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Abstract

Abstract

The examination timetabling (exam-timeslot-room assignment) problem involves
assigning exams to a specific or limited number of timeslots and rooms, with the aim
of satisfying the hard constraints and the soft constraints as much as possible. Most of
the techniques reported in the literature have been applied to solve simplified
examination benchmark datasets, available within the scientific literature. In this
research we bridge the gap between research and practice by investigating a problem
taken from the Universiti Malaysia Pahang (UMP), a real world capacitated
examination timetabling problem. This dataset has several novel constraints, in
addition to those commonly used in the literature. Additionally, the invigilator
scheduling problem (invigilator assignment) was also investigated as it has not
received the same level of research attention as the examination scheduling (although

it is just as important to educational institutions).

The formal models are defined, and constructive heuristics was developed for both
problems in which the overall problems are solved with a two-phase approach which
involves scheduling the exam to timeslot and room, and follows with scheduling the
invigilator. During the invigilator assignment, we assume that there is already an
examination timetable in place (i.e. previously generated). It reveals that the invigilator
scheduling solution dependent on the number of rooms selected from the exam-
timeslot-room assignment phase (i.e. a lesser number of used rooms would minimises
the invigilation duties for staff), this encourages us to further improve the exam-
timeslot-room timetable solution. An improvement on the result was carried out using
modified extended great deluge algorithm (modified-GDA) and multi-neighbourhood
GDA approach (that use more than one neighbourhood during the search). The
modified-GDA uses a simple to understand parameter and allows the boundary that
acts as the acceptance level, to dynamically change during the search. The propose
approaches able to produce good quality solution when compared to the solutions from
the proprietary software used by UMP. In addition, our solutions adhere to all hard

constraints which the current systems fail to do.




Abstract

'Finally, we extend our research onto investigating the Second International
Timetabling Competition (ITC2007) dataset as it also contains numerous constraints
much similar to UMP datasets. Our propose approach able to produce competitive
solutions when compared to the solutions produced by other reported works in the

literature.
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Chapter 1. Introduction

Chapter 1

1.1 Background and motivation

Every academic institution faces the problem of generating course and examination
timetables. Both problems are similar in that we need to assign the courses or exams
into available timeslots (Burke, Kingston and deWerra, 2004; Burke et al,, 1996)
whilst satisfying various constraints. However, the two problems actually differ in
terms of the constraints, user preferences and in the way the problem is constructed
(Schaerf, 1999; Qu et al., 2009; etc). For example, an exam timetable may allow
multiple exams in one rooms unlike a course timetable. This because it is obviously
not possible to have two different courses/lectures in the same room. With respect to
user preferences, in course timetabling students are free to select their optional courses
to suit their own course objectives. This is not the case with an exam timetable as the
examinations contain registered students and, therefore we need to consider a clash
free (hard constraint) timetable (among others) and student satisfaction (soft
constraint) in producing the exam timetable. Course and exam timetables also vary in
the way they are constructed, this being the modelling, process environment and
scheduling instances (McCollum, 2007). A more detailed discussion on the differences

is given in chapter 2.

This work concentrate on the examination timetabling problem. The underlying
problem of examination timetabling is considered to be the same (in the basic
definition of the problem) as the graph coloring problem and, hence it is an NP-hard

problem (Burke, Kingston and deWerra, 2004; Qu et al., 2009, etc). The construction
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of an examination timetabling problem is a challenging task and quite often time
consuming. It is concerned with assigning exams to a specific number of timeslots so
as to satisfy a given set of constraints (Balakrishnan, 1991; Schaerf, 1999, Qu et al.,
2009). The constraints that contribute to the complexity of examination timétabling
can be divided into two categories, hard constraints and soft constraints. Hard
constraints cannot be violated and a timetable is considered feasible if all the hard
constraints are satisfied. An example of hard constraint is that no student should be
required to sit two examinations simultaneously (i.e. the timetable should be clash
free). Soft constraints, on the other hand, are requirements that are not essential but
should be satisfied as far as possible, hence it is being used to evaluate the quality of
the timetable. An example of a soft constraint could be spreading exams as evenly as
possible throughout the exam period. A list of commonly used constraints is given in
Qu et al. (2009), Merlot et al. (2003), Burke et al. (1996). In some situations, the
problem becomes more difficult as these constraints conflict with one another, where
satisfaction of one constraint can lead to a violation of another (Qu et al., 2009). For
example, suppose we have a situation where we want to minimise the total
examination period and at the same time we wish to spread out exams as much as
possible. In such a situation, satisfaction of the first constraint will inevitably lead to
poor quality solutions of the second constraint, or vice versa. Moreover, examination
timetabling becomes more challenging as the number of student enrolments, courses
and constraints increases. In addition room and invigilator constraints add even more
complexity to the overall problem in order for the institution to generate a good quality
solution whilst satisfying all parties (i.e. administrator, student, lecturer and
invigilator). This lead to us a question, is it possible to produce a feasible (and good
quality) solution for the UMP capacitated examination timetabling problem
considering the individual room capacity and other additional constraints which the
UMP system fails to achieve? and is it possible to produce a feasible (and good

quality) solution of the invigilator assignment that satisfies the constraints?

A lot of approaches have been investigated in an attempt to produce good quality
solutions (as well shall see later in chapter 2). In constructing the examination
timetable, three commonly used approaches include creating an examination timetable

based on the course timetable, reusing previous exam timetables and creating an
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entirely new examination timetable each time one is needed. Much of the work seen in
the scientific literature uses the latter approach, with a focus on the search method (see
Qu et al., 2009). Such methods include graph colouring, clustering, meta-heuristics,
multi-criteria, case-based reasoning, hyper-heuristics etc. A concise description of
these methods can be found in Burke and Carter, 1998; Carter and Laporte, 1996; Qu
et al, 2009; Petrovic and Burke, 2004. Many research papers on examination
timetabling can be found in the PATAT series of conferences (e.g. Burke and Ross,
1996; Burke and Carter, 1998; Burke and Erben, 2001; Burke and De Causmaecker,
2003; Burke and Trick, 2005; Burke and Rudova, 2007).

Examination timetabling problem can be categorised into un-capacitated and
capacitated problems, In the un-capacitated examination timetabling problem, room
capacities are not considered, while in the capacitated problem the room capacities are
considered as a hard constraint, in addition to other hard constraints, e.g. a clash-free
timetable (Pillay and Banzhaf, 2008; Abdullah, 2006). According to Burke, Newall
and Weare, (1996), the main difficulty in examination timetabling is to obtain a
conflict-free schedule within a limited number of time periods and under room
availability constraints. Burke et al., (1996) found that 73% of universities reported
that accommodating exams is a major problem. Therefore a capacitated problem is
considered much more difficult than an un-capacitated problem due to its close
resemblence to the real world problem. However, most of the research found in the
literature mainly considers the un-capacitated problem (Qu et al., 2009). According to
Qu et al., (2009) and Carter and Laporte (1996), most research only addresses a subset
of the constraints, involving a few common hard constraints, e.g. no exams with
common students assigned simultaneously and size of exams need to be below the
room capacity. Similarly, typical soft constraints include spreading conflicting exams
as evenly as possible, or not in x consecutive timeslots or days. Most of the research
has concentrated on the development of the search methodologies to find a good
quality solution (McCollum, 2007; Carter and Laporte, 1996). This has created a gap
between the research and practice in which the research does not really mimic the real
world problem due to the simplicity of the current problems being tackled by the

scientific community (e.g. the lack of substantial benchmark data with a sufficient sct
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of constraints). Chapter 2 provides a detailed discussion on the exam datasets and the

constraints.

In this research, we consider a real-world examination timetabling problem which not
only has capacity constraints but also has a number of other constraints which have not
previously been investigated in the scientific literature. The additional hard constraints
include splitting of an examination into different rooms in the same building and no
sharing of rooms among different examinations. The additional soft constraints include
room distance of an exam in multiple rooms and the minimisation of the number of
rooms an exam can be split across. We also investigate invigilator assignment which is
often not done as part of an automated system. A thorough description of the dataset is

presented in chapter 3.

1.2 Research scope and objectives

This research is concerned with a real world examination timetabling problem from
Universiti Malaysia Pahang (UMP). The UMP timetabling process involves assigning
exams to timeslots and rooms, and includes scheduling invigilators. The aim of this
research is to construct an exam timetable (exam-timeslot-room assignment) for the
UMP examination timetabling dataset that has several different features from the
existing benchmark datasets and to also construct an invigilator schedule, which has
rarely been the subject of research within the scientific community. The UMP exam-
timeslot-room assignment is a capacitated dataset which contains additional hard
constraints in addition to proximity and other commonly used soft constraints. The
additional hard constraints are, (a) splitting of an exam into different rooms; the rooms
must be in the same building (b) no sharing of rooms between examinations. That is,
only one examination paper is scheduled to a particular room. The soft constraints
include (a) in the case of a split exam, the distance of the assigned rooms should be
minimised (b) the number of rooms for a split examination should be minimised.
These constraints have not been investigated before in the literature (as far as the
author is aware) even in the Second International Timetabling Competition

examination track (ITC2007) which contain more comprehensive constraints than
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previous benchmark datasets. A comparison of the constraints is discussed in chapters
2 and 3.

For invigilator scheduling, according to the (UMP) timetable officer, it is difficult to
produce a satisfactory invigilation timetable and this has motivated us to investigate
the problem. Furthermore, it has not received the same level of research attention as
the exam-timeslot-room assignment even though it is just as important to the
educational institution. A detailed list of all the constraints is described in chapter 3.
Currently there is no formal mathematical model and this also motivated us to explore

the problem.

In addition to the study of the new dataset, we investigate graph heuristics with
candidates lists to construct the examination timetable. An improvement methodology
involves a modified extended great deluge algorithm (modified-GDA) and a multi-
neighbourhood GDA approach. The modified-GDA is designed with the timetable
officer in mind as it uses a simple and easy to understand parameter for ease of
operation. Moreover, a comparison with the current solution, which is generated by
UMP using some proprietary software is carried out in order to evaluate the
effectiveness of the methodology we present against the correct way of generating the
timetable. Finally, we investigate the examination track of the Second International

Timetabling Competition (ITC2007) using our proposed methodology.

In order to accomplish the above, several objectives are outlined as follows:

1) To compile the exam-timeslot-room assignment constraints and compile the
invigilation assignment constraints.

2) To construct the formal mathematical model for UMP exam and invigilator
problem.

3) To implement heuristic methods to generate the exam timetable and compare
the result with the UMP proprietary software result.

4) To implement heuristic methods to generate the invigilator timetable and

compare the result with the proprietary software.
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5)  To implement heuristic methods (as in objective 3) to the ITC2007 datasets.

We hope to provide UMP with an improved examination timetabling construction
procedure and we would like to propose our UMP datasets as benchmark problem

instances so that the scientific community has access.

1.3 Overview of the thesis

This thesis consists of eight chapters. This chapter presents the background motivation,
research scope and objectives. The remainder of this thesis is organised in the

following way:

Chapter 2 describes the examination timetabling problem and presents various
examination datasets and constraints from the scientific literature. It also presents the
current published research on the examination timetabling, reporting the available

methods in the literature.

Chapter 3 presents the UMP examination timetabling and invigilator scheduling
problem. The constraints are listed along with a description of the UMP datasets that

are used throughout this thesis.

Chapter 4 presents the formal model of the UMP examination timetabling problem.
Graph heuristics with candidates list are implemented. This method is able to produce
good quality solutions compared to the solutions produced from the UMP proprietary
software, whilst satisfying all hard constraints which the current system fails to do. The
work presented in chapter 4 has been published in the European Journal of Operational

Research (Kahar and Kendall, 2010a).

Chapter 5 presents the formal model of the UMP invigilator scheduling problem. The
proposed constructive heuristic algorithm is able to produce a good quality solutions
when compare to the UMP proprietary software, whilst satisfying all hard constraints

which the current system fails to do. Additionally, we include others constraints (on
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top of the original invigilation constraints) considering the comments made by the
invigilators (Awang et al., 2006). The work is currently under its 2™ review for the

Journal of Operational Research Society, JORS.

Chapter 6 presents a modified-GDA approach to improve the constructive heuristic
solutions. The proposed GDA uses a simple to determine parameter that can find a
good quality solution and is able to find a better solution than the initial cost even with
a higher desired value (due to it ability to adjust the desired value, boundary and decay
rate) while using good neighbourhood heuristics. The modified-GDA approach is able
to produce good quality solutions compared to the UMP proprietary software,
satisfying all the constraints (which the proprietary software fails to do) and also to
improve on the constructive result. Additionally, we also investigate different
parameters (i.e. different initial solutions, number of iterations and several
neighbourhood heuristics) and carry out statistical analysis to compare the results

parameters.

Chapter 7 presents a multi-neighbourhood GDA which is an extension of the work
presented in chapter 6. The method uses more than one neighbourhood in order to
effectively explore the search space and improve the solution. The multi-
neighbourhood simplifies the operation of the algorithm for the timetable officer who
does not have to determine suitable neighbourhoods. We show (Kahar and Kendall,
2011) that the choice of neighbourhoods play a major role in a search. The multi-
neighbourhood approach is able to generate better quality solution when compared to

the modified-GDA.

Chapter 8 presents the ITC2007 examination dataset. We implemented the graph
heuristics, modified-GDA and multi-neighbourhood GDA to the ITC2007 examination
datasets to determine whether the proposed method able to work with similar problem.
The same properties as the UMP examination dataset is used in the experiments
comparison with other reported result in the literature shows that the above method

able to give a competetive result but it takes a considerable amount of time.
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Finally, the overall conclusions of the work presented in this thesis and research

directions for future work in this area are presented in Chapter 9.

1.4

Research contributions

The contributions are a summary of the work in chapters 3 to 8. The detailed

contributions are discussed in the corresponding chapters. The overall research

contributions can be classified in terms of contributions to the scientific community

and contributions to institution (UMP).

Contributions to the scientific community:

1

2)

3)

4)

Develop a formal model of the UMP exam-timeslot-room timetabling problem
that contains new constraints which have never been reported before in the
scientific literature (see chapters 3 and 4).

An investigation of the invigilator scheduling which has not received the same
level of research attention as the the exam-timeslot-room assignment even
though it is important to the educational institution. A formal model of the
UMP invigilator scheduling problem was developed including additional
invigilator constraints taking into account comments made by the invigilators

in Awang et al., 2006 (see chapter 3 and 5).

We have utilised graph heuristics that call upon candidate lists for the UMP
examination timetabling problem and the ITC2007 datasets. The approach is
able to produce good quality solutions within reasonable computational times,
when compared to the UMP proprietary software (see chapter 4) and we are
also able to generate competitive result for the ITC2007 datasets compare to
other research reported in the literature.

We have applied the modified great deluge algorithm (modified-GDA) to
improve on the constructive heuristic solutions for the UMP exam problem and
ITC2007 datasets. The modified-GDA uses a simple and easy to understand

parameter which would benefit a novice user (i.e. timetable officer) to operate
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5)

6)

7)

the method. The method is able to produce good quality solutions when applied

to the UMP examination problem (see chapter 6).

Investigation of the parameter settings which include different initial solutions,
the number of iterations and neighbourhood heuristics for the modified-GDA.
A statistical analysis is carried out to determine whether are there significant
differences between different parameters settings. The investigation revealed
that the choice of parameter plays an important role in the search (see chapter
7.

We have applied the modified great deluge algorithm, which uses more than
one neighbourhood heuristic (multi-neighbourhood GDA), to the UMP exam
problem and the ITC2007 datasets. The multi-neighbourhood GDA able to
generate good quality solutions when applied to the UMP examination problem

and relatively good results for the ITC2007 datasets (see chapter 8).

The search technique, and insights gained could be applied to similar exam

timetabling problems or other related problems.

Contributions to the Institution (UMP):

8)

9

10)

11)

Compiling the exam-timeslot-room and invigilator timetable requirements
(constraints) which have never been properly documented at UMP.
Representation of the UMP examination timetabling problem into a
mathematical model which is useful for future assesment of the UMP
examination timetable solution.

Development of UMP examination timetabling system, which includes
assigning exams to timeslots and rooms, and scheduling invigilators.
Implementation of modified-GDA and multi-neighbourhood GDA approach
that uses a simple to understand parameter for the timetable officer to easily

operate the method.




Chapter 1. Introduction

1.5 Summary

This thesis presents a new examination timetabling dataset from UMP which has
different characteristics compared to the benchmark datasets (i.e.Toronto, Nottingham,
Melbourne) and other real world datasets (i.e. UKM, UiTM and ITC2007). The
capacitated UMP examination timetabling dataset are solved using graph heuristics
together with candidate lists, modified-GDA and multi-neighbourhood GDA that are
able to produce good quality solutions compared to the current UMP proprietary
software. The proposed methodology was also applied to the ITC2007 examination
dataset. Additionally, we also investigated the UMP invigilator scheduling problem
and succesfully produced a good quality solution compare to the UMP proprietary
software. Furthermore, a new invigilator constraint was also included in addition to the
existing constraints, that, in our opinion, closely resembles the institution needs (i.e.
officer, staff and invigilator). This work has closed the gap between research and

practice making contributions to both the scientific literature and the institution.
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Chapter 2

A Review of Examination Timetabling Problems and

Methodogies in the Scientific Literature

This chapter provides details of the fundamental aspects of the research area tackled in
this thesis. It describes the general timetabling problem, the related constraints that
need to be considered in the problem and the techniques that have been used to solve
the examination timetabling problem. This chapter comprises eight sections. Section
2.1 describes the definition of timetabling and a brief discussion of the general
timetabling problem. Section 2.2 discusses the classification of university timetabling
problems. Section 2.3 provides further details of the examination timetabling problem.
The variations of the examination timetabling constraints and objectives experimented
within the scientific research are discuss in section 2.4. Section 2.5 describes the
difference between the un-capacitated and the capacitated examination timetabling
problem. Section 2.6 and 2.7 discuss the exam-room assignment problem and
invigilator scheduling respectively. Lastly in sections 2.8 and 2.9, we summaries the
methodologies that have been applied to examination timetabling problems and we

present our conclusions.
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2.1 Overview of timetabling

A timetable is an organized list that provides information about certain events that are
expected to take place. Timetabling can be classified into several categories which
include educational timetabling, personnel scheduling, sports timetabling and
transportation scheduling (Qu et al., 2009). Each of these timetabling problems differ
in their structure, constraints and requirements (Burke, Kingston and deWerra 2004).
Research in timetabling continues to attract the attention of researchers due to
- additional requirements/constraints that are continually introduced and with the end-
user insisting on better and better solutions (Burke et al., 1996). Wren (1996) defined

timetabling as:

“Timetabling is the allocation, subject to constraint, of a given resources
to objects being placed in space time, in such a way as to satisfy as nearly

as possible a set of desirable objectives”
Another definition given by Burke, Kingston and deWerra (2004):

“A timetabling problem is a problem with four parameters: T, a finite set of
times, R, a finite set of resources; M, a finite set of meetings and C a finite
set of constraints. The problem is to assign times and resources to the

meetings so as to satisfy constraints as far as possible”

Based on these definitions (among others), timetabling problems involve allocating
events into suitable timeslots and resources whilst satisfying constraints with the goal
of optimising the objective function of the problem. Constraints in timetabling can be
divided into two categories: hard and soft constraints. Hard constraints cannot be
violated. It is not essential to satisfy soft constraints but they should be satisfied as
much as possible. For example in examination timetabling, a hard constraint could be
that no student is allowed to take two or more exams at the same time. While soft
constraints could include spreading exams as evenly as possible throughout the exam
period. The objective function is a mathematical model of the problem where it is used

to evaluate the solution quality. Hence it is a function of violated soft constraints. A
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weighted penalty value is normally associated with each violation of the soft constraint

and the objective is to minimise the total penalty value (Ayob et al., 2007)

2.2 Classification of university timetabling problems

University timetabling problems can be divided into examination and course
timetabling problems. Carter and Laporte (1996) and Burke, Kingston and deWerra,
(2004) agree that examination and course timetabling both have the same
characteristics in the general timetabling problem and the core problem can be

considered to be the same. Carter and Laporte (1998) defined course timetabling as:

“a multi-dimensional assignment problem in which students, teachers (or
Jaculty members) are assigned to courses, course sections or classes;
events (individual meetings between students and teachers) are assigned to

classrooms and times”
Carter and Laporte (1996) defined examinations timetabling as:

“The assigning of examinations to a limited number of available time

periods in such a way that there are no conflicts or clashes”

Both course and examination timetabling problems are concerned with avoid assigning
students sitting two (or more) courses or exams in the same time period. However,
significant differences do exist. These include differences in constraints that must be
respected (as mention in chapter 1). Table 2.1 and table 2.2 shows an example of hard
and soft constraints for course (Abdullah, 2006) and examination timetabling (Qu et
al.,, 2009) problems respectively. Other examination timetabling constraints can be
found in the survey paper of Burke et al. (1996). It is subjective to determine whether a
given constraint is a hard or a soft constraint. This is because it is entirely dependent

on the requirements of the institution.
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Besides the differences in constraints, course and examination differ in the way in
which they are constructed, which can be divided into process environment, modelling
and scheduling instances. In the process environment, normally, the course timetable is
produced separately and independently by each school, unlike an exam timetable
which is usually produced centrally by the academic office (McCollum, 2007; Burke et
al., 1996). In modelling, for course timetabling, it is constructed based on the projected
number of students that will taking the courses, while in exam timetabling it is
generated based on the number of registered students on particular course (McCollum, .
2007). In scheduling instances, exam and courses use different instances although it is
from the same source (i.e. courses). Examination timetables are formed based on the
offered courses. While, in course timetable we need to schedule the individual lectures,

tutorial and labs from the offered course (McCollum, 2007).

Although differences exist between the examination and course problem, the
complexity of examination timetabling problem depends on the amount of freedom of
choice on students selecting their course timetable (Laporte and Desroches, 1984). The
more freedom a student has increases the difficulty in producing a feasible
examination timetable. This research focuses on the examination timetabling problem

and a comprehensive discussion will follow in the next sections.

Table 2.1 Example of hard and soft constraints for the course
timetabling problems (Abdullah, 2006)

Hard constraints
1. A student and a teacher cannot be in two places at the same time,
2. Only one course is allowed to be assigned to a timeslot in each classroom.

3. The classroom capacity should be equal to or greater than the number of students attending
the course at a particular timeslot.

4. The classroom assigned to the course should satisfy the features required by the course

Soft Constraints
Students should not have a single course on a day.
Students should not have to attend more than two consecutive courses on a day.

Students should not be scheduled to attend a course that is assigned to the last timeslot of the
day

14




Chapter 2. A Review of Examination Timetabling Problems and Methodologies in the Scientific Literature

2.3 Examination timetabling

Examination timetabling is an important problem in any educational institution. The
solution generated is of great importance and impact to a number of parties including
lecturers, students and administrators. Besides the definition, given by Carter and
Laporte (1996), many researchers have given their own definition for examination

timetabling. Balakrishnan (1991) gives the definition as

“The examination scheduling problem typically involves the assignment of
exams to specific periods and classrooms in order to obtain a schedule that
uses a minimum number of periods and satisfies a number of different

objectives”
According to Schaerf (1999),

“The examination timetabling problem requires the scheduling of a given

number of exams (one for each course) within a given amount of time "
Qu et al., (2009) stated that,

“Examination timetabling problem involve assigning a set of exams E = e,,
€2 ... e into alimited number of available timeslots T=t,, t; ... t;in such a

way that there are no conflicts or clashes”

Based on the definition above, the examination timetabling is concerned with
assigning exams to a specific or limited number of timeslots and rooms with the aim of
satisfying the hard constraints (e.g. conflict free timetable) whilst fulfilling the

objective (e.g. spread student exams evenly). An example of these constraints is listed

in table 2.2.
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Table 2.2 Example of hard and soft constraints for the

examination timetabling problems (Qu et al. 2009)

Hard Constraints
1. No exams with common resources (e.g. students) assigned simultaneously.

2. Resources of exams need to be sufficient (i.e. size of exams need to be below the room
capacity, enough rooms for all of the exams).

Soft Constraints
Spread conflicting exams as even as possible, or not in x consecutive timeslots or days.
Groups of exams required to take place at the same time, on the same day or at one location.

Exams to be consecutive.

3
4
5
6. Schedule all exams, or largest exams, as early as possible.
7. Ordering (precedence) of exams need to be satisfied.

8. Limited number of students and/or exams in any timeslot.

9. Time requirements (e.g. exams (not) to be in certain timeslots).

10. Conflicting exams on the same day to be located nearby.

11. Exams may be split over similar locations.

12. Only exams of the same length can be combined into the same room.

13. Resource requirements (e.g. room facility).

Examination timetabling is known to be equivalent, and therefore as hard, as the graph
colouring problem (Burke, Kingston and deWerra, 2004; Carter, 1986). In the graph
colouring problem, given an undirected graph G = (V,E), we need to colour the
vertices, ¥ of a graph such that no two adjacent vertices share the same colour if there
is an edge, E between them (Schaerf, 1999). This problem is formally known as vertex
colouring and is an NP-hard problem. The relationship can be described as, with a
undirected graph G = (V,E), V is the examination set with v as the number of
examinations and E is the edge set in the graph with e as the total number of edges in
the graph. Let’s say, v; is the i examination (i.e. v;, v; etc; see figure 2.1) and students
taking both exam v; and v; resulting in an edge e;; (i.e. e;2 ez3 etc ; see figure 2.1) with
a weight (total conflicting students which cannot schedule the exam in the same
timeslot) between the node v; and v;. The graph colouring problem, and its relationship
to timetabling, is widely discussed in the scientific literature (see for example, de
Werra 1997; Burke, Kingston and deWerra, 2004; Schaerf, 1999 and Di Gaspero and
Schaerf, 2001).
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Figure 2.1 Graph colouring

Examination timetabling is considered as time-consuming, difficult and an important
task which occurs periodically (i.e. annually, quarterly, etc) in all academic institutions
(Carter and Laporte, 1996; Laporte and Desroches, 1984). It is a fime-consuming
process due to the fact that it involves several stages which include data collection,
constraint modelling, algorithmic modelling and solution modelling (McCollum,
2007). All of these stages are very important and thus a careful strategy is required.
According to Burke et al. (1996), up to 75% of timetables are altered between draft and
final versions. The reasons for these alterations include data being made available late,
incorrect data and poor quality timetables being generated. A high percentage of the
alterations involve late and incorrect data. Therefore a precise and close interaction
with all parties (e.g. lecturers and faculty data collection; administrator constraint
modelling) should be carried out to avoid any problems. A miscommunication or
misinterpretation during the early stages could lead to changes being required in the
generated solution. Examination timetable are becoming more difficult to generated
due to the modular approach which allows students to freely select their courses whilst
adjusting their schedule to suit with their own preference. Other factors which further
increase the difficulty include the number of examinations being offered, the number
of students and constraints (in order to increase student satisfaction) requested by the
institution. An example of a new type of constraint (and there are others) involves
students from a Muslim background who require Fridays free of examinations
(McCollum, 2007; Ayob et al. 2007). Additionally, exams are an important part of the
overall student coursework assessment and it is normally held at the end of every
semester. The solution should satisfy all parties (especially the students) and hence, we

need to consider many factors in constructing the timetable whilst ensuring no clashes
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for the students, adequate gaps between each exam papers, sufficient marking time for
lecturer and administrators being satisfied so that with the timetable less (or no)

changes are required (McCollum, 2007).

A lot of approaches have been investigated (Qu et al. 2009) in an attempt to produce
good quality solutions (as we shall see later in the following sections). The problem
varies from one institution to another (Burke et al., 1996). Every institution has a
different set of requirements in order to effectively utilise their resources, meet the
requirements of their business, provide a high level of satisfaction to their students etc.
Therefore, an examination timetabling system has to be developed to meet these

individual requirements.

The examination timetabling problem can be categorised into un-capacitated or
capacitated problems. In the un-capacitated, individual room capacities are not
considered as the hard constraint, compared to the capacitated problem (Pillay and
Banzhaf, 2009; Abdullah, 2006) which does consider individual room capacities. A
further discussion on the capacitated and un-capacitated will follow in section 2.6. This
research investigates a new capacitated examination timetabling problem using a real
world dataset taken from Universiti Malaysia Pahang (UMP). This dataset has never
been investigated before in the literature and it has several new constraints in addition
to those commonly used in the literature. A detailed discussion on the dataset is given

in chapter 3.

2.4 Variations of constraints and objectives investigated in examination

timetabling problem

Variations of examination timetabling constraints can be seen in the literature. This
because different institutions have different requirements and constraints to suit their
business model. Furthermore, the parties affected by the examination timetable would
have different preferences for a good quality timetable. For example, an administrator
might require that all the exams are to be scheduled and that no student should be

assigned to sit two exams at the same time. From a students prespective, they might
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prefer that their exams are spread as much as possible to allow for revisibn time
between exam papers. In this section, we consider some of the constraints that are
commonly used in the examination timetabling problem. Doing so, we hope to
compare the constraints being used by other researchers and the new constraints that

arise in this research.

In the examination timetabling research community, the most commonly used datasets
are those from Toronto (Carter, Laporte and Lee, 1996), Nottingham (Burke, Newall
and Weare, 1996) and Melbourne (Merlot et al. 2003). Among these three dataset, the
Toronto dataset has received the most research attention. Many papers, which use this
dataset, can be found in the PATAT conference series of selected papers. (i.c. Burke
and Ross, 1996; Burke and Carter, 1998; Burke and Erben, 2001; Burke and De
Causmaecker, 2003; Burke and Trick, 2005; Burke and Rudova, 2007). Recently the
Second International Timetabling Competition (ITC2007) dataset has been introduced
by McCollum et al. (2008) which includes more realistic problems than the benchmark
problems. Other examination datasets also exist, for example UKM (Ayob et al., 2007)
and UiTM (Kendall and Hussin, 2004; Hussin, 2005).

2.4.1 Toronto datasets

The Toronto dataset consists of thirteen real-world exam timetabling problems with
three from Canadian highs schools, five from Canadian institutions, one from the
London School of Economics, one from King Fahd University, Dhahran and one from
Purdue University, Indiana (Carter, Laporte and Lee, 1996). The dataset requires no
clashing and to spread student examination. The dataset can be downloaded from

fin://fip.mie.utoronto.ca/pub/carter/testprob/. Table 2.3 show the information of the

Toronto datasets. Qu et al. (2009) classified the problem instances into I and II to allow

genuine comparison between the scientific community.
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Table 2.3 Toronto datasets (Qu et al., 2009)

Fnr:t:rcnel Exams Students Enrolments %‘;’;g‘;} Timeslots
car91 | 682 16925 56877 0.13 35
car91 11 682 16925 56242/56877 0.13 35
car92 1 543 18419 55522 0.14 32
car92 11 543 18419 55189/55522 0.14 32
ear83 1 190 1125 8109 0.27 24
ear83 I1 189 1108 8014 0.27 24
hec92 1 81 2823 10632 042 18
hec92 11 80 2823 10625 0.42 18
kfug3 461 5349 25113 0.06 20
1se91 381 2726 10918 0.06 18
pur93 1 2419 30029 120681 0.03 42
pur93 11 2419 30029 120686/120681 0.03 42
rye92 486 11483 45051 0.07 23
sta83 1 139 611 5751 0.14 13
sta83 II 138 549 5689 0.14 13
tre92 261 4360 14901 0.18 23
uta92 1 622 21266 58979 0.13 35
uta92 Il 638 21329 59144 0.13 35
ute92 184 2749 11793 0.08 10
yor83 1 181 941 6034 0.29 21
_yor83 11 180 919 6012 0.29 21

Carter, Laporte and Lee, (1996) introduced the dataset and investigated two variants of
the objectives with the aim to minimise the number of timeslots needed and to spread
conflicting exam within the timeslots (using proximity values of 16, 8, 4, 2 and 1).
They tested all of the datasets using the graph colouring heuristic with clique
initialisation and backtracking. Gaspero and Schaerf (2001), investigated the dataset in
which they consider the first and second order conflict. First order conflict (hard
constraint) is when a student has to take two exams scheduled in the same timeslot,
while second-order conflict (soft constraints) is when a student has to take two exams
in consecutive periods. They carried out the investigation using tabu search. Several
researchers have included other objectives into the original dataset. Burke, Newall and
Weare, (1996) consider maximum room capacity per timeslot and second-order

conflict of same day constraints. Burke, Newall and Weare, (1998) further modify the

20



Chapter 2. A Review of Examination Timetabling Problems and Methodologies in the Scientific Literature

dataset by including a second-order conflict of overnight and tested the dataset on three
timeslots a day (Monday to Friday). They also include a total seating capacity
constraint in the experiment in addition to other constraints introduced by Carter,
Laporte and Lee, (1996).

Merlot et al. (2003) investigated the dataset by using several methodologies that
include constraint programming, simulated annealing (SA) and hill climbing (HC).
The aim is to minimise the number of timeslots needed, spreading conflicting exams
within limited number of timeslots, to minimise second-order conflict of the same day
and overnight. Asmuni et al.,, (2005) investigate the dataset using graph colouring
heuristics with fuzzy reasoning to sort the exams. They used the original constraints as
in Carter, Laporte and Lee, (1996). Kendall and Hussin (2005) applied tabu search
hyper-heuristics that work with high level heuristics (i.e. the search methodology does

not deal directly with the solution).

2.4.2  University of Nottingham

The Nottingham dataset were introduced by Burke, Newall and Weare, (1996). It
consists of three timeslots a day (Monday to Friday) with a total of 23 timeslots. The
dataset uses no clashing and total capacity constraint with the objective to minimise the
number of second order conflicts on the same day. Table 2.4 show the information of
the University of Nottingham examination dataset. The dataset can be downloaded

from http://www.asap.cs.nott.ac.uk/resources/data.shiml. In 1999, Burke and Newall

investigated a decomposition approach by using graph heuristics (i.e. CD, LD and SD)
with the aim to minimise second order conflicts on the same day and overnight. Merlot
et al., (2003) also applied the same method as describe previously to the Nottingham
dataset. Burke et al. (2004), investigated the dataset using a great deluge algorithm
(GDA) using the same objectives that is to minimise second-order conflicts on the

same day, as well as overnight.
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Table 2.4 University of Nottingham dataset (Burke, Newall and Weare, 1996)

Exams Students Enrolments Conflict Density Timeslots Capacity

800 7896 34265 0.03 (3%) 23 1550

2.43  University of Melbourne

The dataset from the University of Melbourne was introduced by Merlot et al., (2003).
They introduced two different datasets which has two timeslots on each weekday, and
the capacity for each timeslot varies. The datasets also includes period exclusive
constraints where exams are pre-assigned to specific sessions or can only be held in a
limited set of sessions. The aim of the dataset is to minimise second-order conflict on
the same day or overnight. These datasets can be downloaded from

http./f'www.or.ms.unimelb.edu.au/timetabling. Table 2.5 show the information of the

University of melbourne examination datasets. In addition to Merlot et al., (2003),
Cote, Wong and Saboun, (2005) investigated the dataset using a bi-objective
evolutionary algorithm where tabu search (TS) and variable neighbourhood descent

(VND) were utilised.

Table 2.5 University of Melbourne datasets

Problem Instance Exams Students Enrolments Timeslots

1 521 20656 62248 23
11 526 19816 60637 31

2.4.4  Second International Timetabling Competition (ITC2007) datasets

The second international timetabling competition (ITC2007) is divided into course and
examination timetabling. In this work we will focus only on the examination dataset.
ITC2007 aims to create a platform for researchers to asses their algorithms on real
world timetabling problems. The ITC2007 examination dataset contains the following
constraints; no student sits more than one exam at the same time and the exams should

not exceed the room capacity. An exam assigned to a timeslot should not violate the
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timeslot lengths and the exams need to be comply with a specified arrangement (for
example, assign examA after examB, examA must use room15 etc). The objective is to
minimise second-order conflicts on the same day, minimise the number of students
sitting two exams in a day, minimise mixed duration of exams within a timeslot,
minimise the usage of a particular timeslot or room and schedule larger examinations
as early as possible. The details of the examination competition track can be found in
McCollum et al., (2008). Researchers which have investigated this dataset include
McCollum et al., (2009) which uses iterated forward search, hill climbing and great
deluge algorithm. Gogos, AleFragis and Housos, (2008) uses a multistage approach
that uses GRASP, simulated annealing and mathematical programming. McCollum et
al., (2009) applied a two-phase approach with adaptive heuristic ordering as the
constructive phase and improved the solution using an extended great deluge
algorithm, Table 2.6 show the information of the ITC2007 datasets (examination
track).

Table 2.6 Second International Timetabling Competition (ITC2007) datasets

Instance D;Z?tf)]'l?‘;) ) Exams Students Periods Rooms Pe}?gd Rl:(ém
Exam-1 5.05 607 7891 54 7 12 0
Exam-2 1.17 870 12743 40 49 12 2
Exam-3 2.62 934 16439 36 48 170 15
Exam-4 15 273 5045 21 1 40 0
Exam-5 0.87 1018 9253 42 3 27 0
Exam-6 6.16 242 7909 16 8 23 0
Exam-7 1.93 1096 14676 80 15 28 0
Exam-8 4.55 598 7718 80 8 20 1
Exam-9 7.84 169 655 25 3 10 0
Exam-10 4.97 214 1577 32 48 58 0
Exam-11 2.62 934 16439 26 40 170 15
Exam-12 18.45 78 1653 12 50 9 7
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2.4.5  Universiti Kebangsaan Malaysia (UKM) dataset

Beside the standard benchmark dataset, they are several other exam dataset discussed
in the literature. Ayob et al,, (2007) introduced a capacitated dataset from UKM,
Malaysia. The dataset requires all exams to be scheduled. They forbid students taking
more than one exams at the same time and sitting three consecutive exams in a day.
Exams with a specified room (room exclusive constraint) must be fulfilled and those
students assigned to sit consecutive exams must be assigned to the same room. The
objectives involve evenly spreading the exams and minimise students having
consecutive exams on the same day. Table 2.7 show the UKM dataset and table 2.8

show the room capacity of the dataset.

Table 2.7 Universiti Kebangsaan Malaysia datasets (UKM06-1)

Exams Students Enrolments Timeslots Capacity

818 14047 75857 42 1550

Table 2.8 Available rooms for dataset UKM06-1

Room Room Capacity
DPBestari 850
DGemilang 610
Dewan (DECTAR) 610
LobiUtama (DECTAR) 270
PSeni (DECTAR) 152
LobiA (DECTAR) 70
LobiB (DECTAR) 70

2.4.6  Universiti Teknologi MARA (UiTM) dataset

Kendall and Hussin (2004) introduced a capacitated dataset from UiTM Malaysia. The
constraints involve scheduling all exams, first order conflict and coincidence
constraints (i.e. exams that required scheduling together must be assigned in the same
timeslot). The objective is to spread exams as evenly as possible, which is calculated

using the proximity value as in Carter, Laporte and Lee, (1996) and penalising exams
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that are scheduled during the weekend. Table 2.9 show the information of the UiTM

dataset,.

Table 2.9 Universiti Teknologi Malaysia (UiTM) dataset

Exams Students Enrolments Timeslots

2,063 84,675 357,761 40

A summary of the constraints and objectives of the datasets describe above are shown

in table 3.1, in chapter 3.

2.5 Uncapacitated and capacitated examination timetabling problem

Most of the research in the literature has investigated the un-capacitated examination
timetabling problem, concentrating on the algorithm and algorithmic performance in
terms of producing solutions effectively and quickly (see Qu et al., 2009). Although
' un-capacitated benchmark datasets are popular, McCollum (2007) and Carter and
Laporte (1996) believe that, researchers are not dealing with all aspects of the problem.
That is, they are only working on a simplified version of the examination problems. Qu
et al. (2009), in their survey paper, reveal that most research only addresses a few
common hard constraints. For example, no exams with common students assigned
simultaneously, the size of exams need to be below room capacity etc. Commonly used
soft constraints include spreading conflicting exams as evenly as possible, or not in x

consecutive timeslots or days.

The capacitated problems on the other hand more closely resemble the real world
problem as it includes a room capacity constraint. However, the capacitated problem
has received less attention from the research community. This is probably due to the
lack of benchmark datasets. Capacitated problems require more comprehensive data as
they have to include the room capacity as well as the other data also required for the
less complex problem (e.g. student and exam list). This extra information can be
difficult to collect (McCollum, 2007). In addition, the capacitated problem is much

harder to solve; see Burke et al. (1996) survey paper where 73% of the universities
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agree that accommodating exams is a difficult problem. Burke et al., (1996) mention
that the difficulties of accommodating exams are because of, firstly, the lack of halls
available probably due to its unsuitability for exams or the room is still being used for
lecturing. Secondly, is the problem of splitting exams between more than one room
which could lead to others constraints (i.e. splitting an exam onto different sites or

taking into account between rooms).

Some of the current benchmark datasets lack the relevant information on the seating
capacity of each rooms. However, due to the interest of the capacitated problem and
making the benchmark dataset more like the real world problem, Burke, Newall and
Weare, (1996) made a modification to the benchmark dataset (e.g. Toronto dataset) by
including an overall capacity as if all exams were taking place in one big room (e.g. a
sports hall). The same goes to Nottingham and Melbourne dataset which is only
concerned with the total seating capacity. That is, the total number of students sitting
in all exams in the same timeslot must be less than some specified number. However,
according to Merlot et al. (2003), this represents a simplified of the problem whereas
normally in solving a real-world problem, we would have to take into account
individual room capacities, but this obviously depends on institutional requirements.
ITC2007 does include individual room capacities (just like the UMP dataset studied
here). One difference to the UMP dataset is that, UMP does not allow exams to share a
room. However, UMP does allow exams to split across several rooms (unlike ITC2007
that disallows splitting) but restricts the exams being split to be held within the same
building and trying to place those rooms as close to one another as possible, this

complicates the problem. A further description of UMP constraints is described in

chapter 3.

2.6 Exam-room assignment problem

The solution approaches seen in literature for the exam timetabling problem can be
separated into exam-timeslot assignment and exam-room assignment. The most
popular approach is the exam-timeslot assignment. Only a few works have discussed

exam-room assignment (Carter and Laporte, 1996; Laporte and Desroches, 1984;
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Leong and Yeong, 1990). In a survey by Carter and Laporte (1996), the idea of a
subroutine is frequently used for the exam-room assignment problem in which the
rooms and the exams are arranged in decreasing order based on their capacities and on
their size respectively. The biggest exam is assigned to the room with the smallest
capacity that can fit this exam. If there is no room sufficient to hold this largest exam,
then the largest room is fully assigned and the remaining exams are assigned to other
rooms. Laporte and Desroches (1984) use a room allocation subroutine to solve the
exam timetabling problem. The largest exams are scheduled in rooms with the largest
capacity. If the size of the exam exceeds the capacity of the room, the residual is
considered as a new size of the exam and the procedure is repeated until all exams are
assigned. There is no limit on the number of exams that can be held in the same room.
Leong and Yeong (1990) consider the problem of assigning exams to room that
minimized the residuals. They limit the number of exams that can be held in a
single room to a specified number. Firstly, they try to assign each exam to a single

room. If this is not possible the exam is allocated to a neighbourhood cluster.

Based on the discussion above, the un-capacitated and capacitated (with total seating
capacity) problem can be solved using a two-phase approach (1. schedule exams to
timeslots and, 2. schedule exams to rooms), as both allow more than one exam in a
room (sharing room with several different exams). This will provide a feasible solution
in the exam-room assignment phase as long as the capacity of the room is greater than
the number of students (Dammak, Elloumi and Kamoun, 2006). However, if individual
room capacities are used, including prohibiting having more than one exam in a room,
it does not guarantee that we are able to produce feasible solution using the two-phase

approach. A solution repair mechanism might be introduced in order to arrive at a

feasible solution.
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2.7 Invigilator scheduling
The exam-timetabling problem can be defined as (Reis and Oliveira, 1999):

“ET-examination timetabling: Scheduling (in time) of the exams of a set of
university courses avoiding overlapping exams having common students
and spreading the exams for the students as much as possible. Room
assignment and invigilator assignment can be done prior to or afier the

exam timetabling phase.’’

Based on this definition, the whole examination timetabling problem process involves
exams, timeslots, rooms and invigilators. However, most of the research found in the
scientific literature investigates the exam-timeslot/room assignment problem, that
concentrate on the algorithmic performance with the aim of producing good quality
solutions in minimal time (see Qu et al., 2009). The scheduling of invigilators is often
ignored. The Toronto, Nottingham and Melbourne datasets only cover one third of the
examination timetabling problem as their focus is on assigning exams to timeslots
(although the Nottingham and Melbourne datasets do consider maximum seating
capacity in a timeslot). The second International Timetabling Competition (ITC2007)
dataset (McCollum et al., 2010) includes more realistic problems than the benchmark
datasets but it is still lacking with respect to invigilator scheduling that forms part of
the complete educational examination timetabling problem (Burke et al., 1996; Hussin,

2005).

Invigilator scheduling contains many hard and soft constraints which vary greatly from
one institution to another. An example of a hard constraint is that invigilators are not
assigned to multiple invigilation duties at the same time. A typical soft constraint
specifies that invigilation duties need to be evenly spread among the invigilators.
Furthermore, in a survey by Burke et al. (1996), it was found that 29% of universities
agree that the task of invigilator scheduling is a major problem. This is also reported
by Cowling, Kendall and Hussin, (2002) and Ong, Liew and Sim, (2009) where many

invigilators are not satisfied with their individual schedule. Additionally, in a survey
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on the UMP invigilator schedule, Awang et al., (2006) reported that the invigilators are

not satisfied with their schedule and would like a better invigilation schedule.

Currently, there is no recognised dataset for the invigilator scheduling problem in the
scientific literature (as far as the authors are aware). In our opinion, invigilator
scheduling has been largely overlooked by the scientific community, despite being as
important as the exam-timeslot-room assignment problem to the institution. Therefore

the invigilator scheduling problem seems to be worthy of investigation.

2.7.1 Implementation by academic institutions

In our view, invigilator scheduling can be divided into three categories with respect to

the staff that are employed to carry out the invigilations.

I1) Outside staff: the institution hires non-staff (typically these are from outside the
institution) to invigilate the exam timetable. This approach reduces the
complexity of the problem as we only need to consider fulfilling the requested

number of invigilators for each exam/room.

12) In-house staff: the institution use their own staff to invigilate the exams (Ong et
al., 2009). Some insitutions use only academic staff (e.g. lecturers) while others
might also include non-academic staff (e.g. administrators, technicians,
postdoctoral researchers etc). The academic staff are often assigned as chief
invigilators while non-academic staff are assigned to help in the invigilation
process. Compared to (I1), this approach may have a significant number of
constraints such as invigilators not being able to invigilate their own exam
paper (or alternatively being expected to), not being assigned to more than one

invigilation duty at a time, the invigilation duties being evenly spread among

the staff etc.

I3) Mixed: the institution use their own staff and hire outside staff to invigilate the

exam timetable. The mixing of staff types provides flexibility to the institution
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as it enables a variety of working methods to be adopted (e.g. in-house staff act

as chief invigilators and outside staff to provide the relevant support).

The implementation of 11 would increase operational costs as the institution needs to
pay for the outside staff. In our opinion, a mix of outside and in-house staff (I13) gives
more advantages and flexibility to the timetabling office compared to using I1 and 12.
However, it also comes at increased operational cost. It also reduces the complexity of
the problem compared to 12. However, we recognise that every institution operates in
different ways and the staffing model that is adopted is dependent on many factors and

what is suitable for one institution may not be suitable for another.

UMP only uses its own staff as invigilators (I2). This result in numerous constraints
such as the chief invigilators must be a member of academic staffs, staffs are required
to carry out a number of invigilations within the exam period etc. A detailed

description of the UMP invigilator constraints is presented in chapter 3.

In this work, we solve the UMP examination timetable in two phases: firstly, we
schedule the exams into timeslots and rooms simultaneously (Kahar and Kendall,
2010a). We then use the solution from the first phase as an input to the invigilator
scheduling phase. The scheduling of exams into timeslots, rooms and lastly the
invigilators has been reported as the best sequence in order to produce a good quality
solution (Reis and Oliveira, 1999). Our proposed approach to this second phase is
presented in chapter 5, but first we describe the problem informally, and present a

formal definition in chapter 3.

