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Abstract 

The use of peri-urban fenlands for agriculture usmg urban waste as manurial 

treatments is increasingly common worldwide, particularly in developing countries. 

The risk to human health from the use of these contaminated materials for crop 

production has been studied using two historically contaminated fenlands in NW 

England. The GBASE survey carried out by the British Geological Survey identified 

two areas of metal contaminated fenland; west of Manchester (Chat Moss) and north 

of Liverpool (Halsall Moss). The two areas are used for arable agriculture, and 

current demand for locally sourced food is increasing pressure on farmers to move to 

vegetable horticulture. The effect of the metal contamination on the soils and crops 
\ 

is of key importance to monitor any risk to the food chain. -
Historical research identified the two mossland areas as contaminated with urban 

wastes, Halsall Moss contaminated with urban organic wastes such as manure and 

Chat Moss contaminated with urban organic and mineral wastes. Waste disposal on 

Chat Moss was carried out by the Manchester Corporation to dispose of city waste 

and generate farmland from the peat. During the drainage up to 1.92 Mt of waste 

was incorporated into the soil, representing 38% of the topsoil today. 

Profiles of contaminated and control sites on Chat Moss and a contaminated site on 

Halsall Moss were collected, with pH, organic matter content and trace metal content 

measured. Trace metal content was elevated over subsoil levels in the topsoil of all 

sites, for example arsenic showed topsoil concentrations of 45 mg kg-I in the most 

contaminated site (CM-3) compared to 3 mg kg-I in the subsoil. The elevation of 
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trace metals in the historically uncontaminated sites indicated possible atmospheric 

deposition of metals at the control site. Contamination levels were found to be less 

than originally identified in the GBASE survey, possibly due to differing sample 

preparation methods and survey size. The GBASE survey measured an average lead 

concentration in contaminated sites of 1985 mg kg-I compared to 378 mg kg-I 

measured by the current study. Arsenic and cadmium concentrations exceeded Soil 

Guideline Values in the most contaminated site, 43 mg kg-I and 1.8 mg kg-I 

respectively, but all other metals were within guideline limits. Halsall Moss was 

found to be less contaminated than Chat Moss, due to the mainly organic nature of 

the waste disposed at Halsall Moss. 

The mobility and fractionation of the contamination at the most contaminated site on 

Chat Moss were studied to understand the behaviour of the metals and assess 

potential risk to ecological or human health. Using sequential extractions, most 

metals were identified as hosted by organic, Fe/Mn oxide or residual phases. There 

was no difference observed in fractionation between control and contaminated sites, 

indicating that soil properties such as organic matter and Fe/Mn oxide content were 

more important in controlling fractionation than the source of metals. A comparison 

of Chat Moss with three soils of known contamination history also identified soil 

properties as key in controlling fractionation. 

Lability of Pb in the contaminated Chat Moss soil was assessed using 204Pb stable 

isotope dilution, it was found that 65% of lead was labile. This was the highest out 

of the four soils studied, and again most likely controlled by soil properties such as 

organic matter content and pH. The impact of flooding events on the Chat Moss 
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soils was assessed, and it was found that under redox conditions of -200 mY, large 

quantities of arsenic, lead, molybdenum and manganese were released to soil 

solution, and drinking water limits for these metals were violated, for example As 

solution concentration reached 308 J.1g L-1 and the drinking water limit is 10 Ilg L-1• 

Environmental quality standards for freshwater were also violated by arsenic, copper, 

lead and zinc showing potential ecological hazard under these reducing conditions, 

with lead concentrations reaching 137 J.1g L-1 in contrast to the environmental quality 

standard of 4 - 20 J.1g L-1 
• 

The effect of soil contamination on vegetables grown on Chat Moss was also 

investigated, EU limits for Cd were exceeded by lettuce and onion, and EU limits for 

Pb were exceeded by parsley, carrot, radish and onion. Hazard Quotients used to 

assess the impact of plant contamination in the context of human intake showed that 

only cadmium and molybdenum were potentially hazardous. Thus it is not 

recommended to grow lettuce (high Cd), parsley, cabbage, radish and onion (all high 

molybdenum) at contaminated sites on Chat Moss. To minimise risk, conducting 

liming to raise the pH and immobilise the metals could be used, and careful selection 

of cultivars that do not accumulate metals is recommended. 
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Chapter 1: General Introduction 

1.1 Project background 

Peri-urban agriculture is commonly used worldwide as a foodsource. The proximity 

to urban centres often results in contamination of the soil and plant materials. A 

major source of contaminants is the use of urban wastes as soil improving materials, 

a practice which was common in past years in the UK. Developing countries are 

increasingly using urban wastes as manurial materials, and through the study of 

historically contaminated regions in the UK implications of peri-urban agriculture to 

human health can begin to be assessed. The areas of Chat and Halsall Moss in the 

north west of England were mapped in the 1980's by the British Geological Survey 

as part of the National Geochemical Baseline Survey of the Environment (GBASE) 

project. This ongoing project aims to map the geochemistry of soils, stream waters 

and stream sediments in Britain. The soil survey, mapping on a 2 km grid with one 

aggregate sample per grid square, identified apparently elevated levels of heavy 

metals in the soils of Chat and Halsall Mosses (Figure 1.1). The samples comprised 

stream sediments and topsoil. The handling and processing protocol for the samples 

was developed from earlier protocols for stream sediment sampling. Once collected, 

samples were air-dried and sieved to 150 11m (Breward, 2003), before digestions and 

analysis for trace element content. 

Highly localised hotspots of several trace elements (shown as white areas in Figure 

1.1) were identified on both mosses, and combined with the peri-urban location of 

the sites there was interest in a further more detailed examination of the apparent 
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hotspots. The GBASE survey shows the potential spatial variability in the trace 

elements, but nothing was known of the depth profile, or the nature of the 

contamination. The origin of the contamination was also of interest, as preliminary 

research highlighted urban wastes were incorporated into the mosses during land 

drainage and improvement schemes. This mirrors practices still occurring today in 

many areas of the world, and by studying the long-term impact of urban waste 

incorporation into Chat and Halsall mosses the potential impact of these practices on 

the long term health and fertility of soils can be better understood. This study 

therefore investigated the historic metal contamination of the two mosses, as well as 

thoroughly assessing the soil properties such as pH, organic matter content, and 

metal properties such as fractionation and solubility. This was combined to study 

plant uptake of metals in respect to modem farming practices. 

a b 

Figure 1.1: Geochemical three component maps of Chat (a) and Halsall (b) Mosses. Each element is 

shown as a different colour (Pb = green, Cu = red and Zn = blue). Where levels of all three elements 

are elevated at the same location these colours are merged to give a white colour. Images courtesy of 

N. Breward. 
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1.2 Incorporation of urban waste into the mosses. 

1.2.1 Chat Moss 

Chat Moss is an area of reclaimed peat moss land situated to the west of Manchester 

(Figure 1.2). The peat forms a low plateau lying 2.5 - 5.0 m above the surrounding 

landscape (Hall et at., 1995), and 20 m above sea level. 
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Figure 1.2: Peat deposits surrounding Manchester showing Chat and Carrington Moss, mapped/rom 

British Geological Survey DigMap 50K. 

The area was reclaimed during the late 19th Century for food production and today 

arable farming remains the predominant land use, with wheat, potatoes and 

vegetables being the main crops. In some areas peat extraction takes place. The 

drainage ditches originally created during reclamation remain visible (Plate 1.1). 
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1.2.1.1 Geology and evolution of the moss 

The bedrock of the entire Chat Moss area is comprised of Permo-Triassic sandstone 

and mudstone of the Sherwood Sandstone and Mercia Mudstone groups. The basin 

can be dated to 12000 BC using radiometric dating of the earliest mineral deposits of 

Upper Boulder Clay derived from the glaciation which affected the area, and left 

glacial outwash sands and gravels deposited over Boulder Clay terraces (Hall el aI., 

1995). The landscape around 12000 BC was dominated by birch and pine woodland. 

In the period 10500 - 10000 BC organic deposition began in hollows, signalling the 

start of peat formation, which by 8500 - 7500 Be was widespread. Brushwoods, 

Po/ytrichum, Au/ocomnium pa/ustre and Eriphorum species dominate the peat, and 

indicate increasingly wet conditions in the basin. By 6000 BC true ombotrophic mire 

conditions were established across the moss (Hall et al., 1995). Sphagnum 

imbricalum became the dominant vegetation between 1700 and 1400 BC, possibly a 

result of to a shift to even wetter conditions, that accelerated peat deposition, and 

increased the lateral expansion of the moss (Hall et a/., 1995). 

Plate 1.1: Drainage ditch along the perimeter of a ploughed field. 
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1.2.1.2 Drainage and reclamation 

Census data from the early 19th Century shows that the population of Manchester 

rapidly increased from 75,000 to 303,000 over a period of fifty years 

(http://www.manchester2002-uk.comfhistory/victorianIVictorianl.html) (Figure 1.3), 

increasing the demand for locally sourced food and land on which to produce it. 
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Figure 1.3: Recorded population increase in Manchester between 1700 and 1971, census 

information. 

Increa ingly large volumes of waste were being generated, the traditional disposal 

method wa becoming unsustainable. In 1883 it was recommended by the cleansing 

superintendent for Manchester, Henry Whiley, that city refuse should be sent daily to 

a " location di tant from the city" (Phillips, 1980). It was proposed that the dual 

problems of waste disposal and the demand for agricultural land could be solved by 

reclaiming the local peat bogs using the waste as a bulking-up material and 

agricultural manure as the bogs were drained. When looking for a suitable site for 

reclamation and waste disposal, the requirement was for a large area of land close to 
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the city and preferably with good transport links. Five locations were considered as 

suitable trial sites; Astley, Barton, Carrington, Irlam and Worsley Mosses (Phillips, 

1980). 

Carrington Moss, to the south of Chat Moss, was chosen for the reclamation trial as it 

was accessible by road, railway and canal. It was purchased in 1886 for £39,165 

from the trustees of Lord Stamford (Manchester Corporation Cleansing Department 

(MCCD) Report, 1964). After reclamation, market gardening or arable farming was 

proposed. It was calculated that for market gardening up to 168 t ha- I of waste could ' 

be applied, whereas only 89 - 112 t ha- I could be disposed of if the future land use 

was arable farming. The Corporation decided that arable farming was the most 

appropriate land use, and therefore waste could be applied at a rate of 36.2 kt yr-' 

onto the moss (Phillips, 1980). Reclamation on Carrington Moss was carried out 

according to a nine step plan (Phillips, 1980); 

1. A central east-to-west road was built across the moss. 

2. Subsidiary roads were built at 90° to the central road. 

3. A 2 Y2 gauge railway was built across the moss to transport refuse onto the 

site. 

4. Rectangular fields of 3.2 ha were constructed. 

5. Each field was subdivided into four 0.81 ha plots with open drains 1.22 m 

deep. 

6. Each 0.81 ha plot was drained by split drains 3.66 m apart. 

7. In fields adjoining roads, open drains 1.8 - 2.7 in deep were dug (Plate 1.2). 
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8. Once sufficiently drained the land was cultivated and refuse added at a rate of 

134 t ha-I
. This is greater than the original estimate of waste application, 

suggesting that the original estimate was inaccurate. 

9. A rotation was established in which potatoes were planted for two years, oats 

for one year, with clover and rye grass in the fourth and fifth years. 

Between 1886 and 1890, the area of uncultivated land on Carrington Moss halved 

from 243 ha to 121 ha, and by 1899 the reclamation was complete with the entire 

moss under cultivation. A total of 58 kt of refuse had been disposed of, representing 

17% of all waste produced in Manchester during this period (Phillips, 1980). 

Plate 1.2: Constmetion a/open drains using traditional peat cutting methods circa 1887. (Courtesy 0/ 

the collection 0/ Dr Phillips). 

Successful reclamation at Carrington prompted the purchase in 1895 of Chat Moss 

by the Cleansing Committee from Sir Humphrey de Trafford for £138,969. A recent 

survey had shown that 58% (568 ha) of the Chat Moss estate was III an 

"uninhabitable" condition and suitable for reclamation (MCCD Report, 1964). 
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Reclamation commenced in 1899, and by 1906 the area of uncultivated moss had 

fallen from 304 ha to just 20 ha. A total of 611 kt of refuse was incorporated into 

Chat Moss between 1900 and 1910 (16% of Manchester' s waste). Waste disposal 

also continued at Carrington Moss during this period, accounting for a further 6% of 

Manchester's waste. By 1964, a total of 3.1 Mt of waste had been incorporated into 

both mosses, 61 % of which was disposed of on Chat Moss (MCCD Report, 1964). 

1.2.1.3 Waste disposal practices 

Manchester's waste was collected and taken to depots close to the river Irwell. From 

there it was transported by barge along the Manchester Ship Canal or the river to 

wharves at Irlam or Carrington (MCCD Report, 1964) (Plate 1.3). At the wharf 

waste was loaded onto railway wagons (Plate 1.4) and transported out onto the moss. 

Waste was then incorporated during the drainage process before cultivation 

commenced. Initial cultivation was by hand as the land was too boggy for horses, 

but as the soil dried out, the use of horse and plough became possible (Phillips, 

1980). 
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Plate 1.3: Refuse being bulk-loaded onto barges ready for shipment to the mosses (circa 1900) 

(courte y of the collection of Dr Phillips). 

Plate 1.4: Waste being transferred from barges to railway wagons before transportation onto the 

moss (circa 1900) (courtesy of the collection of Dr Phillips) 
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The nature of the waste incorporated changed over time as sanitation and disposal 

practices changed within the city. In 1886, the main waste was 'nightsoil', defined 

as "ashes mixed with the contents of privies and the scrapings of the streets" (Holt, 

1795 as cited by Coney, 1995). The quantity and composition of the waste 

incorporated into Chat Moss between 1900 and 1964 is given in Table 1.1. It was 

not recorded whether this was dry weight or wet weight, however the collection of 

waste at depots would have allowed water to drain from the waste, so it is likely to 

be a mixed source of dry and wet weight. Nightsoil was the dominant constituent of 

the waste between 1900 and 1914. After 1915 nightsoil production declined with the 

development of household toilet systems, and the dominant waste until -1935 

became privy midden and ashbin contents. By 1940 waste disposal at Chat Moss 

was reduced to mainly slaughterhouse refuse and lairage (slaughterhouse) manure as 

the sewage system and city tips were handling most other waste forms. 

Table 1.1: Quantity and nature of refuse deposition at Chat Moss (MCCD report, 1964) 

Waste material ~t~ 1900-1914 1915-1922 1923-1935 1936-1939 1940-1964 
Night-soil 384,375 40,463 0 0 4,365 
Sweepings 230,717 35,848 108,804 26,912 0 
Privy midden and ashbin 

62,949 180,476 280,013 5,664 0 
content 
Garbage 20,961 10,532 38,476 10,388 0 
Stable manure 3,221 2,133 92 0 0 
Clinkers 102,301 36,964 77,571 21,174 508 
Town's manure 0 0 104,609 39,649 0 
Dust 0 0 18,176 2,827 0 
Slaughterhouse refuse 0 0 0 0 67,678 
Laira~e manure 0 0 0 0 6,517 

Privy midden, ashbin contents, nightsoil and street sweepings comprised 71 % of all 

the waste disposed on Chat Moss (Figure 1.4); a mixture of organic (nightsoil) and 

mineral wastes (street sweepings, ashbin contents). The total amount of waste 
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incorporated into Chat Moss exceeded that being disposed of on Carrington Moss 

within 15 years of waste disposal commencing at Chat Moss. (Figures 1.5 and 1.6). 

1.2.2 Halsall Moss 

Halsall Moss is a region of reclaimed peat moss to the north of Liverpool (Figure 

1.7), and covers an area approximately three times that of Chat Moss. It is made up 

of many small mosses in basins separated by blown sand and till deposits, whereas 

Chat Moss region is one large moss and basin (Figure 1.2). The region is today used 

for arable farming with wheat and vegetables, especially potatoes, being the main 

crops. 
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Figure 1.4: Weight of waste by type incorporated into Chat Moss between 1900 and 1964 (MCCD 

report, 1964) 
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Figure 1.5: Weight of waste by type incorporated into Carrington Moss between 1889 and 1964 

(MCCD report, 1964) 
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Figure 1.6: A comparison of the total mass of waste disposed of on Chat and Carrington Mosses in 

the period 1889 to 1964 (MCCD report, 1964) 
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1.2.2.1 Geology and evolution of Halsall Moss 

The geology of the Halsall area is Carboniferous and Triassic sediments including 

Westphalian Coal Measures and the Sherwood Sandstone Group. Overlying these 

are glacial Pleistocene deposits of blown sand, till and alluvium (Beard et al., 1987). 

Reworking of the till and glaciofluvial deposits by wind action has formed the 

Shirdley Hill Sands, structureless medium grained sands, with occasional iron oxide 

or humic binding that rarely extends to a depth greater than 1 m (Beard et al., 1987). 

In basins within the sands, marine silts and clays (the Downholland Silt) were 

deposited. The original vegetation growing on this silt was trees and shrubs, but as 

drainage within the basins deteriorated the vegetation became dominated by reeds 

eventually responsible for the peat formation. Over time the peat became 

ombotrophic and dominated by Sphagnum vegetation (Beard et al., 1987). Today, 

the peat deposits remain isolated in basins separated by the sand and till deposits. 
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Figure 1.7: Peat deposits of the Halsall Moss region, mapped from British Geological Survey 

DigMap 50K. 

1.2.2.2 History of waste disposal on Halsall Moss 

Drainage and reclamation of the Halsall regIOn was piecemeal compared to the 

organised approaches taken at Chat and Carrington (Section 1.2.2.2). Individual 

fanners improved their land with field drains (Rosbottom, 1987) to provide land on 

which to grow fresh produce to supply to the city of Liverpool. The resulting peaty 

podzol soi ls became known as "black-tops" and are found mainly around Ormskirk 

(Taylor 1967). It has been recorded that by 1750 Tarlescough and Burscough 

Mosses in the north of the Halsall region were partially improved (Hale & Coney, 

14 



2005), and that the area surrounding Burscough remained marshy until the drainage 

of Martin Mere was completed in the 19th Century (Rosbottom, 1987). Improvement 

comprised removal of vegetation and increasing drainage, followed by cultivation 

and 'general manure treatment'. This treatment was commonly the addition of marl, 

which was found at the edges of and underlying the mosses. Marl was beneficial in 

that it neutralised acidity and helped to decompose organic matter, creating a 

workable soil texture (Taylor, 1949). In addition to marl, animal manure and 

nightsoil have also been added to these soils since 1571, when records from the 

Liverpool Corporation show that every farmer who took waste from the town paid 6d 

per year for the privilege (Coney, 1995). In 1795, a survey of the farming in 

Lancashire by Holt recorded; 

"in the memory of a worthy and experienced farmer who only died in the 

present year, that the first load of nightsoil brought from Liverpool towards 

the north was by his father, who was paid for carting away this nuisance and 

throwing into the river Mersey. The good effects upon the land which 

experience has proven dung to have, have caused it, at this period, to be sold 

at an advanced price, and carted to a considerable distance." (Coney, 1995). 

Nightsoil was therefore recognised as a suitable manure in the 18th century, and 

several farm leases from the 1790's state that all manure, dung and compost from the 

farm must be laid on the land, and that the tenant must annually spread onto the 

holding "19 good cartloads of Liverpool dung" (Coney, 1995), further highlighting 

the importance of this manure. For every load of hay or straw sold off the farm, it 

was often required by the tenant farmer to purchase and bring back one cartload of 
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dung. In the 18
th 

and 19
th 

centuries, many farm leases contained clauses requiring 

two thirds of the sale of hay or straw to be expended; 

"in the purchase of good natural or artificial manures to be bestowed on the 

premises" (Hale & Coney, 2005). 

By 1845, the Liverpool Corporation was earning £1,150 per annum from the sale of 

town refuse, compared to only £800 earned by the Manchester Corporation for the 

same period (Swarbrick, 1993), where reclamation was still in its infancy. 

Addition of manure to the soils of the Halsall region continued until the 1930's, 

when improved sanitation meant that the supply of town waste diminished (Clarke, 

1990). The waste from Liverpool was less industrial in origin than that from 

Manchester, and restricted to nightsoil, blubber from the whaling industry and towns 

refuse such as soot, ashes and rags. The duration of disposal was also much longer 

than that on Chat Moss, lasting nearly 400 years compared to 150 years. The 

addition of these wastes to Chat and Halsall Mosses were likely to affect the trace 

metal content of the topsoils, which would also affect metal content of foodstuffs 

grown on the mosses, therefore an understanding of the behaviour of the metals 

within the soil is important. 
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1.3 Trace elements in soils 

1.3.1 Trace element fractionation in soils 

1.3.1.1 Sources of trace elements in soils 

Anthropogenic activities have increased concentrations of trace elements in soils, as 

a result of industrialisation. Alloway (1989) defines seven categories of trace 

element additions to soils: atmospheric pollution from motor vehicles, combustion of 

fossil fuels, agricultural fertilisers and pesticides, organic manures including sewage 

sludge, disposal of urban and industrial wastes, metallurgical industries, and mining 

and smelting of non-ferrous metals. 

Pollution from motor vehicles was a significant source of lead between the 1920s and 

1990s as a result of addition of anti-knocking agents tetra ethyl Pb (TEL) and tetra 

methyl Pb (TML) to petrol. Pb contamination from vehicle exhaust emissions is 

observed in remote regions including the Scottish highlands (Farmer et al., 2002) and 

peat bogs in the Swiss Alps (Weiss et al., 1999a). Most industrialised countries have 

since the 1990s phased out leaded petrol because of concerns about the neurotoxicity 

ofPb. Today therefore, TEL and TML are no longer significant contributors ofPb to 

the environment except perhaps through redistribution of urban and roadside topsoil 

dust. 

Coal combustion has been a significant source of trace elements (e.g. Pb, As, Cd, Ni, 

Se and Zn) in the UK since medieval times. In a study of UK coals, Farmer et al., 

(1999) found an average Pb content of 18.9 mg kg-I, with Scottish and Irish coals 

typically having twice the lead content of those from England and Wales. Coal 
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combustion represents 20% of anthropogenic arsenic release. A verage coal 

consumption in the UK since 1700 is shown in Figure 1.8, with maximum coal 

combustion (150-200 Mt a-I) between 1910 and 1970. Levels of these elements can 

be seen to increase significantly from 1750, the start of the Industrial Revolution. 

250 

200 

----I 
>. .... 
~ 
--- 150 c 
.5: .... 
Co 
e 
= '" 100 c 
0 ... 
-; 
0 
U 

50 

O ~==~~~==~----~----~----~----~ 
1700 1750 1800 1850 1900 1950 2000 

Yea r 

Figure 1.8: Coal consumption in the UK between 1700 and 1990. After Farmer et al .. (1999) 

Agricultural chemicals, including fertilisers and pesticides, have been widely used in 

the UK, although their use is now increasingly controlled by legislation. Arsenic was 

a common constituent of pesticides for over 100 years, and its worldwide use is 

estimated as 36,000 t As yr-I (Alloway 1989). Phosphatic fertilisers represent the 

most common source of Cd to agricultural soils, with Cu, Mn, Co, Ni, Se, Cr and Zn 

also present in agrochemicals. 

Organic manures and sewage sludges have been used in the UK as soil amendments 

and fertilizers for hundreds of years, with manures and nightsoil having been used in 
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the Halsall region for 400 years (Sections 1.2.1.3 and 1.2.2.2). Sewage sludge is 

defined as the insoluble residue from waste water treatment after aerobic or 

anaerobic digestion. It typically comprises 60% organic matter, 5% CaO, 3% N, 2% 

P20S, 1.5% MgO, and 0.5% K20, plus variable levels of micronutrients and non

essential trace metals, organic micro-pollutants and micro-organisms (Alloway & 

Jackson, 1991). The trace element content of sewage sludges depend heavily on the 

industries located within the sewage collection area together with the mix of urban 

and rural runoff. For example, sewage sludge incorporated into farmland in the UK 

has on average 8 mg As kg-I, originating mainly from surface runoff. Its 

concentration varies between depending on the amount of pesticide, phosphate 

detergents and industrial effluent present in the runoff (Kabata-Pendias, 2001). 

Sewage sludges often contain much higher concentrations of Cu, Zn, Ni, Mo, Cd and 

Pb than the soil to which the sludge is applied (McBride et al., 2004). The effect of 

sewage sludge on soil trace element concentrations and the uptake of trace elements 

by crops are therefore active areas of ongoing research (see e.g. Speir et al., 2003, 

Alloway and Jackson, 1991, McBride et al., 2004, Griffiths et al., 2005, Qureshi et 

al., 2004). 

In the UK DEFRA imposes statutory limits on the concentrations of potentially toxic 

elements (PTEs) in topsoil that will receive sewage sludge, they also stipulate the 

annual amount of sludge that can be applied to a soil (Table 1.2). 
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Table 1.2: Permissible levels of potentially toxic elements (PTEs) contained in sewage 

sludge (adapted from the Code of Good Agricultural Practice for the protection of soil. 

MAFF.1998) 

Maximum permissible concentrations of 
potentially toxic elements (mg kg-I) 

Soil pH pH 5.0 - 5.5 pH 5.5 - 6.0 pH 6.0 - 7.0 pH >7.0 

Zinc 
Copper 
Nickel 

200 
80 
50 

Cadmium 3 
Lead 300 
Mercury 1 
Chromium 400 
Molybdenum 4 
Selenium 3 
Arsenic 50 

200 
100 
60 

200 
135 
75 

Soil pH 5.0 and above 

300 
200 
110 

Exceptions to these limits are permitted where a site (farm) has been historically used 

for disposal of sewage sludge by a water company. Such 'dedicated sites' are run 

under licence from DEFRA and controls are exercised over, for example, the end-use 

of farm produce (e.g. animal consumption only) and a soil liming policy employed. 

In addition, periodic geochemical surveys of the site may be required. 

The source of trace elements can influence the subsequent behaviour of an element 

within a soil. In sewage sludge amended soils there is typically a high organic matter 

content, and phosphate concentration, which can help to immobilise elements added 

with the sludge. Iron and manganese oxides within the sludge can also bind with the 

sludge-borne metals (Alloway & Jackson, 1991). 
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Waste disposal, metallurgical and mining industries can all act as point sources of 

trace elements at high concentrations, but they are limited in their extent of spatial 

distribution. Lead, zinc, copper, arsenic and cadmium are commonly present at high 

levels and the release of As during the smelting of Cu ores represents the largest 

single anthropogenic input of As into the environment (Kabata-Pendias, 2001). 

Contamination from tailings, minespoil and smelter waste is usually in the form of 

the original ore, e.g. sulphide or oxide minerals. Trace elements in these forms are 

resistant to mobilisation and are often very stable in the soil environment into which 

the processed spoil is introduced. 

1.3.1.2 Fractionation of trace elements in soils 

Trace elements in soils are commonly divided into five fractions: exchangeable, 

carbonate, bound to organic matter, bound to Fe/Mn hydrous oxides and 'residual' -

those contained within primary minerals or occluded within resistant mineral 

fractions (Lo & Yang, 1998). These fractions are typically operationally defined 

through sequential extraction procedures (see Section 1.3.2.1). The forms in which 

trace elements are present in a soil governs the mobility and solubility of the 

elements. For example, metal carbonates dissolve under acidic conditions whereas 

'residual' trace elements are resistant to mobilisation under most soil conditions (see 

Section 1.3.1.3). The association of trace elements with soil components has been 

widely studied, and some typical associations have been noted, for example the high 

affinity of humus for eu and the strong sorption of Co to Mn oxides (Kabata

Pendias, 200 I). 
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1.3.1.3 The effect of soil characteristics on trace element fractionation 

1.3.1.3.1 Soil pH 

Soil pH is regarded as one of the most important factors controlling trace element 

mobility. Soils with low pH have increased trace element mobility. Rothwell et al .• 

(2005) observed that trace elements present in peatland soils are remobilised in the 

low pH soil solutions, and acidic groundwater increases dissolved trace element 

concentrations in streams draining the peats. Agricultural soil pH is modified by the 

addition of lime to raise the pH and this will immobilise some trace elements. 

Alloway & Jackson (1991) suggest that manipulation of pH is the most effective way 

to control the bioavailability of trace elements in sewage sludge amended soils. This 

concept is enshrined in the strict liming policy imposed on dedicated sludge disposal 

sites under DEFRA licence, the published pH ranges for trace element concentrations 

in soils controlled by the VK Sludge (use in agriculture) Regulations (1987), and the 

Environmental Agency CLEA risk assessment model. 

Not all mctals and mctalloids exhibit increase solubility at lower pH. For example, 

molybdate becomes less soluble in acidic solution, and arsenate (AsO/) adsorbs 

more strongly to Fe -oxides at low pH (Hartley et al., 2004). Cationic trace element 

solubility can also increase with pH due to complexation with soluble organic matter 

(humic and fulvic acids), which themselves become more soluble at higher pH 

(Qureshi et al., 2004). Pb concentration in soil increases with increasing pH as Pb is 

strongly complexed with soluble organic matter (Ahlberg et al., 2006). The effect of 

pH on Cd solubility is complex. Podar & Ramsey (2005) observed that Cd 

concentration in soil solution followed a 'V-shaped' pattern, with a decrease in 
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solubility between pH 5 and 7, and an increase between pH 7 and 8, highlighting the 

variable relationship with pH that Cd can have. Trace element behaviour is 

therefore controlled by a combination of adsorption onto Fe/Mn oxide and 

complexation with organic matter. At high pH values, dissolved organic matter 

becomes increasingly ionized, allowing for increase binding of trace elements, 

increasing the overall solubility of metals (Kalbitz & Wennrich, 1998). It has also 

been shown that oxide surfaces change from being positively charged at low pH to 

negatively charged at high pH, enabling increased adsorption of metal cations at high 

pH (Hartley et 01., 2004). 

1.3.1.3.2 Soil organic matter content 

Soil organic matter has a large adsorption capacity for trace elements (Alloway & 

Jackson, 1991, Ahlberg et 01., 2006). Grybos et 01., (2007) demonstrated that under 

reducing conditions, organic matter can act as an important sink for trace elements. 

As soil pH increases carboxyl groups progressively ionize and humus becomes more 

negatively charged, increasing the adsorptive capacity for trace element cations. 

Increased negative charge on mineral surfaces at high pH also means that mineral 

surfaces and organic matter repel each other more strongly, releasing organic matter 

and any bound metals into the soil solution. Grybos et 01., (2007) in a soil incubation 

experiment found that the kinetics of trace element release closely followed the 

release of dissolved organic matter, confirming soluble organic matter as an 

important trace element sink. 
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Strong complexation of trace elements with a soluble organic ligand will reduce 

sorption. Organic ligands that complex strongly with soil mineral surfaces, or exist 

in an independent flocculated state, can however increase ternary soil-ligand-metal 

complexes, and so reduce the solubility of metals. Schwab et a/., (2005) showed that 

adsorption of organic anions to soil particles increases the negative charge on the soil 

surfaces, and therefore increase the trace element adsorption capacity of soil. This 

has also been reported by Alloway & Jackson (1991) in a study of soils amended by 

sewage sludge, they found that the large organic matter content of sewage sludge 

increased the metal carrying capacity of the soil. The overall impact of organic 

matter on metal mobility therefore depends upon the balance between metal sorption 

by organic matter, adsorption onto mineral surfaces and also on the distribution of 

organic ligands between the solid and solution phases (Schwab et a/., 2005). 

1.3.1.3.3 Soil redox potential 

In surface soils, redox potential is controlled by rainfall, bioactivity and land use 

whereas in the vadose zone fluctuations in the water table are the dominant control 

(Ma & Dong, 2004). Changes in redox potential can affect trace element mobility ~s 

a result of changes in oxidation state, and the reduction of Fe and Mn hydrous 

oxides, which commonly contain trace metals within the matrix of the oxide, and so 

the reduction or dissolution of these oxides will release trace elements to the soil 

solution (Ma & Dong, 2004). Charlatchka & Cambier (1999) demonstrated that 

changes in pH and redox conditions have the greatest affect on the chemistry of trace 

element behaviour in soils, and that alternating aerobic / anaerobic conditions leads 

to pH and redox changes that affect the regulation of trace element speciation (See 
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Section 1.4.3). Typically pH rises as redox potential falls, acting to minimise trace 

element mobility. In experiments at constant pH where redox was reduced greater 

Fe/Mn and trace element solubilisation occurred demonstrating the importance of 

redox alone in controlling trace element mobility (Charlatchka & Cambier, 1999). 

Reducing conditions often develop in waterlogged soils, leading to changes in trace 

element solubility, even for elements that do not normally exist in different oxidation 

states (Contin et al., 2007) because their solubility is controlled by bacterially

mediated dissolution of Fe/Mn oxyhydroxides which, as they dissolve, release sorbed 

ions into solution (Grybos et al., 2007). Ma & Dong (2004) demonstrated the 

importance of Fe/Mn oxides in controlling trace element solubility under reducing 

conditions in a redox-controlled suspension experiment - Pb, Cd and Zn 

concentration increased in the soil solution as the concentration of Fe(II) increased 

and redox potential decreased. Under reducing conditions however, reductive Fe 

dissolution can expose previously unavailable sorption sites, temporarily increasing 

sorption capacity (Ma & Dong, 2004). Reduction of Fe(II) on hydroxide surfaces 

can also increase specific surface area again temporarily increasing adsorption 

capacity (Contin et al., 2007). 

1.3.1.3.4 Soil texture 

Soil texture is less important than pH, redox potential and organic matter content in 

controlling trace element mobility, but it can influence trace element partitioning 

between the solid and solution phase. For example, Qureshi et al., (2003) report that 

metals in ionic form have the greatest mobility in acidic coarse textured soils. 

Qureshi et al., (2004) also found that for a given pH, mobility ofNi, Cd and Zn was 
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greater in a fine sandy loam soil than in a silt loam soil, indicating that soil texture 

can influence the mobility of these metals. 

1.3.2 Measuring trace element fractionation in soils 

1.3.2.1 Sequential extraction procedures (SEPs) 

Sequential extraction procedures (SEPs) were first developed in the 1970's (Tessier 

et al., 1979). It was recognised that the total trace element content of a soil was 

inadequate to assess the potential risks or impacts of trace contaminants. It was 

hoped that partitioning trace elements into functional fractions would provide 

information about the fractionation and biological or physico-chemical availability of 

the elements in contaminated soils. Partitioning is carried out by the application of a 

series of extractants which release trace elements hosted in different soil fractions. 

The various stages of the SEP are then used to assign operationally defined fractions 

to the trace elements. 

Since the publication of the original method by Tessier et al., (1979), sequential 

extractions have become widely used to identify the fractionation of metals and 

metalloids in a range of soils and sediments. The number of papers published since 

1973 using a keyword search of "sequential extraction" and "soil", with the results 

checked for relevance is shown in Figure 1.9, which indicates increasing interest in 

soil trace element fractionation, possibly boosted in the late 1990s following 
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recommendation of a "standard" method by the Bureau Communautaire de 

References (BCR). 
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Figure 1.9: Number of publications per year using sequential extractions methods to determine trace 

element fractionation in soils. The keywords used in the search were "sequential extraction Hand 

"soil "for work puhlished between 1973 -and 2008. 

Two sequential extraction schemes are now widely recognised; the 5-step "Tessier" 

and the 4-step "BCR" (Standards, Measurements and Testing Program of the 

European Commission) schemes (Table 1.3). The BCR method was developed to 

provide a standardised method which could be used for reference materials, 

combating problems of reproducibility and quality assurance (Uo & Evans, 2000). 

Using acid-stabilised reagents, or pH adjustment (to between 1.5 - 2.0) it was hoped 

that re-adsorption of trace elements onto solid phases during extraction would be 

reduced (Kim & McBride, 2006). This method differentiates between acid-

extractable, reducible and oxidisable fractions, whereas the Tessier method includes 
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an additional step for extracting 'exchangeable metal' separately from the 'carbonate 

bound fraction' (Table 1.3). 

Table 1.3: A comparison of the extraction steps used in the "Tessier" and "BeR" schemes. 

Fraction Tessier scheme BeR scheme 

Extractable F 11M MgCh, pH 7 

FI 0.11 M acetic acid 

Carbonate bound F2 1 M NaOAc, pH 5 

Fe/Mn oxide 0.04 M NH20H.HCI in 25% 0.5 M NH20H.HCI in 0.0 I M 
F3 F2 

bound HOAc,pH 2 HN03,pH 2 

Organic matter / 30% H20 2, pH 2 (HN03) 0.8 M 30% H20 2, pH 2 (HN03) I M 
F4 F3 

sulphide bound NH40Ac in HN03 NH40Ac, pH 2 (HN03) 

Residual F5 HF, HCI04 F4 HN03,HCI 

It is widely recognised that there are limitations to both the Tessier and BCR SEPs. 

In particular, it is accepted that trace elements can only be ascribed to 'operationally 

defined' fractions, defined by Alloway & Jackson (1991) as "identifying element 

phase or forms by the use of specific reagents". This means that the choice of 

reagent influences the extent of metal extraction in each step of the SEP. Lo & Yang 

(1998) report the main limitations to SEPs as (i) limited selectivity of extractants, (ii) 

redistribution of trace elements during extraction, and (iii) the deficiency of reagent 

dose if the trace element content is too high. Many other authors report that 

redistribution and lack of specificity are the main shortcomings of SEPs and must be 
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taken into consideration when carrying out extractions (Young et al., 2006; Kim & 

McBride, 2006; Lo & Yang, 1998; Ho & Evans, 2000; Raksasataya et al., 1996). 

Young et al., (2006) report that redistribution of trace elements can arise from 

undissolved residues of trace element rich phases released in subsequent extractions, 

or any extraction which increases the trace element ion activity in solution or 

changes solution pH. Ho & Evans (2000) found with the BCR scheme that 20-30% 

acid-extractable Cd and Zn was scavenged from the reducible phase, resulting in a 

net increase in the acid-extractable fraction and an underestimate of the metal 

fraction assumed to be bound to Fe/Mn hydrous oxides. Raksasataya et al., (1996) 

observed substantial redistribution of Pb with both the BCR and Tessier methods 

studied using synthetic and spiked natural soils. Re-distribution and lack of 

specificity are inherent to SEPs, and reproducibility is affected by any changes to the 

schemes, such as the reagent used, concentration, pH, reaction time, temperature, 

soil-to-solution ratio, suspension mixing speed or the order in which extractions are 

carried out (Kim & McBride, 2006). 

Nevertheless, SEPs do have proven applications in the study of trace element 

fractionation in soils. Lo & Yang (1998) suggested that the Tessier scheme provides 

qualitative analysis of the fractionation of trace elements in soils and Ho & Evans 

(2000) report that the operational speciation of trace elements can provide useful 

information on element partitioning. Provided limitations are taken into account, 

useful information about trace element fractionation in soils can be produced which, 

when combined with other analyses such as plant uptake studies or isotope dilution, 

can produce valid information on trace element mobility and contribute to risk 

assessment studies. 
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1.3.2.2 Measuring trace element 'lability' using isotopic dilution 

The 'labile' trace element pool in soil can be defined as the quantity of an element 

which is able to exchange between the solid and solution phase. For example, Wolf 

et al., (1986) stated that labile phosphate is the quantity of soil P in rapid equilibrium 

with solution P plus the amount of P in soil solution. Alongside definitions relating 

to chemical 'reactivity' in soil, trace element lability has also been associated with 

the concept of 'bioavailability' to plants and micro-organisms. Thus, Lopez & 

Graham (1972) refer to the amount of 'available' nutrients as the labile pool. 

Measuring the degree to which an (added) isotope can mix with the native elements, 

the process of 'isotope dilution', can be used to quantify this labile pool. 

Experimentally, this involves changing the isotopic composition of an element in a 

soil suspension by adding a known amount (a spike) of a stable or radio-isotope of 

that element. After a period of equilibration, the specific activity (for radio-isotopes) 

or isotopic abundance (for stable isotopes) of the spike isotope in solution is 

detennined (Equation 1.1). 

spike M spike M 
solution total 

--...=;,:~ = --~~ 
M solution M labile 

(1.1 ) 

It is important to keep the concentration of the spike small relative to the native soil 

pool to avoid chemically altering the system being studied. In this respect radio-

isotopes have an advantage over stable isotopes in that they are not naturally present 

in the soil and so can be added at extremely low concentrations while still providing 

a viable assay. With stable isotopes, it is important to find a balance between a low 

enough spike concentration to avoid altering the system, and a large enough 
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concentration to cause a measurable change In isotopic abundance of the spike 

isotope. 

The early uses of isotope dilution were for studying the behaviour of plant 

micronutrients using radio-isotope spikes. Lopez & Graham (1972) studied the 

lability of Mn, Fe, Zn, Co and Cu using the radio-isotopes 60CO, 54Mn, 59Fe and 65Zn. 

