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ABSTRACT

Understanding how function relates to multiple layers of inactions between

biological entities is one of the key goals of bioinfonnatics research, in

particular in such areas as systems biology. However, the realisation of this

objective is hampered by the sheer volume and multi-level heterogeneity of

potentially relevant information. This work addressed this issue by developing

a set of integration pipelines and analysis methods as part of an Ondex data

integration framework. The integration process incorporated both relevant data

from a set of publically available databases and information derived from

predicted approaches, which were also implemented as part of this work.

These methods were used to assemble integrated datasets that were of

relevance to the study of the model plant species Arabidopsis thaliana and

applicable for the network-driven analysis. A particular attention was paid to

the evaluation and comparison of the different sources of these data.

Approaches were implemented for the identification and characterisation of

functional modules in integrated networks and used to study and compare

networks constructed from different types of data. The benefits of data

integration were also demonstrated in three different bioinfonnatics research

scenarios. The analysis of the constructed datasets has also resulted in a better

understanding of the functional role of genes identified in a study of a nitrogen

uptake mutant and allowed to select candidate genes for further exploration.
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1 BACKGROUND AND INTRODUCTION

1.1 SUMMARY

Recent technological advances in biology have led to the increasingly fast pace

of data accumulation and a multitude of resources and strategies to manage it

and make it available to the research community. However research

applications often require data to be combined from these different resources

and representations in order to get a complete understanding of the living

system. This need gave rise to the disciple of data integration, which

researches strategies for effective management of the increasingly large body

of experimental information and ways to ensure that consistency, provenance

and intercompatibility between different resources is adequately realised. The

Ondex system is specifically targeted at addressing the data integration

requirements of the plant biology community. Ondex is designed around its

graph-based unified data model, which is the basis both for the construction of

the integrated datasets via Ondex workflow engine and their subsequent

analysis/visualisation using Ondex front end. The ability to provide both the

integration and visualisation capabilities as part of the same package, as well as

the ability to effectively capture complex data in its data model are the

strengths of the Ondex system that differentiate it from similar tools.

1.2 THESIS OUTLINE

The research presented in this work concerns the development of data

integration and network-driven bioinformatics analysis methods for the study

of a model plant species Arabidopsis thaliana. The practical relevance of the

developed approaches was demonstrated through three independent use-cases

presented in the chapters 4-6. Issues investigated therein include comparative

analysis of various Arabidopsis information resources, identification and

evaluation of functional modules and gene list dissection for the purposes of

candidate gene prioritisation. The reminder of this introductory chapter covers

the relevant background and introduces key concepts and formalisms. In
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particular the current paradigms and approaches used in biomedical data

integration are outlined. The data integration strategy realised in the Ondex

system is also explained. Ondex was the chosen platform for the

implementation of the supporting code base for this work and this system was

improved and had new capabilities added to it as a direct result of these efforts.

The developments to do with the improvements of the core Ondex

functionality are presented in chapter 2. Originally, the Ondex project was

founded to provide data integration capabilities to the plant research

community, and at the moment it still remains the only non-commercial, open-

source platform with such focus. Although the system was already developed

for some time prior to the start of this project, it also had several shortcomings

and limitations, which were identified and addressed as part of this work.

These developments have served to greatly facilitate the analysis reported in

the subsequent chapters and enabled seamless assembly of more complex

analyses pipelines which would not have been possible otherwise.

Chapter 3 describes a pipeline that was developed for the construction of the

coexpression networks from Affymetrix GeneChip microarrays. Its addition to

Ondex toolkit provided a new and powerful method for the analysis and

extraction of insights from large volumes of expression data. This development

was further supported by the addition of the module detection and functional

enrichment analyses, which were also added as part of the work on this thesis.

During this work, several integrated datasets of relevance to Arabidopsis and

plant biology community were developed. In addition to their practical value,

these datasets were used to study the strengths and shortcomings of the

individual data types and information sources. To maximise the benefit from

the integration, it is necessary to understand how different data relate to each

and how the comparative analysis can be leveraged to evaluate their quality.

To that end, a number of different information resources that provide the

Arabidopsis data to the research community were evaluated and compared.

This work is reported chapter 4 of this thesis. Additionally, it was also

published in Briefmgs in Bioinformatics journal; a full version of this paper is

enclosed in the Appendix.
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Chapter 5 describes functional similarity metrics used for the analysis of

functional modules identified in the networks constructed from different types

of "evidence of relatedness" between genes. It also presents the work

undertaken to evaluate a network-driven data integration strategy and its

application to the detection of functional groupings of Arabidopsis genes. The

results of the analysis demonstrated the benefits of considering multiple

evidence types when attempting to recover groups of genes with similar

functional annotation.

In chapter 6, the methods from the chapters 3 and 5 and the integrated datasets

from the chapter 4 are brought together in an applied setting by using them to

dissect a set of gene lists originating from an expression study. This example

also presents the visualisation methods developed to support the interactive

analysis of these data. By combining the coexpression, functional annotation

and the gene set-driven analysis, it was possible to suggest several promising

candidate genes that are likely to be of relevance for the understanding of the

nitrogen uptake and response to wounding in Arabidopsis.

1.3 AIMS AND OBJECTIVES

To gain systems-level understanding of complex biological systems it is

necessary to process together experimental data and prior knowledge into a

unified model. If this problem is approached from a network-driven

perspective, the task can be decomposed into:

Definition of entities (nodes) of interest and identification of

corresponding entities in relevant data sources

Definition and establishment of relationships between them

Relating the model back to the real biological system studied

However, the realisation of these tasks is hampered by the sheer volume and

multi-level heterogeneity of potentially relevant information. Another

challenge lies in the poor compatibility of the tools and analysis software for

processing these data. The over-arching aim of this thesis is to address these

shortcomings by contributing to the development of modular software

architecture of inter-compatible integration and analysis methods. Due to the
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complex and multi-faceted nature of this task, it was broken down into a set of

more focused objectives:

Development of a framework to support the integration of data

resources and the downstream analysis

Creation of integrated datasets of relevance to the system-level

understanding of Arabidopsis biology with particular emphasis of

utilizing expression, functional annotation and protein-protein

interaction data

Develop an understanding of the structure and limitations of the

individual data sources by establishing different evaluation procedures

to assess the integration results from a variety of different perspectives

Development of visualisation and analysis methods for extraction of

biologically relevant insights from the integrated datasets produced

Demonstrate the relevance of the resource, analysis methods and the

framework as a whole by applying them in a set of common

bioinformatics research scenarios

1.4 DATA INTEGRATION AND ITS ROLE IN BIOINFORMATICS

Recent technological advances have made it possible to generate vast amounts

of biological data. At the genome level, the rate at which new sequencing data

is being produced has proven to be a considerable both in terms of information

management and downstream bioinformatics analysis (Metzker, 2010). A large

number of diverse and separate resources have been developed to facilitate

access and support analysis of collected data. The Molecular Biology Database

Collection maintained by the journal Nucleic Acids Research (NAR) aims to

maintain an up-to-date set of references to the most important databases for

biological research. This repository listed just 226 resources in 2000

(Baxevanis, 2000); however this number increased to 858 (Galperin, 2006)

when this project was started in 2006, and continued to grow to reach 1230 in

2010 (Cochrane and Galperin, 2010). The development of these resources

responds to the need to make the large volumes of the 'omics data available to

the research community. A number of 'omics approaches now exist that allow

a large-scale sampling of cellular processes from a variety of different

perspectives (Lee et al., 2005), the most important of which are shown in the
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Figure 1.1 High-throughput technologies and corresponding 'omics
approaches. Image from Lee et al. (2005)

overview in Figure 1.1.

Databases resources are often designed around particular sub-disciplines of

biology that concern themselves with a particular aspect of research e.g.

proteomics, metabolomics, transcriptomics, and interactomics (Goble and

Stevens, 2008). However, in the beginning of this decade it became

increasingly recognized that in order to gain further understanding into

biological complexity, living organisms need to be considered across all levels

of organisation (from molecules to organisms and up to ecosystems) and

across all domains of study (Kitano, 2000, Ge et aI., 2003, Davidov et al.,

2003). This approach is known under the name of systems biology (Mesarovic,

1968). The main underpinning assumption behind it is that "the whole is more

than the sum of its parts" and in order to understand living organisms the data

collected using traditional approaches must be brought together and compiled

into models, ultimately fully quantitative and predictive ones (Kell and

Knowles, 2006). High-quality models can not only be used to make predictions

(ldeker et aI., 200 1) but also to explore the processes at higher levels of
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organisation - for example by building models at the scales of a cell

(Slepchenko et al., 2003) or a tissue (Swamp et ai., 2005).

As biological systems are hierarchical and highly inter-related in nature (Ayton

et ai., 2007, Southern et aI., 2008), in order to characterise them large volumes

of heterogeneous information are often necessary. However, it is widely

recognised that the relevant data are often scattered across multiple

independent resources and possibly buried within seemingly unrelated data

(Joyce and Palsson, 2006, Ge et ai., 2003, Hernandez and Kambhampati,

2004). The combination of these issues makes conducting the necessary

integration tasks manually increasingly foreboding, leading to the development

of a large number of computational approaches for automating this process;

reviewed in Sujansky (2001), Hernandez and Kambhampati (2004), Goble and

Stevens (2008) and Sorani et al. (2010). This need gave rise to the discipline of

biological data integration, which aims to facilitate the amalgamation of

disparate experimental information and develop better strategies for

representing and managing these data (Sujansky, 2001). As it is illustrated in
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Figure 1.2 Data integration as an essential data flow mediator at the core of
systems biology. Integration of experimental data allows construction of models
from the 'omics data, which, in turn, are used to generate hypothesis for further
experiments. From Ge et al. (2003).
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the

Figure 1.2, integration is an essential intermediate step for the formulation of

system-wide biological models (Ge et al., 2003).

The widely recognised challenges to the data integration process include the

size and variety of datasets, different types of heterogeneity and autonomy of

various data providers (Hernandez and Kambhampati, 2004). The set of

problems arising from the data variety include the potentially large size of

records (e.g. genomic sequences or protein 3D structures) and the multi-

domain and multi-scale organization of information. This makes it complex to

defme the appropriate relationships that correctly identify often abstract

connections between these disparate data (Hernandez and Kambhampati,

2004). The heterogeneity of data is commonly divided into syntactic and

semantic sub-types (Kohler, 2004). The syntactic heterogeneity refers to

technical differences between resources, like formats, schemas and query

interfaces (Kohler, 2004). The semantic heterogeneity refers to more

fundamental differences in their conceptual representations, like different

formalisms or levels of abstraction, scope-specific naming conventions and

naming inconsistencies (Kohler, 2004). Lastly, the autonomy of data providers

reflects the fact that differences between the needs of biological sub-disciplines

and other sociological boundaries (such as between funding agencies) result in

biological data being managed in a decentralized manner by a collection of

largely independently operating bodies (Goble and Stevens, 2008). This means

that data providers are free to ignore, re-interpret or re-invent data standards; to

unilaterally change their schema or content or even to withdraw access to their

data. Section 1.3.3 of this chapter explains how some of these issues are

managed in the Ondex data integration paradigm.

Integrated data resources are characterised by their ability to provide a standard

mode of access to information from a set of distinct heterogeneous data

sources (Hernandez and Kambhampati, 2004). This task can be realized by

either implementing a common data model (data warehousing) or a common

query model (federated databases and mashups) (Goble and Stevens, 2008).

User-driven on-demand approaches are also possible (integration workflows),

where a consumer constructs an integration pipeline to answer specific
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questions from a declared set of components using a workflow interface to

connect them (Curcin and Ghanem, 2008). Importantly, all data integration

approaches assume that there will be shared, common entities or ''touch

points" between the integrated resources (Goble and Stevens, 2008). At some

stage in the integration process these entities are identified and these links then

allow the unified access to the information stored in these disparate resources.

In other words, the integration is enabled by the unambiguous identification of

entities or concepts being accessed. In those cases where there are established

and stable common identifiers, the integration is also often realised by the data

providers themselves - e.g. by hyper-linking each other's entries (link

integration) (Goble and Stevens, 2008).

The set of formally defined terms to which the disparate entities can be

mapped is called a controlled vocabulary (Lacroix and Critchlow, 2003).

Often, it is also convenient to formally defme the possible relationships

between the terms themselves, thereby formulating an ontology. Although

many possible defmitions of 'ontology' currently exist, for the purposes ofthis

thesis an ontology is defined according to Gruber (1993) as "a specification of

a conceptualisation". The benefits of using ontologies for the formalization of

knowledge in the biological domain are becoming increasingly recognized

(Schulze-Kremer, 2002, Louie et al., 2007, Bodenreider, 2008, Jensen and

Bork, 2010). Their use facilitates the data integration process across different

data providers by creating high-quality, reliable cross-links within the data as

well as ensuring the internal consistency of the individual data resources

themselves (Jensen and Bork, 2010).

In the field of plant biology, systems approach and data integration are now

considered to be of great importance to the research community (Shinozaki and

Sakakibara, 2009). The systems approach is also believed to be of great

practical significance for development of new crop varieties. In a recent review

by Mochida and Shinozaki (20 I0) the integrated, multi-omics approach was

identified as an "effective strategy for clarifying molecular systems integral to

improving plant productivity". For over 30 years, Arabidopsis thaliana has

been a key model species for the study of plant biology (Meinke et al., 1998).

Its importance was boosted first by the sequencing of its genome in 2000 (The

24



Arabidopsis Genome Initiative, 2000) and then by the Arabidopsis 2010

initiative, which supported a wide range of projects with the overarching goal

of assigning the functional roles to all of the Arabidopsis genes by 2010

(Shinozaki and Sakakibara, 2009). In 2008, the "The 100I genomes" project

was started that aims to describe the genomic variation in 100 1 Arabidopsis

accession lines (Weigel and Mott, 2009). One of the possible ways to support

this research from the bioinformatics perspective is to consolidate and re-

analyse the wealth of data produced by previous research efforts (Ferrier et al.,

2010, Vanholme et al., 2010, Katari et al., 2010). This project directly

contributes to this task through the development of an open, re-useable

integration and analysis tools that facilitate the exploration of these data all the

way from source databases and experimental data to network models and

insights into the underlying processes.

1.4.1 Networks as a tool for interpretation of complex biological data

As highlighted in the previous section, a number of integration approaches rely

on a common data model for providing access to the combined body of

information. The defmition of a suitable data model is of pivotal importance

for the success of any integration effort - as this model must be both accessible

to the end-user and expressive enough to represent potentially complex

agglomerations of data of different types from a range of sources. Graphs or

networks are now a common formalism that many such models are built upon.

A graph representation is commonly applied to describe protein-protein

interactions, gene regulation networks and metabolic pathways (Junker and

Schreiber, 2008). A graph representation has a number of advantages as it

defmes a formal framework through which biological systems can be explored

by computational and statistical means. Graph theory is the field of

mathematics concerned with networks, their properties and organization

(Diestel, 2005) and it is this field that has provided a number of the relevant

tools for the analysis of biological networks.

The nodes and edges of a network can be conceptually bound to a particular

schema, often represented as an ontology, which can themselves be described

in terms of graphs. One of the ontologies often used in bioinformatics is the

Gene Ontology (GO) (Ashburner et al., 2000), which provides a controlled
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Figure 1.3 Biological function of a protein characterised using the Gene
Ontology. Image source: Saccharomyces Genome Database website
(http://www.yeastgenome.org).

vocabulary to describe the role of genes and proteins in terms of 'biological

process' to indicate the biological purpose of the entity, 'molecular function' to

identify its biochemical properties and 'cellular component' to specify its

cellular localization or functional component (Ashbumer et al., 2000). In the

GO ontology, each of these three branches is an independent taxonomy.

Classified entities can have one or more assignments in each branch (Figure

1.3) and less specific terms higher in the hierarchy can be used if insufficient

information is available for more precise assignment. This ontology is

structured as a directed acyclic graph.

It has been demonstrated in a number of different studies (e.g. (Hwang et al.,

2005, Daigle and Altman, 2008, Troyanskaya et al., 2003, Zhou and Liu, 2008,

Lu et a!., 2005), that combining data from different types of high-throughput
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experiments and knowledge about properties of biological systems can

increase accuracy, resolve ambiguity and help to get more useful information

from the data. In such studies, the representation of the data as a network graph

is now very commonly adopted as a convenient mathematical formalism both

for managing the data and driving the analysis itself. In general terms, the aims

of this approach are to determine the most probable biological network that fits

the data and then to make inferences about the biologically relevant

"unknowns" based on the available information.

Some types of biological data, like pathway information and protein-protein

interactions naturally lend themselves to network representation. Other types

of data, such as microarray expression profiling and proteomic assays, require

additional analysis and interpretation steps to enable their results to be

expressed in a graph formalism. For example, sets of gene expression

measurements can be represented as a network of coexpressed genes once the

similarities between expression signals have been identified and then converted

into distances between the genes, which can then represent edges in the

network. To maximise the scope of the data coverage offered by the data

integration system it is often necessary to supplement the straightforward data

conversion (or parsing) with more complex analysis methods. These methods

can (re-)interpret the raw information and deduce secondary properties that are

conformant to the common data model and can be added to the integrated

dataset. However, once the effort to fit the data into the unified data model has

been made, many of the post-integration data reduction tasks become easier.

For example, many network clustering and topology analysis methods (such as

measures of node centrality) that are used to group and identify important

entities, are designed around the notion of a network.

1.5 DATA INTEGRATION AND FUNCTION PREDICTION

Integration of biological data is of particular importance for predicting the

function of genes that have not yet been characterised experimentally (Re and

Valentini, 2010). These methods often take advantage of multiple types of

evidence both to increase the confidence in the assertions made and the

number of genes for which a prediction can be derived. They also often rely on

some form of a guilt-by-association principle, whereby function of a
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gene/protein is inferred on the basis of its association with other genes/proteins

that have been functionally annotated. Such methods may rely on one type of

data, like coexpression or sequence homology, or multiple types of data. In

either case, data integration plays an important part in this process, as even in

the cases where only one type of data is combined, it may still be advantageous

to bring together data of the same type from multiple sources. The ability to

predict function is particularly important for facilitating research into the

species other than model organisms (Goodstein et al., 2012), which are less

well-studied and consequently often have relatively small numbers of

experimentally determined functional annotations. This category includes crop

species of plants, which are of immense importance commercially (Schoof and

Karlowski, 2003). Even Arabidopsis, which is a main model species for plant

biology, still has as much as 26% of all genes have no known functional

annotation (TAIR, statistics derivation explained in chapter 4).

For this reason, computationally derived annotation methods are necessary for

filling in the gap, where the functional characterisation methods are at present

not capable of keeping up with the rate at which sequence data is being

accumulated (Edwards and Batley, 2004). The simpler methods predominantly

rely on the sequence homology information to derive predictions (Friedberg,

2006). Some prominent examples of such approaches include NetAffx (Liu et

al., 2003) pipeline, UniProt-GOA (Ensembl Compara (Viiella et al., 2009»

and Blast2GO (Conesa et al., 2005, Conesa and Gotz, 2008). The NetAffx

pipeline is used to provide annotation for sequences represented on Affymetrix

microarrays. Although predictions are based on the sequence-driven analysis

only, it also integrates a wide variety of annotations from different sources,

including Gene Ontology terms, protein domains, orthologous genes in other

species and OMIM terms. Blast2GO focuses entirely on generation of Gene

Ontology (GO) annotation based on statistical processing of BLAST output.

The authors of the method also maintained an up-to-date resource of the results

of Blast2GO analysis, which covered over 2000 different species. However,

this resource has not been updated since 2010, when Blast2GO software was

spun-out as a commercial service. The Ensembl Compara is a homology

detection pipeline and an integral part of the Ensemble (Flicek et al., 2012)
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framework. Transfer of GO annotations using orthology relations derived

using this method is the main source for automatically generated GO

annotations offered by UniProt and EBI. Both of these providers maintain

functional annotation sets for multiple plant species.

A number of resources and tools were also created for predicting gene

functions specifically for Arabidopsis and/or other plant species. Among them,

some also predominantly rely on sequence homology methods to predict

functional annotation. For example, PLAZA (Van Bel et al., 2012) resource

provides gene orthology information for 25 sequenced plant species derived

using OrthoMCL algorithm (Li et al., 2003), which is also used to derive GO

annotations. More advanced methods and resource also use additional type of

information, which can considerably expand the set of available annotations, as

homology-based methods can only lead to a prediction in the cases where a

similar gene was already characterised experimentally. In this way, using

additional information of other types can increase coverage, but also improve

accuracy - e.g. by identifying additional evidence to support functional

annotations made. In particular, methods have been developed that can also use

co-occurrence of gene names in literature (Li et al., 2006), protein-protein

interaction data (Kourmpetis et al., 2011, Mostafavi et al., 2008, Lee et al.,

2010, Bradford et al., 2010), (co)expression (Kourmpetis et al., 2011,

Mostafavi et al., 2008, Wabnik et al., 2009, Li et al., 2006, Lee et al., 2010,

Bradford et al., 2010) and genetic context (Mostafavi et al., 2008, Lee et al.,

2010, Bradford et al., 2010) information for predicting gene function in plants.

All of the methods listed here use multiple types of data for the analysis, and

this set of examples demonstrates successful applications of both supervised

(Kourmpetis et al., 2011, Bradford et al., 2010, Wabnik et al., 2009, Li et al.,

2006, Lee et al., 2010) and unsupervised (Mostafavi et al., 2008) classification

strategies for realising the guilt-by-association principle for functional

inference.

1.6 THE ONDEX SYSTEM

The Ondex system (Koehler et al., 2005) is a realisation of a warehousing

approach to data integration. The original implementation of the system was a

re-imagining of the SEMEDA data integration system (Olson et al., 1999)
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although since that time Ondex has undergone considerable re-structuring and

re-development that has allowed it to take full advantage of the modem

software tools, libraries and software engineering paradigms. At the time of

writing, Ondex supports integration of data in excess of 40 different data

formats. A number of the parsers, which enable this flexibility, were

contributed as a result of the work undertaken to fulfil requirements from this

thesis.

The import of the data from source files into the Ondex system is mediated via

a range of parsers, which convert the data from their native format into the

internal Ondex representation. The integration is achieved through the

application of appropriate mapping methodes) (Weigel and Mott, 2009),

allowing for the subsequent merging of equivalent entities. Another feature of

Ondex is that the integration process and subsequent analysis can be

formalised in the form of an Extensible Markup Language (XML)-formatted

workflow. The use of workflows ensures both the transparency and

simplification of the integration process through a user-friendly graphical

interface. Ondex is implemented in Java and this means that it can be run on a

variety of computer systems and the size of the datasets that can be effectively

manipulated is only limited by the available system resources, mainly available

memory. User interaction is further facilitated by the Ondex front end (Kohler

et al., 2006) application, which allows both interactive analysis and visual

exploration of integrated Ondex datasets. The integrated datasets can be

serialised in a proprietary format called OXL (Taubert et al., 2007) or exported

in a variety of commonly used representations such as Systems Biology Mark-

up Language (SBML) and tab-delimited files.

Ondex was selected as both the main tool for the analysis and as the basis for

the majority of the development efforts during the course of this project. Its

strengths and limitations have greatly influenced the work described in

subsequent chapters of this thesis. To put this work into an appropriate context,

key aspects of the system are introduced in the following three sections which

describe the organisation of the software, the data model and the capabilities of

the Ondex front end. An additional, in-depth introduction from a programming

perspective is also included in chapter 2, as it was felt this was necessary to
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explain important details in the work described therein.

1.6.1 The Ondex data model

Ondex uses a directed, typed multi-graph as the foundation for its data storage

model. The model imposes a restriction on the graph that postulates that only

one edge of the same type and the same direction can connect two concepts.

Additionally, the concepts can be assigned as a "tag" to a set of other concepts

or relations. This type of relationship is not visualised, but instead is used to

represent set-type relationships between parts of the graph without introducing

clutter. This formalism provides convenient way of selecting specific parts of

the whole network (e.g. pathways or user-specified lists on nodes) as well as

providing a handle for set-driven analysis (e.g. intersection, union and negation

types of operations on parts of the graph).

nitrate reduct e: NIA 1
nitrate reductase: NIA2

1.7.1.1

Compounds

Enzyme ctassinc atlon nwnber (ECI

Figure 1.4 A reaction from AraCyc (top) represented as an Ondex graph
(bottom) of information concepts and relations between them. The colors are
consistent between the two panels and indicate equivalent types of data
captured in the same concept classes.
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To be converted into this formalism, the information in the source data

resource is decomposed into a set of concepts and relationships between them

by a parser plug-in module. To ensure the compatibility of different parsers

and achieve some consistency in the way in which data are transformed into

the Ondex core data model, there are pre-defined sets of concept classes and

relationship types as well as accompanying guidelines for their use distributed

with the main Ondex application. Concept classes and relationship types are

arranged into a tree structured ontology with implied "is a" relationships

between them. The "Thing" concept class and "related to" relationship types

act as root terms for their respective ontologies. Each concept is only allowed

Figure 1.5 Overview of Ondex attribute model. This diagram shows the possible
attributes on Ondex concept and relations, as well as the inner organization of
the more complex elements in the core data model. Multiple boxes indicate that
multiple instances of a particular attribute are allowed. Generalised data
structure (GDS) attribute is a special case, as multiple instances are only
allowed if they have different Attribute Name.
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to have an outgoing relation to one parent. The relation type imposes a

restriction on the multi-graph, in that just one relation of the same type and

direction is allowed between any two concepts. Figure 1.4 gives an example of

how biological pathway data can be interpreted in terms of concepts and

relations.

In addition to type-attributes, both concepts and relations can support a

selection of additional attributes that allow storage of additional information

about those entities. Some of these attributes are complex and are composed of

several fields - the complete set of allowed attributes is shown in Figure 1.5.

To facilitate integration, it is important to unambiguously identify pieces of

information and certain fields that are key to the integration process are bound

to specialised controlled vocabularies - those attributes are Evidence Types,

Data Sources (both fields that capture provenance of a concept and identify an

accession if it is present) and General Attribute Names. A set of general

attributes allows some flexibility in the storage of additional information. Any

number of attributes of this type is allowed, the only restriction being that the

Attribute Names must only be used once within a set associated with the same

concept. The collection of concept class and relation type ontologies and three

controlled vocabularies for their attributes are collectively known as "Ondex

metadata". Although, as mentioned above, a base metadata is provided with

the main application, a user- and application-case-specific extension can be

made as and when necessary during the integration process. For this reason, a

separate, independent copy of the metadata is always associated with each

graph instance - both in the in-memory and in the OXL-serialised versions.

The graph structure, metadata and all of the information stored in various

attributes constitutes a single instance of the Ondex integrated dataset. The

data model itself is realised as a set of Java interfaces (implementation-

independent contract declarations). This software architecture allows

developers to build different implementations of system components which

can still be seamlessly substituted within the same framework. This allows

customized versions of Ondex to be built that extend or optimise aspects of

performance to support particular applications. For example, two separate

implementations of the Ondex data model can be used: an in-memory
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implementation, which is optimised for performance and a persistent

implementation, which minimises the amount of memory resources used but is

slower because it uses a database (Berkeley Database - Olson et al. (1999».

An optional indexing layer powered by Lucene (Prasad and Patel, 2005) is also

provided for accelerated searching required by some of the analysis and

integration methods.

1.6.2 Data integration, workflow engine and plug-ins

The Ondex data integration framework is made up of independent modules

(plug-ins), which can be chained together to form workflows that are executed

to realise required tasks. A new interface for composing, executing and storing

workflows was designed as part of the work on this thesis and is documented

in detail in chapter 2. This section introduces the five types of plug-ins allowed

in the Ondex system and their roles. It also provides an outline of the way data
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Figure 1.6 An illustration of the sequence of operations performed by the
"relation collapser" transformer. (A) a network showing three connected
components with respect to the edge type (solid line) that will be used to collapse
the nodes. (B) the first group has been collapsed with all attributes from the
removed nodes re-assigned to the remaining one. (C) the second duster has been
collapsed, note that in this case multiple edges have been re-assigned to
remaining node.(D) the last remaining cluster has been collapsed, the two
incoming edges have been merged to one edge.
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integration process is realised in Ondex.

The integrated graph schema is populated by the execution of parsers. Once all

of the data is converted into a common representation, the commonalities in it

can be identified by the application of mapping methods (Lysenko et al.,

2009c). Mapping methods create the new relationships between the concepts

(nodes) within the networks by evaluating the values of the attributes on those

nodes (or in some cases - on the neighbouring entities). Some examples of

mapping methods currently implemented in Ondex include accession-based

(matches database accession identifiers on concepts), BLAST -based (creates

relations by extracting the sequence attributes of nodes, passing them to the

BLAST sequence comparison algorithm and parsing back the results).

Concepts identified as being equivalent entities through mapping methods can

be aggregated by the application of transformers. For example, the "concept

collapser" transformer copies all attributes and relationships from one concept

to another and removes the redundant concept entries from the graph. When

used in combination with appropriate mapping methods, this transformer can

be a powerful tool for resolving complex patterns of redundant data both in

terms of nodes, edges and their attributes. The illustration of this principle is

shown in Figure 1.6. The graph in this example contains two types of edges -

the solid line identifies the type of edges that is being "collapsed" (e.g. could

be an edge type indicating equivalence), whereas the dashed line indicates

another type of edges. At the first step, the transformer identifies all of the

connected components with respect to the edges of the type to "collapse" (A).

At the second step (B), a core node is created for each group that will inherit

all of the attributes and edge associations of all group members. The

transformer then proceeds to process each group at a time (panels B through

D). First, the attributes of all other group members are copied to the core node,

then the same is done for edges. Note that as Ondex data model only allows

one edge of the same type and direction between the same pair of concepts, it

is possible for the redundant edges to occur as well. In these cases, likewise

only one core edge is retained per such group of edges that inherits all of their

attributes. During the attribute-copying process the necessary checks for

uniqueness are performed as required by the Ondex attribute data model
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(outlined in the Figure 1.5) and all duplicates are discarded (e.g. in the cases of

data source or evidence type) or assigned a new, unique identifier (e.g.

multiple, but different protein sequences from two different data source that

contribute the two different concepts being merged). The combination of

"accession-based" mapping that creates equivalence relations between

concepts, followed by the "collapsing" on the "equivalent to" edge is one of

the most often-used types of graph transformations in Ondex and was used for

the construction of the datasets in chapters 4-6.

An additional use for transformers is to realise data abstraction. When this is

the case, the entities being collapsed are not necessarily semantically

equivalent. For example, if one data source annotates genes with GO terms and

another source assigns them to proteins a complete set may be obtained by

merging "Gene" and "Protein" concepts, given that one of the imported data

sources provides the "encoded by" relation to identify the connection between

them.

When Ondex is used for the construction of an integrated knowledge base, the

integration normally entails the application of the parsers, mapping methods

and transformers only. However, Ondex also supports a range of additional

transformers and filters that allow further analysis and data reduction of the

Ondex integrated schema. Some examples of tasks realised by such analyses

implemented as transformers are graph analysis methods and clustering

methods. Ondex filters allow data reduction by selectively removing entities

from the network that meet a set of criteria specified by the user - e.g. by

matching a combination of concept types or attributes or even by considering

the attributes of the neighbouring entities in the network.

The fmal step of the workflow usually involves exporting the results. This can

be done in the specialist OXL format, in which case the graph can be re-used

in future analysis, integration or explored interactively in the Ondex front end.

A range of other exchange formats can also be exported. For example, tab

delimited formats, Resource description framework (RDF) or SBML. Some of

the export plug-ins generate reports of the analysis performed on the graph, for

example summary statistics of the number of nodes and edge or core graph-

theoretic properties of the network. An overview of the key integration steps
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and parts of the system involved are shown in Figure 1.7. This example shows

the parsers and mapping methods used in Pesch et al. (2008), which used

Ondex to compare different approaches to transient mapping across different

data sources for the functional annotation of Arabidopsis proteins.

1.6.2.1 Ondex (rant end

The Ondex front end graphical user interface supports visualisation and

analysis of the graph structure of an Ondex knowledge base. The visualisation

engine uses the Jung graph library (White et al., 2004), which allows both

customisation of appearance for various graph elements and mediates the user

interaction with the graph. Similar to the Ondex workflow, the interactive

visualisation and analysis components are also realised as a set of plug-ins.

The front end allows some of the workflow plug-ins to be re-used - for

example, all of the filters are shared between the workflow engine and the

front end. However, in the front end the filters just change the visibility of

graph elements, whereas in the workflow they remove these elements from the

network. The tasks of changing colours, shapes and labelling of graph

elements is handled by a front end-only type of plug-ins called "annotators".

As some of the networks are too large to visualise effectively, the Ondex front
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Figure 1.7 The organization of a typical Ondex workflow. This diagram breaks
down a typical Ondex data integration pipeline. Databases are imported via the
specialised parsers into the Ondex graph representation. The data can then be
further manipulated using the data integration methods, exported and
visualised in Ondex front end. Image from Pesch et al. (2008).
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end also supports a "distilled" view that displays useful summary information

from the knowledge base to be displayed as another as a network layout called

a "metagraph". The metagraph only shows the types of concepts and relations

found in the graph and the relationships that exist between them. An edge is

drawn in the metagraph between pairs of nodes (representing concept classes)

if there is at least one instance in the actual graph of the edge of matching type,

direction and concept classes of source and target in the actual network. The

actual numbers of each occurrence are also counted and can be read by

clicking on respective graph elements. The counts of all the attributes are also

listed in tabbed panes, accessible from the main metagraph window. The

metagraph uses shapes and colours for concepts and relations that are

consistent with the main graph layout window and so it plays a supporting

function as a key to the main graph.

Another way to interact with the contents of an Ondex knowledge base is

through a command-line console. This interface was introduced during the

work on this project and is describe in detail in chapter 2. The command

console now supports approximately 250 different function calls. The

advantage of the command-line interface in the console is that it provides a

command scripting environment for more experienced users and also gives the

user the flexibility to customise the visualisation commands to suit their

specific needs.

