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Abstract

Abstract

The examination timetabling (exam-timeslot-room assignment) problem involves

assigning exams to a specific or limited number of timeslots and rooms, with the aim

of satisfying the hard constraints and the soft constraints as much as possible. Most of

the techniques reported in the literature have been applied to solve simplified

examination benchmark datasets, available within the scientific literature. In this

research we bridge the gap between research and practice by investigating a problem

taken from the Universiti Malaysia Pahang (UMP), a real world capacitated

examination timetabling problem. This dataset has several novel constraints, in

addition to those commonly used in the literature. Additionally, the invigilator

scheduling problem (invigilator assignment) was also investigated as it has not

received the same level of research attention as the examination scheduling (although

it is just as important to educational institutions).

The formal models are defined, and constructive heuristics was developed for both

problems in which the overall problems are solved with a two-phase approach which

involves scheduling the exam to timeslot and room, and follows with scheduling the

invigilator. During the invigilator assignment, we assume that there is already an

examination timetable in place (Le. previously generated). It reveals that the invigilator

scheduling solution dependent on the number of rooms selected from the exam-

timeslot-room assignment phase (i.e. a lesser number of used rooms would minimises

the invigilation duties for staff), this encourages us to further improve the exam-

times/ot-room timetable solution. An improvement on the result was carried out using

modified extended great deluge algorithm (modified-GOA) and multi-neighbourhood

GDA approach (that use more than one neighbourhood during the search). The

modified-GOA uses a simple to understand parameter and allows the boundary that

acts as the acceptance level, to dynamically change during the search. The propose

approaches able to produce good quality solution when compared to the solutions from

the proprietary software used by UMP. In addition, our solutions adhere to all hard

constraints which the current systems fail to do.



Abstract

Finally, we extend our research onto investigating the Second International

Timetabling Competition (ITC2007) dataset as it also contains numerous constraints

much similar to UMP datasets. Our propose approach able to produce competitive

solutions when compared to the solutions produced by other reported works in the

literature.



Acknowledgements

Ackowledgements

Thanks God for giving me the strength and patience to finish this challenging journey.

I would like to take this opportunity to express my sincere gratitude to my academic
supervisor, Professor Graham Kendall for his guidance, encouragement and constant
support throughout this PhD journey.

To my wife (Rosmahyati Dziauddin), my kids, Ikhwan, Nurul, Hazwan and Ridwan
who always bring joy and laughter, thanks for being there for me. To my families,
abah (Mohmad Kahar Jalani), emak (Rosni Mohd Zain) and my brothers thanks to all
of you for giving me indirect support in finishing this work.

Thank you to the Academic Management Office, UMP for all the help in providing the
information and the datasets. Last but not least, my thanks go to all my friends.

Thank you ...

ii



Publications from this Thesis

Publications from this Thesis

I. Kahar M N M and Kendall G (2010). The examination timetabling problem at

Universiti Malaysia Pahang: Comparison of a constructive heuristic with an

existing software solution, European Journal of Operational Research, 207 (2):

pp 557-565, 001: 10.1016/j.ejor.2010.04.011.

2. Kahar M N M and Kendall G. Universiti Malaysia Pahang Examination

Timetabling Problem: Scheduling Invigilators. Accepted for publication for the

Journal of the Operational Research Society, JORS

3. Kahar M N M and Kendall G. A Great Deluge Algorithm for a Real World

Examination Timetabling Problem. Accepted for publication for the Journal of

the Operational Research Society, JORS

4. Kahar M N M and Kendall G. Solving a real world examination timetabling

problem: Multi-neighbourhood great deluge algorithm. Paper ready to be

submitted.

iii



Table of Contents

Table of Contents

List of Tables , , ". x

List of Figures ,................................ xiii

List of Appendices, ,., , " , " .. " " ,.,., xiv

Chapter 1. Introduction

1.1 Background and motivation , , , .

1.2 Research scope and objectives , ,., ,... 4

1.3 Overview of the thesis , , , ,.. 6

1.4 Research contributions, , , , . . . . 8

1.5 Summary , .. , ' , ,., , , .. , .. , ,... 10

Chapter 2. A review of examination timetabling problem and

methodologies in the scientific literature

11

2.1 Overview of time tabling, , , ,',.. 12

2.2 Classification of university timetabling problems, , ,........ 13

2.3 Examination timetabling , , , " , , .. , 15

2.4 Variant ion of constraints and objectives investigated in

examination timetabling problem, , , , , . . . . . 18

2.4.1 Toronto datasets " " " , 19

2.4.2 University of Nottingham , ,.......................... 21

2.4.3 University of Melbourne , , '.......... 22

2.4.4 Second International timetabling competition (lTC2007)

datasets , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.5 Universiti Kebangsaan Malaysia (UKM) dataset. , , ., 24

2.4.6 Universiti Teknologi MARA (UiTM) dataset. , .. , , 24

2.5 Uncapacitated and capacitated examination timetabling problem.... 25

2.6 Exam-room assignment problem ,.. 26

iv



Table of Contents

2.7 Invigilator scheduling '" '" . 28

2.7.1 Implementation by academic Institutions........................ 29

2.8 Methodologies applied to the examination timetabling problem..... 30

2.8.1 Graph heuristic (GH) 31

2.8.2 Hill-climbing (HC) 34

2.8.3 Tabu search (TS) 35

2.8.4 Simulated annealing (SA) 38

2.8.5 Great deluge algorithm (GDA) 40

2.8.6 Variable neighbourhood search (VNS) 43

2.8.7 Genetic algorithm (GA) 45

2.8.8 Ant colony optimisation (AeO) 47

2.8.9 Memetic algorithm (MAs) 48

2.8.10 Hyper-heuristics (HH) 50

2.9 Conclusions....................... 52

Chapter 3. A case study of the UMP examination timetabling problem 53

3.1 Universiti Malaysia Pahang (UMP)........ 53

3.2 UMP examination timetabling process................................... 54

3.3 UMP examination timetabling constraints............................... 55

3.3.1 UMP examination constraints..................................... 56

3.3.2 UMP invigilator constraints....................................... 57

3.4 Datasets....................................................................... 59

3.4.1 Semesterl-200708 , " ,. 59

3.4.2 Semesterl-200809, , ,.. ,... 60

3.5 Conclusions................................................................... 60

Chapter 4. The examination timetabling problem at Universiti Malaysia 62

Pahang: Comparison of a constructive heuristic with an

existing software solution

4.1 Introduction.................................................................. 63

4.2 Problem formulation............................. 64

v



Table of Contents

4.3 Experimental setup.......................................................... 68

4.3.1 Discarding moves sub-algorithms. .. . . .. . . .. . . . .. . . 72

4.4 Results... . . .. .. .. . .. .. . .. . .. . .. .. . .. .. . . . 74

4.4.1 UMP proprietary software......................................... 74

4.4.2 Graph colouring heuristic.......................................... 74

4.5 Contributions................................................................. 76

4.6 Conclusions.................................................................. 77

Chapter 5. Universiti Malaysia Pahang examination timetabling

problem: scheduling invigilators

5.1 Introduction............................. 79

78

5.2 Invigilator scheduling....................................................... 80

5.3 Problem formulation........................................................ 82

5.4 Experimental setup.......................................................... 86

5.5 UMP invigilator dataset.................................................... 87

5.6 Results............................................................. 88

5.6.1 Semesterl-200708.................................................. 88

5.6.2 Semesterl-200809.................................................. 89

5.6.3 Proposed solution approach....................................... 89

5.7 Additional UMP invigilator scheduling constraints.................... 92

5.8 Results for the additional invigilator constraints........................ 94

5.8.1 Proprietary software result................. 94

5.8.2 Our approarches..................................................... 94

5.8.2.1 Least Invigilation duties ordering...................... 95

5.8.2.2 Random ordering......................................... 96

5.9 Contributions................................................................. 98

5.10 Conclusions.................................................................. 99

Chapter 6. A Great deluge algorithm for a real world examination 100

timetabling problem

6.1 Introduction................................................................... 101

vi



Table of Contents

6.2 ModifiedGreat Deluge Algorithm (modified-GOA) 101

6.3 Experimental Setup.......................................................... 103

6.4 Examination assignment: Results......................................... 105

6.4.1 Semester 1-20070S. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 105

6.4.1.1 Modified-GOA vs UMP proprietary software. . .. ... . 105

6.4.1.2 Modified-GOA vs constructive heuristic.............. 105

6.4.1.3 Modified-GOA vs Dueck-GDA......... 107

6.4.2 Semesterl-200809...... . .. . .... ... . . .. .. .. . ... ... . .. .. . .. . . .. . . 108

6.4.2.1 Modified-GOA vs UMP proprietary software........ IDS

6.4.2.2 Modified-GOA vs constructive heuristics............. 110

6.4.2.3 Modified-GDA vs Dueck-GDA........................ 110

6.5 Statistical analysis '" .. . 111

6.5.1 Semesterl-20070S.................................................. 112

6.5.1.1 Significance difference: Modified-GOA and

Dueck-GDA........................... 112

6.5.1.2 Comparing initial costs.................................. 114

6.5.1.3 Comparing the number of iterations................... 115

6.5.1.4 Comparing neighbourhood heuristics " . 116

6.5.2 Semesterl-200S09.................................................. lIS

6.5.2.1 Significance difference: Modified-GOA and

Dueck-GDA...... . .. .. . .. . . . . . . . .. . . 118

6.5.2.2 Comparing initial cost................................... 119

6.5.2.3 Comparing the number of iterations.. 120

6.5.2.4 Comparing neighbourhood heuristics................. 121

6.6 Discussion.................................................................... 122

6.7 Contributions................................................................. 124

6.S Conclusion.................................................................... 125

Chapter 7. Solving a real world examination timetabling problem: Multi- 126

neighbourhood great deluge algorithm

7.1 Intoduction................................................................... 127

vii



Table of Contents

7.2 Modified Great Deluge Algorithm........................................ 128

7.3 Experimental setup.......................................................... 130

7.4 Examination assignment: Results......................................... 131

7.4.1 Semesterl-200708.................................................. 131

7.4.2 Semesterl-200S09.................................................. 133

7.5 Statistical Comparisons..................................................... 135

7.5.1 Semesterl-200708...... ... ..... . .. . .. .. . . . .. . . 136

7.5.1.1 Ordering strategies... 136

7.5.1.2 Neighbourhood heuristics used. . .. . .. . . . . . . . . . . . . . . .. . . 137

7.5.2 Semesterl-200S09.................................................. 138

7.5.2.1 Ordering strategies....................................... 138

7.5.2.2 Neighbourhood heuristics used......................... 139

7.6 Discussion.................................................................... 140

7.7 Contributions.. . . . . .. .. .. 141

7.S Conclusion.................................................................... 142

Chapter 8. Solving ITC2007 examination timetabling problems 143

8.1 International Timetabling Competition 2007 (ITC2007).............. 143

8.2 Experimental setup.......................................................... 148

8.3 Examination assignment: Results.......................................... 148

8.4 Discussion.................................................................... 151

8.5 Contribution.................................................................. 153

8.6 Conclusion.................................................................... 153

Chapter 9. Conclusion and future research directions 154

9.1 Research work summary................................................... 154

9.2 Contributions................................................................. 156

9.3 Future research directions.................................................. 158

9.3.1 Improving the proposed approach................................ 159

9.3.2 Hybridisation. 160

9.3.3 Invigilator scheduling.............................................. 160

viii



Table of Contents

9.3.4 Dynamic timetabling system...................................... 161

9.4 Final reflections.............................................................. 161

Bibliography. . ... . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Appendices....................................................................... 178

ix



List of Tables

List of Tables

2.1 Example of hard and soft constraints for the course timetabling

problems........................................................................ 14

2.2 Example of hard and soft constraints for the examination timetabling

problems ,................... 16

2.3 Toronto datasets............................................................... 20

2.4 University of Nottingham dataset........................................... 22

2.5 University of Melbourne datasets........................................... 22

2.6 Second Internaltional Timetabling Competition (ITC2007) datasets. , . 23

2.7 Universiti Kebangsaan Malaysia dataset (UKM06-1) 24

2.8 Available rooms for dataset UKM06-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9 Universiti Teknologi MARA (UiTM) dataset.. . . .. . . .. . . .. 25

3.1 Summary of datasets............................................ 58

3.2 Summary ofUMP investigated datasets............................. 59

4.1 Result using graph colouring heuristics.................................... 76

5.1 Summary ofUMP investigated datasets.................................... 87

5.2 Invigilator scheduling results using constraint as describe in section

5.3.......... 91

5.3 Invigilator scheduling results with additional constraints using least

duties ordering approach , 95

5.4 Invigilator scheduling result with additional constraint using random

ordering approach , ,................................. 98

6.1 GOA result for semesterl-200708.......................................... 106

6.2 GOA result for semesterl-200809.......................................... 109

x



List of Tables

6.3 Semesterl-200708 p-values comparison between modified-GDA and

Dueck- GOA for every neighbourhood heuristics with 1500 iterations 113

6.4 Semesterl-200708 p-values comparison between modified-GDA and

Dueck- GOA for every neighbourhood heuristics with 3000 iterations 113

6.5 Semesterl-200708 p-values comparison the initial cost for each

neighbourhood heuristics based on the number of iterations, , " " , '" " 114

6.6 Semesterl-200708 p-values comparison between 1500 and 3000

iterations for each neighbourhood heuristics based on initial cost. , , , , , 116

6.7 Semesterl-200708 p-values comparison for the neighbourhood

heuristics based on the initial cost and the number of Iterations.L.. 117

6.8 Semesterl-200708 summary ofthe non-significant differences

(accept Ho) when comparing the neighbourhood heuristics" """"'" 117

6.9 Semesterl-200809 p-values comparison between modified-GOA and

Dueck- GOA for every neighbourhood heuristics with 1500 iterations 118

6.10 Semesterl-200809 p-values comparison between modified-GDA and

Dueck- GOA for every neighbourhood heuristics with 3000 iterations 119

6.11 Semester 1-200809 p-values comparison the initial cost for each

neighbourhood heuristics based on the number of iterations" ,",', "" 120

6.12 Semesterl-200809 p-values comparison between 1500 and 3000

iterations for each neighbourhood heuristics based on initial cost. , , , , , 120

6.13 Semesterl-200809 p-values comparison for the neighbourhood

heuristics based on the initial cost and the number of iterations, , , , , , , , 122

6.14 Semester 1-200809 summary of the non-significant differences

(accept Ho) when comparing the neighbourhood heuristics"""""", 122

7.1 Summary results for semester 1-200708, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 132

7.2 GDA with multi neighbourhood result for semester 1-200708 based

on random and specified neighbourhood ordering strategies"""""" 133

7.3 Summary results for semester 1-200809, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 134

xi



List a/Tables

7.4 GDA with multi-neighbourhood result for semetserl-200809 based

on the random and specified neighbourhood ordering strategies. .... . . 135

7.5 p-value result for semesterl-200708 in comparison between the

deri t t .or enng s ra egies . 137

7.6 p-value result for semesterl-200809 in comparison between the

ordering strategies.... . .. . ... ... .. .... ... .. . ... ... .. . . . . . . ... . ... ... ... .. . .. . .. 139

8.1 ITC2007 examination dataset features...................................... 145

8.2 The weight ofITC2007 examination datasets............................. 147

8.3 Summary of other researchers result. . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 147

8.4 The best found result using graph heuristics............................... 149

8.5 The best found result using Modified-GDA................................ 150

8.6 The best found result using Multi-neighbourhoodGDA.. 151

xii



List of Figures

List of Figures

2.1 Graph colouring.................................................................... 17

2.2 Hill Climbing procedure.............................. 35

2.3 Tabu search procedure............................................................ 36

2.4 Simulated annealing procedure for minimisation............................. 39

2.5 Great deluge algorithm for maximisation...................................... 41

2.6 Variable neighbourhood search procedure..................................... 44

2.7 Genetic algorithm procedure..................................................... 46

2.8 Memetic algorithm................................................................ 49

4.1 Timeslot indices.................................................................... 68

4.2 Room information and distance matrix. . . . . . . .. . . . . . . .. .. . 69

4.3 Decreasing order of pre-determined room grouping.......................... 69

4.4 Pseudo-code for the examination timetabling.................................. 70

5.1 Pseudo-code for the invigilator scheduling..... 85

6.1 Our proposed Great deluge algorithm........................................... 102

6.2 Best values of each method for semester 1-200708. . .. . .. 108

6.3 Best values of each method for semester 1-200809.. .. . . .. .. .. . 111

7.1 Our proposed multi-neighbourhood Great deluge algorithm................ 129

8.1 Hard constraints. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. 146

8.2 Soft constraints..................................................................... 146

xiii



List of Appendices

List of Appendices

A UMP examination data file format and specification....................... 178

BUMP Invigilation data file format and specification.... 180

C UMP semesterl-200708 constructive result................................. 181

D UMP semester 1-200809 constructive result. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 182

E UMP semesterl-200708 modified-GOA results............................ 183

F UMP semesterl-200809 modified-GOA results.... .. .. ...... ...... .. ...... 189

G UMP semesterl-200708 multi neighbourhood GOA result based on

random ordering................................................................. 195

II UMP semesterl-200708 multi neighbourhood GOA result based on

specified ordering. .. . . .. . . .. . ..... .. . . ... .. . . .. . . . .. . .. . .. . . . .... ... . .. . ... . . .. . 197

lUMP semesterl-200809 multi neighbourhood GOA result based on

random ordering. . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

JUMP semesterl-200809 multi neighbourhood GOA result based on

specified ordering............................................................... 201

K p-value result for semesterl-2008/09 in comparison between the

neighbourhood heuristic for random and specified ordering

strategies. . . . . . . . . .. .. . .. . .. . .. .. . .. . . 203

xiv



Chapter 1. Introduction

Chapter 1

1.1 Background and motivation

Every academic institution faces the problem of generating course and examination

timetables. Both problems are similar in that we need to assign the courses or exams

into available timeslots (Burke, Kingston and deWerra, 2004; Burke et al., 1996)

whilst satisfying various constraints. However, the two problems actually differ in

terms of the constraints, user preferences and in the way the problem is constructed

(Schaerf, 1999; Qu et al., 2009; etc). For example, an exam timetable may allow

multiple exams in one rooms unlike a course timetable. This because it is obviously

not possible to have two different courses/lectures in the same room. With respect to

user preferences, in course timetabling students are free to select their optional courses

to suit their own course objectives. This is not the case with an exam timetable as the

examinations contain registered students and, therefore we need to consider a clash

free (hard constraint) timetable (among others) and student satisfaction (soft

constraint) in producing the exam timetable. Course and exam timetables also vary in

the way they are constructed, this being the modelling, process environment and

scheduling instances (McCollum, 2007). A more detailed discussion on the differences

is given in chapter 2.

This work concentrate on the examination timetabling problem. The underlying

problem of examination timetabling is considered to be the same (in the basic

definition of the problem) as the graph coloring problem and, hence it is an NP-hard

problem (Burke, Kingston and deWerra, 2004; Qu et al., 2009, etc). The construction
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of an examination timetabling problem is a challenging task and quite often time

consuming. It is concerned with assigning exams to a specific number of timeslots so

as to satisfy a given set of constraints (Balakrishnan, 1991; Schaerf, 1999, Qu et al.,

2009). The constraints that contribute to the complexity of examination timetabling

can be divided into two categories, hard constraints and soft constraints. Hard

constraints cannot be violated and a timetable is considered feasible if all the hard

constraints are satisfied. An example of hard constraint is that no student should be

required to sit two examinations simultaneously (i.e. the timetable should be clash

free). Soft constraints, on the other hand, are requirements that are not essential but

should be satisfied as far as possible, hence it is being used to evaluate the quality of

the timetable. An example of a soft constraint could be spreading exams as evenly as

possible throughout the exam period. A list of commonly used constraints is given in

Qu et al. (2009), Merlot et at. (2003), Burke et at. (1996). In some situations, the

problem becomes more difficult as these constraints conflict with one another, where

satisfaction of one constraint can lead to a violation of another (Qu et al., 2009). For

example, suppose we have a situation where we want to minimise the total

examination period and at the same time we wish to spread out exams as much as

possible. In such a situation, satisfaction of the first constraint will inevitably lead to

poor quality solutions of the second constraint, or vice versa. Moreover, examination

timetabling becomes more challenging as the number of student enrolments, courses

and constraints increases. In addition room and invigilator constraints add even more

complexity to the overall problem in order for the institution to generate a good quality

solution whilst satisfying all parties (i.e. administrator, student, lecturer and

invigilator). This lead to us a question, is it possible to produce a feasible (and good

quality) solution for the UMP capacitated examination timetabling problem

considering the individual room capacity and other additional constraints which the

UMP system fails to achieve? and is it possible to produce a feasible (and good

quality) solution of the invigilator assignment that satisfies the constraints?

A lot of approaches have been investigated in an attempt to produce good quality

solutions (as well shall see later in chapter 2). In constructing the examination

timetable, three commonly used approaches include creating an examination timetable

based on the course timetable, reusing previous exam timetables and creating an

2
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entirely new examination timetable each time one is needed. Much of the work seen in

the scientific literature uses the latter approach, with a focus on the search method (see

Qu et al., 2009). Such methods include graph colouring, clustering, meta-heuristics,

multi-criteria, case-based reasoning, hyper-heuristics etc. A concise description of

these methods can be found in Burke and Carter, 1998; Carter and Laporte, 1996; Qu

et al., 2009; Petrovic and Burke, 2004. Many research papers on examination

timetabling can be found in the PATAT series of conferences (e.g. Burke and Ross,

1996; Burke and Carter, 1998; Burke and Erben, 2001; Burke and De Causmaecker,

2003; Burke and Trick, 2005; Burke and Rudova, 2007).

Examination timetabling problem can be categorised into un-capacitated and

capacitated problems. In the un-capacitated examination timetabling problem, room

capacities are not considered, while in the capacitated problem the room capacities are

considered as a hard constraint, in addition to other hard constraints, e.g. a clash-free

timetable (Pillay and Banzhaf, 2008; Abdullah, 2006). According to Burke, Newall

and Weare, (1996), the main difficulty in examination timetabling is to obtain a

conflict-free schedule within a limited number of time periods and under room

availability constraints. Burke et al., (1996) found that 73% of universities reported

that accommodating exams is a major problem. Therefore a capacitated problem is

considered much more difficult than an un-capacitated problem due to its close

resemblence to the real world problem. However, most of the research found in the

literature mainly considers the un-capacitated problem (Qu et al., 2009). According to

Qu et al., (2009) and Carter and Laporte (1996), most research only addresses a subset

of the constraints, involving a few common hard constraints, e.g. no exams with

common students assigned simultaneously and size of exams need to be below the

room capacity. Similarly, typical soft constraints include spreading conflicting exams

as evenly as possible, or not in x consecutive timeslots or days. Most of the research

has concentrated on the development of the search methodologies to find a good

quality solution (McCollum, 2007; Carter and Laporte, 1996). This has created a gap

between the research and practice in which the research does not really mimic the real

world problem due to the simplicity of the current problems being tackled by the

scientific community (e.g. the lack of substantial benchmark data with a sufficient set

3
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of constraints). Chapter 2 provides a detailed discussion on the exam datasets and the

constraints.

In this research, we consider a real-world examination timetabling problem which not

only has capacity constraints but also has a number of other constraints which have not

previously been investigated in the scientific literature. The additional hard constraints

include splitting of an examination into different rooms in the same building and no

sharing of rooms among different examinations. The additional soft constraints include

room distance of an exam in multiple rooms and the minimisation of the number of

rooms an exam can be split across. We also investigate invigilator assignment which is

often not done as part of an automated system. A thorough description of the dataset is

presented in chapter 3.

1.2 Research scope and objectives

This research is concerned with a real world examination timetabling problem from

Universiti Malaysia Pahang (UMP). The UMP timetabling process involves assigning

exams to timeslots and rooms, and includes scheduling invigilators. The aim of this

research is to construct an exam timetable (exam-timeslot-room assignment) for the

UMP examination timetabling dataset that has several different features from the

existing benchmark datasets and to also construct an invigilator schedule, which has

rarely been the subject of research within the scientific community. The UMP exam-

times/at-room assignment is a capacitated dataset which contains additional hard

constraints in addition to proximity and other commonly used soft constraints. The

additional hard constraints are, (a) splitting of an exam into different rooms; the rooms

must be in the same building (b) no sharing of rooms between examinations. That is,

only one examination paper is scheduled to a particular room. The soft constraints

include (a) in the case of a split exam, the distance of the assigned rooms should be

minimised (b) the number of rooms for a split examination should be minimised.

These constraints have not been investigated before in the literature (as far as the

author is aware) even in the Second International Timetabling Competition

examination track (ITC2007) which contain more comprehensive constraints than

4
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previous benchmark datasets. A comparison of the constraints is discussed in chapters

2 and 3.

For invigilator scheduling, according to the (UMP) timetable officer, it is difficult to

produce a satisfactory invigilation timetable and this has motivated us to investigate

the problem. Furthermore, it has not received the same level of research attention as

the exam-timeslot-room assignment even though it is just as important to the

educational institution. A detailed list of all the constraints is described in chapter 3.

Currently there is no formal mathematical model and this also motivated us to explore

the problem.

In addition to the study of the new dataset, we investigate graph heuristics with

candidates lists to construct the examination timetable. An improvement methodology

involves a modified extended great deluge algorithm (modified-GOA) and a multi-

neighbourhood GOA approach. The modified-GOA is designed with the timetable

officer in mind as it uses a simple and easy to understand parameter for ease of

operation. Moreover, a comparison with the current solution, which is generated by

UMP using some proprietary software is carried out in order to evaluate the

effectiveness of the methodology we present against the correct way of generating the

timetable. Finally, we investigate the examination track of the Second International

Timetabling Competition (ITC2007) using our proposed methodology.

In order to accomplish the above, several objectives are outlined as follows:

1) To compile the exam-timeslot-room assignment constraints and compile the

invigilation assignment constraints.

2) To construct the formal mathematical model for UMP exam and invigilator

problem.

3) To implement heuristic methods to generate the exam timetable and compare

the result with the UMP proprietary software result.

4) To implement heuristic methods to generate the invigilator timetable and

compare the result with the proprietary software.
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5) To implement heuristic methods (as in objective 3) to the ITC2007 datasets.

We hope to provide UMP with an improved examination timetabling construction

procedure and we would like to propose our UMP datasets as benchmark problem

instances so that the scientific community has access.

1.3 Overview of the thesis

This thesis consists of eight chapters. This chapter presents the background motivation,

research scope and objectives. The remainder of this thesis is organised in the

following way:

Chapter 2 describes the examination timetabling problem and presents various

examination datasets and constraints from the scientific literature. It also presents the

current published research on the examination timetabling, reporting the available

methods in the literature.

Chapter 3 presents the UMP examination timetabling and invigilator scheduling

problem. The constraints are listed along with a description of the UMP datasets that

are used throughout this thesis.

Chapter 4 presents the formal model of the UMP examination timetabling problem.

Graph heuristics with candidates list are implemented. This method is able to produce

good quality solutions compared to the solutions produced from the UMP proprietary

software, whilst satisfying all hard constraints which the current system fails to do. The

work presented in chapter 4 has been published in the European Journal of Operational

Research (Kahar and Kendall, 20 lOa).

Chapter 5 presents the formal model of the UMP invigilator scheduling problem. The

proposed constructive heuristic algorithm is able to produce a good quality solutions

when compare to the UMP proprietary software, whilst satisfying all hard constraints

which the current system fails to do. Additionally, we include others constraints (on
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top of the original invigilation constraints) considering the comments made by the

invigilators (Awang et al., 2006). The work is currently under its 2nd review for the

Journal of Operational Research Society, JORS.

Chapter 6 presents a modified-GOA approach to improve the constructive heuristic

solutions. The proposed GDA uses a simple to determine parameter that can find a

good quality solution and is able to find a better solution than the initial cost even with

a higher desired value (due to it ability to adjust the desired value, boundary and decay

rate) while using good neighbourhood heuristics. The modified-GOA approach is able

to produce good quality solutions compared to the UMP proprietary software,

satisfying all the constraints (which the proprietary software fails to do) and also to

improve on the constructive result. Additionally, we also investigate different

parameters (Le. different initial solutions, number of iterations and several

neighbourhood heuristics) and carry out statistical analysis to compare the results

parameters.

Chapter 7 presents a multi-neighbourhood GOA which is an extension of the work

presented in chapter 6. The method uses more than one neighbourhood in order to

effectively explore the search space and improve the solution. The multi-

neighbourhood simplifies the operation of the algorithm for the timetable officer who

does not have to determine suitable neighbourhoods. We show (Kahar and Kendall,

2011) that the choice of neighbourhoods playa major role in a search. The multi-

neighbourhood approach is able to generate better quality solution when compared to

the modified-GOA.

Chapter 8 presents the ITC2007 examination dataset. We implemented the graph

heuristics, modified-GOA and multi-neighbourhood GOA to the ITC2007 examination

datasets to determine whether the proposed method able to work with similar problem.

The same properties as the UMP examination dataset is used in the experiments

comparison with other reported result in the literature shows that the above method

able to give a competetive result but it takes a considerable amount of time.

7
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Finally, the overall conclusions of the work presented in this thesis and research

directions for future work in this area are presented in Chapter 9.

1.4 Research contributions

The contributions are a summary of the work in chapters 3 to 8. The detailed

contributions are discussed in the corresponding chapters. The overall research

contributions can be classified in terms of contributions to the scientific community

and contributions to institution (UMP).

Contributions to the scientific community:

1) Develop a formal model of the UMP exam-timeslot-room timetabling problem

that contains new constraints which have never been reported before in the

scientific literature (see chapters 3 and 4).

2) An investigation of the invigilator scheduling which has not received the same

level of research attention as the the exam-timeslot-room assignment even

though it is important to the educational institution. A formal model of the

UMP invigilator scheduling problem was developed including additional

invigilator constraints taking into account comments made by the invigilators

in Awang et al., 2006 (see chapter 3 and 5).

3) We have utilised graph heuristics that call upon candidate lists for the UMP

examination timetabling problem and the ITC2007 datasets. The approach is

able to produce good quality solutions within reasonable computational times,

when compared to the UMP proprietary software (see chapter 4) and we are

also able to generate competitive result for the ITC2007 datasets compare to

other research reported in the literature.

4) We have applied the modified great deluge algorithm (modified-GDA) to

improve on the constructive heuristic solutions for the UMP exam problem and

ITC2007 datasets. The modified-GDA uses a simple and easy to understand

parameter which would benefit a novice user (Le. timetable officer) to operate
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the method. The method is able to produce good quality solutions when applied

to the UMP examination problem (see chapter 6).

5) Investigation of the parameter settings which include different initial solutions,

the number of iterations and neighbourhood heuristics for the modified-GOA.

A statistical analysis is carried out to determine whether are there significant

differences between different parameters settings. The investigation revealed

that the choice of parameter plays an important role in the search (see chapter

7).

6) We have applied the modified great deluge algorithm, which uses more than

one neighbourhood heuristic (multi-neighbourhood GOA), to the UMP exam

problem and the ITC2007 datasets. The multi-neighbourhood GOA able to

generate good quality solutions when applied to the UMP examination problem

and relatively good results for the ITC2007 datasets (see chapter 8).

7) The search technique, and insights gained could be applied to similar exam

timetabling problems or other related problems.

Contributions to the Institution (UMP):

8) Compiling the exam-timeslot-room and invigilator timetable requirements

(constraints) which have never been properly documented at UMP.

9) Representation of the UMP examination timetabling problem into a

mathematical model which is useful for future assesment of the UMP

examination timetable solution.

10) Development of UMP examination timetabling system, which includes

assigning exams to timeslots and rooms, and scheduling invigilators.

11) Implementation of modified-GOA and multi-neighbourhood GOA approach

that uses a simple to understand parameter for the timetable officer to easily

operate the method.

9
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1.5 Summary

This thesis presents a new examination timetabling dataset from UMP which has

different characteristics compared to the benchmark datasets (i.e.Toronto, Nottingham,

Melbourne) and other real world datasets (Le. UKM, UiTM and ITC2007). The

capacitated UMP examination timetabling dataset are solved using graph heuristics

together with candidate lists, modified-GOA and multi-neighbourhood GOA that are

able to produce good quality solutions compared to the current UMP proprietary

software. The proposed methodology was also applied to the ITC2007 examination

dataset. Additionally, we also investigated the UMP invigilator scheduling problem

and succesfully produced a good quality solution compare to the UMP proprietary

software. Furthermore, a new invigilator constraint was also included in addition to the

existing constraints, that, in our opinion, closely resembles the institution needs (Le.

officer, staff and invigilator). This work has closed the gap between research and

practice making contributions to both the scientific literature and the institution.
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Chapter 2

A Review of Examination Timetabling Problems and

Methodogies in the Scientific Literature

This chapter provides details of the fundamental aspects of the research area tackled in

this thesis. It describes the general timetabling problem, the related constraints that

need to be considered in the problem and the techniques that have been used to solve

the examination timetabling problem. This chapter comprises eight sections. Section

2.1 describes the definition of timetabling and a brief discussion of the general

timetabling problem. Section 2.2 discusses the classification of university timetabling

problems. Section 2.3 provides further details of the examination timetabling problem.

The variations of the examination timetabling constraints and objectives experimented

within the scientific research are discuss in section 2.4. Section 2.5 describes the

difference between the un-capacitated and the capacitated examination timetabling

problem. Section 2.6 and 2.7 discuss the exam-room assignment problem and

invigilator scheduling respectively. Lastly in sections 2.8 and 2.9, we summaries the

methodologies that have been applied to examination timetabling problems and we

present our conclusions.
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2.1 Overview of time tabling

A timetable is an organized list that provides information about certain events that are

expected to take place. Timetabling can be classified into several categories which

include educational timetabling, personnel scheduling, sports timetabling and

transportation scheduling (Qu et al., 2009). Each of these timetabIing problems differ

in their structure, constraints and requirements (Burke, Kingston and deWerra 2004).

Research in timetabling continues to attract the attention of researchers due to

additional requirements/constraints that are continually introduced and with the end-

user insisting on better and better solutions (Burke et al., 1996). Wren (1996) defined

timetabIing as:

"Timetabling is the al/ocation, subject to constraint, of a given resources

to objects being placed in space time, in such a way as to satisfy as nearly

as possible a set of desirable objectives"

Another definition given by Burke, Kingston and deWerra (2004):

"A timetabling problem is a problem with four parameters: T, afinite set of

times; R, afinite set of resources; M, afinite set of meetings and C afinite

set of constraints. The problem is to assign times and resources to the

meetings so as to satisfy constraints asfar as possible"

Based on these definitions (among others), timetabling problems involve allocating

events into suitable timeslots and resources whilst satisfying constraints with the goal

of optimising the objective function of the problem. Constraints in timetabling can be

divided into two categories: hard and soft constraints. Hard constraints cannot be

violated. It is not essential to satisfy soft constraints but they should be satisfied as

much as possible. For example in examination timetabling, a hard constraint could be

that no student is allowed to take two or more exams at the same time. While soft

constraints could include spreading exams as evenly as possible throughout the exam

period. The objective function is a mathematical model of the problem where it is used

to evaluate the solution quality. Hence it is a function of violated soft constraints. A
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weighted penalty value is normally associated with each violation of the soft constraint

and the objective is to minimise the total penalty value (Ayob et al., 2007)

2.2 Classification of university timetabling problems

University timetabling problems can be divided into examination and course

timetabling problems. Carter and Laporte (1996) and Burke, Kingston and deWerra,

(2004) agree that examination and course timetabling both have the same

characteristics in the general timetabling problem and the core problem can be

considered to be the same. Carter and Laporte (1998) defined course timetabling as:

"a multi-dimensional assignment problem in which students, teachers (or

faculty members) are assigned to courses, course sections or classes;

events (individual meetings between students and teachers) are assigned to

classrooms and times"

Carter and Laporte (1996) defined examinations timetabling as:

"The assigning of examinations to a limited number of available time

periods in such a way that there are no conflicts or clashes"

Both course and examination timetabling problems are concerned with avoid assigning

students sitting two (or more) courses or exams in the same time period. However,

significant differences do exist. These include differences in constraints that must be

respected (as mention in chapter 1). Table 2.1 and table 2.2 shows an example of hard

and soft constraints for course (Abdullah, 2006) and examination timetabling (Qu et

al., 2009) problems respectively. Other examination timetabling constraints can be

found in the survey paper of Burke et al. (1996). It is subjective to determine whether a

given constraint is a hard or a soft constraint. This is because it is entirely dependent

on the requirements of the institution.
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Besides the differences in constraints, course and examination differ in the way in

which they are constructed, which can be divided into process environment, modelling

and scheduling instances. In the process environment, normally, the course timetable is

produced separately and independently by each school, unlike an exam timetable

which is usually produced centrally by the academic office (McCollum, 2007; Burke et

al., 1996). In modelling, for course timetabling, it is constructed based on the projected

number of students that will taking the courses, while in exam timetabling it is

generated based on the number of registered students on particular course (McCollum,

2007). In scheduling instances, exam and courses use different instances although it is

from the same source (Le. courses). Examination timetables are formed based on the

offered courses. While, in course timetable we need to schedule the individual lectures,

tutorial and labs from the offered course (McCollum, 2007).

Although differences exist between the examination and course problem, the

complexity of examination timetabling problem depends on the amount of freedom of

choice on students selecting their course timetable (Laporte and Desroches, 1984). The

more freedom a student has increases the difficulty in producing a feasible

examination timetable. This research focuses on the examination timetabling problem

and a comprehensive discussion will follow in the next sections.

Table 2.1 Example of hard and soft constraints for the course

timetabling problems (Abdullah, 2006)

Hard constraints

1. A student and a teacher cannot be in two places at the same time.

2. Only one course is allowed to be assigned to a timeslot in each classroom.

3. The classroom capacity should be equal to or greater than the number of students attending
the course at a particular timeslot.

4. The classroom assigned to the course should satisfy the features required by the course

Soft Constraints

S. Students should not have a single course on a day.

6. Students should not have to attend more than two consecutive courses on a day.

7. Students should not be scheduled to attend a course that is assigned to the last timeslot of the
day
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2.3 Examination timetabling

Examination timetabling is an important problem in any educational institution. The

solution generated is of great importance and impact to a number of parties including

lecturers, students and administrators. Besides the definition, given by Carter and

Laporte (1996), many researchers have given their own definition for examination

timetabling. Balakrishnan (1991) gives the definition as

"The examination scheduling problem typically involves the assignment of

exams to specific periods and classrooms in order to obtain a schedule that

uses a minimum number of periods and satisfies a number of different

objectives"

According to Schaerf (1999),

"The examination timetabling problem requires the scheduling of a given

number of exams (onefor each course) within a given amount of time"

Qu et al., (2009) stated that,

"Examination timetabling problem involve assigning a set of exams E = et.

e: ... e, into a limited number of available timeslots T = 1/. 12 ... It in such a

way that there are no conflicts or clashes"

Based on the definition above, the examination timetabling is concerned with

assigning exams to a specific or limited number of times lots and rooms with the aim of

satisfying the hard constraints (e.g. conflict free timetable) whilst fulfilling the

objective (e.g. spread student exams evenly). An example of these constraints is listed

in table 2.2.
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Table 2.2 Example of hard and soft constraints for the

examination timetabling problems (Qu et al. 2009)

Hard Constraints

1. No exams with common resources (e.g. students) assigned simultaneously.
2. Resources of exams need to be sufficient (Le. size of exams need to be below the room

capacity, enough rooms for all of the exams).

Soft Constraints

3. Spread conflicting exams as even as possible, or not in x consecutive timeslots or days.
4. Groups of exams required to take place at the same time, on the same day or at one location.

S. Exams to be consecutive.
6. Schedule all exams, or largest exams, as early as possible.
7. Ordering (precedence) of exams need to be satisfied.
8. Limited number of students and/or exams in any timeslot.
9. Time requirements (e.g. exams (not) to be in certain times lots).
10. Conflicting exams on the same day to be located nearby.
11. Exams may be split over similar locations.
12. Only exams of the same length can be combined into the same room.
13. Resource requirements (e.g. room facility).

Examination timetabling is known to be equivalent, and therefore as hard, as the graph

colouring problem (Burke, Kingston and deWerra, 2004; Carter, 1986). In the graph

colouring problem, given an undirected graph G = (V,E), we need to colour the

vertices, V of a graph such that no two adjacent vertices share the same colour if there

is an edge, E between them (Schaerf, 1999). This problem is formally known as vertex

colouring and is an NP-hard problem. The relationship can be described as, with a

undirected graph G = (V,E), V is the examination set with V as the number of

examinations and E is the edge set in the graph with e as the total number of edges in

the graph. Let's say, Vi is the r examination (i.e. V I, V2 etc; see figure 2.1) and students

taking both exam Vi and Vj resulting in an edge eij (Le. e12, e23 etc; see figure 2.1) with

a weight (total conflicting students which cannot schedule the exam in the same

timeslot) between the node Vi and Vj. The graph colouring problem, and its relationship

to timetabling, is widely discussed in the scientific literature (see for example, de

Werra 1997; Burke, Kingston and deWerra, 2004; Schaerf, 1999 and Di Gaspero and

Schaerf, 2001).
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Figure 2.1 Graph colouring

Examination timetabling is considered as time-consuming, difficult and an important

task which occurs periodically (i.e. annually, quarterly, etc) in all academic institutions

(Carter and Laporte, 1996; Laporte and Desroches, 1984). It is a time-consuming

process due to the fact that it involves several stages which include data collection,

constraint modelling, algorithmic modelling and solution modelling (McCollum,

2007). All of these stages are very important and thus a careful strategy is required.

According to Burke et al. (1996), up to 75% of timetables are altered between draft and

final versions. The reasons for these alterations include data being made available late,

incorrect data and poor quality timetables being generated. A high percentage of the

alterations involve late and incorrect data. Therefore a precise and close interaction

with all parties (e.g. lecturers and faculty data collection; administrator constraint

modelling) should be carried out to avoid any problems. A miscommunication or

misinterpretation during the early stages could lead to changes being required in the

generated solution. Examination timetable are becoming more difficult to generated

due to the modular approach which allows students to freely select their courses whilst

adjusting their schedule to suit with their own preference. Other factors which further

increase the difficulty include the number of examinations being offered, the number

of students and constraints (in order to increase student satisfaction) requested by the

institution. An example of a new type of constraint (and there are others) involves

students from a Muslim background who require Fridays free of examinations

(McCollum, 2007; Ayob et al. 2007). Additionally, exams are an important part of the

overall student coursework assessment and it is normally held at the end of every

semester. The solution should satisfy all parties (especially the students) and hence, we

need to consider many factors in constructing the timetable whilst ensuring no clashes
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for the students, adequate gaps between each exam papers, sufficient marking time for

lecturer and administrators being satisfied so that with the timetable less (or no)

changes are required (McCollum, 2007).

A lot of approaches have been investigated (Qu et al. 2009) in an attempt to produce

good quality solutions (as we shall see later in the following sections). The problem

varies from one institution to another (Burke et al., 1996). Every institution has a

different set of requirements in order to effectively utilise their resources, meet the

requirements of their business, provide a high level of satisfaction to their students etc.

Therefore, an examination timetabling system has to be developed to meet these

individual requirements.

The examination timetabling problem can be categorised into un-capacitated or

capacitated problems. In the un-capacitated, individual room capacities are not

considered as the hard constraint, compared to the capacitated problem (Pillay and

Banzhaf, 2009; Abdullah, 2006) which does consider individual room capacities. A

further discussion on the capacitated and un-capacitated will follow in section 2.6. This

research investigates a new capacitated examination timetabling problem using a real

world dataset taken from Universiti Malaysia Pahang (UMP). This dataset has never

been investigated before in the literature and it has several new constraints in addition

to those commonly used in the literature. A detailed discussion on the dataset is given

in chapter 3.

2.4 Variations of constraints and objectives investigated in examination

timetabling problem

Variations of examination timetabling constraints can be seen in the literature. This

because different institutions have different requirements and constraints to suit their

business model. Furthermore, the parties affected by the examination timetable would

have different preferences for a good quality timetable. For example, an administrator

might require that all the exams are to be scheduled and that no student should be

assigned to sit two exams at the same time. From a students prespective, they might
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prefer that their exams are spread as much as possible to allow for revision time

between exam papers. In this section, we consider some of the constraints that are

commonly used in the examination timetabling problem. Doing so, we hope to

compare the constraints being used by other researchers and the new constraints that

arise in this research.

In the examination timetabling research community, the most commonly used datasets

are those from Toronto (Carter, Laporte and Lee, 1996), Nottingham (Burke, Newall

and Weare, 1996) and Melbourne (Merlot et a!. 2003). Among these three dataset, the

Toronto dataset has received the most research attention. Many papers, which use this

dataset, can be found in the PAT AT conference series of selected papers. (Le. Burke

and Ross, 1996; Burke and Carter, 1998; Burke and Erben, 2001; Burke and De

Causmaecker, 2003; Burke and Trick, 2005; Burke and Rudova, 2007). Recently the

Second International Timetabling Competition (ITC2007) dataset has been introduced

by McCollum et al. (2008) which includes more realistic problems than the benchmark

problems. Other examination datasets also exist, for example UKM (Ayob et al., 2007)

and UiTM (Kendall and Hussin, 2004; Hussin, 2005).

2.4.1 Toronto datasets

The Toronto dataset consists of thirteen real-world exam timetabling problems with

three from Canadian highs schools, five from Canadian institutions, one from the

London School of Economics, one from King Fahd University, Dhahran and one from

Purdue University, Indiana (Carter, Laporte and Lee, 1996). The dataset requires no

clashing and to spread student examination. The dataset can be downloaded from

ftp://ftp.mie.utoronto.calpublcarterltestprobl. Table 2.3 show the information of the

Toronto datasets. Qu et a!. (2009) classified the problem instances into I and II to allow

genuine comparison between the scientific community.
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Table 2.3 Toronto datasets (Qu et al., 2009)

Problem Exams Students Enrolments Conflict
Instance Densit~ Timeslots

car91 I 682 16925 56877 0.13 35
car91 II 682 16925 56242/56877 0.13 35
car92 I 543 18419 55522 0.14 32
car92 II 543 18419 55189155522 0.14 32
ear83 I 190 1125 8109 0.27 24
ear83 II 189 1108 8014 0.27 24
hec92 I 81 2823 10632 0.42 18
hec92 II 80 2823 10625 0.42 18
kfu93 461 5349 25113 0.06 20
Ise91 381 2726 10918 0.06 18
pur93 I 2419 30029 120681 0.03 42
pur93 II 2419 30029 120686/120681 0.03 42
rye92 486 11483 45051 0.07 23
sta83 I 139 611 5751 0.14 13
sta83 II 138 549 5689 0.14 13
tre92 261 4360 14901 0.18 23
uta92 I 622 21266 58979 0.13 35
uta92 II 638 21329 59144 0.13 35
ute92 184 2749 11793 0.08 10
yor83 I 181 941 6034 0.29 21
yor83 II 180 919 6012 0.29 21

Carter, Laporte and Lee, (1996) introduced the dataset and investigated two variants of

the objectives with the aim to minimise the number of timeslots needed and to spread

conflicting exam within the timeslots (using proximity values of 16, 8, 4, 2 and 1).

They tested all of the datasets using the graph colouring heuristic with clique

initialisation and backtracking. Gaspero and Schaerf (200 1), investigated the dataset in

which they consider the first and second order conflict. First order conflict (hard

constraint) is when a student has to take two exams scheduled in the same timeslot,

while second-order conflict (soft constraints) is when a student has to take two exams

in consecutive periods. They carried out the investigation using tabu search. Several

researchers have included other objectives into the original dataset. Burke, Newall and

Weare, (1996) consider maximum room capacity per timeslot and second-order

conflict of same day constraints. Burke, Newall and Weare, (1998) further modify the
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dataset by including a second-order conflict of overnight and tested the dataset on three

timeslots a day (Monday to Friday). They also include a total seating capacity

constraint in the experiment in addition to other constraints introduced by Carter,

Laporte and Lee, (1996).

Merlot et al. (2003) investigated the dataset by using several methodologies that

include constraint programming, simulated annealing (SA) and hill climbing (HC).

The aim is to minimise the number of timeslots needed, spreading conflicting exams

within limited number of timeslots, to minimise second-order conflict of the same day

and overnight. Asmuni et al., (2005) investigate the dataset using graph colouring

heuristics with fuzzy reasoning to sort the exams. They used the original constraints as

in Carter, Laporte and Lee, (I996}. Kendall and Hussin (2005) applied tabu search

hyper-heuristics that work with high level heuristics (Le. the search methodology does

not deal directly with the solution).

2.4.2 University of Nottingham

The Nottingham dataset were introduced by Burke, Newall and Weare, (1996). It

consists of three timeslots a day (Monday to Friday) with a total of 23 timeslots. The

dataset uses no clashing and total capacity constraint with the objective to minimise the

number of second order conflicts on the same day. Table 2.4 show the information of

the University of Nottingham examination dataset. The dataset can be downloaded

from http://www.asap.cs.nott.ac.uklresources/data.shtml.InI999. Burke and Newall

investigated a decomposition approach by using graph heuristics (Le. CD, LD and SD)

with the aim to minimise second order conflicts on the same day and overnight. Merlot

et al., (2003) also applied the same method as describe previously to the Nottingham

dataset. Burke et al. (2004), investigated the dataset using a great deluge algorithm

(GDA) using the same objectives that is to minimise second-order conflicts on the

same day, as well as overnight.
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Table 2.4 University of Nottingham dataset (Burke, Newall and Weare, 1996)

Exams Students Enrolments Conflict Density Timeslots Capacity

800 7896 34265 0.03 (3%) 23 1550

2.4.3 University of Melbourne

The dataset from the University of Melbourne was introduced by Merlot et al., (2003).

They introduced two different datasets which has two times lots on each weekday, and

the capacity for each timeslot varies. The datasets also includes period exclusive

constraints where exams are pre-assigned to specific sessions or can only be held in a

limited set of sessions. The aim of the dataset is to minimise second-order conflict on

the same day or overnight. These datasets can be downloaded from

http://www.or.ms.unimelb.edu.au/limetabling. Table 2.5 show the information of the

University of melbourne examination datasets. In addition to Merlot et al., (2003),

Cote, Wong and Saboun, (2005) investigated the dataset using a bi-objective

evolutionary algorithm where tabu search (TS) and variable neighbourhood descent

(VND) were utilised.

Table 2.5 University of Melbourne datasets

Problem Instance Exams Students Enrolments Timeslots

521 20656 62248 23
II 526 19816 60637 31

2.4.4 Second International Timetabling Competition (ITC2007) datasets

The second international timetabling competition (ITC2007) is divided into course and

examination timetabling. In this work we will focus only on the examination dataset.

ITC2007 aims to create a platform for researchers to asses their algorithms on real

world timetabling problems. The ITC2007 examination dataset contains the following

constraints; no student sits more than one exam at the same time and the exams should

not exceed the room capacity. An exam assigned to a timeslot should not violate the
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timeslot lengths and the exams need to be comply with a specified arrangement (for :

example, assign examA after examB, examA must use room 15 etc). The objective is to

minimise second-order conflicts on the same day, minimise the number of students

sitting two exams in a day, minimise mixed duration of exams within a timeslot,

minimise the usage of a particular timeslot or room and schedule larger examinations

as early as possible. The details of the examination competition track can be found in

McCollum et al., (2008). Researchers which have investigated this dataset include

McCollum et al., (2009) which uses iterated forward search, hill climbing and great

deluge algorithm. Gogos, AleFragis and Housos, (2008) uses a multistage approach

that uses GRASP, simulated annealing and mathematical programming. McCollum et

al., (2009) applied a two-phase approach with adaptive heuristic ordering as the

constructive phase and improved the solution using an extended great deluge

algorithm. Table 2.6 show the information of the ITC2007 datasets (examination

track).