Wolf et a/., (1986) used the radio-isotope 32p to measure the lability of P. The 

authors reported several difficulties in measuring labile P. In soils that had a high P 

fixation capacity, they believed that a proportion of 32p added to the soil was 

irreversibly fixed and prevented from undergoing exchange with the 31 p on the soil 

surface. As a result, equilibrium was not achieved and measurement of labile P 

would result in an overestimate. Also, in soils where the solution P concentration is 

low, the increased difficulty in measuring P will contribute to inaccuracy in lability 

measurements. Problems such as 'irreversible' fixation of the spike or low soil trace 

element content are common to all isotope dilution measurements, and must be 

considered when designing isotopic exchange experiments. 

Radio-isotopes have been widely applied to the measurement of soil metal lability 

where suitable isotopes are available. For example, Nakhone and Young, (1993) 

measured labile Cd using the radio-isotope I09Cd, and Young et a/., (2000) measured 

the lability of Cd and Zn using I09Cd and 65Zn. For some metals, such as Ph 

however, suitable radio-isotopes are not available. In recent years as ICP-MS 

technology has become more widespread the use of stable isotopes has become more 

viable. In the last 12 years, stable isotope dilution has been used to measure the 
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lability of Cd (Ahnstrom & Parker, 2001, Ayoub et al., 2003), Zn (Ayoub et al., 

2003), Pb (Oegryse et al., 2007; Tongtavee et al., 2005) and Cu (Nolan et al., 2004). 

When using stable isotopes, the added isotope spike will be present naturally in the 

sample. The change in ratio of the spike isotope to a second isotope must therefore 

be recorded to quantify the extent of isotopic dilution of the added spike and hence 

the isotopic exchangeability of the metal in the soil. For example, Degryse et al., 

(2007) used 208Pb to measure the labile pool of Pb by measuring the 208PbPo6Pb 

isotope ratio and the changes caused by the spike over the period of equilibration. 

Many of the limitations to measuring isotopic exchangeability are common to both 

stable and radio-isotope dilution. This includes the effect of the post-spike 

equilibration period and the potential for gradual fixation of the spiked isotope into 

non-available sites within the soil. Ahnstrom & Parker (2001) measured the change 

. IllCd IIOCd ' h' . 'l'b' . d d fi d h h . III : ratIO over t e IsOtOPIC eqUl 1 ratIOn peno ,an oun t at t e ratio 

gradually decreased with time after the addition of the IllCd spike. Ayoub et al., 

(2003) found that a spike of IllCd equilibrated with the labile Cd pool after 70 hours, 

but a 67Zn spike did not fully equilibrate with the labile Zn pool. The authors found 

that there was a gradual decline in the enrichment of the soil solution due to the 

movement of 67Zn into non-isotopically exchangeable sites, highlighting the potential 

problem of fixation of the spike. The length of the post-spike equilibration period 

can therefore affect the measurement of lability due to time-dependent processes that 

can cause fixation of the spike isotope. These processes will vary between different 

soils and metals, and so a standard equilibration period has been the subject of some 

disagreement in the literature. 
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When carrying out stable isotope dilution measurements, it is important to add 

sufficient spike to cause a measurable change in isotope ratios, but to keep the 

quantity of spike chemically insignificant to avoid changes in the partitioning of the 

element being studied. Ahnstrom & Parker (2001) added spike equivalent to 1 % of 

the total Cd content. Ayoub et al., (2003) aimed to create a measurable change in the 

Cd and Zn ratios by adding enough spike to change the I 14cd;ll ICd ratio from 2.22 to 

1.96, and the 66Zn/'7Zn ratio from 6.76 to 6.10. The amount of Cd and Zn added was 

based on the amount of Cd and Zn extracted by 0.43 M ClhCOOH, used to estimate 

'available' Cd and Zn. 

As well as experimental variables affecting the measurement of lability, instrumental 

variables can also affect the results. Nolan et al., (2004) investigated the effects of 

instrument performance of quadrupole ICP-MS on the measurement of Cu lability 

and noted that the precision and accuracy of isotope measurements can be 

significantly affected by signal stability, polyatomic spectral mass interferences and 

mass discrimination. The authors found that mass discrimination caused by the 

'space-charge effect' (Nelms, 2005) is an important limitation for isotope ratio 

measurements. As lighter ions are deflected more than heavy ions, there is a 

differential loss of transmission through the ion lens system. Therefore the ratio of 

measured 'counts per second (cps)' for two isotopes will differ from their true 

isotopic ratio. The mass bias must be corrected for in order to calculate the isotopic 

abundance of the target isotopes. This can be done using a 'mass discrimination 

factor' (K-factor), which is the quotient of the true isotopic ratio divided by the 

measured cps ratio for an isotopic reference standard. Nolan et al., (2004) use the 

reference standard NIST 976, run after every 4 samples, to continuously update the 
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mass discrimination factor and thereby correct the reported isotopic cps ratios for the 

samples. The results of the study showed good agreement between stable and radio

isotope dilution of Cu using a quadrupole ICP-MS in standard mode, suggesting that 

the mass discrimination correction is effective and the instrumental variables are not 

detrimental to the measurement of Cu lability. 

In this investigation the lability of Pb in soils collected from Chat Moss was 

measured to further understand the behaviour of Pb and develop risk assessments for 

lead transfer into vegetables on Chat Moss. Additionally a suite of soils with other 

sources of Pb contamination (e.g. minespoil and roadside soils) will be investigated 

for comparison. The details of this work are described fully in chapter 4 section 4.4. 

1.3.2.3 Source apportionment of Pb from relative isotopic abundance 

Source apportionment using Pb isotope fractionation is based on the identification of 

isotopic reservoirs of Pb within the crust, which are related to the age of the rocks 

and the original U, Th and Pb content. Once a rock that does not contain U or Th has 

crystallised, its Pb isotopic ratio is set. If this rock is ore or coal-bearing, these will 

have the same isotopic ratio as the original rock. This ratio will be unique to the rock 

in question, allowing Pb to be traced back to its source. Lead is the final stable 

isotope resulting from the radioactive decay of 235U, 238U and 232Th (Figure 1.10). 

204 Pb is the only non-radiogenic lead isotope and so its abundance is unchanged since 

the Earth formed. 
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Figure 1.10: Simplified decay series o/U and Th 10 produce Pb. 

tl/2 = 4.5 
Gyrs 

206Pb 

Over time, because of its shorter half-life, the amount of 235U relative to 238U has 

decreased, and the production of 206Pb from 238U became the main source of new Pb 

in geological materials. This has the consequence that geologically old materials are 

enriched in 207Pb relative to 206Pb, whereas geological1y young materials are lower in 

207Pb relative to 206Pb (Table 1.4). 232Th is the main radioactive isotope of Th. 

Thorium only decays to 20RPb, which has therefore resulted in the larger abundance 

of 20RPb relative to the other Pb isotopes, as Th is more abundant than U in the solar 

system. Measured in cosmic abundance units (atoms per 106 atoms of Si), Th has an 

abundance of 3.35 x 10'2 whereas U has an abundance of9.00 x 10'3, a quarter ofTh. 

Tahie 1.4: Average relative isotopic abundance of lead isotopes. 

Lead isotope Relative abundance (%,) 

1.4 

24.1 

22.1 

52.4 

Source apportionment of anthropogenic Pb, such as Pb ore, coal and petrol-derived 

lead, using lead isotopes has been extensively studied on a range of materials 
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including soils, peat cores and mosses (e.g. Bacon et aI., 1996; 2006; Farmer et al. , 

2005; Weiss et al., 1999a; 1999b). The number of published papers containing the 

keywords "lead isotopes" and "anthropogenic" are shown in Figure 1.11, and reflects 

increasing activity and interest in this area since 1990. The trend shown probably 

reflects, to some degree, the increasing availability of ICP-MS to the scientific 

community. 

30 

25 

20 
'" c 
.52 

.~ 15 
:c 
:l 

c.. 

10 

5 

• . . • • • II I . I I 0 I 
year 

Figure I . J I : Number oj publications per year investigating anthropogenic influences on Pb isotopes. 

Result hown are Jrom a Web oj Science keyword search Jar "lead isotope " AND "anthropogenic" 
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Ault et aI. , (1970) used 206PbPo4Pb ratios to discriminate between sources of Pb 

contamination in roadside grasses, tree cores and soils. With the development of 

ICP-MS however, Bacon et 01. , (1996) demonstrated that the 206PbPo7Pb ratio varies 

most within environmental media and is the most suitable ratio for source 
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d· . .. T' 1 206Pb/207Pb . fi IscnmmatIOn. yplca ratIOs or a range of common environmental 

contaminants are shown in Table 1.5. 

Farmer et al., (1999) measured 206PbPo7Pb in coals and observed discreet ranges 

depending upon source (Table 1.5). They calculated the 206PbPo7Pb ratio of 

atmospheric Pb deposition for the period 1634 - 1817 to be 1.178 ± 0.006 based on 

sampling the southern basin of Loch Lomond. Comparison with the coal data 

demonstrated that lead deposition during this period originated from both coal 

burning and lead smelter emissions. The authors were also able to determine that 

emissions from lead smelters in Scotland during this period (1634-1817) were 

dominated by Scottish lead ores whereas in England Australian ores were more 

common due to the low cost of Australian ore compared to English, which highlights 

the sensitivity and application of 206Pb/207Pb ratios in establishing Pb spatial and 

temporal variations. 

A clear petrol-derived 206PbPo7Pb signature has been observed in many study 

locations, including Canadian roadside grasses (Li, 2006) and Swiss peat bogs 

(Weiss el al., 1999a), demonstrating that, even in remote areas, petrol-derived Pb can 

form a recognisable part of atmospheric pollution. Lead isotope studies can be used 

to demonstrate the depth of penetration of (aerially deposited) anthropogenic Pb in 

soils (Farmer et al., 2005) and, combined with sequential extractions, enable 

identification of the soil fractions that host anthropogenic Pb (Bacon and Hewitt, 

2005). 
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Table 1.5: Common lead isotope ranges/or lead are, coal and lead additives to petrol. 

Source of lead 
Coal: 

Durham 
Yorkshire lNottinghamshire 
Derbyshire 
North Wales 
South Wales 
Scotland 
Ireland 

Leadore: 
Welsh ore 
Irish ore 
Pennine ore 
Scottish ore 
Australian ore 

Petrol-derived lead: 

Alkyl Pb additives from 
Australian ore 
Tetra-alkyl additives from Australian 
and Columbian lead 
Airborne particulate Paris (1980's) 

Natural lead: 
Preanthropogenic aerosols and 
Upper Continental Crust 

106jibP07 Pbl08PbP()6Pb-~mrpbP07 Pb Reference 

1.185 
1.1865 
1.181 
1.177 
1.1808 
1.1812 
1.1998 

1.16-1.18 
1.15-1.17 
1.17-1.19 
1.170 
1.04 

1.09 

1.06-1.09 

1.09-1.11 

1.19-1.22 

2.066 
2.0762 
2.0795 
2.099 
2.0794 
2.0282 
2.0447 

2.449 
2.4643 
2.455 
2.47 
2.456 
2.4790 
2.4503 

Farmer et ai., (1999) 

McGill et al., (2003) 

Farmer et ai., (2005) 

Farmer et al., (2005) 

Farmer et ai., (1999) 

Semlami et al., (2004) 

Weiss et al., (1999a) 
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The likely source of Pb contamination at Chat Moss will be detennined in this 

investigation through measurement of lead isotope ratios, and using the data in Table 

1.5 and Figure 1.12 for comparison, as well as the suite of soils used in the isotope 

dilution study (see chapter 4). 
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1.4 Trace element uptake by vegetable crops 

1.4.1 Factors affecting the rate of uptake of trace elements from contaminated 
soils 

The rate of uptake of trace element by plants from contaminated soils is controlled 

by many factors including soil pH and organic matter content, and plant 

characteristics including species and rate of growth. Uptake of trace elements can 

occur through the diffusion of water including soluble elements into plant cells, or 

the trace elements can be taken up by active transport across the plasma membrane 
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of cells (Yoon et a/. J 2006). For example, active uptake of arsenate occurs through 

phosphate uptake channels (Clemens, 2006) and for arsenite, the silicic uptake 

channels are used (Ma et a/. J 2008). Sulphate uptake channels can also transport Se 

across the plasma membrane, and Cd2
+ can be taken up through Fe2+, Ca2+ and Zn2+ 

transport pathways (Clemens, 2006). 

Soil pH is regarded as one of the most important soil characteristics controlling plant 

uptake of metals (Alloway & Jackson, 1991), and as pH becomes more acidic trace 

elements become typically more available for plant uptake. In a study of vegetables 

grown in contaminated soils, Kachenko & Singh (2006) found increased plant uptake 

of trace elements in the contaminated soils, which they attributed to increased soil 

acidity (plJ 6.65 - 6.22) increasing the availability of trace elements for uptake. 

Anton & Mathe-Gaspar (2005) state that soil pH and temperature are the most 

important controls on trace element uptake. The authors found that at high 

temperature and low pH the Cd and Zn content within the plant shoot was 

significantly increased, and that soil pH is an important factor influencing the 

availability of Cd and Zn in plants. 

Whilst soil pH is important in controlJing trace element solubility (Section 1.3.1.3), 

with acidic soil pH promoting solubility of many trace elements, this does not 

translate directly to bioavailability. It has been shown that at lower pH, whilst the 

concentration of metal ions in solution is greater, the concentration of protons in 

solution is also greater, and this can result in competition for absorption sites on the 

plant roots, meaning that increased solubility may not result in increased plant uptake 

of the metal ions. The effect of this competition has been shown by Hough et a/ .. 
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(2005), who modelled the uptake of Cd and Zn by grass plants and the effect of pI I 

using the Free Ion Activity Model (FlAM). This model incorporates the activity of 

the ion in solution and the activity of protons in solution to model the competition 

between these ions for the absorption sites on roots. It was found that whilst pH 

correlated well with uptake of Cd and Zn, the best correlation was seen when 

competition between the metal ion and protons was included within the model, with 

a 20% increase in the account of variation of metal uptake by the grass with 

competition between the metal ion and protons compared to using pH as the model 

parameter. 

The use of pI I as a predictor of trace element uptake by plants may be effective at 

high pll values, but at acidic pI I values it becomes less effective. This can be seen in 

the case of the UK guideline values for Cd in soil (SGV) (Environment Agency, 

2002a), which are pll dependent. The predicted uptake of Cd by green vegetables 

calculated using Equation (1.2), taken from the SGV, with an assumed soil Cd 

content of 1.00 mg kg-I is shown in Figure 1.13 CF is the soil-to-plant concentration 

factor for leafy vegetables (Jig g-1 DW plant over Jig g-1 DW soil), pH is the soil 

pll. 

In(CF) =11.206-(1.634xpH) (1.2) 

The model predicts Cd plant content of 100 mg kg-I at a pH of 4, which is unrealistic 

for a soil Cd content of 1.00 mg kg-I, however in the neutral to basic pH range, the 

predicted Cd uptake is more realistic and the model used in the SGV may be 

applicable at higher pH but not in the acid pH range. However in the latest version 
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of the SGY (Environment Agency, 2009a), the uptake of Cd by plants is predicted by 

a soil-to-plant transfer factor with no effect of pH. 
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Figure 1.13: Predicted response of plant Cd uptake to pH, calculated using the CLEA model 

(En viroment Agency, 2002a). 

Dissolved organic carbon (DOC) content in the soil can also affect plant uptake, with 

increased DOC causing an increase in bioavailability through the formation of 

organo-metallic complexes (Kidd et aI., 2007). Plants secrete low molecular weight 

organic compounds that act as metal chelators to aid metal uptake (Clemens, 2006), 

and complexation of trace metals with root exudates can either increase or decrease 

the bioavai lability of the metals depending on the solubility of the exudates, with 

citrate and oxalate able to form soluble complexes with Cu and Zn (Zhao et aI. , 

2007). If there is a large proportion of insoluble organic matter there will be reduced 

bioavailability of metals, due to complexation, as observed in sewage sludge 
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amended soils (Speir et 01., 2003). The solubility of organic matter is also pH 

dependent (see section 1.3.1.3) and so the influence of these two soil factors on metal 

uptake by plants cannot be easily separated. Anton & Mathe-Gaspar (2005) showed 

that increased transpiration rate can lead to an increase in the translocation of 

divalent cations within the plant, and that growth rate, trace element uptake and 

sensitivity are all linked to temperature. 

Plant species strongly influences the uptake of metals. In a study of vegetables 

grown in smelter contaminated soils, Kachecko & Singh (2006) found for Pb the 

order of accumulation was parsley> leek> lettuce> cabbage> spinach> rhubarb, 

whereas for Zn the order of accumulation was mint> spinach> lettuce> leek on the 

same soils, highlighting the effect of species on metal accumulation. It has also been 

shown for Cd that leafy vegetables, especially lettuce, have a higher accumulation 

than root vegetables (Podar & Ramsey, 2005). 

When predicting uptake of heavy metals by plants for risk assessment purposes, pH, 

activity of the metal ion in solution, DOC and plant species would seem to be the 

most influential factors and so any model that would predict potential risk from metal 

uptake must include these factors. Total soil metal content will also influence the 

rate of uptake of metals as it will control the size of the pool of bioavailable metals, 

but a large total metal content does not lead to a large bioavailable metal content, and 

so all the factors need to be considered before risk can be assessed. 
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1.4.2 Assessing risk to human health using Hazard Quotients 

There are four pathways through which humans can be at risk from the intake of 

potentially toxic elements. These are ingestion of contaminated soil particles, 

ingestion of plants grown on contaminated soils, inhalation of contaminated dust and 

vapours and absorption of the contaminant through the skin. The main pathways are 

the ingestion of plants grown on contaminated soils and exposure to soil dust, and the 

ingestion of contaminated plants will be considered in this investigation. 

The level of risk posed by trace element uptake into vegetables growing in 

contaminated soils can be assessed using Hazard Quotients (HQ). Hazard Quotients 

are derived from the metal content of the vegetable, the average daily intake of the 

vegetable, body weight and a reference dose of the metal which is the average daily 

dose at which the metal intake will not be harmful (Equation 1.3, Datta & Young, 

2005). 

H = Mplant xADI xfresh weight conversion 

Q RID xAverage body weight 
(1.3) 

Mplant = metal content of edible portion of vegetable (mg kg"l) 

ADI = Average daily intake of vegetable (kg d"l) 

RID = dose at which metals are not harmful (mg kg"l dol) 

Reference doses are often taken from the USEP A IRIS (Integrated Risk Information 

System) database (Qishlaqi et a/., 2008), and a selection can be seen in Table 1.6. 

There is assumed to be no risk from consumption of 'contaminated vegetables' if the 
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Hazard Quotient (HQ) is less than 1. If the HQ is greater than 1 then a health risk 

exists (Chary et 01., 2008; Qishlaqi et 01., 2008; Datta & Young, 2005). 

Tahle 1.6: Reference doses takenfrom IRiSfor selected metals. 

Metal Reference Dose (rug kg-I d-I) 
Zn 0.3 
Cd 0.001 
Ni 0.02 

Ilazard Quotients are element specific and so can give a realistic assessment of the 

intake of various elements from a single vegetable plant. In a study of vegetables 

grown in sewage irrigated soils in India, the Hazard Quotients were found to vary 

from 0.002 for Ni to 5.3 for Zn for different vegetables (Chary et 01., 2008). Using 

this approach, an estimate of the risk posed by a trace element can be made and will 

be used to assess the risk to human health from vegetables grown on historically 

contaminated soils on Chat Moss (see section 6.5). 
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1.5 Aims and rationale 

1.5.1 Establish the nature and extent of contamination at Chat and Halsall 
Mosses 

The aim of this project was to establish the spatial variability of contamination at 

Chat and lIalsall Mosses, and the level of contamination at these sites. The source(s) 

of contamination were also be investigated. Levels of trace elements found at Chat 

and Ilalsall Mosses were related to original GBASE data to investigate the validity of 

the data when looking at field-scale contamination rather than a regional scale. 

Trace element levels were studied through ICP-MS analysis of soil samples (Chapter 

3.1.3.3), and spatial variability was investigated using Portable XRF field studies 

(Chapter 3.2). 

1.5.2 Investigate the reactivity of the contamination on the mosses 

Once contaminant concentrations had been established, the reactivity of the 

individual trace elements was studied. This included determining the speciation and 

solubility of the main contaminants using sequential extractions (Chapter 4.3) and 

stable isotope dilution (Chapter 4.4). The development of 204Pb stable isotope 

dilution was a key step in this process. The influence of flooding events on metal 

solubility was also investigated (Chapter 5). 

1.5.3 Assess bioavailability of trace elements 

The bioavailability of the trace element for plant uptake in vegetable plants was 

assessed using information determined for metal reactivity and pot trials (Chapter 6). 
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This was important for the Chat and Halsall Moss areas because although current 

land use is arable farming, a change to market gardening has been proposed. The 

impact of potential climatic variations on the trace element bioavailability will also 

be assessed. Element reactivity and bioavailability information was used to estimate 

risk to human health from consumption of vegetables grown on Chat and Halsall 

Moss using Hazard Quotients (Chapter 6.4). 
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Chapter 2: General materials and methods 

Characterisation of the soils and contamination on Chat and Halsall Mosses was 

carried out using a range of methods, including pH and Eh measurement on soil 

slurries, organic matter determination through loss on ignition, and total metal 

content measurement carried out on soil solutions prepared through HF-HN03-

IICl04 digests. Measurements of lead isotope ratios on soil solutions were also 

carried out using ICP-MS. Scanning Electron Microscopy was also used to 

characterise the contamination artifacts within the soil. 

2.1 Sitc sclection, sampling method and soil preparation 

Sites were chosen for sampling on Chat Moss and Halsall Moss based on the original 

BGS G-BASE data (Section 1.1), with the intention to sample arable sites with 

relatively large concentrations of trace metals. A range of sites were selected and 

letters to landowners were sent to request permission to sample. Once access had 

been granted four sites on Chat Moss and one on Halsall Moss were sampled. This 

strategy resulted in the selection of sites that were not sufficiently representative of 

the entire moss, but this was all that was possible with the limited site access. It was 

intended to sample contamination hotspots identified by the GBASE survey, 

however difficulties in locating landowners and obtaining permission to sample 

limited the sampling options. In order to carry out fully representative sampling, 

adaptive sampling using kriging could have been employed. This would involve an 

initial sampling phase followed by kriging to interpolate the trace element 

concentrations in unsampled sites. An assessment could then be carried out of the 
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risk of wrongly estimating trace metal concentrations of the unsampled sites using 

kriging, with sites at high risk being visited for additional sampling. This muIti

phase sampling process has been used to map contamination levels in Taiwan, and 

was shown to be more successful than random sampling (luang et at., 2005). Three 

of the sites on Chat Moss were located within the historically contaminated region 

which showed elevated heavy metal concentrations in the GBASE data, and one was 

located outside the area used for urban waste disposal, but within the moorland, and 

so was selected as a control area which had been drained and improved but had not 

received any waste amendment. This was supported by the GBASE data which did 

not show elevated heavy metal concentrations at this location. The site chosen for 

sampling on HalsalI Moss was shown to have elevated heavy metal concentrations 

based on the G BASE survey. However due to the piecemeal nature of the historical 

waste disposal on lIalsall Moss (Section 1.2.2.2) it could not be confirmed that this 

was a contaminated area before the sampling visit. Table 2.1 shows a list of site 

codes and brief descriptions. 

Samples from sites CM-I and CM-12 were collected on 19th December 2005 and 

samples from sites CM-3 and CM-9 were collected on 8th February 2006. Further 

samples were collected from CM-3 in a second sampling visit in 10th August 2006. 

At each site three auger borings were taken in a triangular pattern, with 

approximately 10m between each core. Samples were taken every 10 cm down the 

auger core, with the surface sample taken from 0 to 20 cm. Samples were collected 

to a depth of 110 cm, unless the water table or underlying soil was reached. These 

samples were used to determine total metal content, LOI and pH to characterise the 

vertical distribution of the waste material and soil conditions. 
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Table 2.1: Site codes and descriptions of sample sites 

Site Grid Soil Description Land Use Geology 
Code Reference Classification 
CM-I SJ 697983 Altcar Control site, drained Arable farm Permo-Triassic 

Association - but no waste sandstone 
amorphous peat amendment. Peat 

soil. 
CM-3 SJ 752 967 Altcar Contaminated site Arable farm Permo-Triassic 

Association - with waste sandstone 
amorphous peat amendment. Peat 

soil. 
CM-12 SJ 685 957 Altcar Contaminated site Arable farm Permo-Triassic 

Association - with waste sandstone 
amorphous peat amendment. Peat 

soil. 
CM-9 SJ 742 905 Downholland Contaminated site Equestrian Permo-Triassic 

Association - with waste small holding sandstone 
loamy sand to amendment. Sandy 
sandy loam soil. 

11;\1-1 SD 453050 Sollom I Astley Contaminated site Arable farm Carboniferous and 
Hall Association with waste Triassic sandstones 

- peaty sand, amendment. Sandy 
loamy sand, soil. 
sandy loam 

At the second sampling visit to CM-3, nine auger borings were collected at random 

intervals across a 90 m by 90 m sample grid set up for a portable XRF survey, with 

samples collected from 0 to 20 em depth and subsequently every } 0 cm. Bulk 

topsoil samples (c. 100 kg) were also collected from the top 40 cm of the soil surface 

for plant trials. At site IIM-}, samples were collected on i h 
November 2007, and 

three cores were collected in the same manner as the samples on Chat Moss. 

All depth profile soil samples were air-dried and gently crushed and sieved to < 2 

mm to break up aggregates and remove unwanted material such as plant debris and 

stones. Samples were stored in air-tight plastic bags prior to analysis. The bulk 

topsoil collected from CM-3 was air-dried and sieved to 6 mm to remove stones and 

large aggregates before storing for use in vegetable pot trials (Chapter 6). 
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2.2 Soil pH 

Soil pH was measured on the 2 mm sieved air-dried soil samples. Approximately 5 g 

soil was mixed with 20 ml deionised water in a 42 ml Oak Ridge polycarbonate 

centrifuge tube. The soil-water suspension was shaken on an end-over-end shaker 

for 30 minutes to equilibrate and the pH measured on the resulting slurry. pH was 

measured using a Hanna pH 209 pH meter, after calibration with pH 7.00 (Na2I1P04 

and KlbP04) and p1l4.01 (KII phthalate) buffers. Replicate samples from each site 

were measured to provide an estimate of the combined sampling and analysis error; 

no (pseudo )replication of discrete samples was undertaken. 

2.3 Soil redox potential 

Redox potential was measured on soil slurries using a Jenway 3010 pH meter with a 

combined platinum and Ag-AgCI reference electrode. In order to measure redox 

potential, a reference Eh must first be measured. This is done by measuring the Eh 

value recorded for a saturated quinhydrone suspension in pH 4.01 and pH 7.00 

buffers. The measured values of potential (Emeas) are then subtracted from the 

known redox potentials (Eh) for quinhydrone at those pH values and averaged to 

give the potential of the reference electrode (Erer). This value is then added to the 

measured redox potentials for samples (Emeas) to give the true redox potential (Eh). 

2.4 Organic matter content 

Organic matter content was estimated on 2 mm sieved air dried soil samples using 

'Loss on Ignition' (Rowell, 1994). Approximately 5 g soil was weighed into ceramic 

crucibles, which were then oven-dried at 105°C overnight to drive off any moisture. 
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The oven-dried samples were then ignited in a muffle furnace at 550°C for 8 hours 

and ashed. Once cool the crucibles were weighed, and loss on ignition (LOI) 

determined gravimetrically. This method was selected as being the most 

parsimonious, as extremely precise measurement of organic matter content was not 

necessary, and at the high organic matter content of these soils the LOI method was 

sufficiently precise. 

2.5 Preparation of samples for total trace metal analysis 

2.5.1 Preparation of soil samples for total trace metal analysis 

Subsamples (10-20 g) of the 2 mm sieved air-dried soil samples were milled using a 

Retsch PM400 ball mill to a fine powder. Approximately 250 mg of this finely 

ground material was digested in a PF A beaker with 4 ml HN03 (Trace element grade; 

Fisher Scientific, UK) and digested on a Teflon-coated graphite block digester 

(Analysco, UK) heated in a stepwise fashion to 80°C. After this stage, 2.5 ml HF, 2 

ml IIN03 and 1 ml HCI04 (all trace element grade) were added to each beaker and 

digestion was carried out with stepped heating to 160°C. Once this stage was 

complete, a further 2.5 mlllN03 (trace element grade) and 2.5 ml MilliQ water (18.3 

Mil) was added and heated to 50°C for 30 minutes. The final solution was then 

made up to 50 ml in plastic volumetric flasks using MilliQ water (18.3 Mil) and then 

decanted and stored unrefrigerated in 30 ml universal sample bottles (5% HN03). 

Prior to analysis each sample was diluted with MilliQ water to a 1/10 dilution factor 

using a compudil - D auto diluter (Hook and Tucker Instruments). 
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2.5.2 Plant preparation for total trace metal analysis 

Once harvested, plant samples were washed with deionised water and oven-dried at 

40°C until dry. The samples were then finely ground using a Retsch ZM 200 

centrifugal plant mill fitted with a 0.5 mm titanium sieve to avoid Fe and Cr 

contamination. Two hundred milligrams of the finely ground plant material was 

placed in a Teflon vessel and 6 ml lIN03 (trace element grade) was added. Samples 

were digested with microwave heating in an Anton Paar multiwave fitted with a 48 

place carousel. Digested samples were diluted to 20 ml with MilliQ water (18.3 

Mil) and stored for analysis. Prior to analysis samples were diluted with MilliQ 

water (18.3 Mil) using a dilution factor of 1110 with a compudil - D auto diluter 

(Hook and Tucker Instruments). 

2.6 l\1easurement of total metal content by ICP-MS 

Total metal content for soil and plant samples was detennined usmg ICPMS 

(Thermo-Fisher Scientific X-Series ll
) with a 'hexapole collision cell' (7% hydrogen 

in helium) upstream of the analytical quadrupole. Samples were introduced from a 

covered autosampler (Cetac ASX-520 with 4 x 60-place sample racks) through a 

concentric glass venturi nebuliser (Thermo-Fisher Scientific; 1 mL min-I). Internal 

standards were introduced to the sample stream via aT-piece and included Sc (100 

ng mL-I), Rh (20 ng mL-I) and Ir (10 ng mL-I) in 2% trace element grade lIN03. 

External multi-element calibration standards (Claritas-PPT grade CLMS-2 from 

CertipreplFisher) included Ag, AI, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, 

In, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Rb, Se, Sr, TI, U, V and Zn, all in the preferred 

range of 0 - 100 Jlg L-I. Sample processing was undertaken using Plasmalab 
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software (version 2.5.4; Thermo-Fisher Scientific) set to employ separate calibration 

blocks and internal cross-calibration where required. For each digestion batch data 

was corrected using two blank digestions and quality control was assessed with two 

samples of a reference material for each data run (NIST 2711 Montana Soil or NIST 

1573a Tomato Leaves). If the reference material data was not within 5% of certified 

values then the entire batch of data was discarded. All elemental concentrations 

were converted to mg kg-I (equation 2.1) 

C .1 = (Csnl - Chlank) x Vol 
SOl W 

soil 
(2.1) 

Where Csoil is the elemental concentration (mg kg-I) in the soil sample; Csol and Cblank 

are the concentrations (Jlg L-I) in the soil and blank digests, corrected for dilution, 

Vol is the digest volume (50 mL) and Wsoil is the mass of soil digested (c. 200 mg). 

The same equation was used to calculate elemental concentration in the plant 

material. 

2.7 Measurement of lead isotope ratios by ICP-MS 

Lead isotope ratio analysis was undertaken using ICP-MS (Thermo-Fisher Scientific 

X-Series II), in standard mode, on total trace element digests (Chapter 2.5.1). The 

lead isotopes 204Pb, 20lipb, 207Pb and 208Pb were measured, as well as 202Hg to correct 

for 204Hg. The isotopes 202Hg and 204Pb were measured with a dwell time of 10 ms, 

and 206Pb, 207Pb and 208Pb were measured with a low quadrupole 'dwell time' of 2.5 

ms. Maximum and minimum quadrupole 'settle times' were set to 1000 J.lS, and 10-

15 runs were used for each sample. The objectives of these settings are to minimize 
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errors from plasma noise between the individual isotope measurements which limits 

the accuracy and precision of single collector quadrupole instruments compared to 

multi-collector magnetic sector ICPs. Samples were introduced from a covered 

autosampler (Cetac ASX-520 with 4 x 60-place sample racks) through a concentric 

glass venturi nebuliser (Thermo-Fisher Scientific; 1 mL min-I). No internal standard 

or calibration standards were used. However a range of concentrations of the 

standard NIST 981 (8, 16, 24, 32 and 41 Jlg L-I) were measured at the beginning of 

each analysis run to correct for 'dead time'. This is a correction factor which allows 

for the inoperability of the detector immediately following a pulse counting event 

and thereby ensures no loss of sensitivity as concentration of analyte increases 

(Nelms et al., 2001; Nelms, 2005; pp 131). The correct dead time setting is that 

which gives the same isotope ratios, regardless of Pb concentration. The diluted 

NIST 981 samples were also used to correct for mass discrimination. After every 6 

samples, one NIST 981 sample was analysed, and a correction factor ('K factor') was 

calculated from the deviation from the known Pb isotope ratios in NIST 981 to 

correct for mass bias and signal drift throughout the analysis (Nelms, 2005; pp 164). 
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Chapter 3: Characterisation of sites 

3.1 Soil profile description and analysis 

3.1.1 Introduction 

This chapter describe the characterisation of soil from selected sites on Chat and 

Halsall Mosses, focussing on variation in pH, organic matter content and trace metal 

concentration a a consequence of waste disposal. Sites were selected from the 

GBASE urvey conducted by the BOS, to cover a range of contamination loadings 

from highly contaminated to background levels. Full descriptions of the sampling 

strategy and the sites can be found in Chapter 2.1; photographs of the sites are shown 

in Plate 3. IA and 3.18. 

Plate 3. J: Control sit M- J on hat Moss (A). Contaminated site CM-3 on Chat Moss (B) 

3.1.2 Materials and Methods 

Soil sampling and preparation, and determinations of soil pH, organic matter content 

and trace metal concentrations were carried out as described in Chapter 2. 
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3.1.3 Results and Discussion 

3.1.3.1 Variation in soil pH with depth 

Soil pH profiles for the four sites sampled on Chat Moss exhibited distinct, and 

different, profiles (Figure 3.l), althougb sites CM-3 and CM-12 showed the same 

soil profile. At the control site on Chat Moss (CM-l; Plate 3.1A), where there was 

no recorded hi story or field evidence of waste disposal, the pH value of the topsoil 

was - 5.1; this gradually decreased below 30 cm to pH 4.4 in the peat (at 50 em 

depth) where it remained virtually constant down to a depth of 110 cm. At the site 

subject to waste-amendment (CM-3; Plate 3.1B) pH remained at - 6.3 from the 

surface to a depth of 50 em, the depth of the topsoil effectively created by historic 

waste dispo al. Below this, pH dropped sharply to a value of - 4.3, consistent with 

that of the natural peat, before increasing slightly to a value of -4.8 at 100 cm. 
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Figure 3.1: pH and soil profiles for Chat and Halsall Mosses, error bars show standard error of 

three replicates. 

57 

HM - J 



The high pH value in the waste-amended topsoil (CM-3 and CM-12) is likely to be a 

consequence of agricultural liming but there may also be an influence of the historic 

incorporation of iron and steel foundry waste and coal ash which will have contained 

carbonates, oxides and silicates, with the oxides and carbonates potentially 

contributing to a higher pll than seen in the control site. The slight increase in pH 

between 20 cm and 30 cm is probably caused by migration of lime to this depth. 

Ploughing to a depth of 20 cm aerates the topsoil, allowing increased oxidation of 

organic matter and ammonium which also acts to reduce the pll. 

The pH profile at site CM-9 reflects the absence of peat at depth and the presence of 

a sandy sub-soil. Soil pH value at the surface was 6.5, optimum for nutrient 

availability (Soffe, 2003), increasing to 7.2 in the sandy subsoil. The lower pH at the 

surface of this site compared to the subsoil may be the result of ammonium fertiliser 

addition which can cause a reduction in pH through nitrification or it may simply 

reflect leaching of agricultural lime in a sandy soil. 

In the topsoil on Halsall Moss (liM-I) pH increased (from pH 6.1 to pH 6.4) with 

depth in a similar way to that observed at the Chat Moss site CM-9, suggesting that 

this site may be affected by the same processes of liming, nitrification (of added 

ammonium fertilizer) and possibly redox changes with depth. Soil pH then gradually 

decreased within the subsoil (from pH 6.4 to 6.0) to a depth of 105 cm. At 105 cm 

depth there was a thin layer of organic matter, which may represent the remnants of 

the original peat. The pH at this depth dropped sharply from 6.00 to 5.75, consistent 

with the occurrence of an organic layer, before rising back to pH 6.00 in the clay 
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layer below. The gradual decrease in pH observed between 50 cm and 100 cm may 

be the result of migration of organic matter through the sandy subsoil prior to 

accumulation at 105 cm above the impermeable clay layer. Black lenses of organic 

material were observed in the soil profile and were more frequent as depth increased. 

3.1.3.2 Variation in loss on ignition (LOI) with soil depth 

The distribution of organic matter (measured as LOI) within the soil profile varied 

between the five sites (Figure 3.2). The control site on Chat Moss (CM-I) had 

undergone the least reclamation and was closest to the original moorland, and had an 

organic matter content of 70% in the topsoil which increased to 95% in the peat 

subsoil at 40 - 50 cm. The CM-l (control site) profile was indicative of the original 

reclamation of the moss and showed the consequent loss of organic matter resulting 

from drainage and oxidation of the soil. The organic matter content was constant 

within the (mixed) plough layer, but then increased steadily from 30 to 50 cm, where 

it reached a maximum and thereafter was constant (90-95%) with depth. From field 

observations, the nature of the organic matter also changed with depth, with well 

humificd material in the topsoil and fibrous raw peat at greater depth, typical of the 

Chat Moss moorland. 

In comparison with the control site (CM-I), the two contaminated sites examined on 

Chat Moss (CM-3 and CM-12) had lower organic matter contents in the topsoil but 

similar values for LOl in the peat subsoil below 50 cm. The smaller organic matter 

contents in the topsoil partly reflect the cultivation effects seen at the control site and, 

additionally, the inclusion of inorganic waste materials into the moss during 
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reclamation on sites CM-3 and CM-12. This waste contained several forms of 

mineral waste such as furnace slag and domestic coal ash, which have reduced the 

organic matter content of the topsoil to less than 60% compared to >70% at the 

control site (CM-I). 
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Figure 3.2: Organic matter profiles as a function of depth for sites Chat Moss (CM-3), Chat Moss 

control (CM-i) Chat Moss contaminated (CM-l2), Chat Moss sand (CM-9) and Halsall Moss (HM-

i). Error bars show tandard error of three replicates. 
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At Halsall Moss (HM-I), the organic matter profile differed markedly from those 

found at Chat Moss, partly because the parent materials at the two locations are 

dissimilar (Section 3.1.1). The organic matter content of the topsoil (c. 50%) was 

similar in magnitude to that of the Chat Moss soils. However, LOr declined steeply 

below 30 cm, to just 2% at 50 cm. At 105 cm depth, the organic matter content 

increased to 10% due to organic matter accumulation above a clay layer at 110 cm. 

Below this organic layer the LOI values decreased back to approximately 5%. 

Whereas at CM-3 the main effect of waste amendment was to increase the mineral 

content of the topsoil, the waste amendment at HM-l has increased the organic 

matter content, partly due to the nature of the wastes. While the wastes used on Chat 

Moss contained both organic matter (e.g. nightsoil) and a substantial mineral content 

(e.g. furnace slag and coal ash), the wastes used on Halsall Moss were highly organic 

in nature and were mainly animal and human wastes (Coney, 1995) (Chapter 

1.2.2.2). Therefore only limited mineral content appears to have been added to 

lIalsall Moss topsoil and it also appears likely that the original topsoil may have had 

only a limited humus content or may have been based on a thin residual peaty layer 

over sandy subsoil. Thus waste addition at Halsall Moss has substantially increased 

the organic matter content of the topsoil and/or its depth. 

Small organic lenses were observed within the HM-I profile (0 - 120 cm) that are 

not identified in the LOI analysis of the auger samples taken. These organic lenses 

were also observed by the Soil Survey of England and Wales (Beard et a/. J 1987); 

they were thought to be secondary accumulation of leached humus acids rather than a 

buried palaeosol. 
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At Chat Moss, the large, well humified organic matter content to 40 cm depth, 

coupled with the circumneutral pH values of an agricultural topsoil should mean that 

cationic trace metals are strongly held. In addition, trace metals leaching in 

complexed form with soluble organic acids will pass into an acidic subsoil (Section 

3.1.3.1) which should cause flocculation of humic acids. Leaching of trace metals 

would then only occur with dissociation of the flocculated complex and the low 

adsorption capacity of the acidic, poorly humified peat could accentuate this. 