1.7 DISCUSSION

Ondex data integration framework exists in an increasingly crowded ecosystem

of other data integration tools for biological data. However, only very small

number of tools offers the same degree of generic applicability, flexibility and

analysis options at a comparable level. Perhaps one of the strongest points of

the system from the practical perspective is the ease of deployment. The

system is implemented entirely in Java and none of the core functionality is

reliant on any external dependencies. This means that the installation is as

simple as unpacking the distribution and is completely platform-independent.

The Ondex system also includes both data integration and graph visualisation

components, which are designed to be interoperable and capable of exploiting

the same graph-based data model. Because Ondex offers both of these
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functionalities it actually competes with two different types of tools - data

integration/workflow environments and graph visualisation software. In the

first category, the two most prominent solutions that offer similar degree of

analysis power and flexibility whilst still offering a degree of platform

neutrality are Taverna (Hull et al., 2006) and Galaxy (Giardine et al., 2005).

The prominent examples in the latter category are Cytoscape (Smoot et al.,

2011) and Gephi (Bastian et al., 2009).

Taverna is a workflow management and execution system, which allows

construction of workflows from the web service based components. The

system is split up into three components Taverna Engine (workflow

execution), Taverna Workbench (GU! client) and Taverna Server (remote

workflow execution). The Taverna environment is more advanced than the one

offered as part of the Ondex system, and allows much greater complexity of

constructed workflows, which can be easily viewed and monitored via

interactive graph visualisation in the Taverna Workbench client. As the plug-in

components are webservice-based the overhead of implementing and

deploying them can be lower. This is because only generic and widely used set

of technologies are needed to implement them, as opposed to tool-specific

application programming interface (API), like Ondex. However, Ondex

workflow components can be packaged and distributed as files and run locally

on the user's system. This may be advantageous in the situations where greater

security is necessary or large volumes of data need to be processed, as it does

not necessitates transfer of information via the Internet to pass it between

different remote services. Also, as Ondex plugins predominantly operate on the

Ondex graph representation, they are intercompatible with each other by

default, which makes it easier to re-use components between application cases

and reduces the overhead - it is normally not necessary to write converters to

bridge inputs and outputs of different components, as is the case in Taverna.

Galaxy offers a browser-based environment for workflow execution, with the

interface design largely similar to that of Ondex Integrator. Although it can be

argued that this makes the Galaxy server more difficult to deploy, from the

user's perspective the access to the system is largely seamless and platform-

independent. Galaxy workflow components are very loosely restricted in terms
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of the types of data they operate on and place no format requirements at all in

terms of its format, This is a very different approach compare to Taverna (data

passed between workflow components must be wrapped in XML) and Ondex

(all data must be imported into Ondex graph data model). In fact, the workflow

components used in Galaxy are often just wrappers that delegate to various

external tools or even scripts. This can cause considerable complications when

it is necessary to make components available on a different server, as the

overhead would effectively be the same as having to re-deploy the underlying

tool or script. The loose typing also imposes considerable overhead of having

to write format converters.

In terms of graph visualisation tools, a very similar approach is taken by

Gephi, Cytoscape and Ondex frontend. All tools provide ways to visualise and

annotate networks (colour, shape and size), search for particular components

and alter their visibility. All three systems also provide a way to extend the

basic functionality by adding in additional plugins, which offer other analysis

methods. Gephi is unique in terms of being the first major Java-based graph

visualisation tool to implement full hardware acceleration, which is essential

for ensuring adequate performance when working with large networks.

Cytoscape has a very wide variety of plugins and is supported by a large

community of users. However, both of these tools operate on a very loosely

typed graph that only describes a basic graph structure and does not formally

specify any metadata about the attribute structure of nodes, edges or their

properties. It can be argued that the more complex data model of the Ondex

graph can more effectively model complex datasets and ensures greater

intercompatibility of graphs between different application cases.

Because of the investment into both workflow driven integration and graph

visualisation domains Ondex system has functionality that can complement

other tools in both of these domains. In 2008 further development of Ondex

was funded by the BBSRC SABR grant (BBIF006039/1). This allowed further

expansion of the system and part of these developments was to add greater

interoperability with other major bioinfonnatics tools. To that end, an

extension was developed that allowed Ondex workflow components to be

wrapped as Taverna-compatible web services. This enabled both the execution
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of Ondex-specific workflows in Taverna and the re-use of Ondex workflow

components independently of the rest of Ondex. From the perspective of

Taverna, Ondex was able to offer a persistent graph-based data management,

which was previously not readily possible as part of the system. The results of

this work are still being prepared for publication at the time of writing. There

was also a plugin developed that allowed the use of Ondex graphs in

Cytoscape (Weile et al., 2011). This implementation took advantage of Ondex

typing system for nodes and edges for constructing abstracted network views

in Cytoscape environment.

As is demonstrated by these two examples, Ondex system has additional

functionality that can complement other existing tools. However, there is also

one additional component of the system that differentiates it from similar tools

in both domains. This component is the underlying graph-based data model,

which is backed by a controlled vocabulary and supports typing of attributes,

nodes and edges. The assignment of the formally defined types provides a

common point of reference both for the data integration components of the

workflow system and plugins in the Ondex frontend. This simplifies the design

of complex operations on the graph, where it is often necessary to evaluate

graph elements based on their meaning. For example, different types of

operations would be meaningful for nodes representing individual pathways as

opposed to those representing genes. Further discussion about Ondex data

model and its technical specification is included in chapter 2 of this thesis.
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2 EXTENSION OF ONDEX DATA INTEGRATION

SOFTWARE

2.1 SUMMARY

The work presented m this thesis has two mam components. The first

component is the development of tools and methods to facilitate the integration

and analysis of biological data, which were realised as part of an open-source

software framework called Ondex. The second component demonstrates the

relevance of the methods developed through three different research

application cases. This chapter presents the two major technical contributions

made to the Ondex system as part of this work and explains how they fit into

the rest of the Ondex software architecture. The first such contribution was the

development of the GUI-driven tool for workflow construction. This

development was essential for effective management of a large and complex

collection of workflows necessary to generate and keep up-to-date the datasets

used in the subsequent chapters. The second contribution was the scripting

environment for the Ondex front end. The introduction of the scripting

functionality allowed analyses to be done on a much finer level of granularity

and with increased flexibility than was previously possible. This was

particularly important for the efficient interrogation of the integrated datasets

in Ondex front end.

2.2 INTRODUCTION

The Ondex data integration system (Kohler et al., 2006) supports the import of

a variety of data sources and exchange formats and offers a wide and ever-

increasing suite of tools to analyse, query and visualise these data. The work

described in this thesis has relied on many pre-existing features of the system.

However, there were also many areas where new functionality was necessary

to import additional sources of biological data, add novel analysis methods or

to improve the usability of the software itself. Many new features and

improvements were therefore introduced to the Ondex system as a direct

requirement of the work carried out during this project. Contributing to a

project under active development has also incurred some costs in the form of

having to provide support for the new features, contribute to its end-user
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documentation and update it to keep up with the changes of the code in the

main project it relies on. As Ondex is open-source software with a number of

academic users, these software development achievements constitute an

important contribution both to the wider research community and to the field

of tool development for bioinformatics as a whole.

The full extent of the changes made to the Ondex system during this study is

too broad and interwoven with the work of other developers working on Ondex

to be fully covered within this thesis. Therefore, only the developments that

constitute a complete and fully functional additions to the system, which were

initiated and realised as part of the work for this thesis, will be mentioned here.

For simplicity, the implementation of the more specific methods related to

particular aspects of the application cases are described in the corresponding

. chapters. This chapter covers the extensions of general relevance only, such as

the analysis methods that are applicable to a wide range of data integration

problems or improvements that make the system more reliable and easier to

use. In this category, two important contributions were made to the Ondex

system: a new workflow management framework and the development of

Application Programmers Interfaces (APIs) to other programming

environments. Other smaller developments include a library of tools to

facilitate data exchange in the tabular format, integration of clustering tools,

statistical analysis methods and new visualisation approaches.

The needs of the application case have also pushed the limits of what was

technically possible in the Ondex system and this motivated the introduction of

a large number of new data representation formalisms and analysis methods

that went far beyond the original remit of Ondex as primarily a data integration

platform. Therefore, the work to extend the core functionality was chiefly

motivated by the need to be able to express and manage this newly introduced

complexity. For example, a more flexible workflow management solution was

required to effectively deal with the number of workflows and plug-ins

available, and scripting functionality provided by the interface to JavaScript

allowed an interactive creation of fine-grained analysis scripts tailored to

specific problems. Another important motivation was to increase the

productivity - if the repetitive and error-prone tasks can be automated, more
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time may be spent on the actual data analysis. Addressing these issues resulted

in a net gain in amount of work that was done on the biological application

case during the course of this project - although some time was spent on

development and support of these features, even more time was saved as a

result of having them in place.

2.3 DEVELOPMENT OF A NEW WORKFLOW MANAGEMENT AND

EXECUTION SYSTEM

It was identified very early in the project that an effective approach was needed

for creation and management of a large number of workflow files. As all of the

interactions with the data integration part of the Ondex system are mediated by

XML workflows, in excess of eight thousand workflows were created to

support the data integration, analysis and testing during development described

in this thesis. The primary reason for such a large number was the need to

accommodate the need of being able to refer back to the analysis done with a

particular version of Ondex or plug-in. Simplifying the management of this

complexity and making the workflow creation process simpler and less error-

prone was one of the main motivations for extending the existing Ondex

system. Another shortcoming of the original implementation was the severe

restrictions on the types and formats of data that can be operated on by a plug-

in. The former issue was dealt with by creating a user-friendly tool for creating

and editing workflows. This became known as the Ondex Integrator. The

latter issue was addressed by defining and implementing a generic Ondex

workflow API that generalised the original plug-in API and could be used to

defme a more advanced workflow enactor system.

The original Ondex system offered basic functionality to script workflows

using a simple XML format. The workflow execution was handled with one

Java class that parsed this XML file, instantiated appropriate plug-ins and

executed them. The workflow parser relied on a specific package structure in

order to resolve the class names and locate the necessary plug-ins. Although

this solution allowed some data integration tasks to be performed, it also came

with a number of drawbacks that resulted in a considerable overhead.

Throughout this project, the Ondex system was under very active development
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and the behaviour, naming and arguments of the plug-ins changed frequently.

This made working with Ondex as a user and developer a challenge, and the

situation was made more challenging by the fact that the documentation was

not ready and was generally only to be found in the source code accessible as

comments or values of specific arguments. If, for example, the behaviour of

the plug-in was changed, the only symptom was usually the failure of a

. workflow to complete successfully or, worse still, incorrect modifications or

artefacts in the graph that were only evident in the later stage of the analysis -

and resolution of these issues would usually be very time consuming.

Another set of complications arose from the manual editing of the workflow

definition files. This process necessitated that the user either commits to

memory all of the correct identifiers of Ondex plug-ins and their arguments or

refers to the source code in order to find the correct parameters. However, the

number of Ondex plug-ins is now well past the one hundred mark and on

average they have around eight configurable options. Manual entry of such a

large number of parameters was also found to be particularly error-prone.

From the developer perspective, the close coupling of the workflow execution

to the process of parsing the workflow description file made the system

inflexible and difficult to improve, extend or debug. Although the API for the

definition of plug-ins allowed them to be easily executed programmatically,

this was not the case when the task necessitated the construction of a workflow

programmatically. It was clear that the implementation also constituted bad

practice from the object-oriented software design perspective, as it breaks two

of its core principles - encapsulation and separation of concerns (Wu, 2006).

The encapsulation principle calls for all the code and variables that are needed

to carry out a particular task to be enclosed within their modules, with only a

minimal number of well-defmed inputs and outputs passing between the

modules. Separation of concerns requires each individual module of code to be

designed to carry out one particular task.

2.3.1 Overview of the new system architecture
The tasks of creating, input/output (10) and executing workflows are realised

by three top-level modules. To support this architecture an additional level of
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workflow API is required - one set of classes that stores the definition of

available workflow components and another set that holds the bindings of

selected modules to the values of their arguments once they have been

configured. These sets of classes become the main form in which the

information is exchanged between three parts of the system. An additional

channel of communication is also necessary in order to capture and handle

possible errors that could arise in any of the parts, and wherever possible are

collected and reported to the user by a unified set of error-handling classes.

The module that manages workflow creation also builds and maintains the

complete index of all available plug-ins, the associated documentation and the

name and specification of their arguments. A sub-module deals with keeping

track of individual workflows that were created, which take the form of a list

of selected components and the values of the arguments that have been set.

Although this module holds the references to all of the available components,

they are not instantiated until needed in order to keep the memory foot-print

low and keep the time needed for indexing to the minimum. This module also

has the functionality to carry out a set of input validation tasks -like checking

the integrity of the workflow structure (e.g. that there is no plug-in scheduled

to be executed that needs an Ondex graph instance before a plug-in that creates

one) or verification of individual arguments against their specifications (e.g.

that all of the required arguments have been set for all plug-ins and the correct

type of value was supplied for them). As this module is not coupled to a

particular input format, it allows the functionality of constructing the workflow

either dynamically or from a workflow description file. The information about

what plug-ins to run and the associated options is held internally in a task

description class.

The task description class holds the information in a form that is suitable for

interactive editing or being saved in the file. Internally, this representation

forms a tree data structure of the various elements corresponding to the levels

of organisation a workflow - e.g. workflow (root), workflow component,

workflow component parameter. The interactive creation of the workflow is

handled by populating the task description via the Ondex Integrator graphical

user interface (GUI). The task description format is also used by the export and
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parser classes that save and load the workflows from the XML-formatted

Ondex workflow file format. These two groups of classes constitute the

workflow creation and 10 modules.

The task description representation is converted to the workflow instance

representation that is used by the workflow enactor and also creates and

maintains the reference that links the components in the workflow instance to

the original specifications in task description. This reference can be used to

produce meaningful error reports, which relate users' inputs to the problems

identified, and to provide feedback about the workflow execution progress.

To accommodate this new workflow representation, a new XML format to

describe Ondex workflows was developed. The implementation allowed for

backwards compatibility, and supported reading of the original workflow XML

format by parsing in to a workflow that conformed to the new formalism, but

realised original type of behaviour. This was possible because the new format

retained the same basic set of information needed to re-construct the workflow.

The only types of information that the older format did not provide were filled

in with by assuming that only one Ondex graph was being used and that (with

the exception of the Ondex graph) only the simple data types (e.g. string and

numbers) where passed to the workflow plug-ins.

2.3.1.1 Ondex Plug-in API and pre-existing functionality

The Ondex plug-in API defines five types of plug-ins all of which implement

an AbstractONDEXPlugin interface. From the workflow enactor point of

view, the plug-in is seen purely in the terms of inputs that it requires and

outputs that it produces. The AbstractONDEXPlugin interface describes

the unifying features of all Ondex plug-ins - i.e. the inputs and outputs that all

of them must have. Therefore, all plug-ins need one instance of ONDEXGr aph

and an object that holds the collection of arguments for that plug-in

(ArguemrntDefini tion class) as inputs. The interface does not define

any inputs, so these must be handled based on a type ofa plug-in. Some of the

code needed to run specific types of plug-ins is also externalised and is located

in another class. According to this scheme, the following steps are taken to

successfully execute an Ondex plug-in: create and instantiate an instance of a

plug-in class, get a plug-in specific argument container from it, populate the
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container with appropriate configuration arguments, pass the container back to

the plug-in, pass an instance of Ondex class to the plug-in, run the pre-amble

external code, execute the plug-in and run the post-amble external code.

2.3.1.2Plug-in registry and workflow description API

Ondex plug-ins are available as separate optional modules and for this reason

any particular Ondex installation will not have the information in advance

about which plug-ins (and which versions) will be available. The loading of

plug-ins is therefore managed by the PluginRegistry class. Upon the

initialization of the PluginRegistry, specified plug-ins directories are

scanned for plug-ins and an index is assembled of everything that is available.

All plug-ins in the index are referenced using a special unique identifier field

and full record also holds relevant documentation, the list of arguments,

argument types and restrictions on them. This representation is a descriptive

read-only record that makes it possible to discern the correct set of

configuration options for that plug-in. The workflow is assembled by creating

a task entry instance that holds a reference to the original type of the plug-in as

well any configuration arguments supplied. The list of all tasks is then

deposited in the order they are to be executed in the Task class.

The Task class, task entry and plug-in descriptor are all generic and do not

require the instantiation of any of the actual Plug-in classes in order to work.

This allows the separation of the workflow execution from the workflow

assembly, configuration and storage tasks. In theory, using this API it is

possible to defme a PluginRegistry implementation that resides on a

server and provides the plug-in descriptors to the client on a different

computer. The workflow can then be assembled and configured on the client-

side and task description sent back to the server for execution. As this

representation is independent form the plug-in execution API, the user

interface layer that uses it is not directly affected by the changes to the

workflow enactor and vice versa.

2.3.1.3 Workflow enactor

The Ondex workflow enactor system introduces an abstraction layer that

allows most the complexity of the plug-in execution process to be bypassed.

Like many other workflow implementations, the basic building blocks of the
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workflow enactor model are processors and data links. Task processors are

components of the workflow that carry out specific tasks and have multiple

inputs and outputs, whereas data links determine how outputs of one processor

are matched to the inputs of the other. When defined in this way, all of the

plug-ins can be executed in exactly the same manner and all the workflow

system needs to do is to do it in the correct order and pass the output and input

objects to the correct task processors. Although a much better solution would

have been to refactor the Ondex plug-in API to conform to this simple model

and fully encapsulate pre- and post-amble code inside the respective plug-ins,

this was not possible due to the amount of time that would have been needed

for such an extensive refactoring. Instead, the original system of plug-in

execution was modified to become more modular, the original Ondex plug-in

API left intact and the processor interface was added as a wrapper. This has

partially solved the problem of the original specification lacking some of the

necessary functionality - like the ability of plug-ins to create new data objects

as it became possible to defme a new type of plug-in using the processor

interface directly.

2.3.1.4 Ondex Integrator tool

The Ondex Integrator is a aUI that facilitates the tasks of workflow creation

and editing. It provides an easily accessible way for the user to browse through

the plug-ins that are currently available in their particular installation of Ondex

and an intuitive interface for maintaining and modifying the XML files, which

store Ondex workflows, It also allows workflows to be validated and executed

(Figure 2.1).

The first version of the workflow management aUI was released in 2007

under the name of "Ondex Workflow Launcher". This tool was the first user

interface ever created for the Ondex data integration back end. This version

was integrated with the Ondex front end and allowed seamless exchange of the

graphs between the back end and front end parts of the Ondex system. It was

possible to run the analysis directly on the graphs loaded in the front-end or to

immediately visualise the results of the integration without the need for a

lengthy procedure of saving the graph on disk using the Ondex back end and

loading it in again in the front end.
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Figure 2.1 Ondex Integrator v1.0. This is a screenshot of the first version of the
Ondex workflow management tool, released in 2007. The panel on the left lists
all available plug-ins, which can be filtered using a combo box above it. In the
centre is a workflow editing tabbed pane. It lists currently loaded workflow files
in separate tabs and lists individual components and their configuration. New
elements can be added by selecting them from the list on the left, by dragging
and dropping them from another position in the workflow or by copying and
pasting existing elements. A list on the left holds the references of all previously
created graphs. These references can be used in subsequent workflows or
loaded for viewing in Ondex front end.

The graphical user interface works directly on the task description

representation. The advantage of this approach is that, since this representation

does not depend on any of the actual plug-in implementation classes, the

configuration and arguments can still be recovered even when the workflow

file is no longer in sync with the version of the plug-ins installed on the

system.

Workflows can be constructed by selecting a type of plug-in from the list - a

plug-in of that type is than added to the workflow at the position specified.

Each plug-in entry shows all of the valid arguments, their default values and

allows access to the available documentation. Any available documentation

about the plug-in itself and each of its arguments was displayed in the tooltips

of corresponding user interface elements. The GUI supports all of the common
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Figure 2.2 Ondex Integrator v2.0. In this version of Ondex Integrator the user
interface was streamlined by removing unused elements. The documentation
was moved from tooltips to a separate set of tabbed panes (bottom-left). The
plug-ins display was also changed to a tree, which made it possible to sort plug-
ins by status as well as type. The workflow execution progress is reflected by
the changes in the colour of the workflow component elements (displayed in
the tabbed pane on the right).

types of arguments currently defined as part of the Ondex plug-in API and can

provide a different input control that corresponds to each type - e.g. a multi-

line list where there can be several arguments of this type or a check box if the

argument can only take a value of "true" or "false". The inputs and outputs of

plug-ins can also be assigned identifiers that determine the flow of resources

between different workflow components. The QUI interface delegates to the

other parts of the workflow API for validation of the workflows created, their

execution and saving and loading of files.

2.3.1.5 New features implemented in the Integrator 2.0

Ondex Integrator v2.0 (Figure 2.2) was released in 2009 and featured a number

of improvements to the interface. This version was no longer integrated into

the Ondex front-end and was instead released as a stand-along tool. The

interface was updated to make the best use of the new plug-in annotation
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framework, which was contributed by other developers on the Ondex project.

The annotation framework uses Java doclet technology to allow a more

structured description of Java class files. Unlike the standard JavaDoc

comments, this information can still be accessed at run-time. By introducing

this annotation, it was now possible to easily keep track of the plug-in

development state and sort them into "stable" and "experimental" categories in

the user interface. When more documentation is available, it is presented to the

user in several tabbed frames at the bottom-left of the main window.

2.4 SCRIPTING API FOR ONDEX

The plug-ins provide a high-level of customisability for the Ondex data

integration and analysis pipeline by allowing a number of commonly

encountered tasks to be solved by combining a number of generic reusable

components. However, packaging the necessary code as a plug-in introduces

additional costs in terms of Java code needed to implement the required

interface methods, declare required inputs and unwrap the arguments. In some

cases the amount of code required to set up an Ondex plug-in actually exceeds

the amount of code that actually tackles the task itself several fold.

To address this problem, the need for a lower-granularity interface was

identified. This would be more suited to tackling a wider variety of tasks using

more specific and simpler reusable components. Such capabilities can be

supplied by a scripting language and a library of appropriate functions.

Functions can easily be chained together in much the same way the workflow

components can, but are usually designed to be much more specific and have

much lower implementation overhead. For this reason, functions are a much

better choice for the implementation of application-case specific processing

and analysis routines. An additional advantage conferred by the scripting

interface is the ability to interactively access the code written in other

programming languages, without the need to re-implement it in Java or the

need to develop a specialized exporters and parsers to allow the round-trip data

exchange between Ondex and other tools.

The need to allow this type of interaction between Java and other programming

environments is well-recognised in the Java developer community and there
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are a number of interpreters and interfaces for other languages available for

Java. Nevertheless, realising a general scripting interface is still less than

straightforvvard, as different programming languages frequently have

incompatible semantics and mode of operation. The scripting language

libraries often only support part of the functionality - either in the core

implementation of the scripting language or in the way Java objects are

handled within it. This necessitates a creation of appropriate wrappers for the

set of classes to be scripted, which re-package the original Java representation

to make it compatible with the scripting library of choice. As creation and

maintenance of a complete set of wrappers is prohibitively time-consuming

and the types of the modifications needed are usually clearly defmed, this

process was automated using a byte code generation solution (JavaAssist

v3.12.0). A byte code generator provides a way of creating and modifying Java

classes at run-time and can therefore provide a way of re-generating a set of

wrappers without the need to change the main application in any way.

Therefore, the source classes may be modified by other developers without the

need to update the bindings to the scripting interface, which will always be in

sync automatically. It also makes it possible to add additional functionality for

the scripting environment as add-on modules even after the main application

has been built.

The API defines and manages the execution of a set of abstract tasks needed to

load and maintain a scripting solution, like the initialisation of the scripting

environment, generation of wrappers, clean-up, user interaction and error

reporting. As the API itself only defines the generic structure of relating a

scripting solution to a set of core Ondex classes and provides some utility

methods to facilitate the process of defining an appropriate set of wrappers, a

number of different scripting solutions can be seamlessly supported within the

same framework. Any of the implemented scripting environments can be

accessed either by supplying a script as an argument to a scripting plug-in in

the Ondex workflow, or interactively, using a command console in the Ondex

front end.

2.4.1 JavaScript

JavaScript syntax and semantics are very similar to Java and since Ondex is
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.. atts-);

defNemeftnteger /String value, String IsPrejerred};

defEvidence!lnteger/String value]:

p.newRelationPrototypelConccptPrototype source, ConceptProtype target. AttributePrototype._ arts);

defGOS(lnteger/String value. String attNome, String indexed);

defEvidence{lnteger/String valuel;

Figure 2.3 Accessory methods from the delimited file parsing API. The
accessory methods provide a simple way of binding specific columns or
constant values to the entries in the Ondex data model. There is a method for
every possible attribute of concept or relation. To simplify the task for the user,
the entries from the Ondex controlled vocabulary are automatically resolved
from string values or added to it, if missing. Arguments shown in italic can be
omitted from the input, in which case the default values will be inserted
automatically (as all of the fields of the attributes always need to be present).

written in Java, it is one of the easiest languages to integrate. Although there

are several JavaScript scripting libraries for Java, currently one of the most

advanced and flexible solutions IS Mozilla Rhino

(http://www.mozilla.org/rhino/), which now supports all of the features of

JavaScript 1.7. This implementation allows direct access to Java objects and

classes as well as "native" classes defined in JavaScript. The robust

performance of the framework is ensured by the compilation of the JavaScript

classes into Java byte-code. Therefore, once a JavaScript has been compiled

using Rhino, it becomes Java and can offer similar levels of performance. For

these reasons, this scripting solution was chosen to be one of the first to be
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added to the system via a newly developed scripting API.

A JavaScript wrapper implementation provides a straightforward method for

specifying a subset of classes to be made accessible via the scripting interface.

The only input required is the fully qualified name of the class to wrap. The

wrapper generator then scans all of the methods of this class and compiles a

list of other non-default classes it relies on either as an argument or a return

object from a method. These classes are then scanned in the same manner, until

all types required are resolved to the types natively supported by the Rhino

library. Optionally, it is possible to customise this process by specifying the set

of methods of the base class that need to be implemented or ignored in the

wrapper, as well as the new names for these methods or for the wrapper class

itself. All static methods encountered by the scanner are mapped to functions

by collecting all of them in a single class, which is then made available in the

global scope. Because JavaScript, unlike Java, is a loosely typed language,

wrappers also contain the code necessary to correctly resolve Java generics to

and from JavaScript representations and handle the type casting errors.

,--------------------------------------------,1 !/Spe:II, the location olthe file to parse and the delimiter 1
I P = new PathParser(getActiveGraphO, new DelimitedFileReader("C:/test.tab", " "));
1 !/Spp"fy thp data that should !Je added to concept 01.

: cl = p.newConceptProlotype{defAccesslon{O, "UNIPROT"), defCC{"Prolein"), defName{2));
1 f ISp(,lIfy tho dat o that should be added to concept Iwo
1 c2 = p.newConceptPrololype{defAccession{l, "UNIPROT"), deICC{"PrOlein"), deIName{3));
I //Crf'rlt. a rr-latio n br-t wr-r-n t hr- r oncr-otv o nr- ann two, parvr V,I U( Ir om cofumr- 4 <is'- wl'ir,ht

I p.newRelationPrototype{c1, ez. defGDS{4, "P-value", "NUMBER")); 1
: p.parse(); IIStart le parsing process 1-------------------------------------------_.

I Q9VU72 P23654 I Nrt : 0.B61
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a
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i--PS3~ P23654 Ubx
,_fl5364 I P23654
P23654 Q9VVC3

P19S3!L. ....e_23654

Q7KNS3 P23654
._Q9VDJ8 P23_§54 ~ Nrt
Q9VBBl . P23654 Nrt

C.. 91Eb U .. ,

Figure 2.4 Example of using delimited file parsing API. The small sample file
(bottom-left) was converted to the Ondex network (bottom-left) using the
parsing script (top). The example and image were adapted from Ondex tutorial.
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2.4.1.1 Example: delimited file parsing

One of the best examples of how scripting interface can be used to simplify

time-consuming tasks is the API for parsing delimited files. Delimited files

still remain one of the most commonly used exchange formats and the vast

majority of the data used during the work on this thesis was accessible in this

form. Despite their simple formalism, many delimited formats have additional

features or complex relationships between their elements and, for this reason,

developing a generic parser that supports most of the possible formats remains

a difficult task. Another level of complexity is introduced by the requirements

of normalization to a standard conceptual schema - a parser must resolve any

semantic or syntactic heterogeneity issues when data is imported into a unified

representation. In Ondex, this is done by matching the data elements in the

original data source to the entries in the controlled vocabulary and sorting data

into semantically defmed fields.

Delimited file parsing API simplifies this process by allowing fast construction

of format-specific parsers from a set of simple components (Figure 2.3). The

set of methods allows the defmition of concepts, relations and relationships

between them. Additionally, all values can be piped into appropriate attributes

on these nodes and edges. Where a field is subject to the restrictions of the

Ondex controlled vocabulary, it is possible to specify the correct static value to

be used or to dynamically fill it in by creating a look-up between the Ondex

controlled vocabulary term and regular expression patters that it must match in

the source file. Although this API is written entirely in Java and is also used

within other Ondex parsers (among them AtRegNet and TAIR interactome

parsers) that work with the delimited files, it is primarily intended for

interactive use from the scripting interface. As illustrated by the example in

Figure2.4, a typical file may be imported with as little as three to five

commands. As an example of how this API improves the efficiency of an

Ondex user/developer when parsing a delimited file, consider the code size of a

pre-existing Ondex delimited file parser, such as the 'tab' parser

(vlO.03.2008). This native Java parser implementation is over three hundred

and fifty lines long. By comparison, just four commands (lines) were needed

using the delimited file parsing API to handle exactly the same file format.
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Figure 2.5 Example of Ondex-R integration. In this example a graph was loaded
into the Ondex front end and the console was switched to R mode. Then an R
view object is created it holds a reference to an Ondex view object that contains
all concepts currently in a graph. This object can then be queried via a number
of pre-defined functions to get information that can be used in a subsequent
analysis in R - in this example it is protein names.

2.4.2 R statistical environment

As a cross-disciplinary research field, bioinformatics often draws upon the

methodology of other disciplines to solve biologically relevant problems. In

particular, statistical analysis is often necessary to evaluate the significance of

the findings or to formalise evaluate the sources of variation in the data being

used or the models being developed. The R software environment (R

Development Core Team, 2008) is a popular statistical computing and

visualisation solution that is often called upon to fulfil this need. The relevance

of this platform to the bioinformatics community is particularly evident by the

amount interest in Bioconductor (Gentleman et al., 2004), an R library for

genomics analysis. From the data in PubMed, this original methodology paper

for Bioconductor (from 2004) has been cited 3904 times by April 2012. The R

environment is implemented in C++, but also has its own high-level language

based on the S4 specification, although many analysis methods are

implemented in c++ directly and only use S4 for linking with other
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functionality in the R environment. Ondex and R, however, have different and

complementary strengths - Ondex facilitates data acquisition and defines a

unified generic schema for wide range of biologically relevant information

types, whereas the focus of R is primarily on the downstream analysis of

numerical data. An interface between these two tools would simplify the

exchange of data necessary to bring together these tasks and allow more

complex analysis pipelines to be developed with minimal effort.

As many analysis methods in R are implemented in C++ libraries, just having a

Java interpreter for S4 would not be sufficient to gain access to those libraries

- as those links require a fully functional R environment itself in order to

work. In order to access the full R functionality a link between Java and the R

implementation in C++ is required. Programs written in C++, however, are

compiled to native code before they are executed, which is operating system

and hardware specific. The only way this code can be directly accessed from

Java is through a specialised interfacing framework called Java Native

Interface (JNI).

Although there are other R-to-Java interfacing libraries currently available, the

twin libraries rJava and JRI are the only ones that use the JNl framework and

therefore offer the best performance. The rJava library allows calls to Java to

be executed from the R environment. Each instantiated class is wrapped in an

R object which maintains a reference to it. The method calls are possible by

calling a special function that takes in the class instance reference object, name

of the method and its arguments as input. This function only uses a base class

of the argument to correctly construct a method signature, so the class of the

argument often needs to be changed, which can be done using a casing

function. Calls to appropriate functions are also required in order to convert the

primitive data types returned by Java into their R equivalents. The JRI library

is the opposite of rJava and allows R environment to be accessed from Java. It

allows R commands to be executed from Java and makes the results of this

evaluation available from the Java program. When used in combination, these

libraries allow two-way communication between Java and R environments - a

'call-back' .

Although rJava-JRI libraries are sufficient to realise Ondex-R integration, there
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are still considerable usability issues associated with using the rJava interface

directly. The functions it offers are very low-level and calls to Java methods

are very verbose and have a complicated syntax. The need to cast objects to the

correct type and to use conversion methods to convert return values to R data

types also add an unwelcome layer of complexity. This issue is dealt with by

using an additional set of wrapper object on the R side, which deal with all of

this complexity and present them to the user as a set of native R objects and

functions. Similarly, on the Java side when JavaScript-wrappers are generated

an additional matching S4 class is generated for each of them by executing the

S4 class creation commands using the JRI interface. Every method on the class

is then wrapped as an R function that takes this class as its argument. When

this interface is used, all objects necessary for accessing Ondex are

automatically wrapped as S4 classes at the point they are accessed through the

R interpreter. As each instance of the S4 class only holds a single reference to

the complementary instance of the Java class, this implementation is also

memory efficient. All data is still stored on Java-side and is only moved across

to R side upon request. Only supported data types can be moved to R - as the

wrapper generator completely resolves all Java class dependency trees, all Java

classes returned by method calls are guaranteed to be contained within an S4

wrapper. If a return type is supported, it will be automatically converted to the

matching R data type when it is returned by the function.

When using this interface a user is presented with a direct link to R via the JRI

interface (Figure 2.5). The console looks and functions exactly like an R

console would. The only difference is that it is actually an integral part of the

Ondex front-end, has an additional set of S4 classes to mediate interaction with

Ondex and all objects in the main application, such as graphs and views, can

be accessed and manipulated using the R environment syntax.