Table 2.6 Second International Timetabling Competition (lTC2007) datasets

Instance Conflict Exams Students Periods Rooms Period Room
Density (%) HC HC

Exam-l 5.05 607 7891 54 7 12 0

Exam-2 1.17 870 12743 40 49 12 2
Exam-3 2.62 934 16439 36 48 170 15

Exam-4 15 273 5045 21 1 40 0
Exam-5 0.87 1018 9253 42 3 27 0
Exam-6 6.16 242 7909 16 8 23 0

Exam-7 1.93 1096 14676 80 15 28 0
Exam-8 4.55 598 7718 80 8 20
Exam-9 7.84 169 655 25 3 10 0

Exam-If 4.97 214 1577 32 48 58 0

Exam-II 2.62 934 16439 26 40 170 15

Exam-12 18.45 78 1653 12 50 9 7
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2.4.5 Universiti Kebangsaan Malaysia (UKM) dataset

Beside the standard benchmark dataset, they are several other exam dataset discussed

in the literature. Ayob et al., (2007) introduced a capacitated dataset from UKM,

Malaysia. The dataset requires all exams to be scheduled. They forbid students taking

more than one exams at the same time and sitting three consecutive exams in a day.

Exams with a specified room (room exclusive constraint) must be fulfilled and those

students assigned to sit consecutive exams must be assigned to the same room. The

objectives involve evenly spreading the exams and minimise students having

consecutive exams on the same day. Table 2.7 show the UKM dataset and table 2.8

show the room capacity of the dataset.

Table 2.7 Universiti Kebangsaan Malaysia datasets (UKM06-1)

Exams Students Enrolments Timeslots Capacity

818 14047 75857 42 1550

Room

Table 2.8 Available rooms for dataset UKM06-1

Room Capacity
DPBestari
DGemilang
Dewan (DECTAR)
LobiUtama (DECTAR)
PSeni (DECTAR)
LobiA (DECTAR)
LobiB (DECTAR)

850
610
610
270
152
70
70

2.4.6 Universiti Teknologi MARA (UiTM) dataset

Kendall and Hussin (2004) introduced a capacitated dataset from UiTM Malaysia. The

constraints involve scheduling all exams, first order contlict and coincidence

constraints (Le. exams that required scheduling together must be assigned in the same

timeslot). The objective is to spread exams as evenly as possible, which is calculated

using the proximity value as in Carter, Laporte and Lee, (1996) and penalising exams
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that are scheduled during the weekend. Table 2.9 show the information of the UiTM

dataset.

Table 2.9 Universiti Teknologi Malaysia (UiTM) dataset

Exams Students Enrolments Timeslots

2,063 84,675 357,761 40

A summary of the constraints and objectives of the datasets describe above are shown

in table 3.1, in chapter 3.

2.5 Uncapacitated and capacitated examination timetabling problem

Most of the research in the literature has investigated the un-capacitated examination

timetabling problem, concentrating on the algorithm and algorithmic performance in

terms of producing solutions effectively and quickly (see Qu et al., 2009). Although

un-capacitated benchmark datasets are popular, McCollum (2007) and Carter and

Laporte (1996) believe that, researchers are not dealing with all aspects of the problem.

That is, they are only working on a simplified version of the examination problems. Qu

et al. (2009), in their survey paper, reveal that most research only addresses a few

common hard constraints. For example, no exams with common students assigned

simultaneously, the size of exams need to be below room capacity etc. Commonly used

soft constraints include spreading conflicting exams as evenly as possible, or not in x

consecutive timeslots or days.

The capacitated problems on the other hand more closely resemble the real world

problem as it includes a room capacity constraint. However, the capacitated problem

has received less attention from the research community. This is probably due to the

lack of benchmark datasets. Capacitated problems require more comprehensive data as

they have to include the room capacity as well as the other data also required for the

less complex problem (e.g. student and exam list). This extra information can be

difficult to collect (McCollum, 2007). In addition, the capacitated problem is much

harder to solve; see Burke et al. (1996) survey paper where 73% of the universities
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agree that accommodating exams is a difficult problem. Burke et al., (1996) mention

that the difficulties of accommodating exams are because of, firstly, the lack of halls

available probably due to its unsuitability for exams or the room is still being used for

lecturing. Secondly, is the problem of splitting exams between more than one room

which could lead to others constraints (i.e. splitting an exam onto different sites or

taking into account between rooms).

Some of the current benchmark datasets lack the relevant information on the seating

capacity of each rooms. However, due to the interest of the capacitated problem and

making the benchmark dataset more like the real world problem, Burke, Newall and

Weare, (1996) made a modification to the benchmark dataset (e.g. Toronto dataset) by

including an overall capacity as if all exams were taking place in one big room (e.g. a

sports hail). The same goes to Nottingham and Melbourne dataset which is only

concerned with the total seating capacity. That is, the total number of students sitting

in all exams in the same timeslot must be less than some specified number. However,

according to Merlot et al. (2003), this represents a simplified of the problem whereas

normally in solving a real-world problem, we would have to take into account

individual room capacities, but this obviously depends on institutional requirements.

ITC2007 does include individual room capacities Gust like the UMP dataset studied

here). One difference to the UMP dataset is that, UMP does not allow exams to share a

room. However, UMP does allow exams to split across several rooms (unlike ITC2007

that disallows splitting) but restricts the exams being split to be held within the same

building and trying to place those rooms as close to one another as possible, this

complicates the problem. A further description of UMP constraints is described in

chapter 3.

2.6 Exam-room assignment problem

The solution approaches seen in literature for the exam timetabling problem can be

separated into exam-timeslot assignment and exam-room assignment. The most

popular approach is the exam-times/ot assignment. Only a few works have discussed

exam-room assignment (Carter and Laporte, 1996; Laporte and Desroches, 1984;
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Leong and Yeong, 1990). In a survey by Carter and Laporte (1996), the idea of a

subroutine is frequently used for the exam-room assignment problem in which the

rooms and the exams are arranged in decreasing order based on their capacities and on

their size respectively. The biggest exam is assigned to the room with the smallest

capacity that can fit this exam. If there is no room sufficient to hold this largest exam,

then the largest room is fully assigned and the remaining exams are assigned to other

rooms. Laporte and Desroches (1984) use a room allocation subroutine to solve the

exam timetabling problem. The largest exams are scheduled in rooms with the largest

capacity. If the size of the exam exceeds the capacity of the room, the residual is

considered as a new size of the exam and the procedure is repeated until all exams are

assigned. There is no limit on the number of exams that can be held in the same room.

Leong and Yeong (1990) consider the problem of assigning exams to room that

minimized the residuals. They limit the number of exams that can be held in a

single room to a specified number. Firstly, they try to assign each exam to a single

room. If this is not possible the exam is allocated to a neighbourhood cluster.

Based on the discussion above, the un-capacitated and capacitated (with total seating

capacity) problem can be solved using a two-phase approach (1. schedule exams to

timeslots and, 2. schedule exams to rooms), as both allow more than one exam in a

room (sharing room with several different exams). This will provide a feasible solution

in the exam-room assignment phase as long as the capacity of the room is greater than

the number of students (Dammak, Elloumi and Kamoun, 2006). However, if individual

room capacities are used, including prohibiting having more than one exam in a room,

it does not guarantee that we are able to produce feasible solution using the two-phase

approach. A solution repair mechanism might be introduced in order to arrive at a

feasible solution.
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2.7 Invigilator scheduling

The exam-timetabling problem can be defined as (Reis and Oliveira, 1999):

"ET-examination timetabling: Scheduling (in time) of the exams of a set of

university courses avoiding overlapping exams having common students

and spreading the exams for the students as much as possible. Room

assignment and invigilator assignment can be done prior to or after the

exam timetabling phase. "

Based on this definition, the whole examination timetabling problem process involves

exams, timeslots, rooms and invigilators. However, most of the research found in the

scientific literature investigates the exam-timeslotlroom assignment problem, that

concentrate on the algorithmic performance with the aim of producing good quality

solutions in minimal time (see Qu et al., 2009). The scheduling of invigilators is often

ignored. The Toronto, Nottingham and Melbourne datasets only cover one third of the

examination timetabling problem as their focus is on assigning exams to timeslots

(although the Nottingham and Melbourne datasets do consider maximum seating

capacity in a timeslot). The second International Timetabling Competition (ITC2007)

dataset (McCollum et al., 2010) includes more realistic problems than the benchmark

datasets but it is still lacking with respect to invigilator scheduling that forms part of

the complete educational examination timetabling problem (Burke et al., 1996; Hussin,

2005).

Invigilator scheduling contains many hard and soft constraints which vary greatly from

one institution to another. An example of a hard constraint is that invigilators are not

assigned to multiple invigilation duties at the same time. A typical soft constraint

specifies that invigilation duties need to be evenly spread among the invigilators.

Furthermore, in a survey by Burke et al. (1996), it was found that 29% of universities

agree that the task of invigilator scheduling is a major problem. This is also reported

by Cowling, Kendall and Hussin, (2002) and Ong, Liew and Sim, (2009) where many

invigilators are not satisfied with their individual schedule. Additionally, in a survey
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on the UMP invigilator schedule, Awang et al., (2006) reported that the invigilators are

not satisfied with their schedule and would like a better invigilation schedule.

Currently, there is no recognised dataset for the invigilator scheduling problem in the

scientific literature (as far as the authors are aware). In our opinion, invigilator

scheduling has been largely overlooked by the scientific community, despite being as

important as the exam-timeslot-room assignment problem to the institution. Therefore

the invigilator scheduling problem seems to be worthy of investigation.

2.7.1 Implementation by academic institutions

In our view, invigilator scheduling can be divided into three categories with respect to

the staff that are employed to carry out the invigilations.

11) Outside staff: the institution hires non-staff (typically these are from outside the

institution) to invigilate the exam timetable. This approach reduces the

complexity of the problem as we only need to consider fulfilling the requested

number of invigilators for each exam/room.

12) In-house staff: the institution use their own staff to invigilate the exams (Ong et

al., 2009). Some insitutions use only academic staff{e.g. lecturers) while others

might also include non-academic staff (e.g. administrators, technicians,

postdoctoral researchers etc). The academic staff are often assigned as chief

invigilators while non-academic staff are assigned to help in the invigilation

process. Compared to (II), this approach may have a significant number of

constraints such as invigilators not being able to invigilate their own exam

paper (or alternatively being expected to), not being assigned to more than one

invigilation duty at a time, the invigilation duties being evenly spread among

the staff etc.

13) Mixed: the institution use their own staff and hire outside staff to invigilate the

exam timetable. The mixing of staff types provides flexibility to the institution
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as it enables a variety of working methods to be adopted (e.g. in-house staff act

as chief invigilators and outside staff to provide the relevant support).

The implementation of II would increase operational costs as the institution needs to

pay for the outside staff. In our opinion, a mix of outside and in-house staff (13) gives

more advantages and flexibility to the timetabling office compared to using II and 12.

However, it also comes at increased operational cost. It also reduces the complexity of

the problem compared to 12. However, we recognise that every institution operates in

different ways and the staffing model that is adopted is dependent on many factors and

what is suitable for one institution may not be suitable for another.

UMP only uses its own staff as invigilators (12). This result in numerous constraints

such as the chief invigilators must be a member of academic staffs, staffs are required

to carry out a number of invigilations within the exam period etc. A detailed

description of the UMP invigilator constraints is presented in chapter 3.

In this work, we solve the UMP examination timetable in two phases: firstly, we

schedule the exams into timeslots and rooms simultaneously (Kahar and Kendall,

2010a). We then use the solution from the first phase as an input to the invigilator

scheduling phase. The scheduling of exams into timeslots, rooms and lastly the

invigilators has been reported as the best sequence in order to produce a good quality

solution (Reis and Oliveira, 1999). Our proposed approach to this second phase is

presented in chapter 5, but first we describe the problem informally, and present a

formal definition in chapter 3.

2.8 Methodologies applied to the examination timetabling problem

The examination timetabling problem has been the subject of active research for more

than 20 years, possibly longer. A variety of algorithms have been proposed and tested,

which include graph heuristic, meta-heuristic, constraint based methods,

hybridisations; as well as many other approaches, in order to produce a timetable. A

comprehensive review and survey of the examination timetabling approaches can be
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found in Carter and Laporte (1996), Schaerf (1999), and Qu et al., (2009). Many

methodologies can also be found in the PAT AT conference series of selected paper

(Le. Burke and Ross, 1996; Burke and Carter, 1998; Burke and Erben, 2001; Burke

and De Causmaecker, 2003; Burke and Trick, 2005; Burke and Rudova, 2007). Carter

and Laporte (1996) divided the techniques used into four categories: cluster methods,

sequential methods, constraint-based methods and meta-heuristics. Petrovic and Burke,

(2004) added the following categories: multi-criteria, case-based reasoning and hyper-

heuristics approache. A more general classification of the methodologies can be

divided into trajectory based and population based approaches. The trajectory based

methods operate on individual solutions and randomly explores the search space to

find a better solution until a stopping criterion is met (Gaspero and Schaerf, 2001).

Examples of trajectory based methods include Hill-Climbing (Merlot et al. (2003),

Burke and Bykov (2008), Muller (2007) and Kendall and Hussin (2005b», Tabu

search (Di Gaspero and Schaerf (200 1), White and Xie (2004), Abdullah, Turabieh and

McCollum (2009) and Kendall and Hussin (2004», Simulated Annealing (Thompson

and Dowsland (1996 and 1998), Wright (2001), Burke et at. (2003) and Frausto and

Alonso (2008», Great Deluge Algorithm (Burke and Newall (2003), Burke et al.

(2004), Abdullah et at. (2009) and Turabieh and Abdullah (2011» and Variable

Neighbourhood Search (Abdullah, Burke and McCollum (2005) and Burke et at.

(2010a». These algorithms differ from each other in the method that is used to find a

neighbourhood solution in the search space. Population based methods operate on

multiple solutions and refine each solution to obtain an optimal solution. Examples

include Genetic Algorithms (Corne, Fang and Mellish, 1993; Chu and Fang, 1999;

Erben, 2001 etc), Memetic Algorithms (Burke, Newall and Weare, 1996; Burke and

Newall, 1999 etc), and Ant Colony Optimisation (Eley 2006 and Eley 2007).

2.8.1 Graph heuristics (GIl)

The graph colouring problem involve assigning colours to vertices, so that no adjacent

vertices have the same colour (also normally referred to as vertex colouring). Graph

colouring techniques have been widely used in solving related problems including the

examination timetabling problem (Carter, Laporte and Lee, 1996; Burke, Kingston and
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de Werra, 2004). In examination timetabling, the exams are represented by vertices

and the edges between the vertices represent the hard constraints. The difference is in

the soft constraint where it need to be considered separately and evaluated to measure

the solution quality. An illustration of time tabling problem as a graph colouring model

can be found in de Werra (1985) and Burke, Kingston and deWerra, (2004).

Originally graph heuristics were used on their own to schedule examinations (Carter,

1986). However, in more recent work they have been used to constructs initial solution

(Le. a so called constructive phase), being hybridised with other methods which acted

as an improvement mechanism. Graph heuristics are able to generate reasonably good

quality solutions in a short computational time and are easy to implement. Graph

heuristic involve ordering the exams in some way (typically be how difficult they are

to be scheduled). Thereafter, the exams are scheduled one by one into the times lots.

Common ordering strategies are described below:

a) Largest degree (LO): this heuristic takes the exams that have the most conflicts

with other exams and schedules them first.

b) Largest weighted degree (LWO): this heuristic is similar to largest degree

except that it takes exams that have the most number of students who are

involved in the conflict and schedules them first.

c) Largest enrolment (LE): this heuristic takes exams with the largest number of

registered students and schedules them first.

d) Saturation degree (SO): this heuristic chooses exams which have the least

number of available periods in the timetable that can be selected and schedules

them first.

e) Random ordering (RO): randomly orders the exams.

Largest degree (LD) and saturation degree (SO) normally provides better results

compared to other ordering strategies (Qu et al., 2009). Other ordering strategies, and

their modified variants, is discussed in Carter (1986). Carter, Laporte and Lee (1996),

experiment with different ordering strategies on real and randomly generated exam

timetabling problems. They consider conflict free and spreading (proximity cost) of the

examination timetable. The results indicated that none of the heuristics show large
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differences in performance over all of the problems tested. However, the combined use

of backtracking and saturation degree yields better schedules in less computational

time. Burke, Newall and Weare (1998) investigated the effect of random elements in

saturation degree, color degree and largest degree using (a) tournament selection that

randomly selects one from a subset of the first exams in the ordered list; and (b) bias

selection that selects the first exam from an ordered list of a subset of all the exams.

These simple techniques are able to give relatively good results on three of the Toronto

datasets.

For the past few years, graph heuristics have evolve and it is being used in different

ways such as dynamic ordering strategies (Le. adaptive ordering different from SD),

multiple graph heuristics ordering strategies and even hybridisation of graph heuristics

(with other search methods). Burke and Newall (2004) investigated an adaptive

ordering strategy that prioritises the exam to be scheduled (during the constructive

approach). It uses a weighted ordered list of the examinations to be scheduled, based

on individual soft penalties and difficulty to schedule penalties. The ordering of the

exams are updated according to the experience obtained with respect to the difficulty

of assigning them in the previous iterations. They investigate the approach on the

Toronto and Nottingham datasets. The advantage is that it is not dependent on the

initial ordering of the exams. Based on the work above, Rahman et al. (2009) include

the concept of squeaky wheel optimization (that is an iterative greedy approach) that

consists of constructer, analyzer and prioritizer. Each examination has a priority

determined by the chosen graph heuristic, which is dynamically updated during the

construction phase. An exam is given more priority in the next iteration if the exam is

considered difficult to schedule in the current iteration. Experiments were carried out

on the Toronto dataset and the approach is able to produce comparable solutions to

other approaches.

Asmuni et al. (2005 and 2009) investigated ordering of the exams based on graph

heuristics with fuzzy logic to evaluate the difficulty when ordering the exams on the

Toronto datasets. Asmuni et al. investigate the combination of two (Asmuni et al.,

2005) and three (Asmuni et al., 2009) graph heuristics to guide the order in which

exams are selected to be scheduled. They also investigate the effect of computational
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time, number of skipped exams, and the number of times a rescheduling procedure is

required. Experiments were carried out on the Toronto dataset and they produce the

lowest penalty than any previously published constructive method. The fuzzy

combination of SD and LE obtained a good overall performance in terms of low

penalty cost. However, different fuzzy functions need to be used on different problems

in order to obtain the best results.

Qu and Burke (2009) investigated the used of graph colouring heuristics within hyper-

heuristic (HH) methodology in which the HH is used to choose the graph heuristic for

constructing the timetables. This is motivated by the fact that graph heuristics, on their

own, are not always appropriate methodologies for addressing complex timetabling

problems and for some of the problem instances they failed to even generate feasible

solutions. However, recent research has shown that they are effective as producing

initial solution for meta-heuristics (e.g. Muller (2008), Abdullah, Burke and McCollum

(2005) etc.) A further discussion on HH will follow in the following section.

We have implemented graph heuristics for the UMP examination timetabling problem

(our case study dataset). The solution produced is superior compared to the software

currently used in UMP. In addition, the proposed algorithm adheres to all the hard

constraints which the current software fails to do. Chapter 4 gives a detailed

description of our methodology.

2.8.2 Hill Climbing (HC)

Hill climbing (or simple descent) is a classic local search technique. In each iteration,

the candidates solution, s' is selected at random from the neighbouring solution, N(s).

The candidate solution s' is accepted, and replaces the current solution s, if j{s ') is an

improvement compared to j{s) (see figure 2.2). Hill climbing is simple and easy to

implement. However the disadvantage is that, it is easily trapped in local optima.

Therefore, researchers tend to hybridise hill climbing with other search methods such

as meta-heuristic methodologies (e.g. evolutionary algorithms, simulated annealing

etc). For example, Merlot et at. (2003) incorporated a multi-stage search method to
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solve an examination timetabling problem that included constraint programming,

simulated annealing and hill climbing. Burke, Newall and Weare (1996) hybridised a

genetic algorithm with hill climbing to further exploit the individual solution. This

hybridisation method often referred to as a memetic algorithm which will be discuss

further in the following section. Kendall and Hussin (2005b) applied a hyper-heuristic

and hill climbing to the examination timetabling problem. Muller (2007) uses hill

climbing in combination with a great deluge algorithm (as well as simulated annealing)

for the ITC2007 problem. Recently, Burke and Bykov (2008) propose a late

acceptance strategy for the hill climbing. The method delays the comparison step

between candidate solution and current (best) solution. The late acceptance hill

climbing is able to produce a good quality solution compared to other works for the

Toronto datasets. An improved method have also been formulated based on hill

climbing, in order to try and counteract its disadvantages (i.e. escaping from local

optima). Tabu search is just one example of such a method. This will be discussed in

the next section.

sinceLastMove := 0
While sinceLastMove < 1,000,000 do
Choose exam e and period t at random S.t. t !=period(e)

If penalty(e, t) <penalty (e, periodier then
Move exam e to period t

sinceLastMove := 0
Else

sinceLastMove+ = 1
Endif

Done

Figure 2.2 Hill climbing procedure (Burke and Newall, 2002)

2.8.3 Tabu search (TS)

Tabu search proposed by Glover (1986) works in a similar way to hill climbing but

incorporates a memory to encourage exploration of the search space (diversification).

Glover and Laguna (1997) define tabu search as:
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"A meta-heuristic that guides a local heuristic search procedure to explore

the solution space beyond local optimality"

Tabu search starts from an initial solution so. The search will iteratively explore a

subset N'(s) of the neighbourhood N(s) where s is the current solution. The search

encourages exploration by accepting neighbourhood solution with the lowest value,

even though (assuming minimisation) its value maybe worse than the current solution.

Accepting a non-improving move will allow the search to explore areas beyond local

optima. However, having to choose a solution from a subset of solution N'(s) will

typically lead to cycling. To prevent the search from becoming stuck in a local optima,

a memory (called tabu list) is used to hold recently selected solutions (or, more

usually, their attributes) and these moves (stored in tabu list) are forbidden to be

performed for a certain number of iterations (depending on the tabu list size).

However, a mechanism called the aspiration criterion can be used to make a solution

tabu free if the resultant evaluation gives a good quality solution (typically better than

the best solution seen so far). Figure 2.3 show the tabu search procedure.

Step 1. Choose an initial solution i in S. Set j*= i and k =O.
Step 2. Set k = k+ 1 and generate a subset V* of solution in N(i, k) such that either

one of the tabu conditions t,(i, m) E T, is violated (r = 1,...,f) or at least one
of the aspiration conditions ar(i, m) EAr (i, m) holds (r = 1,... ,a).

Step 3. Choose a best} =;9 m in V* (with respect to for to the function j") and set i
=}.

Step 4. If.f{i)<.f{i*) then set ;*=i.
Step 5. Update tabu and aspiration conditions.
Step 6. Ifa stopping conditions is met then stop. Else go to Step 2.

Figure 2.3 Tabu Search procedure (Hertz, Taillard and deWerra, 1995)

Di Gaspero and Schaerf (2001) experimented with a shifting penalty and violation

mechanism on examination timetabling. The shifting penalty mechanism uses a

varying weight on the constraints (hard and soft) to encourage exploration of the

solution space. They consider (a) violation of either hard or soft constraints, or (b)

violation of hard constraints only. These two features combined with a variable-size

tabu list and a good quality initial solution was able to give a good quality solution. In
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2002, Di Gaspero applied a combination of tabu search with multiple neighbourhoods.

The approach involves optimising the objective function (recolor), perturbing the

current solution (shake) or obtaining more improvement (kick). The recolor and shake

algorithm were applied in sequence until no further improvement, and the algorithm

continued with a kick. The algorithm outperforms a basic tabu search with a single

neighbourhood.

White and Xie (2001) implemented a tabu search algorithm on two of the Toronto

datasets (Carter, Laporte and Lee, 1996). They use recency-based short-term and

frequency-based longer-term tabu list to prevent cycling and to encourage exploration

of the search space. Tabu relaxation were also included during the investigation. The

results show that the approach with longer-term tabu lists produces competitive results

when compared with other algorithms. In 2004, White et at. further applied the

approach to the rest of the Toronto datasets. The results show that the longer-term tabu

list improves the quality of the solution and they claim that tabu relaxation is a good

strategy because it helps to drive the solution into new areas of the search space.

Wilke and Ostler (2008) applied tabu search to the school timetabling problem. They

compare several other methods (Le. simulated annealing, genetic algorithm and branch

& bound) in order to provide a software framework that is capable of solving various

timetabling problem. Simulated annealing, generally produced the best result, but tabu

search was able to produce an improvement solution in minimal time. Mushi (2006)

implemented a tabu search algorithm that creates course timetables by heuristically

minimising penalties over an infeasible solution. They investigated a dataset from the

University of Dar-as-salaam and compared the results with a manually generated

timetable. A two move strategy was used, with an aspiration criterion. The algorithm

terminates if there is no improvement after 1000 iterations. Their proposed system

performs better than the manual system.

Tabu search (or it features) has been hybridised with other methods. For example,

Abdullah, Turabieh and McCollum (2009) hybridise tabu search with memetic

algorithms. The tabu list is used to hold the neighbourhood structures that are unable to

generate better solutions after the crossover and mutation operation. Neighbourhood
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structures that give an improvement were continuously used until no further

improvement could be obtained. The approach is able to produce good quality

solutions on four of the Toronto datasets. Abdullah and Turabieh (2012) then extended

the above work by investigating multi-neighbourhood structures. Other hybridisations

of tabu search includes Abdullah, Burke and McCollum (2005), which includes a tabu

list implementation within the VNS methodology. Kendall and Hussin (2004)

investigated tabu search hyper-heuristics from one of the author's institutions. Frausto

and Alonso (2008) hybridised simulated annealing and tabu search.

2.8.4 Simulated Annealing (SA)

Simulated annealing (SA) was proposed by Kirkpatrick in 1983. It was motivated from

the physical annealing process of heating up a solid to a high temperature and slowly

cooling it down until it crystallises and no further changes occur. For each material, the

cooling schedule was very important. Simulated annealing starts from an initial

solution (generated using a constructive heuristic) and it will always accept an

improved solution, while worse solution are only accepted with a certain probability P
-a/t

= e where (l is the difference between the objective value of the incumbent solution

and the objective value of a candidate solution. t is a temperature parameter that

decreases as the search progresses, according to some cooling schedule. Figure 2.4

show the simulated annealing procedure. According to Thompson and Dowsland

(1998), the cooling schedule has a large influence on the quality of the final solution.

Faster cooling schedules tend to lead the search to converge to a local optima, while a

slower cooling schedule generally produces a better quality solution but increases the

search time. A geometric cooling schedule, after a given number of moves (i.e.

specified or successful moves), is often used to reduce the temperature during the

search. A tutorial on simulated annealing can be found in Burke and Kendall (2005).
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T:= To
While T> i.: do
Choose exam e and period t at random S.t t !=period(s)

If penalty (e, t):::; penalty (e, period (e) then
Move exam e to period t

Else
Move exam e with probability
Exp«(penalty(e, periodie) - (penalty (e, t»/D

Endif
T:=T

Done
Figure 2.4 Simulated annealing procedure for

minimisation (Burke and Newall, 2002)

SA has been successfully applied to many areas, among them being examination

timetabling. Thompson and Dowsland (1996 and 1998) solve the exam timetabling

problem in two phases, constructive (finding a feasible solution) and improvement

(improving the solution quality) phases. An adaptive cooling schedule was used and

the results show that it outperformed a simple geometric cooling approach. In 1998,

Thompson and Dowsland further experimented with different cooling schedules and

neighbourhood moves. The results show that the kempe chain neighbourhood gives the

best quality solutions. The reason being is because of its ability to allow a large

number of examinations to move, thus making a significant improvement to solution

quality.

Wright (2001) presents sub-cost guided search with simulated annealing to solve

school timetabling problems. The sub-costs incorporated into simulated annealing

were used to modify the standard probability function of accepting worse solutions by

using an adjusted cost increase in the probability formula. Experimental results show

that the additional feature method significantly improves the results of the simulated

annealing method. Burke et al. (2003) applied simulated annealing to the examination

timetabling problem to study its behaviour. Their aim is to develop a measure of

similarity between examination timetabling problems. The motivation of their

experiments is that if the meta-heuristics works well on the problems, therefore the

problem would be similar. Hence, a different problem can be solved (effectively) by

determining the similarity between the problem and the appropriate search method.
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SA is used to produce solutions from the Toronto datasets (Carter, Laporte and Lee,

1996).

Frausto and Alonso (2008) hybridise simulated annealing and tabu search algorithms

to solve the Post Enrolment Course Timetabling (track 2) from ITC2007. The method

is divided into two phases; constructing a feasible solution and an improvement phase.

In the first phase, SA is use to produce a feasible solution. Additional timeslot were

included during this phase. In the second phase, SA is used to find a solution as close

to the optimum as possible, within a specified time limit. However, if SA shows no

improvement during this stage then, the algorithm will continue with tabu search (only

if the time limit permits). The algorithm was able to successfully produce feasible

solutions although it was lacking in overall solution quality.

Zhang et at. (2010) applied SA to the high school timetabling problem. They proposed

a new neighbourhood structure that swaps exams between pairs of timeslots. The new

neighbourhood structure increases the efficiency and performance of simulated

annealing. The computational results show that the proposed heuristic, which is tested

on two sets of benchmark instances, performs better than existing approaches. Other

examples of the application of simulated annealing in examination timetabling can be

found in Bullnheimer (1998), Wilke and Ostler (2008), Merlot et a!. (2003) etc. A

tutorial on simulated annealing can be found in Burke and Kendall (2005).

2.8.5 Great Deluge Algorithm (GDA)

In 1993, Dueck introduced the great deluge algorithm (GOA) that operates in a similar

way to simulated annealing (SA). However, GOA uses an upper limit (often referred to

as the water level) as the boundary of acceptance, rather than a temperature. The

algorithm starts with a boundary equal to the initial solution quality. It accepts worse

solutions if the cost (objective value) is less than the boundary which is lowered in

every iteration according to a predetermined rate (known as the decay rate). Figure 2.5

show the great deluge algorithm procedure. GDA only involves one parameter setting

(decay rate) which is an advantage over SA (among others), since the effectiveness of
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a meta-heuristic technique is often dependent on parameter tuning (Petrovic and

Burke,2004).

Choose an initial configuration
Choose the "rain speed" UP > 0
Choose the initial WATER-LEVEL> 0

Opt: choose a new configuration which is a stochastic small
pertubation of the old configuration
Compute E := quality (new configuration)
IfE> WATER_LEVEL then

old configuration := new configuration
Water_level := water_level+ up

If a long time no increase in quality or too many iterations
Then stop
Goto Opt

Figure 2.5 Great deluge algorithm for maximisation (Dueck, 1993)

Dueck (1993) applied GDA to the travelling salesman problem. The decay rate used

was the difference between the boundary and the length of the current tour divided by

500 or a fixed decay rate of 0.01. GDA was able to produce good quality solutions.

Burke and Newall (2003) investigated GDA on examination timetabling problems. The

decay rate is computed as the initial solution multiplied by a user provided factor

divided by the number of iterations. The algorithm was run for up to 200,000,000

iterations and the search terminated if there was no improvement in the last 1,000,000

iterations. They compared the performance of the great deluge. algorithm with

simulated annealing and hill climbing, and concluded that GDA was superior to the

other two algorithms.

Burke et al. (2004) implemented time-predefined GDA for the examination timetabling

problem. The algorithm includes two user-defined parameters; (a) computational time

(amount of time allowed) and (b) the desired solution (an estimation of the required

cost value). The decay rate is calculated as the difference between the initial solution

and the desired solution divided by the computational time (or number of iterations).

The time-predefined GDA was able to produce good quality solutions. McMullan

(2007) implemented an extended great deluge algorithm for the course timetabling

problem. McMullan uses a steeper decay rate (with the decay rate propotional to 50%
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of the entire run on the first stage and 25% on the remaining runs). This forces the

algorithm to reach better quality solutions as early as possible. The algorithm is

allowed to 'reheat' (similar to simulated annealing), which widens the boundary

condition, thus allowing worse moves to be accepted. Silva and Obit (2007) use a non-

linear decay rate to control the boundary and allow the boundary to rise when its value

is about to converge with the current solution. Experiments on the course timetabling

problem revealed that the non-linear GDA gives good quality solutions.

McCollum et al. (2009) applied the extended great deluge to the ITC2007 examination

datasets using a 2-phase approach (e.g. construction and improvement). The initial

solution is constructed using an adaptive ordering heuristic (Burke and Newall, 2004).

Improvement is carried out using an extended great deluge algorithm that includes a

reheating mechanism. The approach was able to return good solutions compared to

other currently published results.

GDA has also been hybridised with other methods, Abdullah et a!. (2009) hybridise

GDA with TS. Their algorithm applied four neighbourhood moves (at every iteration)

and selected the best solution that was generated. If there is no improvement within a

specified time, the boundary is increased randomly within a value zero and three. The

approach gave good results when applied to the course timetabling problem. Recently,

Turabieh and Abdullah (2011) hybridised GOA with the electromagnetic-like

mechanism (EM). They applied the technique to solve the Toronto dataset and the

ITC2007 datasets. The EM uses an attraction-repulsion mechanism that aims to move

solutions toward high quality solutions. Each candidate solution has a charge (related

to the objective function value) that represents the magnitude of attraction or repulsion

of the solution over the sample population. The method is able to produce good quality

solutions for some of the ITC datasets.

Muller (2008) implement a search algorithm that consists of Iterative Forward Search

(IFS), hill-climbing (HC) and great deluge algorithm (GOA) to the examination track

of the ITC2007. The initial solution is generated using IFS, while HC and GDA are

used to improve the solution. HC is used to improve the initial solution until it reaches

a local optimum. Then GDA is used to further improve the solution. The multi phase
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approach was implemented on the ITC2007 competition datasets and it produced the

best result compared to other entrants. Muller (2008) was named winner of the first

track (exam) and the third track, and it was placed fifth in the second track.

Based on the above, it is shown that GOA able to produce a good quality solution.

Furthemore the algorithm is easy to understand and implement and this attracted us to

explore the method. We implement GOA for solving a real world examination

timetabling problem from Universiti Malaysia Pahang (UMP), by improving the result

obtain from the constructive phase (graph heuristics).

2.8.6 Variable Neighbourhood Search (VNS)

The success of a meta-heuristic is determined by the technique itself and the

neighbourhood structure used during the search (Ahuja, Orlin and Sharma, 2000;

Thompson and Dowsland, 1998). As mentioned previously most meta-heuristic

techniques are often dependent on parameter tuning (Petrovic and Burke, 2004). Many

methodologies in the literature (e.g. simulated annealing and tabu search) generally use

neighbourhood structure throughout the search by selecting the best result and usually

focus more on the parameters that affect the acceptance of the moves rather than on the

neighbourhood structures. Figure 2.6 show the variable neighbourhood search

procedure.

VNS was introduced by Mladenovic and Hansen (1997). It is based on the strategy of

using more than one neighbourhood structure and changing them systematically during

the local search. This helps VNS explore a variety of possibilities and jump to a new

solution. The use of many neighbourhoods allows VNS to more effectively explore the

search space (Abdullah et al., 2005; Burke et al., 20 IOa etc). VNS works by first

determining the set of predefined neighbourhood structure k, where k = 1,... ,K is the

total number of neighbourhood structures used in the search. Let I(S) be the quality of

the solution s. The local search starts by randomly generating a solution s I from the kth

neighbourhood. Starting from an initial solution s I, the local search sequentially visits

the kth neighbourhood of s I until a local optima s" is obtained. The solution s" is

accepted if j(s "} is better than j(s}. Whenever a neighbourhood structure generates a
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better solution, the search starts over from the first neighbourhood (k = 1). Otherwise,

the next neighbourhood is employed (k = k + 1).

Initialization: Select the set of neighbourhood structures N", for k = 1,... ,kmax, that will be used
in the search; find an initial solution x; choose a stopping condition;
Repeat the following sequences until the stopping condition is met:
(I) Set k - I;
(2) Repeat the following steps until k = kmax:

(3) Shaking. Generate a point x ' at random from the kth neighbourhood of (x' eNk(x»;

(4) Local search. Apply some local search method with x' as initial solution; denote with x"
the so obtained local minimum;

(5) Move or not. If the local minimum x" is better than the incumbent x, move there (x -
x "), and continue the search with NI (k - I); otherwise, set k - k + I;

Figure 2.6 Variable Neighbourhood Search
procedure (Hansen and Mladenovic, 2005)

Abdullah, Burke, and McCollum (2005), propose a strategy of combining VNS with a

tabu list (Glover and Laguna 1993). The tabu list (set to 2) is used to hold

neighbourhood structures that perform poorly and prevent them from being chosen in

the next iteration, thus allowing the search to explore other possible areas of the search

space. An exponential monte carlo acceptance criterion were used to enhance the

exploration of the search space together with twelve neighbourhood structures. They

also investigated the ordering of the neighbourhood, where an ordering strategy forces

the search to return to the first neighbourhood if an improvement is found, whilst

search will continue with the current neighbourhood (for non-ordering strategy). The

result shows that the ordering strategy generates good results.

Burke et al. (20 lOa) hybridise variable neighbourhood search (VNS) with genetic

algorithms. They investigate a number of different neighbourhood structures that

include (a) descent-ascent that accepts worse moves (with a probability), (b) biased

VNS involve moving an exam (using Kempe-chain) that causes a high penalty, (c)

problem-specific neighbourhoods involve reducing the number of neighbourhoods and

(d) different initialisation strategies (i.e greedy and a random construction technique).

Statistically analysed results show that problems are dependent on the neighbourhoods,
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where certain neighbourhoods might show an improvement on one problem but not for

other problems. The proposed technique is able to produce high quality solutions on

benchmark problems, however it requires a relatively large amount of computational

time.

As described above, trajectory based approach focus more on the exploitation rather

than on exploration (Al-Betar, Khader and Gani, 2007 and Chiarandiani et aI, 2006)

although they do accept non-improving moves. In the following section, we are going

to describe population based approaches, which concentrate more on exploration of the

search space.

2.8.7 Genetic Algorithms (GA)

Genetic Algorithms (Burke and Kendall, 2005) are a population based search which

uses the principle of biological evolution to generate better solutions from one

generation to another (Ross and Corne, 1995 and Burke et al., 2010a). Genetic

algorithms were popularised by Holland (1975). The methodology employs operators

known as genetic operators (Le. selection, crossover and mutation) that manipulate

individual solutions (also referred to as chromosomes) in a population for a number of

generations (or iteration) in order to improve the cost value. The chromosome is

represented as a string that contains the solution information. Several parameters need

to be considered when applying genetic algorithm to a given problem such as

population size, crossover rate, mutation rate and the number of generations (Goldberg

1989, Pham and Karaboga 2000, Burke and Kendall 2005).

Genetic Algorithm (GAs), start from an initial population of (often) random solutions.

Each of these solutions is known as an individual and they each have a cost value

(fitness) evaluated based on the objective function. Next, is a selection phase where the

individuals will be chosen by a selection operator to undergo the recombination

process. In the recombination phase, crossover and mutation operators are used to

explore the solution space, thus creating new individuals. The newly created

individuals replace old individuals (usually the worst individual based on their fitness).
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This process is repeated until a stopping criterion is reached, which may be the

maximum number of generations or a time limit. Figure 2.7 show the genetic algorithm

procedure.

InitialisePopulation P
For each sol; from P

CalculateFitness (sol)
repeat

select two parents sol, and soh from P
child = crossover (sol., soh)
mutate (child)
calculateFitness (child)
replaceSome (p, child)

until stop condition not satisfied

Figure 2.7 Genetic Algorithm procedure (Cuupic, 2009)

Corne, Fang and Mellish (1993) employed a genetic algorithm for solving examination

timetabling. The length of the chromosome was set as the number of examinations.

The solution obtained from this algorithm was found to be better than a manual

solution. In order to avoid infeasible solutions, Ross, Corne and Fang (1994) proposed

using only the mutation operator to generate offspring solutions. Experimental results

showed that their approach outperformed the genetic algorithm that used a uniform

crossover operator. They applied a repair mechanism to overcome the infeasibilities

due to the direct chromosome representation that generated infeasible offspring

solutions.

Chu and Fang (1999) investigated genetic algorithms and tabu search approaches to

schedule examination timetables and compared the performances of these two

techniques. The investigation concentrated on the quality of the examination timetable

and the time spent in producing the timetable. These experiments show that TS can

produce better solutions, with less computing time than those produced by GA.

However GA can produce several different near optimal solutions simultaneously

because it holds a population of chromosomes which may not originate from the same

parents. A grouping genetic algorithm has been applied by Erben (2001) for graph

colouring and examination timetabling problems. In a grouping genetic algorithm, a
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chromosome is made up from a group (of genes) which is different from a

straightforward direct representation in a standard genetic algorithm.

Usually, the quality of a solutions produced by population-based algorithms

outperformed by trajectory methods. The reason being caused by premature

convergence, where population based algorithms are more concerned with exploration

than exploitation (AI-Betar, Khader and Gani, 2008). Therefore much recent research

has involved the hybridisation of genetic algorithms with trajectory methods to

optimise the individual result.

Massoodian and Esteki (2008) implemented genetic algorithm-based approaches to

solve the ITC2007 course timetabling problem (track 3). The approach consists of two

stages with local search being applied (on the best chromosome) at each stage to

further refine the chromosome. The first stage concentrates on finding a feasible

solution, while the second stage minimises violations of the soft constraints. The

approach was able to produce good solutions in less computational time compared to

using GA alone.

Jat and Yang (2009) proposed a hybridisation of a genetic algorithm with local search

to solve the course timetabling problem (post-enrolment) from ITC2007. The problem

is solved in two phases, where in the first phase the genetic algorithm uses information

from previous good individuals to guide the generation of offspring with local search

techniques to improve the quality of the individuals. In the second phase, tabu search is

used on the best solution obtained to try and improve the solution. The experimental

results show that the proposed hybrid approach is better than, or comparable to, all

other tested methods.

2.8.8 Ant Colony Optimisation (ACO)

Ant colony optimisation is a population based method proposed by Dorigo, Maniezzo

and Colorni et at. (1996). ACO is inspired by the behaviour of ants, and the way they

forage for food (that is, through cooperation by depositing trails of pheromone). Costa
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and Hertz (1997) developed a method called ANTCOL for addressing graph colouring

problems using ant colony optimisation and a sequential heuristic. In successive

generations, each ant colours the vertices using static (Le. random, largest first,

smallest last) or dynamic (Le. saturation degree, recursive largest first) constructive

methods. The probability value of the pheromone is used to select the colour for each

vertex. Experimental results show that the dynamic methods perform significantly

better than static methods. This research highlights the promise of using ant colony

optimisation in successfully solving examination timetabling problems.

Dowsland and Thompson (2005) investigated the application of ant colony

optimisation for the examination timetabling problem. The objectives of their research

were, firstly to compare the performance of ANTCOL on typical timetabling graphs

with a set of random graphs created by Costa and Hertz (1997); secondly, the authors

wished to identify promising constructive heuristic combinations, trail calculations and

ANTCOL parameter values. Experimental results show that the modification of

ANTCOL applied to the examination timetabling problem is competitive with the best

published approaches in the literature in minimising the number of times lots required

for a feasible timetable.

Eley (2006 and 2007) implemented a Max-Min and an ANTCOL approach for the

examination timetabling problem. Two algorithms were tested on the Toronto datasets

using the formulation described in Carter, Laporte and Lee et al. (1996). However,

they also included a clashing penalty value of 10,000 as the proposed algorithm does

not guarantee a conflict free solution. Fifty ants were used with a fixed value for the

evaporation rate and pheromone interval value. Different weighting factor (a and p )
were tested. The results show that the approach does not generate outstanding results

however its performance is comparable with other approaches.

2.8.9 Memetic Algorithms (MAs)

Genetic algorithms perform a search across the entire search space without strictly

focusing on a potentially good area of the search space, which may lead to lose of

useful information in a good individual (Acan and Tekol 2003). However, the
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advantage of genetic algorithms is that they perform multiple directional searches

using a set of candidate solutions (Gen and Cheng 1997) which can be of benefit by

including a local search to refine the (best) chromosome. This is known as a memetic

algorithm. Memetic algorithms represent evolutionary based approaches combined

with a local search. The concept of memetics originates from Dawkins (1976) where

they are described as memes that act as units of information that are passed around the

society. The disadvantage is that each generation takes considerably longer, but this

can be justified if sufficiently more is achieved per generation than if local search were

not used. Figure 2.8 show the memetic algorithm procedure.

Burke, Newall and Weare (1996) employed a memetic algorithm for examination

timetabling problem. They include a light and heavy mutation (small and large scale

alteration respectively) as well as deterministic hill climbing. The aim of the work is to

produce a feasible solution whilst keeping the penalty as low as possible. The method

was implemented on Nottingham and Toronto datasets. Experimental results show that

the method is able to produce feasible and good quality solutions (during that time). In

1999, Burke and Newall extended the above work and proposed a multi-stage memetic

algorithm. The algorithm is applied to a subset of examinations while the next subset is

scheduled on top of the previously scheduled events. A fixed length timetable is used

to schedule the events. To avoid infeasibilities, exams are sorted according to their

difficulty (Le. largest degree, colour degree and saturation degree), together with a

look ahead strategy. Experimental results show that the solution quality is better when

compared to employing a memetic approach alone.

Create initial population
Repeat

8.1 Take each individual in tum:
Choose a mutation method (light or heavy mutation)
Apply mutation operator to chosen individual
Apply hill-climbing to individual just created.
Insert it into the population.

8.2 Select a half of them to reduce the population to its original size
Until termination condition is true

Figure 2.8 Memetic algorithm (Nguyen, Ta and Duong, 2005)
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Nguyen, Ta and Duong (2005) present a modification of memetic algorithm presented

by Burke, Newall and Weare (1996). They applied the method to solve the university

examination timetabling from HoChiMinh City University of Technology. They

applied the same evolutionary operators as in Burke, Newall and Weare (1996) but

include penalty-based and constraint-type based Hill Climbing. Their approach is able

to produce good quality solutions, although take more time. However, they claim that

the modified approach is faster compared to Burke, Newall and Weare (1996). In

2004, Burke and Landa Silva identified and discussed the effective strategies when

designing memetic algorithms for scheduling and timetabling problems. The suggested

strategy involves dealing with infeasibility (Le. prevent the occurrence of infeasible

solutions or applying a repair mechanism), approximation of fitness evaluation using

linked list data structures (to reduce the run time) and a right balance between genetic

and local search methods.

Other related work on memetic algorithm include Abdullah, Turabieh and McCollum

(2009) and Krasnogor and Smith (2005).

2.8.10 Hyper-Heuristics (HH)

The development of hyper-heuristics is motivated by the goal of an increased level of

generality for automatically solving a range of problems (Burke, Kendall and

Soubiega, 2003). Most meta-heuristics in the literature operate directly on a search

space of solutions but a hyper-heuristic operates on a search space of heuristics (Burke,

Petrovic and Qu, 2006). Hyper-heuristic can be categorised into two groups: heuristic

selection and heuristic generation.

During the early introduction of hyper-heuristic, they could be thought of as heuristics

that are able to intelligently choose a heuristic to solve a problem (Hussin, 2005; Burke

et al., 2007; Qu et al., 2009 etc; Pillay and Banzhaf, 2009). This hyper-heuristic

framework is provided with a set of pre-existing heuristics and the task is to discover a

good sequence to effectively solve the problem indirectly. In 2003, Burke, Kendall and

Soubeiga employed a tabu search as the high level heuristic to search through a space
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of moving strategies for course timetabling and nurse rostering problems. The

proposed approach shows good results on both of the problems considering the

generality of the approach. Later in 2005, Burke, Landa Silva and Soubeiga extended

the above work aiming at investigating the learning of low level heuristics that are

suitable and effective for individual objectives in multiple-objective space allocation

and course timetabling problems. The approach shows promising results compared

with the state-of-the-art approaches.

Burke et al. (2007) implemented tabu search hyper-heuristic using graph heuristics for

the educational timetabling problem. A set of low level heuristics (rather than

solutions) represents the search space. Tabu search is used to search for the list of low

level heuristics (randomly) without considering the details of the actual solutions. The

heuristic sequence is used to order the events (courses or exams) that are not scheduled

yet at that iteration. They include a 'failed list', scheduling more than one exam/course

at each step and SO as an initial heuristics list to speed-up the run time. The results are

within the range of the best results reported in the literature. They also claim that when

being employed on its own, SO performs the best in most cases due to its ability to

dynamically order the events according to the number of remaining valid timeslots.

Qu and Burke (2009) extends the work from Burke et al. (2007) by proposing an

adaptive approach (rather than tabu search) where heuristics are dynamically

hybridised during solution construction. The other heuristics (LO, LWD and LE) are

randomly hybridised into the list of SO. They conclude that the adaptive approach able

to produce comparable result (especially hybridisation with LWD) with the current

best approaches in the literature. They claim that the adaptive hybrid approach is an

efficient and much simpler method compared to Burke et al. (2007) which required

much more computational time. Qu, Burke and McCollum (2009) also investigate

interative approach that hybridised graph heuristics adaptively.

Other related research in hyper-heuritics includes by Han and Kendall (2003) that uses

genetic algorithm hyper-heuristics and Kendall and Hussin (2005) that applied tabu

search hyper-heuristics, etc.
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2.9 Conclusions

This chapter has introduced the University timetabling problem with a focus on the

examination timetabling problem. The examination problem varies in their constraints

from one institution to another. From the literature, the most commonly used datasets

are from Toronto, Nottingham and Melbourne. There are some others from real world

exam (e.g. UKM, UiTM and ITC2007 (which is gaining in popularity». Based on the

constraints of these datasets, we notice that there is a gap in terms of the range of

constraints compare to the UMP examination dataset, which we study is this thesis.

Various methodogies (e.g. heuristics, meta-heuristics and hyper-heuristics) especially

meta-heuristics have been applied to solve the benchmark examination timetabling

problem. However, the success of meta-heuristics is dependent on parameter tuning

(Petrovic and Burke, 2004) which would be a problem for non-experts (e.g. a timetable

officer). Therefore we propose a method that is simple and has parameter(s) which are

easy to set. Further discussions on the propose method will follow in the following

chapter.
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Chapter 3

A Case Study of the UMP Examination Timetabling

Problem

This chapter comprises five sections. Section 3.1 presents an introduction to the

Universiti Malaysia Pahang (UMP). Section 3.2 describes the UMP examination

timetabling process. Section 3.3 shows the UMP examination timetabling constraints,

listing the UMP examination constraints and the UMP invigilator constraints. The

dataset used throughout the work is discussed in section 3.4. Lastly in section 3.5 we

present our conclusions.

3.1 Universiti Malaysia Pahang (UMP)

The Universiti Malaysia Pahang (UMP), formerly known as Kolej Univerisiti

Kejuruteraan dan Teknologi Malaysia (KUKTEM), was established in 2002 and is

located in Pahang, Malaysia. In 2007, UMP consisted of five faculties with a total of

3,550 students. The faculties are the Faculty of Mechanical Engineering (FKM), the

Faculty of Computer Science & Software Engineering (FSKKP), the Faculty of

Chemical & Natural Resources Engineering (FKKSA), the Faculty of Electrical &

Electronics Engineering (FKEE) and the Faculty of Civil & Environmental

Engineering (FKASA). Currently, a total of 17 programs are being offered by these

faculties which include two types of certificates; Diploma and Bachelor degree.
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However, in 200809 the total programs offered increased to a total of 23 programs.

This is because of the establishment of new faculties; Faculty of Industrial Sciences &

Technology (FIST) and Faculty of Manufacturing Engineering & Technology

Management (FKPPT) with one and four programs respectively. Additionally, one

new program offered by FKASA. This has resulted in an increase in the total number

students to 4284. As a new University, a good decision making system is important to

aid University operations. UMP is currently situated in a temporary campus, which

presents many challenges in terms of available space, logistics and the human

resources in order to manage the process. In addition to these limitations, the UMP

examination timetabling problem has other challenging constraints which have never

been tackled before in the literature (at least as far as we are aware).