However the presence of sulphide in the anaerobic layers of the Chat Moss peat 

(discussed further in Chapter 5) may cause secondary precipitation of some metals. 

Overall the risk to groundwater may be quite small at the contaminated Chat Moss 

sites such as CM-3. 

At Iialsall Moss, the elevated organic matter content in the topsoil combined with 

increase in pH towards the base of the topsoil (Chapter 3.1.3.1) may help solubilise 

metals that are complexed with the organic matter. Below the topsoil the sandy 

texture of the soil is likely to facilitate leaching of humic and fulvic acids and so it 

may be possible for metals moving in complexed form, originating from the topsoil, 

to reach drainage outlets or the groundwater. Nevertheless, the decrease in pH seen 

in the subsoil at the Halsall Moss site will reduce the solubility of mobilized organic 

matter and encourage flocculation of the organic acids, which may be the origin of 

the thin organic lenses seen in field observations. 

The rapid pI I change at the boundary between the topsoil and native peat seen at 

Chat Moss is particularly interesting because it may represent a zone where metals 
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present in the waste materials are mobilised as a result of the lower pH (Qureshi et 

01., 2004; Rothwell et 01.,2005; Alloway & Jackson, 1991; Charlatchka & Cambier, 

2000). Decreasing redox potential can result in increased pH (Grybos et 01., 2007) 

and may be the cause of the slight pH rise observed in the peat as a function of depth 

or distance from the oxidation front. The boundary of the peat with the topsoil will 

be the most oxygenated region of the peat. Although metals are less mobile in 

aerobic mineral soils (Charlatchka & Cambier, 2000) due to adsorption on Fe/Mn 

hydrous oxides, this is unlikely to apply in organic soils and the low pH associated 

with this redox boundary would be expected to increase solubility of free metal ions. 

The mobility of metals in the soils examined is likely to be controlled by a 

combination of factors, especially considering the important role of humus in peaty 

soils and the potential for anaerobic conditions within the soil profile. Acidic 

conditions will reduce the negative charge on humus, increase the positive charge on 

hydrous oxides, and thereby encourage free metal ion mobility in the soil solution. 

Ilowever, high pI I values can also encourage metal mobility through the dissolution 

of molecular and colloidal organic matter (humic and fulvic acids) with which metals 

may be complexed (Grybos et 01., 2007; Schwab et 01., 2005). The net effect of pH 

change is therefore difficult to predict but will depend largely on the strength of 

metal binding: strongly bound Cu is likely to be mobilized with humus acids at high 

pll whereas more weakly bound Cd will be more soluble at low pH as free Cd2
+ ions. 

The mobility of metals in Chat Moss soils will be further discussed in Chapters 4 and 

5. 
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3.1.3.3 Variation in trace metal concentration with soil depth 

3.1.3.3.1 Group 2 metals: Ca, Sr, Ba 

Both contaminated sites CM-3 and HM-l were enriched with Ca in the top 40 cm, 

with the concentrations dropping sharp ly at 40-50 crn to background levels within 

the underlying soi l (Table 3.2 and Figure 3.3). Data for Ca is only available for sites 

CM-3 (Chat Moss) and HM- l (Halsall Moss). 

o 
o 

20 

40 

,...... I E , 
u 
'-' 

-I .s 60 0. 
G) 

0 

f 
80 

* ! 
100 ~ 

120 

5000 

_ .. 
'f""'- -~ 

,; 

~ 
~ 

/ 
T 
~ 

t-'JIE-; , 
t-*--i 

Ca (mg kg-I) 

10000 

f 
* ~ 

..!..-- -~ ----
~ - - ...--

-- - CM-3 ~- HM-I 

15000 20000 

~ 
~ 

- I~ 

Figure 3.3: Average concentration of Ca within the soil profiles of sites CM-3 (contaminated Chat 

Moss) and site HM-I (contaminated Halsall Moss). Error bars show standard error of three 

replicates. 
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It is likely that this enrichment in the topsoil was caused by a combination of liming 

and the addition of waste materials to the soil, especially in the case of CM-3 where 

it is known that Ca-rich materials such as steel furnace waste have been incorporated 

into the soil. Concentrations of Ca in the peat subsoil of CM-3 decreased more 

gradually between 50 and 80 cm, possibly due to the migration of Ca into the subsoil 

from the topsoil, which may be encouraged by the pH decrease seen at the 

topsoiVsubsoil boundary (Section 3.1.1.1). The concentration between 80 and 90 cm 

was constant suggesting that this is the natural Ca concentration in the peat. 

At site HM-l, the concentrations of Ca fell sharply between 40 and 50 cm to a level 

which remained constant with depth beyond 60 cm, indicating either that there has 

been minimal migration of liming materials into the subsoil or that there has been 

minimal retention of leached Ca in the sandy subsoil. In the organic layer at 105 cm 

and the clay layer at 110 cm the Ca concentration increased. This increase in the 

clay layer is expected as Ca is normally a major constituent of the cation exchange 

capacity of clay minerals, particularly the smectite group (Deer et a/., 1996). The 

clay layer may also act as a receptor for Ca leached through the sandy subsoil from 

the topsoil. 

Both Sr and Ba were enriched in the topsoil of all five sites, and the contaminated 

sites (CM-3 and CM-12) had greater Sr and Ba concentrations than the control site 

(CM-l), which suggests inputs from the historic addition of city waste to the soil 

(Table 3.2 and Figures 3.4 and 3.5). 
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Figure 3.4: Average concentrations of Sr within the soil profiles of sites CM-l (control), CM-3 

(contaminated), CM-9 (sand), CM-l2 (contaminated) (Chat Moss) and site HM-l (contaminated) 

(Ha/sall Moss). Error bar show standard error of three replicates. 
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Figure 3.5: Average concentrations of Ea within the soil profiles of sites CM-l (control), CM-3 

(contaminated), M-9 (sand), CM- l 2 (contaminated) (Chat Moss) and site HM-l (contaminated) 

(Jla/sal/ Moss). Error bars show standard error of three replicates. 
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The concentrations of Sr and Ba at Chat Moss appeared to reach background levels 

at about 50 - 60 cm depth in CM-I, CM-3 and CM-12. The surface enrichment at 

CM-I probably originated from atmospheric inputs and agricultural liming materials. 

Marginally deeper deposition at CM-3 and CM-12 may have been partly due to the 

incorporation of waste materials into the soil. At HM -I, the depth of enrichment was 

30 - 40 cm for Sr, but for Ba the enrichment decreased throughout the topsoil depth 

to 40 em, increased slightly to 60 cm and then remained constant to 90 -100 cm. 

There was marked enrichment of Sr and Ba in the 105 cm clay layer at HM-I, 

suggesting retention on cation exchange sites in 2: 1 alumino-silicates (Deer et al., 

1996). 

The profiles for Ca, Sr and Ba were broadly similar in Chat Moss but the degree of 

surface enrichment in Sr was considerably less suggesting that the ratio of Ca:Sr in 

the waste materials and liming agents was greater than in the soil. In the case of 

Halsall Moss this difference was considerably more marked, for both Sr and Ba. 

3.1.3.3.2 Hydrous oxide metals: Fe, Mn 

The profiles of concentration with depth seen for Fe and Mn were very similar, with 

topsoil enrichment seen at all sites (Table 3.2 and Figures 3.6 and 3.7). The control 

site (CM-I) had the lowest Fe and Mn concentrations. The enrichment was greatest 

at 30 cm depth in all profiles, but at the waste-amended sites (CM-3 and CM-12), the 

enrichment again extended to 50 cm depth. This shows that waste disposal has 

enriched the contaminated sites with various fonns of Fe and Mn; this is further 

discussed in a Scanning Electron Microscopy study (Section 4.2.3). From the 
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historical records, it can be seen that foundry waste such as ash and slag materials 

formed a large component of the waste deposited on Chat Moss (Section 1.2.1.3), 

and so it would be expected that iron oxides would form part of the waste material 

incorporated into the topsoil. 

The concentrations of Fe and Mn were very low in the topsoil ofHM-l, as was the 

degree of enrichment of Fe relative to the subsoil. This agrees with the historical 

records which howed that the waste deposited at Halsall Moss was dominated by 

animal manures as compared with the industrial wastes employed at Chat Moss. 

Again, a large degree of Fe enrichment was seen in the clay layer at HM-l , which 

may represent octahedrally substituted Fe(II) in, for example, smectite minerals 

(Deer et 01., 1996) or could simply arise from colloidal association of Fe hydrous 

oxide mineral with alumino-silicates. 
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Figure 3.6: Average concentrations of Fe within the soil profiles of sites CM-J (contro!), CM-3 

(contaminated), CM-9 (sand), CM-12 (contaminated) (Chat Moss) and site HM-J (contaminated) 

(Ha/sall Moss). Error bars show standard error of three replicates. 
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Figure 3.7: Average concentrations of Mn within the soil profiles 0/ sites CM-l (control), CM-3 

(contaminated), CM-9 (sand), CM-12 (contaminated) (Chat Moss) and site HM-l (contaminated) 

(Jlal all Mo s). Error bars show standard error o/three replicates. 

3.1.3.3.3 Metalloids: As, Se, Sb 

Ar enic, elenium and antimony were strongly enriched in the topsoil of Chat Moss 

and Hal all Mo ite (see Table 3.2 and Figures 3.8, 3.9 and 3.10). All three 

metalloid elements howed different patterns of enrichment across the sites and so 

will be con idered individually. 

The lowest topsoil enrichment with As was seen in site HM-l with intermediate 

levels in sites M-l, CM-9 and CM -12 and substantially greater concentrations in 

site CM-3 (Figure 3. ), and site CM-3 was the only site to exceed the Soil Guideline 

Values for As levels in allotments (43 mg kg-I) (Environment Agency, 2009b). One 

of the dominant sources of atmospheric pollution in the Manchester region has been 
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coal burning, and As is often enriched in coal ash (Cloy et al; 2009). Coal ash was 

also a major component of the waste incorporated into the soil from both industrial 

and domestic sources, so it is likely that this will have contributed to the elevated 

levels of As seen. This is supported by the lower levels of contamination seen at 

HM-I, where the waste was dominated by animal manures and there was relatively 

little domestic or industrial waste incorporated into the soil. The atmospheric 

pollution of the Halsall Moss region will also have been less compared to the Chat 

Moss region, as there are no major industrial regions upwind of Halsall Moss, 

whereas Chat Moss is in the peri-urban region of Manchester as well as being 

downwind of the Pennine ore field and smelting region. 

Arsenic concentrations in the subsoils of all five sites were very low and the 

boundary between the topsoil and subsoil appears quite sharp. In the case of site 

CM-3, the topsoil had approximately ten times the As concentration seen in the 

subsoil. This may indicate that there had been little downward movement of As from 

the topsoil and that As is not mobile in the waste-amended topsoils, even at the 

highest concentrations (c. 45 mg kg -I). It is unlikely that the As was present as 

As(III) in aerobic topsoils amended with combustion wastes and more likely that the 

As was strongly held as arsenate bound to Fe hydrous oxides, or unreduced 

sedimentary ores associated with furnace waste. Alternatively, there may have been 

significant mobilization of As from the topsoil but the organic subsoil was unable to 

retain leached arsenate. In the anaerobic peat layer the As(V) is likely to be reduced 

to the even less strongly bound arsenite form. However at sites CM-I and CM-9 

there was a gradual decrease in As concentration between 30 and 50 cm, which is 
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below the depth of the topsoil, suggesting that there was some mobility of As in the 

topsoil and that it had moved beyond the depth of the original waste incorporation. 

Selenium showed the lowest topsoil enrichment in HM-I followed by CM-9; soils 

CM-I, CM-3 and CM-12 all had the same levels of enrichment in the topsoil (Figure 

3.9). Thus, a comparison ofCM-I and CM-3 suggests that waste amendment has not 

substantially changed the Se status of the Chat Moss soils. The Soil Guideline Value 

for Se in allotment soils (120 mg kg-I) was not exceeded in any soils investigated. 

The depth of enrichment was broadly the same as seen for As. There was little 

evidence for movement and retention in subsoil; the subsoil Se concentrations were 

similar across all sites. Selenium may be present in organic fonn in humus (Kabata

Pendias, 2001) and the large increase in organic matter in the subsoil may be acting 

to immobilise Se in this layer. However, in the clay layer at HM-I, there was a large 

enrichment of Se to the same level of that seen in the topsoil. This may suggest 

leaching of selenite through the sandy matrix of the subsoil and retention on the Fe 

hydrous oxides in the clay layer. 

Antimony showed enrichment above background in the CM-3 topsoil (over CM-I) 

suggesting inputs in the waste material. The depth of enrichment followed the same 

pattern as As and Se, with 50 cm depth of enrichment seen at CM-3, CM-12 and 

HM-I, and 30 cm seen at CM-I and CM-9 (Figure 3.10). As seen for As, the subsoil 

concentrations of Sb were very small in all five sites. There was negligible 

enrichment of Sb seen in the clay layer at HM-I. The Sb in the topsoil may have 

originated from atmospheric deposition and coal ash disposal as Sb has a similar 

behaviour to As in that it is concentrated in coals (Kabata-Pendias, 2001). Although 
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concentrations in CM-3 were greater than in the Chat Moss control site (CM-I), the 

Sb concentrations in topsoil were similar for sites CM-3, CM-12 and HM-l. Given 

the known differences in the degree of industrial activity and the nature of the wastes 

used in Chat and Halsall Mosses this suggests that inputs of Sb from waste have been 

quite small. 

3.1.3.3.4 Trace metals: V, Cr, Co, Ni, Cu, Zn, Mo, Cd, Sn, Cs, Pb, Bi 

Topsoil enrichment was seen across the five sites for all the trace metals except Cu 

and Mo at 11M-I, which showed no enrichment above the levels seen in the subsoil 

(see Table 3.2 and Figure 3.3). The concentration of trace metals in the topsoil was 

highest in the waste amended sites on Chat Moss (CM-3 and CM-12) and lowest in 

the control site (CM-I) and in CM-9. The concentrations seen in the Halsall Moss 

topsoil (11M-I) were always equal to or less than those ofCM-I and CM-9 and was 

dominated by animal manures, and there has been relatively little atmospheric 

pollution on Halsall Moss compared to Chat Moss. 

The depth of the contamination for all the trace metals followed the pattern seen 

before, of slightly deeper contamination at the sites that received waste amendment 

(CM-3, CM-12 and lIM-I) compared to the sites which probably only received 

atmospheric inputs and normal agricultural amendments (CM-l and CM-9). The 

subsoil concentrations across all five sites were similar for all the remaining trace 

metals. However, V, Ni, Cr, Cs, and Co underwent an increase in concentrations in 

the clay layer of HM-I. Large variability was seen in the profiles of some trace 

metals (Ni, Cd, Zn, Sn, Pb) which most likely represents the variability of waste 
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disposal across the the sites, as the greatest error was seen in the two sites known to 

have received waste (CM-3 and CM-12), indicating an uneven distribution of 

contamination. 

Chat Moss Halsall Moss 

As (mg kg· ') As (mg kg·') 

0 10 20 30 40 50 60 0 10 20 30 40 50 60 

0 0 

..,... T 
20 \ 20 

~ t 
40 40 j 

J*' 
./ 

E K 
r 

~ ! 
.<: 60 -5 60 . 
! e- ~ 

a I 
; 

80 80 . 
~ 

100 100 \. 
~ 

120 120 

--CM-I -- M-3 & - CM-9 - - CM-12 -- BM- I 

Figure 3. : Average concentration of As within the soil profiles of sites CM-l (control), CM-3 

(contaminated), CM-9 (; and), CM-l2 (contaminated) (Chat Moss) and site HM-l (contaminated) 

(l1al all Mo s). Error bars how tandard error of three replicates. 
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Figure 3.10: Average concentration of Sb within the soil profiles of sites CM-] (control), CM-3 

(contaminated), M-9 (sand), CM-]2 (contaminated) (Chat Moss) and site HM-] (contaminated) 

(Ha/sall Moss). Error bars show standard error of three replicates. 
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In the case of V this may have been due to adsorption on Fe hydrous oxides (Figure 

3.11) as vanadate, mirroring the behaviour of selenite (Figure 3.9). Chromium(III) 

(Figure 3.13) is strongly adsorbed into Fe(III) oxides whereas cobalt (Figure 3.14) is 

more likely to have been adsorbed on Mn hydrous oxides although there was a 

comparatively minor increase in Mn02 within the HM-l clay layer (Fig 3.7). 

Caesium (Figure 3. 15) was probably associated with the alumino-silicate clay 

minerals, as seen for Ba and Sr (Figs. 3.4 and 3.5). 
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Figure 3.11: Average concentrations of V within the soil profiles of sites CM-I (control), CM-3 

(contaminated), CM-9 (: and), CM-12 (contaminated) (Chat Moss) and site HM-I (contaminated) 

(Hal all Mo s). Error bars show standard error of three replicates. 
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Figure 3_12: Average concentrations of Ni within the soil profiles of sites CM-l (control), CM-3 
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Figure 3.!4: Average concentrations of Co within the soil profiles of sites CM-! (contra/), CM-3 
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Figure 3.15: Average concentrations of Cs within the soil profiles of sites CM-! (contra/), CM·3 

(contaminated), CM-9 (sand), CM·!2 (contaminated) (Chat Moss) and site HM-! (contaminated) 

(Ha/sall Moss). Error bars show standard error of three replicates. 
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The concentration of Cd was greatest in CM-3, almost reaching the statutory sludge 

limit (3.0 mg kg-I) in the topsoil (MAFF, 1998), and exceeding the Soil Guideline 

Value for allotment soi ls of 1.8 mg gk- I (Environment Agency, 2009a). Below 40 

cm the Cd concentration was extremely low in the subsoil of all sites (Figure 3.16). 

The fractionation and potential mobility of the trace metals will be further discussed 

in Section 4.3 using sequential extractions. 

The concentration of Cu in the topsoil was elevated above subsoil levels at all Chat 

Mo s sites, but not at the Halsall Moss site, where the topsoil concentration was 27 

mg kg-I compared to the subsoil concentration of 34 mg kg-I (Figure 3.17). Sites 

CM-3 and M-12 showed the highest levels ofCu in the topsoil (150 - 177 mg kg-I) 

and the greate t depth of enrichment over background. Sites CM-l and CM-9 had 

lower and simi lar Cu concentrations (80 - 85 mg kg-I). 
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Figure 3.16: Average concentration of Cd within the soil profiles of sites CM-I (control), CM-3 

(contaminated), M-9 (sand), CM-12 (contaminated) (Chat Moss) and site HM-I (contaminated) 

(Halsall Mos ) , Error bars show standard error of three replicates. 
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Figure 3.} 7: Average concentrations of Cu within the soil profiles of sites CM-} (contro/), CM-3 

(contaminated), CM-9 (sand), CM-} 2 (contaminated) (Chat Moss) and site HM-} (contaminated) 

(Hal all Mo s). Error bars show standard error of three replicates. 

The maximum permissible concentrations of Cu in soils after application of sewage 

sludge in the UK range from 80 mg kg-I at soil pH of 5 - 5.5 to 135 mg kg-I at soil 

pH value of 6 - 7 (MAFF, 1998). Tbe topsoil pH at CM-I was 5 whicb means tbat 

even the control site would exceed DEFRA guidelines for Cu levels with respect to 

sewage sludge application. At sites CM-3 and CM-12 tbe pH was 6 - 6.37, wbicb 

mean that these sites also exceeded tbe statutory level of 135 mg kg-I (MAFF, 

\998). At all Chat Moss sites, the Cu concentrations in the subsoil levels were very 

similar, consistent witb strong Cu adsorption in tbe organic-ricb topsoils. 

Zinc topsoil concentrations were elevated above tbe subsoil levels at all sites on Chat 

Mos and Halsall Moss (Figure 3.18). A similar pattern to tbat ofCu was observed, 

with M-3 and CM-12 having significantly bigber Zn levels than CM-l and CM-9, 
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which shared similar contamination levels. The depth of contamination was also 

greater at CM-3 and CM-12 compared to CM-I and CM-9. 
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Figure 3. J 8: Average concentrations of Zn within the soil p rofiles of sites CM· J (control), CM·3 

(con taminated), M·9 (sand), CM· J 2 (contaminated) (Chat Moss) and site HM·J (contaminated) 

(Ha/sall Moss). Error bar: show standard error of three replicates. 

When comparing the Zn topsoil concentrations with the MAFF guidelines for soil 

receiving sewage sludge (MAFF, 1998), it can be seen that concentrations at the 

waste-amended sites CM-3 and CM-12 exceed the guideline levels of 200 mg kg·1 

but M- l and CM-9 were broadly within guideline levels. Concentrations of Zn 

were lowest at HM-I (76 mg kg· I
) , but the subsoil levels of Zn showed a different 

profil e to the hat Moss sites, with a sharp decrease at the topsoi l-subsoil boundary 

but a slight increase in Zn concentration at the subsoil-clay boundary. Zinc can be 

mobile in soils but is held strongly by clay and organic matter (Kabata-Pendias, 

2001 ), so again the profile at HM-I may indicate metal migration down through the 

sandy layer to the clay and organic layer at the base of the soil profile where the Zn 

is adsorbed. The subsoil levels at Chat Moss are all very similar, and very low, 
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suggesting either no substantial movement of Zn down the soil profile or poor 

retention of mobilized Zn in the acidic fibrous peat subsoil. 

Statutory limits of Mo in sludged soils of 4 mg kg'l (MAFF, 1998) were exceeded in 

the topsoil of all Chat Moss sites except CM-9, but the Halsall Moss site was within 

the limits (Figure 3.19). In the Chat Moss soils, the topsoils showed enrichment over 

the subsoil concentrations, but in the Halsall Moss soils, there was relatively little 

difference between the topsoil and subsoil. 

It has been reported that high levels of Mo can be found in fly-ash and fallout from 

coal fired power stations and also in sewage sludges (Kabata-Pendias, 2001). At the 

Chat Moss sites, waste incorporated into the soil included coal and fly-ash, as well as 

human wastes and sewage materials, all of which may have caused the elevated Mo 

concentrations seen in the topsoils. At Halsall Moss, the waste material was mainly 

animal manures, which may explain the lower levels of Mo seen in these soils. 

Again there was no evidence for migration of Mo into the subsoil at Chat Moss or no 

evidence of retention of leached Mo. 

Tin showed elevation in the topsoil compared to the subsoil at the Chat and Halsall 

Moss sites, although the topsoil concentrations were considerably greater in the Chat 

Moss sites than the Halsall Moss site (Figure 3.20). Tin concentrations in the Chat 

Moss sites range from 8 mg kg,l (CM-I) to 20 mg kg'l (CM-3 and CM-12), and Sn 

concentration in the Halsall Moss topsoil was only 4 mg kg'l. At all sites there was a 

sharp decrease in Sn concentration in the subsoil to I mg kg'l or less, although there 

was a slight increase at the base of the Halsall Moss profile in the organic and clay 

layer. 
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Figure 3. J9: Average concentrations of Mo within the soil profiles of sites CM- J (control), CM-3 

(contaminated), M-9 (sand), CM- J 2 (contaminated) (Chat Moss) and site HM-1 (contaminated) 

(Halsall Mos). Error bar. show standard error of three replicates. 
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Figure 3.20: Average concentrations of Sn within the soil profiles of sites CM- J (control), CM-3 

(contaminated), CM-9 (sand), CM-12 (contaminated) (Chat Moss) and site HM-) (contaminated) 

(Ha/sall Moss). Error bars show standard error of three replicates. 
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Topsoil concentrations of Pb were highly variable across all sites, ranging from 84 

mg kg-I (HM-l) to 406 mg kg-I (CM-3) (Figure 3.21). Soil Guideline Values for Pb 

in allotment and residential soils are 450 mg kg-I (Environment Agency, 2002b), 

which shows that the contamination in the Chat Moss soils is not quite at levels 

which are considered to be harmful to humans through plant uptake or ingestion of 

soil. The Chat Moss sites can be divided into two levels of enrichment; CM-3 and 

CM-12 showed the highest Pb soil concentrations and CM-l and CM-9 showed the 

lowest. This corresponds with data from other trace elements (Zn, Cu) as well as 

historical research which showed that waste materials were incorporated into 

reclaimed soil at the sites CM-3 and CM-9, whereas there is no evidence for waste 

incorporation at CM-I or CM-9. This indicates that waste incorporated into the soil 

during reclamation has contributed to the elevated levels of Pb in the contaminated 

sites (CM-3, CM-12), with the elevated topsoil Pb concentrations seen in CM-l and 

CM-9 possibly originating from atmospheric sources such as fossil fuel and 

industrial emissions from Manchester. In a study of an ombotrophic peat bog to the 

south of Manchester, Le Roux et 01., (2003) concluded that enrichment of the peat 

with Pb must have been due to atmospheric deposition because ombotrophic bogs 

can only gain nutrients from atmospheric sources. Considering lead isotope ratios, 

Le Roux et al., (2003) were able to identify the contamination sources as mixed 

pollution from mining and industrial activities, as well as petrol-derived emissions. 

Due to the close proximity of the study location to Chat Moss, it is possible to 

assume that the contamination sources would be similar for Chat Moss, and therefore 

that atmospheric pollution probably contributed to the elevated trace elements seen in 

'uncontaminated' topsoils at CM-I and CM-9 sites. Further discussion of the 

contamination sources at Chat and Halsall Mosses can be found in Chapter 4.1. 
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Figllre 3. 21: Average concentrations of Pb within the soil profiles of sites CM- 1 (control), CM-3 

(contaminated), CM-9 (: and), CM- 12 (contaminated) (Chat Moss) and site HM-I (contaminated) 

(Halsall Moss). Error bars show standard error of three replicates. 

The subsoil Pb concentrations at all four Chat Moss sites were very similar, and most 

likely represent a background uncontaminated Pb concentration_ There was no 

evidence of migration of Pb from the topsoil and its subsequent retention within the 

sub oil. Lead is generally considered to be an extremely immobile element in soi l, 

strongly bound to soil organic matter and Fe hydrous oxides (Morin et al., 1999). 

Mobility and reactivity of Pb in the Chat Moss soils will be further discussed further 

in Chapter 4.4. 

Halsall Moss showed the lowest concentration of Pb in the topsoil , although subsoil 

concentrations were consistent with those measured at Chat Moss. Again this 

reflects what is known about the nature of the waste incorporated into Halsall Moss 
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compared to the material incorporated into Chat Moss soils (Chapter 1.2). The 

location of Halsall Moss has also probably contributed to the lower concentrations of 

topsoil Pb and other contaminants at Halsall Moss. Whereas Chat Moss is very close 

to Manchester, Halsall Moss is approximately 20 Ian from Liverpool, which means 

that atmospheric pollution from industrial emissions in Liverpool would be reduced. 

Concentrations of Bismuth in the topsoils across the Chat Moss sites ranged from 

0.43 mg kg-I (CM-9) to 1.37 mg kg-I (CM-12) (Figure 3.22). Bismuth data was only 

available for the Chat Moss sites. Unusually, CM-l showed higher Bi concentrations 

than CM-3, suggesting that historic waste disposal has not been a significant source 

of Bi. Bismuth can accumulate in coals, but atmospheric deposition of volatilised Bi 

may be the main source in these soils, rather than coal ash from the waste. In a study 

of arable soils in Scotland, a mean Bi concentration of 0.25 mg kg-I was found 

(Kabata-Pendias, 2001), which is significantly lower than the data collected for the 

Chat Moss topsoils, but slightly higher than the concentration found in the subsoils 

below 50 cm. Again, this indicates that coal burning in Manchester has caused 

accumulation of Bi from atmospheric deposition in the Chat Moss soils. Subsoil 

concentrations ranged from 0.01 mg kg-I (CM-9) to 0.13 mg kg-I (CM-12) and there 

was no evidence for migration and accumulation of Bi down the soil profile, with 

subsoil concentrations being consistent with depth at each site. 
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Figure 3.22: Average concentrations of Bi within the soil profiles of sites CM-I (control), CM-3 

(contaminated), CM-9 (sand), and CM-12 (contaminated) (Chat Moss) . Error bars show standard 

error of three replicates. 

Enrichment Factor were calculated by dividing the average topsoil concentration 

from M-3 (contaminated) by the average topsoil concentrations of eM-! (control) 

and then normalising to 0, so that a positive value shows enrichment of eM-3 over 

eM-} and a negative value shows enrichment of eM-lover eM-3. When the 

topsoil (0 cm - 40 cm) and subsoil (50 cm - 110 cm) averages for sites eM-l 

(control) and eM-3 (contaminated) were considered, it was seen that the topsoil at 
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CM-3 was enriched in all trace elements, relative to the CM-I topsoi l, with the 

exception of Bi (Figure 3.23). For the majority of the elements, this enrichment 

factor was surprisingly consistent at - 1.7. However Se showed a much lower 

enrichment, and Sn, As, Zn and Cu all showed much higher enrichment in CM-3 

topsoil compared to CM-I. By contrast, the subsoil showed relatively little 

enrichment in the CM-3 profile (Figure 3.23). 
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Figure 3.23: Enrichment/actors 0/ CM-3 topsoil and subsoil compared to CM-I. Positive number 

shows enrichment in CM-3 relative to CM-I, negative number shows depletion in CM-3 relative to 

M-I 

The concentration of trace metals seen in the subsoil are similar to those reported for 

pristine peats in Finland and the Arctic Circle. Metal concentrations of topsoi l from 

an uncontaminated peat in Finland, (Ukonmaanaho et aI. , 2004; Rausch et aI., 2005) 

are seen in Table 3.1, along with metal concentrations in a pristine peat from the 

Russian Arctic circle (Zhulidov et aI., 1997), and the corresponding metal 

concentrations for the subsoil of the four Chat Moss sites (average of all four sites). 
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The metal concentrations seen in the subsoil at Chat and Halsall Moss are within the 

ranges reported for peats that have not been affected by anthropogenic processes or 

pollution (Table 3.1). This either supports the suggestion that metals have not moved 

out of the topsoil at either Chat or Halsall Mosses or it indicates that the acidic 

fibrous peat substrate has a low retention capacity. The low mobility of the metals 

down the soil profile is most likely due to a combination of the circumneutral pH and 

high organic matter content in the topsoil. Furthermore, at the topsoil-subsoil 

boundary there is an increase in pH, which will reduce the solubility of many of the 

trace metals (Section 1.3.1.3). There is also an increase in humified organic matter at 

this boundary at Chat Moss (Section 3.1.3.2), which will also act to bind and 

immobilise the metals (Section 1.3.1.3). 

Table 3.1: Natural concentrations of heavy metals in peats compared to Chat Moss subsoil 

(Ukonmaanaho et al., 2004; Rausch et al., 2005; Zhulidov et al., 1997). 

Finland peat 
mg kg-I 

Cu 3.3 

Pb 11.3 

Ni 2.5 

Zn 32.4 

As 2.6 

Co 0.3 

Cd 0.5 

Russian Arctic peat 
mg kg-I 

20 

6.2 

35 

0.17 

Chat and Halsall Moss subsoil 
(average) mg kg-I 

16.4 

22.4 

5.53 

22.2 

3.51 

1.37 

0.122 
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Table 3.2: Topsoil and subsoil element concentrations/or Chat and Halsall Moss sites. 

CM-l !mg kg -I! CM-3 !mg kg -I! CM-9 !mg kg -I! CM-12 !mg kg-I! HM-l !mg kg -I! 
Topsoil Subsoil Topsoil Subsoil Topsoil Subsoil Topsoil Subsoil Topsoil Subsoil 

Ca 17100 4200 13100 1490 
Sr 39.6 22.7 63.6 24.8 53.6 1.89 74.6 21.7 43.7 35.2 
Ba 184 30.8 331 28.8 289 9.13 320 53.7 172 222 
Fe 18900 2820 30400 2230 18600 470 25700 3940 15300 14600 
Mn 242 63.7 362 29.7 236 6.60 429 43.6 145 37.4 
As 23.4 3.45 45.4 3.07 22.8 0.75 32.5 3.87 9.46 2.20 
Se 2.96 0.563 3.38 0.509 1.90 0.0943 3.29 0.669 1.37 0.502 
Sb 3.96 0.350 6.83 0.409 2.73 0.0965 7.90 0.411 4.80 0.476 
V 39.2 3.93 64.8 4.41 41.8 0.939 57.9 6.82 25.4 12.5 
Cr 21.1 3.09 34.8 4.44 29.7 1.75 31.6 4.43 21.4 14.1 
Co 7.50 0.802 11.5 0.846 6.11 0.200 10.1 1.43 4.82 2.29 
Ni 25.4 2.71 39.3 3.54 24.9 1.31 34.6 4.40 11.1 7.37 
Cu 85.0 8.86 178 13.4 80.0 3.94 150 12.4 27.0 33.6 

Zn 137 26.3 313 25.5 205 5.96 286 22.7 75.9 14.2 

Mo 5.02 0.515 8.50 0.728 3.54 0.213 7.43 0.755 1.00 0.217 

Cd 1.00 0.161 1.83 0.0333 0.493 0.0285 1.16 0.117 0.548 0.197 

Sn 8.30 1.21 20.4 0.817 11.7 0.279 20.1 1.01 4.48 0.590 

Cs 1.33 0.127 2.29 0.159 2.31 0.0474 1.35 0.158 1.61 1.36 

Pb 221 22.8 407 28.9 169 11.3 350 17.4 84.3 17.6 

Bi 0.922 0.104 0.756 0.0345 0.429 0.0126 1.37 0.127 

3.2 Spatial variability of trace element concentrations in topsoil 
(Portable XRF survey) 

3.2.1 Introduction 

To assess the spatial variability of the metal content of the soil surface, on a field-

scale, a portable X-Ray Fluorescence analyser was used to map the contamination of 

a single field in an area of Chat Moss with a known history of waste disposal: the 

CM-3 site. The purpose of this was to assess the extent to which the historic 

application of waste to the fields and subsequent cultivation activities had evenly 

distributed the waste across the field. A secondary consideration was to determine 

whether sampling topsoil or soil profiles in a relatively limited area of a field could 

provide a reasonable representation of the whole area. By using Field Portable XRF 

(FP-XRF), it was possible to quickly measure contamination levels across a field grid 

without having to destructively remove samples. 
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FP-XRF was developed to provide rapid assessments of contamination levels in situ 

with little or no sample preparation required. Measurements can be taken on 

undisturbed soil, but it is often recommended to remove large stones, twigs and other 

obstructing materials. The soil should then be smoothed down to give the best 

contact surface with the instrument for the most accurate measurement. A Niton XLt 

analyzer (Thermo Scientific) instrument was used, which could analyse multiple 

elements over a range of environmental levels 

3.2.2 Survey design 

Before using the FP-XRF at Chat Moss, a test was carried out to assess the accuracy 

of the instrument by measuring the Pb and Zn content of soil plots with known trace 

metal concentrations. The topsoil plots (0.25 m x 0.25 m x 30 em depth) were 

constructed using soil, contaminated with sewage sludge, imported to the University 

of Nottingham farm from a sewage processing farm in the East Midlands run by 

Severn Trent Water Ltd. The plots were arranged in four blocks of 10 contrasting 

soils, intended to cover a range of metal concentrations. They were established in 

2003 as part of a 'phytoremediation' project at the Sutton Bonington campus of the 

University of Nottingham. The Pb and Zn concentrations in the soil plots had been 

previously measured, by Aqua-Regia digestion and Atomic Absorption Spectroscopy 

(AAS). The results of the comparison with FP-XRF in this initial test are presented 

in Section 3.2.3. 
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The survey of the field on Chat Moss was carried out at site CM-3, which had the 

highest contamination levels as seen in the ini tial GBASE survey and in the fi rst 

sampling (Section 3.1.3.3). A 90 m x 90 m grid was set up with measurements taken 

every 10m across the grid, resulting in a total of 100 measurement points at the 

corner of each 10 m x 10 m grid square (Figure 3.24). At nine randomly selected 

locations across the grid topsoil samples were collected and analysed, fo llowing acid 

digestion, by ICP-MS (Chapter 2.5.1 and 2.6) for comparison with the FP-XRF data. 

At each data collection point, the FP-XRF was used with a 30 second scan, pressed 

against the oil surface which had been cleared of large stones and vegetation and 

smoothed over. The FP-XRF data was then correlated with the ICP-MS data to 

assess the validity of this in-situ method on the highly organic Chat Moss soils. 
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Figure 3.24: FP-XRF sample grid at site eM-3, with core sites marked by e4 - el2. 
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3.2.3 Pre-survey test results 

The results of the pre-survey test can be seen in Figure 3.25. There was good 

agreement between the topsoil metal concentrations, measured by acid digestion and 

AAS, and the FP-XRF data collected in the field for both Pb and Zn, with ~ values 

of 0.987 for Zn and 0.896 for Pb. On the basis of these results it was determined that 

the FP-XRF field survey of Chat Moss was viable. 
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Figure 3.25: Metal concentrations of Pb (a) and Zn (b) in 10 topsoil plots from a sewage treatment 

farm in the East Midlands: P-XRF data plotted against metal concentration previously measured by 

acid digestion and AAS (S. Young. unpublished data). broken line shown is the J: J relation. 
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3.2.4 Chat 1\I0ss survey results and discussion 

The elements analysed by FP-XRF in the field were Sr, Rb, As, Pb, Zn, Cu, Co, Fe, 

Mn, Cr, V, Ti and Ca. The averages across the grid are given in Table 3.3, along 

with the detection limits for the instrument. The lower limits of detection are taken 

from a pressed powder pellet in a geological matrix; for in-situ field use, it is likely 

that these detection limits will be higher because scans were taken of the smoothed 

soil surface. 

Table 3.3: Arithmetic average trace element concentrations in topsoils at the Chat Moss site 

CM-3 and detection limits/or FP-XRF 

Sr 
Rb 
As 
Zn 
Cu 
Co 
Fe 
Mn 
Cr 
V 
Pb 

Chat l\1os5 average (mg kg-I) 
64 ± 1.4 
27 ± 0.2 
46 ± 1.8 

368 ± 69.1 
181 ± 4.5 

Below detection 
30000 ± 1091 

368 ± 7.0 
35 ± 1.0 
66 ± 1.7 

403 ± 14.1 

Detection limits (mg kg-I) 
4.0 
3.2 
5.6 
19.1 
28.3 
192 
31.1 
33.0 
21.1 
28.0 
10.8 

The results from the FP-XRF were correlated with the samples collected at locations 

C4-C12 across the sampling grid (Figure 3.24) which were analysed by ICP-MS 

following soil digestion (Chapter 2.5.1 and 2.6) (Figure 3.26 - 3.38). 
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Figur 3.26: orrelation graph for Co concentrations in topsoil from locations C4 - C12 at the 

lIat Mo ite M-3 (Figure 3.24) determined by acid dige tion and ICP-MS and FP-XRF data. 
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Figure 3.32: Correlation graphs Jor Ti concentrations in topsoils Jrom locations C4 - C12 at the 

Chat Moss site CM-3 (Figure 3.24) determined by acid digestion and ICP-MS and FP-XRF data. 
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Figure 3.33: Correlation graphs Jor V concentrations in topsoils from locations C4 - C12 at the Chat 

Moss site CM-3 (Figure 3.24) determined by acid digestion and ICP-MS and FP-XRF data. Solid line 

is the 1: J relation. Error bars show standard error. 

97 



Cr 

120 

100 

,-... 

OJ) 80 
~ 
OJ) 

E 60 '-' 

S 
C<l 

"0 
C/} 40 • :::E 

I 

* ~ 20 

• • .' , , • • 

o ' 
0 20 40 60 80 100 120 140 160 180 

XRF data (mg kg-I) 

Figure 3.34: orrelation graphs for Cr concentrations in topsoils from locations C4 - C12 at the 

hat Moss site M-3 (Figure 3.24) determined by acid digestion and ICP-MS and FP-XRF data. 

Solid line is the I : 1 relation. Error bars show standard error. 
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Figure 3.35: orrelation graph for Co concentrations in topsoils from locations C4 - C12 at the 

hat Moss site M-3 (Figure 3.24) determined by acid digestion and lCP-MS and FP-XRF data. 
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XRF data based on moisture content did not successfully correct the data. When an 

assumed average moisture content of 10% was used to correct the FP-XRF data for 

Pb, the FP-XRF still underestimated Pb concentration (Figure 3.39) and so it is likely 

that other factors, such as organic matter content and surface roughness may also 

have contributed to the reduced precision in results by FP-XRF. A final factor that 

may affect the data would be the counting time used to acquire data, which is the 

contact period of the FP-XRF with the soil surface. In the current investigation, a 30 

second counting time was used and it may be that a longer contact time would have 

gencrated different results. The lower precision generated by the moisture content, 

organic matter content, surface roughness and counting time do not explain the 

consistent bias toward underestimation by the FP-XRF, and in the scope of the 

current investigation this is currently unexplained. Ca content was greatly 

ovcrestimated by FP-XRF compared to the ICP-MS data. This is a combination of 

the fact that calibration of the FP-XRF was only carried out for trace elements and 

not major elements such as Ca. as well as possible spectral interferences, for example 

it has been reported that the Sn LP line can be an interference on the Ca Ka line 

(Feret et 01., 2003). 
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Figure 3.39: Concentrations of Pb in topsoil from locations C4 - C12 at the Chat Moss site CM-3 

determined by acid digestion and lCP-MS and FP-XRF data; the FP-XRF data was corrected for an 

os.'t/Imed soil moisture content of 1 0%. The solid line is the 1: 1 relation. 

