have identified a number of
implementation related issues of the current functional over-representation
tools that impact their usefulness, in particular ease of installation,
incompleteness of reference GO annotation datasets and the need to convert
between different types of gene accessions. Another set of optional, but “nice-
to-have” features suggested included the ability for the user to control the
specificity of the terms considered by the analysis and visual presentation of
the results. By implementing this type of analysis as part of an established,
cross-platform data integration solution with advanced visualisation
capabilities many of the above mentioned technical issues can be resolved with

minimal effort.

To address the more fundamental shortcomings of the enrichment analysis
approach, several extensions were proposed that combine some aspects of
enrichment-based methods with adjustments for the relationship between the
terms (Xu et al., 2009, Alexa et al., 2006, Richards et al., 2010). At the same
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time, another set of measures were developed for the quantification of overall
relatedness in a set of ontological annotations (Yu et al., 2007, Wang et al.,
2007, Ruths et al., 2009, Chagoyen et al., 2008, Zheng and Lu, 2007). The
insights that have emerged from these studies were used in this work in order
to define a descriptive measure for comparing the functional annotation of
protein sets. In particular, the approach presented in this chapter allows the
functional annotation of a set of genes to be explored from the perspective of
coverage and identifies a non-redundant set of terms that are most informative
at that level by considering the ontological structure. The only limitation is
that, for the time-being, the result is not supported by statistical validation and
it is, therefore, left up to the user to decide whether the observed pattern is
likely to be of relevance. However, as is elaborated in this chapter, this method
allows effective quantification and comparison of the trade-off between the
specificity and coverage of functional annotation in different networks.
Additionally, classical enrichment analysis of GO annotation was also
implemented as part of this work and both of these analyses were applied in a

practical context in chapter 6.

In order to determine the biological relevance of a partitioning of a set of
proteins, there are two important aspects that need to be taken into
consideration. The first is that the set of GO terms, that best describes the
common function of a representative proportion of proteins in the modules, can
be found at any annotation specificity level. However, at the higher levels,
which are close to the root of the Gene Ontology, the annotation will not be
particularly informative. This leads to a trade-off between the specificity of
annotation terms and the number of proteins in a module to which it applies.
The needs of the particular application case may dictate which of these two
components is more important, and metrics have been developed that allow the
emphasis to be placed on one or the other (Joslyn et al., 2004). Using the
metric defined in this chapter (AIC-MICA) it was possible to explore these two
properties in five different relationship networks. The second aspect to be
considered is that the proteins with similar GO annotation can be fragmented,
i.e. assigned to a number of different clusters by the clustering algorithm. Not

only can the functionally similar group be spread across a number of clusters,
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but also may be more or less concentrated in the clusters where it is present.

To assess the functional coherence of modules from a relationship network,
both of these aspects, namely the representative functions of modules and the
fragmentation of functional categories, are relevant. In this chapter the
potential of combined relationship networks to recover functional modules is
investigated by considering four sources of information, protein-protein
interaction (PPI), coexpression (COE), sequence similarity (SEQ) and co-
occurrence of terms in the scientific literature (LIT). These were chosen
because they are often used for inferring functional relationships among genes
and proteins and are readily available from the application of high-throughput
‘omics techniques. A large amount of coexpression data is available for
Arabidopsis (see for example, (Obayashi et al, 2009)). Measurements of
sequence similarity can be obtained for all pairs of proteins (The Arabidopsis
Genome Initiative, 2000) and co-occurrence of protein terms in abstracts can

be extracted from the scientific literature (Hassani-Pak et al., 2010).

The set of proteins used for evaluation was restricted to those for which
protein-protein interaction information was available, because at the time of
writing, this was the least abundant type of data available for Arabidopsis. This
restriction means that a relatively small subset of Arabidopsis proteins was
considered, but has the advantage that it leads to a more balanced distribution
of evidence types from the four information sources among the relationships
between proteins. This setting also allowed an evaluation of the extent that
patterns and trends previously found in whole proteome-based networks still
hold in situations where only a subset of the whole proteome is analysed.
Another motivation was to evaluate the usefulness of these approaches for
extracting the best possible information under conditions when data are scarce

or incomplete.

5.2.1 Markov clustering algorithm

Some work described in chapters 5 and 6 of this thesis relied on the Markov
clustering algorithm for graphs (MCL) (van Dongen, 2000) to partition the
integrated networks into functional modules. One of the advantages of this
clustering method is its scalability and performance, which means that it can be

used to partition even very large networks. For example, it is used as part of the
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ortholog detection method OrthoMCL (Li et al., 2003) to successfully partition
networks of bidirectional BLAST hits for the sets of more than one million
individual proteins. Aside from several very successful applications for
clustering sequence homology networks (Li et al., 2003, Enright ef al., 2002),
other studies have also compared the performance of MCL versus other
clustering methods in other biological contexts. One of such studies has looked
at its ability to correctly detect the modularity in protein-protein interaction
networks and has found that MCL outperformed all other approaches (Brohee
and van Helden, 2006). Another study that looked at the partitioning of
coexpression networks has reported that MCL tied for best performance with
their own method (Mutwil et al., 2010). Although no clustering approach can
be the ultimate solution to unsupervised network partitioning problem, these
reports of good performance of MCL combined with the high scalability of the
algorithm suggest that it might be a good choice in a variety of biological

network settings.

The MCL algorithm is based on the notion of random walks through the
graph, which can be modelled by Markov chains. Such representation is
realised by representing a graph as an adjacency matrix, with weights on edges
representing a transition probability of a random walker traversing a particular
edge between the two nodes. As each column of the matrix represents the
edges of a particular nodes and weights representing the probabilities, the sum
of all values in a column is always equal to 1.0. A Markov chain set-up allows
modelling of the probabilities of a random walker traversing a particular edge
after n steps. This set of probabilities is derived by successively multiplying the
transition probability matrix by itself n times. As the Markov chain progresses
through the steps, it is possible to observe that the more densely connected a
region of a graph is, the more likely it is for the random walker to visit it. The
MCL process exploits this property by emphasising it further by increasing the
transition probabilities of links with a higher value, while at the same time
reducing the transition probability of the weaker ones. This is done by raising
every element of the matrix into a particular power I (termed “inflation
parameter”). Subsequently, each column of the matrix is re-normalised to 1.0.

The process of MCL clustering is realised by alternating two different steps:
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the progress through the Markov chain (the “expansion” step) and the raising
of the matrix into the power of I (the “inflation” step). The original work has
demonstrated that the process simulated by this procedure converges on an

equilibrium solution at a quadratic rate.