In UMP, the Academic Management Office is responsible for planning and managing

the entire academic process. It provides all the academic space and facilitates academic

affairs. All this is done with the aid of an Information Management System (IMS).

This system encompasses a complete student life cycle process; from student intake to

graduation. One of the modules in the IMS includes generating an examination

timetable which has been used since 2003. However, although this proprietary system

has been successful in producing the examination timetable as it involves manual

processes in order to achieve a feasible solution. Moreover, the proprietary system is

unable to determine the quality of the solutions it produces due to having no

underlying mathematical model (that we are aware of) that allows us to calculate the

effectiveness of the generated timetable. Therefore, one of our research objectives is to

develop a formal model for the UMP examination-timeslot-room assignment and the

invigilator assignment in order to evaluate the effectiveness of the solution produced

by the proprietary system and thus enable a comparison with other methods.

3.2 UMP examination timetabling process

Generating the examination timetable involves several processes as well as interaction

between students, administration and lecturers. The UMP examination timetabling

processes are as follows:
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1) The process starts with the lecturer providing information and their

requirements on the exam papers. The information includes combined exam

papers (combined exams refer to several exams which need to be scheduled at

the same time), course codes which do not require a final examination etc.

2) Next, administrators will generate an examination data report from step 1 for

the lecturer or faculties to verify the information received.

3) Then, a draft timetable is prepared and distributed to students and faculties for

corrections or amendments. The first draft includes assigning exam papers to

timeslots, to rooms and scheduling the invigilators. This phase normally takes a

couple of iterations before a final timetable is published.

4) The timetable is then updated based on feedback received. The final timetable

is published to students and faculties.

The process described above takes place every semester, because, every semester each

student registers for a different set of courses. Hence, the exam timetable for each

semester is only valid for that particular semester. Therefore, in practice the exam

timetable process normally starts a few months before the actual examination period.

3.3 UMP examination timetabling constraints

Apart from an increasing number of students and programs offered, the UMP

examination-timeslot-room assignment problem has other challenging constraints

which have never been tackled before in the literature, at least, as far as the author is

aware. These constraints are the room distance for an exam in multiple rooms and the

splitting of an exam across several rooms. The room distance requires that when an

exam is being split across different rooms, the rooms should be as close as possible to

one another and the rooms must be in the same building. This is to provide the

lecturers easier, and quick, access to the examination rooms to answer any queries

during the examination. The constraints are listed in section 3.3.1 and the invigilator

assignment constraints are listed in section 3.3.2.
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3.3.1 UMP examination constraints

Below are the constraints for the UMP examination timetabling problem. The hard

constraints for the UMP examination timetable problem are as follows:

HEl: No student should be required to sit two examinations simultaneously.

HE2: The total number of students assigned to a particular room(s) must be less

than the total room capacity.

HE3: Only one examination paper is scheduled to a particular room. That is, there is

no sharing of rooms with other exam papers (even if enough seats are

available to fit in another exam). However, some exams can be combined

with others for the following reasons:

- The same examination for different academic programs.

- Lecturers request exam paper to be combined. In this case, the lecturer

might teach different courses but with similar content.

- Faculties request that exams are combined. The combined exam papers

contain similar (or almost similar) exam questions.

The request for combined exams is done before the exam schedule is

generated. For the combined exams, we give a new examination code and

treat it as one large exam.

HE4: The size of each exam room in UMP is relatively small (less than 100) and

with a large number of registered students for each exam, this inevitably leads

to splitting exams into different rooms. In splitting the exam into different

rooms we need to allocate the rooms as close as possible to each other (this

actually represents a soft constraint, see below) and the rooms MUST be in

the same building (a hard constraint).

In measuring the quality of the solution, the soft constraints are as follows:

SEl: Each set of student examinations should be spread as evenly as possible over

the exam period.
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SE2: The distance between exams room for the same exam should be as close as

possible to each other (and within the same building, see HE4).

SE3: There is a penalty associated with splitting an exam across several rooms, as

we would like an exam to be in a single room whenever possible.

These constraints are different from the benchmark datasets (see chapter 2). Having

these constraints complicates the problem. As reported in the literature, the capacitated

problem is more difficult to solve compared to un-capacitated problem and it more

closely resembles the real world (Merlot et al., 2003). A summary of the UMP exam

constraints and comparison with other datasets is shown in table 3.t.

3.3.2 UMP invigilator constraints

The constraints for the UMP invigilator-scheduling problem are as follows:

Hit: Invigilators or chief invigilators cannot invigilate their own exam paper. This

because they need to be on standby during their exam paper to assist students

with any queries.

H12: Chief invigilators must be a lecturer selected from the staff list. With extra

tasks and responsibility for the chief invigilator, university policies only

allow staff with lecturer status to be assigned as a chief invigilator.

H13: Staffs are not assigned to more than one invigilation duty is one timeslot.

H14: Staffs can only invigilate a maximum of three examinations within the exam

period.

H15: Each room should be assigned the required number of invigilators (including

chief invigilator).

In measuring the quality of the solution, the soft constraints are as follows:

Sit: The chief invigilator duties should be evenly spread among the lecturers.
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S)2: The invigilation duty (invigilator and chief invigilator) should be evenly
spread among all the staffs

Table 3.1 Summary of datasets

Constraints
Clash free
Scheduled all exams

Weekend scheduled

Exam preference
• specified arrangement: sa
• specified room: sr
• large exam schedule first: If
• restriction on exam in particular

timeslot: rt
• scheduled combined exam in the

same times lot: et
Consecutive exam
• two exam in a row: 2r
• two exam in a day: 2d
• two exam in a row overnight: 2n
• three exam in a day: 3d
Timeslot preference

~ • minimise/avoid usage: tu
] Timeslot length
'0 • mixed duration of exams in one
1i times lot: mt
~ Spreading

• specified spread: ss

Room distance

No sharing of room with other exams
• for specified exam only: se
Room preference
• consecutive exam scheduled in the

same room: er
minimise/avoid usage: ru

• specified room: sr

Split exam into different rooms
• same building only: sb
• as close as possible: cp

Toronto Nottingham UKM UiTM ITC2007 UMP
Hard Hard HardHard

Hard
(et)

Hard (sa)
Soft (If)

Soft
(2d& 2n)

Soft
(2d&2n)

Capacity Hard
• total seats: ts Hard (ts) Hard (ts) (IS and
• individual room: ir ir)

(ir)

Hard = hard constraint; Soft = Soft constraint; shaded cell = constraint not considered.
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3.4 Datasets

The investigations were carried out using two different datasets from semester 1-

2007/08 and semesterI-200809. Table 3.2 summaries the datasets.

3.4.1 Semesterl-200708

The total number of examination papers is 252, across 17 programs offered by 5

faculties. However, due to the combined exams requirement, the dataset has been pre-

processed and the combined exams are given a new examination code and treated as

one large exam. This results in a total number of 157 examinations. The total number

of students is 3,550 with 12,731 enrolments. The conflict matrix density is 0.05, which

means that 5% of students are in conflict among the examination papers. The number

of exam days and timeslots are 10 and 20 respectively. There are only two timeslots on

each examination day. The total available exam space for this dataset is 24 rooms, with

each room having a given capacity. The number of staff available for the invigilation

duty is 227 staff. From the 227 staff, 152 are academic staff and 75 are non-academic

staff. Each room requires 2 invigilators (including a chief invigilator). 169 lecturers are

involved in teaching the 157 exams. The 169 lecturers are not necessarily included in

the staff list for invigilation duty.

Table 3.2 Summary ofUMP investigated datasets

Categories Semesterl-200708 Semesterl-200809
Exams 157 165
Students 3,550 4,2M
Enrolments 12,731 15,416
Conflict density 0.05 (5%) 0.05 (5%)
Timeslot per day 2 2
Rooms 24 28

IS2a 207a
Invigilator

75h 12Sh
Q number of lecturers, number of non-lecturers

59



Chapter 3. A Case Study of the UMP Examination Timetabling Problem

3.4.2 Semesterl-200809

The total number of examination papers is 193 across 23 programs offered by 7

faculties. Due to combined exams request (including 'relax' exam by the timetable

officer) the total number of exams is 165. The total number of students is 4284 with

15,416 enrolments. The conflict matrix density is 0.05, which means that 5% of

students are in conflict among the examinations paper. The number of staff available

for invigilation duty is 332 staff. From the 332 staff, 207 are academies and 125 are

non-academics. The total rooms allocated for this dataset are 28 rooms with each room

requiring a minimum of two and a maximum of four invigilators (including a chief

invigilator). 194 lecturers teach the courses for the 165 exams. The number of exam

days and timeslots are 10 and 20 respectively. There are two timeslots on each

examination day. The total available exam space for this dataset is 28 rooms, with each

room having a given capacity.

3.5 Conclusions

This chapter has presented the UMP examination timetabling problem. A description

of the UMP examination and invigilator constraints was presented. The UMP

examination timetabling problem contains additional constraints whieh consider

individual room capacities, whilst not allowing rooms to be shared by multiple exams

(unless exams are combined, where they are treated as one exam). In addition, UMP

also has a distance penalty cost used when an exam is split across more than one room

and a splitting penalty cost as it is preferable to use only one room for a given exam.

Having the individual room capacities and prohibiting having more than one exam in a

room constraint, we believe that it is best to solve the examination assignment problem

sequentially as an exam-timeslot-room assignment. After that, the invigilation problem

is solve after the exam-times lot-room assignment. The UMP uses its own staff to

invigilate exams, and this lead to many invigilation constraints.
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Two datasets from different semester have been collected for experimental purposes.

The dataset has been pre-processed where the combined exams are treated as one large

exam and given a new examination code.

The next chapter describes the mathematical model of the UMP examination

timetabling problem and a constructive heuristic used in generating the solution. Our

constructive heuristic is able to produce a better solution compare to the timetable

produced by the UMP proprietary software.
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Chapter 4

The Examination Timetabling Problem at Universiti

Malaysia Pahang: Comparison of a Constructive

Heuristic with an Existing Software Solution

The work presented in this chapter was published in the European Journal of

Operational Research (Kahar and Kendall, 2010a). This work presents a real world,

capacitated examination timetabling problem from Universiti Malaysia Pahang (UMP),

Malaysia. The problem has constraints which have not been modelled before, these

being the distance between examination rooms and splitting exams across several

rooms. These constraints provide additional challenges in defining a suitable model

and in developing a constructive heuristic. One of the contributions of this work is to

formally define this real world problem. A further contribution is the constructive

heuristic that is able to produce good quality solutions for the problem, which are

superior to the solutions that are produced using the university's current software.

Moreover, our method adheres to all hard constraints which the current systems fails to

do.

Section 4.1 begins with an introduction to the motivation on solving the UMP

examination timetabling problem. This dataset has several new constraints in addition

to those commonly used. A formal model of the problem is presented in section 4.2. In

section 4.3, we describe the experimental setup for our proposed constructive heuristic.

62



Chapter 4. Comparison of a Constructive Heuristic with an Existing Software Solution

In section 4.4, a comparison between the solutions achieved with the current method

employed by Universiti Malaysia Pahang (which is produced using a proprietary

system), and our method, is presented in order to evaluate the effectiveness of the

proposed methodology. In section 4.5 and 4.6, we present the contribution and

conclusions respectively.

4.1 Introduction

The capacitated examination timetabling problem considered room capacities along

with other commonly used hard constraints in scheduling the exams. Many work in the

literature investigated the un-capacitated examination timetabling problem which we

believe does not describe the full aspect of the problem (McCollum, 2007; Carter and

Laporte, 1996; and Qu et al. 2009). Based on the datasets described in table 3.1 and the

other constraints listed in the literature (Burke et al., 1996; Qu et al., 2009), we note

that there is a gap in terms of the examination timetabling datasets from the literature

and many of the requirements faced by many institutions. The UMP examination

timetabling problem contains additional constraints which consider individual room

capacities, whilst not allowing rooms to be shared by multiple exams (unless exams

are combined, where they are treated as one exam). In addition, UMP also has a

distance penalty cost (applied when an exam is split across more than one room for a

given exam) and a splitting penalty cost (as it is favorable to use only one room) for a

given exam. A further discussion on the UMP examination timetabling problem is

presented in the next section.

The solution approaches seen in literature for the exam timetabling problem can be

separated into exam-timeslot assignment and exam-room assignment. The most

published work seen in the literature is the exam-timeslot assignment. Only a few

works discuss exam-room assignment (Dammak, Elloumi and Kamoun, 2006). Both

the un-capacitated and capacitated (as total seating capacity) problem (Le. benchmark

dataset) can be solved using a two-phase approach, as both allow more than one exam

in an examination room. This will provide a feasible solution in the exam-room

assignment phase as long as the capacity of rooms is greater than the number of
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students (Dammak, Elloumi and Kamoun, 2006). However, if individual room

capacities are used, as well as prohibits sharing of classroom among the exams might

not guarantee that we are able to find a feasible solution through the two-phase

approach. We might even need to introduce a solution repair mechanism in order to

arrive at a feasible solution. Therefore, in this problem, we are going to solve the UMP

examination timetabling problem sequentially as an exam-limeslot-room assignment.

4.2 Problem formulation

In this section, we present the formal model of the UMP examination timetabling

problem as discussed in chapter 3.

Indices

i.] L.N
r,p L.R

s 1... S

t 1... T

Parameters

N The number of examinations

R The number of examination rooms

S The number of students

T The number of available timeslots

s, The number of registered students in exam i

R, The number of examination rooms available at timeslot t

s, The building for room r

I, The total capacity for room r

Cij The conflict matrix where each element (cij,i,j E {I ...N}) is the number of

students that have to take both exam i andj. The conflict matrix is a

symmetrical matrix of size N, where diagonal elements Cjj = Si
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drp The distance matrix where each element (denoted by drp,r,p e {l...R}) is the

distance between rooms rand p. The distance matrix is a symmetrical matrix of
size R , where diagonal elements a; = 0

Decision variables

Xii 1 if examination i is assigned to timeslot I, 0 otherwise

Yir 1 if examination i is assigned to room r, 0 otherwise

Zr/ 1 if room r is assigned to timeslot I, 0 otherwise

The objective is to spread out examinations over the exam period (timeslots) for each

student, minimise the distance between rooms of an exam that is being held in multiple
rooms and to minimise splitting an exam over several rooms. Therefore our

formulation is as follows:

(Minimise) F(x) = FI + F2 + F3 (Eq.I)

The first component of the cost, F, (spreading exams over the exam period, SEll is

shown in Eq.2.

(Eq.2)

and

. . j32/21/1-'A if1:s1/-1·I:ssproximity (I; ,I j) = ' J

o otherwise
(Eq.3)

Where t, and I j specifies the assigned timeslot for examination i and j (i, j

e {1, ... ,N}). Eq.2 represents the cost for an exam i that is given by the proximity value

multiplied by the number of students in conflict. Proximity values of 16, 8, 4, 2 and 1
are used here. For example, if a student has two consecutive examinations then a
proximity value of 16 is assigned. If a student has two examinations, with a free
timeslot in between, then a value of 8 is assigned. Two empty periods correspond to a
penalty of 4 and so on. These proximity values were introduced by Carter, Laporte and
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Lee (1996) and have been widely used by other researchers (see Burke et al., 2004;

Ayob, Abdullah and Malik, 2007; Abdullah, 2006).

The second component of the cost, F2 (distance of an exam in multiple rooms, SE2) is
shown in Eq.4:

;=1 ,.=1 par+1

N
(Eq.4)

Eq.4 represents a cost for an exam i that is scheduled in multiple rooms. A subset of

the distance matrix is shown in figure 4.2.

The third component of the cost, F3 (splitting exam, SE3) is shown in Eq.5:
NLmi-l
i=l

N
(Eq.5)

Where mi is the number of rooms exam i has been split across. It can be calculated

R

using the following formulation, mi=~>ir 'r/; E {I,... ,N}. Eq.5 represents a cost for an
r=1

exam i that is being penalised for splitting the exam in multiple room tm; > I). For
example, if an exam is being split into 2 rooms, then a value of 1 is given as the

penalty value. Splitting the exam across 3 rooms corresponds to a penalty of 2 and so

on.

Eq.l is subject to the following constraints:

a) No student can sit two exams concurrently (clash-free requirement, HEI). If

examination i and j are scheduled in timeslot I, the number of students sitting

both examination i and j must be equal to zero, i.e. cij = O. This hard constraint is

expressed in Eq.6:

(Eq.6)
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b) All exams must be scheduled and each exam must be scheduled only once in

available timeslots, T (see Eq.7)

T

LXii = 1 For all i E (I ..... N)
1=1

(Eq.7)

c) Only one examination paper is scheduled to a particular room in a particular

timeslot, HE3. There is no sharing of rooms with other exam papers (even though

seats might be available to fit in another exam), except for requested combined

exams, which has been carried out as a pre-process operation (see Eq.8).

N

LXilYlr = Zrl For all t E (I, .... T) and for all re (I ..... R)
1=1

(Eq.8)

d) Exam can only be split across several rooms in the same building, HE4 (see Eq.9).

R-I R ( -1)L LY;rY;pbrp = m; ~ For all i E {I..... N}
r=1 p=r+1

(Eq.9)

Where

e) For each timeslot I, the number of rooms assigned to a particular timeslot must

not exceed the maximum number of rooms available in a timeslot, R, (see Eq.IO)

R

LZrl sR, for all t E {I.....T}
r=1

(Eq.IO)

f) The total number of students assigned to a particular exam room(s) must be less

than the total room capacity (see Eq. I I).

R

SI :s:LY,'/r For all i E {I..... N}
r=1

(Eq.II)
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4.3 Experimental setup

In this section we present our proposed constructive heuristic, along with other

algorithmic details to aid reproducibility. The dataset is taken from Universiti Malaysia

Pahang (UMP) for semesterI-200708. The total number of examination papers is 252,

across the 17 programs offered by 5 faculties (see chapter 3 for further details). The

number of exam days and timeslots are 10 and 20 respectively. There are only 2

timeslots on each examination day. There are no exams during the weekend (Saturday

and Sunday). We capture this by introducing gaps in our timeslots indices. Therefore

the timeslots can be represented as shown in figure 4.1. In figure 4.1, timeslot 1 and 2

refer to day I, timeslot 3 and 4 refer to day 2 etc. Notice that indices 11 to 14 are

missing. This is because those indices refer to Saturday and Sunday.

(1,2,3,4,5,6,7,8,9,10,15,16,17, 18, 19,20,21,22,23,24)

Figure 4.1 Timeslot indices

The total available exam space for this dataset is 24 rooms, with each room having a

given capacity. To assist our constructive heuristic in the process of searching for the

most suitable room(s) and minimising the room related cost value, we generate a list of

room groupings (based on the list of rooms provided). These pre-determined room

groupings are generated within the same building only. Note that we limit the room

groupings up to a maximum of 4 possible rooms for each exam. In our observations, 4

rooms are adequate to satisfy any exam capacity. Besides, increasing the room

grouping possibilities (>4) will increase the distance cost, splitting cost and the search

space. The room groupings are sorted in decreasing order based on the total room(s)

capacity. By doing so we could directly search for suitable room(s) and end the search

procedure when an unsuitable room capacity is encountered.

To illustrate the procedure we provide the following example. Assume, we have 5

rooms in 2 different buildings, where 4 of the rooms are in the same building, and each

room has a specific capacity (see figure 4.2). The travel cost for rooms in different

buildings is not shown, as this is not permitted. Therefore, we could create 15 room

groupings with 14 room groupings from building Wand 1 room grouping from
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building X. Referring to figure 4.3, each of the room groupings have their new total

capacity, distance cost (total of the distance value prior to the distance matrix for every

rooms) and splitting cost (m, -1). These room groupings are sorted based on their

capacity. Having the decreasing order of pre-determined room groupings assists the

search algorithm in selecting the most suitable rooms, aiming to minimise the room

related cost value and speeding up the search by stopping the room search procedure if

an unsuitable room grouping capacity is encountered.

Room Capacity Building WDK26 WDK28 WDK29 WDK30 XDK04
WDK26 92 W 0 2 3 4 -
WDK28 90 W 2 0 1 2 -
WDK29 40 W 3 1 0 I -

-
WDK30 40 W 4 2 1 0 - -
XDK04 47 X - - - - -

Figure 4.2 Room information and distance matrix

No. Room Grouping Room Grouping Capacity Distance Split
Cost Cost

I WDK26 • WDK28 - WDK29 - WDK30 262 13 3

2 WDK26 - WDK28 - WDK29 222 6 2

3 WDK26 - WDK28 - WDK30 222 8 2

4 WDK26 - WDK28 182 2 1

5 WDK28 - WDK29 - WDK30 170 4 2

6 WDK26 - WDK29 132 3 I

7 WDK26 • WDK30 132 4 1

8 WDK28 - WDK29 130 1 I

9 WDK28 - WDK30 130 2 I

10 WDK26 92 0 0

11 WDK28 90 0 0

12 WDK29 - WDK30 80 1 1

13 XDK04 47 0 0

14 WDK29 40 0 0

15 WDK30 40 0 0. .. ., ,

Figure 4.3 Decreasing order of pre-determined rooms grouping
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Algorithm Parameters:

i = l N where N is the number of examinations
g= l G where G is the number of pre-determined roomGrouping
r = l R where R is the number of rooms,
c = l Cwhere C is the candidate list size,
t = l Twhere T is the number of times lot
totaISeatAvailable(t) is the total seating capacity available calculated in timeslot t
capacity(i) is the size of examination i
spreadCost[c] store the spreading penalty for candidates list c
distCost[c] store the room distance penalty for candidates list c
splitCost[c] store the splitting room penalty for candidates list c
roomCapacity(g) is the total room seating capacity in g,
distl'enalty is the room distance penalty in g,

splitPenalty is the splitting room penalty in g,
Xii = I if examination; is assigned to timeslot t, 0 otherwise,

Yir = 1 if examination; is assigned to room r, 0 otherwise,
Zrl = I ifroom r is assigned to timeslot t, 0 otherwise,

I Step 1: Ordering:
2 Sort examination N based on the Graph Colouring heuristic;
3 Sort roomGrouping G in decreasing order based on the total capacity;
4 Step 2: Assigning exams to timeslot and room(s):
5 Set ; ~ I;
6 Until; = N, repeat:
7 (2.1) Set c ~ I;
8 (2.2) Until c = C, repeat:
9 (2.2.1) Set count ~ 0, g ~ I and t ~ -I;
10 (2.2.2) Until t = -I && count < 3, repeat:
II (a) Generate t randomly and no clashing with other exams
12 (b) If t is not equal with I previously generated and capacity(;):S totalseatsvatlableit), then
13 calculate spreading penalty as spreadCost[c]
14 Otherwise, Set I ~ -1 and increase count;
15 (2.2.3) Set distCost[c] ~ +00 and splitCost[c] ~ +00;

16 (2.2.4) Do the following if 1"1 -I:
17 (a) Until capacity(i) :s roomCapacity(g), repeat:
18 (i) If room g is available and distCost[ e]+splitCost[ e] > dist Penalty(g)+split Penalty(g), then
19 set distCost[e] ~ distPenalty(g), splitCost[c] ~ splitPenalty(g)
20 (ii) Increase g
21 (2.2.5) Increase c;
22 (2.3) Select the minimum total cost value from C and set Xil~ J Yir~ J and Zrl~ I, if t :f. -I for every c
23 (2.4) Increase i
24 Step 3: Verification
25 Check the solution prior to the constraints
26 Calculate the cost value

Figure 4.4 Pseudo-code for the examination timetable
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The experiments are conducted using graph heuristic approaches including Largest

Degree (LD), Largest Weighted Degree (LWO), Saturation Degree (SO) and Largest

Enrolment (LE) (Carter et al., 1996). The description of these methods is presented

below:

Largest degree (LD): this heuristic takes the exams that have the most conflicts

with other exams and schedules them first.

Largest weighted degree (LWO): this heuristic is similar to largest degree except

that it takes exams that have the most number of students who are involved in the

conflict and schedules them first.

Largest enrolment (LE): this heuristic takes exams with the largest number of

registered students and schedules them first.

Saturation degree (SO): this heuristic chooses exams which have the least number

of available periods in the timetable that can be selected and schedules them first.

In general, the algorithm (see figure 4.4) starts (line 2) by sorting the examinations

based on a graph colouring heuristic (e.g. LD, SD, etc) and also sorting the room

groupings G in decreasing order based on total room(s) capacity (line 3). For all

examination i, (step 2) we randomly select a timeslot I (the number of timeslots we

consider is referred to as a candidate list, and we show the effect of different candidate

list sizes in the results section), which is clash free and we only accept I if it is not

equal with any I previously generated in C and the total available seating capacities in

timeslot I (totaISeatAvailable(I) able to accommodate exam; (capacity(i) (line 11-12).

If the total available seating capacities in I is greater or equal to exam i (capacity(i) :5
totalseat.Availableit'[t, we will continue to calculate the spreading penalty based on the

selected timeslot and store it in spreadCost[c] (line 12-13). The spreadCost[c] value will

be used later in selecting the timeslot and room with the minimum cost values (see line

22). However, if the total available seating capacities unable to accommodate the

exam, the search will continue to look for other I until a number of count trials (line

14). Here we set a maximum of 3 trials. If after a number of count trials the algorithm

still could not find a feasible I, then the search will proceed with the next c (line 21).

Otherwise, it will continue with the room assignment which goes through the room

groupings G (line 16). Selections of g is based on it capacity. If room grouping gable
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to accommodate exam i, an availability check on the individual room(s) in the g is

carried out and if the exam i can be accommodated, the room distance and the splitting

penalty within the room(s) in room grouping g is calculated as distPenalty(g) and

splitPenalty(g) respectively (line 17-19). These values are compared with the distance

cost (distCost[c}) and the splitting cost (splitCost[c}) in c. The value of these arrays,

distCost[c} and splitCost[c}, are overwritten if the distance and splitting costs are

minimum. Otherwise, we will continue to search for other rooms in G. Once, room(s)

in g been selected, we select the minimum cost value found by comparing each of the

spreadCost, distCost and splitCost in C and set the decision variable to 1 (line 22). The

algorithm will continue the search for all exam; (line 23). Lastly, we verified the

solution by checking the solution to ascertain that the timeslot and rooms found

satisfied the constraints and calculate the cost value (line 25-26).

4.3.1 Discarding moves sub-algorithms

The algorithm is able to find superior solutions, compared to the proprietary software,

in a small amount of computational time. This is done by discarding unnecessary

moves as early as possible in the algorithm. Referring to the algorithm (figure 4.4), the

discarding move algorithms are as follows, and we present them here to assist in

reproducibility:

a) Total available seating capacities in timeslot t (lines 12-14).

Line 12-14 checks the room availability prior to timeslot t is generated. It calculates

the total available seats in t. If the total available seats are unable to accommodate

exam i, (see line 14), then a new clash free timeslot t is generated. Having to calculate

the total available seating capacities would avoid the search from selecting an

inappropriate times lot. It is good to recognize that we don't have enough room early in

the search, rather than at the end, in order to make effective use of the computational

time available.
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b) Room grouping capacity checking (line 17).

In line 18 the algorithm will check whether the room grouping g (start at g = 1) able to

accommodate exam i. If the condition is TRUE, the algorithm will continue to

determine whether each room in g (line 18) is available or otherwise it will look for

other g in the list. The room grouping search will stop once an unsuitable room

grouping capacity is found (as we have already sorted the room grouping in

descending order) as it will only consume computational time if the search in the G is

continue.

c) Determine room availability in g (lines 18).

Lines 18, checks every room(s) in the room grouping g to determine whether the room

is available or not. This is done by checking Zr' (Zr' = 1 if room r is assigned to timeslot

t, 0 otherwise). If Zr' = 0 it means that the room is available and the search will

continue to check other rooms. However, if Zr' = 1 which means that the room is

unavailable, the algorithm will stop searching the room members in the selected room

groupings g and continue to select the next suitable room groupings g.

d) Selecting minimum value of distance and splitting cost (lines 18).

In line 18, the algorithm will only proceed if all the rooms in room grouping g are

available. Hence, it will compare the distance (distPenalty(g) and splitting penalty

(splitPenalty(g) in g with the distCost[e} and splitCost[e}. If these penalty values are

less than the current value stored in distCost[e} and splitCost[e], we will store this

value in distCost[e} and splitCost[e).

All of these discarding moves help in finding a feasible solution with minimum cost

value compare to UMP proprietary software in a small computational time. In the next

section we present our results.
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4.4 Results

In this section, we compare the examination timetable generated by the proprietary

software and the result from our proposed algorithm, shown in figure 4.4.

4.4.1 UMP proprietary software

In the solution generated by the proprietary software for semesterl-200708, prior to the

model being developed presented in section 4, the solution exhibited the following

characteristics:

Based on the five hard constraints stipulated by UMP, the examination timetable

that was produced complied with all the constraints except for the no student

should be required to sit two examinations simultaneously constraint (HE1). Eight

students were scheduled to sit exams at the same time and UMP had to quarantine

these students.

- As mentioned previously, the quality of the solution is measured based on three

objectives. The calculated cost for each of the objectives is F/ = 8.82 for the

spreading of exams (SEt) over the examination period, F2 = 3.63 for the distance

of an exam in multiple rooms (SE2) and FJ = 0.71 for the number of room(s) an

exam being split across (SE3). The sum of the cost is therefore 13. I6. Recall that

this includes violation of the hard constraint on the clash free requirement (HE1).

4.4.2 Graph colouring heuristic

Using the proposed heuristic, several experiments have been run with different

candidate lists. In the context of this work a candidate list is how many timeslots are

considered when placing an examination. Each experiment was run 50 times in order

to produce average and standard deviation statistics. Every one of the 50 runs produced

a feasible solution. The experiments were run on a Pentium core2 processor. The
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running time for a candidate list of one is around 99 seconds and 470 seconds for a

candidate list of five.

With a candidate list of one (C = 1), the algorithm searches randomly for one available

timeslot and selects the room grouping that produces the minimum cost value for room

distance and the number of splitting rooms. Referring to table 4.1, the result using a

candidate list of one produces comparable solutions with the proprietary software

while adhering to all the constraints. On average, our approach produces a cost value

that is higher compared to the proprietary software solution (see table 4.1). However,

our solutions adhere to all of the constraints compared to proprietary software, which

does not. Referring to table 4.1 (column min), we are able to produce a solution that is

17% (13.16 compared with 10.98 «13.16 - 10.98)/13.16 x 100%» better when

compared to the solution produced by the proprietary software. Of the heuristics we

have used, largest enrolment (LE) produced the best cost value of 10.98 where the

spreading cost is FJ = 9.01, the distance cost is F2 = 1.39 and the splitting cost is F3 =
0.58 with a standard deviation of2.10. LWO is second best with a minimum cost of

11.43 followed by saturation degree-LE, saturation degree-LO, largest degree (LO)

and Saturation degree-L wo. Overall, using a candidate list of one is able to produce a

good solution, which adheres to all the hard constraints (unlike the proprietary

software).

When using a candidate list of five, the algorithm randomly searches for five available

timeslots. For each of the timeslots selected, the algorithm will search the room

groupings that give the minimum cost value (distance and splitting cost). Finally,

among all the selected times lot and room(s), we will select the one which produces the

minimum total cost value. Referring to table 4.1, the result constructed using a

candidate list of five produced a solution that is between 15% (13.16 compared with

11.12 «(13.16 - 11.12/13.16 x 100%» to 64% (13.16 compared with 4.74 «13.16 -

4.74)/13.16 x 100%» better when compared to the proprietary software. Largest

Enrollment (LE), again produces the minimum cost value (4.74). Other heuristics

perform relatively the same, with respect to their ordering based on their performance,

with a candidate list of one. However, with candidate lists of five all heuristics

outperform the UMP proprietary software with the minimum spreading cost found
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being F, = 3.31, distance cost F2 = 0.98 and splitting cost F3 = 0.45 with a total of 4.74

(produced using LE).

Our proposed algorithm always produces a feasible solution over the 50 runs for

candidate lists one and five. LE obtained the best result compared to the other

heuristics due to the room related constraints (Le. distance and splitting constraint).

Having those two constraints reduces the effectiveness of SO and LO. This is perhaps

not surprising as SO and LO are designed to specifically target spreading the

examinations.

Table 4.1 Result using graph colouring heuristic

Graph Colouring Heuristic
Candidate list = I Candidate list = 5

Ave Stdev Min Max Ave Stdev Min Max
Largest degree (LD) 16.21 1.52 12.74 20.42 7.84 0.98 5.99 11.12

Largest weighted degree (LWD) 15.82 1.97 11.43 20.70 6.09 0.67 5.05 8.29

Largest enrolment (LE) 15.51 2.10 10.98 20.03 6.06 0.76 4.74 7.98
Saturation degree (SD)-LD 16.17 1.53 13.11 19.39 7.22 0.84 5.76 8.72

Saturation degree (SD)-L WD 16.29 1.54 13.97 20.41 7.00 1.02 5.49 9.78

Saturation degree (SD)-LE 16.09 1.80 12.66 20.74 6.96 0.66 5.28 8.49..Ave = average; Stdev = standard deviation; Mm = minimum; Max = maximum

4.5 Contributions

The contributions of this work include collection of the necessary requirements

(constraints) which has never before been properly documented at UMP. This data

collection was carried out with the help and assistance of UMP employees. Studying

the problem has led to two new constraints being identified; the travel distance for

lecturers/invigilators and splitting exams across rooms. A further contribution of this

work is the formulation of the UMP examination timetabling problem as a

mathematical model. A simple yet effective approach of single or multiple room

searching and selection is introduced through the pre-determined room grouping

(which receive a positive respond from the EJOR reviewer). Finally, we have

presented an algorithm, based on graph colouring heuristics, which we have shown

can produce superior solutions compared to the software currently used. In addition,
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the proposed algorithm adheres to all the hard constraints which the current

methodology fails to do.

4.6 Conclusions

It is recognised that a gap exists between theory and practice in examination

timetabling. Different institutions have different requirements and it is difficult to

produce a common solution methodology. In this work we have introduced a new

examination dataset with additional constraints (compared to the benchmark

datasets). In particular, we have investigated the scheduling of exams in a capacitated

environment with the aim of minimising the spreading, distance and splitting cost. A

constructive heuristic has been used to generate solutions that produce better

solutions when compared to the proprietary software that is used by UMP.

In the next chapter, we are going to schedule the invigilators to room/exam using the

solution generated in this chapter as an input to that model.
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Chapter 5

Universiti Malaysia Pahang Examination

Timetabling Problem: Scheduling Invigilators

The work presented in this chapter is under review (after resubmission having

addressed the reviewers comments) for the Journal of Operational Research Society

(JORS). The problem involves assigning invigilators to examination rooms. This

problem has not received the same level of research attention as other related

problems, for example examination scheduling, but it is just as important to

educational institutions. In modelling, and solving, this problem we assume that there

is already an examination timetable in place (this was the subject of our previous work,

see chapter 4) and the task is to assign invigilators to that timetable. The contributions

of this chapter are to formally define the invigilator-scheduling problem and to present

a constructive algorithm that is able to produce good quality solutions that are superior

to the solutions produced when using the university's current software. The model we

present, we believe, accurately reflects the real world problem capturing various

aspects of the problem which have not been presented before in the scientific literature.

Moreover, the proposed approach adheres to all hard constraints which the university's

current system fails to do.

In section 5.1, we look at the examination timetabling problem particularly the exam-

times/ot-room assignment. We present related work on invigilator scheduling in
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section 5.2. A formal model of the problem is presented in section 5.3. In section 5.4,

we describe the experimental setup for our proposed strategy. Section 5.5 gives a

description of the dataset used in our experiments. In section 5.6, a comparison

between the solutions achieved with the current method employed by UMP (which is

produced using proprietary software), and our method, is presented in order to evaluate

the effectiveness of the proposed methodology. We discuss the additional invigilator

constraints and the results in sections 5.7 and section 5.8 respectively. In sections 5.9

and 5.10, we summarise our contribution and present our conclusions respectively.

5.1 Introduction

Many papers discussing the examination timetable problem can be found in the

literature (i.e. PAT AT conference paper). However, besides the problem of scheduling

exams to timeslots and/or rooms, the educational examination timetabling problem

does not end there. The problem also involves assigning invigilators to the exam/room.

This is normally done after the institution has generated the exam-timeslot-room

timetable (Burke et al., 1996). Most of the research found in the literature involves

assigning exams to timeslots and/or rooms. Only a few papers have investigated

invigilator scheduling (Burke et al., 1996; Ong, Liew and Sim, 2009, Cowling, Kendall

and Hussin, 2002; Reis and Oliveira, 1999). One reason for invigilation scheduling

receiving less attention from the research community is due to the fact that no datasets

are available. In our view, there are three ways an instituition could implement

invigilator assignment; by hiring outside staff, using their own staff or by using a

m ixture of in-house staff and outside staff. This point is further discussed in chapter 2.

This chapter investigates the invigilator scheduling problem taken from Universiti

Malaysia Pahang (UMP). This invigilator dataset contains numerous constraints, which

we believe have never been discussed or modelled before.
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5.2 Invigilator scheduling

An exam timetable is often generated by first assigning exams to timeslots (exam-

timeslot assignment). A further process then assigns rooms and/or invigilators after the

exam timetable has been approved/accepted (Burke et al., 1996). It is evident in the

literature that most published work only deals with exam-timeslot assignment. Only a

few papers have addressed the exam-room assignment (Damrnak, Elloumi and

Kamoun, 2006) and very little work can be found on invigilator scheduling. A lecturer

preference survey by Cowling, Kendall and Hussin (2002) reveals that:

Invigilators prefer 2-3 invigilation duties with a one or two day gap between each

duty.

- Lecturers with other responsibilities (e.g. administrative or research work) should

be given a reduced number of invigilation duties.

- An adequate gap is given between invigilation duties and the lecturers' own

papers. This is to allow the lecturers enough time to do their marking and submit

their grades within the required time.

- A fair distribution of chief invigilator duties.

Ong, Liew and Sim (2009) developed an invigilation scheduling system concentrating

on optimising lecturer preferences (i.e. invigilation dates, time and constraints) for

UiTM Sarawak (Samarahan Campus). The invigilation scheduling only involves

lecturers (see section 2.7.1; 12). Previously the schedule was prepared manually by the

institution's invigilation scheduling committee. They randomly assigned invigilation

duties and, later, there was a lot of swapping amongst the lecturers. This resulted in

confusion, misunderstanding and complaints of uneven invigilation duty distribution.

This motivated them to develop an invigilation system with the aim of optimising

lecturer preferences. The system enables lecturers to view the examination timetable,

choose their preferred invigilation timeslots, specify the examination date and the time

of their own subjects; and view their individual schedule and the final

exam/invigilation timetable. Reis and Oliveira (1999) experimented with an

examination timetabling problem from the University Fernando Pessoa, Porto using

constraint logic programming. They solve the problem by scheduling each exam into
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an available timeslot. For each exam, one or several exam rooms are allocated and for

each room, a set of invigilators is defined. The proposed approach included the

following investigations:

Scheduling exams into timeslots and, once completed, scheduling the rooms.

Finally, they deal with invigilator scheduling.

Schedule exams into rooms, then schedule the timeslot and then the invigilators.

Schedule exams into timeslots, then schedule rooms and invigilators

simultaneously.

- The exams, timeslots, rooms and invigilators are scheduled simultaneously.

A survey carried out by Awang et al. (2006) on the UMP examination timetable asked

about invigilator satisfaction with their invigilation timetable. It revealed that most of

the invigilators are not satisfied with the gap between invigilation duties and the

number of invigilations. They suggested that each invigilation duty should have at least

a 2 or 3 day gap. However, they prefer fewer invigilation duties, considering that they

also need to be available/on-standby during their own exam paper. They requested an

even spread of invigilation duties among the staff. As the timetable officer is open to

any suggestions for improving the current timetable, we are motivated to include the

suggestion above as an additional constraint in addition to the original constraints.

These additional constraints are discussed further in section 5.7.

In this work, we solve the UMP examination timetable in two phases: firstly, we

schedule the exams into timeslot and rooms simultaneously (Kahar and Kendall,

2010a), and presented in chapter 4. We then use the solution from the first phase as

input to the invigilator scheduling phase. The scheduling of exams into timeslots,

rooms and lastly the invigilators has been reported as the best sequence in order to

produce a good quality solution (Reis and Oliveira, 1999). Our proposed approach to

this second phase is presented in section 5.4, but first we describe the problem

informally, and then present a formal definition.
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5.3 Problem formulation

Indices

i,j I ...N where N is the number of examinations

I I ...L where L is the number of staff

r I ...R where R is the number of rooms

t I ...T where T is the number of times lots

Parameters
s, The status of staff I. 1 denotes a lecturer, 0 otherwise.

I, The number of invigilators (including chief invigilator) required in each room r

ail The exam-staff matrix where each element (denoted by ail'; E {I...N} and

I E { 1... L} ) denoted as 1 correspond ing as the staff teaches the course (or exam

paper) in that semester, 0 otherwise.

Examination time tabling parameters

Note: These variables are set by the examination scheduling phase (see Kahar and

Kendall 201 Oa)

Xii 1 if examination i is assigned to timeslot t, 0 otherwise

Yi' 1 if examination i is assigned to room r, 0 otherwise

Z,' 1 if room r is assigned to timeslot t, 0 otherwise

Decision variables

VI" 1 if staff / is assigned to invigilate in room r in timeslot t as an invigilator, 0

otherwise

WI" 1 if staff I is assigned to invigilate in room r in timeslot t as the chief

invigilator, 0 otherwise

The objective function is as follows:

Minimise, F(x) = FJ + F2 (Eq. I)
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The first component of the objective function, F/, is that the chief invigilator duties

should be evenly spread among the lecturers in the staff list L (S, = 1).
I,

F1 =LChief duty( W'rt )
1=1

(Eq.2)

Where

{

T R

o if W S Cid
Chief dlltY(Wlir) = ~ ~ Ir' r 1

20 otherwise

(Eq.3)

The maximum number of chief invigilation duties assigned to every lecturer (S/ = 1)

can be calculated based on the number of lecturers in the staff list L and the number of

rooms selected in the exam-timeslot-room timetable solution. The number of chief

invigilation duties is calculated by taking the ceiling value of CId. The calculation is as

follows:
T R

II=r,rcldl= 1=1 r=1
L

LSI
1=1

(Eq.4)

The second component of the objective function F2 is concerned with the even spread

of both invigilator and chief invigilator duties.
L

F2 =I staff dUty(Vliro Wllr)
1=1

(Eq.5)

Where

{

T R
_ 0 ifLL(vlrt +Wlrt)srJdl

staff duty(v/ir, W/ir) - ,=1 r=1

20 otherwise

(Eq.6)

The maximum number of invigilation duties for all staff L can be calculated based on

the number of invigilators (lr) required in each room (from the exam-timeslot-room

timetable solution) and the number of staff L. The required number of invigilation

83



Chapter 5. Universiti Malaysia Pahang Examination Timetabfing Problem: Scheduling Invigilators

duties for each member of staff is calculated by taking the ceiling value of Id. The

calculation is as follows:
T R

II="I,rldl= 1=1 ,=1
L

(Eq.7)

The objective function (Eq.I) is subject to the following constraints:

a) Invigilators cannot invigilate their own exam paper (Hit).

N T R

III(aj/xi/y;,XVI,t +Wlrl)=O
;=1 1=1 ,=1

For alii e {I, ...,L} (Eq.S)

b) The chief invigilators must be a lecturer, S, = 1 (HI2).

WI" SSI Forall/e{I, ...,L}, t e {1,...,T}and re{I, ...,R} (Eq.9)

c) Staff are not assigned to more than one invigilation duty at a time (HI3).
R
I(v/,,+wl,,)SI For all Ie {I, ...,L} and le {I,....r]
r=1

(Eq.10)

d) All staff are required to invigilate a maximum of three examinations within the

exam period (HI4).

T R
II(Vlrt+Wlrl)S3 Forall/e{I, ...,L}
'~I r=1

(Eq.tt)

e) The total number of invigilators (including one as chief invigilator) assigned to

each room r in timeslot I has to equal the number of invigilators required for each

room I,(HI5).
I.I (Vlrl+ 2Wlrl)= =rl(I, + I) For all re {I,...,R} and le {t, ... ,T}
1=1

(Eq.l2)
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Algorithm parameters:
1= 1 L where L is the number of staff available for the invigilation duties
r = 1 roomSelected where roomSelected is a list of selected rooms in the exam-timeslot-
room assignment solution
m = 1 I, where I, is the number of invigilators required in room r
c = 1 C where C is the number of candidates list
S, status of staff (Le. lecturer or other) I. 1denoted as a lecturer, 0 otherwise.
DI holds the total invigilation duty for staff I.
totaICostValue[c] store the cost value for assigning invigilator I to timeslot and room in
candidates list c.
VI" = 1 if staff I is assigned to invigilate in room r in timeslot I as an invigilator, 0
otherwise
WI" = 1 if staff I is assigned to invigilate in room r in timeslot I as the chief invigilator, 0
otherwise

I Step I: Set-up
2 Sort Staff L in ascending order based on Dlor randomly
3 Calculate the ceiling value ceilingCId (eq.4) and ceilingld (eq. 7)
4 Step 2: Assign chief invigilators to room
S Set r ~ I
6 llntil r= rooniSetected repeat:
7 (2.1) Set I ~ 1
8 (2.2) Set c ~ I
9 (2.3) Until c = C, repeat:
10 (2.3.1) If I ~ L and I is a academic staff (SI= I), then calculate the cost value F and store in totaICostValue[c), simultaneously
II s.t.1 does not teach the exam (HI), no other invigilation duty within the same timeslot(H3), does not exceed the
12 maximum invigilation duty (H4) and Invigilator on duty during their exam must be on the same building (H6)-
13 optional
14 (2.3.2) Increase I
IS (2.3.3) If /> L, set / ~ I, totaICostValue[c] ~ +00

16 (2.4) Select the minimum total cost value from C, set wl,lf-1 and update DI iftotaICostValue[c)* +00 for every c
17 (2.S) Increase r
18 (2.6) Sort Staff L in ascending order based on Dlor randomly
19 Step J: Assign invigilators to room
20 Set r ~ I
21 Untilr" roomSelecledrepeat:
22 (3.1) Set! ~ I
23 (3.2) Set m f- I
24 (3.3) Until m -1,-1 repeat:
25 (3.3.1) Set c f- 1
26 (3.3.2) Until c = C, repeat:
27 (3.3.2.1) If /~L, then calculate the cost value F and store in totaICostValue[c), simultaneously increase c
28 s.t. I does not teach the exam (H,I), no other invigilation duty within the same timeslot(H,3), does not exceed the
29 maximum invigilation duty (H,4) and Invigilator on duty during their exam must be on the same building (H,6) -
30 optional
31 (3.3.2.2) Increase I
32 (3.3.2.3) If /> L, set / ~ I, totaICostValuc[c] ~ +00

33 (3.3.3) Select the minimum total cost value from C, set vlrtf-I and update DI iftotaICostValue[c)* +00 for every c
34 (3.3.4) Increase m
35 (3.4) Increase r
36 (3.5) Sort Staff L in ascending order based on Dior randomly
37 Step 4: Verilication and Cost value
38 Verify the solution and Calculate Cost Value (Eq.l)

Figure 5.1 Pseudocode for the invigilator scheduling
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5.4 Experimental setup

In this section, we present our proposed invigilator scheduling algorithm in order to

solve the UMP problem. As described previously, invigilator scheduling is a post-

process from the exam-timeslot-room timetable process (Kahar and Kendall, 20 IOa).

Therefore, the information (e.g. rooms, exams, timeslot etc.) from the exam-timeslot-

room assignment phase is already known and, hence the results that produce the

minimum cost value are retained from this first phase. Even if several runs were made

in the first phase, the run that produced the minimum cost value is saved. Referring to

section 5.3, the chief invigilator assignment is the most critical part as it involves the

most constraints; must be a lecturer, cannot invigilate their own paper, etc. Invigilator

assignment is less complicated as the member of staff can be a lecturer, or otherwise.

Hence, we have designed an algorithm that firstly concentrates on assigning the chief

invigilators to all the rooms, followed by other invigilator assignments.

The algorithm (see figure 5.1) starts (line 2) by sorting staff L in ascending order based

on Dior randomly. Next in line 3, we calculate the ceiling invigilation value for chief,

ceilingCld (EqA) and invigilator duties, ceilingld (Eq.7) (see line 3). Then, we assign a

chief invigilator into room in the roomSelected list (step 2, line 4). The first staff in L is

selected. The number of chief invigilator we consider is referred to as candidates list

(which we use during the random ordering strategies) and we show the effect of

different candidates list sizes in the result section. If I is a lecturer (SI = 1) and satisfies

the following: 1does not teach the exam (Hit), has no other invigilation duty within the

same timeslot (HI3) and does not exceed the maximum number of chief invigilation

duties (HI4), we then calculate the penalty value on assigning the selected invigilator to

r and store the information in totaICostValue[c] (lines 10-14). We also consider the

invigilator should be in the same timeslot and building as their own exam if on duty

during their exam constraint (HI6) in this step during the additional constraints

experiments. Next, increase c to search of other 1 for the candidates list. Then, increase

I, however if 1 is greater than L, we set I =1 and assign totaICostValue[c] = +00 (which

means that there are no available invigilator in totalCostValue[cD (lines 15). The

search continues by selecting the minimum total cost value in C (i.e.

totaICostValue[C]) and set the corresponding 1 into the selected timeslot and room, Wlr,
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= 1 and subsequently increase D/ (lines 16). Finally, we increase r (line 17) and sort

staff L in ascending order based on D/ (this would let the search to always select the

minimum number of invigil at ion duties of staff L) or randomly (line 18).

Next, we assign the invigilators (step 3, line 19). The same process is carried out as for

assigning chief invigilators except now, the search will continue for a Ir-l of duration

for each roomselected (line 24). I; is the number of invigilators required in

roomselected. For example, if I, = 4, then the search will iterate 3 times (which is

equivalent to three invigilators and one chief invigilator). Lastly, the algorithm verifies

whether the solution complies with all the hard constraints and calculates the cost of

the solution (line 38).

5.5 UMP invigilator dataset

Experiments were carried out with two different datasets from semesterl-200708 and

semesterl-200809. The data is obtained from the solution generated by the UMP

proprietary software. We noticed that there is a difference in the information (i.e. staff

status, number of lecturers etc) provided by the Academic Office compared to the

actual solution that they provided us with. Therefore, we decided to use the data from

the schedule that was actually used as this more accurately represents what was done

in practice. A description of the datasets is given below.

Table 5.1 Summary ofUMP investigated datasets

Categories Semesterl-200708 Semesterl-200809

Exams 157 165

Students 3,550 4,284

Enrolments 12,731 15,416

Conflict density 0.05 (5%) 0.05 (5%)

Timeslot per day 2 2

Rooms 24 28

Invigilator
152a 207a

75b 125b

a number of lecturers, number of non-lecturers
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Semesterl-200708; the number of staff available for invigilation duties is 227. Of

those, 152 are lecturers and 75 are non-lecturers. Each room must be allocated two

invigilators (including the chief invigilator). 169 lecturers are involved in teaching the

157 exams. The 169 lecturers are not necessarily included in the staff list, L. In

semesterl-2008/09; the number of staff available for invigilation duty is 332. Of those,

207 are lecturers and 125 are non-lecturers. The total number of invigilators required

by each room varies from a minimum of two to a maximum of four (including the

chief invigilator). 194 lecturers are involved in teaching the 165 exams. The 194

lecturers are not necessarily included in the staff list, L because of other commitment

during the exam week (e.g. administration task etc).

5.6 Results

In this section, we present the results of the invigilator timetable generated by the UMP

proprietary software by inputting their solution into the model described in section 5.3.

A comparison of the result obtained by the UMP proprietary software with our

proposed algorithm (section 5.4) is also discussed. The results are summarised in table

5.2.

5.6.1 Semesterl-200708

Analysing the solution produced by the UMP proprietary software in the exam-

times/ot-room assignment phase, a total of 269 rooms were used. Therefore, using

these 269 rooms the invigilator scheduling problem exhibits the following

characteristics (see table 5.2, column A).