Whilst the FP-XRF data is consistently lower than the ICP-MS data, the factors 

causing the variation (moisture content, organic matter content) should be reasonably 

consistent across the field. On this basis, it should still be reasonable to use the FP-

XRF data to show the approximate variation in total metal content across the field 

grid (Figure 3.24). A geochemical map of the site is shown in Figure 3.40 with Pb 

concentration classified into three groups: low, medium and high. 
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Figure 3.40: Distribution of Pb concentration in top oil across the field site (Figure 3.24) based on 

FP-XR.F data 

There is a substantial variation in Pb content across the field, with no obvious pattern 

to the variation but with two broad areas, in the top right and bottom middle, with Pb 

concentrations in excess of 450 mg kg-' (Figure 3.40). 

3.3 Geochemical association of trace metals 

Principle Component Analysis (PCA) is often used to study the relationship between 

a large number of variables which may have a wide numerical range (Halim et al. ) 

2009). PCA can show the number of factors affecting a dataset using scree plots as 

well as identifying relationships between elements through cluster analysis and 

dendrograms. Principle Component Analysis and Cluster Analysis were used to 
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investigate associations between various trace metals in Chat Moss soils. The Chat 

Moss dataset from all four sites (CM-I, CM-3, CM-9 and CM-I2) was used 

including the depth profiles, as well as the British Geological Survey G-BASE 

dataset from the original survey (Breward, 2003), which included topsoil data only. 

Scree plots and loading plots were used to assess the number of factors affecting the 

data in each dataset. Eigen values above 2 in scree plots were considered to be 

significant, and in the scree plot based on the whole Chat Moss dataset, only one 

highly dominant factor for the whole Chat Moss dataset was seen, most likely depth 

(Figure 3.41). For the Chat Moss topsoil only dataset there were 2 main factors 

found, but these could not be identified (Figure 3.42). Scree plots of the GBASE 

data suggested 3 dominant factors affecting element association in the contaminated 

sites, and only 2 dominant factors at the uncontaminated sites (Figures 3.43 and 

3.44). 
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Figure 3.41: Principal Component Analysis of all elemental data at 01/ depths for the Chat Moss soils 

(CM-I, CM-3, CM-9 and CM-I 2): Scree plot, number of data points = 45. 
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Figure 3.42: Principal Component Analysis of 01/ elemental data in topsoils of the Chat Moss soils 

(eM-I, CM-J, CM-9 and eM-I 2): Scree plot, number of data points = 8. 
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Figure 3.43: Principal Component Analysis o/uncontaminated data from GBASE dataset Ph < 300 

mg kg·': Scree plot. numher of data points - 32. 
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Figure 3.44: Principal Component Analysis 0/ contaminated data from GBASE dataset Ph> 300 mg 

leg- J: Saee plot. nllmn('r 0/ data points - 20. 
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Loading plots showed that the first factor affecting both the contaminated and 

uncontaminated sites using the GBASE data may be sand/clay content, or grain size, 

but the second and third factors cannot be identified (Figures 3.45 and 3.46). 

Loading plots of the contaminated and uncontaminated datasets broadly showed the 

same grouping (Figures 3.45 and 3.46). The observation that the Zr, Si and Ti group 

was at one end of the axis and clay components such as Rb and K are at the other end 

suggests that the first component may be a mineralogical component. In the 

contaminated load ing plot a more complex picture was observed than the 

uncontaminated loading plot, probably due to the complex history of the 

contaminated ite. 

Loading Plot: GBase uncontaminated 
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Figure 3.45: Principal Component Analysis of uncontaminated data from GBASE dataset Pb < 300 

mg kg·}: Loading plot for the first two components, number of data points = 32. 
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Figure 3.46: Principal ompon nt Analysis of contaminated data from GBASE dataset Pb > 300 mg 

kg>': Loading plot for the first two components. number of data points = 20. 

When I ading plot calculated through Principle Component Analysis were produced 

from b th the c mplete hat Moss dataset and the topsoil only dataset, the 

predominance f ne factor, probably depth, on all elements could again be seen 

( igure 3.47 and 3.48), in agreement with the scree plot (Figure 3.41). Using the 

hat M data et cJu ter analysis showed strong associations between all elements 

(Figure 3.49) pr bably a a result of the decrease in element concentration with 

depth ( igure 3.3 - 3.22). To test this assumption, a smaller dataset of only Chat 

Moss topsojl concentration was investigated (Figure 3.50), which showed weaker 

as ociations between elements, confinning that the associations between elements in 

the complete data et were most likely a result of the influence of depth. 
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Loading Plot for all elements in all profiles of Chat Moss soils 
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Figure 3.47: Principal omponent Analysis oj all elemental data at all depths in Chat Mos soils 

(CM-I. M-3. M-9 and M-f 2): Loading plot Jor the first two components. number oj data points = 

45. 

Loading Plot of all elements in topsoils of Chat Moss sites 
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Figure 3.48: Prin ipal ompon nt Analysis oj al/ elemental data in topsoils at the Chat Moss sites 

(CM-f. CM-3. CM-9 and CM-12): Loading plotJor the first two components. number oj data points = 
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Figure 3.49: Dendrogram of the entire Chat Moss dataset showing clustering of elements, number of 

data points'"' 45. 
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Figure 3.50: Dendrogram showing clustering of elemental analysis data for Chat Moss topsoils, 

number of data points'" 8. 
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Several elemental associations were apparent in the topsoil dataset, although the 

small number of data points (n = 8) means that these results may be unreliable. 

Associations indicating industrial waste were identified, including the association of 

Pb and Sb indicating batteries and Pb alloys, Cu, Ni, V, Co, Mo, Fe and As 

indicating steelworks waste (Mattigod & Page, 1983) and Zn, Sn, Ba and Cr 

indicating paints and fillers (Reimann & de Caritat, 1998). The strong association of 

Fe and As may indicate the presence of sedimentary Fe ore used in steelworks 

(Kabata-Pendias, 2001). All of the indicated sources are consistent with historical 

research of the waste types disposed of on Chat Moss, which lasted from 1900 to 

1964 and so a wide variety of historical and modem wastes would have been 

disposed on Chat Moss. 

To compare the elemental associations in the small scale Chat Moss dataset with the 

wider region, the relevant GBASE data for the area was also examined. The GBASE 

dataset was divided into contaminated and uncontaminated sites based on total Pb 

content, with 300 mg kg" taken as the boundary, as there was a natural division in 

the dataset at this Pb concentration. This Pb soil concentration is also the maximum 

permissable lead concentration in soils amended with sewage sludge (MAFF, 1998) 

Cluster analysis of the uncontaminated dataset showed associations such as Si and Zr 

perhaps representing silicates and zircons, possibly in sand fractions (Figure 3.51). 

The association of Rb, Mg, Sr and B most likely reflects limestone and clay 

components, either native to the soil or introduced to the soil through liming 

procedures. J lowever Ca is not within this cluster, which may be an artefact due to 

the limited size of the dataset (n = 32). 
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Figure 3.51: Dendrogram showing clustering o/elemental analysis data/or uncontaminated data of 

CBASE dataset. Pb content < 300 mg kg'l, number of data points = 32. 

The contaminated GBASE data also showed associations typical of soil components 

such as clay (Rb and K), silicates and sand (Ti, Si and Zr) and carbonates (Mg, Cd, 

Sr, Ca and P) (Figure 3.52). The association of Cd with the carbonate and phosphate 

elements indicates that these elements are derived from phosphatic fertilisers 

(Matti god & Page, 1983) and so are anthropogenic in origin and not due to native 

soil components. The association of the heavy metal suite (Ni, Ba, Pb, Cr, Sn, Co, 

Cu, Zn and Mn) are indicative of industrial waste. Mo and V showed a strong 

association which is often seen with black shales, which are often used in steelworks 

and so may indicate furnace waste. 