Once the algorithm converges on the solution, the resulting matrix can be
interpreted to assign nodes to individual clusters. The clusters detected are the
individual connected components, if the matrix is interpreted as an adjacency
matrix. The granularity of the clustering can be controlled by an inflation
parameter, with higher I generally leading to the recovery of a larger number of
smaller clusters. It was demonstrated that the partitioning tends to be quite
robust to the changes when used on sparse networks with a clearly defined
modular structure, but the effect of I increases when applied to the more
densely interconnected networks. Another study has also reported that there
was a wide range of applicable values of I (1.5 to 3.0) where changes in
inflation had little effect on optimality of clustering when MCL was used to
partition the Arabidopsis coexpression network (Mao et al, 2009). The
strategies for optimising I for particular datasets vary greatly, from choosing
the values that optimise a recovery of a particular property (Mentzen and
Wartele, 2008, Enright et al., 2002) to empirical selection based on the visual
correspondence between the graph layout and cluster assignment (Freeman et

al., 2007), when optimum partitioning cannot be established a priori.
5.3 METHODS

5.3.1 Overview

A protein-protein-interaction network was constructed based on experimentally
established protein-protein-interaction data from the IntAct database (Aranda et
al., 2010) and combined with additional data, namely gene coexpression,
sequence similarity and co-occurrence of protein names in the scientific
literature. The same methodology for construction of an integrated network of
PPI and gene coexpression data using Ondex was applied in (Lysenko et al.,
2009). The inherent modular structure of these networks was investigated and
related to the underlying biological processes using the Gene Ontology (GO)

(Ashburner et al., 2000). Functional properties of these modules were
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quantified and compared using information content and semantic distance

based measures.

5.3.2 Construction of the integrated relationship network

According to the formalism of network representation chosen for this work,
nodes represented proteins and edges were added if there was at least one of
the possible four evidence types linking these proteins: co-occurrence of
protein names in PubMed abstracts, coexpression of genes that encode those
proteins (where the magnitude of the Pearson correlation coefficient was
greater than 0.6), sequence similarity (with E-value<0.001) or experimentally

determined protein-protein interaction.

Protein-protein-interaction (PPI) data were imported from the IntAct database
(PSI-MI XML format) into the Ondex system. After that, all entities that were
not annotated with Arabidopsis thaliana NCBI taxonomy identifier and all
interaction participants that were not proteins were removed. The interactions
between multiple copies of the same protein were also discarded. All proteins
that were not part of any interactions after this filtering were also removed

from the set.

A coexpression network (COE) was constructed from Arabidopsis
coexpression data from the ATTED-II database (Obayashi et al., 2007). An
edge was created in the coexpression network if the absolute value of Pearson’s

correlation coefficient of respective gene expression profiles was greater than
0.6.

For the literature-based co-occurrence analysis of protein names, 30,639
abstracts from PubMed were downloaded which contained the word
“Arabidopsis”. This set of publications together with Arabidopsis protein name
information from UNIPROT was loaded into Ondex. The Ondex text-mining
plug-in was used to create relations between proteins and publications and
transform the output to a co-occurrence neiwork, according to the method
described in (Hassani-Pak et al, 2010). An edge in the protein name co-
occurrence network (LIT) indicates that there was at least one abstract that

included a mention of both proteins.

Sequence similarity was determined by using TimeLogic® Tera-BLAST™
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(Active Motif Inc., Carlsbad, CA) for all-against-all sequence-comparison of
proteins in the interaction dataset, with E-value cut-off at 10 and a minimum
percent sequence identity cut-off at 25%. One edge was created in the

sequence-similarity network (SEQ) per pair of proteins with similar sequences.

5.3.3 Clustering the relationship networks

Natural groupings of the proteins was explored using the MCL clustering
algorithm (van Dongen, 2000). This algorithm simulates flow in the network,
and can be used to identify strongly connected groups of nodes. The
implementation of the MCL  (v10-148)  algorithm (from
http://www.micans.org/mcl/) was wrapped as a function and as a plug-in and
made accessible from the Ondex data-integration platform. For this algorithm,
the inflation coefficient (I) determines the granularity of the clusters. A value
of 1=2.8 was used for all of the clustering analysis described in this chapter.
This value was chosen to get the best possible balance between the “useful”
clusters produced by the algorithm. It was found that at lower thresholds ALL,
COE and LIT networks had most of the nodes assigned to one large cluster
because nodes in the core of the network were highly interconnected. At the
higher values of I an increasingly large number of clusters of size 1 were
produced. This value was chosen so that a partitioning of the dense core of the
ALL, LIT and COE networks happened, but at the same time the number of
clusters of size 1 was kept to a minimum. The partitioning of the SEQ and PPI
sets appeared to be quite robust to the changes in I. The clustering was
performed on an adjacency matrix relative to the edges of particular type. The
analysis did not assign any weights to edges — e.g. any coexpression edge
joining two nodes would result in a value of “1” in the adjacency matrix.
Likewise, in the case of the combined network a presence of any of the
evidence types would also result in a “1”, regardless of how many different

evidence types supported that edge.

5.3.4 Gene Ontology annotation

To explore the functional groupings of proteins in the network, all available
Arabidopsis GO annotations were combined from three sources: IntAct
(Aranda et al., 2010), GOA-EBI (Barrell et al., 2009) and UNIPROT (UniProt
Consortium, 2010). The Information Content (IC) (Shannon, 1997) of the
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annotations was calculated using the combined set of all GO annotations of the
Arabidopsis proteome subset as identified in the UNIPROT database. All
annotations to proteins not included in the proteome set were discarded prior to

calculation of the IC.

5.3.5 Assessing the functional coherence of modules

The overall aim of this study was to assess the functional coherence of modules
by exploring two aspects: (i) whether the clusters contain proteins that are
generally similar in terms of their functions, as assigned by Gene Ontology
terms, i.e. the most representative GO terms in a cluster; (ii) the way in which
proteins with the same functional roles are distributed across different clusters,

i.e. the fragmentation of the GO terms.

To study the first aspect of functional coherence, a measure was developed that
quantifies the annotation similarity at various levels of coverage. Since the GO
is described by a directed acyclic graph (DAG), one way of estimating the
overall level of commonality of GO terms in a cluster is to find a set of
representative common ancestor terms. Terms lower in the GO tree tend to
have higher information content but also have a smaller number of
descendants. The set of annotations that best summarise the commonality of
proteins in the set should therefore be the most informative subset of all
applicable ancestor terms. However, as the module identification process is not
perfect, the set can contain some noise in the form of proteins that are not
functionally related to the rest of the modules. Another possible scenario is that
a module itself has complex structure and is composed of sub modules with
different functions, which work together to realise some high level biological
process. For example, regulatory processes often involve both transcription
factors and signalling proteins. One way of accounting for these possibilities is
to allow a certain number of outliers when identifying the set of most
informative common ancestors. The IC of all terms in a set can be average to
give Average Information Content of the Most Informative Common Ancestor
set (AIC-MICA), which provides a measure of functional coherence for a set of
proteins. The procedure for calculating AIC-MICA is explained schematically
in Figure 5.1.
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Figure 5.1 Example calculation of the average information content for cluster
coverage level.