Hard Constraints: From the constraints in chapter 3, section 3.3.2 (page 60), the

invigilator timetable produced by UMP only complies with two out of the five hard

constraints violating the following:
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i) Constraint, HI I: Staff are assigned to invigilate their own exam paper.

Supposedly, they need to be available during the exam of their own paper to

answer any queries.

ii) Constraint, HI4: Staff are assigned to more than three exams which exceeds the

maximum number of invigilation duties within the exam period.

iii) Constraint, HIS: one room was not assigned the required number of

invigilators.

Soft Constraints: The objective of the invigilator scheduling solution is measured

based on two objectives. The cost value for FJ (eq.2) is 220 and F2 (eq.5) is 20 with a

total cost value of240.

5.6.2 Semesterl-200809

Based on the result produced by the UMP proprietary software, 290 rooms have been

used. The invigilator scheduling solution for semester 1-2008/09 exhibits the following

characteristics (see table 5.2, column A).

Hard Constraints: The invigilator scheduling produced by UMP violates all five of the

hard constraints listed in section 3.3.2.

Soft Constraints: The cost value of the invigilator timetable solution for FJ (eq.2) is 20

and F2 (eq.5) is 120 with a total cost value of 140.

5.6.3 Proposed solution approach

In scheduling invigilators, our experiments use the exam-timeslot-room solution

produced by the UMP proprietary software for semester 1-200708 and semester 1-

200809 (see table 5.2, column B). We also use a solution from our own approach

based on a graph colouring heuristic approach (Kahar and Kendall, 2010a) (see table

5.2, column C). The experiments were run on a Pentium core2 processor. The average

running time was about ~23 seconds. However, the running time depends on the
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number of rooms being selected in the exam-timeslot-room assignment phase.

Obviously, a higher number of rooms would slightly increase the running time, but this

is not of particular significance, given the nature of the problem being addressed.

Using least invigilation duties ordering strategies on the UMP solution from

semesterl-200708 (269 rooms) and semesterl-200809 (290 rooms), our proposed

approach shows that we are able to produce a solution that satisfies all the constraints

(both hard and soft) with a zero cost value (see table 5.2, column B). Next, using the

result from our graph colouring heuristic approach (Kahar and Kendall, 20 I0), our

invigilator scheduling approach is also able to produce a feasible result with no cost

value for both of the datasets (see table 5.2, column C).

Based on this result, it is clear that our proposed invigilator scheduling strategy

produces a superior solution compared to the solution produced by the UMP

proprietary software. We believe the success of the approach is because of the two-

phase method that schedules the chief invigilator followed by the other invigilators. In

addition, the ordering of least invigilation duty aids in efficiently selecting suitable

invigilators while optimising the spread of invigilation duties (Le. soft constraints, SIt

and SI2). In discussion with the UMP Academic Office, their poor solution is perhaps

due to staff swapping their invigilator duties among themselves after the schedule is

published. A common reason being that the invigilator is unsatisfied with their

timetable (Le. invigilation duties close to one another, unable to invigilate one (or

more) of their own exams is scheduled on the same day etc.) and due to other

commitments (e.g. meetings, administrative work etc.). The Academic Office will

update the changes requested and these changes contribute to a poor solution.

Currently, the system neglects the effect of moving or swapping (on request) the

invigilation duties, which we will consider in our future work.

We notice that the invigilator scheduling solution depends on the number of rooms

being selected in the exam-timeslot-room assignment phase. Recall that the total rooms

selected from the proprietary software in semesterl-200708 and semesterl-200809 is

269 and 290 respectively. In our constructive phase (Kahar and Kendall, 20tOa), the

average percentage of rooms selected for semesterl-200708 is 16% (Le. 244) less and
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for semesterl-200809 it is 10% (Le. 274) less compared to the UMP proprietary

software. Obviously, having a lesser number of rooms selected (in the exam-timeslot-

room assignment phase) would automatically minimise the invigilation duties for the

staff.

Table 5.2 Invigilator scheduling results using constraint as describe in section 5.3
(A) (B) (C)

Proprietary Our approach using exam Our approach using exam
software timetable from UMP timetable from Kahar and

Constraints
Kendall,20IOa

Seml- Seml- Sem l- Sern l- Seml- Seml-
200708 200809 200708 200809 200708 200809
(269 (290 (269 rooms) (290rooms) (244 rooms) (274 rooms)

rooms) rooms) cl c5 cl c5 cl c5 cl c5
::::23s ::::28s ::::52s ::::62s ::::22s ::::26s ::::53s ::::60s

HI) Invigilators or chief
invigilators cannot Not(l) Not (2) Yes Yes Yes Yes Yes Yes Yes Yes
invigilate their own exam
paper.

H2) Only allow staff with
lecturer status to act as a Yes Not (I) Yes Yes Yes Yes Yes Yes Yes Yes
chiefinvigilator.

113) StatTs are not assigned to
more than one invigilation Yes Not (2) Yes Yes Yes Yes Yes Yes Yes Yes
duty in one times lot.

H4) Staff can only invigilate a
maximum of three Not (1) Not (6) Yes Yes Yes Yes Yes Yes Yes Yes
examinations within the
exam period.

115) Each room should be
assigned the required
number of invigilators Not (I) Not (2) Yes Yes Yes Yes Yes Yes Yes Yes
(including a chief
invigilator).

Cost value functions (F = FJ + 240 140 0 0 0 0 0 0 0 0
F1)
cl = candidates list of one; c5 - candidates list of five; Nat [x) = Not comply (number of violations);

Yes = Comply;

In summary, we have demonstrated that the proposed invigilator scheduling approach

is able to produce a feasible solution that adheres to all constraints without any cost to

the objective function (even with a higher number of rooms as in the solution from

semesterl-200708 and semesterl-200809). However, the invigilator scheduling result

is dependent on the number of rooms being selected from the exam-times lot-room

assignment phase.
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S.7 Additional UMP invigilator scheduling constraints

We include additional constraints in addition to the UMP original invigilator

constraints as described in section 5.3. This is motivated by a survey from Awang et al.

(2006) on the UMP invigilator scheduling problem which reveal that most of the

invigilators are not satisfied with their current invigilation duties. According to Awang

et al., invigilators suggested that each invigilation duty should have at least a 2 or 3

day gap between them and also suggested having fewer invigilation duties, considering

that they also need to be available/on-standby during their own exam paper.

Additionally, the invigilator requested an even spread of invigilation duties among the

staff (as we have considered in the original constraints - see FJ and F2 in section 5.3).

Moreover, according to the timetable officer they often receive request for changes

from the invigilators. The common reasons being invigilation duties are consecutive,

are to close together, staff need to be on standby as more than one of their exams are

scheduled together etc. We hope to satisfy the invigilators requests and minimise the

request for changes to the schedule. The additional hard constraints for the UMP

invigilator-scheduling problem are as follows:

H(6) Invigilators, with a lecturer status, on duty during their exam paper need to be

scheduled in the same timeslot and building as their own exam paper. The,
formulation is as follows

R

~)VI" + W'r/)' own(aj/,xi/'Y;p)= (V'rl+ W," ).aj/xi/m; For all f e {t •...• L},
p"'1

le {t ..... T},re{I, ...,R} and ie{I, ...,N} (Eq.l3)

Where

Where m, is the number of rooms exam i has been split across and B; is the

building for room r. The additional soft constraints are as follows:
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S13) Each invigilation duty should have at least 2 day gap, for every invigilator. A

penalty is given if this is violated. The formulation is:

(Eq.l4)

Where

gap(v W )-123; i/(Vlr(l+s)+Wlr(l+.,»=1
Ir(I+J)' Ir(/H) -

o otherwise

Where s is a constant values of 1 to 5.

S14) There is a penalty associated with staff on duty during their exam paper. If the

staffs are on duty during their exam, they need to be scheduled in the same

timeslot and building as their exam; see hard constraint, H16.
N I. R T

F4 =IIII(v/rt +w/rt)·duty(ail,xil)
I I r 1

(Eq.l5)

Where

A penalty value of three is chosen based on the feedback of the UMP

timetable officer. According to the officer, the exam questions go through a

series of checks (e.g. grammar checking and subject expert panel) in order to

ascertain that it is error free. Therefore, the officer believes that this is not a

major issue. However, it is preferable not to have the staff on duty during

their exam paper. Hence, we believe that a value of three is adequate to

represent the penalty.
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5.8 Results for the additional invigilator constraints

We present the results of the invigilator timetable generated by the UMP proprietary

software considering the additional constraint. In our proposed approach two different

strategies were used which involve sorting the invigilators randomly and also sorting

by the least number of invigilation duties. The results are summarised in tables 5.3 and

5.4.

5.8.1 Proprietary software results

In semesterl-200708, considering the additional invigilator constraints, the solution

exhibits the following characteristics. (see table 5.3, column A).

Hard Constraint (Hj6): The UMP results violate the invigilators on duty during

their own exam paper as they should be assigned in the same times lot and

building as their own exam paper.

Soft Constraints: measuring the solution using the additional soft constraint

results in a total of369 with the cost value for F3 (eq.l4) = 120 and F4 (eq.15)

= 9 (the value of FJ and F2 remain the same).

In semesterl-200809, the result shows that (see table 5.3, column-A):

Hard Constraints (Hj6): The UMP results violate the constraint.

Soft Constraints: The total cost value of the invigilator timetable solution is 713

with F3 (eq.14) = 546 and F4 (eq.l5) = 27 (FJ and F2 remain the same).

5.8.2 Our approaches

We consider the additional invigilator constraints in scheduling the invigilators using

the exam-timeslot-room solution produced by the UMP proprietary software for

semesterl-200708 and semesterl-200809, and the solution from Kahar and Kendall
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(2010a). The following discussion is based on the least invigilation duties ordering and

random ordering approach.

5.8.2.1 Least invigilation duties ordering

The least invigilation duties selects the invigilator with the least duties. Using a

candidate list of one for the UMP solutions from semesterl-200708 (see table 5.3,

column B), our proposed approach shows that we are able to produce a solution that

satisfies all the hard constraints with a cost value of 978 (:::::39sec). Increasing the

candidate list to five, we manage to produce a slightly better solution with a cost value

of 839 (:::::83sec). For semesterl-200809 dataset, using a candidate list of one the

solution produced satisfies all the hard constraints with a cost value of 1634 (:::::IOlsec)

and with a candidate list of five, the cost value is 1419 (:::::180sec).The results are

summarised in table 5.3, column B. Comparing the above result with the proprietary

software, although our result produces a high cost value (for both datasets), it does

satisfy all of the hard constraints compare to the result from the proprietary software.

Next, using the result from our graph colouring heuristic (Kahar and Kendall, 2010)

(see table 5.3, column C), for semesterl-200708 with a candidate list of one, the

solution produced satisfies all the hard constraints with a cost value of 860 (:::::35sec).

Increasing the candidate list to five, the cost value is 86 (:::::74sec),77% (369 compared

with 86 «369 - 86)/369 x 100%» better than the UMP result. For the semesterl-

200809 dataset, using a candidate list of one the solution produced satisfies all the hard

constraints with a cost value of 1092 (:::::90sec)and with a candidate list of five, the cost

value is 234 (:::::165sec), that is 67% (713 compared with 234 «713 - 234)1713 x

100%» better than the UMP result. The results are shown in table 5.3 column C. Based

on these results, using the approach presented in Kahar and Kendall (2010) to provide

the examination timetable, the result we produce is superior to the UMP proprietary

solution and also when using the UMP proprietary result, even when we include the

additional constraints that are not presented in the proprietary software. We believe the

reason for this is that having a lesser number of rooms used (see table 5.3), minimises

the number of invigil at ion duties, thus allowing the duties to be spread out more fairly.
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Table 5.3 Invigilator scheduling results with additional constraint

using least duties ordering approach

(A) (B) (C)

Constraints

Proprietary Our approach using exam
software timetable from UMP

Seml- Seml- Sern l-
200708 200809 200708

Sem 1-200809

(269 (290 (269 rooms) (290 rooms)
rooms) rooms) cl c5 cl c5

::::39s ::::83s ::::IOIs ::::180s

Our approach using exam
timetable from Kahar and

Kendall, 2010
Seml-
200708

Sem 1-200809

(244 rooms) (274 rooms)
cl c5 cl c5

::::35s ::::74s ::::90s ::::165s
116) Invigilators on duty

during their exam
paper need to be
schedule in the same Not (I) Not (6) Yes Yes Yes Yes Yes Yes Yes Yes
timeslot and building
as their own exam
paper

Total cost value or violation
of the soft constraint (F = F, 369 713 978 839 1634 1419 860 86 1092 234
to F4)

cl = candidates list a/one; c5 - candidates list 0/five; Not (x) = Not comply (number a/violations);

Yes = Comply

5.8.2.2 Random ordering

In using a candidate list of one on the UMP solutions from semesterl-200708, our

proposed approach shows that we are able to produce a solution that satisfies all the

hard constraints with a minimum cost value of 2155 (see table 5.4, column A).

Increasing the candidate list to five, the search produces far better minimum cost value

of 201 that is 45% {369 compared with 201 ({369 - 201)/369 x 100%» better when

compared with the proprietary software and 76% (839 compared with 201 «839 -

201)/839 x 100%» better when compared to using least duties ordering. For

semesterl-200809 dataset (table 5.4, column A), using a candidate list of one the

solution satisfies all the hard constraints with a minimum cost value of 2578. Using a

candidate list of five, the minimum cost value is 190, 73% {713 compared with 190

«(713 - 190)1713 x 100%)) better when compared with the proprietary software and

87% {1419 compared with 190 «1419 -190)/1419 x 100%» better when compared to

using least duties ordering. Referring to the result above, with a candidate list of five,

we are able to produce a good quality solution when compared to using a candidate list

96



Chapter 5. Universiti Malaysia Pahang Examination Timetabling Problem: Scheduling Invigilators

of one, the UMP proprietary software and using a least duties ordering strategy.

Additionally, candidates list of five is adequate as increasing the number of candidate

list will enable better exploration of the search space but it would increase the

computational time.

Next, using the result from our graph heuristic (Kahar and Kendall, 20 lOa), for

semesterl-200708 with a candidate list of one (see table 5.4, column B), the solution

produced satisfies all the hard constraints with a minimum cost value of 1617.

Increasing the candidate list to five, the solution has a minimum cost value of 67 that is

82% (369 compared with 67 «369 - 67)/369 x 100%» better when compared with the

proprietary software and 22% (86 compared with 67 «86 - 67)/86 x 100%» better

when compared to using least duties ordering. For semesterl-200809 dataset (see table

5.4, column B), using a candidate list of one the solution produced satisfies all the hard

constraints with a minimum cost value of 1918. Increasing to candidate list of five, the

minimum cost value is 49, 92% (713 compared with 49 «713 - 49)1713 x 100%»

better when compared with the proprietary software and 79% (234 compared with 49

«234 - 49)/234 x 100%» better when compared to using least duties ordering.

Referring to the result above, our proposed approach is able to return a good quality

solution (when using a candidate list of five). Overall, the least duties ordering

approach produce a good quality solution, outperforming the proprietary software and

random ordering (with a candidate list of one). However, the random ordering with a

candidate list of five outperforms the least duties ordering approach. Based on our

observation, this is because, in least duties ordering it will always select the

result (invigilator) that returns a lower penalty value during the early stages

of the search. However, towards the end of the search, the search becomes

more difficult and the least duties ordering has a higher penalty cost (in order

for feasible solution).

The proposed invigilator scheduling strategy is able to produce good quality solutions

even with additional constraints (H16, SI3 and S(4). This demonstrates that we are able

to produce a feasible solution and satisfy the additional invigilator requests (based on

the comments of Awang et al. 2006) which we believe would benefit the timetable

officer (rather than them need to respond to changes post schedule publication). In
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summary, we have demonstrated that the proposed invigilator scheduling approach is

able to produce a feasible solution that adheres to all constraints, including the

additional constraints not previously captured.

Table 5.4 Invigilator scheduling results for additional constraint

using random ordering approach

(A)
(8)

Our approach using exam timetable Our approach using exam

from UMP timetable from Kahar and

Constraints
Kendall,2010

Sem 1-200708 Sem 1-200809 Sem 1-200708 Sem 1-200809
(269 rooms) (290 rooms) (244 rooms) (274 rooms)

cl cS cl cS cl cS cl cS
::::39s ::::83s ::::IOIs ::::180s ::::35s ::::74s ::::90s ::::165s

H6) Invigilators on duty during
their exam paper need to be
schedule in the same timeslot Yes Yes Yes Yes Yes Yes Yes Yes
and building as their 0\\-11

exam paper
Stdev 135 47 143 27 130 31 157 20

Total cost value or Ave 2546 310 2886 246 1867 139 227 90
violation of the soft

2155constraint (F= F, to F~) Min 201 2578 190 1617 67 1918 49
Max 2784 406 3161 306 2180 200 2596 152

cl= candidates list 0/ one; c5= candidates list a/five; Not (x) = Not comply (number a/violations);
Yes = Comply

5.9 Contributions

The contributions of the work include collection of the invigilator constraints which

have never before been properly documented at UMP. We formulate the UMP

invigilation scheduling problem as a formal model. The model presented here has

never been modelled before in the literature. Additionally, we include additional

constraints for invigilator scheduling. The additional constraints, we believe more

accurately captures the UMP invigilation scheduling problem that is done at the

moment. Finally, the proposed of a constructive technique that able to produces good

quality solutions, satisfying all hard constraints (including the additional constraints)

that the UMP proprietary system fails to do.
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5.10 Conclusions

In this work, we have investigated invigilator scheduling for a real world examination

timetabling problem, which aims to satisfy a number of constraints. The problem is

complicated by the fact that the chief invigilator position can only be assigned to

academic staff and staff are not allowed to invigilate their own papers. Furthermore,

the invigilation duties assignment has to meet the required number of invigilators

(including the chief invigilator) for each room avoiding clashes and complying with

the maximum number of invigilation duties for each member of staff. A least ordering

search was used to schedule the invigilators. The proposed approach is able to produce

good quality solutions compared to the UMP proprietary software, satisfying all the

constraints, both hard and soft, which the proprietary software fails to do. Additionally,

we have included extra constraints, based on the comments in Awang et al., (2006).

Different ordering strategies (Le. least duties and random ordering) have been used to

schedule the invigilators. We have shown that a good quality solution can be produced

even with these additional constraints. We believe that the solutions produced would

satisfy all parties (Le. officers and staff).

The next chapter, we are going to improve the result from constructive phase (in

chapter 4) as it show that the invigilator assignment dependent on the number of room

use. Hence it is best to optimise the exam-timeslot-room assignment.
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Chapter 6

A Great Deluge Algorithm for a Real World Examination
Timetabling Problem.

The work presented in this chapter is under review (after resubmission having

addressed the reviewers comments) for the Journal of Operational Research Society

(JORS). Many work found in the literature have been applied to simplified

examination benchmark datasets. In this work we bridge the gap between research and

practice by investigating a problem taken from the real world. This work introduces a

modified and extended Great Deluge Algorithm (GOA) for the examination

timetabling problem which uses a single, easy to understand parameter. We investigate

different initial solutions, which are used as a starting point for the GOA, as well as

altering the number of iterations. Additionally, we carry out statistical analysis to

compare the results when using these different parameters. The proposed methodology

is able to produce good quality solutions when compared to the solution currently

produced by the host organisation, generated in our previous work and from the

original GDA (Dueck, 1993).

Sections 6.1 give an introduction of the work carried out in this chapter. In section 6.2,

we describe the GDA and our proposed modification. In section 6.3, we describe the

experimental setup to allow reproducibility for other researchers. The result from the

improvement phase is shown in section 6.4, followed by statistical analysis in section
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6.5. Discussion on the results is presented in section 6.6. Lastly, in sections 6.7 and 6.8

we summarise the contribution and present our conclusions.

6.1 Introduction

In this work we present a modification of the great deluge algorithm (GOA) which

allows the boundary, that acts as the acceptance level, to dynamically change during

the search. The proposed algorithm will accept a new solution if the cost value is less

than or equal to the boundary, which is lowered at each iteration according to a decay

rate. The proposed GOA uses a simple parameter setting and allows the boundary to

increase if there is no improvement after several iterations. Additionally, when the new

solution is less than the desired value (estimation of the required cost value), the

algorithm calculates a new boundary and a new desired value.

In order to investigate the proposed algorithm we use a real world capacitated

examination problem taken from Universiti Malaysia Pahang (UMP). This dataset has

several new constraints, in addition to those commonly found in the scientific

literature. This work is an extension of our previous work described in Kahar and

Kendall (2010a), in which we presented a constructive heuristic. We are now

attempting to improve on the (initial) solution returned from the construction heuristic

6.2 Modified Great Deluge Algorithm (modifled-GDA)

Suitable parameter settings are important in meta-heuristics and it is often difficult to

determine the best values to guarantee a good quality solution (Petrovic and Burke,

2004). The introduction of a simple and easy to understood parameter (Le.

computational time and desired value) to determine the decay rate in Burke et a!.

(2004) made it straightforward for non-experts (e.g. university timetabling officers) to

set the parameters, especially when compared to other meta-heuristic techniques (e.g.

simulated annealing - cooling schedule, tabu search - tabu list size, genetic algorithm -
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mutation or crossover probability rate etc.). Furthermore, they reported that their time-

predefined GDA was able to produce good quality solutions.

The success of GOA and the simplicity in setting the parameters is the motivation for

us to explore this method with the aim of bringing GOA to the university timetabling

officer as they are the person responsible for producing the timetable at UMP. Our

proposed GOA is shown in figure 6.1.

1. Set the initial solution s from the constructive heuristic (Kahar and Kendall, 20IOa)
2. Calculate initial costfunctionf(s)
3. Set the desired value D
4. Set the number of iterations I
5. Set Initial Boundary Level B = 0.03f(s)+ f(s)
6. Set initial decay Rate ..18 = (8 - D)/ I

7. Set Shest= S
8. While stopping criteria not met do
9. Apply neighbourhood heuristic on s to generate s*
10. Calculatef(s*)
11. Iff(s*) s f(s) orf(s*) s B then
12. Accept s = s*
13. Iff(s*) Sf(Sh esJ then
14. Shesl= s"
15. Lower Boundary B = B -..18
16. If no improvement in W iterations or B ::;;f(She.,Jorf(s)::;;D then
17. Set s = Sbe.,

18. If 'fts) sD then
19. D =f(s)*0.8
20. Set new decay rate ..18 = (/(s)- D)/ I remaining

21. Set B = 0.03f(s)+ I(s)

Figure 6.1 Our proposed Great Deluge Algorithm

The algorithm starts by setting the desired value D, number of iterations I and the

boundary level B (lines 1-5). The boundary level B is set slightly higher (3%) than the

initial solutionf(s) obtained from a constructive heuristic (Kahar and Kendall, 2010a).

The increment is to allow acceptance of worse result. We have tried several other

percentages; a higher percentage leads to the search being unfocused, whilst a smaller

percentage discourage exploration. Based on our observation, the 3% value is suitable

for the investigated dataset. The decay rate is calculated as the difference between

boundary level B and the desired solution D, divided by the number of iterations (line
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6). While the stopping condition is not met, we apply the chosen neighbourhood

heuristics. We calculate the new cost value /(s*) where s*e N(s) selected at random

(line 10). s* is accepted ifj(s*) is less than or equal toj(s) or ifj(s*) less than or equal

to boundary B (lines 11-12). If .f{s*) is less than or equal to j(Shesl), set Shesl = s* (line

13-14). Next, the boundary B is lowered based on the decay rate, f!.B (line 15).

However, if there is no improvement for several iterations, W (W = 5 in this work) or

boundary B is less than or equal to /(ShesJ or Irs) is less than or equal to desired value;

then set S = Shes/ (line 17). The new decay rate f!.B is calculated as the difference

between/(s) and desired value divided by the remaining number of iterations (line 20).

However, ifl(S) is less than, or equal to, the desired value then a new desired value is

calculated as 80% of I(s) (line 18-19). This dynamically allows the search to continue

with the search by having a new desired value. Based on our experiments a value

above O.S unable to give a good result because of a steeper boundary (which

discourage exploration). However values close to O.S able to give a relatively good

result. Hence, the boundary is set 3% above Irs) (line 21). Having this condition

enables the algorithm to dynamically adjust the boundary, decay rate and desired value

during the search.

We are going to compare the modified-GOA performance with the GOA propose by

Dueck, (1993) (which will be refer to as Dueck-GOA in the following section),

solution produced by UMP and from our previous work (Kahar and Kendall, 2010a).

6.3 Experimental setup

We implemented the proposed algorithm to the UMP semesterl-20070S and

semesterl-200809 datasets. Descriptions of the dataset please refer to chapter 3. We

run Dueck-GOA and our modified-GOA using several initial solutions selected

randomly within the minimum to maximum values of the constructive solution

presented in Kahar and Kendall (2010a). Note that, in Kahar and Kendall (2010a), the

minimum and maximum values produced in semesterl-20070S is 4.74 and 20.74

respectively, and in semesterl-200S/09 it is 6.16 and 23.11 respectively. Hence, the

(randomly) selected initial solutions in semester 1-20070S is 16.68, 13.74, 10.30 and
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7.82, and for semester 1-2008/09 they are 18.40, 15.25, 12.30 and 9.21. We ran both

methods with 1500 and 3000 iterations. The following neighbourhood heuristics are

used in our experiments. Note that, unless stated otherwise all the exam, timeslot and

rooms are selected randomly.

Nh 1) Move an exam to a different timeslot and room(s). This move is only possible

when the destination room and timeslot is empty

Nh2) Move an exam to a different room(s) within the same timeslot.

Nh3) Move an exam to a different timeslot maintaining the currently assigned

room(s)

Nh4) Choose an exam from a candidate list of 30, where exams are chosen based on

their contribution to the objective function. An exam is chosen using roulette

wheel selection and moved to a different timeslot and room(s).

NhS) Same as Nh4 but move the exam to a different room(s) within the same

timeslot

Nh6) Same as Nh4 but move the exam to a different timeslot maintaining the

currently assigned room(s).

Nh7) Select two exams and swap the timeslot and room(s) between them.

Nh8) Select two timeslots and swap the timeslot between them

Nh9) Same as Nh4 but instead of moving the exam, we swap the selected exam

with another exam.

Nh 10) Select two timeslots and move all exams between the two timeslots. As an

example if timeslot 2 and timeslot 6 were selected, move exams in timeslot 2

to timeslot 3; followed by moving exams in timeslot 3 to timeslot 4 and so on

until exams in timeslot 6 are moved to timeslot 2.

In the next section we show the results when using each of these neighbourhoods.
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6.4 Examination assignment: Results

In this section, we compare the examination timetable generated by the UMP

proprietary software, our constructive heuristic (Kahar and Kendall, 201 Oa), and

Dueck-GOA with our proposed GOA (modified-GOA). Each experiment was run 50

times on a Pentium core2 processor. The running time for 1500 iterations is around

480 seconds while 3000 iterations takes about 960 seconds. The result for semesterl-

200708 is shown in table 6.1 and semesterl-200809 is shown in table 6.2.

6.4.1 Semesterl-200708

6.4.1.1 Modijied-GDA vs UMP proprietary software

The UMP proprietary software solution is 13.16 with a violation of one of the hard

constraints (violating the no clash requirement HE1, see chapter 3) (Kahar and Kendall,

2010a). Table 6.1 presents our results using the modified-GOA. Note that all of our

results respect all the hard constraints. Using modified-GOA with 1500 iterations, we

are able to produce a solution that is 66% (13.16 compared with 4.53 «(13.16 -

4.53)/13.16 x 100%» better with Nh I when using an initial solution with a cost of 7.82

compared to the solution produced by the proprietary software. The same calculation

of percentage is used throughout the discussion. Increasing the number of iterations to

3000, the solution produced with Nh 1, using an initial cost of 7.82, is 70% (13.16

compared with 4.0 I) better when compared to the proprietary software and II % (4.53

compared with 4.01) better compared to using 1500 iterations. However, increasing the

number of iterations, obviously, increases the computational time.

6.4.1.2 Modijied-GDA vs constructive heuristic

In the constructive heuristic (Kahar and Kendall, 20 lOa) the best solution found was

10.98 and 4.74 using a candidate list of one and five respectively. Comparing

modified-GOA with the constructive heuristic using a candidate list of one, in
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modified-GOA with 1500 iterations (table 6.1), we are able to produce a solution that

is 59% (10.98 compared with 4.53) better with Nh 1 using an initial solution of 7.82.

Even with a poorer initial cost of 16.68, we are still able to improve the solution by

50% (10.98 compared with 5.51) with Nhl. Extending the search to 3000 iterations,

initial cost of 7.82 and 16.68, Nhl produced solutions with a 63% (10.98 compared

with 4.01) and 55% (10.98 compared with 4.99) improvement when compared to the

constructive heuristic solution.

In the constructive heuristic, with a candidate list of five, modified-GOA able to

produce a better solution but with a small margin of improvement. Using an initial cost

of 7.82 with 1500 and 3000 iterations, the GOA solution outperforms the constructive

heuristic by 4% (4.74 compared with 4.53) and 15% (4.74 compared with 4.01)

respectively. However, using a large initial cost 16.68, with 1500 and 3000 iterations,

the constructive heuristic outperforms the modified-GOA by 14% (5.51 compared with

4.74) and 5% (4.99 compared with 4.74) respectively.

6.4.1.3 Modijied-GDA vs Dueck-GDA

In the Dueck-GOA approach, with 1500 iterations it able to produce 5.07 cost value

using Nh6 and with 3000 iteration produce 4.94 with Nh7. Comparing modified-GOA

and Dueck-GOA with 1500 iterations (table 6.1), the modified-GOA able to produce a

solution that is 11% (5.07 compared with 4.53) better than Dueck-GOA with Nh 1

using an initial solution of 7.82. Even though with a poorer initial cost of 16.68, the

modified-GOA were able to outperform Dueck-GOA by 20% (6.85 compared with

5.51) with Nhl. Extending the search to 3000 iterations, initial cost of7.82 and 16.68,

Nh I produced solutions with a 19% (4.94 compared with 4.01) and 25% (6.61

compared with 4.99) improvement when compared to Dueck-GOA. The best values

found by each of the method describe above is shown in figure 6.2.

Overall the proposed modified-GOA gives an improvement when compared to the

UMP proprietary software, the constructive heuristic and Dueck-GOA. From these

result it appears that using a better quality initial cost outperforms both the UMP
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proprietary software and the constructive heuristic, but using a poorer quality initial

solution, the modified-GDA does not guarantee to produce high quality solutions even

for Dueck-GDA within our experimented number of iteration (when compared to the

constructive heuristic with a candidate list of 5).

14

12

10

UMP CO!l$tructlve Constructive Dueck-GOA Dueck-GOA Modified-GOA Modified-GOA
(c. 11 (e. 5) (ISOO (3000 (1500 (3000

iter,nions) iterations) iterations) iterations)

Figure 6.2 Best values of each method for semester 1-200708

6.4.2 Semester1-200809

6.4.2.1 Modified-GDA vs UMP proprietary software

In semesterl-200809 (refer table 6.2), the calculated UMP solution was 26.08 with a

violation of all of the hard constraints (Kahar and Kendall, 201 Oa). The modified-

GOA, with 1500 iterations, the solution produced is 77% (26.08 compared with 6.11)

better compared to the proprietary software solution (and the solution adheres to all the

hard constraints) using Nhl with an initial cost of 9.21. Increasing the number of

iterations to 3000, the solution produced with Nhl, using an initial solution of9.21 is

78% (26.08 compared with 5.63) better than the proprietary software and 9% (6.11

compared with 5.63) better compared to using 1500 iterations.

108



'"0
00
0
0
N
I-....4)
Vl
4)

E
4)
til....
.,2 <
.:: Cl
;:j ~til

~ ~
e ~ ]
..!It Cl <.
o.c) c£ M
btl ~~-e 4)

S! -.c
'" C':I

~ ~
t::.~
C:)
.S

!
~..
,0
::::
l
"C
C:)..
~
~..
~~
~..::
~...
C:)

~
t.:l
~
IQ..~
]"
o



Chapter 6. A Great Deluge Algorithm for a Real World Examination Timetabllng Problem

6.4.2.2 Modified-GDA vs constructive heuristic

In the constructive heuristic (Kahar and Kendall, 201 Oa), the minimum solution

produced is 13.89 and 6.61 using candidate lists of one and five respectively. In a

comparison between modified-GOA and the constructive heuristic with a candidate list

of one, the modified-GOA with 1500 iterations, produced a 56% (13.89 compared with

6.11) better solution with Nhl using an initial cost of9.21. Even with a poorer

initial cost (18.40), the GOA solution is 46% (13.98 compared with 7.12) better using

Nh3. Extending the search to 3000 iterations, when using an initial cost of 9.21 and

18.40, Nhl produces 59% (13.89 compared with 5.63) and 51% (13.89 compared with

6.78), respectively, better solutions compared to the constructive heuristic.

Comparing the modified-GOA result with the constructive heuristic with a candidate

list of five, modified-GOA with 1500 iterations outperforms the constructive heuristic

by 8% (6.61 compared with 6.11). However, using a poorer initial cost (18.40), the

constructive heuristic outperforms modified-GOA by 7% (7.12 compared with 6.61).

In modified-GOA with 3000 iterations, it produces a 15% (6.61 compared with 5.63)

better solution compared to the constructive heuristic. However, with the poorer initial

cost (18.40). the constructive heuristic outperforms modified-GOA by just under 3%

(6.78 compared with 6.61).

6.4.2.3 Modified-GDA vs Dueck-GDA

For Dueck-GOA, with 1500 iterations it able to produce 7.20 cost value using Nh9 and

with 3000 iteration produce 6.39 with Nh7 (see table 6.2). Comparing modified-GOA

and Dueck-GOA with 1500 iterations (table 6.2). the modified-GOA able to produce a

solution that is 15% (7.20 compared with 6.11) better than Dueck-GOA with Nh 1

using an initial solution of 7.82. With poorer initial cost of 16.68, the modified-GOA

were able to outperform Dueck-GOA by 20% (9.48 compared with 7.12) with Nh3.

Extending the search to 3000 iterations, initial cost of 7.82 and 16.68, modified-GOA

with Nh 1 produced solutions with a 19% (6.39 compared with 5.63) and 27% (9.28
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compared with 6.78) improvement when compared to Dueck-GDA. The best value

found by each of the methods described above is shown in figure 6.3.

Overall our proposed modified-GDA is able to generate superior solutions than the

UMP proprietary software, the constructive heuristic (see Kahar and Kendall, 20 lOa)

and Dueck-GOA. Based on the result from both datasets, it shows that using a good

quality, initial solution will produce superior results, and possibly even better when

using a larger number of iterations. This is possible because by using a good quality

solution would allow the search to focus on the promising areas of the search space

(Burke and Newall, 2002). In the next section, we will analyse the results.

30

16.08

25

13.89

20 .

15

10

6.61 7.2

j.ii
o I

UMP Constructive Construct;".
(e-l) (e. SI

Dueck-GOA
(1500

iterations)

Dueck·GOA. Modified-GOA Modified-GOA.
(3000 (1500 (3000

iterations) iterations) iterations)

Figure 6.3 Best values of each method for semester 1-200809

6.5 Statistical analysis

This section presents a statistical analysis of our results. The aim is to compare the

modified-GOA and Dueck-GDA as well as the parameters used in the experiments to

ascertain whether there are statistical differences. In addition we will determine

suitable parameter values and neighbourhood heuristics. The comparisons include:

a) Compare different initial solutions: Is there any significant difference in using an

initial solution with a higher cost than using a better quality initial solution?
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b) Compare the number of iterations: Is there any significant difference in using a

larger number of iterations?

c) Compare neighbourhood heuristics: Is there any significant difference in the

result produce by using different neighbourhood heuristics?

Note that the analyses in (a) to (c) concentrate on the modified-GOA only.

We are conscious that some of these may seem intuitively obvious (e.g. increasing the

number of iterations produces superior results) but it is still informative to do the

analysis as it is often not carried out. A statistical test is carried out using Kruskal-

Wallis and Mann-Whitney U to determine if there are significant differences. The

hypotheses to be tested are, null hypothesis Ho assumes that the samples are from

identical populations, and the alternative hypothesis 11, assumes that the sample comes

from different populations. We reject Ho when p ~ 0.05 and vice versa. The above

hypothesis are used throughout the statistical tests describe in the following section.

The Mann-Whitney U is used to compare two samples while Kruskal-Wallis is used to

compare more than two samples. Additionally, Mann-Whitney U is used to investigate

the rejection cause of Ho in conjunction with Kruskal-Wallis, The normality test are

carried out using Shapiro-Wilk with the null hypothesis Ho assumes that the samples

are normally distributed, and the alternative hypothesis H, assumes that the sample is

non-normal. We reject the Ho whenp ~ 0.05 and vice versa.

We start the statistical test with a normality test using Shapiro-Wilk and continue with

the relevant statistical test (as described above) based on the normality test result.

6.5.1 Scmesterl-200708

6.5.1.1 Significance difference: Modijied-GDA and Dueck-GDA

We analyses the modified-GOA and Dueck-GOA result using Mann-Whitney U. Table

6.3 and table 6.4 show the p-value result for 1500 iterations and 3000 iterations

respectively. For 1500 iterations, (see table 6.3), we notice that most of the result

shows significant difference except for the Nh2 (all initial), Nh5 (all initial), Nh6
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(16.68), Nh8 (10.30 and 7.82) and Nh10 (7.82). For 3000 iterations (see table 6.4),

again most of the result show significant difference except for Nh2 (all initial), Nh5

(all initial), Nh6 (13.74,7.82), NhS (13.74, 10.30, 7.S2) and Nhl0 (13.74, 7.S2).

Based on both of the runs, generally the result that shows no significant difference

involves neighbourhood heuristic that performs poorly with respect to quality of the

obtained final solution (see table 6.1 and table 6.2).

Table 6.3 Semesterl-20070S p-values comparison between modified-GDA

and Dueck-GDA for every neighbourhood heuristics with 1500 iterations

Neighbourhood Initial cost
heuristics 16.68 13.74 10.30 7.82

Nhl .000 .000 .000 .000

Nh2 .694 .221 1.00 1.00

Nh3 .000 .000' .000 .000

Nh4 .000 .000' .000 .000

Nh5 1.00 .385 1.00 1.00

Nh6 .299 .037 .009 .000

Nh7 .000 .000 .000 .000

Nh8 .000 .000 .517 .900

Nh9 .000 .007 .000 .000

Nhl0 .000 .000 .012 .251

Table 6.4 Semesterl-20070S p-values comparison between modified-GDA

and Dueck-GDA for every neighbourhood heuristics with 3000 iterations

Neighbourhood Initial cost
heuristics 16.68 13.74 10.30 7.82

Nhl .000 .000 .000 .000

Nh2 .019 .427 1.00 1.00

Nh3 .000 .000 .000 .000

Nh4 .000 .000 .000 .000

Nh5 1.00 .688 1.00 1.00

Nh6 .043 .115 .024 .095

Nh7 .000 .000 .000 .034

Nh8 .000 .634 .482 .296

Nh9 .000 .000 .000' .000

NhlO .000 .649 .013 .652
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6.5.1.2 Comparing initial costs

We compare the initial cost based on the number of iterations for all neighbourhood

heuristics. We use Kruskal-Wallis to compare between the initial costs (Le. 16.68,

13.74, 10.30 and 7.82). At the 95% confidence interval, the statistical test shows that

there is a difference (reject Ho) among the results produced between the initial costs for

all of the neighbourhood heuristics (see table 6.5). Referring to table 6.5, the p-values

are all less than 0.05 which leads us to reject Ho.

Table 6.5 Semester 1-200708 p-value comparison for the initial cost

for each neighbourhood heuristic based on the number of iterations

Neighbourhood p-value
heuristics 1500 iterations 3000 iterations

Nhl .000 .000
Nh2 .000 .000

Nh3 .000 .000

Nh4 .000 .000

Nh5 .000 .000

Nh6 .000 .000

Nh7 .000 .000

Nh8 .000 .000

Nh9 .000 .000

NhlO .000 .000

In-depth analyses (see table 6.1) on the differences in pair (16.68 with 13.74, 10.30,

7.82; 13.74 with 10.30, 7.82 and so on) were investigated using Mann-Whitney U.

Based on the analysis only a few of the initial cost shows no differences (accept Ho)

which include:

- Nh3 between 10.30 and 7.82 for both iterations counts.

- Nh4 between 16.68 and 13.74 for both iterations counts.

- Nh6 between 16.68 and 13.74 with 3000 iterations.

- Nh8 between 16.68 and 13.74 for both iterations counts.

- Nh9 between 16.68 and 13.74 with 1500 iterations.

- Nh9 between 10.30 and 7.82 with 3000 iterations.

- Nh I0 between 16.68 and 13.74 with 3000 iterations
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Generally, the results that show no difference (accept Ho) involve using a solution with

a large initial cost as well as neighbourhood that is underperformed. Hence, from this

analysis we can conclude that it is more important to have a good neighbourhood while

having a good solution helps to speed up the search process.

6.5.1.3 Comparing the number of iterations

We compare the number of iterations (1500 and 3000 iterations) based on the initial

cost (Le. 1500 vs 3000 with an initial cost of 16.68, 13.74, 10.30 and 7.82) using

Mann-Whitney U. Table 6.6 shows the p-value of the comparison between the number

of iterations executed. At the 95% confidence interval, the result is as follows (see

table 6.6):

- Nh 1 show significant difference (reject 110) across all initial costs.

- Nh3 and Nh7 shows significant differences (reject Ho) for all initial costs except

for 10.30 (accept Ho).

- Nh2, Nh4 and Nh8 show no significant differences (accept Ho) across all initial

costs.

_ Nh5 and Nh6 shows no significant differences (accept Ho) for all initial costs

except during initial 13.74 (reject Ho).

- Nh9 show no significant differences (accept 110) for all initial costs except for

13.74 and 10.30 (reject Ho)

Nh 10 show no significant differences (accept Ho) for all initial costs except

during 10.30 (reject Ho).

Based on these tests, the result varies according to the neighbourhood heuristics. We

notice that, an explorative neighbourhood heuristics (Le. Nh 1 and Nh7) show

significance difference (reject Ho) between the two iterations compared to

undiversified neighbourhood (Le. Nh2, Nh5 etc). Therefore, (considering the solution

in table 6.1) we conclude that it is best to use a large number of iterations. However, a

search with a large number of iteration would only be worthwhile if it is being

complemented with a good neighbourhood heuristic (to encourage exploration).
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Table 6.6 Semesterl-200708 p-value comparison between 1500 and 3000

iterations for each neighbourhood heuristic based on initial cost

Neighbourhood Initial cost
heuristics 16.68 13.74 10.30 7.82

Nhl .000 .000 .000 .000
Nh2 .087 .340 1.00 1.00
Nh3 .000 .000 .051 .002
Nh4 .141 .127 .815 .702
NhS 1.00 .038 1.00 1.00
Nh6 .860 .044 .524 .104
Nh7 .000 .000 .467 .000
Nh8 .236 .866 .692 .589
Nh9 .202 .006 .022 .495
NhlO .061 .303 .005 .172

6.5.1.4 Comparing neighbourhood heuristics

We compare the entire neighbourhood heuristics based on the initial cost and number

of iterations using Kruskal-Wallis (Le. Nhl vs Nh2 vs Nh3 vs ... NhlO using initial

cost 16.86 with 1500 iterations; etc). Table 6.7 show the p-values of the

neighbourhood heuristics comparison. The result shows that there are significant

differences (reject Ho) for the solutions produced using different neighbourhood

heuristics.

Pair-wise comparison (analysis on the cause of Ho rejection) using Mann-Whitney U

on the neighbourhood heuristics show that there are significant differences (reject Ho)

for the solution produced by most of the neighbourhood heuristics except for some.

For example, Nh2 and Nh5 show no difference with an initial cost 7.82 and 10.30 for

both iterations and initial cost 16.68 using 3000 iterations. Table 6.8 shows a summary

of the non-significant differences (accept Ho) between the neighbourhood heuristics.

Referring to table 6.8, we notice that, some of the neighbourhoods (Le. Nh3 and Nh4,

Nh4 and Nh7) show similarity although the inner working of the heuristics are

different.
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Table 6.7 Semester 1-200708 p-value comparison for the neighbourhood

heuristics based on the initial cost and the number of iterations

Initial value 1500 3000

16.68 .000 .000

13.74 .000 .000

10.30 .000 .000

7.82 .000 .000

Finally, we can summarise that Nh 1 produces the best result follow by Nh7 and Nh4.

Next are Nh3, Nh9, Nh6, Nh8, Nh 10, Nh2 and Nh5. In our observation, Nh I is a

robust neighbourhood heuristic. Nh2 and Nh5 are the worst neighbourhood heuristics

as they are unable to give any improvement on the initial cost during the search

(especially Nh5). Nh7 works best with a better quality initial cost, while Nh4 work

best with a large initial cost. Further discussion on the neighbourhood heuristics is

given in section 6.5.2.4.

Table 6.8 Semester1-2007/08 summary of the non-significant differences

(accept lIo) when comparing the neighbourhood heuristics

1500 iterations 3000 iterations
16.68 13.74 10.30 7.82 16.68 13.74 10.30 7.82

Nhl

Nh2 Nh5 Nh5 Nh5 Nh5 NhS

Nh3 Nh4 Nh4
Nh4, Nh4,
Nh7 Nh7

Nh4 Nh7 Nh7 Nh7

NhS

Nh6
Nh8, Nh9 Nh9 Nh9
Nh9

Nh7

Nh8 NhlO NhlO NhlO NhlO NhlO

Nh9

NhlO
'.' = result show rejecting Ho
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6.5.2 Semester1-200809

6.5.2.1 Significance difference: modifled-GDA and Dueck-GDA

Same as in previous section (6.5.1.1), we used Mann-Whitney U to analyses the result.

Table 6.9 and table 6.10 show the p-value result for 1500 iterations and 3000 iterations

respectively. For 1500 iterations, (see table 6.9), we notice that most of the result

shows significant difference except for the Nh2 (all initial), Nh5 (all initial), Nh6

(18.40, 15.25 and 12.30), Nh8 (15.25, 12.30 and 9.21), Nh9 (9.21) and NhlO (12.30

and 9.21).

In 3000 iterations (see table 6.10), most of the result show significant difference except

for Nh2 (all initial), Nh5 (all initial), Nh6 (12.30), Nh8 (15.25, 12.30 and 9.21), Nh9

(12.30 and 9.21) and NhlO (15.25, 12.30 and 9.21).

Based on the result, semesterl-200809 dataset show more non-significant difference

compare to semesterl-200708. However, the result that shows non-significant

difference mainly involves neighbourhood heuristic that performs poorly (same as in

semester 1-200708 result).

Table 6.9 Semesterl-200809 p-values comparison between Modified-GDA

and Dueck-GDA for every neighbourhood heuristics withl Stn) iterations

Neighbourhood Initial cost
heuristics 18.4 15.25 12.30 9.21

Nhl .000 .000 .000 .000
Nh2 .080 1.00 1.00 1.00
Nh3 .000 .000 .000 .000
Nh4 .000 .000 .000 .000
NhS 1.00 1.00 1.00 1.00
Nh6 .074 .983 .4S2 .000
Nh7 .000 .000 .000 .000
Nh8 .000 .512 .549 .734
Nh9 .000 .000 .000 .467
NhlO .000 .002 .844 .330

118



Chapter 6. A Great Deluge Algorithm/or a Real World Examination Timetabling Problem

Table 6.10 Semesterl-200809 p-values comparison between Modified-GOA

and Dueck-GDA for every neighbourhood heuristics with 3000 iterations

Neighbourhood Initial cost
heuristics 18.4 15.25 12.30 9.21

Nhl .000 .000 .000 .000
Nh2 .600 1.00 1.00 1.00
Nh3 .000 .000 .000 .000
Nh4 .000 .000 .000 .000
NhS 1.00 1.00 1.00 1.00
Nh6 .035 .001 .406 .000
Nh7 .000 .000 .000 .000
Nh8 .000 .473 .108 .474
Nh9 .000 .000 .055 .144
NhlO .000 .874 .177 .288

6.5.2.2 Comparing initial costs

We compare the initial cost based on the number of iterations for ail neighbourhood

heuristics for semesterl-200S09 dataset. As in section 6.5.1.2, we used Kruskal-Wallis

to compare between the initial costs (i.e. 18.40, 15.25, 12.30 and 9.21). Referring to

table 6.11, at the 95% confidence interval, there are significant differences on all of the

results as the p-values are all Jess than 0.05 (reject Ho). In a pair-wise comparison

between each initial cost using Mann-Whitney V, the result shows that only a few of

the initial cost shows no significant differences (accept Ho) which include:

- Nh3 between 18.40 and 9.21 with 3000 iterations,

- Nh6 between 18.40 and 15.25 using 1500 iteration

- NhS between 15.25 and 12.30 using 3000 iteration

Based on the results, the majority of the neighbourhood heuristics show significant

differences (accept Ho) and considering the result in table 6.2, it is best to start with a

good quality solution and thus reaffirms our conclusions in section 6.5.1.2.
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Table 6.11 Semesterl-200809 p-value comparison for the initial cost

for each neighbourhood heuristic based on the number of iterations

Neighbourhood p-value
heuristics 1500 iterations 3000 iterations

Nhl .000 .000
Nh2 .000 .000
Nh3 .000 .000
Nh4 .000 .000
NhS .000 .000
Nh6 .000 .000
Nh7 .000 .000
NhS .000 .000
Nh9 .000 .000
NhlO .000 .000

Table 6.12 Semesterl-200809 p-value comparison between 1500 and 3000

iterations for each neighbourhood heuristic based on initial cost

Neighbourhood Initial cost
heuristics IS.40 15.25 12.30 9.21

Nhl .000 .000 .000 .000
Nh2 .907 1.00 1.00 1.00
Nh3 .000 .000 .003 .000
Nh4 .022 .224 .124 .622
NhS 1.00 1.00 1.00 1.00
Nh6 .000 .150 .871 .029
Nh7 .000 .000 .000 .000
Nh8 .000 .000 .644 .757
Nh9 .047 .7S0 .IS3 .322
NhlO .024 .095 .450 .752

6.5.2.3 Comparing the number of iterations

As in 6.5.1.3, we compare the solution for the number of iterations (1500 and 3000

iterations) based on the initial cost (Le. 1500 vs 3000 with an initial cost of 18.40,

15.25, 12.30 and 9.21). Table 6.12 shows the p-value of the comparison between the

number of iterations. At the 95% confidence interval, the result is as follows (see table

6.12):
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- Nh I, Nh3 and Nh7 show significant differences (reject Ho) across all initial costs.

- Nh2 and Nh5 show no differences (accept Ho) in the result for all initial costs.

- Nh4, Nh9 and Nh 10 show significant differences (reject Ho) only on initial costs

18.40.

- Nh6 show significant difference (reject Ho) only on initial costs 18.40 and 9.21.

- Nh8 show significant difference (reject Ho) only on initial costs 18.40 and 15.25.

The results show a similar pattern as for semesterl-200708 and this reaffirms our

conclusion (as in the previous dataset) that is best to use a larger number of iterations.

6.5.2.4 Comparing neighbourhood heuristics

As in 6.5.1.4, we compare the set of neighbourhood heuristics based on the initial costs

and the number of iterations using Kruskal-Wallis. Table 6.13 shows the p-value of the

neighbourhood heuristics comparison. At the 95% confidence internal, the statistical

result shows that there are significant differences (reject Ho) for the solutions produced

between the neighbourhood heuristics. An in depth analysis using Mann-Whitney U

shows that there are significant differences (reject Ho) for the solutions produced by

most of the neighbourhood heuristics except for some. Table 6.14 summarises the

significant differences (accept 110) between neighbourhoods. Hence, we can summarise

that Nh I produced the best result, followed by Nh7 and Nh3. Next are Nh4, Nh9,

Nh I0, NhS, Nh6, Nh2 and Nh5. Again, Nh 1 is the best heuristic and Nh5 is the worst.