2.8 Methodologies applied to the examination timetabling problem

The examination timetabling problem has been the subject of active research for more
than 20 years, possibly longer. A variety of algorithms have been proposed and tested,
which include graph heuristic, meta-heuristic, constraint based methods,
hybridisations; as well as many other approaches, in order to produce a timetable. A

comprehensive review and survey of the examination timetabling approaches can be
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found in Carter and Laporte (1996), Schaerf (1999), and Qu et al., (2009). Many
methodologies can also be found in the PATAT conference series of selected paper
(i.e. Burke and Ross, 1996; Burke and Carter, 1998; Burke and Erben, 2001; Burke
and De Causmaecker, 2003; Burke and Trick, 2005; Burke and Rudova, 2007). Carter
and Laporte (1996) divided the techniques used into four categories: cluster methods,
sequential methods, constraint-based methods and meta-heuristics. Petrovic and Burke,
(2004) added the following categories: multi-criteria, case-based reasoning and hyper-
heuristics approache. A more general classification of the methodologies can be
divided into trajectory based and population based approaches. The trajectory based
methods operate on individual solutions and randomly explores the search space to
find a better solution until a stopping criterion is met (Gaspero and Schaerf, 2001).
Examples of trajectory based methods include Hill-Climbing (Merlot et al. (2003),
Burke and Bykov (2008), Muller (2007) and Kendall and Hussin (2005b)), Tabu
search (Di Gaspero and Schaerf (2001), White and Xie (2004), Abdullah, Turabieh and
McCollum (2009) and Kendall and Hussin (2004)), Simulated Annealing (Thompson
and Dowsland (1996 and 1998), Wright (2001), Burke et al. (2003) and Frausto and
Alonso (2008)), Great Deluge Algorithrﬁ (Burke and Newall (2003), Burke et al.
(2004), Abdullah et al. (2009) and Turabich and Abdullah (2011)) and Variable
Neighbourhood Search (Abdullah, Burke and McCollum (2005) and Burke et al.
(2010a)). These algorithms differ from each other in the method that is used to find a
neighbourhood solution in the search space. Population based methods operate on
multiple solutions and refine each solution to obtain an optimal solution. Examples
include Genetic Algorithms (Corne, Fang and Mellish, 1993; Chu and Fang, 1999;
Erben, 2001 etc), Memetic Algorithms (Burke, Newall and Weare, 1996; Burke and
Newall, 1999 etc), and Ant Colony Optimisation (Eley 2006 and Eley 2007).

2.8.1  Graph heuristics (GH)

The graph colouring problem involve assigning colours to vertices, so that no adjacent
vertices have the same colour (also normally referred to as vertex colouring). Graph
colouring techniques have been widely used in solving related problems including the

examination timetabling problem (Carter, Laporte and Lee, 1996; Burke, Kingston and
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de Werra, 2004). In examination timetabling, the exams are represented by vertices
and the edges between the vertices represent the hard constraints. The difference is in
the soft constraint where it need to be considered separately and evaluated to measure
the solution quality. An illustration of timetabling problem as a graph colouring model
can be found in de Werra (1985) and Burke, Kingston and deWerra, (2004).

Originally graph heuristics were used on their own to schedule examinations (Carter,
1986). However, in more recent work they have been used to constructs initial solution
(i.e. a so called constructive phase), being hybridised with other methods which acted
as an improvement mechanism. Graph heuristics are able to generate reasonably good
quality solutions in a short computational time and are easy to implement. Graph
heuristic involve ordering the exams in some way (typically be how difficult they are
to be scheduled). Thereafter, the exams are scheduled one by one into the timeslots.

Common ordering strategies are described below:

a) Largest degree (LD): this heuristic takes the exams that have the most conflicts
with other exams and schedules them first.

b) Largest weighted degree (LWD): this heuristic is similar to largest degree
except that it takes exams that have the most number of students who are
involved in the conflict and schedules them first.

¢) Largest enrolment (LE): this heuristic takes exams with the largest number of
registered students and schedules them first.

d) Saturation degree (SD): this heuristic chooses exams which have the least
number of available periods in the timetable that can be selected and schedules
them first.

e) Random ordering (RO): randomly orders the exams.

Largest degree (LD) and saturation degree (SD) normally provides better results
compared to other ordering strategies (Qu et al., 2009). Other ordering strategies, and
their modified variants, is discussed in Carter (1986). Carter, Laporte and Lee (1996),
experiment with different ordering strategies on real and randomly generated exam
timetabling problems. They consider conflict free and spreading (proximity cost) of the

examination timetable. The results indicated that none of the heuristics show large
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differences in performance over all of the problems tested. However, the combined use
of backtracking and saturation degree yields better schedules in less computational
time. Burke, Newall and Weare (1998) investigated the effect of random elements in
saturation degree, color degree and largest degree using (a) tournament selection that
randomly selects one from a subset of the first exams in the ordered list; and (b) bias
selection that selects the first exam from an ordered list of a subset of all the exams.
These simple techniques are able to give relatively good results on three of the Toronto

datasets.

For the past few years, graph heuristics have evolve and it is being used in different
ways such as dynamic ordering strategies (i.e. adaptive ordering different from SD),
multiple graph heuristics ordering strategies and even hybridisation of graph heuristics
(with other search methods). Burke and Newall (2004) investigated an adaptive
ordering strategy that prioritises the exam to be scheduled (during the constructive
approach). It uses a weighted ordered list of the examinations to be scheduled, based
on individual soft penalties and difficulty to schedule penalties. The ordering of the
exams are updated according to the experience obtained with respect to the difficulty
of assigning them in the previous iterations. They investigate the approach on the
Toronto and Nottingham datasets. The advantage is that it is not dependent on the
initial ordering of the exams. Based on the work above, Rahman et al. (2009) include
the concept of squeaky wheel optimization (that is an iterative greedy approach) that
consists of constructer, analyzer and prioritizer. Each examination has a priority
determined by the chosen graph heuristic, which is dynamically updated during the
construction phase. An exam is given more priority in the next iteration if the exam is
considered difficult to schedule in the current iteration. Experiments were carried out

on the Toronto dataset and the approach is able to produce comparable solutions to

other approaches.

Asmuni et al. (2005 and 2009) investigated ordering of the exams based on graph
heuristics with fuzzy logic to evaluate the difficulty when ordering the exams on the
Toronto datasets. Asmuni et al. investigate the combination of two (Asmuni et al,,
2005) and three (Asmuni et al., 2009) graph heuristics to guide the order in which

exams are selected to be scheduled. They also investigate the effect of computational
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time, number of skipped exams, and the number of times a rescheduling procedure is
required. Experiments were carried out on the Toronto dataset and they produce the
lowest penalty than any previously published constructive method. The fuzzy
combination of SD and LE obtained a good overall performance in terms of low
penalty cost. However, different fuzzy functions need to be used on different problems

in order to obtain the best results.

Qu and Burke (2009) investigated the used of graph colouring heuristics within hyper-
heuristic (HH) methodology in which the HH is used to choose the graph heuristic for
constructing the timetables. This is motivated by the fact that graph heuristics, on their
own, are not always appropriate methodologies for addressing complex timetabling
problems and for some of the problem instances they failed to even generate feasible
solutions. However, recent research has shown that they are effective as producing
initial solution for meta-heuristics (e.g. Muller (2008), Abdullah, Burke and McCollum
(2005) etc.) A further discussion on HH will follow in the following section.

We have implemented graph heuristics for the UMP examination timetabling problem
(our case study dataset). The solution produced is superior compared to the software
currently used in UMP. In addition, the proposed algorithm adheres to all the hard

constraints which the current software fails to do. Chapter 4 gives a detailed

description of our methodology.

2.82  Hill Climbing (HC)

Hill climbing (or simple descent) is a classic local search technique. In each iteration,
the candidates solution, s’ is selected at random from the neighbouring solution, M(s).
The candidate solution s’ is accepted, and replaces the current solution s, if fs’) is an
improvement compared to f(s) (see figure 2.2). Hill climbing is simple and easy to
implement. However the disadvantage is that, it is easily trapped in local optima.
Therefore, researchers tend to hybridise hill climbing with other search methods such
as meta-heuristic methodologies (e.g. evolutionary algorithms, simulated annealing

etc). For example, Merlot et al. (2003) incorporated a multi-stage search method to
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solve an examination timetabling problem that included constraint programming,
simulated annealing and hill climbing. Burke, Newall and Weare (1996) hybridised a
genetic algorithm with hill climbing to further exploit the individual solution. This
hybridisation method often referred to as a memetic algorithm which will be discuss
further in the following section. Kendall and Hussin (2005b) applied a hyper-heuristic
and hill climbing to the examination timetabling problem. Muller (2007) uses hill
climbing in combination with a great deluge algorithm (as well as simulated annealing)
for the ITC2007 problem. Recently, Burke and Bykov (2008) propose a late
acceptance strategy for the hill climbing. The method delays the comparison step
between candidate solution and current (best) solution. The late acceptance hill
climbing is able to produce a good quality solution compared to other works for the
Toronto datasets. An improved method have also been formulated based on hill
climbing, in order to try and counteract its disadvantages (i.e. escaping from local
optima). Tabu search is just one example of such a method. This will be discussed in

the next section.

sinceLastMove =0
While sinceLastMove < 1,000,000 do
Choose exam e and period t at random s.t. ¢ != period(e)
If penalty(e, t) < penalty (e, period(e)) then
Move exam e to period t
sinceLastMove .= 0
Else
sinceLastMove+ = 1
Endif
Done
Figure 2.2 Hill climbing procedure (Burke and Newall, 2002)

2.8.3 Tabu search (TS)

Tabu search proposed by Glover (1986) works in a similar way to hill climbing but
incorporates a memory to encourage exploration of the search space (diversification).

Glover and Laguna (1997) define tabu search as:
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“A meta-heuristic that guides a local heuristic search procedure to explore

the solution space beyond local optimality”

Tabu search starts from an initial solution syo. The search will iteratively explore a
subset N’(s) of the neighbourhood N(s) where s is the current solution. The search
encourages exploration by accepting neighbourhood solution with the lowest value,
even though (assuming minimisation) its value maybe worse than the current solution.
Accepting a non-improving move will allow the search to explore areas beyond local
optima. However, having to choose a solution from a subset of solution N'(s) will
typically lead to cycling. To prevent the search from becoming stuck in a local optima,
a memory (called tabu list) is used to hold recently selected solutions (or, more
usually, their attributes) and these moves (stored in tabu list) are forbidden to be
performed for a certain number of iterations (depending on the tabu list size).
However, a mechanism called the aspiration criterion can be used to make a solution
tabu free if the resultant evaluation gives a good quality solution (typically better than

the best solution seen so far). Figure 2.3 show the tabu search procedure.

Step 1. Choose an initial solution i in S. Set i*=iand k = 0.

Step 2. Set k= k+1 and generate a subset F'* of solution in N(J, k) such that either
one of the tabu conditions ¢, (i, m) € T, is violated (r = 1,....f) or at least one
of the aspiration conditions ar(i, m) € Ar (i, m) holds (r = 1,...,a).

Step 3. Choose a bestj =i® m in V'* (with respect to f or to the function7 )and seti
=j.

Step 4. If i) <Ai*) then seti* =i,

Step 5. Update tabu and aspiration conditions.

Step 6. If a stopping conditions is met then stop. Else go to Step 2.

Figure 2.3 Tabu Search procedure (Hertz, Taillard and deWerra, 1995)

Di Gaspero and Schaerf (2001) experimented with a shifting penalty and violation
mechanism on examination timetabling. The shifting penalty mechanism uses a
varying weight on the constraints (hard and soft) to encourage exploration of the
solution space. They consider (a) violation of either hard or soft constraints, or (b)
violation of hard constraints only. These two features combined with a variable-size

tabu list and a good quality initial solution was able to give a good quality solution. In
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2002, Di Gaspero applied a combination of tabu search with multiple neighbourhoods.
The approach involves optimising the objective function (recolor), perturbing the
current solution (shake) or obtaining more improvement (kick). The recolor and shake
algorithm were applied in sequence until no further improvement, and the algorithm
continued with a kick. The algorithm outperforms a basic tabu search with a single

neighbourhood.

White and Xie (2001) implemented a tabu search algorithm on two of the Toronto
datasets (Carter, Laporte and Lee, 1996). They use recency-based short-term and
frequency-based longer-term tabu list to prevent cycling and to encourage exploration
of the search space. Tabu relaxation were also included during the investigation. The
results show that the approach with longer-term tabu lists produces competitive results
when compared with other algorithms. In 2004, White et al. further applied the
approach to the rest of the Toronto datasets. The results show that the longer-term tabu
list improves the quality of the solution and they claim that tabu relaxation is a good

strategy because it helps to drive the solution into new areas of the search space.

Wilke and Ostler (2008) applied tabu search to the school timetabling problem. They
compare several other methods (i.e. simulated annealing, genetic algorithm and branch
& bound) in order to provide a software framework that is capable of solving various
timetabling problem. Simulated annealing, generally produced the best result, but tabu
search was able to produce an improvement solution in minimal time. Mushi (2006)
implemented a tabu search algorithm that creates course timetables by heuristically
minimising penalties over an infeasible solution. They investigated a dataset from the
University of Dar-as-salaam and compared the results with a manually generated
timetable. A two move strategy was used, with an aspiration criterion. The algorithm
terminates if there is no improvement after 1000 iterations. Their proposed system

performs better than the manual system.

Tabu search (or it features) has been hybridised with other methods. For example,
Abdullah, Turabiech and McCollum (2009) hybridise tabu search with memetic
algorithms. The tabu list is used to hold the neighbourhood structures that are unable to

generate better solutions after the crossover and mutation operation. Neighbourhood
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structures that give an improvement were continuously used until no further
improvement could be obtained. The approach is able to produce good quality
solutions on four of the Toronto datasets. Abdullah and Turabieh (2012) then extended
the above work by investigating multi-neighbourhood structures. Other hybridisations
of tabu search includes Abdullah, Burke and McCollum (2005), which includes a tabu
list implementation within the VNS methodology. Kendall and Hussin (2004)
investigated tabu search hyper-heuristics from one of the author’s institutions. Frausto

and Alonso (2008) hybridised simulated annealing and tabu search.

2.8.4  Simulated Annealing (SA)

Simulated annealing (SA) was proposed by Kirkpatrick in 1983. It was motivated from
the physical annealing process of heating up a solid to a high temperature and slowly
cooling it down until it crystallises and no further changes occur, For each material, the
cooling schedule was very important. Simulated annealing starts from an initial
solution (generated using a constructive heuristic) and it will always accept an

improved solution, while worse solution are only accepted with a certain probability P

-/t
=e  where a is the difference between the objective value of the incumbent solution

and the objective value of a candidate solution. ¢ is a temperature parameter that
decreases as the search progresses, according to some cooling schedule. Figure 2.4
show the simulated annealing procedure. According to Thompson and Dowsland
(1998), the cooling schedule has a large influence on the quality of the final solution.
Faster cooling schedules tend to lead the search to converge to a local optima, while a
slower cooling schedule generally produces a better quality solution but increases the
search time. A geometric cooling schedule, after a given number of moves (i.e.
specified or successful moves), is often used to reduce the temperature during the

search. A tutorial on simulated annealing can be found in Burke and Kendall (2005).
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T:= To
While 7> T, do
Choose exam e and period ¢ at random s.t ¢t = period(s)
If penalty (e, £) < penalty (e, period (e)) then
Move exam e to period ¢
Else
Move exam e with probability

Exp((penalty(e, period(e)) — (penalty (e, H)/T)

Endif
T=T
Done

Figure 2.4 Simulated annealing procedure for
minimisation (Burke and Newall, 2002)

SA has been successfully applied to many areas, among them being examination
timetabling. Thompson and Dowsland (1996 and 1998) solve the exam timetabling
problem in two phases, constructive (finding a feasible solution) and improvement
(improving the solution quality) phases. An adaptive cooling schedule was used and
the results show that it outperformed a simple geometric cooling approach. In 1998,
Thompson and Dowsland further experimented with different cooling schedules and
neighbourhood moves. The results show that the kempe chain neighbourhood gives the
best quality solutions. The reason being is because of its ability to allow a large
number of examinations to move, thus making a significant improvement to solution

quality.

Wright (2001) presents sub-cost guided search with simulated annealing to solve
school timetabling problems. The sub-costs incorporated into simulated annealing
were used to modify the standard probability function of accepting worse solutions by
using an adjusted cost increase in the probability formula. Experimental results show
that the additional feature method significantly improves the results of the simulated
annealing method. Burke et al. (2003) applied simulated annealing to the examination
timetabling problem to study its behaviour. Their aim is to develop a measure of
similarity between examination timetabling problems. The motivation of their
experiments is that if the meta-heuristics works well on the problems, therefore the
problem would be similar. Hence, a different problem can be solved (effectively) by

determining the similarity between the problem and the appropriate search method.
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SA is used to produce solutions from the Toronto datasets (Carter, Laporte and Lee,
1996).

Frausto and Alonso (2008) hybridise simulated annealing and tabu search algorithms
to solve the Post Enrolment Course Timetabling (track 2) from ITC2007. The method
is divided into two phases; constructing a feasible solution and an improvement phase.
In the first phase, SA is use to produce a feasible solution. Additional timeslot were
included during this phase. In the second phase, SA is used to find a solution as close
to the optimum as possible, within a specified time limit. However, if SA shows no
improvement during this stage then, the algorithm will continue with tabu search (only
if the time limit permits). The algorithm was able to successfully produce feasible

solutions although it was lacking in overall solution quality.

Zhang et al. (2010) applied SA to the high school timetabling problem. They proposed
a new neighbourhood structure that swaps exams between pairs of timeslots. The new
neighbourhood structure increases the efficiency and performance of simulated
annealing. The computational results show that the proposed heuristic, which is tested
on two sets of benchmark instances, performs better than existing approaches. Other
examples of the application of simulated annealing in examination timetabling can be
found in Bullnheimer (1998), Wilke and Ostler (2008), Merlot et al. (2003) etc. A

tutorial on simulated annealing can be found in Burke and Kendall (2005).

2.8.5 Great Deluge Algorithm (GDA)

In 1993, Dueck introduced the great deluge algorithm (GDA) that operates in a similar
way to simulated annealing (SA). However, GDA uses an upper limit (often referred to
as the water level) as the boundary of acceptance, rather than a temperature. The
algorithm starts with a boundary equal to the initial solution quality. It accepts worse
solutions if the cost (objective value) is less than the boundary which is lowered in
every iteration according to a predetermined rate (known as the decay rate). Figure 2.5
show the great deluge algorithm procedure. GDA only involves one parameter setting

(decay rate) which is an advantage over SA (among others), since the effectiveness of
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a meta-heuristic technique is often dependent on parameter tuning (Petrovic and
Burke, 2004).

Choose an initial configuration
Choose the “rain speed” UP > 0
Choose the initial WATER-LEVEL > 0
Opt: choose a new configuration which is a stochastic small
pertubation of the old configuration
Compute E := quality (new configuration)
IfE> WATER_LEVEL then
old configuration = new configuration
Water_level := water_level+ up
If a long time no increase in quality or too many iterations
Then stop
Goto Opt
Figure 2.5 Great deluge algorithm for maximisation (Dueck, 1993)

Dueck (1993) applied GDA to the travelling salesman problem. The decay rate used
was the difference between the boundary and the length of the current tour divided by
500 or a fixed decay rate of 0.01. GDA was able to produce good quality solutions.
Burke and Newall (2003) investigated GDA on examination timetabling problems. The
decay rate is computed as the initial solution multiplied by a user provided factor
divided by the number of iterations. The algorithm was run for up to 200,000,000
iterations and the search terminated if there was no improvement in the last 1,000,000
iterations. They compared the performance of the great deluge algorithm with
simulated annealing and hill climbing, and concluded that GDA was superior to the

other two algorithms.

Burke et al. (2004) implemented time-predefined GDA for the examination timetabling
problem. The algorithm includes two user-defined parameters; (a) computational time
(amount of time allowed) and (b) the desired solution (an estimation of the required
cost value). The decay rate is calculated as the difference between the initial solution
and the desired solution divided by the computational time (or number of iterations).
The time-predefined GDA was able to produce good quality solutions. McMullan
(2007) implemented an extended great deluge algorithm for the course timetabling

problem. McMullan uses a steeper decay rate (with the decay rate propotional to 50%
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of the entire run on the first stage and 25% on the remaining runs). This forces the
algorithm to reach better quality solutions as early as possible. The algorithm is
allowed to ‘reheat’ (similar to simulated annealing), which widens the boundary
condition, thus allowing worse moves to be accepted. Silva and Obit (2007) use a non-
linear decay rate to control the boundary and allow the boundary to rise when its value
is about to converge with the current solution. Experiments on the course timetabling

problem revealed that the non-linear GDA gives good quality solutions.

McCollum et al. (2009) applied the extended great deluge to the ITC2007 examination
datasets using a 2-phase approach (e.g. construction and improvement). The initial
solution is constructed using an adaptive ordering heuristic (Burke and Newall, 2004).
Improvement is carried out using an extended great deluge algorithm that includes a
reheating mechanism. The approach was able to return good solutions compared to

other currently published results.

GDA has also been hybridised with other methods, Abdullah et al. (2009) hybridise
GDA with TS. Their algorithm applied four neighbourhood moves (at every iteration)
and selected the best solution that was generated. If there is no improvement within a
specified time, the boundary is increased randomly within a value zero and three. The
approach gave good results when applied to the course timetabling problem. Recently,
Turabich and Abdullah (2011) hybridised GDA with the electromagnetic-like
mechanism (EM). They applied the technique to solve the Toronto dataset and the
ITC2007 datasets. The EM uses an attraction—repulsion mechanism that aims to move
solutions toward high quality solutions. Each candidate solution has a charge (related
to the objective function value) that represents the magnitude of attraction or repulsion
of the solution over the sample population. The method is able to produce good quality

solutions for some of the ITC datasets.

Muller (2008) implement a search algorithm that consists of Iterative Forward Search
(IFS), hill-climbing (HC) and great deluge algorithm (GDA) to the examination track
of the ITC2007. The initial solution is generated using IFS, while HC and GDA are
used to improve the solution. HC is used to improve the initial solution until it reaches

a local optimum. Then GDA is used to further improve the solution. The multi phase
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approach was implemented on the ITC2007 competition datasets and it produced the
best result compared to other entrants. Muller (2008) was named winner of the first

track (exam) and the third track, and it was placed fifth in the second track.

Based on the above, it is shown that GDA able to produce a good quality solution.
Furthemore the algorithm is easy to understand and implement and this attracted us to
explore the method. We implement GDA for solving a real world examination
timetabling problem from Universiti Malaysia Pahang (UMP), by improving the result

obtain from the constructive phase (graph heuristics).

2.8.6  Variable Neighbourhood Search (VNS)

The success of a meta-heuristic is determined by the technique itself and the
neighbourhood structure used during the search (Ahuja, Orlin and Sharma, 2000;
Thompson and Dowsland, 1998). As mentioned previously most meta-heuristic
techniques are often dependent on parameter tuning (Petrovic and Burke, 2004). Many
methodologies in the literature (e.g. simulated annealing and tabu search) generally use
neighbourhood structure throughout the search by selecting the best result and usually
focus more on the parameters that affect the acceptance of the moves rather than on the

neighbourhood structures. Figure 2.6 show the variable neighbourhood search

procedure.

VNS was introduced by Mladenovié¢ and Hansen (1997). It is based on the strategy of
using more than one neighbourhood structure and changing them systematically during
the local search. This helps VNS explore a variety of possibilities and jump to a new
solution. The use of many neighbourhoods allows VNS to more effectively explore the
search space (Abdullah et al, 2005; Burke et al., 2010a etc). VNS works by first
determining the set of predefined neighbourhood structure k, where k = 1,...,K is the
total number of neighbourhood structures used in the search. Let f{s) be the quality of
the solution s. The local search starts by randomly generating a solution s’ from the kth
neighbourhood. Starting from an initial solution s°, the local search sequentially visits
the kth neighbourhood of s’ until a local optima s” is obtained. The solution s is

accepted if f{s”) is better than f{s). Whenever a neighbourhood structure generates a
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better solution, the search starts over from the first neighbourhood (k = 1). Otherwise,

the next neighbourhood is employed (k= k + 1).

Initialization: Select the set of neighbourhood structures N, for k = 1,...,kna, that will be used
in the search; find an initial solution x; choose a stopping condition;

Repeat the following sequences until the stopping condition is met:

(1) Setke1;

(2) Repeat the following steps until k = k.

(3) Shaking. Generate a point x’ at random from the kth neighbourhood of (x’ e Ni(x));

)

(4) Local search. Apply some local search method with x’ as initial solution; denote with x’
the so obtained local minimum;

(5) Move or not. If the local minimum x'’ is better than the incumbent x, move there (x «
x'"), and continue the search with N; (k «= 1); otherwise, set k «— k + 1;

Figure 2.6 Variable Neighbourhood Search
procedure (Hansen and Mladenovic, 2005)

Abdullah, Burke, and McCollum (2005), propose a strategy of combining VNS with a
tabu list (Glover and Laguna 1993). The tabu list (set to 2) is used to hold
neighbourhood structures that perform poorly and prevent them from being chosen in
the next iteration, thus allowing the search to explore other possible areas of the search
space. An exponential monte carlo acceptance criterion were used to enhance the
exploration of the search space together with twelve neighbourhood structures. They
also investigated the ordering of the neighbourhood, where an ordering strategy forces
the search to return to the first neighbourhood if an improvement is found, whilst
search will continue with the current neighbourhood (for non-ordering strategy). The

result shows that the ordering strategy generates good results.

Burke et al. (2010a) hybridise variable neighbourhood search (VNS) with genetic
algorithms. They investigate a number of different neighbourhood structures that
include (a) descent-ascent that accepts worse moves (with a probability), (b) biased
VNS involve moving an exam (using Kempe-chain) that causes a high penalty, (c)
problem-specific neighbourhoods involve reducing the number of neighbourhoods and
(d) different initialisation strategies (i.e greedy and a random construction technique).

Statistically analysed results show that problems are dependent on the neighbourhoods,
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where certain neighbourhoods might show an improvement on one problem but not for
other problems. The proposed technique is able to produce high quality solutions on
benchmark problems, however it requires a relatively large amount of computational

time.

As described above, trajectory based approach focus more on the exploitation rather
than on exploration (Al-Betar, Khader and Gani, 2007 and Chiarandiani et al, 2006)
although they do accept non-improving moves. In the following section, we are going
to describe population based approaches, which concentrate more on exploration of the

search space.

2.8.7  Genetic Algorithms (GA)

Genetic Algorithms (Burke and Kendall, 2005) are a population based search which
uses the principle of biological evolution to generate better solutions from one
generation to another (Ross and Corne, 1995 and Burke et al, 2010a). Genetic
algorithms were popularised by Holland (1975). The methodology employs operators
known as genetic operators (i.e. selection, crossover and mutation) that manipulate
individual solutions (also referred to as chromosomes) in a population for a number of
generations (or iteration) in order to improve the cost value. The chromosome is
represented as a string that contains the solution information. Several parameters need
to be considered when applying genetic algorithm to a given problem such as
population size, crossover rate, mutation rate and the number of generations (Goldberg
1989, Pham and Karaboga 2000, Burke and Kendall 2005).

Genetic Algorithm (GAs), start from an initial population of (often) random solutions.
Each of these solutions is known as an individual and they each have a cost value
(fitness) evaluated based on the objective function. Next, is a selection phase where the
individuals will be chosen by a selection operator to undergo the recombination
process. In the recombination phase, crossover and mutation operators are used to
explore the solution space, thus creating new individuals. The newly created

individuals replace old individuals (usually the worst individual based on their fitness).
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This process is repeated until a stopping criterion is reached, which may be the
maximum number of generations or a time limit. Figure 2.7 show the genetic algorithm

procedure.

InitialisePopulation P
For each sol; from P
CalculateFitness (sol)
repeat
select two parents sol, and sol, from P
child = crossover (sol, soly)
mutate (child)
calculateFitness (child)
replaceSome (p, child)
until stop condition not satisfied
Figure 2.7 Genetic Algorithm procedure (Cuupic, 2009)

Corne, Fang and Mellish (1993) employed a genetic algorithm for solving examination
timetabling. The length of the chromosome was set as the number of examinations.
The solution obtained from this algorithm was found to be better than a manual
solution. In order to avoid infeasible solutions, Ross, Corne and Fang (1994) proposed
using only the mutation operator to generate offspring solutions. Experimental results
showed that their approach outperformed the genetic algorithm that used a uniform
crossover operator, They applied a repair mechanism to overcome the infeasibilities
due to the direct chromosome representation that generated infeasible offspring

solutions.

Chu and Fang (1999) investigated genetic algorithms and tabu search approaches to
schedule examination timetables and compared the performances of these two
techniques. The investigation concentrated on the quality of the examination timetable
and the time spent in producing the timetable. These experiments show that TS can
produce better solutions, with less computing time than those produced by GA.
However GA can produce several different near optimal solutions simultaneously
because it holds a population of chromosomes which may not originate from the same
parents. A grouping genetic algorithm has been applied by Erben (2001) for graph

colouring and examination timetabling problems. In a grouping genetic algorithm, a
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chromosome is made up from a group (of genes) which is different from a

straightforward direct representation in a standard genetic algorithm.

Usually, the quality of a solutions produced by population-based algorithms
outperformed by trajectory methods. The reason being caused by premature
convergence, where population based algorithms are more concerned with exploration
than exploitation (Al-Betar, Khader and Gani, 2008). Therefore much recent research
has involved the hybridisation of genetic algorithms with trajectory methods to

optimise the individual result.

Massoodian and Esteki (2008) implemented genetic algorithm-based approaches to
solve the ITC2007 course timetabling problem (track 3). The approach consists of two
stages with local search being applied (on the best chromosome) at each stage to
further refine the chromosome. The first stage concentrates on finding a feasible
solution, while the second stage minimises violations of the soft constraints. The
approach was able to produce good solutions in less computational time compared to

using GA alone.

Jat and Yang (2009) proposed a hybridisation of a genetic algorithm with local search
to solve the course timetabling problem (post-enrolment) from ITC2007. The problem
is solved in two phases, where in the first phase the genetic algorithm uses information
from previous good individuals to guide the generation of offspring with local search
techniques to improve the quality of the individuals. In the second phase, tabu search is
used on the best solution obtained to try and improve the solution. The experimental
results show that the proposed hybrid approach is better than, or comparable to, all

other tested methods.

2.8.8  Ant Colony Optimisation (ACO)

Ant colony optimisation is a population based method proposed by Dorigo, Maniezzo
and Colorni et al. (1996). ACO is inspired by the behaviour of ants, and the way they

forage for food (that is, through cooperation by depositing trails of pheromone). Costa
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and Hertz (1997) developed a method called ANTCOL for addressing graph colouring
problems using ant colony optimisation and a sequential heuristic. In successive
generations, each ant colours the vertices using static (i.e. random, largest first,
smallest last) or dynamic (i.e. saturation degree, recursive largest first) constructive
methods. The probability value of the pheromone is used to select the colour for each
vertex. Experimental results show that the dynamic methods perform significantly
better than static methods. This research highlights the promise of using ant colony

optimisation in successfully solving examination timetabling problems.

Dowsland and Thompson (2005) investigated the application of ant colony
optimisation for the examination timetabling problem. The objectives of their research
were, firstly to compare the performance of ANTCOL on typical timetabling graphs
with a set of random graphs created by Costa and Hertz (1997); secondly, the authors
wished to identify promising constructive heuristic combinations, trail calculations and
ANTCOL parameter values. Experimental results show that the modification of
ANTCOL applied to the examination timetabling problem is competitive with the best
published approaches in the literature in minimising the number of timeslots required
for a feasible timetable.

Eley (2006 and 2007) implemented a Max-Min and an ANTCOL approach for the
examination timetabling problem. Two algorithms were tested on the Toronto datasets
using the formulation described in Carter, Laporte and Lee et al. (1996). However,
they also included a clashing penalty value of 10,000 as the proposed algorithm does
not guarantee a conflict free solution. Fifty ants were used with a fixed value for the
evaporation rate and pheromone interval value. Different weighting factor (« and 8)
were tested. The results show that the approach does not generate outstanding results

however its performance is comparable with other approaches.

2.8.9 Memetic Algorithms (MAs)

Genetic algorithms perform a search across the entire search space without strictly
focusing on a potentially good area of the search space, which may lead to lose of

useful information in a good individual (Acan and Tekol 2003). However, the
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advantage of genetic algorithms is that they perform multiple directional searches
using a set of candidate solutions (Gen and Cheng 1997) which can be of benefit by
including a local search to refine the (best) chromosome. This is known as a memetic
algorithm. Memetic algorithms represent evolutionary based approaches combined
with a local search. The concept of memetics originates from Dawkins (1976) where
they are described as memes that act as units of information that are passed around the
socicty. The disadvantage is that each generation takes considerably longer, but this
can be justified if sufficiently more is achieved per generation than if local search were

not used. Figure 2.8 show the memetic algorithm procedure.

Burke, Newall and Weare (1996) employed a memetic algorithm for examination
timetabling problem. They include a light and heavy mutation (small and large scale
alteration respectively) as well as deterministic hill climbing. The aim of the work is to
produce a feasible solution whilst keeping the penalty as low as possible. The method
was implemented on Nottingham and Toronto datasets. Experimental results show that
the method is able to produce feasible and good quality solutions (during that time). In
1999, Burke and Newall extended the above work and proposed a multi-stage memetic
algorithm. The algorithm is applied to a subset of examinations while the next subset is
scheduled on top of the previously scheduled events. A fixed length timetable is used
to schedule the events. To avoid infeasibilities, exams are sorted according to their
difficulty (i.e. largest degree, colour degree and saturation degree), together with a
look ahead strategy. Experimental results show that the solution quality is better when

compared to employing a memetic approach alone.

Create initial population
Repeat
8.1 Take each individual in turn:
Choose a mutation method (light or heavy mutation)
Apply mutation operator to chosen individual
Apply hill-climbing to individual just created.
Insert it into the population.
8.2 Select a half of them to reduce the population to its original size
Until termination condition is true

Figure 2.8 Memetic algorithm (Nguyen, Ta and Duong, 2005)
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Nguyen, Ta and Duong (2005) present a modification of memetic algorithm presented
by Burke, Newall and Weare (1996). They applied the method to solve the university
examination timetabling from HoChiMinh City University of Technology. They
applied the same evolutionary operators as in Burke, Newall and Weare (1996) but
include penalty-based and constraint-type based Hill Climbing. Their approach is able
to produce good quality solutions, although take more time. However, they claim that
the modified approach is faster compared to Burke, Newall and Weare (1996). In
2004, Burke and Landa Silva identified and discussed the effective strategies when
designing memetic algorithms for scheduling and timetabling problems. The suggested
strategy involves dealing with infeasibility (i.e. prevent the occurrence of infeasible
solutions or applying a repair mechanism), approximation of fitness evaluation using
linked list data structures (to reduce the run time) and a right balance between genetic

and local search methods.

Other related work on memetic algorithm include Abdullah, Turabich and McCollum

(2009) and Krasnogor and Smith (2005).

2.8.10 Hyper-Heuristics (HH)

The development of hyper-heuristics is motivated by the goal of an increased level of
generality for automatically solving a range of problems (Burke, Kendall and
Soubiega, 2003). Most meta-heuristics in the literature operate directly on a search
space of solutions but a hyper-heuristic operates on a search space of heuristics (Burke,
Petrovic and Qu, 2006). Hyper-heuristic can be categorised into two groups: heuristic

selection and heuristic generation.

During the early introduction of hyper-heuristic, they could be thought of as heuristics
that are able to intelligently choose a heuristic to solve a problem (Hussin, 2005; Burke
et al., 2007; Qu et al,, 2009 etc; Pillay and Banzhaf, 2009). This hyper-heuristic
framework is provided with a set of pre-existing heuristics and the task is to discover a
good sequence to effectively solve the problem indirectly. In 2003, Burke, Kendall and

Soubeiga employed a tabu search as the high level heuristic to search through a space
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of moving strategies for course timetabling and nurse rostering problems. The
proposed approach shows good results on both of the problems considering the
generality of the approach. Later in 2005, Burke, Landa Silva and Soubeiga extended
the above work aiming at investigating the learning of low level heuristics that are
suitable and effective for individual objectives in multiple-objective space allocation
and course timetabling problems. The approach shows promising results compared

with the state-of-the-art approaches.

Burke et al. (2007) implemented tabu search hyper-heuristic using graph heuristics for
the educational timetabling problem. A set of Jow /Jevel heuristics (rather than
solutions) represents the search space. Tabu search is used to search for the list of low
level heuristics (randomly) without considering the details of the actual solutions. The
heuristic sequence is used to order the events (courses or exams) that are not scheduled
yet at that iteration. They include a ‘failed list’, scheduling more than one exam/course
at each step and SD as an initial heuristics list to speed-up the run time. The results are
within the range of the best results reported in the literature. They also claim that when
being employed on its own, SD performs the best in most cases due to its ability to

dynamically order the events according to the number of remaining valid timeslots.

Qu and Burke (2009) extends the work from Burke et al. (2007) by proposing an
adaptive approach (rather than tabu search) where heuristics are dynamically
hybridised during solution construction. The other heuristics (LD, LWD and LE) are
randomly hybridised into the list of SD. They conclude that the adaptive approach able
to produce comparable result (especially hybridisation with LWD) with the current
best approaches in the literature. They claim that the adaptive hybrid approach is an
efficient and much simpler method compared to Burke et al. (2007) which required
much more computational time. Qu, Burke and McCollum (2009) also investigate

interative approach that hybridised graph heuristics adaptively.

Other related research in hyper-heuritics includes by Han and Kendall (2003) that uses
genetic algorithm hyper-heuristics and Kendall and Hussin (2005) that applied tabu

search hyper-heuristics, etc.
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29 Conclusions

This chapter has introduced the University timetabling problem with a focus on the
examination timetabling problem. The examination problem varies in their constraints
from one institution to another. From the literature, the most commonly used datasets
are from Toronto, Nottingham and Melbourne. There are some others from real world
exam (e.g. UKM, UiTM and ITC2007 (which is gaining in popularity)). Based on the
constraints of these datasets, we notice that there is a gap in terms of the range of

constraints compare to the UMP examination dataset, which we study is this thesis.

Various methodogies (e.g. heuristics, meta-heuristics and hyper-heuristics) especially
meta-heuristics have been applied to solve the benchmark examination timetabling
problem. However, the success of meta-heuristics is dependent on parameter tuning
(Petrovic and Burke, 2004) which would be a problem for non-experts (e.g. a timetable
officer). Therefore we propose a method that is simple and has parameter(s) which are

easy to set. Further discussions on the propose method will follow in the following

chapter.
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Chapter 3

A Case Study of the UMP Examination Timetabling

Problem

This chapter comprises five sections. Section 3.1 presents an introduction to the
Universiti Malaysia Pahang (UMP). Section 3.2 describes the UMP examination
timetabling process. Section 3.3 shows the UMP examination timetabling constraints,
listing the UMP examination constraints and the UMP invigilator constraints. The
dataset used throughout the work is discussed in section 3.4. Lastly in section 3.5 we

present our conclusions.

3.1 Universiti Malaysia Pahang (UMP)

The Universiti Malaysia Pahang (UMP), formerly known as Kolej Univerisiti
Kejuruteraan dan Teknologi Malaysia (KUKTEM), was established in 2002 and is
located in Pahang, Malaysia. In 2007, UMP consisted of five faculties with a total of
3,550 students. The faculties are the Faculty of Mechanical Engineering (FKM), the
Faculty of Computer Science & Software Engineering (FSKKP), the Faculty of
Chemical & Natural Resources Engineering (FKKSA), the Faculty of Electrical &
Electronics Engineering (FKEE) and the Faculty of Civil & Environmental
Engineering (FKASA). Currently, a total of 17 programs are being offered by these

faculties which include two types of certificates; Diploma and Bachelor degree.
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However, in 200809 the total programs offered increased to a total of 23 programs.
This is because of the establishment of new faculties; Faculty of Industrial Sciences &
Technology (FIST) and Faculty of Manufacturing Engineering & Technology
Management (FKPPT) with one and four programs respectively. Additionally, one
new program offered by FKASA. This has resulted in an increase in the total number
students to 4284. As a new University, a good decision making system is important to
aid University operations. UMP is currently situated in a temporary campus, which
presents many challenges in terms of available space, logistics and the human
resources in order to manage the process. In addition to these limitations, the UMP
examination timetabling problem has other challenging constraints which have never

been tackled before in the literature (at least as far as we are aware).

In UMP, the Academic Management Office is responsible for planning and managing
the entire academic process. It provides all the academic space and facilitates academic
affairs. All this is done with the aid of an Information Management System (IMS).
This system encompasses a complete student life cycle process; from student intake to
graduation. One of the modules in the IMS includes generating an examination
timetable which has been used since 2003. However, although this proprictary system
has been successful in producing the examination timetable as it involves manual
processes in order to achieve a feasible solution. Moreover, the proprietary system is
unable to determine the quality of the solutions it produces due to having no
underlying mathematical model (that we are aware of) that allows us to calculate the
effectiveness of the generated timetable. Therefore, one of our research objectives is to
develop a formal model for the UMP examination-timeslot-room assignment and the
invigilator assignment in order to evaluate the effectiveness of the solution produced

by the proprietary system and thus enable a comparison with other methods.

3.2 UMP examination timetabling process

Generating the examination timetable involves several processes as well as interaction
between students, administration and lecturers. The UMP examination timetabling

processes are as follows:
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1) The process starts with the lecturer providing information and their
requirements on the exam papers. The information includes combined exam
papers (combined exams refer to several exams which need to be scheduled at

the same time), course codes which do not require a final examination etc.

2)  Next, administrators will generate an examination data report from step 1 for

the lecturer or faculties to verify the information received.

3)  Then, a draft timetable is prepared and distributed to students and faculties for
corrections or amendments. The first draft includes assigning exam papers to
timeslots, to rooms and scheduling the invigilators. This phase normally takes a

couple of iterations before a final timetable is published.

4)  The timetable is then updated based on feedback received. The final timetable

is published to students and faculties.

The process described above takes place every semester, because, every semester each
student registers for a different set of courses. Hence, the exam timetable for each
semester is only valid for that particular semester. Therefore, in practice the exam

timetable process normally starts a few months before the actual examination period.

3.3 UMP examination timetabling constraints

Apart from an increasing number of students and programs offered, the UMP
examination-timeslot-room assignment problem has other challenging constraints
which have never been tackled before in the literature, at least, as far as the author is
aware. These constraints are the room distance for an exam in multiple rooms and the
splitting of an exam across several rooms. The room distance requires that when an
exam is being split across different rooms, the rooms should be as close as possible to
one another and the rooms must be in the same building. This is to provide the
lecturers easier, and quick, access to the examination rooms to answer any queries
during the examination. The constraints are listed in section 3.3.1 and the invigilator

assignment constraints are listed in section 3.3.2.
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3.3.1

UMP examination constraints

Below are the constraints for the UMP examination timetabling problem. The hard

constraints for the UMP examination timetable problem are as follows:

HEIZ
HEZl

HE3Z

HE4I

No student should be required to sit two examinations simultaneously.

The total number of students assigned to a particular room(s) must be less

than the total room capacity.

Only one examination paper is scheduled to a particular room. That is, there is
no sharing of rooms with other exam papers (even if enough seats are
available to fit in another exam). However, some exams can be combined

with others for the following reasons:
- The same examination for different academic programs.
- Lecturers request exam paper to be combined. In this case, the lecturer
might teach different courses but with similar content.
- Faculties request that exams are combined. The combined exam papers

contain similar (or almost similar) exam questions.

The request for combined exams is done before the exam schedule is
generated. For the combined exams, we give a new examination code and
treat it as one large exam.

The size of each exam room in UMP is relatively small (less than 100) and
with a large number of registered students for each exam, this inevitably leads
to splitting exams into different rooms. In splitting the exam into different
rooms we need to allocate the rooms as close as possible to each other (this
actually represents a soft constraint, see below) and the rooms MUST be in

the same building (a hard constraint).

In measuring the quality of the solution, the soft constraints are as follows:

Sgll

Each set of student examinations should be spread as evenly as possible over

the exam period.
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ngl

SE3Z

The distance between exams room for the same exam should be as close as
possible to each other (and within the same building, see Hg4).
There is a penalty associated with splitting an exam across several rooms, as

we would like an exam to be in a single room whenever possible.

These constraints are different from the benchmark datasets (see chapter 2). Having

these constraints complicates the problem. As reported in the literature, the capacitated

problem is more difficult to solve compared to un-capacitated problem and it more

closely resembles the real world (Merlot et al., 2003). A summary of the UMP exam

constraints and comparison with other datasets is shown in table 3.1.

3.3.2

UMP invigilator constraints

The constraints for the UMP invigilator-scheduling problem are as follows:

H[l!

H|2Z

H|32

H|4Z

H]SZ

Invigilators or chief invigilators cannot invigilate their own exam paper. This
because they need to be on standby during their exam paper to assist students

with any queries.

Chief invigilators must be a lecturer selected from the staff list. With extra
tasks and responsibility for the chief invigilator, university policies only
allow staff with lecturer status to be assigned as a chief invigilator.

Staffs are not assigned to more than one invigilation duty is one timeslot.
Staffs can only invigilate a maximum of three examinations within the exam
period.

Each room should be assigned the required number of invigilators (including

chief invigilator).

In measuring the quality of the solution, the soft constraints are as follows:

S]ll

The chief invigilator duties should be evenly spread among the lecturers.
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S2:  The invigilation duty (invigilator and chief invigilator) should be evenly

spread among all the staffs

Table 3.1 Summary of datasets

Constraints Toronte | Nottingham | Melbourne | UKM | UiTM | ITC2007 | UMP
Clash free Hard Hard Hard Hard Hard Hard
Scheduled all exams Soft Soft Hard Hard [

Weekend scheduled \ \\‘\\\g\\@\\ \R‘&\\\\\fi\\* \ \\: Soft T
Exam preference N \\\\\ RN N i
N N 2 o \-.\\‘ NN
- specified arrangement: sa 8 &\ﬁ\k\\\t \\Q\\\\k §\:\\\Q
- specified room: sr \\ \\X\\\\\\&\\\\ \\Q\\ \S\Q S{ \;\\:
é - large exam schedule first: If A \; \}\\\&\\\\\\\\\k\\\\g‘\ Hard (rt) }Q\\\&\X Hard { Hard (5a) “\i\\\\\\\\i
8 | - pestriction on exam in particular ‘\\\‘tﬁ \\:\\\l\\\‘;&&%\s 3 \\:&\\\Q\\i\ (ct) Soft (1f) \%i\\\%§
E timeslot: rt N \\\\\\\:\}\\ \\:\\\\\\\ \\\\Q\\\Q W §Q§\ {\:;:j
& |- scheduled combined exam in the : :\\E\é\\\i\\g NN \\\\\\\
same timeslot: ct NN \\\\\\ :\ \\\\\\\\\ A

Consecutive exam

- twoexam inarow: 2r

- two exam in aday: 2d

- two exam in a row overnight: 2n
- three exam in a day: 3d

(2d & 2n) (2d & 2n) 2d)

Y] Son
Soft Soft (3d) \\§ (2r and
DN,

Timeslot related

Timeslot preference

Soft (ty,
- minimise/avoid usage: tu oft (tu)
Tlme§10; ljnglh. . Hard
- mixed duration of exams in one Soft (mt)

timeslot: mt

Spreading T R ‘ : .
Soft
- specified spread: ss Soft oft (ss)

Rooms related

No sharing of room with other exams  [-X3uuN AR \\\ N R £ O
- _for specified exam only: se x\\k &\\\b\\‘\\k\\& ?\Q\\\\\\\k (se) \\\é\\\\\\ \\\\\\\\\\;‘\\\\\ Hard
Room preference .\\'*-1\\%\\‘%\: X . R N N \i:“‘\"g\\“‘?.}\f
« consecutive exam scheduled in the \\i\\\\i\\ m 3\§\§> AR :\\ Hard S\\\\\i\:\\\\\ Hard (sr)
Same room. cr %‘\Rk\\ ‘ \\:\\\b\:\{\\i\?\k *\\\E\\\\i{@:ﬁ‘\ (c:) \\\S\\\\\\ Soft (ru)
- minimise/avoid usage: ru \\\\\ &\\1\1%(\\& R \\\\ :\\\\\\:
- specified room: sr Z\\\\\\~\\ NN \\&\\ NN \Q\\\\\\

. R RN R A TS
- X N SRR NS AN \: \\ N N
- as close as possible: cp \Q§\\\\\\\\\ %:\\g\\\\\ &E\K\}\\\\ X\&\%\\\\ \&%% \\\\\\t\\\\§§\\\\;

7

Capacity ERRNNNNN N
- total seals: ts QQ\\\\ ‘\3§ Hard (1s) Hard (1s) Hard (ir)
- individual room: ir SN

Hard = hard constraint; Soft = Soft constraint; shaded cell = constraint not considered.
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3.4 Datasets

The investigations were carried out using two different datasets from semester 1-
2007/08 and semester1-200809. Table 3.2 summaries the datasets.