In order to study the second aspect of the functional coherence, two metrics
were used to evaluate the fragmentation of the protein sets annotated with the
same GO annotation terms compared to the groups to which they were
assigned by the clustering algorithm. A term from the biological process
category of GO is defined as t, a set of all proteins annotated to the term t as
A; and a set of clusters that contain at least one element of A; as C;. N; denotes
the number of fragments of ¢, as the cardinality of C;, and pj -- the proportion

of the total number of proteins annotated with term t found in cluster k :

_ 1kNAe|
Pe= g (5.1)

withk € C,.

And the entropy (H,) was defined as:

Hy = =Ykkec,prloglp) (5.2)

Similar to the number of fragments N,, the entropy H, gives a measure of the
fragmentation of the term t across the clusters, but it also accounts for the
distribution of the size of the fragments (see Figure 5.2). The average entropy
obtained for each of the real networks was compared to a randomized control,

where cluster labels were permuted 10000 times.
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Figure 5.2 Schematic diagram showing how entropy provides a useful metric of
fragmentation of a given GO term across clusters. If 20 proteins are associated
with a given GO term and they all are in the same cluster then the entropy (H)
is zero. If most (16) of the proteins are in one cluster and the remaining proteins
are in separate clusters H=0.338. However, as the proteins get more evenly
distributed across clusters the entropy increases.

In order to compare the number of fragments and the entropy of fragmentation
to the sources of relationship data, both of them were ranked for each of the
GO terms across all five networks. This was done by counting the number of
times each of the data sources was assigned the best rank (i.e. the lowest value)
and calculating a proportion with respect to the total number of GO categories.
For the sake of brevity, the abbreviations BFRP (best fragment rank
proportion) and BERP (best entropy rank proportion) were used when referring

to these comparative measures.

5.3.6 Visualisation

The integration process was implemented as a set of workflows in the Ondex
Integrator (Canevet, 2010). The resulting network was visualized and further
analysed in an interactive manner using the Ondex user client by invoking
visualisation and analysis functions from the command console. Both the
Ondex Integrator tool and scripting environment for Ondex were developed to
support the work in this thesis and more information about them may be found
in chapter 2. For the analyses in this chapter, the Jython scripting interface was
used in order to utilize methods from the NetworkX v0.99 graph-analysis
library (Hagberg et al., 2008b). Interactive visual exploration of the network
used the visualization methods available in Ondex and exploited features which
controlled settings such as the visibility, size/width and colour of nodes and the
rendering of edges based on the numerical values of their attributes and/or
group membership. The methods from NetworkX library were also used to
calculate the graph properties in Table 5.2.
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54 RESULTS

5.4.1 Network properties

Coexpression, protein-protein interaction, sequence similarity and name co-
occurrence data were integrated using the Ondex system as described in 3.2.2.
To better understand how each of the four sources contributed relationships in
the Ondex graph, the number of edges and cases were they co-occurred was
counted. These counts were further categorized to distinguish where an
information source was the only source (exclusive), or where it may have also
been supported by other edges, (inclusive). Additionally, key structural features

of the networks were compared.

Table 5.1 Number of edges in the graph with evidence from the four
information sources after applying a threshold on the relevant strength of the
relationships (as defined in the Methods section). Exclusive combination means
that only this exact combination of evidence types is present. Inclusive means
that at least these evidence types are present, but others may be there as well.

Exclusive Inclusive
COE LT PPI SEQ | combinations combinations
N % N %
v v v v 9 0.04 9 0.04
v v v 34 0.14 43 0.17
v v v 83 0.33 92 0.37
v v 84 0.33 210 0.83
v v v 17 0.07 26 0.10
v v 63 0.25 123 0.49
v v 15 0.60 260 1.03
v 9093 3612 | 9534  37.88
4 v v 123 0.49 132 0.52
v v 482 1.91 648 2.57
v 4 692 2.75 907 3.60
v 4441 17.64 5948 23.63
v v 240 0.95 389 1.55
v 3459 13.74 4427 17.59

v 6201  24.63 7516 29.86
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The contributions from the four information sources to the edges in the

network are shown in Table 4.2,

There were 2355 proteins in the integrated network in total. The edges
introduced into the network that came exclusively from each evidence source
were: coexpression (COE) 36%; co-occurrence of protein names (LIT) 18%;
protein interaction (PPI) 14% and sequence similarity (SEQ) 25%. The
intersection of all evidence types was also very small (0.04%). This suggests
that in this case each of the evidence sources tended to introduce new links into
the combined network rather than reinforce the relationships already found in

other sources.

The global properties for the relationship networks constructed from the four
constituent information sources and the combined network (ALL) are shown in
Table 5.2. As expected, the combined network had fewer connected
components, since evidence from the other data sources connected previously
unconnected nodes. The size of the largest component was also larger than that
of any of the constituent networks. The diameters of the largest connected
component of the SEQ, LIT and combined network (ALL) was of similar size
(9, 9 and 10 respectively) and smaller than the COE and PPI networks (15 and
18 respectively), suggesting more cohesive or dense graphs. The increased
density and the larger size of main connected component indicate that the ALL

network is likely to be much harder to optimally partition using a clustering

Table 5.2 A comparison of graph theoretic properties for the different evidence
types.

Evidence Transitivity | Number of | Size of the | Diameter of
Network connected largest the largest
Type components | connected | connected
component | component
LT 0.223 15 981 9
COE 0.580 24 991 15
PPI 0.070 100 1882 18
SEQ 0.746 268 241 9
ALL 0.406 9 2330 10
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Figure 5.3 Cluster size distribution in five networks. The networks show are
combined (ALL), protein-protein interaction (PPI), co-occurrence of protein
names (LIT), sequence similarity (SEQ) and coexpression (COE).

approach.

The transitivity is a measure of clique-likeness of a graph. It was highest for
the SEQ network (probably reflecting protein family structures) and the COE

network, possibly reflecting shared transcriptional regulatory mechanisms.

Since the initial dataset was restricted to those proteins for which interaction
data was available from Arabidopsis there were no unconnected proteins in the
PPI and ALL networks. The number of orphan proteins (i.e. unconnected) for
the SEQ, COE and LIT networks were 855, 1304 and 1343 respectively. The
numbers of orphan proteins, however, depended on the score thresholds

chosen, the values for which can be found in the section 5.3.

5.4.2 Network Clustering

The four single evidence networks and the combined network (ALL) were
clustered according the protocol described in section 5.3.3. The distribution of
cluster sizes is shown in Figure 5.3. The SEQ and PPI networks have a large
number of clusters of size 2 and 3. The integrated network (ALL) and protein
interaction network (PPI) contained the greatest number of larger clusters (size
20+). In the ALL network there were a large number of singletons (clusters of
size 1). A total of 138 singletons accounted for 6.22% of all proteins in the
network. This small proportion of singletons may be related to the

cohesiveness of the ALL network, with tightly connected groupings leading to
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the exclusion of nodes by the MCL algorithm.