Overall, we can conclude that it is advisable to use the best quality solution as the

initial solution and a larger number of iterations. In terms of neighbourhood heuristics,

the results vary according to the neighbourhood heuristic and some of it performs

differently between the two dataset. Hence, a neighbourhood that works for one dataset

might not necessarily work on other dataset. Therefore, it is best to use a set of

explorative neighbourhood heuristics (e.g. Nhl and Nh7) as it will encourage

exploration of the search space.
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Table 6.13 Semesterl-200809 p-value comparison for the neighbourhood

heuristic based on initial cost and the number of iterations

Initial value 1500 3000
18.40 .000 .000
15.25 .000 .000
12.30 .000 .000
9.21 .000 .000

Table 6.14 Semesterl-200809 summary of non-significant differences

(accept Ho) when comparing neighbourhood heuristics

1500 iterations 3000 iterations

18.40 15.25 12.30 9.21 18.40 15.25 12.30 9.21

Nhl
Nh2 Nh5 Nh5 Nh5 Nh5 NhS NhS
Nh3 Nh4,

Nh9
Nh4 Nh9 Nh9 Nh9 Nh9
Nh5

Nh6 Nh8, NhlO Nh8, Nh8Nh9. NhlO NhlO
Nh7
Nh8 Nh9 NhlO NhlO NhlO Nh9 NhlO
Nh9
NhlO
'-' .. result show rejecting Ho

6.6 Discussion

The proposed GDA give an improvement over the constructive heuristic and

outperforms the UMP proprietary software. The success of the technique is because of

its dynamic acceptance level that uses a boundary level which gradually decreases

based on a decay rate, but also allows the boundary to increase when there is no

improvement during search. In increasing the boundary level, the new boundary is set

higher than the current solutionj(s) allowing the search to accept worse solutions. The

algorithm also adjusts the boundary and a newly desired value is calculated when/(s)

is less than or equal to the desired value.
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Comparison between Modified-GOA and Dueck-GOA reveal the Modified-GOA able

to produce better solution than Dueck-GOA. Some of the neighbourhood heuristics do

show non-significant difference. However, it mainly involves neighbourhood

heuristics that perform poorly.

The modified-GOA gives an improvement over the initial cost (both 1500 and 3000

iterations) for the majority of the neighbourhood heuristics. Statistical analysis on the

initial cost shows that some neighbourhoods (e.g. Nh3, Nh6, Nh8 etc) have similar

performance, mostly between large initial costs, where semesterl-200708 show more

similarity compared to semesterl-200809. Only a few show similarity on a small initial

cost (i.e. Nh3 and Nh9), which we believe is caused by the neighbourhood heuristics

themselves. The reason being, Nh3 involves moving an exam to a different timeslot

only (while maintaining the selected room) and Nh9 involves swapping the exam that

is chosen from amongst exam that contribute to the high value penalty. Referring to

table 6.1 and table 6.2, we can summarise that using a smaller initial cost produce a

higher quality solution when compared to using a larger initial cost because having a

smaller initial cost encourages the search to concentrate on good regions of the search.

However, note that the computational time to find a small initial cost takes a bit longer

during the constructive phase (Kahar and Kendall, 201 Oa).

An analysis on the number of iterations, reveals that some of the neighbourhoods (i.e.

Nh2, Nh5 and Nh6) show no difference in their performance between the numbers of

iteration. We notice that the result is very much dependent on the heuristics used. An

explorative neighbourhood would make use of the large number of iterations to

efficiently explore the search space. This led us to conclude that the number of

iterations does playa role in the search but it is not as important as the neighbourhood

heuristics that are used. Using a larger number of iterations gives better results because

it enable the method to cover more of the search space, compared to small number of

iterations. However, this does require extra computational time. A good compromise is

to use a small initial cost with a large number of iterations.

An analysis on the neighbourhood heuristics shows that Nh 1 is the best and NhS is the

worst. The result also show that the neighbourhood heuristics perform differently
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between the two datasets (except for the first and the last two neighbourhoods),

although the datasets are similar in terms of the characteristics (see chapter 3). In our

observation, Nh 1 (which produce the best result) is a robust neighbourhood heuristics

(see table 6.1 and table 6.2). Nh2 and Nh5 are the worst neighbourhood heuristics as it

is unable to improve the initial cost except for an initial cost 13.74 on semesterl-

200708 dataset. The result demonstrates the importance of the initial cost in order for

the search to advance. Nh7 works best with a small initial cost while Nh3, Nh4 and

Nh6 work best with large initial cost. Hence, we can conclude that the choice of

neighbourhood heuristics is very important in the search in order to converge to a good

quality solution (Thompson and Dowsland, 1998) in addition to a good choice of

initial solution and number of iterations.

6.7 Contributions

The contributions of this work include an introduction of a modification of the great

deluge algorithm (modified-GOA) that uses a simple to understand parameter that

permits the boundary (that act as acceptance level) to dynamically change during the

search. That is, it calculates a new boundary, decay rate and a desired value, if there

is no improvement after several iterations, or, the boundary is less than the new

solution, or, when the new solution is less than the desired value. We implementated

the modified-GOA to solve the real world examination timetabling problem which

includes additional constraints that have never been reported before in the literature

(Kahar and Kendall, 20 lOa). The modified-GOA is able to give an improved solution

over the constructive heuristic, better quality solutions compared to the proprietary

software and Dueck-GOA approach. Finally, we investigates the effect of the initial

solution, the number of iterations and neighbourhood heuristics. Statistical analysis

has been carried out to determine differences between the various components. The

choice of neighbourhood heuristics, number of iterations and initial solution plays a

significant role in the quality of the solution returned.
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6.8 Conclusion

In this work, we have investigated a real world examination timetabling problem

aiming to improve on the constructive heuristic solution. The modified-GOA approach

is able to produce good quality solutions compared to the UMP proprietary software,

satisfying all the constraints (which the proprietary software fails to do), improve on

the constructive result and perform better than the Dueck-GOA. The propose modified-

GOA uses a simple to determine parameter that can find a good solution. The selection

of neighbourhood heuristics, iterations and initial cost plays a significant part in the

search.

Due to the fact that the neighbourhood heuristics are very important, we are going to

investigate the use of multiple neighbourhood. We are going to use each

neighbourhood in succession. The next neighbourhood will be selected if the current

neighbourhoods show no improvement. This will be discussed further in the next

chapter.
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Chapter 7

Solving a Real World Examination Timetabling Problem:
Multi-Neighbourhood Great Deluge Algorithm

Many search methods can be found in the scientific literature, with meta-heuristics

being very popular. Meta-heuristics are very dependent on parameter settings and the

neighbourhoods used in order to find good quality solutions (Burke and Newall, 2002

and Burke and Petrovic, 2002). This creates a problem for exam timetable officers

where it is often difficult to determine the best parameter setting and neighbourhood

heuristics to guarantee a good quality solution (Thompson and Dowsland,1996) ..

Therefore it is up to the algorithm designer to automate this process as far as possible.

This work introduces a modified extended Great Deluge Algorithm with multi-

neighbourhood heuristics for the examination timetabling problem, which uses a

single, easy to understand parameter and calls upon more than one neighbourhood

during the search. We investigate different ordering strategies, as well removing

several of the good and worse neighbourhood heuristics in order to study the effect.

Statistical analysis is carried out to compare the results between different strategies.

The proposed methodology is able to produce good quality solutions when compared

to the solution currently produced by the host organisation and also when compared to

the solutions generated in our previous work.
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In section 7.1, gives an introduction of the work presented in this chapter. We describe

the modified GOA using multi-neighbourhood heuristics in sections 7.2. The

experimental setup is discussed in section 7.3. The results from the improvement phase

is shown in section 7.4 and, in section 7.5, we analyse the results via a set of statistical

tests. Discussion of the result and statistical analysis is presented in 7.6. Lastly, in

section 7.7 and 7.8, we summarise the contribution and present our conclusions.

7.1 Introduction

There are many search methodologies that can be used to generate examination

timetables. One class in particular are meta-heuristic approaches. Meta-heuristics tend

to be very dependent on parameter settings (Petrovic and Burke, 2004) and the

neighbourhood operators that are used (Ahuja, Orlin and Sharma, 2000; Kahar and

Kendall, 20 IOb and Thompson and Downsland, 1998). Each neighbourhood operator

affects the solution in a different way (Ahuja, Orlin and Sharma, 2000). A suitable

neighbourhood operator for one dataset might not perform well for another (Kahar and

Kendall, 20 IOb).

We propose a modification of the great deluge algorithm (GOA) proposed by Dueck

(1993) which uses a simple to understand parameter with a dynamic boundary level

(acceptance level) that changes during the search. Additionally, the proposed method

uses more than one neighbourhood heuristic during the search. This allows the search

to explore a wider range of possibilities in the search space. We investigate the

proposed methodology on a real world examination timetabling problem from UMP.

This work is an extension of our previous work, where we developed a constructive

heuristic for this real world problem (Kahar and Kendall, 20 lOa) and improved on that

solution using single neighbourhoods and also explored if the number of iterations and

the starting solution led to statistically different results (Kahar and Kendall, 2010b). In

this work we are investigating whether providing GOA with a set of neighbourhood

moves from which to choose can further improve the algorithm.
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7.2 Modified Great Deluge Algorithm

A suitable parameter setting is important in meta-heuristics and it is often difficult to

determine the best value to guarantee a good quality solution (Petrovic and Burke,

2004). In addition, meta-heuristic techniques are often dependent on neighbourhood

heuristics to effectively explore the search space. Different neighbourhood heuristics

could produce a different solution within the same search space (Ahuja, Orlin and

Sharma, 2000; Kahar and Kendall, 201 Ob). In our previous work (Kahar and Kendall,

201 Ob), which considered two different UMP datasets that were almost identical (in

terms of the conflict density matrix, see table 3.2), we showed that one single

neighbourhood did not always produce the best result and this motivated this study to

make a set of neighbourhoods available. Furthermore, having simple and easy to

understand parameters (Le. computational time and desired value) to determine the

decay rate in Burke et al. (2004) makes it straightforward for non-experts (e.g.

university timetable officers) to set the parameters, especially when compared to other

meta-heuristic techniques (e.g. SA, TS, GA etc).

The success of GDA and the simplicity in parameter setting, motivates us to explore

this method with the aim of bringing the modified multi-neighbourhood GDA to the

university timetable officer as they are the ones responsible for producing the timetable

at UMP. This work is an extension of our previous work in Kahar and Kendall

(20 IOb), exploring the use of simple parameter settings together with multi-

neighbourhood heuristics (the algorithm uses more than one neighbourhood heuristic

during the search). The use of multi-neighbourhood removes the needs to make

algorithmic choices (Le. choosing the neighbourhoods) which they (exam timetabling

officers) are probably not in a position to do effectively. The following neighbourhood

heuristics are used in our experiments. Note that, unless stated otherwise all the exam,

timeslot and rooms are selected randomly. The exact same neighbourhood heuristics as

in section 6.3 are used here.

The algorithm works by using the current neighbourhood in every iteration and only

selects a different neighbourhood (within the list) when the current neighbourhood

solution is rejected by the GDA (solution is greater than the boundary level). The
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neighbourhood heuristics are sorted randomly and are also based on the result in Kahar

and Kendall (2010b). In Kahar and Kendall (201Ob), the most effective

neighbourhoods for semesterl-200708 were Nh1 follow by Nh7, Nh4, Nh3, Nh9, Nh6,

Nh8, NhIO, Nh2 and Nh5. In semesterl-200809 the most effective neighbourhoods

were found to be Nh 1 followed by Nh7, Nh3, Nh4, Nh9, Nh 10, Nh8, Nh6, Nh2 and

Nh5. In the discussion that follows we refer to these as the specified neighbourhoods.

Our proposed modified multi-neighbourhood GDA is shown in figure 7..1.

I. Set the initial solution s from the constructive heuristic (Kahar and Kendall. 2010a);
2. n is the neighbourhood heuristics N. where n E {I ... N}
3. Calculate initial cost function fts)
4. Set the desired value D
S. Set the number of iterations I
6. Set Initial Boundary Level B = 0.03/(s)+ fts)
7. Set initial decay Rate LIB = (B-D)/I

8. Set Sbell == S

9. Sort N randomly or according to a specified sequence
10. While stopping criteria not met do
II. Apply neighbourhood heuristic n on s to obtain s·
12. Calcukueftsr)
13. !f/(s*) S /(s) or /(s*) S B then
14. Accept s = s*

IS. !ff(s*) S/(Sbe.J then
16. Shell = s*
17. lffts") = Irs) then
18. n = n + I
19. Else
20. n = n + I
21. !fn > N then
22. n = I
23. Lower Boundary B = B -LIB
24. !fno improvement in iterations W or B S/(Sh esJ or fts) S D then

2S. Set S = Sbell

26. !f/(s) S D then
27. D =/(s)·0.8
28. Set new decay rate LIB == (!(s)-D)/Iremaining

29. Set B = 0.03/(s)+ /(s)

Figure 7.1 Our proposed Great Deluge algorithm

The algorithm starts by calculating the intital cost function I(S) (lines 1-3). Next, we set

the desired value D, number of iterations I and the boundary level B (lines 4-6). The

boundary level B is set 3% higher than the initial solution fts) obtained from a

constructive heuristic (Kahar and Kendall, 20 lOa). The boundary level B is increased
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slightly to allow acceptance of worse solutions. The decay rate !lB is calculated as the

difference between boundary level B and the desired solution D divided by the number

of iterations I (line 7). Based on the decay rate formulation, obviously having a small

number of iterations would result in a steeper rate compared to using a larger number

of iterations.

Next, we sort the neighbourhood heuristics N randomly or according to a specified

sequence based on a work in Kahar and Kendall (2010b). While the stopping condition

is not met, we apply neighbourhood heuristic n to the current solution s (line 11). We

calculate the new cost valuef(s*) where s*eN(s) (line 12). s* is accepted ifJ(s*) is less

thanJ(s) or ifJ(s*) less than boundary B (lines 13-14). Next, Ifj{s*) is less thanj{sbes,),

set Sbest = s· (line 15-16). Then, if J(s *) is equal to J(s), we select the next

neighbourhood n from the neighbourhood list (n=n+l, line 17-18). However, if s* is

not accepted, select the next neighbourhood n (n=n+1, line 19-20). In a condition

where n is greater than N, we set n = 1 (line 21-22). Next, boundary B is lowered based

on the decay rate, !lB (line 23). However, if there is no improvement for several

iterations, W (W = 20 in this work) or boundary B is less than or equal to J(SbesJ or J(s)

is less than or equal to desired value D; then set S = Sbest(line 25). The new decay rate

I1B is calculated as the difference between J(s) and desired value D divided by the

remaining number of iterations I (line 28). However, ifJ(s) is less than, or equal to, the

desired value D then a new desired value is calculated as 80% of J(s) (line 26-27).

Additionally, the boundary is set slightly aboveJ(s) (line 29).

7.3 Experimental setup

We implemented the propose method to two of the UMP datasets. A details discussion

of the dataset refer to chapter 3. The same properties as in Kahar and Kendall (20 1Ob)

are used here to allow comparison between these methods. In this experiment, we use

an initial solution of7.82 for semesterl-200708 and 9.21 for semesterl-200809. These

solution are created by the constructive heuristic in Kahar and Kendall, (201 Oa). Each

experiment was run 50 times on a Pentium core2 processor. We ran for 3000 iterations

(:::::960 seconds).
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As described above, the sorting used is a random and specified neighbourhood sorting

strategy. Additionally, we also experimented by removing the good and the worst three

neighbourhoods. In semester 1-200708, the good neighbourhoods are the first three (Le.

Nhl, Nh7 and Nh4), and the worse are the last three (i.e. Nhl0, Nh2 and Nh5). In

semesterl-200S09, the good neighbourhoods are Nhl, Nh7 and Nh3 and the worse are

Nh6, Nh2 and Nh5. We will carry out an experiment to determine if there is any

significant difference in removing these neighbourhoods which would mean having to

implement a smaller number of neighbourhoods which might be attractive to some

developers.

7.4 Examination assignment: Results

In this section, we compare the examination timetable generated by the UMP

proprietary software, the constructive heuristic (Kahar and Kendall, 201 Oa), the

modified-GOA (Kahar and Kendall, 2010b) and our modified multi-neighbourhoods

GOA. The result for semesterl-200708 is shown in table 7.2 and semesterl-200S09 is

shown in table 7.4.

7.4.1 Semestcrl-200708

The UMP result generated by the proprietary software for semesterl-20070S is 13.16

with a violation of one of the hard constraints (no clashing constraint - Kahar and

Kendall, 201 Oa). Using the constructive heuristic (Kahar and Kendall, 201 Oa), we

manage to construct a feasible solution using different candidate list sizes (C = I and C

= 5). With C = I, the minimum value produced is 10.98 while C = 5 produced a

solution with an objective function of 4.74. In the improvement phase, the modified

GOA was able to give an improved solution on this initial solution. We experiment

with different initial solutions (Kahar and Kendall, 20 IOb) and manage to produce a

minimum value of 4.01, starting with an initial cost of 7.S2. Table 7. I summaries the

best results for semesterI-20070S using different techniques (including the

methodology proposed here).
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Referring to table 7.2, the modified multi-neighbourhood GOA (MuNeiGDA), with

random ordering strategies give a minimum value of3.30 with an average of3.89. The

specified ordering strategies gives a minimum value of 3.41 with an average of 3.86.

Note that the initial cost used is 7.82. Compared to the initial solution used (7.82), the

MuNeiGDA-random ordering is able to produce a solution that is 58% (7.82 compared

with 3.30 «7.82 - 3.30)17.82 x 100%» better and in MuNeiGDA-specified, it is also

able to produce an improvement of56% (7.82 compared with 3.41 «7.82 - 3.41)17.82

x 100%».

Table 7.1 Summary results for semesterl-200708
Techniques Ave Stdev Min Max

Constructive heuristic (C = 1) 15.51 2.10 10.98 20.03
Constructive heuristic (C = 5) 6.06 0.76 4.74 7.98
Modified GDA 4.38 0.15 4.01 4.73
MuNeiGDA-Random 3.89 0.18 3.30 4.23
MuNeiGDA-Specified 3.86 0.16 3.41 4.19

Using a random ordering strategy (MuNeiGDA-random); we are able to produce

solution that is 75% (13.16 compared with 3.30 «13.16 - 3.30)/13.16 x 100%» better

when compared to the solution produced by the UMP proprietary software. The

MuNeiGDA-random also outperforms candidate list, C = 5, by 30% (4.74 compared

with 3.30 «4.74 - 3.30)/4.74 x 100%» and outperforms the modified-GOA (Kahar and

Kendall, 2010b) by 18% (4.01 compared with 3.30 «4.01 - 3.30)/4.01 x 100%».

In the specified ordering strategies (MuNeiGDA- specified); we are able to produce a

solution that is 74% (13.16 compared with 3.41 «13.16 - 3.41)/13.16 x 100%» better

when compared to the solution produced by the UMP proprietary software. The

MuNeiGDA-specified also outperforms the candidate list, C = 5, by 28% (4.74

compared with 3.41 «4.74 - 3.41)/4.74 x 100%» as well as the modified GOA (Kahar

and Kendall, 2010b) by 15% (4.01 compared with 3.41 «4.01 - 3.41)/4.01 x 100%».

Table 7.1 summaries the result for semesterl-200708.
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Overall the proposed MuNeiGDA algorithm gives an improvement when compared to

the UMP proprietary software (Kahar and Kendall, 201 Oa) and the modified-GOA

(Kahar and Kendall, 2010b).

Table 7.2 GOA with multi neighbourhood result for semesterl-200708 based on

random and specified neighbourhood ordering strategies

Multi neighbourhood
Random Specified

Std Ave Min Max Std Ave Min Max
All Nh 0.24 4.01 3.54 4.59 0.25 3.90 3.46 4.59
RemoveNh5 0.21 3.93 3.36 4.42 0.19 3.88 3.44 4.50
Remove Nh2 0.18 3.89 3.30 4.23 0.16 3.86 3.41 4.19

Remove Nhl0 0.25 3.99 3.50 4.61 0.20 3.89 3.47 4.35
Remove Nh5 and Nh2 0.22 4.04 3.63 4.53 0.19 4.01 3.66 4.66
Remove Nh5 and Nh 10 0.18 3.91 3.49 4.27 0.18 3.85 3.50 4.28

Remove Nh2 and Nh 10 0.19 3.89 3.51 4.33 0.15 3.90 3.50 4.20
Remove NhS, Nh2 and Nh I0 0.19 4.04 3.58 4.40 0.23 4.06 3.54 4.49

Remove Nhl 0.23 4.07 3.60 4.61 0.17 4.00 3.67 4.46

RemoveNh4 0.24 4.11 3.60 4.61 0.22 3.97 3.48 4.40

RemoveNh7 0.22 4.04 3.60 4.45 0.21 3.97 3.55 4.56

Remove Nh 1 and Nh4 0.25 4.29 3.75 4.80 0.24 4.21 3.74 5.04

Remove Nh 1 and Nh7 0.20 4.16 3.64 4.56 0.21 4.07 3.65 4.51

Remove Nh4 and Nh7 0.23 4.21 3.64 4.64 0.17 3.99 3.54 4.46

Remove Nh I, Nh4 and Nh7 0.26 4.47 3.96 5.18 0.22 4.31 3.75 4.87
SId = stdev; Ave = average; Min = Minimum; Max = Maximum

7.4.2 Scmcstcrl-200809

In semesterl-200809, the calculated UMP solution was 26.08 with a violation of all of

the hard constraints (Kahar and Kendall, 201 Oa), In the constructive heuristic (Kahar

and Kendall, 201 Oa), a candidate list of C = 1 produced a minimum value of 13.89 and

with a candidate list of C = 5 the result achieved was 6.61. During the improvement

phase, the modified-GOA was able to improve on the initial solution used. We

experiment with different initial solutions (Kahar and Kendall, 2010b) and manage to

produce a minimum value of 5.63 using an initial cost of 9.21. Table 7.3 summaries

these results using different techniques.
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Referring to table 7.3, the MuNeiGDA-random ordering strategies produce a minimum

value of 5.52 with an average of 6.09. The specified ordering strategies produces a cost

value which is almost the same as the random ordering, that is 5.53 with an average of

5.99. Note that the initial cost used is 9.21. Compared to the initial solution used

(9.21), the MuNeiGDA-random and MuNeiGDA-specified gives an improvement of

40% (9.21 compared with 5.52 «9.21 - 5.52)/9.21 x 100%». The MuNeiGDA-random

produced a solution that is 79% (26.08 compared with 5.52 «26.08 - 5.52)/26.08 x

100%» better when compared to the solution produced by the UMP proprietary

software and 16% (6.61 compared with 5.52 «6.61 - 5.52)/6.61 x 100%» better when

compared to candidate list, C = 5. Compared with the modified-GOA, the MuNeiGDA-

random outperforms the modified-GOA (Kahar and Kendall, 2010b) by only 2% (5.63

compared with 5.52 «5.63 - 5.52)/5.63 x 100%». The same performance was also

shown in the MuNeiGDA-specified A good average result shown only when removing

Nh20rNh5.

Table 7.3 Summary results for semesterl-200809

Ave Stdev Min Max
Constructive heuristic (C = 1) 17.33 1.69 13.89 21.66
Constructive heuristic (C = 5) 7.88 0.71 6.61 9.69
Modified GOA 6.04 0.15 5.63 6.42
GOA-MuNei (Random) 6.09 0.20 5.52 6.48
GOA-MuNei (specified) 5.99 0.19 5.53 6.47

The result for semesterl-200809 as described above is shown in table 7.4. Overall the

proposed MuNeiGDA gives an improvement when compared to the UMP proprietary

software and the modified-GOA. In the next section, we are going to further analysis

the results using statistical comparison.
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Table 7.4 GDA with multi-neighbourhood result for semesterl-200809 based on the

random and specified neighbourhood ordering strategies

Random SpecifiedMulti neighbourhood
Std Ave Min Max Std Ave Min Max

All Nh 0.22 6.10 5.58 6.67 0.15 6.06 5.71 6.40
RemoveNh5 0.17 5.98 5.56 6.36 0.16 5.97 5.55 6.22
RemoveNh2 0.18 6.01 5.66 6.38 0.19 5.99 5.53 6.47
Remove Nh6 0.20 6.16 5.70 6.52 0.16 6.01 5.73 6.38
Remove NhS and Nh2 0.14 6.03 5.68 6.28 0.19 6.07 5.60 6.53
Remove NhS and Nh6 0.19 6.04 5.68 6.41 0.22 6.03 5.58 6.49

Remove Nh2 and Nh6 0.20 6.09 5.52 6.48 0.17 6.02 5.58 6.33
Remove Nh5, Nh2 and Nh6 0.16 6.05 5.67 6.34 0.16 6.08 5.75 6.43
Remove Nhl 0.20 6.28 5.76 6.67 0.22 6.21 5.75 6.69
RemoveNh3 0.24 6.29 5.60 6.72 0.19 6.16 5.78 6.51
RemoveNh7 0.18 6.22 5.80 6.65 0.17 6.12 5.84 6.51
Remove Nh 1and Nh3 0.19 6.56 6.24 6.94 0.18 6.49 5.95 6.91

Remove Nh 1and Nh7 0.18 6.51 6.08 6.95 0.19 6.46 6.08 6.85
Remove Nh3 and Nh7 0.19 6.42 5.92 6.78 0.17 6.29 5.94 6.71

Remove Nh 1,Nh3 and Nh7 0.19 7.04 6.68 7.49 0.20 7.07 6.63 7.59
Std = stdev; Ave - average; Min - Minimum; Max - Maximum

7.S Statistical Comparisons

This section present the statistical analysis carried out on our results. The aim is to

compare strategies used in the experiments and determine whether there are statistical

differences. The comparisons include:

a) Comparison between different ordering strategies: Is there any significant

difference in using random ordering compared to specified neighbourhood

ordering strategies?

b) Comparison between different sets of neighbourhood heuristics: Is there any

significant difference in using all of the neighbourhoods compared to removing

three of the good or worst neighbourhoods?

All data was tested for normality using Shapiro- Wilk with Ho - assumes that the

sample is normally distributed, and HI - assumes that the sample is non-normal. We

reject Ho when p ~ 0.05 and vice versa. In fact, all data is normally distributed,
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therefore we use r-test and one-way ANDV A, followed by Games Howell post-hoc to

determine any significant differences.

The hypotheses for the r-test and one-way ANDV A are that the null hypothesis Ho -

assumes that the samples are from identical populations, and the alternative hypothesis

HI - assumes that the sample comes from different population. We reject Ho when p :::

0.05 and vice versa. The above hypothesis are used throughout the statistical tests

described in the following sections. The r-test is used to compare two samples while

one-way ANDV A is used to compare more than two samples. Additionally, Games

Howell Post-Hoc is used in conjunction with one-way ANDY A to investigate the

cause of 110 rejection. Games Howell Post Hoc compares more than one pair of

samples simultaneously.

7.5.1 Semesterl-200708

7.5.1.1 Ordering strategies

In a comparison on the ordering strategies, we want to test whether there is any

significant difference in the performance on random ordering compare to using

specified neighbourhood ordering strategies with the MuNeiGDA. T-test is used in the

statistical test, the result shows a significant difference (reject Ho) between the two

ordering strategies when using all of the neighbourhoods. Referring to table 7.5, in

removing the worst neighbourhood heuristics (Nh5; Nh2; Nh 10; NhS and Nh2, etc),

the solutions show no significant difference (accept Ho) except when removing NhlO

(reject I/o). However when removing good neighbourhoods (Nh 1; Nh4; Nh7; Nh I and

Nh4, etc), the result shows:

Significant differences (reject Ho) when removing Nh4; Nhl and Nh7; Nh4 and

Nh7; and, Nhl, Nh4 and Nh7.

_ No significant difference (accept Ho) when removing Nhl; Nh7 and, Nhl and

Nh4.
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Table 7.5 p-value result for semesterl-200708 in

comparison between the ordering strategies

Multi neighbourhood T DJ P
All Nh 2.23 98.00 0.03
Remove Nh5 1.29 98.00 0.20
Remove Nh2 0.76 98.00 0.45
Remove NhlO 2.20 98.00 0.03
Remove Nh5 and Nh2 0.63 98.00 0.53
Remove Nh5 and NhlO 1.58 98.00 0.12
Remove Nh2 and Nh I0 -0.17 98.00 0.87
Remove Nh5, Nh2 and Nh I0 -0.57 98.00 0.57
Remove Nhl 1.87 98.00 0.07
Remove Nh4 3.01 98.00 0.00
RemoveNh7 1.82 98.00 0.07
Remove Nh I and Nh4 1.64 98.00 0.11
Remove Nh I and Nh7 2.29 98.00 0.02
Remove Nh4 and Nh7 5.28 98.00 0.00
Remove Nh I, Nh4 and Nh7 3.19 98.00 0.00

Based on the result, we notice that in removing the worst neighbourhood, it does not

show any significant difference (accept Hn) between the ordering strategies when

removing one or more of the worst neighbourhood(s). However, in removing the good

neighbourhood(s), overall it shows a significant difference (reject Hn) between the

ordering strategies particularly when more than one neighbourhood is removed.

We can conclude that they are no differences to the ordering strategies when removing

the worst neighbourhoods. The result mainly shows significant differences only when

removing the good neighbourhoods, especially when removing more than one

neighbour. Hence, based on the result shown in table 7.2 and table 7.5, it is best to use

a specified ordering strategy.

7.5.1.2 Neighbourhood heuristics used

In this statistical test, we compare the use of neighbourhood heuristics to determine

whether is there a significant difference in using all of the neighbourhood heuristics
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compared to removing the worst or removing the good neighbourhoods (based on

previous work in Kahar and Kendall, 20 IOb). One-way ANOV A is used to compare

between these neighbourhood heuristics. Based on the statistical test, the result show

significant differences (reject Ho) with p-values = 0.00.

In a pair-wise comparison using Games Howell Post-Hoc on the random and specified

ordering strategies, the result shows significant difference (reject Ho) when we remove

the good neighbourhoods (see table 7.7a and table 7.7b, appendix K), particularly

when more than one good neighbourhood is removed (see column I - 0 in table 7.7a,

7.7b. 7.8a and 7.8b; appendix K). Therefore, we can conclude that by discarding more

than one good neighbourhood will lead to a deterioration of algorithmic performance.

7.5.2 Semcstert-200809

7.5.2.t Ordering strategies

In a comparison on the ordering strategies for semesterl-200809, the result shows a

significant difference (p-values = 0.41) between random and specified neighbourhood

ordering strategies when using all of the neighbourhoods (sec table 7.6). In removing

the worst three neighbourhood heuristics (Nh5; Nh2; Nh6; Nh5 and Nh2. etc). the

solutions show no significant difference (accept Ho) except when removing Nh6 (see

table 7.6). In removing the specified (good) neighbourhoods (Nh I; Nh3; Nh7; Nhl and

Nh3, etc). the result shows:

- Significant differences (reject Ho) when we remove Nh I; Nhl and Nh3; Nh 1 and

Nh7; and Nhl, Nh3 and Nh7.

- No significant differences (accept Ho) when removing Nh3; Nh7; and Nh3 and Nh7.

Therefore, we can conclude that, in removing the worst neighbourhood, there are no

differences between random and specified ordering when removing either one or more

of the worst neighbourhood(s). However, the result show non significant differences

(accept lIo) between the ordering strategies when we remove the good
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neighbourhoods. Hence, based on the result shown in table 7.5 and table 7.6, it is best

to use a specified ordering strategy.

Table 7.6 p-value result for semesterl-200809 in

comparison between the ordering strategies

Multi neighbourhood t df P
All Nh 0.83 98.00 0041
RemoveNh5 0.30 98.00 0.76
Remove Nh2 0.78 98.00 0044
Remove Nh6 4.30 98.00 0.00
Remove Nh5 and Nh2 -0.98 98.00 0.33
Remove Nh5 and Nh6 0.26 98.00 0.80
Remove Nh2 and Nh6 1.85 98.00 0.07
Remove Nh5, Nh2 and Nh6 -1.00 98.00 0.32
Remove NhI 1.67 98.00 0.10
RemoveNh3 3.01 98.00 0.00
RemoveNh7 2.87 98.00 0.01
Remove Nh 1 and Nh3 1.87 98.00 0.07
Remove Nh 1 and Nh7 1.14 98.00 0.26
Remove Nh3 and Nh7 3049 98.00 0.00
Remove Nh 1, Nh3 and Nh7 -0.81 98.00 0.42

7.5.2.2 Neighbourhood heuristics used

In a comparison between the neighbourhood heuristics using one-way ANOV A, the

statistical test shows that there are significant differences (reject Ho) on all of the

results with p-valucs = 0.00. In a pair-wise comparison using Games Howell Post-Hoc

on the random and specified ordering strategies, the result shows that only good

neighbourhood heuristics show significant differences (reject Ho) when it is removed

(see table 7.8a and table 7.8b, appendix K) mainly when more than one good

neighbourhood is removed (see column I to 0 in table 7.8, appendix K). As in

semesterl-200708, we can conclude that the algorithm will not work effectively when

the good neighbourhoods are removed.
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7.6 Discussion

The proposed modified multi-neighbourhoods GOA is able to give a better cost value

compare to the modified-GOA (Kahar and Kendall 2010b) and outperforms the UMP

proprietary software. The multi-neighbourhoods GOA is able to produce a better

solution because of the use of a dynamic acceptance level and having the benefit of

more than one neighbourhood.

The dynamic acceptance level approach uses, a boundary level which gradually

decreases the decay rate, but also allows the boundary to increase when there is no

improvement during the search (for several iterations). In increasing the boundary

level, the new boundary is set higher than the current solutionJ{s) allowing the search

to accept worse solutions (encouraging exploration). Additionally, the algorithm

adjusts the boundary when it is less than/(sbesJ and even when/(s) is less than or equal

to the desired value, D. However for the latter condition, the algorithm will calculate a

new desired value, D.

In addition, having the multi-neighbourhood heuristics feature increases exploration of

the search space due to the fact that different neighbourhood heuristics perform

differently (Kahar and Kendall, 2010b). The multi-neighbourhood uses the current

neighbourhood as long as the result is accepted and only selects a different

neighbourhood when the current result shows no improvement (compared to the

boundary level).

Overall, the proposed MuNeiGDA (random and specified ordering) approaches gives

an improvement when compared to the UMP proprietary software (Kahar and Kendall,

201Oa) and the modified-GOA (Kahar and Kendall, 2010b). Referring to the ordering

strategies result, the MuNeiGDA-random ordering strategies produces a better

minimum (min) value when compared to specified ordering but on average the random

ordering gives a slightly higher value for both of the datasets. Additionally, in the

statistical tests, it shows no significance difference (accept Ho) in using either random

or specified ordering (considering the choice of neighbourhood that give the min
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value}. Hence, we conclude that the ordering strategies give a minimum impact

towards the algorithm's performance as both orderings perform the same.

In a comparison on the neighbourhood heuristics used, both of the datasets show

significant differences with p-values < 0.05 (reject Ho). A detailed comparison using

Games Howell Post-Hoc reveal that (for both datasets), only good neighbourhood

heuristics show significant differences (reject Ho) when they are removed, particularly

when we remove more than one good neighbourhood. Therefore, referring appendix I,

it is best to use all of the neighbourhood as the solution shows small differences

compared to removing the worst neighbourhoods. Hence, conclude that it is advisable

to use all of the neighbourhood heuristics as each of the neighbourhoods have their

own strengths that could aid the algorithm in exploring the search space.

7.7 Contributions

The contributions are as follows:

a) Present a modification of the great deluge algorithm (GOA) that uses a simple to

understood parameter and permits the boundary (that acts as an acceptance level)

to dynamically change during the search. It is dynamic in the sense that it

calculates a new boundary, decay rate and a desired value, if there is no

improvement after several iterations, or, the boundary is less than the new

solution, or, when the new solution is less than the desired value. The algorithm

uses more than one neighbourhood heuristic (multi-neighbourhood) during the

search. It will use the current neighbourhood heuristic until the result shows no

improvement and then it will choose the next neighbourhood.

b) We have explored suitable ordering strategies and neighbourhood heuristics by

removing the worst or best neighbourhoods. Statistical test were carried out to

determine the statistical differences between the ordering and the choice of

neighbourhood heuristics. This revealed that it is best to use all of the

neighbourhoods as this helps to better explore the search space.
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c) Implementation of (a modified multi-neighbourhood) GOA in solving a real

world examination timetabling problem which includes constraints that never

been reported before in the scientific literature (Kahar and Kendall, 201 Oa). The

multi-neighbourhood GDA is able to give better quality solutions compared to

the proprietary software and the original modified-GOA.

7.8 Conclusion

In this chapter, we have investigated a real world examination timetabling problem

aiming to improve the constructive heuristic solution. The modified multi-

neighbourhood GDA approach is able to produce good quality solutions compared to

the UMP proprietary software, satisfying all the constraints (which the proprietary

software fails to do) and improve on the constructive result. The propose GDA uses a

simple to determine parameter that can find a good solution and is able to find a better

solution than the initial cost even with higher desired value (due to it capabilities to

adjust the desired value, boundary and decay rate). Having a simple and versatile

algorithm helps to eliminate the difficulty for the examination timetabling officer in

managing/using the algorithm.

Additionally, the use of multi-neighbourhood heuristics help to effectively explore the

search space and improve on the result. The multi-neighbourhood simplifies the

operation of the algorithm for the timetabling officer rather than having to determine

the suitable neighbourhood. This is beneficial as in Kahar and Kendall (2010b) they

showed that the choice of neighbourhood plays a major role in a search. Lastly, we

conclude that, the multi-neighbourhood successfully shows that it is able to provide a

better solution compare to the modified-GOA. It is best to use all of the neighbourhood

heuristics rather than having to select a suitable set of neighbourhoods.
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Chapter 8

Solving ITC2007 Examination Timetabling Problems

The Second International Timetabling competition (lTC2007) introduced with the aim

of creating a platform for researchers to test their algorithms on real world timetabling

problems. It includes more realistic problems and contains comprehensive constraints

compared to other benchmark examination dataset in the literature. In this chapter, we

report the implementation of graph heuristics, modified-GOA and multi-

neighbourhood GOA to the ITC2007 examination dataset. The aim of the experiment

is to determine whether the above methods able to solve the ITC2007 as it did for the

UMP datasets.

The chapter is organised as follows, in sections 8.1, we describe the ITC2007

examination problem. In sections 8.2, we describe the experimental setup to allow

reproducibility for other researchers. The result of the proposed method is shown in

section 8.3. Discussion on the results is presented in section 8.4. Lastly, in sections 8.5

and 8.6 we summarise the contributions and present our conclusions.

8.1 International Timetabling Competition 2007 (ITC2007)

The First International Timetabling competition was established in 2002 with the aim

of introducing a real world timetabling problems for researchers to test their
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algorithms. Recently, the international timetabling competition 2007 (ITC2007) which

is the second competition series has been established to further attract and bring the

researcher together in exploring the timetabling problem. The second competition

(called ITC2007) include examination problem from the third track

(http://www.cs.qub.ac.ukiitc2007/index) where it has eight different dataset each with

different features i.e. number of exam, number of timeslot and rooms etc. (see section

2.4.4, table 2.6). The datasets vary in their level of conflict density and constraints (see

table 8.1). Beside the conflict density, the difficulty level dependent on the constraints

and these includes number of timeslot, number of room, room capacity, timeslot

length, period hard constraints (PHC) and room hard constraints (RHC). Detail

descriptions of these constraints are as follows:

a) Number of tlmeslot: the number of times lot differs between the datasets. There

are penalty associated with the timeslot that is two exams in a row (SJ) or day

(S2), spreading (S3), later period (S5) and period penalty (S6) (see figure 8.2).

b) Number 0/ rooms: the number of rooms differs between the datasets. Having

large room quantity give flexibility in choosing the room. There are penalty

associated with a certain room (see S7 in figure 8.2)

c) Room capacity: ITC2007 datasets allow the exam to share room but disallow

the exam to be split into several rooms.

d) Tlmeslot length: some of the data sets have a similar and different times lot

length (see table 8.1). A different timeslot length would require a check for

suitable timeslot length during exam-times/ot assignment. There also a penalty

associated with different length of exams sharing the same room (see S4 in

figure 8.2).

e) Period liard constraints - AFTER: the AFTER constraint involve schedule the

second exam AFTER the first exam timeslot. Example schedule examA

AFTER examB. ExamA need to be schedule in timeslot after examB timeslot.

Some of the dataset include more than two exams that associates with AFTER

constraint (e.g. examA AFTER examB and examA AFTER examC) and this

complicates the problem further (see Exam-I and Exam-S in table 8.1).

Furthermore, having a multi period hard constraint (e.g. examA AFTER examB
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and examA coincidence examC) complicates the problem even further (see

Exam-S, Exam-7 and Exam-S in table 8.1).

f) Period hard constraints - EXCLUSION: the exclusion constraint involves

scheduling the exam in a different timeslot to one another (e.g. examA

EXCLUSION examB).

g) Period hard constraint - COINCIDENCE: the coincidence constraint involves

scheduling the exam in the same timeslot (e.g. examA COINCIDENCE

examB).

h) Room hard constraints: this constraint require exam to be schedule into the

allocate room. Only 3 data sets contains this constraint that is Exam-Z, Exam-3

and Exam-S. Table S.l shows the number of exams that involve with the

constraints.

Table 8.1 ITC2007 examination datasets features

Timeslot Period Hard Constraint (PH C) Room Hard
Constraintlength After (Aj) Exclusion (Ec) Coincidence (Cd) (RHC)

Exam-l Similar max-3 max-2 max-2 -
Exam-2 Vary max-2 max-2 max-2 2

Exam-3 Vary max-2 max-2 max-4 IS

Exam-4 Similar No max-4 max-2 -
Exam-S Vary max-Z':" max-Z'" max_4A1.l:.c -
Exam-6 Vary max-2 max-2 max-2 -
Exam-7 Similar rnax-z'" max-J:" max-2 -
Exam-8 Similar max-S'" - max-S'" 1
"slmltur = the timeslot length are the same for all timeslots; vary = the timeslot differ In length
among them; max-?= the maximum number of exam involve with the respectively period hard
constraint (e.g. examA AFTER examB and examA AFTER examC) while the xx referred to the
examts) involve in multi period hard constraint (e.g. examA AFTER examB and examA
COINCIDENCE examC)

Figure 8.1 and figure S.2 shows the hard and soft constraints for the ITC2007

examination datasets. The hard constraints need to be satisfied for a feasible solution.

The soft constraints need to be satisfied as much as possible and, hence it is used to

determine the quality of the solution.
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Figure 8.1 Hard Constraints

H1. Student cannot sits more than one exam at the same time

H2. The exams capacity should not exceed the room capacity

H3. The exam length should not violate the timeslot lengths

H4. A sequence or ordering of an exams must be respected, e.g. schedule ExamA

after ExamB;

H5. Schedule exam into specified room (room related hard constraints) e.g. ExamA

must schedule to Room II

Figure 8.2 Soft Constraints

S1. Two exams in a row: minimise student sitting consecutive exams on the same

day.

S2. Two exams in a day: minimise student sitting more than two exams in a day

(only applied ifmore than two (2) timeslot per day).

S3. Spreading of exam: Each set of student examinations should be spread as

evenly as possible over the exam period.

S4. Mixed duration: minimise number of exams with different durations that are

scheduled into the same room.

S5. Larger examinations schedule late in the timetable: minimise the number of

large exams appear 'late' of the timetable.

S6. Period penalty: minimise the number of exams scheduled in period with

penalty.

S7. Room penalty: minimise the number of exams scheduled in room with penalty.

The quality of the timetable produce is calculated through summation of the soft

constraint multiply with the related weight. The formulations are as follows:

min I(wl.SI +w2· S2 +w3· S3)+w4. S4 +...

...+w5· S5 +w6· S6 +w7 .S7

The penalty weightage differ between the datasets. The weightage of each soft

constraint for every data sets is summarised in table 8.2.
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Table 8.2 The weight oflTC2007 examination datasets

Datasets wI w2 w3 w4 w5 w6 w7
Exam-l 5 7 5 10 100 30 5

Exam-2 5 15 25 250 30 5

Exam-3 10 15 4 20 200 20 10

Exam-4 5 9 2 10 50 10 5

Exam-5 15 40 5 0 250 30 10

Exam-6 5 20 20 25 25 30 15

Exam-7 5 25 10 15 250 30 10

Exam-8 0 150 15 25 250 30 5

The details of the examination competition track can be found in McCollum et al.

(2007). Researchers which have investigated this dataset include Muller (2008), Cogos

et al. (2008), Atusta et at. (2007), De Smet (2008) and Pillay (2008) which was the

competition entrants follow with McCollum et al. (2009) and Turabieh and Abdullah

(2012) that reported their finding after the competition. Muller (2008) won the

competition by producing the best result during that time. In 2009 McCollum et ai,

able to show that the ITC2007 result is solvable and able to produce better result than

Muller (2008). Turabieh and Abdullah (2012) manage to outperform some of Muller

(2008) results with their hybrid methods. A summary of other researcher results is

presented in Table 8.3.

Table 8.3 Summary of other researchers result

Muller Cogos Atsuta De Smet Pillay Me Collum Turabieh and

Datasets (2008) et al. (2008) et al. (2008) (2008) et at. Abdullah
(2008) (2009) (2012)

Exam-l 4,370 5,905 8,006 6,670 12,035 4,633 4,368

Exam-2 400 1,008 3,470 623 3,074 405 390

Exam-J 10,049 13,862 18,622 15,917 9,064 9,830

Exam-4 18,141 18,674 22,559 23,582 15,663 17,251

Exam-5 2,988 4,139 4,714 3,847 6,860 3,042 3,022

Exam-6 26,950 27,640 29,155 27,815 32,250 25,880 25,995

Exam-7 4,213 6,683 10,473 5,420 17,666 4,037 4,067

Exam-8 7,861 10,521 14,317 16,184 7,461 7,519
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8.2 Experimental setup

In this work, we implemented the graph heuristics (chapter 4), modified-GOA (chapter

6) and multi-neighbourhood GOA (chapter 7) using the suggested variable reported in

previous chapters. In the graph heuristics, we implemented candidates list I and 5. In

modified-GOA, the Nh I and Nh7 is used as both able to produce a good quality

solution in chapter 5 (compared to other neighbourhood) and finally, the multi-

neighbourhood GOA technique. In the improvement phase, we use the best found

solution in graph heuristics as the initial value. Table 8.4, table 8.5 and table 8.6 show

the results of the techiques mention above. Each experiment was run 10 times on a

Pentium core2 processor. In modified-GOA and multi-neighbourhood GOA, we ran for

2000 and 5000 iterations.

8.3 Examination assignment: Results

In this section, we show the result produce using graph heuristics with candidates list,

modified-GOA and multi-neighbourhood GOA. Comparing the result with other

researcher from table 8.3 and our result in table 8.4, our graph heuristics (with cl and

cS) unable to produce a competetive result for all of the exam datasets except for

Exam-I, Exam-6 and Exam-8 using c5 on Pillay (2008). We extend the search using

candidates list 20 (c20) and the technique able to produce competetive result compared

to the result in table 8.3. Eventhough it unable to outperform the best reported results

(as in table 8.3), with c20 the result produce able to outperform Atsuta et al. (2008) and

De Smet (2008). However, note that, c20 takes more computational time around

IO,OOO seconds and this depending on the number of exams and resources (Le timeslot

and rooms).
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Table 8.4 The best found result using graph heuristics

Dataset cl c5 c20

Exam-I 27197 9025 6710
Exam-2 31820 3093 949
Exam-3 85577 26765 17102
Exam-4
Exam-5 111724 19160 6643
Exam-6 46165 30775 28255
Exam-7 65165 10203 6582
Exam-8 87340 14473 6539

In modified-GOA, we used the initial value from table 8.4. For example, in Exam-I,

the initial value is 27197, 9025 and 6710 that correspond to cl, c5 and c20. In Exam-I

with 2000 and 5000 iterations using cl as the initial value, Nh 1 able to produce 69%

and 73% of improvement respectively. Nh7 with 2000 and 5000 iterations, the

modified-GOA able to produce 48% and 50% of improvement respectively. While

using c5 as the initial value with 2000 and 5000 iterations, Nh 1 produces 21% and

27% of improvement respectively, and using Nh7 with 2000 and 5000 iterations

produce 24% and 28% of improvement. Finally, with c20, the modified-GOA using

Nh 1 with 2000 and 5000 iteration produce 3% and 8% of improvement respectively.

Nh7 with 2000 and 5000 iterations, the method produce 10% and 13% of improvement

respectively. The rest of the result (with the percentage of improvement) is shown in

table 8.5. Generally, referring to table 8.3 and table 8.5, the result shows that the

modified-GOA unable to outperform the best reported result (i.e. Muller, 2008) but

able to compete with Atsuta et al. (2008), De Smet (2008) and Pillay (2008). The

experiments also reveal that Nh 1 able to produce better improvement value compared

to Nh7 for all the datasets and a larger number of iterations able to give better

improvement value.

In multi-neighbourhood GOA, generally the results (see table 8.6) produce is better

than modified-GOA. However, the approach unable to outperform the best reported

result (Le. Muller, 2008, see table 8.3), but it is able to compete with the Cogos et al.

(2008) result. In Exam-I, using cl as the initial value, the method able to produce 71%
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and 74% of improvement with 2000 and 5000 iterations respectively. While using c5

as the initial value, it produces 26% and 29% of improvement with 2000 and 5000

iterations respectively. Finally, using c20, the technique produce 8% and 12% of

improvement with 2000 and 5000 iterations respectively. The rest of the result is

shown in table 8.6. The experiment shows that the use of multi-neighbourhood GOA

able to produce better results than modified-GOA. Additionally, using larger number of

iterations able to give better improvement value.

Table 8.6 The best found results using Multi-neighbourhood GOA

cl c5 c20
Dataset 2000 5000 2000 5000 2000 5000

iterations iterations iterations iterations iterations iterations

Exam-l 7977 7052 6674 6401 6169 5918
(71%) (74%) (26%) (29%) (8%) (12%)

Exam-2 1510 738 756 652 581 533
(95%) (98%) (76%) (79%) (39%) (44%)

Exam-3 20987 18389 15458 14284 13086 12589
(75%) (79%) (42%) (47%) (23%) (26%)

Exam-4

Exam-5 8209 5224 6462 4849 4283 4064
(93%) (95%) (66%) (75%) (36%) (39%)

Exam-6 37410 37035 30685 29220 27409 27480
(19%) (20%) (0.3%) (5%) (3%) (3%)

Exam-7 8922 6807 6055 5467 5334 5081
(86%) (90%) (41%) (46%) (18%) (22%)

Exam-8 10350 9560 10117 9674 9604 9181
(88%) (89%) (30%) (33%) (11%) (15%)

(x%): show thepercentageojimprovementcomparedto the initialsolution

8.4 Discussion

In graph heuristics the technique able to produce a competitive result compared with

other researcher results only when using high value of candidate list but suffer an

increase of computational times. For example, in Exam-I using c20, the run takes

around 10,000 seconds and this dependent on the number of exams, rooms and

timeslots. An increase in the number of these variables would eventually increase the

computational times. This is because the candidate list will compare each variable and

choose the location that returns less cost values.
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In modified-GOA, the technique able to produce competitive results comparable to the

result in table 8.3. Generally, it produces a high percentage of improvement with cl.

The result shows that Nhl able to give a better improvement value compared to Nh7.

This support our finding in chapter 6 that Nh 1 is superior compares to other

neighbourhoods in the experiments. In multi-neighbourhood GOA, the technique able

to produce competitive result compared to result in table 8.3. Furthermore, it is able to

produce better results than modified-GOA and this supports our finding in chapter 7

where multi-neighbourhood GOA able to produce better results than modified-GOA.