112 



-175.51 

>- -83.68 
~ 

f 
8.16 

Dendrogram: Contaminated 
Ward Unkage, Correlation Coefficient Distance 

100.00 ~-+-t-t-+--+-+-+-+--+-t-+-+-+-It-t--+-+-1L--.t--+-+--I-+--+-+-+-+--+-+--+-' 
~~~~.~~~~~~~~~~~~~~.~~~~~~~~~~~ 

Variables 

Figure 3.52: Dendrogram showing clustering of elemental analysis data for contaminated data of 

GBASE dataset, Pb content> 300 mg kg-I, number of data points = 20. 

Cluster analysis of the contaminated dataset showed many associations typical of 

industrial waste (Figure 3.52), similar to the dataset from CM-I, CM-3, CM-9 and 

CM-12, although the exact associations were not the same, reflecting the relatively 

small sizes of the datasets, or the different sampling methodologies of the two 

datasets. 
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3.4 Conclusions 

Through pH, organic matter and trace metal analysis it was possible to characterise 

the soils across Chat Moss and Halsall Moss. The control site on Chat Moss (CM-I) 

was a reclaimed peat site characterised by the highest topsoil organic matter content 

and the lowest trace metal content of the four Chat Moss sites. The depth of the trace 

metal enrichment was shallow (30 cm) possibly indicating that this metal enrichment 

was due to atmospheric deposition from the industrial centre of Manchester and the 

Pennine ore field which had then been ploughed into the soil, resulting in shallower 

contamination than the soils exposed to waste disposal. The high organic matter 

content indicated that there had been no waste addition to the soil at this site, which 

was also supported by field observations, as the waste incorporated to Chat Moss soil 

was dominated by mineral components such as ash, slag and domestic waste. 

The site at the edge of Chat Moss on the sand just off the peat layer (CM-9) was 

characterised by the same trace metal signal in the topsoil as CM-I, indicating that 

this had also been affected by atmospheric pollution. The organic matter content in 

the subsoil was very low, corresponding to the sandy nature of the soil. The topsoil 

also had the lowest organic matter content of all the Chat Moss and Halsall Moss 

sites. This combined with the low trace metal content suggested that there had been 

no waste incorporation into the soil at this site, and that the only source of the 

elevated trace metals was atmospheric deposition, as any waste incorporation would 

have the effect of increasing both the organic matter content (through the deposition 

of nightsoil) and the trace metal content. 
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The two contaminated sites on Chat Moss (CM-3 and CM-I2) show similar profiles 

of pH, organic matter content and trace metal content with depth. These sites had the 

highest trace metal content, most likely as a consequence of historical waste 

incorporation at these sites. This was supported by field observations of pottery, slag 

and coal fragments in the soils, as well as the reduced organic matter content in the 

topsoil compared to the control site (CM-I) as more mineral material had been 

incorporated into the soils at these contaminated sites. 

The spatial variability of CM-3 was assessed using Field Portable XRF analyser, 

although the results were affected by organic matter content, moisture content and 

counting time, resulting in a poor correlation with ICP-MS analysis on the same 

samples. However there was large variation seen for Pb across the field, with no 

obvious patterns, showing that either the cultivation of the field during and since 

waste incorporation has caused the waste to become distributed throughout the entire 

field, or that the waste was distributed unevenly. 

The topsoil pH of the contaminated sites (CM-3 and CM-12) was higher than the 

control site (CM-I), although the subsoil pH was similar for the peat sites on Chat 

Moss (CM-I, CM-3 and CM-I2). The change in pH occurred very sharply in the 

contaminated sites, and was concurrent with the boundary changes between topsoil 

and peat. This sharp pI I change could potentially represent a zone of mobilisation of 

trace metals, although the increase in organic matter content with the peat subsoil 

would most likely mediate this and help to keep any trace metals in solution by 

binding with the trace metals and remaining in the soil solids. Trace metal profiles 
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showed little evidence for the movement of trace metals into the subsoil, so it was 

likely that the low pH is not causing mobilisation of the metals. 

The site on Halsall Moss (HM-I) had a similar soil profile to the sandy site on Chat 

Moss (CM-9) although the Halsall Moss site had a much greater organic matter 

content in the topsoil, caused by the incorporation of waste which was dominated by 

organic wastes such as manures (Section 1.2.2.2). The trace metal content of this 

llalsall Moss site was lower than the atmospherically polluted sites on Chat Moss. 

This was because the waste incorporated into Halsall Moss was mainly organic 

manures which will have had a low trace metal content, and there are no major 

industrial centres within the prevailing winds on Halsall Moss so the levels of 

atmospheric pollution will also be low compared to Chat Moss. 
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Chapter 4: 

Characterisation of contaminants in Chat and Halsall Moss 

4.1 Source apportionment using lead isotopes 

4.1.1 Introduction 

To help characterise the source of Pb contamination at Chat and Halsall Mosses, 

stable lead isotope ratios in soils were determined. Lead was the dominant 

contaminant within these soils and the isotopic ratios of many common UK lead 

sources have been well characterised (Farmer et al., 2005; Bacon et al., 1996; Farmer 

et al., 2002). Each source of lead has a unique mix of the stable isotopes 204Pb, 

206Pb, 207Pb and 208Pb, determined by the age, geochemistry and geological history of 

the source rock. By comparing the isotopic ratios of soil samples to those of a suite 

of known materials it may be possible to quantify the proportio~s of different sources 

of contamination present in the sample. However, this will only be successful if the 

lead contamination is derived from a limited number of identifiable sources (Figure 

4.1). The most commonly used, and most sensitive, ratio for source apportionment 

studies in environmental media is 206PbPo7Pb (Weiss et al., 1999a; Weiss et al., 

1999b; Semlami et al., 2004). In this study the 206Pb/207Pb ratio has been plotted 

against the 206PbPo8P b ratio to more easily compare the suite of isotopes present in 

the soil samples with known sources (Figure 4.1, S. Chenery, unpublished data, R. 

McGiJJ, unpublished data). Further discussion of the background to source 

apportionment studies is in Section 1.3.2.3. 
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Figure 4.1: Typical ranges of 206Pblo7Pb vs. 206Pblo8Pb for common anthropogenic lead sources, 

data taken from R. McGill (unpublished) and S. Chenery (BGS, unpublished). Error bars show 

standard deviation of data. UK coal n = 6, UK ore n = 18, Australian ore n = 2. 

4.1.2 Materials and Methods 

Soil samples were collected from Chat Moss and Halsall Moss (see Chapter 2.1). 

Lead isotope ratios were measured for the sites amended with waste materials at Chat 

Moss (CM-3 and CM-12) and Haisall Moss (HM-l) as well as a control site located 

at Chat Moss (CM-l). The Pb isotope ratios were measured on soil samples at all 

sites (0 - 20 cm depth) using samples that had been digested for total element 

analysis (Section 2.5.1). Isotope ratios were measured using the experimental 

approach and ICP-MS operating conditions described in Section 2.7. 
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4.1.3 Results and Discussion 

Lead isotope ratios were successfully measured on 21 samples from Chat Moss and 9 

samples from lIalsall Moss all collected from 0-20 em depth. The 206pbP07Pb vs. 

206PbP08Pb ratios for soils from Chat and Halsall Mosses were plotted alongside the 

lead isotope ratios from known sources (Figure 4.2). 

The historical record suggests that the source of lead contamination on Chat Moss 

should be mixed due to the variable nature of the waste incorporated into the moss, 

such as industrial and domestic wastes. The proximity to the UK Pb ore fields in the 

peak district, the known application of coal ash and increasing inputs of petrol

derived Pb from the 1950s up to 2000 must all have contributed to Pb inputs to the 

site. On llaJsalJ Moss and the control site on Chat Moss a shallower depth of Pb 

contamination was observed (Chapter 3.1.3.3). This may indicate that the 

contamination was dominated by atmospheric sources of lead rather than deep 

incorporation of solid waste. Ilowever, as seen from Figure 4.2, the data collected 

for Chat Moss, Chat Moss control and lIalsall Moss are all similar, and seem to 

correspond closely to UK ore-derived Pb as seen from literature values for 

206pb/207Pb (McGill et al., 2003; Farmer et al., 2005). However examining the 

206Pb/20Rpb ratios, all three sites, but particularly the two Chat Moss sites, appear 

depleted in 2O('Pb or enriched in 208Pb compared to the literature values for UK ore. 

The UK ore fields have a 206PbP07Pb ratio of 0.480 ± 0.003, compared to the Chat 

Moss samples with a 206PbPosPb ratio of 0.472 ± 0.001 for the contaminated site and 

0.470 ± 0.003 for the control site. It may be that these sites are being influenced, to a 

greater extent, by petrol-derived Pb, which has a very low 206PbP08Pb ratio (0.456). 
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Unfortunately the data could suggest at least two different explanations for the range 

of Pb sources. Instead of showing UK Pb ore as the main source of lead 

contamination, the data may be showing a mix between UK coal-derived lead and 

petrol-derived lead if UK coal was the dominant end member of the mixed sources. 

This would fit with the historical evidence, and also with evidence from the field 

where many of the artefacts seen in the soil at site CM-3 were coal fragments (See 

Chapter 4.2). There would be inputs to both the CM-l and the CM-3 sites from coal 

burning but the latter should include relatively large contributions from coal ash 

whereas only atmospheric contributions from coal burning should have affected the 

control site, CM-I. Furthermore, the contributions from the coal ash added to CM-3 

may have been substantial, considering the difference in Pb concentrations at the two 

sites (section 3.1.3.3). Surprisingly, however, the isotopic signatures of sites CM-l 

and CM-3 do not support this hypothesis; Figures 4.2 and 4.3 show very little 

difference in their position on the ratio mixing line. From the Pb isotope data 

gathered, it was therefore not possible to distinguish between sources of Pb 

contamination. In combination with the historical research, all that can be concluded 

is that Pb in both control and waste-amended sites is derived from a similar mixture 

of UK coal burning and Pb ore smelting with minor contributions from petrol

derived tetra-methyl Pb. 

The results for Chat and Ila]5all Mosses were similar to those obtained by Le Roux el 

al., (2003) for an ombotrophic peat bog to the south of Manchester (Lindow bog). 

They suggested the contamination was dominated by UK ore and coal-derived Pb 

rather than petrol-derived lead. The authors also found that the signatures of ore and 

coal-derived Pb were difficult to separate, as seen in this project. 
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A further complication lies in evidence that, during the 19th Century, Australian ore 

became more widely used within the UK than UK ores and that, in the south of 

England, the 206PbPo7Pb ratio in herbage samples fell from 1.170 in the last 20 years 

of the 19th Century to 1.145 by 1930 (Shotyk et 01., 1998). Thus it is possible that 

the ratios seen for the lead contamination. on the mosses may be dominated by coal 

rather than Pb ore smelting, as (latterly) the ores used would have been dominated by 

Australian rather than UK ore, and so would have a more radiogenic signature than 

those observed in the data. 

t:. UK petrol lead OUKcoal • Australian ore 

0.50 • USA ore o Canadian ore DUKore 

• Chat Moss • Chat Moss control X Halsall Moss 
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Figure 4.2: Lead isotope ratios 206Pblo7Pb vs 206Pbl08Pb for a range of known lead sources and 

soils samples from Chat and lIalsall Mosses (full range). Error bars show standard deviation. 
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Figure 4.3: Lead isotope ratios }O"PbI07Pb vs }(J('Pbl1lllPbfor a range of known lead sources and soil 

samples from Chat and Iiolsall Mosses (restricted range). Error bars show standard deviation. 

4.1.4 Conclusions 

Lead isotope ratios were successfully measured on topsoil samples from Chat and 

Ilalsall Mosses. Surprisingly, despite substantial differences in total soil Pb 

concentrations, and the expectation that the contaminated sites would be dominated 

by the influence of coal ash, it was found that the two contaminated sites on Chat 

Moss and Ilalsall Moss and the control site on Chat Moss had very similar 

206PbP07Pb and 206PbPo8Pb ratios. Thus, no distinct single source of lead 

contamination at Chat and Ilalsall Mosses could be identified due to the varied 

nature of the contamination and minor differences between the sites were difficult to 

interpret convincingly. There were broadly two explanations for the range of isotope 

ratios seen: either the contamination was almost entirely Pb ore based, with a slight 

influence of petrol-derived lead, or the contamination was the result of a mixture of 
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coal-derived Pb and petrol-derived Pb. Evidence from historical archives and field 

observations make the second explanation more likely, as it could be seen in the field 

that coal made up a large amount of waste incorporated into the mosses. Coal-

derived and petrol-derived Pb would be atmospheric contaminants, and so could be 

introduced to the control soils in this way. The contamination sources at Chat and 

Halsall Mosses are most likely a result of mixing between UK coal, UK ore (as well 

as Australian ore, which became widely used in 19th Century) and a minor 

contribution from petrol-derived lead (derived from Australian and Canadian ores). 

4.2 Examination of foreign objects present in the soil by Scanning 
Electron l\ficroscopy 

4.2.1 Introduction 

Numerous foreign objects, including fragments of pottery, were observed in soils 

known to have had waste added at both Chat and Halsall mosses. It is likely that 

these objects were present in the waste material when it was incorporated. To assess 

whether these items contributed to the levels of trace elements in the soils a range 

were selected for examination using Scanning Electron Microscopy (SEM) and 

qualitatively analysed by examination of the key peaks present in the Energy 

Dispersive X-ray (EDX) spectrum. 

4.2.2 Materials and Methods 

Objects for examination were selected by hand picking from air-dried <2mm sieved 

soils collected at sites CM-3, CM-12 and HM-l. They were chosen to reflect the 

diverse range of foreign items present in the soils at the sites and at different depths. 
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Prior to examination by SEM they were fixed on a stub using carbon dag and sputter

coated with gold. Images and associated EDX spectra were collected for each object. 

4.2.3 Results and Discussion 

Most fragments were readily identified by their morphological features and X-ray 

spectrum as coal, bone, glass and slag material (Figure 4.4). One grey-white object 

wa identified as quartz and a reddish-coloured fragment as a sample of rusting iron 

(Figure 4.5). Most are likely to be anthropogenic additions to the soils. 

Figur 4.4: EM images of fragments recovered from waste-amended soils on Chat Moss. 

Fragment include 001 (A) identified by its vesicular texture formed as a consequence of exposure to 

high I mperatllre (: oil CM- 12, 30 cm depth), Bone (B) (CM-12. 20 cm depth), Glass (C) showing 

typical ot1choidal fracture wilh high Si and trace Na present (CM- I 2, 20 cm depth) and slag material 

(D) on/aining Si, AI, K, 0 and Fe. 
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Figllr 4.5: EM imag and accompanying EDX spectra of quartz particle (A and B) and rusting 
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AI 0 b erved within the soi ls were white particles, initially thought to be fly-ash or 

p ttery fragment ( ig. 4.6). SEM-EDX analysis showed that the particles were 

cry talline and composed of calcium, carbon and oxygen. This indicates the 

pre ence of calcium oxalate, which is produced by plants as a response to heavy 
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metal toxicity, particularly high levels of Cd, Co, Fe, Pb, Sr and Zn (Punz & 

Siegbart, 1993). Oxalate exuded by plant roots can react to form insoluble metal 

oxalates, alternatively oxalate produced internally within the plant can chelate with 

metals to render them unavailable (larosz-Wilkolazka & Gadd, 2003). Therefore the 

presence of calcium oxalate might suggest that the potentially toxic element 

concentrations in the soil are resulting in toxicity to the plants which are producing 

oxalate as a response. 

Figure 4.6: 'EM image of calcium oxalate crystals present in soils at Chat Moss (CM-12 at 

mllltipl depth ). Resolution at 50 pm (A) and 10 pm (8). 

At both hat and Hal a ll mosses a large number of fragments of pottery were present 

in the il. Pottery glaze typically contain high Pb concentrations (>50 wt%) and 

may contribute to the elevated Pb concentrations measured in these soils. Lead was 

u ed in the manufacture of pottery until 1947 when its use was banned (Buckley, 

1990). [n orne regi ns lead glazing is still commonly used in pottery and ceramic 

manufacturing, and it has been shown that in Mexico the lead glazing in pottery is a 

major source of lead exposure through leaching from the glazes (Tunstall & 

Amara iriwardena 2002). The presence of pottery in the soils of Chat and Halsall 

Mos e could repre ent a source of lead contamination to the soil if leaching under 

acidic conditions were to take place. 
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High concentrations of Pb were observed within the glazes in the pottery samples 

analysed (Fig. 4.7). However, only limited evidence of etching or erosive dissolution 

of the glaze was observed and some areas where glaze was absent may be a result of 

abrasion (see e.g. Figure 4.7 C). 
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Figure 4.7: SEM images (A & C) and associated EDX spectra (B & D)) of the surface of glaze on 

pol/ery (recovered fro m HM-l topsoil). 
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4.2.4 Conclusions 

Objects selected and identified within the soils reflect the anticipated range of 

inorganic additions that were likely to comprise the wastes. With the exception of 

pottery glazes all the fragments were low in potentially toxic elements. Pottery 

glazes contained significant Pb concentrations but the absence of dissolution features 

indicates little Pb mobilisation. Small fragments of glazed pottery (i.e. < 2mm sized 

pieces) may however be responsible for elevating the total Pb concentrations 

determined for these soils although it is unlikely that this is the sole source of Pb. 

4.3 Sequential extraction procedures (SEP's) 

4.3.1 Introduction 

Sequential extraction procedures have been widely used to assess the association of 

trace metals with soil fractions by determining the proportion of elements solubilised 

by selective reagents. A review of common sequential extraction procedures (SEPs) 

is presented in Section 1.3.2.1. The primary aim of using SEPs in this project was to 

compare the fractionation of metals in the uncontaminated and waste-amended Chat 

Moss soils (CM-l and CM-3; Chapter 2.1). It was decided to use the well known 

Tessier scheme and an additional procedure that has been designed for highly 

organic soils (Breward et a/., 1996). It was hoped that using two different SEPs 

would provide more information on the nature of metal binding in these organic soils 

and the robustness of the results could be more fully assessed. An additional aim of 

this chapter was to compare the Chat Moss results with a suite of soils with known 

contamination history (Pb/Zn minespoil, sewage sludge and roadside deposition). 
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The range of soils was intended to reflect a range of contamination sources of lead, 

and therefore it was hoped to use the SEP to distinguish between these contamination 

sources based on the fractionation of lead. 

4.3.2 Experimental design for Tessier and Breward methods 

The Tessier method used in this study is a modified scheme taken from Li & 

Thornton (2001) and the Breward method is described by Breward et al., (1996). 

The fractions isolated by the two schemes are summarised in Table 4.1. Both SEPs 

use an initial soil weight of 1.00 g of air-dried soil sieved to < 2 mm. 

Table 4. J: Sequential extractions procedures for Tessier and Breward methods 

"'raction Tt'ssit'r 
1-1 Exchangeable: 

0.5 M MgCh 

F2 Carbonate bound: 
I M NaOAe (adjusted to pH S with HOAe) 

F3 FelMn oxide bound: 
0.04 M NI-h.OH.HCI 

F4 Organic and sulphide bound: 
0.02 M IINO) and H20 2, 3.2 M NH40Ae. 

F5 Residual: 
IINO), HF, HCI04• 

F6 

Brt'ward 
Exchangeable: 
1 MNH40Ac 

Carbonate bound: 
1 M NaOAc (at pH 5) 

Organically bound; humie and fulvie 
acids: 

I M ammonia 

Mn oxide bound: 
0.1 M NH20H.HCI 

Fe oxide bound: 
Tamm's reagent 

Residual: 
HNO), HF, HCI04• 

The Tessier scheme and its variants are perhaps the most widely used schemes for 

soil mctal fractionation. It is broadly similar to the BCR scheme sanctioned by the 

EC (Qucvauvillcr el al., 1997) (Chapter 1.3.2.1 and Table 1.3). The Tessier scheme 

was employed here to try and relate contamination source to current soil 
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fractionation. The Breward scheme was selected for use on the Chat Moss soils as it 

has been specifically developed for organic soils. It differs markedly from the 

Tessier scheme in that trace elements bound to the molecular and colloidal fractions 

of humus (fulvic and humic acids) are extracted before the reduction step used to 

dissolve Fe/Mn hydrous oxides. In addition, the humic and fulvic acids (and 

associated metals) are mobilised into solution by raising the soil suspension pH 

rather than an oxidation step to destroy the humus fraction, as in the Tessier method 

(Table 4.1). In addition, the Breward scheme distinguishes between humic and 

fulvic acid fractions and also between Mn and Fe hydrous oxide fractions; again this 

contrasts with the Tessier scheme which identifies a single fraction for metals bound 

to hydrous oxides and to humus. Considering the imperfect nature of SEPs it 

therefore seems likely that (for example) the Tessier scheme will over-estimate the 

oxide-bound fraction by mobilizing organically-bound trace metals through 

exchange with dissolved Fe2+ and Mn2+ during extraction of F3 (Fe/Mn oxide 

fraction). By contrast, the Breward scheme is likely to under-estimate the 

organically-bound fraction by re-adsorption of metals at high pH on to FelMn 

hydrous oxides and by failure to mobilize surface-adsorbed metals in the remaining 

solid-phase organic sites during extraction of F3 (organic fraction). Both these 

potential deficiencies will act in the same direction: to increase the size of the 

apparent oxide-bound fraction and reduce the size of the apparent organic fraction. 

The topsoils analysed for this experiment were from Chat Moss (19th century urban 

contamination), Clough Wood (Pb/Zn minespoil contamination), a Sewage disposal 

farm (sewage sludge contamination) and a roadside soil. Chat Moss, Lancashire 

(grid reference SJ 724 973) is the moorland site which is the main subject of this 

project. It was reclaimed for arable agriculture in the 19th Century, during which 
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large quantities of waste from Manchester was incorporated into the soil (Phillips, 

1980). Clough Wood, Derbyshire (grid reference SK 257 617) was directly 

contaminated by PblZn minespoil, mined in the region since the 1 t h century, 

particularly between 1859 and 1939 (Young et al., 2000). Stoke Bardolph, 

Nottinghamshire (grid reference SK 641 409) has been used as a sewage processing 

farm for over 100 years, and is currently run by a major UK water company, under 

licence from DEFRA, as a dedicated site for production of animal fodder. The 

roadside location, off the A6 near Kegworth, Leicestershire (grid reference SK 489 

260) has a high traffic density but was expected to have a low natural soil Pb content 

so that the majority of the soil Pb would be derived from petrol additives. The Chat 

Moss soils were collected from sites CM-I (Chat Moss control) and CM-3 (Chat 

Moss contaminated), representing control and waste-amended sites for comparison 

(Chapter 2.1). Using Ward-linkage dendrogram analysis, it was shown that there 

was a strong degree of similarity between all four soils when comparing total metal 

contents, with Chat Moss and Minespoil being the most similar (Figure 4.8). This 

apparently supports the use of the Sewage farm, Minespoil and Roadside soils as 

compositional proxies for the waste incorporated into Chat Moss. However it is also 

likely that the similarities observed between the soils are coincidental, or represent 

deeper geochcmicallinkages unrelated to the soils. 
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Dendrogram 
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Chat Moss Minespoil Roadside Sewage farm 

Variables 

Figure 4.8: Dendrogram showing clustering of soils using total elemental data. Number of data points 

-72. 

Apparent recoveries deviating from 100% during SEP's indicate an error within the 

scheme due to experimental or analysis error. There is considerable scope for such 

errors during sequential extraction procedures partly due to the large number of steps 

involved, each of which can result in contamination or carry-over into the next step 

(Young el 01 .• 2006). To account for these errors a blank was taken for analysis at 

each step, and the residual weight of the centrifuged soil sample was recorded to 

measure carry-over of the extracting solution into the next step to account for the 

amount of trace metals entrained in the pore solution. The sequence of operations 

used in the modified Tessier and Breward schemes are described in Table 4.2. The 

extracts from each step of the SEPs were analysed by ICP-MS following the method 

described in Section 2.6. 
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Table 4.2: Sequential extraction methods/or modified Tessier and Breward schemes 

Tessier method 
(LI & Thornton, 2001) 

Weigh 1.0 g soil into centrifuge tube 

Add S.O mL 0.5 M MgC12; shake for 20 min. 

Centrifuge for 15 min at 2500 rpm, filter supernatant 
« 0.2 ~m), weigh residue. 

Analyse supernatant for Exchangeable elements 
(ICPMS) 

Add S.O mL I M NaOAc at pH 5.0 to residue; shake 
for 5 hours. 

Centrifuge for 15 min at 2500 rpm, filter supernatant 
« 0.2 ~m), weigh residue. 

Breward method 

Weigh 1.0 g soil into centrifuge tube 

Add 20 mL I M NH40Ac (pH 7); shake for 1 hour. 

Centrifuge for 15 min at 2500 rpm, filter supernatant 
« 0.2 ~m), weigh residue. 

Analyse supernatant for Exchangeable elements 
(lCPMS) 

Add 20 mL I M NaOAe to residue; shake for 2 hours. 

Centrifuge for 15 min at 2500 rpm, filter supernatant 
« 0.2 ~m), weigh residue. 

Analyse supernatant for Carbonate-bound 
Specifically adsorbed elements (lCPMS) 

and Analyse supernatant for Carbonate-bound elements 
(ICPMS) 

Add 20 mL 0.04 M NH20H.HCI in 25% (v/v) HOAc 
to residue; extract at 96°C for 6 hours with occasional 
agitation; dilute samples to 20 mL with deionised 
water; shake for 10 minutes. 

Centrifuge for 15 min at 2500 rpm, filter supernatant 
« 0.2 ~m), weigh residue. 

Analyse supernatant for elements bound to FelMn 
oxides (ICPMS). 

Add 3.0 mL 0.02 M HN03 and 5.0 mL H20 2 at pH 2.0 
to residue. Heat at S5"C for 2 hours with occasional 
agitation. Cool, add 3 mL H10 2 and heat again at 85°C 
for 3 hours with occasional agitation. Cool, add 5 mL 
3.2 M NH40Ac in 20% (v/v) HOAc and dilute with DI 
water to 20 mL. Agitate for 30 min. 

Centrifuge for 15 min at 2500 rpm, filter supernatant 
« 0.2 ~m). weigh residue. 

Analyse supernatant for elements bound to organic 
matter and sulphides 

Digest residue with HNO), HF and HCI04 

(Section 2.S.I) 

Analyse digestate for Residual elements. 

Add 20 mL 1M NH) to residue; shake for I hour. 

Centrifuge for 15 min at 2500 rpm, filter supernatant 
« 0.2 ~m), weigh residue. 

Acidify supernatant to pH 1.0 with cone. HCI 
Remove supernatant containing Fulvic acid 
Oxidise remaining solid with acidified H20 2 at SO°C 
Recover digestate of Humic acid. 

Analyse both Fulvic and Humic acid fractions for 
bound metals (lCPMS). 

Add 20 mL 0.1 M NH20H.HCI to soil residue; shake 
for I hour. 

Centrifuge for 15 min at 2500 rpm, filter supernatant 
« 0.2 ~m), weigh residue. 

Analyse supernatant for elements bound to secondary 
Mn oxides (ICPMS) 

Add 20 mL Tamm's reagent (oxalic acid and 
NH40Ac) and mix; stand in dark for 2 hours 

Centrifuge for 15 min at 2500 rpm, filter supernatant 
« 0.2 ~m), weigh residue. 

Analyse supernatant for elements bound to secondary 
Fe oxides 
Digest residue with HN03, HF and HCI04 

(Section 2.5.1) 

Analyse digestate for Residual elements. 
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4.3.3 Results and Discussion 

4.3.3.1 Comparison between Breward and Tessier methods using control 

and contaminated Chat Moss soils. 

Due to the unknown mineralogy of the Chat Moss soil, it was not possible to 

categorically assess which extraction method generated the most meaningful results, 

however some assumptions can be made by comparing the two methods. It must be 

noted that any conclusions drawn here about the effectiveness of the two methods for 

defining the fractionation of the Chat Moss soil are only assumptions and should be 

considered as such. 

4.3.3.1.1 Group 2 metals - Sr, Ba 

Strontium 

The recoveries for Sr were close to the digestion total for both the Tessier and 

Breward methods, and for both soils (Chat Moss contaminated and Chat Moss 

control). Both methods showed the same proportion of Sr in the exchangeable 

fraction for both soils (32% - 33%) (Figure 4.8). However, the Tessier method 

showed a greater concentration of Sr in the Fe/Mn oxide and the organic fractions for 

both soils whereas the Breward method suggested greater concentrations in the 

residual and carbonate fractions (Figure 4.9). Strontium is often found as a structural 

component in clay minerals, which would be expected to remain in the residual 

fraction, but in acidic soils Sr can be easily mobilised (Kabata-Pendias, 2001), 

explaining the relatively large proportion of Sr in the exchangeable fraction, as the 

Chat Moss soils had pH values around 5.5. Strontium would also be expected to be 

present within the carbonate fraction of soils, as it often substitutes for Ca, however 

both Chat Moss soils had a very low carbonate content. 
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The increased extraction of Sr in the organic phase with the Tessier method 

suggested that the Breward extractant for this step (ammonia) was relatively 

inefficient for Sr, or that the Tessier extractant was over-extracting Sr (Figure 4.8). 

The Tessier extraction for this step relies on the destruction of organic matter with 

hydrogen peroxide and retention of liberated ions in solution with nitric acid and 

ammonium acetate. This seemed to be more effective at mobilising organically 

bound Sr for this highly organic soil. Strontium is relatively weakly bound to organic 

matter and it is possible that, following dissolution of humic and fulvic acids in the 

Breward method, there was re-adsorption of Sr on to the (still intact) clay and 

hydrous oxides at the high pH produced. There was also a higher proportion (+ 

3.4%) of Sr in the carbonate step of the Breward method. This could explain the 

reduced organic Sr (- 3.3%) seen in the Breward method as some may have been 

mobilised in the carbonate step (Figure 4.9). However it cannot be stated which 

method was the more accurate in measuring fractionation due to the unknown 

mineralogy of the Chat Moss soil. To resolve this issue, a soil with known 

mineralogy and re,Sponse to sequential extraction procedures could be used. 

The difference seen in the Fe/Mn oxide fraction for Sr was unexpected as the 

extractants for this step are similar in both schemes, with the Tessier scheme using 

hydroxylamine hydrochloride, and the Breward scheme using hydroxylamine 

hydrochloride and Tamm's Reagent. However in the Breward scheme the length of 

the extraction step was only 1 hour at room temperature with hydroxylamine 

hydrochloride whereas the Tessier scheme has a 6 hour step at 96°C. This 

operational difference may explain why the Breward scheme extracts less Sr. This, 
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in turn, would result in more Sr being extracted in the final residual step with the 

Breward method, which was seen for both soils. 

Barium 

The recovery for Ba was greater with the Breward method (10 1%) than with the 

Tessier method (86%), although both were within acceptable experimental limits 

(Figure 4.10). The fractionation of Ba was broadly similar as measured by both 

methods and for both soils, with most of the Ba (43 - 56%) being extracted in the 

residual fraction. Barium is commonly associated with clay minerals which would 

be expected to be unaffected by the extractants and so found in the residual fraction 

(Kabata-Pendias, 200 I). As seen for Sr, for both the contaminated and control soils, 

the Breward scheme measured lower recoveries of Ba in the FelMn oxide and 

organic fractions, although it cannot be determined whether the Breward or Tessier 

methods were more accurate. 
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4.3.3.1.2 Structural metals - Fe, Mn 

Iron 

The recoveries for Fe were very low, especially with the Tessier method. For both 

the contaminated and control soil the recovery with the Breward method was 10% 

greater than the Tessier method, with 65%-71 % recovery with the Tessier method 

and 74%-81 % recovery with the Breward method (Figure 4.11). 

In both schemes there was no fractionation of Fe into the exchangeable or carbonate 

fractions, and both schemes showed the same proportion of Fe in the residual 

fraction, which was the dominant fraction containing 54% - 64% of the total Fe. 

However in the organic and FelMn oxyhydroxide fractions there was a difference 

between the two schemes. The Tessier scheme showed a larger proportion of Fe in 

the organic fraction compared to the Breward scheme, and the Breward scheme 

showed a larger proportion of Fe in the Fe/Mn oxyhydroxide fraction. This was 

similar to the pattern seen for Sr and Ba, where the Breward scheme extracted a 

smaller proportion in the organic fraction compared to the Tessier scheme. This may 

suggest that the Breward scheme is not as effective at mobilising metals in the 

organic fraction in these highly organic soils, possibly because metal remains 

adsorbed on solid phase humus during extraction or re-adsorption on Fe/Mn oxides 

occurs. 

For both soils most of the Fe was in the residual phase either as resistant Fe oxides 

that are not affected by the Fe/Mn oxide step, or as clay minerals that would remain 

in the residual phase (Li & Thornton, 2001; Deer et al., 1992). The fractionation of 

Fe in both SEPs was the same for both the control and the contaminated soil, 
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indicating that the addition of waste to the soil had not affected the fonn of Fe in the 

soil. 
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Manganese 

The recovery of Mn was good for both methods, although the Breward method had a 

higher recovery than the Tessier method (96% recovery compared to 85%). Both the 

Tessier and Breward schemes showed broadly the same fractionation of Mn into the 

exchangeable and carbonate fractions. However the Breward method produced a 

lower proportion of Mn in the organic and hydrous oxides fractions and 

correspondingly higher levels ofMn in the residual fraction (Figure 4.12). 

There were markedly different fractionation patterns for the control and 

contaminated soil. For both SEPs, the control soil had a much higher proportion of 

Mn in the exchangeable fraction compared to the contaminated soil (40% to 3% as 

measured by the Tessier scheme), which may be related to the pH of the soils. The 

control soil had a pH of -5 whereas the contaminated soil had a more neutral pH of 

-6, and Mn has a lower solubility in the near-neutral range compared to acidic soils 

(Kabata-Pendias,2001). The control soil had a correspondingly lower proportion of 

Mn in the Fe/Mn oxide fraction whereas the residual and organic fractionation in 

both soils was similar. 

4.3.3.1.3 Metalloids - As, Se 

Arsenic 

The recovery for As was high with both the Tessier and Breward methods, with 

average recoveries of 100% and 118% respectively. Selenium showed similar 

recoveries for both methods, with 103% and 112% for the Tessier and Breward 

methods respectively (Figure 4.13a). 
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When considering the fractionation for As and Se, it must be noted that As and Se 

are difficult to accurately fractionate due to the ability of these elements to exist at 

different oxidation states under different redox and pH conditions, and so the 

alteration of these conditions during the extraction may alter the natural fractionation 

of these elements (Gleyzes et al., 2002). 

The Tessier and Breward schemes gave similar results for the fractionation of As, 

with Fe/Mn oxides, organic matter and residual being the main fractions hosting As. 

The Breward scheme recorded slightly higher Fe/Mn oxide and lower organic 

fractions of As than the Tessier method, however these differences were slight « 

10%) (Figure 4.13b). There was little difference in fractionation between the 

contaminated and uncontaminated soils, except that in the Breward extraction, the 

control soil showed a higher proportion of As in the organic fraction compared to the 

contaminated soil which showed a higher proportion of As in the Fe/Mn oxide 

fraction. 

Selenium 

There was a greater difference in fractionation measured by the two methods for Se 

(Figure 4.14). The Tessier scheme recorded Se as being predominantly in the 

organic phase (68-71%) followed by the FelMn oxide phase (16-22%) and then the 

residual phase (8-14%), whereas the Breward scheme extracted Se mainly in the 

residual phase (47-51 %), followed by the organic phase (33-34%) and then the 

FelMn oxide phase (15%). The proportion of Se in the FelMn oxide phase was 

reasonably consistent for both methods, suggesting that this may be a reliable result. 

However the results for the other fractions were very different, with up to 38% 
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difference in the proportion of Se extracted in the organic phase between the two 

methods. The different approaches to mobilizing the organic Se pool taken by the 

two SEPs may explain the disparity in results. The Tessier method employs 

complete oxidation of all organic matter which will convert all remaining (and 

accessible) Se to soluble selenate. By contrast, the Breward method is non

destructive in its approach and relies simply on mobilization of humic and fulvic 

acids. This means that any Se bound into skeletal organic forms (e.g. humin, plant 

fragments etc) will not be accessed and any selenite still adsorbed to Fe oxides will 

not be transformed to selenate and solubilised. 

There was little difference seen between the two soils for each method, indicating 

that waste amendment has not altered the form of Se in these soils. The total Se 

concentrations were also similar (CM-3 < CM-I) suggesting that, in contrast to As, 

the waste had not enriched the soil with Se. 

4.3.3.1.4 Trace metals 

For all trace metals with the exception of Ti, Zn and Cd, the Breward method gave 

significantly better recoveries than the Tessier scheme. In the case of Ti, the Tessier 

method gave the best recovery, although this was still less than 100% (76%). For Zn 

and Cd, both methods gave approximately 100% recovery. 

The fractionation varied for the trace metals, although all except Cd, Zn and Co were 

concentrated in the residual, organic and FelMn oxide fractions. As expected, Ti was 
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almost completely hosted by the residual fraction (85-98%) in both SEPs, with only 

2% being extracted in the organic fraction (Figure 4.15). 
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There was no significant difference in fractionation pattern for V, Cr and Zn as 

measured by the two methods, but for all other trace metals the fractionation patterns 

varied with the scheme used. 

Vanadium and chromium 

Vanadium (Figure 4.16) and chromium (Figure 4.17) showed the same fractionation 

pattern, with the order of fractionation being residual> organic> FelMn oxides, and 

less than 1% seen in the carbonate and exchangeable fractions combined. For both 

elements, the Breward method indicated a lower proportion within the organic 

fraction, and there was no significant difference in fractionation between the two 

soils (CM-I and CM-3). 

Cobalt 

Cobalt showed slightly higher recovery with the Breward method, although both 

schemes gave low recoveries, with 79-88% recovery with the Breward scheme and 

73-75% recovery with the Tessier scheme (Figure 4.18). The Tessier scheme 

recorded higher fractionation of Co into the exchangeable and organic fractions than 

the Breward scheme, but the fractionation into the carbonate and Fe/Mn oxide 

fractions were the same for both methods. Both soils showed the same fractionation 

pattern with the exception of the exchangeable fraction measured by the Tessier 

scheme, which showed higher fractionation of Co in the control soil, probably related 

to the lower pH in this soil. The fractionation of Co followed the pattern: residual> 

Fe/Mn oxides = organic> exchangeable> carbonate for both soils. The Breward 

scheme produced a lower organic fraction and a correspondingly higher residual Co 

fraction compared to the Tessier scheme. 
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Nickel 

The recovery for Ni was very low with the Tessier method (63-68%) but higher with 

the Breward method (89-93%) (Figure 4.19). Both schemes showed a similar 

fractionation pattern, with similar concentrations in the organic fraction indicated by 

both SEPs and overall fractionation in the order: residual> organic> Fe/Mn oxide> 

exchangeable > carbonate. However the two soils showed slightly different 

fractionation patterns, with the contaminated soil (CM-3) dominated by the residual 

fraction and the control soil being higher in the organic fraction. This would indicate 

that the waste incorporated into the soil at the contaminated site contained Ni in a 

less reactive form, and possibly that this has not been weathered out from the 

residual phase. It has been reported that Ni can be easily mobilised during 

weathering, and is strongly associated with Fe/Mn oxides and organic matter 

(Kabata-Pendias, 2001), which could explain the results seen here, with the natural 

Ni that has been weathered out of the parent material of the soil being associated 

with organic matter in the highly organic soils of Chat Moss. It could be expected 

that the behaviour of Ni in the control soil indicates the natural behaviour of Ni 

within these organic soils. 

Copper 

Both schemes showed good recoveries for Cu (Figure 4.20), with the Breward 

scheme again producing a recovery closer to 100% of the acid digestion value. 

Again, the Breward scheme yielded a smaller organic fraction in these soils, and a 

greater Fe/Mn oxide and residual fractions. In a study of three soils from Scotland, it 

was found that Cu was predominantly associated with the organic fraction in soils 
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with high organic matter contents (51 - 83%) (Bacon & Hewitt, 2005), which agrees 

with the results of the Tessier extraction of the Chat Moss soils, with 83% of Cu 

associated with the organic fraction. The fractionation pattern for the control and 

contaminated soils were remarkably similar as measured by both SEPs. The order of 

fractionation for the Tessier scheme was organic> residual > Fe/Mn oxides with 

virtually no Cu seen in the exchangeable or carbonate fractions, and for the Breward 

scheme the order of fractionation was residual = organic = Fe/Mn oxide with, again, 

no Cu seen in the exchangeable or carbonate fractions. 

Zinc 

Both methods gave acceptable recoveries for zinc, although the Breward scheme 

again achieved the highest recoveries. The fractionation measured by each scheme 

was different, with the Breward scheme again producing a lower organic and 

exchangeable fraction and a correspondingly greater residual fraction compared to 

the Tessier scheme (Figure 4.21). Both schemes showed very similar proportions of 

Zn in the carbonate and Fe/Mn fractions. Again, both soils were quite similar, 

although in the Tessier scheme the control soil showed greater fractionation into the 

exchangeable fraction and lower in the carbonate and residual fractions, again this 

was most likely due to the lower pH in the control soil promoting greater solubility 

of Zn. The general order of fractionation was residual> organic = FelMn oxide = 

exchangeable > carbonate. Overall, substantial proportions of Zn were seen in all 

fractions, which was also seen in a study by Bacon & Hewitt (2005), in a study of 

three different soils using the BCR sequential extraction scheme, with 44 - 90% of 

Zn in the residual phase and the remainder distributed between the other phases. 
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Molybdenum 

The Breward scheme gave the highest recoveries for Mo compared to the Tessier 

scheme (Figure 4.22), and again the Breward scheme produced lower concentrations 

in the organic fraction, compared to the Tessier SEP, along with greater 

concentrations in the exchangeable and residual fractions. 

The key difference between the approach of two SEPs to mobilizing the organic pool 

is that the Tessier method relies on a destructive oxidation step. This clearly 

mobilized substantially more Mo than simple dissolution of humic and fulvic acid at 

high pll. This could indicate either that the Breward method leaves organic-Mo in 

the solid phase, associated with the humin fraction, or that the Tessier method 

solubilises non-organic forms of Mo by oxidation to soluble molybdate (Mo04). The 

two soils showed differences in an fractions with the Breward scheme, whereas the 

Tessier scheme showed similar fractionation for CM-3 and CM-I soils, with the 

exception of the residual and organic fractions. In the control soil, there was a 

greater fractionation of Mo into the organic pool. In the contaminated soil there was 

a greater fractionation of Mo into the residual fraction, indicating that, as found for 

Ni, Mo may have been incorporated into the soil in a form that is resistant to 

weathering. Depending on the Eh and pH conditions of the soil, Mo can be 

associated with either organic matter or hydrous oxides (Kabata-Pendias, 2001), 

which would support the results seen here with naturally-derived Mo being 

associated with organic matter and anthropogenic Mo being unweathered and found 

in the residual phase. The Tessier scheme gave an order of fractionation of organic> 

residual> FelMn oxide> carbonate with no Mo seen in the exchangeable fraction, 

157 



and the Breward scheme gave an order of fractionation of residual > organic 

Fe/Mn oxide > exchangeable> carbonate. 
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Cadmium 

Both schemes showed excellent recoveries for Cd, with the Tessier scheme giving 

95-10 I % recovery and the Breward scheme producing 89-11 0% recovery (Figure 

4.23). There were large differences in fractionation patterns between the two 

methods. The Tessier scheme extracted much more Cd in the exchangeable fraction 

than the Breward scheme (45% compared to 25% for the Breward scheme with the 

waste-amended soil). For the exchangeable step the Tessier scheme uses MgCh and 

the Breward scheme uses ammonium acetate. The chloride ion complexes strongly 

with Cd2
+ and so will be likely to overestimate what is strictly regarded as the 

'exchangeable fraction' for Cd (Young et al., 2006). Unusually the Breward scheme 

showed greater fractionation of Cd into the organic fraction than the Tessier scheme, 

indicating that the overestimate of Cd in the exchangeable step of the Tessier scheme 

may be due to the removal of organically-bound Cd by MgCh. A small proportion 

of Cd was measured in the FelMn oxide phase by the Tessier scheme but there was 

no Fe/Mn oxide bound Cd as measured by the Breward SEP. 

The fractionation pattern varied between the two soils for both schemes. In the 

Tessier scheme there was a greater proportion of exchangeable Cd in the control soil, 

with all other fractions being higher in the contaminated soil. A similar pattern was 

seen in the Breward scheme, where the control soil had a greater proportion of 

exchangeable Cd than the contaminated soil. However, in the Breward scheme, the 

control soil also had a greater proportion of Cd in the organic phase compared to the 

contaminated soil. These observations might suggest that the Cd incorporated into 

the soil within the waste was in a form resistant to weathering, whereas the natural 

Cd within the soil was held weakly on humus. However, the difference in pH 
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between the two soils is also likely to have contributed to this difference. The pattern 

of fractionation seen with the Breward scheme was residual > exchangeable = 

organic> carbonate with no Cd extracted in the Fe/Mn oxide step. The order of 

fractionation for the Tessier scheme was exchangeable> FelMn oxide = organic> 

carbonate> residual. 

Lead 

For Pb, the Breward scheme had excellent recoveries (91-98%); recovery by the 

Tessier scheme was lower (80-84%) (Figure 4.24). Lower representation in the 

organic fraction was seen again with the Breward method, as well as the Fe/Mn 

fractionation, and there was a corresponding increase in the residual fractionation 

compared to the Tessier method. There was no difference between the two soils for 

the exchangeable, carbonate and Fe/Mn bound Pb but for the organic and residual Pb 

there was a difference between the two soils. For both schemes, the more acidic 

control soil had higher organic Pb pools and lower residual fractionation, as seen for 

Cd and Ni. It is likely that a similar process controls this pattern, with Pb introduced 

to the contaminated soil being within a resistant phase, and that once the Pb is 

sufficiently weathered, it will become organically bound as in the control soil which 

demonstrates the natural behaviour of metals within these soils. The fractionation 

order for the Tessier method was organic> residual = Fe/Mn oxide> carbonate> 

exchangeable and the fractionation order for the Breward method was residual > 

organic> Fe/Mn oxide> carbonate = exchangeable. 
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There were large differences in fractionation as measured by the Tessier and 

Breward methods for all analysed elements except Ti, Ni and As. One of the most 

common differences seen in Sr, Ba, Fe, Mn, Se, V, Cr, Co, Cu, Zn, Mo and Pb was a 

smaller fractionation into the organic phase as measured by the Breward scheme. 

The two schemes utilise different extractants as well as a different sequence of 

extraction, and it is likely that this would cause the variation seen in fractionation. 

In the Tessier scheme, the organic fraction is the fourth to be extracted and comes 

after the Fe/Mn oxides have been removed, whereas the Breward scheme extracts the 

organic fraction with the Fe/Mn oxides still present. The latter approach could allow 

re-adsorption of mobilised metals from the organic fraction onto the Fe/Mn oxides in 

the Breward scheme. This is especially likely because the Breward SEP relies on 

mobilization of intact humic and fulvic acids at high pH. These are the right 

conditions to encourage both re-adsorption of cations on to (the intact) Fe/Mn 

hydrous oxides and retention by remaining solid phase organic matter. By contrast, 

the Tessier scheme destructively oxidises the organic matter. 

Furthermore, to mobilise the Fe/Mn oxide bound fractions, the Tessier scheme 

reduces Fe/Mn oxides using hydroxylamine hydrochloride. This step takes place 

before the organic step, and so any Fe2+/Mn2
+ ions that are liberated during reduction 

may compete for exchange sites on the organic matter, which could have the effect of 

liberating organically bound metals early and so giving a falsely large estimate of the 

Fe/Mn oxide bound fraction of metals. There was a higher proportion of Mn in the 

Fe/Mn oxide fraction as measured by the Tessier scheme as opposed to the Breward 

scheme for the contaminated soil, indicating that competition, from Fe2+, for organic 
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binding sites may have liberated organically bound Mn. The liberation of the 

organic phase through oxidation rather than solubilisation may also affect metal 

sulphides. If any metal sulphides were present within the soil, under the Tessier 

scheme these would be brought into solution during extraction of the organic phase; 

there is no equivalent reaction in the Breward scheme. This may also have produced 

larger apparent metal fractionation into the organic phase under the Tessier scheme 

rather than the Breward scheme although the presence of metal sulphides is difficult 

to confirm. 

For many elements there were no differences observed between the control and 

contaminated soils, however Sr, Mn, Co, Ni, Zn, Mo, Cd and Pb all showed different 

fractionation patterns. The most common difference seen was a greater fractionation 

into the residual phase in the waste-amended soil compared to the control soil; this 

was observed for Sr, Ni, Mo, and Pb. This may indicate a residual characteristic of 

the waste. The waste is believed to have contained slag material, and certainly 

contained coal ash, which would have contained minerals likely to fractionate into 

the residual phase under sequential extraction procedures. However, another 

explanation may lie in the lower pH of the control soil (c. pH 5.0) which is likely to 

produce greater fractionation in more easily mobilised pools. In the control soils, the 