3.4.1 Semester1-200708

The total number of examination papers is 252, across 17 programs offered by 5
faculties. However, due to the combined exams requirement, the dataset has been pre-
processed and the combined exams are given a new examination code and treated as
one large exam. This results in a total number of 157 examinations. The total number
of students is 3,550 with 12,731 enrolments. The conflict matrix density is 0.05, which
means that 5% of students are in conflict among the examination papers. The number
of exam days and timeslots are 10 and 20 respectively. There are only two timeslots on
each examination day. The total available exam space for this dataset is 24 rooms, with
each room having a given capacity. The number of staff available for the invigilation
duty is 227 staff. From the 227 staff, 152 are academic staff and 75 are non-academic
staff. Each room requires 2 invigilators (including a chief invigilator). 169 lecturers are
involved in teaching the 157 exams. The 169 lecturers are not necessarily included in

the staff list for invigilation duty.

Table 3.2 Summary of UMP investigated datasets

Categories Semester1-200708 Semester1-200809
Exams 157 165
Students 3,550 4,284
Enrolments 12,731 15,416
Conflict density 0.05 (5%) 0.05 (5%)
Timeslot per day 2 2
Rooms 24 28

. 1527 207°
Invigilator 75b 125

[
? number of lecturers, ° number of non-lecturers
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3.42 Semesterl-200809

The total number of examination papers is 193 across 23 programs offered by 7
faculties. Due to combined exams request (including ‘relax’ exam by the timetable
officer) the total number of exams is 165. The total number of students is 4284 with
15,416 enrolments. The conflict matrix density is 0.05, which means that 5% of
students are in conflict among the examinations paper. The number of staff available
for invigilation duty is 332 staff. From the 332 staff, 207 are academics and 125 are
non-academics. The total rooms allocated for this dataset are 28 rooms with each room
requiring @ minimum of two and a maximum of four invigilators (including a chief
invigilator). 194 lecturers teach the courses for the 165 exams. The number of exam
days and timeslots are 10 and 20 respectively. There are two timeslots on each
examination day. The total available exam space for this dataset is 28 rooms, with each

room having a given capacity.

3.5 Conclusions

This chapter has presented the UMP examination timetabling problem. A description
of the UMP examination and invigilator constraints was presented. The UMP
examination timetabling problem contains additional constraints which consider
individual room capacities, whilst not allowing rooms to be shared by multiple exams
(unless exams are combined, where they are treated as one exam). In addition, UMP
also has a distance penalty cost used when an exam is split across more than one room
and a splitting penalty cost as it is preferable to use only one room for a given exam.
Having the individual room capacities and prohibiting having more than one exam in a
room constraint, we believe that it is best to solve the examination assignment problem
sequentially as an exam-timeslot-room assignment. After that, the invigilation problem
is solve after the exam-timeslot-room assignment. The UMP uses its own staff to

invigilate exams, and this lead to many invigilation constraints.
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Two datasets from different semester have been collected for experimental purposes.
The dataset has been pre-processed where the combined exams are treated as one large

exam and given a new examination code.

The next chapter describes the mathematical model of the UMP examination
timetabling problem and a constructive heuristic used in generating the solution. Our
constructive heuristic is able to produce a better solution compare to the timetable

produced by the UMP proprietary software.
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Chapter 4

The Examination Timetabling Problem at Universiti
Malaysia Pahang: Comparison of a Constructive

Heuristic with an Existing Software Solution

The work presented in this chapter was published in the European Journal of
Operational Research (Kahar and Kendall, 2010a). This work presents a real world,
capacitated examination timetabling problem from Universiti Malaysia Pahang (UMP),
Malaysia. The problem has constraints which have not been modelled before, these
being the distance between examination rooms and splitting exams across several
rooms. These constraints provide additional challenges in defining a suitable model
and in developing a constructive heuristic. One of the contributions of this work is to
formally define this real world problem. A further contribution is the constructive
heuristic that is able to produce good quality solutions for the problem, which are
superior to the solutions that are produced using the university’s current software.

Moreover, our method adheres to all hard constraints which the current systems fails to

do.

Section 4.1 begins with an introduction to the motivation on solving the UMP
examination timetabling problem. This dataset has several new constraints in addition
to those commonly used. A formal model of the problem is presented in section 4.2. In

section 4.3, we describe the experimental setup for our proposed constructive heuristic.
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In section 4.4, a comparison between the solutions achieved with the current method
employed by Universiti Malaysia Pahang (which is produced using a proprietary
system), and our method, is presented in order to evaluate the effectiveness of the
proposed methodology. In section 4.5 and 4.6, we present the contribution and

conclusions respectively.

4.1 Introduction

The capacitated examination timetabling problem considered room capacities along
with other commonly used hard constraints in scheduling the exams. Many work in the
literature investigated the un-capacitated examination timetabling problem which we
believe does not describe the full aspect of the problem (McCollum, 2007; Carter and
Laporte, 1996; and Qu et al. 2009). Based on the datasets described in table 3.1 and the
other constraints listed in the literature (Burke et al., 1996; Qu et al., 2009), we note
that there is a gap in terms of the examination timetabling datasets from the literature
and many of the requirements faced by many institutions. The UMP examination
timetabling problem contains additional constraints which consider individual room
capacities, whilst not allowing rooms to be shared by multiple exams (unless exams
are combined, where they are treated as one exam). In addition, UMP also has a
distance penalty cost (applied when an exam is split across more than one room for a
given exam) and a splitting penalty cost (as it is favorable to use only one room) for a
given exam. A further discussion on the UMP examination timetabling problem is

presented in the next section.

The solution approaches seen in literature for the exam timetabling problem can be
separated into exam-timeslot assignment and exam-room assignment. The most
published work seen in the literature is the exam-timeslot assignment. Only a few
works discuss exam-room assignment (Dammak, Elloumi and Kamoun, 2006). Both
the un-capacitated and capacitated (as total seating capacity) problem (i.e. benchmark
dataset) can be solved using a two-phase approach, as both allow more than one exam
in an examination room. This will provide a feasible solution in the exam-room

assignment phase as long as the capacity of rooms is greater than the number of
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students (Dammak, Elloumi and Kamoun, 2006). However, if individual room
capacities are used, as well as prohibits sharing of classroom among the exams might
not guarantee that we are able to find a feasible solution through the two-phase
approach. We might even need to introduce a solution repair mechanism in order to
arrive at a feasible solution. Therefore, in this problem, we are going to solve the UMP

examination timetabling problem sequentially as an exam-timeslot-room assignment.

4,2 Problem formulation

In this section, we present the formal model of the UMP examination timetabling

problem as discussed in chapter 3.

Indices
iij 1..N
rp L.R
s 1...§
t 1..T
Parameters

N The number of examinations

R The number of examination rooms
S  The number of students

T  The number of available timeslots

S, The number of registered students in exam /

R, The number of examination rooms available at timeslot ¢

B, The building for room r

/. The total capacity for room r

The conflict matrix where each element (c;.i,j € {1... N}) is the number of

students that have to take both exam 7 and j. The conflict matrix is a

symmetrical matrix of size N, where diagonal elements ¢, = S;
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d,, The distance matrix where each element (denoted by d,,.r, p e {1...R}) is the

distance between rooms » and p. The distance matrix is a symmetrical matrix of

size R, where diagonal elements 4, =0

Decision variables

x, 1 if examination i is assigned to timeslot ¢, 0 otherwise
vy 1 if examination 7 is assigned to room 7, 0 otherwise

z,, 1 if room r is assigned to timeslot ¢, 0 otherwise

The objective is to spread out examinations over the exam period (timeslots) for each
student, minimise the distance between rooms of an exam that is being held in multiple
rooms and to minimise splitting an exam over several rooms. Therefore our

formulation is as follows:
(Minimise) F(x)= R+ F,+ F, (Eq.1)

The first component of the cost, F} (spreading exams over the exam period, Sgl) is

shown in Eq.2.
N
ch,j - proximity (;,¢;)
S Eq.2
R 5 (Eq.2)
and
bl -1
proximity (¢ ;) = 322 ’flsll‘ ’/lss (Eq.3)
0 otherwise

Where 1, and 1, specifies the assigned timeslot for examination i and j (i j

e{1,....N}). Eq.2 represents the cost for an exam i that is given by the proximity value
multiplied by the number of students in conflict. Proximity values of 16, 8, 4, 2 and 1
are used here. For example, if a student has two consecutive examinations then a
proximity value of 16 is assigned. If a student has two examinations, with a free
timeslot in between, then a value of 8 is assigned. Two empty periods correspond to a

penalty of 4 and so on. These proximity values were introduced by Carter, Laporte and
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Lee (1996) and have been widely used by other researchers (see Burke et al., 2004;
Ayob, Abdullah and Malik, 2007; Abdullah, 2006).
The second component of the cost, F; (distance of an exam in multiple rooms, Sg2) is

shown in Eq.4:

N R-1 R

Zz Zdrpyirylp

Fz - i=l r= p-;:ll (Eq'4)

Eq.4 represents a cost for an exam i that is scheduled in multiple rooms. A subset of
the distance matrix is shown in figure 4.2.

The third component of the cost, F3 (splitting exam, Sg3) is shown in Eq.5:

N
Zm,—l
_ =l

¥ (Eq.5)

B

Where m; is the number of rooms exam i has been split across. It can be calculated

R
using the following formulation, m, =Zy,, Vie{l,..,N}. Eq.5 represents a cost for an

rs|

exam / that is being penalised for splitting the exam in multiple room (mi >l). For

example, if an exam is being split into 2 rooms, then a value of 1 is given as the
penalty value. Splitting the exam across 3 rooms corresponds to a penalty of 2 and so

on.
Eq.1 is subject to the following constraints:

a) No student can sit two exams concurrently (clash-free requirement, Hgl). If

examination i and j are scheduled in timeslot ¢, the number of students sitting

both examination i and j must be equal to zero, i.e. ¢, = 0. This hard constraint is

expressed in Eq.6:

N N T

DX xuxue,; =0 (Eq.6)

i=] j=1 1=|
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b)

d)

All exams must be scheduled and each exam must be scheduled only once in

available timeslots, T (see Eq.7)

T
Zx,-, =1 Forall je,., N} (Eq.7)

=1

Only one examination paper is scheduled to a particular room in a particular
timeslot, He3. There is no sharing of rooms with other exam papers (even though
seats might be available to fit in another exam), except for requested combined

exams, which has been carried out as a pre-process operation (see Eq.8).

N
Zx,,y,-,:z,, Forall req,.,7} and forall req,.,R) (Eq.8)

i=l

Exam can only be split across several rooms in the same building, Hg4 (see Eq.9).

R-1 R
> > vy = '"'—('"241—12 Forall ie(1,.., N} (Eq.9)

r=l p=r+l

Where
_{l if(B, =B,)

10 otherwise

For each timeslot ¢, the number of rooms assigned to a particular timeslot must

not exceed the maximum number of rooms available in a timeslot, R, (see Eq.10)

R
> 'z,<R forallteq,..T) (Eq.10)

r=l

The total number of students assigned to a particular exam room(s) must be less

than the total room capacity (see Eq.11).

R
5,<Y v,/ Forall ic(.,n) (Eq.11)
r=|
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4.3 Experimental setup

In this section we present our proposed constructive heuristic, along with other
algorithmic details to aid reproducibility. The dataset is taken from Universiti Malaysia
Pahang (UMP) for semester1-200708. The total number of examination papers is 252,
across the 17 programs offered by 5 faculties (see chapter 3 for further details). The
number of exam days and timeslots are 10 and 20 respectively. There are only 2
timeslots on each examination day. There are no exams during the weekend (Saturday
and Sunday). We capture this by introducing gaps in our timeslots indices. Therefore
the timeslots can be represented as shown in figure 4.1. In figure 4.1, timeslot 1 and 2
refer to day 1, timeslot 3 and 4 refer to day 2 etc. Notice that indices 11 to 14 are

missing. This is because those indices refer to Saturday and Sunday.

, (1,2,3,4,5,6,7,8,9, 10,15, 16, 17, 18, 19, 20, 21, 22, 23, 24) I

Figure 4.1 Timeslot indices

The total available exam space for this dataset is 24 rooms, with each room having a
given capacity. To assist our constructive heuristic in the process of searching for the
most suitable room(s) and minimising the room related cost value, we generate a list of
room groupings (based on the list of rooms provided). These pre-determined room
groupings are generated within the same building only. Note that we limit the room
groupings up to a maximum of 4 possible rooms for each exam. In our observations, 4
rooms are adequate to satisfy any exam capacity. Besides, increasing the room
grouping possibilities (>4) will increase the distance cost, splitting cost and the search
space. The room groupings are sorted in decreasing order based on the total room(s)
capacity. By doing so we could directly search for suitable room(s) and end the search

procedure when an unsuitable room capacity is encountered.

To illustrate the procedure we provide the following example. Assume, we have 5
rooms in 2 different buildings, where 4 of the rooms are in the same building, and each
room has a specific capacity (see figure 4.2). The travel cost for rooms in different
buildings is not shown, as this is not permitted. Therefore, we could create 15 room

groupings with 14 room groupings from building W and 1 room grouping from
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building X. Referring to figure 4.3, each of the room groupings have their new total

capacity, distance cost (total of the distance value prior to the distance matrix for every

rooms) and splitting cost (m; -1). These room groupings are sorted based on their

capacity. Having the decreasing order of pre-determined room groupings assists the

search algorithm in selecting the most suitable rooms, aiming to minimise the room

related cost value and speeding up the search by stopping the room search procedure if

an unsuitable room grouping capacity is encountered.

Room | Capacity | Building | WDK26 | WDK28 | WDK29 | WDK30 | XDK04
WDK26 | 92 W 0 3 4 SRali s
WDK28 | 90 W 2 1 2 Sy
WDK29 40 % 3 1 0 1 Sar
WDK30 40 % 4 2 1 0 A
XDK04 47 X 2 2 : 5 S

Figure 4.2 Room informlation and distance matrix
No. Room Grouping Room Grouping Capacity Diét:sx;ce %':)I;:
1 | WDK26 - WDK28 - WDK29 - WDK30 262 13 3
2 | WDK26 - WDK28 - WDK29 222 6 2
3 | WDK26 - WDK28 - WDK30 222 8 2
4 | WDK26 - WDK28 182 2 1
5 | WDK28 - WDK29 - WDK30 170 4 2
6 | WDK26 - WDK29 132 3 1
7 | WDK26 - WDK30 132 4 1
8 | WDK28 - WDK29 130 1 1
9 | WDK28 - WDK30 130 2 1
10 | WDK26 92 0 0
11 | WDK28 90 0 0
12 | WDK29 - WDK30 80 1 1
13 | XDK04 47 0 0
14 | WDK29 40 0 0
15 | WDK30 40 0 0

Figure 4.3 Decreasing order of pr'e-determined rooms groupin.g
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Algorithm Parameters:

- i=1..Nwhere N is the number of examinations

- g=1...G where G is the number of pre-determined roomGrouping
- r=1...R where R is the number of rooms,

- ¢ =1..C where C is the candidate list size,

- t=1...T where T is the number of timeslot

- totalSeatAvailable(t) is the total seating capacity available calculated in timeslot ¢
- capacin(i) is the size of examination i

- spreadCost[c] store the spreading penalty for candidates list ¢

- distCost[c] store the room distance penalty for candidates list ¢

- splitCost[c] store the splitting room penalty for candidates list ¢

- roomCapacinXg) is the total room seating capacity in g,

- distPenalty is the room distance penalty in g,

- splitPenalty is the splitting room penalty in g,

- x; =1 if examination i is assigned to timeslot ¢, 0 otherwise,

- y.=1if examination i is assigned to room r, 0 otherwise,

- z,=1if room r is assigned to timeslot ¢, 0 otherwise,

1 Step 1: Ordering:

2 Sort examination N based on the Graph Colouring heuristic;

3 Sort roomGrouping G in decreasing order based on the total capacity;

4  Step 2: Assigning exams to timeslot and room(s):

5 Seti € 1;

6 Until i = ¥, repeat:

7 (2.1)Setc € 1;

8 (2.2) Until ¢ = C, repeat:

9 (2.2.1) Set count € 0, g € 1andt € -1;

10 (2.2.2) Until 1 = -1 && count < 3, repeat:

11 (a) Generate 1 randomly and no clashing with other exams

12 (b) If ¢ is not equal with 7 previously gencrated and capacity(i) < totalseatAvailable(t), then
13 calculate spreading penalty as spreadCost|c]

14 Otherwise, Set f € -1 and increase count,

15 (2.2.3) Set distCost[c] € +wo and splitCost[c] & +wo;

16 (2.2.4) Do the following if £ # -1:

17 (a) Until capacity(i) < roomCapacity(g), repeat:

18 (i) If room g is available and distCost[c]+splitCost[c] > distPenalty(g)tsplitPenalty(g), then
19 set distCost[c] € distPenalty(g), splitCost[c] € splitPenalt(g)
20 (ii) Increase g

21 (2.2.5) Increase c;

22 (2.3) Sclect the minimum total cost value from C and set x; €/ yo€landz,€1,ift#-1 foreveryc
23 (2.4) Increase i

24 Step 3: Verification

25 Check the solution prior to the constraints

26 Calculate the cost value

Figure 4.4 Pseudo-code for the examination timetable
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The experiments are conducted using graph heuristic approaches including Largest
Degree (LD), Largest Weighted Degree (LWD), Saturation Degree (SD) and Largest
Enrolment (LE) (Carter et al., 1996). The description of these methods is presented

below:

- Largest degree (LD): this heuristic takes the exams that have the most conflicts
with other exams and schedules them first.

- Largest weighted degree (LWD): this heuristic is similar to largest degree except
that it takes exams that have the most number of students who are involved in the
conflict and schedules them first.

- Largest enrolment (LE): this heuristic takes exams with the largest number of
registered students and schedules them first.

- Saturation degree (SD): this heuristic chooses exams which have the least number

of available periods in the timetable that can be selected and schedules them first.

In general, the algorithm (see figure 4.4) starts (line 2) by sorting the examinations
based on a graph colouring heuristic (e.g. LD, SD, etc) and also sorting the room
groupings G in decreasing order based on total room(s) capacity (line 3). For all
examination i, (step 2) we randomly select a timeslot ¢ (the number of timeslots we
consider is referred to as a candidate list, and we show the effect of different candidate
list sizes in the results section), which is clash free and we only accept ¢ if it is not
equal with any ¢ previously generated in C and the total available seating capacities in
timeslot ¢ (totalSeatAvailable(t)) able to accommodate exam i (capacity(i)) (line 11-12).
If the total available seating capacities in ¢ is greater or equal to exam i (capacity(i) <
totalseatAvailable(t)), we will continue to calculate the spreading penalty based on the
selected timeslot and store it in spreadCost[c] (line 12-13). The spreadCost[c] value will
be used later in selecting the timeslot and room with the minimum cost values (see line
22). However, if the total available seating capacities unable to accommodate the
exam, the search will continue to look for other ¢ until a number of count trials (line
14). Here we set a maximum of 3 trials. If after a number of count trials the algorithm
still could not find a feasible ¢ then the search will proceed with the next ¢ (line 21).
Otherwise, it will continue with the room assignment which goes through the room

groupings G (line 16). Selections of g is based on it capacity. If room grouping g able
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to accommodate exam i/, an availability check on the individual room(s) in the g is
carried out and if the exam i can be accommodated, the room distance and the splitting
penalty within the room(s) in room grouping g is calculated as distPenalty(g) and
splitPenalty(g)) respectively (line 17-19). These values are compared with the distance
cost (distCost{c]) and the splitting cost (splitCost{c]) in c¢. The value of these arrays,
distCost{c] and splitCost[c], are overwritten if' the distance and splitting costs are
minimum. Otherwise, we will continue to search for other rooms in G. Once, room(s)
in g been selected, we select the minimum cost value found by comparing each of the
spreadCost, distCost and splitCost in C and set the decision variable to 1 (line 22). The
algorithm will continue the search for all exam # (line 23). Lastly, we verified the
solution by checking the solution to ascertain that the timeslot and rooms found

satisfied the constraints and calculate the cost value (line 25-26).

4.3.1 Discarding moves sub-algorithms

The algorithm is able to find superior solutions, compared to the proprietary software,
in a small amount of computational time. This is done by discarding unnecessary
moves as early as possible in the algorithm. Referring to the algorithm (figure 4.4), the

discarding move algorithms are as follows, and we present them here to assist in

reproducibility:
a) Total available seating capacities in timeslot # (lines 12-14).

Line 12-14 checks the room availability prior to timeslot ¢ is generated. It calculates
the total available seats in ¢. If the total available seats are unable to accommodate
exam i, (see line 14), then a new clash free timeslot ¢ is generated. Having to calculate
the total available seating capacities would avoid the search from selecting an
inappropriate timeslot. It is good to recognize that we don’t have enough room early in
thé search, rather than at the end, in order to make effective use of the computational

time available.
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b) Room grouping capacity checking (line 17).

In line 18 the algorithm will check whether the room grouping g (start at g = 1) able to
accommodate exam /. If the condition is TRUE, the algorithm will continue to
determine whether each room in g (line 18) is available or otherwise it will look for
other g in the list. The room grouping search will stop once an unsuitable room
grouping capacity is found (as we have already sorted the room grouping in
descending order) as it will only consume computational time if the search in the G is

continue.
¢) Determine room availability in g (lines 18).

Lines 18, checks every room(s) in the room grouping g to determine whether the room
is available or not. This is done by checking z, (z,, = 1 if room r is assigned to timeslot
t, 0 otherwise). If z, = 0 it means that the room is available and the search will
continue to check other rooms. However, if z, = 1 which means that the room is
unavailable, the algorithm will stop searching the room members in the selected room

groupings g and continue to select the next suitable room groupings g.
d) Selecting minimum value of distance and splitting cost (lines 18).

In line 18, the algorithm will only proceed if all the rooms in room grouping g are
available. Hence, it will compare the distance (distPenalty(g)) and splitting penalty
(splitPenalty(g)) in g with the distCost[c] and splitCost[c]. If these penalty values are
less than the current value stored in distCost[c] and splitCost[c], we will store this

value in distCost[c] and splitCost[c].

All of these discarding moves help in finding a feasible solution with minimum cost
value compare to UMP proprietary software in a small computational time. In the next

section we present our results.
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4.4 Results

In this section, we compare the examination timetable generated by the proprietary

software and the result from our proposed algorithm, shown in figure 4.4.

4.4.1 UMP proprietary software

In the solution generated by the proprietary software for semester1-200708, prior to the
model being developed presented in section 4, the solution exhibited the following

characteristics;

- Based on the five hard constraints stipulated by UMP, the examination timetable
that was produced complied with all the constraints except for the no student
should be required to sit two examinations simultaneously constraint (Hg1). Eight
students were scheduled to sit exams at the same time and UMP had to quarantine

these students.

- As mentioned previously, the quality of the solution is measured based on three
objectives. The calculated cost for each of the objectives is F; = 8.82 for the
spreading of exams (Sg1) over the examination period, F>= 3.63 for the distance
of an exam in multiple rooms (Sg2) and F3;= 0.71 for the number of room(s) an
exam being split across (Sg3). The sum of the cost is therefore 13.16. Recall that

this includes violation of the hard constraint on the clash free requirement (Hg1).

4.4.2  Graph colouring heuristic

Using the proposed heuristic, several experiments have been run with different
candidate lists. In the context of this work a candidate list is how many timeslots are
considered when placing an examination. Each experiment was run 50 times in order
to produce average and standard deviation statistics. Every one of the 50 runs produced

a feasible solution. The experiments were run on a Pentium core2 processor. The
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running time for a candidate list of one is around 99 seconds and 470 seconds for a

candidate list of five.

With a candidate list of one (C = 1), the algorithm searches randomly for one available
timeslot and selects the room grouping that produces the minimum cost value for room
distance and the number of splitting rooms. Referring to table 4.1, the result using a
candidate list of one produces comparable solutions with the proprietary software
while adhering to all the constraints. On average, our approach produces a cost value
that is higher compared to the proprietary software solution (see table 4.1). However,
our solutions adhere to all of the constraints compared to proprietary software, which
does not. Referring to table 4.1 (column min), we are able to produce a solution that is
17% (13.16 compared with 10.98 ((13.16 — 10.98)/13.16 x 100%)) better when
compared to the solution produced by the proprietary software. Of the heuristics we
have used, largest enrolment (LE) produced the best cost value of 10.98 where the
spreading cost is F; = 9.01, the distance cost is F> = 1.39 and the splitting cost is F3 =
0.58 with a standard deviation of 2.10. LWD is second best with a minimum cost of
11.43 followed by saturation degree-LE, saturation degree-LD, largest degree (LD)
and Saturation degree-LWD. Overall, using a candidate list of one is able to produce a
good solution, which adheres to all the hard constraints (unlike the proprietary

software).

When using a candidate list of five, the algorithm randomly searches for five available
timeslots. For each of the timeslots selected, the algorithm will search the room
groupings that give the minimum cost value (distance and splitting cost). Finally,
among all the selected timeslot and room(s), we will select the one which produces the
minimum total cost value. Referring to table 4.1, the result constructed using a
candidate list of five produced a solution that is between 15% (13.16 compared with
11.12 ((13.16 - 11.12/13.16 x 100%)) to 64% (13.16 compared with 4.74 ((13.16 -
4.74)/13.16 x 100%)) better when compared to the proprietary software. Largest
Enrollment (LE), again produces the minimum cost value (4.74). Other heuristics
perform relatively the same, with respect to their ordering based on their performance,
with a candidate list of one. However, with candidate lists of five all heuristics

outperform the UMP proprietary software with the minimum spreading cost found
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being F; = 3.31, distance cost F>= 0.98 and splitting cost F;= 0.45 with a total of 4.74
(produced using LE).

Our proposed algorithm always produces a feasible solution over the 50 runs for
candidate lists one and five. LE obtained the best result compared to the other
heuristics due to the room related constraints (i.e. distance and splitting constraint).
Having those two constraints reduces the effectiveness of SD and LD. This is perhaps
not surprising as SD and LD are designed to specifically target spreading the

examinations.

Table 4.1 Result using graph colouring heuristic

Graph Colouring Heuristic Candidate list =1 Candidate list=5

Ave | Stdev { Min Max | Ave | Stdev | Min | Max
Largest degree (LD) 1621 | 1.52 | 12.74 | 2042 | 7.84 | 098 | 5.99 | 11.12
Largest weighted degree (LWD) | 1582 | 197 | 1143 | 20.70 | 6.09 | 0.67 | 505 | 829
Largest enrolment (LE) 1551 { 2,10 | 1098 | 2003 | 6.06 | 0.76 | 4.74 | 7.98
Saturation degree (SD)-LD 16.17 | 1.53 | 13.11 | 1939 | 722 | 0.84 | 576 | 872
Saturation degree (SD)-LWD 16.29 | 1.54 | 13.97 | 2041 | 7.00 102 | 549 | 9.78
Saturation degree (SD)-LE 16.09 { 1.80 | 12.66 | 20.74 | 6.96 | 0.66 | 5.28 | 8.49

Ave = average; Stdev = standard deviation; Min = minimum; Max = maximum

4.5 Contributions

The contributions of this work include collection of the necessary requirements
(constraints) which has never before been properly documented at UMP. This data
collection was carried out with the help and assistance of UMP employees. Studying
the problem has led to two new constraints being identified; the travel distance for
lecturers/invigilators and splitting exams across rooms. A further contribution of this
work is the formulation of the UMP examination timetabling problem as a
mathematical model. A simple yet effective approach of single or multiple room
searching and selection is introduced through the pre-determined room grouping
(which receive a positive respond from the EJOR reviewer). Finally, we have
presented an algorithm, based on graph colouring heuristics, which we have shown

can produce superior solutions compared to the software currently used. In addition,
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the proposed algorithm adheres to all the hard constraints which the current

methodology fails to do.

4.6 Conclusions

It is recognised that a gap exists between theory and practice in examination
timetabling. Different institutions have different requirements and it is difficult to
produce a common solution methodology. In this work we have introduced a new
examination dataset with additional constraints (compared to the benchmark
datasets). In particular, we have investigated the scheduling of exams in a capacitated
environment with the aim of minimising the spreading, distance and splitting cost. A
constructive heuristic has been used to generate solutions that produce better

solutions when compared to the proprietary software that is used by UMP.

In the next chapter, we are going to schedule the invigilators to room/exam using the

solution generated in this chapter as an input to that model.
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Chapter 5

Universiti Malaysia Pahang Examination

Timetabling Problem: Scheduling Invigilators

The work presented in this chapter is under review (after resubmission having
addressed the reviewers comments) for the Journal of Operational Research Society
(JORS). The problem involves assigning invigilators to examination rooms. This
problem has not received the same level of research attention as other related
problems, for example examination scheduling, but it is just as important to
educational institutions. In modelling, and solving, this problem we assume that there
is already an examination timetable in place (this was the subject of our previous work,
see chapter 4) and the task is to assign invigilators to that timetable. The contributions
of this chapter are to formally define the invigilator-scheduling problem and to present
a constructive algorithm that is able to produce good quality solutions that are superior
to the solutions produced when using the university’s current software. The model we
present, we believe, accurately reflects the real world problem capturing various
aspects of the problem which have not been presented before in the scientific literature.
Moreover, the proposed approach adheres to all hard constraints which the university’s

current system fails to do.

In section 5.1, we look at the examination timetabling problem particularly the exam-

timeslot-room assignment. We present related work on invigilator scheduling in
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section 5.2. A formal model of the problem is presented in section 5.3. In section 5.4,
we describe the experimental setup for our proposed strategy. Section 5.5 gives a
description of the dataset used in our experiments. In section 5.6, a comparison
between the solutions achieved with the current method employed by UMP (which is
produced using proprietary software), and our method, is presented in order to evaluate
the effectiveness of the proposed methodology. We discuss the additional invigilator
constraints and the results in sections 5.7 and section 5.8 respectively. In sections 5.9

and 5.10, we summarise our contribution and present our conclusions respectively.

5.1 Introduction

Many papers discussing the examination timetable problem can be found in the
literature (i.e. PATAT conference paper). However, besides the problem of scheduling
exams to timeslots and/or rooms, the educational examination timetabling problem
does not end there. The problem also involves assigning invigilators to the exam/room.
This is normally done after the institution has generated the exam-timeslot-room
timetable (Burke et al., 1996). Most of the research found in the literature involves
assigning exams to timeslots and/or rooms. Only a few papers have investigated
invigilator scheduling (Burke et al., 1996; Ong, Liew and Sim, 2009, Cowling, Kendall
and Hussin, 2002; Reis and Oliveira, 1999). One reason for invigilation scheduling
receiving less attention from the research community is due to the fact that no datasets
are available. In our view, there are three ways an instituition could implement
invigilator assignment; by hiring outside staff, using their own staff or by using a

mixture of in-house staff and outside staff. This point is further discussed in chapter 2.

This chapter investigates the invigilator scheduling problem taken from Universiti
Malaysia Pahang (UMP). This invigilator dataset contains numerous constraints, which

we believe have never been discussed or modelled before.
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5.2 Invigilator scheduling

An exam timetable is often generated by first assigning exams to timeslots (exam-
timeslot assignment). A further process then assigns rooms and/or invigilators after the
exam timetable has been approved/accepted (Burke et al., 1996). It is evident in the
literature that most published work only deals with exam-timesiot assignment. Only a
few papers have addressed the exam-room assignment (Dammak, Elloumi and
Kamoun, 2006) and very little work can be found on invigilator scheduling. A lecturer

preference survey by Cowling, Kendall and Hussin (2002) reveals that:

- Invigilators prefer 2-3 invigilation duties with a one or two day gap between each
duty.

- Lecturers with other responsibilities (e.g. administrative or research work) should
be given a reduced number of invigilation duties.

- An adequate gap is given between invigilation duties and the lecturers’ own
papers. This is to allow the lecturers enough time to do their marking and submit
their grades within the required time.

- A fair distribution of chief invigilator duties.

Ong, Liew and Sim (2009) developed an invigilation scheduling system concentrating
on optimising lecturer preferences (i.e. invigilation dates, time and constraints) for
UiTM Sarawak (Samarahan Campus). The invigilation scheduling only involves
lecturers (see section 2.7.1; 12). Previously the schedule was prepared manually by the
institution’s invigilation scheduling committee. They randomly assigned invigilation
duties and, later, there was a lot of swapping amongst the lecturers. This resulted in
confusion, misunderstanding and complaints of uneven invigilation duty distribution,
This motivated them to develop an invigilation system with the aim of optimising
lecturer preferences. The system enables lecturers to view the examination timetable,
choose their preferred invigilation timeslots, specify the examination date and the time
of their own subjects; and view their individual schedule and the final
exam/invigilation timetable. Reis and Oliveira (1999) experimented with an
examination timetabling problem from the University Fernando Pessoa, Porto using

constraint logic programming. They solve the problem by scheduling each exam into
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an available timeslot. For each exam, one or several exam rooms are allocated and for
each room, a set of invigilators is defined. The proposed approach included the

following investigations:

- Scheduling exams into timeslots and, once completed, scheduling the rooms.
Finally, they deal with invigilator scheduling.

- Schedule exams into rooms, then schedule the timeslot and then the invigilators.

- Schedule exams into timeslots, then schedule rooms and invigilators
simultaneously.

- The exams, timeslots, rooms and invigilators are scheduled simultaneously.

A survey carried out by Awang et al. (2006) on the UMP examination timetable asked
about invigilator satisfaction with their invigilation timetable. It revealed that most of
the invigilators are not satisfied with the gap between invigilation duties and the
number of invigilations. They suggested that each invigilation duty should have at least
a 2 or 3 day gap. However, they prefer fewer invigilation duties, considering that they
also need to be available/on-standby during their own exam paper. They requested an
even spread of invigilation duties among the staff. As the timetable officer is open to
any suggestions for improving the current timetable, we are motivated to include the
suggestion above as an additional constraint in addition to the original constraints.

These additional constraints are discussed further in section 5.7.

In this work, we solve the UMP examination timetable in two phases: firstly, we
schedule the exams into timeslot and rooms simultaneously (Kahar and Kendall,
2010a), and presented in chapter 4. We then use the solution from the first phase as
input to the invigilator scheduling phase. The scheduling of exams into timeslots,
rooms and lastly the invigilators has been reported as the best sequence in order to
produce a good quality solution (Reis and Oliveira, 1999). Our proposed approach to
this second phase is presented in section 5.4, but first we describe the problem

informally, and then present a formal definition.
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53 Problem formulation
Indices
i,j 1..N where Nisthe number of examinations
! 1...L where L is the number of staff
r 1...R  where R is the number of rooms
t 1...T where T is the number of timeslots
Parameters

S, The status of staff /. 1 denotes a lecturer, 0 otherwise.

The number of invigilators (including chief invigilator) required in each room r

ay; The exam-staff matrix where each element (denoted by 4,,ie {1...N} and
le{l...L}) denoted as 1 corresponding as the staff teaches the course (or exam

paper) in that semester, 0 otherwise.

Examination timetabling parameters

Note: These variables are set by the examination scheduling phase (see Kahar and

Kendall 2010a)

x, 1 if examination i is assigned to timeslot ¢, 0 otherwise
v, 1 if examination 7 is assigned to room r, 0 otherwise

z,, 1 if room r is assigned to timeslot ¢, 0 otherwise

Decision variables

v,, 1 if staff/is assigned to invigilate in room r in timeslot ¢ as an invigilator, 0

otherwise

w,, 1 if staff/is assigned to invigilate in room # in timeslot 7 as the chief

invigilator, 0 otherwise

The objective function is as follows:
Minimise, F(x)=F, +F, (Eq. 1)
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The first component of the objective function, F;, is that the chief invigilator duties
should be evenly spread among the lecturers in the staff list L (S;= 1).
L
Fy =) Chief duty(w,,) (Eq.2)
1=l
Where

if Z 3w <[cta]

0
Chief duty(wy, ) = = r=l

20 otherwise

(Eq.3)

The maximum number of chief invigilation duties assigned to every lecturer (S; = 1)
can be calculated based on the number of lecturers in the staff list L and the number of
rooms selected in the exam-timeslot-room timetable solution. The number of chief
invigilation duties is calculated by taking the ceiling value of CId. The calculation is as
follows: ‘

T R

PIPIES

[Cld]= ==l (Eq.4)

SI
=l

The second component of the objective function F; is concerned with the even spread
of both invigilator and chief invigilator duties.

L
FZ = Z stajf dury(vlir Wi ) (Eqs)

I=|

Where

0 if ZZ(VM +wy)<[1d]

staff duty(vy,,wy, ) = prrgipe
20 otherwise

(Eq.6)

The maximum number of invigilation duties for all staff L can be calculated based on
the number of invigilators (/) required in each room (from the exam-timeslot-room

timetable solution) and the number of staff L. The required number of invigilation
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duties for each member of staff is calculated by taking the ceiling value of Id. The

calculation is as follows:
|'1d'|= d=test (Eq.7)

The objective function (Eq.1) is subject to the following constraints:

a) Invigilators cannot invigilate their own exam paper (H;1).

N T R
ZZ (@i %y Xt + W3y )=0 Forall /e{i,.., L} (Eq.8)
j =

i=l 1=l r

b) The chief invigilators must be a lecturer, S;= 1 (H,2).
w, <8, Forall 1e{1,.,L}, re{1,..,T}and re{,..., R} (Eq.9)

c) Staffare not assigned to more than one invigilation duty at a time (H;3).

R
> +wy)st Forall 7e{l,.,L} and 1€ {1,...T} (Eq.10)

r=}

d) All staff are required to invigilate a maximum of three examinations within the

exam period (Hi4).

T R
> (i +wi)s3 Forall I1e{1,.., L} (Eq.11)

1=] r=|

e) The total number of invigilators (including one as chief invigilator) assigned to
each room r in timeslot 7 has to equal the number of invigilators required for each
room /, (H,5).

L
> i +2w,)=2,(, +1) Forall re{l.,”} and re{1.,7} (Eq.12)

=1
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Algorithm parameters:

- I=1..L where L is the number of staff available for the invigilation duties

- r=l..roomSelected where roomSelected is a list of selected rooms in the exam-timeslot-
room assignment solution

- m=1... I, wherel, is the number of invigilators required in room r

- ¢=1..C where C is the number of candidates list

- S status of staff (i.e. lecturer or other) /. 1 denoted as a lecturer, 0 otherwise.

- D, holds the total invigilation duty for staff /.

- totalCostValue[c] store the cost value for assigning invigilator / to timeslot and room in
candidates list c.

- v, = 1if staff [ is assigned to invigilate in room r in timeslot ¢ as an invigilator, 0

otherwise
- wy, =l if staff | is assigned to invigilate in room 7 in timeslot ¢ as the chief invigilator, 0

otherwise

'
\xguxmsggga:;G:;,‘::Som\lmuauu_

Step 1: Set-up
Sort Staff L in ascending order based on D, or randomly
Calculate the ceiling value ceilingCld (eq.4) and ceilingld (eq.7)
Step 2: Assign chief invigilators to room
Setr €1
Until r = roomSelected repeat:
2.1)Set/ € 1
(2.2)Setc € 1
(2.3) Until ¢ = C, repeat:
(2.3.1)If I < L and / is a academic staff (S;= 1), then calculate the cost value F and store in totalCostValue[c], simultaneously
s.t. / does not teach the exam (H1), no other invigilation duty within the same timeslot(H3), does not exceed the
maximum invigilation duty (H4) and Invigilator on duty during their exam must be on the same building (H6) —
optional
(2.3.2) Increase /
(2.3.3)If 1> L, set | € 1, totalCostValue[c] € +oo
(2.4) Select the minimum total cost value from C, set w;,, €/ and update D, if totalCostValue[c]}# +oo for every ¢
(2.5) Increase r
(2.6) Sort Staff L in ascending order based on D, or randomly
Step 3: Assign invigilators to room
Setr € 1
Until r = roomSelected repeat:
@B.DSet/ €1
(3.2) Setm € |
(3.3) Until m = /,-1 repeat:
(3.3.1)Setc €1
(3.3.2) Until ¢ = C, repeat:;
(3.3.2.1) If I £ L, then calculate the cost value F and store in totalCostValue[c], simultaneously increase ¢
s.t. / does not teach the exam (H;1), no other invigilation duty within the same timestot(H,3), does not exceed the

28

29 maximum invigilation duty (H,4) and Invigilator on duty during their exam must be on the same building (H,6) -
30 optional

31 (3.3.2.2) Increase /

32 (3.3.2.3) IfI> L, set | € 1, totalCostValue[c] € +w

33 (3.3.3) Select the minimum total cost value from C, set v;, €1 and update D, if totalCostValue[c]# +o for every ¢
34 (3.3.4) Increase m

35 (3.4) Increase »

36 (3.5) Sort Staff L in ascending order based on D, or randomly

37  Step 4: Verification and Cost value

38 Verify the solution and Calculate Cost Value (Eq.1)

Figure 5.1 Pseudocode for the invigilator scheduling
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54 Experimental setup

In this section, we present our proposed invigilator scheduling algorithm in order to
solve the UMP problem. As described previously, invigilator scheduling is a post-
process from the exam-timeslot-room timetable process (Kahar and Kendall, 2010a).
Therefore, the information (e.g. rooms, exams, timeslot etc.) from the exam-timeslot-
room assignment phase is already known and, hence the results that produce the
minimum cost value are retained from this first phase, Even if several runs were made
in the first phase, the run that produced the minimum cost value is saved. Referring to
section 5.3, the chief invigilator assignment is the most critical part as it involves the
most constraints; must be a lecturer, cannot invigilate their own paper, etc. Invigilator
assignment is less complicated as the member of staff can be a lecturer, or otherwise.
Hence, we have designed an algorithm that firstly concentrates on assigning the chief

invigilators to all the rooms, followed by other invigilator assignments.

The algorithm (see figure 5.1) starts (line 2) by sorting staff L in ascending order based
on D; or randomly. Next in line 3, we calculate the ceiling invigilation value for chief,
ceilingCIld (Eq.4) and invigilator duties, ceilingld (Eq.7) (see line 3). Then, we assign a
chief invigilator into room in the roomSelected list (step 2, line 4). The first staff in L is
selected. The number of chief invigilator we consider is referred to as candidates list
(which we use during the random ordering strategies) and we show the effect of
different candidates list sizes in the result section. If / is a lecturer (S;= 1) and satisfies
the following: / does not teach the exam (H1), has no other invigilation duty within the
same timeslot (H;3) and does not exceed the maximum number of chief invigilation
duties (H4), we then calculate the penalty value on assigning the selected invigilator to
r and store the information in totalCostValue[c] (lines 10-14). We also consider the
invigilator should be in the same timeslot and building as their own exam if on duty
during their exam constraint (H,6) in this step during the additional constraints
experiments. Next, increase c to search of other / for the candidates list. Then, increase
I, however if [ is greater than L, we set / =1 and assign totalCostValue[c] = +oo (which
means that there are no available invigilator in totalCostValue[c]) (lines 15). The
search continues by selecting the minimum total cost value in C (ie.

totalCostValue[C]) and set the corresponding / into the selected timeslot and room, wi,
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= | and subsequently increase Dj (lines 16). Finally, we increase r (line 17) and sort
staff L in ascending order based on D (this would let the search to always select the
minimum number of invigilation duties of staff L) or randomly (line 18).

Next, we assign the invigilators (step 3, line 19). The same process is carried out as for
assigning chief invigilators except now, the search will continue for a /-1 of duration
for each roomselected (line 24). I, is the number of invigilators required in
roomselected. For example, if [, = 4, then the search will iterate 3 times (which is
equivalent to three invigilators and one chief invigilator). Lastly, the algorithm verifies

whether the solution complies with all the hard constraints and calculates the cost of

the solution (line 38).

5.5 UMP invigilator dataset

Experiments were carried out with two different datasets from semester1-200708 and
semester1-200809. The data is obtained from the solution generated by the UMP
proprietary software. We noticed that there is a difference in the information (i.e. staff
status, number of lecturers etc) provided by the Academic Office compared to the
actual solution that they provided us with. Therefore, we decided to use the data from
the schedule that was actually used as this more accurately represents what was done

in practice. A description of the datasets is given below.

Table 5.1 Summary of UMP investigated datasets

Categories Semester1-200708 Semester1-200809
Exams 157 165
Students 3,550 4,284
Enrolments 12,731 15,416
Conflict density 0.05 (5%) 0.05 (5%)
Timeslot per day 2 2
Rooms 24 28
Invigilator 152: 207:

75 125

% number of lecturers, ® number of non-lecturers
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Semester1-200708; the number of staff available for invigilation duties is 227. Of
those, 152 are lecturers and 75 are non-lecturers. Each room must be allocated two
invigilators (including the chief invigilator). 169 lecturers are involved in teaching the
157 exams. The 169 lecturers are not necessarily included in the staff list, L. In
semester1-2008/09; the number of staff available for invigilation duty is 332. Of those,
207 are lecturers and 125 are non-lecturers. The total number of invigilators required
by each room varies from a minimum of two to a maximum of four (including the
chief invigilator). 194 lecturers are involved in teaching the 165 exams. The 194
lecturers are not necessarily included in the staff list, L because of other commitment

during the exam week (e.g. administration task etc).

5.6 Results

In this section, we present the results of the invigilator timetable generated by the UMP
proprietary software by inputting their solution into the model described in section 5.3.
A comparison of the result obtained by the UMP proprietary software with our

proposed algorithm (section 5.4) is also discussed. The results are summarised in table

5.2

5.6.1 Semester1-200708

Analysing the solution produced by the UMP proprictary software in the exam-
timeslot-room assignment phase, a total of 269 rooms were used. Therefore, using
these 269 rooms the invigilator scheduling problem exhibits the following

characteristics (see table 5.2, column A).

Hard Constraints: From the constraints in chapter 3, section 3.3.2 (page 60), the
invigilator timetable produced by UMP only complies with two out of the five hard

constraints violating the following:
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i) Constraint, Hil: Staff are assigned to invigilate their own exam paper.
Supposedly, they need to be available during the exam of their own paper to
answer any queries.

ii) Constraint, Hi4: Staff are assigned to more than three exams which exceeds the
maximum number of invigilation duties within the exam period.

iii) Constraint, H;5: one room was not assigned the required number of

invigilators.