In our observation, we notice that the result produce by the improvement phase

dependent on the initial solution. Hence, having a good initial solution help to speeds

the search for a better solution. Furthermore, having a large number of iteration help

the algorithm to explore search space. Finally, based on the result shown in table 8.4,

8.5 and 8.6 we can classify the dataset based on the following category.

a) Time consuming exam: Exam-2, Exam-3 and Exam-7 are the most time

consuming datasets. This is because of the large number of exams to schedule as

well as a large number of timeslots and rooms to choose from which increases

the search time. Even though Exam-S have a large number of exams (Le. 1018),

it contains a small number of rooms to choose from.

b) Challenging exam: Exam-S and Exam-4 the most challenging exam as we are

even struggling to produce a feasible solution. Both exams have a high conflict

density, additionally, in Exam-6 it has a large number of exams involve in

COINCIDENCE constraints. As Exam-4, it has the high number of exam involve

in the EXCLUSION constraint. This constraint alone forced the exam

(EXCLUSION) to be scheduled to four different timeslot. For Exam-4, we were

unable to produce a feasible solution.

c) Highly constraints: in our opinion Exam-S and Exam-S are the most highly

constraints dataset. This is because of the exams that involve in multi period hard

constraints (e.g. examA AFTER examB and examA COINCIDENCE examC)

Even though with a different level of complexity on each dataset, our proposed method

able to works in producing a feasible solution and competitive results.
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8.5 Contributions

This work has presented a study of a real-world examination timetabling problem

from the ITC2007 competition examination track. The problem involves scheduling

exams into timeslots and rooms for eight datasets that have different constraints. The

contributions of this work are as follows:

a) We have implemented the graph heuristic, modified-GOA and multi-

neighbourhood GOA to the ITC2007 datasets. These methods able to solve the

ITC2007 except for Exam-4.

b) We have shown that the proposed methods able to produce a competitive result

compared with other works reported in the literature.

c) We have classifies the datasets into three main categories that is time

consuming, challenging and highly constraint datasets. This information could

aid in understanding the dataset in order to produce a better result.

8.6 Conclusion

In this chapter, we have investigated a real world examination timetabling problem,

ITC2007 using graph heuristics, modified-GOA and multi-neighbourhood GOA. We

can conclude that the proposed method able to produce a competitive solution

compared to other reported works. Even though the proposed method unable to

outperform the best reported result (i.e. Muller, 2008) but the experiment support our

claim from the previous chapters that include:

a) In a single neighbourhood (Le. modified-GOA), Nh 1 proof able to give better

improvement value because of it explorative nature.

b) In multi-neighbourhood strategy (Le. multi-neighbourhood GOA), it increases

the chance of producing better results than single neighbourhood.

c) A larger number of iterations increases the chances of producing better

solutions.
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Chapter 9

Conclusion and Future Research Directions

This chapter summaries the work reported in this thesis. Section 9.1 gives a summary

of the research that has been carried out. The scientific contributions are described in

Section 9.2. Section 9.3 and 9.4 outlines further research directions that may be

undertaken and final reflections of the research.

9.1 Research work summary

The investigated research is concerned with a real world examination timetabling

problem taken from the Universiti Malaysia Pahang (UMP). The UMP examination

timetabling process involves assigning exams to timeslots and rooms, and scheduling

invigilators. The investigated examination dataset contains additional constraints,

when compared to others constraints reported in the scientific literature. A comparison

of the constraints is presented in chapters 2 and 3. Additionally, we construct an

invigilator schedule, which has largely been ignored in the scientific community.

The UMP examination timetabling problem is solved in two phases, firstly scheduling

the exams into timeslots and rooms (exam-timeslot-room assignment), and secondly

scheduling the invigilators based on phase one. In solving the exam-timeslot-room

assignment, we present a formal model of the UMP problem in chapter 4. We have
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implemented graph heuristics with candidates lists in constructing an initial solution.

This work has been published in the European Journal of Operational Research, EJOR

(Kahar and Kendall, 2010a). Next, we present the formal model of the UMP invigilator

scheduling problem in chapter 5. The work is currently under review for the Journal of

Operational Research Society, JORS. We have also include additional constraints (in

addition to the original UMP invigilation constraints) considering the comments

reported in a survey by Awang et al. (2006). Based on these experiments (on

invigilators scheduling), the results reveal that the invigilator scheduling result is

dependent on the number of rooms being selected from the exam-timeslot-room

assignment phase. Henceforth, we concentrated only on improving the initial result of

the exam-timeslot-room assignment.

An improvement methodology involves modified-GOA and multi-neighbourhood

GOA approaches. The new method is designed with the timetable officer in mind as it

uses a simple to understand parameter for ease of operation. The modified-GOA

approach is described in chapter 6. The modified-GOA uses a simple to determine

parameter and is capable of adjusting the desired value, boundary and decay rate to

guide to search for better solution than the initial cost (while using good

neighbourhood heuristics). A statistical analysis, reveals that the choice of

neighbourhood heuristics, number of iterations and the initial solution plays a

significant role in producing a good quality solution. This work is currently under

review for the Journal of Operational Research Society, JORS. The results presented in

chapter 6, shows that the choice of the neighbourhood heuristics is very important.

We then extend the modified-GOA by presenting a multi-neighbourhood GOA

approach. This work is presented in chapter 7. The method uses more than one

neighbourhood in order to effectively explore the search space and improve the

solution. Furthermore, the multi-neighbourhood simplifies the operation of the

algorithm for the timetable officer by not having to determine the suitable

neighbourhoods. The multi-neighbourhood approach is able to generate better quality

solutions when compared to modified-GOA.
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Finally, we investigate the examination track of the Second International Timetabling

Competition (ITC2007) using the proposed methodology mention above. The

proposed method is able to produce competetive result when compared to other work

in the scientific literature.

9.2 Contributions

The overall research contributions can be categorised into contributions to the

scientific community and contributions to the institution (UMP). They are identified

below.

1) Develop a formal model of the UMP examination timetabling problem:

Contribution to the scientific community: We develop a formal model of the

UMP exam-timeslot-room timetabling problem (see chapter 4) and the UMP

invigilator scheduling problem including additional invigilator constraints from

Awang et al. (2006) (see chapter 5). The exam-timeslot-room timetabling

problem contains new constraints which are different to other data sets

presented in the scientific literature.

Contribution to the institution (UMP): We have documented the exam-timeslot-

room and invigilator timetable requirements (constraints) which have never

been documented before in UMP. Furthermore, the formal model will be useful

for future assesment of the UMP examination timetable solution. Additionally,

we also consider extra constraints for the invigilator scheduling based on the

invigilator comments (Awang et at. 2006) which we believe closely reflect the

UMP invigilator scheduling needs.

2) Construction of initial solution:

Contribution to the scientific community: We have utilised graph heuristics that

call upon candidate lists for the UMP examination timetabling problem. The
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approach is able to produce good quality solutions within reasonable

computational times, when compared to the UMP proprietary software. Some

of the interesting aspects of the work we report include:

• Candidate list feature that choose multiple resources (timeslot and room)

and selects the resources that contribute to lower penalties value. This

allows the algorithm to find a good initial solution, which is then used in

the improvement phase.

• The pre-determined room grouping allow for fast room(s) selection. It

also allows for minimising the spreading (F2) and splitting (FI) cost

penalty.

We also implemented the same approach to the ITC2007 dataset and it able to

produce competitive results when compared to other work reported in the

scientific literature.

Contribution to the institution (UMP): Development of UMP examination

timetabling system, which includes assigning exams to timeslots and rooms,

and scheduling invigilators. The timetable produced complies with the

constraints which the UMP proprietary system fails to achieve.

3) Improving the initial solution:

Contribution to the scientific community: We have proposed a modified great

deluge algorithm (modified-GDA) to improve on the constructive heuristic

solutions for the UMP exam problem. The modified-GDA uses a single

parameter which benefits the timetable officer in operating the systems. The

methodology is able to produce good quality solutions when applied to the

UMP examination datasets. Additionally, we investigate great the deluge

algorithm parameter settings which includes different initial solutions, different

number of iterations and different neighbourhood heuristics for the modified-

GOA. Statistical analysis determines whether there are significant differences

between different parameters settings. The investigation revealed that the

choice of parameter plays an important role in the search.
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We applied the modified great deluge algorithm with multi-neighbourhood

heuristics (multi-neighbourhood GOA) to the UMP exam problem. The multi-

neighbourhood GOA able to generate better quality solution when compared to

the original modified-GOA for the UMP examination problem. Additionally,

we investigated the neighbourhood heuristics (by removing some of the

neighbourhoods), revealing that it is best to use the best neighbourhood during

the search and is also worthwhile using the entire neighbourhood to encourage

exploration. The multi-neighbourhood simplifies the operation of the algorithm

for the timetabling officer, rather than having to determine the suitable set of

neighbourhoods. This is beneficial as in Kahar and Kendall (20 IOb), we show

that the choice of neighbourhood plays a major role in the search.

Contribution to the institution (UMP): Implementation of a modified-GOA and

multi-neighbourhood GOA approach that uses a simple parameter to allow easy

operation by the timetable officer.

4) Implementation to ITC2007 datasets

The graph heuristics with candidate lists, modified-GOA and multi-

neighbourhood GOA were implemented for the ITC2007 examination datasets.

This is to ascertain that the proposed methodology is able to work with another

exam timetabling problem. We are able to generate competitive results

compare to other results reported in the scientific literature.

9.3 Future research directions

It is recognised that a gap exists between theory and practice in examination

timetabling. Different institutions have different requirements (constraints) and it is

difficult to produce a common solution methodology. This thesis has focused on

solving a real world examination timetabling problem that includes scheduling exams

to timeslots and rooms as well as scheduling invigilators. We also investigate several

new methodologies for solving the problem. The results achieved are better than the

proprietary software currently used. The proposed methodologies are also effective on
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the ITC2007 datasets. However, there are several future research directions that we

identify below.

9.3.1 Improving the proposed approach

As seen in the previous chapters, this work has concentrated on attempting to solve the

UMP examination timetabling problem using graph heuristics, modified-GOA and

multi-neighbourhood GOA. The graph heuristics (chapter 4) are able to produce good

quality solutions, normally using a high candidate list value. However as the

candidates list size increased, the algorithm takes a considerable more computational

time. Even so, in real world situations the time to produce the examination timetable is

not usually time critical (within sensible limits). This is due to the fact that the process

of generating the examination timetable is normally carried out two to three month

before the exams take place. However, it is worth investigating ways of reducing the

running time (especially for the ITC2007 datasets). This could be done by including a

look-ahead mechanism that lists the available timeslot for the next exams to scheduled.

Additionally, having information of the spreads between scheduled exams and the next

to be scheduled exam would reduce the time of selecting timeslot with minimum

spreading penalty value.

The modified-GOA and multi-neighbourhood GOA approach, in the improvement

phase, allows the boundary, that acts as the acceptance level to dynamically change

during the search. Currently the boundary is set to change based on a constants value.

A further exploration can be done by implementing a dynamic based value during the

boundary tuning. This might include a dynamic desired value and dynamic boundary

value. These values could aid in exploring the search space. Morevover, a further

investigation on the multi-neighbourhood GOA could include combining different

neighbourhood heuristics. We believe that this could save computational time if

suitable neighbourhoods are combined in an intelligent ways
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9.3.2 Hybridisation

The proposed approaches are open for hybridisation with other methods. For example,

the hybridisation of graph heuristics with candidate lists together with fuzzy logic.

Fuzzy logic could be used to select the (next) exams to be scheduled instead of pre-

arranging them using the graph colouring method (Le. Largest enrollment, largest

degree, etc). Additionally, future investigation on the graph heuristics with candidate

lists could involve hybridisation with meta-heuristic methods (e.g. hill climbing, great

deluge algorithm, etc). Possibilities include ways to partially schedule the exams using

graph heuristic (based on a pre-determined constrant) and using meta-heuristics to

improve the partially schedule exam based on a pre-determined number of

improvement cycles. Furthermore, hybridisation of the modified-GDA and multi-

neighbourhood GDA with tabu search could also be investigated. The tabu search

could be used to hold visited points in the search space and thus avoid cycling.

Alternatively, hold the unperforming neighbourhood heuristics in the multi-

neighbourhood approach.

9.3.3 Invigilator scheduling

In this research, we have developed a formal model for the invigilator scheduling as

well as included additional constraints in addition to the UMP original constraints.

Some further investigation could include investigating the optimal number of

invigilators required for an examination timetable which could help to minimise the

operational cost instead of selecting non-academic staff (as this takes them away from

other duties). It might also be worthwhile investigating automated system that is able

to assist in determining the effect of constraints on the objective value so that the effect

of performing swaps between the invigilators can be evaluated. Additionally, it could

provide a suggestion (or list of availabilities) in making moves or swapping the

invigilation duties.
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9.3.4 Dynamic timetabling system

Based on the discussion with the timetable officer, they often receive last minute

requests for changes to the timetable. This sometimes includes last minute examination

paper additions. Hence, the timetable officer could re-run the whole examination

timetable or simply insert the (late) requested exam into the current (complete)

timetable, aiming for minimal disruption. In the latter approach, it is worth

investigating ways of satisfying all hard constraints and minimising the penalty value,

with minimal disruptions to already schedule exams.

9.4 Final reflections

In this research, we bridge the gap between research and practice by investigating a

problem taken from Universiti Malaysia Pahang (UMP) that has several novel

constraints, in addition to those commonly used in the scientific literature. We have

implemented graph heuristics with candidate list, modified-GOA and multi-

neighbourhood GOA to solve the UMP examination timetabling problem. These

methods show able to produce better results than the proprietary software currently

used. With this, UMP now has access to a set of high-quality algorithms that were not

available before this research was undertaken. Moreover, the algorithm been shown to

be effective on other problems, particularly the ITC datasets. As such, the timetabling

community is able to benefit from the approaches presented in this work. We hope that

this work will motivate other researchers to further improve on the methodologies

presented in this thesis.
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Appendix A: UMP examination data file format and specification

The Universiti Malaysia Pahang examination timetabling dataset contain 5 files:
I. Course file (e.g. sem 10708-crs.txt)
2. Student file (e.g. sem 10708-stu.txt)
3. Timeslot file (e.g. semI0708-tslot.txt)
4. Room file (e.g. semI0708-room.txt)
5. Room distance (e.g. semI0708-dist.txt)

The descriptions of the following files are as follows:

I. Course file. The course files contain information of the courses and total number of
students (enrolments). The file is in the following format:

<CourseCode> <Enrolment>
BAAI312 148
BAA2113 lOO
BAA2513 128.

The course data file is sorted in ascending order based on the <CourseCode>.

2. Student files. The student file listed the registered course of the particular students. This
file is used to generate the conflict matrix. The file is in the following format:

<StudentID> <Course>
AA03002 BAA3223
AA03002 BAA3412
AA03002
AA03003
AA03003
AA03003
AA03030
AA03030

BAA4513
BAA3223
BAA4223
BAA4513
BAAI312
BAA3032

The student data file is sorted in ascending order based on the <studentID>.

3. Timeslot file. The timeslot files contain timeslot index, durations of timeslot (in minutes
and penalty of a particular timeslot (if any). The file is in the following format:

<TimeslotIndex> <Durations> <Penalty>
1 180 0
2 180 0
3 180 0
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Appendices. appendix A: UMP examination data file format and specification

4. Room file. The room files contain room code, room capacity and building code. The file
is in the following format:

<RoomCode> <RoomCapacity> <BuildingCode>
DKU01 SO W
DKU02
WBKIS

SO
47

W
W

5, Room Distance. The files contain information of the room distance cost between the
rooms, For example, the penalty cost between DKUOI and DKU02 is '001',

<RoomCodel> <RoomCode2> <DistanceCost>
DKUO 1 DKUO 1 000
DKU02
WBKIS

DKUOI
DKU01

001
005
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Appendix B: UMP Invigilation data file format and specification

The Universiti Malaysia Pahang examination timetabling dataset contain 5 files:
1. Staffs file (e.g. semI0708-staff.txt)
2. Invigilator-Room file (e.g. semI0708-invLtxt)
3. Lecturer own exam file (e.g. sem I0708-lectEx.txt)

The descriptions of the following files are as follows:

1. Staffs file. The staff files contain information of the staff courses and the status (Le.
academic staffs or administration staffs). The staff ID with status = 0 is an
administration staff while staff Id with status = 1 is an academic staff. The file is in the
following format:

<StafflD> <Status>
0006 I
0022 0
0028 1

The staff data file is sorted in ascending order based on the <StafflD>.

2. Invigilator-Room files. The invigilator-room file listed the required number of
invigilators for a particular room. The room need to be assigned with the required
number of invigilators. The file is in the following format:

<RoomCode> <Invigilator required>
DKUOI 2
DKU02 2
WBKI8 2

The invigilator-room data file is sorted in ascending order based on the <RoomCode>.

3. Lecturers own exam files. The lecturers own exam files listed the course taught by the
lecturers. The file is in the following format:

<RoomCode> <LecturerID>
BAAI312 0689
BAA2113 0371
BAA2713 0169

The invigilator own exam data file is sorted in ascending order based on the
<RoomCode> .
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Appendix C: UMP semesterl-200708 constructive result

Candidates list five {c 5} Candidates list one (c - I)
No LE LO LWO SO SO SO LE SO SD SO

{LE} {LD} (LWO) LO LWO (LE) (LD} (LWO)
I 4.74 8.16 5.81 7.54 7.24 8.33 10.98 19.34 13.27 14.81 16.88 15.05
2 6.67 8.79 6.39 6.82 7.23 8.12 15.75 14.54 15.19 13.96 16.04 14.91
3 7.05 8.32 5.64 6.18 7.21 6.22 11.75 13.10 14.06 14.95 16.25 18.77
4 5.45 8.30 6.17 5.28 5.99 6.63 18.02 14.61 14.52 18.07 16.67 15.92
5 6.13 6.58 5.67 5.89 6.99 6.00 13.99 14.88 15.12 16.11 18.72 16.18
6 6.61 6.94 5.51 6.57 5.76 6.39 17.29 15.31 14.56 16.06 )3.78 16.96
7 4.99 7.65 8.29 6.32 7.51 5.97 16.50 15.40 15.81 12.86 16.72 17.53
8 5.79 8.23 6.17 6.72 8.26 7.29 14.92 16.20 14.88 13.79 14.37 14.84
9 5.78 7.17 5.76 7.38 6.16 6.74 15.92 17.07 20.66 15.87 17.61 17.79
10 5.69 7.12 6.16 7.32 7.29 7.10 lI.55 15.60 16.94 15.32 17.89 16.00
Il 5.36 5.99 5.59 7.98 7.97 6.12 15.05 13.71 15.39 17.27 16.11 16.19
12 5.55 9.55 7.67 6.52 7.82 7.10 16.17 14.14 15.92 16.01 16.22 16.29
13 6.66 6.30 5.67 7.50 6.65 6.16 15.84 14.67 15.46 15.77 16.27 15.44
14 5.33 6.75 6.24 7.41 5.96 7.67 15.89 15.11 13.58 17.62 15.20 18.63
15 5.29 6.78 6.36 7.10 8.18 9.35 18.43 17.96 19.44 19.37 15.97 16.75
16 6.71 7.33 5.56 8.13 7.18 5.84 13.31 15.21 14.63 15.38 13.21 14.33
17 5.77 7.34 5.84 6.44 6.42 6.19 15.93 17.30 12.69 16.07 16.72 15.01
18 7.15 7.52 5.96 6.80 7.22 8.31 14.15 16.51 18.89 13.98 17.46 14.41
19 6.57 9.04 5.42 6.71 6.61 8.99 13.65 13.72 13.89 16.94 15.60 18.22
20 5.05 8.49 5.83 7.24 8.26 7.29 18.41 15.84 17.08 16.56 18.54 18.71
21 7.63 7.91 5.80 7.37 8.61 6.47 16.35 15.45 14.47 15.51 15.46 15.70
22 5.57 7.40 5.91 6.32 6.23 5.84 15.85 17.36 14.72 18.45 15.83 15.62
23 5.91 7.26 5.30 8.49 6.45 5.81 13.58 17.11 16.22 19.03 19.39 16.19
24 4.88 8.71 7.18 5.97 6.38 6.11 14.80 15.77 17.99 20.74 17.47 17.23
25 6.42 8.48 5.90 6.55 6.03 6.21 13.92 17.35 20.70 17.86 17.94 14.50
26 6.12 7.41 5.63 6.56 7.56 6.89 12.37 17.07 14.23 17.85 15.66 14.63
27 5.48 6.30 7.03 7.77 6.44 7.97 17.07 15.71 17.27 15.88 16.35 16.73
28 5.90 8.12 6.02 7.27 8.72 7.64 20.03 13.04 15.08 16.60 14.85 15.04
29 5.98 9.28 5.92 7.84 8.51 6.75 16.20 17.07 16.36 17.92 15.51 17.63
30 4.97 8.04 7.43 7.51 8.64 7.57 14.52 17.95 14.95 18.02 17.27 15.52
31 6.63 8.34 5.36 7.34 5.76 9.55 19.57 17.59 12.91 19.35 17.83 14.57
32 7.98 9.64 5.81 6.58 7.11 7.08 14.07 14.52 17.14 15.25 15.67 16.87
33 5.53 1l.l2 6.30 6.50 6.65 7.10 16.16 14.67 19.02 17.20 15.60 15.93
34 6.11 7.73 5.30 6.45 6.93 6.12 16.53 16.82 14.22 13.26 15.16 18.79
35 6.59 8.74 6.23 6.34 6.77 6.78 15.84 17.03 16.09 14.68 13.87 15.68
36 7.66 7.96 6.83 6.29 6.92 6.88 13.81 15.88 15.86 14.05 16.57 14.00
37 7.34 7.60 6.73 6.43 6.77 9.78 16.79 15.41 16.88 14.17 17.72 17.90
38 6.28 8.31 5.36 7.85 6.51 6.28 15.57 15.90 16.09 17.77 14,07 17.57
39 6.14 7.38 7.08 6.92 7.31 5.68 15.32 14.93 17.76 12.66 14.24 16.53
40 6.40 7.15 5.05 7.14 8.16 5.49 15.30 18.53 16.09 14.59 17.50 15.93
41 5.44 7.81 6.76 6.63 7.96 7.02 19.17 18.28 14.94 13.76 14.14 19.20
42 5.67 8.71 6.81 7.52 8.11 6.75 13.44 16.78 17.44 16.38 18.59 14.77
43 6.06 7.14 6.35 6.27 7.49 8.49 14.57 17.20 15.72 16.96 16.79 17.14
44 5.49 8.85 5.87 7.79 7.66 6.58 19.28 14.78 18.07 16.71 13.11 20.41
45 6.16 7.78 6.04 6.48 8.51 7.31 18.50 16.00 17.92 14.68 16.90 13.97
46 6.65 7.69 5.92 7.54 7.89 6.01 17.13 16.35 11.43 16.96 17.00 16.31
47 5.50 8.25 5.30 7.60 6.19 7.26 12.46 15.Il 16.21 13.93 15.68 15.02
48 6.31 6.82 5.41 6.48 7.13 7.32 13.70 14.86 15.53 15.91 17.78 15.09
49 6.69 6.48 6.24 6.95 7.47 6.89 14.95 15.67 14.89 15.96 13.12 14.34
50 5.07 7.05 5.92 7.50 8.11 6.52 15.15 17.23 13.00 15.76 15.10 17.87

Average 6.06 7.84 6.09 6.96 7.22 7.00 15.51 15.95 15.82 16.09 16.17 16.29
Var 0.57 0.96 0.44 0.43 0.70 1.05 4.40 2.02 3.90 3.26 2.35 2.37
Stdev 0.76 0.98 0.67 0.66 0.84 1.02 2.10 1.42 1.97 1.80 1.53 1.54
Min 4.74 5.99 5.05 5.28 5.76 5.49 10.98 13.04 11.43 12.66 13.11 13.97
Max 7.98 11.12 8.29 8.49 8.72 9.78 20.03 19.34 20.70 20.74 19.39 20.41
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Appendix D: UMP semesterl-200809 constructive result

Candidates list five {c - 5} Candidates list one {c = I}
No LE LO LWO SO SO SO SO SD SO{LE} {LD} {LWO} LE LO LWO {LE} {LD} {LWO}
1 7.72 9.56 7.22 7.51 9.29 8.79 16.50 16.27 19.73 20.47 18.02 16.12
2 8.72 10.07 6.71 10.44 10.96 9.05 17.60 18.26 15.58 14.71 20.54 18.79
3 7.82 10.45 7.76 10.54 7.79 8.48 15.69 17.11 16.79 17.87 18.11 16.18
4 7.60 9.33 7.79 8.18 10.05 8.63 15.66 18.43 14.65 17.57 19.51 18.49
5 8.44 9.51 8.13 8.03 9.86 9.67 17.09 17.71 15.96 20.45 16.71 16.91
6 9.20 9.79 7.61 10.67 9.04 9.07 20.66 17.37 17.77 18.34 20.11 16.82
7 7.21 9.18 6.98 8.86 10.51 10.39 15.87 17.34 16.50 19.44 18.39 18.68
8 8.51 10.15 8.15 10.56 9.83 9.13 17.39 17.53 18.43 18.10 19.30 16.76
9 7.73 9.17 7.09 10.12 9.26 9.43 18.70 18.94 19.03 16.87 17.26 19.94
10 7.04 8.45 9.45 8.27 10.37 7.58 19.63 17.72 17.89 18.59 17.02 18.33
II 9.25 9.65 8.07 8.68 10.29 7.51 14.74 15.16 17.56 19.66 17.05 17.29
12 9.14 10.48 6.75 9.59 10.37 8.65 15.20 20.41 15.34 20.13 18.18 20.33
I3 7.86 9.65 9.39 9.71 9.43 10.14 18.25 17.42 16.83 15.09 17.26 15.79
14 9.23 8.58 7.93 9.58 8.70 8.06 17.82 16.75 16.76 17.09 20.58 20.74
15 8.25 10.82 6.76 10.34 9.27 9.11 16.83 19.16 14.95 16.11 15.79 16.65
16 8.87 9.30 8.09 9.76 8.52 9.49 18.18 16.74 18.92 16.89 19.52 19.10
17 9.37 9.19 7.61 8.88 9.79 8.78 18.81 18.73 16.82 15.00 17.61 18.41
18 8.06 9.29 7.52 9.76 9.58 10.22 19.65 17.97 17.56 17.23 17.40 17.35
19 7.65 9.36 8.86 11.77 9.56 8.13 18.50 20.85 20.08 15.00 18.12 16.71
20 7.06 11.23 7.59 9.56 9.68 9.73 16.93 18.65 16.64 18.30 18.86 17.87
21 7.96 9.75 7.56 8.01 7.29 8.14 16.85 17.13 18.13 17.93 16.93 16.08
22 9.40 10.24 8.75 9.58 8.89 9.27 15.25 16.30 16.01 20.75 21.10 18.83
23 8.78 9.50 8.30 7.87 11.15 8.07 16.39 17.29 18.34 16.51 20.67 15.37
24 7.98 10.95 6.97 10.22 9.33 9.08 15.73 18.95 21.66 18.32 15.11 18.71
25 7.29 8.61 7.49 9.25 9.71 9.49 17.25 21.09 19.26 19.57 15.87 18.84
26 7.34 12.03 8.48 11.42 9.65 8.09 16.92 18.29 17.14 17.65 18.63 16.54
27 8.12 11.05 8.15 9.44 8.28 9.35 17.87 20.11 17.17 18.97 19.12 17.60
28 7.95 1l.39 8.14 9.56 12.69 8.41 17.51 16.94 18.09 18.35 19.74 17.74
29 8.08 8.92 9.69 9.15 9.38 8.67 19.97 17.53 16.93 20.44 19.90 19.08
30 7.88 8.55 8.26 8.78 10.81 8.48 17.43 14.48 16.36 19.28 16.21 19.48
31 9.16 10.87 7.30 7.69 10.97 8.65 18.38 17.14 19.23 15.50 19.19 17.29
32 7.24 9.72 7.41 10.25 9.64 10.56 15.82 22.69 17.03 15.67 16.70 18.31
33 7.82 8.47 8.28 10.39 8.74 8.54 16.93 16.81 18.97 17.02 17.04 21.09
34 8.64 8.55 8.90 9.20 10.07 9.27 18.41 16.52 19.31 19.72 16.05 16.37
35 7.10 9.84 8.28 9.01 9.13 8.03 15.61 16.81 16.27 17.32 18.27 18.23
36 8.68 10.10 8.23 9.22 9.96 9.33 17.14 17.21 16.20 19.82 16.14 18.21
37 7.46 8.79 9.07 8.59 9.56 8.81 15.85 15.60 15.73 19.37 16.27 17.79
38 8.62 9.40 7.47 9.07 9.01 9.72 18.44 18.04 17.94 18.24 19.63 17.61
39 8.09 11.14 7.64 8.31 9.81 8.31 19.53 18.51 16.23 20.41 16.99 18.03
40 8.05 8.93 6.61 9.57 9.65 8.43 20.11 17.60 14.38 20.10 17.69 15.74
41 7.17 9.49 7.77 9.24 9.57 8.75 23.11 18.52 17.19 17.69 18.46 19.61
42 8.47 9.07 7.64 9.51 9.36 8.84 16.92 19.33 15.68 19.26 17.62 17.09
43 8.48 9.17 7.68 8.98 8.79 9.05 15.24 19.19 17.66 14.64 18.57 15.41
44 7.75 11.99 6.93 10.18 9.73 9.44 17.77 20.74 17.17 16.37 16.14 16.36
45 7.97 11.03 7.65 8.32 10.17 8.45 16.76 19.18 15.45 18.61 19.74 16.67
46 7.28 9.02 8.33 9.33 10.12 7.92 17.01 17.31 13.89 19.20 16.36 19.11
47 8.50 9.65 7.84 10.96 9.43 8.36 18.28 19.02 19.45 18.96 17.73 16.97
48 7.49 10.26 7.79 9.59 9.06 8.37 17.88 16.73 16.06 17.65 19.21 19.07
49 8.32 8.32 8.10 10.43 9.29 8.74 16.57 17.26 21.45 18.40 19.96 17.09
50 7.46 7.47 7.94 10.14 11.00 7.00 17.37 16.52 18.29 18.91 15.27 15.80

Average 8.11 9.71 7.88 9.44 9.65 8.83 17.48 17.95 17.33 18.07 18.03 17.75
Var 0.46 0.98 0.50 0.91 0.79 0.55 2.60 2.44 2.86 2.83 2.40 1.97
Stdev 0.68 0.99 0.71 0.95 0.89 0.74 1.61 1.56 1.69 1.68 1.55 1.40
Min 7.04 7.47 6.61 7.51 7.29 7.00 14.74 14.48 13.89 14.64 15.11 15.37
Max 9.40 12.03 9.69 11.77 12.69 10.56 23.11 22.69 21.66 20.75 2I.l0 21.09

182



Appendices. appendix E: UMP semesterl-200708 modified-GDA results

Appendix E: UMP semesterl-200708 modified-GOA results

No.
Nhl- 1500 iterations Nh 1 - 3000 iterations Nh2 - 1500 iterations

16.68 13.74 10.30 7.82 16.68 13.74 10.30 7.82 16.68 13.74 10.30 7.82

1 5.84 5.95 5.55 5.1 6.58 5.56 4.65 4.24 16.68 13.54 10.3 7.82
2 5.98 6.47 5.04 5.1 5.39 4.95 5.06 4.49 16.68 13.54 10.3 7.82
3 6.41 6.1 5.39 4.81 6.19 5.45 4.88 4.64 16.68 13.57 10.3 7.82
4 6.46 5.89 5.14 5.15 5.44 5.46 4.77 4.58 16.68 13.54 10.3 7.82
5 6.77 6.18 5.61 5.23 5.12 5.75 5.2 4.48 16.68 13.54 10.3 7.82

6 7.18 6.22 5.22 5.14 6.00 5.26 5.21 4.28 16.68 13.5 10.3 7.82

7 6.3 6.66 5.17 4.79 5.56 5.7 4.58 4.61 16.68 13.5 10.3 7.82

8 6.33 6.18 4.8 5.17 5.92 5.51 5.18 4.53 16.68 13.53 10.3 7.82

9 6.44 6.13 5.13 5.21 5.84 5.47 5.2 4.25 16.68 13.53 10.3 7.82

10 7.03 5.84 5.4 4.9 5.87 5.78 4.62 4.63 16.68 13.53 10.3 7.82

11 6.72 6.1 5.85 4.6 5.72 5.43 4.41 4.32 16.68 13.52 10.3 7.82

12 6.13 6.03 5.76 4.82 6.00 5.38 5.04 4.58 16.68 13.52 10.3 7.82

13 6.68 5.97 5.33 4.74 5.40 5.71 4.7 4.61 16.68 13.53 10.3 7.82

14 6.7 6.25 5.5 5.04 5.64 5.39 4.88 4.31 16.68 13.54 10.3 7.82

15 6.52 6.18 5.31 5.4 5.09 5.73 5.08 4.53 16.68 13.54 10.3 7.82

16 6.63 5.94 5.64 5.04 5.63 5.65 4.99 4.57 16.68 13.53 10.3 7.82

17 6.07 6.3 4.93 4.6 5.51 5.56 5.18 4.43 16.68 13.46 10.3 7.82

18 6.63 6.28 5.03 4.72 6.01 5.41 5.04 4.43 16.68 13.52 10.3 7.82

19 6.06 5.7 5.83 5.02 5.98 5.32 5.12 4.98 16.68 13.52 10.3 7.82

20 6.54 5.9 5.23 4.8 6.27 5.46 4.88 4.6 16.68 13.52 10.3 7.82

21 6.53 5.8 5.12 5.16 6.26 5.24 5.07 4.66 16.68 13.52 10.3 7.82

22 6.78 5.98 4.97 5.06 5.80 5.18 4.78 4.73 16.68 13.54 10.3 7.82

23 6.68 6.64 5.56 5.04 5.83 5.34 5.29 4.81 16.68 13.52 10.3 7.82

24 6.82 6.19 5.1 5.17 5.78 6.12 4.99 4.71 16.68 13.53 10.3 7.82

25 7.03 6.58 5.16 5.43 6.23 5.78 5.24 4.36 16.68 13.53 10.3 7.82

26 6.41 6.25 5.54 5.1 6.14 5.78 4.92 4.89 16.68 13.54 10.3 7.82

27 6.86 6.75 4.98 5.02 5.81 5.46 4.93 4.65 16.68 13.52 10.3 7.82

28 6.64 6.24 5.15 4.99 5.79 5.48 4.99 4.75 16.68 13.52 10.3 7.82

29 7.16 6.04 5.31 5.18 6.46 5.13 5.13 4.7 16.68 13.53 10.3 7.82

30 6.45 6.69 5.21 5.1 6.02 5.52 4.96 4.63 16.68 13.52 10.3 7.82

31 6.51 6.61 5.16 5.02 5.42 5.63 4.86 4.46 16.68 13.53 10.3 7.82

32 6.52 5.77 5.83 5.01 6.40 5.83 5.17 4.52 16.68 13.54 10.3 7.82

33 6.98 5.68 5.52 5.09 5.82 5.34 5.03 4.88 16.68 13.53 10.3 7.82

34 7.02 6.2 5.06 5.22 5.52 5.2 5.35 4.7 16.68 13.52 10.3 7.82

35 6.33 6.38 5.69 5.39 5.87 5.97 4.76 4.89 16.68 13.52 10.3 7.82

36 6.94 6.18 5.87 5.3 6.03 5.98 4.49 4.68 16.68 13.54 10.3 7.82

37 6.7 6.77 5.59 4.79 5.93 5.87 5.17 4.55 16.68 13.51 10.3 7.82

38 7.1 6.35 5.64 4.89 6.60 5.78 4.77 4.83 16.68 13.54 10.3 7.82

39 7.24 6.85 5.34 4.77 5.94 5.3 4.79 4.7 16.68 13.54 10.3 7.82

40 6.7 6.11 5.83 5.24 5.63 5.7 4.89 4.96 16.68 13.48 10.3 7.82

41 6.6 5.88 5.38 5.19 6.27 5.24 4.76 4.78 16.68 13.52 10.3 7.82

42 6.87 6.28 6.13 4.97 6.21 5.75 4.73 4.77 16.68 13.53 10.3 7.82

43 7.03 6.79 5.69 5.07 5.37 5.88 4.82 4.98 16.68 13.53 10.3 7.82

44 6.4 5.99 6.08 5.37 6.15 5.3 5.62 4.46 16.68 13.52 10.3 7.82

45 6.33 6.33 5.89 4.99 5.85 5.87 5.2 4.76 16.68 13.54 10.3 7.82

46 6.83 6.56 5.5 4.82 6.23 5.14 4.76 4.87 16.68 13.54 10.3 7.82

47 6.99 6.44 5.74 5.37 5.82 5.25 4.82 4.74 16.68 13.52 10.3 7.82

48 5.71 6.53 5.71 5.63 6.14 5.37 5.33 4.34 16.68 13.51 10.3 7.82

49 6.85 6.61 5.77 5.12 5.52 5.36 5.27 4.73 16.68 13.52 10.3 7.82

50 6.85 6.84 5.68 5.29 5.67 5.57 5.22 4.36 16.68 13.54 10.3 7.82

Min 5.71 5.68 4.80 4.60 5.09 4.95 4.41 4.24 16.68 13.46 10.30 7.82

Max 7.24 6.85 6.13 5.63 6.60 6.12 5.62 4.98 16.68 13.57 10.30 7.82

Ave 6.63 6.25 5.44 5.06 5.87 5.53 4.98 4.62 16.68 13.53 10.30 7.82

Stdev 0.35 0.32 0.32 0.22 0.35 0.26 0.24 0.20 0.00 0.02 0.00 0.00
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Appendix E: UMP semesterl-200708 modified-GDA results (cont ...)

No. Nh2 - 3000 iterations Nh3- 1500 iterations Nh3 - 3000 iterations
16.68 13.74 10.30 7.82 16.68 13.74 10.30 7.82 16.68 13.74 10.30 7.82

I 16.68 13.52 10.3 7.82 7.69 7.14 5.68 6.02 7.43 6.88 5.67 6.09
2 16.68 13.53 10.3 7.82 7.24 7.3 5.09 5.84 6.78 6.63 5.26 5.93
3 16.68 13.52 10.3 7.82 8.74 7.16 8.27 5.93 8.18 6.90 8.04 5.96
4 16.68 13.54 10.3 7.82 8.71 7.1 5.22 6.06 6.73 6.49 7.35 5.71
5 16.68 13.54 10.3 7.82 6.91 6.84 9.13 6.26 6.36 6.82 6.85 6.08
6 16.68 13.51 10.3 7.82 7.13 6.95 6.97 5.85 8.16 7.00 5.67 5.56
7 16.68 13.53 10.3 7.82 8.03 6.98 5.84 5.94 6.94 7.17 6.28 5.51
8 16.68 13.53 10.3 7.82 8.46 7.33 5.65 5.9 6.88 6.50 6.2 5.97
9 16.68 13.53 10.3 7.82 8.35 6.41 6.62 5.11 6.66 6.62 7.85 5.45
10 16.61 13.53 10.3 7.82 7.51 6.99 6.17 5.57 7.02 7.38 6.08 6.09
II 16.68 13.52 10.3 7.82 10.61 6.66 6.79 6.02 7.54 6.84 5.99 5.78
12 16.68 13.53 10.3 7.82 7.1 7.07 5.9 6.1 8.23 7.06 5.41 5.31
13 16.68 13.53 10.3 7.82 9.36 7.17 7.94 5.31 8.81 6.45 6.21 5.67
14 16.68 13.55 10.3 7.82 8.04 6.95 5.39 6.13 6.88 6.61 5.76 5.69
15 16.68 13.52 10.3 7.82 7.39 7.02 5.82 5.57 8.73 7.03 7.99 5.83
16 16.68 13.53 10.3 7.82 8.2 7.31 5.84 5.92 9.37 7.05 5.37 5.75
17 16.68 13.55 10.3 7.82 9.18 7.37 8.53 5.96 6.83 7.14 6.65 5.84
18 16.68 13.54 10.3 7.82 7.38 7.17 5.46 6.07 6.85 7.09 5.63 5.47
19 16.68 13.53 10.3 7.82 10.3 7.23 7.76 6.08 7.17 7.20 5.66 6.22
20 16.68 13.52 10.3 7.82 7.7 7.12 6.57 6.62 8.65 6.78 7.86 5.07
21 16.68 13.52 10.3 7.82 8.05 7.31 5.98 5.38 6.61 6.71 6.26 5.47
22 16.68 13.52 10.3 7.82 9.16 6.9 6.82 6.33 7.04 6.94 5.66 5.89
23 16.68 13.53 10.3 7.82 7.96 6.57 5.27 6.62 8.49 6.22 5.57 5.85
24 16.68 13.53 10.3 7.82 7.36 7.11 6.23 5.83 7.26 6.70 5.22 5.34
25 16.61 13.52 10.3 7.82 9.93 6.88 7.14 5.76 7.49 6.88 5.64 5.83
26 16.68 13.52 10.3 7.82 7.44 6.45 6.21 6.12 7.06 6.62 6.9 5.75
27 16.68 13.53 10.3 7.82 6.9 6.62 6.08 5.89 7.22 7.02 6.21 5.75
28 16.68 13.53 10.3 7.82 8.28 7.22 5.64 6.12 9.58 6.91 5.33 6.02
29 16.68 13.54 10.3 7.82 9.35 7.45 6.19 5.94 6.76 6.95 7.4 5.78
30 16.68 13.53 10.3 7.82 9.39 6.94 5.88 6.37 6.33 6.53 5.69 5.74
31 16.68 13.53 10.3 7.82 8.19 8.01 5.81 6.03 7.4 6.49 7.79 5.94
32 16.68 13.53 10.3 7.82 6.58 6.78 5.7 6.04 6.66 6.86 5.64 5.98
33 16.68 13.53 10.3 7.82 10.39 7.03 6.32 5.93 7.1 7.32 5.55 5.78
34 16.68 13.52 10.3 7.82 9.09 7.25 5.57 6.07 6.87 6.18 7.75 5.72
35 16.68 13.53 10.3 7.82 7.43 7.1 6.18 6.01 7.75 6.69 6.85 5.94
36 16.68 13.53 10.3 7.82 7.73 7.44 5.64 5.65 6.98 6.39 5.95 5.62
37 16.68 13.52 10.3 7.82 8.13 7.23 6.18 6.58 6.96 7.05 5.75 6.31
38 16.68 13.53 10.3 7.82 7.27 7.21 7.98 6.3 7.12 6.87 6.27 5.49
39 16.68 13.52 10.3 7.82 9.49 6.83 6.16 6.31 6.7 7.05 5.35 5.56
40 16.68 13.52 10.3 7.82 7.71 7.08 7.98 5.62 7.17 6.73 5.53 5.94
41 16.68 13.52 10.3 7.82 7.07 6.86 6.49 5.58 7.56 6.70 5.66 5.86
42 16.68 13.53 10.3 7.82 7.8 6.94 5.84 5.91 7.27 6.85 5.71 5.92
43 16.68 13.51 10.3 7.82 7.19 7.03 6.01 5.81 7.37 6.96 5.7 5.54
44 16.68 13.52 10.3 7.82 7.42 6.6 7.16 5.93 7 6.93 6.4 5.88
45 16.68 13.52 10.3 7.82 8.97 6.89 6.31 5.94 8.18 6.74 5.19 5.95
46 16.68 13.51 10.3 7.82 6.92 6.85 7.42 6.02 6.62 7.32 5.13 5.56
47 16.68 13.53 10.3 7.82 8.38 7.21 6.06 5.94 6.54 6.86 5.96 5.49
48 16.68 13.53 10.3 7.82 8.39 7.71 5.73 5.92 6.26 7.11 6.34 6.22
49 16.68 13.53 10.3 7.82 9.28 6.44 5.22 5.9 8.51 6.33 5.11 6.05
50 16.68 13.53 10.3 7.82 7.72 6.96 5.88 5.77 7.36 6.85 5.13 5.02
Min 16.61 13.51 10.30 7.82 6.58 6.41 5.09 5.11 6.26 6.18 5.11 5.02
Max 16.68 13.55 10.30 7.82 10.61 8.01 9.13 6.62 9.58 7.38 8.04 6.31
Ave 16.68 13.53 10.30 7.82 8.18 7.04 6.35 5.96 7.35 6.83 6.13 5.76
Stdev om 0.01 0.00 0.00 1.00 0.31 0.93 0.30 0.78 0.28 0.85 0.27
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Appendix E: UMP semesterl-200708 modified-GDA results (cont ...)

No. Nh4 - 1500 iterations Nh4 - 3000 iterations Nh6-1500 iterations
16.68 13.74 10.30 7.82 16.68 13.74 10.30 7.82 16.68 13.74 10.30 7.82

I 9.93 10.46 7.26 6.18 9.69 8.79 6.96 6.25 11.97 12.02 9.33 6.57
2 9.59 10.68 7.11 6.08 9.38 10.23 6.99 6.37 11.53 11.71 9.47 7.02
3 10.06 10.83 7.02 6.51 10.64 9.42 6.8 6.06 13.4 11.33 9.47 7.00
4 10.52 10.68 6.92 6.3 10.07 9.57 7.44 6.25 13.02 11.59 9.47 7.00
5 10.4 11.18 7.1 6.41 9.85 9.72 6.98 6.08 13.22 11.53 9.33 7.02
6 10.02 10.72 8.28 6.59 10.69 10.05 7.1 5.9 13.23 11.77 9.47 7.00
7 10.16 11.02 6.96 6.48 9.45 9.99 7.03 6.14 11.64 11.55 9.33 7.00
8 10.02 11.27 7.91 6.53 10.35 9.55 6.89 6.16 11.31 11.54 9.33 7.00
9 10.38 11.41 8.87 6.22 10.13 9.86 6.76 6.12 1l.5 11.51 9.33 7.02
10 11.22 11.11 7.45 6.14 9.94 9.7 7.62 6.45 11.66 11.32 9.33 7.00
11 9.77 11.32 6.96 6.21 10.25 10.01 6.96 6.12 11.56 11.48 9.33 7.00
12 9.4 10.61 7.54 6.33 10.44 10.36 6.73 6.16 11.52 11.95 9.47 7.02
13 10.04 11.06 6.93 6.41 10 10.07 7.29 6.26 11.66 11.46 9.47 7.00
14 10.03 11.45 6.72 6.39 9.58 9.72 7.2 6.45 11.41 12 9.33 7.02
15 10.18 10.68 7.14 6.28 10.Dl 9.76 7.21 6.39 11.83 11.35 9.47 7.02
16 10.44 11.04 7.7 6.3 10.27 9.65 7.12 6.3 11.32 11.3 9.33 7.00
17 10.15 10.93 7.53 6.38 10.5 9.89 6.75 6.32 11.69 11.83 9.33 7.02
18 10.46 10.9 7.78 6.61 10.34 9.65 7.63 6.33 11.19 11.79 9.33 7.00
19 11.34 10.98 7.54 6.67 11.92 9.45 7.37 6.2 12.99 11.53 9.47 6.96
20 10.16 11.43 7.35 6.63 10.51 10.87 7.78 6.29 11.99 11.52 9.33 7.00
21 10.08 10.94 7.19 6.47 10.22 9.07 7.06 6.2 13.17 11.56 9.33 7.08
22 10.36 10.93 6.52 6.71 9.9 9.84 7.46 6.21 11.97 11.91 9.47 6.96
23 9.81 10.79 6.77 6.94 10.85 10.15 7.11 6.91 11.24 11.8 9.33 6.76
24 10.06 11.19 7.7 6.31 10.28 10.03 6.59 5.96 11.64 11.59 9.33 7.00
25 11.18 11.97 7.98 6.1 9.96 9.68 7.06 6.48 13.02 1l.25 9.33 7.00
26 9.82 11.41 7.56 6.47 8.93 10.37 6.93 6.39 12.99 11.47 9.33 7.00
27 10.05 11.19 7.55 6.75 8.87 9.73 7.04 6.15 13.4 12.01 9.33 7.00
28 11.59 10.68 6.98 6.54 9.71 9.87 6.57 6.09 11.41 11.54 9.33 7.00
29 11.3 10.38 6.87 7.07 9.32 10.04 7.69 6.07 11.62 11.9 9.47 7.00
30 10.07 11.24 7.12 6.38 10.19 10.13 6.69 6.19 11.83 12.07 9.47 7.00
31 10.63 11.16 7.03 6.23 9.68 9.51 6.47 6.44 11.27 11.63 9.33 7.02
32 10.51 10.66 7.46 6.69 10.23 9.96 7.3 6.51 11.77 11.53 9.33 7.00
33 9.85 10.97 7.93 6.55 9.69 10.89 6.84 6.28 12.11 11.48 9.33 7.00
34 11.32 10.7 7.52 6.39 9.11 10.15 7.2 6.36 12.99 11.39 9.33 7.00
35 11.39 10.64 7.28 6.47 10.17 10.6 6.83 6.39 11.34 11.78 9.33 7.02
36 10.13 10.84 7.61 6.39 9.75 10.44 7.17 6.09 13.02 11.79 9.33 7.02
37 9.86 11.13 7.92 6.47 10.01 10.3 7.32 6.35 13.17 11.64 9.47 7.00
38 10.61 11.01 7.58 6.31 10.86 10.34 6.79 6.36 11.25 11.46 9.33 7.00
39 10.49 11.29 7.18 6.85 10.35 10.17 7.1 6.65 11.57 11.74 9.33 7.02
40 9.9 10.88 6.61 6.5 9.95 10.78 7.06 6.29 13.43 11.36 9.33 7.02
41 10.26 11.13 7.08 6.68 9.62 10.3 7.25 6.15 13.4 11.55 9.33 7.00
42 10.49 10.61 7.38 6.57 9.36 10.21 6.85 6.31 11.57 11.97 9.33 7.02
43 10 11.22 7.28 6.47 10.32 10.16 6.95 6.36 13.23 11.6 9.33 7.00
44 10.37 11.83 7.33 6.38 10.82 10.24 7.61 6.31 11.34 11.65 9.33 7.02
45 10.32 10.63 6.95 6.35 10.3 10.05 7.38 6.27 11.41 11.32 9.47 7.02
46 9.91 10.88 6.91 6.53 9.93 9.98 7.12 6.05 11.59 11.7 9.47 7.00
47 9.64 11.13 7.43 6.66 10.17 10.69 6.89 6.62 12.99 11.68 9.33 7.08
48 11.22 10.71 6.9 6.4 10.5 10.25 7.24 6.27 12.99 11.63 9.33 7.02
49 11.96 11.16 7.03 6.42 9.78 10.62 6.99 6.54 13.4 11.6 9.33 6.96
50 9.7 10.77 7.31 6.44 10.48 10.79 7.36 6.08 11.57 11.76 9.33 7.00
Min 9.40 10.38 6.52 6.08 8.87 8.79 6.47 5.90 11.19 11.25 9.33 6.57
Max 11.96 11.97 8.87 7.07 11.92 10.89 7.78 6.91 13.43 12.07 9.47 7.08
Ave 10.34 11.00 7.32 6.46 10.07 10.03 7.09 6.28 12.15 11.63 9.37 6.99
Stdev 0.57 0.32 0.44 0.20 0.54 0.44 0.30 0.18 0.80 0.21 0.06 0.07
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Appendix E: UMP semesterl-200708 modified-GDA results (con!...)