elements tended to fractionate into the organic phase more than the residual phase, 

indicating that this was the phase that the elements would naturally fractionate into 

after weathering. Another difference observed between the control and waste

amended soils was the greater fractionation of elements into the exchangeable 

fraction in the former. This was seen for Mn, Co, Zn and Cd and again may be a 

function of pH or of the original characteristic of waste constituents. 
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4.3.3.2 Effect of contamination source on metal fractionation 

In order to further investigate the effect of contamination source on the fractionation 

of trace metals within soils, four soils of different contamination histories were 

studied using the modified Tessier scheme (Li & Thornton 200 I). This was to 

investigate the effect of contamination source and soil properties on the fractionation 

of metals. The four soils chosen were contaminated with urban waste (Chat Moss), 

Pb/Zn minespoil, petrol-derived lead from a roadside site and sewage sludge. The 

main sources of contamination on Chat Moss were organic wastes, industrial 

steelworks waste and petrol-derived lead, all of which are represented by the Sewage 

farm, Minespoil and Roadside soils. These soils cannot be considered representative 

of all soils contaminated by petrol-derived, sewage-derived or ore-derived lead due 

to the relatively small sample area and sample size. However for the Minespoil soil, 

a comparison can be gained using Li & Thornton (2001) who also studied minespoil 

soils from the Peak District using sequential extractions. By studying the effect of 

contamination source on metal fractionation, a better understanding of the behaviour 

of metals within Chat Moss soils can be gained, and potentially aid in assessing risk 

of the metal contamination on Chat Moss. The four soils chosen gave a range of 

contamination sources and soil conditions including organic matter content, 

phosphate content and pH. Soil properties are summarised in Table 4.3. The Chat 

Moss soil had a high organic matter content (61.5%) and low pH (5.28), whereas the 

other soils had circum-neutral to alkaline pH values (6.24 - 7.90). The Sewage farm 

soil was characterised by very high phosphate content, and the Roadside and 

Minespoil soils were similar in terms of pH, organic matter and phosphate content 

but showed the greatest contrast in terms of concentration of metallic contaminants. 

The Tessier scheme used is detailed in section 4.3.2. 
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Table 4.3: Selected soil properties of Chat Moss, sewage farm, minespoil and roadside soils 

pH Organic Available Total Total Pb 

matter phosphate phosphate (mg kg-I) 

(LOI %) (mg kg-I) (mg kg-I) 

Chat Moss 5.28 61.5 44.3 1920 364 

Sewage farm 6.24 26.3 453 9540 525 

Minespoil 7.65 13.6 9.70 832 13600 

Roadside 7.90 8.59 2.37 213 217 

4.3.3.2.1 Group 2 metals - Sr, Ba 

Strontium 

For the Chat Moss and Roadside soils, the recoveries were excellent compared to 

digestion totals, with 98.6% and 99.5% recoveries respectively. For the sewage farm 

soil, the recovery was 116% of the digestion total, however the recovery for the 

Pb/Zn minespoil soil was much lower at 72% of the digestion total (Figure 4.25). 

The distribution of Sr varied between soils, in all four soils the dominant fraction of 

Sr was the residual fraction, although in the Chat Moss soil the exchangeable fraction 

contained the same proportion of Sr as the residual fraction (31 %). This was very 

similar to the results seen in the previous experiment with both the Breward and 

Tessier methods. The minespoil soil was found to have 92% of Sr in the residual 

fraction, with the exchangeable fraction having the next greatest concentration of Sr 

(4%). The Roadside and Sewage farm soils show the same pattern of fractionation, 

with the residual fraction being dominant followed by the FelMn oxides, organic, 
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exchangeable and carbonate fractions. The Roadside soil had a higher proportion of 

Sr in the residual fraction than the Sewage fann soil, which had a higher proportion 

of Sr in the Fe/Mn oxide, organic and carbonate fractions. 
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The high proportion of Sr in the residual fraction of all four soils is most likely 

related to clay materials which often contain Sr in the chemical lattice. The Chat 

Moss soil contained the highest proportion of exchangeable Sr, and this soil also had 

the lowest pH so it is likely that the acidic pH of this soil was mobilising Sr into the 

soil solution compared to the other soils, which all had circum-neutral pH values. In 

addition, Sr substitution in Ca-phosphates, and possibly in resistant forms of 

carbonate, are likely to explain the residual phase Sr in the sewage farm and 

calcareous minespoil soils respectively. 

Barium 

Recoveries for Ba were excellent for the Chat· Moss, Sewage farm and Roadside 

soils, with recoveries ranging from 98% - 111 %, but for the Minespoil soil the 

recovery from the extraction was only 59% of the digestion total, which was very 

poor (Figure 4.26). 

In all four soils Ba was concentrated in the residual fraction, with the proportion of 

Ba in the residual fraction ranging from 39% for the Chat Moss soil to 96% for the 

calcareous Minespoil soil. This was a similar pattern to Sr with the Minespoil having 

the largest concentration of residual Ba. In the Sewage farm soil, 92% of Ba was 

also in the residual fraction. The Sewage farm soil had a very large phosphate 

concentration (9540 mg kg-I), and Ba is often concentrated in P concretions (Kabata

Pendias, 2001) which would be resistant to the sequential extraction scheme. In the 

Chat Moss soil, the remainder of the Ba not in the residual fraction was distributed 

between the exchangeable, carbonate, Fe/Mn oxide and organic fractions. The 
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organic fraction contained the highest proportion of Ba after the residual fraction 

(22%) and the FelMn oxide, carbonate and exchangeable fractions contained roughly 

the same proportion of Ba (11-16%). It is not surprising to find Ba in the carbonate 

and Fe/Mn oxide phases as Ba is adsorbed to oxides and is often precipitated as 

carbonates (Kabata-Pendias, 2001). A similar pattern of fractionation was also seen 

for the Sewage fann soil, with the Ba not in the residual fraction distributed between 

the remaining fractions in roughly equal proportions (7-11 %). The dominant soil 

component affecting Sr and Ba distribution was most likely clay content, as both Sr 

and Ba are commonly found in clay minerals. 

4.3.3.2.2 Structural metals - Fe, Mn 

Iron 

No data was available on the recoveries of the sequential extraction compared to 

digestion totals for Fe. All four soils showed the same pattern of fractionation, with 

the residual fraction containing the highest proportion of Fe, ranging from 54% in the 

Chat Moss soil to 91 % in the Sewage fann soil (Figure 4.27). 

There was no Fe seen in the exchangeable or carbonate fractions for all four soils, 

and the remaining Fe was distributed between the FelMn oxide and organic fractions, 

with the Fe/Mn oxide fraction having the next greatest proportion of Fe after the 

residual phase for all the soils except Chat Moss. This was a similar result to that of 

Li & Thornton (2001) who carried out sequential extractions on Pb/Zn mine spoil 

soils. They found that approximately 20% of total Fe was found in the FelMn oxide 

fraction and the remainder was found in the residual fraction. The authors attributed 
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the Fe in the residual fraction to crystalline Fe oxides and Fe in primary silicate 

minerals, while the Fe in the Fe/Mn oxide fraction was attributed to amorphous Fe 

oxides or hydroxides. 
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In the hat Moss oil , the order of fractionation was residual> organic > Fe/Mn 

oxide which was likely related to the very high organic matter content of this soil 

(61 .5%) and the acidic pH which will promote solubi li sation of Fe oxides. This 

olubilised Fe can then complex with organic ligands (Kabata-Pendias, 2001). The 

circum-neutra l pH of the Sewage fann, Roadside and Minespoil soils will discourage 

the di olution of Fe oxides and will result in a higher concentration of Fe in the 

residual phase compared to the Chat Moss soi1. 

Manganese 

The recovery of Mn for all four soils was reasonably good, ranging from 94% 

(Minespoil soil) to 121 % (Roadside soil). For all four soils, the main fraction 

containing Mn was the Fe/Mn oxide phase, with the order of fractionation for all four 

soils being elMn oxide > residual > organic > exchangeable = carbonate (Figure 
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4.28). The predominance of Mn in the FelMn oxide fraction was in agreement with 

the findings of Li & Thornton (2001) who found that up to 80% of the Mn from a 

Pb/Zn mining site was associated with the Fe/Mn oxide fraction, which was assumed 

to be in the form of relatively soluble oxides. The authors also found some Mn in the 

carbonate phase which was assumed to be the result of dissolution of Mn carbonate, 

however in the results shown here only 0.6% of the total Mn was found in the 

carbonate phase for the Minespoil soil. In a sequential extraction study of 

minerotrophic peats using the Tessier method, it was also found that non-residual Mn 

was predominantly associated with the carbonate fraction in topsoil, and the 

organic/sulphide fraction at depth (Koretsky et al., 2006). 

4.3.3.2.3 Metalloids - As, Se 

The results of sequential extractions for As and Se must be considered with restraint, 

as the changing pH and redox conditions throughout the extraction steps can cause 

changes in the oxidation states of these elements and may alter the fractionation 

during the extraction (Gleyzes et al .• 2002). 

Arsenic 

The recovery of As varied between the four soils, with recoveries for the Sewage 

farm and Chat Moss soils measuring as 140% and 122% of the digestion total 

respectively. However for the Roadside and Minespoil soils the recovery was 71-

72% of total, which was poor (Figure 4.29). 
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There was a large variation between the soils in tenns of fractionation patterns. As 

expected, very little As was solubilised with the exchangeable and carbonate phases. 

The two organic soils, from Chat Moss and the Sewage farm had broadly similar 

proportions associated with FelMn oxides, organic matter and residual phases 

suggesting arsenate adsorbed on hydrous oxides and possibly the presence of pyritic 

material; As is strongly sorbed by organic matter, and hydroxides (Kabata-Pendias, 

2001). In the case of the minespoil soil the As is associated almost exclusively with 

the residual phase suggesting association with primary ore material, notwithstanding 

the oxidation step which should attack pyritic phases. The roadside soil had a very 

low total As concentration and this appeared to be associated with primary minerals 

(residual phase) with some arsenate adsorbed on Fe/Mn hydrous oxides. 

Selenium 

Recovery of Se for the Minespoil soil was 109% of the digestion total, however the 

recoveries for the remaining three soils were not as consistent with the acid digestion 

assay. The recovery for the Roadside soil was only 74% of the total, and for the Chat 

Moss and Sewage farm soils recovery was 115% and 143% respectively (Figure 

4.30). 

In all four soils, the dominant phase of Se was the organic fraction, followed by the 

residual and FelMn oxide fractions. There was less than 1 % Se in the exchangeable 

fractions of all four soils, and only the Sewage farm and Roadside soils had greater 

than 1 % Se in the carbonate fraction (1.4% and 1.3% respectively). Kabata-Pendias 

(200 I) report that organic Se ranges from 4-22% of total Se soil contents in a range 

of soils, which is much lower than the Se content seen here in the organic fraction of 
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the four soils. The complex behaviour of Se in soils makes it difficult to predict the 

fractionation of Se in a given soil, and the dominance of Se in the organic fraction as 

seen here is not supported in the literature, which may indicate that the sequential 

extraction scheme is artificially removing Se in the organic step. This was supported 

by the similar levels of Se seen in the organic phase for all four soils even thought 

the organic matter contents vary greatly. It is likely that the alteration of redox 

potential and pH during the sequential extraction is artificially altering the 

fractionation of Se (Gleyzes et al., 2002). 

4.3.3.2.4 Trace metals 

Titanium 

The recoveries for Ti were excellent, with the exception of the Minespoil soil, which 

extracted more than the digestion total (Figure 4.31). The recoveries for the other 

three soils were all within error of the digestion totals, and ranged from 102% -

113%. The fractionation for all four soils was the same, with almost 100% of the 

extracted Ti (98-100%) in the residual phase. This agrees with Kabata-Pendias 

(2001), who report that Ti minerals remain practically unweathered in soils. 

Vanadium 

The recoveries seen for V were excellent for all four soils, with 95-105% of V 

extracted across all soils (Figure 4.32). The fractionation of V varied for the four 

soils, with the order of fractionation for the Minespoil, Roadside and Sewage farm 

soils being residual> organic> FelMn oxides, although for the Minespoil and 

Roadside soils the levels of V in the organic and FelMn fractions were almost equal. 
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The order of fractionation for the Chat Moss soil was very different, with the organic 

fraction being dominant followed by the residual and FelMn oxide fractions. The 

high organic matter content of the Chat Moss soil was most likely causing the 

concentration of V within this fraction. Vanadium in soils is often associated with Fe 

oxides (Terzano et a/., 2007) and clay minerals which would be extracted in the 

residual fraction, or organic matter (Kabata-Pendias, 2001), which was seen for these 

four soils. 

Chromium 

Recoveries of Cr ranged from 84% for the Chat Moss soil to 132% for the Sewage 

farm soil. The Sewage farm soil was the only one to overestimate the recovery 

relative to the digestion total, with the Roadside soil extracting 100% of the digestion 

total and the Minespoil soil extracting 98% (Figure 4.33). For the two mineral soils 

(Roadside and Minespoil), Cr was concentrated in the residual fraction. This agrees 

with the results of Burt et a/., (2003), who found in a study of Cu smelter 

contaminated soils that Cr was predominantly (>80%) within the residual fraction. 

However, for the Sewage farm and Chat Moss soils, Cr was almost equally present in 

the organic fraction. Chromium is considered to be stable in soils when in the Cr3
+ 

form and so it is likely that in all four soils the Cr was concentrated in Cr and Fe 

oxides in the residual phase (Kabata-Pendias, 2001). However, Cr can also form 

organic complexes in soils which explains its presence in the organic phase in the 

Sewage farm soil (60%) and the Chat Moss soil (39%). There was a very small 

amount of Cr in the FelMn fraction of all the soils, which corresponds with Cr 

commonly being associated with Fe oxides (Kabata-Pendias, 2001), which if in a 
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crystalline form will remam in the residual fraction rather than the Fe/Mn oxide 

fraction (Li & Thornton, 2001). 
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Cobalt 

The recoveries for Co in all four soils, ranged from 83% to 104%. The fractionation 

of Co varied in all four soils (Figure 4.34). For the Chat Moss soil the fractionation 

pattern was residual> organic = FelMn oxides> exchangeable, for the Sewage fann 

soil the pattern was residual = FelMn oxides> organic, for the Roadside soil the 

fractionation was residual> FelMn oxides> organic and for the Minespoil soil the 

fractionation was FelMn oxides> organic = residual. 

Cobalt is known to be sorbed by Fe and Mn oxides, particularly the latter, as well as 

clay minerals (Kabata-Pendias 2001), which corresponds with the residual and 

FelMn oxide phases which dominate the four soils, particularly the Sewage fann soil. 

Cobalt can also fonn organic chelates, which was seen as a minor constituent in all 

four soils. The soil characteristics appeared to modify the fractionation for Co 

between the residual, organic and Fe/Mn fractions, but no Co was seen in the 

carbonate fraction for all four soils, and only in the Chat Moss soil was Co found in 

the exchangeable fraction (2.3%), which was most likely caused by the low pH value 

of this soil (5.25). Co has been found to be associated with organic, FelMn oxide 

and carbonate phases in minerotrophic peats (Koretsky et 01., 2006), which would 

agree with the results seen for these four soils. 

Nickel 

The recoveries for Ni across all four soils ranged from 82% for the Chat Moss soil to 

114% for the Sewage fann soil, and the fractionation ofNi was different for all four 

soils (Figure 4.35). In the Minespoil soil, the Ni was evenly distributed between the 

residual, organic and Fe/Mn fractions with -2.5% in both the exchangeable and 
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carbonate fractions. In the Chat Moss soil the order of fractionation was residual> 

organic> FelMn oxides> exchangeable. In the Sewage fann soil, most of the Ni 

was found in the FelMn oxide fraction, followed by the organic fraction and then the 

residual, exchangeable and carbonate each with 6 - 8.5% Ni. The Roadside soil 

consisted mainly of residual Ni (70%) followed by organically bound Ni (18%) and 

FelMn oxide bound Ni (11 %). 

Nickel has a strong affinity for organic matter and Fe and Mn oxides, which would 

result in the Ni being distributed between the organic, FelMn oxide and residual 

phases depending on organic matter content and the fonn of the Fe/Mn oxides (Burt 

et al., 2003; Bacon & Hewitt, 2005; Terzano et al., 2007). The difference in 

fractionation between the soils was most likely due to the different characteristics of 

the soil including clay and Fe oxide content, organic matter content as well as pH. 

Copper 

In all cases for Cu, the extraction total exceeded the digestion total, with recoveries 

ranging from 114% to 136% (Figure 4.36). All four soils displayed similar 

fractionation of Cu. The organic fraction was the dominant phase with 53% 

(Roadside soil) to 83% (Chat Moss) of eu found in this fraction. This is in 

agreement with the known behaviour of Cu, which is known to strongly bind to 

organic material within soils (Kabata-Pendias, 2001; Bacon & Hewitt, 2005). The 

soils with the lowest organic matter content as measured by Loss on Ignition 

(Minespoil and Roadside) also showed the lowest fractionation of Cu into the 

organic phase, with the residual phase being more important in these soils than in the 

Chat Moss or Sewage Fann soils. There was also slight fractionation of Cu into the 
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FelMn oxide phase which corresponds with the known behaviour of Cu, which also 

adsorbs to hydrous oxides (Kabata-Pendias, 2001). 
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Zinc 

The recoveries seen for Zn were reasonably good, ranging from 83% (Chat Moss 

soil) to 110% (Sewage Farm soil). However the fractionation of Zn was markedly 

different for each soil (Figure 4.37). In the Chat Moss soil, the fractionation pattern 

was organic> residual> FelMn oxide> exchangeable> carbonate. For the Sewage 

farm soil, the order of fractionation was Fe/Mn oxide > organic > residual > 

carbonate with less than 1 % seen in the exchangeable fraction. The Roadside soil 

showed a similar level of fractionation into the exchangeable fraction, although the 

order of fractionation for this soil follows Fe/Mn oxide > residual > organic > 

carbonate, and for the Minespoil soil the fractionation pattern was Fe/Mn oxide> 

organic> residual > exchangeable = carbonate. The difference in Zn fractionation 

between soils indicates that the soil properties were important in controlling Zn 

fractionation, unlike eu for example, where the organic fraction was always 

dominant regardless of soil organic matter content or any other soil property. Zn in 

minespoil soils has been found primarily in the FelMn oxide and residual fractions 

(Li & Thornton, 200 I). This corresponds to the results seen here although it was a 

little surprising not to see a greater presence in the carbonate fraction given the 

calcareous nature of the minespoil site. In studies of Zn adsorption and retention in 

soils, it was found that clays and soil organic matter can strongly retain Zn 

(Horckmans et 01., 2007; Sarret et 01., 2004), which is also in agreement with the 

results here, with the Chat Moss soil (high organic matter) having a high proportion 

of Zn in the organic fraction, and the soils with higher clay content as seen by Ba and 

Sr fractionation (Roadside, Sewage farm, Minespoil) showing higher fractionation 

into the residual fraction. However the FelMn oxide fraction was also a dominant 

fraction in the Sewage farm and Minespoil soils, which was in agreement with 
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results reported in Kabata-Pendias (2001), where Zn in soils was mainly associated 

with hydrous Fe and Al oxides, followed by clay minerals. 
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Molybdenum 

Recoveries seen for Mo for all soils ranged from 518% (Chat Moss soil) to 694% 

(Sewage Fann soil). These unusual recoveries are currently unexplained (Figure 

4.38). The fractionation patterns for Chat Moss and Sewage fann soils were similar, 

with the order of fractionation organic> residual> Fe/Mn oxides> carbonate> 

exchangeable. For the Minespoil soil Mo was almost completely associated with the 

residual fraction (95%). Fractionation for the Roadside soil was in the order residual 

> organic> FelMn oxides, with no Mo seen in the exchangeable or carbonate 

fractions. The varying fractionation of Mo indicates that soil properties are 

important in influencing the fractionation of Mo, although the clays, Fe/Mn oxides 

(residual and Fe/Mn oxide fractions) as well as organic matter seem to dominate the 

fractionation of Mo. 

Cadmium 

The recoveries seen for Cd were very good ranging from 86% to III % (Figure 4.39). 

The fractionation of Cd was highly variable across the four soils, with the 

exchangeable fraction dominating the Chat Moss and Minespoil soils, and the FelMn 

oxide fraction dominating the Sewage fann and Roadside soils. The high levels of 

Cd in the exchangeable fractions may be due to the use of MgCh as the extractant in 

this step, which may remove Cd which is not in the exchangeable fraction due to the 

high complexation capacity of Cl ions for Cd2
+ (Young et al., 2006), as seen in 

Chapter 4.3.3.1. It has been reported that Cd often adsorbs to organic matter 

(Horckmans et al., 2007). However, in these results for the Chat Moss soil, the 

dominant fraction after the exchangeable was the residual rather than the organic 

fraction. This almost certainly indicates that, in the Chat Moss soil, the Cd weakly 
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bound to orgamc matter was largely extracted by MgCh through chloro-

complexation which reduced the apparent level of fractionation into the organic 

phase. 
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Tin 

Recoveries for Sn were variable, with the Chat Moss and Minespoil soils extracting 

70% - 79% of the digestion total, and the Sewage farm and Roadside soils extracting 

119% - 126% of the digestion total. However the fractionation of Sn was the same 

across all four soils, with 99.65% to 100% of Sn in the residual fraction (Figure 

4.40). 

Tin in soils reportedly complexes with organic material (Kabata-Pendias, 2001), 

however this is not supported by the results seen here, as it would be expected to find 

a high proportion of Sn in the organic fraction of the Chat Moss soil. The presence 

of Sn in the residual fraction in all soils indicates that fractionation of Sn as measured 

by the sequential extraction scheme was not affected by soil properties such as pH, 

organic matter and clay content, redox potential, which were variable across all four 

soils. 

Caesium 

The recovery of Cs was excellent for the Sewage farm, Roadside and Minespoil soils 

(100% - 110%) but the recovery for the Chat Moss soil was only 77%. The 

behaviour of Cs was the same for all four soils, with the majority of Cs in the 

residual fraction (93% - 100%) (Figure 4.41). Caesium in soils is strongly adsorbed 

and largely present within primary minerals which suggests that Cs would be poorly 

liberated through sequential extractions, (Kabata-Pendias, 2001); this corresponds 

with the results seen here where Cs was largely in the residual phase. There was 

slight fractionation of Cs into the organic and FelMn fractions (Chat Moss and 

Sewage farm soils), but the residual fraction was dominant across all four soils. The 
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major source of Cs in all the soi ls was probably substituted for K in 2: 1 alumino-

sil icate clays and feldspar minerals. 
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Lead 

Recovery ofPb was good for all four soils, ranging from 88% (Chat Moss) to 110% 

(Roadside). The behaviour of Pb was very variable across the four soils (Figure 

4.42). In the Sewage farm soil, 99% of Pb was in the residual fraction. This 

corresponded with the very high phosphate content of this soil, which was almost 10 

times greater than any other soil in this study. Lead readily forms stable phosphates 

including pyromorphites (Lang & Kaupenjohann, 2003), which would be 

concentrated in the residual fraction in this sequential extraction scheme. 

In the Chat Moss soil, the dominant fraction hosting Pb was the organic fraction, 

with 41 % of Pb in the soil found in this fraction. The next most abundant fraction in 

the Chat Moss soil was the residual fraction, followed by the FelMn oxide fraction. 

This corresponds with known behaviour ofPb, which is thought to be one of the least 

mobile of the heavy metals and strongly sorbed to soil particles (Tongtavee et al., 

2005; Degryse et al., 2007). It is reported that Pb is mainly associated with clay 

minerals, Mn oxides and Fe and Al hydroxides (Sauve et al., 2003; Terzano et al., 

2007), which would match the fractionation seen in the Chat Moss soil. It has also 

been shown that Pb in wetland soils is predominantly associated with organic matter 

(Grybos et al., 2007), which would also agree with the results here for the Chat Moss 

soil. 

In the Roadside soil, the fractionation was dominated by the FelMn oxide fraction. 

Fe/Mn oxides can be significant scavengers of heavy metals, particularly at high pH 

levels (Li & Thornton, 2001), and pH levels in the Roadside soil were 7.90 which 

would encourage adsorption of Pb by oxides. The residual and organic fractions are 
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the next most dominant in this soil, with 15% - 21 % of Pb found in these fractions. 

There was a small proportion ofPb in the carbonate fraction (6.28%) and there was a 

similar proportion of Pb in the carbonate fraction in the Chat Moss soil, which may 

have originated from liming practices. The Minespoil soil had similar fractionation 

to the Roadside soil, although the Pb was more evenly fractionated between the 

FelMn oxide, organic and residual fractions. This soil had the highest fractionation 

of Pb into the carbonate phase, which would be expected in a soil such as this which 

is derived from Pb/Zn minespoil hosted in limestone, so carbonates would be very 

high in this soil. In all four soils, there was a very low proportion of Pb in the 

exchangeable fraction with no soil having greater than 1.75% Pb in the exchangeable 

fraction. The fractionation of Pb in these soils seems to be dominated by a 

combination of the original form of the Pb contamination and the characteristics of 

the soils, as opposed to elements such as Ti and Cs, which show the same 

fractionation for all four soils. 

From the results of this experiment, it seems that soil characteristics in a range of 

soils with different contamination sources were important in controlling the 

fractionation of elements, such as FelMn oxide and organic matter content, however 

the source of the elements may also be an influencing factor as this could determine 

the original form of the elements when they were introduced to the soil. The soils 

used for this experiment were chosen to represent a range of sources of lead 

contamination, and the variation in Pb fractionation may be a result of this. 

However, for Pb it seems that soil characteristics were important in determining 

fractionation, with the high phosphate content of the Sewage farm soil resulting in 

large residual fractionation and the high organic matter content of the Chat Moss soil 

resulting in a dominance of the organically-bound fraction. 
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For elements such as Ti, Mn, Fe, Cu, Se, Sn, Cs and Ba the fractionation was broadly 

similar for all four soils, which indicates that variation in soil characteristics did not 

affect the fractionation of these elements, and the nature of the element was more 

important for determining fractionation. For elements such as Pb and As, the soil 

characteristics seem to be the dominant factor controlling fractionation, with 

phosphate and organic matter content controlling the Pb fractionation, and Fe/Mn 

oxide content controlling the fractionation of As. 

The Chat Moss soil in comparison to the other soils showed fractionation more 

heavily into the organic phase, which would be expected in this highly organic soil. 

The Sewage farm soil also showed greater fractionation into the organic phase 

compared to the Minespoil and Roadside soils, which would correspond with the 

organic origin of the waste (sewage sludge). Of the four soils, Chat Moss and the 

Sewage farm soils had the most similar forms of waste, with the source of both being 

organic rich urban waste. The Chat Moss waste would contain more mineral wastes 

such as steelworks waste and street sweepings, and the Sewage farm waste would be 

higher in phosphates and nitrates from fertiliser runoff. This difference in waste was 

most obvious when looking at the fractionation of Pb. For the Chat Moss soil, Pb 

was mainly fractionated into the organic, residual and Fe/Mn oxide phase, whereas 

for the Sewage farm soil Pb was almost exclusively fractionated into the residual 

phase (99%). This was most likely due to formation of Pb phosphates which are 

shown to be very stable (Lang & Kaupenjohann, 2003). Pb was the dominant 

contaminant of interest in the Chat Moss soil, and the difference in fractionation 

between the four soils would be expected to result in different reactivity of Pb, for 
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example the Sewage fann soil would be expected to show very low Pb reactivity. 

This will be further studied using 204Pb stable isotope dilution (Chapter 4.4). 

4.4 Isotopically exchangeable Pb 

4.4.1 Introduction 

Human activities have resulted in the accumulation of lead in the biosphere, through 

processes including smelting of lead ore, atmospheric deposition from leaded petrol, 

coal and oil combustion, and the production of steel and non-ferrous metals (e.g. 

Semlami et al., 2004; Weiss et al., 1999a). Lead in soil is considered to be 

relatively unreactive and strongly sorbed to soil components such as humus and 

hydrous oxides of Fe (Morin et al., 1999). Sequential extraction of soils have shown 

that Pb is often associated with Fe and Mn oxide fractions and organic I sulphide 

fractions (Wilson et al., 2006; Burt et al., 2003). Strawn et al., (2007) showed Pb 

was associated with Mn oxides and poorly crystallised Fe oxides, using electron 

microprobe and X-ray diffraction analyses of contaminated wetland soils. However, 

Lang and Kaupenjohann, (2003) suggested that Pb phosphates, especially 

pyromorphites, are the most stable Pb-containing minerals under a wide range of 

conditions, and so would be expected to be present in all Pb contaminated soils. 

Due to the assumption of low Pb reactivity in soil, most regulations for soil Pb 

contamination are based on total lead content, as it is considered that little Pb will 

move into soil solution and be available for plant uptake, limiting the pathway of 

human risk to direct ingestion of soil. UK 'soil guideline values' (SaVs) have been 

developed by the Department for Environment, Food and Rural Affairs (DEFRA) 
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and the Environment Agency based on total Pb concentration in soil, with the 

underlying assumption that only a small proportion of Pb in soil is available for 

uptake by plants (Environment Agency, 2002b). These Says are used as a screening 

tool by DEFRA and the Environment Agency in England and Wales, and place 

different limits on soil Pb concentration based on land use; the strictest limits are 

reserved for land classified as residential land with/without plant uptake, and 

allotments. However a single value for soil Pb limits based on total soil Pb may not 

be realistic, and ideally the reactivity or 'lability' of Pb should be considered as a 

criterion when assessing risk. The Say for Pb is based on the uptake of lead and the 

response of blood lead concentration. This in tum is based on the total lead levels in 

soil, with the assumed uptake pathway being ingestion of soil and soil dust. Instead 

of total soil lead, only that part which is labile will be bioaccessible, and so this may 

represent a more accurate assessment of risk from soil lead contamination. Lability 

represents the ability of soil-borne metals to transfer between the soil solid and 

solution phases, which may have implications both for plant uptake and the 

bioaccessibility of ingested soil Pb. Lability, or the 'E-value', of trace metals can be 

easily measured as the degree of 'isotopic exchangeability' in a soil suspension 

(Young et al., 2000). Early studies used radio-isotopes with the advantage that a 

small spike is easily measurable without altering the pre-existing solid-solution 

equilibrium (Hammer et al., 2006; Nolan et al., 2005; Sinaj et al., 1999; Young et 

al., 2000). Unfortunately, the lack of suitable radio-isotopes for Pb and Cu means 

that there is little data on the lability of these important metals (Degryse et al., 2007). 

However, in recent years with wider access to inductively coupled plasma- mass 

spectrometry (ICP-MS) technology, the use of stable isotopes has become more 

common. The stable isotope 6SCu was used by Nolan et al., (2004) to measure the 
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lability of Cu in soil and isotopically exchangeable Pb has now also been detennined 

(Degryse et al., 2007; Tongtavee et al., 2005; Gabler et al., 1999). Measurements of 

the E value for Pb in soil have shown surprisingly high proportions of labile Pb: 

Tongtavee et al., (2005) reported an average of 58% (40.36% - 64.9%) of total soil 

Pb as labile using a 207Pb spike (22.1 % natural abundance). Degryse et al., (2007), 

using a 208Pb spike (52.4% natural abundance), also reported an average of 58% 

(45% - 78%) Pb lability found in historically contaminated soils. These studies 

suggest that the lability of Pb in soil may be greater than was previously predicted 

(Welp & Brummer, 1999) or assumed from the relative strength of Pb sorption and 

the suggestion that Pb fonns discrete solid phases in soil, such as chloropyromorphite 

(Cotter-Howells and Thornton, 1991). 

The aim of this part of the study was to further develop a Pb stable isotope dilution 

method using 204Pb (1.4% natural abundance). The low natural abundance of 204Pb 

allows a small amount of Pb to be used as a spike, which minimises any impact of 

the spike on the soil Pb equilibrium. The methodology was developed using the 

same four soils used in section 4.3.3.2 with markedly different Pb concentrations and 

sources of contamination; these were intended to provide a range of Pb solubility and 

isotopic exchangeability. The effect of suspending electrolyte and spike 

equilibration time were investigated. 

4.4.2 Materials and Methods 

4.4.2.1 Soil sampling 

Soil samples from the four sites described in section 4.3.3.2 were collected to 

represent a range of Pb contamination histories and metal concentrations in order to 
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test various forms of the isotope dilution method using 204Pb. Further details about 

sample sites can be found in section 4.3.3.2. 

4.4.2.2 Soil characterisation 

Topsoil samples (0 - 20 cm) were collected at all sites, these were then air-dried and 

sieved to < 2 mm. Organic matter content was estimated by loss on ignition of a 5 g 

oven-dried (l05°C) subsample at 550°C for 7 hours (Chapter 2.4). Soil pH value was 

measured in deionised water suspension (1 :2.5 soil: solution ratio) after shaking for 

30 minutes (Chapter 2.2). Subsamples of the < 2 mm sieved soil were milled using a 

Retsch PM400 ball mill prior to acid digestion for trace element analysis, using the 

method described in Chapter 2.5.1 and 2.6. Available phosphate analysis was carried 

out using Olsen's method (Rowell, 1994) and measurement carried out by 

spectrophotometer (CECIL CEIOll). Total soil phosphate was measured by 

inductively coupled plasma atomic emission spectrometry (lCP-AES) on the digested 

soils. 

4.4.2.3 Measurement of Pb isotope ratios 

Pb isotope ratios were measured by ICP-MS (standard mode) on total acid digests, 

using the protocol detailed in Section 2.7. 

4.4.2.4 Lability measurement 

The labile Pb pool was measured on < 2 mm sieved air-dry soil. The method was 

developed in two stages: (i) determination of a suitable electrolyte and (ii) 

determination of appropriate post-spike equilibration time. At both stages, 30 ml of 
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electrolyte was pre-equilibrated with 2 g soil on a rotary shaker for 3 days. Six 

replicates for each sample were used, three of which were used to measure natural Pb 

isotope ratios, and three of which were spiked after this equilibration period with 400 

JlL of 204Pb solution (99.7% 204Pb, Oak Ridge National Laboratories). The spike 

concentration was chosen to double the natural 204Pb content of the most 

contaminated soil, and equated to 0.023 mg 204Pb added to the samples. All six 

suspensions were then equilibrated further before sampling of the soil solution. After 

this equilibration period, samples were centrifuged (2200 g for 15 minutes) and the 

supernatant filtered through 0.2 11m cellulose acetate filters. The resulting solutions 

were then analysed by ICP-MS for 204PbP08Pb, 206PbP04Pb, 206pbP07Pb and 

206PbP08Pb. 

In Stage 1, four electrolytes were tested: 0.01 M Ca(N03)2, 0.0005 M EDTA, 0.005 

M EDTA and 0.05 M EDTA. EDTA used was in the form of Na2-EDTA throughout 

the study. These electrolytes were chosen to investigate the effect of increasing 

extraction strength of the electrolyte on the measured labile pool. In Stage 2, post-

spike equilibration times of 2, 3, 4 and 7 days were used. The labile pool of Pb (E 

value) was calculated from Equation (4.1). 

Where Mpb is the average atomic mass, C is gravimetric Pb concentration, V is the 

volume of added spike, W is the weight of soil, IA denotes isotopic abundance of a 

particular isotope and Rss denotes the ratio of isotopic abundances for 204Pb to 208Pb 

calculated for the spike + soil supernatant. 
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4.4.3 Results and Discussion 

4.4.3.1 Soil characteristics 

Soil characteristics for the four soils are summarised in Chapter 4.3.3.2. The total Pb 

concentration for the four soils ranged from 217 mg kg'l to 13600 mg kg'l. pH 

ranged from 5.28 to 7.90, and organic matter content varied from 61.5 % (Chat Moss 

soil) to 8.59% (Roadside soil). 

Figure 4.43 shows Pb isotopic ratios measured in the HF acid digests of the four soils 

under study are shown in Figure 4.43. The data are presented as 206P bP07Pb plotted 

against 206P bP08pb, which is a format commonly used to aid the identification of the 

source of the Pb in soil (Bacon et al., 1996, Weiss et al., 1999a). Thus Figure 4.43 

includes significant reference materials, including Pb from 'petrol-derived', UK coal 

and UK Pb ore sources. 
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The soils showed a range of Pb sources from highly radiogenic (Minespoil; Pb/Zn 

ore) to low radiogenic (Roadside; petrol-derived). Measurements of these ratios 

showed the four soil types used here to be distinct from each other and to represent a 

range of isotope ratios, which highlights that each soil has a unique source of Pb 

contamination, and that the original fonn of the contamination was likely to be 

different for each site. The Chat Moss soil showed a mixed source of Pb 

contamination, with contributions from UK coal, UK ore and petrol-derived Pb. 

More details can be found in Section 4.1. The Sewage fann soil was characterised 

by a highly mixed Pb isotope signal, with no single source identifiable but a probable 

combination of petrol-derived Pb and UK ore and coal contributing to the 

contamination. The Minespoil soil falls within the range of UK Pb ore, which 

confinns that the source of Pb to this soil was UK Pb ore. The Roadside soil again 

showed a mixed source of contamination, suggesting that petrol-derived Pb, UK ore 

and coal may have contributed to the soil Pb loading. However the proximity of the 

Roadside data to the petrol-derived Pb field indicates that this was a dominant source 

of contamination to this soil. The varied combination of Pb sources to these soils 

combined with the variation in soil characteristics such as organic matter and 

phosphate content suggested that there would be a range of Pb availability across the 

suite of soils, for example the high organic matter content of the Chat Moss soil 

could affect the lability of Pb through the strong affinity of Pb for organic matter. 
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4.4.3.2 Optimising the suspending electrolyte 

The results from Stage 1 of the method development are presented in Figure 4.44. 

Increasing EDT A concentration caused a general increase in the measured E value of 

all four soils, suggesting that non-labile Pb was progressively mobilised with 

increasing concentration of the chelating agent. However, 0.01 M Ca(N03)2 and 

0.0005 M EDT A showed very similar results for all soils, suggesting that this 

concentration of EDTA, while significantly increasing solubility, did not cause 

significant mobilisation of 'non-labile' Pb. 
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An average of 101 % Pb was mobilised (92% - III %) for Chat Moss, Roadside and 

Sewage farm soils using 0.05 M EDT A. Data for Minespoil soil suspended in 0.05 
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M EDTA is not presented, as the mobilisation of large amounts of Pb (total Pb 13600 

mg kg-I) rendered the spike indistinguishable from background and so the change in 

isotope ratio required for calculation of E-value was not measurable with sufficient 

accuracy. This is an important issue in measuring isotopic exchangeability with 

stable, rather than radioactive, isotopes. The presence of the spiking isotope in the 

natural system means that the spike must be sufficient to alter the natural isotope 

ratios. However, a large addition may chemically alter the system under study or 

may even cause precipitation at the point of addition. By contrast, the radio-isotopes 

typically used in isotopic exchange studies are generally not present in nature and, 

additionally, can be added in chemically insignificant quantities. The isotope 204Pb 

was chosen as the spike because of its low natural abundance (1.4 %), so that a small 

spike will cause a relatively large change in the natural ratio with limited potential to 

chemically alter the soil system. However, there is clearly a greater need to try and 

tailor the level of spike to the labile lead content when using stable isotopes and so 

for soils with very large labile lead contents, such as the example of Minespoil soil in 

0.05 M EDT A, the spike concentration would need to be increased. 

The purpose of this experiment was to determine the effect of electrolyte on Pb 

solubilisation and lability measurements. The optimum electrolyte would be one that 

solubilised sufficient Pb to be analytically robust without bringing non-labile Pb into 

solution. By comparing the results for varying EDTA concentrations with 0.01 M 

Ca(N03h, which would not solubilise non-labile Pb it was possible to identify the 

optimum electrolyte. It was determined that 0.0005 M EDTA measured similar 

lability to 0.01 M Ca(N03)2, whereas increasing concentrations of EDT A caused an 

increase in the measured lability (Figure 4.44). 

207 



The advantage in using 0.0005 M EDT A over 0.01 M Ca(N03)2 lies in the amount 

of Pb solubilised. Using Ca(N03)2 as the electrolyte, 0.06 % of total lead was 

solubilised, whereas 8.38 % of total lead was solubilised by 0.0005 M EDT A. For 

the Minespoil, Roadside and Chat Moss soils, there was good agreement between 

lability measured using 0.01 M Ca(N03)2 and 0.0005 M EDTA (Figure 4.44). For 

the Sewage fann soil, the lability measured using Ca(N03)2 as the suspending 

electrolyte was 83% which was not in agreement with the 0.0005 M EDTA or the 

0.005 M EDTA results, which indicated that the very low level of solubilisation 

(0.004% of total) was analytically unreliable. 

An additional experiment was set up with 7 different EDTA concentrations, ranging 

from 0.0000337 M to 0.05 M on a roughly logarithmic scale, to further study the 

effects of low EDT A concentrations on the measured lability of Pb. It was found 

that even at low concentrations of EDTA (0.000114 M EDTA) an increase in the 

measured lability occurred, indicating that accurate lability measurement required 

low concentrations of ETDA to maximise the solubility of Pb without altering the 

lability. The impact of errors within the analysis was assessed through arbitrarily 

imposing a 10% and 1 % error on the isotopic abundance calculation of 204Pb. As 

seen in Figure 4.45, at the lowest EDTA concentrations these errors are much smaller 

than at the higher EDTA concentration, further supporting the use of 0.0005 M 

EDT A as the suspending electrolyte. 
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4.4.3.3 Determination of optimum post spike equilibration time 

The measured E-value was expected to slowly increase with contact time between 

the soil and the added isotope, as the isotopic spike gradually mixes with forms of 

metal whose reactivity is kinetically restricted. As seen in Figure 4.46, a similar 

qualitative trend over time is seen for all four soils, with %E-value appearing 

reasonably stable from 2-4 days but increasing after 7 days equilibration with the 

204Pb spike. 
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Figure 4.46: Labile Pb (%£) as a proportion (%) of total Pb concentration plotted against post-spike 

equilibration period. Error bars show standard error a/three replicates. 

For the Chat Moss soil, the apparent %E-value reached 96.6% after 7 days 

equilibration with the 204Pb spike. Thus, the optimum post-spike equilibration period 

to measure 'immediately exchangeable Pb' was 2-4 days as there appeared to be little 
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change in the measured Pb lability of the soils over this period. This was similar to 

findings using 109Cd, where there was very little change in measured Cd lability with 

equilibration periods of 1-6 days (Young et al., 2000). The measured lability 

increased after 7 days equilibration period, but the pattern of increase in lability was 

not as would be expected from diffusion of the 204Pb spike into less accessible sites. 

Fe and Mn solution concentrations were not measured in this experiment but it may 

be that reduction of the soils over the experimental period caused dissolution of 

FelMn oxides which could release previously bound Pb, thereby increasing the 

lability ofPb. For the final measurement of%E-value for the four soils, 3 days post

spike equilibration time was used. 

4.4.3.4 Measurement of labile lead in soils contaminated from different 

sources 

Using electrolyte concentration of 0.0005 M EDT A and post-spike equilibration time 

of 3 days, the %E-values of Chat Moss, Minespoil, Sewage farm and Roadside soils 

were measured (Figure 4.47). E-values of the soils ranged from 13% of total Pb 

(Sewage farm) to 65% (Chat Moss). Jensen et al., (2006) suggested that the 

chemistry of Pb in soils is affected by specific adsorption to mineral colloids, 

precipitation of sparingly soluble compounds and the formation of complexes with 

organic matter. The authors also report that the first factors affecting the bonding of 

Pb in industrially contaminated soils is the contamination level and the stability of 

the original forms of the contaminant metal during incorporation into the soil. The 

soils used here represent a wide range of all of these conditions, and so should 

provide an adequate test of the method. 
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The Chat Moss soil had a varied contamination source of municipal waste, and was 

characterised by an exceptionally high organic matter content (61.5%) originating 

partly from waste di sposal (e.g. 19th Century night soil) and also from the underlying 

peat into which the waste materials were incorporated. It is likely that the high 

organic matter content was the principle cause of the high lability of Pb in this soil 

(65%) with di ssolved organic matter able to bring Pb into solution. It is well known 

that Pb strongly binds to organic matter (Jensen et 01., 2006; Kaste et 01., 2006; 

McBride et 01., 1997), but sorption on humus is unlikely to lead to physical occlusion 

as would be expected in Pb compounds such as chloropyromorphite, or within the 

matrix of Fe hydrous oxides. 
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By contrast, soil from the sewage sludge disposal site showed the lowest lability of 

all four soils (13%). This was perhaps surprising because the organic matter content 

of the site was large. However this site also had an extremely large available and 

total phosphate content (See Chapter 4.3). The high phosphate content was likely to 

be the cause of the low Pb lability measured possibly through the formation of 

insoluble Pb-phosphates such as chloropyromorphite (Pbs(P04)3Cl) (Lang & 

Kaupenjohann, 2003; Kaste et al., 2006). Jensen et al., (2006) found that in soils 

containing significant amounts of phosphate, the precipitation of Pb-phosphates will 

play an important role in the control of Pb solubility. 

The Pb lability measured in Minespoil soil was most likely to be affected by the 

original form of the contamination. Pb mineralisation in the Derbyshire region is in 

the form of galena (PbS), cerrusite (PbC03) and pyromorphites, which can all be 

stable forms of Pb depending on soil conditions (Jensen et al., 2006). Through 

sequential extractions, Li & Thornton (2001) showed that Pb in soils from old 

Derbyshire mining sites is predominantly associated with the carbonate phase, and 

that thermodynamic predictions identify cerrusite as the dominant Pb mineral. 

Nevertheless, despite an extremely large Pb content, calcareous nature and high pH 

the lability of Pb in the Minespoil soil was surprisingly high, at 30%, suggesting that 

substantial re-adsorption on humus and other colloidal phases had occurred. 

The isotopic exchangeability of Pb in the Roadside soil was 52% of the total Pb 

content. For this soil, the original form of the Pb contamination was probably not 

important in determining lability. PbO particles emitted from car exhausts would be 

expected to dissolve on contact with soil and immediately sorb on Fe hydrous oxides 
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and humus, as other studies have shown that petrol-derived Pb has a strong affinity 

for Fe oxides in roadside soils (Teutsch et al., 2001). Once adsorbed the Pb could be 

slowly fixed through processes such as redox cycling (Contin et al., 2007) and 

occlusion or solid phase diffusion. The level of lability determined (52%) was 

therefore mainly a product of prevailing soil characteristics and conditions. 

The 204Pb isotope dilution method developed here was reliable for all four soils, 

which represent a range of conditions including Pb concentration, form of 

contamination, organic matter and phosphate content. The spike concentration needs 

to be considered based on total Pb content, although for these four soils a spike 

concentration of 57 mg L- t total Pb was sufficient. This represented a 204Pb 

enrichment of 1200% for Chat Moss, 837% for Sewage farm, 1760% for the 

Roadside soil and 30% for Minespoil. The results obtained here were comparable to 

those obtained by Degryse et al., (2007), who recorded a range of Pb lability from 45 

to 78% in field contaminated soils using a 208Pb spike. Tongtavee et al., (2005) also 

recorded lability of 57% in smelter contaminated soils using a 207Pb spike. These 

results show that Pb is labile to a greater extent than previously thought, which may 

have implications for environmental risk assessments where Pb is considered to be 

immobile in soil horizons. The results shown here may also suggest that phosphate 

is the best way to immobilise Pb in soils, as shown by the Sewage farm soil (lability 

of 13%, total phosphate 9540 mg kg-I). 

4.4.4 Conclusions 

A lead stable isotope dilution method using 204Pb was developed and tested on four 

soils, with different Pb contamination levels and histories, as well as varying soil 
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characteristics such as organic matter content and phosphate levels. The method 

development involved testing the electrolyte concentration and the post-spike 

equilibration time. The most effective electrolyte concentration was found to be 

0.0005 M EDTA, and a post-spike equilibration time of 3 days was determined to be 

suitable. 0.05 M EDT A was found to mobilise 100% of the total soil Pb. Lability 

for the four soils was measured using the developed method, and ranged from 13% 

of total soil Pb (Sewage farm) to 65% (Chat Moss). Lability in these soils was 

controlled by organic matter and phosphate content, as well as the original form of 

the contamination. 

The high lability in the Chat Moss soil was surprising as the dominant Pb-bearing 

waste constituent of the soil was assumed to be mineral wastes such as steelworks 