5.4.3 Coverage and specificity of the most representative function of
modules

To explore the functional groupings of proteins in the network, Arabidopsis
GO annotations from three sources: IntAct (Aranda et al., 2010), GOA-EBI
(Barrell et al., 2009) and UniProt (UniProt Consortium, 2010) were combined
with the relationship network. This was achieved by importing these data
sources into Ondex and combining them with GO graph and relationship
network using the accession-based mapping method (Taubert et al., 2009) on

GO term identifiers for the former and UniProt protein identifiers for the latter.

The utility of clustering depends on being able to group together a large
enough number of proteins, so as to facilitate exploration of the modular
structure of the network without diluting the information content of the clusters
to such an extent that the groupings do not capture biologically meaningful
relationships. In particular, this is determined by (i) whether the clusters
contain proteins that are generally similar in terms of their functions, as
assigned by Gene Ontology (the most representative GO terms in a cluster) and

(ii) the way in which proteins with the same functional roles are distributed

uT PP
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Figure 5.4 The Average Information Content of Most Informative Common
Ancestor (AIC-MICA) across all clusters. AIC-MICA was calculated at 40-90%
coverage levels. The solid line is the average IC and the shaded areas are 25 and
75 percent quartiles.
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across different clusters (the fragmentation of GO terms)

The Average Information Content of the sets of these Most Informative
Common Ancestor GO terms (AIC-MICA) was used to determine the coverage
and the specificity of the most representative function of modules. If a cluster
contained proteins that were of very diverse function, it would be expected that
the GO categories corresponding to the most representative functions would
not be very specific, i.e. the Most Informative Common Ancestor would be
close to the root of the Ontology tree and thus would not represent a
functionally meaningful grouping. As was explained earlier, the relationship
network may not always reflect accurate functional relationships, and,
therefore, there are likely to be some outliers present in the clusters. For this
reason, rather than trying to identify a set of MICAs for all the proteins in the
cluster, a sampling approach was used to find where term is applicable to at
least a certain percentage of all proteins in a cluster. The analysis has been
performed several times, with the minimum coverage parameter changed at
10% increments from 40% to 90%. This approach allowed simultaneous
detection of functional similarities in more than one functional category and

was more robust to outliers by design. The overall level of MICAs in the set
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Figure 5.5 Modular structure of the combined network of all evidence types.
The network nodes represent all clusters with 10 or more members. The width
of the edges indicates the number of links between them. Clusters are annotated
with the most informative GO term at 80% of the clusters proteins annotated
with the GO term.
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was calculated by averaging the IC of all the members of the set to produce the

graph shown in Figure 5.4.

In Figure 5.4 the AIC-MICA metric was plotted for the five relationship
networks. As expected, the average information content of the representative
GO terms decreases with the increase in cluster coverage. This implies that the
common ancestor includes a greater proportion of proteins in the cluster. The
average information content in the LIT network was similar to the ALL at
lower coverage range (40%-50%), but declined very sharply and is second
worst at the higher coverage level. This may be an indication that although
useful associations can be found using term co-occurrence, these groupings
tend to be less coherent at the whole-cluster level. Clusters in the COE network
had the lowest information content of all coverage levels. The information
content at coverage level of 90% was highest for the SEQ network followed by
the ALL network. In the SEQ network, however, only 1496 proteins were
assigned to clusters (of size greater than 1) whereas in the ALL network this
figure was 2217. For proteins that cannot be assigned to a module, no inference
can be made using the guilt-by-association principle. So, while for 5.9% of
proteins, no new information could be gained from clustering the ALL
network, whereas for the SEQ network this figure was 36.5%. Therefore, the
ALL network had a much greater potential for suggesting biological context;
supporting the hypothesis that the integration of multiple information sources

can be useful when identifying functional modules.

5.4.4 Modules in the ALL relationship network and their most
representative functions

Visual examination of complex network structure can be helpful for the
identification of patterns. To facilitate the interactive analysis of functional
annotation data, a method was developed to generate a meta-view of the
modular structure as it is resolved by the clustering algorithm. In this view,
each node represents a cluster and edges show the inter-links between them.
This nodes and edges in this representation can be further annotated with
additional properties, e.g. number of nodes in the cluster, degree of functional
similarity, MICA, etc. Figure 5.5 illustrates how this method of presenting data

can be used to examine the modular structure found in the ALL network
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produced by application of the MCL algorithm. In this case, the clusters were
annotated with the most informative of the representative GO terms at 80%
level. It is possible to see that although the network was very densely
interconnected, the clustering algorithm had performed reasonably well, with
only a few cases where a very large number of links existed between separate
clusters. One example of where the clustering was not optimal was where two
clusters with the same annotation “regulation of cellular transcription, DNA-
dependent” were linked together by more than 800 edges, but still were not
joined together. In one of the cases, there were 6 of the 36 clusters with this
same annotation where information content was in the middle of the range (4.0
— coloured green). Interestingly, this phenomenon was also seen in for clusters
with other annotations relating to signalling and regulation of transcription.
The two clusters with the most informative annotation were both related to
hormone signalling (coloured red). There was also one large cluster annotated
to “modification-dependant protein degradation”, a similar cluster related to
protein catabolism was also found in other studies that analysed PPI and

coexpression networks (Bu et al., 2003, Ulitsky and Shamir, 2007).

5.4.5 Fragmentation of functional categories

The other factor that needs to be taken into consideration when assessing the
functional coherence of modules is fragmentation of functional categories.
Fragmentation, and a loss of coherence arises because inevitably missing data
and erroneous links will inevitably affect the performance of clustering
algorithm, the correspondence of the current “perception” of how functional
roles should be assigned to a group of proteins is also not guaranteed to
perfectly correspond to the modules of a real biological system. Therefore,
clustering can result in proteins with the same functional annotation being split
across multiple clusters. This leads to the separation of this group of proteins

into multiple fragments.

To assess the coherence of the clustering performed earlier, an analysis was
undertaken to investigate how the Gene Ontology terms were distributed across
the clusters. In Table 5.3, the Best Fragment Rank Proportion (BFRP) indicates
that the GO terms are the least fragmented in the ALL network. This suggests
that the combined network is better at grouping together identical GO terms, by
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Table 5.3 The first two rows show the average entropy for the clustered
networks and, for comparison, the average entropy for the networks with
randomly permuted GO labels. The third row contains the decrease in entropy
between the actual and randomly permuted networks. The fourth and fifth
rows show the best fragment rank percentage and best entropy rank percentage
statistics (defined in the Methods section). Note that percentages may not add
up 100%, because when several networks performed equally well in the
BERP/BFRP assessment, all of them were counted as “best” for that GO term.