Soft Constraints: The objective of the invigilator scheduling solution is measured
based on two objectives. The cost value for F; (eq.2) is 220 and F; (eq.5) is 20 with a

total cost value of 240,

5.6.2 Semester1-200809

Based on the result produced by the UMP proprietary software, 290 rooms have been
used. The invigilator scheduling solution for semester1-2008/09 exhibits the following

characteristics (see table 5.2, column A),

Hard Constraints: The invigilator scheduling produced by UMP violates all five of the
hard constraints listed in section 3.3.2.
Soft Constraints: The cost value of the invigilator timetable solution for F; (eq.2) is 20

and F3 (eq.5) is 120 with a total cost value of 140,

5.6.3 Proposed solution approach

In scheduling invigilators, our experiments use the exam-timeslot-room solution
produced by the UMP proprietary software for semester1-200708 and semesterl-
200809 (see table 5.2, column B). We also use a solution from our own approach
based on a graph colouring heuristic approach (Kahar and Kendall, 2010a) (see table
5.2, column C). The experiments were run on a Pentium core2 processor. The average

running time was about =23 seconds. However, the running time depends on the
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number of rooms being selected in the exam-timeslot-room assignment phase.
Obviously, a higher number of rooms would slightly increase the running time, but this

is not of particular significance, given the nature of the problem being addressed.

Using least invigilation duties ordering strategies on the UMP solution from
semester1-200708 (269 rooms) and semester1-200809 (290 rooms), our proposed
approach shows that we are able to produce a solution that satisfies all the constraints
(both hard and soft) with a zero cost value (see table 5.2, column B). Next, using the
result from our graph colouring heuristic approach (Kahar and Kendall, 2010), our
invigilator scheduling approach is also able to produce a feasible result with no cost

value for both of the datasets (see table 5.2, column C).

Based on this result, it is clear that our proposed invigilator scheduling strategy
produces a superior solution compared to the solution produced by the UMP
proprietary software. We believe the success of the approach is because of the two-
phase method that schedules the chief invigilator followed by the other invigilators. In
addition, the ordering of least invigilation duty aids in efficiently selecting suitable
invigilators while optimising the spread of invigilation duties (i.e. soft constraints, S;1
and S;2). In discussion with the UMP Academic Office, their poor solution is perhaps
due to staff swapping their invigilator duties among themselves after the schedule is
published. A common reason being that the invigilator is unsatisfied with their
timetable (i.e. invigilation duties close to one another, unable to invigilate one (or
more) of their own exams is scheduled on the same day etc.) and due to other
commitments (e.g. meetings, administrative work etc.). The Academic Office will
update the changes requested and these changes contribute to a poor solution.
Currently, the system neglects the effect of moving or swapping (on request) the

invigilation duties, which we will consider in our future work.

We notice that the invigilator scheduling solution depends on the number of rooms
being selected in the exam-timeslot-room assignment phase. Recall that the total rooms
selected from the proprietary software in semester1-200708 and semester1-200809 is
269 and 290 respectively. In our constructive phase (Kahar and Kendall, 2010a), the

average percentage of rooms selected for semester1-200708 is 16% (i.e. 244) less and
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for semester1-200809 it is 10% (i.e. 274) less compared to the UMP proprietary

software. Obviously, having a lesser number of rooms selected (in the exam-timeslot-

room assignment phase) would automatically minimise the invigilation duties for the

staff.

Table 5.2 Invigilator scheduling results using constraint as describe in section 5.3

A) (B) ©)
Proprietary Our approach using exam Our approach using exam
software timetable from UMP timetable from Kahar and
C . Kendall, 2010a
onstraints
Seml-  Seml- Seml- Seml- Seml- Seml-
200708 200809 200708 200809 200708 200809
(269 (290 (269 rooms) (290 rooms) (244 rooms) (274 rooms)
rooms) rooms) cl cS cl c5 cl c5 cl c5
=23s =28 =52s =62s =22s =26s =53s =60s
H1) Invigilators or chief
fnvtg!lators c?nnol Not (1) Not(2) Yes Yes Yes VYes Yes Yes Yes Yes
invigilate their own exam
paper.
H2) Only allow staff with
lecturer status to act as a Yes Not (1) Yes Yes Yes Yes Yes Yes Yes Yes
chief invigilator.
H3) Staffs are not assigned to
more than one invigilation Yes Not (2) Yes Yes Yes Yes Yes Yes Yes VYes
duty in one timeslot.
H4) Staff can only invigilate a
maximum of three Not(l) Not(6)  Yes Yes Yes Yes  Yes Yes Yes Yes
examinations within the
exam period.
HS5) Each room should be
assigned the required
number of invigilators Not (1) Not (2) Yes Yes Yes VYes Yes Yes Yes VYes
(including a chief
invigilator).
Cost value functions (F = F, + 240 140 0 0 0 0 0 0 0 0

F)

¢l = candidates list of one; c5= candidates list of five; Not (x) = Not comply (number of violations);

Yes = Comply;

In summary, we have demonstrated that the proposed invigilator scheduling approach

is able to produce a feasible solution that adheres to all constraints without any cost to

the objective function (even with a higher number of rooms as in the solution from

semester]1-200708 and semester]1-200809). However, the invigilator scheduling result

is dependent on the number of rooms being selected from the exam-timeslot-room

assignment phase.
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5.7 Additional UMP invigilator scheduling constraints

We include additional constraints in addition to the UMP original invigilator
constraints as described in section 5.3. This is motivated by a survey from Awang et al.
(2006) on the UMP invigilator scheduling problem which reveal that most of the
invigilators are not satisfied with their current invigilation duties. According to Awang
et al., invigilators suggested that each invigilation duty should have at least a 2 or 3
day gap between them and also suggested having fewer invigilation duties, considering
that they also need to be available/on-standby during their own exam paper.
Additionally, the invigilator requested an even spread of invigilation duties among the
staff (as we have considered in the original constraints - see F; and F; in section 5.3).
Moreover, according to the timetable officer they often receive request for changes
from the invigilators. The common reasons being invigilation duties are consecutive,
are to close together, staff need to be on standby as more than one of their exams are
scheduled together etc. We hope to satisfy the invigilators requests and minimise the
request for changes to the schedule. The additional hard constraints for the UMP

invigilator-scheduling problem are as follows:

H6) Invigilators, with a lecturer status, on duty during their exam paper need to be
scheduled in the same timeslot and building as their own exam paper. The
formulation is as follows

R
Z(vlrl + Wiy ) OW"(aistinJ’ip)= (vlrl + Wy )‘ailxnmi Forall /e {l’---’L} s
p=l

te{l,..T},re{1,.,R} and ie{,.,N} (Eq.13)

Where

1 if(a,-,x,-,y,,,)= 1and (B, = BP)

DW”(aﬂ ’xu,ylp)= {0 otherwise

Where m, is the number of rooms exam i has been split across and B, is the

building for room r. The additional soft constraints are as follows:
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Si3)

Si4)

Each invigilation duty should have at least 2 day gap, for every invigilator. A

penalty is given if this is violated. The formulation is:

f= iizr:(vm + erl)'

s<Sand 1+sST R
=l r=} 1=}

Z gap(vlp(lﬂ) ’ wlp(H-s) )] (Eq 1 4)

1+5 (where s=1) p=|

Where

32

gap(vlr(lﬂ) s Wir(i+s) )=42°
0 otherwise

I (pgrasy * Wiasy) =1

Where s is a constant values of 1 to 5.

There is a penalty associated with staff on duty during their exam paper. If the
staffs are on duty during their exam, they need to be scheduled in the same

timeslot and building as their exam; see hard constraint, H;6.

N I R T
s ZZZZ(V/" + wlrl)'d“’)’(ailaxit) (Eq.15)
P
Where
3 if a,- x, =l
ks, )= {O olIEerl'w;s)e

A penalty value of three is chosen based on the feedback of the UMP
timetable officer. According to the officer, the exam questions go through a
series of checks (e.g. grammar checking and subject expert panel) in order to
ascertain that it is error free. Therefore, the officer believes that this is not a
major issue. However, it is preferable not to have the staff on duty during
their exam paper. Hence, we believe that a value of three is adequate to

represent the penalty.
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5.8 Results for the additional invigilator constraints

We present the results of the invigilator timetable generated by the UMP proprietary
software considering the additional constraint. In our proposed approach two different
strategies were used which involve sorting the invigilators randomly and also sorting
by the least number of invigilation duties. The results are summarised in tables 5.3 and
5.4.

5.8.1 Proprietary software results

In semester1-200708, considering the additional invigilator constraints, the solution

exhibits the following characteristics. (see table 5.3, column A).

- Hard Constraint (H;6): The UMP results violate the invigilators on duty during
their own exam paper as they should be assigned in the same timeslot and
building as their own exam paper.

- Soft Constraints: measuring the solution using the additional soft constraint
results in a total of 369 with the cost value for F; (eq.14) = 120 and Fy (eq.15)

= 9 (the value of F; and F, remain the same).

In semester1-200809, the result shows that (see table 5.3, column-A):

- Hard Constraints (H;6): The UMP results violate the constraint.
- Soft Constraints: The total cost value of the invigilator timetable solution is 713

with F; (eq.14) = 546 and Fy (eq.15) =27 (F,; and F; remain the same).

5.8.2  Our approaches

We consider the additional invigilator constraints in scheduling the invigilators using
the exam-timeslot-room solution produced by the UMP proprietary software for

semester1-200708 and semester1-200809, and the solution from Kahar and Kendall
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(2010a). The following discussion is based on the least invigilation duties ordering and

random ordering approach.

5.8.2.1 Least invigilation duties ordering

The least invigilation duties selects the invigilator with the least duties. Using a
candidate list of one for the UMP solutions from semester1-200708 (see table 5.3,
column B), our proposed approach shows that we are able to produce a solution that
satisfies all the hard constraints with a cost value of 978 (=39sec). Increasing the
candidate list to five, we manage to produce a slightly better solution with a cost value
of 839 (=83sec). For semester1-200809 dataset, using a candidate list of one the
solution produced satisfies all the hard constraints with a cost value of 1634 (=101sec)
and with a candidate list of five, the cost value is 1419 (=180sec). The results are
summarised in table 5.3, column B. Comparing the above result with the proprietary
software, although our result produces a high cost value (for both datasets), it does

satisfy all of the hard constraints compare to the result from the proprietary software.

Next, using the result from our graph colouring heuristic (Kahar and Kendall, 2010)
(see table 5.3, column C), for semester]-200708 with a candidate list of one, the
solution produced satisfies all the hard constraints with a cost value of 860 (=35sec).
Increasing the candidate list to five, the cost value is 86 (=74sec), 77% (369 compared
with 86 ((369 — 86)/369 x 100%)) better than the UMP result. For the semesterl-
200809 dataset, using a candidate list of one the solution produced satisfies all the hard
constraints with a cost value of 1092 (=90sec) and with a candidate list of five, the cost
value is 234 (=165sec), that is 67% (713 compared with 234 ((713 - 234)/713 x
100%)) better than the UMP result. The results are shown in table 5.3 column C. Based
on these results, using the approach presented in Kahar and Kendall (2010) to provide
the examination timetable, the result we produce is superior to the UMP proprietary
solution and also when using the UMP proprietary result, even when we include the
additional constraints that are not presented in the proprietary software. We believe the
reason for this is that having a lesser number of rooms used (see table 5.3), minimises

the number of invigilation duties, thus allowing the duties to be spread out more fairly.

95



Chapter 5. Universiti Malaysia Pahang Examination Timetabling Problem. Scheduling Invigilators

Table 5.3 Invigilator scheduling results with additional constraint

using least duties ordering approach

(A) (B) ©)
Proprietary Our approach using exam Our approach using exam
software timetable from UMP timetable from Kahar and

Kendall, 2010

Constraints Seml-  Seml- Seml- Seml-

200708 200809 200708 Seml-200809 200708 Semi-200809
269 (290 (269 rooms) (290 rooms) (244 rooms) (274 rooms)
rooms)  rooms) cl c5 cl ¢S cl c5 cl ¢S
=39s =~83s =10ls =180s =35s =74s =90s =165s
H6) Invigilators on duty
during  their exam
paper need to be
schedule in the same Not(l} Not (6) Yes  Yes Yes Yes Yes Yes  Yes Yes
timeslot and building
as their own exam
paper
Total cost value or violation
of the soft constraint (F = F, 369 713 978 839 1634 1419 860 8 1092 234
to F,)

cl= candidates list of one; c5= candidates list of five; Not (x) = Not comply (number of violations);

Yes = Comply

5.8.2.2 Random ordering

In using a candidate list of one on the UMP solutions from semester1-200708, our
proposed approach shows that we are able to produce a solution that satisfies all the
hard constraints with a minimum cost value of 2155 (see table 5.4, column A).
Increasing the candidate list to five, the search produces far better minimum cost value
of 201 that is 45% (369 compared with 201 ((369 — 201)/369 x 100%)) better when
compared with the proprietary software and 76% (839 compared with 201 ((839 —
201)/839 x 100%)) better when compared to using least duties ordering. For
semester1-200809 dataset (table 5.4, column A), using a candidate list of one the
solution satisfies all the hard constraints with a minimum cost value of 2578. Using a
candidate list of five, the minimum cost value is 190, 73% (713 compared with 190
((713 -= 190)/713 x 100%)) better when compared with the proprietary software and
87% (1419 compared with 190 ((1419 — 190)/1419 x 100%)) better when compared to
using least duties ordering. Referring to the result above, with a candidate list of five,

we are able to produce a good quality solution when compared to using a candidate list
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of one, the UMP proprietary software and using a least duties ordering strategy.
Additionally, candidates list of five is adequate as increasing the number of candidate
list will enable better exploration of the search space but it would increase the

computational time.

Next, using the result from our graph heuristic (Kahar and Kendall, 2010a), for
semester1-200708 with a candidate list of one (see table 5.4, column B), the solution
produced satisfies all the hard constraints with a minimum cost value of 1617.
Increasing the candidate list to five, the solution has a minimum cost value of 67 that is
82% (369 compared with 67 ((369 — 67)/369 x 100%)) better when compared with the
proprietary software and 22% (86 compared with 67 ((86 — 67)/86 x 100%)) better
when compared to using least duties ordering. For semester1-200809 dataset (see table
5.4, column B), using a candidate list of one the solution produced satisfies all the hard
constraints with a minimum cost value of 1918, Increasing to candidate list of five, the
minimum cost value is 49, 92% (713 compared with 49 ((713 — 49)/713 x 100%))
better when compared with the proprietary software and 79% (234 compared with 49
((234 - 49)/234 x 100%)) better when compared to using least duties ordering.
Referring to the result above, our proposed approach is able to return a good quality
solution (when using a candidate list of five). Overall, the least duties ordering
approach produce a good quality solution, outperforming the proprietary software and
random ordering (with a candidate list of one). However, the random ordering with a
candidate list of five outperforms the least duties ordering approach. Based on our
observation, this is because, in least duties ordering it will always select the
result (invigilator) that returns a lower penalty value during the early stages
of the search. However, towards the end of the search, the search becomes
more difficult and the least duties ordering has a higher penalty cost (in order

for feasible solution).

The proposed invigilator scheduling strategy is able to produce good quality solutions
even with additional constraints (H6, S;3 and Si4). This demonstrates that we are able
to produce a feasible solution and satisfy the additional invigilator requests (based on
the comments of Awang et al. 2006) which we believe would benefit the timetable

officer (rather than them need to respond to changes post schedule publication). In

97



Chapter 5. Universiti Malaysia Pahang Examination Timetabling Problem: Scheduling Invigilaiors

summary, we have demonstrated that the proposed invigilator scheduling approach is

able to produce a feasible solution that adheres to all constraints, including the

additional constraints not previously captured.

Table 5.4 Invigilator scheduling results for additional constraint

using random ordering approach

(B)
(A) Our approach using exam
Our approach using exam timetable . pp 8
from UMP timetable from Kahar and
Constraints Kendall, 2010
Sem1-200708 Sem1-200809 Sem1-200708 Sem1-200809
(269 rooms) (290 rooms) (244 rooms) (274 rooms)
cl c5 cl c5 cl c5 cl c5
=39s =83s =101s =~]80s =35s =74s =90s ~165s
H6) Invigilators on duty during
their exam paper need to be
schedule in the same timeslot Yes Yes Yes Yes Yes Yes Yes Yes
and building as their own
exam paper
Stdev 135 47 143 27 130 31 157 20
Total cost value or Ave 2546 310 2886 246 1867 139 227 90
violation of the soft .
constraint (F= F, to F,) Min 2155 201 2578 190 1617 67 1918 49
Max 2784 406 3161 306 2180 200 2596 152
¢l = candidates list of one; c5= candidates list of five; Not (x) = Not comply (number of violations);
Yes = Comply
5.9 Contributions

The contributions of the work include collection of the invigilator constraints which
have never before been properly documented at UMP. We formulate the UMP
invigilation scheduling problem as a formal model. The model presented here has
never been modelled before in the literature. Additionally, we include additional
constraints for invigilator scheduling. The additional constraints, we believe more
accurately captures the UMP invigilation scheduling problem that is done at the
moment. Finally, the proposed of a constructive technique that able to produces good
quality solutions, satisfying all hard constraints (including the additional constraints)

that the UMP proprietary system fails to do.
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5.10 Conclusions

In this work, we have investigated invigilator scheduling for a real world examination
timetabling problem, which aims to satisfy a number of constraints. The problem is
complicated by the fact that the chief invigilator position can only be assigned to
academic staff and staff are not allowed to invigilate their own papers. Furthermore,
the invigilation duties assignment has to meet the required number of invigilators
(including the chief invigilator) for each room avoiding clashes and complying with
the maximum number of invigilation duties for each member of staff. A least ordering
search was used to schedule the invigilators. The proposed approach is able to produce
good quality solutions compared to the UMP proprietary software, satisfying all the
constraints, both hard and soft, which the proprietary software fails to do. Additionally,
we have included extra constraints, based on the comments in Awang et al., (2006).
Different ordering strategies (i.e. least duties and random ordering) have been used to
schedule the invigilators. We have shown that a good quality solution can be produced
even with these additional constraints. We believe that the solutions produced would

satisfy all parties (i.e. officers and staff).

The next chapter, we are going to improve the result from constructive phase (in
chapter 4) as it show that the invigilator assignment dependent on the number of room

use. Hence it is best to optimise the exam-timeslot-room assignment.
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Chapter 6

A Great Deluge Algorithm for a Real World Examination
Timetabling Problem.

The work presented in this chapter is under review (after resubmission having
addressed the reviewers comments) for the Journal of Operational Research Society
(JORS). Many work found in the literature have been applied to simplified
examination benchmark datasets. In this work we bridge the gap between research and
practice by investigating a problem taken from the real world. This work introduces a
modified and extended Great Deluge Algorithm (GDA) for the examination
timetabling problem which uses a single, easy to understand parameter. We investigate
different initial solutions, which are used as a starting point for the GDA, as well as
altering the number of iterations. Additionally, we carry out statistical analysis to
compare the results when using these different parameters. The proposed methodology
is able to produce good quality solutions when compared to the solution currently
produced by the host organisation, generated in our previous work and from the

original GDA (Dueck, 1993).

Sections 6.1 give an introduction of the work carried out in this chapter. In section 6.2,
we describe the GDA and our proposed modification. In section 6.3, we describe the
experimental setup to allow reproducibility for other researchers. The result from the

improvement phase is shown in section 6.4, followed by statistical analysis in section
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6.5. Discussion on the results is presented in section 6.6. Lastly, in sections 6.7 and 6.8

we summarise the contribution and present our conclusions.

6.1 Introduction

In this work we present a modification of the great deluge algorithm (GDA) which
allows the boundary, that acts as the acceptance level, to dynamically change during
the search. The proposed algorithm will accept a new solution if the cost value is less
than or equal to the boundary, which is lowered at each iteration according to a decay
rate. The proposed GDA uses a simple parameter setting and allows the boundary to
increase if there is no improvement after several iterations. Additionally, when the new
solution is less than the desired value (estimation of the required cost value), the

algorithm calculates a new boundary and a new desired value.

In order to investigate the proposed algorithm we use a real world capacitated
examination problem taken from Universiti Malaysia Pahang (UMP). This dataset has
several new constraints, in addition to those commonly found in the scientific
literature. This work is an extension of our previous work described in Kahar and
Kendall (2010a), in which we presented a constructive heuristic. We are now

attempting to improve on the (initial) solution returned from the construction heuristic

6.2 Modified Great Deluge Algorithm (modified-GDA)

Suitable parameter settings are important in meta-heuristics and it is often difficult to
determine the best values to guarantee a good quality solution (Petrovic and Burke,
2004). The introduction of a simple and easy to understood parameter (i.e.
computational time and desired value) to determine the decay rate in Burke et al.
(2004) made it straightforward for non-experts (e.g. university timetabling officers) to
set the parameters, especially when compared to other meta-heuristic techniques (e.g.

simulated annealing - cooling schedule, tabu search - tabu list size, genetic algorithm -
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mutation or crossover probability rate etc.). Furthermore, they reported that their time-

predefined GDA was able to produce good quality solutions.

The success of GDA and the simplicity in setting the parameters is the motivation for
us to explore this method with the aim of bringing GDA to the university timetabling
officer as they are the person responsible for producing the timetable at UMP. Our

proposed GDA is shown in figure 6.1.

1. Set the initial solution s from the constructive heuristic (Kahar and Kendall, 2010a)
2. Calculate initial cost function f{s)

3. Set the desired value D

4, Set the number of iterations I

5. Set Initial Boundary Level B = 0.03f(s)+ f(s)

6. Setinitial decay Rate AB = (B- D)/I

7. SetSpey =S5

8. While stopping criteria not met do

9. Apply neighbourhood heuristic on s to generate s*
10. Calculate f(s*)

11 Iff(s* £ f(s) or f(s*) < B then

12. Accept s = s*

13, IS5 S Sf(5ed then

14. Shest = §*

15. Lower Boundary B=B -A4B

16. If no improvement in W iterations or B < f(Shes) or f(s) < D then
17. Set S = Speq

18. Iff(s) S D then

19. D =f(s)*0.8

20. Set new decay rate AB = (f(s)= D)/ remaining

21, Set B =0.03f(s)+ f(s)

Figure 6.1 Our proposed Great Deluge Algorithm

The algorithm starts by setting the desired value D, number of iterations 1 and the
boundary level B (lines 1-5). The boundary level B is set slightly higher (3%) than the
initial solution fs) obtained from a constructive heuristic (Kahar and Kendall, 2010a).
The increment is to allow acceptance of worse result. We have tried several other
percentages; a higher percentage leads to the search being unfocused, whilst a smaller
percentage discourage exploration. Based on our observation, the 3% value is suitable
for the investigated dataset. The decay rate is calculated as the difference between

boundary level B and the desired solution D, divided by the number of iterations (line
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6). While the stopping condition is not met, we apply the chosen neighbourhood
heuristics. We calculate the new cost value f{s*) where s*e N(s) selected at random
(line 10). s* is accepted if fls*) is less than or equal to As) or if f{s*) less than or equal
to boundary B (lines 11-12). If f{s*) is less than or equal to f{sses), Set Spesr = 5* (line
13-14). Next, the boundary B is lowered based on the decay rate, AB (line 15).
However, if there is no improvement for several iterations, W (W =5 in this work) or
boundary B is less than or equal to f{5ss) Or f(s) is less than or equal to desired value;
then set s = Speq (line 17). The new decay rate AB is calculated as the difference
between f{5) and desired value divided by the remaining number of iterations (line 20).
However, if f{s) is less than, or equal to, the desired value then a new desired value is
calculated as 80% of fs) (line 18-19). This dynamically allows the search to continue
with the search by having a new desired value. Based on our experiments a value
above 0.8 unable to give a good result because of a steeper boundary (which
discourage exploration). However values close to 0.8 able to give a relatively good
result. Hence, the boundary is set 3% above f{s) (line 21). Having this condition
enables the algorithm to dynamically adjust the boundary, decay rate and desired value

during the search.

We are going to compare the modified-GDA performance with the GDA propose by
Dueck, (1993) (which will be refer to as Dueck-GDA in the following section),
solution produced by UMP and from our previous work (Kahar and Kendall, 2010a).

6.3 Experimental setup

We implemented the proposed algorithm to the UMP semester1-200708 and
semester1-200809 datasets. Descriptions of the dataset please refer to chapter 3. We
run Dueck-GDA and our modified-GDA using several initial solutions selected
randomly within the minimum to maximum values of the constructive solution
presented in Kahar and Kendall (2010a). Note that, in Kahar and Kendall (2010a), the
minimum and maximum values produced in semester1-200708 is 4.74 and 20.74
respectively, and in semester1-2008/09 it is 6.16 and 23.11 respectively. Hence, the
(randomly) selected initial solutions in semesterl-200708 is 16.68, 13.74, 10.30 and
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7.82, and for semester 1-2008/09 they are 18.40, 15.25, 12.30 and 9.21. We ran both
methods with 1500 and 3000 iterations. The following neighbourhood heuristics are

used in our experiments. Note that, unless stated otherwise all the exam, timeslot and

rooms are selected randomly.

Nh1)

Nh2)
Nh3)

Nh4)

NhS5)
Nh6)
Nh7)

Nh8)
Nh9)

Move an exam to a different timeslot and room(s). This move is only possible
when the destination room and timeslot is empty

Move an exam to a different room(s) within the same timeslot.

Move an exam to a different timeslot maintaining the currently assigned
room(s)

Choose an exam from a candidate list of 30, where exams are chosen based on
their contribution to the objective function. An exam is chosen using roulette
wheel selection and moved to a different timeslot and room(s).

Same as Nh4 but move the exam to a different room(s) within the same
timeslot

Same as Nh4 but move the exam to a different timeslot maintaining the
currently assigned room(s).

Select two exams and swap the timeslot and room(s) between them.

Select two timeslots and swap the timeslot between them

Same as Nh4 but instead of moving the exam, we swap the selected exam

with another exam.

Nh10) Select two timeslots and move all exams between the two timeslots. As an

example if timeslot 2 and timeslot 6 were selected, move exams in timeslot 2
to timeslot 3; followed by moving exams in timeslot 3 to timeslot 4 and so on

until exams in timeslot 6 are moved to timeslot 2,

In the next section we show the results when using each of these neighbourhoods.
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6.4 Examination assignment: Results

In this section, we compare the examination timetable generated by the UMP
proprietary software, our constructive heuristic (Kahar and Kendall, 2010a), and
Dueck-GDA with our proposed GDA (modified-GDA). Each experiment was run 50
times on a Pentium core2 processor. The running time for 1500 iterations is around
480 seconds while 3000 iterations takes about 960 seconds. The result for semesterl-

200708 is shown in table 6.1 and semester1-200809 is shown in table 6.2.

6.4.1  Semester1-200708
6.4.1.1 Modified-GDA vs UMP proprietary software

The UMP proprietary software solution is 13.16 with a violation of one of the hard
constraints (violating the no clash requirement Hgl, see chapter 3) (Kahar and Kendall,
2010a). Table 6.1 presents our results using the modified-GDA. Note that all of our
results respect all the hard constraints. Using modified-GDA with 1500 iterations, we
are able to produce a solution that is 66% (13.16 compared with 4.53 ((13.16 -
4.53)/13.16 x 100%)) better with Nh1 when using an initial solution with a cost of 7.82
compared to the solution produced by the proprietary software. The same calculation
of percentage is used throughout the discussion. Increasing the number of iterations to
3000, the solution produced with Nhl, using an initial cost of 7.82, is 70% (13.16
compared with 4.01) better when compared to the proprietary software and 11% (4.53
compared with 4.01) better compared to using 1500 iterations. However, increasing the

number of iterations, obviously, increases the computational time.

6.4.1.2 Modified-GDA vs constructive heuristic

In the constructive heuristic (Kahar and Kendall, 2010a) the best solution found was
10.98 and 4.74 using a candidate list of one and five respectively. Comparing

modified-GDA with the constructive heuristic using a candidate list of one, in

105



901

WINWIXOW = XOU ‘UnIUIUI = U "UODIAID PIDPUDIS = A3PIS 'a3D.1240 = day

00L I8S ¥£0 159 8V €65 L£0 659 0. 65 8€0 959 0L €8S 660 $99 L
66L LS9 €£0 €L o8  $99  I£0 el Yr8 LS9 80 IfL vES  6L9  TE0 8L 0£°01 “WaY) U2aMIDG 10[SIUWN
106 65L SE0 TS 096 708 660 888 t¥6 8%L LEO  8K8 ov6 108 S0  SS8 gl ay1 |jE 2A0W pUE SIO[SILI} OM] 193135 (OTYN
886 618 1¥0 16 S901 858 8KO0 L6 196 T8L Y0 098 886  6LL Y0 L8 8991
VL9 16%  0£0  &¥s 179 8€S  0C0  6LS 809 S£S  S£0 409 o wws 80 209 L S
om.o No.o ON.O mmw mN.h :.0 hN‘o :‘0 ho.\. No.v oo.c vo.o OM.h vm.m ov‘o ON.O OM.o— wexs pardsfes oy dems om “urexs Juiaous
198 TSL STO OIS vS6 VL 8v0 Ly 988 069 VO 9L 6 169 890 €I vLEL Jo pea1sul 10q (5N il 2 urES. (SUN
vS6  S08  bE0 788 o6 118 I50  b0'6 9€6 9L Y0  L08 w6 TEL 050  1T8 3991 : :
L0L 809 920 159 v69 119 €20  ¥59 Vel LLS 080 759 €L 819 TC0 $59 8L
180 LS9 I£0 €L €08 L[99 €0 sTL €81 999 8TO LIL WL ¥99  ££0  0TL 0£01 WA M1 JO[SIwW)
oI6 ISL S£0  LE8 866 L0  ¥EO SIS 176 €LL 660 b8 L£6 TLL 660 €3 LEl au dems pue s10jsown 0m1 19919§  (SUN
196 61'8 €0 €68 7801 ST8  SKO 056 656 OFL V0 9¢8 8v'6 89L 860  S¥'8 8991
vSs  ver  sl0 LIS w9 165 Ti0 629 6LS 99% 00 60§ 105 99% 150 OvsS L wo
01 Te 9 mei U1 e oro el we by o sy oo Dy om0 e O 123329 (5001 pue ojsouy o des
6671 ¥66  £50  ofll £0€1 1801 S0  €0ZI 8€L P09 vE0 999 78 S€9 g0 TIL 8991 pue Kjuiopues swexa om3 193125 (LUN
00L _9l'S _sv0 965 1€ L0S  8V0 685 €89 6.7 8c0 109 769 OvS  0£0 619 Bl (S)uwo0! pauSisse Lo
663 L 660 8 816 8L 000 Sve  ste i ibo b maopE o omo e o 241 BUUIEIUIEU 10[SAN 12G1p e 0)
868 199  It0 191 €06 S80  ¥S0  SLL 0z0l  0L9  9L0  I6L 0101 789 6L0 96L 8991 WEXD 34} 240U 1nq (pUN) Ut se ures (94N
8L (8L 000 8L 8L 8L 000 8L 8L 8L 000 81 781 8L 000 8L 8L Jopsown
0F0L 0E01 000 OF0F  OEOL 00l 000 0F0l  OEOI OE0l 000 O0£01  OE0l OE0l 000  OEOI 0£'01 SUIES 513 WA ($)100) WALLIP € 0}
IS€1 6v'€l 100  0SEl ISEl ev€l 100 0s€l ISEl 6vEl 100  OSEI ISEl 6v€l 100  OSEl vLEL urexa 313 20w 1nq (pN) ¢ WL (SUN
¥SOL $S91 000 $SOI  $SO1 #S91 000 +S91  ¥S91 $S9l 000 +s91 bSOl #5991 000 SOl 79l :
059 €05 $20 9% 59 065 €10 <29 v8s ISV 1T0 S €LS 067 60 TS L (s)ui0o: pue
SEL 99 S0 oL 08 €99  TEO  bvL oo 8%  8E0 9 969 86% 90 79 0c01 JoISoUIR uasaL1p € 0) anyeA Kapeuad 1531y
16 0S8 €0 SI'6 ZZ0l  6L8  ¥E0  8Y6 88L LLS SYO0 99 8SL 885 860 99 vLE o1 SUOUTE Pay>3[25 WIEXD UE IAOW, (PN
(86 678 050 106 166 798 ¥E0  8T6 S€L_ STO 970 9L 98, 685 80 199 8991
98S  08¥ 610 SIS 8L 919 €20 159 909  6L¥ Z£0  6vS 669 06% €20 IS 8L
ISL (89  SI0  STL 88 6%L 10  8p'8 98L €0S vLO  8LS I8 00S  8LO0  L6S 0£°01 (S)wo01 pauBisse JuaLG A SuurEIuTEw
SS0I 856 STO €10l 1811 €001 9€0 €Il 689 85 LZO ¥E9 190 TI9  I€0 069 L€l 10[SIWN JUSIAJIP € OF WLXD U 2A0JY (EUN
1971 SLOl  LEO 9911 89€l €20l €90 €7Tl 1Z8  TTS €50 099 €86 L6S 990  bvL 8991
8L 8L 000 8L 8L 8L 000 8L 8L 8L 000 8L Z8L 8L 000 8L 8L
0£01 0£01 000 O0E0I  OEOl 0€0l 000 OOl 0£0l O0E€OI 000 O0£0I  OEO0l 0£0l 000  OEOl 0£°01 "10{SIW SUTES AP UIYIM
Tzel ITEl 000 TrEl  Trel 1Z€l 000  ZTEl el ITEl 000 TrEl  TCEl ITEl 000  TTEl vLEl (s)wo01 uaIY1p € 0 WrEXa e A0 (TUN
8591 8y91  $00 9591 859 8¥91  $00 SS9 8591 8¥'91 SO0  +S9l 8591  8¥'91  $00 SS9l 8991
c€s  10s 800 9I§ SS9 169 900 +¥9 €Ly 0P S0 st 0fS 5% SI0  6L¥ 8L
LS. 6TL 900 vt 206 6¥8 110 6L8 YOS Ol €20 65 L9S 9% 9Z0 oIS £ 0l "(s)woos pue
$601 906 920 €501  TITI 601 6T0 OLII 88S  9L¥ STO  IES ¥99  $TS 150 18§ L€l 10]SIWN JUSLALIP & OF WEX3 Ue 3A0)y (TUN
€€l TCT IE0  T6TI  Ovvl 08T 650 TLEL €09  66% 0F 0SS 80L ISS  LEO 619 8991
Xoy Uy Apis oAy YOy WY ApIS Ay o Uy ApIS oAy R R I
UIW G ~ SUONEIaN 000E Uil § ~ SUOTIEIaN (0S| Ul G ~ SUONIEIAN 000E U g = SUOLIZIAN (0S| 1507 ey $A0W PooyMoqyBIaN
van-yaanQqg vVAD-pP2Ipoy

80L00T-[19353Was 103 3nsal VAD [°9 dlqeL

walqodq Suyqpiawl] uoNDUILDXT PJI0 g (DY D 40f w08y 23n1a(] 0a40) y ‘9 491doy?)



Chapter 6. A Great Deluge Algorithm for a Real World Examination Timetabling Problem

modified-GDA with 1500 iterations (table 6.1), we are able to produce a solution that
is 59% (10.98 compared with 4.53) better with Nh1 using an initial solution of 7.82.
Even with a poorer initial cost of 16.68, we are still able to improve the solution by
50% (10.98 compared with 5.51) with Nhl. Extending the search to 3000 iterations,
initial cost of 7.82 and 16.68, Nhl1 produced solutions with a 63% (10.98 compared
with 4.01) and 55% (10.98 compared with 4.99) improvement when compared to the

constructive heuristic solution.

In the constructive heuristic, with a candidate list of five, modified-GDA able to
produce a better solution but with a small margin of improvement. Using an initial cost
of 7.82 with 1500 and 3000 iterations, the GDA solution outperforms the constructive
heuristic by 4% (4.74 compared with 4.53) and 15% (4.74 compared with 4.01)
respectively. However, using a large initial cost 16.68, with 1500 and 3000 iterations,
the constructive heuristic outperforms the modified-GDA by 14% (5.51 compared with
4.74) and 5% (4.99 compared with 4.74) respectively.

6.4.1.3 Modified-GDA vs Dueck-GDA

In the Dueck-GDA approach, with 1500 iterations it able to produce 5.07 cost value
using Nh6 and with 3000 iteration produce 4.94 with Nh7. Comparing modified-GDA
and Dueck-GDA with 1500 iterations (table 6.1), the modified-GDA able to produce a
solution that is 11% (5.07 compared with 4.53) better than Dueck-GDA with Nhl
using an initial solution of 7.82. Even though with a poorer initial cost of 16.68, the
modified-GDA were able to outperform Dueck-GDA by 20% (6.85 compared with
5.51) with Nh1. Extending the search to 3000 iterations, initial cost of 7.82 and 16.68,
Nhl produced solutions with a 19% (4.94 compared with 4.01) and 25% (6.61
compared with 4.99) improvement when compared to Dueck-GDA. The best values

found by each of the method describe above is shown in figure 6.2.

Overall the proposed modified-GDA gives an improvement when compared to the
UMP proprietary software, the constructive heuristic and Dueck-GDA. From these
result it appears that using a better quality initial cost outperforms both the UMP
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proprietary software and the constructive heuristic, but using a poorer quality initial
solution, the modified-GDA does not guarantee to produce high quality solutions even
for Dueck-GDA within our experimented number of iteration (when compared to the

constructive heuristic with a candidate list of 5).

1316

12
10.98
10
8
6
o'l

ume Conmumvo (onslruu-ve DmckGDA DueckGDA Modrma GDA\Modllwd GDA
(c=1) (€=5) (IS(XJ (IS(xl

IS

Figure 6.2 Best values of each method for semester1-200708

6.4.2 Semester1-200809
6.4.2.1 Modified-GDA vs UMP proprietary software

In semester1-200809 (refer table 6.2), the calculated UMP solution was 26.08 with a
violation of all of the hard constraints (Kahar and Kendall, 2010a). The modified-
GDA, with 1500 iterations, the solution produced is 77% (26.08 compared with 6.11)
better compared to the proprietary software solution (and the solution adheres to all the
hard constraints) using Nhl with an initial cost of 9.21. Increasing the number of
iterations to 3000, the solution produced with Nhl, using an initial solution of 9.21 is
78% (26.08 compared with 5.63) better than the proprietary software and 9% (6.11

compared with 5.63) better compared to using 1500 iterations.
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6.4.2.2 Modified-GDA vs constructive heuristic

In the constructive heuristic (Kahar and Kendall, 2010a), the minimum solution
produced is 13.89 and 6.61 using candidate lists of one and five respectively. In a
comparison between modified-GDA and the constructive heuristic with a candidate list
of one, the modified-GDA with 1500 iterations, produced a 56% (13.89 compared with
6.11) better solution with Nh! using an initial cost of 9.21. Even with a poorer

initial cost (18.40), the GDA solution is 46% (13.98 compared with 7.12) better using
Nh3. Extending the search to 3000 iterations, when using an initial cost of 9.21 and
18.40, Nh1 produces 59% (13.89 compared with 5.63) and 51% (13.89 compared with

6.78), respectively, better solutions compared to the constructive heuristic.

Comparing the modified-GDA result with the constructive heuristic with a candidate
list of five, modified-GDA with 1500 iterations outperforms the constructive heuristic
by 8% (6.61 compared with 6.11). However, using a poorer initial cost (18.40), the
constructive heuristic outperforms modified-GDA by 7% (7.12 compared with 6.61).
In modified-GDA with 3000 iterations, it produces a 15% (6.61 compared with 5.63)
better solution compared to the constructive heuristic. However, with the poorer initial

cost (18.40), the constructive heuristic outperforms modified-GDA by just under 3%
(6.78 compared with 6.61).

6.4.2.3 Modified-GDA vs Dueck-GDA

For Dueck-GDA, with 1500 iterations it able to produce 7.20 cost value using Nh9 and
with 3000 iteration produce 6.39 with Nh7 (see table 6.2). Comparing modified-GDA
and Dueck-GDA with 1500 iterations (table 6.2), the modified-GDA able to produce a
solution that is 15% (7.20 compared with 6.11) better than Dueck-GDA with Nhl
using an initial solution of 7.82. With poorer initial cost of 16.68, the modified-GDA
were able to outperform Dueck-GDA by 20% (9.48 compared with 7.12) with Nh3.
Extending the search to 3000 iterations, initial cost of 7.82 and 16.68, modified-GDA
with Nh1 produced solutions with a 19% (6.39 compared with 5.63) and 27% (9.28
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compared with 6.78) improvement when compared to Dueck-GDA. The best value

found by each of the methods described above is shown in figure 6.3.

Overall our proposed modified-GDA is able to generate superior solutions than the
UMP proprietary software, the constructive heuristic (see Kahar and Kendall, 2010a)
and Dueck-GDA. Based on the result from both datasets, it shows that using a good
quality, initial solution will produce superior results, and possibly even better when
using a larger number of iterations. This is possible because by using a good quality
solution would allow the search to focus on the promising areas of the search space

(Burke and Newall, 2002). In the next section, we will analyse the results.

30

26.08

15 13.89
10
0
MP Constructive Con mu(lvo Dueck-GDA Duo(h GDA Modnﬁed GDA Modlﬁed GDA

fe=1) (1500 (1500

Figure 6.3 Best values of each method for semester1-200809

6.5 Statistical analysis

This section presents a statistical analysis of our results. The aim is to compare the
modified-GDA and Dueck-GDA as well as the parameters used in the experiments to
ascertain whether there are statistical differences. In addition we will determine

suitable parameter values and neighbourhood heuristics. The comparisons include:

a) Compare different initial solutions: Is there any significant difference in using an

initial solution with a higher cost than using a better quality initial solution?
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b) Compare the number of iterations: Is there any significant difference in using a
larger number of iterations?
¢) Compare neighbourhood heuristics: Is there any significant difference in the

result produce by using different neighbourhood heuristics?
Note that the analyses in (a) to (c) concentrate on the modified-GDA only.

We are conscious that some of these may seem intuitively obvious (e.g. increasing the
number of iterations produces superior results) but it is still informative to do the
analysis as it is often not carried out. A statistical test is carried out using Kruskal-
Wallis and Mann-Whitney U to determine if there are significant differences. The
hypotheses to be tested are, null hypothesis Hy assumes that the samples are from
identical populations, and the alternative hypothesis #; assumes that the sample comes
from different populations. We reject Hy when p < 0.05 and vice versa. The above
hypothesis are used throughout the statistical tests describe in the following section.
The Mann-Whitney U is used to compare two samples while Kruskal-Wallis is used to
compare more than two samples. Additionally, Mann-Whitney U is used to investigate
the rejection cause of Hj in conjunction with Kruskal-Wallis. The normality test are
carried out using Shapiro-Wilk with the null hypothesis H, assumes that the samples
are normally distributed, and the alternative hypothesis H; assumes that the sample is

non-normal. We reject the Hy when p <0.05 and vice versa.

We start the statistical test with a normality test using Shapiro-Wilk and continue with

the relevant statistical test (as described above) based on the normality test result.

6.5.1  Semester1-200708
6.5.1.1 Significance difference: Modified-GDA and Dueck-GDA

We analyses the modified-GDA and Dueck-GDA result using Mann-Whitney U. Table
6.3 and table 6.4 show the p-value result for 1500 ijterations and 3000 iterations
respectively. For 1500 iterations, (see table 6.3), we notice that most of the result

shows significant difference except for the Nh2 (all initial), Nh5 (all initial), Nh6
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(16.68), Nh8 (10.30 and 7.82) and Nh10 (7.82). For 3000 iterations (see table 6.4),
again most of the result show significant difference except for Nh2 (all initial), Nh5
(all initial), Nh6 (13.74, 7.82), Nh8 (13.74, 10.30, 7.82) and Nh10 (13.74, 7.82).

Based on both of the runs, generally the result that shows no significant difference
involves neighbourhood heuristic that performs poorly with respect to quality of the
obtained final solution (see table 6.1 and table 6.2).

Table 6.3 Semester1-200708 p-values comparison between modified-GDA
and Dueck-GDA for every neighbourhood heuristics with 1500 iterations

Neighbourhood Initial cost
heuristics 16.68 13.74 10.30 7.82
Nhl 000 .000 .000 000
Nh2 694 221 1.00 1.00
Nh3 .000 .000' .000 .000
Nh4 .000 .000° .000 .000
NhS5 1.00 385 1.00 1.00
Nhé6 299 .037 .009 .000
Nh7 .000 .000 .000 .000
Nh8 .000 .000 517 900
Nh9 .000 .007 .000 .000
Nh10 000 .000 012 251

Table 6.4 Semester1-200708 p-values comparison between modified-GDA
and Dueck-GDA for every neighbourhood heuristics with 3000 iterations

Neighbourhood Initial cost
heuristics 16.68 13.74 10.30 7.82
Nhl .000 .000 .000 .000
Nh2 019 427 1.00 1.00
Nh3 .000 .000 .000 .000
Nh4 .000 .000 .000 .000
Nh5 1.00 .688 1.00 1.00
Nhé 043 115 024 095
Nh7 .000 .000 .000 .034
Nh8 .000 .634 482 296
Nh9 .000 .000 .000’ .000

Nh10 .000 .649 013 652
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6.5.1.2 Comparing initial costs

We compare the initial cost based on the number of iterations for all neighbourhood
heuristics. We use Kruskal-Wallis to compare between the initial costs (i.e. 16.68,
13.74, 10.30 and 7.82). At the 95% confidence interval, the statistical test shows that
there is a difference (reject Hy) among the results produced between the initial costs for
all of the neighbourhood heuristics (see table 6.5). Referring to table 6.5, the p-values

are all less than 0.05 which leads us to reject Hy.

Table 6.5 Semester 1-200708 p-value comparison for the initial cost

for each neighbourhood heuristic based on the number of iterations

Neighbourhood p-value
heuristics 1500 iterations 3000 iterations
Nh1 .000 .000
Nh2 .000 .000
Nh3 .000 .000
Nh4 .000 .000
Nh5 000 .000
Nhé .000 .000
Nh7 .000 .000
Nh8 000 .000
Nh9 .000 .000
Nhi10 .000 .000

In-depth analyses (see table 6.1) on the differences in pair (16.68 with 13.74, 10.30,
7.82; 13.74 with 10.30, 7.82 and so on) were investigated using Mann-Whitney U.

Based on the analysis only a few of the initial cost shows no differences (accept Hy)

which include:

- Nh3 between 10.30 and 7.82 for both iterations counts.
- Nh4 between 16.68 and 13.74 for both iterations counts.
- Nh6 between 16.68 and 13.74 with 3000 iterations.

- Nh8 between 16.68 and 13.74 for both iterations counts.
- Nh9 between 16.68 and 13.74 with 1500 iterations.

- Nh9 between 10.30 and 7.82 with 3000 iterations.

- Nh10 between 16.68 and 13.74 with 3000 iterations
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Generally, the results that show no difference (accept Hy) involve using a solution with
a large initial cost as well as neighbourhood that is underperformed. Hence, from this
analysis we can conclude that it is more important to have a good neighbourhood while

having a good solution helps to speed up the search process.

6.5.1.3 Comparing the number of iterations

We compare the number of iterations (1500 and 3000 iterations) based on the initial
cost (i.e. 1500 vs 3000 with an initial cost of 16.68, 13.74, 10.30 and 7.82) using
Mann-Whitney U. Table 6.6 shows the p-value of the comparison between the number
of iterations executed. At the 95% confidence interval, the result is as follows (see

table 6.6):

- Nhl show significant difference (reject Hy) across all initial costs.

- Nh3 and Nh7 shows significant differences (reject Hy) for all initial costs except
for 10.30 (accept Hp).

- Nh2, Nh4 and Nh8 show no significant differences (accept Hp) across all initial
costs.

- Nh5 and Nhé shows no significant differences (accept Hy) for all initial costs
except during initial 13.74 (reject Hy).

- Nh9 show no significant differences (accept Hp) for all initial costs except for
13.74 and 10.30 (reject Hp)

- Nh10 show no significant differences (accept Hp) for all initial costs except

during 10.30 (reject Hp).