No. Nh6 - 3000 iterations Nh7 - 1500 iterations Nh7-3000 iterations
16.68 13.74 10.30 7.82 16.68 13.74 10.30 7.82 16.68 13.74 10.30 7.82

1 13.17 11.69 9.33 7.02 7.49 10.69 6.31 5.2 7.06 5.9 5.63 4.14
2 11.74 11.69 9.47 7.02 9.37 11.47 5.91 4.97 8.07 7.79 4.89 4.99
3 13.4 11.79 9.47 7.00 8.84 12.21 6.17 5.19 7.52 7.27 4.94 4.52
4 11.78 11.66 9.47 7.00 9.08 11.86 5.89 5.25 8.42 7.84 5.09 4.21
5 11.68 11.56 9.47 6.96 7.79 11.28 5.2 5.51 8.49 6.41 4.9 4.33
6 11.41 10.86 9.47 7.00 9.38 10.45 5.35 5.02 8.97 7.97 5.32 4.29
7 11.8 11.5 9.33 7.00 9.97 9.44 5.59 4.95 7.73 8.26 5.86 4.82
8 13.43 11.64 9.33 7.00 10.34 10.31 6.05 5.09 8.8 8.08 6 4.84
9 13.02 11.85 9.33 7.08 11.25 11.29 5.58 5.38 9.77 9.25 4.54 4.68
10 11.73 12 9.47 7.00 12.97 10.57 5.67 5.83 10.64 9.38 5.63 4.78
11 13.43 11.58 9.33 6.96 12.14 10.46 5.82 6.26 9.61 9.6 5.62 4.81
12 11.3 11.7 9.47 6.41 11.62 10.5 6 5.66 10.33 9.91 6.34 5.13
13 13.23 11.8 9.33 7.02 12.56 11.25 6.1 5.66 9.51 9.35 6.11 4.64
14 11.57 11.58 9.47 7.00 12.15 11.7 6.07 5.5 10.57 8.54 5.31 4.53
IS 11.24 11.5 9.33 7.02 11.66 11.3 6.55 5.39 10.58 8.86 5.11 5.13
16 13.4 11.58 9.47 7.00 11.54 10.78 6.29 5.22 10.47 9.04 5.88 5.02
17 11.66 1I.S 9.47 7.00 11.42 10.38 6.53 5.96 10.84 9.65 5.11 4.82
18 11.16 11.4 9.47 7.00 12.63 12.22 6.91 5.68 12.41 9.38 5.53 4.78
19 13.17 11.7 9.47 6.96 9.83 11.6 6.22 5.93 11.85 11.07 5.32 5.29
20 11.68 11.75 9.33 7.00 11.55 10.01 5.81 5.68 13.57 10.51 6.03 5.5
21 11.63 11.5 9.33 7.00 13.09 11.59 6.83 5.29 10.43 9.59 5.31 5.2
22 11.64 11.76 9.33 7.02 11.47 11.16 6.78 4.95 12.66 9.54 5.4 4.79
23 13.4 11.53 9.47 7.00 12.29 11.1 6 5.53 11.79 10.29 6.29 4.42
24 11.7 11.5 9.33 7.02 13.42 10.55 5.87 5.51 12.43 9.94 5.8 4.5
25 11.2 11.56 9.47 7.02 12.48 10.84 5.71 5.48 12.25 7.44 6.13 4.37
26 13.23 11.5I 9.33 6.96 12.69 11.46 7.06 5.26 7.45 10.56 5.46 5.29
27 13.23 11.43 9.47 7.00 12.21 11.4 6.35 4.93 7.83 10.65 5.52 4.84
28 11.56 11.65 9.33 7.00 13.54 10.99 6.63 5.27 8.15 9.93 6.42 5.43
29 11.64 11.32 9.47 7.00 12.93 10.38 5.73 5.48 7.97 10.53 5.34 5.07
30 13.43 11.39 9.33 7.00 11.26 10.71 6.41 5.49 7.52 10.25 5.72 5.41
31 13.4 11.09 9.33 6.96 12.66 11.15 7.28 5.68 11.01 8.12 5.11 4.89
32 13.4 11.54 9.33 7.00 14.05 10.83 6.67 5.67 8.78 7.68 5.53 4.77
33 13.4 11.65 9.47 7.00 10.75 10.81 5.69 5.06 8.71 7.65 5.59 4.99
34 13.17 11.85 9.33 7.00 14.12 11.46 6.63 4.61 9.87 7.78 5.36 5
35 13.4 11.58 9.33 7.00 12.15 9.87 6.73 5.67 9.58 8.6 5.36 5.02
36 13.22 11.97 9.47 6.21 11.25 10.44 6.9 5.23 9.09 7.79 5.71 4.88
37 12.06 11.61 9.47 7.00 15.26 10.31 6.93 4.7 11.1 9.42 5.67 4.27
38 11.37 11.74 9.33 7.00 13.95 10.97 6.07 6.09 10.3 9.42 5.85 5.15
39 11.85 11.56 9.47 7.02 11.34 11.73 6.51 5.56 13.17 9.27 6.46 5.16
40 12.99 11.91 9.33 7.12 11.75 11.97 6.09 5.32 12.21 8.38 5.93 5.44
41 11.55 11.84 9.33 7.00 11.7 10.94 5.91 5.46 11.12 8.97 5.08 5.25
42 11.67 11.44 9.33 7.00 11.59 10.49 6.25 5.08 10.01 8.51 5.59 4.85
43 12.99 12.03 9.47 7.02 14.39 11.57 6.16 5.34 11.65 8.09 6.32 5.6
44 11.66 12.37 9.33 7.00 14.16 10.59 6.84 4.98 13 8.3 5.77 5.6
45 11.7 11.24 9.47 7.00 14.74 10.72 6.48 5.68 10.92 9.52 5.15 4.9
46 11.68 11.46 9.33 7.02 12.94 11.72 6.4 5.48 13.4 9.6 5.74 4.73
47 11.41 11.39 9.47 6.96 12.27 12.29 5.8 5.13 13.93 10.49 5.4 4.82
48 13.22 11.58 9.33 7.00 12.56 11.67 5.7 5.45 13.19 9.88 4.81 4.78
49 13.4 11.46 9.47 7.00 13.22 11.96 6.6 5.45 12.37 10.33 5.96 4.88
50 11.72 11.72 9.47 7.00 11.56 11.3 6.65 5.09 12.62 9.88 5.43 4.52
Min II.16 10.86 9.33 6.21 7.49 9.44 5.20 4.61 7.06 5.90 4.54 4.14
Max 13.43 12.37 9.47 7.12 15.26 12.29 7.28 6.26 13.93 11.07 6.46 5.60
Ave 12.34 11.61 9.40 6.98 11.91 11.05 6.23 5.39 10.39 9.01 5.57 4.88
Stdev 0.86 0.24 0.07 0.14 1.69 0.64 0.47 0.34 1.91 1.15 0.44 0.36
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Appendix E: UMP semesterl-200708 modified-GDA results (cont ...)

No.
Nh8 - 1500 iterations Nh8 - 3000 iterations Nh9-1500 iterations

16.68 13.74 10.30 7.82 16.68 13.74 10.30 7.82 16.68 13.74 10.30 7.82

1 8.21 7.91 7.04 6.18 7.9 8.15 6.94 6.28 9.41 9.15 6.17 5.79
2 8.55 8.56 7.06 6.37 8.04 8.39 6.66 6.08 7.94 7.57 6.26 5.92
3 7.86 8.3 7.3 6.37 8.26 8.58 7.27 5.77 8.72 8.38 6.03 6.37
4 8.2 8.49 7.24 6.44 9.59 9.21 7.06 6.06 7.81 8.74 7.3 6.32
5 8.85 8.67 7.34 6.75 8.39 7.92 7.06 7 8.46 7.41 6.36 6.05
6 8.74 7.77 6.88 6.37 8.98 8.06 7.03 6.25 7.65 8.52 6.42 6.17
7 8.76 9.01 6.7 6.37 8.21 8.35 6.81 6.37 7.86 8.12 7.04 6.19

8 8.05 8.01 6.89 6.22 8.45 8.34 6.67 6.39 7.7 7.79 6.12 6.31

9 8.12 8.73 6.71 6.3 8.42 8.85 7.1 6.59 8.6 8.08 6.09 6.37

10 8.51 8.72 7.75 6.37 8.79 8.77 7.25 6.42 8.27 8.42 6.51 6.06

11 9.08 8.37 7.1 6.75 8.27 7.73 7.22 6.75 8.42 8.15 6.04 5.97

12 7.97 8.81 7.1 6.43 7.73 7.99 6.97 6.29 7.75 8.31 5.73 5.78

13 8.89 8.91 7.13 6.44 8.57 8.91 7.16 6.44 7.95 7.5 6.3 5.45

14 8.13 8.2 7.82 7.13 7.4 7.77 7.44 6.66 7.53 7.27 5.97 5.98

IS 8.75 8.53 7.44 6.5 7.92 8.31 7.19 6.75 7.89 7.86 6.18 5.81

16 8.37 8.24 6.65 6.56 8.82 8.62 7.83 6.69 7.87 7 5.98 5.8

17 7.68 8.81 7.17 6.66 7.8 8.43 6.7 6.37 7.32 7.69 6.14 5.83

18 8.29 8.55 7.02 6.75 8.32 8.78 7.15 5.84 8.1 9.15 6.76 5.86

19 8.54 8.26 6.71 6.37 8.03 9.12 7.35 6.75 7.91 6.91 6.06 6.59

20 8.66 8.22 7.1 6.75 8.16 7.76 6.92 6.28 8.92 8.84 6.33 6.04

21 8.59 8.74 7.27 6.75 7.73 8.29 7.23 6.06 8.08 8.09 5.73 6.02

22 8.14 8.02 7.21 6.88 8.16 8.74 7.18 6.56 8.22 8.32 5.43 5.88

23 8.52 8.56 7.55 6.22 9.11 9.17 6.98 6.88 8.45 8.84 5.81 5.89

24 9.48 9.18 7.14 6.37 8.81 8.09 7.59 6.37 7.9 7.32 6.91 5.88

25 9.11 7.76 7.28 6.75 8.96 7.98 7.05 6.66 7.58 7.87 6.61 5.73

26 8.54 8.31 7.05 6.48 8.79 8.09 7.42 6.66 7.75 8.26 6.08 6.72

27 7.86 8.42 7.02 6.28 8.48 8.34 7.65 6.44 7.53 7.64 6.5 5.72

28 8.04 9.37 6.64 6.75 8.1 8.7 7.62 6.75 8.29 8.32 5.5 5.97

29 8.53 8.21 7.81 6.75 8.55 8.34 7.02 6.37 7.68 9.3 6.15 6.49

30 8.47 7.72 7.39 6.75 8.45 8.17 6.81 6.75 8.93 8.11 6.54 6.4

31 8.51 9.27 6.96 6.75 8.28 8.37 6.71 6.75 8.54 7.18 6.41 6.61

32 9.06 8.35 7.7 6.44 8.26 8.2 6.96 6.28 7.75 8.33 6.54 6.17

33 8.69 8.38 7.45 6.75 8.49 8.26 6.8 6.66 8.27 7.51 6.86 6.17

34 8.51 7.87 6.84 6.37 7.87 7.92 7.46 6.28 8.47 7.16 6.18 6.15

35 8.88 8.71 7.1 6.39 8.14 8.91 6.97 6.75 8.23 8.66 7.02 5.71

36 8.49 8.11 6.82 6.75 8.06 8.78 7.1 6.75 7.53 7.46 7.05 6.14

37 8.06 8.52 7.53 6.66 8.72 8,44 7.46 6.96 8.82 7.86 6.68 6.02

38 8.06 8.18 7.36 6.28 8.06 8.5 7.34 6.28 8.4 7.66 5.53 5.99

39 8.3 8.26 7.05 6.48 8.18 8.96 7.1 6.39 8.85 7.91 6.7 5.74

40 8.09 8.53 7.66 6.65 8.66 8,47 6.99 6.28 8.17 8.81 5.89 6.43

41 8.7 8.17 7.59 6.66 8.9 8.18 7.03 6.75 9.17 9.11 5.73 5.44

42 8.29 8.28 6.71 6.59 8.46 8.82 7.34 6.75 9.07 7.46 6.49 6.12

43 8.2 8.22 7.69 6.75 9.2 7.83 7.22 6.75 9.21 7.96 7.22 6.05

44 8.07 9.16 7.36 7.05 8.36 8.92 7.14 6.75 8.57 7.94 6.08 5.82

45 8.72 8.62 6.92 6.37 8.06 8.51 7.35 6.44 8.22 7.28 5.88 5.89

46 9.05 7.98 7.75 6.44 7.97 7.93 7.5 6.75 7.61 8.88 6.42 5.96

47 8.57 8.76 7.18 6.39 8.24 8.8 7.28 6.56 8.41 9.13 6.09 5.9

48 8.38 8.47 7.28 6.44 8.62 8.68 7.82 7.34 8.11 8.99 5.34 5.59

49 8.09 8.22 7.03 6.75 7.68 8.21 7.34 6.37 8.28 8.74 6.22 5.75

50 8.1 8.29 1.66 6.38 8.44 8.11 7.4 6.38 8.48 9.77 5.69 5.97

Min 7.68 7.72 6.64 6.18 7,40 7.73 6.66 5.77 7.32 6.91 5.34 5.44
Max 9,48 9.37 7.82 7.13 9.59 9.21 7.83 7.34 9,41 9.77 7.30 6.72

Ave 8.45 8.43 7.20 6.55 8.36 8,42 7.17 6.52 8.21 8.13 6.26 6.02

Stdev 0.38 0.39 0.33 0.22 0.43 0.39 0.28 0.30 0.50 0.68 0.46 0.28
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Appendix E: UMP semesterl-200708 modified-GDA results (cont ...)

No.
Nh9 - 3000 iterations Nh 10 - 1500 iterations Nh 10-3000 iterations

16.68 13.74 10.30 7.82 16.68 13.74 10.30 7.82 16.68 13.74 10.30 7.82

1 8.89 7.21 5.87 5.36 8.82 8.84 7.41 6.98 8.52 8.87 7.09 6.65
2 8.05 7.8 5.76 6.04 8.46 8.44 7.44 6.92 8.89 8.43 7.38 5.94
3 8.2 7.74 5.71 6.17 9.1 8.97 6.79 6.79 8.53 8.02 6.88 6.28
4 7.16 8.47 5.9 5.95 8.85 9.3 7.45 6.73 7.97 8.15 7.45 7.07
5 8.76 8.35 6.24 5.45 8.24 8.83 7.07 6.72 8.6 8.28 7.42 6.92
6 7.22 8.86 5.46 6.74 8.99 8.62 6.86 6.92 8.39 9.02 7.78 6.34
7 8.39 7.88 6.19 6.78 9.27 9.08 7.4 6.92 8.51 8.02 7.05 6.92
8 7.9 7.9 5.24 5.84 9.1 8.55 7.62 6.38 9.13 8.05 7.02 6.17
9 7.42 7.79 6 6.34 8.37 8.27 7.29 5.93 8.12 8.32 7.28 6.92
10 8.17 7.91 6.4 5.94 7.82 8.21 7.82 7.03 8.8 8.56 7.19 6.17

II 8.03 7.82 6.59 6.34 9.3 8.63 7.65 6.92 9.3 9.15 6.97 6.17

12 9.36 7.54 6.28 5.87 8.81 8.74 7.24 6.92 8.61 8.35 7.06 6.07
13 7.64 8.19 5.42 6.46 9.06 8.13 7.34 6.92 9.03 9.08 7.13 6.92

14 7.65 7.55 5.87 6.25 9.15 8.89 7.89 6.38 9 9.44 8.32 6.43
IS 7.75 6.9 6.61 6.13 9.51 8.34 7.48 6.28 8.12 8.95 6.88 6.17
16 8.58 7.37 6.54 6.74 9.18 9.4 7.16 6.92 9.22 8.6 7.57 6.92
17 7.96 6.96 5.54 6.3 8.28 8.09 7.52 5.93 8.6 9.13 6.94 6.65
18 7.68 7.05 5.31 5.91 8.85 8.01 7.75 6.72 8.41 7.88 7.44 6.92

19 7.31 7.67 6.26 6.05 8.73 8.44 7.55 6.25 8.92 8.23 6.57 6.81

20 7.55 7.41 5.44 5.82 8.88 8.59 7.07 7.07 8.98 8.05 6.57 6.17

21 7.64 8.24 5.23 5.62 8.55 8.35 7.34 6.28 8.47 8.1 7.77 7.03
22 7.78 8.7 5.61 5.35 7.97 8.14 7.33 6.26 8.18 8.81 7.43 6.48

23 7.82 7.8 6.69 5.98 9.08 8.11 7.05 5.93 8.49 8.35 7.45 6.92
24 8.37 7.71 5.74 6.11 9.28 9.02 8.2 7.03 8.21 8.54 7.27 6.15

25 8.28 7.59 7.06 6.69 8.41 8.15 7.6 6.92 9.61 8.51 7.11 6.92

26 8.45 7.26 5.9 6.28 9.1 8.68 7.57 6.92 9.33 8.59 6.99 6.85

27 8.37 7.87 6.12 6.1 8.55 9.31 7.04 6.92 8.52 8.62 7.78 6.17

28 7.92 7.71 5.19 5.54 8.37 8.1 7.67 6.92 8.53 8.12 7.2 6.17

29 7.79 8.82 5.44 6.06 8.21 8.89 7.94 6.16 8.68 8.94 7.77 6.63

30 8.31 7.84 6.22 6.09 7.79 8.19 7.38 6.26 7.88 8.68 7.07 6.78

31 7.44 7.01 7.08 5.68 8.49 9.01 7.49 6.17 7.82 8.68 7.07 6.28

32 8.45 8.18 5.59 6.47 8.78 8.1 7.16 7.07 8.59 8.13 8.12 6.17

33 7.81 7.99 4.92 6.17 9.86 8.35 7.41 6.92 8.93 8.46 7.34 6.92

34 8.44 7.92 5.79 5.86 8.84 8.76 7.97 6.92 8.12 8.58 7.07 6.98

35 8.05 7.84 5.68 5.49 8.62 8.31 7.16 6.92 8.66 8.1 7.36 6.65

36 7.61 7.86 6.45 6.04 8.27 8.14 7.45 6.92 9.48 8.22 7.46 6.63

37 7.96 8.41 7.67 5.59 9.88 8.63 7.79 6.17 8.31 8.49 7.28 6.01

38 8.85 7.62 6.07 5.98 8.27 8.62 7.46 7.03 8.62 8.07 7.47 7.03

39 8.21 7.37 7.45 5.98 9 8.71 7.56 6.07 8.41 8.93 7.12 5.92

40 7.95 7.32 6.91 6.46 8.15 8.71 8.34 6.92 8.5 8.62 7.14 6.01

41 8.11 7.03 5.79 5.59 8.26 8.65 7.68 5.83 7.97 8.53 7.05 6.98

42 8.66 7.08 5.9 6.13 9.1 8.52 7.62 6.92 8.27 7.95 7.18 6.17

43 8.06 8.02 5.8 6.14 8.64 8.23 7.87 6.92 8.78 8.23 7.35 6.92

44 7.88 7.45 6.51 6.04 8.78 8.08 7.76 6.13 8.47 8.89 7.29 6.97

45 8.59 7.83 5.23 6.1 9.32 8.26 6.94 6.19 8.43 8.52 7.46 6.92

46 8.39 8 6.77 6.03 8.95 8.71 7.57 6.98 8.08 8.75 7.29 6.14

47 8.11 7.35 6.02 6.42 8.85 8.39 7.33 6.8 8.58 8.44 7.33 6.72

48 7.95 7.66 5.95 5.7 8.95 8.58 7.31 6.24 9.13 7.99 6.85 6.92

49 8.46 7.91 6.47 6.04 8.75 8.6 7.23 6.98 9.4 8.79 8.44 5.93

50 7.96 8.31 6.05 6.03 8.61 8.74 7.76 6.22 7.97 8.01 7.76 6.92

Min 7.16 6.90 4.92 5.35 7.79 8.01 6.79 5.83 7.82 7.88 6.57 5.92
Max 9.36 8.86 7.67 6.78 9.88 9.40 8.34 7.07 9.61 9.44 8.44 7.07
Ave 8.07 7.76 6.04 6.04 8.77 8.55 7.48 6.65 8.60 8.48 7.31 6.56

Stdev 0.45 0.47 0.60 0.35 0.46 0.35 0.32 0.39 0.44 0.37 0.38 0.38
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Appendix F: UMP semesterl-200809 modified-GDA results

No.
Nh 1- 1500 iterations Nh I - 3000 iterations Nh2 - 1500 iterations

18.4 15.25 12.30 9.21 18.4 15.25 12.30 9.21 18.4 15.25 12.30 9.21

I 8.46 7.2 6.74 6.27 7.53 7.54 6.25 5.98 18.33 15.25 12.3 9.21
2 8.24 7.59 6.59 6.5 7.66 6.75 6.67 5.89 18.33 15.25 12.3 9.21
3 7.82 7.28 6.74 6.34 7.6 7.57 6.3 5.93 18.34 15.25 12.3 9.21

4 8.65 7.55 6.83 6.16 7.52 6.91 6.57 6.2 18.34 15.25 12.3 9.21

5 8.34 7.52 6.58 6.17 8.03 7.36 6.39 6.1 18.34 15.25 12.3 9.21

6 8.06 7.38 6.64 6.37 7.94 6.72 6.73 6.11 18.33 15.25 12.3 9.21

7 8.68 7.62 6.72 6.6 7.26 6.98 6.03 6.05 18.34 15.25 12.3 9.21

8 8.42 8.05 7.05 6.73 7.74 6.7 6.49 6.03 18.34 15.25 12.3 9.21

9 8.33 7.76 6.65 6.3 7.62 6.29 6.51 6.13 18.34 15.25 12.3 9.21

10 7.86 6.89 7.03 6.78 7.71 7.22 6.58 5.98 18.33 15.25 12.3 9.21

11 8.58 7.67 6.36 6.35 7 7.26 6.89 6 18.34 15.25 12.3 9.21

12 8.21 7.71 6.94 6.6 7.42 6.82 6.37 6.14 18.34 15.25 12.3 9.21

13 8.92 7.72 6.89 6.35 7.13 7.05 6.23 5.92 18.33 15.25 12.3 9.21

14 8.63 7.57 6.8 6.4 7.52 7.13 6.38 5.98 18.34 15.25 12.3 9.21

15 9.37 7.41 6.92 6.59 7.36 6.92 6.32 6.21 18.34 15.25 12.3 9.21

16 8.91 7.89 6.54 6.52 7.65 6.72 6.18 6.2 18.34 15.25 12.3 9.21

17 8.35 7.84 6.69 6.58 7.27 7.22 6.41 5.98 18.34 15.25 12.3 9.21

18 8.13 7.37 6.84 6.79 7.45 6.86 6.86 6.34 18.34 15.25 12.3 9.21

19 8.09 7.84 6.73 6.19 8.26 7.14 6.3 6.01 18.34 15.25 12.3 9.21

20 8.17 7.65 7.24 6.72 7.74 6.71 6.46 6.2 18.34 15.25 12.3 9.21

21 8.42 7.27 6.82 6.41 7.03 6.97 6.24 6.11 18.33 15.25 12.3 9.21

22 8.58 7.74 6.33 6.42 7.86 7.55 6.41 6.03 18.34 15.25 12.3 9.21

23 8.57 7.74 7.16 6.55 7.4 7.24 6.63 6 18.34 15.25 12.3 9.21

24 8.76 7.48 6.83 6.28 7.58 6.68 6.18 6.09 18.34 15.25 12.3 9.21

25 8.02 7.58 7.13 6.55 7.47 7.04 6.26 5.9 18.34 15.25 12.3 9.21

26 7.61 7.49 7.02 6.2 7.62 7.14 6.19 5.89 18.33 15.25 12.3 9.21

27 8.2 7.58 6.95 6.24 7.94 7.06 6.34 5.97 18.33 15.25 12.3 9.21

28 8.49 7.44 6.92 6.3 7.22 7.02 6.41 5.95 18.34 15.25 12.3 9.21

29 8.3 7.71 6.66 6.58 7.72 6.78 6.26 6.32 18.33 15.25 12.3 9.21

30 8.63 7.92 6.83 6.11 7.79 6.97 6.25 6.02 18.33 15.25 12.3 9.21

31 8.84 7.22 6.94 6.78 7.45 6.91 6.25 6.04 18.34 15.25 12.3 9.21

32 8.14 8.01 7.16 6.35 7.71 7.23 6.66 6.11 18.33 15.25 12.3 9.21

33 8.43 8.14 6.88 6.23 7.47 7.74 6.19 5.82 18.33 15.25 12.3 9.21

34 7.87 7.56 6.92 6.73 7.44 7.05 6.46 5.99 18.33 15.25 12.3 9.21

35 8.15 7.26 6.76 6.28 7.52 7.01 6.59 5.95 18.33 15.25 12.3 9.21

36 8.32 7.13 6.77 6.37 7.52 7.55 6.34 6.42 18.33 15.25 12.3 9.21

37 8.59 8.11 7.22 6.33 7.96 7.16 6.38 6.13 18.32 15.25 12.3 9.21

38 8.62 7.28 6.84 6.87 7.51 7.04 6.23 6.04 18.34 15.25 12.3 9.21

39 8.76 8.14 7.05 6.52 7.41 6.97 6.46 6.29 18.34 15.25 12.3 9.21

40 8.54 7.26 6.92 6.56 7.24 6.71 6.52 6.15 18.33 15.25 12.3 9.21

41 8.81 8.04 7.05 6.28 7.46 7.5 6.35 5.9 18.34 15.25 12.3 9.21

42 8.72 7.6 7.61 6.44 7.95 6.83 6.05 5.83 18.34 15.25 12.3 9.21

43 8.48 7.38 7.44 6.78 8.05 7.29 6.37 5.63 18.34 15.25 12.3 9.21

44 8.57 8.18 6.82 6.14 7.19 7.14 6.36 6.15 18.33 15.25 12.3 9.21

45 8.2 7.64 6.86 6.4 7.77 7.47 6.06 5.89 18.34 15.25 12.3 9.21

46 8.84 8.01 7 6.37 6.96 6.85 6.58 5.88 18.33 15.25 12.3 9.21

47 8.39 7.41 6.85 6.29 7.35 6.94 6.23 6.03 18.34 15.25 12.3 9.21

48 8.24 7.97 6.79 6.39 7.65 7.7 6.31 6.14 18.33 15.25 12.3 9.21

49 8.05 7.11 7.16 6.54 7.36 6.96 6.03 5.8 18.34 15.25 12.3 9.21

50 8.8 7.52 7.2 6.25 7.66 6.22 6.72 6.06 18.34 15.25 12.3 9.21

Min 7.61 6.89 6.33 6.11 6.96 6.29 6.03 5.63 18.32 15.25 12.30 9.21

Max 9.37 8.18 7.61 6.87 8.26 7.74 6.89 6.42 18.34 15.25 12.30 9.21

Ave 8.42 7.61 6.89 6.44 7.55 7.07 6.38 6.04 18.34 15.25 12.30 9.21

Stdev 0.33 0.31 0.24 0.20 0.28 0.30 0.20 0.15 0.01 0.00 0.00 0.00
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Appendix F: UMP semesterl-200809 modified-GDA results (cont ...)

No. Nh2 - 3000 iterations Nh3- 1500 iterations Nh3 - 3000 iterations
18.4 15.25 12.30 9.21 18.4 15.25 12.30 9.21 18.4 15.25 12.30 9.21

I 18.33 15.25 12.3 9.21 7.89 9.4 7.67 7.74 7.01 8.21 7.57 7.2
2 18.34 15.25 12.3 9.21 8.43 8.34 8.36 7.67 7.43 7.9 8.36 7.28
3 18.34 15.25 12.3 9.21 7.68 8.44 8.05 7.57 6.86 7.83 7.75 6.65
4 18.33 15.25 12.3 9.21 7.83 8.7 8.22 7.46 7.15 8.63 8.07 7.23
5 18.34 15.25 12.3 9.21 7.91 8.98 8.67 7.44 7.43 8.28 8.34 6.77
6 18.34 15.25 12.3 9.21 8.54 8.95 8.23 7.67 7.75 8.12 8.09 7.59
7 18.34 15.25 12.3 9.21 8.69 8.63 8.69 7.34 7.27 8.42 8.07 7.12
8 18.34 15.25 12.3 9.21 7.69 9.2 8.07 7.22 7.04 8.24 8.12 6.79
9 18.33 15.25 12.3 9.21 7.87 8.86 8.24 7.72 6.96 8.25 8.ll 7.04
10 18.34 15.25 12.3 9.21 8.19 8.6 8.78 7.36 7.83 7.87 7.4 6.38
11 18.34 15.25 12.3 9.21 7.88 8.55 8.Il 7.35 8.03 7.76 8.36 7.4
12 18.33 15.25 12.3 9.21 7.88 9.1 I 7.99 7.63 7.48 8.56 7.66 7.64
13 18.34 15.25 12.3 9.21 7.68 8.07 7.97 7.17 7.61 7.87 7.63 7.29
14 18.34 15.25 12.3 9.21 7.7 9.32 7.72 7.97 7.05 7.92 8.31 7.56
15 18.33 15.25 12.3 9.21 7.67 8.61 7.85 7.32 7.04 8.52 8.24 6.82
16 18.34 15.25 12.3 9.21 8.45 8.9 8.49 7.96 6.78 8.ll 7.77 7.23
17 18.34 15.25 12.3 9.21 8.21 9.11 7.66 7.4 7.29 8.51 8.38 6.84
18 18.33 15.25 12.3 9.21 7.79 8.85 8.9 7.6 7.17 8.55 7.9 7.62
19 18.33 15.25 12.3 9.21 7.85 9.09 8.49 7.31 6.95 7.97 7.6 7.26
20 18.34 15.25 12.3 9.21 7.65 8.44 8.14 7.09 7.42 8.36 8.22 6.81
21 18.34 15.25 12.3 9.21 7.87 8.83 7.99 7.73 6.92 8.32 8.26 6.9
22 18.34 15.25 12.3 9.21 7.72 8.84 7.94 7.6 7.61 7.7 8.35 6.99
23 18.34 15.25 12.3 9.21 8.3 8.66 8.38 7.41 7.12 8.54 7.65 7.1
24 18.33 15.25 12.3 9.21 7.86 8.79 7.87 7.69 7.05 8.03 7.75 7.05
25 18.34 15.25 12.3 9.21 7.12 9.25 8.43 7.56 7.43 8.57 8.01 6.85
26 18.33 15.25 12.3 9.21 8.66 8.66 7.84 7.85 7.12 8.48 7.32 6.83
27 18.34 15.25 12.3 9.21 8.14 8.6 7.91 7.85 7.02 8.56 7.54 7.42
28 18.34 15.25 12.3 9.21 7.71 8.85 8.63 7.76 7.88 8.3 8.1 7.27
29 18.33 15.25 12.3 9.21 8.02 8.62 7.98 7.37 6.79 8.61 7.58 6.99
30 18.34 15.25 12.3 9.21 8.02 8.74 7.88 7.38 7.17 7.71 8.07 7.35
31 18.33 15.25 12.3 9.21 8.6 8.58 8.01 7.74 6.83 8.37 7.85 7.56
32 18.34 15.25 12.3 9.21 7.71 8.55 8.3 7.54 7.4 8.11 8.8 6.83
33 18.34 15.25 12.3 9.21 8.06 8.81 8.83 7.86 7.85 8.27 8.54 6.66
34 18.34 15.25 12.3 9.21 8.6 8.73 8.43 6.95 7.28 7.8 7.75 6.82
35 18.33 15.25 12.3 9.21 8.05 8.71 8.5 7.42 6.98 8.31 8.03 7.21
36 18.33 15.25 12.3 9.21 8.47 9.08 8.93 7.56 7.25 8.13 8.04 7.26
37 18.33 15.25 12.3 9.21 7.37 8.66 8.35 7.55 7.33 8.39 8 7.01
38 18.34 15.25 12.3 9.21 7.75 8.68 8.25 7.82 6.92 8.07 8.04 7.11
39 18.34 15.25 12.3 9.21 7.55 9.54 8.51 7.61 7.06 8.26 8.09 7.61
40 18.34 15.25 12.3 9.21 8.47 9.85 8.1 7.17 7.26 8.04 7.73 7.22
41 18.33 15.25 12.3 9.21 7.9 8.73 8.27 8.25 7.35 8.64 8.1 7.38
42 18.33 15.25 12.3 9.21 8.15 8.68 8.36 7.64 7.17 7.86 8.26 7.29
43 18.34 15.25 12.3 9.21 8.09 9.04 8.99 7.88 7.62 8.71 7.8 6.93
44 18.33 15.25 12.3 9.21 7.8 8.46 8.1 7.9 7.43 8.43 7.71 6.79
45 18.33 15.25 12.3 9.21 7.71 8.71 8.35 7.6 7.53 8.03 8.38 7.82
46 18.33 15.25 12.3 9.21 8.68 8.3 7.69 7.45 7.34 8.33 8.3 6.77
47 18.33 15.25 12.3 9.21 8.18 8.95 8.01 7.51 7.08 8.06 8.15 7.01
48 18.34 15.25 12.3 9.21 7.84 8.75 8.28 7.17 7.09 8.39 7.96 7.33
49 18.33 15.25 12.3 9.21 7.66 9.18 8.86 7.44 7.25 8.09 8.75 7.15
50 18.34 15.25 12.3 9.21 8.28 8.5 8.36 7.47 7.3 8.48 8.09 7.55
Min 18.33 15.25 12.30 9.21 7.12 8.07 7.66 6.95 6.78 7.70 7,32 6.38
Max 18.34 15.25 12.30 9.21 8.69 9.85 8.99 8.25 8.03 8.71 8.80 7.82
Ave 18.34 15.25 12.30 9.21 8.00 8.81 8.25 7.55 7.26 8.23 8.02 7.13
Stdev 0.00 0.00 0.00 0.00 0.36 0,33 0.35 0.25 0.30 0.28 0.33 0.31
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Appendix F: UMP semesterl-200809 modified-GDA results (cont ...)

No.
Nh4 - 1500 iterations Nh4 - 3000 iterations Nh6-1500 iterations

18.4 15.25 12.30 9.21 18.4 15.25 12.30 9.21 18.4 15.25 12.30 9.21

I 9.95 9.13 8.38 7.46 10.29 10.06 8.33 7.65 9.55 11.02 10.29 9.03
2 10.11 9.26 8.41 7.44 10.04 8.93 8.65 7.36 11.63 11.42 9.29 9.03

3 10.24 9.48 8.34 7.73 11.06 9.49 8.24 7.6 11.27 11.23 9.67 9.03

4 9.67 9.12 8.22 7.26 9.46 9.74 9.55 7.31 11.92 10.3 9.81 8.99

5 10.18 8.79 7.66 7.37 10.39 9.05 8.3 7.28 10.09 11.3 9.49 8.99

6 10.07 9.47 8.15 7.34 9.28 9.59 8.41 7.22 12.12 11.31 9.4 9.03

7 9.77 9.93 8.52 7.27 9.61 8.92 7.77 7.09 10.34 10.71 9.9 8.95

8 10.48 9.65 9.18 7.27 10.61 9.51 8.35 7.44 9.72 10.82 10.3 9.14

9 9.94 9.53 9.09 7.46 9.35 9.37 8.36 7.28 10.47 10.98 9.85 9.03

10 10.4 9.76 8.07 7.26 9.63 8.89 8.46 7.85 10.08 11.08 9.88 8.96

11 9.86 9.2 9.09 7.45 9.34 9.31 8.29 7.69 10.29 10.81 9.3 8.68

12 10.46 10 8.12 7.17 9.98 8.62 8.12 7.31 10.2 11.19 10.3 9.03

13 9.72 8.58 8.49 7.52 9.81 8.72 8.49 7.49 9.81 10.65 10.15 8.96

14 10.21 9.3 8.72 7.5 9.48 9.25 8.03 7.31 11.42 11.28 9.82 9.14

15 11.1 8.79 8.21 7.73 9.09 9.89 9.29 7.71 11.58 10.94 9.78 8.15

16 10.06 9.54 8.35 7.66 9.48 8.67 8.87 7.36 11.37 11.21 9.85 8.68

17 10.09 9.65 8.77 7.63 9.8 9.1 8.39 7.53 11.42 10.98 9.34 8.95

18 9.88 9.47 8.49 7.49 9.15 9.67 8.42 7.37 14.41 11.61 10.1 9.03

19 10.95 9.58 8.39 7.14 9.96 9.41 8.36 7.5 11.53 10.99 9.88 8.95

20 9.96 9.07 8.2 7.63 10.06 9.23 8.04 7.31 11.52 10.85 9.52 8.15

21 10.27 9.53 8.92 7.66 9.34 9.39 8.28 7.66 11.35 11.19 9.6 9.03

22 9.88 9.01 8.18 7.68 9.81 9.58 7.97 7.46 9.86 11.03 9.82 8.96

23 10.38 9.86 8.59 7.38 10.13 9.07 7.72 7.6 9.88 10.67 10.15 9.03

24 10.16 9.04 8.41 7.43 10.21 8.78 8.03 7.41 11.88 11.31 9.84 9.03

25 10.72 8.75 8.12 7.52 10.19 8.68 8.66 7.43 11.36 11 9.56 9.03

26 10.13 8.74 8.39 7.29 9.3 8.45 8.35 6.97 11.45 11.1 9.59 9.03

27 10.97 9.54 8.78 7.32 10.27 8.75 7.94 7.39 10.88 10.82 9.93 9.03

28 9.6 10.25 8.86 7.42 9.27 9.83 8.17 7.78 9.93 11.09 10 9.03

29 9.71 9.81 8.75 7.62 9.57 9.48 8.65 7.49 9.91 10.86 9.39 9.03

30 9.75 9.2 8.71 7.61 10.51 9.5 8.53 7.39 10.07 10.75 9.96 9.14

31 9.75 9.63 8.02 7.83 9.8 9.31 8.45 7.82 14.57 10.68 9.56 9.14

32 9.11 9.51 8.16 7.4 9.79 9.89 8.71 7.68 11.55 11.17 10.09 9.03

33 10.57 10 8.39 7.38 10.94 9.15 8.84 7.68 11.56 10.88 9.34 8.96

34 9.92 9.35 8.31 7.56 9.63 10.03 7.94 7.62 11.28 10.74 9.55 9.03

35 11.41 9.08 8.61 7.8 9.76 9.1 8.81 7.65 9.15 10.94 9.8 8.68

36 10.51 9.3 8.13 7.51 9.98 9.47 8.48 7.62 9.3 11 10.12 9.03

37 9.92 9.23 8.48 7.61 9.84 9.71 8.39 7.22 11.9 10.64 10.14 9.03

38 9.57 9.45 8.53 7.57 10.66 8.99 8.49 7.54 11.11 11.05 9.84 9.03

39 9.65 8.95 8.98 7.27 10.34 9.79 8.31 7.34 11.54 10.99 9.99 8.96

40 10.1 9.95 8.41 7.49 10.49 9.6 8.37 7.66 11.39 11.18 10 8.68

41 10.93 9.64 8.28 7.39 9.45 9.58 7.87 7.67 10.35 11.07 9.55 9.03

42 11.03 9.91 8.28 7.26 10.D7 7.92 9.04 7.55 10.02 10.72 10.1 9.03

43 9.14 8.52 8.03 7.43 11.22 9.98 7.78 7.71 10.74 11.02 10.06 9.03

44 10.12 9.79 8.61 7.26 9.42 9.39 8.47 7.7 10.89 10.63 9.57 8.96

45 9.92 9.43 8.45 7.84 9.74 8.86 8.12 7.54 12.1 10.85 9.61 9.03

46 9.69 8.66 8.42 7.24 9.19 9.75 8.22 7.6 11.45 10.92 10.54 8.96

47 10.79 10.02 8.49 7.53 10.7 8.94 8.2 7.62 11.2 11.08 9.67 9.03

48 10.39 9.55 8.44 7.33 9.58 8.93 8.12 7.16 10.1 10.7 9.59 9.03

49 11.14 9.4 8.73 7.75 10.4 8.76 8.33 7.3 11.52 11.22 9.61 9.03

50 9.33 9.6 8.81 7.58 9.98 9.92 9.04 7.27 9.73 10.85 9.47 9.03

Min 9.11 8.52 7.66 7.14 9.09 7.92 7.72 6.97 9.15 10.30 9.29 8.15

Max 11.41 10.25 9.18 7.84 11.22 10.06 9.55 7.85 14.57 11.61 10.54 9.14

Ave 10.15 9.40 8.46 7.47 9.91 9.28 8.38 7.48 10.98 10.98 9.80 8.96

Stdev 0.52 0.41 0.31 0.18 0.52 0.47 0.37 0.20 1.09 0.24 0.30 0.20
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Appendix F: UMP semesterl-200809 modified-GDA results (cont ...)

No.
Nh6 - 3000 iterations Nh7 - 1500 iterations Nh7-3000 iterations

18.4 15.25 12.30 9.21 18.4 15.25 12.30 9.21 18.4 15.25 12.30 9.21
I 11.42 11.46 10.34 9.03 9.85 8.08 7.24 6.74 8.58 7.58 7.08 5.86
2 10.11 11.51 9.76 9.03 9.69 8.05 6.91 7.01 8.8 7.9 6.94 6.64
3 9.61 II 9.71 9.14 8.58 7.57 6.93 6.73 8.71 7.48 7.01 6.29
4 11.66 11.12 10.13 9.14 9.77 8.06 7.01 6.36 8.49 8.22 6.63 6.34
5 10.23 11.15 10.15 9.03 8.82 8.07 7.26 6.44 8 7.4 6.29 6.72
6 10.18 10.81 9.54 9.03 9.21 8.31 7 6.77 8.3 7.73 6.62 6.47
7 9.27 I1 9.72 9.03 9.23 7.89 7.22 6.43 8.57 8.42 6.88 6.65
8 9.73 10.92 9.65 9.03 8.53 7.71 8.07 6.85 8.48 7.19 6.7 6.42
9 11.16 10.75 9.83 8.68 9.2 7.93 7.01 6.74 8.77 8.2 6.5 6.85
10 10.09 11.17 9.35 9.03 8.79 8.23 7.02 6.72 8.17 7.43 6.68 6.08

II 9.5 10.99 9.98 9.02 8.42 8.31 6.75 7.12 8.43 7.69 6.9 6.38

12 10.46 11.14 10.15 9.03 8.57 7.94 6.7 6.5 8.48 7.58 6.63 6.72
13 9.88 11.23 9.63 9.03 8.89 8.54 6.79 6.33 8.71 7.91 6.8 6.57
14 9.86 11.04 10.03 9.21 8.78 8.35 7.08 6.31 9.01 7.4 6.71 6.41
15 9.21 10.76 9.42 9.03 9.52 7.91 6.8 6.58 8.6 7.9 6.83 6.2
16 9.13 11.14 9.65 9.21 8.61 8.13 6.62 7.09 8.57 7.23 6.45 6.21
17 11.67 12 10.03 9.03 8.74 8.48 7.05 6.79 8.73 8.01 6.64 6.17

18 11.72 10.98 10.17 9.03 9.5 8.81 6.97 6.37 9.06 8.04 6.59 6.05

19 11.38 11.35 9.58 9.03 8.63 7.8 7.5 6.38 8.62 7.63 7.03 6.41

20 10.96 11.3 10.02 9.03 8.83 8.55 7.23 6.87 8.23 8 6.91 6.57
21 11.46 11.22 9.8 9.03 9.42 9.12 6.75 6.94 8.31 8.33 6.73 6.28

22 10.34 11.09 9.87 9.03 9.2 8.51 6.81 6.86 8.47 8.08 6.67 6.29

23 9.66 10.96 9.39 9.03 8.62 8.1 7.01 6.96 8.68 8.27 6.28 6.3
24 9.39 11.02 9.38 8.59 8.86 8.06 6.8 6.52 7.99 7.3 6.26 6.17

25 10.96 10.83 10.24 9.03 9.13 8.18 7.19 6.39 9.28 7.6 7.4 6.28

26 10.14 10.34 9.61 9.03 8.88 9.2 6.92 6.21 8.8 7.85 6.86 6.18

27 9.96 10.84 9.36 8.6 9.21 8.28 7.59 6.97 8.09 7.94 7.14 6.66

28 9.34 10.88 9.91 8.68 9.21 8.56 6.84 6.81 8.69 8.09 7.19 6.45

29 10.68 11.81 9.29 9.14 9.09 8.31 6.89 6.89 8.42 7.72 6.89 6.06

30 9.93 10.8 9.88 9.03 8.81 8.02 6.96 6.86 8.27 7.97 6.87 6.75

31 11.25 11.36 10.18 9.03 9.41 8.34 6.78 6.39 8.07 9.28 6.95 6.66

32 10.02 10.87 10.25 9.03 9 9.27 6.71 6.68 8.91 8.13 6.34 6.59

33 10.23 10.56 9.56 9.21 8.79 7.77 6.98 7.35 8.24 7.72 7 6.82

34 10.08 11.07 10.1 9.14 9.19 7.99 7.35 6.74 9.3 7.53 6.75 6.17

35 10.8 11.07 9.86 8.95 8.88 8.26 6.89 6.44 8.19 7.76 6.48 6.26

36 9.49 10.99 9.84 8.96 10.01 8.93 7.01 6.9 8.48 7.56 6.84 6.19

37 10.87 10.91 10.03 9.03 8.71 7.9 7.1 6.47 8.26 7.72 6.69 6.45

38 11.36 10.99 9.76 9.03 9.1 7.8 6.77 6.93 8.25 7.55 6.99 6.3

39 11.23 10.6 9.21 7.86 8.61 7.96 6.98 6.87 8.43 7.97 6.64 6.63

40 10.06 11.26 9.4 9.21 8.62 7.81 6.79 6.8 8.57 7.6 6.55 6.56

41 9.84 11.29 9.48 9.21 8.64 8.34 7.13 7.17 8.5 7.39 6.44 6.02

42 9.42 10.92 10.15 9.03 9.05 8.75 6.95 6.72 8.33 8.56 6.19 6.64

43 10.46 11 10.41 9.03 9.06 8.15 7.18 7.01 8.52 7.82 6.75 6.35

44 8.98 11.52 10.1 8.58 8.85 8.2 7.12 6.79 8.67 6.96 6.65 6.27

45 9.6 11.06 9.84 8.99 8.45 7.74 7.08 6.69 8.41 7.4 6.86 5.95

46 9.42 10.73 9.57 9 8.34 7.67 7.57 6.3 8.78 7.54 6.92 6.41

47 9.8 11.12 9.86 9.21 9.37 8.17 6.77 6.53 8.31 7.98 6.69 6.14

48 10.38 11.02 9.53 9.1 8.62 8.26 7.03 6.83 8.47 7.92 6.39 6.13

49 10.06 11.48 9.42 9.03 9.46 8.33 7.08 6.37 8.78 7.37 6.82 6.3

50 9.75 10.98 9.87 9.21 8.81 7.81 7.12 7.07 8.62 7.54 6.58 6.27

Min 8.98 10.34 9.21 7.86 8.34 7.57 6.62 6.21 7.99 6.96 6.19 5.86

Max 11.72 12.00 10041 9.21 10.01 9.27 8.07 7.35 9.30 9.28 7.40 6.85

Ave 10.24 11.07 9.80 9.00 8.99 8.21 7.03 6.71 8.53 7.79 6.73 6.37

Stdev 0.76 OJO OJI 0.22 0.39 0.39 0.26 0.27 0.29 0.40 0.25 0.24
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Appendix F: UMP semesterl-200809 modified-GDA results (cont ...)