The integration of R in Ondex provides a far superior functionality compared

to other graph visualisation or data integration tools where such a link has been

realised. For example, a link to R was available in older version of Cytoscape

via the CytoTalk plug-in (Reiss et al., 2005). With this extension it was

possible to access the Cytoscape API from an R console, but this

implementation was relatively low level, has a complex syntax and is no

59



longer available in the latest version of Cytoscape. A better implementation

was realised in GUESS (Adar, 2006 ), a robust graph analysis tool for social

networks, which also has its own scripting language based on Jython, but no

data integration capabilities. This implementation allows switching between

the R and native scripting language, it is possible to send the data to Rand

receive it back, but the graph can be queried or updated with the changes only

when in native mode. Both of these implementations use socket-based

approach, which is much slower than passing the data directly through the JNl.

2.4.3 Jython/Python

Python is a powerful and versatile scripting language with a very active

bioinformatics user community. Unlike the situation with JavaScript, Python

syntax and formalisms are very distinct from Java, but at the same time is more

succinct (e.g. more can operations can be performed with less code) and comes

with an extensive collection of libraries. Several of these, are aimed at

addressing the needs of the bioinformatics research community. These include

NetworkX (Hagberg et al., 2008a) for graph analysis and visualisation and

NumPy/SciPy (Peterson, 2009) which is a library of scientific mathematics,

science, and engineering numerical analysis methods. Python is particularly

popular within the bioinformatics community where it has overtaken Perl as

the preferred scripting language. This was revealed in a 2007 survey conducted

by Bioinformatics Organization, Inc. (www.bioinformatics.org). They found

that 23% of bioinformatics researchers questioned were interested in learning

Python, compared to 19% for Perl and 16% for Java. A number of Python-

based projects are specifically developing tools to support bioinformatics

research - for instance, Biopython (an extensive open source library for

computational molecular biology) (Cock et al., 2009), GenomeDiagram (a

toolkit for visualisation of large genomic datasets) (Pritchard et al., 2006),

PySCeS (modelling solution for cellular systems) (Olivier et al., 2005),

Sarment (hidden Markov model implementation) (Gueguen, 2005) and SIR

(collection of tools for working with biological databases) (Ramu, 2001). By

adding a Python environment to the Ondex system it was possible to take

advantage of these tools and analysis methods.

Currently two solutions allow interoperability between Python and Java. The
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first one is JPype, which integrates the two environments at a virtual machine

level. Although promising, this project is still at a very early development

stage and is primarily targeted at web developers. Another solution is Jython

(formerly known as JPython), which is a Python interpreter implemented in

Java. Jython allows full access to Java classes from the Python environment

and allows them to be used alongside the Python data structures. In this way all

of the functionality of Java can be accessed from within a Python-like coding

environment. As a pure Java implementation, Jython can also be very easily

added to any Java application. For these reason Jython was considered to be

the better choice of interpreter for use within the Ondex system.

Jython scripting environment in Ondex was implemented in a very similar way

to that used for JavaScript. The entry point for the Jython scripting

environment is an interpreter class that wraps the actual interpreter from the

Jython. This class handles errors and mediates interactions with the core

Ondex classes and methods accessible from the scripting environment. A

wrapper generator is used to wrap these classes and methods to be more

compatible with the Python environment. In Jython, the Java collections API

maps to native data structures, whereas in Ondex API, arrays are used more

commonly than collections. To improve the usability, wrappers perform

backwards and forwards conversion between array and list data structures. As

the example in the next section illustrates, the implementation also allows

import of external libraries and their use in conjunction with the Ondex data

model.

2.4.3.1 Example: interaction with the NetworkXvO.99 library

NetworkX is a graph analysis and visualisation library for Python. Its primary

goal is to allow fast and flexible construction of classical graph representations

from the source data. These graphs can then be analysed using a number of

standard network analysis algorithms or converted to publication-quality

vector images. The NetworkX data structure is designed to be very simple and

straightforward to use and therefore it is much quicker to prototype and test

analysis algorithms than working with the native Ondex schema. NetworkX

also has many more graph analysis methods than currently available in Ondex

itself. The real advantage that is gained from using NetworkX, however, comes
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Figure 2.6 Using the NetworkX Python library to Analyse an Ondex graph. The
console queries in Jython mode were used to find the largest connected graph
component. An empty NetworkX graph was created and populated with a
subgraph of all nodes that are connected by a relation with "PSI" attribute - the
same subgraph is also visible in the background. A method on the NetworkX
graph was then used to get all connected components, and the largest one was
identified by iterating through them.

from the ability to easily switch between different graph types. For example, in

different situations it may be preferable to represent a network as a graph with

direct or undirected edges or to assign a weight to them. Some of the analysis

methods, like shortest path, will produce different results depending on the

type of the graph they are applied to. In order to capture the full complexity of

biological data, the Ondex graph representation is one of the more complex

types and has a number of non-standard extensions that make it more than a

pure mathematical graph. If the Ondex graph data structure is mapped onto one

of the more basic representations provided by NetworkX library certain types

of analysis can be carried out that are specific to that network representation.

Conversion to the required formalism makes subsequent analysis more

transparent, easier to follow and, therefore, less error-prone.

To use any non-default Python libraries from the Jython scripting environment

they must first be installed on the user's system. This process is identical to the
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installation of libraries for a standard Python distribution - they all need to be

correctly deployed in a directory (usually "lib" under the Python installation)

along with any dependencies. In order to be accessible from Jython this

directory must be provided to the Java application as part of its command line

arguments. After that, the library may be imported via a command in the

interpreter. The example in Figure 2.6 illustrates how NetworkX can be used to

interactively find a largest connected component in an Ondex graph using

functionality from the NetworkX library. The first line creates an undirected

weighted graph view of the Ondex network. To do this, an attribute needs to be

specified, which will be used as a weight for edges. The view created uses the

original Ondex identifiers for all nodes and edges. After the analysis is run,

these identifiers can be used to refer back to the Ondex entities in the largest

connect component and may be employed for further processing.

This example illustrates how simple set functions can be used to map an

Ondex network to any of the graph types supported by NetworkX. This

representation can then be used to interactively analyse the network. The

results of the analysis can then be used to generate analysis reports or written

back to the Ondex graph. Alternatively, a graph can be exported using one of

the NetworkX exporters and analysed further using other graph analysis tools.

2.4.4 SPARQL and semantic web

As biological data are becoming available in ever-increasing quantities, one of

the challenges faced by the research community is to efficiently mine and

share the accumulated knowledge. Although web technologies are now widely

used as a means of providing easy access to this information, integration and

computer-driven analysis over large number of heterogeneous resources still

remains an on-going challenge. One of the possible ways to enable such an

analysis is through the use of the Semantic Web technologies, which define a

framework for unambiguously identifying and categorising resources available

on the Internet. The Resource Description Framework (RDF) format (Lassila

et al., 1998) is used to make statements about these resources in the form of

triples (subject, predicate and object). These statements can be used to express

relationships between the resources in a format suitable for computational

processmg. Data represented inRDF can be interpreted as a graph where RDF
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resources (nodes) are linked to each other by predicates (edges). RDF also

enforces the use of globally unique identifiers and has an option of binding

data to a structured schema by creating references to appropriate ontologies. A

number of standards and ontologies for representing biological data have now

been developed and several prominent biological data providers provide their

data in RDF format.

Semantic Web approaches address a similar set of problems to those tackled by

Ondex, in the sense that they aim to provide a framework to integrate and

analyse disparate data. However, Semantic Web technologies were primarily

designed to work with the federated approach to data integration, where data is

distributed across potentially many online resources and is queried and linked

dynamically upon request. For this reason, the Ondex approach of importing

data via a set of parsers and working on a well-defined and usually local set of

source data files is not readily compatible with the real-time and unbounded

nature of RDF data stores. One possible way to reconcile these approaches and

bring some of the functionality of Ondex to semantic web based resources is to

make the parsing process in Ondex query-driven. By having a generic parser

for the results of a query against a set of online RDF data stores, a much wider

variety of resources can be imported with minimal effort. An additional benefit

of this approach is that the data imported in such way would be compatible

with the RDF specification by default and can be worked on using the same set

of tools, thus also addressing the need for a query language for the Ondex

graph itself. The ability to query the Ondex graph via a formalised and

efficient language has the potential to both improve the usability of the system

and facilitate sharing of the Ondex-based datasets with the wider research

community. SPARQL Protocol and RDF Query Language (SPARQL)

(Prud'Hommeaux and Seaborne, 2006) is a language for querying RDF graphs.

SPARQL allows graph patterns to be defined using an SQL-like syntax, which

can then be resolved against the content of an RDF data store. The result of a

query can be either a collection of data fields or a sub-network in RDF format.

In order to be able to use the data available on the Semantic Web, an

application needs to be able to connect to the external resources, support the

construction and execution of SPARQL queries against them and interpret the
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results. In the Ondex implementation, the former two requirements were

addressed by linking the Jena library to the Ondex scripting environment. Jena

is a Java framework for construction of Semantic Web applications (McBride,

2001). As well as SPARQL engine, Jena also provides a Java API for working

with RDF data, 10 capabilities and deployment of RDF resources. As the

Ondex SPARQL engine implementation required a direct access graph model

whereas the other scripting solutions only needed to exchange the data via a set

of pre-defined methods, the design of this API is very different from the

previously described Ondex scripting solutions. Rather than allowing access to

a set of Ondex objects and functions, this implementation is in essence an on-

demand parser, which executes SPARQL queries and imports results into an

Ondex graph. This is possible because, with the exception of some advanced

celt: clrlu.,:I/ ..... '.org!19H'Ol/12-tdt-.ya.1..x- ...,>
'<.bU.'III_ ..-,ex,.rl_l'It.orQlflllOl:kflo •• /Z'/Y1inlO"/1IMt.tlo./~ ..t.18b " )0,
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Figure 2.7 Dynamic import of RDF data using SPARQL. The Ondex SPARQL
query engine was used to fetch data from a MyExperiment RDF Endpoint. Two
queries were made to get the entities associated with dataflow components 85
and 86. The graph loaded in the background shows the results of the import.
Note the entities common to both queries were only imported once
('http://rdf.myexperiment.org/workflows/versions/l', 'WorkflowComponent'
and 'Resource') had run and the results of both queries were merged using the
unique identifiers on these entities.
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features, an Ondex graph is compatible with the RDF formalism. Each RDF

resource can be interpreted as an Ondex concept, with literals (e.g. strings and

numbers) as attributes and predicates as relations between them. As RDF

identifiers are designed to be globally unique, if an RDF identifier is

encountered that is already in the Ondex graph, this pre-existing node will be

used and linked to any new data contributed by the query. In this wayan

application-specific Ondex dataset can be created from the information

collected from different RDF data stores.

Another capability gained by adding SPARQL to the Ondex system is the

ability to query standard Ondex graphs in a generic manner. Prior to this

development, the only option for extraction of data from them involved

creation of specialised exports and transformers that employed a set of simple

API methods to realise each operation. Using an exporter to RDF (contributed

by another Ondex developer) any Ondex graph can be exported in a SPARQL-

compatible format. The Ondex SPARQL query engine can then be used to

mine these data and visualise the results in the Ondex user client. Although it

is also possible to load this data into other SPARQL-enabled environments, the

Ondex client is one of the few tools that allows the results of the RDF queries

to be visualised and also supports a wide range of other analysis methods for

graphs not available on other platforms. Data imported in this manner is also

compatible with Ondex Integrator plug-ins.

Figure 2.7 illustrates how information from several RDF quenes can be

dynamically integrated by executing SPARQL queries in the Ondex user

client. The implementation of the Ondex SPARQL query engine is still at an

early prototype stage and it is recognised that the necessity to export the data

before the queries can be run on it constitutes a suboptimal solution.

Nevertheless, it does demonstrate the utility of using SPARQL for working

with Ondex graphs and provides a means to query the data - which was not

possible prior to the introduction of this engine. As will be demonstrated in the

subsequent chapters, an ability to find matching patterns in the graph underpins

many of the analysis methods implemented for this thesis. Currently, efforts

are underway to bring Ondex and RDF data models more closely together and,

when complete, the export step will no longer be necessary. However, due to
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the major re-engineering required, this refactoring is beyond the scope of this

project.

2.5 DISCUSSION

The Ondex framework addresses many of the challenges of dealing with large

and complex biological information. The Ondex approach is built upon two

key principles - configurability and reusability. Rather than encoding a set of

pre-defined solutions to common data integration problems, the system

provides a large number of generic modules from which application-specific

workflows can be assembled. The development of a workflow management

API and the Ondex Integrator tool have simplified the process of managing

these modules from the perspectives of both developers and users. The

Workflow API was developed to overcome the shortcomings of the Ondex

Plug-in API by defining a unified interface for all possible types of Ondex

plug-ins, which helped to standardise and optimise execution of Ondex

workflows. The plug-in descriptor/task entry and supporting classes also

allowed all meta-data about the plug-ins to be assembled in one place from

which it can be made readily available to the end-user through the GUI. Based

on these two developments, an Ondex Integrator tool was built, which has

greatly simplified the process of workflow creation and management.

Together, these developments allowed for greater productivity when using the

system and enabled more complex analyses to be realised within Ondex

workflow than was practically achievable beforehand.

The development of an Ondex scripting framework made the system just as

customisable at a lower level of component granularity. It supported the

introduction of functions, designed to handle a simpler set of data integration

and analysis tasks that were too small to be sensibly realised using the plug-in

architecture. An analysis script could then be built from these functions by

executing them consecutively and linking together their inputs and outputs in a

way that is more accessible and intuitive for many bioinformaticians. On top of

this functional layer, a set of other capabilities could then be implemented,

where native Java components could be seamlessly combined with those

implemented in a less restrictive scripting environment like Python or

JavaScript. It was also possible to take advantage of ready constructed
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bioinformatics analysis tools available as libraries built in these languages and

use them as part of Ondex-driven analysis pipeline. It has also enabled the use

of a SPARQL interpreter to dynamically query Semantic Web resources and

thus successfully combine the warehousing-based and federated-based data

integration approaches in the same system. The SPARQL implementation has

also provided a general mechanism and query language for interrogating an

Ondex graph. This fulfils a requirement that has been considered by many

developers as a major shortcoming of the Ondex system.

All of these developments have allowed easier management of complex

analysis pipelines developed for this thesis and also increased the productivity

when using the system. Through use of clearly defined formalisms, like plug-

ins and functions analyses were made more transparent, easier to understand

and reproduce. By using these reusable components, the analysis methods can

also be more readily reconfigured for use on species other than Arabidopsis or

on different datasets. From the point of view of this project, the greatest benefit

from these developments was that they have made it possible to manage data

in a proactive way. Biological data is constantly updated, new data providers

enter the scene and new formats are defined for exchange of these data.

Therefore, during the four years of this project one of the major challenges was

to keep up with these changes and to update the datasets used for this project

accordingly. This process required changes to be made to some parts of the

data integration pipeline and analysis to be re-done on a regular basis. Through

the use of functions and plug-ins these changes could be restricted to the set of

affected components, thus making the update process more manageable.

The usability improvements have also helped to expand the Ondex user

community and support collaborative efforts of other developers. The Ondex

Integrator user interface has significantly improved access to the system and

has simplified the process of getting to grips with Ondex for the new users. For

example, the Integrator interface shows all of the available plug-ins,

information about them and all valid configuration options, whereas previously

this type of information could only be accessed by looking through the Java

source code of appropriate plug-ins. The addition of Python, Rand SPARQL

have also opened up Ondex to the users of these languages - as well as
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enabling a wider range ofbioinfonnatics problems to be tackled by bringing in

the functionality developed under those environment into the system. Both the

Ondex Integrator and scripting environment have been a core part of the

Ondex tutorial since their introduction in 2007; this reflects their importance

for the Ondex user community.
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3 COEXPRESSION NETWORK CONSTRUCTION

3.1 SUMMARY

The expression levels of multiple genes can be measured simultaneously using

a number of different DNA microarray approaches. Due to the large number of

measurements, often under a set of different conditions, it is often useful to

summarise such data in the form of a coexpression network. In such

representation, the nodes represent individual genes and links represent a

measure of similarity between their expression profiles. To allow incorporation

of expression data as part of the integrated dataset used in the Ondex system, a

coexpression analysis pipeline was implemented as part of this work. The

analysis pipeline combines several well-established methods for each step of

the coexpression analysis, automates the handling of bad data entries and

mediates the flow of information between different analysis steps. Java-based,

parallelised implementations for the calculation of weighted Pearson

correlation and a network structure based threshold selection were also

produced as part ofthis work.

3.2 INTRODUCTION

Changes in the types and quantities of proteins in the cell (proteome) are

fundamental ways that living organisms use to respond to changes in the

environment and realize their progression through the lifecycle (Kitano, 2002).

One of the possible ways to control protein levels is at the stage of

transcription, by regulating the number of mRNA copies for the particular

genes (Schena et al., 1995). Amounts of the specific mRNA types

(transcriptome) can serve as an indicator of the quantities of corresponding

proteins present in the cell (Gygi et al., 1999). Because the transcriptome is

more amenable to quantification using current technologies than the proteome,

this trend has been of great importance and was the main reason that DNA

microarrays were adopted so enthusiastically. DNA microarray-based

approaches have been actively used since mid-1990s (Rockett and Hellmann,

2004) and by re-analysing the these data it is often possible to extract novel

insights that were not an intended target of research in the original microarray

experiments (Jen et al., 2006).
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Most of the approaches for analysis of expression data rely on the principle of

"guilt-by-association", whereby genes that have corresponding levels of

expression across multiple conditions are likely to be biologically linked

(Wolfe et al., 2005). However, this link may be an indication of one or more

different types of associations. Possible interpretations include involvement in

the same metabolic pathway (DeRisi et al., 1997), protein-protein interaction

of the respective gene products (Ge et al., 2001) and an association with a

common regulatory mechanism (Ideker et al., 2002) or biological process

(Stuart et al., 2003). The groups of co-expressed genes are commonly

recovered from all-versus-all coexpression matrixes using clustering and

principle component analysis methods to yield gene lists for further study

(Korenberg, 2007).

Coexpression data can also be conceptualised as a network, where nodes are

genes and edges indicate similarity of expression profiles. The steps commonly

undertaken to construct such a representation are explained in detail in the

Section 6.1.1. Network representation is suitable for clustering as well as for

application of methods from graph theory (Butenko et al., 2009) and may be

leveraged to allow the interactive visual exploration of large and complex

biological datasets (Shannon et al., 2003, von Mering et al., 2003, Kohler et

al., 2006). Network visualisation is potentially important, as it allows

presentation of extensive data sets in an intuitive and easily accessible form.

This makes it possible for non-technical experts (e.g. experimental biologists)

to more easily benefit from the results of data integration and bioinformatics

analysis. Therefore, networks can serve as a useful communication tool

between biologist and bioinformatics researchers and facilitate cross-

disciplinary research. Such interaction is particularly important as, at present,

most biological knowledge is still not available in a structured form; therefore

facilitating easier access to the data can enable discoveries not attainable by

purely computational means (Kohler et al., 2006).

As a means of visualising networks was already provided as part of the Ondex

system, only limited extensions to the existing visualisation methods were

necessary to enable viewing of expression networks. However, what was

missing from the system were the straightforward methods for import of the
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expression data and its interpretation as a network. This chapter describes the

work that was done to develop such an analysis pipeline and explains all of the

steps involved in the process. The next section introduces the microarray

technology and reviews the selection of the relevant current methods with the

view of providing a justification for the selection of the individual analysis

components to be part of this pipeline.

3.2.1 Transcriptome analysis using microarrays

DNA micro array technologies exploit the property of DNA hybridisation,

whereby the complementary single DNA strands will form a double helix

under a particular set of conditions (Deonier et al., 2005). As described by

Deonier et al. (2005), the analysis usually involves the following steps. In most

approaches for transcriptome profiling the mRNA in the sample is converted to

the complementary DNA (cDNA). These single-stranded cDNA molecules

(targets) hybridise to complementary components fixed to a solid substrate

(probes). The probes are densely grouped at particular locations (spots), so that

each group only contains the probes with an identical sequence. The array is

brought into contact with the sample to allow probes to hybridise with their

targets, after which all unhybridised cDNA is washed away. The targets are

integrated with a fluorescent marker that allows their relative abundance to be

evaluated by measuring the intensity of the fluorescence at a particular location

on the array.

Presently, there are two widely used types of micro arrays for the profiling of

gene expression - spotted cDNA (Schena et al., 1995) and oligonucleotide-

based (Pease et al., 1994) arrays. The spotted arrays use longer probes of about

-200 nucleotides-longs, usually with one probe sequence per matched target

sequence. In oligonucleotide arrays each target is matched to a set of shorter

probes that match different parts of the target sequence, between 25 and 60

nucleotides in length (Deonier et al., 2005). The oligonucleotide arrays are

now more common, although both types are still currently in use (Kawasaki,

2006).

The raw fluorescence measurements are affected by noise both from the

technical and biological steps of the protocol (Kohane et al., 2003). Therefore
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Figure 3.1 Number of samples (individual slides) in the GEO database for all
platforms used to study Arabidopsis thaliana that have more than 100 samples.

statistical processing is commonly applied to the reported values in order to

account for these effects, commonly referred to as "normalisation" (Kohane et

al., 2003). The work in this thesis primarily concerns the analysis after this

stage and only uses well-known and established methods for microarray

normalization. Therefore, the detailed description of the normalisation methods

or their benefits and drawbacks is not provided here because of their limited

relevance. The choices used were primarily guided by the works of Reimers

(2010) and Korenberg (2007) and the references for the selected normalisation

approaches and implementations are included in the appropriate method

sections.

The absolute measurements of expression levels from the oligonucleotide

microarrays (of the same platform) tend to be consistent between different

experiments (Shippy et al., 2004, Petersen et al., 2005, Piper et al., 2002).

Consequently, the data from them can be more readily combined and tend to

be less affected by the intra-experimental discrepancies. With its ability to

detect over 23 750 different transcripts, the Affymetrix Arabidopsis

oligonucleotide microarray ATH 1-12150 1 (Redman et al., 2004) provides

very good genome coverage when compared to other platforms. As illustrated

in Figure 3.1, this platform is currently the most widely used for studying

expression in Arabidopsis thaliana. For the reasons outlined above, the ATH 1-
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121501 platform was predominantly used in this work. The results from the

selected experiments using other microarray types were also integrated for

particular use-cases in the form of the differentially expressed gene lists.

Although the choice to base the coexpression analysis pipeline on the

Affymetrix oligonucleotide array was made in order to get access to the largest

possible set of expression data for Arabidopsis, the data importer for the

Ondex system was implemented in a generic manner and the pipeline can be

used for the analysis of other Affymetrix oligonucleotide arrays.

3.2.2 Construction of networks from expression data

3.2.2.1 Profile similarity (unctions

Expression levels of genes under a set of different conditions (gene expression

profiles) can be interpreted as a network where the nodes are genes and edges

represent the similarity between their expression profiles (Stuart et al., 2003).

When supported by other types of data, coexpression networks can be a

powerful tool for the interpretation of microarray data (Eisen et al., 1998,

Marcotte et al., 1999). In order to construct such a representation from the

vectors of raw gene expression values, a function is required to produce a

similarity (distance) measure for every pair of vectors in the dataset. Most

commonly used measures include Pearson correlation, Euclidean distance,

Spearman rank correlation and mutual information (Steuer et al., 2002, Butte

and Kohane, 2000). The Pearson correlation metric can differentiate between

negative and positive associations, whereas mutual information and Spearman

correlation can also recover non-linear dependencies between the vectors. A

number of studies have also suggested refinements (Zhang and Horvath, 2005,

Cherepinsky et al., 2003, Watson-Haigh et al., 2010, Balasubramaniyan et al.,

2005) or novel metrics (Yona et al., 2006, Kim et al., 2007, Nguyen and Lio,

2009) specifically tailored for evaluating gene expression profiles.

From the perspective of this work, there were clear advantages in using one of

the more widely adopted metrics, both in terms of the more straightforward

comparison to other works, increased confidence in the approach, greater

relevance of fmdings to the research community and being able to benefit from

the applicable methodology refinements. Although the studies introducing new

metrics tend to present some sort of evaluation to illustrate their superior
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performance, such evaluations are usually limited in scope and the uptake of

such new measures by the research community remains low. As was recently

highlighted by Boulesteix (2010) and Jelizarow et al. (2010), independent and

large-scale evaluations are imperative for determining the real benefit of novel

bioinfonnatics analysis methods. This is especially true in the case of selecting

the most suitable measure for expression profile similarity - as the

performance of different distance measures was shown to be very sensitive to

the choice of the micro array evaluation set (Yona et al., 2006, Li and Wang,

2009, Daub et al., 2004). However, so far there have been no such

comprehensive studies to compare the performance of the newly developed

measures and conducting one was considered to be outside the scope of this

- work. For these reasons, it was decided that the best strategy was to adopt one

of the more established and better-understood metrics.

The more commonly used measures have now been evaluated in several

independent studies. Among them, the comparisons performed by Yona et al.

(2006), Li and Wang (2009) and Daub et al. (2004) appear to be among the

most comprehensive ones. However, there appear to be some differences

between the results obtained. Most notably, the performance appears to vary

greatly depending on the choice of the microarray set. Nevertheless, a number

of useful insights can still be derived from these works. In particular, it is

possible to observe that, depending on the dataset, Spearman correlation and

the Euclidean distance often either massively over- or under perform other

metrics (Yona et al., 2006, Li and Wang, 2009). Mutual information and

Pearson correlation tend to perform more consistently and were not found to

under-perform as frequently as the former two measures (Daub et al., 2004).

Daub et al. (2004) has concluded that there was no difference in the

performance between the latter two measures. For more than half of all the

micro array sets investigated in these three works there were negligible

differences between most metrics, however very substantial differences were

observed in a minority of cases - but no clearly superior metric or a strategy

for selecting one was apparent for those instances. Based on this information,

Pearson correlation was chosen for this work, as it tends to perform

consistently and can be calculated faster than the mutual information methods.
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3.2.2.2 Threshold selection approaches

As any two vectors have a distance value, a coexpression network is a fully

connected, weighted graph. Although such a representation can also be used

directly (Zhang and Horvath, 2005), analysing data in this raw form may

become very computationally intensive as many graph analysis algorithms

work faster on the more sparse graph representations. For this reason, it is a

common practise to remove some of the edges from the network, leaving only

the ones that capture the most biologically meaningful connections. To that

end, a number of filtering strategies have now been developed, which can be

loosely grouped in several categories. The simplest of the methods involve an

ad-hoc selection of an arbitrary stringent threshold (Zhou et al., 2002),

applying an arbitrary cut-off to a rank-transformed coexpression values

(Obayashi and Kinoshita, 2009, Ruan et al., 2010) or evaluating the

significance of the detected similarities (Lee et al., 2004a). Other, more

complex approaches rely on a statistical analysis of the data, whereas others

draw upon other knowledge.

Purely statistical approaches focus on the analysis of the set of expression

values themselves to identify the edges to be retained (Markowetz and Spang,

2007). These methods are based on the notion of determining statistical

independence of individual profiles (Markowetz and Spang, 2007). The tools

implementing this type of analysis include BANJO (Yu et al., 2004),

ARACNE (Margolin et al., 2006), NIRIMNI (Gardner et al., 2003, di

Bernardo et al., 2005), BNarray (Chen et al., 2006a), GNA (de Jong et al.,

2003) and BNFinder (Wilczynski and Dojer, 2009). These methods make it

possible to infer an underlying gene regulatory network (GRN) and even

recover the direction of the regulatory relationships between the genes.

However, their utility is often limited by the type and amount of available data.

From the theoretical perspective, a 'perfect' resolution of the GRN is only

possible if the number of measurements is greater than the number of genes

being studied (Markowetz and Spang, 2007). As this is rarely the case in

microarray profiling studies, additional simplifying assumptions or

workarounds are often necessary to compensate for it (Markowetz and Spang,

2007). Even with these strategies, the performance of such algorithms is often
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low when the number of genes considered is >5000. For example, of the three

different network inference methods evaluated by Bansal et al. (2007), the best

performing (ARACNE) achieved only 0.14 precision and 0.35 sensitivity on a

set of 7907 genes, whereas in another study PCIT algorithm was reported to

out-perform ARACNE with the score of just 0.08 precision and 0.2 sensitivity

on a set of7750 genes (Reverter and Chan, 2008).

The thresholding strategies that rely on prior knowledge work try to optimise

the number of links in the network that are known to correspond to meaningful

biological relations. Associations commonly used for such verification include

confmned transcription factor-target relationships, pairs of proteins of similar

function, proteins known to interact or assigned to the same metabolic

pathway. Another possible strategy is to optimise the threshold according to

some properties derived from the dataset, which are known to be representative

of such associations. For example, in Elo et al. (2007) the threshold was

chosen according to the clustering coefficient (defmed further down) of the

resulting network, whereas Zhang and Horvath (2005) have advocated the use

of the scale-free topology property as such an indicator.

For this work, the method proposed by Elo et al. (2007) was selected. It is

clearly superior to simpler, ad-hoc approaches as it attempts to maximise a

graph property demonstrated to be a good indicator of biologically meaningful

relationships. The study presents convincing evidence to that effect, both on

real and simulated data and shows that this method makes it possible to

achieve the best balance between true and false positive rates. Another possible

alternative was to use the functional similarity of genes directly to derive the

cut-off threshold. However, as was reported in chapter 3, only about 60% of

the Arabidopsis genes have at least one functional annotation. It is also

challenging to ascertain whether the currently known annotation sets capture

all of the real functions for particular genes and there is also no manually

reviewed negative control datasets of sufficient size currently in existence.

Under these circumstances, the use of functional annotation is likely to lead to

many false-negatives due to the missing information.

3.2.2.3 Extraction ofinsights from coexpression datasets

Once the coexpression relationships between the genes have been determined,
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the next step is to relate these patterns back to the underlying biological

processes being investigated. This step is often very open-ended and may be

less formalised because of the need for human input for the interpretation of

the more complex patterns observed. Therefore, a range of approaches have

been developed ranging from the computationally driven ones to the ones that

focus on enabling user-driven interactive query and evaluation.

One of the simpler and often-used methods for summarising these data are

expression plots that help to identify related genes or sets of condition where

the link between them manifests itself. A number of expression data resources

offer this functionality, for example NASC-Arrays repository (Craigon et al.,

2004) offers the two-gene scatter plot functionality and ACT (Manfield et al.,

2006, Jen et al., 2006) supports the construction of gene co-correlation plots.

Other commonly applied types of analysis involve the detection of modular

structure, like clique-finding (Shi et al., 2010, Zheng et al., 2010, Manfield et

al., 2006, Jen et al., 2006) and clustering approaches (Eisen et al., 1998, Mao

et al., 2009, Wu et al., 2002). In Ondex, the clique-finding and other network

query methods were added by enabling use of the NetworkX library from the

console in the Ondex front end. The implementation of this link was developed

as part of the work for this thesis and was presented in chapter 2. Additionally,

an implementation of the Markov Cluster algorithm (MCL) was also wrapped

in Java and made accessible both in the form of an Ondex workflow plug-in

and a function from the console in Ondex front end.

Individual coexpression links and modules often need to be related to the other

types of data for their interpretation. STRING (von Mering et al., 2003) and

ATTED-II (Obayashi et al., 2007) resources provide two contrasting examples

of different strategies for managing and integrating this supporting

information. The STRING representation has multiple, typed links supported

by the different sources of evidence such as interaction, coexpression or

pathway membership. These evidence types can be combined using a special

scoring system to attain a confidence value for the association. ATTED-II

shows the data from other sources (presented as a network) alongside the

coexpression, however it is left up to the user to manually review and relate

this information to the coexpression patterns. In the Ondex system all data is
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integrated into a generic schema, therefore there are no restrictions on the

representations and types of the information combined with the coexpression

networks. Consequently, once integrated, data can be transformed into either of

these representations, if and when needed. The interactive exploration of the

network used in this work was supported by the pre-existing filtering methods

of Ondex for the selection of particular gene sets and making the comparisons

between them. A new type of analysis was also implemented to identify and

process the semantic motifs that correspond to the transcription factor-target

coexpression patterns. Visualisation functionalities in the Ondex front-end

were also extended and used extensively for manual examination of the

networks constructed.

Another commonly used approach is to apply summarisation methods to this

information, e.g. by determining the enrichment of particular functional role(s)

in a module (Mentz en and Wurtele, 2008, Shi et al., 2010, Mao et al., 2009).

One such method was developed for this work and was presented in the

chapter 3 of this thesis. For the application cases presented here, it was used in

combination with Fisher's enrichment analysis to identify the predominant and

statistically overrepresented GO functions in the modules respectively.

3.3 IMPLEMENTATION OF THE COEXPRESSION ANALYSIS PIPELINE

To support the coexpression analysis, the Ondex data integration system was

extended with a new set of parsers that can import the expression data in

various formats. In particular, one of the goals was to investigate whether the

selection of an appropriately targeted subset of expression studies can result in

a larger number of links relevant to the set of responses of interest. As the main

biological focus of this thesis is to explore the regulatory mechanisms of

responses to nitrate, the relevance of the dataset was evaluated by comparing

the number of known relevant genes which were connected by edges in

different coexpression networks. To carry out this comparison, a parser was

created to import data from two databases that allow bulk download of

coexpression data - ATTED-II and COEXPRESdb (Obayashi and Kinoshita,

2011). Although, as was mentioned in the previous section, other resources

also provide coexpression data for Arabidopsis, they only allow a limited

number of coexpression values to be obtained at a time, which was found to be
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prohibitively slow and therefore unsuitable for the purposes of this work.

Alongside the support for these databases, a new analysis pipeline was

developed to construct coexpression networks from the raw expression data.

Coexpression analysis can be both memory and CPU-intensive, therefore this

pipeline was implemented in two different implementations - a stand-alone

Java-based program, which can export datasets at various stages of the analysis

(coupled with a set of parsers to import this data into Ondex), and an Ondex

plug-in that encapsulated the same analysis routines and could be run as part of

an Ondex workflow. The rationale behind this design was that the re-usability

of the analysis pipeline was maximised and the development process was

simplified. Ondex is more complex to build and assemble into an executable

program, whereas the stand-alone version could be compiled and deployed

very easily and was more suitable for prototyping and rapid development.