ALL SEQ COE PPl uT

Average entropy {actual
etwort) 272 2.96 3.30 2.86 2.96
Average entropy (randomly 331 3.43 3.42 3.29 3.33

permuted network)

Relative decrease in entropy

{compared to randomly 17.8% 13.7% 3.5% 13.1% 11.1%
permuted network)

BFRP 49.43% 22.78% 3.55% 24.56% 28.43%

BERP 39.58% 16.64% 2.75% 18.58% 31.18%

comparison with the individual networks. To evaluate the level of
fragmentation of functional categories, both the number of fragments and their
size distribution need to be considered. The entropy of the fragmentation gives
a measure of this size distribution. As can be seen in Table 5.3, the Best
Entropy Rank Proportion (BERP) is also maximal for the ALL network,
followed by the LIT network, indicating that overall the entropy with respect to

GO categorisation was the lowest for these networks.

A lower entropy value implies more ordered data, both in terms of reduced
fragmentation and prevalence of larger fragments. To provide a comparison
with the level of entropy that could be expected by chance, “control” networks
were generated by randomly permuting the cluster labels for all GO categories
10000 times. The complete results of this test are included in Appendix E — in
all five cases none of the random networks were able to achieve comparable
entropy value, indicating that this result is highly significant, with p<0.00001.
To avoid the problems of small sample sizes, only those GO categories that
were assigned to at least 10 proteins in the dataset were included. Table 5.3
shows the average entropy values for each network. From this it can be seen

that the ALL network has the lowest average entropy, again suggesting that it
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is better at grouping related proteins, the average entropy being 2.72 compared

with 3.31 for the equivalent “control” network.

5.4.6 An example of fragmentation in the ALL relationship network

Figure 5.6 (A) shows all proteins (nodes) in the combined (ALL) network
annotated to the high level GO term “response to hormone stimulus™ and its
more specialised categories (grey clusters). The average shortest path length
(SPL) between all proteins with this annotation was 20% shorter compared to a
control, where node labels were permuted 10000 times. The SPL reduction in
distance for the child terms listed in Figure 5.6 was even greater and ranged
from 22-30%. It is interesting to note that the structure of the distribution of the
proteins with these annotations echoes the hierarchy of the Gene Ontology,

which was defined entirely independently by manual curation.

Figure 5.6 (B) shows the fragmentation of this cluster by visually separating all
the MCL clusters across which this term is distributed. It is evident that the
clustering was not able to group together all the nodes that were associated
with the general process ‘response to hormone stimulus”. In this case, there
were only two clusters which had more proteins in the cluster annotated with
the same term (e.g. ‘response to auxin stimulus’ and ‘response to abscisic acid
stimulus’). However, even in the situations when the grouping is suboptimal, it
is still useful to be able to determine and quantify how much the grouping
differs from the one specified by annotations and structure of the Gene

Ontology.

This analysis has shown that both the AIC-MICA, and BERP/BFRP types of
metrics can be used to evaluate the impact made by choosing different
clustering methods, data sources or GO aspect on the functional coherence of
the modules. However, it is also evident that there may be more complex
multi-level structural features present in the integrated functional networks,
which may be difficult to detect using clustering approaches along. As was
demonstrated by this example, interactive visual exploration of the network can
be a useful tool for discovering such features, and provide useful insights for
development of more rigorous computational approaches for better

understanding of integrated networks.
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Figure 5.6 A subnetwork from the combined (ALL) network of proteins
annotated with the GO term “response to hormone stimulus”. The diagram
shows (A) the proteins annotated to this GO term and direct links between them
and (B) the breakdown of this group of proteins into clusters. The colouring is
consistent between the two panels. Proteins that are not annotated to this
process are hidden on panel (A) and are coloured grey in panel (B). In (B) all
clusters shown contain at least one member with '"response to hormone
stimulus" annotation and the only edges shown are the ones that link two
members of the same cluster.

5.5  DISCUSSION

The aims of this research have been to explore the effect of using multiple
sources of biological information about Arabidopsis thaliana proteins and, in
particular, to assess whether integrating multiple evidence sources in a
relationship network has potential benefits for applications such as detection of

functionally coherent sets of proteins in relationship networks.

In this chapter the functional coherence of modules detected by clustering
relationship networks was assessed from two different perspectives. The first
considered the representative functions of the modules with respect to GO
terms and the second was an analysis of the fragmentation of GO terms with

respect to the proteins contained in the modules. The motivation behind the
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former approach was to investigate the trade-off between coverage and
specificity of the representative function of modules. This was achieved by
defining a novel metric (AIC-MICA). Additionally, two metrics describing the
fragmentation of GO categories, namely BFRP and BERP, were introduced to
evaluate how well the modular structure, recovered by the MCL algorithm,
maps to GO Biological process terms. These metrics were then used to
compare the usefulness of individual data sources and to test the effects of

combining multiple sources on the coherence of these modules.

From the analysis of the trade-offs between coverage and specificity, the SEQ
network was, as expected, best for recovering very specific functional
association between proteins. This was evident from the high AIC-MICA
values across all coverage levels. However, an important point to note is that it
may not always be desirable to extract such close groupings, and a higher level
GO categorisation may be helpful to provide a broader overview of biological
functional class or to help dissect very large datasets. Compared to the other
relationship networks, SEQ consisted of a large number of strongly connected
components (results not shown), which resulted in the relatively high overall
entropy with respect to the whole of the Gene Ontology. We also observed that

the clusters recovered were only related to a small number of GO terms.

Another problem with sequence relations as the sole data source was that there
was insufficient evidence to link most of the proteins in our reference set. By
comparison with the SEQ network, it was possible to use the ALL network to
assign a further 721 proteins to a cluster of size greater than one due to links
that were contributed by other sources. Based on these findings, we conclude
that, overall there is a clear benefit from the integration of additional data
sources, although there is a small cost incurred because of a reduction in
functional coherence. As the ALL network performed relatively well in terms
of AIC-MICA (40-90), this dilution of annotation specificity does not appear to
render it uninformative. In fact, the minimum information content value that
was applicable at a 40% coverage level was 0.55 and was reached only for 5
clusters found in the ALL network. This value corresponds to the ‘cellular
physiological process’ GO term, which is one of the direct descendants of the

‘biological process’ root term, and is therefore very general.
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To support this work, several different visualisation strategies were developed
that help to summarise complex integrated networks and identify high-level
patterns in them. Using these visualisation methods, it was found that there was
a hierarchically organised neighbourhood in the integrated network that was
composed of the proteins annotated to the “response to hormone stimulus” GO
term. This finding indicates there may be more complex and meaningful

patterns than just the modules identified using clustering approaches.