Based on these tests, the result varies according to the neighbourhood heuristics. We
notice that, an explorative neighbourhood heuristics (i.e. Nhl and Nh7) show
significance difference (reject Hy) between the two iterations compared to
undiversified neighbourhood (i.e. Nh2, Nh5 etc). Therefore, (considering the solution
in table 6.1) we conclude that it is best to use a large number of iterations. However, a
search with a large number of iteration would only be worthwhile if it is being

complemented with a good neighbourhood heuristic (to encourage exploration).
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Table 6.6 Semester!-200708 p-value comparison between 1500 and 3000

iterations for each neighbourhood heuristic based on initial cost

Neighbourhood Initial cost
heuristics 16.68 13.74 10.30 7.82
Nhl .000 .000 .000 .000
Nh2 .087 340 1.00 1.00
Nh3 000 000 051 .002
Nh4 141 127 815 702
Nh5 1.00 .038 1.00 1.00
Nhé .860 .044 524 104
Nh7 .000 .000 467 .000
Nh8 236 .866 692 589
Nh9 202 .006 022 .495

Nh10 061 303 .005 172

6.5.1.4 Comparing neighbourhood heuristics

We compare the entire neighbourhood heuristics based on the initial cost and number
of iterations using Kruskal-Wallis (i.e. Nh1 vs Nh2 vs Nh3 vs ... Nh10 using initial
cost 16.86 with 1500 iterations; etc). Table 6.7 show the p-values of the
neighbourhood heuristics comparison. The result shows that there are significant
differences (reject Hp) for the solutions produced using different neighbourhood

heuristics.

Pair-wise comparison (analysis on the cause of H) rejection) using Mann-Whitney U
on the neighbourhood heuristics show that there are significant differences (reject Hy)
for the solution produced by most of the neighbourhood heuristics except for some.
For example, Nh2 and Nh5 show no difference with an initial cost 7.82 and 10.30 for
both iterations and initial cost 16.68 using 3000 iterations. Table 6.8 shows a summary
of the non-significant differences (accept Hp) between the neighbourhood heuristics.
Referring to table 6.8, we notice that, some of the neighbourhoods (i.e. Nh3 and Nh4,
Nh4 and Nh7) show similarity although the inner working of the heuristics are

different.

116



Chapter 6. A Great Deluge Algorithm for a Real World Examination Timetabling Problem

Table 6.7 Semester 1-200708 p-value comparison for the neighbourhood

heuristics based on the initial cost and the number of iterations

Initial value 1500 3000
16.68 000 .000
13.74 .000 .000
10.30 .000 .000
7.82 .000 .000

Finally, we can summarise that Nhl produces the best result follow by Nh7 and Nh4.
Next are Nh3, Nh9, Nh6, Nh8, Nh10, Nh2 and NhS. In our observation, Nhl is a
robust neighbourhood heuristic. Nh2 and NhS are the worst neighbourhood heuristics
as they are unable to give any improvement on the initial cost during the search
(especially NhS). Nh7 works best with a better quality initial cost, while Nh4 work
best with a large initial cost. Further discussion on the neighbourhood heuristics is

given in section 6.5.2.4.

Table 6.8 Semester1-2007/08 summary of the non-significant differences

(accept Hp) when comparing the neighbourhood heuristics

1500 iterations 3000 iterations

16.68 13.74 1030 7.82 16.68 13.74 1030 7.82
Nhl - . . . - . . .
Nh2 - - NhS  Nh$ NhS5 - NhS NhS
N3 - N4 Nm4o . N TR
Nh4 - - Nh7 - Nh7 - Nh? -
Nh5 - . . - ) - ; -
NbS - Ne .. Nh9 Nh9 - Nh9
Nh7 - . . . - ; - .
Nh8 - Nh10 - Nh10 - Nh10 Nh10 NhiO
Nh9 - . . - - - - -
Nh10 - - - - - - - -

‘=> = result show rejecting
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6.5.2 Semester1-200809
6.5.2.1 Significance difference: modified-GDA and Dueck-GDA

Same as in previous section (6.5.1.1), we used Mann-Whitney U to analyses the result.
Table 6.9 and table 6.10 show the p-value result for 1500 iterations and 3000 iterations
respectively. For 1500 iterations, (see table 6.9), we notice that most of the result
shows significant difference except for the Nh2 (all initial), Nh5 (all initial), Nh6
(18.40, 15.25 and 12.30), Nh8 (15.25, 12.30 and 9.21), Nh9 (9.21) and Nh10 (12.30
and 9.21).

In 3000 iterations (see table 6.10), most of the result show significant difference except
for Nh2 (all initial), Nh5 (all initial), Nh6 (12.30), Nh8 (15.25, 12.30 and 9.21), Nh9
(12.30 and 9.21) and Nh10 (15.25, 12.30 and 9.21).

Based on the result, semester1-200809 dataset show more non-significant difference
compare to semester]-200708. However, the result that shows non-significant
difference mainly involves neighbourhood heuristic that performs poorly (same as in

semester1-200708 result).

Table 6.9 Semester1-200809 p-values comparison between Modified-GDA
and Dueck-GDA for every neighbourhood heuristics with 1500 iterations

Neighbourhood Initial cost
heuristics 18.4 15.25 12.30 9.21
Nhi .000 .000 .000 .000
Nh2 .080 1.00 1.00 1.00
Nh3 .000 .000 000 .000
Nh4 000 .000 .000 000
NhS 1.00 1.00 1.00 1.00
Nhé6 .074 .983 452 .000
Nh7 .000 .000 .000 .000
Nh8 .000 512 549 734
Nh9 .000 .000 .000 467

Nh10 .000 .002 844 330
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Table 6.10 Semester1-200809 p-values comparison between Modified-GDA
and Dueck-GDA for every neighbourhood heuristics with 3000 iterations

Neighbourhood Initial cost
heuristics 18.4 15.25 12.30 9.21
Nhl .000 .000 .000 .000
Nh2 .600 1.00 1.00 1.00
Nh3 000 .000 .000 .000
Nh4 .000 .000 .000 .000
Nh5 1.00 1.00 1.00 1.00
Nhé6 035 .001 406 .000
Nh7 000 .000 .000 .000
Nh8 .000 A73 .108 474
Nh9 .000 .000 .055 144
Nh10 .000 .874 177 .288

6.5.2.2 Comparing initial costs

We compare the initial cost based on the number of iterations for all neighbourhood
heuristics for semester1-200809 dataset. As in section 6.5.1.2, we used Kruskal-Wallis
to compare between the initial costs (i.e. 18.40, 15.25, 12.30 and 9.21). Referring to
table 6.11, at the 95% confidence interval, there are significant differences on all of the
results as the p-values are all less than 0.05 (reject Hy). In a pair-wise comparison
between each initial cost using Mann-Whitney U, the result shows that only a few of

the initial cost shows no significant differences (accept Hp) which include:

- Nh3 between 18.40 and 9.21 with 3000 iterations,
- Nh6 between 18.40 and 15.25 using 1500 iteration
- Nh8 between 15.25 and 12.30 using 3000 iteration

Based on the results, the majority of the neighbourhood heuristics show significant
differences (accept H)) and considering the result in table 6.2, it is best to start with a

good quality solution and thus reaffirms our conclusions in section 6.5.1.2.
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Table 6.11 Semester1-200809 p-value comparison for the initial cost

for each neighbourhood heuristic based on the number of iterations

Neighbourhood p-value
heuristics 1500 iterations 3000 iterations
Nhl .000 .000
Nh2 .000 000
Nh3 .000 .000
Nh4 000 .000
NhS .000 000
Nh6 .000 .000
Nh7 .000 .000
Nh§ .000 .000
Nh9 000 .000
Nh10 .000 .000

Table 6.12 Semester1-200809 p-value comparison between 1500 and 3000

iterations for each ncighbourhood heuristic based on initial cost

Neighbourhood Initial cost
heuristics 18.40 15.25 12.30 9.21
Nhl .000 .000 .000 .000
Nh2 907 1.00 1.00 1.00
Nh3 .000 .000 .003 000
Nh4 022 224 124 622
Nh5 1.00 1.00 1.00 1.00
Nh6 000 150 871 .029
Nh7 .000 .000 .000 .000
Nh8 .000 .000 .644 757
Nh9 047 780 .183 322
Nh10 024 .095 .450 752

6.5.2.3 Comparing the number of iterations

As in 6.5.1.3, we compare the solution for the number of iterations (1500 and 3000
iterations) based on the initial cost (i.e. 1500 vs 3000 with an initial cost of 18.40,
15.25, 12.30 and 9.21). Table 6.12 shows the p-value of the comparison between the

number of iterations. At the 95% confidence interval, the result is as follows (see table

6.12):
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- Nhl, Nh3 and Nh7 show significant differences (reject Hy) across all initial costs.

- Nh2 and Nh$ show no differences (accept Hy) in the result for all initial costs.

- Nh4, Nh9 and Nh10 show significant differences (reject Hy) only on initial costs
18.40.

- Nh6 show significant difference (reject Hp) only on initial costs 18.40 and 9.21.

- Nh8 show significant difference (reject Hy) only on initial costs 18.40 and 15.25.

The results show a similar pattern as for semester]1-200708 and this reaffirms our

conclusion (as in the previous dataset) that is best to use a larger number of iterations.

6.5.2.4 Comparing neighbourhood heuristics

As in 6.5.1.4, we compare the set of neighbourhood heuristics based on the initial costs
and the number of iterations using Kruskal-Wallis. Table 6.13 shows the p-value of the
neighbourhood heuristics comparison. At the 95% confidence internal, the statistical
result shows that there are significant differences (reject Hp) for the solutions produced
between the neighbourhood heuristics. An in depth analysis using Mann-Whitney U
shows that there are significant differences (reject Hp) for the solutions produced by
most of the neighbourhood heuristics except for some. Table 6.14 summarises the
significant differences (accept H;) between neighbourhoods. Hence, we can summarise
that Nhl produced the best result, followed by Nh7 and Nh3. Next are Nh4, Nh9,
Nh10, Nh8, Nh6, Nh2 and NhS5. Again, Nhl is the best heuristic and NhS is the worst.

Overall, we can conclude that it is advisable to use the best quality solution as the
initial solution and a larger number of iterations. In terms of neighbourhood heuristics,
the results vary according to the neighbourhood heuristic and some of it performs
differently between the two dataset. Hence, a neighbourhood that works for one dataset
might not necessarily work on other dataset. Therefore, it is best to use a set of
explorative neighbourhood heuristics (e.g. Nhl and Nh7) as it will encourage

exploration of the search space.
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Table 6.13 Semester1-200809 p-value comparison for the neighbourhood

heuristic based on initial cost and the number of iterations

Initial value 1500 3000
18.40 .000 .000
15.25 .000 .000
12.30 .000 .000
9.21 .000 .000

Table 6.14 Semester1-200809 summary of non-significant differences

(accept Hy) when comparing neighbourhood heuristics

1500 iterations 3000 iterations
18.40 15.25 12.30 9.21 18.40 1525 1230 921
Nhl - - - - - - . .
Nh2 - Nh$ Nh5 Nh5 - Nh5 Nh5 Nh3
Nh4, ) . . .
Nh3 - - NHO
Nh4 - - Nh9 Nh9 - - Nh9 Nh9
Nh5 - - - - - - - -
Nh8, i} . NhS, . )
Nh6 Nh9. Nh10 Nhi0 Nh10 Nh8
Nh7 - - - - - - - -
Nh§ Nh9 Nh10  NhlO - Nh10 Nh9 Nh10
Nh9 - - - - - - - -
Nh10 - - - - - - - -

‘=' = result show rejecting H,

6.6 Discussion

The proposed GDA give an improvement over the constructive heuristic and
outperforms the UMP proprietary software. The success of the technique is because of
its dynamic acceptance level that uses a boundary level which gradually decreases
based on a decay rate, but also allows the boundary to increase when there is no
improvement during search. In increasing the boundary level, the new boundary is set
higher than the current solution £s) allowing the search to accept worse solutions. The
algorithm also adjusts the boundary and a newly desired value is calculated when f7s)

is less than or equal to the desired value.
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Comparison between Modified-GDA and Dueck-GDA reveal the Modified-GDA able
to produce better solution than Dueck-GDA. Some of the neighbourhood heuristics do
show non-significant difference. However, it mainly involves neighbourhood

heuristics that perform poorly.

The modified-GDA gives an improvement over the initial cost (both 1500 and 3000
iterations) for the majority of the neighbourhood heuristics. Statistical analysis on the
initial cost shows that some neighbourhoods (e.g. Nh3, Nhé6, Nh8 etc) have similar
performance, mostly between large initial costs, where semester1-200708 show more
similarity compared to semester1-200809. Only a few show similarity on a small initial
cost (i.e. Nh3 and Nh9), which we believe is caused by the neighbourhood heuristics
themselves. The reason being, Nh3 involves moving an exam to a different timeslot
only (while maintaining the selected room) and Nh9 involves swapping the exam that
is chosen from amongst exam that contribute to the high value penalty. Referring to
table 6.1 and table 6.2, we can summarise that using a smaller initial cost produce a
higher quality solution when compared to using a larger initial cost because having a
smaller initial cost encourages the search to concentrate on good regions of the search.
However, note that the computational time to find a small initial cost takes a bit longer

during the constructive phase (Kahar and Kendall, 2010a).

An analysis on the number of iterations, reveals that some of the neighbourhoods (i.e.
Nh2, Nh5 and Nh6) show no difference in their performance between the numbers of
iteration. We notice that the result is very much dependent on the heuristics used. An
explorative neighbourhood would make use of the large number of iterations to
efficiently explore the search space. This led us to conclude that the number of
iterations does play a role in the search but it is not as important as the neighbourhood
heuristics that are used. Using a larger number of iterations gives better results because
it enable the method to cover more of the search space, compared to small number of
iterations. However, this does require extra computational time. A good compromise is

to use a small initial cost with a large number of iterations.

An analysis on the neighbourhood heuristics shows that Nh1 is the best and NhS5 is the

worst. The result also show that the neighbourhood heuristics perform differently
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between the two datasets (except for the first and the last two neighbourhoods),
although the datasets are similar in terms of the characteristics (see chapter 3). In our
observation, Nh1 (which produce the best result) is a robust neighbourhood heuristics
(see table 6.1 and table 6.2). Nh2 and Nh3 are the worst neighbourhood heuristics as it
is unable to improve the initial cost except for an initial cost 13.74 on semesterl-
200708 dataset. The result demonstrates the importance of the initial cost in order for
the search to advance. Nh7 works best with a small initial cost while Nh3, Nh4 and
Nhé work best with large initial cost. Hence, we can conclude that the choice of
neighbourhood heuristics is very important in the search in order to converge to a good
quality solution (Thompson and Dowsland, 1998) in addition to a good choice of

initial solution and number of iterations.

6.7 Contributions

The contributions of this work include an introduction of a modification of the great
deluge algorithm (modified-GDA) that uses a simple to understand parameter that
permits the boundary (that act as acceptance level) to dynamically change during the
search. That is, it calculates a new boundary, decay rate and a desired value, if there
is no improvement afler several iterations, or, the boundary is less than the new
solution, or, when the new solution is less than the desired value. We implementated
the modified-GDA to solve the real world examination timetabling problem which
includes additional constraints that have never been reported before in the literature
(Kahar and Kendall, 2010a). The modified-GDA is able to give an improved solution
over the constructive heuristic, better quality solutions compared to the proprietary
software and Dueck-GDA approach. Finally, we investigates the effect of the initial
solution, the number of iterations and neighbourhood heuristics. Statistical analysis
has been carried out to determine differences between the various components. The
choice of neighbourhood heuristics, number of iterations and initial solution plays a

significant role in the quality of the solution returned.
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6.8 Conclusion

In this work, we have investigated a real world examination timetabling problem
aiming to improve on the constructive heuristic solution. The modified-GDA approach
is able to produce good quality solutions compared to the UMP proprietary software,
satisfying all the constraints (which the proprietary software fails to do), improve on
the constructive result and perform better than the Dueck-GDA. The propose modified-
GDA uses a simple to determine parameter that can find a good solution. The selection
of neighbourhood heuristics, iterations and initial cost plays a significant part in the

search.

Due to the fact that the neighbourhood heuristics are very important, we are going to
investigate the use of multiple neighbourhood. We are going to use each
neighbourhood in succession. The next neighbourhood will be selected if the current

neighbourhoods show no improvement. This will be discussed further in the next

chapter.
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Chapter 7

Solving a Real World Examination Timetabling Problem:
Multi-Neighbourhood Great Deluge Algorithm

Many search methods can be found in the scientific literature, with meta-heuristics
being very popular. Meta-heuristics are very dependent on parameter settings and the
neighbourhoods used in order to find good quality solutions (Burke and Newall, 2002
and Burke and Petrovic, 2002). This creates a problem for exam timetable officers
where it is often difficult to determine the best parameter setting and neighbourhood
heuristics to guarantee a good quality solution (Thompson and Dowsland,1996)..
Therefore it is up to the algorithm designer to automate this process as far as possible.
This work introduces a modified extended Great Deluge Algorithm with multi-
neighbourhood heuristics for the examination timetabling problem, which uses a
single, easy to understand parameter and calls upon more than one neighbourhood
during the search. We investigate different ordering strategies, as well removing
several of the good and worse neighbourhood heuristics in order to study the effect.
Statistical analysis is carried out to compare the results between different strategies.
The proposed methodology is able to produce good quality solutions when compared
to the solution currently produced by the host organisation and also when compared to

the solutions generated in our previous work.
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In section 7.1, gives an introduction of the work presented in this chapter. We describe
the modified GDA using multi-neighbourhood heuristics in sections 7.2. The
experimental setup is discussed in section 7.3. The results from the improvement phase
is shown in section 7.4 and, in section 7.5, we analyse the results via a set of statistical
tests. Discussion of the result and statistical analysis is presented in 7.6. Lastly, in

section 7.7 and 7.8, we summarise the contribution and present our conclusions.

7.1 Introduction

There are many search methodologies that can be used to generate examination
timetables. One class in particular are meta-heuristic approaches. Meta-heuristics tend
to be very dependent on parameter settings (Petrovic and Burke, 2004) and the
neighbourhood operators that are used (Ahuja, Orlin and Sharma, 2000; Kahar and
Kendall, 2010b and Thompson and Downsland, 1998). Each neighbourhood operator
affects the solution in a different way (Ahuja, Orlin and Sharma, 2000). A suitable

neighbourhood operator for one dataset might not perform well for another (Kahar and

Kendall, 2010b).

We propose a modification of the great deluge algorithm (GDA) proposed by Dueck
(1993) which uses a simple to understand parameter with a dynamic boundary level
(acceptance level) that changes during the search. Additionally, the proposed method
uses more than one neighbourhood heuristic during the search. This allows the search
to explore a wider range of possibilities in the search space. We investigate the
proposed methodology on a real world examination timetabling problem from UMP.
This work is an extension of our previous work, where we developed a constructive
heuristic for this real world problem (Kahar and Kendall, 2010a) and improved on that
solution using single neighbourhoods and also explored if the number of iterations and
the starting solution led to statistically different results (Kahar and Kendall, 2010b). In
this work we are investigating whether providing GDA with a set of neighbourhood

moves from which to choose can further improve the algorithm.
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7.2 Modified Great Deluge Algorithm

A suitable parameter setting is important in meta-heuristics and it is often difficult to
determine the best value to guarantee a good quality solution (Petrovic and Burke,
2004). In addition, meta-heuristic techniques are often dependent on neighbourhood
heuristics to effectively explore the search space. Different neighbourhood heuristics
could produce a different solution within the same search space (Ahuja, Orlin and
Sharma, 2000; Kahar and Kendall, 2010b). In our previous work (Kahar and Kendall,
2010b), which considered two different UMP datasets that were almost identical (in
terms of the conflict density' matrix, see table 3.2), we showed that one single
neighbourhood did not always produce the best result and this motivated this study to
make a set of neighbourhoods available. Furthermore, having simple and easy to
undcrstand parameters (i.e. computational time and desired value) to determine the
decay rate in Burke et al. (2004) makes it straightforward for non-experts (e.g.
university timetable officers) to set the parameters, especially when compared to other

meta-heuristic techniques (e.g. SA, TS, GA etc).

The success of GDA and the simplicity in parameter setting, motivates us to explore
this method with the aim of bringing the modified multi-neighbourhood GDA to the
university timetable officer as they are the ones responsible for producing the timetable
at UMP, This work is an extension of our previous work in Kahar and Kendall
(2010b), exploring the use of simple parameter settings together with multi-
neighbourhood heuristics (the algorithm uses more than one neighbourhood heuristic
during the search). The use of multi-neighbourhood removes the needs to make
algorithmic choices (i.e. choosing the neighbourhoods) which they (exam timetabling
officers) are probably not in a position to do effectively. The following neighbourhood
heuristics are used in our experiments. Note that, unless stated otherwise all the exam,

timeslot and rooms are selected randomly. The exact same neighbourhood heuristics as

in section 6.3 are used here.

The algorithm works by using the current neighbourhood in every iteration and only
selects a different neighbourhood (within the list) when the current neighbourhood

solution is rejected by the GDA (solution is greater than the boundary level). The
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neighbourhood heuristics are sorted randomly and are also based on the result in Kahar
and Kendall (2010b). In Kahar and Kendall (2010b), the most effective
neighbourhoods for semester1-200708 were Nhl follow by Nh7, Nh4, Nh3, Nh9, Nhé,
Nh8, Nh10, Nh2 and Nh5. In semester1-200809 the most effective neighbourhoods
were found to be Nhl followed by Nh7, Nh3, Nh4, Nh9, Nh10, Nh8, Nh6, Nh2 and
NhS. In the discussion that follows we refer to these as the specified neighbourhoods.

Our proposed modified multi-neighbourhood GDA is shown in figure 7.1.

1. Set the initial solution s from the constructive heuristic (Kahar and Kendall, 2010a);
2. nis the neighbourhood heuristics N, where n € {1...N}
3. Cdlculate initial cost function f(s)

4.  Set the desired value D

5. Setthe number of iterations I

6. Set Initial Boundary Level B = 0.03f(s)+ f(s)

7.  Setinitial decay Rate 4B = (B-D)/1

8. SelSpen=Ss

9.  Sort N randomly or according to a specified sequence
10.  While stopping criteria not met do

1. Apply neighbourhood heuristic n on s to obtain s*
12. Calculate f(s*)

13. Iff(s*) s f(s) or f(s*) S B then

14. Accepts =s*

18. Iff(5*) S f(Ssest) then

16. Shest = S§*

17. Iff(s*) = f(s) then

18. n=n+1l

19. Else
20. n=n+1l
21. Ifn> N then
22. n=1
23. Lower Boundary B = B-A4B
24, If no improvement in iterations W or B < f(sy.q) or f{s) < D then
25. Sel's = Speu
26. Iff(s) S D then
27. D =f(s)*0.8
28, Set new decay rate AB = (f(s)~ D)/ Iremaining
29. Set B = 0.03f(s)+ f(5)

Figure 7.1 Our proposed Great Deluge algorithm

The algorithm starts by calculating the intital cost function f(s) (lines 1-3). Next, we set
the desired value D, number of iterations I and the boundary level B (lines 4-6). The
boundary level B is set 3% higher than the initial solution f{5) obtained from a

constructive heuristic (Kahar and Kendall, 2010a). The boundary level B is increased
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slightly to allow acceptance of worse solutions. The decay rate AB is calculated as the
difference between boundary level B and the desired solution D divided by the number
of iterations I (line 7). Based on the decay rate formulation, obviously having a small
number of iterations would result in a steeper rate compared to using a larger number

of iterations.

Next, we sort the neighbourhood heuristics N randomly or according to a specified
sequence based on a work in Kahar and Kendall (2010b). While the stopping condition
is not met, we apply neighbourhood heuristic n to the current solution s (line 11). We
calculate the new cost value f{s*) where s*e N(s) (line 12). s* is accepted if f{s*) is less
than f{s) or if f{s*) less than boundary B (lines 13-14). Next, If f{s*) is less than f{sees),
set Spesr = 5* (line 15-16). Then, if f{s*) is equal to f{s), we select the next
neighbourhood n from the neighbourhood list (n=n+1, line 17-18). However, if s* is
not accepted, select the next neighbourhood n (n=n+1, line 19-20). In a condition
where 7 is greater than N, we set n =1 (line 21-22). Next, boundary B is lowered based
on the decay rate, AB (line 23). However, if there is no improvement for several
iterations, W (W = 20 in this work) or boundary B is less than or equal to f{sses) or f(s)
is less than or equal to desired value D; then set s = Spex (line 25). The new decay rate
AB is calculated as the difference between f{s) and desired value D divided by the
remaining number of iterations / (line 28). However, if f{5) is less than, or equal to, the
desired value D then a new desired value is calculated as 80% of fs) (line 26-27).
Additionally, the boundary is set slightly above f(s) (line 29).

7.3 Experimental setup

We implemented the propose method to two of the UMP datasets. A details discussion
of the datasct refer to chapter 3. The same properties as in Kahar and Kendall (2010b)
are used here to allow comparison between these methods. In this experiment, we use
an initial solution of 7.82 for semester1-200708 and 9.21 for semester1-200809. These
solution are created by the constructive heuristic in Kahar and Kendall, (2010a). Each

experiment was run 50 times on a Pentium core2 processor. We ran for 3000 iterations

(= 960 seconds).
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As described above, the sorting used is a random and specified neighbourhood sorting
strategy. Additionally, we also experimented by removing the good and the worst three
neighbourhoods. In semester1-200708, the good neighbourhoods are the first three (i.e.
Nhl, Nh7 and Nh4), and the worse are the last three (i.e. Nh10, Nh2 and NhS$). In
semester1-200809, the good neighbourhoods are Nh1, Nh7 and Nh3 and the worse are
Nh6, Nh2 and NhS. We will carry out an experiment to determine if there is any
significant difference in removing these neighbourhoods which would mean having to

implement a smaller number of neighbourhoods which might be attractive to some

developers.

7.4 Examination assignment: Results

In this section, we compare the examination timetable generated by the UMP
proprietary software, the constructive heuristic (Kahar and Kendall, 2010a), the
modified-GDA (Kahar and Kendall, 2010b) and our modified multi-neighbourhoods
GDA. The result for semester1-200708 is shown in table 7.2 and semester1-200809 is

shown in table 7.4.

7.4.1  Semester1-200708

The UMP result generated by the proprietary software for semester1-200708 is 13.16
with a violation of one of the hard constraints (no clashing constraint - Kahar and
Kendall, 2010a). Using the constructive heuristic (Kahar and Kendall, 2010a), we
manage to construct a feasible solution using different candidate list sizes (C=1and C
= 5). With C = 1, the minimum value produced is 10.98 while C = 5 produced a
solution with an objective function of 4.74. In the improvement phase, the modified
GDA was able to give an improved solution on this initial solution. We experiment
with different initial solutions (Kahar and Kendall, 2010b) and manage to produce a
minimum value of 4.01, starting with an initial cost of 7.82. Table 7.1 summaries the

best results for semester1-200708 using different techniques (including the

methodology proposed here).
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Referring to table 7.2, the modified multi-neighbourhood GDA (MuNeiGDA), with
random ordering strategies give a minimum value of 3.30 with an average of 3.89. The
specified ordering strategies gives a minimum value of 3.41 with an average of 3.86.
Note that the initial cost used is 7.82. Compared to the initial solution used (7.82), the
MuNeiGDA-random ordering is able to produce a solution that is 58% (7.82 compared
with 3.30 ((7.82 - 3.30)/7.82 x 100%)) better and in MuNeiGDA-specified, it is also
able to produce an improvement of 56% (7.82 compared with 3.41 ((7.82 - 3.41)/7.82
x 100%)).

Table 7.1 Summary results for semester1-200708
Techniques Ave Stdev Min  Max
Constructive heuristic(C=1) 1551 2.10 1098 20.03
Constructive heuristic (C = 5) 6.06 076 474 798

Modified GDA 438 015 401 4.73
MuNeiGDA-Random 389 0.18 330 423
MuNeiGDA-Specified 3.86 0.16 341 4.9

Using a random ordering strategy (MuNeiGDA-random); we are able to produce
solution that is 75% (13.16 compared with 3.30 ((13.16 - 3.30)/13.16 x 100%)) better
when compared to the solution produced by the UMP proprietary software. The
MuNeiGDA-random also outperforms candidate list, C = 5, by 30% (4.74 compared
with 3.30 ((4.74 - 3.30)/4.74 x 100%)) and outperforms the modified-GDA (Kahar and
Kendall, 2010b) by 18% (4.01 compared with 3.30 ((4.01 - 3.30)/4.01 x 100%)).

In the specified ordering strategies (MuNeiGDA- specified); we are able to produce a
solution that is 74% (13.16 compared with 3.41 ((13.16 - 3.41)/13.16 x 100%)) better
when compared to the solution produced by the UMP proprietary software. The
MuNeiGDA-specified also outperforms the candidate list, C = 5, by 28% (4.74
compared with 3.41 ((4.74 - 3.41)/4.74 x 100%)) as well as the modified GDA (Kahar
and Kendall, 2010b) by 15% (4.01 compared with 3.41 ((4.01 - 3.41)/4.01 x 100%)).

Table 7.1 summaries the result for semester1-200708.
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Overall the proposed MuNeiGDA algorithm gives an improvement when compared to
the UMP proprietary software (Kahar and Kendall, 2010a) and the modified-GDA
(Kahar and Kendall, 2010b).

Table 7.2 GDA with multi neighbourhood result for semester1-200708 based on

random and specified neighbourhood ordering strategies

.. Random Specified

Multi neighbourhood Std Ave Min Max Std AVZ Min Max
AllNh 024 4.01 354 459 025 390 346 4.59
Remove Nh5 021 393 336 442 0.19 3.88 344 450
Remove Nh2 0.18 3.89 330 423 0.16 3.8 341 4.19
Remove Nh10 0.25 399 350 461 020 3.89 347 435
Remove Nh5 and Nh2 022 4.04 3.63 453 0.19 401 3.66 4.66
Remove Nh5 and Nh10 0.18 391 349 427 0.18 3.85 350 4.28
Remove Nh2 and Nh10 0.19 3.89 351 433 0.15 390 350 420
Remove Nh5, Nh2 and Nh10  0.19 4.04 3.58 4.40 023 4.06 3.54 449
Remove Nhl 023 4.07 3.60 461 0.17 4.00 3.67 446
Remove Nh4 024 4.11 360 461 022 397 348 440
Remove Nh7 022 4.04 3.60 445 021 397 3.55 4.56
Remove Nhl and Nh4 025 429 375 4.80 024 421 374 5.04
Remove Nhl and Nh7 020 4.16 3.64 456 0.21 4.07 3.65 4.51
Remove Nh4 and Nh7 023 421 3.64 4.64 0.17 399 354 446

Remove Nhl, Nh4 and Nh7 026 447 396 5.18 022 431 375 4487
Std = stdev; Ave = average; Min = Minimum,; Max = Maximum

7.4.2 Semester1-200809

In semester1-200809, the calculated UMP solution was 26.08 with a violation of all of
the hard constraints (Kahar and Kendall, 2010a). In the constructive heuristic (Kahar
and Kendall, 2010a), a candidate list of C = 1 produced a minimum value of 13.89 and
with a candidate list of C = 5 the result achieved was 6.61. During the improvement
phase, the modified-GDA was able to improve on the initial solution used. We
experiment with different initial solutions (Kahar and Kendall, 2010b) and manage to

produce a minimum value of 5.63 using an initial cost of 9.21. Table 7.3 summaries

these results using different techniques.
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Referring to table 7.3, the MuNeiGDA-random ordering strategies produce a minimum
value of 5.52 with an average of 6.09. The specified ordering strategies produces a cost
value which is almost the same as the random ordering, that is 5.53 with an average of
5.99. Note that the initial cost used is 9.21. Compared to the initial solution used
(9.21), the MuNeiGDA-random and MuNeiGDA-specified gives an improvement of
40% (9.21 compared with 5.52 ((9.21 — 5.52)/9.21 x 100%)). The MuNeiGDA-random
produced a solution that is 79% (26.08 compared with 5.52 ((26.08 — 5.52)/26.08 x
100%)) better when compared to the solution produced by the UMP proprietary
software and 16% (6.61 compared with 5.52 ((6.61 — 5.52)/6.61 x 100%)) better when
compared to candidate list, C = 5. Compared with the modified-GDA, the MuNeiGDA-
random outperforms the modified-GDA (Kahar and Kendall, 2010b) by only 2% (5.63
compared with 5.52 ((5.63 — 5.52)/5.63 x 100%)). The same performance was also
shown in the MuNeiGDA-specified. A good average result shown only when removing
Nh2 or NhS.

Table 7.3 Summary results for semester1-200809
Ave Stdev Min Max
Constructive heuristic (C=1) 17.33 1.69 13.89 21.66
Constructive heuristic (C =5) 7.88 0.71 6.61 9.69

Modified GDA 6.04 0.15 5.63 6.42
GDA-MuNei (Random) 6.09 0.20 5.52 6.48
GDA-MuNei (specified) 5.99 0.19 5.53 6.47

The result for semester1-200809 as described above is shown in table 7.4. Overall the
proposed MuNeiGDA gives an improvement when compared to the UMP proprietary
software and the modified-GDA. In the next section, we are going to further analysis

the results using statistical comparison.
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Table 7.4 GDA with multi-neighbourhood result for semester1-200809 based on the

random and specified neighbourhood ordering strategies

Multi neighbourhood Random Specified

Std Ave Min Max Std  Ave Min Max
AllNh 0.22 6.10 5.58 6.67 0.15 606 571 6.40
Remove Nh3 0.17 598 556 6.36 016 597 555 6.22
Remove Nh2 0.18 6.01 566 6.38 0.19 599 5583 647
Remove Nh6 020 6.16 5.70 6.52 0.16 6.01 573 6.38
Remove Nh5 and Nh2 0.14 6.03 568 6.28 0.19 6.07 560 6.53
Remove Nh5 and Nh6 0.19 604 568 6.41 022 6.03 558 649
Remove Nh2 and Nhé 020 6.09 552 648 0.17 6.02 558 633
Remove Nh5,Nh2and Nh6 0.16 6.05 5.67 6.34 0.16 6.08 3575 643
Remove Nhl 020 628 S5.76 6.67 022 621 575 6.69
Remove Nh3 024 629 560 6.72 0.19 6.16 578 6.51
Remove Nh7 0.18 622 580 6.65 0.17 6.12 584 651
Remove Nh1 and Nh3 0.19 656 624 6.94 0.18 649 595 691
Remove Nh1 and Nh7 0.18 6.51 6.08 6.95 0.19 646 6.08 6.85
Remove Nh3 and Nh7 019 642 592 6.78 0.17 629 594 6.71

Remove Nhl,Nh3 and Nh7 0.19 7.04 668 7.49 020 7.07 6.63 759
Std = stdev; Ave = average; Min = Minimum; Max = Maximum

7.5 Statistical Comparisons

This section present the statistical analysis carried out on our results. The aim is to
compare strategies used in the experiments and determine whether there are statistical
differences. The comparisons include:

a) Comparison between different ordering strategies: Is there any significant
difference in using random ordering compared to specified neighbourhood
ordering strategies?

b) Comparison between different sets of neighbourhood heuristics: Is there any
significant difference in using all of the neighbourhoods compared to removing

three of the good or worst neighbourhoods?

All data was tested for normality using Shapiro-Wilk with H, - assumes that the
sample is normally distributed, and H; - assumes that the sample is non-normal. We

reject Hy when p < 0.05 and vice versa. In fact, all data is normally distributed,
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therefore we use t-test and one-way ANOVA, followed by Games Howell post-hoc to

determine any significant differences.

The hypotheses for the r-test and one-way ANOVA are that the null hypothesis Hj -
assumes that the samples are from identical populations, and the alternative hypothesis
H, - assumes that the sample comes from different population. We reject Hy when p <
0.05 and vice versa. The above hypothesis are used throughout the statistical tests
described in the following sections. The r-test is used to compare two samples while
one-way ANOVA is used to compare more than two samples. Additionally, Games
Howell Post-Hoc is used in conjunction with one-way ANOVA to investigate the
cause of Hj rejection. Games Howell Post Hoc compares more than one pair of

samples simultaneously.

7.5.1 Semester1-200708
7.5.1.1 Ordering strategics

In a comparison on the ordering strategies, we want to test whether there is any
significant difference in the performance on random ordering compare to using
specified neighbourhood ordering strategies with the MuNeiGDA. T-test is used in the
statistical test, the result shows a significant difference (reject Hp) between the two
ordering strategies when using all of the neighbourhoods. Referring to table 7.5, in
removing the worst neighbourhood heuristics (Nh5; Nh2; Nh10; Nh5 and Nh2, etc),
the solutions show no significant difference (accept Hy) except when removing Nh10
(reject Fy). However when removing good neighbourhoods (Nh1; Nh4; Nh7; Nht and
Nh4, etc), the result shows:

- Significant differences (reject Hy) when removing Nh4; Nh1 and Nh7; Nh4 and

Nh7; and, Nh1, Nh4 and Nh7.
- No significant difference (accept Hy) when removing Nhl; Nh7 and, Nhl and

Nh4.
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Table 7.5 p-value result for semester!-200708 in

comparison between the ordering strategies

Multi neighbourhood T Dy P
AllNh 223 98.00 0.03
Remove Nh5 1.29 98.00 0.20
Remove Nh2 0.76 98.00 0.45
Remove Nh10 2.20 98.00 0.03
Remove Nh5 and Nh2 0.63 98.00 0.53
Remove Nh5 and Nh10 1.58 98.00 0.12
Remove Nh2 and Nh10 -0.17 98.00 0.87
Remove Nh5, Nh2 and Nh10 -0.57 98.00 0.57
Remove Nhi 1.87 98.00 0.07
Remove Nh4 3.01 98.00 0.00
Remove Nh7 1.82 98.00 0.07
Remove Nh1 and Nh4 1.64 98.00 0.11
Remove Nh1 and Nh7 2.29 98.00 0.02
Remove Nh4 and Nh7 5.28 98.00 0.00

Remove Nh1, Nh4 and Nh7 3.19 98.00 0.00

Based on the result, we notice that in removing the worst neighbourhood, it does not
show any significant difference (accept ) between the ordering strategies when
removing one or more of the worst neighbourhood(s). However, in removing the good
neighbourhood(s), overall it shows a significant difference (reject Hp) between the

ordering strategies particularly when more than one neighbourhood is removed.

We can conclude that they are no differences to the ordering strategies when removing
the worst neighbourhoods. The result mainly shows significant differences only when
removing the good neighbourhoods, especially when removing more than one

neighbour. Hence, based on the result shown in table 7.2 and table 7.5, it is best to use

a specified ordering strategy.

7.5.1.2 Neighbourhood heuristics used

In this statistical test, we compare the use of neighbourhood heuristics to determine

whether is there a significant difference in using all of the neighbourhood heuristics
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compared to removing the worst or removing the good neighbourhoods (based on
previous work in Kahar and Kendall, 2010b). One-way ANOVA is used to compare
between these neighbourhood heuristics. Based on the statistical test, the result show

significant differences (reject Hy) with p-values = 0.00.

In a pair-wise comparison using Games Howell Post-Hoc on the random and specified
ordering strategies, the result shows significant difference (reject Hp) when we remove
the good neighbourhoods (see table 7.7a and table 7.7b, appendix K), particularly
when more than one good neighbourhood is removed (see column | - o in table 7.7a,
7.7b, 7.8a and 7.8b; appendix K). Therefore, we can conclude that by discarding more

than one good neighbourhood will lead to a deterioration of algorithmic performance.

7.5.2  Semester1-200809
7.5.2.1 Ordering strategies

In a comparison on the ordering strategies for semester1-200809, the result shows a
significant difference (p-values = 0.41) between random and specified neighbourhood
ordering strategies when using all of the neighbourhoods (see table 7.6). In removing
the worst three neighbourhood heuristics (NhS; Nh2; Nh6; Nh5 and Nh2, etc), the
solutions show no significant difference (accept Hy) except when removing Nh6 (see
table 7.6). In removing the specified (good) neighbourhoods (Nh1; Nh3; Nh7; Nhl and
Nh3, etc), the result shows:

- Significant differences (reject Hy) when we remove Nhl; Nhl and Nh3; Nhl and

Nh7; and Nh1, Nh3 and Nh7.
- No significant differences (accept Hy) when removing Nh3; Nh7; and Nh3 and Nh7.

Therefore, we can conclude that, in removing the worst neighbourhood, there are no
differences between random and specified ordering when removing either one or more
of the worst neighbourhood(s). However, the result show non significant differences

(accept Hp) between the ordering strategiecs when we remove the good

138



Chapter 7. Solving a Real World Examination Timetabling Problem: Multi-Neighbourhood-GDA

neighbourhoods. Hence, based on the result shown in table 7.5 and table 7.6, it is best

to use a specified ordering strategy.

Table 7.6 p-value result for semester1-200809 in

comparison between the ordering strategies

Multi neighbourhood t dar P
AllNh 0.83 98.00 041
Remove Nh5 0.30 98.00 0.76
Remove Nh2 0.78 98.00 0.44
Remove Nh6 430 98.00 0.00
Remove Nh5 and Nh2 -0.98 98.00 0.33
Remove Nh5 and Nhé 026 98.00 0.80
Remove Nh2 and Nhé 1.85 98.00 0.07
Remove NhS, Nh2and Nh6 .1.00 98.00 0.32
Remove Nhl 1.67 98.00 0.10
Remove Nh3 3.01 98.00 0.00
Remove Nh7 2.87 98.00 0.01
Remove Nhl and Nh3 1.87 98.00 0.07
Remove Nh1 and Nh7 1.14 98.00 0.26
Remove Nh3 and Nh7 3.49 98.00 0.00

Remove Nh1, Nh3 and Nh7 _9.81 98.00 0.42

7.5.2.2 Neighbourhood heuristics used

In a comparison between the neighbourhood heuristics using one-way ANOVA, the
statistical test shows that there are significant differences (reject Hy) on all of the
results with p-values = 0.00. In a pair-wise comparison using Games Howell Post-Hoc
on the random and specified ordering strategies, the result shows that only good
neighbourhood heuristics show significant differences (reject Hy) when it is removed
(see table 7.8a and table 7.8b, appendix K) mainly when more than one good
neighbourhood is removed (see column | to o in table 7.8, appendix K). As in
semester1-200708, we can conclude that the algorithm will not work effectively when

the good neighbourhoods are removed.
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7.6 Discussion

The proposed modified multi-neighbourhoods GDA is able to give a better cost value
compare to the modified-GDA (Kahar and Kendall 2010b) and outperforms the UMP
proprietary software. The multi-neighbourhoods GDA is able to produce a better
solution because of the use of a dynamic acceptance level and having the benefit of

more than one neighbourhood.

The dynamic acceptance level approach uses, a boundary level which gradually
decreases the decay rate, but also allows the boundary to increase when there is no
improvement during the search (for several iterations). In increasing the boundary
level, the new boundary is set higher than the current solution f{s) allowing the search
to accept worse solutions (encouraging exploration). Additionally, the algorithm
adjusts the boundary when it is less than f{s;.s) and even when f{s) is less than or equal
to the desired value, D. However for the latter condition, the algorithm will calculate a

new desired value, D.

In addition, having the multi-neighbourhood heuristics feature increases exploration of
the search space due to the fact that different neighbourhood heuristics perform
differently (Kahar and Kendall, 2010b). The multi-neighbourhood uses the current
neighbourhood as long as the result is accepted and only selects a different
neighbourhood when the current result shows no improvement (compared to the

boundary level).

Overall, the proposed MuNeiGDA (random and specified ordering) approaches gives
an improvement when compared to the UMP proprietary software (Kahar and Kendall,
2010a) and the modified-GDA (Kahar and Kendall, 2010b). Referring to the ordering
strategies result, the MuNeiGDA-random ordering strategies produces a better
minimum (min) value when compared to specified ordering but on average the random
ordering gives a slightly higher value for both of the datasets. Additionally, in the
statistical tests, it shows no significance difference (accept Hp) in using either random

or specified ordering (considering the choice of neighbourhood that give the min
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value). Hence, we conclude that the ordering strategies give a minimum impact

towards the algorithm’s performance as both orderings perform the same.

In a comparison on the neighbourhood heuristics used, both of the datasets show
significant differences with p-values < 0.05 (reject Hj). A detailed comparison using
Games Howell Post-Hoc reveal that (for both datasets), only good neighbourhood
heuristics show significant differences (reject Hy) when they are removed, particularly
when we remove more than one good neighbourhood. Therefore, referring appendix I,
it is best to use all of the neighbourhood as the solution shows small differences
compared to removing the worst neighbourhoods. Hence, conclude that it is advisable
to use all of the neighbourhood heuristics as each of the neighbourhoods have their

own strengths that could aid the algorithm in exploring the search space.

7.7 Contributions
The contributions are as follows:

a) Present a modification of the great deluge algorithm (GDA) that uses a simple to
understood parameter and permits the boundary (that acts as an acceptance level)
to dynamically change during the search. It is dynamic in the sense that it
calculates a new boundary, decay rate and a desired value, if there is no
improvement after several iterations, or, the boundary is less than the new
solution, or, when the new solution is less than the desired value. The algorithm
uses more than one neighbourhood heuristic (multi-neighbourhood) during the
search. It will use the current neighbourhood heuristic until the result shows no
improvement and then it will choose the next neighbourhood.

b) We have explored suitable ordering strategies and neighbourhood heuristics by
removing the worst or best neighbourhoods. Statistical test were carried out to
determine the statistical differences between the ordering and the choice of
neighbourhood heuristics. This revealed that it is best to use all of the

neighbourhoods as this helps to better explore the search space.
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¢) Implementation of (a modified multi-neighbourhood) GDA in solving a real
world examination timetabling problem which includes constraints that never
been reported before in the scientific literature (Kahar and Kendall, 2010a). The
multi-neighbourhood GDA is able to give better quality solutions compared to

the proprietary software and the original modified-GDA.

7.8 Conclusion

In this chapter, we have investigated a real world examination timetabling problem
aiming to improve the constructive heuristic solution. The modified multi-
neighbourhood GDA approach is able to produce good quality solutions compared to
the UMP proprietary software, satisfying all the constraints (which the proprietary
software fails to do) and improve on the constructive result. The propose GDA uses a
simple to determine parameter that can find a good solution and is able to find a better
solution than the initial cost even with higher desired value (due to it capabilities to
adjust the desired value, boundary and decay rate). Having a simple and versatile

algorithm helps to eliminate the difficulty for the examination timetabling officer in

managing/using the algorithm.

Additionally, the use of multi-neighbourhood heuristics help to effectively explore the
search space and improve on the result. The multi-neighbourhood simplifies the
operation of the algorithm for the timetabling officer rather than having to determine
the suitable neighbourhood. This is beneficial as in Kahar and Kendall (2010b) they
showed that the choice of neighbourhood plays a major role in a search. Lastly, we
conclude that, the multi-neighbourhood successfully shows that it is able to provide a
better solution compare to the modified-GDA. It is best to use all of the neighbourhood

heuristics rather than having to select a suitable set of neighbourhoods.
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Chapter 8

Solving ITC2007 Examination Timetabling Problems

The Second International Timetabling competition (ITC2007) introduced with the aim
of creating a platform for researchers to test their algorithms on real world timetabling
problems. It includes more realistic problems and contains comprehensive constraints
compared to other benchmark examination dataset in the literature. In this chapter, we
report the implementation of graph heuristics, modified-GDA and multi-
neighbourhood GDA to the ITC2007 examination dataset. The aim of the experiment
is to determine whether the above methods able to solve the ITC2007 as it did for the

UMP datasets.

The chapter is organised as follows, in sections 8.1, we describe the ITC2007
examination problem. In sections 8.2, we describe the experimental setup to allow
reproducibility for other researchers. The result of the proposed method is shown in
section 8.3. Discussion on the results is presented in section 8.4. Lastly, in sections 8.5

and 8.6 we summarise the contributions and present our conclusions.