3.3.1 Implementation overview

An overview of the pipeline is provided in Figure 3.2. To start the analysis, a

list of microarray experiments from one of the three supported databases needs

to be provided by the user. Currently three prominent microarray data

warehouses are supported - NASC-Arrays (Craigon et al., 2004),

Ondex network
construction

1 Export (sparse 1

1 network) 1L
j

_
~- - - - - - - - -I

Threshold selection
1- _ _ _ _ _ ..!

1 - - - - _f_ - - - - 1

1 Export 1

(Coexpresslon ,
1 matrix) ,L ,

,------- -------
I

: Export (normalized I

1 expressions) :l _

Figure 3.2 Overview of the coexpression analysis pipeline. Optional steps are
highlighted with the dashed outlines, manual steps - in green and R steps - in
violet.
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ArrayExpress (Brazma et al., 2003) and GEO (Barrett et al., 2005) . The

analysis is designed to work from the raw expression data in the Affymetrix

.CEL file format. For each of the experiment identifiers the appropriate FTP

URL is constructed and the associated .CEL files are downloaded and

decompressed from archives of ZIP or GZIP format from one of the three

providers.

The download step is followed by the normalization, after which a table of

normalized gene expression values can be saved to a file for further analysis.

After that, the Pearson correlation coefficients are calculated, a complete

matrix of which can also be optionally be saved. The final step of the process

is import of data into Ondex. This can be done either directly from the in-

memory representation produced at the end of this analysis or from a

previously created file.

This pipeline implements and combines a number of established methods for

analysis of coexpression data. All of the methods that were implemented de

novo as part of the work on this thesis are described in the sections 3.3.2 and

3.3.3 below.

3.3.2 Calculation of correlation values
Calculation of the correlation values follows the protocol used by the

COEXPRESdb and ATTED-II databases, as described on their websites. The

array normalization was conducted in RlBioconductor (Gentleman et al.,

2004), where each of the downloaded .CEL files is verified, loaded into the

expression set object and normalised using Robust Multichip Average method

(RMA) (Irizarry et al., 2003). The main Java application delegates to R by

generating a necessary script in the S4 language according to the user-specified

parameters, which is then passed to the R environment. The particular steps

performed on the R side include the initialisation of the required a f f Y library

(Gautier et a!., 2004), loading of the .CEL files, detection and exclusion of the

problematic samples and running the RMA analysis itself. The implementation

produces a combined table of normalized expression values for all of the .CEL

files in all of selected experiments. This table is saved by the R part of the

pipeline, which then passes the control back to the main Java application where
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this table is read into a Java-based array data structure. At this stage, the

dataset is centred by calculating the average expression of each gene and

subtracting it from individual expression values. The Affymetrix probe set

identifiers are resolved using the corresponding mapping file for the array

platform and the measurements for the ambiguous probe sets can either be

pulled together and averaged or excluded from the subsequent steps of the

analysis.

Optionally, this step can then be followed by a calculation of a redundancy

weight for each of the slide. This weight can be used to reduce the effects of

replication on the Pearson correlation values. Depending on this choice, either

the standard or weighted Pearson correlation coefficient is calculated for all

gene pairs. In the former case the correlation coefficient is calculated using the

following formula:

In this instance, k and I represent the expression vectors (n samples in length)

of the two different genes and k and t are the corresponding mean values. The

correlation coefficient is calculated for all possible pairs of profiles, resulting

in a symmetric matrix. If the option to select a weighted version of the

correlation coefficient is chosen, first a matrix of similarities of individual

samples is calculated. This is done using the same formula, however k and I

become two different sample expression profiles, which are n genes long. The

weight wP' for the sample profile p is calculated by evaluating the following

equation across all possible pairings of p and all other samples in the set

(Obayashi et al., 2007):

(3.2)

The constant C was set to 0.5, as this value was reported to be optimal in the

original study. The weight can then be incorporated into the original equation for

Pearson coefficient of correlation in order to reduce the effects of the very similar

samples (i.e. likely replicas) on the statistic (Obayashi et al., 2007):
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a,b - JLj':.l W j(a raw j)Z Lj':.l Wj(b rbw j)Z
(3.3)

As this step of the analysis is computationally intensive, the implementation

was designed to be executed in parallel in order to take advantage of all

available computational power. Both the redundancy weight for each possible

pair of slides as well as the correlation values itself between every possible pair

of genes can be calculated independently from other pairs in respective

categories, although as can be evident from the formula, the calculation of

weights does need to be finished first. This was achieved by partitioning the

total set of vector pairs across several queues, which are worked on by

different threads. The result is written into the correct position of the right

triangular results matrix object within the thread where the calculation was

performed, which can then be exported as a compressed, tab-delimited file.

3.3.3 Threshold selection
The threshold selection approach that was implemented for the coexpression

analysis pipeline was first proposed by Gupta et al. (2006) and further refined

by Elo et al. (2007). In the latter study the method was evaluated both on real

and simulated datasets and it was found that this strategy of threshold selection

has performed comparatively better on real datasets and has consistently

matched the best precision/recall trade-off in the simulated data. One of the

clear advantages of this method it that it was demonstrated to maximise the

number of biologically meaningful links without the need for a hard-to-get

"gold standard" to derive the optimum cut-off value. Unless specified

otherwise, the implementation of the Elo et al. (2007) was used for the

selection of optimum threshold in all analysis described in this thesis unless

otherwise stated. One of the graph properties suggested to be useful for

determining a suitable cut-off is the clustering coefficient. The local clustering

coefficient Ci of a node is defmed as a ratio of existing and all possible fully

connected triples in a connected neighbourhood of that node. The global

clustering of a network, twas defmed by Watts and Strogatz (1998) as the

average of all local clustering coefficients in the network.

One of the refinements introduced by Elo et al. (2007) was intended to
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eliminate an error-prone and non-automatable step of manually selecting the

cut-off based on the shape of the plot of clustering coefficient against different

cut-off values. This was done by suggesting a fully automated and unbiased

approach of locating the local minima based on the changes in real clustering

coefficient compared to a change in the randomised control as the cut-off

threshold was gradually increased. Under this scheme, the control is a

randomly generated network with the same node degree distribution as the real

network, but with randomly reassigned edges. An expected clustering

coefficient in such a network can also be determined using the following

formula from Elo et al. (2007):

(3.4)

To minimise the effect of possible noise, the values are put through a median

filter before the comparison is made. The threshold value is gradually increased

in 0.01 increments and the optimal cut-off threshold (t) is defmed as the one that

resulted in local minima in the difference, formally defmed as:

1
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Figure 3.3 Threshold selection example. The graph presents the output from
the threshold select algorithm applied to the ATTED-II data. The real data is
shown in blue and simulated data is shown in red.

84



(3.5)
0.5 < r < 1.0;rj+1 = 1) + 0.01

This approach was implemented in Java as one of the optional components of

the coexpression analysis pipeline. A typical output from this analysis can be

seen in Figure 3.3, which illustrates the process of cut-off determination for the

in ATTED-II database. It is possible to see that as the cut-off level gets higher

relatively more cliques are recovered from the real network compared to its

random counterpart. The line also becomes more uneven as more features are

present in the network and the analysis method is designed to identify the very

first such occurrence. The original study demonstrated that this method was

successful in fmding a cut-off value that provided the best trade-off between

false and true positives for proteins that share the same function both for real

and simulated data (Elo et al., 2007).

3.3.4 Coexpression data in an Ondex representation

As coexpression datasets can get very large, the conversion process can

optionally use the information already present in the network during the

loading process in order to reduce the time and memory needed to integrate the

coexpression data. This is achieved by indexing all of the nodes on the same

type of accession as the one used in the coexpression network. This allows to

selectively create edges that have corresponding nodes already present in the

graph. Another possible additional condition is to only create the coexpression

edge in the cases where there already is another type of edge already in

existence. The default approach is the threshold-based network construction,

whereby coexpression edges are created only when an absolute value of

Pearson correlation coefficient is above the specified threshold and nodes are

created for genes that have at least one coexpression edge. Optionally, this

subset can be constrained by forgoing the creation of new nodes and only

creating the links between the nodes already present in the graph (i.e. by

matching the user-specified gene accessions). Another option is to restrict the

dataset even further and only create a coexpression edge if there is already an

edge of a particular type linking the nodes. The latter approach may useful for

the application cases where it is necessary to look at the relationship of
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coexpression and another shared property - for example, shared pathway or

protein-protein interaction.

Once the coexpression data is loaded into the Ondex system, it can be

combined with additional information, mined further using clustering

approaches and graph analysis methods and explored interactively in the

Ondex front end. To facilitate visual exploration of the coexpression data, a

"colour by value" annotator was extended. The updated version of the

annotator allows the size and colour of the edge to be changed to represent the

magnitude of the coexpression and also incorporates a number of other

convenience features, like filtering or re-colouring of unrelated graph entities.

The analysis pipeline presented in this chapter describes how a set of different

pre-existing methods for the construction of the coexpression networks were

combined in a novel and flexible way. Together with the time-saving benefits

from the encapsulation and automation of the several time-consuming steps

necessary to acquire and process expression data, an additional benefit of this

work was to make the coexpression data readily available in a semantically

consistent representation adopted by the Ondex system. From this format, it

can be easily combined with other relevant data (e.g. pathway and ontology

annotation) or exported further into other data exchange formats like RDF or

OXL. The next chapter will further illustrate how the networks produced using

this method can be combined with other integrated datasets constructed for this

thesis in order to gain better understanding of nitrogen-responsive processes in

Arabidopsis.

3.4 CONCLUSION

Microarray data available in open-access repositories like NASC-Arrays and

ArrayExpress contains observations of Arabidopsis transcriptome under a

diverse range of experimental conditions. This data has the potential to provide

even more information about how gene expression is regulated. The widely

used oligonucleotide array platforms are of particular importance for this task,

as they allow expression levels of individual genes to be compared between

different studies. To this extent, a number of strategies have been developed to

mine and summarise this data, for example Gene Expression Atlas
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(Kapushesky et al., 2010), and a number of other resources that allow

coexpression values to be calculated for a small set of genes. The coexpression

network for the whole set is also available from the ATTED- II database.

However such resources, like ATTED-JI, that combine a wide range of

measurements from a wide range of large-scale experiments may result in

some of the important observation being missed. As some coexpression

relationships only come into play under very specific conditions, they may be

drowned or drowned out in a larger, more general datasets. The examples

presented in this chapter confirm this hypothesis - the ATTED-II dataset

provided far fewer coexpression links relevant to the gene list from the nar2.J

study than the more specialised dataset constructed for this work.

However, the approach that involves construction of more focused

coexpression datasets does come with its own problems and disadvantages.

Compare to one general, publicly accessible coexpression resource, it can

result in greater computational cost (as datasets need to be generated for

specific application cases), semantic and syntactic compatibility of data (if

different methods are implemented by different research groups), and

heterogeneous levels of accuracy (e.g. if different critical value cut-offs are

used). The implementation described here addresses these difficulties by

leveraging the capabilities of the Ondex system for managing different data

formats and takes advantage of the latest developments in the study of

coexpression. The resulting method provides an optimum trade-off between

scalability, accuracy, portability and consistency.

The scalability was achieved through extensive use of analysis parallelisation

and delegation to more efficient implementations, like RlBioconductor, where

it was applicable. Accuracy was ensured by addressing the possible biases -

namely by using slide redundancy weighting and network topology-driven

approach for threshold selection. Portability of the implementation and the

datasets was mainly addressed by incorporating the analysis pipeline into the

Ondex framework. As Ondex can operate on a variety of different platforms

and is relatively easy to deploy, the analysis pipeline can be installed and run

with minimal effort. Output format produced can also be parsed into Ondex,

which can then convert it into a wide range of other representations - OXL,
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RDF, delimited file or even allow direct access to the data via a range of

Taverna-compatible web services. As a lot of analysis steps are optional or

configurable, the analysis can be adapted to suit a wide range of possible user

preferences.
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4 INTEGRATION AND EVALUATION OF THE RELEVANT

DATA SOURCES

4.1 SUMMARY

The development of a systems based approach to problems in plant sciences

requires integration of existing information resources. However, the available

information is currently often incomplete and dispersed across many sources

and the syntactic and semantic heterogeneity of the data is a challenge for

integration. This chapter explains how the Ondex system can be used to study

and quantify the differences between resources and dissect different aspects of

complex biological data. This analysis is presented in the context of designing

the optimal data integration strategy for each combination of resources and

types of data used in this thesis. Key genomic, proteomic, functional and

localisation datasets used in the subsequent chapters are also presented and the

steps and decisions taken during the integration process are explained.

4.2 INTRODUCTION

As was outlined in the introduction to this thesis, a data integration process

allows heterogeneous data to be brought together through the identification of

common identifiers and creation of mappings between them. The interpretation

of the data and resolution of heterogeneities between different data sources are

essential prerequisites to this process. Better understanding of the different

ways to represent biological data and how they can be reconciled is vital for

the continued improvement of the standards and frameworks for management

of ever-increasing quantities of biological data. This type of analysis provides

valuable insight for the development of tools and approaches to characterize

and manage diverse assortment of information, which is currently identified as

one of the major unsolved problems in bioinformatics research (Hamdi-Cherif,

2010). The work presented in this chapter has made a contribution to this area

of research and some of these findings have now been published in a the

Briefmgs in Bioinformatics journal (Lysenko et al., 2009). Full version of this

publication is included in the Appendix. Additionally, several of the datasets

described here were used to support other analysis described in the subsequent

chapters.
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4.3 ARABIDOPSIS THALIANA GENOMIC REFERENCE DATASET

4.3.1 Arabidopsis thaliana genomic and proteomic data

Although the Arabidopsis thaliana genome has now been sequenced, the

identification of genes and their correspondence to proteins is still an on-going

process. The Arabidopsis thaliana genome information resource, maintained

by the TAIR initiative (Rhee et al., 2003) is still being continuously refined

and updated and at the time of writing, the io" release of the genome was

being prepared for release. Although these refmements are necessary, they are

also posing an additional set of challenges when attempting to manage a set of

integrated datasets. TAIR gene and splice accessions are often used as primary

identifiers for Arabidopsis gene and protein sequences. In different releases of

TAIR, some of the identifiers used fo~ gene loci and protein splice variants

where often updated. However, the process of updating the identifiers by the

other providers is often delayed and in some instances may not be possible

altogether.

It was clear from the very early stages of this project that in order to support

the rest of the integration process, a strategy was needed for constructing a

base reference dataset for the Arabidopsis genome and proteome. TAIR and

UniProt (Apweiler et al., 2004) were identified as the two resources that

provided accession numbers that were widely used by the other data providers.

In particular, TAIR provides gene locus and splice variant identifiers, while

UniProt maintains its own set of protein sequence accession numbers. An

important feature of both of these resources is that they also provide cross-

references to other major databases.

Additionally, some heterogeneities of semantic nature also frequently occur -

for example, in different resources, GO terms may be linked to either gene or

protein records. Yet another complication arises from the existence of

splice/sequence variants and mutations, which can lead to several protein

products being associated with the same gene locus.

4.3.2 Reference set construction

Import of the data was done by using two of the pre-existing Ondex parsers for

TAIR and UniProt resources. TAIR parser imports data from the flat files in
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delimited and FASTA formats, specifically it uses the files holding the

publication, protein-coding cDNA and protein sequences, domain mapping,

locus history and mappings from TAIR AGI locus/protein identifier to UniProt

and NCBI ones. For this work, the TAIR9 release of the resource was used and

all of the necessary files were imported from the ftp://ftp.Arabidopsis.orgl. The

import has produced a set of 33410 protein-coding genes associated with a

unique TAIR locus identifier. Additionally, these genes were also annotated to

publication, domain and protein concepts. All of the entities except protein and

gene concepts were removed by using a concept class filter, which removed all

entities of a particular type from the graph. Then these two sets of concepts

were merged by combining all connected groups on the "encoded by" relation.

This step has produced a graph containing a set of 29271 merged concepts

with a unique TAIR locus identifier (from the "gene" concept) and one or more

TAIR protein/UniProt identifier (from the "protein" concepts).

The UniProt data was imported into the graph by using an Ondex UniProt

XML format parser. The data file containing both TrEMBL and SwissProt

parts of the database was produced by using the web interface of the

UniProtKB website and selecting all protein records corresponding to the

NCBI taxonomic identifier of 3702. The UniProt parser creates protein

concepts with one primary UniProt identifier and zero or more secondary

identifiers, as well as concepts holding additional annotation pertaining to that

protein, e.g. publications, enzyme commission numbers, Gene Ontology terms

and Pfam protein domains. All of the entities of types other than "protein"

were removed using a concept class filters. For Arabidopsis entries, UniProt

also provides TAIR splice variant identifiers and cross-references to the TAIR

loci, which are also imported by the Ondex UniProt parser. However, the

presence of these additional identifiers is not guaranteed.

The corresponding entities between the TAIR and UniProt parts of the dataset

were identified using an accession-based mapping. Three passes were

performed, matching on UniProt, TAIR locus and TAIR splice variant

identifiers. The accession-based mapping created a relation of type "equivalent

to" between all concepts that share matching identifiers of particular type.

After that, all of the concepts from UniProt that did not match any concepts
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Figure 4.1 A schematic representation of the workflow processing steps for
ARA-REF set creation and analysis.
from TAIR on any of these accessions were removed from the network. The

combined entities were created by applying a "relation collapser", which has

merged all entities within connected components with respect "equivalent to"

relations. In this way, all entitles remaining in the graph had at least one,

unique TAIR locus identifier complemented by a list of (also unique) UniProt

and TAIR splice variant identifiers associated with this locus entry in both

TAIR and UniProt databases. The outline of the integration process is

provided in Figure 4.1.

The integration process resulted in 2.9% of concepts that had more than one

TAIR locus identifier. This was due to a small number of UniProt-TrEMBL

entries that matched several possible entities with a unique TAIR locus during

one of the accession-based mapping applications. As the number of such

entries was relatively small and they were unlikely to cause major adverse

effects for subsequent analysis, it was decided to retain them in the datasets to

preserve the idea that these represented a complete current proteome set as

captured by both by TAIR and UniProt databases and contained a full set of

representative accession numbers from both resources. In total, this dataset had

26937 concepts and from this point on is referred to as ARA-REF.

4.4 PROTEIN-PROTEIN INTERACTION OATA

Protein-protein interactions (PPI) are the foundation of many essential

regulatory processes and define higher levels of organisation of individual
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proteins into complete functional units. PPI data are provided by a number of

sources, but only one of them (curated TAIR interactome) specialises in

Arabidopsis. There is a great deal of interest in finding methods for

understanding the relationship between protein interactions and coexpression

among genes as the basis for making more accurate predictions of biological

function from high throughput experiments and for easier identification of

metabolic and regulatory networks that underlie biological responses (e.g. to

disease, environmental stress etc.). This investigation concentrated on the three

most relevant PPI databases and has assessed the coverage they provide in

terms of both individual interactions and protein content.

Interactions from the following data sources were integrated using methods

supported in the Ondex system: IntAct (Kerrien et al., 2007), The Arabidopsis

Information Resource (TAIR) (Swarbreck et al., 2008) and BioGrid

(Breitkreutz et al., 2008). Although STRING (von Mering et al., 2005) and

Bind (Bader et al., 2003) databases also include Arabidopsis data, they could

not be considered here due to very restrictive licensing and access policies

implemented by the data providers. The data from IntAct and BioGrid was

imported into Ondex using a dedicated PSI-MI format parser, which was

created as part of this work. The PPI data from TAIR were provided in tabular

format, and was imported using the tab-delimited API of the Ondex scripting

interface, which was described in chapter 2.

4.4.1 PPI dataset construction.
Two of the data sources currently support a PSI-MI XML format, which is an

established format for the exchange of the data for protein-protein interaction

experiments. The import of this data into Ondex was mediated by a new PSI-

MI parser, which was created as part of this work. Internally, the parsing and

validation of the source file is delegated to the PSI-MI XML 1.0-beta4 library,

which is maintained by the Proteomics Standards Initiative and is freely

available for download from http://sourceforge.netJpsidev website. The parser

itself only handles the index and mapping of the fields in the file to the Ondex

data model. Briefly, in the PSI-MI model, data is grouped into experiments,

which can have one or more different interactions that can have one or more

different participants (proteins as well as other biological entities). The all of
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these groups can be linked to various metadata that specify provenance, types

(of experiments/interaction and interaction participants) and cross-reference to

relevant resources.

The parser mediates the transformation of data from this experiment-centric

perspective to the network-centric one, where it is decomposed into a set of

interacting entities and interaction edges between them. To allow the flexibility

of transformation, the parser allows to specify different levels of verbosity -

for example, it is possible to create edges of types specifying different types of

interactions or just one type of edges of type "interacts with". This may be

desirable where the end-goal is a homogeneous network, as the common type

will greatly simplify subsequent processing and analysis steps. It is also

possible to specify a "spoke" versus "clique" model of representing

interactions, which are discussed in more detail further in this section. The

PSI-MI parser was used to import the IntAct and BioGrid sets of interaction

data for Arabidopsis, which was downloaded from the respective resources on

16/08/2009.

The PSI-MI parser also created a publication concept where the interaction was

reported and created different typed concepts for different types of interaction

participants, (e.g. protein, DNA, RNA, small molecule etc.). As these entities

were not required for the planned analysis they were removed by applying a

concept class filter.

TAIR curated interactome file "TairProteinInteraction" was downloaded from

ftp://ftp.Arabidopsis.org, as this file is tab-delimited, it was parsed using the

scripting console functionality. The most recent version of this file available at

the time was used for this work, which was dated 27/05/2009. The parsing

process generated the identical data representation with the one produced by

the PSI-MI parser in order to allow comparison and one general "interacts

with" edge was created for every pair of proteins in the source file.

Additionally, Arabidopsis protein data was imported from the TAIR resource,

similar to the way already described in 4.3.2, except that in this case, the

collapsing on the "encoded by" relation was not performed. Instead, after the

import stage, all of the concepts except the protein concept containing a TAIR
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Figure 4.2 Generation of the protein-protein interaction and coexpression
dataset.

protein identifier were filtered out. This was done because the TAIR parser

also captures the locus history information and adds the now-obsolete

identifiers to the protein concepts as secondary, cross-reference accessions.

The last resource to be parsed was ATTED-II coexpression database. This

resource provides the entire coexpression matrix calculated over 1388 arrays

for download as a set of five compressed files. A new parser was created to

allow import of this data into Ondex. The ATTED-ll database uses the TAIR

locus identifiers and provides an option of parsing data in a content-aware

mode. In that mode, when the parser is started, the graph is queried for the

existing TAIR loci accession and the coexpression edges are created only for

the concepts that have a matching accession. In addition to this option being

used, the ATTED-II parser was also configured to only create edges for the

cases where an absolute value of Pearson correlation exceeded 0.6. Similar to

the previously describe procedure; the data was integrated using a combination

of accession-based mapping and merging of equivalent concepts identified.

The simplified sequence of steps for this process is shown in the Figure 4.2.

4.4.2 Overlap of protein interaction data sources

The intersection between the data from these three data sources is shown in

Figure 4.3. The number of proteins (nodes) in the integrated network was 2741

but only 503 out of 5480 interactions in the integrated protein-protein

interaction network are common to all 3 sources, with the IntAct database
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A Biogrid
(948)

B Biogrid
(1247)

Tair Interactome
(1332)

Figure 4.3 The number of protein identities (A) and interactions (8) found in
three major protein-protein interaction resources for Arabidopsis (IntAct,
Biogrid and TAIR Interactome).

contributing many more proteins than either TAJR interactome or BioGrid.

It is apparent from Figure 4.3 that each of these sources makes a significant

unique contribution to the complete network. The presence of a non-redundant

component of protein interactions in each of the sources indicates that data

from different subsets of PPJ publications has been curated by each of the

resources and highlights the value of developing an integrated dataset for

maximum coverage of a data domain.

An important consideration when analysing protein-protein interaction data is
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Figure 4.4 The frequency distribution of protein interactions associated with
named experimental methods taken from the integrated data from IntAct,
BioGrid and TAIR Interactome databases. The upper panel shows how the
experimental method used to establish the interaction can be represented by the
edge colour. Multiple colours in the same edge show where data from more than
one experimental technique is available.
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the range of experimental methods that have been used to identify a protein

interaction. In the integrated dataset each experimental method used in the

source database is represented as a type of evidence, which is stored as a

property on the edges (relationships) of the graph. Figure 4.4 shows the

frequency distribution of the number of evidence types in the integrated

database. It is evident that most interactions have been confirmed by just one

experimental method. The example shown in the upper panel of Figure 4.4

offers an illustration of how this type of data can be visualized as a network

using the Ondex front end tool. The largest connected component of the

integrated network has been selected to show how the experimental method

used to establish the interaction can be represented by the colour of the edge.

Multiple colours in the same edge show where data from more than one

experimental technique is available. It is possible to see that one prominent

network cluster (green edges, lower right) is supported by the same evidence

type. This pattern is indicative of data from a targeted (or fishing) study

devoted to finding all possible interactors for a limited number of bait proteins.

The frequency of the various evidence types found in the Ondex database is

shown in Figure 4.5, which illustrates how integration reveals an inconsistent
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Figure 4.5 The number of protein interactions with a particular evidence type as
indicated in the source database calculated for the whole integrated PPI
network. Only the 12 most frequent evidence types are shown but in total there
are 66 distinct controlled vocabulary terms.
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use of controlled vocabularies. Although the vast majority of the interactions

among all three sources were established using the yeast two-hybrid method,

these are not named consistently among the databases. For example, it is

recorded as "2 hybrid" in IntAct and "yeast two hybrid assay" in the TAIR

curated interactome. The term "2 hybrid" used in the IntAct controlled

vocabulary is formally defined in PSI-MI ontology (MI:0018), whereas the

term "yeast two hybrid assay" in TAIR interactome is not formally defined and

appears to be used in a broader sense to specify both classical two-hybrid

system and a wider range of related techniques. Therefore, it is not a

semantically exact match to the definition in IntAct. An important aspect of the

different experimental methods is their reliability at detecting a protein

interaction. Although this topic is outside of the intended scope of this work,

others have developed network analysis methods that take this into account

(see for example (Deane et aI., 2002».

~ #ID(~) interector A ID(~) 1nterector BAit. 10(5) interector A Alt.
uniprotkb:082663)intect:EBI-533277 uniprotkb:Q941A6Iintect:EBI-533315
uniprotkb:082663Iintect:EBI-533277 un1protkb:Q8LBZ7Iintact:EBI-533300
uniprotkb:0B266311ntect:EBI-533277 uniprotkb:Q9LXC4Iintact:EBI-533326
uniprotkb:082663Iintact:EBI-533277 uniprotkb:Q9SX77Iintact:EBI-533310
uniprotkb:0B2663Iintact:EBI-533277 uniprotkb:Q8LB02Iintact:EBI-533287

B -<interactieu id="713'>
+ <mun~s><{namp~>
+ <~TPf> <{~TPf>

+ <p~l)~rUn~UlLin><{~SJJt'liJnt'utli.tl>
- <p:uticip,mlLitt>
+ <partmp anr id="71S'><fp:u1icipnlll>
+ <participant id="717'><fp;u1icipal1t>
+ <pamcipant id="719'><fpnl1iripnnt>
+ <I)arricip ant id='721'><{pnlticipnnl>
+ <parncip anr id='723'><fpalticipnut>
+ <participant id='72S'><fp:u1icip:ult>
<lpal1iripantList>

+ <Ullt'UcriollT~l)e></illterarriouT~l't'>
+ <attJibut"Litt></nthibut"List>
</int..l action>

Figure 4.6 An example network derived from data from the same experiment
represented in two different formats exported from the IntAct database (A) -
tab delimited, (B) PSI-M! v2.5 (XML) version 2.5. It illustrates that different
formats can sometimes lead to different interpretations of the same information.
If the tab delimited representation is used (A) the network consists of only five
binary interactions with one hub node, whereas in (B) all six proteins are
grouped in the same interaction element, so interactions between all of the
members are inferred.
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In addition to the issue of reliability, the experimental methods for detection of

protein-protein interactions can have an impact on the number of relations and

overall network structure. The interpretation of integrated datasets is further

complicated by the fact that some experimental techniques do not establish the

actual interactions between individual proteins, but rather their membership in

a particular protein complex. This poses problems for how to interpret such

information in terms of binary protein-protein interactions, as the true

interaction pairs are unknown. In some cases, where all of the proteins in the

complex form a long-term stable interaction, a fully connected cluster of

interactions may be an appropriate representation. In addition to the usual

challenges of technical or semantic heterogeneity between the data sources,

different export file formats from the same database can lead to different

interpretations and can potentially result in the incorrect representation of the

experimental interactions. Figure 4.6 illustrates how this situation can arise

because of the different data formats used to extract the data about a particular

PPI experiment. The figure shows information from Eubel et al. (2003)

downloaded from IntAct in both PSI-MI and tab-delimited file formats. The

PSI-MI representation groups all of the proteins in the same interaction

element, which according to the relevant documentation is interpreted as a

clique. In tab-delimited format the same information is represented as a set of

five binary interactions where 082663 interacts with all of the other proteins.

Both of the representations are actually misleading, as the original paper only

identified these proteins as a complex, but did not measure any interactions

between them. In general the clique representation may well be acceptable, if

the defmition of interaction is expanded to include the indirect interactions.

4.4.3 Combining protein interaction and coexpression information

Bringing together multiple types of biological data can aid in the construction

of functional networks (Lee et al., 2004b), since proteins involved in the same

functional role should be linked by evidence from more than one class of

biological information. However, the utility of these approaches is dependent

on the information available. For Arabidopsis, there are large collections of

data from gene expression studies, and resources such as the ATTED-II

database (Obayashi et al., 2009, Obayashi et al., 2007) provide information on
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coexpressed Arabidopsis genes from some 58 microarray experiments. There

is, however, much less information available on protein-protein interactions

from Arabidopsis and the integrated dataset constructed included only 2741

proteins, with 5480 interaction pairs in total. This set was integrated with the

coexpression information in order to explore the extent to which interacting

proteins also display similar expression profiles.

From a total of 5157 edges in the integrated PPI network that were considered

coexpressed only 253(4.9%) edges in the integrated dataset were both

coexpressed and involved in a protein-protein interaction. This number is

somewhat contradictory to the previous work by other researchers who have

demonstrated that coexpression to be a strong predictor of protein-protein

interactions (Kemmeren et al., 2002, von Mering et al., 2002). However, a

permutation test would be necessary to conclusively prove that the result

observed here is statistically significant, though such a test could not be done

in this case as the data was no longer available at the time this thesis was

written. Another possible explanation for this observation could be that it

reflects a high number of transient interactions recorded in the dataset. In

Jansen et al. (2002) it was found that no transiently interacting proteins had an

average correlation coefficient higher than 0.4; which is below the threshold of

0.6 that was used for coexpression network construction. Evaluating the

influence of different thresholds on the structure of the integrated data set is

deferred to future work.

Constructing functional networks in plants is currently limited by the lack of

data for some classes of biological information such as protein-protein

interactions, where few experiments have been conducted. Such approaches,

however, do have the potential to provide additional insight by suggesting new

relationships between proteins, especially when complemented by visualisation

tools that facilitate manual inspection of the resulting networks and dissection

of the sources of evidence that contribute to suggesting putative functional

modules. This application of the coexpression and PPI data is further explored

in the chapters 5 and 6 of this thesis.
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4.4.4 Conclusions

In this case study, several protein-protein interaction resources providing

Arabidopsis data where integrated and compared. They were expected to be

more typical of independently developed databases and this was indeed the

case. During the analysis, the most obvious of semantic integration problems

were identified - that of inconsistent use of terminology to describe the

experimental methods by BioGrid, IntAct and TAIR Interactome. This type of

heterogeneity is difficult to deal with automatically. While it would be easy to

resolve inconsistent naming such as "2 hybrid" and "yeast two hybrid assay",

some of the other methods can have multiple variants and different names and

will require someone with expert knowledge to identify these correctly. This

example illustrates first-hand the importance of using common ontologies for

representing common entities. If these three databases followed the ontology

for describing the experimental methods, there would not have been the

diversity of terms used to name the yeast two-hybrid method in Figure 4.5.

All three databases considered hold information about PPI experiments

gathered or supported by the scientific literature. The selection of the literature

and curation methods inevitably creates differences between the databases.

Furthermore, there is a difference between what has been established in an

interaction experiment and what is considered as an established fact. For

example out of 12 proteins listed as members of the Arabidopsis RNA

polymerase II complex by KEGG (accessed via the web interface) only 5 were

found in the integrated PP! database from all three sources.

Given the differences between the data collection methods used in the three

interaction databases, it was notable that the data integration process generated

a more complete resource with the number of proteins catalogued as involved

in interactions increasing by 27% over the single most comprehensive

database, which was IntAct. The number of interactions was also increased by

a similar amount relative to IntAct (25%). This clearly demonstrates the

potential advantage of integration in this data domain.

It was interesting to note that a relatively small number of proteins were

present in all three databases (20%) and an even smaller number of interactions

were found in common (11%). One possible explanation of this observation
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may be that it reflects differences between the data collection and curation

strategies of the three databases however, other, more systematic, differences

cannot be discounted either, without further investigation.

Another potential benefit of integration of data across multiple datasets is to

increase confidence in noisy data by combining multiple 'hints' from

independent sources. This is especially relevant for protein-protein

interactions, as many of the currently used detection methods have limited

accuracy. This analysis showed that relatively small numbers of interactions

are supported by multiple sources of evidence. The presence of these multiple

evidence can be visualized in Ondex front end environment in order to provide

an easy overview of interaction relationships and how specific patterns emerge

from the data using particular approaches, such as targeted interaction fishing.