Comparison of the graph theoretic properties of the four networks also appears
to indicate that the addition of extra edges lead to the creation of a more
compact network, with smaller diameter than the COE or PPI networks.
Despite this, the transitivity has remained relatively low — indicating that the
number of complete cliques was also small. These differences may be
interpreted as an indication that, in the ALL network, potential modules are
more difficult to recover and the results may be further improved using more
robust clustering approaches, like spectral clustering methods (Ng et al., 2002).
Further investigation of the impact of increasing complexity of the network
versus increasing levels of noise that arise from integration of additional data

sources is necessary to confirm these trends.

The coexpression (COE) network performed the worst with respect to BFRP,
BERP and AIC-MICA. At first glance, this result appears to contradict several
earlier studies (Mao et al., 2009, Mentzen and Wurtele, 2008), where many
meaningful clusters were identified in the coexpression network. This
discrepancy, however, is likely to be an artefact of the smaller subset of the
proteome that was used in this study; a consequence of the decision to restrict
the dataset to proteins with PPI information. In earlier reports, using large
coexpression networks the patterns detected tended to be associated with much
larger clusters containing more than a 1000 proteins (Mao et al, 2009,
Mentzen and Wurtele, 2008). This number is much larger than any of the
clusters that were identified in any of the networks constructed in this study.
This may be an indication that coexpression is a weaker source of evidence of
functional similarity and more data are necessary in order to be able to make

useful inferences from it.
In this study, the set of proteins in the network was restricted to those for which
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protein-protein-interaction information is available, as this is a currently
limiting information source for Arabidopsis. Using a larger set of proteins
would have meant that the contribution of the PPI data would have been highly
unbalanced in relation to other available information. Although there are other
species, in particular Saccharomyces cerevisiae, for which there is much more
data available, it is also of importance to validate these types of approaches in
more complex multicellular model organisms. This was particularly important
within the context of this project, as Arabidopsis thaliana was the species of
primary interest and therefore it was important to get some understanding
about data available for it. Most importantly, this sfudy illustrated that
meaningful modules can be successfully identified by clustering the integrated
relationship networks -- even in situations when limited data are available and

only part of the complete proteome is considered.

5.6 CONCLUSIONS

Module detection in integrated biological and relationship networks is one of
the most important tools for interpretation of complex biological datasets. As
the amount of biological information continues to grow, it also becomes
increasingly important to improve our understanding of inter-relationships
within these data and, ultimately, their relationship to biological function. In
this chapter these relationships were explored and quantified for several of the
data types that are most commonly used for construction of such networks. It
was found that for these datasets combining several types of evidence was
beneficial with respect to the functional annotation of modules detected using
MCL clustering algorithm, which on average more closely corresponded to the
functional groupings in the Biological Process aspect of GO. Although the
overall level of informativeness of cluster annotation was not as good as in the
sequence similarity network, it was possible to link many more proteins using
additional information sources. These findings indicate that there is benefit to
the integration of additional information sources, as it allows more proteins to
be assigned to functional modules with only a relatively small reduction in the
module annotation precision. The overall outcomes of this study provide a
number of insights into the relationship between integrated networks and

protein function and may be of use for further refinement of related approaches
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that can better capture biologically relevant information from integrated
datasets. A number of methods developed for the work described in this
chapter were also used to assign function to clusters in coexpression (chapter 4)

and protein-protein interaction (chapter 5) networks.
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6 APPLICATION OF INTEGRATED NETWORKS FOR
INTERPRETATION OF EXPERIMENTALLY DERIVED GENE
LISTS

6.1 SUMMARY

Nitrogen uptake and metabolism in plants has an impact on a large number of
genes and processes within the plant. Because of the complexity involved,
better understanding of the regulatory complexity giving rise to these effects
requires integration of multiple types of different data. To explore the
mechanisms behind the regulation of nitrogen responses in Arabidopsis,
several datasets already introduced earlier in this thesis were combined with a
custom-generated coexpression network of nitrogen-related responses created
using a coexpression analysis pipeline presented in chapter 3. This network
was also combined with GO functional annotation and lists of differentially
expressed genes from a study that looked at the differences between the wild-
type Arabidopsis plant and a mutant that lacked an ability to target a low
affinity nitrate transporter to the outer membrane. This chapter reports how the
integrated datasets, analysis methods and visualisation tools developed as part
of this work can be used for the interactive exploratory analysis aimed at
greater understanding of the structure behind a particular list of candidate
genes. The example also illustrates how his type of approach can be leveraged
for the narrowing of the hypothesis space and the identification of potential

candidate genes for further study.
6.2  INTRODUCTION

6.2.1 Nitrate uptake, assimilation and downstream responses in
Arabidopsis thaliana

Nitrogen is an element with the periodic number 7 and atomic mass 15 (Moore
and Gallagher, 1993), and it constitutes 78% of Earth’s atmosphere (Lutgens
and Tarbuck, 1986). It is also a mineral nutrient that is required by all plants in
great quantities, as it is needed for the synthesis of essential cellular
compounds like proteins and nucleic acids (Miller and Cramer, 2005). The
most abundant form of nitrogen (N, gas in the atmosphere) can be directly

utilised by legume plants in a symbiotic association with bacteria, but for most
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plants, nitrogen is taken up by the roots in the forms of nitrate (NOj),
ammonium (NHy4") and, less commonly, other organic forms (peptides, amino
acids, urea). These compounds then form the overall pool of soil nitrogen
available to plants (Marschner, 1986; Miller and Cramer, 2005). The
concentration of available nitrogen in the soil can vary by several orders of
magnitude, however only very extreme concentrations have negative impact on
plant growth (Britto and Kronzucker, 2006). This resilience is the result of a
well-coordinated system of responses on all levels of organisation — from
cellular metabolism to plant physiology and development, which aim to
maintain the nitrogen content of plant tissues at the optimum levels. Precise
regulation of nitrogen uptake is essential to maintain this optimum. However, it
is only one part of the complex regulatory processes involved. For better
understanding of these processes they must be considered in a wider context,
which includes some aspects of nitrogen assimilation, storage and translocation
within the plant. This section aims to provide an overview about what is
currently known about nitrogen uptake and related regulatory mechanisms in
Arabidopsis in order to put the outcomes of the subsequent analysis into an

appropriate biological context.

6.2.1.1 Transporters involved in primary uptake

Physiological studies of whole-root nitrate uptake have identified that there are
two kinetically distinct nitrate uptake systems in Arabidopsis (Orsel et al.,
2006). The high-affinity transport system operates according to Michaelis-
Menten saturable kinetics and is of primary importance at lower nitrate
concentrations in the soil (<500uM (Orsel et al., 2002)); whereas the low-
affinity system is non-saturable and can allow effective uptake of nitrate at
>ImM concentrations (Britto and Kronzucker, 2006). The high-affinity
transport system has inducible (iHATS) and constitutively expressed (cHATS)
groups of transporters. The expression of inducible transporters responds
positively to the increase of nitrate availability. cHATS are expressed even

when nitrate is not supplied to the plant (Miller and Cramer, 2005).