waste and organic waste such as coal. These forms of waste would most likely be 

resistant to weathering, and so the lead would be expected to be fixed and not labile. 

The acidity of the soils and high organic matter content may have caused the Pb to be 

weathered out and bound with the organic matter. This would correspond with the 

sequential extractions, which showed that the organic phase was the dominant Pb

bearing phase in the Chat Moss soils. The results of the sequential extraction and 

stable isotope dilution of the four soils are summarised in Table 4.4, and by 

comparing the percentage of labile Pb to the percentage of Pb in each fraction, the 

phases contributing to the labile Pb can be predicted. For example, the sum of the 

first four fractions (exchangeable, carbonate, FelMn oxide and organic bound) for the 

Chat Moss soil was 71.9%, which was only slightly outside the estimate of labile Pb 

using stable isotope dilution, indicating that all four of these fractions contributed 

labile Pb. However for the Sewage farm soil, 99% of Pb was measured in the 
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residual fraction, and while the Pb lability was low (13.5%) this would assume that 

some of the Pb was liberated from the residual phase. 

Table 4.4: Summary of labile Pb and Pb fractionation for the four study soils, expressed as 

% of total Pb. 

Lability Exchangeable Carbonate- Fe/Mn Organic- Residual 

(% of (% of total) bound (% of oxide bound (% (% of 

total) total) bound of total) total) 

(%of 

total) 

Chat Moss 65.3 ± 4 1.42 6.35 23.0 41.0 28.1 

Sewage 13.5 ± 1 0.00 0.19 1.86 0.00 99.0 

farm 

Minespoil 30.8 ± 3 1.75 19.4 33.4 20.3 25.2 

Roadside 52±8 0.07 6.28 57.2 15.1 21.4 

4.5 Conclusions 

It was assumed from historical research that the contamination on Chat Moss would 

be derived from urban and industrial waste. Using lead isotope source 

apportionment it was determined that the most likely source of lead contamination 

was a mixture of UK lead ore, UK coal and petrol-derived lead. The identification of 

UK ore and coal as dominant sources was in agreement with the historical research, 

and indicative of industrial and urban waste disposal. Scanning Electron Microscopy 

also confirmed urban and industrial waste as dominant sources of the contamination, 

with coal, slag and Fe oxide particles all identified within the soil. Pottery fragments 

were also identified and the glazes analysed for Pb content, which showed that the 
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glazes were composed of up to 50% lead, but that minimal degradation of the glazes 

had occurred. 

Following the identification of the source of contamination on Chat Moss, the 

properties of the contaminant metals were studied using sequential extractions, to 

investigate the association of the metals with soil components and provide an 

assessment of the potential mobility of the metals. Two methods were compared for 

the sequential extractions, a modified Tessier scheme (Li & Thornton, 2001) and a 

scheme developed for organic soils (Breward et a/., 1996). Initially these sequential 

extractions were carried out on contaminated and control soils from Chat Moss, sites 

CM-3 and CM-I respectively. This was to investigate whether there was a 

difference in metal behaviour induced by the waste disposal. It was found that many 

elements showed the same fractionation for contaminated and control soils, 

suggesting that either the metals were derived from a common source (e.g. 

atmospheric contamination) or that the common soil properties dictated the 

fractionation more than the original form of the metal. This was further investigated 

through applying sequential extractions to four soils of different contamination 

histories and soil properties. There were some metals that showed differences in 

fractionation between the contaminated (CM-3) and control (CM-I) soils, and there 

were two key differences identified. The first was an increased partitioning into the 

exchangeable fraction in the control soil, which was seen for Mn, Co, Zn, and Cd. 

This was attributed to the lower pH of the control soil (5 as opposed to 6.03) causing 

increased solubilisation of the metals, and so increasing the fractionation into the 

exchangeable phase. The second difference identified was increased partitioning into 

the residual phase in the contaminated soil, and this was seen with Sr, Ni, Mo and 
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Pb. This was attributed to the incorporation of waste into the contaminated soil, 

which would most likely have contained elements in a phase resistant to weathering, 

such as furnace slag, which would result in an increased fractionation into the 

residual phase. 

Through studying four soils of varying contamination histories and soil properties to 

assess the extent to which soil properties dictated fractionation, it was found that 

organic matter and Fe/Mn oxides were the main factors controlling metal 

fractionation in all four soils. It was found for some metals (Ti, Mn, Fe, Cu, Se, Sn, 

Cs and Ba) that the fractionation was the same irrespective of soil type or 

contamination source, which indicated that for these metals the nature of the metal 

was more important in controlling fractionation than soil characteristics or 

contamination source. 

Sequential extractions showed that no metals with the exception of Cd, Mo, Sr and 

Zn were present in the exchangeable fraction to any great amount, which suggested 

that the mobility of the metals would be limited. To further study the mobility, or 

lability, of lead, an isotope dilution experiment was developed. This involved the 

development of a method using 204Pb to investigate the lability of Pb. The method 

development involved the testing of the suspending electrolyte and post-spike 

equilibration times to determine the optimum conditions for the analysis. The 

method was then used to study the lability of Pb in the four soils used for the 

sequential extractions. During the method development phase, it was determined 

that 0.0005 M EDT A was the optimum electrolyte as it caused the greatest 

solubilisation of Pb without affecting non-labile Pb. The optimum post-spike 
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equilibration period was found to be 2-4 days, and for the analysis, a 3 day post-spike 

equilibration period was chosen. Lability measurement showed that Pb lability was 

strongly dependent on soil conditions. In the Sewage farm soil where there was a 

high phosphate content the lability was very low (-13%) due to the high Pb

phosphate bonding capacity (Jensen et al., 2006) whereas in the Chat Moss soil with 

a large organic matter content lability was measured as 65.3%, possibly due to large 

amounts of dissolved organic matter. These results showed that lead, which was 

commonly thought to be highly immobile in soils, can show significant lability, with 

measured lability for the soils ranging from 13.5% to 65.3%. This was in agreement 

with Tongtavee et al., (2005) and Oegryse et al., (2007) who also measured lead 

lability as 57% and 45-78%, showing that lead is more mobile than previously 

considered. 

1 laving shown that lead is potentially mobile in the Chat Moss soils, it was important 

to understand how changing soil conditions could affect this and other metals, 

through flooding and anaerobic soil conditions. As Chat Moss was developed from 

wetland soils, there would be a strong possibility for flooding events causing soil 

reduction. As sequential extractions showed that most metals were bound to Fe/Mn 

oxides or organic matter, which can be affected by changes in redox potential and 

pH, there is a strong possibility that flooding events could affect the mobility of 

metals in these Chat Moss soils. This was studied through the use of incubation 

experiments to simulate flooding events and impose redox and pH changes on the 

soil system (Chapter 5). 
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Chapter 5: 

Mobilisation of metals in Chat Moss soil under anaerobic 

conditions 

5.1 Introduction 

The soils on Chat Moss were developed from drained wetland soils (Chapter 

1.2.1.2), and as such have the potential to undergo periodic waterlogging due to 

events such as increased rainfall or impaired drainage. Site CM-3 on Chat Moss is 

located at 53°28'06 Nand 2°24'48 W at an elevation of26 m. There is currently no 

flood risk on Chat Moss as assessed by the Environment Agency, and water table 

levels observed during sampling fluctuated between 90 cm to greater than 1 m deep, 

also indicating a low risk of flooding. Current annual rainfall is 807 mm, however 

climate change predictions indicate that by 2050, while the annual rainfall for the 

NW England will decrease by 11 mm, the average winter rainfall will increase by 43 

mm (Met. Office, 2009), suggesting more intense periods of rainfall, which could be 

expected to lead to saturation of the soils on Chat Moss. As wetland soils become 

saturated, the redox potential decreases and pH often increases, whereas under 

drought conditions the soils become more oxidised and the pH becomes more acidic. 

It has been shown that under drought conditions, wetland soils can become acidified 

due to the oxidation of sulphur contained within the peat to sulphuric acid (Tipping 

et al .• 2003). This can lead to the release of trace metals contained within the peat as 

the binding strength of metals adsorbed to organic matter decreases as pH decreases. 

In this way fluctuating pH, partly caused by changes in aeration, can be an important 

control on the mobility of metals within wetland soils. Under anaerobic conditions, 
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there are several processes which can affect pH change, for example the reduction of 

Fe oxides will consume H+ ions and increase the pH, as in the reduction half-reaction 

shown in Equation (5.1). 

(5.1) 

However, in wet soils there will also be a build up of CO2 through microbial 

respiration, and this can have the contradictory effect of reducing pH through the 

generation of H+ through hydrolysis of CO2 to HC03' (Equation 5.2). 

(5.2) 

Soil pH can affect metal solubility through changes induced by reductive dissolution, 

organic acid formation, CO2 formation and carbonate precipitation (Charlatchka & 

Cambier, 2000). Soil pH is an important control on metal solubility, with cationic 

metals being more soluble at lower pH (Qureshi et al., 2004) while oxy-acids such as 

molybdate, arsenate and selenite will be adsorbed more strongly at low pH. 

However in a study of metal solubility in contaminated soils, Chuan et al., (1996) 

found that whilst pH was the main factor controlling metal solubility, redox potential 

may also independently affect metal solubility. For example, under oxidising 

conditions, Fe and Mn oxyhydroxides within the peat act as sinks for trace metals. 

But as the soil becomes reduced under flooding conditions, these oxyhydroxides can 

undergo reductive dissolution, liberating any bound trace metals and metalloids 

(Grybos et al., 2007). In fact the reduction in soil redox potential can affect the 

release of metals to soil solution in at least three ways which are independent of 
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accompanying changes in soil pH: (i) by alteration of the redox state of the metal 

causing a change in adsorption affinity, as in As, Se, Cu, Cr and Fe and Mn (Chuan 

et 01., 1996; Ma & Dong, 2004; Grybos et 01., 2007); (ii) through the dissolution of 

FelMn oxides hosting trace metals (Chuan et 01., 1996) and (iii) through increased 

competition for binding sites on organic matter and other soil components (Ma & 

Dong, 2004), principally from dissolved Fe2+ and Mn2+. 

Dissolved organic matter (DOC) content can also affect the solubility of metals, 

through the formation of stable soluble complexes of trace metals and DOC. It has 

been shown by sequential extraction procedures that organic matter can be a sink for 

trace metals (Chapter 4.3), and the dissolution of organic matter under increasing pH 

conditions can release these metals to solution, as well as through complexation of 

previously adsorbed metals. At lower pH values, the dependence of trace metal 

solubilisation on DOC is lessened due to the high degree of protonation of the DOC 

which will result in reduced binding strength with trace metals (Kalbitz & Wennrich, 

1998). However, as pH increases under anaerobic conditions, organic matter 

becomes increasingly soluble and binds metal more strongly and thereby can bring 

more trace elements into solution. The increase in DOC accompanying pH increase 

is due to the deprotonation of hydroxyl groups at mineral surfaces which decreases 

the positive net surface charge and the increase in electronegativity of organic 

molecules. This causes humic acids to become more hydrophilic, and mineral 

surfaces and organic matter to repel each other, which releases DOC (Grybos et 01., 

2007). A larger concentration of DOC also increases competition, for remaining 

adsorption sites on hydrous oxides, with anions such as arsenate/arsenite, 
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selenate/selenite, iodide and molybdate which again may help explain increased 

dissolution of these inorganic species. 

In order to assess the potential risk of soil contamination to plants and the wider 

environment, the solubility and mobility of the contamination must be studied to 

understand the potential for metals to move into the soil solution and become 

bioavailable. If the metals move into solution then there is a possibility that they will 

be introduced to the groundwater and leached out of the soil, thereby contaminating 

the groundwater posing possible ecological risks. However if dissolved metals move 

down the soil profile into the peat layer, the high capacity of organic matter to bind 

metals (Alloway & Jackson, 1991) may immobilise the metals through complexation 

with insoluble organic matter in the peat. To understand the potential risk of 

mobilization of metals as a result of soil flooding, an incubation experiment was set 

up. This approach was primarily to investigate changes in solubility as a 

consequence of changes in redox potential, pH and DOC concentration. The 

objective was to simulate potential flooding of the soil through a rise in the water 

table, increased rainfall or inadequate soil drainage. 

5.2 Materials and Methods 

Four hundred grams of <2 mm sieved air dried topsoil collected from CM-3 in 

August 2006 was incubated with 1.2 L deionised water in 2 L PTFE bottles. Six soil 

suspensions were established, three of which had powdered straw added initially to 

simulate the enhancing effect of crop residues on the development of anaerobic 

conditions in wet autumns. The bottles were closed with screw-cap lids and sealed 

with 'Parafilm' to exclude oxygen. The bottles were kept sealed unless being 
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sampled. The experiment lasted for 21 weeks, with sampling at weekly intervals, 

with the soil suspensions stored in a controlled temperature room (21°C) and shaken 

at the beginning of the experiment and prior to each sampling. 

Sampling was carried out by removing 20 ml of homogenised soil suspension 

followed by centrifuging at 2500 rpm and filtration to <0.2 Jlm. A 5 ml aliquot of 

solution was acidified with 0.2 ml 50% IINO) and 1 ml 0.001 M EDTA to stabilise 

any dissolved metals, especially ferrous and manganous ions. The filtered and 

stabilised solution was analysed for total metal content by ICPMS on the same day as 

sampling. The remaining 15 mt was kept unacidified and frozen until the end of the 

experiment when it was analysed for dissolved organic carbon content. At each 

sampling interval, pH and redox potential were measured following the method 

described in Chapter 2. 

5.3 Results and Discussion 

5.3.1 Changes In p II, redol potential (Eh) and dissolved organic carbon 
(DOC) concentration 

Over the course of the experiment, there was a decrease in redox potential and an 

increase in pi I for both the organically-amended and the control sets of samples 

(Figure 5.1 a and b). pJl increased from 5.12 to 6.00 for the control samples and 

6.17 for the organically amended samples. This was accompanied by an Eh decrease 

from 487 mV to 196 mV (control) and 164 mV (organically amended). 

There was a strong relationship between the pH increase and Eh decrease (R2 
= 0.925 

and 0.932) for both the control and organically-amended samples, suggesting a 
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common underlying cause. This trend is often seen as soils become progressively 

more anaerobic, as 11+ ions are consumed by reduction processes (Bartlett, 1999). 

The control and organically amended samples showed no differences in pH or Eh 

until day 42 of the experiment, when the organically amended samples became more 

reduced than the control samples, and continue to undergo reduction at a greater rate. 

This may have been related to an increase in the release of dissolved organic carbon 

at this point, allowing an increase in microbial activity and so a greater reduction in 

the amount of oxygen in the soil. 

Dissolved organic carbon (DOC) in the soil solution peaked in both the control and 

organically amended samples between days 42 and 84, and then gradually decreased 

(Figure S.I c). The peak DOC concentration for the control samples was 174 mg L-1 

and for the organically amended samples the peak DOC concentration was 207 mg L

I. The initial increase in DOC was much greater in the organically amended 

samples, with the peak DOC concentration reached after 42 days, whereas the 

control samples reach a peak DOC concentration after 84 days. The organicalJy 

amended samples had a greater DOC concentration from the 14th day of the 

experiment, but DOC concentrations were initially the same for both the organicalJy 

amended and control samples. 

5.3.2 Changes In fe/Mn ollde solubility with progressive reduction 

Over the course of the experiment there was a steady increase in Fe solubility, with a 

larger increase in the soil subject to organic amendment. Iron concentration in 

solution increased from 0.281 mg L-1 to 22.3 mg L-1 for the control samples and 46.1 
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mg L"I for the organically amended samples (Figure 5.2 a). For both treatments Fe 

concentration increased steadily after 21 days until the end of the experiment after 

147 days. Concentration of Fe showed a strong relationship with redox potential, 

with R2 values of 0.790 (control) and 0.894 (organic amendment) (Figure 5.2 b). 

This is most likely due to the reductive dissolution of Fe oxides releasing Fe to soil 

solution, which has been seen in many studies (Chuan et 01., 1996; Ma & Dong, 

2004; Grybos et 01., 2007; Pareuil et 01., 2008). 

Manganese concentration in solution increased from 0.346 mg Lo1 to 1.08 mg Lo1 

(control) and 1.88 mg Lo1 (organically amended) following a similar trend to that 

shown by Fe solubility (Figure 5.3 a). Correlations between Mn and Fe 

concentrations produced R2 = 0.939 and 0.988 for control and organicaJIy amended 

samples respectively (Figure 5.3 b). 

The offset shown in Figure 5.3 b is consistent with the earlier reductive dissolution of 

Mn oxides foJlowing the onset of anaerobic conditions. The magnitude of hydrous 

oxide dissolution under relatively mild reducing conditions (Eh = 150 - 200 mY) 

indicated that this could be an important mechanism for the release of trace metals to 

soil solution. 
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5.3.3 Changes in metal solubility with progressive reduction 

5.3.3.1 Trace elements influenced by redox changes 
Ti, V, Co, As, Se, Sr, Mo, Sb, Ba, Pb, Bi 

The change in redox potential can affect the solubility of metals and metalloids in 

soil through several mechanisms: 

a. by alteration of the redox state of the metal causing a change in solubility, 

as in As, Se, Cu, Cr and Fe and Mn (Chuan et al., 1996; Ma & Dong, 2004; 

Grybos et al., 2007); 

b. through the dissolution of FelMn oxides hosting trace metals which 

effectively reduces the adsorption capacity of the soil (Chuan et al., 1996); 

c. through increased competition for binding sites on organic matter and other 

soil components from the large concentrations of dissolved cations, 

principally Fe2+ and Mn2+ ions (Ma & Dong, 2004); 

d. through increased competition from released anions, especially bicarbonate 

and DOC (humic and fulvic acids) for residual Fe and Mn hydrous oxide 

sites; 

e. by complexation with ligands released from oxide adsorption sites, 

especially fulvic and humic acids; 

f. by changes in soil pH resulting from reduction reactions, increased partial 

pressure of carbon dioxide etc as discussed previously 

For both experimental conditions (control and amended with organic matter), the 

release of Co, As, Sb and Mo to soil solution was found to have a strong relationship 

with redox potential. Regressions of metal concentration in solution against redox 
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potential, dissolved organic carbon content and Fe content in soil solution, for the 

elements above, were found to have the strongest relationships with either redox 

potential or Fe concentration. It could be suggested that those elements that had the 

strongest relationship with Fe concentration in soil solution were bound to Fe oxides 

and released by Fe oxide reductive dissolution, whereas those elements that showed 

the strongest relationship with redox potential were redox sensitive elements. 

However, simple regression cannot decouple the covariance of Eh value and Fe or 

Mn concentration in solution in the current experiment. 
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For all the elements influenced by redox changes (Ti, V, Co, As, Se, Sr, Mo, Sb, Ba, 

Pb and Bi), the concentration of the element in solution increased with a decrease in 

redox potential over the course of the experiment. However the same relationship 

was not seen for both the control and organically amended samples for some 

elements, and so for these elements each experimental condition will be discussed 

separately. 

Titanium 

For Ti, the relationship with redox potential for the control samples gave an R2 value 

of 0.750, whereas the relationship for the organically amended samples gave an R2 of 

0.459. The control samples showed an increase in Ti solution concentration from an 

initial concentration of 0.68 Jlg L- t to 3.44 Ilg L- t by the end of the experiment 

(Figure 5.4 a and b). 

Vanadium 

For V, only the control samples showed a strong relationship with redox potential or 

Fe concentration, with an R2 value of 0.619 for the relationship between V 

concentration and Fe concentration being the strongest (Figure 5.5 a and b). This 

suggested that V was bound to Fe oxides and released into solution as the oxides 

underwent reductive dissolution, although this cannot be confirmed through this 

experiment. 

Cobalt 

For Co, both experimental conditions showed strong relationships with redox 

potential, with R2 values of 0.949 for the control samples and 0.891 for the 

organically amended samples, and an increase in Co concentration from 2.89 Ilg L- t 
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to 10.43 Jlg L-t (control) and 15.80 Jlg rt (organically amended) (Figure 5.6 a and 

b). This strong relationship of Co to redox potential indicated that Co was strongly 

influenced by Fe oxide chemistry. either through competition with Fe ions or through 

dissolution of oxides hosting Co. This is in agreement with the results of Grybos et 

al., (2007), who found that Co was strongly controlled by Fe oxyhydroxides, as well 

as the results of sequential extractions of this soil (Chapter 4.3), where it was found 

that up to 71 % of Co was in the FelMn oxide and residual fractions combined, with 

the remaining Co mainly in the organic fraction. This is also in agreement with 

Grybos et al., (2007) who found that 72% of the Co mobilised under reducing 

conditions was due to Fe oxyhydroxide reduction and 28% was due to organic matter 

mobilisation. 

Arsenic 

Arsenic showed strong relationships with redox potential (organically amended 

samples) and Fe solution concentration (control samples), with R2 values of 0.868 

and 0.821 respectively. The concentration of As increased from 7.49 Jlg L- t at the 

start of the experiment to 143.8 Jlg L- t (control) and 251.5 Jlg L- t (organically 

amended), with a peak concentration of 308 Jlg L- t in the organically amended 

samples (Figure 5.7 a, b and c). 

The relationship with redox potential and Fe concentration indicated that As 

solubility is controlled by redox potential, although the exact mechanisms for this 

cannot be detennined. It is known that As is strongly adsorbed to iron oxides 

(llartley et al., 2004), and that As can be reduced from As (V) to soluble As (III) 

(Ma & Dong, 2004). It has also been found that As solubilisation increases as pH 

increases (Hartley et al., 2004), however this may be due to reduction accompanying 

233 



the pH increase so it is difficult to separate these effects. Using Geochemists 

Workbench (Table 5.1), the speciation of As under different Eh and pH conditions 

was simulated (Figure 5.8), and it was observed that there was a potential change in 

As speciation from arsenate to more soluble arsenite. However As solution 

concentration began to increase when the redox potential was -370 mY, and as seen 

from Figure 5.8, the pH values in this experiment were not low enough to allow 

reduction of arsenate at this Eh value. This would indicate that the mechanism of 

initial As solubilisation was release from FelMn oxyhydroxides, with reduction to 

arsenite becoming a factor towards the end of the experiment, when the decreased Eh 

and increased pH would a]]ow this reduction. The sha]]ower trend at the start of the 

experiment shown in Figure 5.7 b suggests the opposite as As solubility is increasing 

with minimal release of Fe but this may be due to the rapid increase in pH and 

(anionic) DOC at the start of the anaerobic incubation (Fig. 5.1 b and c). Using 

Geochemist Workbench it was also predicted that solid phases such as orpiment 

could be produced under reducing conditions. However the redox and pH conditions 

of the experiment were insufficiently reducing to precipitate the solid phase as 

predicted by Geochemist Workbench. 

Selenium. 

Selenium showed a strong relationship with redox potential for the control sample 

(R2 = 0.899) but not the organica]]y amended samples. The strong relationship with 

redox potential is as expected as Se has complex redox chemistry in soils (Chuan et 

01 .• 1996). The Se concentration in the control samples increased from 0.48 Jlg L-1 to 

2.22 Jlg L-1 over the course of the experiment (Figure 5.9 a and b). Using 

Geochemists Workbench, the speciation of Se was predicted, and it was found that 
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for all Eh and pH values found in this experiment, there should have been no change 

in Se speciation, with selenite (HSe03) being the only stable species. This would 

indicate that Se solubility was dominated by reductive dissolution of FelMn 

oxyhydroxides and/or competition for binding sites with other anions (HC03- and 

DOC). 
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Strontium 

As an alkaline-earth exchangeable cation, S~+ will not be reduced and, in contrast to 

the transition metals, is not adsorbed specifically on Fe or Mn hydrous oxides. 

Therefore the factors governing Sr adsorption are likely to be pH, which affects the 

surface charge and attraction to organic exchange sites, and competition for cation 

exchange sites on clays and humus from other (divalent) cations. This is supported 

by the patterns shown in Figure 5.10. Initially Sr solubility decreases as pH rises and 

latterly it increases, probably due to competition for exchange sites from Mn2+ and 

Fe2+ which dominate the suite of soluble cations present. Thus, Figure 5.1 Ob shows a 

strong relationship between Sr and Fe concentration in solution suggesting that 

released ferrous ions are excluding S~+ from organic exchange sites, with an R 2 for 

the organically amended samples of 0.742. 

Molybdenum 

Molybdenum showed strong relationships with Fe concentration for both 

experimental treatments, with R2 values of 0.922 (control) and 0.832 (organically 

amended) (Figure 5.11 a and b). This is a strong indication that Mo was bound to Fe 

oxides and released into solution as these oxides underwent reductive dissolution. 

The initial increase of Mo was very slow until 56 days into the experiment. The 

initial increase was from 3.63 Jlg L-1 to 9.73 Jlg L-1 (control) and 28.2 Jlg L-
1 

(organically amended), but from day 56 to day 84, the Mo concentration increased to 

82.4 Jlg L-1 (control) and 170 Jlg L-1 (organically amended). After this peak the Mo 

concentration levelled off for the control samples, with a final concentration of 90.3 

Jlg L-1, but for the organically amended samples there was a decrease in Mo 

concentration, with a final concentration of 130 Jlg L-1
• In contrast to elements such 
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as arsenic, molybdate is the only stable form present under the experimental 

conditions, and release to solution will be governed mainly by Fe hydrous oxide 

dissolution, as well as pH changes and competition with other anions. 

Antimony 

Antimony showed relationships with redox potential (control samples) and Fe 

concentration (organically amended samples), with R2 values of 0.706 and 0.869 

respectively. There was an overall increase in Sb concentration from 6.94 J.1g L-1 to 

10.6 J.1g L-1 for the control samples and 18.9 J.1g L-1 for the organically amended 

samples; the increase in Sb concentration was continuous throughout the 

experimental period (Figure 5.12 a, b and c). 

Barium 

For Ba, there was a significant relationship between the organically amended 

samples and redox potential (R2 = 0.790), but for the control samples, there was no 

relationship with any investigated factors. The pattern of Ba solubilisation was very 

similar to that of Sr, which suggests that these elements have a similar affinity to soil 

components (Figure 5.13 a and b). This had also been seen in the sequential 

extractions, and Sr and Ba are often found in clay minerals and are likely to be 

adsorbed as exchangeable cations on humus in organic soils. It is likely therefore 

that the main mechanism governing Sr and Ba solubilisation was competitive 

exchange with Fe2+ or Mn2+ on clay and humus surfaces. 
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Lead 

The relationship between Pb and Fe release for the control samples was the strongest 

of all the elements studied (R2 = 0.959), but there were poor relationships seen 

between Pb and Fe release and redox potential for the organically amended samples, 

which will be discussed later. The concentration of Pb in the soil solution of the 

control samples increased steadily from 8.62 Ilg L-1 to 88.04 Ilg L-1 by the end of the 

experiment (Figure 5.14 a and b). 

The strong relationship between Pb and Fe release into soil solution would appear to 

indicate that Pb was associated with Fe oxides in the soil and then released into 

solution as these oxides underwent reductive dissolution. It has been shown in many 

studies that Pb in soil is often bound to Fe oxides (Pareuil et 01., 2008; Chuan et 01., 

1996; Li & Thornton, 2001). However, this would contradict the results of the 

sequential extractions, which showed that Pb was predominantly associated with 

organic matter in the Chat Moss soil (Section 4.3). Again this may underline the co

variance of several mechanisms which control trace element release in anaerobic 

soils. Thus it is possible, and likely, that organically-bound Pb is released by 

competition with Fe2+ following dissolution of Fe hydrous oxides. 

Bismuth 

For the control samples, Bi showed the strongest relationship with Fe solution 

concentration, with an R2 value of 0.766, although a similar relationship was not seen 

for the organically amended samples. The concentration of Bi in solution increased 

from 0.11 Ilg L-1 to 0.56 Ilg L-1 with the greatest increase seen between 56 days into 

the experiment and at the end (Figure 5.15 a and b). This relationship indicated that 
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Bi was associated with Fe oxides and that the mechanism of release into solution was 

through reductive dissolution rather than competition with Fe2
+ and H+ ions, although 

this cannot be confirmed. 
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Trace metals that are most strongly affected by changes in redox potential are those 

that are either redox sensitive and can change redox state within the conditions of the 

experiment, those that are hosted by Fe or Mn oxyhydroxides and released through 

reductive dissolution or metals that are released from exchange sites through 

competition with Fe and Mn ions released under reducing conditions (Chuan et al., 

1996; Ma & Dong, 2004). In this experiment, it was found that the concentrations of 

Ti, V, Co, As, Se, Sr, Mo, Sb, Ba, Pb and Bi in soil solution were strongly correlated 

to either redox potential or Fe concentration in soil solution, which was itself 

controlled by redox potential and so acts as a proxy for redox sensitivity. Initially it 

was thought likely that those elements that showed the strongest relationship with Fe 

solution concentration would be elements that were bonded to Fe oxyhydroxides 

notwithstanding the inevitable co-variance of Eh, pH and Fe/Mn release. However it 

was almost impossible to separate the mechanisms of metal release to solution with 

the measurements available, and so it can only be accurately stated that an increase 

of the concentration of these elements in solution was strongly related to a decrease 

in redox potential. When comparing these results with sequential extractions 

(Chapter 4.3.3.2), it would be expected that the metals that are strongly redox 

controlled and therefore likely to be associated with Fe and Mn oxides would be 

predominantly found in either the FelMn oxide fraction or the residual fraction, 

however this was only the case for Ti and Sb, with the other redox-sensitive elements 

showing fractionation not dominated by either the residual or FelMn oxide phases. 

Lead epitomises this problem in that the strong correlation between Pb solubilisation 

and Fe release contradicts the SEP data in Chapter 4, unless competition for organic 

sites is regarded as the release mechanism. 
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The results seen here for redox sensitive elements are generally supported by other 

studies. Chuan et al., (1996) found that under reducing conditions, the solubilisation 

of Pb, Cd and Zn was favoured, as well as the solubility of Fe. The authors were 

able to separate the effects of redox potential and pH by carrying out experiments 

where the pH was constant and only the redox potential was altered, and it was found 

that redox potential had a significant independent effect on metal solubility, with 

solubility increasing under reducing conditions. This was attributed to the release of 

metals hosted on Fe and Mn oxyhydroxides. Similar results were also found by 

Pareuil et al., (2008) who observed a simultaneous release of Fe and Mn with Cu, 

Zn, Cr, Ni and Pb; again the authors attributed this to the reductive dissolution of 

trace metal-hosting Fe and Mn oxyhydroxides. These observations are in agreement 

with the current study, with the exception of Cu, Zn and Cr. However, considering 

the highly organic nature of the Chat Moss soils, competition for organic adsorption 

sites from Fe2+ and Mn2+ is likely to be a more important mechanism governing 

release of trace elements such as Cu and Pb. It was also seen in the current study that 

when the dissolved organic matter content was increased through the addition of 

powdered straw (organically amended samples), the concentration of some elements 

in soil solution were more strongly related to dissolved organic matter content rather 

than redox potential, for example Ti, Se, V and Pb. Similarly, it has been found that 

in wetland soils, dissolved organic matter can be important in controlling the 

solubility of trace metals (Grybos et al., 2007); this will be discussed more in the 

following section. 
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5.3.3.2 Trace elements influenced by dissolved organic carbon concentration 
- Ti, V, Cr, Ni, Cu, Zn, Se, Sn, Pb, Bi 

Titanium 

For Ti, although the control samples showed a strong relationship with redox 

potential, the organically amended samples showed the strongest relationship with 

dissolved organic matter (DOM), with an R2 of 0.570. The overall Ti concentration 

increased from 0.68 J.lg L-1 to 4.84 J.lg L-1 at a roughly constant rate of increase, 

however there was a peak in Ti concentration between days 35 and 42 of 5.91 - 6.00 

J.lg L-1
• The relationship was relatively weak, indicating that DOM was not a strong 

control ofTi solubility (Figure 5.16 a and b). 

Vanadium 

The relationship between V and DOC for the organically amended samples showed 

an R 2 value of 0.712, which was the strongest relationship seen for vanadium in this 

experiment. The V concentration increased from 16.5 J.lg L-1 to 19.3 J.lg L-1
, with a 

peak concentration between days 42 and 84, which is the same period as the peak 

DOC concentration (Figure 5.17 a and b). Several interpretations of a potential 

causal link between concentration of V and DOC are possible. Reduction in general 

and competition for remaining hydrous oxide adsorption sites from DOC may cause 

anionic forms of V to dissolve. These would include both the orthovanadate and 

metavanadate forms (VOl- and VOl); orthovanadate would be present in solution 

predominantly as a monovalent anion Ih V04- in the pH range measured (pKI and 

pK2 values for vanadic acid are 2.6 and 7.9 respectively). Alternatively, Berrow et 

al.. (1978) have suggested that, in acidic organic soils, the monovalent vanadyl 

cation (V02 J may be the dominant form of V and so mobilization would depend on 
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complex-formation with DOC compounds or competition with Fe2+ and Mn2+ for 

adsorption sites on solid phase humus. 
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Chromium 

For Cr, both the organically amended and control samples were most strongly related 

to DOC concentration, with R2 values of 0.591 for the organically amended samples 

and 0.956 for the control samples. Chromium concentration in soil solution 

increased from 0.74 flg L-1 to 2.67 flg L-1 for the control samples and 2.34 flg L-1 for 

the organically amended samples by the end of the experiment (Figure 5.18 a and b). 

One of the indicators of a relationship with DOC content would be a peak in metal 

concentration concurrent to the peak in DOC concentration seen between days 42 

and 84. This was seen in the case of Cr, with the organically amended samples 

having a peak concentration of 4.82 flg rl at day 35 and the control samples 

showing a peak concentration of 3.17 at day 84. Chromium has been reported to 

show redox-sensitive chemistry, with reducing conditions causing a reduction from 

Cr(VI) which is highly mobile to Cr(IIn which can be precipitated as chromium 

oxide (Grybos et al., 2007), although this would not seem to be supported by these 

results. However it has been shown that Cr(Ill) has a high affinity for DOC 

compounds. For example Kalbitz et al., (1998) found a good correlation between Cr 

and DOM (0.60) and reported that Cr can fonn stable complexes with DOM. To 

study the speciation of Cr and detennine the potential for highly toxic Cr(Vn 

fonnation within these soils, Geochemists Workbench was used to generate an Eh

pH stability diagram (Figure 5.19). It is clear from Fig. 5.19 that, under the pH and 

redox conditions of the experiment, it was predicted that all Cr would be present as 

Cr(IIl). 
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Figure 5.18: Changes in Cr concentration (a) with time and (b) as a function of DOC concentration 

(R2 
= 0.956 control and 0.591 organically amended) in 1:3 w/v soil suspensions from site CM-3 

incubated under anaerobic conditions at 2rC with, or without organic amendment with powdered 

straw. Error bars show standard error of three replicates. 
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Nickel 

Nickel showed a strong relationship with DOC concentration under both sets of 

experimental conditions, with R2 values of 0.488 for the control samples and 0.852 

for the organically amended samples. The Ni concentration increased from 12.2 Ilg 

L- 1 at the start of the experiment to 24.9 Jlg L-1 for the control samples and 36.9 Ilg L-

I for the organically amended samples (Figure 5.20 a and b). There was a peak in Ni 

concentration in the control samples at day 84 of the experiment with a Ni 

concentration of 27.5 Ilg L-1
, but for the organically amended samples the peak Ni 

concentration was seen at the end of the experiment. However the increase in Ni 

concentration was seen very early in the experiment, from day 14 onwards which is 
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much earlier and faster than would be seen if Ni was redox controlled but is in line 

with the DOC profile which peaks between days 42 and 84. It has been reported that 

Ni adsorbs strongly to peat, following the Irving-Williams order of Cu2+ > Ni2+ > 

C02
+ > Zn2+ > Fe2

+ > Mn2+ (Ringqvist & Oborn, 2002), which would agree with the 

results seen here. Grybos et al., (2007) also found a strong affinity of Ni for soil 

organic matter, with 85% of solubilised Ni released from humus. The authors 

reported that there was increased partitioning of Ni onto organic matter with 

increasing pH, which occurs as the redox potential decreases. 

Copper 

Copper release to soil solution showed a strong relationship with DOC concentration 

with an R2 value of 0.894 for the control samples (Figure 5.21 a and b). However the 

organically amended samples showed no relationship to DOC concentration, redox 

potential or Fe concentration. The Cu concentration in the control samples increased 

from 38.5 Ilg Lo1 at the start of the experiment to 77 Ilg Lot at the end of the 

experiment, but the peak Cu concentration was seen between days 42 and 84, in line 

with the DOC concentration. This is expected behaviour of Cu which has a very 

strong affinity to organic matter compared to most other metals, and as seen from the 

sequential extractions (Chapter 4.3.3.2) 83% of Cu in Chat Moss soil was associated 

with the organic matter fraction. However, the organically amended samples showed 

no relationship with DOC which was unexpected. There was an initial peak of Cu 

concentration between days 35 and 42 of 203 - 214 Ilg Lot, but the Cu concentration 

then rapidly decreased over the course of the experiment to 25 J,1g Lot by the end of 

the experiment. This may reflect the onset of F e2+ competition for DOC adsorption 

sites causing re-adsorption of Cu by the solid phase. Alternatively, it has been 

shown that Cu2+ can be reduced to Cu(I) in reducing environments which can then 
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precipitate as CU20, and that organic matter can enhance this reduction when humic 

acids act as electron mediators between micro-organisms and metals (Grybos et al., 

2007). This could explain the pattern of Cu solubilisation seen in the organically 

amended samples, with initial solubilisation followed by a decrease in Cu 

concentration in soil solution. In studies of metal solubilisation in wetland soils 

under reducing conditions, there was no relationship found between Cu and DOC 

concentration, and it was found that Cu solubility was mainly affected by redox state 

through changes in the oxidation state ofCu (Grybos et al., 2007). 

Zinc 

There was. little difference seen between the control and organically amended 

samples for zinc. Both showed a strong relationship with DOC concentration with 

R2 values of 0.743 for the control samples and 0.759 for the organically amended 

samples (Figure 5.22 a and b). The solubilisation of Zn over the course of the 

experiment followed an unusual trend, with an initial decrease seen in Zn 

concentration in soil solution and then an increase followed by a constant Zn 

concentration in solution to the end of the experiment. The period of decrease in Zn 

concentration was between 14 and 35 days of the experiment and may simply reflect 

greater adsorption strength in the solid phase as pH rises during this period. The 

subsequent increase in concentration was concurrent with the start of DOC increase 

in solution. However continued DOC release did not seem to affect Zn 

concentration. It has been reported that Zn solubilisation had no relationship to DOC 

concentration due to low stability of Zn organic complexes (Kalbitz et al., 1998) and 

that Zn is controlled by redox state (Chuan et al., 1996; Pareuil et al., 2008), which is 

contradictory to the results seen here. 
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Figure 5.20: Changes in Ni concentration (a) with time and (b) as a junction of DOC concentration 

(R2 = 0.488 control and 0.852 organically amended) in 1:3 w/v soil suspensions from site CM-3 

incubated under anaerobic conditions at 2 rc with, or without organic amendment with powdered 

straw. Error bars show standard error of three replicates. 
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Figure 5.22_' Changes in Zn concentration (a) with time and (b) as a function of DOC concentration 
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Selenium 

The organically amended samples for Se showed the strongest relationship with 

DOC concentration (R2 = 0.673). There was an overall increase in Se concentration 

from 0.48 J,lg L-1 to 2.66 J,lg L'I, but there was a sharp peak in Se concentration at day 

42, with a Se concentration of 4.39 J,lg L-1 which then decreased again (Figure 5.23 a 

and b). This was the same period as the DOC peak concentration and indicated that 

release of DOC into solution was capable of mobilising Se. This would also agree 

with sequential extraction results, which showed that 69% of Se in Chat Moss soil 

was organically-bound although release of selenite from Fe oxides could also 

contribute to Se solubilisation. Furthermore, Se displays complex redox chemistry 

(Gleyzes et al., 2002) and so it is also possible that as the redox potential of the soil 

decreases, changes will occur in the oxidation state of Se and this will become the 

driving force behind Se solubilisation. This is seen in the control samples, where the 

relationship with redox potential is very strong (R2 = 0.899). 

Antimony 

The relationship of antimony with redox sensitive processes was discussed earlier, 

but for both control and organically amended samples Sb also showed strong 

relationships with DOC concentration, with R2 values of 0.565 and 0.734 

respectively (Figure 5.24 a and b), indicating an influence of DOC on Sb release to 

solution as well as redox changes. Antimony concentration increased from 0.06 J,lg 

L-1 at the start of the experiment to 0.26 J,lg L-1 for the control samples and 0.46 J.lg L

I for the organically amended samples. Howeverboth sets of samples showed a peak 

Sb concentration between days 42 and 77 which follows the trend in DOC 

concentration. 
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Figure 5.23: Changes in Se concentration (a) with time and (b) as a function of DOC concentration 

(R2 
= 0.673 organically amended) in 1:3 w/v soil suspensions from site CM-3 incubated under 

anaerobic conditions at 21°C with, or without organic amendment with powdered straw. Error bars 

show standard error of three replicates. 
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Figure 5,24: Changes in Sb concentration (a) with time and (b) as a function of DOC concentration 

(R2 = 0,565 control and 0,734 organically amended) in 1:3 w/v soil suspensions from site CM·3 

incubated under anaerobic conditions at 2 rc with, or without organic amendment with powdered 
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Lead 

For Pb the organically amended samples showed a strong relationship with DOC 

concentration (R2 
= 0.857), and the relationship of the control samples to redox 

sensitive processes was previously discussed in Chapter 5.3.3.1. There was an 

overall increase in Pb concentration over the course of the experiment from 8.62 J,lg 

L-1 to 52.6 J,lg L-1
, but the peak Pb concentration was seen between days 42 and 77 

(Figure 5.25 a and b). This relationship ofPb with DOC concentration is supported 

by sequential extractions, which showed that 41 % of Pb was associated with the 

organic fraction. Grybos et 01., (2007) also showed a strong relationship between Pb 

and DOC concentration, and were able to demonstrate that 77% of solubilised Pb 

was released from organic matter, highlighting the importance of organic matter as a 

control for Pb solubility. Even if the primary release mechanism is Pb solubilisation 

from Fe hydrous oxides DOC would act to retain Pb in solution and prevent 

precipitation of inorganic Pb solids or re-adsorption on humus in the solid phase. 

Bismuth 

Bismuth showed a strong relationship with DOC concentration for the organically 

amended samples, with an R2 of 0.859, and the relationship with Fe solution 

concentration was previously discussed in Chapter 5.3.3.1. There was an overall 

increase in Bi solution concentration from 0.01 J,lg L-1 to 0.12 J,lg L-1
, with a peak 

concentration of 0.24 J,lg L-1 seen at day 42, corresponding with the increase in DOC 

concentration (Figure 5.26 a and b). Bismuth also showed a relationship with Fe 

concentration for the control samples. 
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Figure 5.25: Changes in Pb concentration (a) with time and (b) as a junction of DOC concentration 

(RZ = 0.857 organically amended) in 1:3 w/v soil suspensions from site CM-3 incubated under 

anaerobic conditions at 21°C with, or without organic amendment with powdered straw. Error bars 

show standard error of three replicates. 
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5.3.3.3 

Cadmium 

Metals not affected by redox potential or dissolved organic matter 
changes 

Cadmium showed no relationship with any of the soil characteristics investigated, 

including redox potential, Fe concentration, DOC concentration and pH. The 

concentration of Cd in solution was variable across the experiment with larger errors 

compared with the other metals (Figure 5.27). The final Cd concentration (0.83 for 

control and 1.06 mglL for organically amended samples) was lower than the initial 

Cd concentration (1.69 mglL for control and 1.42 mglL for organically amended 

samples). This could indicate that Cd became progressively fixed within the soil as 

the pH value increased. It can be seen from the sequential extractions (Chapter 4.3) 

that Cd in acidic organic soils is present in a relatively mobile form with a large 

proportion forming the exchangeable fraction, probably on humus; this would agree 

with the results of the current experiment. As pH increased the cation exchange 

capacity of the solid humus would also increase and this effect may have offset the 

factors likely to increase Cd solubilisation such as complexation to DOC, release 

from Fe oxide sites and competition for solid humus adsorption sites from Fe2
+ and 

M 2+ n . 

5.3.4 Potential consequences of metal solubilisation under anaerobic 

conditions 

The results of this incubation experiment suggest that mobilization of trace 

contaminants can be substantial in the waste-amended acidic organic soils of Chat 

Moss. Thus, concentrations of the elements measured can be considered in the 
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context of environmental or human health standards relating to fresh water. For 

example, the World Health Organisation safe drinking water limits (WHO, 2008) 

may give an indication of the potential risk posed by flooding of these soils in the 

context of drainage into fresh water systems. Table 5.2 shows that for the metals 

listed in the safe drinking water limits (As, Ba, Mn, Mo, Se, Cd, Sb, Pb, Cu and Ni) 

only As, Mn, Mo, Cd and Pb exceeded WHO limits. 
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Figure 5.27: Changes in Cd concentration with time in 1:3 wlv soil suspensions from site CM-3 

incubated under anaerobic conditions at 2rC with, or without organic amendment with powdered 

straw. Error bars show standard error of three replicates. 
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Table 5.2: World Health Organisation safe drinking water limits compared with Chat Moss 

maximum soil solution concentrations 

Drinking water Max. Experimental Concentration (fJg L-I) 
limits (fJg L-I

) 

Control soil Organically amended soil 
As 10 214 ± 10.6 308 ± 12.4 
Ba 700 190±11.1 251 ± 4.8 
Mn 400 1080 ± 13.1 1880 ± 42.5 
Mo 70 90.3 ± 1.49 170 ± 4.17 
Se 10 2.22 ± 0.197 4.39 ± 0.263 
Cd 3 1.69 ± 0.408 3.38 ± 0.502 
Sb 20 10.6 ± 0.43 18.9 ± 0.44 
Pb 10 88.0 ± 14.6 137 ± 24.2 
Cu 2000 104 ± 5.0 214 ± 26.3 
Ni 70 27.5 ± 0.60 36.9 ± 2.24 

In the case of As, Mn and Pb WHO limits were actually exceeded at the start of the 

experiment, but for Mo the limit was reached 60 days into the experiment, when the 

redox potential was -250 mV and the DOC concentration was -150 mg L- t
• These 

breaches of the guideline limits indicate that under flooding conditions, release of As 

and Pb to the soil solution may pose a risk to human health through contamination of 

ground water or surface water, as well as being potentially harmful to the ecosystem 

through groundwater contamination. The organically amended soils showed 

consistently higher metal concentration in solution, which would indicate that the 

incorporation of crop residue into the soil would result in increased mobilisation of 

metals under flooding conditions. To minimise the metal solubilisation, removal of 

the crop residue could be practised, although this does not take into account the 

benefits to crops of inclusion of residue. 
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5.4 Conclusions 

Through soil incubation experiments it was found that saturation of soil for a period 

of 21 weeks resulted in a decrease in redox potential and an increase in pH and 

dissolved organic carbon concentration. Redox potential decreases under anoxic 

conditions through soil saturation with or without nitrogen atmospheres were 

similarly found by Grybos et al. , (2007) and Chuan et al. , (1996). 

All measured metals with the exception of Cd showed increased concentrations in 

solution during the experiment. The increase in metal concentrations were analysed 

using regression to identify the strongest relationship with either redox potential, Fe 