There is an active research interest in Bioinformatics for using indirect

evidence that could be used to indicate interactions, including gene

coexpression (Jansen et al., 2002, Bhardwaj and Lu, 2005) and inference of

interactions from sequence homology (Goffard et al., 2003, Huang et al.,

2004). The problem of introducing such indirect evidence is that some

numerical measure of confidence, like accuracy of particular interaction

detection methods, is required and it is often not provided by the source

databases. Another difficulty lies in resolving the provenance of data in order

to avoid counting the same piece of evidence captured by multiple sources

several times. This is a promising direction for follow-up to this work and

therefore maximising the set of protein interactions supported by multiple

direct measurement methods is a useful resource for calibrating the methods

for combining computationally predicted and measured interaction data .
.

4.4.4.1 Implications ofPPI detection methods on data interpretation

Due to their importance for understanding the behaviour of biological systems,

the discovery and characterisation of protein-protein interactions is a subject of

intense research interest. A number of different experimental methods have

been developed that allow detection of interaction events and the identification

of the participating proteins. Several of these approaches, like "yeast two

hybrid" (Fields and Song, 1989) and co-immunoprecipitation (Phiz icky and

Fields, 1995) can now be applied in a high-throughput manner. However, there
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is now some evidence that some of the methods are likely to produce

substantial amount of false positive detections (Deng et al., 2003).

The interpretation and management of experimental protein interaction data

poses a considerable challenge for bioinformaticians. A number of different

resources have been established to host this type of data for Arabidopsis and

make it available to the research community. Another major achievement in

this area was the development of a set of standards and an exchange format

that allows unambiguous documentation of PPI experiments - i.e. the PSI-MI

format defined by the Human Proteome Organisation (HUPO). However,

many protein interaction resources have not adopted the PSI-MI standard and

still provide data in a tabular format, which may not always capture adequate

information about the findings from the experiment.

An important complexity in protein interaction data arises because some

experimental techniques cannot completely resolve the nature of the

interactions. In some methods, like co-immunoprecipitation, a "bait" protein is

tagged and extracted together with all of its binding partners. In such methods,

it is not possible to unambiguously resolve the direct binary interactions

between multiple interaction partners using this method alone. This introduces

a need for further analysis to interpret these results as well as a requirement for

a suitable descriptive framework capable of modelling potentially complex

information about what is actually known about any given interaction.

It is recognised that the data currently captured in PP! databases only describes

the finding of the experiments rather than the true links in the protein-protein

interaction network, and this may have consequences for downstream

computational analysis. However, this problem cannot be adequately addressed

based on the information currently captured in the PPI exchange formats. In

this work this ambiguity of direct versus transient interactions was partially

addressed by using the "spoke" and "matrix" models of (Bader and Hogue,

2002). In a spoke model the assumption is that only one protein has a link to

each of the partners for the methods where bait protein can be identified. A

"matrix" model is used to represent the assumption that every interaction

participant has a link to every other participant for methods where no "bait"

protein is used and a set of all proteins is extracted instead.
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4.5 FUNCTIONAL ANNOTATION DATASET

Annotation of genes and proteins with their functional role and cellular

localisation information is an essential step both for validating the results of

analyses and making new inferences from data. It is therefore of great

importance that any annotation datasets used are as accurate and as complete

as possible. For this work, the functional dataset was constructed primarily by

bringing together data from different providers. Although other means of

expanding the existing datasets using computational approach are also

possible, they were not attempted in this project. The rationale behind this

decision was that current bioinfonnatics resources are supported by a number

of diverse and sophisticated analysis pipelines and specialised curation teams

and it is unlikely that it will be possible to match this level of quality with the

resources of this project

The functional annotation dataset presented here was assembled from the GO

Biological Process annotations provided by TAIR, GOA-EBI (Barrell et al.,

2009) and UniProt and transcription factor annotation from DATF (Guo et al.,

2005), AtTFDB (Palaniswamy et al., 2006) and PlnTFDB (Riano-Pachon et

al., 2007). The protein localisation dataset combined the experimentally

determined GO Cellular Component annotation from TAIR, GOA-EBI and

UniProt, as well as annotation from the SUBA database (Heazlewood et al.,

2007).

4.5.1 SUBA database

Subcellular localisation for Arabidopsis proteins database (SUBA)

(Heazlewood et al., 2007) is an integrated resource that collects cellular

localisation data from compiled from external sources literature-curated

annotations (Swiss-Prot, AMIGO and TAIR), inferred locations from gene

descriptions as well as providing data from original localisation studies that

use either chimeric fluorescent protein fusion and mass spectrometry studies.

This resource is highly focused both in terms of species and type of

information and provides non-derived and possibly unique information, but at

the same time uses a very simple data model both for defining a component

(14 categories including "unclear" and "any location" terms) and capturing

provenance information (5 possible provenance codes). The annotations
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offered by SUBA are equivalent to the more widely used GO Cellular

Components ones, which are also provided by such prominent resources like

TAIR and UniProtKB. From this point of view, it is a quite common example

of a smaller, highly specialised resource and as such it offers an interesting

example for a case-study. One possible question considered here are to

quantify if SUBA provides additional annotation not captured by other larger,

more organised but at the same time less focused annotation projects. And the

other point of interest is to use the data integration capabilities of Ondex to

create a mapping between the SUBA-GO and SUBA-Ondex provenance

capture system and dissect the differences between SUBA and other resources

in a greater detail.

4.5.2 Gene Ontology annotation formalism

Gene Ontology provides one of the most commonly used controlled

vocabularies for unambiguous annotation of genes and proteins. It is structured

as a directed acyclic graph (DAG) of terms organised in three independent

aspects: "Cellular Component" (CC), "Biological Process" (BP) and

"Molecular Function" (MF), these names also correspond to those of the root

term for each of those aspects. The edges of the graph are typed according to

the nature of the relationships between the terms, which include "is a", "part

oj", "regulates", "negatively regulates" and ''positively regulates". The "is a"

type of edge indicates a sub-typing association between the terms. Each of the

terms must be connected to at least one other terms via an "is a" type of

relationship, and due to the formalism of a DAG it also must be transitively be

connected to the root term and each term can have more than one parent and

child. The root term is considered to be most general in the ontology, and the

specificity of the terms increases with their distance from the root. The "is a"

edge is transitive - therefore, if an entity is annotated to a child term, it is by

extension considered to inherit the annotation of all of its parents.

The hierarchical structure of GO introduces several complications when it is

necessary to evaluate the quality of annotation provided by a particular source.

As "is a" relationship is purely semantic the distance from the root only

provides a very rough indication of terms accuracy. This problem can be

addressed by quantifying the accuracy of terms by the information content,
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Table 4.1 GO evidence codes arranged by type. The indent level is used to
indicate the codes which are a specialisation of another code.

EXP Inferred from Experiment
iii IDA Inferred from Direct Assay... cuc ucu c IPI Inferred from Physical InteractionE cu
.- "C

IMP Inferred from Mutant Phenotype... -cu >Cocu
Inferred from Genetic Interaction)( IGIw

IEP Inferred from Expression Pattern

ISS Inferred from Sequence or Structural Similarity

III ISO Inferred from Sequence Orthology
'iii
> ISA Inferred from Sequence Alignmentiiic ISM Inferred from Sequence ModelIQ

iii IGC Inferred from Genomic Contextc
0

Inferred from Biological aspect of Ancestor~ IBA
IQ...

IBD Inferred from Biological aspect of Descendant:::J
Co
E IKR Inferred from Key Residues0u IRD Inferred from Rapid Divergence

RCA inferred from Reviewed Computational Analysis
I

TAS Traceable Author Statementcu
"-0.a cu NAS Non-traceable Author StatementIQ '".. IQ
cu.Q... IC Inferred by Curator::::i
"C
cu
~cu

lEA Inferred from Electronic Annotation'scu..c
::J

NO No biological Data available

which is derived from the probability (p) of encountering that particular

annotation using the formula: -log(p) (Resnik, 1999). In this case, the

probability can be determined by considering the frequency of encountering a

term in a combined set of all annotations of a relevant context. The annotation

of GO terms with information content was implemented as one of the analysis

methods in Ondex as part of this work.

As well as maintaining the ontology itself, the GO consortium has also defined

a tabular exchange format for the annotation of genes and proteins to it (GAF

currently - v2.0). This format allows an arbitrary external accession to be

linked to a GO identifier and also allows to capture some information about the

nature of identifier, species, aspect of GO and provenance to be captured.
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One of the ways in which provenance is captured is by associating each entry

with one of the evidence codes from GO controlled vocabulary (Table 4.1).

The GO consortium annotation guidelines only attempt to capture the very

broad, qualitative properties of evidence. The evidence codes can be divided

into four categories, of "experimentally determined", "computationally

inferred, curator-reviewed", "curator/author inferred" and "computationally

inferred non-reviewed". Although there is some general agreement about the

reliability of these four categories, at present there is no general agreement

about the accuracy of the more specific ones. It was also identified in Jones et

al. (2007), there is also some variation in accuracy between the different codes

for the information from different data providers. The problem with

quantifying this confidence lies in a requirement for a "gold standard" dataset

of the correct functional assignments and since the GO annotation process uses

expert curation, a reference standard that surpasses it is difficult to find. For

this reason, when quality of annotation was compared, the actual evidence

codes where evaluated based on the comparison between the categories they

belonged to.

By considering these characteristics of GO and the way annotation is

structured described in this section, different annotation resources can be

compared in terms of: (i) coverage, (ii) specificity of annotation and (iii)

quality of supporting evidence.

4.5.3 Data integration methodology

The key integration steps for creation of the combined annotation dataset are

shown in

Figure 4.7. The first part is identical to the integration done to create the ARA-

REF dataset, with the exception of the filtering step of the UniProt data. As

UniProt parser creates the concepts to represent GO terms and relations

connecting them to proteins, this step was adjusted to retain them. The other

two GO annotation sets were imported using a pre-existing GAF 2.0 parser. A

limitation of the Ondex data model is that it only allows one set of unattributed

evidence for edges in the "Evidence Type" attribute. As this was the way GO

evidence codes were stored it was necessary to extract this information into a
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Parser: TAlR Merge on "encoded
by relation"

Parser: UniProt

GAF 2.0 parser: EBI
GOA

GAF2.0 parser: TAIR
GOA

aBO parser: GO

SUBA parser

Export to OXl Generate
statistics reports

Calculate
information content

Figure 4.7 High-level overview of the workflow steps used to generate the
Arabidopsis functional annotation dataset.

special, general-purpose attribute. This was step was done by creating a new

type of Ondex plug-in specifically for this task. As the GAF 2.0 format only

stores the links between the GO terms and gene/protein identifiers and not the

relationships between the terms, the structure of the ontology was imported

via an OBO format (GO, 2004) parser. Additionally, SUBA database was

imported using a specially written parser and a manually created mapping file

of matching SUBA compartments to GO Cellular Components was imported

using a tab-delimited parser.

As each of these resources created its own set of gene, protein, GO terms and

SUBA compartment concepts, the resulting network was subject to

considerable redundancy. This redundancy was resolved through the multiple

applications of accession-based mapping and equivalence merging plug-ins in

a sequence shown in

Figure 4.7. The SUBA:GO mapping file was imported after this step to

preserve the unique identity of these concepts but allow the correspondence to

be represented via the equivalence relations. At the end of this process all gene

and protein entities that were not mapped to the ARA-REF component of this

dataset were filtered out. After that, all GO and SUBA terms were annotated
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Figure 4.8 Relationship between the evidence type and the information content
of GO terms annotated by it.

by creating an information content attribute, which was calculated usmg a

complete, non-redundant set of all annotations to ARA-REF. Then, a specially

written analysis/report plug-in was run to collect the range of statistics

presented in the next section.

4.5.4 Results and discussion

GO allows for the simultaneous existence of multiple annotations that may

have either different levels of specificity or different level of confidence.

Therefore, when several sources of annotations are considered, they are likely

to differ not only due to the numbers of annotated entities and instances, but

with respect to these other factors as well. This introduces an additional level

of complexity when comparing these resources - as they could be different

with respect to all of these factors and the decision about which one is more

important is likely to have some effect on all the others.

To gain a better understanding of the relationship between the specificity of

annotations and the quality of the supporting evidence for different

annotations, a measure of information content (IC) was calculated for all the

terms in the BP aspect of GO using the combined set of all annotations. The

proportion of annotations for each evidence code that fall within a particular Ie
range is presented in Figure 4.8. It is possible to see that experimental evidence

types tend to be associated with the more informative whereas computationally
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Figure 4.9 Use of the different evidence codes by the three GO annotation
resources. The experimental codes are shown in blue colors and literature-
derived ones - in green. The red segment is "No data" code, used to indicate
that a search for reported functional annotation was done by a curator but has
returned no results.

determined evidence types correlate with the less informative terms. Evidence

types from author and curator inferences do not show any obvious bias.

However, it is important to note that the number of annotations is also very

different (shown in brackets in the figure legend) - and even though most of

the lEA annotations are associated with the terms in the 3.6-4.8 Ie range, there

are still some annotations in the high Ie range as well and, in absolute terms,

this number is much greater than the number of experimentally established

annotations in the same Ie range.

Figure 4.9 shows the distribution of these evidence types from the UniProt,

GOA-EBI and TAIR resources, which have 24686, 27967 and 34743

annotations respectively. Interestingly, the UniProt and GOA-EBI appear to

have a very similar composition, even though GOA-EBI was actually found to
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have 3281 more annotations. TAIR also has a very sizable proportion of ND

annotation. This evidence code is used to indicate that the curators attempted

but did not succeed in finding any meaningful annotations in this aspect of GO.

According to the guidelines, it should only be used to support annotation to a

root of one of the aspects of GO. As all of the terms in that aspect inherit its

annotation, by extension it implies that no data was located for any of them. If

these 9219 entries are excluded, TAIR provides 25524 meaningful annotations,

which is comparable to other resources. Another thing to note is that the

distribution of evidence types in TAIR appears to have a lot less

computationally derived evidence types, but also the largest set of reviewed

computationally derived annotations (ISS). However, even if the lEA and ISS

annotations are combined, this number is still much less than those found in

either UniProt or GOA-EBI. If the ND annotations are disregarded, it is also

evident that TAIR actually has the most experimentally annotations (47.42%

of all non-ND entries, versus 39.51% and 39.76% for UniProt and GOA-EBI

respectively). Overall, it appears that TAIR has the best annotation with

respect to evidence quality, but slightly lower coverage than the other two

resources.

The comparison of redundancy and annotation specificity between the sources

is shown in the upper panel of Figure 4.10, whereas the lower panel shows the

comparison of evidence quality for each of the possible cases - i.e. more, less

or the same specificity of annotation. The tiers on the lower panel compare the

evidence codes according to their membership in higher level groups, where

the quality relationship is assumed to be EXP > ISS> Curator/author statement

> lEA. This comparison shows that TAIR has the largest proportion of the

unique annotations, although if the ND annotations are excluded from this

count, this number is reduced to 3481. This is still substantially higher than the

next best - UniProt with 1229. Although UniProt and GOA-EBI have a very

similar composition of evidence types, there appear to be some differences in

the actual annotations made by the two resources - e.g. although GOA-EBI

have more annotations overall, UniProt has more than twice the number of

unique entries.

The lower panel of the Figure 4.10 provides some further insight into the
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Figure 4.10 Comparison of the annotation specificity between different
resources (upper panel) and evidence type confidence for the annotations in
common (lower panel). The colouring is consistent between the two panels. The
tiers refer to the quality of the evidence supporting the annotation. For example
the "higher tier" means that another resource has a better evidence code to
support an identical GO function assignment.

supporting evidence for all of these three categories, It appears that in the cases

where TAIR had the more specific annotation, it was also the case that it was

supported by the better quality type than the one found in either of the two

sources. For the cases where the annotation term was matched exactly, the

evidence source was also predominantly the same, possibly indicating data

sharing between the resources. In the cases where a more general annotation is

made, there also appears to be a much higher proportion of cases where the

evidence type used for it was weaker - as indicated by a much higher

proportion of 'lower tier' entries compare to the 'better' or 'the same' cases. In

all three situations, TAIR appears to have the largest proportion of better

quality entries, most likely due to the generally higher numbers of stronger

evidence types present in the resource.
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As only one, non-redundant set of annotations is required for subsequent

analyses, after the data was integrated it was necessary to remove some of the

annotations so that no entity was left annotated by both parent and child GO

terms. It emerges from the above discussion; there are two possible strategies

for doing this filtering. The first would be to maximise evidence quality and

only keep the more confident annotations. The second would attempt to

maximise the precision and retain the lowest-level and most informative terms.

It was decided that the latter strategy was more appropriate for the purposes of

this thesis. The rationale behind this choice was that the annotations to the
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Figure 4.11 Comparison of the evidence types found in the datasets after the
redundancy was removed. All sets were filtered by removing the more general
GO annotations, if a descendant term was also used.

higher level term are still retained due to the semantic relationship between

them and as was demonstrated in Figure 4.8, there is a trend for more

informative annotations to be associated with the better evidence types. Figure

4.11 compares the contribution from the different evidence types in the final

integrated non-redundant dataset with the three contributing resources. Note

that for this comparison the internal redundancies within the individual

datasets were resolved first and ND annotations were discarded. As expected,

the integrated data set benefits from the unique annotations found in all of the

sources. There is a very slight reduction in overall quality of evidence in all of

the cases when the combined dataset is compared to TAIR. However, the

number of lEA annotations is also smaller than in UniProt and GOA-EBI

indicating that there was some kind of internal re-shuffling among the four
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evidence categories.

4.6 TRANSCRIPTION FACTOR ANNOTATION

4.6.1 Overview of relevant data sources

It order to use information about annotations of transcription regulator function

in combination with coexpression networks to predict possible regulatory links

(chapter 5) it is important to maximise the number of proteins annotated as

potential transcriptional regulators. This was achieved by integrating three

additional specialised resources for this type of annotation: AtTFDB (Davuluri

et al., 2003), DATF (Guo et al., 2005) and PlnTFDB (Riano-Pachon et al.,

2007). The first two of these resources specialise in Arabidopsis only, whereas

PlnTFDB contains data for other plant species. The AtTFDB resource is part

of AGRIS family of resources and also provides data about transcription-

factor-to-target-gene relationships and predicted cis regulatory sites via

AtRegNet and AtCISDB databases respectively (Palaniswamy et al., 2006).

4.6.2 Data integration methodology

All of these transcription factor information resources provide their data as one

or more tabular files. In the cases where the exported data was presented as a

set of multiple, interlinked files (AtTFDB and PlnTFDB) specialised parsers

were written to import data from in to Ondex. As all of these resources use

TAIR locus identifiers for their genes, this accession was used to merge the

data with the ARA-REF dataset. From the combined set of all TAIR loci

accessions, only 62 did not have any matches to ARA-REF and were removed

using a data source-based filter. The evaluation of the information contributed

by the different resources was simpler in this case because annotation as a

transcription factor is used in its broadest sense and does not require

hierarchical structure to model. Therefore, the only evaluation possible was a

direct comparison of data content. From the perspective of gene ontology, the

transcription factors are identified by the annotation term "regulation of gene

expression" - or any of its descendants. The comparison to GO-BP also

investigated the coverage of each subset by this overarching term and all of its

descendants, and provided an additional check that the defmitions of a

"transcription factor protein" used by each of these resources still
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corresponded to the correct functional role.

In addition to the annotation data, all available experimentally confirmed TF-

to-gene relationships from AtRegNet were also imported and retained in the

dataset. The dataset of all of these annotations plus the content of the

AtRegNet database in Ondex is referred to as TF-ALL in subsequent parts of

this thesis.

4.6.3 Coverage analysis and statistics
At the time of writing, AtRegNet contained only 1451 transcription factor-

target interactions for just 24 transcription factors. As such, this data only

AtTFDB
(1825)

(2186)
DATF
(1918)

Figure 4.12. Comparison of annotation of Arabldopsls proteins as transcription
factors by three databases. The percentage in brackets indicates which
proportion of this number is also annotated to the "regulation of gene
expression" GO term.

covered about I% of all proteins annotated as "transcription factors" in all

three databases. The shortage of curated data or experimentally verified data of

this nature was evident from the very start of this project and was one of the

main motivations for the development of the coexpression analysis pipeline

(described in chapter 3). Interestingly, all of the resources have contributed
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some unique annotations and had a considerable overlap with the

corresponding GO categories (Figure 4.12). The smallest number of

annotations to the corresponding GO category ("regulation of gene

expression") was found to be for the "AtTFDB only" subset. However as

AtTFDB uses the most conservative definition of a transcription factor,

combined with the most complex analysis pipeline and manual curation of all

entries, the most likely explanation for this observation is likely to be the

higher sensitivity of their method that can detect the most transcription factors

missed by all other approaches.

4.7 CELLULAR LOCALISATION ANNOTATION

4.7.1 Overview of relevant data sources

The quality of the interactomes is frequently evaluated (and improved) by

looking at the proportions of proteins that are known to co-localise together

(von Mering et al., 2002) (Sprinzak et al., 2003) (Geisler-Lee et al., 2007).

This because no interaction will be possible if they are never found together in

the same place. Since proteins may be localised to more than one area of the

cell, it is particularly important to assemble as complete as possible set of

annotation in order to minimise the false negative assertions in the cases were

localisation of one of the interaction partners to the compartment is not known.

Protein localisation information is also available in the GOA format as a set of

annotations from the Cellular Component (CC) aspect of the GO ontology and

was acquired from the same three data provides (TAIR, GOA-EBI and

UniProt). One of the shortcomings of the CC aspect of GO, however, is that

the terms are arranged conceptually and the structure of the GO ontology is not

designed to provide clear semantics for how different parts of the cell fit

together and which components can have a common interface. Therefore,

either additional information from other sources or a good understanding of

cellular structure needs to be used in combination with the CC aspect of GO

when using this information to determine which groups of proteins can come

into contact with each other. The GO CC annotations have been used for the

verification of the protein-protein interactions in Arabidopsis by (Geisler-Lee

et al., 2007) who compared the semantic similarities scores of interactors.

However this study also used SUBA annotation as another method of
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evaluation and (Lin et al., 2010) has also used SUBA for this validation.

SUBA offers a simpler classification of protein localisation than GO CC and

uses only 13 different categories that correspond to major cellular

compartments or structures. This resource is also backed by extensive curation

from the literature, integrates information from other annotation sources and

uses a number of computational annotation methods from a large selection of

available approaches that predict protein cellular localisation. The higher

granularity of localisation terms used in SUBA is more suitable for the PPI

verification, as it provides a clear and unambiguous ways of defming co-

localised groups. Both GOA-formatted annotations and SUBA annotations

here were combined to construct the protein localisation dataset on Ondex.

4.7.2 Manual versus automatic term matching

As GO and SUBA cellular localisation defmitions have different semantics, a

manual identification of the corresponding terms was required. This list of

pairings was then imported into Ondex as a set of equivalence relations

between the terms of the two controlled vocabularies.

However, the possibility of recovering the same correspondence without the

manual intervention was also investigated. For this purpose, a special filter was

written that looked at the sets of genes that were annotated in both schemes,

identified corresponding terms and filtered them based on a specified levels of

coverage (relative all annotations by a particular SUBA term) and information

content (relative to all annotations in the corresponding resource). In the case

of GO, only the direct annotations and 'part of descendants were used to

compute this coverage level in order to minimise the effects of the hierarchical

semantic dependence between the terms in GO

The most optimum result achieved is shown in the Table 4.2, with the manually

selected GO term pairings highlighted in bold. This match was produced by

only considering GO terms with the minimum coverage threshold of 40%, e.g.

at least 40% of all genes annotated by a particular SUBA terms must also be

annotated by that GO term in order for it to be included in the list of march

candidates. It is possible to see that in all of the cases it was possible to recover

a correct match, with the exception of "extracellular" category. Although there
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is a corresponding term in GO, which was identified manually, there were no

annotations made to it in any of the three resources. Even though in some cases

the matching was relatively straightforward, it is evident that in more complex

cases like "cell plate" and "endosome" both the coverage and information

content criteria were needed to find the correct association. Using this pairing

of terms, a new association between all entities that had an experimental

annotation to one of these GO terms (or its descendants) and the corresponding

SUBA component. This new association was also linked to the original

resource that had contributed it to allow further comparative analysis.
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4.7.3 Results and discussion

Figure 4.13 shows the sources of evidence reported by SUBA for the

experimental fraction of the database. The reported sources include TAIR and

UniProt, which were also integrated in this study as we11as Gene Ontology

Consortium annotation (AMIGO), which had previously been omitted from

this study because it appears to defer to TAIR as a source of its Arabidopsis

annotations. The inclusion of both sources by SUBA is likely to be an artefact

from using older versions of these annotations, which were incorporated before

AMIGO and TAIR were so closely linked. However, the largest fraction of

annotations appears to come from the curation of mass-spectrometry and GFP

experiments from the scientific literature, which constitute the largest part of

a11SUBA annotations. Most of the annotations are also only supported by just

one evidence source.

9000

8000 • Has additional evidence
• Only evidence source 1545

7000

'" 6000c:
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Figure 4.13 Provenance of the experimentaUy determined subset of the SUBA
database.
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UNIPROTKB TAIR

Figure 4.14 Comparison of the annotations to the 13 SUBA localisation terms
between the four sources. Visualized using VENNY tool (Oliveros, 2007).

After the GO terms corresponding to the SUBA categories were identified, it

was possible to compare the annotations by mapping all of the GO annotations

onto the thirteen SUBA categories. The results of this comparison are

presented in Figure 4.14, which was constructed by looking at the exact

matches of protein-term pairs. SUBA appears to have 6778 unique annotations

not found in any of the other resources. Surprisingly there are also very few

differences between the other three resources, with neither of them having any

unique annotations and the vast majority being found in the sets in cornmon

among all of them. However, as this representation does not use the original

GO annotation to derive these statistics and excludes some of the annotations

that are not covered by the 13 terms corresponding to SUBA categories, some

of the differences between the resources may have been missed. Figure 4.15
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Figure 4.15 Annotations to each of the terms by the four data sources.

shows the counts of the annotations made to each of the thirteen terms. Again,

it is possible to see a great deal of similarity between UniProt, GOA-EBI and

TAIR, whereas SUBA appears to provide many more categories with the

exception of "cytosol", "cell plate" and "endosome". The "cytosol" is the most

striking, with SUBA having ~2000 less compared to other resources. As the

combined number of annotations in these three cases is still much smaller than

the 3560 unique annotations from Figure 4.14, the additional resources are also

providing some unique annotations in the categories where SUBA has more

annotations overall.

4.8 DISCUSSION

The analysis of the different annotation sources have revealed that data

integration is essential for assembling representative datasets with the best

possible coverage. Although a number of initiatives are in place between data

providers to exchange data with each other, there are still considerable

differences evident in their content. In almost all of the cases investigated in

this chapter each of the sources was found to provide at least some unique

information of appropriate type. One notable exception was the use of Cellular

Component aspect of GO (GO-CC) annotation set, which was found to be very

similar between the three providers. However, considering that the SUBA

database held many more Cellular Component annotations, the likely
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explanation is that the curation of this type of annotation by most resources is

of a lower priority than that describing Biological Processes. Therefore, fewer

differences develop between the updates that incorporate data curated by other

sources of annotation.

The study in this chapter has looked at general data providers, which cover

many species and data types (e.g. UniProt), species-specific data providers

(e.g. TAIR) and data-type specific ones (e.g. IntAct or SUBA). This

comparative analysis indicated that there is no clear relationship between the

type/focus of a resource and its comprehensiveness for particular data type or

species. This highlights the need for the continued monitoring and

investigation of the emergent complexity of the biological data management

such as the one published from this thesis (Lysenko et al., 2009) and the rest of

the work presented in this chapter, in order to both provide guidance for

biological researchers and to improve the quality of information management

in life-sciences.

Both the specialist and more general protein annotation resources were found

to be important for the construction of the most comprehensive datasets

possible, however it was also found there are considerable differences between

the semantic models used by different data providers. The major, general data

providers like EBI and UniProt now appear to be favouring the use of

ontologies as a set of controlled terms to drive their annotation efforts. The

smaller, often specialised data providers appear to prefer simpler and less

expansive sets of annotation terms (SUBA) or forego such categorisation

altogether (AtTFDB). However, although at first glance they appear to lack the

resolution of annotation that comes from the use of ontologies, they often make

up for it in coverage due to the use of more sophisticated, specialised

annotation pipelines and curation teams. For example, the entire set of the GO

transcription factor annotations from three major providers was subsumed and

exceeded by combining the predictions form the three transcription factor

databases. Likewise, SUBA resource contained records for -6500 more

experimentally determined subcellular localisations than were available from a

combined set of all GO-CC annotations.

Another vital component that enables navigation among the wealth of data
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from different providers is the use of cross-references by different resources;

where one data provider offers a set of accession numbers from another

provider(s) which provide other information for the same entity (Draghici et

al., 2006) (Kohler et al., 2003). However the standard accession numbers are

often used inconsistently by different resources and despite the wide

recognition of this issue by the bioinformatics research community (Pruitt et

al., 2005) (Draghici et al., 2006) (Cote et al., 2007), it was found that the

problem of ambiguous protein identifier cross-references still remains. In the

ARA-REF set there were 2.9% of entries that were found not to have a unique

TAIR locus identifier after the TAIR protein-coding gene set was combined

with that of UniProt. As mapping across the cross-references is often at the

heart of many data integration pipelines, this situation is a source of an on-

going concern.

Another topic investigated in this chapter was the management of provenance

i.e. the sources of data and the evidence that supported it, provided by different

data providers. Provenance is of particular importance when it is necessary to

assemble datasets of high confidence entries or to make accurate comparisons

between different resources (Zhao et al., 2009). This is the case with the GO

evidence types or IntAct experiment types, where provenance can often be

employed to produce an estimate of reliability of the particular piece of

information. Even in the cases where only the source of the data is retained,

e.g. a reference to a paper, it is possible to assemble a higher quality dataset by

only including the assertions supported by multiple independent pieces of

evidence.

Ideally it is preferable to have knowledge about both the source of the evidence

and the method used to obtain it. This makes it possible to identify the cases

where an assertion was independently confirmed using the same method. Of all

the data providers looked at in this chapter, the best provenance management

was provided by IntAct, which used the PSI-MI XML format. This format

allows an unambiguously defined set of accession numbers to be provided for

each original publication, as well as several fields that capture controlled

vocabulary terms for the experimental methods used. IntAct extended this

structure by using an ontology of PPI detection methods, rather than just using
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the controlled vocabulary of method names, as is the case in TAIR and

BioGrid. The GOA tab-delimited format endorsed by the GO consortium for

distribution of GO annotation allows some information about the method to be

captured (through the use of evidence codes) as well as a field for supplying a

reference to the original source. However, as the latter is free-form, this

information is very difficult to consistently extract computationally. Evidence

codes are also too high-level, and do not allow for further dissection and post-

processing. For example, it was already discussed in the context of the PPI data

that different experimental methods appear to have different degree of

confidence. However, in GOA format all of this complexity is concealed

behind just one experimental evidence code of "IPI".

The complexity of the current biological methodology itself requires

increasingly more sophisticated formats that capture as much metadata as

possible about each documented fact (Quackenbush, 2004). This has led to the

recent development of a number of relevant standards for exchanging

biological data - most notably MIAME for microarray experiment description

(Brazma et al., 2001), PSI-MI for the protein-protein interaction data

(Hermjakob et al., 2004), BIOPAX for pathway data (Demir et al., 2010) and

SBML for biological models (Hucka et al., 2003). However, these standards

have not been universally adopted and smaller, less well-funded data resource

providers cannot always afford the extra effort needing to capture these more

extensive sets of metadata. However, their data still remains valuable and

important because they often contribute specific, unique information of

relevance - albeit, in a non-standard format(s).

As was highlighted by the GO-BP integration example, datasets of the same

type may be different in three different ways - in terms of provenance,

coverage and specificity of their annotation. Any data integration system that is

to be of practical value therefore must not only provide the functional depth (in

that the integrated representation captures the largest possible amount of

information from the original source) but also breadth (i.e. support the largest

possible number of formats and data sources). Additionally, the integration

process itself needs to be tractable and reproducible (Oinn et al., 2004). This is

because experimental biological data is continuously updated and so it follows
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that the data integration process also needs to be re-run to keep the combined

datasets consistent with the most up-to-date information. As was evident from

the investigations described in this chapter, the Ondex data integration system

can adequately manage most of these issues, allowing the integration and

comparative analysis of different data sources, as well as the investigation and

resolution of semantic heterogeneity between them. In the subsequent chapters,

the integration methods and datasets presented here will be further utilized two

different contexts, including the identification of functional modularity in gene

expression networks (chapter 5) and interpretation of experimental data for

prediction of candidate genes (in chapters 6).
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5 ASSESSING THE FUNCTIONAL COHERENCE OF

MODULES FOUND IN MULTIPLE EVIDENCE NETWORKS

5.1 SUMMARY

Combining multiple evidence-types from different information sources has the

potential to reveal new relationships in biological systems. The integrated

information can be represented as a relationship network, and clustering the

network can suggest possible functional modules. However, one of the

challenges inherent to this process is the quantification of the functional

coherence of modules in relationship networks. For this work, the functional

coherence of modules was defined with respect to the Gene Ontology (GO) by

considering two complementary aspects: (i) the fragmentation of the GO

functional categories into the different modules and (ii) the most representative

functions of the modules. These metrics were evaluated in a number of

different relationship networks constructed from the data available for

Arabidopsis thaliana. The types of data used for this analysis included protein-

protein interaction, coexpression, co-occurrence of protein names in scientific

literature abstracts and sequence similarity and a combined network with all

four types of information. The analysis resulted in a number of novel

observations about how functional annotation relate to the structure of different

networks. Some of the metrics defined as part of this work were subsequently

used as part of the applied application case presented in chapter 6.

The previous chapters have described how the Ondex system was extended to

support more complex analyses and presented a range of new resources added

to the network. This chapter consolidates this work by using this functionality

to construct several different types of relationship networks for Arabidopsis

proteins. A new set of methods was also implemented to quantify the

functional coherence of the modules and gain better understanding of the effect

of using multiple evidence-types. A novel metric (AlC-MICA) was also

developed to explore the degree of trade-off between coverage and

informativness of GO annotation for a given set of protein.
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5.2 INTRODUCTION

The ever-increasing availability of high-volume proteomic, genomic and

transcriptomics datasets has led to multiple studies aimed at the systems-level

interpretation of this information using biological and relationship networks.