8.1 International Timetabling Competition 2007 (ITC2007)

The First International Timetabling competition was established in 2002 with the aim

of introducing a real world timetabling problems for researchers to test their
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algorithms. Recently, the international timetabling competition 2007 (ITC2007) which
is the second competition series has been established to further attract and bring the
researcher together in exploring the timetabling problem. The second competition
(called ITC2007) include examination problem from the third track
(http://www.cs.qub.ac.uk/itc2007/index) where it has eight different dataset each with

different features i.e. number of exam, number of timeslot and rooms etc. (see section
2.4.4, table 2.6). The datasets vary in their level of conflict density and constraints (see
table 8.1). Beside the conflict density, the difficulty level dependent on the constraints
and these includes number of timeslot, number of room, room capacity, timeslot
length, period hard constraints (PHC) and room hard constraints (RHC). Detail

descriptions of these constraints are as follows:

a) Number of timeslot: the number of timeslot differs between the datasets. There
are penalty associated with the timeslot that is two exams in a row (S7) or day
(S2), spreading (S3), later period (S5) and period penalty (S6) (see figure 8.2).

b) Number of rooms: the number of rooms differs between the datasets. Having
large room quantity give flexibility in choosing the room. There are penalty
associated with a certain room (see S7 in figure 8.2)

¢) Room capacity: ITC2007 datasets allow the exam to share room but disallow
the exam to be split into several rooms.

d) Timeslot length: some of the datasets have a similar and different timeslot
length (see table 8.1). A different timeslot length would require a check for
suitable timeslot length during exam-timeslot assignment. There also a penalty
associated with different length of exams sharing the same room (see S in
figure 8.2).

e) Period hard constraints - AFTER: the AFTER constraint involve schedule the
second exam AFTER the first exam timeslot. Example schedule examA
AFTER examB. ExamA need to be schedule in timeslot after examB timeslot.
Some of the dataset include more than two exams that associates with AFTER
constraint (e.g. examA AFTER examB and examA AFTER examC) and this
complicates the problem further (see Exam-1 and Exam-8 in table 8.1).

Furthermore, having a multi period hard constraint (¢.g. examA AFTER examB
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and examA coincidence examC) complicates the problem even further (see
Exam-5, Exam-7 and Exam-8 in table 8.1).

f) Period hard constraints - EXCLUSION: the exclusion consfraint involves
scheduling the exam in a different timeslot to one another (e.g. examA
EXCLUSION examB).

g) Period hard constraint - COINCIDENCE: the coincidence constraint involves
scheduling the exam in the same timeslot (e.g. examd4 COINCIDENCE
examDB).

h) Room hard constraints: this constraint require exam to be schedule into the
allocate room. Only 3 datasets contains this constraint that is Exam-2, Exam-3
and Exam-8. Table 8.1 shows the number of exams that involve with the

constraints.

Table 8.1 ITC2007 examination datasets features

Timeslot Period Hard Constraint (PHC) 12::‘ r}:::td
length After (4f) | Exclusion (Ec) | Coincidence (Cd) (RHC)
Exam-1 Similar max-3 max-2 max-2 -
Exam-2 Vary max-2 max-2 max-2 2
Exam-3 Vary max-2 max-2 max-4 15
Exam-4 Similar No max-4 max-2 -
Exam-$ Vary max-2"° max-2"¢ max-4"" -
Exam-6 Vary max-2 max-2 max-2 -
Exam-7 Similar max-2" max-3* max-2 -
Exam-8 Similar max-5 - max-5 1

*similar = the timeslot length are the same for all timeslots; vary = the timeslot differ in length
among them; max-3*= the maximum number of exam involve with the respectively period hard
constraint (e.g. examA AFTER examB and examA AFTER examC) while the xx referred to the
exam(s) involve in multi period hard constraint (e.g. examA AFTER examB and examA

COINCIDENCE exam(C)

Figure 8.1 and figure 8.2 shows the hard and soft constraints for the ITC2007
examination datasets. The hard constraints need to be satisfied for a feasible solution.
The soft constraints need to be satisfied as much as possible and, hence it is used to

determine the quality of the solution.
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Figure 8.1 Hard Constraints

Student cannot sits more than one exam at the same time

Hl.

H2. The exams capacity should not exceed the room capacity

H3. The exam length should not violate the timeslot lengths

H4. A sequence or ordering of an exams must be respected, e.g. schedule ExamA
after ExamB;

H5. Schedule exam into specified room (room related hard constraints) e.g. ExamA
must schedule to Room 11

Figure 8.2 Soft Constraints

S1.  Two exams in a row: minimise student sitting consecutive exams on the same
day.

S2. Two exams in a day: minimise student sitting more than two exams in a day
(only applied if more than two (2) timeslot per day).

S3.  Spreading of exam: Each set of student examinations should be spread as
evenly as possible over the exam period.

S4.  Mixed duration: minimise number of exams with different durations that are
scheduled into the same room.

S5.  Larger examinations schedule late in the timetable: minimise the number of
large exams appear ‘/ate’ of the timetable.

S6. Period penalty: minimise the number of exams scheduled in period with
penalty.

S7. Room penalty: minimise the number of exams scheduled in room with penalty.

The quality of the timetable produce is calculated through summation of the soft

constraint multiply with the related weight. The formulations are as follows:

min_(wl-S1+w2-S2+w3-83)+w4-S4+..
et W5-8S5+w6-56+w7.87

The penalty weightage differ between the datasets. The weightage of each soft

constraint for every datasets is summarised in table 8.2.
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Table 8.2 The weight of ITC2007 examination datasets

Datasets wl w2 w3 wid w5 w6 w7
Exam-1 5 7 5 10 100 30 5
Exam-2 5 15 I 25 250 30 5
Exam-3 10 1S 4 20 200 20 10
Exam-4 5 9 2 10 50 10 5
Exam-5 15 40 § 0 250 30 10
Exam-6 5 20 20 25 25 30 15
Exam-7 5 25 10 15 250 30 10
Exam-8 0 150 15 25 250 30 5

The details of the examination competition track can be found in McCollum et al.
(2007). Researchers which have investigated this dataset include Muller (2008), Cogos
et al. (2008), Atusta et al. (2007), De Smet (2008) and Pillay (2008) which was the
competition entrants follow with McCollum et al. (2009) and Turabich and Abdullah

(2012) that reported their finding after the competition. Muller (2008) won the

competition by producing the best result during that time. In 2009 McCollum et al,

able to show that the ITC2007 result is solvable and able to produce better result than
Muller (2008). Turabich and Abdullah (2012) manage to outperform some of Muller

(2008) results with their hybrid methods. A summary of other researcher results is

presented in Table 8.3.

Table 8.3 Summary of other researchers result

Muller Cogos Atsuta De Smet Pillay Mc Collum  Turabieh and
Datasets (2008) etal. (2008)  etal (2008) (2008) etal. Abdullah
(2008) (2009) (2012)
Exam-1 4,370 5,905 8,006 6,670 12,035 4,633 4,368
Exam-2 400 1,008 3,470 623 3,074 405 390
Exam-3 10,049 13,862 18,622 - 15,917 9,064 9,830
Exam-4 18,141 18,674 22,559 - 23,582 15,663 17,251
Exam-5 2,988 4,139 4,714 3,847 6,860 3,042 3,022
Exam-6 26,950 27,640 29,155 27,815 32,250 25,880 25,995
Exam-7 4,213 6,683 10,473 5,420 17,666 4,037 4,067
Exam-8 7,861 10,521 14,317 - 16,184 7,461 7,519

147



Chapter 8. Solving ITC2007 Examination Timetabling Problem

8.2 [Experimental setup

In this work, we implemented the graph heuristics (chapter 4), modified-GDA (chapter
6) and multi-neighbourhood GDA (chapter 7) using the suggested variable reported in
previous chapters. In the graph heuristics, we implemented candidates list 1 and 5. In
modified-GDA, the Nhl and Nh7 is used as both able to produce a good quality
solution in chapter 5 (compared to other neighbourhood) and finally, the multi-
neighbourhood GDA technique. In the improvement phase, we use the best found
solution in graph heuristics as the initial value. Table 8.4, table 8.5 and table 8.6 show
the results of the techiques mention above. Each experiment was run 10 times on a
Pentium core2 processor. In modified-GDA and multi-neighbourhood GDA, we ran for

2000 and 5000 jterations.

8.3 Examination assignment: Results

In this section, we show the result produce using graph heuristics with candidates list,
modified-GDA and multi-neighbourhood GDA. Comparing the result with other
researcher from table 8.3 and our result in table 8.4, our graph heuristics (with c1 and
¢5) unable to produce a competetive result for all of the exam datasets except for
Exam-1, Exam-6 and Exam-8 using ¢5 on Pillay (2008). We extend the search using
candidates list 20 (c20) and the technique able to produce competetive result compared
to the result in table 8.3. Eventhough it unable to outperform the best reported results
(as in table 8.3), with ¢20 the result produce able to outperform Atsuta et al. (2008) and
De Smet (2008). However, note that, c20 takes more computational time around

10,000 seconds and this depending on the number of exams and resources (i.e timeslot

and rooms).
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Table 8.4 The best found result using graph heuristics

Dataset cl c5 c20
Exam-1 27197 9025 6710
Exam-2 31820 3093 949
Exam-3 85577 26765 17102
Exam-4 - - -
Exam-5 111724 19160 6643
Exam-6 46165 30775 28255
Exam-7 65165 10203 6582
Exam-8 87340 14473 6539

In modlified-GDA, we used the initial value from table 8.4. For example, in Exam-1,
the initial value is 27197, 9025 and 6710 that correspond to c1, ¢5 and ¢20. In Exam-1
with 2000 and 5000 iterations using c1 as the initial value, Nh1 able to produce 69%
and 73% of improvement respectively. Nh7 with 2000 and 5000 iterations, the
modified-GDA able to produce 48% and 50% of improvement respectively. While
using ¢5 as the initial value with 2000 and 5000 iterations, Nh1 produces 21% and
27% of improvement respectively, and using Nh7 with 2000 and 5000 iterations
produce 24% and 28% of improvement. Finally, with c20, the modified-GDA using
Nh1 with 2000 and 5000 iteration produce 3% and 8% of improvement respectively.
Nh7 with 2000 and 5000 iterations, the method produce 10% and 13% of improvement
respectively. The rest of the result (with the percentage of improvement) is shown in
table 8.5. Generally, referring to table 8.3 and table 8.5, the result shows that the
modified-GDA unable to outperform the best reported result (i.e. Muller, 2008) but
able to compete with Atsuta et al. (2008), De Smet (2008) and Pillay (2008). The
experiments also reveal that Nhl able to produce better improvement value compared

to Nh7 for all the datasets and a larger number of iterations able to give better

improvement value.

In multi-neighbourhood GDA, generally the results (see table 8.6) produce is better
than modified-GDA. However, the approach unable to outperform the best reported
result (i.e. Muller, 2008, see table 8.3), but it is able to compete with the Cogos e al.
(2008) result. In Exam-1, using c! as the initial value, the method able to produce 71%
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and 74% of improvement with 2000 and 5000 iterations respectively. While using c5
as the initial value, it produces 26% and 29% of improvement with 2000 and 5000
iterations respectively. Finally, using ¢20, the technique produce 8% and 12% of
improvement with 2000 and 5000 iterations respectively. The rest of the result is
shown in table 8.6. The experiment. shows that the use of multi-neighbourhood GDA
able to produce better results than modified-GDA. Additionally, using larger number of

iterations able to give better improvement value.

Table 8.6 The best found results using Multi-neighbourhood GDA

cl c5 c20
Dataset 2000 5000 2000 5000 2000 5000
iterations iterations iterations iterations iterations  iterations
Exam-1 7977 7052 6674 6401 6169 5918
(71%) (74%) (26%) (29%) (8%) (12%)
Exam-2 1510 738 756 652 581 533
(95%) (98%) (76%) (79%) (39%) (44%)
Exam-3 20987 18389 15458 14284 13086 12589
(75%) (79%) (42%) 47%) (23%) (26%)
Exam-4 - - - - - -
Exam-5 8209 5224 6462 4849 4283 4064
(93%) (95%) (66%) (75%) (36%) (39%)
Exam-6 37410 37035 30685 29220 27409 27480
(19%) (20%) (0.3%) (5%) (3%) (3%)
8922 6807 6055 5467 5334 5081
Exam-7 g6y (90%) (41%) (46%) (18%) (22%)
Exam-8 10350 9560 10117 9674 9604 9181
(88%) (89%) (30%) (33%) (11%) (15%)

(x%): show the percentage of improvement compared to the initial solution

8.4 Discussion

In graph heuristics the technique able to produce a competitive result compared with
other researcher results only when using high value of candidate list but suffer an
increase of computational times. For example, in Exam-1 using ¢20, the run takes
around 10,000 seconds and this dependent on the number of exams, rooms and
timeslots. An increase in the number of these variables would eventually increase the

computational times. This is because the candidate list will compare each variable and

choose the location that returns less cost values.
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In modified-GDA, the technique able to produce competitive results comparable to the
result in table 8.3. Generally, it produces a high percentage of improvement with cl.
The result shows that Nh1 able to give a better improvement value compared to Nh7.
This support our finding in chapter 6 that Nhl is superior compares to other
neighbourhoods in the experiments. In multi-neighbourhood GDA, the technique able
to produce competitive result compared to result in table 8.3. Furthermore, it is able to
produce better results than modified-GDA and this supports our finding in chapter 7
where multi-neighbourhood GDA able to produce better results than modified-GDA.

In our observation, we notice that the result produce by the improvement phase
dependent on the initial solution. Hence, having a good initial solution help to speeds
the search for a better solution. Furthermore, having a large number of iteration help
the algorithm to explore search space. Finally, based on the result shown in table 8.4,

8.5 and 8.6 we can classify the dataset based on the following category.

a) Time consuming exam: Exam-2, Exam-3 and Exam-7 are the most time
consuming datasets. This is because of the large number of exams to schedule as
well as a large number of timeslots and rooms to choose from which increases
the search time. Even though Exam-5 have a large number of exams (i.e. 1018),
it contains a small number of rooms to choose from.

b) Challenging exam: Exam-6 and Exam-4 the most challenging exam as we are
even struggling to produce a feasible solution. Both exams have a high conflict
density, additionally, in Exam-6 it has a large number of exams involve in
COINCIDENCE constraints. As Exam-4, it has the high number of exam involve
in the EXCLUSION constraint. This constraint alone forced the exam
(EXCLUSION) to be scheduled to four different timeslot. For Exam-4, we were
unable to produce a feasible solution.

¢) Highly constraints: in our opinion Exam-5 and Exam-8 are the most highly
constraints dataset. This is because of the exams that involve in multi period hard
constraints (e.g. examA AFTER examB and examA COINCIDENCE exam(C)

Even though with a different level of complexity on each dataset, our proposed method

able to works in producing a feasible solution and competitive results.
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85

Contributions

This work has presented a study of a real-world examination timetabling problem

from the ITC2007 competition examination track. The problem involves scheduling

exams into timeslots and rooms for eight datasets that have different constraints. The

contributions of this work are as follows:;

a)

b)

8.6

We have implemented the graph heuristic, modified-GDA and multi-
neighbourhood GDA to the ITC2007 datasets. These methods able to solve the
ITC2007 except for Exam-4.

We have shown that the proposed methods able to produce a competitive result
compared with other works reported in the literature.

We have classifies the datasets into three main categories that is time
consuming, challenging and highly constraint datasets. This information could

aid in understanding the dataset in order to produce a better result.

Conclusion

In this chapter, we have investigated a real world examination timetabling problem,

ITC2007 using graph heuristics, modified-GDA and multi-neighbourhood GDA. We

can conclude that the proposed method able to produce a competitive solution

compared to other reported works. Even though the proposed method unable to

outperform the best reported result (i.e. Muller, 2008) but the experiment support our

claim from the previous chapters that include:

a)

b)

In a single neighbourhood (i.e. modified-GDA), Nh1 proof able to give better
improvement value because of it explorative nature.

In multi-neighbourhood strategy (i.e. multi-neighbourhood GDA), it increases
the chance of producing better results than single neighbourhood.

A larger number of iterations increases the chances of producing better

solutions.
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Chapter 9

Conclusion and Future Research Directions

This chapter summaries the work reported in this thesis. Section 9.1 gives a summary
of the research that has been carried out. The scientific contributions are described in

Section 9.2. Section 9.3 and 9.4 outlines further research directions that may be

undertaken and final reflections of the research.

9.1 Research work summary

The investigated research is concerned with a real world examination timetabling
problem taken from the Universiti Malaysia Pahang (UMP). The UMP examination
timetabling process involves assigning exams to timeslots and rooms, and scheduling
invigilators. The investigated examination dataset contains additional constraints,
when compared to others constraints reported in the scientific literature. A comparison
of the constraints is presented in chapters 2 and 3. Additionally, we construct an

invigilator schedule, which has largely been ignored in the scientific community.

The UMP examination timetabling problem is solved in two phases, firstly scheduling
the exams into timeslots and rooms (exam-timeslot-room assignment), and secondly
scheduling the invigilators based on phase one. In solving the exam-timeslot-room

assignment, we present a formal model of the UMP problem in chapter 4. We have
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implemented graph heuristics with candidates lists in constructing an initial solution.
This work has been published in the European Journal of Operational Research, EJOR
(Kahar and Kendall, 2010a). Next, we present the formal model of the UMP invigilator
scheduling problem in chapter 5. The work is currently under review for the Journal of
Operational Research Society, JORS. We have also include additional constraints (in
addition to the original UMP invigilation constraints) considering the comments
reported in a survey by Awang et al. (2006). Based on these experiments (on
invigilators scheduling), the results reveal that the invigilator scheduling result is
dependent on the number of rooms being selected from the exam-timeslot-room
assignment phase. Henceforth, we concentrated only on improving the initial result of

the exam-timeslot-room assignment.

An improvement methodology involves modified-GDA and multi-neighbourhood
GDA approaches. The new method is designed with the timetable officer in mind as it
uses a simple to understand parameter for ease of operation. The modified-GDA
approach is described in chapter 6. The modified-GDA uses a simple to determine
parameter and is capable of adjusting the desired value, boundary and decay rate to
guide to search for better solution than the initial cost (while using good
neighbourhood heuristics). A statistical analysis, reveals that the choice of
neighbourhood heuristics, number of iterations and the initial solution plays a
significant role in producing a good quality solution. This work is currently under
review for the Journal of Operational Research Society, JORS. The results presented in

chapter 6, shows that the choice of the neighbourhood heuristics is very important.

We then extend the modified-GDA by presenting a multi-neighbourhood GDA
approach. This work is presented in chapter 7. The method uses more than one
neighbourhood in order to effectively explore the search space and improve the
solution. Furthermore, the multi-neighbourhood simplifies the operation of the
algorithm for the timetable officer by not having to determine the suitable
neighbourhoods. The multi-neighbourhood approach is able to generate better quality

solutions when compared to modified-GDA.
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Finally, we investigate the examination track of the Second International Timetabling
Competition (ITC2007) using the proposed methodology mention above. The
proposed method is able to produce competetive result when compared to other work

in the scientific literature.

9.2 Contributions

The overall research contributions can be categorised into contributions to the
scientific community and contributions to the institution (UMP). They are identified

below.

1)  Develop a formal model of the UMP examination timetabling problem:

Contribution to the scientific community: We develop a formal model of the

UMP exam-timeslot-room timetabling problem (see chapter 4) and the UMP
invigilator scheduling problem including additional invigilator constraints from
Awang et al. (2006) (see chapter 5). The exam-timeslot-room timetabling

problem contains new constraints which are different to other datasets

presented in the scientific literature.

Contribution to the institution (UMP): We have documented the exam-timeslot-

room and invigilator timetable requirements (constraints) which have never
been documented before in UMP, Furthermore, the formal model will be useful
for future assesment of the UMP examination timetable solution. Additionally,
we also consider extra constraints for the invigilator scheduling based on the
invigilator comments (Awang et al. 2006) which we believe closely reflect the

UMP invigilator scheduling needs.

2) Construction of initial solution:

Contribution to the scientific community: We have utilised graph heuristics that

call upon candidate lists for the UMP examination timetabling problem. The
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3)

approach is able to produce good quality solutions within reasonable
computational times, when compared to the UMP proprietary software. Some
of the interesting aspects of the work we report include:

e Candidate list feature that choose multiple resources (timeslot and room)
and selects the resources that contribute to lower penalties value. This
allows the algorithm to find a good initial solution, which is then used in
the improvement phase.

o The pre-determined room grouping allow for fast room(s) selection. It
also allows for minimising the spreading (F;) and splitting (F,) cost
penalty.

We also implemented the same approach to the ITC2007 dataset and it able to
produce competitive results when compared to other work reported in the

scientific literature.

Contribution to the_institution (UMP): Development of UMP examination

timetabling system, which includes assigning exams to timeslots and rooms,
and scheduling invigilators. The timetable produced complies with the

constraints which the UMP proprietary system fails to achieve.

Improving the initial solution:

Contribution to the scientific community: We have proposed a modified great
deluge algorithm (modified-GDA) to improve on the constructive heuristic

solutions for the UMP exam problem. The modified-GDA uses a single
parameter which benefits the timetable officer in operating the systems. The
methodology is able to produce good quality solutions when applied to the
UMP examination datasets. Additionally, we investigate great the deluge
algorithm parameter settings which includes different initial solutions, different
number of iterations and different neighbourhood heuristics for the modified-
GDA. Statistical analysis determines whether there are significant differences
between different parameters settings. The investigation revealed that the

choice of parameter plays an important role in the search.
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4)

9.3

We applied the modified great deluge algorithm with multi-neighbourhood
heuristics (multi-neighbourhood GDA) to the UMP exam problem. The multi-
neighbourhood GDA able to generate better quality solution when compared to
the original modified-GDA for the UMP examination problem. Additionally,
we investigated the neighbourhood heuristics (by removing some of the
neighbourhoods), revealing that it is best to use the best neighbourhood during
the search and is also worthwhile using the entire neighbourhood to encourage
exploration. The multi-neighbourhood simplifies the operation of the algorithm
for the timetabling officer, rather than having to determine the suitable set of
neighbourhoods. This is beneficial as in Kahar and Kendall (2010b), we show

that the choice of neighbourhood plays a major role in the search.

Contribution to the institution (UMP): Implementation of a modified-GDA and

multi-neighbourhood GDA approach that uses a simple parameter to allow easy

operation by the timetable officer.

Implementation to ITC2007 datasets

The graph heuristics with candidate lists, modified-GDA and multi-
neighbourhood GDA were implemented for the ITC2007 examination datasets.
This is to ascertain that the proposed methodology is able to work with another
exam timetabling problem. We are able to generate competitive results

compare to other results reported in the scientific literature.

Future research directions

It is recognised that a gap exists between theory and practice in examination

timetabling. Different institutions have different requirements (constraints) and it is

difficult to produce a common solution methodology. This thesis has focused on

solving a real world examination timetabling problem that includes scheduling exams

to timeslots and rooms as well as scheduling invigilators. We also investigate several

new methodologies for solving the problem. The results achieved are better than the

proprietary software currently used. The proposed methodologies are also effective on
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the ITC2007 datasets. However, there are several future research directions that we

identify below.

9.3.1 Improving the proposed approach

As seen in the previous chapters, this work has concentrated on attempting to solve the
UMP examination timetabling problem using graph heuristics, modified-GDA and
multi-neighbourhood GDA. The graph heuristics (chapter 4) are able to produce good
quality solutions, normally using a high candidate list value. However as the
candidates list size increased, the algorithm takes a considerable more computational
time. Even so, in real world situations the time to produce the examination timetable is
not usually time critical (within sensible limits). This is due to the fact that the process
of generating the examination timetable is normally carried out two to three month
before the exams take place. However, it is worth investigating ways of reducing the
running time (especially for the ITC2007 datasets). This could be done by including a
look-ahead mechanism that lists the available timeslot for the next exams to scheduled.
Additionally, having information of the spreads between scheduled exams and the next

to be scheduled exam would reduce the time of selecting timeslot with minimum

spreading penalty value.

The modified-GDA and multi-neighbourhood GDA approach, in the improvement
phase, allows the boundary, that acts as the acceptance level to dynamically change
during the search. Currently the boundary is set to change based on a constants value.
A further exploration can be done by implementing a dynamic based value during the
boundary tuning. This might include a dynamic desired value and dynamic boundary
value. These values could aid in exploring the search space. Morevover, a further
investigation on the multi-neighbourhood GDA could include combining different
neighbourhood heuristics. We believe that this could save computational time if

suitable neighbourhoods are combined in an intelligent ways
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9.3.2 Hybridisation

The proposed approaches are open for hybridisation with other methods. For example,
the hybridisation of graph heuristics with candidate lists together with fuzzy logic.
Fuzzy logic could be used to select the (next) exams to be scheduled instead of pre-
arranging them using the graph colouring method (i.e. Largest enrollment, largest
degree, etc). Additionally, future investigation on the graph heuristics with candidate
lists could involve hybridisation with meta-heuristic methods (e.g. hill climbing, great
deluge algorithm, etc). Possibilities include ways to partially schedule the exams using
graph heuristic (based on a pre-determined constrant) and using meta-heuristics to
improve the partially schedule exam based on a pre-determined number of
improvement cycles. Furthermore, hybridisation of the modified-GDA and multi-
neighbourhood GDA with tabu search could also be investigated. The tabu search
could be used to hold visited points in the search space and thus avoid cycling.
Alternatively, hold the unperforming neighbourhood heuristics in the multi-

neighbourhood approach.

9.3.3 Invigilator scheduling

In this research, we have developed a formal model for the invigilator scheduling as
well as included additional constraints in addition to the UMP original constraints.
Some further investigation could include investigating the optimal number of
invigilators required for an examination timetable which could help to minimise the
operational cost instead of selecting non-academic staff (as this takes them away from
other duties). It might also be worthwhile investigating automated system that is able
to assist in determining the effect of constraints on the objective value so that the effect
of performing swaps between the invigilators can be evaluated. Additionally, it could
provide a suggestion (or list of availabilities) in making moves or swapping the

invigilation duties.
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9.3.4 Dynamic timetabling system

Based on the discussion with the timetable officer, they often receive last minute
requests for changes to the timetable. This sometimes includes last minute examination
paper additions. Hence, the timetable officer could re-run the whole examination
timetable or simply insert the (late) requested exam into the current (complete)
timetable, aiming for minimal disruption. In the latter approach, it is worth
investigating ways of satisfying all hard constraints and minimising the penalty value,

with minimal disruptions to already schedule exams.

9.4 Final reflections

In this research, we bridge the gap between research and practice by investigating a
problem taken from Universiti Malaysia Pahang (UMP) that has several novel
constraints, in addition to those commonly used in the scientific literature. We have
implemented graph heuristics with candidate list, modified-GDA and multi-
neighbourhood GDA to solve the UMP examination timetabling problem. These
methods show able to produce better results than the proprietary software currently
used. With this, UMP now has access to a set of high-quality algorithms that were not
available before this research was undertaken. Moreover, the algorithm been shown to
be effective on other problems, particularly the ITC datasets. As such, the timetabling
community is able to benefit from the approaches presented in this work. We hope that

this work will motivate other researchers to further improve on the methodologies

presented in this thesis.
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Appendix A: UMP examination data file format and specification

The Universiti Malaysia Pahang examination timetabling dataset contain 5 files:

1.

e S

Course file (e.g. sem10708-crs.txt)
Student file (e.g. sem10708-stu.txt)
Timeslot file (e.g. sem10708-tslot.txt)
Room file (e.g. sem10708-room.txt)
Room distance (e.g. sem10708-dist.txt)

The descriptions of the following files are as follows:

1.

Course file. The course files contain information of the courses and total number of
students (enrolments). The file is in the following format:

<CourseCode> <Enrolment>

BAA1312 148
BAA2113 100
BAA2513 128.

The course data file is sorted in ascending order based on the <CourseCode>.

Student files. The student file listed the registered course of the particular students. This
file is used to generate the conflict matrix. The file is in the following format:

<StudentlD> <Course>
AA03002 BAA3223
AA03002 BAA3412
AA03002 BAA4513
AA03003 BAA3223
AA03003 BAA4223
AA03003 BAA4513
AA03030 BAA1312
AA03030 BAA3032

The student data file is sorted in ascending order based on the <studentID>.

Timeslot file. The timeslot files contain timeslot index, durations of timeslot (in minutes
and penalty of a particular timeslot (if any). The file is in the following format:

<TimeslotIndex> <Durations> <Penalty>

1 180 0
2 180 0
3 180 0
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4. Room file. The room files contain room code, room capacity and building code. The file
is in the following format:

<RoomCode> <RoomCapacity> <BuildingCode>

DKUO01 80 w
DKU02 80 \4
WBKI18 47 W

5. Room Distance. The files contain information of the room distance cost between the
rooms. For example, the penalty cost between DKUO1 and DKUOQ2 is ‘001°.

<RoomCodel> <RoomCode2> <DistanceCost>

DKUO! DKU01 000
DKU02 DKUO01 001
WBK18 DKU01 005
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Appendix B: UMP Invigilation data file format and specification

The Universiti Malaysia Pahang examination timetabling dataset contain 5 files:

Staffs file (e.g. sem10708-staff.txt)
Invigilator-Room file (e.g. sem10708-invi.txt)
Lecturer own exam file (e.g. sem10708-lectEx.txt)

The descriptions of the following files are as follows:

1.

Staffs file. The staff files contain information of the staff courses and the status (i.e.
academic staffs or administration staffs). The staff ID with status = 0 is an
administration staff while staff Id with status = | is an academic staff. The file is in the
following format:

<StaffID> <Status>
0006 1
0022 0
0028 1

The staff data file is sorted in ascending order based on the <StaffID>,

Invigilator-Room files. The invigilator-room file listed the required number of
invigilators for a particular room. The room need to be assigned with the required
number of invigilators. The file is in the following format:

<RoomCode> <Invigilator required>

DKUO1 2
DKUO02 2
WBKI18 2

The invigilator-room data file is sorted in ascending order based on the <RoomCode>.

Lecturers own exam files. The lecturers own exam files listed the course taught by the
lecturers. The file is in the following format:

<RoomCode> <LecturerlD>

BAAI1312 0689
BAA2113 0371
BAA2713 0169

The invigilator own exam data file is sorted in ascending order based on the
<RoomCode>.
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Appendix C: UMP semester1-200708 constructive result

N Candidates list five (¢ = 5) Candidates list one (¢ = 1)
[\] SD SD SD SD SD SD
LE LD LWD (LE) (LD) (LWD) LE LD LWD (LE) (LD) (LWD)
1 474 816 581 7.54 724 833 1098 19.34 13.27 14.81 16.88 15.05
2 667 879 639 682 723 8.12 15.75 14.54 15.19 1396 16.04 14.91
3 705 832 564 618 721 622 11.75 13.10 14.06 1495 16.25 18.77
4 545 830 6.17 528 599 6.63 18.02 14.61 1452 18.07 16.67 15.92
5 6.13 658 567 589 699 6.00 13.99 14.88 15.12 16.11 18.72 16.18
6 661 694 551 6.57 576 639 1729 1531 1456 16.06 13.78 16.96
7 499 765 829 6.32 751 597 16.50 1540 1581 12.86 16.72 17.53
8 579 823 6.17 6.72 826 129 1492 16.20 14.88 13.79 14.37 14.84
9 578 7.17 576 738 6.16 6.74 1592 17.07 20.66 15.87 17.61 17.79
10 569 712 616 732 729 7.10 11.55 15.60 1694 1532 17.89 16.00
11 536 599 559 798 797 6.12 15.05 13.71 1539 17.27 16.11 16.19
12 555 955 767 652 782 7110 16.17 14.14 1592 16.01 16.22 16.29
13 666 630 567 1750 6.65 6.16 15.84 14,67 1546 1577 1627 15.44
14 533 675 624 741 596 767 15.89 15.11 13.58 17.62 15.20 18.63
15 529 678 636 7.10 8.18 935 1843 1796 19.44 19.37 1597 16,75
16 671 733 556 8.13 7.18 584 1331 15.21 14.63 1538 13.21 14.33
17 577 734 584 644 642 6.19 1593 17.30 12.69 16.07 16.72 15.01
18 7.15 752 596 680 722 831 14.15 16.51 18.89 13.98 1746 14.41
19 6.57 904 542 6.71 6.61 8.99 13.65 13.72 13.89 1694 15.60 18.22
20 505 849 583 724 826 7129 1841 15.84 17.08 16.56 18.54 18.71
21 763 791 580 737 8.6l 6.47 16.35 1545 14.47 15.51 15.46 15.70
22 5.57 740 591 632 623 584 1585 17.36 1472 18.45 15.83 15.62
23 591 726 530 849 645 581 13.58 17.11 16.22 19.03 19.39 16.19
24 488 871 7.18 597 638 6.11 1480 15.77 17.99 20.74 17.47 17.23
25 642 848 590 6.55 6.03 6.21 1392 17.35 20.70 17.86 17.94 14.50
26 6.12 741 563 6.56 756 6.89 1237 17.07 14.23 17.85 15.66 14.63

27 548 630 7.03 7.77 644 797 17.07 15.71 17.27 15.88 1635 16.73
28 590 812 602 727 872 764 20.03 13.04 1508 16.60 1485 15.04

29 598 928 592 7.84 851 6.75 1620 17.07 1636 17.92 15.51 17.63
30 497 804 743 17151 864 7157 14.52 1795 1495 18.02 17.27 15.52
31 663 834 536 734 576 9.55 19.57 17.59 1291 19.35 17.83 14.57
32 798 964 581 658 7.11 7.08 14.07 14.52 17.14 1525 15.67 16.87
33 553 11.12 630 6.50 6.65 1710 16.16 14.67 19.02 17.20 15.60 15.93
34 6.11 773 530 645 693 6.12 16.53 16.82 14.22 13.26 15.16 18.79
35 6.59 8.74 6.23 6.34 6.77 6.78 1584 17.03 16.09 14.68 13.87 15.68
36 766 796 683 629 692 6.88 13.81 15.88 15.86 14.05 16.57 14.00
37 734 760 673 643 6.77 9.78 1679 15.41 16.88 14.17 17.72 17.90
38 628 831 536 7.85 6.51 6.28 1557 1590 16.09 17.77 14.07 17.57
39 6.14 738 708 692 731 568 1532 1493 17.76 12.66 14.24 16.53
40 640 7.15 505 7.14 816 549 1530 18.53 16.09 14.59 17.50 15.93
41 544 781 676 6.63 7.96 7.02 19.17 1828 1494 13,76 14.14 19.20
42 567 871 681 752 8.11 6.75 1344 16.78 17.44 16.38 18.59 14.77
43 606 7.14 635 627 749 849 1457 17.20 1572 1696 16.79 17.14
44 549 885 587 779 766 658 19.28 14.78 18.07 16.71 13.11 20.41
45 6.16 778 6.04 648 851 731 18.50 16.00 1792 14.68 1690 13.97
46 665 769 592 1754 7.89 6.01 17.13 1635 1143 1696 17.00 16.31
47 550 825 530 1760 6.19 726 1246 15.11 16.21 1393 15.68 15.02
48 631 6.8 541 648 7.13 7132 13.70 14.86 15.53 1591 17.78 15.09
49 669 648 624 695 747 6.89 1495 15.67 14.89 1596 13.12 14.34
50 507 705 592 7.50 8.11 6.52 15.15 17.23 13.00 15.76__15.10 17.87
Average 6.06 7.84 609 696 722 7.00 1551 1595 15.82 16.09 16.17 16.29
Var 0.57 09 044 043 070 1.05 440 2.02 390 326 235 237
Stdev 0.76 098 067 066 084 1.02 210 142 197 180 1.53 1.54
Min 474 599 505 528 576 549 1098 13.04 1143 12.66 13.11 13.97
Max 798 11.12 829 849 872 978 20.03 1934 20.70 20.74 1939  20.41
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Appendix D: UMP semester1-200809 constructive result

N Candidates list five (¢ = §) Candidates list one (¢ = 1)
0 SD SD SD SD SD SD
LE LD LWD o (D) wwD) LE LD LWD /b D) wwD)
1 7.72 9.56 7.22 7.51 9.29 8.79 16.50 16.27 19.73 2047 18.02 16.12
2 8.72 10.07 6.71 1044 1096 9.05 17.60 18.26 15.58 14.71 20.54 18.79
3 7.82 1045 7.76  10.54 7.79 8.48 15.69 17.11 16.79 17.87 18.11 16.18
4 7.60 9.33 7.79 8.18 10.05 8.63 15.66 1843 1465 17.57 19.51 18.49
5 8.44 9.51 8.13 8.03 9.86 9.67 17.09 17.71 1596 2045 16.71 16.91
6 9.20 9.79 7.61 10.67 9.04 9.07 2066 1737 17.77 1834 20.11 16.82
7 7.21 9.18 6.98 8.86 10.51 10.39 15.87 17.34 16.50 19.44 18.39 18.68
8 851 10.15 8.15 10.56 9.83 9.13 17.39  17.53 18.43 18.10 19.30 16.76
9 7.73 9.17 7.09 10.12 9.26 943 18.70 1894 19.03 16.87 17.26 19.94

10 7.04 845 9.45 8.27 1037 7.58 19.63 17.72 17.89 1859 17.02 18.33
11 925  9.65 8.07 868 10.29 7.51 14.74 15.16 17.56 19.66 17.05 17.29
12 9.14 1048 675 9.59 10.37 8.65 1520 2041 1534 20.13 18.18 20.33
13 786  9.65 939 971 9.43 10.14 1825 1742 1683 15.09 17.26 15.79
14 9.23 8.58 793 958 8.70 8.06 17.82 1675 16.76 17.09 20.58 20.74
15 825 10.82 6.76  10.34  9.27 9.11 16.83 19.16 1495 16.11 1579 16.65
16 887 930 809 976 852 9.49 1818 1674 1892 16.89 19.52 19.10
17 937 919 1761 888 9.79 8.78 18.81 18.73 16.82 15.00 17.61 18.41
18 806 929 752 976 958 10.22 19.65 1797 1756 1723 1740 17.35
19 765 936 886 11.77 9.56 8.13 18.50 20.85 20.08 15.00 18.12 16.71
20 7.06 11.23 759 956  9.68 9.73 1693 18.65 16.64 1830 18.86 17.87
21 796  9.75 7.56  8.01 7.29 8.14 16.85 17.13 18.13 1793 16.93 16.08
22 9.40 10.24 875 958  8.89 9.27 1525 1630 16.01 2075 21.10 18.83
23 878 950 830 7.87 11.15 8.07 1639 17.29 1834 1651 20.67 15.37
24 798 1095 6.97 1022 933 9.08 1573 1895 2166 1832 15.11 18.71
25 729 8.6l 749 925 9.71 9.49 17.25 21.09 19.26 19.57 15.87 18.84
26 734 1203 848 1142  9.65 8.09 1692 1829 17.14 17.65 18.63 16.54
27 8.12 1105 815 944 828 9.35 17.87 20.11 17.17 1897 19.12 17.60
28 795 1139 814 956 12.69 8.41 17.51 1694 18.09 1835 19.74 17.74
29 8.08 892 969 915 938 8.67 1997 1753 1693 2044 19.90 19.08
30 7.88 8.55 826 878 10.81 8.48 1743 1448 1636 19.28 16.21 19.48
31 9.16 10.87 730 7.69 10.97 8.65 18.38 17.14 1923 1550 19.19 17.29
32 724 972 741 1025 9.64 10.56 15.82 22,69 17.03 1567 16.70 18.31
33 7.82 847 828 1039 874 8.54 1693 1681 1897 17.02 17.04 21.09
34 8.64 855 890 9.20 10.07 9.27 1841 1652 1931 1972 16.05 16.37
35 7.10 9.84 828 9.01 9.13 8.03 15.61 16.81 1627 1732 1827 18.23
36 8.68 1010 823 922 996 9.33 17.14  17.21 1620 19.82 16.14 18.21

37 7.46 8.79 9.07 859 9.56 8.81 1585 15.60 15.73 19.37 16.27 17.79
38 8.62 9.40 7.47  9.07 9.01 9.72 18.44 18.04 1794 1824 19.63 17.61
39 8.09 1114 7.64 8.31 9.81 8.31 19.53 1851 1623 20.41 1699 18.03
40 8.05 8.93 6.61 957  9.65 8.43 20.11  17.60 1438 20.10 17.69 15.74
41 7.17 949 777 924 957 8.75 23.11 1852 17.19 17.69 18.46 19.61

42 847 907 764 951 9.36 8.84 1692 1933 1568 19.26 17.62 17.09
43 848 9.17 768 898 879 9.05 1524 19.19 17.66 14.64 18.57 15.41
44 775 1199 693 10.18  9.73 9.44 1777 20,74 17.17 1637 16.14 16.36
45 7.97 11.03 7.65 832 10.17 8.45 16.76 19.18 1545 18.61 19.74 16.67
46 728 9.02 833 933 10.12 7.92 17.01 1731 13.89 19.20 16.36 19.11
47 8.50  9.65 7.84 1096 943 8.36 1828 19.02 1945 1896 17.73 16.97
48 749 1026 779 959 9.6 8.37 17.88 1673 16.06 17.65 19.21 19.07
49 8.32 8.32 8.10 1043 9.29 8.74 16,57 17.26 2145 1840 19.96 17.09
50 746 747 794 10.14 11.00 7.00 17.37 1652 1829 1891 1527 15.80
Average  8.11 9.71 7.88 944 9.5 8.83 1748 1795 1733 18.07 18.03 17.75
Var 046 098 050 091 0.79 0.55 260 244 286 283 240 1.97
Stdev 068 099 0.71 095 0.89 0.74 1.61 1.56 1.69 1.68 1.55 1.40
Min 704 747  6.61 7.51 7.29 7.00 1474 1448 1389 1464 1511 15.37
Max 9.40 12.03 9.69 11.77 12.69 10.56 23.11 2269 2166 2075 21.10 21.09
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Appendix E: UMP semester1-200708 modified-GDA results

Z
o

Nh1- 1500 iterations

Nh1 — 3000 iterations

Nh2 - 1500 iterations

16.68 13.74 1030 7.82 16.68 13.74 1030  7.82 16.68 13.74 10.30 7.82

1 58 595 555 5.1 658 556 465 424 16.68 13.54 103 7.82
2 598 647 5.04 5.1 539 495 5.06 449 16.68 13.54 103 7.82
3 6.41 6.1 539 481 619 545 488 4.64 16.68 13.57 103 7.82
4 6.46 589 514 515 544 546 477 458 16.68 1354 103 7.82
5 6.77 6.18 561 523 512 575 5.2 4.48 16.68 13.54 103 7.82
6 7.18 622 522 514 600 526 521 4.28 16.68 135 103 7.82
7 6.3 6.66 517 479 5.56 5.7 458 4.61 16.68 135 103 7.82
8 633 6.18 48 517 592 551 518 453 1668 13.53 103 7.82
9 644 613 513 521 584 547 5.2 4.25 1668 13.53 103 7.82
10 7.03 584 54 49 587 578 462 4.63 1668 13.53 103 7.82
11 6.72 6.1 585 4.6 572 543 441 4.32 1668 13.52 103 7.82
12 6.13 603 576 4.82 600 538 504 4.58 16.68 13.52 103 7.82
13 6.68 597 533 474 540 571 4.7 4.61 16.68 13.53 103 7.82
14 6.7  6.25 55 5.04 564 539 488 431 16.68 13.54 103 7.82
15 6.52 6.18 531 54 509 573 508 453 1668 13.54 103 7.82
16 6.63 594 564 504 563 565 499 457 16.68 13.53 103 7.82
17 607 63 493 46 5.51 5.56 5.18 443 16.68 1346 103 7.82
18 6.63 628 503 472 6.01 541 504 443 1668 13.52 103 7.82
19 6.06 5.7 583 5.02 598 532 512 498 1668 13.52 103 7.82
20 6.54 59 523 4.8 627 546 4.88 4.6 1668 13.52 103 7.82
21 6.53 58 512 S.16 626 524 507 4.66 16.68 13.52 103 7.82
22 678 598 497 5.006 580 518 478 4.73 16.68 13.54 103 7.82
23 6.68 6.64 556 5.04 583 534 529 4.8 16.68 13.52 103 7.82
24 682 6.19 51 517 578 612 499 471 16.68 13.53 103 7.82
25 703 658 516 3543 623 578 524 436 16.68 13.53 103 7.82
26 641 625 554 5.1 614 578 492 489 16.68 13.54 103 7.82
27 6.86 675 498 5.02 581 546 493  4.65 16.68 13.52 103 7.82
28 6.64 624 515 499 579 548 499 475 16.68 13.52 103 732
29 716 6.04 531 5.18 646 513 513 47 1668 13.53 103 7.82
30 645 6.69 521 5.1 602 552 496 4.63 1668 13.52 103 7.82
k) 651 6.61 516 502 542 563 486 446 16.68 13.53 103 7.82
32 652 577 583 501 640 583 517 452 16.68 13.54 103 7.82
33 698 5.68 552 5.09 582 534 503 4.88 16.68 13.53 103 7.82
34 7.02 6.2 5.06 5.22 5.52 5.2 5.35 4.7 1668 13.52 103 7.82
35 633 638 569 539 587 597 476 489 16.68 1352 103 7.82
36 694 6.18 587 5.3 603 598 449 4.68 16.68 13.54 103 7.82
37 6.7 677 559 479 593 587 517 455 16.68 13.51 103 7.82
38 7.1 6.35 564 4.89 660 578 477 4.83 16.68 13.54 103 7.82
39 7.24 685 534 477 5.94 5.3 4.79 4.7 1668 13.54 103 7.82
40 67 611 583 524 5.63 3.7 489 496 16.68 13.48 103 7.82
41 6.6 588 538 519 627 524 476 4.78 16.68 13.52 103 7.82
42 6.87 628 613 497 6.21 575 473 AT 1668 13.53 103 7.82
43 703 679 569 507 537 5883 482 498 1668 13.53 103 7.82
44 6.4 599 6.08 537 6.15 53 562 4.46 16.68 13.52 103 7.82
45 6.33 633 589 499 585 5.87 5.2 4.76 16.68 13.54 103 7.82
46 6.83  6.56 55 482 623 514 476  4.87 1668 13.54 103 7.82
47 6.99 644 574 537 582 525 482 474 16.68 13.52 103 7.82
48 571 653 571 563 6.14 537 533 434 16.68 13.51 103 7.82
49 685 661 577 512 552 536 527 473 16.68 13.52 103 7.82
50 685 6584 568 529 567 557 522 436 16.68 1354 103 7.82
Min 571 568 480 4.60 5.0 495 441 424 16.68 13.46 1030 7.82
Max 724 685 613 563 660 612 562 498 16.68 13.57 10.30 7.82
Ave 663 625 544 5.06 587 553 498 4.62 16.68 13.53 1030 7.82
Stdev 035 032 032 022 035 026 024 020 000 0.02 000 0.00
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Appendix E: UMP semester1-200708 modified-GDA results (cont...)