No. Nh8 - 1500 iterations Nh8 - 3000 iterations Nh9-1500 iterations
18.4 15.25 12.30 9.21 18.4 15.25 12.30 9.21 18.4 15.25 12.30 9.21

I 10.61 9.84 9.54 8.6 10.16 9.71 9.22 8.6 11.47 10.24 8.38 7.55
2 10.14 10.34 9.52 8.48 9.31 9.49 9.83 8.57 11.08 9.85 8.41 7.6
3 11.03 9.9 9.93 8.57 10.29 10.56 9.53 8.48 10.98 10.34 8.07 7.61
4 11.47 10.45 9.81 8.56 9.32 10.85 9.82 8.6 9.8 9.46 8.22 7.32
5 10.43 10.49 10.03 8.6 10.93 9.04 9.64 8.56 11.68 9.78 8.83 8.02
6 10.61 10.42 9.74 8.6 10.3 10.17 9.33 8.58 9.97 10.6 8.79 7.78
7 I1.l2 10.22 9.47 8.6 9.94 9.25 9.46 8.58 11.45 9.75 9.05 7.51
8 10.64 10.78 9.44 8.6 9.88 10.16 9.58 8.6 10.51 9.99 8.84 7.42
9 10.89 9.86 10.31 8.6 10.23 9.52 10.12 8.6 11.53 9.79 8.48 7.41
10 10.93 9.87 9.84 8.56 10.41 10.14 10.03 8.6 11.07 9.91 8.47 7.71
II 10.9 10.63 9.3 8.6 10.2 9.93 9.93 8.68 11.82 9.51 8.19 7.39
12 10.61 10.39 9.1 8.6 10.65 9.88 10.16 8.56 I1.5 10.18 8.47 7.7
13 10.95 10.15 9.6 8.6 9.99 9.36 9.35 8.56 11.08 10.29 8.84 7.53
14 10.37 9.6 9.7 8.56 10.57 9.46 9.88 8.56 10.78 9.85 8.75 7.88
15 10.55 11.04 8.96 8.6 9.98 9.14 9.64 8.58 10.79 10.58 8.68 7.26
16 9.86 10.37 9.25 8.6 10.31 9.69 9.76 8.56 10.71 9.19 8.14 7.53
17 11.43 11.I 9.94 8.6 11.05 9.48 9.52 8.48 10.79 9.58 8.17 7.36
18 10.69 9.86 9.4 8.6 10.3 9.85 10.29 8.58 11.74 9.87 8 7.58
19 10.8 10.62 9.25 8.48 10.19 10.75 9.26 8.6 10.91 9.61 8.75 7.18
20 10.92 10.32 9.91 8.6 10.77 9.74 9.92 8.6 11.62 9.56 8.33 7.49
21 11.85 10.35 10.16 8.48 10.68 9.48 9.69 8.76 11.41 10.47 8.69 7.93
22 11.16 10.85 9.82 8.56 10.27 9.52 10.36 8.6 10.6 9.72 8.64 7.64
23 11.07 11.07 9.64 8.56 10.1 10.47 9.24 8.48 10.64 9.55 8.65 7.05
24 10.28 10.83 9.81 8.56 9.86 9.56 9.68 8.57 10.86 8.97 8.54 7.31
25 10.9 9.86 9.48 8.6 10.65 9.31 10 8.48 11.I2 9.96 8 7.47
26 10.99 10.56 10.24 8.57 10.04 9.32 9.63 8.56 10.72 9.23 8.13 7.53
27 10.97 11.27 8.96 8.48 10.31 10.43 9.1 8.6 10.43 9.48 8.13 7.51
28 11.09 9.92 9.45 8.57 10.18 9.54 10.12 8.56 11.77 9.75 8.11 7.86
29 11.07 10.85 10.09 8.69 11.07 9.58 9.06 8.72 10.67 10.06 8.61 7.88
30 11.09 10.51 9.94 8.48 9.74 9.42 10.06 8.56 10.93 10.2 8.23 7.43
31 10.57 10.42 9.55 8.48 10.42 10.37 10 8.56 9.79 10.64 8.57 7.05
32 10.92 10.33 9.63 8.66 9.54 9.61 10 8.6 10.44 9.77 8.44 7.54
33 10.55 9.78 9.84 8.6 10.02 9.02 9.65 8.6 10.28 10.21 8.3 7.75
34 10.28 10.58 10.02 8.6 9.97 10.28 9.64 8.6 IU9 9.97 8.85 7.64
35 1l.35 10.28 10.06 8.48 10.23 9.18 9.6 8.6 11.17 10.2 8.18 7.34
36 10.79 10.22 9.74 8.56 10.1 9.41 9.95 8.56 11.6 10.15 8.46 7.45
37 10.89 10.55 9.58 8.6 10.12 9.84 9.47 8.56 11.32 10.18 8.74 7.89
38 10.27 9.05 9.36 8.6 10.53 9.73 9.85 8.56 10.59 10.03 8.26 7.45
39 10.45 10.81 9.57 8.6 10.81 10.88 9.64 8.57 10.55 9.94 7.82 7.22
40 11.9 10.71 9.91 8.64 10.75 9.16 9.77 8.48 10.6 9.91 8.6 7.72
41 10.49 10.4 9.14 8.56 10.87 10.17 9.75 8.68 11.l6 9.68 9.15 7.5
42 10.55 10.21 10.22 8.48 10.17 10.3 9.65 8.56 10.57 10.1 8.34 7.81
43 10.62 10.55 9.64 8.6 9.81 9.29 9.06 8.48 11.28 9.85 8.48 7.36
44 10.34 10.56 9.3 8.48 10.11 10.18 9.4 8.56 1l.34 9.17 9.14 7.38
45 11 10.38 9.31 8.48 9.49 9.45 10 8.6 11.27 10.25 8.25 7.54
46 10.91 10.37 9.91 8.75 11.12 10.14 9.74 8.48 10.7 9.6 8.84 7.8
47 11.16 10.15 9.45 8.6 9.52 10.64 9.5 8.57 10.56 9.66 8.43 7.27
48 10.75 11.09 9.44 8.48 9.78 9.97 8.98 8.6 10.24 9.44 8.84 7.02
49 10.65 10.48 9.66 8.48 9.92 9.94 10.27 8.56 11.93 9.55 8.21 7.03
SO 9.39 9.86 10.24 8.6 10.78 9.08 9.19 8.6 10.86 10.33 8.84 7.59
Min 9.39 9.05 8.96 8.48 9.31 9.02 8.98 8.48 9.79 8.97 7.82 7.02
Max 11.90 11.27 10.31 8.75 11.12 10.88 10.36 8.76 11.93 10.64 9.15 8.02
Ave 10.79 10.38 9.66 8.57 10.23 9.79 9.69 8.58 10.96 9.88 8.49 7.52
Stdev 0.45 0.43 0.34 0.06 0.45 0.50 0.34 0.06 0.52 0.38 0.31 0.24
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Appendix F: UMP semesterl-200809 modified-GDA results (conI ... )

No. Nh9 - 3000 iterations Nh 10 - 1500 iterations Nh I0-3000 iterations
18.4 15.25 12.30 9.21 18.4 15.25 12.30 9.21 18.4 15.25 12.30 9.21

1 10.76 9.21 8.5 6.84 10.24 10.44 9.5 8.43 10.62 9.7 9.69 8.43
2 10.84 10.36 8.41 7.68 10.48 9.29 9.47 8.57 10.46 10.99 9.56 8.43
3 11.05 9.8 8.09 7.46 9.51 9.3 9.57 8.43 10.73 10.67 10.21 8.43
4 11.5 9.65 8.28 7.65 10.84 9.9 9.83 8.58 9.52 9.74 9.89 8.57
5 10.73 10.33 9.38 7.57 11.31 10.37 9.57 8.73 11.17 10.46 9.57 8.61
6 10.72 9.86 8.29 7.67 10.41 9.95 9.56 8.43 9.67 10.21 9.38 8.43
7 10.39 10.53 7.84 7.79 10.69 10.45 9.6 8.6 9.93 9.56 9.86 8.57
8 10.36 9.68 8.66 7.14 11.15 9.67 9.83 8.43 9.6 10.18 9.91 8.57
9 10.79 10.46 7.67 7.72 10.08 10.6 9.57 8.3 10.62 10.22 9.63 8.43
10 11.84 9.77 8.07 7.3 10.76 10.12 11.15 8.43 10.52 10.05 9.6 8.43
II 10.99 9.73 8.26 7.58 10.8 9.77 10m 8.43 10.23 10.27 9.48 8.43
12 10.46 9.5 8.9 7.21 10.16 10.45 9.81 8.69 9.93 9.84 9.56 8.43
13 10.69 9.5 8.81 7.63 10.23 11.41 9.61 8.56 11.04 9.57 9.75 8.43
14 10.1 9.57 8.59 7.53 10.03 10.17 9.89 8.3 10.4 10.15 9.62 8.43
15 11.99 9.98 8.25 7.43 10.9 10.6 9.67 8.43 10.57 10.45 9.45 8.57
16 9.99 10.39 8.42 7.63 10.4 10.2 9.6 8.57 10.3 9.72 9.63 8.3
17 10.57 9.81 8.24 7.74 10.53 10.7 10.08 8.43 10.34 10.05 9.57 8.57
18 11.02 9.8 8.52 7.3 10.63 9.91 9.61 8.73 10.08 9.77 9.59 8.43
19 10.84 10.14 8.96 7.38 10.23 9.97 9.4 8.43 10.11 9.81 9.83 8.57
20 11.27 9.88 8.74 7.48 10.63 9.25 9.56 8.43 10.51 10.94 9.6 8.43
21 10.04 9.75 8.38 7.2 11.33 10.77 9.91 8.68 9.89 10.59 9.9 8.43
22 11.15 9.72 8.57 7.65 10.68 9.76 9.56 8.56 10.02 9.57 9.47 8.3
23 9.87 9.99 7.8 7.19 10.22 9.91 9.45 8.43 10.77 9.93 9.77 8.43
24 9.93 9.67 8.94 7.4 11.53 10.9 9.56 8.43 11.1 10.92 9.57 8.43
25 10.78 9.87 8.3 7.6 10.86 10.5 9.56 8.52 9.94 10.25 9.59 8.43
26 11.59 10.25 8.29 7.18 10.79 9.89 10.29 8.43 11.03 9.21 9.56 8.43
27 10.82 10.48 8.6 7.08 10.19 9.99 9.57 8.43 10.18 9.55 9.5 8.43
28 11.46 10 8.05 7.41 10.34 10.88 10.45 8.43 10.44 9.26 10.21 8.37
29 11.53 9.09 9 7.87 10.34 10.2 9.8 8.43 10.52 9.12 9.79 8.43
30 10.75 10.25 8.26 7.36 10.23 10.43 9.44 8.6 10.01 9.76 9.93 8.56
31 10.57 9.39 7.91 7.22 11.43 10.2 9.91 8.57 9.82 10.51 9.47 8.56
32 11.27 9.09 7.72 7.48 11.09 9.63 9.37 8.43 10.42 9.82 9.66 8.43
33 10.96 9.74 8.31 7.43 11.67 10.15 9.57 8.43 10.16 10.26 9.71 8.43
34 10.97 9.64 8.38 7.61 10.65 9.78 9.87 8.43 10.38 10.36 9.56 8.43
35 10.48 10.27 8.34 7.3 11.19 10.04 10.21 8.7 10.97 9.83 9.89 8.43
36 10.76 9.66 8.69 7.52 10.92 9.56 9.64 8.6 10.45 10m 9.48 8.57
37 11.11 9.76 8.29 7.56 10.71 10.21 9.99 8.43 11.14 8.96 9.56 8.57
38 10.47 9.94 8.93 7.58 9.77 10.31 9.81 8.39 10.59 9.63 9.48 8.43
39 9.83 9.65 8.61 7.24 10.57 10.35 9.63 8.56 9.69 9.86 9.56 8.76
40 10.72 9.74 8.2 6.78 10.5 10.57 9.81 8.43 11.84 10.94 9.66 8.61
41 9.72 9.63 8.13 7.51 10.72 9.94 9.57 8.43 10.82 10.45 9.6 8.43
42 10.15 10 8.52 7.51 10.62 11.18 9.81 8.3 10.9 10.03 9.71 8.57
43 10.67 9.71 8.85 7.68 10.54 10.07 9.48 8.43 10.47 9.9 10.16 8.57
44 10.68 10.47 8.18 7.5 10.55 9.62 9.91 8.43 10.19 10.34 9.87 8.43
45 10.65 9.3 7.98 7.71 10.02 10.22 9.39 8.64 10.2 10.22 9.43 8.43
46 10.62 10.34 7.97 7.6 10.38 11.02 9.59 8.43 10.11 9.83 9.7 8.57
47 9.77 10.06 8.34 7.44 10.99 10.51 10.02 8.43 10.51 10.2 9.73 8.43
48 10.92 10.2 8.55 7.06 10.04 10.73 9.67 8.43 10.09 10.95 9.4 8.43
49 10.95 9.21 8.34 7.71 10.34 11.03 9.65 8.57 10.02 9.73 9.78 8.43
50 10.69 9.9 8.2 7.49 10.46 10.62 9.26 8.43 10.8 10.63 9.44 8.57
Min 9.72 9.09 7.67 6.78 9.51 9.25 9.26 8.30 9.52 8.96 9.38 8.30
Max 11.99 10.53 9.38 7.87 11.67 11.41 11.15 8.73 11.84 10.99 10.21 8.76
AYe 10.74 9.85 8.39 7.45 10.59 10.23 9.73 8.49 10.40 10.06 9.67 8.48
Stdev 0.52 0.37 0.36 0.23 0.45 0.49 0.32 0.11 0.47 0.49 0.20 0.09
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Appendices. appendix G: VMP semeslerl-200708 mulli-neighbourhood-GDA results

Appendix G: UMP semesterl-200708 multi neighbourhood GDA
results based on random ordering

No. All Nh
Remove specified Nh

Nh5 Nh2 Nhl0 Nh5&Nh2 Nh5&Nhl0 Nh2&Nhl0 Nh5, Nh2&Nh I0
1 3.54 3.57 3.95 4.07 4.53 4.03 3.94 4.22
2 4.14 4.06 4.23 3.77 3.96 3.93 4.29 3.94
3 4.3 3.83 3.67 4.08 4.03 4.27 3.75 3.96
4 4.1 3.86 3.92 4.13 4.39 4.17 3.93 3.85
5 3.94 4.12 3.94 3.68 4.27 4.13 3.77 3.84
6 4 3.79 3.81 3.66 4.31 3.92 3.83 3.88
7 4.38 3.87 3.92 4 4.19 3.71 4.06 4.12
8 4.02 4.25 3.73 3.72 3.91 3.98 3.85 3.97
9 4.16 4.16 4.08 4.02 3.88 3.52 3.59 4.16
10 4.17 3.91 3.76 3.82 4.49 3.68 3.82 3.58
11 3.98 4.08 3.99 3.95 4.13 4.05 3.77 4.31
12 3.91 3.7 3.3 3.54 4.23 4.22 3.92 3.98
13 4.19 4.01 4.01 3.79 4.14 3.56 3.54 4.03
14 3.97 3.89 3.66 3.92 3.73 3.81 3.87 4.07
15 3.85 4.06 4.2 3.5 3.73 3.99 3.51 3.9
16 4.24 4.41 3.92 4.32 3.91 4.02 3.84 4.06
17 3.99 3.68 3.76 3.83 3.9 3.64 4.11 3.96
18 3.72 3.97 3.82 4.52 4.36 3.88 3.81 4.27
19 4.07 4.1 3.82 4.43 4.3 4.01 3.95 4.01
20 4.23 4.12 4.08 3.92 4.09 3.98 4 4.04
21 4.17 3.97 3.79 4.38 4.17 4.19 3.69 4.07
22 4.3 3.78 4.11 3.98 4.23 3.77 3.96 4.35
23 3.84 3.9 3.75 3.85 4.04 4.01 4.01 4.27
24 3.56 3.75 3.94 3.96 4.27 3.83 4.17 4.31
25 4.17 3.82 3.7 4.61 3.87 3.77 3.74 4.24
26 3.73 3.93 4.1 3.74 3.89 3.9 3.72 4.27
27 4.01 3.79 3.89 3.73 3.63 4.21 3.68 4.01
28 4.09 4.05 3.94 4.17 3.85 3.61 3.86 4.4
29 4.46 3.81 3.84 4.07 4.16 3.97 3.76 4.07
30 3.81 3.58 3.82 3.92 4.24 3.87 3.76 4
31 3.68 3.86 3.79 4.41 3.9 3.79 3.83 3.88
32 4.02 3.97 3.57 3.97 4.26 3.65 3.87 3.83
33 4.18 3.9 3.8 4.11 4.29 4.01 4.1 3.72
34 4.02 3.91 3.92 4.05 3.93 4.01 3.94 4.39
35 4.01 3.36 4.11 3.96 4.03 3.79 3.66 3.82
36 3.81 4.18 3.97 3.93 4.01 3.49 4.15 4.04
37 3.72 4.12 3.95 3.91 3.69 3.83 4.06 4.01
38 3.93 4.42 3.83 3.79 4.09 4.11 4.23 3.78
39 4.08 3.79 3.95 3.96 3.87 4.06 4.33 4.12
40 3.94 3.76 3.57 4.36 3.71 3.91 3.69 4.15
41 3.57 4.03 4.14 4.48 3.96 4.01 3.68 3.82
42 4.59 3.98 3.74 4.03 4.06 3.89 4.06 4.17
43 3.97 3.82 4.12 3.71 3.67 3.94 4.09 4.07
44 3.99 3.84 3.78 3.9 4.04 3.92 3.88 3.81
45 3.74 4 4.14 3.66 3.95 3.82 3.94 3.72
46 3.66 3.85 4.08 3.91 4.02 3.95 3.83 4.08
47 4.39 4.21 3.94 4.1 3.87 4.03 4.06 3.92
48 4.36 3.58 4.12 4.19 4.04 3.75 3.81 4.27
49 3.84 3.87 3.73 3.96 4.06 3.89 3.65 4.1
50 4.08 4.21 3.78 4.24 3.76 3.94 4.24 3.99
Min 3.54 3.36 3.30 3.50 3.63 3.49 3.51 3.58
Max 4.59 4.42 4.23 4.61 4.53 4.27 4.33 4.40
Ave 4.01 3.93 3.89 3.99 4.04 3.91 3.89 4.04
Stdev 0.24 0.21 0.18 0.25 0.22 0.18 0.19 0.19
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Appendices. appendix G: UMPsemesterl-200708 multi-neighbourhood-GDA results

Appendix G: UMP semesterl-200708 multi neighbourhood GDA
results based on random ordering (cont ...)

No.
Remove specified Nh

Nhl Nh4 Nh7 Nhl&Nh4 Nhl&Nh7 Nh4&Nh7 Nh I, Nh4&Nh7
1 4.41 3.99 4.11 4.67 4.3 4.48 4.64
2 3.68 4.1l 3.9 4.47 4.5 4.59 4.6
3 3.6 4.42 4 3.88 4.02 3.89 4.51
4 3.88 4.25 4.16 4.17 4.08 4.04 4.03
5 3.7 4.26 4.39 3.92 4.04 4.22 4.46
6 3.92 3.95 3.95 4.13 4.56 4.31 4.83
7 4.16 3.96 3.6 3.75 4.3 4.56 4.43
8 4.1 3.72 4.29 4.43 3.95 3.93 4.71
9 3.74 4.12 3.99 4.26 4.2 4.31 4.42
10 4.03 3.91 4.38 4.17 4.39 3.86 4.04
11 4.15 3.76 4.02 4.61 3.92 3.92 4.51
12 4.34 4.56 3.8 4.46 3.64 4.25 4.69
13 4.29 3.99 3.76 4.8 4.47 4.32 4.3
14 4.4 4.61 3.83 4.47 3.91 4.15 4.44
15 4.43 3.78 3.79 4.46 4.31 3.98 4.46
16 4.14 4.34 4.21 3.84 4.26 4.12 4.7
17 3.9 4.11 4.12 4.67 3.83 4.36 4.31
18 4.06 3.97 4.23 4.21 4.18 4.18 4.36
19 4.05 4.37 4.37 4.3 4 4.52 4.4
20 4.07 4.31 4.29 4.41 3.99 3.96 5
21 4.26 4.34 3.97 4.52 4.1 4.32 4.72
22 4.24 3.96 4.11 3.99 4.19 4.29 4.38
23 4.14 4.24 3.83 3.98 4.37 3.64 4.39
24 4.01 3.87 4.1 3.97 4.41 4 4.71
25 4.1 3.82 4.24 3.85 4.37 3.99 4.46
26 3.86 4.36 4.38 3.94 4.13 3.88 4.52
27 3.79 4.01 3.96 4.38 4.24 4.45 3.96
28 3.86 4.19 3.94 4.48 4.28 3.87 4.7
29 4.14 4.S8 4 4.23 3.71 4.25 4.52
30 4.54 4.14 3.83 4.41 4.34 4.4 4.39
31 4.16 3.79 4.05 4.27 4.46 4.33 4.25
32 4.34 3.96 4.45 4.5 4.37 4.11 4.83
33 4.06 3.6 4.26 4.08 3.94 4.26 4.24
34 3.73 4 3.83 4.47 4.25 4.47 4.16
35 4.17 4.21 3.95 4.18 4.15 4.55 4.83
36 4 4 4.24 4.14 4.26 3.97 4.53
37 4.06 4.33 3.8 4.2 4.32 4.17 4.16
38 4.05 4.16 3.81 4.26 4.1 4.64 4.5
39 3.8S 3.87 4.22 4.53 4.05 4.47 4.48
40 4.05 4.41 4.15 4.48 4 4.25 4.27
41 3.98 3.99 4.19 4.38 4.02 4.36 4.16
42 3.71 4.04 3.8 4.68 3.9 4.14 4.14
43 4.18 4.3 4.36 4.27 4 4.2 4.39
44 4.23 4.21 3.97 4.2 4.19 4.09 4.06
45 4.21 4.15 3.67 4.7 4.18 3.98 4.4
46 3.9 3.78 3.78 4.21 4.16 4.63 4.98
47 4.14 4.42 4.28 4.47 4 4.26 4.4
48 4.04 3.85 4.26 4.18 4.43 4.09 5.18
49 4.27 4.14 3.95 4 4.09 4.49 4.56
50 4.61 4.4 3.64 4.23 4.18 4.11 4.18
Min 3.60 3.60 3.60 3.75 3.64 3.64 3.96
Max 4.61 4.61 4.45 4.80 4.56 4.64 5.18
Ave 4.07 4.11 4.04 4.29 4.16 4.21 4.47
Stdev 0.23 0.24 0.22 0.25 0.20 0.23 0.26
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Appendices. appendix H: UMP semesterl-20070B multi-neighbourhood-GDA results

Appendix II: UMP semesterl-200708 multi neighbourhood GDA
results based on specified ordering

No. All Nh
Remove specified Nh

Nh5 Nh2 NhlO Nh5&Nh2 Nh5&Nh10 Nh2&Nh10 NhS, Nh2&Nh 10
1 3.86 4.1 3.9 3.86 4.21 3.9 3.95 4.05
2 3.58 4.24 3.78 4.15 4.13 3.95 3.93 4.29
3 3.77 3.8 3.87 3.73 3.7 3.55 3.87 4.3
4 3.94 3.79 3.89 3.89 3.86 3.84 4.05 4.18
5 3.75 3.83 3.86 3.79 4.1 3.83 4.12 4.13
6 4.23 4.01 3.69 3.57 3.83 3.92 3.76 4.16
7 4.16 3.87 4.14 3.73 4.06 3.84 3.82 4.13
8 3.95 3.81 3.85 3.78 4.03 3.9 4.2 4.03
9 3.83 4.08 4.12 3.71 3.98 4.04 3.96 3.71
10 3.82 3.82 3.77 3.47 4 3.55 3.83 3.97
11 3.84 3.71 3.67 4.2 3.89 3.96 3.96 4.27
12 3.54 3.76 3.59 3.72 3.68 3.55 3.75 4.37
13 3.91 3.89 3.9 3.73 4.27 3.82 4.07 4.22
14 4.52 3.86 4.02 4.04 4.14 3.83 3.95 4.36
15 3.77 3.67 3.99 3.49 4.3 3.67 3.95 4.13
16 3.6 3.85 4.09 3.72 3.93 3.52 4.15 3.89
17 3.97 3.99 3.78 4.14 4.25 3.78 3.8 4.4
18 3.71 4.09 3.71 3.69 4 4.16 3.94 4.49
19 4.11 4.5 3.78 3.67 3.81 3.73 4.1 3.92
20 4.04 3.89 3.82 3.82 4.03 3.81 3.99 3.71
21 4.1 3.72 4.03 4.1 3.94 4.03 3.74 4.04
22 3.75 3.74 3.95 3.93 4.14 3.64 4.14 3.8
23 3.92 3.9 3.98 3.99 4.28 3.5 3.8 4.47
24 3.82 3.51 3.99 4.01 4.29 3.72 3.88 4.09
25 3.46 3.94 3.75 3.95 3.7 3.97 3.84 3.68
26 3.54 4.35 3.79 4.09 3.66 3.96 3.67 3.69
27 3.63 3.96 3.68 4 3.98 4.28 4.08 4.16
28 3.93 3.74 3.91 3.9 3.97 3.72 4.08 3.86
29 3.9 3.84 4.1 4.12 4.07 3.97 3.91 3.91
30 3.72 3.82 3.85 3.6 3.87 3.83 3.87 4.08
31 4.01 3.99 4.19 4.02 3.96 3.69 3.75 3.92
32 3.92 3.44 3.61 3.66 3.97 3.57 3.62 4.43
33 3.99 3.88 4.03 3.91 3.89 3.92 3.89 4.22
34 3.96 3.88 3.89 3.75 4.13 3.72 3.83 4.07
35 4.24 3.58 3.9 3.91 4.11 3.93 4.02 4.08
36 4.13 3.94 3.84 4.2 3.74 3.92 3.81 4.33
37 3.67 3.66 3.79 3.55 4.19 3.78 3.78 3.99
38 4.36 3.75 3.87 3.89 4.09 3.68 3.83 3.54
39 4.09 3.86 3.78 3.91 3.96 3.85 3.84 4.09
40 3.75 4.1 3.67 3.96 4.15 4.07 4.14 3.83
41 3.57 3.97 3.88 3.73 4.09 3.78 3.83 4.06
42 4.16 3.92 4.18 3.79 3.97 4.03 3.5 4.47
43 3.9 3.87 3.83 4.02 4.66 3.91 3.94 3.81
44 4.23 3.78 3.87 4.21 3.9 4.11 3.96 4
45 3.65 3.8 4.04 4.11 4.32 4.11 3.71 4.07
46 4.03 3.55 3.63 3.93 3.92 3.91 3.82 3.67
47 4.59 3.9 3.98 4.16 3.73 3.99 3.73 4
48 3.77 3.76 3.71 4.35 3.94 3.89 4 3.67
49 3.7 4 3.41 3.97 3.89 3.97 3.82 4.17
50 3.82 . 4.12 3.75 4.01 4.03 4 3.91 4.07
Min 3.46 3.44 3.41 3.47 3.66 3.50 3.50 3.54
Max 4.59 4.50 4.19 4.35 4.66 4.28 4.20 4.49
Ave 3.90 3.88 3.86 3.89 4.01 3.85 3.90 4.06
Stdev 0.25 0.19 0.16 0.20 0.19 0.18 0.15 0.23
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Appendices. appendix H: UMP semester/-20070B multi-nelghbourhood-Glrd results

Appendix II: UMP semesterl-200708 multi neighbourhood GDA
results based on specified ordering (cont...)

No.
Remove specified Nh

Nhl Nh4 Nh7 Nhl&Nh4 Nhl&Nh7 Nh4&Nh7 Nh I,Nh4&Nh7

1 4.13 3.96 4.01 4.23 4.28 3.96 4.12
2 4 4.05 4.02 4.22 4.27 4 4.24
3 3.91 3.48 3.95 4.21 4.12 4.21 4.17
4 3.89 3.92 4.01 5.04 4.21 3.86 4.22
5 4.07 4.03 3.66 4.23 3.65 3.98 4.59
6 3.95 3.8 3.84 4.26 4.26 4.1 4.43
7 3.89 3.75 4.03 4.41 4.1 3.98 4.3
8 3.85 3.79 3.81 4.1 3.93 3.93 3.8
9 3.94 3.91 4.06 3.94 4.36 4.03 4.19
10 4.12 3.91 3.91 4.25 4.51 4.21 4.28
11 3.91 4.13 3.93 4.07 4.09 4.01 4.25
12 3.9 4.32 3.64 4.21 4.2 4.05 4.15
13 3.89 3.96 3.85 4.1 4.51 3.87 4.48
14 4.03 4.27 4.18 4.02 3.96 4.13 3.75
15 3.82 4.06 3.95 4.07 4.2 4.18 4.04
16 4.21 3.94 4.54 4.3 3.7 3.79 4.14
17 4 3.91 4.2 4.07 3.87 3.99 4.55
18 3.69 3.59 3.62 4.06 3.7 4.29 4.21
19 4.17 3.81 4.56 4.55 3.98 4.14 4.42
20 4.01 4.18 3.73 4.32 4.28 3.8 4.12
21 4.34 3.92 3.99 4.44 4.41 4.01 3.92
22 3.97 3.93 4.1 4.46 4.06 3.54 4.33
23 3.93 3.88 3.9 4.03 3.9 4 4.19
24 3.88 4.23 3.92 3.74 3.8 3.92 4.52

25 4.34 3.62 4.04 4.3 3.93 3.93 4.39

26 3.95 4.12 3.93 3.98 3.94 3.75 4.35

27 4.46 4.14 4.05 4.14 4.08 3.97 4.07

28 3.98 4.37 4.02 4.23 4.16 3.97 4.32

29 4 3.93 4.06 4 4.16 3.88 4.28

30 4.03 3.9 3.66 4.28 4.29 3.9 4.22

31 3.67 3.88 4.2 4.39 3.95 3.83 4.43

32 4.32 4.01 4.04 4.06 4.01 3.97 4.12

33 3.89 3.85 4.11 4.23 3.8 4.12 4.08

34 4.16 3.96 3.74 3.95 3.69 4.16 4.87

35 3.93 4.11 3.93 4.4 4.26 4.21 4.39

36 3.77 3.86 3.97 4.2 4.22 4.05 4.61

37 3.96 3.66 4.1 3.81 4.24 4.29 4.16

38 3.8 4.09 3.89 4.11 3.82 3.91 4.39

39 3.72 3.69 3.7 4.68 4.19 3.98 4.32

40 3.96 4.12 4.1 3.99 4.1 3.78 4.33

41 4.25 4.07 3.84 4.18 3.95 4.46 4.3

42 3.99 4.4 3.56 3.92 4.03 3.95 4.14

43 4.06 4.1 4.01 4.5 3.82 3.84 4.49

44 4.19 3.91 3.55 4.45 4.21 4.38 4.73

45 3.99 4.28 4.11 3.88 4.16 3.91 4.61

46 3.99 3.99 4.17 4.16 3.98 3.95 4.72

47 4.2 4.36 4 3.97 3.98 4.14 4.46

48 3.79 4.22 3.9 4.36 3.68 3.81 4.48

49 4.21 3.85 3.87 4.18 4.27 3.78 4.41

50 3.86 3.48 4.3 4.58 4.07 3.8 4.44

Min 3.67 3.48 3.55 3.74 3.65 3.54 3.75

Max 4.46 4.40 4.56 5.04 4.51 4.46 4.87

Ave 4.00 3.97 3.97 4.21 4.07 3.99 4.31

Stdev 0.17 0.22 0.21 0.24 0.21 0.17 0.22
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Appendices. appendix I: UMP semesterJ-200809 mufti-neighbourhood GDA results

Appendix I: UMP semesterl-200809 multi neighbourhood GDA
results based on random ordering

No. All Nh Remove specified Nh
Nh5 Nh2 Nh6 Nh5&Nh2 Nh5&Nh6 Nh2&Nh6 NhS, Nh2&Nh6

1 5.88 6.09 5.75 6.42 5.78 5.97 5.92 5.74
2 6.27 6.23 5.67 6.4 6 6 6.18 5.96
3 6.21 5.85 6.17 6.09 6.28 6.06 5.96 6.25
4 6.22 5.8 5.98 6.4 5.84 6.09 5.52 6.21
5 5.82 5.76 6.01 6.32 6.05 6.03 6.09 6.24
6 5.58 6.05 6.21 6.18 6.12 6.26 6.36 6.19
7 6.05 6.08 6.08 6.22 6.12 6.22 6.2 6.02
8 5.83 6.28 6.38 5.87 5.85 5.68 6.02 6.05
9 6 6.36 6.32 6.08 6.2 5.78 6 6.29
10 6.33 6.1 5.75 6.12 5.89 6.24 5.92 6.02
II 6.55 5.93 6.29 5.91 6.12 6.12 6 6.07
12 6.22 6.01 5.83 6.33 6.07 6.02 6.11 6.18
13 6.11 5.56 6.03 6.05 6.17 5.95 6.3 6.33
14 6.34 5.99 5.85 6.52 6.13 6.09 5.95 6.22
IS 5.86 5.75 6.2 5.98 5.95 5.8 6.48 6.13
16 6.22 5.94 5.79 6.43 6.13 6.27 6.33 6.14
17 6.67 6.27 5.89 6.07 6.1 5.93 6.15 6.16
18 5.99 5.96 5.81 6.26 5.68 5.78 6.22 6.02
19 5.86 5.81 6.06 6.48 5.98 5.84 5.82 6.33
20 5.93 6.1 5.89 5.87 6.05 6.18 6.26 5.97
21 6.15 5.84 5.98 5.99 5.93 6.05 6.19 5.96
22 6.29 5.95 6.02 6.12 6 6.04 5.76 5.95
23 6.1 6.11 5.9 5.89 6.06 5.73 6.06 5.79
24 6.42 6.01 5.73 5.89 5.8 5.95 6.05 6.12
25 6.07 5.96 6.18 6.45 6.03 5.98 6.29 6.05
26 6.39 6.04 5.92 6.23 6.23 5.82 6.05 6.04
27 6.34 5.78 5.66 6.22 6.12 6.21 6.15 5.99
28 6.18 5.89 5.78 6.26 5.85 5.7 5.95 5.97
29 5.88 5.93 5.89 6.04 6.16 5.8 6.15 5.98
30 6.27 6.3 6.08 6.22 5.93 6.16 6.01 5.76
31 6.37 6.09 5.96 6.28 6.14 5.78 5.88 6.08
32 5.74 6.05 6.1 5.87 5.94 5.91 6.18 6.13
33 6.11 5.94 5.98 6.31 5.92 6.12 5.94 6.06
34 6.22 6.22 6.1 6.16 6.13 6.28 5.86 6.04
35 5.96 5.89 6.31 6.13 5.93 6.11 6.11 5.99
36 5.94 5.85 6.22 6.38 6.06 6.41 6.44 5.98
37 6.1 5.75 5.81 6.04 5.8 6.35 6.25 5.83
38 6.04 5.81 5.91 6.08 6.06 6 6.43 5.94
39 6.2 6.01 6.11 6.18 5.98 6.25 5.86 6.22
40 5.89 6.14 6.21 5.7 6.02 6.22 5.71 6.02
41 6.33 5.71 6.24 6.5 6.03 6.38 6.18 5.91
42 5.86 5.86 6.31 5.98 6.03 6.23 6.18 5.84
43 6.02 6.09 6 6.08 6.13 5.93 6.3 6.34
44 6.19 6.1 5.87 6.16 6.22 6.24 5.94 6.28
45 5.83 5.91 6.16 6.01 6.14 6.06 6.23 5.88
46 5.83 5.98 5.99 5.84 6.28 5.89 6.12 6.07
47 5.82 6.06 6.21 6.2 6.06 6.06 6.23 5.85
48 6.02 5.89 6.08 6.45 5.91 5.96 5.88 6.19
49 6.16 6.14 5.95 6.16 6.15 5.81 6.16 5.95
50 6.11 5.82 6.09 6.11 6.19 6.06 5.99 5.67
Min 5.58 5.56 5.66 5.70 5.68 5.68 5.52 5.67
Max 6.67 6.36 6.38 6.52 6.28 6.41 6.48 6.34
Ave 6.10 5.98 6.01 6.16 6.03 6.04 6.09 6.05
Stdev 0.22 0.17 0.18 0.20 0.14 0.19 0.20 0.16
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Appendix I: UMP semesterl-200809 multi neighbourhood GDA
results based on random ordering (cont ...)

No.
Remove specified Nh

Nhl Nh3 Nh7 Nhl&Nh3 Nhl&Nh7 Nh3&Nh7 Nhl, Nh3&Nh7
I 6.21 6.36 6.21 6.39 6.61 6.36 6.91
2 6.57 6.38 6.44 6.65 6.41 6.47 6.91
3 6.42 6.3 6.26 6.92 6.7 6.3 7.18
4 6.36 6.18 6.53 6.41 6.52 6.51 7.16
5 6.33 6.52 6.18 6.31 6.49 6.67 7.29
6 6.18 6.36 6.16 6.37 6.08 6.64 7.03
7 6.12 6.23 6.04 6.59 6.39 6.64 6.98
8 6.51 6.48 6.12 6.49 6.62 6.71 7.01
9 6.29 6.27 6.01 6.93 6.41 6.65 6.99
10 6.54 6.33 6.21 6.65 6.72 6.44 7.06
II 6.28 6.02 6.35 6.4 6.27 6.18 6.88
12 6.13 6.44 6.07 6.62 6.43 6.54 6.84
13 6.25 5.96 6.13 6.54 6.3 6.61 7.09
14 6.16 6.62 6.29 6.39 6.35 6.32 6.91
IS 6.12 6.04 6.13 6.54 6.58 6.53 7.08
16 6.54 6.52 6.37 6.27 6.75 6.3 7.12
17 6.15 6.21 5.87 6.69 6.33 6.48 7.02
18 6.26 6.06 6.01 6.33 6.64 6.54 6.97
19 5.77 6.62 6.36 6.24 6.52 6.55 7.17
20 6.16 6.72 6.35 6.77 6.75 6.56 7.11
21 6.29 6.39 6.46 6.54 6.42 6.32 7.03
22 6.47 6.59 6.13 6.31 6.63 6.2 6.71
23 6.32 6.47 6.16 6.35 6.62 6.48 7.29
24 6.37 5.97 6.37 6.58 6.6 6.54 6.99
25 6.48 6.44 5.8 6.68 6.68 6.63 6.72
26 6.33 6.49 6.41 6.72 6.43 6.31 7.04
27 6.57 6.19 6.42 6.58 6.62 6.19 7.27
28 6.15 6.53 6.17 6.59 6.44 6.22 7.14
29 6.42 6.12 6.03 6.26 6.45 6.09 6.69
30 6.18 6.01 6.23 6.4 6.37 6.51 7.03
31 6.14 6.67 5.95 6.44 6.55 6.78 6.76
32 6.02 6.35 6.35 6.58 6.11 6.32 6.81
33 6.41 6.13 6.65 6.58 6.47 6.48 7.37
34 5.76 6.3 6.37 6.5 6.95 6.63 7.05
35 6.56 6.47 6.05 6.65 6.32 6.2 7
36 6.5 6.26 6.13 6.92 6.17 6.53 6.88
37 6.2 6.28 6.07 6.49 6.8 6.36 7.49
38 6.22 6.52 6.55 6.55 6.47 6.06 7.29
39 6.35 5.99 6.18 6.73 6.58 6.37 7.04
40 6.43 6.3 6.37 6.94 6.56 6.2 6.9
41 5.89 6.36 6.03 6.44 6.52 6.55 6.85
42 6.43 5.9 6.46 6.69 6.74 6.38 7.32
43 5.98 6.3 6.25 6.53 6.35 6.5 7.11
44 6.29 5.82 6.38 6.54 6.22 6.17 6.68
45 6.08 6.03 6.15 6.78 6.4 6.39 7.12
46 6.39 6.21 6.11 6.26 6.67 6.64 7.22
47 6.67 6.21 6.1 6.4 6.47 6.43 7
48 5.98 6.34 6.06 6.75 6.5 5.92 7.42
49 6.22 6.65 6.2 6.94 6.69 6.18 6.91
50 6.38 5.6 6.27 6.55 6.64 6.24 7.11
Min 5.76 5.60 5.S0 6.24 6.0S 5.92 6.68

Max 6.67 6.72 6.65 6.94 6.95 6.7S 7.49

Ave 6.28 6.29 6.22 6.56 6.51 6.42 7.04

Stdev 0.20 0.24 O.IS 0.19 O.IS 0.19 0.19
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Appendix J: UMP semesterl-200809 multi neighbourhood GDA
results based on specified ordering

No. All Nh
Remove specified Nh

Nh5 Nh2 Nh6 Nh5&Nh2 Nh5&Nh6 Nh2&Nh6 NhS, Nh2&Nh6
1 6.21 5.88 6.3 6.18 5.89 6.13 5.92 6.18
2 5.98 5.92 5.92 5.88 6.22 6.39 6.04 6.03
3 6.18 5.88 6.05 6 6.06 6.49 6.2 6.11
4 5.97 6.1 5.74 5.99 5.75 5.87 5.9 5.9
5 6.15 5.84 6.08 6.02 6.25 5.81 6.04 6.25
6 6.24 6.04 6.07 5.78 5.6 6.1 5.58 6.27
7 6.34 6.03 6.21 5.8 5.79 6.04 5.95 6.08
8 6.02 6.13 5.82 6.03 6.06 6.22 6.12 6.05
9 6.05 5.79 6.21 6.23 5.93 5.78 6.11 6.19
10 5.94 5.73 5.73 6.04 6.11 6.01 5.97 6.17
11 6.04 5.95 6.08 6.15 6.08 6.43 6 5.76
12 6.01 6.22 5.88 6.1 5.96 5.79 6.33 5.89
13 5.94 6.01 5.96 6.12 6.3 6.19 5.99 6
14 6.09 5.83 5.98 5.75 6.24 6.07 6.08 6.43
15 6.12 5.55 6.12 5.73 5.75 5.89 6.06 6.25
16 6.03 5.84 5.93 6.19 6.2 6.44 6.27 5.91
17 6.24 6.04 5.77 6.14 6.19 6.13 6.08 6.33
18 6.15 5.68 5.95 6.07 6.14 6.03 6.11 6.08
19 5.99 5.78 5.78 6.2 5.99 6.11 5.79 5.87
20 6.04 6.01 5.77 5.89 6.07 5.62 6.24 6.06
21 6.03 5.95 5.77 5.8 6.15 6 6.24 6.19
22 5.71 6.17 5.99 6.25 5.97 6.25 6.08 6.34
23 5.96 5.81 5.89 5.95 6.21 5.98 5.88 6.2
24 6.1 6.14 5.97 6.11 5.78 6.12 6.05 5.94
25 6.4 6.16 5.87 6.22 5.74 6.14 6.01 6.18
26 5.87 6.09 6.32 6.06 5.96 6.08 5.78 6.02
27 5.92 5.95 6.2 5.94 6.34 6.05 5.81 6.14
28 5.89 5.95 6.05 5.86 5.95 6.37 5.96 5.86
29 6.01 6.16 6.03 5.8 6.11 6.09 6.03 5.98
30 6.09 6.22 6.03 5.92 6.27 5.9 6.14 6.04
31 6.14 5.92 5.77 6.38 6.21 5.87 5.93 6.26
32 6 6.05 5.88 6.26 6.16 5.75 6.05 6.03
33 6.28 6.04 6.08 6.02 6.12 6.04 6.18 6.09
34 6.06 6.05 5.94 5.91 6.02 5.97 5.92 6.06
35 6.14 6.18 5.82 6.1 6.14 5.85 6.17 5.82
36 6.18 5.81 6.05 6.01 6.28 5.85 5.92 6.12
37 5.93 5.88 6.14 5.95 5.85 5.86 6.02 6.21
38 6.02 5.75 6.47 6.1 6.16 5.62 6.2 5.84
39 6 5.81 5.53 6.13 6.18 6.06 5.98 6.2
40 5.74 5.99 6.27 6.04 6.08 6.19 5.76 6.24
41 5.92 6.02 6.14 6.09 5.74 5.94 5.95 6.02
42 6.18 6.09 6.28 5.8 6.11 5.69 6.15 6.24
43 5.92 5.84 5.84 6.01 6.24 6.16 6.24 5.75
44 5.88 6.12 5.93 6.12 6.53 5.58 5.92 5.9
45 6.05 6.1 5.9 5.85 6.22 6.19 5.59 5.98
46 6.35 6.16 6.12 5.91 5.98 6.21 6.2 6.41
47 6.23 6.19 5.81 5.81 5.85 5.65 5.62 6.05
48 6.25 5.63 5.78 5.81 6.03 6.02 6.02 6.01
49 6.09 5.88 6.22 5.96 6.16 6.23 6.3 6.11
50 6.14 6.18 5.81 5.83 6.23 6.03 6.02 5.97
Min 5.71 5.55 5.53 5.73 5.60 5.58 5.58 5.75
Max 6.40 6.22 6.47 6.38 6.53 6.49 6.33 6.43
Ave 6.06 5.97 5.99 6.01 6.07 6.03 6.02 6.08

Stdev 0.15 0.16 0.19 0.16 0.19 0.22 0.17 0.16
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Appendix J: UMP semesterl-200809 multi neighbourhood GDA
results based on specified ordering (con!...)

No.
Remove specified Nh

Nhl Nh3 Nh7 Nhl&Nh3 Nhl&Nh7 Nh3&Nh7 Nhl, Nh3&Nh7
1 6 5.8 6.34 6.57 6.22 6.17 6.98
2 6.24 5.93 6.13 6.62 6.5 6.09 7
3 6.3 6.08 5.91 6.55 6.45 6.14 7.27
4 6.47 6.46 6.11 6.77 6.8 6.41 6.86
5 6.39 6.26 5.9 6.55 6.19 6.2 7.14
6 6.56 6.22 6.01 6.22 6.6 6.36 7.07
7 6.2 6.51 6.45 6.45 6.35 6.2 7.21
8 6.02 6.35 5.93 6.38 6.55 6.16 7.29
9 6.2 6.27 6.27 6.52 6.32 6.71 7.3
10 5.85 6.01 6.4 6.66 6.68 6.14 7.39
11 6.17 6.3 5.87 6.71 6.5 6.27 7.1
12 6.05 6.46 6.2 6.49 6.45 6.41 7.12
13 6.28 6.33 5.84 6.5 6.3 6.62 6.87
14 6.07 6.23 6.2 6.48 6.14 6.42 6.76
15 6.14 6.14 6.14 6.51 6.42 6.48 7.18
16 6.22 6.17 5.95 6.75 6.65 6.3 6.73
17 6.29 5.88 6.05 6.25 6.32 6.31 6.92
18 6.02 6.03 6.19 6.91 6.3 6.21 7.28
19 6.49 5.78 6.12 6.47 6.54 6.48 7.11
20 6.56 6.23 6.32 6.36 6.34 6.26 7.34
21 6.44 6.45 5.98 6.59 6.34 6.17 7.2
22 6.23 5.92 5.98 6.45 6.85 6.44 6.9
23 6.07 6 6.18 6.05 6.39 6.51 6.78
24 6.17 6.39 6.24 6.5 6.52 6.41 6.91
25 6.21 6.24 6.08 6.55 6.16 5.94 7.14
26 5.95 6.1 6.28 6.56 6.46 6.28 6.63
27 6.14 6.42 5.87 6.61 6.85 6.49 6.99
28 6.05 6.02 6.24 6.48 6.52 6.4 6.93
29 6.34 5.93 6.13 6.55 6.48 6.3 7.07
30 6.13 6.09 6.08 6.3 6.64 6.35 6.9
31 5.99 6.42 6.01 6.25 6.49 6.46 7.23
32 5.95 6.05 6.2 6.41 6.37 6.02 7.59
33 6.39 6.2 6 6.81 6.19 6.44 7.19
34 6.27 6.21 6.16 6.44 6.44 6.09 7.46
35 6.15 6.36 6.2 6.44 6.69 5.99 7.17
36 5.88 6.07 6.34 6.39 6.4 6.22 6.81
37 5.93 6.31 6.05 6.65 6.73 6.31 6.9
38 6.24 5.98 6.12 6.7 6.69 6.19 7.01
39 6.26 6.04 6.24 5.95 6.08 6.33 6.67
40 6.15 6.12 6.51 6.51 6.58 6.01 7.16
41 6.63 5.85 6.32 6.4 6.65 6.18 7.12
42 5.93 6.44 5.98 6.42 6.44 6.25 7.08
43 6.17 6.02 6.27 6.41 6.5 6.33 7.11
44 6.36 6.02 6.32 6.36 6.71 6.36 7.21
45 6.64 6.07 5.93 6.6 6.2 6.59 6.98
46 6.54 5.95 6.05 6.46 6.57 6.27 7.11
47 5.92 6.24 5.91 6.41 6.61 6.12 7.27
48 6.69 6.08 5.85 6.6 6.49 5.98 7.09
49 5.75 6.39 6.01 6.08 6.24 6.34 6.99
50 6.2 6.19 6.13 6.63 6.3 6.4 7
Min 5.75 5.78 5.84 5.95 6.08 5.94 6.63
Max 6.69 6.51 6.51 6.91 6.85 6.71 7.59
Ave 6.21 6.16 6.12 6.49 6.46 6.29 7.07
Stdev 0.22 0.19 0.17 0.18 0.19 0.17 0.20
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Appendix K

Table 7.7a. p-value result for semesterl-200708 in comparison between the
neighbourhood heuristic (random ordeing)

abc d e f g h j k m no
a) All Nh .871 .211 1.00 1.00 .481 .279 1.00 .990 .743 1.00 .000 .064 .005 .000
b) Remove NhS .871 .999 .986 .372 1.00 1.00 .320 .074 .008 .347 .000 .000 .000 .000
c) Remove Nh2 .211 .999 .550 .021 1.00 1.00 .011 .002 .000 .020 .000 .000 .000 .000
d) Remove NhlO 1.00 .986 .550 1.00 .824 .620 1.00 .936 .534 .999 .000 .030 .002 .000
e) Remove NhS and Nh2 1.00 .372 .021 1.00 .079 .033 1.00 1.00 .964 1.00 .000 .216 .019 .000
t) Remove NhS and NhlO .481 1.00 1.00 .824 .079 1.00 .050 .008 .001 .074 .000 .000 .000 .000
g) Remove Nh2 and NhlO .279 1.00 1.00 .620 .033 1.00 .019 .003 .000 .031 .000 .000 .000 .000
h) Remove NhS, Nh2 and NhlO 1.00 .320 .011 1.00 1.00 .050 .019 1.00 .911 1.00 .000 .100 .006 .000
i) Remove Nh I .990 .074 .002 .936 1.00 .008 .003 1.00 1.00 1.00 .002 .766 .176 .000
j) Remove Nh4 .743 .008 .000 ,534 ,964 .001 .000 .911 1.00 ,978 .047 .998 .730 .000
k) Remove Nh7 1.00 .347 .020 .999 1.00 .074 ,031 1.00 1.00 .978 .000 .279 .028 .000
I) Remove Nhl and Nh4 .000 .000 .000 .000 0.00 .000 .000 0.00 .002 ,047 .000 .322 ,974 ,046
m) Remove Nhl and Nh7 .064 ,000 ,000 ,030 ,216 ,000 .000 .100 .766 .998 .279 .322 .998.000
n) Remove Nh4 and Nh7 .005 ,000 .000 .002 ,019 .000 ,000 .006 .176 ,730 .028 .974 ,998 .000
0) Remove Nhl, Nh4 and Nh7 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .046 .000 .000

Table 7.7b.p-value result for scmesterl-200708 in comparison between the
neighbourhood heuristic (specified ordering)

a) All Nh
b) Remove NhS
c) Remove Nh2
d) Remove Nh I0
e) Remove NhS and Nh2
o Remove NhS and Nh I0
g) Remove Nh2 and Nh 10

h) Remove NhS, Nh2 and Nhl 0

i) Remove Nh I
j) Remove Nh4
k) Remove Nh7
I) Remove Nh I and Nh4
m) Remove Nh I and Nh7
n) Remove Nh4 and Nh7
0) Remove Nh I, Nh4 and Nh7

bed e f g h j ka m n o
.000
.000
,000
.000
,000
,000
.000
.000

.000

.000

.000

.597

.000

.000

1.00 1.00 1.00 .458 .996 1.00 ,093 .642 .973 .991
1,00 1.00 .044 1,00 1,00 .004 ,082

1.00 ,004 1.00 .998 .000 .008
.149 .999 1.00 .018 .257

,003 .065 ,999 1.00 1.00 ,996
.984 .000 .005 .140 .207

,006 .119 ,759 .868
,975 .837 ,702

.000
,000
.000
.000
.002
.000
.000
,147

.045 .730

.001 ,121
,000 ,015
,006 .341
.994 1.00
.000 .008
.001 .181
1.00 .951

1.00 ,566
.219
.831

,693
.313
.912

1.00 1.00
1.00 1.00 1.00
,458
.996

,044
1.00

.004
1.00

.149

.999 ,003
1.00 .065 ,9841.00

.093
1.00 .998

,018 .999 ,000 .006.004 ,000

,082 ,008 ,257 1.00 ,005
,566 .219 .831 1.00 ,140
.693 .313 .912 ,996 .207
,000 .000 ,000 .002 ,000
,001 .000 ,006 .994 .000
.121 .015 .341 1.00 .008
.000 .000 .000 .000 .000

.119 .975

.759 .837

.868 .702

.000 ,147

.001 1.00

.181 .951

.000 .000

1.00 1.00 ,000 ,919 1.00
1.00 1.00 .000 .697 1.00
1.00 1.00 .000 .528 1.00
,000 .000 .000 .146 ,000
,919 .697 .528 .146 .865
1.00 1.00 1.00 .000 .865
,000 .000 .000 .597 .000 .000

.642
,973
.991
.000
,045
.730
.000
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Table 7.8a. p-value result for semester 1-200S/09 in comparison between the
neighbourhood heuristic (random ordering)

a) All Nh
b) Remove NhS
c) Remove Nh2
d) Remove Nh6
e) Remove NhS and Nh2
f) Remove NhS and Nh6
g) Remove Nh2 and Nh6
h) Remove NhS, Nh2 and Nh6
i) RemoveNh I
j) RemoveNh3
k) Remove Nh7
I) Remove Nh I and Nh3
m) Remove Nh I and Nh7
n) Remove Nh3 and Nh7
0) Remove Nhl, Nh3 and Nh7

abc d e f g h k
.211 .798 .973 .942 .980 1.00 .996 .004 .005 .149

.211 1.00 .000 .905 .965 .219 .767 .000 .000 .000

.798 1.00 .021 1.00 1.00 .848 1.00 .000 .000 .000

.973 .000 .021 .032 .112 .878 .148 .197 .173 .955

.942

.980
1.00
.996
.004
.005
.149
.000
.000
.000
.000

.905 1.00

.965 1.00

.219 .848
.767 1.00
.000 .000
.000 .000
.000 .000
.000 .000
.000 .000
.000 .000
.000 .000

.032

.112 1.00

.878 .968

.148 1.00

.197 .000

.173 .000

.955 .000

.000 .000

.000 .000

.000 .000

.000 .000

1.00

.992
1.00
.000
.000
.000
.000
.000
.000
.000

.968

.992

.999

.001

.001

.043

.000

.000

.000
.000

1.00
1.00
.999

.000

.000

.000

.000

.000

.000

.000

.000

.000

.001

.000

1.00
.973
.000
.000
.041
.000

.000

.000

.001

.000
1.00

.932

.000

.000

.206

.000

Table 7.Sb. p-value result for semestcrl-200S/09 in comparison between the
neighbourhood heuristic (specified ordering)

.000

.000

.043

.000

.973

.932

.000

.000

.000

.000

m n o
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000

.000 .000
.000 .000
.000 .000
.000 .041
.000 .206
.000 .000
.991 .030

.506

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000
.991
.030
.000

.506
.000 .000

a) All Nh
b) Remove NhS
c) Remove Nh2
d) Remove Nh6
e) Remove NhS and Nh2
t) Remove NhS and Nh6
g) Remove Nh2 andNh6
h) Remove NhS, Nh2 and Nh6
i) RemoveNhl
j) Remove Nh3
k) Remove Nh7
I) RemoveNh I and Nh3
m) Remove Nh I and Nh7
n) Remove Nh3 and Nh7
0) RemoveNhl, Nh3 andNh7

.170
b c d e f g ha

.170

.561

.827
1.00
.999
.981
1.00
.021
.251
.900
.000
.000
.000
.000

1.00
.999
.308
.984
.986
.071
.000
.000
.002
.000
.000
.000
.000

.561
1.00

.827

.999
1.00

1.00
.308
.683
.902

.000

.000

.999

.984
1.00
1.00
.999

1.00
.983
.007
.087
.501
.000
.000
.000
.000

.981

.986
1.00
1.00
.989
1.00

.867

.001

.014

.170

.000

.000

.000

.000

1.00
.071
.319
.559
1.00
.983
.867

.096

.621

.996

.000

.000

.000

.000

.021

.000

.000

.000

.066

.007

.001

.096

.999

.662 .998

.000 .000

.000
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