Biological networks in this context are graphs where the nodes are molecules

and edges indicate interactions between them (Alon, 2003, Aittokallio and

Schwikowski, 2006). As explained in (Alon, 2003), in this type of network an

allowance can be made for "suppression of detail", e.g. the intermediate

components of some interactions may be omitted and instead represented by an

edge. Most commonly this type of abstraction is used to represent gene

regulation, where the DNA-protein interaction, transcription and translation are

represented by just one edge between the regulator and its target protein.

Relationship networks (Chen and Sharp, 2004) are a superset of biological

networks, where there is no longer a restriction that an edge must represent

actual real-life processes that link the two molecules, but instead may indicate

a shared property, such as two proteins having the same type of protein domain

or being mentioned in the same publication.

The types of data used for construction of such networks include, but are not

limited to: sequence similarity (Weston et al., 2004), shared sequence features

(Lee et al., 2010, Mostafavi and Morris, 2010), genetic interactions (Mostafavi

and Morris, 2010, Bork et al., 2004, Han et al., 2004, Tong et al., 2004, Gabow

et al., 2008), gene coexpression (Mostafavi and Morris, 2010, Lee et al., 2010,

Myers et al., 2005, Mao et al., 2009, Mentzen and Wurtele, 2008, Wei et al.,

2006), protein-protein interaction (Lee et al., 2010, Mostafavi and Morris,

2010, Bork et al., 2004, Dittrich et al., 2008, Bu et al., 2003, Myers et al.,

2005, Myers and Troyanskaya, 2007, Jensen et al., 2008), domain interaction

(Pandey et al., 2010, Pandey et al., 2008) and term co-occurrence in the

scientific literature (Lee et al., 2010, Chen and Sharp, 2004, Ponomarenko et

al., 2010, Myers et al., 2005, Gabow et al., 2008). These types of information

can be analysed independently or integrated together in order to encompass a

wider range of biological mechanisms, provide additional evidence of

association between entities in the network and connect disjoint parts of the

network. In these studies, different techniques have been developed for the
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analysis of relationship networks but they follow the same methodological

pattern: partitioning the network into modules, identifying the graph-theoretic

properties of the network and relating these to biological function. For the

work described in this chapter, a similar approach was adopted and a set of

metrics was devised for quantifying the functional coherence of the modules in

order to explore the effect of using multiple evidence-types in an integrated

relationship-network of Arabidopsis thaliana proteins.

Clustering approaches work by identifying densely interconnected areas within

a network (Aittokallio and Schwikowski, 2006) and are commonly used to

detect modular structure in graphs. In the context of biologically relevant

networks, these groups are often referred to as functional modules (Bork et al.,

2004, Aittokallio and Schwikowski, 2006). Functional modules in biological

networks are groups of molecules that are more linked to the other members of

the group than to non-members and have similar function (Alon, 2003). The

modular structure can be used to infer function of as yet unannotated proteins

(Bu et al., 2003), to discover previously unknown roles of proteins in diseases

(Chuang et al., 2007) as well as for better understanding the regulation and

interrelationship between different elements of complex biological systems

(Mao et al., 2009). The function of a module is commonly identified from the

annotation of its members with respect to the Gene Ontology (GO) (Ashburner

et al., 2000).

GO consists of three separate categories - Biological Process, Molecular

Function and Cellular Component, where each category consists of a controlled

vocabulary of terms structured as a directed acyclic graph with qualified edges

describing the semantic relationship between these terms. Each protein can be

annotated with multiple GO terms and inherits the annotation of the parent

terms and this makes it challenging to quantify and analyse the functional

similarity between GO annotations. This has stimulated a number of studies

that have explored these problems in detail; in particular, the importance of the

quantitative characterisation of GO-term specificity. One of the most well-

known of these uses information content, (IC) as described by Lord (Lord et

al., 2003) and based on this metric, several pair-wise quantitative

measurements were developed that take into account the structure and
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properties of the Gene Ontology (reviewed in (Pesquita et al., 2008». In a

number of related but separate studies, metrics have been devised to measure

the semantic consistency among the functional annotations for sets of proteins

with the aim of identifying those which were significantly enriched. In this

context, the enrichment can provide an indication of how over-represented

particular function is in the module. Therefore, can be used pick out most

important associations turned out by the analysis out of an often-extensive list

of all annotations, many of which are just as likely to occur in that number by

chance.

These studies, typically, did not take into account hierarchical structure of GO

and although useful, these methods have a number of limitations. Zheng and

Lu (2007) pointed out the problems of sensitivity suffering as a result of

inconsistent annotation, failure to pick up on the importance of biologically

meaningful links between functions and sensitivity to the relative size of the

sets, which may lead to much greater importance being given to very rare

annotations. Khatri and Draghici (2005) have also discussed the impacts of

annotation completeness and correctness on this type of analysis and further

identified inability to consider functions in an appropriate context as a limiting

factor. Additionally, Khatri and Draghici (2005) have identified a number of

implementation related issues of the current functional over-representation

tools that impact their usefulness, in particular ease of installation,

incompleteness of reference GO annotation datasets and the need to convert

between different types of gene accessions. Another set of optional, but "nice-

to-have" features suggested included the ability for the user to control the

specificity of the terms considered by the analysis and visual presentation of

the results. By implementing this type of analysis as part of an established,

cross-platform data integration solution with advanced visualisation

capabilities many of the above mentioned technical issues can be resolved with

minimal effort.

To address the more fundamental shortcomings of the enrichment analysis

approach, several extensions were proposed that combine some aspects of

enrichment-based methods with adjustments for the relationship between the

terms (Xu et al., 2009, Alexa et al., 2006, Richards et al., 2010). At the same
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time, another set of measures were developed for the quantification of overall

relatedness in a set of ontological annotations (Yu et al., 2007, Wang et al.,

2007, Ruths et al., 2009, Chagoyen et al., 2008, Zheng and Lu, 2007). The

insights that have emerged from these studies were used in this work in order

to define a descriptive measure for comparing the functional annotation of

protein sets. In particular, the approach presented in this chapter allows the

functional annotation of a set of genes to be explored from the perspective of

coverage and identifies a non-redundant set of terms that are most informative

at that level by considering the ontological structure. The only limitation is

that, for the time-being, the result is not supported by statistical validation and

it is, therefore, left up to the user to decide whether the observed pattern is

likely to be of relevance. However, as is elaborated in this chapter, this method

allows effective quantification and comparison of the trade-off between the

specificity and coverage of functional annotation in different networks.

Additionally, classical enrichment analysis of GO annotation was also

implemented as part of this work and both of these analyses were applied in a

practical context in chapter 6.

In order to determine the biological relevance of a partitioning of a set of

proteins, there are two important aspects that need to be taken into

consideration. The first is that the set of GO terms, that best describes the

common function of a representative proportion of proteins in the modules, can

be found at any annotation specificity level. However, at the higher levels,

which are close to the root of the Gene Ontology, the annotation will not be

particularly informative. This leads to a trade-off between the specificity of

annotation terms and the number of proteins in a module to which it applies.

The needs of the particular application case may dictate which of these two

components is more important, and metrics have been developed that allow the

emphasis to be placed on one or the other (Joslyn et al., 2004). Using the

metric defined in this chapter (AIC-MICA) it was possible to explore these two

properties in five different relationship networks. The second aspect to be

considered is that the proteins with similar GO annotation can be fragmented,

i.e. assigned to a number of different clusters by the clustering algorithm. Not

only can the functionally similar group be spread across a number of clusters,
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but also may be more or less concentrated in the clusters where it is present.

To assess the functional coherence of modules from a relationship network,

both of these aspects, namely the representative functions of modules and the

fragmentation of functional categories, are relevant. In this chapter the

potential of combined relationship networks to recover functional modules is

investigated by considering four sources of information, protein-protein

interaction (PPI), coexpression (COE), sequence similarity (SEQ) and co-

occurrence of terms in the scientific literature (LIT). These were chosen

because they are often used for inferring functional relationships among genes

and proteins and are readily available from the application of high-throughput

'omics techniques. A large amount of coexpression data is available for

Arabidopsis (see for example, (Obayashi et al., 2009». Measurements of

sequence similarity can be obtained for all pairs of proteins (The Arabidopsis

Genome Initiative, 2000) and co-occurrence of protein terms in abstracts can

be extracted from the scientific literature (Hassani-Pak et al., 2010).

The set of proteins used for evaluation was restricted to those for which

protein-protein interaction information was available, because at the time of

writing, this was the least abundant type of data available for Arabidopsis, This

restriction means that a relatively small subset of Arabidopsis proteins was

considered, but has the advantage that it leads to a more balanced distribution

of evidence types from the four information sources among the relationships

between proteins. This setting also allowed an evaluation of the extent that

patterns and trends previously found in whole proteome-based networks still

hold in situations where only a subset of the whole proteome is analysed.

Another motivation was to evaluate the usefulness of these approaches for

extracting the best possible information under conditions when data are scarce

or incomplete.

5.2.1 Markov clustering algorithm

Some work described in chapters 5 and 6 of this thesis relied on the Markov

clustering algorithm for graphs (MCL) (van Dongen, 2000) to partition the

integrated networks into functional modules. One of the advantages of this

clustering method is its scalability and performance, which means that it can be

used to partition even very large networks. For example, it is used as part of the
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ortholog detection method OrthoMCL (Li et al., 2003) to successfully partition

networks of bidirectional BLAST hits for the sets of more than one million

individual proteins. Aside from several very successful applications for

clustering sequence homology networks (Li et al., 2003, Enright et al., 2002),

other studies have also compared the performance of MCL versus other

clustering methods in other biological contexts. One of such studies has looked

at its ability to correctly detect the modularity in protein-protein interaction

networks and has found that MeL outperformed all other approaches (Brohee

and van Helden, 2006). Another study that looked at the partitioning of

coexpression networks has reported that MCL tied for best performance with

their own method (Mutwil et al., 2010). Although no clustering approach can

be the ultimate solution to unsupervised network partitioning problem, these

reports of good performance of MeL combined with the high scalability of the

algorithm suggest that it might be a good choice in a variety of biological

network settings.

The MeL algorithm is based on the notion of random walks through the

graph, which can be modelled by Markov chains. Such representation is

realised by representing a graph as an adjacency matrix, with weights on edges

representing a transition probability of a random walker traversing a particular

edge between the two nodes. As each column of the matrix represents the

edges of a particular nodes and weights representing the probabilities, the sum

of all values in a column is always equal to 1.0. A Markov chain set-up allows

modelling of the probabilities of a random walker traversing a particular edge

after n steps. This set of probabilities is derived by successively multiplying the

transition probability matrix by itself n times. As the Markov chain progresses

through the steps, it is possible to observe that the more densely connected a

region of a graph is, the more likely it is for the random walker to visit it. The

MeL process exploits this property by emphasising it further by increasing the

transition probabilities of links with a higher value, while at the same time

reducing the transition probability of the weaker ones. This is done by raising

every element of the matrix into a particular power I (termed "inflation

parameter"). Subsequently, each column of the matrix is re-normalised to 1.0.

The process of MeL clustering is realised by alternating two different steps:
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the progress through the Markov chain (the "expansion" step) and the raising

of the matrix into the power of I (the "inflation" step). The original work has

demonstrated that the process simulated by this procedure converges on an

equilibrium solution at a quadratic rate.

Once the algorithm converges on the solution, the resulting matrix can be

interpreted to assign nodes to individual clusters. The clusters detected are the

individual connected components, if the matrix is interpreted as an adjacency

matrix. The granularity of the clustering can be controlled by an inflation

parameter, with higher I generally leading to the recovery of a larger number of

smaller clusters. It was demonstrated that the partitioning tends to be quite

robust to the changes when used on sparse networks with a clearly defined

modular structure, but the effect of I increases when applied to the more

densely interconnected networks. Another study has also reported that there

was a wide range of applicable values of I (1.5 to 3.0) where changes in

inflation had little effect on optimality of clustering when MeL was used to

partition the Arabidopsis coexpression network (Mao et al., 2009). The

strategies for optimising I for particular datasets vary greatly, from choosing

the values that optimise a recovery of a particular property (Mentzen and

Wurtele, 2008, Enright et al., 2002) to empirical selection based on the visual

correspondence between the graph layout and cluster assignment (Freeman et

al., 2007), when optimum partitioning cannot be established a priori.

5.3 METHODS

5.3.1 Overview

A protein-protein-interaction network was constructed based on experimentally

established protein-protein-interaction data from the IntAct database (Aranda et

al., 2010) and combined with additional data, namely gene coexpression,

sequence similarity and co-occurrence of protein names in the scientific

literature. The same methodology for construction of an integrated network of

PPI and gene coexpression data using Ondex was applied in (Lysenko et al.,

2009). The inherent modular structure of these networks was investigated and

related to the underlying biological processes using the Gene Ontology (GO)

(Ashbumer et al., 2000). Functional properties of these modules were
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quantified and compared using information content and semantic distance

based measures.

5.3.2 Construction of the integrated relationship network

According to the formalism of network representation chosen for this work,

nodes represented proteins and edges were added if there was at least one of

the possible four evidence types linking these proteins: co-occurrence of

protein names in PubMed abstracts, coexpression of genes that encode those

proteins (where the magnitude of the Pearson correlation coefficient was

greater than 0.6), sequence similarity (with E-value<O.OOI) or experimentally

determined protein-protein interaction.

Protein-protein-interaction (PPI) data were imported from the intAct database

(PSI-MI XML format) into the Ondex system. After that, all entities that were

not annotated with Arabidopsis thaliana NCBI taxonomy identifier and all

interaction participants that were not proteins were removed. The interactions

between multiple copies of the same protein were also discarded. All proteins

that were not part of any interactions after this filtering were also removed

from the set.

A coexpression network (COE) was constructed from Arabidopsis

coexpression data from the ATTED-II database (Obayashi et al., 2007). An

edge was created in the coexpression network if the absolute value of Pearson's

correlation coefficient of respective gene expression profiles was greater than

0.6.

For the literature-based co-occurrence analysis of protein names, 30,639

abstracts from PubMed were downloaded which contained the word

"Arabidopsis". This set of publications together with Arabidopsis protein name

information from UNIPROT was loaded into Ondex. The Ondex text-mining

plug-in was used to create relations between proteins and publications and

transform the output to a co-occurrence network, according to the method

described in (Hassani-Pak et al., 2010). An edge in the protein name co-

occurrence network (LIT) indicates that there was at least one abstract that

included a mention of both proteins.

Sequence similarity was determined by using TimeLogic® Tera-BLASTTM
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(Active Motif Inc., Carlsbad, CA) for all-against-all sequence-comparison of

proteins in the interaction dataset, with E-value cut-off at 10-3 and a minimum

percent sequence identity cut-off at 25%. One edge was created in the

sequence-similarity network (SEQ) per pair of proteins with similar sequences.

5.3.3 Clustering the relationship networks

Natural groupings of the proteins was explored using the MCL clustering

algorithm (van Dongen, 2000). This algorithm simulates flow in the network,

and can be used to identify strongly connected groups of nodes. The

implementation of the MCL (vlO-148) algorithm (from

http://www.micans.orglmcll) was wrapped as a function and as a plug-in and

made accessible from the Ondex data-integration platform. For this algorithm,

the inflation coefficient (I) determines the granularity of the clusters. A value

of 1=2.8 was used for all of the clustering analysis described in this chapter.

This value was chosen to get 'the best possible balance between the "useful"

clusters produced by the algorithm. Itwas found that at lower thresholds ALL,

COE and LIT networks had most of the nodes assigned to one large cluster

because nodes in the core of the network were highly interconnected. At the

higher values of I an increasingly large number of clusters of size 1 were

produced. This value was chosen so that a partitioning of the dense core of the

ALL, LIT and COE networks happened, but at the same time the number of

clusters of size 1 was kept to a minimum. The partitioning of the SEQ and PPI

sets appeared to be quite robust to the changes in I. The clustering was

performed on an adjacency matrix relative to the edges of particular type. The

analysis did not assign any weights to edges - e.g. any coexpression edge

joining two nodes would result in a value of" 1" in the adjacency matrix.

Likewise, in the case of the combined network a presence of any of the

evidence types would also result in a "1", regardless of how many different

evidence types supported that edge.

5.3.4 Gene Ontology annotation

To explore the functional groupings of proteins in the network, all available

Arabidopsis GO annotations were combined from three sources: IntAct

(Aranda et al., 2010), GOA-EBI (Barrell et al., 2009) and UNIPROT (UniProt

Consortium, 2010). The Information Content (IC) (Shannon, 1997) of the
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annotations was calculated using the combined set of all GO annotations of the

Arabidopsis proteome subset as identified in the UNIPROT database. All

annotations to proteins not included in the proteome set were discarded prior to

calculation of the IC.

5.3.5 Assessing the functional coherence of modules

The overall aim of this study was to assess the functional coherence of modules

by exploring two aspects: (i) whether the clusters contain proteins that are

generally similar in terms of their functions, as assigned by Gene Ontology

terms, i.e. the most representative GO terms in a cluster; (ii) the way in which

proteins with the same functional roles are distributed across different clusters,

i.e. the fragmentation of the GO terms.

To study the first aspect of functional coherence, a measure was developed that

quantifies the annotation similarity at various levels of coverage. Since the GO

is described by a directed acyclic graph (DAG), one way of estimating the

overall level of commonality of GO terms in a cluster is to find a set of

representative common ancestor terms. Terms lower in the GO tree tend to

have higher information content but also have a smaller number of

descendants. The set of annotations that best summarise the commonality of

proteins in the set should therefore be the most informative subset of all

applicable ancestor terms. However, as the module identification process is not

perfect, the set can contain some noise in the form of proteins that are not

functionally related to the rest of the modules. Another possible scenario is that

a module itself has complex structure and is composed of sub modules with

different functions, which work together to realise some high level biological

process. For example, regulatory processes often involve both transcription

factors and signalling proteins. One way of accounting for these possibilities is

to allow a certain number of outliers when identifying the set of most

informative common ancestors. The IC of all terms in a set can be average to

give Average Information Content of the Most Informative Common Ancestor

set (AIC-MICA), which provides a measure of functional coherence for a set of

proteins. The procedure for calculating AIC-MICA is explained schematically

in Figure 5.1.
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GO:0044419
IC=9.33; 16/20

Most informative terms applicable to 90~' of the cluster
AIC·MICA = (0.57-4 61+0.55+4 06)i4 =2.45

Figure 5.1 Example calculation of the average information content for cluster
coverage level.

In order to study the second aspect of the functional coherence, two metrics

were used to evaluate the fragmentation of the protein sets annotated with the

same GO annotation terms compared to the groups to which they were

assigned by the clustering algorithm. A term from the biological process

category of GO is defined as t, a set of all proteins annotated to the term t as

At and a set of clusters that contain at least one element of At as Ct. N; denotes

the number of fragments of t, as the cardinality of Ct, and Pk -- the proportion

of the total number of proteins annotated with term t found in cluster k :

IknAd
Pk = lAd (5.1)

with k E Ct.

And the entropy (Ht) was defined as:

Similar to the number of fragments Nt, the entropy H, gives a measure of the

fragmentation of the term t across the clusters, but it also accounts for the

distribution of the size of the fragments (see Figure 5.2). The average entropy

obtained for each of the real networks was compared to a randomized control,

where cluster labels were permuted 10000 times.
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Figure 5.2 Schematic diagram showing how entropy provides a useful metric of
fragmentation of a given GO term across clusters. If 20 proteins are associated
with a given GO term and they all are in the same cluster then the entropy (II)
is zero. Ifmost (16) of the proteins are in one cluster and the remaining proteins
are in separate clusters H=0.338. However, as the proteins get more evenly
distributed across clusters the entropy increases.

In order to compare the number of fragments and the entropy of fragmentation

to the sources of relationship data, both of them were ranked for each of the

GO terms across all five networks. This was done by counting the number of

times each of the data sources was assigned the best rank (i.e. the lowest value)

and calculating a proportion with respect to the total number of GO categories.

For the sake of brevity, the abbreviations BFRP (best fragment rank

proportion) and BERP (best entropy rank proportion) were used when referring

to these comparative measures.

5.3.6 Visualisation

The integration process was implemented as a set of workflows in the Ondex

Integrator (Canevet, 2010). The resulting network was visualized and further

analysed in an interactive manner using the Ondex user client by invoking

visualisation and analysis functions from the command console. Both the

Ondex Integrator tool and scripting environment for Ondex were developed to

support the work in this thesis and more information about them may be found

in chapter 2. For the analyses in this chapter, the Jython scripting interface was

used in order to utilize methods from the NetworkX vO.99 graph-analysis

library (Hagberg et al., 2008b). Interactive visual exploration of the network

used the visualization methods available in Ondex and exploited features which

controlled settings such as the visibility, size/width and colour of nodes and the

rendering of edges based on the numerical values of their attributes and/or

group membership. The methods from NetworkX library were also used to

calculate the graph properties in Table 5.2.
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5.4 RESULTS

5.4.1 Network properties

Coexpression, protein-protein interaction, sequence similarity and name co-

occurrence data were integrated using the Ondex system as described in 3.2.2.

To better understand how each of the four sources contributed relationships in

the Ondex graph, the number of edges and cases were they co-occurred was

counted. These counts were further categorized to distinguish where an

information source was the only source (exclusive), or where it may have also

been supported by other edges, (inclusive). Additionally, key structural features

of the networks were compared.

Table 5.1 Number of edges in the graph with evidence from the four
information sources after applying a threshold on the relevant strength of the
relationships (as defined in the Methods section). Exclusive combination means
that only this exact combination of evidence types is present. Inclusive means
that at least these evidence types are present, but others may be there as well.

Exclusive Inclusive
COE LIT PPI SEQ combinations combinations

N % N %

./ 0/ ./ 9 0.04 9 0.04

./ 0/ ./ 34 0.14 43 0.17

./ 0/ 83 0.33 92 0.37

./ 0/ 84 0.33 210 0.83

./ ./ 17 0.07 26 0.10

./ ./ 63 0.25 123 0.49

./ 15 0.60 260 1.03

./ 9093 36.12 9534 37.88

0/ ./ 123 0.49 132 0.52

0/ 0/ 482 1.91 648 2.57

0/ 692 2.75 907 3.60

0/ 4441 17.64 5948 23.63

./ 240 0.95 389 1.55

0/ 3459 13.74 4427 17.59

6201 24.63 7516 29.86
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The contributions from the four information sources to the edges In the

network are shown in Table 4.2.

There were 2355 proteins in the integrated network in total. The edges

introduced into the network that came exclusively from each evidence source

were: coexpression (COE) 36%; co-occurrence of protein names (LIT) 18%;

protein interaction (PPI) 14% and sequence similarity (SEQ) 25%. The

intersection of all evidence types was also very small (0.04%). This suggests

that in this case each of the evidence sources tended to introduce new links into

the combined network rather than reinforce the relationships already found in

other sources.

The global properties for the relationship networks constructed from the four

constituent information sources and the combined network (ALL) are shown in

Table 5.2. As expected, the combined network had fewer connected

components, since evidence from the other data sources connected previously

unconnected nodes. The size of the largest component was also larger than that

of any of the constituent networks. The diameters of the largest connected

component of the SEQ, LIT and combined network (ALL) was of similar size

(9,9 and 10 respectively) and smaller than the COE and PP! networks (15 and

18 respectively), suggesting more cohesive or dense graphs. The increased

density and the larger size of main connected component indicate that the ALL

network is likely to be much harder to optimally partition using a clustering

Table 5.2 A comparison of graph theoretic properties for the different evidence
types.

Evidence Transitivity Number of Size of the Diameter of
Network connected largest the largest
Type components connected connected

component component

LIT 0.223 15 981 9
CDE 0.580 24 991 15
PPI 0.070 100 1882 18
SEQ 0.746 268 241 9
ALL 0.406 9 2330 10
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Figure 5.3 Cluster size distribution in five networks. The networks show are
combined (ALL), protein-protein interaction (PPI), co-occurrence of protein
names (LIT), sequence similarity (SEQ) and coexpression (COE).

approach.

The transitivity is a measure of clique-likeness of a graph. It was highest for

the SEQ network (probably reflecting protein family structures) and the COE

network, possibly reflecting shared transcriptional regulatory mechanisms.

Since the initial dataset was restricted to those proteins for which interaction

data was available from Arabidopsis there were no unconnected proteins in the

PPI and ALL networks. The number of orphan proteins (i.e. unconnected) for

the SEQ, COE and LIT networks were 855, 1304 and 1343 respectively. The

numbers of orphan proteins, however, depended on the score thresholds

chosen, the values for which can be found in the section 5.3.

5.4.2 Network Clustering

The four single evidence networks and the combined network (ALL) were

clustered according the protocol described in section 5.3.3. The distribution of

cluster sizes is shown in Figure 5.3. The SEQ and PPI networks have a large

number of clusters of size 2 and 3. The integrated network (ALL) and protein

interaction network (PPI) contained the greatest number of larger clusters (size

20+). In the ALL network there were a large number of singletons (clusters of

size 1). A total of 138 singletons accounted for 6.22% of all proteins in the

network. This small proportion of singletons may be related to the

cohesiveness of the ALL network, with tightly connected groupings leading to
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the exclusion of nodes by the MCL algorithm.

5.4.3 Coverage and specificity of the most representative function of

modules

To explore the functional groupings of proteins in the network, Arabidopsis

GO annotations from three sources: IntAct (Aranda et al., 2010), GOA-EBI

(Barrell et al., 2009) and UniProt (UniProt Consortium, 2010) were combined

with the relationship network. This was achieved by importing these data

sources into Ondex and combining them with GO graph and relationship

network using the accession-based mapping method (Taubert et al., 2009) on

GO term identifiers for the former and UniProt protein identifiers for the latter.

The utility of clustering depends on being able to group together a large

enough number of proteins, so as to facilitate exploration of the modular

structure of the network without diluting the information content of the clusters

to such an extent that the groupings do not capture biologically meaningful

relationships. In particular, this is determined by (i) whether the clusters

contain proteins that are generally similar in terms of their functions, as

assigned by Gene Ontology (the most representative GO terms in a cluster) and

(ii) the way in which proteins with the same functional roles are distributed

U ~~~M~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~
iNlln"""", Cowreve (...... ,

Figure 5.4 The Average Information Content of Most Informative Common
Ancestor (AlC-MICA) across all clusters. AlC-MICA was calculated at 40-90%
coverage levels. The solid line is the average IC and the shaded areas are 25 and
75 percent quartiles.
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across different clusters (the fragmentation of GO terms)

The Average Information Content of the sets of these Most Informative

Common Ancestor GO terms (AIC-MICA) was used to determine the coverage

and the specificity of the most representative function of modules. If a cluster

contained proteins that were of very diverse function, it would be expected that

the GO categories corresponding to the most representative functions would

not be very specific, i.e. the Most Informative Common Ancestor would be

close to the root of the Ontology tree and thus would not represent a

functionally meaningful grouping. As was explained earlier, the relationship

network may not always reflect accurate functional relationships, and,

therefore, there are likely to be some outliers present in the clusters. For this

reason, rather than trying to identify a set of MICAs for all the proteins in the

cluster, a sampling approach was used to find where term is applicable to at

least a certain percentage of all proteins in a cluster. The analysis has been

performed several times, with the minimum coverage parameter changed at

10% increments from 40% to 90%. This approach allowed simultaneous

detection of functional similarities in more than one functional category and

was more robust to outliers by design. The overall level of MICAs in the set

.. ,,,. '" . "
,...,.{..,,·inIortnItiarI~dtl'le_~GO'_II""tOWf.

Figure 5.5 Modular structure of the combined network of aU evidence types.
The network nodes represent all clusters with 10 or more members. The width
of the edges indicates the number of links between them. Clusters are annotated
with the most informative GO term at 80% of the clusters proteins annotated
with the GO term.
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was calculated by averaging the IC of all the members of the set to produce the

graph shown in Figure 5.4.

In Figure 5.4 the AIC-MICA metric was plotted for the five relationship

networks. As expected, the average information content of the representative

GO terms decreases with the increase in cluster coverage. This implies that the

common ancestor includes a greater proportion of proteins in the cluster. The

average information content in the LIT network was similar to the ALL at

lower coverage range (40%-50%), but declined very sharply and is second

worst at the higher coverage level. This may be an indication that although

useful associations can be found using term co-occurrence, these groupings

tend to be less coherent at the whole-cluster level. Clusters in the COE network

had the lowest information content of all coverage levels. The information

content at coverage level of 90% was highest for the SEQ network followed by

the ALL network. In the SEQ network, however, only 1496 proteins were

assigned to clusters (of size greater than 1) whereas in the ALL network this

figure was 2217. For proteins that cannot be assigned to a module, no inference

can be made using the guilt-by-association principle. So, while for 5.9% of

proteins, no new information could be gained from clustering the ALL

network, whereas for the SEQ network this figure was 36.5%. Therefore, the

ALL network had a much greater potential for suggesting biological context;

supporting the hypothesis that the integration of multiple information sources

can be useful when identifying functional modules.

5.4.4 Modules in the ALL relationship network and their most

representative functions

Visual examination of complex network structure can be helpful for the

identification of patterns. To facilitate the interactive analysis of functional

annotation data, a method was developed to generate a meta-view of the

modular structure as it is resolved by the clustering algorithm. In this view,

each node represents a cluster and edges show the inter-links between them.

This nodes and edges in this representation can be further annotated with

additional properties, e.g. number of nodes in the cluster, degree of functional

similarity, MICA, etc. Figure 5.5 illustrates how this method of presenting data

can be used to examine the modular structure found in the ALL network
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produced by application of the MeL algorithm. In this case, the clusters were

annotated with the most informative of the representative GO terms at 80%

level. It is possible to see that although the network was very densely

interconnected, the clustering algorithm had performed reasonably well, with

only a few cases where a very large number of links existed between separate

clusters. One example of where the clustering was not optimal was where two

clusters with the same annotation "regulation of cellular transcription, DNA-

dependent" were linked together by more than 800 edges, but still were not

joined together. In one of the cases, there were 6 of the 36 clusters with this

same annotation where information content was in the middle of the range (4.0

- coloured green). Interestingly, this phenomenon was also seen in for clusters

with other annotations relating to signalling and regulation of transcription.

The two clusters with the most informative annotation were both related to

hormone signalling (coloured red). There was also one large cluster annotated

to "modification-dependant protein degradation", a similar cluster related to

protein catabolism was also found in other studies that analysed PPI and

coexpression networks (Bu et al., 2003, Ulitsky and Shamir, 2007).

5.4.5 Fragmentation of functional categories

The other factor that needs to be taken into consideration when assessing the

functional coherence of modules is fragmentation of functional categories.

Fragmentation, and a loss of coherence arises because inevitably missing data

and erroneous links will inevitably affect the performance of clustering

algorithm, the correspondence of the current "perception" of how functional

roles should be assigned to a group of proteins is also not guaranteed to

perfectly correspond to the modules of a real biological system. Therefore,

clustering can result in proteins with the same functional annotation being split

across multiple clusters. This leads to the separation of this group of proteins

into multiple fragments.

To assess the coherence of the clustering performed earlier, an analysis was

undertaken to investigate how the Gene Ontology terms were distributed across

the clusters. In Table 5.3, the Best Fragment Rank Proportion (BFRP) indicates

that the GO terms are the least fragmented in the ALL network. This suggests

that the combined network is better at grouping together identical GO terms, by
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Table S.3 The first two rows show the average entropy for the clustered
networks and, for comparison, the average entropy for the networks with
randomly permuted GO labels. The third row contains the decrease in entropy
between the actual and randomly permuted networks. The fourth and fifth
rows show the best fragment rank percentage and best entropy rank percentage
statistics (defined in the Methods section). Note that percentages may not add
up 100%, because when several networks performed equally well in the
BERPIBFRP assessment, all of them were counted as "best" for that GO term.

All SEQ COE PPI LIT

Average entropy (actual
2.72 2.96 3.30 2.86 2.96network)

Average entropy (randomly
3.31 3.43 3.42 3.29 3.33permuted network)

Relative decrease in entropy
(compared to randomly 17.8% 13.7% 3.5% 13.1% 11.1%
permuted network)

BFRP 49.43% 22.78% 3.55% 24.56% 28.43%

BERP 39.58% 16.64% 2.75% 18.58% 31.18%

comparison with the individual networks. To evaluate the level of

fragmentation of functional categories, both the number of fragments and their

size distribution need to be considered. The entropy of the fragmentation gives

a measure of this size distribution. As can be seen in Table S.3, the Best

Entropy Rank Proportion (BERP) is also maximal for the ALL network,

followed by the LIT network, indicating that overall the entropy with respect to

GO categorisation was the lowest for these networks.

A lower entropy value implies more ordered data, both in terms of reduced

fragmentation and prevalence of larger fragments. To provide a comparison

with the level of entropy that could be expected by chance, "control" networks

were generated by randomly permuting the cluster labels for all GO categories

10000 times. The complete results of this test are included in Appendix E - in

all five cases none of the random networks were able to achieve comparable

entropy value, indicating that this result is highly significant, with p<O.OOOOl.

To avoid the problems of small sample sizes, only those GO categories that

were assigned to at least 10 proteins in the dataset were included. Table S.3

shows the average entropy values for each network. From this it can be seen

that the ALL network has the lowest average entropy, again suggesting that it

147



is better at grouping related proteins, the average entropy being 2.72 compared

with 3.31 for the equivalent "control" network.

5.4.6 An example of fragmentation in the ALL relationship network

Figure 5.6 (A) shows all proteins (nodes) in the combined (ALL) network

annotated to the high level GO term "response to hormone stimulus" and its

more specialised categories (grey clusters). The average shortest path length

(SPL) between all proteins with this annotation was 20% shorter compared to a

control, where node labels were permuted 10000 times. The SPL reduction in

distance for the child terms listed in Figure 5.6 was even greater and ranged

from 22-30%. It is interesting to note that the structure of the distribution of the

proteins with these annotations echoes the hierarchy of the Gene Ontology,

which was defmed entirely independently by manual curation.