Nh2 - 3000 iterations

Nh3- 1500 iterations

Nh3 - 3000 jterations

No.
© 16.68 13.74 10.30 7.82 16.68 13.74 1030 7.82 16.68 13.74 10.30 7.82
1 16.68 13.52 103 7.82 769 7.14 568 6.02 743 688 567 6.09
2 16.68 13.53 103 7.82 7.24 7.3 509 584 678 6.63 526 593
3 16.68 13.52 103 7.82 874 7.16 827 593 818 690 804 596
4 16.68 13.54 103 7.82 8.71 7.1 522 6.06 673 649 735 5.71
5 16.68 13.54 103 7.82 6.91 684 913 6.26 636 682 685 6.08
6 16.68 13.51 103 7.82 7.13 695 697 585 816 7.00 567 556
7 16.68 13.53 103 7.82 803 698 5384 594 694 7.17 628 551
8 16.68 13.53 103 7.82 846 733 565 5.9 6.88 6.50 6.2 5.97
9 16.68 1353 103 7.82 835 641 6.62 5.11 6.66 662 785 545
10 16.61 1353 103 7.82 7.51 699 6.17 5.57 7.02 738 608 6.09
11 16.68 13.52 103 7.82 10.61 6.66 6.79 6.02 754 684 599 5.78
12 1668 13.53 103 7.82 7.1 7.07 59 6.1 823 706 541 5.31
13 16.68 1353 103 7.82 936 717 794 531 8.81 645 621 5.67
14 16.68 13.55 103 7.82 804 695 539 6.13 6.88  6.61 576  5.69
15 16.68 1352 103 7.82 739  7.02 582 5.57 873 703 799 583
16 1668 1353 103 7.82 8.2 731 584 592 937 705 537 575
17 16.68 13.55 103 7.82 9.18 737 853 596 683 714 665 584
18 16.68 1354 103 7.82 738 717 546 6.07 685 7.09 563 547
19 16.68 13.53 103 7.82 10.3 723 776 6.08 717 720 566 622
20 16.68 1352 103 7.82 7.7 7.12 6.57 6.62 865 678 786 5.07
21 16.68 1352 103 7.82 805 731 598 538 6.61 671 626 547
22 16.68 1352 103 7.82 9.16 6.9 682 633 704 694 566 5.89
23 16.68 13.53 103 7.82 796 657 527 6.62 849 622 557 585
24 16.68 1353 103 7.82 736 7.1 623 583 726 670 522 534
25 16.61 1352 103 7.82 993 688 7.14 5.76 749 688 564 583
26 1668 1352 103 7.82 744 645 621 6.12 7.06  6.62 6.9 5.75
27 1668 13.53 103 7.82 6.9 6.62 6.08 5.89 722 702 621 5.75
28 1668 1353 103 7.82 828 722 564 6.12 9.58  6.91 533  6.02
29 16.68 13.54 103 7.82 935 745 619 594 6.76  6.95 7.4 5.78
30 1668 1353 103 782 939 694 588 637 633 653 569 574
31 16.68 1353 103 7.82 819 801 581 6.03 74 649 779 594
32 1668 1353 103 7.82 6.58 6.78 57 6.04 666 686 564 598
33 16.68 1353 103 7.82 1039 7.03 632 593 7.1 732 555 5.78
34 1668 1352 103 7.82 9.09 725 557 6.07 687 618 775 572
35 1668 1353 103 7.82 7.43 7.1 6.18 6.01 775 669 685 594
36 1668 1353 103 7.82 7.73 744 564 5.65 698 639 595 5.62
37 16.68 1352 103 7.82 8.13 723 618 6.58 696 7.05 575 6.31
38 1668 1353 103 7.82 727 721 798 63 7.12 687 627 549
39 1668 13.52 103 7.82 949 683 6.16 6.31 6.7 705 535 5.56
40 16.68 1352 103 7.82 7.71 708 798 5.62 7.17 673 553 5.94
41 1668 1352 103 7.82 707 686 649 5.58 756 670 566 5.86
42 1668 1353 103 782 7.8 6.94 584 591 727 685 571 592
43 1668 1351 103 7.82 719  7.03 601 581 737 6.96 5.7 5.54
44 1668 1352 103 7.82 7.42 6.6 7.16 593 7 6.93 6.4 5.88
45 16.68 13.52 103 7.82 897 6.89 631 594 8.18 674 519 595
46 16.68 13.51 103 7.82 692 685 742 6.02 662 732 513 556
47 1668 1353 103 7.82 838 721 6.06 594 654 686 596 549
48 16.68 1353 103 7.82 839 771 573 592 626 7.11 634 6.22
49 16.68 1353 103 7.82 928 644 522 59 8.51 633 511 6.05
S0 1668 1353 103 7.82 772 696 588 577 736 685 513 502
Min 16,61 13.51 10.30 7.82 658 641 509 5.11 626 6.8 511  5.02
Max 16.68 13.55 10.30 7.82 1061 8061 913 6.62 958 738 804 631
Ave 1668 13.53 10.30 7.82 8.18 7.04 635 596 735 683 613 576
Stdev  0.01 0.00 0.00 0.00 1.00 031 093 030 078 028 085 027
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Appendix E: UMP semester1-200708 modified-GDA results (cont...)

Nh4 - 1500 iterations

Nh4 - 3000 iterations

Nh6-1500 iterations

No.
16.68 13.74 10.30 7.82 16.68 13.74 1030 7.82 16.68 13.74 1030 7.82
1 993 1046 726 6.18 9.69 8.79 6.96 6.25 11.97 12.02 933 6.57
2 9.59 10,68 7.11 6.08 938 10.23  6.99 6.37 1,53 11.71 947 17.02
3 10.06 10.83 7.02 6.51 10.64 9.42 6.8 6.06 134 1133 947 7.00
4 10.52 1068 6.92 6.3 10.07 9.57 744 6.25 13.02 11.59 947 17.00
5 104 1118 7.1 6.4l 9.85 9.72 6.98 6.08 1322 11.53 933 7.02
6 10.02 10.72 8.28 6.59 10.69 10.05 7.1 5.9 13.23 11.77 947 17.00
7 10.16 11.02 6.96 6.48 945 999 7.03 6.14 11.64 11.55 933 7.00
8 10.02 11.27 791 6.53 10.35 9.55 6.89 6.16 11.31 11.54 933 17.00
9 10.38 1141 8.87 6.22 10.13  9.86 6.76 6.12 1.5 11.51 933 7.02
10 11.22 1111 745 6.14 9.94 9.7 7.62 6.45 1.66 1132 933 7.00
11 977 1132 696 6.21 10.25 10.01 696 6.12 11.56 1148 933 17.00
12 94 10.61 7.54 6.33 10.44 1036 6.73 6.16 11,52 1195 947 7.02
13 10.04 11.06 6.93 6.41 10 10.07 729 6.26 11.66 11.46 947 7.00
14 10.03 1145 6.72 6.39 9.58 9.72 72 645 11.41 12 933 17.02
15 10.18 10.68 7.14 6.28 10.01 9.76 7.21 6.39 11.83 11.35 947 7.02
16 10.44 11.04 7.7 6.3 10.27 9.65 7.12 6.3 11.32 11.3 933 7.00
17 10.15 1093 7.53 6.38 10.5 9.89 6.75 6.32 11.69 11.83 933 7.02
18 1046 109 7.78 6.61 10.34  9.65 7.63 6.33 11.19 1L.79 933 17.00
19 11.34 1098 7.54 6.67 11.92 945 737 6.2 1299 11.53 947 6.96
20 10.16 1143 735 6.63 10.51 10.87 7.78 6.29 11.99 11.52 933 7.00
21 10.08 1094 7.19 6.47 10.22  9.07 706 6.2 13.17 11.56 933 7.08
22 10.36 1093 6.52 6.71 9.9 9.84 746 6.21 11.97 1191 947 6.96
23 9.81 10.79 6.77 6.94 10.85 10.15 7.11 6.91 11.24 11.8 933 6.76
24 10.06 11.19 7.7 6.31 10.28 10.03 6.59 5.96 11.64 11.59 933 17.00
25 11.18 1197 798 6.1 9.96 9.68 7.06 6.48 13.02 11.25 933 7.00
26 9.82 1141 1756 647 893 10.37 6.93 6.39 1299 1147 933 7.00
27 10.05 11.19 7.55 6.75 887 9.73 7.04 6.15 134 1201 933 7.00
28 11.59 10.68 6.98 6.54 9.71 9.87 6.57 6.09 11.41 11.54 933 7.00
29 1.3 10.38 6.87 7.07 932 10.04 7.69 6.07 11.62 119 947 7.00
30 1007 11.24 7.12 6.38 10.19 10.13  6.69 6.19 11.83 1207 947 17.00
31 1063 11.16 7.03 6.23 9.68 9.51 6.47 6.44 11.27 1163 933 7.02
32 10.51 10.66 7.46 6.69 10.23  9.96 7.3 6.51 11.77 11.53 933 17.00
33 985 1097 793 6.55 969 10.89 6.84 6.28 12.11 11.48 933 7.00
34 11.32 107 7.52 6.39 9.11 10.15 7.2 6.36 1299 11.39 933 7.00
35 11.39 10.64 7.28 6.47 10.17 10.6 6.83 6.39 11.34 11.78 933 17.02
36 10.13 10.84 7.61 6.39 975 1044 7.17 6.09 13.02 11.79 933 17.02
37 9.86 11.13 792 647 10.01 103 7.32 6.35 13.17 11.64 947 17.00
38 10.61 11.01 7.58 6.31 10.86 1034 6.79 6.36 11.25 1146 933 7.00
39 10.49 1129 7.18 6.85 10.35 10.17 7.1 6.65 11.57 11.74 933 17.02
40 99 1088 6.61 6.5 995 10,78 7.06 6.29 13.43 11.36 933 7.02
41 1026 11.13 7.08 6.68 962 103 725 6.15 13.4 11.55 933 7.00
42 10.49 10.61 7.38 6.57 936 10.21 6.85 6.31 11.57 1197 933 7.02
43 10 11.22  7.28 647 10.32 10.16 6.95 6.36 13.23 11.6 933 7.00
44 10.37 11.83 733 6.38 10.82 10.24 7.61 6.31 11,34 1165 933 7.02
45 10,32 10.63 6.95 6.35 10.3 10.05 738 6.27 11.41 1132 947 17.02
46 991 10.88 691 6.53 993 998 7.12 6.05 1.59  11.7 947 17.00
47 9.64 11.13 743 6.66 10.17 1069 6.89 6.62 1299 1168 933 7.08
48 11.22 1071 6.9 6.4 10.5 1025 724 6.27 1299 11.63 933 7.02
49 11.96 11.16 7.03 6.42 9.78 10.62 6.99 6.54 13.4 11.6 933 6.96
50 9.7 1077 1731 644 10.48 10.79  7.36_ 6.08 11.57 11.76 933 7.00
Min 940 10.38 6.52 6.08 887 879 6.47 590 11.19 11.25 933 6.57
Max 11.96 11.97 8387 7.07 11.92 10.89 7.78 6.91 13.43 12,07 947 17.08
Ave 1034 11.00 732 646 10.07 10.03 7.09 6.28 12.15 11.63 937 6.99
Stdev 0.57 032 044 020 0.54 044 030 0.18 0.80 02! 0.06 0.07
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Appendix E: UMP semester1-200708 modified-GDA results (cont...)

Nh6 - 3000 iterations

Nh7 - 1500 iterations

Nh7-3000 iterations

No.
16.68 13.74 10.30 7.82 16.68 13.74 1030 7.82 16.68 13.74 1030 7.82
1 13.17 11.69 933 7.02 749 1069 631 5.2 7.06 5.9 563 4.14
2 11.74 1169 947 7.02 937 1147 591 497 807 779 489 499
3 134 11.79 947 17.00 8.84 1221 6.17 5.19 7.52 727 494 452
4 11.78 11.66 9.47 7.00 9.08 11.86 589 525 842 784 509 4.21
5 11.68 11.56 947 6.96 779 1128 52 551 849 641 49 433
6 1141 10.86 9.47 7.00 938 1045 535 5.02 897 797 532 4.29
7 11.8 1.5 933 7.00 9.97 944 559 495 7.73 826 586 4.82
8 13.43 11.64 933 7.00 10.34 1031 6.05 5.09 8.8 8.08 6 4.84
9 13.02 11.85 933 7.08 11.25 1129 558 5.38 9.77 925 4.54 4.68
10 11.73 12 947 7.00 1297 10.57 567 583 10.64 938 563 4.78
11 1343 11.58 933 6.96 12.14 1046 582 6.26 9.61 9.6 5.62 4.81
12 11.3 11.7 947 641 11.62 10.5 6 5.66 10.33 991 634 5.13
13 13.23 11.8 933 7.02 1256 1125 6.1 5.66 9.51 935 6.11 4.64
14 11.57 11.58 9.47 17.00 12.15 1.7 6.07 5.5 10.57 854 531 4.53
15 11.24 115 933 7.02 11.66 11.3 6.55 5.39 10.58 886 S5.11 5.13
16 134 11.58 947 7.00 11.54 1078 6.29 5.22 1047 9.04 588 5.02
17 11.66 1.5 947 7.00 11.42 1038 6.53 5.96 10.84 9.65 511 482
18 11.16 114 947 17.00 1263 1222 691 5.68 1241 938 553 478
19 13.17 11.7 947 6.96 9.83 11.6 6.22 593 11.85 11.07 532 529
20 11.68 11.75 933 7.00 11.55 10.01 581 5.68 13.57 10.51 6.03 55
21 11.63 1.5 933 7.00 13.09 1159 6.83 5.29 1043 959 531 52
22 11.64 11.76 933 7.02 1147 11.16 6.78 495 12.66 9.54 54 479
23 134 11.53 947 7.00 12.29 11.1 6 5.53 11.79 1029 6.29 442
24 1.7 1.5 933 7.02 1342 10.55 5.87 5.51 1243 994 5.8 4.5
25 1.2 1156 947 17.02 1248 10.84 571 548 1225 744 6.13 437
26 13.23 11.51 933 6.96 1269 1146 7.06 5.26 745 1056 546 5.29
27 13.23 1143 947 7.00 12.21 114 635 493 7.83 10.65 5.52 4.84
28 11.56 11.65 933 7.00 13.54 1099 6.63 5.27 815 993 642 543
29 11.64 1132 947 7.00 1293 1038 573 548 797 10.53 534 5.07
30 1343 1139 933 7.00 11.26 10.71 6.41 549 7.52 1025 5.72 541
31 134 1109 933 696 1266 11.15 7.28 5.68 11.01 812 511 4.89
32 134 1154 933 17.00 14.05 10.83 6.67 5.67 878 768 553 4.77
33 134 1165 947 7.00 10.75 10.81 5.69 5.06 8.71 7.65 559 499
34 13.17 11.85 933 17.00 14.12 1146 6.63 4.61 9.87 7.78 536 5
35 134 11.58 933 7.00 12.15 987 6.73 5.67 9.58 8.6 536 5.02
36 13.22 1197 947 6.21 11.25 1044 69 523 9.09 7.79 571 4388
37 12,06 11.61 947 7.00 1526 1031 693 4.7 11.1 942 567 427
38 11.37 11.74 933 7.00 13.95 1097 6.07 6.09 103 942 585 5.15
39 11.85 11.56 947 7.02 11.34 11.73 651 556 13.17 927 646 5.16
40 1299 1191 933 7.12 1.75 1197 6.09 532 1221 838 593 544
41 11.55 11.84 933 7.00 1.7 1094 591 546 11.12 897 508 525
42 11.67 1144 933 7.00 11.59 1049 6.25 5.08 10.01 851 559 485
43 1299 1203 947 7.02 1439 11.57 6.16 534 11.65 8.09 6.32 5.6
44 11.66 1237 933 7.00 14.16 1059 6.84 498 13 8.3 5.77 56
45 1.7 1124 947 7.00 1474 10.72 648 5.68 10.92 952 5.15 49
46 11.68 1146 933 7.02 1294 11,72 64 548 13.4 9.6 5714 4.73
47 11.41 11.39 947 6.96 1227 1229 58 5.13 1393 1049 54 482
48 13.22 11.58 933 7.00 12.56 11.67 5.7 545 13.19 988 4.81 4.8
49 134 1146 947 7.00 1322 1196 6.6 545 1237 1033 596 4.88
50 11.72 _11.72 947 17.00 11.56 1.3 6.65 5.09 1262 9.88 543 4.52
Min 11,16 10.86 9.33 6.21 749 944 520 4.61 706 590 454 4.14
Max 1343 1237 947 17.12 1526 1229 7.28 6.26 1393 11.07 646 5.60
Ave 1234 11.61 940 698 1191 11.05 6.23 5.39 10.39 9.01 557 4.88
Stdev 0.86 024 007 0.14 169 064 047 0.34 1.91 1.15 044 036
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Appendix E: UMP semester1-200708 modified-GDA results (cont...)

No Nh8 - 1500 iterations Nh8 — 3000 iterations Nh9-1500 jterations
16.68 13.74 1030 7.82 16.68 13.74 1030 7.82 16.68 13.74 10.30
1 821 791 17.04 6.18 79 8.15 694 6.28 941 9.5 6.17
2 855 8.56 7.06 637 804 839 6.66 6.08 794 757 6.26
3 7.86 8.3 73 637 826 8.58 727 5.77 872 838 6.03
4 82 849 724 644 9.59 921 7.06 6.06 781 874 7.3
5 8.85 867 734 6.75 839 792 1706 7 846 741 6.36
6 874 777 6.88 637 898 8.06 703 6.25 7.65 852 642
7 8.76 9.01 6.7 637 821 835 681 6.37 7.86 8.12 7.04
8 805 801 6.89 622 845 8.34 6.67 6.39 77 179 6.12
9 8.12 873 6.71 6.3 842 8.85 7.1 6.59 86 8.08 6.09
10 8.51 872 7.75 637 879 8.77 725 642 8.27 842 6.51
11 9.08 8.37 7.1 6.75 827 17.73 122 6.75 842 815 6.04
12 797 8.81 7.1 643 773 799 697 6.29 7.75 831 573
13 889 891 7.13 6.44 857 891 7.16 6.44 7.95 7.5 6.3
14 8.13 82 7.82 1713 74 1777 744 6.66 753 727 597
15 8.75 853 744 65 792 831 719 6.75 789 786 6.18
16 837 824 6.65 6.56 882 862 7.8 6.69 7.87 7 598
17 768 881 7.17 6.66 7.8 8.43 6.7 6.37 732 1769 6.14
18 829 855 7.02 6.75 832 878 7.15 5.84 81 915 6.76
19 8.54 826 6.71 637 803 9.12 1735 6.75 791 691 6.06
20 8.66 8.22 7.1 675 816 7.76 692 6.28 892 884 633
21 859 874 727 6.5 773 829 723 6.06 8.08 8.09 5.73
22 8.14 8.02 721 688 816 8.74 17.18 6.56 822 832 543
23 852 856 1755 622 9.11 9,17 698 6.88 845 884 581
24 948 9.18 7.14 637 881 8.09 759 6.37 79 132 691
25 911 776 728 6.75 896 798 7.05 6.66 758 7.87 6.61
26 854 831 705 648 879 8.09 742 6.66 775 826 6.08
27 786 842 702 6.28 848 834 765 6.44 753 764 6.5
28 8.04 937 6.64 675 8.1 87 1762 6.75 829 832 5.5
29 853 821 7.81 6.5 855 8.34 7.02 637 7.68 93 6.15
30 847 172 1739 6.75 845 8.17 6.81 6.75 893 811 654
31 8.51 927 6.96 6.75 828 837 671 6.75 854 7.18 6.4t
32 9.06 8.35 7.7 6.44 8.26 82 696 6.28 775 833 654
33 869 838 745 6.75 849 8.26 68 6.66 827 751 6.86
34 851 7.87 6.84 637 787 792 746 6.28 847 17.16 6.18
35 8.88 8.71 7.1 6.39 8.14 891 697 6.75 823 866 7.02
36 849 8.11 6.82 675 8.06 8.78 7.1 6.75 753 746 7.05
37 806 852 7.53 6.66 872 844 746 6.96 882 786 6.68
38 8.06 8.18 736 628 8.06 85 734 6.28 84 7.66 5.53
39 83 826 7.05 648 8.18 8.96 7.1 6.39 885 791 6.7
40 809 8.53 7.66 665 866 847 699 6.28 8.17 8.81 5.89
41 87 817 759 6.66 89 8.18 7.03 6.75 9.17 911 573
42 829 828 6.71 6.59 8.46 882 734 6.75 907 746 649
43 82 822 1769 675 92 7.83 722 6.95 921 796 722
44 807 9.16 736 705 836 892 7.14 6.75 857 794 6.08
45 872 862 692 637 8.06 851 735 6.44 822 728 588
46 905 798 7.75 6.44 797 793 75 6.75 761 888 642
47 857 876 7.18 6.39 8.24 8.8 728 6.56 841 913 6.09
48 838 847 728 6.44 862 868 782 734 8.11 899 534
49 809 822 7.03 6.75 768 821 734 6.37 828 874 622
50 81 829 766 638 844 8.17 74 6,38 848 977 5.69 .
Min 768 7.72 6.64 6.18 740 773 6.66 5.77 732 691 534 544
Max 948 937 782 7.13 9.59 921 7.83 7.34 941 9.77 1730 6.72
Ave 845 843 720 6.55 836 842 7.17 6.52 8§21 8.13 6.26 6.02
Stdev  0.38 0.39 0.33 022 0.43 039 0.28 0.30 0.50 0.68 0.46
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Appendix E: UMP semester1-200708 modified-GDA results (cont...)

Zz
o

Nh9 - 3000 iterations

Nh10 - 1500 jterations

Nh10-3000 iterations

16.68 13.74 1030 7.82 16.68 13.74 10.30 7.82 16.68 13.74 1030 7.82

1 8.89 721 587 3536 8.82 884 741 6.98 8.52 887 7.09 6.65
2 8.05 78 576 6.04 846 844 744 6.92 8.89 843 738 594
3 82 774 571 6.17 91 897 679 679 . 853 802 688 628
4 7.16 847 59 595 8.85 93 745 6.73 797 815 745 17.07
5 876 835 624 545 824 883 707 6.72 86 828 742 6.92
6 722 886 546 6.74 899 862 686 6.92 839 9.02 778 634
7 839 788 6.19 6.78 927 9.08 74 6.92 851 802 705 692
8 7.9 79 524 584 9.1 855 762 6.38 9.13 805 702 6.17
9 742 179 6 634 837 827 729 593 8.12 832 728 692
10 8.17 791 6.4 594 7.82 821 782 7.03 88 856 719 6.17
11 803 782 659 634 93 863 7.65 6.92 93 915 697 6.17
12 936 754 628 5.87 881 874 724 6.92 8.61 835 706 6.07
13 7.64 819 542 646 9.06 813 734 6.92 9.03 9.08 713 692
14 765 755 587 6.25 9.15 889 7.89 6.38 9 944 832 643
15 7.75 69 661 6.13 9.51 834 748 6.28 8.12 895 688 6.17
16 8.58 737 654 6.74 9.18 94 716 6.92 9.22 86 757 692
17 796 696 554 63 828 809 7.52 593 86 913 694 6.65
18 7.68 705 531 591 885 801 775 6.72 841 7.88 744 692
19 731 767 626 6.05 873 844 755 6.25 892 823 6.57 6381
20 7.55 741 544 582 8.88 859 7.07 7.07 898 805 657 617
21 7.64 824 523 562 8.55 835 734 6.28 8.47 81 777 1703
22 7.78 8.7 561 535 797 814 733 6.26 8.18 881 743 648
23 7.82 7.8 669 598 9.08 811 705 593 849 835 745 692
24 837 771 574 611 928 9.02 82 7.03 821 8354 727 615
25 828 759 17.06 6.69 841 815 76 6.92 961 851 711 692
26 845 726 59 628 91 868 757 6.92 933 859 699 6.85
27 837 787 612 6.1 855 931 7.04 6.92 8.52 862 778 6.17
28 792 771 519 554 8.37 8.1 7.67 6.92 853 812 72 617
29 7.79 882 544 6.06 821 889 794 6.16 868 894 777 6.63
30 831 784 622 6.09 7.79 819 738 6.26 7.88 868 707 6.78
31 744 701 7.08 35.68 849 901 749 6.17 7.82 868 707 6.28
32 845 818 559 647 8.78 81 716 7.07 859 813 812 6.17
33 781 799 492 6.17 986 835 741 692 893 846 734 692
34 844 792 579 586 884 876 797 6.92 8.12 858 707 698
35 805 784 568 549 862 831 716 6.92 8.66 8.1 736 6.65
36 761 786 645 6.04 827 814 745 6.92 948 822 746 6.63
37 7.96 841 767 559 988 863 779 6.17 831 849 728 6.01
38 885 762 607 598 827 862 746 7.03 862 8.07 747 1703
39 821 737 745 598 9 871 1756 6.07 841 893 712 592
40 795 732 691 646 815 871 834 6.92 85 862 1714 6.01
41 811 703 579 3559 826 865 7.68 5.83 797 853 705 698
42 8.66 7.08 59 6.13 9.1 852 762 692 827 795 718 6.17
43 8.06 8.02 58 614 864 823 787 692 878 823 735 692
44 7.88 745 651 6.04 878 808 776 6.13 847 889 729 697
45 859 783 523 6.1 932 826 694 6.19 843 852 746 692
46 8.39 8 677 6.03 895 871 757 6.98 8.08 875 729 6.14
47 811 735 602 642 885 839 733 6.8 8.58 844 733 672
48 795 766 595 5.7 895 858 731 6.24 913 799 685 692
49 846 791 647 6.04 8.75 86 723 698 94 879 844 593
50 796 831 605 603 861 874 776 _6.92 797 801 776 6.92
Min  7.16 690 492 3535 7.79 801 6.79 5.83 7.82 788 657 592
Max 936 886 7.67 6.78 988 9.40 834 7.07 9.61 944 844 7.07
Ave 807 776 6.04 6.04 8.77 855 748 6.65 8.60 848 731 6.56
Stdev 0.45 047 0.60 035 0.46 035 032 0.39 0.44 037 038 038
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Appendix F: UMP semester1-200809 modified-GDA results

Z
13

Nh1- 1500 iterations

Nh1 - 3000 iterations

Nh2 - 1500 iterations

184 1525 1230 921 184 1525 1230 9.21 18.4 1525 1230 9.21

1 8.46 72 674 6.27 753 7.54 625 598 18.33  15.25 123 9.21
2 824 759 6359 6.5 766 675 667 589 1833 1525 123 921
3 782 728 674 6.34 76  7.57 63 593 18.34 15.25 123 9.21
4 865 755 683 6.16 752  6.91 6.57 6.2 1834 1525 123 921
5 834 752 658 6.17 803 736 639 6.1 1834 1525 123 921
6 806 738 6.64 637 794 672 673 611 1833 1525 123 921
7 868 762 672 6.6 726 698 6.03  6.05 18.34 15.25 123 9.21
8 842 805 7.05 6.73 1.74 6.7 649 603 1834 1525 123 921
9 833 776 665 63 762 629 651 613 1834 1525 123 921
10 786 689 7.03 678 771 722 658 598 1833 1525 123 9.2l
11 858 7.67 636 6.35 7 726 689 6 1834 1525 123 921
12 821 771 694 66 742 682 637 614 1834 1525 123 921
13 892 772 689 6.35 713 7.05 623 592 1833 1525 123 921
14 863 157 68 6.4 752 713 638 598 1834 1525 123 9.21
15 937 741 692 6.59 736 692 632 621 1834 1525 123 921
16 891 7.89 6.54 6.52 765 6,72 618 6.2 18.34 1525 123 921
17 835 7.84 669 6.58 727 722 641 598 1834 1525 123 921
18 813 737 684 679 745 6.86 686 634 1834 1525 123 921
19 809 784 673 6.19 826 7.14 63 601 18.34 1525 123 9.21
20 817 765 724 6.72 774  6.71 6.46 6.2 1834 1525 123 9.2l
21 842 727 682 64l 703 697 624 611 1833 1525 123 921
22 858 7.74 633 642 786 7.55 641 603 1834 1525 123 921
23 857 1774 7.6 6.55 74 724 6.63 6 1834 1525 123 9.21
24 876 748 683 628 758 6.68 618 6.09 1834 1525 123 921
25 802 758 7.3 655 747 7.04 626 59 1834 1525 123 9.21
26 761 749 702 62 762 7.14 619 589 1833 1525 123 921
27 82 758 695 624 794 7.06 634 597 1833 1525 123 921
28 849 744 692 63 722 7.02 641 595 1834 1525 123 921
29 83 771 666 6.58 772 678 626 632 1833 1525 123 9.2l
30 863 1792 683 6.1l 779 697 625 602 1833 1525 123 921
31 884 722 694 6.78 745 691 625 604 1834 1525 123 921
32 8.14 801 7.16 635 771 723 666 611 1833 1525 123 9.21
33 843 814 6838 623 747 774 619 582 1833 1525 123 921
34 787 756 692 6.73 744 705 646 599 1833 1525 123 9.2l
35 815 726 676 6.28 752 7.01 659 595 1833 1525 123 921
36 832 713 677 637 752 755 634 642 1833 1525 123 9.21
37 859 &.11 7.22 633 796 7.16 638 613 18.32 1525 123 921
38 862 728 6.84 6.87 751 7.04 623 604 1834 1525 123 921
39 876 814 7.05 6.52 741 697 646 629 1834 1525 123 9.21
40 854 726 692 6.56 724 6.71 6.52 615 1833 1525 123 921
41 881 804 705 628 7.46 7.5 635 59 1834 1525 123 921
42 8.72 76 761 644 795 683 605 583 18.34 1525 123 921
43 848 7.38 744 6.78 805 729 637 563 1834 1525 123 921
44 857 818 6.82 6.14 719 7.14 636 615 1833 1525 123 9.2]
45 82 764 686 64 777 147 606 589 1834 1525 123 921
46 8.84 8.01 7 637 696 6.85 658 588 1833 1525 123 921
47 839 741 685 629 735 694 623 603 18.34 1525 123 921
48 824 1797 679 639 7.65 77 631 614 1833 1525 123 9.2l
49 805 7.11 716 654 736 696 6.03 5.8 18.34 15.25 123 9.21
50 88 17.52 72 625 766 699 672 606 18.34 15.25 123 9.21
Min 761 6.89 6.33 6.11 696 629 603 5.63 18.32 1525 1230 9.21
Max 937 8.18 761 6.87 826 774 689 642 18.34 1525 1230 9.21
Ave 842 761 689 6.44 755 17.07 638 6.04 18.34 1525 12.30 9.21
Stdev. 033 031 024 0.20 0.28 030 020 0.15 0.01 0.00 0.00 0.00

189



Appendices, appendix F: UMP semester1-200809 modified-GDA results

Appendix F: UMP semester1-200809 modified-GDA results (cont...)

Nh2 - 3000 iterations

Nh3- 1500 iterations

Nh3 - 3000 jterations

No.
184 1525 1230 9.21 184 1525 1230 9.21 184 1525 1230 9.21
1 18.33 15.25 123 9.21 7.89 94 7.67 174 7.01 8.21 7.57 7.2
2 18.34 15.25 123 9.21 843 834 836 7.67 7.43 7.9 836 7.28
3 18.34 15.25 12.3 9.21 7.68 844 805 7.57 6.86 7.83 7.75 6.65
4 1833 15.25 123 9.21 7.83 87 822 746 7.15 8.63 8.07 7.23
5 18.34 15.25 123 9.21 791 898 8.67 7.44 7.43 8.28 834 6.77
6 1834 1525 123 9.21 854 895 823 7.67 7.75 8.12 8.09 7.59
7 18.34 15.25 123 9.21 869 863 869 734 7.27 842 807 7.12
8 18.34 15.25 123 9.21 7.69 92 8.07 1722 7.04 824 8.12 6.79
9 18.33 15.25 123 9.21 7.87 886 824 7172 6.96 8.25 8.11 7.04
10 18.34 15.25 123 9.21 8.19 §6 878 7.36 7.83 7.87 74 638
11 18.34 15.25 123 9.21 7.88 855 8.11 7.35 8.03 7.76 8.36 74
12 18.33 15.25 123 921 7.88 9.11 7.99 7.63 7.48 8.56 766  7.64
13 18.34 15.25 123 9.21 7.68 8.07 797 7.17 7.61 7.87 7.63 7.29
14 18.34 1525 123 921 7.7 932 172 197 7.05 7.92 8.31 7.56
15 18.33 15.25 123 9.2] 7.67 861 7.85 7.32 7.04 8.52 824 6.82
16 18.34 15.25 123 9.21 8.45 89 849 796 6.78 8.11 7.77 7.23
17 18.34 15.25 123 9.21 821 911 1766 7.4 7.29 8.51 838 6.84
18 18.33 15.25 123 921 7.79 885 89 76 7.17 8.55 79 7.62
19 18.33 15.25 123 9.21 7.85 9.09 849 731 6.95 7.97 76 7.26
20 18.34 15.25 123 9.21 765 844 8.14 7.09 7.42 8.36 822 6.81
21 18.34 15.25 123 9.21 7.87 883 799 171.73 6.92 8.32 8.26 6.9
22 18.34 15.25 123 9.21 7.72 884 794 7.6 7.61 7.7 8.35 6.99
23 18.34 15.25 123 9.21 83 866 838 741 7.12 8.54 7.65 7.1
24 18.33  15.25 123 9.21 7.8 879 7.87 7.69 7.05 8.03 7.75 7.05
25 18.34 1525 123 9.21 7.12 925 843 756 7.43 8.57 8.01 6.85
26 18.33 15.25 123 9.21 866 866 7.84 7.85 7.12 8.48 732 6.83
27 18.34 15.25 123 921 8.14 86 791 7.85 7.02 8.56 754 742
28 18.34 15.25 123 9.21 771 885 8.63 1776 7.88 83 8.1 7.27
29 1833 15.25 123 9.21 802 862 798 1737 6.79 8.61 7.58 6.99
30 1834 15.25 123 9.21 802 874 7.88 738 7.17 7.71 807 735
31 18.33 15.25 123 9.21 86 858 801 774 6.83 8.37 7.85 7.56
32 18.34 15.25 123 9.21 7.71 855 83 7.54 7.4 8.11 8.8 6.83
33 18.34 15.25 123 9.21 806 881 8.83 7.86 7.85 8.27 854 6.66
34 1834 1525 123 9.21 86 873 843 6.95 7.28 7.8 7.75 6.82
35 18.33  15.25 123 9.21 8.05 8.71 85 742 6.98 8.31 8.03 7.21
36 18.33 15.25 123 9.21 847 908 893 7.56 7.25 8.13 804 7.26
37 18.33 15.25 123 9.21 737 866 835 1755 7.33 8.39 8§ 7.0
38 1834 15.25 123 921 7.75 868 825 17.82 6.92 8.07 8.04 7.11
39 1834 15.25 123 9.21 7.55 954 851 7.1 7.06 8.26 8.09 7.61
40 18.34 1525 123 9.21 847 9385 8.1 7.17 7.26 8.04 7.73 7.22
41 1833 15.25 123 921 79 873 827 825 7.35 8.64 8.1 7.38
42 18.33 15.25 123  9.21 815 868 836 7.64 7.17 7.86 826 7.29
43 18.34 15.25 123 921 809 904 899 7.88 7.62 8.71 7.8 693
44 18.33 15.25 123 9.21 7.8 8.46 8.1 7.9 7.43 8.43 7.71 6.79
45 1833 15.25 123 9.21 7.71 871 835 7.6 7.53 8.03 8.38 7.82
46 18.33 15.25 123 9.21 8.68 83 769 745 7.34 8.33 83 6.77
47 1833 15.25 123 9.21 8.18 895 8.01 7.51 7.08 8.06 8.15 7.01
48 18.34 15.25 123 9.21 7.84 875 828 7.17 7.09 8.39 796 733
49 1833 15.25 123 9.21 766 9.18 886 744 7.25 8.09 8.75 7.15
50 18.34 15.25 123  9.21 8.28 85 836 1747 7.3 8.48 809 7.55
Min 18.33 15.25 1230 9.21 7.12 807 7.66 6.95 678 770 1732 6.38
Max 1834 1525 1230 9.21 869 985 899 8.25 803 871 880 7.8
Ave 1834 1525 1230 9.21 8.00 881 825 7.55 726 823 802 7.13
Stdev  0.00 0.00 0.00 0.00 036 033 0.35 0.25 030 028 033 031
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Appendix F: UMP semester1-200809 modified-GDA results (cont...)

Z
°

Nh4 — 1500 iterations

Nh4 - 3000 iterations

Nh6-1500 iterations

18.4 15.25 1230 9.21 18.4 15.25 1230 9.21 18.4 15.25 1230 9.21

1 9.95 9.13 838 7.46 10.29 10.06 833 7.65 9.55 11.02 1029 9.03
2 10.11 926 8.41 744 10.04 8.93 8.65 7.36 11.63 1142 9.29 9.03
3 10.24 9.48 834 7.73 11.06 949 824 7.6 11.27 11.23 9.67 9.03
4 9.67 9.12 822 7.26 9.46 9.74 9.55 1731 11.92 10.3 9.81 8.99
5 10.18 879 1766 1737 10.39 9.05 83 728 10.09 11.3 9.49 8.99
6 10.07 947 815 734 9.28 9.59 841 1722 12.12 11.31 94 9.03
7 9.77 9.93 8.52 7.27 9.61 892 777 17.09 10.34 10.71 99 895
8 10.48 965 9.18 17.27 10.61 951 835 744 9.72 10.82 10.3 9.14
9 9.94 9.53 9.09 746 9.35 937 836 728 10.47 1098 9.85 9.03
10 10.4 9.76 807 17.26 9.63 889 846 7385 10.08 11.08 9.88 8.96
11 9.86 9.2 909 745 9.34 931 829 1769 1029 10.81 9.3 8.68
12 10.46 10 8.12 717 9.98 862 812 731 10.2 1119 103 9.03
13 9.72 858 849 7.52 9.81 872 849 749 9.81 10.65 10.15 8.96
14 10.21 9.3 872 7.5 9.48 925 803 731 1142 11.28 982 9.14
15 11.1 879 821 17.73 9.09 9.89 929 17.71 11.58 10.94 9.78 8.15
16 10.06 9.54 835 7.66 9.48 8.67 887 736 11.37 11.21 9.85 8.68
17 10.09 9.65 877 17.63 9.8 9.1 839 753 11.42 1098 9.34 895
18 9.88 947 849 749 9.15 9.67 842 737 1441 11.61 10.1 9.03
19 10.95 958 839 7.14 9.96 9.41 8.36 7.5 11.53 10.99 9.88 8.95
20 9.96 9.07 82 7.63 10.06 9.23 8.04 731 11.52 10.85 9.52 8.15
21 10.27 9.53 8.92 7.66 9.34 939 828 7.66 11.35 11.19 96 9.03
22 9.88 9.01 8.18 7.68 9.81 9.58 797 746 9.8 11.03 9.82 896
23 10.38 986 8.59 738 10.13 9.07 17.72 7.6 988 10.67 10.15 9.03
24 10.16 9.04 841 743 10.21 8.78 803 741 11.88 11.31 9.84 9.03
25 10.72 875 812 1752 10.19 8.68 8.66 743 11.36 11 9.56 9.03
26 10.13 874 839 1729 9.3 845 835 697 11.45 11.1 9.59 9.03
27 10.97 954 878 732 10.27 875 794 1739 10.88 10.82 9.93 9.03
28 96 1025 886 742 9.27 983 817 778 993 11.09 10 9.03
29 9.71 981 875 17.62 9.57 048 865 749 991 10.86 9.39 9.03
% 075 02 871 761 1051 95 853 739 1007 1075 996 914
31 9.75 963 802 783 9.8 9.31 845 7.82 14.57 10.68 9.56 9.14
32 9.11 951 8.16 7.4 9.79 989 871 768 11.55 11.17 10.09 9.03
33 10.57 10 839 738 10.94 9.15 8.84 768 11.56 10.88 934 8.96
34 9.92 9.35 8.31 1756 9.63 10.03 794 17.62 11.28 10.74 9.55 9.03
35 11.41 9.08 8.61 7.8 9.76 9.1 881 765 9.15 10.94 98 8.68
36 10.51 9.3 8.13 751 9.98 947 848 7.62 9.3 11 1012 9.03
37 9.92 9.23 848 761 9.84 9.71 839 722 11.9 10.64 10.14 9.03
38 9.57 9.45 8.53 7.57 10.66 899 849 754 11.11  11.05 984 9.03
39 9.65 8.95 898 727 10.34 979 831 734 11.54 10.99 999 8.96
40 10.1 995 841 749 10.49 96 837 766 11.39 11.18 10 8.68
41 10.93 964 828 739 9.45 9.58 17.87 767 10.35 11.07 9,55 9.03
42 11.03 991 828 1726 10.07 792 904 755 10.02 10.72 10.1 9.03
43 9.14 852 803 743 11.22 998 778 17171 10.74 11.02 10.06 9.03
44 10.12 979 8.61 726 9.42 9.39 847 7.7 10.89 10.63 9.57 8.96
45 9.92 943 845 784 9.74 8.86 812 754 12.1 10.85 9.61 9.03
46 9.69 866 842 724 9.19 975 822 7.6 1145 1092 1054 8.96
47 10.79 10.02 849 1753 10.7 8.94 82 17.62 11.2 1108 9.67 9.03
48 10.39 955 844 1733 9.58 893 812 7.16 10.1 10.7 9.59 9.03
49 11.14 94 873 171.75 104 876 833 73 11.52 1122 9.61 9.03
50 9.33 96 881 1758 9.98 9.92 9.04 727 9.73 _ 10.85 9.47 9.03
011 852 766 714  9.09 792 772 697 9.5 1030 929 8IS
Max 1141 1025 948 7.84 1122 1006 955 785 1457 1161 1054 9.14
Ave 1015 940 846 747 991 928 838 748 1098 1098 9.80 8.96
Sdev 052 041 031 018 052 047 037 020 109 024 030 020
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Appendices, appendix F: UMP semester1-200809 modified-GDA results

Appendix F: UMP semester1-200809 modified-GDA results (cont...)

Z
°

Nh6 - 3000 iterations

Nh7 - 1500 iterations

Nh7-3000 iterations

18.4 15.25 1230 9.21 184 1525 1230 9.21 184 1525 1230 9.21
1 11.42 1146 1034 9.03 9.85 8.08 724 6.74 8.58 7.58 7.08 5.86
2 1011 1151 976 9.03 969 805 691 701 g8 19 694 6.64
3 9.61 11 9.71 9.14 858 7.57 693 6.73 8.71 748 7.01 6.29
4 11.66 11.12 10,13 9.14 977 806 7.01 636 849 822 663 634
5 10.23  11.15 10.15 9.03 882 8.07 726 6.44 8 74 629 6.72
6 10.18 10.81 9.54 9.03 9.21 8.31 7 677 83 7.73 6.62 647
7 9.27 11 9.72 9.03 923 789 722 643 8.57 842 6.88 6.65
8§ 973 1092 965 9.03 8§53 777 807 685 848 719 67 642
9 1116 1075 9.83 868 92 193 701 674 817 82 65 685
10 10.09 11.17 9.35 9.03 879 823 7.02 6.72 8.17 743 668 6.08
11 95 1099 998 9.02 842 831 675 712 843 769 69 638
12 1046 1114 1015 9.03 857 794 67 65 848 758 663 672
13 98 1123 963 903 8§89 854 679 633 871 791 68 657
14 9.8 11.04 1003 921 878 835 7.08 631 9.01 74 677 641
15 9.21 10.76 9.42 9.03 9.52 1791 68 6.58 8.6 79 6.83 6.2
16 92.13 11.14 9.65 9.21 8.61 8.13 6.62 709 857 723 645 6.21
17 11.67 12 1003 9.03 874 8.48 705 6.79 873 801 6.64 6.17
18 11.72 1098 10.17 9.03 9.5 8.1 697 6.37 9.06 804 659 6.05
19 11.38 11.35 9.58 9.03 8.63 7.8 7.5 638 862 1763 7.03 641
20 10.96 11.3  10.02 9.03 883 855 723 6.87 8.23 8 691 6.57
21 1146 11.22 98 9.03 942 912 675 694 8.31 833 673 628
22 10.34 11.09 9.87 9.03 92 851 6.81 6.86 847 8.08 667 6.29
23 9.66 10.96 9.39 9.03 8.62 8.1 7.01 6.96 868 827 628 6.3
24 9.39 11.02 9.38 8.59 886 8.06 6.8 6.52 7.99 73 626 6.17
25 1096 1083 1024 9.03 913 818 719 639 928 16 14 628
26 10.14 10.34 9.61 9.03 8.88 92 6.92 6.21 88 7.85 686 6.18
27 996 1084 936 86 021 828 759 697 809 794 714 6.66
28 934 1088 991 868 021 856 684 681 860 809 719 645
29 10.68 11.81 9,29 9.14 9.09 831 6.89 6.89 842 7.72 689 6.06
30 993 108 9.88 9.03 881 802 696 68 827 1797 687 675
31 1125 1136 1018 9.03 041 834 678 639 807 928 695 6.66
32 1002 1087 1025 9.03 9 927 677 668 891 813 634 659
33 1023 1056  9.56 9.1 879 777 698 735 824 7172 1 682
34 10.08 11.07 10.1 9.14 919 799 735 6.74 93 753 675 6.17
35 10.8 11.07 9.86 895 888 826 689 644 8.19 7.76 648 6.26
36 049 1099 984 896 1001 893 701 69 848 756 684 619
37 10.87 1091 10.03 9.03 8.71 7.9 7.1 647 826 1772 6.69 645
38 11.36 1099 9.76 9.03 9.1 78 6.77 693 825 155 699 6.3
39 11.23 10.6 9.21 7.86 861 796 6.98 6.87 843 797 6.64 6.63
20 1006 1126 94 921 862 781 679 68 857 16 655 6.56
41 9.84 11.29 9.48 9.21 864 834 713 717 85 739 644 6.02
42 942 1092 1015 9.03 005 875 695 672 833 856 619 664
43 1046 11 1041 9.03 006 815 718 701 852 782 675 635
44 898 1152 101 858 385 82 712 679 867 696 665 627
45 96 11.06 9.84 8.99 845 174 17.08 6.69 8.41 74 6.86 5.95
46 942 1073 957 9 834 767 157 63 878 154 692 641
47 98 1112 986 921 037 817 677 653 831 798 669 6.14
48 10.38 11.02 9.53 9.1 862 826 7.03 6.83 847 792 639 6.13
49 1006 1148 942 9.03 046 833 708 637 878 737 682 63
50 9.75 1098 9.87 9.21 8.81 7.81 7.12  7.07 862 754 658 6.27
Min 8.8 1034 921 786 834 1757 662 621 199 696 6.19 5386
Max 1172 1200 1041 921 1001 927 807 735 930 928 740 685
Ave 1024 1107 9.80 900 899 821 703 671 853 779 673 637
Sdev 076 030 031 022 039 039 026 027 029 040 025 0.24
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Appendices, appendix F: UMP semester1-200809 modified-GDA results

Appendix F: UMP semester1-200809 modified-GDA results (cont...)