solution concentration, DOC concentration, pH and time, however the scope of this 

experiment did not make it possible to determine the mechanisms of increased 

solubilisation. pH and time showed no relationships with any metals but redox 

potential, Fe concentration and DOC concentration showed strong relationships with 

all metals except Cd. The metals were divided into two groups, those that were 

affected by redox changes (strong relationships with redox potential and Fe 

concentration) and those affected by DOC concentration. For many elements it was 

found that the control samples and the organically amended samples showed 

different relationships, with the organically amended samples often showing a 

relationship with DOC. This was the case for Ti, Se, Pb and Bi. 

The reduction in redox potential caused an increased solubility for Ti, V, Co, As, Se, 

Sr, Mo, Sb, Ba, Pb and Bi, due to either changes in the oxidation state of the metal 

(e.g. As), release of Fe/Mn oxyhydroxide hosted metals, or competition with Fe2
+ for 

exchange sites, however it was not possible to identify the mechanism of the metal 

solubilisation through this experiment. 
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Increased DOC concentration caused an increase in solubility of Ti, V, Cr, Ni, Cu, 

Zn, Se, Sn, Pb, Bi through the formation of soluble stable organic complexes or the 

release of organically bound metals. Cadmium showed no increase in concentration 

throughout the experiment, and the final Cd concentration was lower than the initial 

concentration. This may be due to the fixation of Cd within Fe oxides throughout the 

experiment, as found by Contin et al., (2007) but this cannot be confirmed through 

the current experiment. 

The addition of powdered straw caused an increase in solubility for most metals; Cr, 

Cu and Pb all showed an early peak in concentration in the organically amended 

samples, with final solution concentration being the same or lower than the control 

samples, and for Zn there were no differences between the control and organically 

amended samples throughout the experiment. The addition of straw may have 

increased the solubility of metals in two ways. The increased organic matter from 

the straw would enable bacterially mediated reductive processes to occur faster, with 

the increased organic matter acting as 'fuel' for these processes. This would have the 

effect of increased the rate at which oxygen was consumed by the bacteria and so 

accelerating the reduction of the soil solution, as seen in Figure 5.1a. The addition of 

the powdered straw will also have had the effect of increasing the organic matter 

content of the soil system, which may have increased the DOC concentration, as seen 

in Figure 5.1c. This will have increased the solubility of those metals which were 

brought into solution through complexation with DOC. Through these two 

mechanisms of increased reduction and increased DOC concentration, the 

mobilisation of metals was increased. 
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For elements such as As and Pb, redox potential and dissolved organic carbon 

content were controlling factors on solubilisation. This was in agreement with data 

obtained through sequential extractions (Chapter 4.3) which showed that both As and 

Pb were bound to organic, residual and FelMn oxide phases, which would all be 

affected by redox potential decrease or DOC increase. The sequential extraction data 

and data from this incubation experiment show the same picture of As and Pb hosted 

on organic matter and FelMn oxides, but it is not possible using these two pieces of 

data to separate the mechanisms of mobilisation. This could be achieved through 

experiments which only vary either redox potential, Fe solution concentration or 

DOC concentration. 

Drinking water guidelines (WHO, 2008) showed that As, Mn, Mo and Pb were all 

present in potentially hazardous concentrations in the soil solution under redox 

conditions that would typically be found in field situations. In the case of As, soil 

solution concentration reached a maximum of 308 Jlg L-1 in the organically amended 

samples, which was comparable to the high levels of As seen in Bangladesh 

groundwater (461 Jlg L-1, Halim et al., 2009). Arsenic, lead and manganese all 

exceeded the drinking water guidelines before any reduction had taken place, which 

suggests that under field conditions these guidelines would also be exceeded under 

average redox conditions. However under natural conditions, redox changes would 

also follow a cycle of reduction and oxidation as the soil undergoes flooding and 

drying events. This could result in the immobilisation of metals through fixation in 

Fe oxides (Contin et al., 2007) and so these high metal concentrations in soil solution 

may not be seen. 
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Chapter 6: 

Vegetable uptake from waste-amended Chat Moss soil 

6.1 Introduction 

Most of Chat Moss is currently under arable cultivation, with cereal crops being the 

main product. However there have been suggestions that some farms on Chat Moss 

may return to market gardening, producing vegetables for nearby Manchester, 

stimulated by the consumer trend for organic and locally grown crops (Stringer, Pers. 

Comm. I
). Unfortunately, elevated concentrations of metals in Chat Moss soils 

(Chapter 3) raise the possibility that vegetable crops may present a potential risk to 

human health. 

It has been shown by many authors that vegetables grown in contaminated soils can 

take up metals, the mechanisms and factors affecting this are discussed in Chapter 

1.4. The uptake of metals from soils is complex; partly controlled by soil conditions 

and partly by the different affinities that vegetables express for individual trace 

elements. In a study of vegetables grown on a soil spiked with cadmium nitrate, 

copper sulphate, lead nitrate and zinc sulphate, it was found that the order of 

accumulation varied for each metal (Alexander et 01., 2006). Alexander et 01., 

(2006) found that for Cd, the preference expressed was lettuce> spinach> onion> 

carrot> pea> French bean, for Cu, spinach> lettuce> pea> French bean> carrot> 

onion, for Pb, lettuce> onion> carrot> spinach> pea> French bean and for Zn, the 

order of accumulation was spinach> lettuce> onion> pea> carrot> French bean. 

) Conversation with farmer ofCM-3 during sampling visit in August 2007. 
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It has been reported that As, Cd and Pb are the metals most likely to be found as 

contaminants in vegetables (Kachenko & Singh, 2006), and it is weJI known that 

these metals can pose a significant risk to human health. Cadmium concentrations in 

plants have been positively correlated with soil Cd concentration, soil Zn 

concentration and plant Zn concentration (Kachenko & Singh, 2006), which 

indicates that there may be an interaction between Cd and Zn for plant uptake. 

Vegetables show highly variable levels of metal concentration, with many factors 

affecting uptake rates (Chapter 1.4.1). For many metals, soil concentration is a key 

factor controJIing plant uptake, particularly Zn, Mo, Cr and Se (Kabata-Pendias, 

2001), with Zn uptake strongly related to soil Zn concentration (Kachenko & Singh, 

2006). It has been reported that leafy vegetables and root vegetables often show 

different levels of metal contamination; in particular Cd, which accumulates 

markedly more in leafy than root vegetables (Podar & Ramsey, 2005). In a study of 

vegetables and herbs sampled from urban allotments, it was found again that Cd 

accumulated in the leaves of all plants, and also that young plants were more likely 

to take up Cd. It was also found that soil factors affected the uptake of metals, with 

Cu and Pb affected by organic matter content and Zn and Ni affected by clay content 

(Mocko & Waclawek, 2004). 

Limits have been placed on metal concentrations in saleable foods by the EU 

(European Union, 2006) for Pb, Cd and Hg, but variation in uptake between species 

suggests that limits based on generic classes such as 'leaf or 'root' vegetables may 

not be effective. The standard index used to express 'non-cancer' risk from 

consumption of food, such as vegetables grown in metal contaminated soils, is the 

'Hazard Quotient' (Chapter 1.4.2). These are simply the ratio of actual 'average 
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daily dose' to a safe 'reference dose' based on toxicological information. The 

average daily dose is calculated from plant metal content, average body weight and 

daily vegetable ingestion. 

To assess the risk of consuming plants grown on Chat Moss, greenhouse trials were 

carried out using nine vegetables and herbs grown on topsoil collected from Chat 

Moss. Using the data from these trials, Hazard Quotients were calculated based on 

UK dietary considerations (Section 6.2). 

6.2 Materials and methods and trial design 

A combination of nine vegetable and herb crops were grown in glasshouse 

experiments using topsoil from the waste-amended Chat Moss site CM-3 in two 

growth seasons, 2006 (October to December) and 2007 (July to October) (see 

Chapter 3 for soil characteristics). The plants used were carrot (Daucus carota var. 

Early Scarlet Hom), lettuce (Lactuca sativa var. Little Gem), spinach (Spinacia 

oleracea var. Perpetual), mint (Mentha viridis), parsley (Petroselinum crispum var. 

Plain), cabbage (Brassica oleracea var. Golden Acre), leek (Allium ampeloprasum 

var. Atal), onion (Allium cepa var. White Lisbon) and radish (Raphanum sativus var. 

Scarlet Globe). These were chosen to represent common market garden crops that 

could be grown on Chat Moss for local consumption. Field-moist soil from site CM-

3 was collected on 10th August 2006, air-dried and sieved to 6 mm before being 

potted in 800 g aliquots in 1 L plastic plant pots. Pots were sown with five seeds of 

each vegetable, although for parsley and mint this was increased to 10 and 25 seeds 

respectively due to the smaller seed size of these plants. Once the seedlings had 

germinated, they were thinned out to two seedlings per pot, with the exception of 

parsley and mint. A randomised block design was used to layout the nine vegetables 
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with five replicates of each. The pots were blocked to minimise variation in the 

greenhouse environmental factors, temperature and light. The plants were then 

grown to a stage less than full maturity, which was taken to be the point at which 

they were potentially edible (Plate 6.1) but had not outgrown the pots. The growth 

period of each plant is summarised in Table 6.1. Once harvested, the edible parts of 

each plant were processed as detailed in Section 2.5.2 and analysed for total metal 

content as described in Section 2.6. Dry weight (DW) concentration data was 

converted to fresh weight (FW) data using a vegetable-specific conversion factor 

calculated using the measured fresh and dry weights . It should be noted that metals 

such as AI , Ti, Cr, and to some extent Mn and Fe, are commonly present as soil dust 

contamination rather than as a consequence of systemic uptake into plant tissues. 

Therefore washing of the plant tissues was conducted to minimise these effects. 

Extremely poor growth of spinach in 2006 resulted in unrealistic data and this has 

been excluded. 

Plate 6.1 : Images of vegetables grown in waste-amended Chat Moss soil (CM-3) collected 

immediately prior to harvest from the 2006 season. 
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Table 6.1: Growth periods of vegetables grown in waste-amended Chat Moss soil (CM-3) 

for 2006 and 2007 seasons. 

Carrot 
Radish 
Leek 

Onion 
Spinach 
Lettuce 

Cabbage 
Parsley 
Mint 

2006 growth period (days) 
83 
35 
107 
107 
65 
65 
65 
75 
83 

6.3 Results and Discussion 

2007 growth period (days) 
89 
35 
105 
105 
63 
89 
89 
89 
89 

6.3.1 Essential plant elements: AI, Mn, Fe, Cu, Zn, Mo 

Aluminium 

Aluminium is a common constituent of most plants with concentrations ranging from 

101 
- 102 mg kg-I (OW), although the physiological function of Al is unclear 

(Kabata-Pendias 2001). Concentrations in the vegetables grown in Chat Moss soils 

ranged from 0.4 mg kg-I (FW) (radish, 2007) to 3.7 mg kg-I (FW) (carrot, 2007) 

(Figure 6.1), which was within the range reported by Kabata-Pendias, 2001. Results 

differed between 2006 and 2007, although there was no consistent variation seen, 

with mint, parsley and spinach accumulating more Al in the 2007 season, and the 

remaining vegetables accumulating more Al in the 2006 season. 
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Figure 6.1: Aluminium concentration in edible portions o/vegetables grown in waste-amended Chat 

Moss soil (CM-3). Error bars show standard error of 5 replicates. 

Manganese 

Manganese is an essential element for plant nutrition, and uptake is controlled 

metabolically, in a mechanism similar to Ca2
+ and Mg-2+ (Kabata-Pendias, 2001). 

Uptake of Mn ranged from 0.31 mg kg-I (FW) (cabbage, 2007) to 14.13 mg kg-I 

(FW) (onion, 2007) (Figure 6.2). There were differences seen between 2006 and 

2007 results, with radish and onion showing higher Mn uptake in 2007 but for all 

other vegetables higher uptake was seen in 2006. Manganese concentrations were 

similar to those reported by Kabata-Pendias (2001), who reported levels in of 1.1 -

2.6 mg kg-I (FW), O.l - 4 mg kg" I (FW) and 0.15 - 1.5 mg kg-I (FW) in cabbage, 

lettuce and carrots respectively. The 2007 results were comparable to US averages 

for spinach, cabbage and lettuce (US FDA, 2006). 
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Figure 6.2: Manganese concentration in edible portions of vegetables grown in contaminated Chat 

Mos soil (CM-3). Error bars show standard error of 5 replicates. US average data shown for 

cabbage, lettuce and pinach taken from US FDA (2006). 

Iron 

The uptake of Fe by plants is metabolically controlled, and Fe can be taken up as 

Fe3
+, Fe2+ or Fe chelates (Kabata-Pendias, 2001). There are many recognised 

metabolic functions of Fe, including involvement in the mechanisms of 

photosynthetic electron transfer, reduction of nitrites and sulphates, chlorophyll 

formation and nucleic acid metabolism. Iron concentrations ranged from 3.23 mg 

kg-' (FW) (lettuce, 2007) to 11 .5 mg kg-' (FW) (mint, 2007) (Figure 6.3). 

Average vegetable Fe concentrations as reported by the US Food and Drug 

Administration (US FDA, 2006) correspond well with the results of the current study 

for cabbage and lettuce, but far exceed the results for spinach, indicating a possible 
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Fe deficiency for spinach. In both seasons it was observed that spinacb grew poorly, 

and this may be related to the apparent Fe deficiency. In comparison to Mn and AI, 

the re ults for 2006 and 2007 were similar for all vegetables. 
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contaminated oil from Chat Moss ranged from 0.27 mg kg-I (FW) (lettuce, 2007) to 

1.84 mg kg-I FW) (onion 2007) (Figure 6.4). 

There were large difference een between the 2006 and 2007 seasons for all 

vegetable e cept leek carrot and cabbage. For all other vegetables except onion, 

the 200 eason accumulated more u than the 2007 season. US averages for lettuce 

and spinach ar ery imilar to the 2007 results. As the US data comes from market 

ba ket it can be a umed that the e egetables have been grown on uncontaminated 

il . hi w uJd indicate that the egetables on Chat Moss are not taking up 

harmful am un f u and would be suitable for sale. This will be further assessed 

in ecti n .4 
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oil (CM-3). E"or bar. how fal1dard rror of 5 r plicates. US average dala shown for lettuce and 
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Zinc 

Zinc is an essential element for plant metabolism, and is involved in enzyme function 

(Kabata-Pendias, 2001). It has been reported that Zn uptake is linear with 

concentration in nutrient solution and soils (Kachenko & Singh, 2006). Zinc uptake 

in vegetables grown in contaminated soil from Chat Moss ranged from 1.71 mg kg-' 

(FW) (carrot. 2007) to 75.1 mg kg-' (FW) (onion, 2007) (Figure 6.5). 

When compared to US averages for cabbage, lettuce and spinach, it can be seen that 

Zn uptake in the vegetables exceeded the US averages. It was also observed that 

vegetables grown in the 2006 season, with the exception of onion and carrot, showed 

higher Zn concentration. The 2006 season ran from October to December, whereas 

the 2007 season ran from July to October, and so had more favourable growing 

conditions. This allowed the plants to grow more successfuUy, particularly spinach 

which was very poor in 2006. Although the growth periods in 2006 and 2007 were 

similar for each vegetable, plants grown in 2007 were generalJy larger and appeared 

healthier. The poorer growth in 2006 may have caused increased Zn concentrations 

by allowing greater uptake of metals over a slower growth period. 

Afo/ybd,'num 

Molybdenum is an essential element in plants, although the physiological 

requirement is low (Kabata-Pendias, 2001). In the vegetables grown in contaminated 

Chat Moss soil, uptake ranged from 0.07 mg kg-' (FW) (carrot, 2006) to 7.35 (FW) 

(lettuce, 2007) (Figure 6.6). 
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Kabata-Pendias (2001) report average Mo concentrations for carrot of 0.08 - 0.015 

mg kg-I, lettuce as 0.005 mg kg"1 and cabbage as 0.099 mg kg"l. From this it can be 

seen that carrot from both seasons, and lettuce grown in 2006, fall within these 

ranges; but the other vegetables greatly exceed these estimates. This may be due to 

the high Mo concentration in this soil, which exceeds the statutory limits for sludged 

soils (MAFF, 1998) (Chapter 3.1.3.3), as Mo uptake by plants is reported to be 

proportional to soil concentration (Kabata-Pendias, 2001). 

6.3.2 Non-essential plant elements: Ti, V, Cr, Co, Ni, As, Se, Cd, Cs, Ba, Pb 

Titanium 

Titanium concentrations in plants grown on soil from Chat Moss ranged from 

0.000557 mg kg"1 (FW) (cabbage, 2006) to 0.047 mg kg-I (FW) (carrot, 2006) 

(Figure 6.7). For all vegetables except cabbage and mint, the 2006 season showed 

greater accumulation of Ti compared to the 2007 season. Typical Ti concentrations 

of 0.3 mg kg"1 (FW) (lettuce), 0.7 mg kg-I (FW) (cabbage) and 0.5 mg kg-I (FW) 

(carrot) have been reported (Kabata-Pendias, 2001) which are greater than the Ti 

concentrations seen in the vegetables grown in contaminated Chat Moss soil. This 

may be a function of the relative immobility of Ti in this soil as shown through 

sequential extractions (Chapter 4.3.3) although the presence of Ti in plant tissue is 

usually interpreted as external contamination with soil dust which might resist 

washing during preparation of the plant samples. 
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Figure 6.7: Titanium concentration in edible portions of vegetables grown in contaminated Chat 

Moss soil (CM~3). Error bars show standard error of 5 replicates. 

Vanadium 

Vanadium has been shown to be essential for algal photosynthesis, but there are no 

clear functions in plant physiology. Vanadium concentrations in plants grown in 

contaminated Chat Moss soi l ranged from 0.0018 mg kg-I (FW) (cabbage, 2006) to 

0.0157 mg kg-I (FW) (parsley, 2007) (Figure 6.8). Average V concentration in 

vegetables has been reported to range from 5.3 ~g kg-I FW (lettuce) to 8.8 ~g kg-I 

FW (carrot) (Kabata-Pendias, 2001), which is within the range seen for vegetables 

grown in Chat Moss soils. 
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hromium 

hr mium c ncentrati n In vegetable grown on Chat Moss soi ls ranged from 

15 mg kg-I W (lettuce, 2006) to 0.293 mg kg-I (FW) (cabbage, 2007) (Figure 

f 0.00 mg kg-I (FW) have been reported in lettuce 

Kabat -P ndi 2 I) which i imilar to the concentration seen in the lettuce and 

abbage fr m the 2 6 r all vegetables except spinach, carrot and radish 

n h wed greater accumulation of Cr than 2006. Uptake of Cr by 

by luble r content in soils (Kabata-Pendias, 2001). Sequential 

howed that 3 % f r in the hat Moss soil was present in the organic 

fr cti n hapter 4. which has the potential to become solubilised, which may 

explain the relati ely high r concentrations in the vegetables. 
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Ni k I 

ickel nc ntrati n r ng d between 0.0 3 mg kg-' (FW) (cabbage, 2007) to 

.455 m kg-' W P r ley, 2006) ( igure 6.11). Nickel concentrations In 

g ta I h n r p rt d t range from 0.0] mg kg-' (FW) (lettuce) to 0.05 mg 

kg-' Kab ta-Pendia 200 I ). Nickel uptake was similar to US 

, 2 ), p rticularly for lettuce. 
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A~ ni 

Ar ni a n titu nt f m t plant , but there is little known about its biochemical 

r J . Ar eni n in th egetable grown on Chat Moss soil ranged from 

77 m k -I ni n 20 7) t 0.116 (FW) (onion, 2006) (Figure 6.12). 

mpar d t K a rage As concentrations (US FDA, 2006; UK FSA, 

2 2 • it nb hat Mos vegetable show much higher levels of As in 

th hi IT P nds with the levels of As in soil solution collected 

fr m th me il uring anaerobic incubation (Chapter 5), which showed levels of 

A in f th afe Drinking Water Limits as set by the World Health 

rgani ti n rJ 2 ne of the main mechanisms for the uptake of As by 

egetabJe pa i e ab rption with water flow, therefore if there is high As 
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concentration in the soil solution then it is likely that this will be taken up by the 

vegetable a een here although recent evidence shows that arsenic can be actively 

taken up by plant either through phosphate pathways (arsenate) or silicic acid 

pathway (arsenite Ma et 01 .• 2008) as well as passively. 
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I nium 

elenium in egetable grown in contaminated Chat Moss soils 

r ngc fr W) carrot 2006) to 0.00483 mg kg
o

\ (FW) (mint, 2007) 

igure .1 . r II getable , the 2007 season showed greater accumulation of 

e linear correlation has been reported between Se 

c ncentrati n m il and plant (Kabata-Pendias, 2001), indicating that soil Se 
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concentration i the controlling factor for pJant uptake. Selenium concentrations in 

egetabJe ha e been reported a 7.2 Jlg kg-! (FW) (parsley), 2.4 Jlg kg-! (FW) 

(lettuce), 7.3 Jlg kg-! FW) onion) and 6.1 Jlg kg-! (FW) (carrot) (Pappa et al. , 2006), 

which are in the arne range a the egetabJe grown in Chat Moss soil. 
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admium n n- ntial element for plant metabolism, but it is effectively 

b rb d y Ie Kabata-Pendia , 200 1). Cadmium concentrations 

in the v getabl gr \! n In il fr m hat Mo ranged from 0.007 mg kg-! (FW) 

mint 2 7) t .2 mg kg-! W) lettuce, 2006) (Figure 6.14). 
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Limits ha e been placed on d concentration in egetables by the European Union 

U 2006 and the e limit were exceeded by lettuce grown in both seasons, 

indicating that the e egetable would not be suitable for sale. The risk posed by 

the e egetable t human health will be further discussed in Chapter 6.4 using 

Hazard u tient . It ha b en found in other studies that leafy vegetables, and 

lettuce in particular can trongly ab orb Cd from the soil (Podar & Ramsey, 2005), 

which corre p nd with th re ult een for lettuce grown on contaminated Chat 
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Caesium 

ae ium concentration ranged from 0.0005 mg kg-I (FW) (leek, 2006) to 0.0092 mg 

kg-I FW cabbage 2006) (Figure 6.15). Caesium concentrations in vegetables have 

been bown to range from 0.2 - 3.3 jlg kg-I (FW) (Kabata-Pendias, 2001), and the 

egetable grown on hat Mo soil fall at the lower end of this range. 
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Barium 

nurn n entrnti n In getable grown in contaminated soil from Chat Moss 

r ngcd r rn I. mg kg-I W) (carrot, 2007) to 31.4 mg kg-I (FW) (parsley, 2006) 

( igure . 1 . ypi al n entration in egetables range from 0.5 mg kg-I (FW) 

(cabbage) (Kabata-Pendias 2001), which is much lower 

th n the cone ntrati n en in the e hat Mos grown vegetables. It has been 
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reported that Ba uptake can increase in acid soils (Kabata-Pendias, 2001) which 

could explain the increa ed uptake in these vegetables, which were grown in acid 

soils. 
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igur . 17). Typical lead concentrations in vegetables were 
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likely due to the high lead content of the soi l (Chapter 3.1.3.3). It was shown using 

stable lead isotope dilution that - 50% of the total Pb concentration was labile, which 

means it would be pre ent in oil solution and potentially available for plant uptake 

hapter 4.4) thi could explain the higher Pb concentrations seen in vegetables 

grown in contaminated hat Moss soil. Limits on Pb concentrations in vegetables 

have been placed by the European Union (EU, 2006), and it was found that these 

limit were generally exceeded by the root vegetables (carrot, 2006, radish 2006 and 

2 7 ea on nion 2 06) but for the leafy vegetables the limits were only exceeded 

by par ley gr wn in 2 06. The implication for human health from consumption of 

egetable with the e high Ie el of Pb will be further studied using Hazard 

u tient hapter .4. 
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Vegetables grown on contaminated soil from Chat Moss showed variable uptake of 

metals, with variation seen between vegetables, metals and season. For example, 

spinach grown in 2006 showed accumulation of Zn, Cd, Co and a deficiency of Fe 

compared to the 2007 season (data not shown). This indicated a possible synergistic 

relationship between Zn, Cd and Co and an antagonistic relationship with Fe. 

Synergistic relationships between Cd and Zn particularly in lettuce uptake has also 

been reported, supporting the results seen here (Podar & Ramsey, 2005), however 

this could also simply indicate that high concentrations and high plant uptake of Cd, 

Zn and Co coincide in these soils. 

Comparison with data from US averages for vegetables sampled from market baskets 

(US FDA, 2006) showed that for Mn, Fe, Ni and Cu the vegetables grown on Chat 

Moss contaminated soil the uptake of metal was consistent with the US averages, 

indicating that these vegetables would be safe for consumption when considering 

Mn, Fe, Ni and Cu content. Ilowever for Zn, As, Cd and Pb the vegetables grown on 

Chat Moss contaminated soil showed greater metal content than the US averages. 

This would suggest that the vegetables may not be suitable for human consumption. 

For Pb and Cd this was further assessed using EU guidelines (EU, 2006). Root 

vegetables were found to be more likely to exceed the guidelines for Pb 

concentration, whereas for Cd leafy vegetables were found to be closer to the 

guideline limits. This agrees with the known behaviour of Cd and Pb in vegetables, 

with Cd found to accumulate in Jeafy vegetables (Podar & Ramsey, 2005; Kachenko 

& Singh, 2006) and Pb found to accumulate in root vegetables (Finster et al., 2004). 

One of the main factors affecting plant uptake of metals is often reported as pH 
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(Wang el 01., 2006) which may explain the relatively high metal concentration in the 

plant tissues of vegetables grown on contaminated Chat Moss soils, as the slightly 

acidic pH (-6) would aid in metal uptake. The variability in metal uptake both in 

tenns of metal and species show that risk assessments cannot be generalised by total 

soil metal content, but that bioavailability and crop must be considered (Kachenko & 

Singh, 2006). For this reason Hazard Quotients were used to assess the risk to 

human health from consumption of vegetables grown on contaminated Chat Moss 

soils. 

6.4 Implications of metal uptake by vegetables for assessment of 
risk to human health 

Ilazard Quotients were used to assess the risk to human health from consumption of 

vegetables grown on Chat Moss (Section 1.4.2). Hazard Quotients were calculated 

for Ni, Cr, As, Mn, Zn, Se, Sr, Mo, Cd, Ba and Pb using Reference Dose values from 

IRIS (USEPA, 2009) and selected references (Table 6.2). 

TaMe 6.2: Reference dm;e values used 10 calculate Hazard Quotients of vegetables grown in 

contaminaled Chat Moss soil (CM-J). 

f:lement 
Ni 
Cr 
As 
Mn 
Zn 
Se 
Sr 

Mo 
Cd 
Ba 
Pb 

0.02 
0.003 
0.0003 
0.14 
0.3 

0.005 
0.6 

0.005 
0.00036 

0.2 
0.0035 

Source 
USEPA IRIS 
USEPA IRIS 
USEPA IRIS 
USEPA IRIS 
US EPA IRIS 
USEPA IRIS 
USEPA IRIS 
USEPA IRIS 
CLEA (2009) 
USEPA IRIS 

Hough el 01., (2004) 
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Any Hazard Quotient greater than 1 represents a potential risk to human health, and 

as seen from Tables 6.3 and 6.4, only Cd and Mo exceeded this value. For Mo, HQ's 

greater than 1 were achieved in the 2007 season for parsley (1.67), cabbage (1.49), 

lettuce (1.69) and radish (2.14), although for the 2006 season, all HQ's were lower 

than 0.6 (radish). For Cd, HQ's greater than I were calculated for lettuce grown in 

both seasons, which agrees with the findings of Podar & Ramsey (2005) of lettuce 

being an accumulator of Cd. 

Tahle 6.3: Hazard Quotients for ingestion of trace elements in vegetables grown on waste

amended soil from Chat Moss (CM-3; Section 2.1) in 2006 assuming a 70 kg adult 

consuming 200 gfresh vegetahles daily. Reference doses used werefrom the USEPA-IRIS 

datahafe and Hough et al., (2004). 

Mo Cd A. Mn !'IiI Zn Ba Pb Sr Se Cr 

MinI 0.311 0.04'N 0.197 0.0571 0.0242 0.0631 0.0377 0.040S 0.00603 2,3S,,10-' 4.42)(10" 

Paf'lilcy 0.208 0.497 0.161 0.115 0.0335 0.210 0.231 0.175 0.00903 1.76,,10" 1.15,,10" 

Cabbage 0.526 0.178 0.311 0.0237 0.0120 0.0642 0.0678 0.0203 0.0107 8.5 Ixl 0-6 2.71"10" 

Lettuce 0.0374 1.56 0.296 0.0927 0.0193 0.0745 0.0397 0.0542 0.00674 6.43,,10" 2.4 Ix I 0" 

Carrot 0.0432 0.307 0.122 0.0206 0.139 0.0215 0.0756 0.154 0.00289 0 4.40)(10" 

Leek 0.184 0.282 0.349 0.0425 0.0138 0.OS37 0.0621 0.0352 0.00716 1.44,,10" 3.77,,10" 

Radi!lb 0.193 0.207 0.493 0.0120 O.OISO 0.0825 0.0476 0.0840 0.00666 4.44,,10" 1.06,,10" 

Onion 0.603 0.346 0.434 0.0726 0.0165 0.0746 0.0883 0.0499 0.0122 4.35,,10" 8.86"10" 

Using Ilazard Quotients it could be seen that there was little risk to human health 

from consumption of the vegetables grown on Chat Moss in the 2006 or 2007 

seasons, with the exception of Mo and Cd which showed some potential risk, in 

particular lettuce for Cd which may not be suitable for cultivation on these soils. 

This indicated that while the historic waste disposal on Chat Moss resulted in 

301 



elevated heavy metal concentration in the topsoil (Chapter 3.1.3.3) the metals were 

not present in a highly bioavailable form. However under different conditions such 

as increased rainfall, the plant uptake of metals may increase due to increased 

solubility and bioavailability of metals as demonstrated in Chapter 5, which could 

lead to higher Hazard Quotients. It should also be considered that the Hazard 

Quotients were calculated for adult consumption, and that the risk may be greater for 

a child due to reduced body weight, although this may be mitigated by the reduced 

intake of vegetables by children. 

Table 6.4: lIa=ard Quotients/or ingestion of trace elements in vegetables grown on waste

amended soil from Chat Moss (CM-3; Section 2.1) in 2007 assuming a 70 kg adult 

consuming 200 gfresh vegetables daily. Reference doses used were/rom the USEPA-IRIS 

dataha<;e and 110ugh et al .• (2004). 

Mo ('d A. Mn "oil Zn Ba Pb Sr Se Cr 

MinI 0.%6 0.14S 0.171 0.01)4 0.00931 0.0303 0.0293 0.0526 0.00481 1.22x I 0') 2.14xI0" 

PaFlilcy 1.67 0.166 O.3Kl 0.0458 0.01lS 0.0593 0.106 0.0384 0.00715 7.50x I 0" 1.95x I 0" 

Cabbllge 1.69 0.1)9 0.324 0.0953 0.00648 0.0171 0.0356 0.0122 0.00747 S.22xI0" 7.16xlO·' 

Letl~e 0.232 /.41 0.409 0.0926 0.0190 0.0858 0.0)17 0.0667 0.00771 8.98xI0" S.47xI0·' 

SpinlCh 0.699 o.m 0.0451 0.191 0.0192 0.472 0.113 0.0956 0.01)2 7.62x I 0" 2.15x10" 

Carrol 0.1110 0.6112 0.274 0.0118 0.0206 0.0189 0.0300 0.159 0.00378 7.04xI0·' 4.95xI0" 

Leek 0.607 0.157 0.327 0.0215 0.00740 0.0254 0.0372 0.0952 0.0050) 3.6)xI0" 8.27xI0·' 

Radillb 1.49 0.163 0.2110 0.00391 0.00790 0.0307 0.0449 0.0853 0.00605 6.88xI0" S.34xIO" 

Onion 2.14 OJ~ 0.477 0.0372 0.00890 0.0236 0.0427 0.0444 0.00780 7.57xlO" 1.1 7x I 0" 

6.5 Conclusions 

Ileavy metal concentrations ID nine types of vegetables and herbs grown on 

historically contaminated soil from Chat Moss were measured and the results used to 
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assess the risk to human health from a return of the study area to horticultural 

production. It was found that, compared to US data for market vegetables (US FDA, 

2006), the produce grown on Chat Moss showed slightly higher levels of Zn, As, Cd, 

Pb but there was no increase in Mn, Fe, Ni and Cu compared to US averages. The 

US data was collected on vegetables from market baskets, which is taken as an 

indication of fitness for consumption as it is likely that they were not grown on 

contaminated soils. The European Union limits on Pb and Cd content of vegetables 

(EU, 2006) were exceeded by lettuce, spinach and onion for Cd and parsley, carrot, 

radish and onion for Pb. This broadly suggests that root vegetables grown on Chat 

Moss may be harmful due to Pb accumulation while green leaf vegetables may 

present some risk due to Cd uptake. It is known that lettuce strongly accumulates Cd 

(Podar & Ramsey, 2005) so this may not be an appropriate crop to grow on Chat 

Moss. To further assess the risk to human health, Hazard Quotients were calculated 

for a number of elements. Only Cd and Mo were shown to be potentially harmful in 

the vegetables grown in contaminated soil from Chat Moss with lettuce again 

showing potentially harmful uptake of Cd. There were large differences in metal 

uptake seen between the two experimental seasons, which may indicate that growing 

conditions such as temperature and light affect the uptake of heavy metals and 

represents a source of uncertainty in the assessment of risk from pot trials. 

Overall, the risk assessment showed that it should be reasonably safe to grow most 

vegetables on Chat Moss. Ilowever, it may be useful to increase the use of lime as it 

has been shown that Cd and many other heavy metals are more bioavailable at lower 

pH (Podar & Ramsey, 2005; Wang et 01., 2006; Mocko & Waclawek, 2004) and the 

organic Chat Moss soils are probably particularly prone to progressive reduction in 
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pH due to ongoing oxidation reactions. To reduce the risk from metals such as Pb 

and Cd, variety selection could be used to choose a variety that does not take up large 

concentrations of metals from soils, although there is little infonnation available on 

the effect of variety selection on metal uptake. It has been shown that carrot and pea 

cultivars show significant variation in metal uptake but no variation between 

cultivars was observed for spinach or lettuce (Alexander et al., 2006). Further work 

in this field of cultivar selection would be invaluable for minimising risk of metal 

uptake from vegetables grown in contamination soils such as Chat Moss and urban 

allotments. It could be recommended to fanners that vegetable and herb crops 

should be safe to grow on Chat Moss, with the exception of lettuce which showed 

potentially hannful uptake of Cd. 
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Chapter 7: Conclusions 

7.1 The nature and extent of the contamination of Chat Moss and 
Halsalll\loss 

Through the GBASE survey conducted by the BGS, two areas of metal-contaminated 

fenlands in NW England were discovered; these were Chat Moss west of Manchester 

and lIalsaJl Moss north of Liverpool (Breward, 2003). Historical research identified 

these areas as disposal sites for urban waste from the two cities over a period of 

several hundred years. In the case of lIalsaU Moss, the waste was mainly organic in 

the fonn of human and animal manures, and in the case of Chat Moss the waste was 

a mixture of organic and mineral wastes, ranging from manures to steelworks waste. 

Chat Moss was purchased by the Manchester Corporation in 1895 for use as a waste 

disposal site to aJJeviate growing waste generation by the city population, but also to 

reclaim the peat for agricultural purposes. During drainage, the waste from 

Manchester was incorporated into the moss to reduce loss of soil volume as the peat 

dried out. The earliest waste used was nightsoil, which has been defined as "ashes 

mixed with the contents of privies and the scrapings of the streets" (Coney, 1995) 

and would have been mainly organic in nature, similar to the wastes incorporated in 

IlalsaJl Moss. As waste disposal continued on Chat Moss, mineral wastes such as 

street sweepings, garbage and clinkers were increasingly abundant. Over the 65 

years of waste disposal, 529 kt of privy midden waste, 429 kt of nightsoil and 402 kt 

street sweepings was disposed of on Chat Moss. In total, up to 1.92 Mt of waste was 

incorporated into the soil, which corresponds to 1890 t ha- I
. The Chat Moss estate is 

recorded as being 1013 ha meaning that 39% of the topsoil of Chat Moss today is 
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composed of waste materials, with average topsoil considered to be 5000 t ha- I . This 

calculation assumes that the waste incoroporated into Chat Moss was dry, if a 

moisture content in the waste of 30% is assumed, then the proportion of soil 

composed of waste materials is 27%. 

Little data was available on the waste disposed at Halsall Moss, which was a more 

informal process, with individual farmers bringing city manures to the farms when 

returning from markets. Evidence for this practise exists from 1571 (Coney, 1995) 

and anecdotal evidence showed that this continued until recent years. The waste 

colJected from Liverpool for disposal on Halsall Moss was limited to manures for 

improvement of the soil. 

Field evidence on Chat and Iialsall Mosses supported the historical findings, with 

pottery, slag and coal fragments all visible in the soil at Chat Moss, while only 

pottery was visible at lIalsa11 Moss. SEM studies confirmed the presence of Fe 

oxides, coal and pottery in the soils, further supporting the historical evidence. All 

sites on Chat Moss and Ilalsa)) Moss showed elevated heavy metal concentrations in 

topsoils, accompanied by pH increase and LOI decrease generated by soil 

reclamation, waste disposal and farming practices such as liming. 

To further link the historical research with the contamination seen on the mosses 

today, Pb source apportionment was used which identified a mixture of Pb ore, UK 

coal and petrol-derived Pb as the sources of lead in Chat Moss soil. This linear array 

of contamination sources was also found by Weiss et 01., (l999a) in a study of 

ombotrophic bogs from Switzerland, who also found it difficult to identify a single 
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source of contamination. The combination of lead sources identified in Chat Moss 

soils was in agreement with the historical evidence of waste sources from 

Manchester. 

Principal Component Analysis also highlighted elemental associations often found in 

industrial waste, and the combination of trace element profiles, historical research, 

Pb isotope analysis, Scanning Electron Microscopy and Principle Component 

Analysis showed that past land use had resulted in elevated trace element 

concentrations in the topsoil. 

J lowever the levels of metals measured in the soils of Chat Moss were not in 

agreement with the original GBASE survey data, which showed much higher levels 

of contamination. The average topsoil lead concentration of contaminated sites on 

Chat Moss as measured by GBASE was 1985 mg kg"l, whereas the average as 

measured by the current study was 378 mg kg"l. This may be related to the size of 

the sample areas, with the GBASE study sampling over a much larger area than the 

current study. There were also differences in sample preparation with the GBASE 

samples sieved to < 1 SO Ilm which may have caused an overestimation of the metal 

concentration in the soils. The samples for the GBASE survey were also ash ed, 

which at an organic matter content of -60% would have caused artificial 

concentration of metals into the non-ashed residue. This suggests that the original 

GBASE survey may need to be revisited. 

Using the Soil Guideline Values (SGV) published by the Environment Agency 

(Environment Agency, 2002a; 2002b; 2009a; 2009b) and data from the current study, 
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only arsenic and cadmium were in breach of the guideline values based on allotment 

use of the land. The SGV for arsenic places a limit of 43 mg kg-I for allotment land 

use, and site CM-3 showed As levels of 45 mg kg-I. For cadmium, the SGV is 1.8 

rng kg"l, which is the concentration of Cd at site CM-3. For all other SGV's (Se, Ni, 

Cr and Pb) the levels on Chat Moss were within the limits. 

In many cities, particularly in developing countries, the use of urban organic waste as 

soil arnendrnent is widespread. Due to the potential hazards of this material such as 

biological contamination from poorly treated wastewater, it was suggested that fresh 

salad crops such as cucumber, lettuce, tornato, parsley and rnint should not be grown 

where wastewater is used for irrigation (FAD, 2007). It was also reported that crop 

contarnination from heavy metals in peri-urban farming would be rninirnal, as heavy 

rnetal concentration is rarely high enough to be toxic. However mitigation strategies 

such as processing crops to remove heavy rnetals or liming to irnmobilise heavy 

metals have been proposed (FAD, 2007). Chat and HalsaU Mosses can be used as 

historical proxies for modern day peri-urban farming practices, to assess the long

term impact to soils and crops of urban waste disposal on agricultural soils. Elevated 

heavy metal concentrations in topsoils have been identified over 50 years since the 

end of waste disposal, which shows that contamination of the soil can be a lasting 

problem. The total amount of lead introduced to the soil through waste disposal was 

calculated. Assuming an average topsoil depth (40 cm) to represent 5000 t ha-I and 

the Chat Moss estate to be 1013 ha, the total weight of topsoil was assumed to be 

5.065 Mt. With an average Pb content of the contaminated sites of379 rng kg-I, and 

the Pb concentration of the control sites of 221 mg kg"l, the lead assurned to derive 

from waste disposal was 157 mg kg"l. This resulted in a lead weight in the topsoil of 
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the Chat Moss estate (1013 ha) of795 tonnes derived from waste disposal. The same 

calculation was also carried out for iron, which showed 46 kt was derived from the 

waste. Historical records showed that 1.92 Mt of waste was disposed of on Chat 

Moss, as the dominant forms of waste were nightsoil and privy midden waste (958 

kt) and these were less likely to host metal contaminants. The main metal-bearing 

forms of waste were most likely street sweepings and clinkers, which amounts to 640 

kt of waste. Coal will also have been an important metal-bearing phase, but this 

would be included in privy midden waste, dust, sweepings and clinkers, and cannot 

be quantified. The estimated 640 kt of metal-bearing waste would seem to be in 

agreement with the calculation of Fe and Pb content of the soils today, indicating that 

there has been minimal loss of metals from the soils and that the historical records 

were correct. Ilowever this calculation is very simple, a more detailed assessment of 

the metal budget of the Chat Moss soil could be carried out with more detailed 

historical records and an assessment of the original metal content of the waste forms. 

7.2. Reactivity of metal contamination on the mosses 

The reactivity of lead was investigated through a novel stable isotope dilution 

technique using 204Pb, which showed --65% reactivity of lead in Chat Moss 

contaminated soils (site CM-3). This was high when compared to soils of other 

contamination histories, with sewage sludge amended soil showing 13% Pb lability, 

minespoil contaminated soil showing 31 % lability and a soil contaminated with 

petrol-derived lead showing 52% lability. The high lability seen in the Chat Moss 

soil corresponded with findings of other researchers (Tongtavee el 01., 2005; Degryse 

el 01., 2007). and also corresponded to sequential extraction data of potentially 

reactive phases in Chat Moss soil, which showed that 73% of the total soil lead was 
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hosted in phases which could be potentially reactive (exchangeable, carbonate

bound, FelMn oxide-bound and organically-bound). Sequential extractions showed 

that most metals were divided between the organic, FelMn oxide and residual phases 

in the Chat Moss soils, with no difference in fractionation observed between Chat 

Moss control and Chat Moss contaminated soils. This suggests the dominant 

influence of soil characteristics over contaminant origins on fractionation of metals 

in Chat Moss soils. 

Chat Moss soils have a high flooding potential due to the wetland origin of the soils 

and poor natural drainage. During an experiment which simulated a long-term (21 

week) flooding event, redox potential decreased and Dissolved Organic Carbon 

(DOC) increased, which caused an increase in soil solution concentration of many 

metals. All metals except Cd were strongly influenced by either redox potential or 

DOC fluctuations, which corresponded with other studies (Grybos et al., 2007; 

Charlatchka & Cambier, 2000), and highlights the potential for heavy metal 

mobilisation in Chat Moss soils during flooding. It should also be considered that 

drought conditions may cause heavy metal mobilisation due to drought-induced 

acidification (Tipping et al., 2003), as many heavy metals are increasingly soluble at 

low pll. 

Arsenic, lead, manganese and molybdenum all exceeded World Health Organisation 

drinking water guidelines at redox potentials commonly seen in agricultural soils. 

The Environmental Quality Standards for fresh water (Environment Agency, 2009c) 

were also exceeded by arsenic, iron, copper, lead and zinc during the course of the 

experiment, which indicates a potential risk to ecosystem health from trace metal 
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release during flooding events. Whilst a 21 week flooding event may seem extreme, 

the redox potential reached during the experiment (-200 mY) is a realistic topsoil 

redox potential during wet conditions, which shows that the mobilisation of elements 

seen during the experiment may be mirrored by conditions in the field. 

7.3. Bioavailability of metal contamination on the mosses 

Peri-urban farming is important worldwide. It is defined as the growing of plants 

and the raising of animals for food and other uses within and around cities and 

towns, and related activities such as the production and delivery of inputs, processing 

and marketing of products (FAD, 2007). Peri-urban farming takes place in the urban 

periphery, and uses urban resources such as land, labour, urban organic wastes and 

water (FAD, 2007). It is estimated that 15-20% of the world's supply of vegetables 

and meat are produced through urban and peri-urban farming (Pasquini, 2006), and 

the increased demand in the UK for locally sourced food with a reduced carbon 

footprint means a return to market gardening on Chat Moss has been suggested by 

local farmers. Several government policies support the local production of fruit and 

vegetables in the UK, including economic prosperity through sustainable farming, 

improving access and awareness of fruit and vegetables, enabling and encouraging 

healthy diets for disadvantaged and vulnerable people, dynamic and sustainable 

social enterprise and reconnecting the consumer with the countryside (Report of the 

Working Group on Local Food, 2003). A report by the Policy Commission (2002) 

stated 

"We believe that one of the greatest opportunities for farmers to add value ... 

is to build on the public's enthusiasm for locally-produced food or food with 

a clear regional provenance". 
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This highlights the economic and social drivers for vegetable production on Chat 

Moss. 

The soil contamination and metal mobility observed through sequential extractions, 

simulated flooding and stable isotope dilution show potential risk for plant uptake of 

the metals and contamination of the food chain. However, plant uptake studies using 

nine vegetables and herbs (mint, parsley, lettuce, cabbage, spinach, carrot, leek, 

onion and radish) grown in contaminated Chat Moss soils showed minimal 

contamination by heavy metals, with little risk to human health as assessed by 

Hazard Quotients or EU limits. This was surprising considering the high lability of 

Pb (as shown by stable isotope dilution) and high solubility of As, Pb, Mo, Mn, Fe, 

Cu and Zn which aU exceeded safe drinking water guidelines and freshwater 

environmental quality standards. Similar levels of plant uptake were observed in 

Indian soils irrigated with wastewater, with similar levels of heavy metal soil 

contamination to Chat Moss (Chary et 01., 2008), however in this case the Hazard 

Quotients showed significant risk, possibly due to different criteria used in 

calculating the IIQ. Minimal uptake of heavy metals by wild and crop plants grown 

in sewage sludge treated soils was also observed by Kidd et al., 2007, where it was 

shown that the plants were able to retain the metals in roots to prevent them moving 

to other tissues. 

Differences were observed between green and root vegetables, for example Cd was 

concentrated in green vegetables whereas Pb was concentrated within root 

vegetables. This pattern has been observed by other studies (Podar & Ramsey, 2005; 

Finster et 01., 2004). However differences between vegetables were also observed 

for an metals. This has implications for risk assessments where no distinction 
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between vegetable species is made, for example the DEFRNEA CLEA assessment 

for Cd, As, Ni and Se. A single transfer factor (TF) is given for all green vegetables, 

and one for all root vegetables. As shown by the vegetable trial with Chat Moss soil, 

uptake varies significantly between vegetable types. It is also shown in other studies 

that Cd for example is accumulated by lettuce (Podar & Ramsey, 2005), which 

would suggest a single transfer factor to calculate risk of Cd uptake by green 

vegetables would not be accurate. Using the transfer factor for Cd (0.052) and the 

concentration in contaminated soils from Chat Moss (1.8 mg kg-I), the predicted 

concentration of Cd in green vegetables would be 0.0936 mg kg-I (FW). This 

exceeds the level of Cd measured in mint and cabbage, but is less than the 

concentration seen in parsley. lettuce and spinach. which highlights the potential 

inaccuracy of using a single transfer factor to predict metal uptake of vegetables. 

The limited plant uptake observed may be due to the presence of calcium oxalate in 

the soil. which was identified by scanning electron microscopy. Calcium oxalate is 

known to be exuded by plants in response to heavy metal stress, especially crop 

plants, as it is known to bind heavy metals in an immobile form (larosz-Wilkolazka 

& Gadd, 2003). During soil digestions, these calcium oxalates would most likely be 

broken down. liberating the heavy metals, which would normally be in a non

bioavailable form. This may be shown by the large fractionation of metals into 

organic and residual phases during sequential extractions. 

Minimal uptake of heavy metals by vegetables grown in Chat Moss soil indicate that 

a return to market gardening would not be hazardous to health with the potential 

exception of lettuce, which was found to accumulate Cd. To minimise this risk, 

liming could be used, or careful selection of varieties that do not accumulate Cd, 
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however studies have shown that there is no significant difference in Cd uptake by 

different cultivars oflettuce (Alexander et a/., 2006). 

An investigation into the re-introduction of horticulture to Chat Moss using the 

GBASE data and SGV's would show that roughly 25% of sites on Chat Moss exceed 

the soil guideline values for arsenic, chromium, nickel and lead. This could lead to 

the assumption that these sites would be unsuitable for horticulture. However as 

seen from the plant uptake studies, Hazard Quotients showed minimal uptake and 

risk to human health from plant contamination by these elements. Hazard Quotients 

calculated from the soil-to-plant transfer factor given by the Soil Guideline Values 

and the GBASE data for As show no risk from green vegetables grown on these soils 

(lIQ = 0.26 - 0.27) (Figures 7.1 and 7.2), in agreement with the study data (HQ = 

0.21 - 0.27), although the variation seen in measured Hazard Quotients between 

different vegetables (Chapter 6.4) was not seen through the GBASE data. This 

highlights the need for a complete assessment of risk rather than simply considering 

the total soil metal concentration, including studying the risk for individual vegetable 

types rather than a generalised assessment of risk. 
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Figure 7. 1: 11azard Quotients Jar arsenic risk (adults) calculated using GBASE data and SG V transJer 

Jactors. 
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Figure 7.2: Hazard Quotients Jar arsenic risk (children) calculated using GBASE data and SGV 

transJer Jactors. 
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7.4 

• 

Further work 

Simulated flooding showed significant release of heavy metals into soil 

solution under heavy rainfall conditions or reduced soil drainage. The risk of 

the increased heavy metal solution concentration to plant uptake could be 

assessed using pot trials with varying soil water contents. This would be 

important as these soils are high in organic matter and prone to flooding and 

the risk to market gardening from flooding events should be further 

investigated. 

• Drought induced acidification is an important process in many wetland soils. 

The effect of this on heavy metal mobility and solubility should be assessed 

to understand the risks to market gardening from drought conditions which 

may occur periodically. 

• Investigation of variation in metal uptake by different cultivars of vegetables 

would give a useful insight into potential mitigation strategies for market 

gardening on contaminated soils, so that cultivars with minimal uptake could 

be used. 

• Field trials of vegetable crops to test the validity of the pot experiments. 
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