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ABSTRACT

The Gas-Liquid Cylindrical Cyclone (GLCC) separator is commonly used for the separation

of oil and gas mixtures flowing from the well head. Similar to the design used by other

separators, it has an inlet and two outlets for gas and liquid respectively. However, the inlet to

the separator can either be single or dual type. The pipeline connection from the upstream

preconditioning equipment (CFC) is inclined downwards and has a tangential inlet slot. The

essence of having a downward inclination is to promote pre-separation of the fluid phases.

On the other hand, a tangential inlet promotes circular fluid motion thereby inducing

separation of the fluid phases by centrifugal forces.

Due to the complex behaviour of the flow within the GLCC, liquid carry over (LCO) as drops

into the gas phase pipeline and gas carry under (aCU) as bubbles into the liquid phase

pipeline are inevitable. Both phenomena greatly reduce the purity of the fluid phases at the

outlets. To overcome this challenge, it has been proposed from field experiments carried out

by Chevron Energy Technology Company, to precondition the influent flow in an upstream

vertical pipe before entrance to the GLCC. In order words, a suggested solution to

overcoming liquid carry over (LCO) and gas carry under (GCU) is to precondition the oil/gas

mixture by forcing small bubbles/drops of 3 - 5mm in diameter to coalesce in an upstream

vertical pipe. The upstream vertical preconditioner is known as a Churn Flow Coalescer

(CFC). This is because the churn flow regime is the most suitable for the coalescence of both

liquid and gas phases. Therefore, it is in the scope of this research work to carry out detailed

preconditioning experiments within an upstream vertical pipe that serves the purpose of a

Chum Flow Coalescer (CFC). All experiments in this research work have been carried out in

the Chemical and Environmental Engineering L3 laboratory at the University of Nottingham.

Although, the churn flow regime is specifically the most suitable for the GLCC, the

operational envelope for the initial set of experiments spans the bubble to churn regimes. This
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is because the experiments were performed with the aim of delineating the conditions for the

inception of typical churn flow in a large diameter pipe. These set of experiments were

conducted in a 121mm internal diameter, 5.3m in length vertical pipe using air and water as

the operating fluids. In these experiments, slug flow characterised by a Taylor bubble and a

liquid slug was not observed. The churn flow regime is made up of two sub-regimes namely:

liquid bridging of the gas core and formation of huge waves. The former is a phenomenon

that occurs when the liquid phase forms a bridge as a result of radial coalescence of the wave

crests flowing about the pipe centreline and momentarily blocks the entire pipe cross-section.

The huge waves occur when the liquid phase flows as waves on the inner walls of the pipe

and about the pipe centreline having large amplitudes. Between bubble to churn flow regimes

in these experiments, four regimes were observed namely, discrete bubbly flow and spherical

cap bubbly flow which make up the bubbly flow regime, churn turbulent regime (transition

region) and typical churn flow regime. These experiments paved way for detailed

experiments to be carried within the churn flow regime.

Detailed churn flow experiments were then carried out in a large scale closed loop facility

having an internal diameter of 127mm and a longer vertical pipe of llm. The rationale for

performing the experiments in this facility is because the facility offered a wider range of

conditions within the churn flow compared to the first experimental rig facility. Data was

acquired at un = 2.4, 7.1, 30.7, 35.4 and 82.7 which represent different axial distances from

the gas-liquid injection at the base of the test section. Air and water were also used as the

operating fluids. The void fraction data acquired at different axial distance from the injection

varies logarithmically with increase in axial distance. The flow can be considered to be

developed at UD = 82.7 based on the void fraction. In addition, the frequency of liquid

bridging of the gas core decays with increasing distance from the injection (downstream)
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while the frequency of the huge waves and liquid structures entrained in the gas core

increases downstream from the injection due to coalescence.

Finally, the effect of viscosity in the churn flow regime was investigated using air-

glycerol/water as the fluid pairs in the same large scale loop facility. Two glycerol/water

mixtures were used having viscosities of 12.2cP and 16.2cP respectively. The data was

acquired at a suitable axial distance from the injection at un = 65.5. In this experimental

campaign, the size and frequency of the liquid structures entrained in the gas core are larger

compared to the liquid structures present when experiments were carried out using air-water

as the operating fluids. As a result, this gives a bi-modal probability distribution for air-

glycerol/water compared to air-water. Similar to the air-water experiments, the liquid

bridging operating condition gives a high degree of coalescence of both phases. The

mechanism of entrained liquid structure formation has been proposed based on the

comparative study to the air-water experiments. A model has also been developed that

predicts the effective length of pipe for the Churn Flow Coalescer (CFC). Overall, the liquid

bridging sub-regime of churn flow should be the prevailing condition in the CFC to enhance

proper separation of gas and liquid phases in the downstream GLCe separator.
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CHAPTER!

THESIS INTRODUCTION

1.1. Introduction

Over the last few decades, the efficient separation of gas-liquid mixtures applicable to

offshore and onshore petroleum industries have become increasingly important. The

production of oil after exploration and effective transportation is inevitably accompanied by

the presence of natural gas and water. To this end, it is necessary to employ the use of

efficient separators to separate small bubbles/drops from the continuous phase which are

formed due to shear.

Conventional separators have been used as the main separation methods or pre-conditioning

equipment placed before gravity settlers. Some of these archaic vessel-type separators utilised

in oil industry are large, heavy and expensive to purchase and operate where the limitations

are most severely felt in offshore operations in cases of escalating platform costs.

Due to the high cost associated with these separators the oil industry have shown a great

interest in the development of novel alternatives that are compact, low in weight and low in

capital/operating costs. One of such firmly established alternatives is the Gas Liquid

Cylindrical Cyclone (GLCC) separator, (Kouba and Shoham, 1995).