Nh8 - 1500 iterations

Nh8 - 3000 iterations

Nh9-1500 iterations

18.4 15.25 1230 9.21 184 1525 1230 9.21 18.4 1525 12.30 9.21

1 10.61 9.84 9.54 8.6 10.16 9.71 9.22 8.6 11.47 10.24 8.38 17.55
2 10.14 10.34 9.52 8.48 9.31 9.49 983 8.57 11.08 9.85 841 7.6
3 11.03 9.9 993 8.57 10.29 10.56 9.53 848 1098 1034 8.07 7.61
4 1147 1045 9.81 8.56 932 10.85 9.82 8.6 9.8 946 822 1732
5 1043 1049 10.03 8.6 10,93 9.04 9.64 8.56 11.68 9.78 8.83 8.02
6 10.61 10.42 9.74 8.6 10.3  10.17 9.33 8.58 9.97 106 879 17.78
7 11.12  10.22 9.47 8.6 9.94 9.25 9.46 8.58 1145 9.75 9.05 17.51
8 10.64 10.78 9.44 8.6 9.88 10.16 9.58 8.6 10.51 999 884 742
9 10.89 9.86 10.31 8.6 10.23 9.52 10.12 8.6 11.53 9.79 848 1741
10 10.93 9.87 9.84 8.56 10.41 10.14 10.03 8.6 11.07 9.91 847 171.71
11 10.9 10.63 9.3 8.6 10.2 9.93 993 8.68 11.82 9.51 8.19 17.39
12 10.61 10.39 9.1 8.6 10.65 9.88 10.16 8.56 1.5 10.18 8.47 7.7
13 10.95 10.15 9.6 8.6 9.99 9.36 935 8.56 11.08 1029 884 753
14 10.37 9.6 9.7 8.56 10.57 9.46 988 8.56 10.78 9.85 875 7.88
15 10.55 11.04 8.96 8.6 9.98 9.14 9.64 8.58 1079 10.58 8.68 17.26
16 9.86 10.37 9.25 8.6 10.31 9.69 9.76 8.56 10.71 9.19 814 753
17 11.43 11.1 9.94 8.6 11.05 9.48 9.52 8.48 10.79 9.58 817 17.36
18 10.69 9.86 9.4 8.6 10.3 9.85 1029 8.8 11.74 9.87 8 7.58
19 10.8 10.62 925 848 10.19 10.75 9.26 8.6 1091 9.61 875 17.18
20 1092 10.32 9.91 8.6 10.77 9.74 9.92 8.6 11.62 9.56 833 7.49
21 11.85 1035 10.16 8.48 10.68 9.48 9.69 8.76 1141 1047 8.69 1793
22 11.16 10.85 9.82 8.56 10.27 952 1036 8.6 10.6 972 864 17.64
23 11.07 11.07 9.64 8.56 10.1 1047 924 8.48 10.64 9.55 865 17.05
24 10.28 10.83 9.81 8.56 9.86 9.56 9.68 8.57 10.86 8.97 854 1731
25 10.9 9.86 9.48 8.6 10.65 9.31 10 8.48 11.12 9.96 8 7.47
26 10,99 10.56 10.24 8.57 10.04 9.32 9.63 8.56 10.72 923 813 753
27 1097 11.27 896 8.48 10.31 1043 9.1 8.6 10.43 948 8.13 17.51
28 11.09 9.92 945 8.57 10.18 9.54 10.12 8.56 11.77 9.75 811 17.86
29 11.07 10.85 10.09 8.69 11.07 9.58 9.06 8.72 10.67 1006 8.61 7.88
30 11.09 10.51 9.94 8.48 9.74 942 10.06 8.56 10.93 102 823 743
31 10.57 10.42 955 8.48 1042 10.37 10 8.56 9.79 10.64 857 7.05
32 1092 10.33 9.63 8.66 9.54 9.61 10 8.6 10.44 9.77 844 7.54
33 10.55 9.78 9.84 8.6 10.02 9.02 9.65 8.6 10.28 10.21 83 1775
34 10.28 10.58 10.02 8.6 997 10.28 9.64 8.6 11.19 997 885 764
35 11.35 10.28 10,06 8.48 10.23 9.18 9.6 8.6 11.17 10.2 818 7.34
36 10.79 10.22 9.74 8.56 10.1 941 9.95 8.56 11.6 10.15 8.46 1745
37 10.89 10.55 9,58 8.6 10.12 9.84 947 8.56 11.32 10.18 874 7.89
38 10.27 9.05 9.36 8.6 10.53 9.73 9.85 8.56 10.59 10.03 826 7.45
39 10.45 10.81 9.57 8.6 10.81 10.88 9.64 8.57 10.55 994 782 17.22
40 11.9 10.71 991 8.64 10.75 9.16 9.77 8.48 10.6 9.91 86 7.72
41 10.49 10.4 9.14 8.56 10.87 10.17 9.75 8.68 11.16 9.68 9.15 7.5
42 10.55 10.21 1022 8.48 10.17 10.3 9.65 8.56 10.57 10.1 8.34 781
43 10.62 10.55 9.64 8.6 9.81 9.29 9.06 8.48 11.28 9.85 848 7.36
44 10.34 10.56 9.3 848 10.11  10.18 94 8.56 11.34 9.17 9.14 738
45 11 10.38 931 8.48 9.49 9.45 10 8.6 11.27 1025 825 17.54
46 1091 10.37 991 8.75 11.12 10.14 9.74 8.48 10.7 9.6 8.84 7.8
47 11.16 10.15 9.45 8.6 9.52 10.64 9.5 8.57 10.56 966 843 1727
48 10.75 11.09 944 8.48 9.78 9.97 8.98 8.6 10.24 944 884 7.02
49 10.65 10.48 966 8.48 9.92 9.94 1027 8.56 11.93 9.55 821 703
50 9.39 9.86  10.24 8.6 10.78 9.08 9.19 8.6 10.86 10.33 8.84 7.59
Min  9.39 9.05 896 8.48 931 0.02 898 848 979 897 7.82 7.02
Max 11.90 11.27 1031 875 1112 10.88 1036 876 1193 10.64 9.15 8.02
Ave 1079 1038 966 857 1023 979 9.69 858 1096 9.88 8.49 7.52
Stdev  0.45 043 034 006 045 050 034 006 052 038 031 024
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Appendices, appendix F: UMP semester1-200809 modified-GDA results

Appendix F: UMP semester1-200809 modified-GDA results (cont...)

Nh9 - 3000 iterations Nh10 - 1500 iterations Nh10-3000 iterations

e

184 1525 1230 9.21 184 1525 1230 921 184 1525 1230 921

1 10.76  9.21 85 6.84 10.24  10.44 95 843 10.62 9.7 9.69 843
2 10.84 1036 841 7.68 1048 929 947 857 10.46 1099 9.56 8.43
3 11.05 9.8 8.09 746 9.51 93 957 843 10.73 10.67 10.21 843
4 1.5 965 828 7.65 10.84 99 9.83 858 952 974 989 857
5 10.73 1033 938 7.57 11.31 1037 957 8.73 11.17 1046  9.57 8.6l
6 1072 986 829 7.67 1041 995 956 843 9.67 1021 9.38 843
7 1039 1053 7.84 17.79 10.69 10.45 96 86 993 956 986 857
8 1036 968 866 7.14 11.15  9.67 9.83 843 96 10.18 991 857
9 10.79 1046 7.67 17.72 10.08 106 9.57 83 10.62 1022 9.63 843
10 1184 977 807 173 10.76 10.12 11.15 8.43 10.52 10.05 9.6 8.43
11 1099 973 826 7.58 10.8 977 10.01 8.43 10.23 1027 948 843
12 10.46 9.5 89 721 10.16 1045  9.81 8.69 993 984 956 843
13 10.69 95 8.81 7.63 10.23 1141 9.61 8.56 11.04 957 975 843
14 10.1 9.57 859 753 10.03 10.17 989 83 104 1015 9.62 843
15 1199 998 825 743 109 106 9.67 843 10.57 1045 945 8.57
16 999 1039 842 7.63 104  10.2 96 857 103 972 963 83

17 1057 981 824 7.74 10.53 10.7 10.08 8.43 10.34 1005 9.57 8.57
18 11.02 98 852 73 10.63 991 9.61 873 10.08 977 9.59 843
19 10.84 10.14 896 7.38 1023 9.97 94 843 10.11 981 9.83 857
20 1127 988 874 748 1063 925 956 843 10.51 10.94 9.6 843
21 10.04 975 838 72 11.33  10.77 991 8.68 9.89 10.59 9.9 843
22 11.15 972 857 17.65 1068 9.76 9.56 8.56 10.02 957 947 83
23 987  9.99 78 7.19 10,22 9.91 945 843 10,77 993 977 843
24 993 967 894 74 11.53 109 956 843 1.1 1092 957 843
25 10.78  9.87 83 76 1086 105 956 8.52 994 1025 9.59 843
26 11.59 1025 829 7.18 10.79 9.89 1029 843 11.03 921 9.56 8.43
27 10.82 10.48 86 7.08 10.19 999 9.57 843 10.18  9.55 9.5 843
28 11.46 10 805 741 10.34 10.88 1045 8.43 1044 926 1021 8.37
29 1.3 9.09 9 1787 1034  10.2 9.8 843 1052 912 979 843
30 1075 1025 826 7.36 1023 1043 944 86 10.01 976  9.93 8.56
31 10.57 939 791 1722 11.43 102 991 8.57 9.82 1051 947 8.56
32 11.27 909 772 748 11.09 963 937 843 1042 982 966 843
33 1096 9.74 831 743 11.67 10.15 957 843 10.16 1026 9.71 8.43
34 1097 964 838 7.6l 10.65 9.78 987 843 10.38 1036 956 843
35 1048 10.27 834 73 11.19  10.04 10.21 8.7 1097 983 989 843
36 10.76  9.66 8.69 7.52 1092 956 9.64 8.6 1045 10.01 9.48 8.57
37 1.11 9.76 829 7.56 10.71  10.21 999 843 11.14 896 9.56 857

38 1047 994 893 7.58 9.77 1031 9.81 839 10.59 963 948 843
39 983 9.65 861 7.24 10.57 1035 9.63 8.56 969 986 956 8.76
40 10,72 9.74 82 6.78 10.5 1057 9.81 8.43 11.84 1094 9.66 8.61
41 972 963 813 751 10,72 994 957 843 10.82 10.45 96 843
42 10.15 10 852 751 1062 11.18  9.81 83 109 1003 971 857

43 10.67 9.71 8.85 7.68 10.54 10.07 948 8.43 10.47 9.9 10.16 8.57
44 10.68 10.47 8.18 7.5 10.55 9.62 991 843 10.19 10.34 9.87 8.43
45 10.65 93 798 1771 10.02 10.22 9.39 8.64 10.2  10.22 943 843
46 10.62 1034 797 7.6 10.38 11.02 9.59 8.43 10.11 9.83 9.7 8.57
47 9.77 10.06 834 744 10,99 10.51 10.02 8.43 10.51 10.2 973 843
48 10.92 102 8.55 7.06 10.04 10.73 9.67 8.43 10.09 10.95 94 843
49 10.95 9.21 834 7.7 10.34 11.03 9.65 8.57 10.02 9.73 9.78 8.43
50 10.69 9.9 8.2 749 10.46  10.62 926 8.43 10.8  10.63 9.44 8.57
Min 972 9.09 7.67 6.78  9.51 925 926 830  9.52 896 9.8 830
Max 1199 10.53 938 7.87 11.67 1141 11.15 873  11.84 1099 1021 8.76
Ave 1074 9.85 839 745 1059 1023 9.73 849 1040 10.06 9.67 8.48

Stdev.  0.52 037 0.36 0.23 045 049 032 0.1 047 049 020 0.09
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Appendix G: UMP semester1-200708 multi neighbourhood GDA
results based on random ordering

No.

AllNh

Remove specified Nh

NhS Nh2 Nhi0 Nh5&Nh2 Nh5&Nh10 Nh2&Nh10 Nh5, Nh2&Nh10
1 3.54 3.57 395 4.07 4.53 4.03 3.94 4,22
2 4.14 406 423 3177 3.96 3.93 4.29 394
3 43 3.83 3.67 4.08 4.03 4.27 3.75 3.96
4 4.1 386 392 4.13 4.39 4.17 3.93 3.85
5 3.94 412 394 3.68 4,27 4.13 3.77 3.84
6 4 3.79 3.81 3.66 4.31 3.92 3.83 3.88
7 4.38 3.87 3.92 4 4.19 3.71 4.06 4.12
8 4.02 425 373 372 3.91 3.98 3.85 3.97
9 4.16 416 4.08 4.02 3.88 3.52 3.59 4.16
10 417 391 376 3.82 4.49 3.68 3.82 3.58
11 3.98 408 399 395 4.13 4.05 3.77 431
12 3.91 3.7 33 3.54 4.23 4.22 3.92 3.98
13 4.19 401 4.01 3.79 4.14 3.56 3.54 4.03
14 3.97 389 366 3.92 3.73 3.81 3.87 4.07
15 3.85 406 4.2 3.5 3.73 3.99 3.51 3.9
16 4.24 441 392 432 3.91 4.02 3.84 4.06
17 3.99 368 3.76 3.83 3.9 3.64 4,11 3.96
18 3. 397 382 452 4.36 3.88 3.81 4.27
19 4.07 4.1 3.82 443 4.3 4.01 3.95 4.01
20 4.23 412 4.08 3.92 4.09 3.98 4 4.04
21 417 397 379 438 4,17 4.19 3.69 4.07
22 4.3 3.78 4.11 398 4.23 3.77 3.96 4.35
23 3.84 39 3.75 385 4.04 4.01 4.01 4.27
24 3.56 3.75 394 396 427 3.83 4.17 431
25 4.17 382 37 4.6l 3.87 3.77 3.74 4.24
26 3.73 3.93 4.1 3.74 3.89 39 3.72 4.27
27 4.01 3.79 389 3.73 363 4.21 3.68 4.01
28 409 405 394 417 385 3.61 3.86 44
29 4,46 3.81 3.84 4.07 4.16 3.97 3.76 4.07
30 3.81 3.58 3.8 392 4.24 3.87 3.76 4
31 3.68 3.8 3.79 441 3.9 3.79 3.83 3.88
32 4.02 3.97 3.57 397 4.26 3.65 3.87 3.83
33 4.18 3.9 3.8 4.11 4.29 4,01 4.1 3.72
34 4.02 391 392 405 3.93 4,01 3.94 4.39
35 4.01 336 4.11 396 4.03 3.79 3.66 3.82
36 3.81 418 397 393 4.01 3.49 4.15 4.04
37 372 412 395 391 3.69 3.83 4.06 4.01
38 3.93 442 383 3.79 4.09 4.11 423 3.78
39 4.08 3.79 395 3.9 3.87 4.06 4.33 4.12
40 3.94 3.76 3.57 4.36 3.71 3.91 3.69 4.15
41 3.57 403 4.14 448 3.96 4.01 3.68 3.82
42 4.59 398 3.74 4.03 4.06 3.89 4.06 4.17
43 3.97 3.82 4.12 371 3.67 3.94 4.09 4.07
44 3.99 3.84 3.78 39 4.04 3.92 3.88 3.81
45 3.74 4 4.14 3.66 3.95 3.82 3.94 3.72
46 3.66 3.85 4.08 3.91 4.02 395 3.83 4.08
47 4.39 421 3.94 4.1 3.87 4,03 4.06 3.92
48 4.36 3.58 4.12 4.19 4.04 3.75 3.81 427
49 3.84 3.87 373 39 4.06 3.89 3.65 4.1
50 4.08 421 378 424 3.76 3.94 4.24 3.99
Min _ 3.54 3.6 330 3.50  3.63 3.49 3.51 3.58
Max 459 4.42 423 461 453 427 433 4.40
Ave 401 393 3.89 399 404 391 3.89 4.04
Stdev 024 021 0.8 025 022 0.18 0.19 0.19
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Appendix G: UMP semester1-200708 multi neighbourhood GDA
results based on random ordering (cont...)

Remove specified Nh

No. Nhi Nh4 Nh7 Nhl&Nh4 Nhl1&Nh7 Nhd4&Nh7  Nhl, Nhd&Nh7
i 441 399 4.11 4.67 43 4.48 4.64
2 368 4.11 39 447 4.5 4.59 4.6
3 36 4.42 4 3.88 4.02 3.89 451
4 388 425 416 417 4.08 4.04 4.03
5 3.7 426 439 3.92 4.04 4,22 4.46
6 392 395 395 4.13 4.56 431 4.83
7 416 39 36 375 43 4.56 4.43
8§ 41 372 429 443 3.95 3.93 4.71
9 3.74 4.12  3.99 4.26 42 431 442
10 403 391 438 417 439 1.86 4.04
11 415 376 402 461 3.92 3.92 4.51
12 434 4.56 3.8 446 3.64 4.25 4.69
13 429 399 3.76 4.8 447 4.32 43
14 44 461 3.83 4.47 391 4.15 4.44
15 443 378 379 446 431 3.98 4.46
16 414 434 4.21 3.84 4.26 4.12 4.7
17 39 411 4.12 4.67 3.83 4.36 431
18 406 397 4.23 4.21 4,18 4.18 4.36
19 405 437 437 4.3 4 4.52 44
20 4,07 431 4.29 441 3.99 3.96 5
21 426 434 397 4.52 4.1 432 4,72
22 424 396 4.11 3.99 4.19 4.29 4.38
23 414 424 38 398 437 3.64 439
24 401 387 41 3.97 441 4 4.71
25 41 382 424 385 437 3.99 4.46
26 386 436 438 394 4.13 3.88 4.52
27 379 401 396 438 424 4.45 3.96
28 3.86 4.19 394 448 428 3.87 4.7
29 414 458 4 4.23 3.77 425 4.52
30 454 414 383 441 434 44 4.39
31 416 379 4.05 4.27 4.46 433 425
32 434 396 445 4.5 4.37 4.11 4.83
33 406 36 4,26 4.08 3.94 4.26 424
34 3713 4 3.83 4.47 4.25 4.47 4.16
35 4.17 421 395 4.18 415 4.55 4.83
36 4 4 4.24 4.14 4.26 3.97 4.53
37 406 4.33 3.8 4.2 4.32 417 4,16
38 4.05 4.16 3.81 4.26 4.1 4.64 4.5
39 385 387 422 453 4.05 447 443
40 4.05 441 4.15 448 4 425 427
41 398 399 419 438 4.02 436 4.16
42 371 404 38 468 3.9 4.14 4.1
43 418 43 436 427 4 42 439
44 423 421 397 42 4.19 4.09 4.06
45 421 415 3.67 4.7 4.18 398 4.4
46 39 378 3.78 4.21 4.16 4.63 4,98
47 414 442 428 4.47 4 4.26 4.4
48 404 385 4.26 4.18 443 4.09 5.18
49 427 414 395 4 4.09 4.49 4.56
50 4.61 4.4 3.64 4.23 4.18 4.11 4.18
Min _3.60 3.60 3.60  3.75 3.64 3.64 3.96
Max 4.61 461 445  4.80 456 4.64 5.18
Ave 407 411 404 429 4.16 421 447
Stdev 023 024 022 025 0.20 0.23 0.26
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Appendix H: UMP semester1-200708 multi neighbourhood GDA
results based on specified ordering

Remove specified Nh

No. AllNh
Nh5 Nh2 Nh10 Nh5&Nh2 Nh5&Nh10 Nh2&Nh10 NhS, Nh2&Nh10
1 3.86 4.1 39 386 4.21 3.9 3.95 4.05
2 3.58 424 378 415 4.13 395 393 4.29
3 3.77 38 387 373 37 3.55 3.87 43
4 394 379 389 3.89 3.86 3.84 4.05 4.18
5 375 383 386 379 4.1 3.83 4.12 4.13
6 4.23 401 3.69 3.57 3.83 392 3.76 4.16
7 4.16 387 414 373 4.06 3.84 3.82 4.13
8 3.95 381 385 3.78 4.03 3.9 4.2 4.03
9 3.83 408 4.12 3.71 3.98 4.04 3.96 3.77
10 3.82 382 377 347 4 3.55 3.83 3.97
11 3.84 3.77 367 42 3.89 3.96 3.96 4.27
12 354 376 359 372 3.68 3.55 3.75 4.37
13 391 389 39 373 4.27 3.82 4.07 4.22
14 4.52 386 4.02 4.04 4.14 3.83 3.95 4.36
15 3. 3.67 399 349 4.3 3.67 3.95 4.13
16 36 385 4.09 372 3.93 3.52 4.15 3.89
17 3.97 399 3.78 4.14 4.25 3.78 38 4.4
18 3.7 4.09 3.71 3.69 4 4.16 3.94 4.49
19 4.11 45 3.78 3.67 3.81 373 4.1 3.92
20 4.04 389 382 382 4.03 3.81 3.99 3.71
21 4.1 372 403 4.1 3.94 4.03 3.74 4.04
22 375 374 395 393 4.14 3.64 4.14 3.8
23 3.92 39 398 399 4.28 35 3.8 4.47
24 3.82 351 399 401 4.29 3.72 3.88 4.09
25 3.46 394 375 395 3.7 3.97 3.84 368
26 3.54 435 379 4.09 3.66 3.96 3.67 3.69
27 3.63 396 3.68 4 3.98 4.28 4.08 4.16
28 3.93 374 391 39 3.97 3.72 4.08 3.86
29 3.9 384 41 412 4.07 3.97 391 3.91
30 3.72 382 385 36 3.87 3.83 387 4.08
k)| 4.01 399 4.19 402 3.96 3.69 3.75 3.92
32 3.92 344 361 3.66 3.97 3.57 3.62 443
33 399 388 403 391 3.89 392 3.89 422
34 396 388 389 375 4.13 372 3.83 4.07
35 424 358 39 391 4.11 393 4.02 4.08
36 4.13 394 384 42 3.74 3.92 3.81 4.33
37 367 366 3.79 355 4.19 3.78 3.78 3.99
38 436 375 387 389 4.09 3.68 3.83 3.54
39 409 38 378 391 3.96 3.85 3.84 4.09
40 3.75 41 367 396 4.15 4.07 4.14 3.83
41 357 397 388 373 4.09 3.78 3.83 4.06
42 416 392 418 379 3.97 4.03 35 4.47
43 39 3.87 383 4.02 4.66 391 3.94 3.81
44 423 378 387 421 3.9 4.11 3.96 4
45 3.65 3.8 404 411 4.32 4.11 3.71 4.07
46 4.03 355 363 393 3.92 3.91 3.82 3.67
47 4.59 39 398 416 3.73 3.99 3.3 4
48 3.77 376 377 435 3.94 3.89 4 3.67
49 3.7 4 341 397 3.89 3.97 3.82 4.17
50 382 ° 412 375 401 4.03 4 391 4.07
Min 346 344 341 347 3.66 3.50 3.50 3.54
Max 459 450 4.19 435 4.66 4.28 4.20 4.49
Ave 390 3.88 3.86 3.89 4.01 3.85 3.90 4.06
Stdev  0.25 0.19 0.16 0.20 0.19 0.18 0.15 0.23
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Appendices, appendix H: UMP semester1-200708 multi-neighbourhood-GDA results

Appendix H: UMP semester1-200708 multi neighbourhood GDA
results based on specified ordering (cont...)

Remove specified Nh

No. Nhi Nh4 Nh7 Nh1&Nh4 Nhl1&Nh7 Nh4&Nh7  Nhl, Nh4&Nh7
1 4.13 396 4.01 423 4.28 3.96 4.12
2 4 4.05 4.02 4.22 4.27 4 4.24
3 391 348 395 4.21 4.12 421 4.17
4 389 392 401 504 421 3.86 422
5 407 4.03 3.66 4.23 3.65 3.98 4.59
6 395 3.8 3.84 4.26 4.26 4.1 4.43
7 389 375 403 441 a.1 3.98 4.3
8§ 385 379 38l 4.1 3.93 3.93 3.8
9 394 391 4.06 3.94 4.36 4.03 4.19
10 412 391 391 425 4.51 421 4.28
11 391 413 393 4.07 4.09 401 4.25
12 39 432 3.64 421 4.2 4.05 4.15
13 389 396 385 4.l 4.51 3.87 4.48
14 403 427 418 402 3.96 4.13 375
15 382 4.06 395 4.07 4.2 4.18 4.04
16 421 394 454 43 3.7 3.79 4.14
17 4 391 42 407 3.87 3.99 4.55
18 369 359 362 4.06 37 4.29 4.21
19 417 381 4.56 4,55 3.98 4.14 4.42
20 401 4.18 373 432 4.28 38 4.12
21 434 392 399 444 4.41 4.01 3.92
22 397 393 4.1 4.46 4.06 3.54 433
23 393 388 39 403 3.9 4 4.19
24 388 423 392 374 3.8 3.92 4.52
25 434 362 404 43 3.93 3.93 439
26 395 412 393  3.98 3.94 3.75 435
27 446 414 405 414 4.08 3.97 4.07
28 3.98 437 4.02 423 4.16 3.97 4.32
29 4 393 406 4 4.16 3.88 428
30 4.03 39 3.66 4.28 4.29 39 4,22
31 367 388 42 4.39 395 3.83 443
32 432 401 404 406 4.01 3.97 4.12
33 3.89 385 4.1l 4.23 3.8 412 4.08
34 416 396 3.74 3.95 3.69 4.16 4.87
35 393 411 393 44 4.26 4.21 4.39
36 3.77 3.86 397 4.2 4.22 4.05 4.61
37 396 366 4.1 3.81 424 4.29 4.16
38 38 409 389 4.l 3.82 3.91 439
39 372 369 37 468 4.19 3.98 432
40 396 412 4.1 3.99 4.1 3.78 4.33
41 425 407 384 418 3.95 4.46 43
42 399 44 356 392 4.03 3.95 4.14
43 4.06 4.1 4,01 4.5 3.82 3.84 4.49
44 419 391 355 445 421 4.38 4.73
45 399 428 411 3.8 4.16 3.91 4.61
46 399 399 4.17 4.16 3.98 395 4.72
47 42 436 4 3.97 3.98 4.14 4.46
48 379 422 39 436 3.68 3.81 4.43
49 421 385 387 418 427 3.78 4.41
50 386 3.48 4.3 4.58 4.07 38 4.44
Min  3.67 348 3.55 3.74 3.65 3.54 3.75
Max 446 440 4.56  5.04 4.51 4.46 4.87
Ave 400 3.97 397 421 4.07 3.99 431
Stdev 017 022 021 024 0.21 0.17 0.22
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Appendices, appendix I: UMP semester1-200809 multi-neighbourhood GDA results

Appendix I: UMP semester1-200809 multi neighbourhood GDA
results based on random ordering

Remove specified Nh

No. AllNh
Nh5 Nh2 Nh6 Nh5&Nh2 Nh5&Nh6 Nh2&Nh6 NhS, Nh2&Nh6
1 5.88 6.09 575 642 5.78 5.97 5.92 574
2 6.27 623 567 64 6 6 6.18 5.96
3 6.21 585 6.17 6.09 6.28 6.06 5.96 6.25
4 6.22 5.8 598 64 5.84 6.09 T 5.52 6.21
5 58 576 601 632 605 6.03 6.09 6.24
6 5.58 6.05 621 6.18 6.12 6.26 6.36 6.19
7 6.05 6.08 6.08 622 6.12 6.22 6.2 6.02
8 583 628 638 S87 585 5.68 6.02 6.05
9 6 636 632 608 62 5.78 6 6.29
10 633 61 575 612 589 6.24 5.92 6.02
11 655 593 629 S91  6.12 6.12 6 6.07
12 622 601 583 633 607 6.02 6.1 6.18
13 6.11 556 6.03 6.05 6.17 5.95 6.3 6.33
14 6.34 599 585 6.52 6.13 6.09 5.95 6.22
15 5.86 5.75 6.2 598 5.95 5.8 6.48 6.13
16 6.22 594 579 643 6.13 6.27 6.33 6.14
17 667 627 58 607 6.l 593 6.15 6.16
18 5.99 596 581 6.26 5.68 5.78 6.22 6.02
19 5.86 581 6.06 648 5.98 5.84 5.82 6.33
20 593 6.1 589 587 6.05 6.18 6.26 597
21 6.15 584 598 599 5.93 6.05 6.19 5.96
22 6.29 595 6.02 6.12 6 6.04 5.76 595
23 61 611 59 58 606 5.73 6.06 5.79
24 642 601 573 589 58 5.95 6.0 6.12
25 6.07 596 6.18 645 6.03 5.98 6.29 6.05
26 6.39 6.04 592 623 6.23 5.82 6.05 6.04
27 634 578 566 622  6.12 6.21 6.15 5.99
28 618 589 578 626 585 5.7 5.95 597
20 588 593 589 604 616 5.8 6.15 5.98
30 627 63 608 622 593 6.16 6.01 5.76
31 637 609 596 628 614 5.78 5.88 6.08
32 574 605 61 587 594 591 6.18 6.13
33 6.11 594 598 631 5.92 6.12 5.94 6.06
34 6.22 6.22 6.1 6.16 6.13 6.28 5.86 6.04
35 5.96 589 631 6.13 593 6.11 6.11 5.99
36 594 585 622 638 606 6.41 6.44 5.98
37 6.1 575 581 6.04 5.8 6.35 6.25 5.83
38 604 S8 591 608 606 6 6.43 5.94
39 62 601 611 618 598 6.25 5.86 6.22
40 58 614 621 57 602 6.22 5.71 6.02
41 6.33 571 624 6.5 6.03 6.38 6.18 591
42 5.86 58 631 598 6.03 6.23 6.18 5.84
43 6.02 6.09 6 6.08 6.13 593 6.3 6.34
44 6.19 6.1 587 6.16 6.22 6.24 5.94 6.28
45 583 91 616 601 614 6.06 6.23 5.88
46 583 598 599 584 628 5.89 6.12 6.07
47 5.82 6.06 6.21 6.2 6.06 6.06 6.23 5.85
48 6.02 589 6.08 645 591 5.96 5.88 6.19
49 6.16 614 595 6.16 6.15 5.81 6.16 595
50 6.11 582 609 6.11 6.19 6.06 5.99 5.67
Min  5.58 5.56 5.66 5.70  5.68 5.68 5.52 5.67
Max 6.67 636 638 652 628 6.41 6.48 634
Ave 610 598 601 616  6.03 6.04 6.09 6.05
Stdev 022 0.7 0.8 020  0.14 0.19 0.20 0.16
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Appendices, appendix I: UMP semester1-200809 multi-neighbourhood GDA results

Appendix I: UMP semester1-200809 multi neighbourhood GDA
results based on random ordering (cont...)

Remove specified Nh

No. Nhl Nh3 Nh7 Nhl&Nh3 Nh1&Nh7 Nh3&Nh7  Nhl, Nh3&Nh7
1 6.21 636 6.21 6.39 6.61 6.36 6.91
2 6.57 6.38 644 6.65 6.41 6.47 6.91
3 642 63 626 6.92 6.7 6.3 7.18
4 636 618 653 64l 6.52 6.51 7.16
5 633 6.52 6.18 6.31 6.49 6.67 7.29
6 6.18 6.36 6.16 6.37 6.08 6.64 7.03
7 612 623 604 659 6.39 6.64 6.98
8 6.51 648 6.12 6.49 6.62 6.71 7.01
9 6.29 6.27 6.01 6.93 6.41 6.65 6.99
10 654 633 621 665 6.72 6.44 7.06
11 628 6.02 6.35 6.4 6.27 6.18 6.88
12 6.13 644 6.07 6.62 6.43 6.54 6.84
13 625 596 6.3 654 6.3 6.61 7.09
14 6.16 6.62 6.29 6.39 6.35 6.32 6.91
15 6.12 6.04 6.13 6.54 6.58 6.53 7.08
16 654 652 637 627 6.75 6.3 7.12
17 615 621 S87 669 6.33 6.48 7.02
18 626 6.06 6.01 6.33 6.64 6.54 6.97
19 577 6.62 6.36 6.24 6.52 6.55 7.17
20 6.16 6.72 6.35 6.77 6.75 6.56 7.11
21 629 6.39 646 6.54 6.42 6.32 7.03
22 647 659 613 63l 6.63 6.2 6.71
23 632 647 6.16 6.35 6.62 6.48 7.29
24 637 597 637 658 6.6 6.54 6.99
25 648 644 58 668 6.68 6.63 6.72
26 633 649 641 672 6.43 6.31 7.04
27 6.57 619 642 6.58 6.62 6.19 727
28 6.15 6.53 6.17 6.59 6.44 6.22 7.14
29 642 612 603 626 6.45 6.09 6.69
30 6.13 6.01 6.23 6.4 6.37 6.51 7.03
3t 6.14 6.67 595 6.44 6.55 6.78 6.76
32 602 635 635 658 6.11 6.32 6.81
33 641 6.13 6.65 6.58 6.47 6.48 7.37
34 576 63 637 6.5 6.95 6.63 7.05
35 6.56 647 6.05 6.65 6.32 6.2 7
36 65 626 6.13 6.92 6.17 6.53 6.88
37 62 6.28 6.07 6.49 6.8 6.36 7.49
38 622 652 655 655 6.47 6.06 7.29
39 635 599 6.18 6.73 6.58 6.37 7.04
40 643 63 637 6.94 6.56 6.2 6.9
41 589 636 603 644 6.52 6.55 6.85
42 643 59 6.46 6.69 6.74 6.38 7.32
43 598 63 6.25 6.53 6.35 6.5 7.11
44 629 582 638 654 6.22 6.17 6.68
45 608 603 615 678 6.4 6.39 7.12
46 6.39 621 6.11 6.26 6.67 6.64 7.22
47 6.67 6.21 6.1 6.4 6.47 6.43 7
48 598 6.34 6.06 6.75 6.5 5.92 7.42
49 622 665 62 694 6.69 6.18 691
50 6.38 56 627 6.55 6.64 6.24 7.11
Min 576 5.60 580  6.24 6.08 5.92 6.68
Max 667 672 665 694 6.95 6.78 7.49
Ave 628 629 622 656 6.51 6.42 7.04
Stdev 020 024 0.18  0.19 0.18 0.19 0.19
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Appendices, appendix J: UMP semesterl1-200809 multi-neighbourhood GDA results

Appendix J: UMP semester1-200809 multi neighbourhood GDA
results based on specified ordering

Remove specified Nh

No. AllNh
Nh5 Nh2 Nh6 Nh3&Nh2 Nh5S&Nh6 Nh2&Nh6  Nh5, Nh2&Nh6
1 6.21 5.88 6.3 6.18 5.89 6.13 5.92 6.18
2 598 592 592 588 6.22 6.39 6.04 6.03
3 6.18 5.88 6.05 6 6.06 6.49 6.2 6.11
4 597 6.1 574 5.99 5.75 5.87 5.9 59
5 6.15 584 6.08 6.02 6.25 5.81 6.04 6.25
6 6.24 6.04 6.07 5.78 5.6 6.1 5.58 6.27
7 6.34 6.03 6.21 58 5.79 6.04 5.95 6.08
8 6.02 6.13 582 6.03 6.06 6.22 6.12 6.05
9 6.05 579 621 6.23 5.93 5.78 6.11 6.19
10 5.94 573 573 6.04 6.11 6.01 5.97 6.17
11 6.04 595 6.08 6.15 6.08 6.43 6 5.76
12 6.01 622 588 6.1 5.96 5.79 6.33 5.89
13 5.94 6.01 596 6.12 6.3 6.19 5.99 6
14 6.09 583 598 5.75 6.24 6.07 6.08 6.43
15 6.12 555 6.12 573 5.75 5.89 6.06 6.25
16 6.03 584 593 6.19 6.2 6.44 6.27 591
17 6.24 6.04 5.77 6.14 6.19 6.13 6.08 6.33
18 6.15 568 595 6.07 6.14 6.03 6.11 6.08
19 5.99 578 5.78 6.2 5.99 6.11 5.79 5.87
20 6.04 6.01 §5.77 5.89 6.07 5.62 6.24 6.06
21 6.03 595 5.77 5.8 6.15 6 6.24 6.19
22 5.71 6.17 599 6.25 5.97 6.25 6.08 6.34
23 5.96 581 589 595 6.21 5.98 5.88 6.2
24 6.1 6.14 597 6.11 5.78 6.12 6.05 5.94
25 6.4 6.16 5.87 622 5.74 6.14 6.01 6.18
26 5.87 6.09 6.32 6.06 5.96 6.08 5.78 6.02
27 592 595 62 594 6.34 6.05 5.81 6.14
28 5.89 595 6.05 586 5.95 6.37 5.96 5.86
29 6.01 6.16 6.03 5.8 6.11 6.09 6.03 598
30 6.09 622 6.03 592 6.27 5.9 6.14 6.04
31 6.14 592 577 6.38 6.21 5.87 5.93 6.26
32 6 6.05 588 6.26 6.16 5.75 6.05 6.03
33 6.28 6.04 6.08 6.02 6.12 6.04 6.18 6.09
34 6.06 605 594 591 6.02 597 5.92 6.06
35 6.14 6.183 5.82 6.1 6.14 5.85 6.17 5.82
36 6.18 581 6.05 6.01 6.28 5.85 5.92 6.12
37 5.93 588 6.14 595 5.85 5.86 6.02 6.21
38 6.02 575 647 6.1 6.16 5.62 6.2 5.84
39 6 581 553 6.13 6.18 6.06 5.98 6.2
40 5.74 599 627 6.04 6.08 6.19 5.76 6.24
41 5.92 6.02 6.14 6.09 5.74 5.94 5.95 6.02
42 6.18 609 628 5.8 6.11 5.69 6.15 6.24
43 5.92 584 584 6.01 6.24 6.16 6.24 5.75
44 5.88 6.12 593 6.12 6.53 5.58 5.92 59
45 6.05 6.1 59 S5.85 6.22 6.19 5.59 5.98
46 6.35 6.16 6.12 591 5.98 6.21 6.2 6.41
47 6.23 6.19 581 581 5.85 5.65 5.62 6.05
48 6.25 563 578 5.81 6.03 6.02 6.02 6.01
49 6.09 588 622 596 6.16 6.23 6.3 6.11
50 6.14 6.18 5.81 583 6.23 6.03 6.02 5.97
Min 5.71 5.55 5.53 573 5.60 5.58 5.58 5.75
Max 640 622 647 6.38 6.53 6.49 6.33 6.43
Ave 6.06 597 599 6.01 6.07 6.03 6.02 6.08
Stdev  0.15 0.16 0.19 0.16 0.19 0.22 0.17 0.16
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Appendices, appendix J: UMP semester!-200809 muiti-neighbourhood GDA results

Appendix J: UMP semester1-200809 multi neighbourhood GDA
results based on specified ordering (cont...)

Remove specified Nh

No. Nhl Nh3 Nh7 Nhl&Nh3 Nh1&Nh7  Nh3&Nh7 Nhl, Nh3&Nh7
1 6 58 634 6.57 6.22 6.17 6.98
2 624 593 6.13 6.62 6.5 6.09 7
3 63 6.08 591 6.55 6.45 6.14 1.27
4 647 6.46 6.11 6.77 6.8 6.41 6.86
5 639 626 5.9 6.55 6.19 6.2 7.14
6 656 622 6.01 6.22 6.6 6.36 7.07
7 62 651 645 6.45 6.35 6.2 7.21
8 602 635 593 6.38 6.55 6.16 7.29
9 62 627 627 6.52 6.32 6.71 7.3
10 585 601 64 6.66 6.68 6.14 7.39
11 6.17 63 587 6.71 6.5 6.27 7.1
12 605 646 6.2 6.49 6.45 6.41 7.12
13 628 633 5.84 6.5 6.3 6.62 6.87
14 6.07 623 62 6.48 6.14 6.42 6.76
15 6.14 6.14 6.14 6.51 6.42 6.48 7.18
16 622 6.17 595 6.75 6.65 6.3 6.73
17 629 588 6.05 6.25 6.32 6.31 6.92
18 6.02 6.03 6.19 6.91 6.3 6.21 7.28
19 649 578 6.12 6.47 6.54 6.48 7.11
20 656 623 6.32 6.36 6.34 6.26 7.34
21 644 645 598 6.59 6.34 6.17 7.2
22 623 592 598 6.45 6.85 6.44 6.9
23 6.07 6 6.18 6.05 6.39 6.51 6.78
24 617 639 6.24 6.5 6.52 6.41 6.91
25 621 624 6.08 6.55 6.16 5.94 7.14
26 595 6.1 6.28 6.56 6.46 6.28 6.63
27 6.14 642 5.87 6.61 6.85 6.49 6.99
28 605 6.02 6.24 6.48 6.52 6.4 6.93
29 634 593 6.13 6.55 6.48 6.3 7.07
30 6.13 6.09 6.08 6.3 6.64 6.35 6.9
31 599 642 6.01 6.25 6.49 6.46 7.23
32 595 6.05 6.2 6.41 6.37 6.02 7.59
33 639 6.2 6 6.81 6.19 6.44 7.19
34 627 621 6.16 6.44 6.44 6.09 7.46
35 6.15 636 6.2 6.44 6.69 5.99 7.17
36 588 6.07 6.34 6.39 6.4 6.22 6.81
37 593 631 6.05 6.65 6.73 6.31 6.9
38 624 598 6.12 6.7 6.69 6.19 7.01
39 6.26 6.04 6.24 5.95 6.08 6.33 6.67
40 6.15 6.12 6.51 6.51 6.58 6.01 7.16
41 663 585 6.32 6.4 6.65 6.18 7.12
42 593 644 598 6.42 6.44 6.25 7.08
43 6.17 6.02 6.27 6.41 6.5 6.33 7.11
44 636 6.02 6.32 6.36 6.71 6.36 7.21
45 6.64 6.07 593 6.6 6.2 6.59 6.98
46 6.54 595 6.05 6.46 6.57 6.27 7.11
47 592 624 591 6.41 6.61 6.12 7.27
48 6.69 6.08 5.85 6.6 6.49 5.98 7.09
49 575 639 6.01 6.08 6.24 6.34 6.99
50 62 _6.19 6.13 6.63 6.3 6.4 7
Min 575 5.78 5.84 595 6.08 5.94 6.63
Max 6.69 6.51 6.51 691 6.85 6.71 7.59
Ave 621 6.16 6.12 6.49 6.46 6.29 7.07
Stdev 022 0.19 0.17 0.18 0.19 0.17 0.20
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Appendices, appendix K: UMP semester-200809 multi-neighbourhood GDA results

Appendix K

Table 7.7a. p-value result for semester1-200708 in comparison between the

neighbourhood heuristic (random ordeing)

a b ¢ d e f g h i i k | m n o
a) All Nh - 871 211 100 1.00 481 279 100 990 .743 100 .000 .064 .005 .000
b) Remove Nh§ 871 - 999 986 372 100 1.00 320 .074 008 .347 000 .000 .000 .000
¢) Remove Nh2 211 999 - 550 021 100 100 011 002 .000 .020 .000 .000 .000 .000
d) Remove Nhi0 1.00 986 .550 - 1.00 824 620 100 936 .534 999 .000 .030 .002 .000
e) Remove NhS and Nh2 1.00 .372 021 1.00 - 079 033 100 100 964 100 .000 216 .09 .000
f) Remove Nh5 and Nh10 481 100 1.00 .84 .079 - 1.00 050 .008 .001 .074 .000 .000 .000 .000
g) Remove Nh2 and Nh10 279 100 100 .620 .033 1.00 - 019 003 000 .031 .000 000 .000 .000
h) Remove Nh5,Nh2and NhiO0 | 1.00 320 .011 100 100 .050 .019 - 1.00 911 100 .000 .100 .006 .000
i) Remove Nhi 990 074 002 936 1.00 008 .003 1.00 - 1.00 1.00 .002 .766 .176 .000
J) Remove Nh4 743 008 .000 534 964 001 .000 911 1.00 - 978 .047 998 730 .000
k) Remove Nh7 100 347 020 999 100 .074 031 100 1.00 .978 - .000 279 .028 .000
1) Remove Nhi and Nh4 000 .000 .000 .000 0.00 .000 .000 0.00 .002 .047 .000 - 322 974 046
m) Remove Nhl and Nh7 064 000 .000 .030 216 .000 .000 .100 .766 .998 279 .322 - 998 .000
n) Remove Nh4 and Nh7 005 .000 .000 .002 .019 000 .000 .006 .176 730 .028 974 998 - .000
0) Remove Nhl, Nh4 and Nh7 000 .000 .000 .00 .000 000 .000 .000 .000 .000 .000 .046 .000 .000 -

Table 7.7b. p-value result for semester1-200708 in comparison between the
neighbourhood heuristic (specified ordering )

a b c d e f g h i ] k 1 m n ]
a) AllNh - 1.00 100 100 458 99 1.00 .093 .642 973 991 .000 .045 .730 .000
b) Remove Nh$ 1.00 - 100 100 .044 100 100 .004 .082 .566 693 .000 .001 .121 .000
¢) Remove Nh2 1.00  1.00 - 1.00 .004 100 .998 .000 .008 .219 313 .000 000 .015 .000
d) Remove Nh10 1.00 100 1.00 - 149 999 100 .018 257 831 912 000 .006 341 000
e) Remove NhS and Nh2 A58 044 004 149 - 003 065 999 100 100 996 002 994 100 .000
f) Remove Nh5 and Nh10 996 100 1.00 .999 .003 - 984 000 .005 .140 207 .000 .000 .008 000
g) Remove Nh2 and Nh10 1.00 100 998 1.00 .065 .984 - 006 119 759 868 000 001 .181 .000
h) Remove Nh5, Nh2 and Nh10 .093 004 .000 018 999 .000 .006 - 975 837 702 .147 100 951 .000
i) Remove Nht 642 082 008 257 1.00 .005 .119 975 - 1.00 1.00 .000 919 100 .000
i) Remove Nh4 973 566 219 831 1.00 .140 .759 837 1.00 - 1.00 .000 697 100 .000
k) Remove Nh7 991 693 313 912 996 207 868 702 100 1.00 - .000 528 1.00 .000
1) Remove Nhi and Nh4 .000 .000 .000 000 .002 .000 .000 .147 .000 .000 .000 - 146  .000 597
m) Remove Nhl and Nh7 045 001 .000 .006 994 .000 .001 100 919 .697 .528 .146 - .865 .000
n) Remove Nh4 and Nh7 730 121 015 341 1.00 .008 .18 .951 100 100 100 .000 865 - 000
0) Remove Nhil, Nh4 and Nh7 000 000 .000 000 .000 .000 .000 .000 000 .000 .000 .597 000 .000 -
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Appendices, appendix K: UMP semesterl-200809 multi-neighbourhood GDA results

Table 7.8a. p-value result for semester1-2008/09 in comparison between the
neighbourhood heuristic (random ordering)

a b c d € f g h i J k 1 m n o
a) AlINh - 211 798 973 942 980 1.00 .996 .004 .005 .149 000 .000 .000 .000
b) Remove Nh$ 211 - 100 .000 905 965 219 .767 .000 .000 .000 .000 .000 .000 .000
¢) Remove Nh2 .798  1.00 - 021 1.00 100 .848 100 .000 .000 .000 .000 .000 .000 .000
d) Remove Nhé6 973 .000 .021 - 032 112 878 148 197 173 955 .000 .000 .000 .000
e) Remove NhS and Nh2 942 905 1.00 .032 - 100 968 100 .000 .000 .000 .000 .000 .000 .000
f) Remove NhS and Nhé6 980 965 1.00 .112 1.00 - 992 100 000 .000 .000 .000 .000 .000 .000
g) Remove Nh2 and Nhé 1.00 219 848 878 968 .992 - 999 001 001 043 .000 .000 .000 .000
h) Remove NhS,Nh2andNh6 | .996 .767 100 .148 100 100 .999 - .000 .000 .000 .000 .000 .000 .000
i) Remove Nhi .004 000 .000 .197 .000 .000 .001 .000 - 100 973 .000 .000 .041 .000
j) Remove Nh3 005 000 .000 173 .000 .000 .001 .000 1.00 - 932 000 .000 .206 .000
k) Remove Nh7 149 000 .000 955 .000 .000 .043 .000 973 .932 - 000 .000 .000 .000
1) Remove Nhl and Nh3 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 - 991  .030 .000
m) Remove Nhl and Nh7 000 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .991 . 506,000
n) Remove Nh3 and Nh7 000 000 .000 .000 .000 .000 .000 .000 .041 206 .000 .030 .506 - .000
0) Remove Nhl, Nh3 and Nh7 | .000 000 .000 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 -

Table 7.8b. p-value result for semester1-2008/09 in comparison between the -
neighbourhood heuristic (specified ordering)

a b < d € f g h i J k 1 m n o
a) AllNh - 70 561 827 1.00 999 981 1.00 .021 251 9500 .000 .000 .000 .000
b) Remove Nh§ 170 - 1.00 999 308 984 98 071 .000 .000 .002 .000 .000 .000 .000
¢) Remove Nh2 .561 1.00 - 100 683 100 1.00 .319 .000 .001 .020 .000 .000 .000 .000
d) Remove Nhé 827 999 1.00 - 902 100 100 .559 .000 .002 .041 .000 .000 .000 .000
€) Remove NhS and Nh2 1.00 308 683 .902 - 999 989 100 .066 479 975 .000 .000 .000 .000
f) Remove NhS and Nh6 999 984 1.00 100 .99 - 1.00 983 007 .087 .501 .000 .000 .000 .000
g) Remove Nh2 and Nhé 981 98 100 100 .989 100 - .867 001 .014 170 .000 .000 .000 .000
h) Remove NhS,Nh2and Nh6 | 1.00 .071 319 559 1.00 983 .867 - 096 621 996 .000 .000 .000 .000
i) Remove Nhi 021 .000 .000 .000 .066 .007 .001 .096 - 999 662 000 .000 705 .000
) Remove Nh3 251 000 001 002 479 .087 014 621 999 - 998 .000 000 .036 .000
k) Remove Nh7 800 .002 .020 .041 975 501 170 996 662 998 - 000 000 000 .000
) Remove Nhl and Nh3 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 - 1.00 .000 .000
m) Remove Nhl and Nh7 .000 .000 .000 000 .000 .000 .000 .000 .000 .000 .000 100 - .000 .000
n) Remove Nh3 and Nh7 000 .000 000 000 .000 .000 .000 .000 .705 .036 .000 .000 .000 - .000
0) Remove Nh]l, Nh3and Nh7 | .000 .000 .000 000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 -
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