Figure 5.6 (B) shows the fragmentation of this cluster by visually separating all

the MCL clusters across which this term is distributed. It is evident that the

clustering was not able to group together all the nodes that were associated

with the general process 'response to hormone stimulus". In this case, there

were only two clusters which had more proteins in the cluster annotated with

the same term (e.g. 'response to auxin stimulus' and 'response to abscisic acid

stimulus'). However, even in the situations when the grouping is suboptimal, it

is still useful to be able to determine and quantify how much the grouping

differs from the one specified by annotations and structure of the Gene

Ontology.

This analysis has shown that both the AIC-MICA, and BERP/BFRP types of

metrics can be used to evaluate the impact made by choosing different

clustering methods, data sources or GO aspect on the functional coherence of

the modules. However, it is also evident that there may be more complex

multi-level structural features present in the integrated functional networks,

which may be difficult to detect using clustering approaches along. As was

demonstrated by this example, interactive visual exploration of the network can

be a useful tool for discovering such features, and provide useful insights for

development of more rigorous computational approaches for better

understanding of integrated networks.
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Figure 5.6 A subnetwork from the combined (ALL) network of proteins
annotated with the GO term "response to hormone stimulus". The diagram
shows (A) the proteins annotated to this GO term and direct links between them
and (8) the breakdown of this group of proteins into clusters. The colouring is
consistent between the two panels. Proteins that are not annotated to this
process are hidden on panel (A) and are coloured grey in panel (8). In (8) all
clusters shown contain at least one member with "response to hormone
stimulus" annotation and the only edges shown are the ones that link two
members of the same cluster.

5.5 DISCUSSION

The aims of this research have been to explore the effect of using multiple

sources of biological information about Arabidopsis thaliana proteins and, in

particular, to assess whether integrating multiple evidence sources in a

relationship network has potential benefits for applications such as detection of

functionally coherent sets of proteins in relationship networks.

In this chapter the functional coherence of modules detected by clustering

relationship networks was assessed from two different perspectives. The first

considered the representative functions of the modules with respect to GO

terms and the second was an analysis of the fragmentation of GO terms with

respect to the proteins contained in the modules. The motivation behind the
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former approach was to investigate the trade-off between coverage and

specificity of the representative function of modules. This was achieved by

defining a novel metric (AIC-MICA). Additionally, two metrics describing the

fragmentation of GO categories, namely BFRP and BERP, were introduced to

evaluate how well the modular structure, recovered by the MCL algorithm,

maps to GO Biological process terms. These metrics were then used to

compare the usefulness of individual data sources and to test the effects of

combining multiple sources on the coherence of these modules.

From the analysis of the trade-offs between coverage and specificity, the SEQ

network was, as expected, best for recovering very specific functional

association between proteins. This was evident from the high AIC-MICA

values across all coverage levels. However, an important point to note is that it

may not always be desirable to extract such close groupings, and a higher level

GO categorisation may be helpful to provide a broader overview of biological

functional class or to help dissect very large datasets. Compared to the other

relationship networks, SEQ consisted of a large number of strongly connected

components (results not shown), which resulted in the relatively high overall

entropy with respect to the whole of the Gene Ontology. We also observed that

the clusters recovered were only related to a small number of GO terms.

Another problem with sequence relations as the sole data source was that there

was insufficient evidence to link most of the proteins in our reference set. By

comparison with the SEQ network, it was possible to use the ALL network to

assign a further 721 proteins to a cluster of size greater than one due to links

that were contributed by other sources. Based on these findings, we conclude

that, overall there is a clear benefit from the integration of additional data

sources, although there is a small cost incurred because of a reduction in

functional coherence. As the ALL network performed relatively well in terms

of AIC-MICA (40-90), this dilution of annotation specificity does not appear to

render it uninformative. In fact, the minimum information content value that

was applicable at a 40% coverage level was 0.55 and was reached only for 5

clusters found in the ALL network. This value corresponds to the 'cellular

physiological process' GO term, which is one of the direct descendants of the

'biological process' root term, and is therefore very general.
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To support this work, several different visualisation strategies were developed

that help to summarise complex integrated networks and identify high-level

patterns in them. Using these visualisation methods, it was found that there was

a hierarchically organised neighbourhood in the integrated network that was

composed of the proteins annotated to the "response to hormone stimulus" GO

term. This fmding indicates there may be more complex and meaningful

patterns than just the modules identified using clustering approaches.

Comparison of the graph theoretic properties of the four networks also appears

to indicate that the addition of extra edges lead to the creation of a more

compact network, with smaller diameter than the COE or PPI networks.

Despite this, the transitivity has remained relatively low - indicating that the

number of complete cliques was also small. These differences may be

interpreted as an indication that, in the ALL network, potential modules are

more difficult to recover and the results may be further improved using more

robust clustering approaches, like spectral clustering methods (Ng et al., 2002).

Further investigation of the impact of increasing complexity of the network

versus increasing levels of noise that arise from integration of additional data

sources is necessary to confirm these trends.

The coexpression (COE) network performed the worst with respect to BFRP,

BERP and AIC-MICA. At first glance, this result appears to contradict several

earlier studies (Mao et al., 2009, Mentzen and Wurtele, 2008), where many

meaningful clusters were identified in the coexpression network. This

discrepancy, however, is likely to be an artefact of the smaller subset of the

proteome that was used in this study; a consequence of the decision to restrict

the dataset to proteins with PPI information. In earlier reports, using large

coexpression networks the patterns detected tended to be associated with much

larger clusters containing more than a 1000 proteins (Mao et al., 2009,

Mentzen and Wurtele, 2008). This number is much larger than any of the

clusters that were identified in any of the networks constructed in this study.

This may be an indication that coexpression is a weaker source of evidence of

functional similarity and more data are necessary in order to be able to make

useful inferences from it.

In this study, the set of proteins in the network was restricted to those for which
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protein-protein-interaction information is available, as this is a currently

limiting information source for Arabidopsis. Using a larger set of proteins

would have meant that the contribution of the PP! data would have been highly

unbalanced in relation to other available information. Although there are other

species, in particular Saccharomyces cerevisiae, for which there is much more

data available, it is also of importance to validate these types of approaches in

more complex multicellular model organisms. This was particularly important

within the context of this project, as Arabidopsis thaliana was the species of

primary interest and therefore it was important to get some understanding

about data available for it. Most importantly, this study illustrated that

meaningful modules can be successfully identified by clustering the integrated

relationship networks -- even in situations when limited data are available and

only part of the complete proteome is considered.

5.6 CONCLUSIONS

Module detection in integrated biological and relationship networks is one of

the most important tools for interpretation of complex biological datasets. As

the amount of biological information continues to grow, it also becomes

increasingly important to improve our understanding of inter-relationships

within these data and, ultimately, their relationship to biological function. In

this chapter these relationships were explored and quantified for several of the

data types that are most commonly used for construction of such networks. It

was found that for these data sets combining several types of evidence was

beneficial with respect to the functional annotation of modules detected using

MeL clustering algorithm, which on average more closely corresponded to the

functional groupings in the Biological Process aspect of GO. Although the

overall level of informativeness of cluster annotation was not as good as in the

sequence similarity network, it was possible to link many more proteins using

additional information sources. These fmdings indicate that there is benefit to

the integration of additional information sources, as it allows more proteins to

be assigned to functional modules with only a relatively small reduction in the

module annotation precision. The overall outcomes of this study provide a

number of insights into the relationship between integrated networks and

protein function and may be of use for further refinement of related approaches
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that can better capture biologically relevant information from integrated

datasets. A number of methods developed for the work described in this

chapter were also used to assign function to clusters in coexpression (chapter 4)

and protein-protein interaction (chapter 5) networks.
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6 APPLICATION OF INTEGRATED NETWORKS FOR

INTERPRETATION OF EXPERIMENTALLY DERIVED GENE

LISTS

6.1 SUMMARY

Nitrogen uptake and metabolism in plants has an impact on a large number of

genes and processes within the plant. Because of the complexity involved,

better understanding of the regulatory complexity giving rise to these effects

requires integration of multiple types of different data. To explore the

mechanisms behind the regulation of nitrogen responses in Arabidopsis,

several datasets already introduced earlier in this thesis were combined with a

custom-generated coexpression network of nitrogen-related responses created

using a coexpression analysis pipeline presented in chapter 3. This network

was also combined with GO functional annotation and lists of differentially

expressed genes from a study that looked at the differences between the wild-

type Arabidopsis plant and a mutant that lacked an ability to target a low

affinity nitrate transporter to the outer membrane. This chapter reports how the

integrated datasets, analysis methods and visualisation tools developed as part

of this work can be used for the interactive exploratory analysis aimed at

greater understanding of the structure behind a particular list of candidate

genes. The example also illustrates how his type of approach can be leveraged

for the narrowing of the hypothesis space and the identification of potential

candidate genes for further study.

6.2 INTRODUCTION

6.2.1 Nitrate uptake, assimilation and downstream responses in

Arabldopsls thaliana

Nitrogen is an element with the periodic number 7 and atomic mass 15 (Moore

and Gallagher, 1993), and it constitutes 78% of Earth's atmosphere (Lutgens

and Tarbuck, 1986). It is also a mineral nutrient that is required by all plants in

great quantities, as it is needed for the synthesis of essential cellular

compounds like proteins and nucleic acids (Miller and Cramer, 2005). The

most abundant form of nitrogen (N2 gas in the atmosphere) can be directly

utilised by legume plants in a symbiotic association with bacteria, but for most
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plants, nitrogen is taken up by the roots in the forms of nitrate (N03-),

ammonium (N14+) and, less commonly, other organic forms (peptides, amino

acids, urea). These compounds then form the overall pool of soil nitrogen

available to plants (Marschner, 1986; Miller and Cramer, 2005). The

concentration of available nitrogen in the soil can vary by several orders of

magnitude, however only very extreme concentrations have negative impact on

plant growth (Britto and Kronzucker, 2006). This resilience is the result of a

well-coordinated system of responses on all levels of organisation - from

cellular metabolism to plant physiology and development, which aim to

maintain the nitrogen content of plant tissues at the optimum levels. Precise

regulation of nitrogen uptake is essential to maintain this optimum. However, it

is only one part of the complex regulatory processes involved. For better

understanding of these processes they must be considered in a wider context,

which includes some aspects of nitrogen assimilation, storage and translocation

within the plant. This section aims to provide an overview about what is

currently known about nitrogen uptake and related regulatory mechanisms in

Arabidopsis in order to put the outcomes of the subsequent analysis into an

appropriate biological context.

6.2.1.1 Transporters involved in primary uptake

Physiological studies of whole-root nitrate uptake have identified that there are

two kinetically distinct nitrate uptake systems in Arabidopsis (Orsel et al.,

2006). The high-affmity transport system operates according to Michaelis-

Menten saturable kinetics and is of primary importance at lower nitrate

concentrations in the soil «500J.IM (Orsel et al., 2002»; whereas the low-

affmity system is non-saturable and can allow effective uptake of nitrate at

>lmM concentrations (Britto and Kronzucker, 2006). The high-affinity

transport system has inducible (iHATS) and constitutively expressed (cHATS)

groups of transporters. The expression of inducible transporters responds

positively to the increase of nitrate availability. cHATS are expressed even

when nitrate is not supplied to the plant (Miller and Cramer, 2005).

The HATS transporters inArabidopsis roots were identified as AtNRT2.1 and

AtNRT2.2 (Cerezo et al., 2001, Okamoto et al., 2003, Orsel et al., 2002). A

mutant lacking AtNRT2.1 and deficient in AtNRT2.2 was demonstrated to
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have limited HATS activity (Cerezo et al., 2001). The AtNRT1.1 transporter

was also shown to be capable of operating in both high-affinity and low-

affinity modes, depending on its phosphorylation status (Liu et al., 1999, Liu

and Tsay, 2003) and it is believed to be a contributor to both cHATS and low-

affinity transport system (LATS) activity (Crawford and Forde, 2002).

The plasma-membrane-targeting protein AtNAR2 was identified as an

important interaction partner for AtNRT2.1 transporter (Orsel et al., 2006).

Comparison of the HATS activity of atnarl.I and atnrt Z.I mutants has

indicated that AtNAR2.1 was also required for the normal function of

AtNRT2.2, as the atnari.l plants appeared to be more impaired in nitrate

uptake. Identification of atnarl.I mutant allows further exploration of the

regulation of high affinity uptake system in Arabidopsis and the parts played

by individual transporters.

Although several LATS transporters were also identified, further experiments

have revealed that the known transporters do not account for all of the LATS

activity (Miller et al., 2007). Two Arabidopsis transporters known to take up

nitrate in the low-affmity range are part of an NRTI protein family with 53

different members, which are also involved in transport of amino acids and

peptides (Williams and Miller, 2001). The first LATS transporter to be

characterised in Arabidopsis was AtNRT1.1 (also known as CHLl) (Tsay et

al., 1993). However, the low-affinity transport in the AtNRT1.1-knockout was

not affected when plants were supplied with nitrate as a sole nitrogen source

and the reduction in LATS uptake only became evident when the plant was

also supplied with ammonium (Touraine and Glass, 1997). Another transporter

found to be important for low-affinity uptake was AtNRT1.2, but in this case

the AtNRT1.2 antisense mutant was found to retain a disproportionately

greater level of LATS activity compared to the reduction in the AtNRT1.2

expression (Huang et al., 1999). One possible interpretation of these results is

that there are more nitrate transporters that operate in the low-affinity range

that have not yet been identified (Miller, 2010).

Nitrate homeostasis within the cell is maintained through the balance of uptake

and removal processes and nitrate efflux from the root is an important

component of this balancing equation. Under normal conditions, nitrate efflux
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Figure 6.1 Ammonium uptake overview. Summary of possible ways ammonium
can enter a plant cell. Image from (Crawford and Forde, 2002).

does not exceed nitrate uptake, although it can be quite substantial (Kronzucker

et al., 1999). At present, one nitrate efflux transporter has been identified in

Arabidopsis - NAXT1, another member of the NRT1 family of transporters

(Segonzac et al., 2007).

It is believed that the ammoruum Ion rather than neutral ammonia is the

predominant form taken up by higher plants, including Arabidopsis (von Wiren

et al., 2000). From the physiological point of view, ammonium uptake also has

biphasic kinetics, with high- and low-affinity components. Two transporters

believed to be of particular importance in the high-affinity range are

AtAMT1.1 and AtAMT1.3 (Rawat et a!., 1999, Gazzarrini et al., 1999).

At higher external concentrations, ammonium can enter the plant cell through a

number of non-specific cation transporters (Figure 6.1). In particular, the

potassium ion is very similar in size and charge to ammonium and it has also

been demonstrated that non-specific cation transporters may transport

ammonium (Howitt and Udvardi, 2000). In its non-charged form, as ammonia,

it may also diffuse directly through the cell membrane or enter through

aquaporins. Shelden, et al. (2001) have shown that the AtAMT 1.2 transporter

can function inboth high-affinity and low-affinity modes (Crawford and Forde,

2002). As was already introduced in the Section 1.4.1.4, ammonium is also
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produced by the reduction of nitrate in the cell. This introduces a complicated

trade-off into the control of uptake and assimilation process - on one hand,

taking up ammonium directly is more energy-efficient because two reactions to

convert nitrate can be skipped (Britto and Kronzucker, 2002). On the other

hand, if allowed to accumulate, ammonium can become toxic to the cell (Britto

and Kronzucker, 2002).

6.2.1.2Nitrogen transport within the cell

The excess nitrate taken up by a plant cell is stored in the vacuole, from where

it can be released if the external supply is interrupted. As nitrate is negatively

charged, its movement into the vacuole is thennodynamicaUy unfavourable, so

the process requires active transport. This transport is mediated by an AtCLCa

hydrogen/nitrate antiporter (De Angeli et al., 2006, De Angeli et al., 2009).

The importance of this transporter for vacuolar storage of nitrate is supported

by multiple pieces of evidence, reviewed in (Zifarelli and Pusch, 2010). In

seeds, AtNRT2.7 is also important for the loading of N03- into the vacuole

(Chopin et al., 2007). AtCLCa was also shown to localise to the tonoplast (De

Angeli et al., 2006), as well as three other members of the CLC family -

AtCLCb, AtCLCc and AtCLCg (Lurin et al., 1996). AtCLCc was identified to

be important for the nitrate accumulation in QTUmutation characterisation

analysis (Harada et al., 2004). The expression of the AtCLCa and AtCLCc is

known to be regulated by nitrate, with the former one stimulated and the latter

being repressed (Geelen et al., 2000).

The process of ammonium storage is believed to be largely passive - it is

predicted that at cytosolic pH some of the ammonium (-3%) will exist in the

form of ammonia that can enter the vacuole by diffusing through the membrane

directly or via aquaporins (Martinoia et al., 2007). As the pH inside the vacuole

is much lower, the ammonium will become protonated and this will prevent it

from exiting the vacuole. This mechanism is known as "acid trapping". When

the cytosolic ammonium is depleted, for example, due to the assimilation via

glutamine synthetases (GS), a new chemical gradient for ammonia is

established that favours its movement out of the vacuole.

6.2.1.3Nitrogen translocation within the plant

There is some evidence which indicates that the cytoplasm of the plant cell is
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maintained in homeostasis with respect to both nitrate and ammonium

(Martinoia et al., 2007, Miller and Smith, 2008), although the concentrations

can vary considerably, even between the adjacent tissues. Cytoplasmic

homeostasis is maintained both through the regulation of uptake and

assimilation processes and through extrusion back into the growth media or

translocation to the xylem or vacuole.

Current research indicates that both nitrate and ammonium can be present in

the xylem sap at relatively high concentrations. The concentrations of 10-

37mM for nitrate and O.4-SmM for ammonium were reported for various plants

grown in conditions with sufficient supply of respective nitrogen source (Miller

and Cramer, 2005). It was shown by Lin et al. (2008) that one of the

transporters involved in xylem loading in the root is AtNRT1.S. However, the

same study also found that this transporter does not completely account for all

nitrate loaded into the xylem. AtNRT1.8 is involved in the reverse process - the

removal of nitrate from the xylem sap into parenchyma cells (Demir et al.,

2010). Another member of the NRT1 family, AtNRT1.7 is involved in loading

the nitrate into the phloem in the source leaves (Fan et al., 2009). Some of the

other members of the NRT1 family have been shown to be involved in the

more tissue/organ-specific nitrate transport: AtNRT1.4 in leaf petiole (Chiu et

al., 2004), AtNRT1.3 in leaves (Okamoto et al., 2003) and AtNRT1.6 in nitrate

loading into seeds (Almagro et al., 2008). The mechanism of ammonium entry

into the xylem is presently unknown (Miller and Cramer, 2005).

6.2.1.4Nitrogen assimilation

The primary nitrogen assimilation processes are mediated by four enzymes

(Miller and Cramer, 2005). The first enzyme in nitrate assimilation is nitrate

reductase (NR), which catalyses nitrate conversion to nitrite. In Arabidopsis

this process is mediated by an NADH-dependant NR (Wilkinson and

Crawford, 1993). NR expression levels show diurnal rhythms and are up-

regulated by high intracellular nitrate. Post-transcriptionally, the enzyme can

be reversibly inactivated by phosphorylation triggered by low cytoplasmic pH

and anoxia (Campbell, 1999, Lillo et al., 2004). Nitrite reductase (NiR)

converts nitrite to ammonium. Its expression is positively regulated by nitrate

and glucose, whereas ammonium has been shown to post-transcriptionally
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down-regulated it (Faure et al., 1991, Crete et aI., 1997).

The pool of available ammonium is used for the synthesis of amino acids

(Figure 6.2). This process commences with the two reactions that form a cycle:

first ammonium is combined with L-glutamate to give glutamine, which is

catalysed by the glutamine synthetases (GS). Then one amino group from the

L-glutamine is transferred to a-ketoglutarate to form two molecules of L-

glutamate (catalysed by the NADH-dependent glutamate synthases (NADH-

GOGAT)). The reverse reaction, which produces the 2-oxoglutarate and

ammoruum from glutamate, is catalysed by the glutamate dehydrogenase

(GDH) (Coruzzi, 2003).

Arabidopsis has four paralogues of GS with different kinetic properties and

regulation mechanisms (Ishiyama et a!., 2004). Expression levels of all GS

paralogues are induced by glucose and suppressed by glutamine and

ammonium, apart from GS 1.2, which is induced by ammonium (Oliveira and

Coruzzi, 1999, Miflin and Habash, 2002, Ishiyama et al., 2004).

Glutamine and glutamate are used for the synthesis of all other amino acids.

The next ones in the chain are the aspartate, which is synthesised from the

glutamate by the aspartate aminotransferase (AspAT) and asparagine, produced

from aspartate by the asparagine synthase (ASP) (Coruzzi, 2003). The latter

sucrose --.. exeleecetere aspartate asparagine

glutamate

glutamate
\

2 GENES
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Figure 6.2 Key reactions, metabolites and enzymes of amino acid synthesis in
Arabidopsis. From Coruzzi (2003).
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reaction also results in the production of glutamate. It was suggested that

amino acids may be important for the overall plant N status (Zhang et al.,

1999, Cooper and Clarkson, 1989), although as the inter-conversion between

these amino acids is possible (CoTUZzi,2003), the exact identity of the ones

that are crucial to this process is still unknown.

6.2.2 Regulatory effects

Nitrogen uptake is regulated to match the carbon status of the plant as well as

its demand for nitrogen itself (Coruzzi and Zhou, 2001). It is believed that the

N status of the whole plant plays an important part in this process via the

xylem/phloem cycling of amino acids (Crawford and Forde, 2002). The

intermediates of the nitrogen assimilation pathway (nitrite and ammonium) are

toxic if allowed to accumulate, and one of the main ways of limiting their

accumulation is to drive forward amino acid synthesis. This process requires

carbon skeletons in the form of 2-oxoglutarate and reducing agents made

during respiration, which, in tum, is reliant on the sugars produced by

photosynthesis. This necessitates a close link between carbon and nitrogen

metabolisms and the coupling of nitrogen uptake processes to the carbon status

of the plant. As is summarised in Figure 6.3, nitrogen metabolites are believed

to be important signals controlling this regulatory system (Jackson et al.,

2008).

An additional store of nitrate and ammonium is also maintained in the vacuole

(Martinoia et al., 2007). These reserves are believed to play an important role

in maintaining the homeostatic concentration of these ions in the cytoplasm.

The changes in homeostasis of nitrate have been suggested to playa role in the

regulation of both nitrogen uptake and assimilation (Miller and Smith, 2008).

High-affinity transporters for nitrate and ammonium are also subject to diurnal

regulation, possibly induced by glucose (Glass et al., 2002, Miller et al., 2007).

Lejay et al. (1999) has shown that in the short-term, AtNRT2.1 expression is

sensitive to the decrease of extracellular nitrate concentration (first 48 hours).

This pattern of expression was explained as the combined result of two

regulatory mechanisms: the repression by the products of downstream N

assimilation and the stimulation by N03- itself. As the levels of Nmetabolites

fell during the first two days of starvation, the repression of AtNRT2.1 was
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lifted, but then the withdrawal of the stimulatory effects of nitrate became more

significant (Lejay et al., 1999). This interpretation is supported by the

observation that the NR-deficient mutant of Arabidopsis also had a higher than

wild-type level of AtNRT2.1 expression. AtNRT2.2 transcription is believed to

be stimulated by high N03- supply, followed by subsequent down-regulation,

but in the case of AtNRT2.2, down regulation occurred much earlier (first 12

hours) (Lejay et al., 1999).

The regulation of AtNRTl.l was shown to be insensitive to the whole-tissue

amount of N-metabolites (Lejay et al., 1999). It was found that its expression

level was greater in the NR-deficient mutants; however the exact nature of the

regulatory mechanism responsible is still not clear. In the same study it was

also demonstrated that both AtNRT 1.1 and AtNRT2.1 transporters are up-

regulated by sugars and light and that the low-affinity transport system is less

sensitive to the stimulatory effects of sugars in the absence of light. Later

AtNRT2.1 was found to have an important role in the regulation of nitrogen

uptake by carbon status, as nitrate uptake in the AtNRT2.1-knockouts was no

longer regulated by the carbon metabolites (Lejay et al., 2003).

Plasma membrane

,,,
NG~---r; --•. ~[~--!--__,;

•I-
I•I•IGlutamine

synthetase
Glutamine --+ Glutamate

I
I
I-
I

t

Figure 6.3 High-level overview of the effects of nitrogen metabolites on its
uptake and assimilation processes. Image source: Jackson, et al (2008).
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Exogenous application of NH4 + and amino acids was reported to result in

down-regulation of AtNRT2.1 transcription; however it is difficult to establish

the exact nature of the metabolite responsible for this effect. There is a

considerable interchange among the different pools of nitrogen within the

plant. In particular, amino acids can be rapidly inter-converted and ammonium

can also be produced during normal metabolic processes (Miller et al., 2007).

All three ammonium transporters known to be important for the ammonium

uptake in the roots (AtAMTl.l, AtAMT1.3 and AtAMT2.1) are up-regulated

by sucrose supply and low nitrogen status (Yuan et al., 2007).

As evident from the account above, there are now a number of high-level

observations about the responses of the various components of the nitrogen

uptake and assimilation system to different stimuli like extra- and intra-

cellular ammonium, nitrate, amino acids, sucrose, light and carbon and

nitrogen starvation. However, the identities of the system components of

responsible for these effects at the gene and protein level still remains largely

unknown. The overall picture about these important processes is still only

available as a collection of largely disjoint pieces.

6.2.2.1 Sensors and regulatory pathways

This section reviews some of the key components of nitrogen-related

regulatory processes that have been identified. Part of the problem is that to a

large extent the plant nitrogen response and regulation systems have been

found to have little homology with genes from other species(Vidal and

Gutierrez, 2008). However some homology has been found in a few cases and

using this information, some of the important components have been

discovered by exploring these similarities (Moorhead and Smith, 2003, Lam et

aI., 1998).

In particular, there are indications that several systems responsible for sensing

nitrogen status in bacteria and animals have counterparts in Arabidopsis. Itwas

proposed by Moorhead and Smith (2003) that plants may have a PI! system for

detecting glutamine concentration, similar to that found in bacteria - where the

PI! signalling protein is phosphorylated in response to changes in glutamine

and 2-oxaglutarate concentration, triggering the downstream regulatory

processes (Miller et al., 2008). Previously, this protein was suggested to act as
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a nitrogen sensor in Arabidopsis (Hsieh et al., 1998), proven to interact with N-

acetyl glutamate kinase, an enzyme involved in arginine synthesis (Chen et al.,

2006b) and shown to be important for the control of argenine biosynthesis in a

study by Ferrario-Mery et af. (2006). PH over-expression was linked to the

reduced sensitivity to glutamine (Miller et al., 2008). A recent paper suggests

that N02 transport into the chloroplast is enhanced in PH-mutant plants

(Ferrario-Mery et al., 2008).

AtNRT1.l has long been suspected to have a regulatory role - in particular, in

the control of the root growth responses (Walch-Liu et al., 2006, Walch-Liu

and Forde, 2008) and the expression of nitrate-responsive genes (Wang et al.,

2009), including another nitrate transporter AtNRT2.l (Munos et al., 2004). In

a Ho et al. (2009) study, the AtNRT1.1 was identified as the first transporter

with a receptor functionality known in plants. From the insights in this and

related works it became apparent that a change in the phosphorylation status of

this transporter is important not only for the switch between low- and high-
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Figure 6.4 Consolidated overview of known nitrogen-related regulatory
processes. Image from Ho and Tsay (2010).
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affinity transport modes, but also for its role as a nitrate sensor. At the moment

two of the kinases modulating this activity have been identified. One is the

CIPK23, which is a negative regulator for the signalling pathways of the initial

responses to high nitrate availability initiated by the AtNRTl.l (Ho et al.,

2009). This kinase also mediates the switch between low- and high-affinity

nitrate uptake modes (Ho et al., 2009). Another one is the CIPK8, which is a

positive regulator of the initial responses to low nitrate availability (Hu et al.,

2009). The identity of several transcription factors involved in these primary

responses to nitrogen is also known - LBD27/38/39 (Rubin et al., 2009) and

NLP7 (Castaings et al., 2009) are the negative and positive regulators of

nitrate-related genes respectively. The genes known to be important for the

initial response to changes in nitrate availability are reviewed in a recent

publication by Ho and Tsay (2010), an overview from which is included here

as Figure 6.4.

At present, only one gene has been identified as being involved in longer-term,

adaptive responses to changes in nitrogen supply. This gene is NLA, which is a

RING-type ubiquitin ligase (Peng et al., 2007). Plants with a mutation in this

gene did not initiate any adaptive responses found in wild-type plants, when

exposed to nitrogen-limited conditions (Peng et al., 2007).

The ANRI transcription factor, a regulator of nitrate-responsive lateral root

growth in Arabidopsis (Zhang and Forde, 1998). Experimental evidence from

mutants suggests that this transcription factor and putative gene AXR4 both

play a role in this pathway (Crawford and Forde, 2002, Walch-Liu et al.,

2006). Experiments with the chll-5 mutant, which has a defective AtNRT1.1

transporter, provided evidence that AtNRTl.l itself is also important for

nitrate-induced lateral root elongation and may be the origin of the signal

transmitted by these other proteins (Walch-Liu and Forde, 2008, Walch-Liu et

al.,2006).

As reviewed in (Zhang and Forde, 2000), a combination of local and systemic

nitrate supply and N status of the plant have been demonstrated to have

profound effects on the development of root system architecture. High overall

nitrate availability has an inhibitory effect on lateral root elongation (Signora et

al., 2001). This inhibition is abscisic acid-dependent and two transcription
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factors (ABI4 and ABIS) are important for this regulatory pathway (Signora et

al., 2001). This systemic effect appears to be different from the localised

effects of nitrogen (described above), which stimulates lateral root growth.

Another protein identified to play a role in root architecture development is

ARF8, which is important for nitrate-controlled lateral root emergence (Gifford

et al., 2008).

Research by Remans et al. (2006) and Little et al. (2005) on the responses of

the root system to nitrate availability indicates that AtNRT2.1 also plays a part

in this process. The initiation of later root primordia in the atnrt2.1 mutant is

inhibited at low nitrate availability, but also shows reduced repression by high

C:N ratio. Both of these responses are different from the wild-type and were

shown to be independent of AtNRT2.1 function as a nitrate transporter. The

atnar2.1 mutant also has a distinct phenotype with respect to lateral root

development manifested as an enhanced growth rate 4-5 days after the transfer
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Figure 6.5 A putative model of the regulatory pathways involving AtGLRl.l
receptor. From Kang et al. (2004).
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to high nitrate media and it was suggested by Orsel et al. (2006) that this may

indicate that AtNAR2.1 has other functions, as yet unidentified.

Some of the genes important for the detection of C:N ratio and mediation of

relation responses are also known. One such gene is AtGLR1.1, a member of a

family of 20 putative glutamate receptors identified by homology (Lam et al.,

1998). In a study by Kang et al. (2004), it was shown to have a role in the

mediation of the ABA biosynthesis during germination in response to N and C

signals. In this study a model was produced that summarises these fmdings,

which is shown in Figure 6.5. Another transcription factor implicated in the

regulation of the C:N effects is DOF 1 (Yanagisawa et al., 2004). This gene is

known to positively control the expression of several enzymes involved in the

production of carbon skeletons used by the nitrate assimilation. Over-

expression of the DOFI gene led to an increased nitrogen use efficiency and

higher nitrogen content in the tissues (Yanagisawa et al., 2004). In a genetic

characterisation study by Bi et al. (2005) (a member of a family of 30 GATA

transcription factors) was identified to be nitrate-inducible. The ISO-bp long

cis-regulatory site adjacent to the AtNRT2.1 transporter was found to contain

the possible binding motifs for both DOFt and GNC (Girin et al., 2007, Vidal

and Gutierrez, 2008). However, experimental evidence is at present lacking to

confirm this link. One other gene proposed as an important modulator of C:N

responses is a putative methyltransferase OSUlIQUA2/TSD2 (Gao et al.,

2008). A mutation in this gene was found to cause plants to become more

sensitive to the unbalanced C:N ratio and have higher expression of ASNI

enzyme (Gao et al., 2008).

An organic nitrogen-responsive gene regulatory network consisting of CCA1,

bZIPl and GLKI transcription factors was identified in a study by Gutierrez et

al. (2008), in which a treatment was designed that allowed them to identify the

groups of genes that respond to organic versus inorganic nitrogen metabolites.

The same study also constructed a network model and produced some

supporting evidence that these transcription factors are, in tum, regulating the

enzymes important for the primary amino acid synthesis, namely ASNl, GDHI

and GLN1.3. CCAI is also known to be part of the circadian clock circuit in

Arabidopsis, and, in this way may also be important for the integration of the
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circadian effects and nitrogen metabolism (Gutierrez et aI., 2008).

6.3 ApPLICATION CASE: ATNAR2.1 MUTANT STUDY

As explained in the introduction section, high affinity transporters (HATs)

mediate the uptake when the concentration of the substrate in the growth

medium is low. One of the key components of nitrate HATs in Arabidopsis is

AtNRT2.1. Although other transporters have been demonstrated to be able to

take-up nitrate in the low affinity range, this protein is believed to be the main

transporter for primary uptake in the Arabidopsis roots.

In the Orsel et al. (2006) study it was demonstrated that this transporter is part

of a two-component system, where a protein-protein interaction with

AtNAR2.1 protein is required to ensure that this transporter is correctly

targeted to the outer cell membrane. In the same study it was also demonstrated

that without the AtNAR2.1 protein the plants are unable to take up sufficient

nitrate at the low affinity range, which results in growth retardation and dwarf

phenotype (Figure 6.6). Besides being a key component of the nitrate uptake

system, originally AtNAR2.1 was characterised as a wounding-response

protein (Titarenko et al., 1997). AtNRT2.1 was also hypothesised to be

involved in signalling or nitrate sensing (Little et al., 2005). As the

mechanisms for both of these processes remam poorly understood, an

expression study of the AtNAR2.1 mutant was chosen as an example for this

chapter because of its relevance to this direction of on-going research.