The HATS transporters in Arabidopsis roots were identified as AtNRT2.1 and
AtNRT2.2 (Cerezo et al., 2001, Okamoto et al., 2003, Orsel et al., 2002). A
mutant lacking AtNRT2.1 and deficient in AtNRT2.2 was demonstrated to
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have limited HATS activity (Cerezo et al., 2001). The AtNRT1.1 transporter
was also shown to be capable of operating in both high-affinity and low-
affinity modes, depending on its phosphorylation status (Liu et al., 1999, Liu
and Tsay, 2003) and it is believed to be a contributor to both cHATS and low-
affinity transport system (LATS) activity (Crawford and Forde, 2002).

The plasma-membrane-targeting protein AtNAR2 was identified as an
important interaction partner for AtNRT2.1 transporter (Orsel et al., 2006).
Comparison of the HATS activity of atnar2.1 and atnrt2.] mutants has
indicated that AtNAR2.1 was also required for the normal function of
AtNRT2.2, as the atnar2.l plants appeared to be more impaired in nitrate
uptake. Identification of atnar2.] mutant allows further exploration of the
regulation of high affinity uptake system in Arabidopsis and the parts played
by individual transporters.

Although several LATS transporters were also identified, further experiments
have revealed that the known transporters do not account for all of the LATS
activity (Miller et al., 2007). Two Arabidopsis transporters known to take up
nitrate in the low-affinity range are part of an NRT1 protein family with 53
different members, which are also involved in transport of amino acids and
peptides (Williams and Miller, 2001). The first LATS transporter to be
characterised in Arabidopsis was AtNRT1.1 (also known as CHL1) (Tsay et
al., 1993). However, the low-affinity transport in the AtNRT1.1-knockout was
not affected when plants were supplied with nitrate as a sole nitrogen source
and the reduction in LATS uptake only became evident when the plant was
also supplied with ammonium (Touraine and Glass, 1997). Another transporter
found to be important for low-affinity uptake was AtNRT1.2, but in this case
the AfNRT1.2 antisense mutant was found to retain a disproportionately
greater level of LATS activity compared to the reduction in the AtNRT1.2
expression (Huang et al., 1999). One possible interpretation of these results is
that there are more nitrate transporters that operate in the low-affinity range

that have not yet been identified (Miller, 2010).

Nitrate homeostasis within the cell is maintained through the balance of uptake
and removal processes and nitrate efflux from the root is an important

component of this balancing equation. Under normal conditions, nitrate efflux
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Figure 6.1 Ammonium uptake overview. Summary of possible ways ammonium
can enter a plant cell. Image from (Crawford and Forde, 2002).

does not exceed nitrate uptake, although it can be quite substantial (Kronzucker
et al., 1999). At present, one nitrate efflux transporter has been identified in
Arabidopsis — NAXT1, another member of the NRT1 family of transporters
(Segonzac et al., 2007).

It is believed that the ammonium ion rather than neutral ammonia is the
predominant form taken up by higher plants, including Arabidopsis (von Wiren
et al., 2000). From the physiological point of view, ammonium uptake also has
biphasic kinetics, with high- and low-affinity components. Two transporters
believed to be of particular importance in the high-affinity range are

AtAMT1.1 and AtAMT1.3 (Rawat et al., 1999, Gazzarrini et al., 1999).

At higher external concentrations, ammonium can enter the plant cell through a
number of non-specific cation transporters (Figure 6.1). In particular, the
potassium ion is very similar in size and charge to ammonium and it has also
been demonstrated that non-specific cation transporters may transport
ammonium (Howitt and Udvardi, 2000). In its non-charged form, as ammonia,
it may also diffuse directly through the cell membrane or enter through
aquaporins. Shelden, ef al. (2001) have shown that the AtAMT1.2 transporter
can function in both high-affinity and low-affinity modes (Crawford and Forde,

2002). As was already introduced in the Section 1.4.1.4, ammonium is also
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produced by the reduction of nitrate in the cell. This introduces a complicated
trade-off into the control of uptake and assimilation process — on one hand,
taking up ammonium directly is more energy-efficient because two reactions to
convert nitrate can be skipped (Britto and Kronzucker, 2002). On the other
hand, if allowed to accumulate, ammonium can become toxic to the cell (Britto

and Kronzucker, 2002).

6.2.1.2 Nitrogen transport within the cell

The excess nitrate taken up by a plant cell is stored in the vacuole, from where
it can be released if the external supply is interrupted. As nitrate is negatively
charged, its movement into the vacuole is thermodynamically unfavourable, so
the process requires active transport. This transport is mediated by an AtCLCa
hydrogen/nitrate antiporter (De Angeli et al., 2006, De Angeli et al., 2009).
The importance of this transporter for vacuolar storage of nitrate is supported
by multiple pieces of evidence, reviewed in (Zifarelli and Pusch, 2010). In
seeds, AtNRT2.7 is also important for the loading of NOj3™ into the vacuole
(Chopin et al., 2007). AtCLCa was also shown to localise to the tonoplast (De
Angeli et al., 2006), as well as three other members of the CLC family -
AtCLCb, AtCLCc and AtCLCg (Lurin et al., 1996). AtCLCc was identified to
be important for the nitrate accumulation in QTL/mutation characterisation
analysis (Harada et al., 2004). The expression of the AtCLCa and AtCLCc is
known to be regulated by nitrate, with the former one stimulated and the latter

being repressed (Geelen et al., 2000).

The process of ammonium storage is believed to be largely passive - it is
predicted that at cytosolic pH some of the ammonium (~3%) will exist in the
form of ammonia that can enter the vacuole by diffusing through the membrane
directly or via aquaporins (Martinoia ef al., 2007). As the pH inside the vacuole
is much lower, the ammonium will become protonated and this will prevent it
from exiting the vacuole. This mechanism is known as “acid trapping”. When
the cytosolic ammonium is depleted, for example, due to the assimilation via
glutamine synthetases (GS), a new chemical gradient for ammonia is

established that favours its movement out of the vacuole.

6.2.1.3 Nitrogen translocation within the plant

There is some evidence which indicates that the cytoplasm of the plant cell is
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maintained in homeostasis with respect to both nitrate and ammonium
(Martinoia et al., 2007, Miller and Smith, 2008), although the concentrations
can vary considerably, even between the adjacent tissues. Cytoplasmic
homeostasis is maintained both through the regulation of uptake and
assimilation processes and through extrusion back into the growth media or

translocation to the xylem or vacuole.

Current research indicates that both nitrate and ammonium can be present in
the xylem sap at relatively high concentrations. The concentrations of 10-
37mM for nitrate and 0.4-5mM for ammonium were reported for various plants
grown in conditions with sufficient supply of respective nitrogen source (Miller
and Cramer, 2005). It was shown by Lin et al. (2008) that one of the
transporters involved in xylem loading in the root is AtNRT1.5. However, the
same study also found that this transporter does not completely account for all
nitrate loaded into the xylem. AtNRT1.8 is involved in the reverse process - the
removal of nitrate from the xylem sap into parenchyma cells (Demir ef al.,
2010). Another member of the NRT1 family, AtNRT1.7 is involved in loading
the nitrate into the phloem in the source leaves (Fan et al., 2009). Some of the
other members of the NRT1 family have been shown to be involved in the
more tissue/organ-specific nitrate transport: AtNRT1.4 in leaf petiole (Chiu et
al., 2004), AtNRT1.3 in leaves (Okamoto et al., 2003) and AtNRT1.6 in nitrate
loading into seeds (Almagro et al., 2008). The mechanism of ammonium entry

into the xylem is presently unknown (Miller and Cramer, 2005).

6.2.1.4 Nitrogen assimilation

The primary nitrogen assimilation processes are mediated by four enzymes
(Miller and Cramer, 2005). The first enzyme in nitrate assimilation is nitrate
reductase (NR), which catalyses nitrate conversion to nitrite. In Arabidopsis
this process is mediated by an NADH-dependant NR (Wilkinson and
Crawford, 1993). NR expression levels show diurnal rhythms and are up-
regulated by high intracellular nitrate. Post-transcriptionally, the enzyme can
be reversibly inactivated by phosphorylation triggered by low cytoplasmic pH
and anoxia (Campbell, 1999, Lillo et al., 2004). Nitrite reductase (NiR)
converts nitrite to ammonium. Its expression is positively regulated by nitrate

and glucose, whereas ammonium has been shown to post-transcriptionally
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down-regulated it (Faure et al., 1991, Crete et al., 1997).

The pool of available ammonium is used for the synthesis of amino acids
(Figure 6.2). This process commences with the two reactions that form a cycle:
first ammonium is combined with L-glutamate to give glutamine, which is
catalysed by the glutamine synthetases (GS). Then one amino group from the
L-glutamine is transferred to a-ketoglutarate to form two molecules of L-
glutamate (catalysed by the NADH-dependent glutamate synthases (NADH-
GOGAT)). The reverse reaction, which produces the 2-oxoglutarate and
ammonium from glutamate, is catalysed by the glutamate dehydrogenase

(GDH) (Coruzzi, 2003).

Arabidopsis has four paralogues of GS with different kinetic properties and
regulation mechanisms (Ishiyama et al., 2004). Expression levels of all GS
paralogues are induced by glucose and suppressed by glutamine and
ammonium, apart from GS1.2, which is induced by ammonium (Oliveira and

Coruzzi, 1999, Miflin and Habash, 2002, Ishiyama et al., 2004).

Glutamine and glutamate are used for the synthesis of all other amino acids.
The next ones in the chain are the aspartate, which is synthesised from the
glutamate by the aspartate aminotransferase (AspAT) and asparagine, produced

from aspartate by the asparagine synthase (ASP) (Coruzzi, 2003). The latter
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Figure 6.2 Key reactions, metabolites and enzymes of amino acid synthesis in
Arabidopsis. From Coruzzi (2003).
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reaction also results in the production of glutamate. It was suggested that
amino acids may be important for the overall plant N status (Zhang et al,
1999, Cooper and Clarkson, 1989), although as the inter-conversion between
these amino acids is possible (Coruzzi, 2003), the exact identity of the ones

that are crucial to this process is still unknown.

6.2.2 Regulatory effects

Nitrogen uptake is regulated to match the carbon status of the plant as well as
its demand for nitrogen itself (Coruzzi and Zhou, 2001). It is believed that the
N status of the whole plant plays an important part in this process via the
xylem/phloem cycling of amino acids (Crawford and Forde, 2002). The
intermediates of the nitrogen assimilation pathway (nitrite and ammonium) are
toxic if allowed to accumulate, and one of the main ways of limiting their
accumulation is to drive forward amino acid synthesis. This process requires
carbon skeletons in the form of 2-oxoglutarate and reducing agents made
during respiration, which, in turn, is reliant on the sugars produced by
photosynthesis. This necessitates a close link between carbon and nitrogen
metabolisms and the coupling of nitrogen uptake processes to the carbon status
of the plant. As is summarised in Figure 6.3, nitrogen metabolites are believed

to be important signals controlling this regulatory system (Jackson et al.,
2008).

An additional store of nitrate and ammonium is also maintained in the vacuole
(Martinoia et al., 2007). These reserves are believed to play an important role
in maintaining the homeostatic concentration of these ions in the cytoplasm.
The changes in homeostasis of nitrate have been suggested to play a role in the
regulation of both nitrogen uptake and assimilation (Miller and Smith, 2008).
High-affinity transporters for nitrate and ammonium are also subject to diurnal

regulation, possibly induced by glucose (Glass et al., 2002, Miller et al., 2007).

Lejay et al. (1999) has shown that in the short-term, AtNRT2.1 expression is
sensitive to the decrease of extracellular nitrate concentration (first 48 hours).
This pattern of expression was explained as the combined result of two
regulatory mechanisms: the repression by the products of downstream N
assimilation and the stimulation by NOj’ itself. As the levels of N metabolites

fell during the first two days of starvation, the repression of AtNRT2.1 was
161



lifted, but then the withdrawal of the stimulatory effects of nitrate became more
significant (Lejay et al, 1999). This interpretation is supported by the
observation that the NR-deficient mutant of Arabidopsis also had a higher than
wild-type level of AtNRT2.1 expression. AtNRT2.2 transcription is believed to
be stimulated by high NO;™ supply, followed by subsequent down-regulation,
but in the case of AtNRT2.2, down regulation occurred much earlier (first 12

hours) (Lejay et al., 1999).

The regulation of AtNRT1.1 was shown to be insensitive to the whole-tissue
amount of N-metabolites (Lejay et al., 1999). It was found that its expression
level was greater in the NR-deficient mutants; however the exact nature of the
regulatory mechanism responsible is still not clear. In the same study it was
also demonstrated that both AtNRTI1.1 and AtNRT2.1 transporters are up-
regulated by sugars and light and that the low-affinity transport system is less
sensitive to the stimulatory effects of sugars in the absence of light. Later
AINRT2.1 was found to have an important role in the regulation of nitrogen
uptake by carbon status, as nitrate uptake in the AtNRT2.1-knockouts was no
longer regulated by the carbon metabolites (Lejay et al., 2003).

Plasma membrane

\

e e

+
NO,- NO;"---'-'P [ NRT2 gene }
‘ :
% NR i
. i
\‘ ; :
"“\ NO.- 1 -
\ 2 i
\‘ ]
i | NIR :
~ n se
NH,* "&/L > NH/S = > Glutamine = Glutamate
i
-
]
{ /
AMT1.1 gene

J

Figure 6.3 High-level overview of the effects of nitrogen metabolites on its
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