Figure 6.6 A mutant with a defective copy of the AtNAR2.1 protein (lower
plants) and wild-type (upper plants) grown in soil with high medium and low
nitrogen availability (right to left). Image from Orsel et al. (2006).
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6.3.1 Experiment overview
The selected experiment looked at the differential expression in the shoot and

root of the wild-type and an AtNAR2.1 mutant. In the mutant line the

AtNAR2.1 protein copy is still expressed, but is defective with the effect of

disrupting the targeting of the AtNRT2.1 transporter to the outer cell

membrane. The pre-analysed results of this experiment where obtained from

the CATdb database (Gagnot et al., 2008), where it is available under the

accession RAOS-12_NAR2. The nar2.1 mutant and wild-type plants were

grown on hydroponic media with 6mM nitrate for 41 days. After that, they

were transferred to the media containing either 0.2mM or 6mM nitrate. The

plants were harvested after 24 hours and profiled using Complete Arabidopsis

Transcriptome MicroArray (CATMA) technology (Crowe et al., 2003). The

shoot and root were profiled separately, with four biological and eight technical

replicas in each case. The analysis done by the investigators produced four lists

of differentially expressed genes (organ type x nitrate availability) where the

expression was compared between the nar2.1 and the wild-type plants

subjected to the same treatment. These lists were loaded into the Ondex

system, mapped onto the integrated network and served as a set of "guide

genes" for further analysis.

6.3.2 Coexpression network construction
The coexpression network was constructed by selecting a subset of expression

experiments where nitrogen regulation, assimilation or uptake systems were

perturbed. The suitable experiments were selected by manually reviewing all of

the expression profiling experiments from the NASC and ArrayExpress

databases that used Affymetrix ATHI-121S01 chip. The [mal set contained

220 slides from the 13 different experiments (Table 4.2). This set of slides was

then processed using the coexpression network construction method described

in chapter 6. For this analysis, the ambiguous probe sets were excluded which

meant that the total number of genes in the dataset was reduced to 20440. The

weighted version of the Pearson correlation was used and the cut-off threshold

for the inclusion of edges was determined according to the method of Elo et al.

(2007) and found to be 0.77. Application of this threshold resulted in a network

of 11360 nodes and 882862 edges. This network was then imported into an
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Table 6,1 Microarray experiments used for the construction of the nitrogen-
relevant meta-coexpression network.

Array ID Description
Total Removed

number of samples
samples

91

6

8

8

16

6 I

8 4

E-GEOD-9148

10

NASC experiments

NASCARRA YS-490 Cell-specific nitrogen responses in the Arabidopsis
root

NASCARRA YS-48 J

NASCARRA YS-485

Arabidopsis treated with nitrite and nitrate

Systems approach identifies an organic nitrogen-
responsive gene network that is regulated by the
master clock control gene CCAI.

NASCARRA YS-479 Treatment of Arabidopsis with low concn. of
nitrate

NASCARRA YS-480 WT vs. NR null mutant high nitrate concn.
treatment

NASCARRA YS-I03 Identification of genes involved in nutritional
regulation of root architecture

NASCARRAYS-46
Nutritional control of plant development: molecular
analysis of the NO)" response pathway in
Arabidopsis roots.

ArrayExpress experiments

E-GEOD-20493

E-GEOD-188J8

Transcriptional profiling of an Fd-GOGATI/GLUI
mutant in Arabidopsis thaliana 16

E-MEXP-82S'

Transcription profiling of Arabidopsis over-
expressers and mutants of TFs-gene LBD37 and
LBD38 under different nitrogen regimes

Transcription profiling of Arabidopsis 10 day old
wild type and chl l-S plants exposed to 25 mM
nitrate for Oh or 0.5h

Transcription profiling of Arabidopsis roots from
plants grown in nutrient solutions with various
concentrations of nitrate and sucrose

18

12

34

E-MEXP-1771
Transcription profiling of Arabidopsis wild type
seedlings grown with NH4NO) or urea as nitrogen
sources

4

E-MEXP-1770
Transcription profiling of Arabidopsis wild type
and choride channel d-I mutant seedlings grown on
various nitrogen sources

8

'This set also contains samples that looked at the responses to carbon availability only. which were excluded

Ondex representation and integrated with the ARA-REF, GOA-BP and SUBA

datasets using the TAIR accession identifiers.

6,3,3 Dataset analysis

The coexpression network was analysed in the Ondex front end and filtered by

selecting only the portions of the network that corresponded to a particular set

(or combination of sets) of differentially expressed genes. The subsequent

analysis methods were then only applied to these selected subsets of nodes and
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edges. As the shoot and root sets for plants grown under high nitrogen had very

small number of genes, only the two lists from the low-nitrogen treated plants

were used for further analysis.

First, the combined functional enrichment of the root and shoot sets under the

low nitrogen availability was conducted. The enrichment was calculated

separately for each list relative to the total set of all Arabidopsis genes from the

ARA-REF with GO biological process annotation. For each of the function

categories found to be differentially expressed, a count of up- and down-

regulated genes was made in order to interpret the type of the response. In

order to understand the differences in the shoot and root responses, the

produced two sets of GO terms were then compared with each other and

commonalities were identified. The set membership of the enriched GO terms

was then added as an attribute to the corresponding GO term node in order to

enable visual inspection in the Ondex front end.

At the next step, the modular structure of these sub-networks was further

explored through the application of the MeL clustering algorithm. For each

clustering run, a sub-network of the whole coexpression network was selected
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Figure 6.7 Optimization of the MeL inflation coefficient. The plot shows how
the proportion of the edges that connect two genes that share at least one GO
annotation changes with the inflation coefficient, as the edges are reassigned to
either within- or across- cluster sets.

171



by only retaining a set of nodes corresponding to a set (or a combination of set)

for particular gene list(s). This network was then interpreted as an adjacency

matrix weighted by the absolute value of the Pearson correlation coefficient of

the coexpression edges and passed to the MCL algorithm. The inflation

coefficient (I) parameter of the MCL controls the granularity of clusters

returned by the algorithm. For this application case, it was op timised to give

the optimum distribution of the edges that connect functionally similar genes

(Figure 6.7). As shown in this Figure, the optimum I range for this graph was

found to be between 2.3-2.9. At the higher levels, only one large cluster and

one-node large "orphan" clusters were produced with only a small numbers of

edges around the periphery of the main cluster reassigned as the inflation was

increased further. This accounts for the symmetric pattern observed in the

graph after this point. The greatest positive difference between the within- and

across- cluster links with shared functional was found to be 2.6, and this value

of I was used for the analysis.

After clustering, the GO function of the modules was explored using both the

sets of representative MICAs and statistical enrichment (Fisher'S exact test)

approaches. This portion of the analysis was undertaken for the pooled set of

genes from both root and shoot under the low nitrogen treatment under the

hypothesis that, as largely similar or related set of functional responses was

found in both organs, the combined set can serve to further highlight this

commonality.

The transcription factor data was used to identify the likely regulators that

might be controlling the expression with the modules and possible transcription

factor-to-target relationships. In order to further explore the link between the

AtNAR2.1 and the response to wounding, a list of genes from the Chini et al.

(2007) study was also included in the network. This study looked at the genes

that were differentially expressed in response to the jasmonic acid (JA)

treatment. Jasmonic acid is a known initiator of the downstream systemic

response to wounding (Titarenko et al., 1997).

The analysis was also combined with the manual examination of the gene sets,

underlying network and the relationship between the enriched functional terms

and the structure of the Gene Ontology. In addition to the methods for
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response to ethylene stimulus

Figure 6.8 GO-centric representation showing the entirety of the significantly
enriched biological processes in the shoot and root sets mapped onto a GO
ontology DAG. Shoot processes are shown in green root - in red and those
found in both organs - in blue. To reduce clutter, labels are only shown for the
terms with information content greater than 6.25.

annotation and ontology-driven analysis, which were already introduced in the

earlier chapters, new visualisation strategies in the Ondex front end were also

implemented that complement them and allow the effective presentation of

these often large statistical sets. As well as show-casing the developed

analytical functionality of Ondex in an applied setting, the example presented

m this chapter also arms to demonstrate these visual and interactive

components of the system.

6.3.4 Results

In order to understand the underpinning set of biological differences between
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Figure 6.9 The main connected component of the coexpression network that
was filtered to only contain the genes from the shoot and root sets from the
low-nitrogen treatment (top). Root-specific nodes and connecting edges are
shown in blue, shoot - in green and common to both - in pink. The lower panel
shows the common subset only.

the mutant and a wild type the combined set was analysed for functional

enrichment. The results of this analysis are presented in the Figure 6.8. A

complete set of all enriched biological processes is also included in the

Appendix. From this visualisation it is evident that, as expected the set includes

a number of nitrogen metabolism-related terms. In particular, a lot of terms

appear to be themed around nucleotide, purine and ribonucleotide metabolism

(top of Figure 6.8). This image also illustrates a specialised view for presenting

the GO annotation analysis results in Ondex front end developed as part of the

work on this thesis. However, because of the constraint of the page margins,
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the image had to be condensed. As this lead to reduced readability, the same

information is also provided as a supplementary table in the Appendix 0 of this

thesis. This set of processes found to be significantly enriched by this analysis

appears to be primarily restricted to the above ground part of the plant. A

Figure 6.10 Modules in the main connected component as they have been
resolved by the clustering algorithm. The numbers show the assigned
identifiers by which they are referred to in the main text.

downstream, related process of "ribonucleoprotein complex biogenesis and

assembly", is occurring in both of the organs.

Another set of processes specific to the shoot appears to be related to the

generation of ATP/energy through combination photosynthesis

("photosynthesis", "electron transport chain") and respiration ("A TP

formation", "respiratory-chain phosphorelation") processes. Another, indirect

indicator that there may be an excess of carbon metabolites as a result of up-

regulated photosynthetic activity in the mutant is the presence of the "response

to carbohydrate stimulus" process in the root. There are also some evidence of
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the regulatory events - the "phosphorelay" and "response to ethylene stimulus"

processes in the shoot and "down-regulation of cellular process" in the root.

Table 6.2 A selection of significantly enriched biological processes in clusters.

Cluster Members Go term IC Go term name
GO:OO19538 2.92 protein metabolism
GO:OO43284 3.41 macromolecule biosynthesis
GO:OOO6416 5.41 protein biosynthesis

1 71
ribonucleoprotein complexGO:OO22613 7.01
biogenesis and assembly

GO:OO42254 7.06 ribosome biogenesis and
assembly

GO:OO51869 2.52 physiological response to
2 23 stimulus

GO:OOO6950 3.23 response to stress

GO:OO51869 2.52 physiological response to
stimulus

GO:OOO6950 3.23 response to stress

GO:OO51171 3.48 regulation of nitrogen
metabolism

GO:OOO9725 4.60
response to hormone stimulus

GO:OO23033 4.56 signaling pathway

3 19 GO:OOO6355 4.45 regulation of transcription, DNA-
dependent

GO:OO51252 4.44
regulation of RNA metabolism

GO:OOO9873 7.09 ethylene mediated signaling
pathway

GO:OOO9743 6.84 response to carbohydrate
stimulus

GO:OOO9723 6.53
re~onse to ethylene stimulus

5 14 GO:OOO6416 5.41 protein bio~thesis
6 13 GO:OOO6950 3.23 response to stress

GO:OOO6950 3.23 response to stress
7 10 nitrogen compound metabolicGO:OOO6807 2.93

process

The "small molecule catabolic process" may be an indication of the nitrogen

recycling in response to reduced supply, as the mutant plant would not be able

to take up sufficient amounts of nitrate at the concentration used for the

treatment. There are also a number of enriched terms in the "response to stress"
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branch of the ontology - e.g. "response to oxidative stress" and "response to

cold".

The main component of the coexpression network linking the nodes in the two

low nitrogen gene lists is shown in Figure 6.9. This set contains 260 out of 419

total genes in the pooled lists. Ten other genes located in very small connected

components and 149 are not connected via the coexpression links (not included

in the figure). The intersection between the shoot and root sets contains only

42 genes. This is in contrast to the much larger intersection of enriched

processes common to both organs and may be an indication of a common

regulatory control, which is then subject to the organ-specific modulation that

leads to the same types of processes being realised by differing sets of proteins

specific to those two organs. Interestingly, in the main connected component

all but one of these genes are connected to at least one of the others via the

coexpression edge. Of those, all but two are indirectly connected to all others

in this way. This pattern may be an indication that the common mechanism of

control is realised at the level of transcription. Therefore, this set of genes is

particularly suitable for further study aiming to identify this putative common

control mechanism and its link to the AtNAR2.lIAtNRT2.1 genes.

In the Figure 6.10 it is shown how the main connected component was

partitioned by the MCL algorithm. Including the other, smaller connected

components 32 clusters have been identified in total. However, as evident from

the image a large proportion are of size 1-2 and are of limited use for further

interpretation of the network. All of the identified clusters were assigned

numerical labels for further reference, in order of decreasing cluster size.

Ten of the largest clusters in Figure 6.10 are identified by labels by which they

will be referred to in this chapter. The Table 6.4 shows the sets of

representative sets of MICAs identified for the clusters, which are applicable to

at least 40% of all members. The largest cluster (1) appears to have a lot of

genes involved in "cellular biopolymer metabolic process". Further

examination of its members appears to indicate that this activity is protein

synthesis, as 42 of the proteins in this module were found to have annotation or

name (from either TAIR or UniProt) that identifies them as components of the

ribosome. This fact does not appear to be adequately represented by the GO
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annotation, where only 22 of these proteins were annotated to one of the

protein synthesis or ribosome-related terms ("protein synthesis elongation",

"protein synthesis" or "ribosome biogenesis"). This indicates that, even despite

using the most complete GO set possible, the annotation sets for proteins are

still incomplete. A similar situation was also observed in the case of cluster 5,

which is located close to 1, is annotated by the "cellular biopolymer metabolic

process" term and contains proteins where name or annotation indicates

ribosome-related activity. Interestingly, despite the similar function and

proximity within the network, cluster 5 appears to be predominantly shoots-

specific, whereas 1 is mostly composed of root-localised proteins. This may be

an indication that this separation may be biologically justified.

Clusters 2 and 3 appear to contain "response to stress" -annotated genes.

Notably, cluster 3 also contains 8 genes annotated with "cellular nitrogen

compound metabolism" term, indicating its immediate relevance to the

nitrogen-related responses.

Table 6.3 All significantly enriched SUBA compartments in clusters.

Cluster Number of SUBA Annotated
members compartment genes

mitochondrion 13

1 71 peroxisome 6

cytosol 11

2 23 plastid 10

3 19 nucleus 6

vacuole 3

S 14 cytosol 4

nucleus 7

extracellular 3
6 13

nucleus 4

7 10 plastid 5

golgi 3
8 9

vacuole 4

10 7 peroxisome 2

The enrichment analysis of the clusters appears to be largely consistent with

these observations. The Table 6.2 provides an overview of the enriched

processes - because the enrichment analysis is not limited by the low numbers

of proteins, in this case the "protein metabolism" was identified as significantly
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over-represented in clusters 1 and 5. One of the largest groups of significantly

over-represented gens in clusters 2, 3, 6 and 7 was found to be "response to

stress" process. Additionally, Cluster 3 was enriched for "regulation of

nitrogen metabolism" (8/19 genes) and cluster 7 - for "nitrogen compound

metabolic process" (4/10) genes, which are of particular relevance to the topic

Table 6.4 All MICAs that apply to at least 40% of annotated cluster members.

Coverage

Cluster Cluster MICA IC Name (relative to
members annotated

eenes)

00:0034960 2.29 cellular biopolymer metabolic
41.43%

1 71 process

00:0044238 1.67 primary metabolic process 45.71%

00:0006950 3.23 response to stress 40.00%
2 23

00:0009987 1.28 cellular physiological process 40.00%

00:0006950 3.23 response to stress 50.00%

00:0010033 4.22 response to organic substance 55.56%

00:0009719 4.49 response to endogenous
44.44%stimulus

3 19 cellular nitrogen compound00:0034641 2.99
metabolism 44.44%

00:0061019 3.54 regulation of cellular
44.44%transcription

00:0044238 1.67 primary metabolic process 44.44%

00:0071840 3.72 cellular component
42.86%organization or biogenesis

00:0010467 3.38 gene expression 50.00%

5 14
00:0034960 2.29 cellular biopolymer metabolic

process 57.14%

00:0044249 2.78 cellular biosynthetic process 42.86%

00:0044238 1.67 primary metabolic process 71.43%

6 13 00:0008152 1.36 metabolic process 63.64%

7 10 00:0044237 1.73 cellular metabolic process 60.00%

of the experiment.

Cluster 3 had the largest count of enriched biological processes (51 terms).

Among them, were the "ethylene mediated signalling pathway", "ethylene

mediated signalling pathway", "response to carbohydrate stimulus",

"regulation of RNA metabolism" and "regulation of transcription, DNA-

dependent". The co-occurrence of these functions in the same cluster may be

an indication that they are related. One possible hypothesis would be that the

RNA synthesis (possibly contributing to the ribosome biogenesis process) is

up-regulated in response to the ethylene and/or carbohydrate stimulus. As most
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of these functions are annotated to the same group of 7 proteins, which are

appear to be transcription factors (both according to transcription factor

databases and "regulation of transcription, DNA-dependent" GO annotation)

the mechanism of this regulation appears to be on the level of transcription.

The origin of the carbohydrate stimulus may be due to increased

photosynthetic activity in shoot, which was noted earlier. Another set of

annotations of note are "physiological defence response" and "response to

chitin", as both of them are defence responses related to wounding - either due

to predation or pathogen activity. Ethylene is also known to be one of the

phytohormones important for wounding response in Arabidopsis (Titarenko et

al., 1997).

Additionally, the enrichment with respect to SUBA compartment categories

was also looked at. The results are presented in Table 6.3. Cluster 1 appears to

also include proteins localised to the mitochondrion and peroxisome. The

former may be an indication that members of this module may be also

important for the respiration-related processes, which were picked up in the

combined set enrichment analysis, but were not observed in any of the

modules. Clusters 2 and 7 contain a larger than expected number of plastid

proteins, indicating its possible involvement in the photosynthesis-related

activities. Cluster 2, which has 10 of plastid-localised proteins, also appears to

be predominantly shoot-specific. That provides an additional indication of

possible importance of this module for photosynthetic processes.

To further understand the regulation on the level of transcription that gave rise

to the observed coexpression network, the transcription factors and the genes

that they are directly coexpressed with were highlighted in the network (Figure

6.11). This was done on the basis of transcription factor annotation contributed

by the SET. With the exception of bZIP47, all of the most highly connected

transcription factors are found within larger clusters and tend to be coexpressed

with the members of that cluster, indicating good correspondence between

cluster assignment and likely co-regulated groups of genes. In the cluster 1, 39

out of 71 members are coexpressed by just three transcription factors. Out of

them, 10 are with all three, and 22 are coexpressed with two. Surprisingly, the

transcription factors themselves are not coexpressed with each other possibly
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Figure 6.11Transcription factors (purple) and their targets (blue).

indicating that the mechanism that coordinates their activity in this experiment

is not transcription-based. One of these transcription factors (AT2G35605) was

found to be completely unannotated, so its association with this module via the

coexpression links has provided some clues to its likely function.

A most notable feature highlighted by this view is that cluster 3 contains a

large group of coexpressed transcription factors; all but two of them are

Ethylene-Responsive Transcription Eactors (ERFs). The remaining two

transcription factors are AtSZF2 and WRKY 40, both of which are believed to

be particularly important for response to pathogens (Chen et al., 2010,

AbuQamar et ai., 2006). In the AbuQamar et al. (2006) study, AtSZF2 was

also observed to be coexpressed with several of the ERF and WRKY

transcription factors in response to Botrytis infection.
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ATlG32920

CRRSPSS

.T11111.190
Ilbberellin-relulated family protein

Figure 6.12 A labeled members of cluster 3 showing the root (blue), shoot (green)
and both (red) gene list membership (top panel) and intersection of the pooled
list of genes with the list of JA-responsive genes (in orange, bottom panel).

By overlaying the network with an additional list of genes known to respond to

jasmonic acid (lA) treatment (Figure 6.12, top), it was possible to see that there

is only one large, coexpressed group of genes in that intersection and that it

almost directly corresponds to the cluster 3. Although none of the members of

this cluster had any lA-related annotation, the only lA-related protein in the

coexpression network (lAS IITIFY9) was found to be directly connected to

cluster 3 with its only edge in this set and was also part of the intersection of

the AtNAR2.1 mutant and lA-responsive set, providing additional indirect

evidence of the implication of this module in the wounding response and

jasmonic acid.

Cluster 3 contains 11 shoot-specific proteins, 7 root-specific ones and 2 which
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are found in both organs (Figure 6.12, bottom). This effectively splits the

cluster almost in half, again indicating that a similar biological process is

realised by two largely distinct groups of genes."However, as AT4G29780 and

AG-peptide 20 are found in both sets, it is possible to hypothesise that they

may either be directly involved in the coordinated regulation of this model or

are directly controlled by a regulatory mechanism found in both shoot and root.

Of the two genes, only a completely uncharacterised AT4G29780 is

coexpressed with all of the transcription factors, making it a good target for

further research for better understanding of the .

6.3.5 Discussion

Studying the regulatory effects of nitrogen is often complicated not only by the

sheer number and complexity of the regulatory pathways, but also by the

context-specific nature of these responses. For example, in a meta-analysis

study by Gutierrez et al. (2007a) of the 2021 genes differentially expressed in

at least one of four N-system perturbation experiments, only 345 were found to

be shared across all of them. The effects at tissue- and cell type-specific levels

were also found to be very distinct (Gifford et al., 2008). Previously the

systems approach, which employs networks for interpretation of these complex

heterogeneous datasets, was already successfully used in the study of nitrogen-

dependent regulation (Gutierrez et al., 2007b, Gutierrez et al., 2008) and lead

to the identification of the CCAI as one of the important controllers of the

nitrogen metabolism in addition to its involvement in the circadian clock. In

this application case, a similar, network- and functional annotation driven

approach was implemented based on the various datasets and components

development of which was described in earlier chapters. The approach of

constraining the coexpression data by applying an appropriately selected gene

list as a filter was introduced as a way of providing a context-specific focus to

an otherwise large and complex coexpression network.

By integrating the data from the NAR2.1 mutant with coexpression data it was

possible to gain additional insight about the groups of genes that are involved

in a particular biological functions affected in this mutant. Inparticular, a large

group of highly interconnected nodes was dissected into clusters 1 and 5,

which were found to be involved in protein synthesis in the root and shoot
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respectively. Inaddition to that, by identifying the transcription factors present

in those two modules putative regulatory links were inferred. In module 5 the

regulator appears to be the "salt tolerance protein", whereas in cluster I the two

putative regulators were the "zinc finger (C2H2 type) family protein" and

"At2g3560S!f20F21.29". It is also notable that a number of transcription

factors in this network were poorly annotated and, by considering the

functional composition of the modules where they were found, it was possible

to make inferences about their function. By combining the coexpression

network with set-driven analysis that allows several gene lists to be explored in

parallel, a group of transcription factors in forming a module shown on Figure

6.12 was identified that are likely to be important for understanding a link

between the NAR2.1INRT2.1 and response to wounding previously reported in

another study (Titarenko et al., 1997). Further to that, a number of currently

uncharacterised genes where also linked to that process by a combination of

coexpression and clustering analysis.

Coexpression can provide important clues about the regulatory relationships

between transcription factors and their target proteins. In the case of

Arabidopsis the ability to extract these relationships using this method is

particularly important - as at the moment very few such regulatory links are

available from the databases, like AtRegNet (Palaniswamy et al., 2006). This

situation, however, also poses an additional problem in that although

coexpression has been shown to be useful for extraction of regulatory links in

other well-studied species, there is insufficient data to quantify the accuracy of

these predictions. Even in the studies where such relationships were validated,

some problems were encountered due to insufficiently representative negative

control set size - e.g. the transcription factors that were demonstrated not to

regulate particular targets. For this work, the assumption was made that

coexpression between transcription factors and other types of proteins may

infer direct regulatory relationships. However it is also recognised that there

are likely to be a number of false positive associations that arose from this

analysis, but there exact number cannot be ascertained exactly using currently

available data.

Another limitation of the analysis is that the fact that the coexpression links
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were recovered from the set of related experiments does not necessarily imply

that they were also active in the experiment from which the gene set have

originated. As such, a link in a network should only be seen as a "best guess"

about what coexpression effects may be of relevance to the gene set.

Consequently, such associations should always be confirmed by more direct,

experimental means if they are found to be particularly important. Some

regulatory relationships may also be realised via PPI or protein-metabolite

interactions, which are not captured in the coexpression network and proteins

may also have currently unknown roles in regulation of transcription.

Coexpression networks also combine expression patterns from many different

tissues and therefore some of the links may not actually be active in the same

combination in reality. This problem was partially addressed in the work

described here by only considering a subset of the network at a time, which

consisted of the genes that have been shown to be expressed together at the

same tissue. However, even this strategy may not produce the best possible

result, as some of the tissues are actually composed of several

transcriptomically distinct cell types - e.g. 'root' can be further decomposed

into at least ten different types of cells (Dolan et al., 1993). The results of the

transcriptomic studies that used fluorescent sorting method (Bargmann and

Birnbaum, 2010) to separate individual cell type may be an even more accurate

way of addressing this problem, but at present very few expression data sets

that use this technique are available. Data from experiments with better levels

of spatial resolution are likely to become increasingly more common in the

future because the adoption of next generation sequencing technologies enables

very small amounts of RNA to be quantified (Hoen et al., 2008), potentially
opening up the possibility of a single-cell expression profiling,

Despite the challenges outlined above, the method described here provides a

robust and flexible approach to coexpression network construction and

incorporates a number of current methods for improving quality of the results

produced. In this chapter it was also illustrated that this approach provides a

functional way of mining the wealth of currently available micro array data and

allows this type of data to be summarised and interactively explored. By

applying additional level of filtering to the data - both at the stage when the
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subset of experiments for network construction is selected and by using gene

lists to restrict the set further, may bring an additional advantage of detecting

coexpression modules that only exist under specific conditions, however

further work will be necessary to confirm that this is indeed the case. Another

potential uses of this pipeline include target gene prioritisation and

identification of putative transcription factor-target relationships.
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7 CONCLUSION

The main motivation for the work in this thesis was to develop an integrated

analysis framework for studying transcriptomics data from Arabidopsis

thaliana using biological network analysis approaches. To realise this

objective, it was necessary to extend and refine the Ondex system in two ways:

(1) to develop software tools that would deliver the necessary analysis using

flexible software architecture (2) to create an appropriate data model and a set

of integration pipelines to populate it. Both these tasks are, however,

interdependent to some extent, as the integration and analysis was defined in

terms of the tools and components of the Ondex framework. The principles of

generality and standardisation were rigorously applied on all levels of the

development processes. As a result, the code that was contributed to the Ondex

system can function both a self-contained application to deliver the analysis

presented in the earlier chapters, but also can be decomposed into a set of

independent functions and software modules. These simple units of

organisation can then be re-used as the basis for subsequent developments or

can be re-arranged to deliver different analysis pipelines.

Among the new functionality delivered was the addition of support for new

types of data and resources previously unavailable in the Ondex data

integration toolkit. In particular, this project realised the first introduction of

protein-protein interaction and coexpression data to the system. A number of

new supporting annotation resources were also added - among them, three

transcription factor databases and cellular localisation resources. Extensions to

the data analysis features in Ondex included a new interface for scripting

environments which has opened up the option to use a wider range of third-

party analysis routines within Ondex ( in particular NetworkX and

RlBioconductor). Additionally, this project first introduced the use of

clustering and graph analysis methods for mining Ondex networks and defined

the required formalisms for the conversions of a typed knowledge networks

into representations used by these methods. Ontology-driven analysis methods

were also implemented in order to facilitate the process of relating the various

network features identified by those approaches to the biological function.
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These new developments to the Ondex system were used to address problems

presented by different application cases from plant bioinformatics. These were

presented in chapters 4-6. The first application case (chapter 4) developed a set

of integrated gene function resources for plant biology to better understand the

coverage and quality of information currently available in functional

annotation and protein-protein interaction databases. Understanding how

different approaches accumulate, manage and represent biological information

impact on the bioinformatics analysis is of great importance for the

development of better data integration strategies. The analysis presented in

chapter 3 has quantified and compared the differences in the data managed by a

number of key data providers of Arabidopsis data. The fmdings have indicated

that there are clear benefits arising from the integration of multiple data

sources, both in terms of improved confidence and quality of the data. The

results of this work have now been published in (Lysenko et al., 2009). The

integrated datasets developed for this work were also used to support further

analysis presented in chapter 6.

The integrated datasets developed constitute a valuable resource that can be

used to drive further analysis. The continued relevance and currency of these

data sets was assured by the collection of supporting workflows that can be

used to update them with the newest data. As Ondex is a community-driven

project with many developers and users, it is likely that, even if the data

sources change, the corresponding parsers will be updated by the community to

be able to cope with these changes. Many of the data sets developed as part of

this work have now contributed to the research of others, and a number of them

have now been made available to the wider community via the Ondex project

website.

In chapter 5, four datasets of the commonly used evidence types used for gene

function inference and annotation were constructed and integrated using the

Ondex system. The fully assembled datasets included co-citation information

from the scientific literature, protein-protein interaction, sequence similarity

and coexpression components, as well as GO annotation, and TAIR and

UniProt protein sequence and annotation data. The objective of this work was
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to gain a better understanding into the relationship between these information

types and the impact of taking a union of all these data in the context of

identifying and annotating of functional modules. To quantify these

relationships, a number of novel strategies were developed that allowed the

quantification of such features like entropy and fragmentation of the

functionally similar protein sets and a trade-off between coverage and precision

of GO annotation. At the moment of writing the work described in that chapter

has been accepted for publication in the BMC Bioinformatics journal.

The fmal application case (chapter 6) aimed to demonstrate the immediate

relevance of the integrated resources, tools and analysis methods developed in

an applied setting. To that end, a micro array experiment was analysed by

mapping the lists of differentially expressed genes reported by the authors and

dissected these sets further, by considering their functional context and

locations within a coexpression network. A coexpression network was

specifically constructed from collected gene expression studies where various

components of nitrogen uptake, assimilation or regulation had been explored,

as they were likely to be of some relevance to the target experiment (studying

the transcriptomic response to mutation in a nitrogen uptake pathway). This

example illustrated that, as a result of the newly developed data integration and

analysis capabilities, it was now possible to conduct a number of typical gene

set analysis tasks entirely within the Ondex system. Additionally, a number of

visualisation methods were developed and used to interactively mine and

present the results. The analysis was successful in identifying a relevant

functional module that may provide further clues about the involvement of the

mutated protein in response to wounding. The integration of additional

coexpression data has not only helped to relate a number of uncharacterised

proteins to appropriate functional contexts, but to also deduce the possible

transcription factor-target relationships and identify further structure within this

list of genes.

A key objective of this thesis was to demonstrate the broad relevance of the

methodological development efforts through their use in three different and

mostly independent application cases. It was therefore inevitable that limited

time could be dedicated to explore each of these research problems and while it
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was possible to publish work from the use cases presented in chapters 4 and 5,

there is further follow-up work that could be considered. Another challenge

faced during this work has been that data integration is a constantly changing

and expanding area of bioinformatics. Currently established data resources are

also constantly being updated both in terms of content and ways they capture

model and share their data. New resources and experimental techniques are

also constantly come into existence. On the other hand, new data exchange

standards and frameworks are also continuously produced by the

bioinformatics community in order to facilitate ease-of-use of these data and

ensure its quality.

This means that any data integration tool, including Ondex, requires a constant

investment of time and effort in order to update and incorporate new sources of

information and analysis methods. Inevitably, this project was also greatly

impacted by this need of continuous development and some of the outcome

from this work has helped to address this problem. In particular, the

development of the Integrator tool (chapter 2) greatly improved the way data

integration workflows are created and managed in Ondex. The new workflow

execution engine has also lifted the limitation on what data types can be passed

between workflow components. The user interface allowed more complex

configuration options for the plug-ins to be managed and validated, compared

to what was possible prior to this project. Another important achievement was

the incorporation of the ability to easily recover workflows with outdated

configuration parameters, which used to be a particularly prominent and

frequent problem under the previous system. These developments helped to

increase both the power of the Ondex system and its relevance to users in the

wider research community. As workflows are now considered to be a very

important paradigm for organisation, sharing and realisation of complex

bioinformatics pipelines (Goble et al., 2010), a high-quality solution for

managing workflows is of particular importance to the users of the system.

Many of the individual components of the analysis toolkit implemented during

this project are also available as part of other tools. Some examples include

network visualisation (Shannon et al., 2003, Enright and Ouzounis, 2001,

Breitkreutz et al., 2003), GO enrichment analysis (Shah and Fedoroff, 2004,
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Zheng and Wang, 2008, Bauer et al., 2008) and coexpression analysis

(Manfield et al., 2006, Ernst and Bar-Joseph, 2006, Mostafavi et al., 2008).

However, in Ondex these methods are made immediately inter-operable by

working off a unified and consistent data model. This not only assures the ease

of pulling diverse assortments of data through a series of different analysis

methods, but also increases the overall power and flexibility by enabling more

ways to present and interrogate the data. An example of this is evident in the

way it was possible to visualise data for chapter 6, where both the Gene

Ontology graph and the network itself were used to present various aspects of

the functional annotation. This is achieved by building a system from a generic

set of specialised components that can be combined to enable more complex

analysis. This philosophy makes the Ondex system more flexible than many

other, small-scale bioinformatics analysis tools that may offer some of the

similar functionality, but are ultimately highly restricted to their original

purposes.

As high-throughput techniques are now increasingly rising in prominence in

biology, larger and more complex datasets are becoming available and require

analysing in the context of the pre-existing data and knowledge in

Bioinformatics and genomics databases. The Ondex software platform is one

possible way to effectively manage and analyse these complex and

heterogeneous data. Although a number of alternative solutions are also

available, Ondex is the only solution that specialise in catering to the data

integration needs of plant biology community. This work has not only

addressed a number of short-comings of the system, but has also contributed

new data sources and types of analysis that will ensure that it remains highly

relevant and useful to the plant bioinformatics researchers.
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