The simple and compact arrangement as shown in Figure 1.1 consists of a vertical pipe (also

known as an upstream pre-conditioner-CFC) with a tangential inlet and horizontal outlets for

gas and liquid. The tangential inlet to the body of the GLCC induces a swirl to the flow

thereby producing centrifugal force which is an order of magnitude higher than the force of

gravity.
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Figure 1.1. Schematic of Chevron's GLCC showing multiphase metering loop Kouba and

Shoham ,1995).(A) Multiphase flow from well-head (B) Gas (C) Liquid (D) Multiphase flow

to pipeline.

The effect of both centrifugal and gravitational forces pushes the liquid outward and

downward towards the liquid exit while the gas phase is driven upwards towards the gas exit

due to buoyancy effect.

Unlike other conventional separators that have been in existence for several years, the

development of the GLCC is still at the emerging stages as shown in Figure 1.2. This is

mostly due to the difficulty in predicting accurately the hydrodynamics where complex flow

regimes exist. For example, above the inlet to the GLCC, bubbly, slug, churn flow regimes

may be present while below the inlet the flow consists of a liquid vortex and a gas core,

(Kouba and Shoham, 1995).
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Figure 1.2. 'S' Curve for development ranking for Separation technology, Kouba and

Shoham, 1995) (reproduced).

Furthermore, the GLCC is limited by liquid carry over (LCO) in the gas stream in form of

drops and gas carry under (GCU) in form of bubbles in the liquid stream, (Kouba and

Shoham, 1995). The entrainment of drops and bubbles in the liquid and gas streams

respectively, reduces the outlet purity of the phases.

Overall, there is a lack of understanding of the hydrodynamics present in the GLCC.

Therefore, the inability to predict its performance hinders the wide application of the

equipment. Nevertheless, the potential applications of GLCC include: control of gas-liquid

ratio(GLR) for multiphase flow meters and pumps, portable well test metering, steam quality

metering, flare gas scrubbing, primary surface or subsea separation and pre-separation

upstream of slug catchers or primary separators, (Kouba and Shoham 1995). Figures 1.3(a)

and (b) shows the installed GLCC equipment at Caltex pacific, Indonesia.

In addition, the GLCC separator has been found to boost offshore production. Recently in

June 2011, the Takula Field in offshore Angola, which is Chevron's best producer in
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Southern Africa, reported a further increase in their production rate by approximately 2,100

barrels of oil per day (bopd). This is due to the innovative design of the GLCC that helps

reduce the backpressure in wells.

(a)

(b)

Figure 1.3. World's largest GLCC installed by Caltex Pacific Indonesia (CPI), (Tulsa

University Separation Technology Projects website (TUSTP).
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1.2.Background to Research

Tulsa University Separation Technology Projects (TUSTP) which was established in 1994 is

a Joint Industry Project of 15 companies developing the idea of the GLCC concept to achieve

efficient separation of gas-liquid mixtures. Experiments have been carried out by Kouba and

Shoham (1995) and they concluded that Computational Fluid Dynamics (CFD) simulations

are too computationally intensive, time consuming and complicated to apply to large systems

such as the GLCC. Also, subsequent modelling of the hydrodynamics of flow in a GLCC is

impractical, therefore, making it an insufficient design tool. They stated that mechanistic

modelling is a reasonable compromise between empirical formulations and the complexities

of CFD. The combination of both presents itself as a realistic approach to obtaining a useful

tool for the design and performance predictions for the GLCC.

Chirinos (1998) has carried out experiments on a small scale model of the GLCC at

University of Tulsa shown in Figure 1.4. From the experiments, a mechanistic model was

obtained for liquid carry over (LCO) under upstream chum flow conditions.

Apart from this, no detailed work has been reported to be carried out on the upstream

preconditioning equipment (CFC) placed before the GLCe. Consequently, this creates a

lacuna in understanding of the overall system hydrodynamics. This is because the behaviour

within the GLCC may be greatly influenced by the conditions prevailing in the upstream

preconditioner.
I

However, a great amount of work has been carried out in small and large diameter vertical

pipes and for the major flow regimes namely: bubbly, slug, chum and annular flows. These

regimes will be discussed in chapter 2.
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Figure 1.4. Laboratory Model ofGLCC with Control Systems at the University of Tulsa,

(Chirinos, 2008).

1.3. Problem Statement

The separation efficiency of a GLCC is affected by the existence of small bubbles/drops in

the range of 3-5 mm in the inflow mixture in both liquid and gas outlets as they do not

separate under the centrifugal forces. It is important that these entrained bubbles/drops should

be made to coalesce in an upstream vertical pipe to enhance proper separation in a

downstream GLCC separator. However, the limitations in pump capacities and the viscosities

of the crude oil prevent increasing the helical flow intensity within the GLCe. As a result, the

separation of smaller bubbles/drops proves difficult. A suggested solution to overcoming this

difficulty is to precondition the oil/gas mixture by forcing small bubbles/drops to coalesce in

an upstream preconditioning equipment shown in Figure 1.1 also known as Chum Flow

Coalescer(CFC). This research focuses on developing an inline pre-processing CFC unit by

first seeking the knowledge of the relevant flow regimes.
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Oil and gas flow in most cases have bubbly and chum flow conditions present within vertical

pipes or flexible risers. In a previous work by Szalinski et al. (2010), it has been reported that

the bubble size increases within the chum flow regime when the viscosity increases.

However, the parameter space is not only limited to the flow variables but extends to the

geometric variables of the vertical pipe. It is in the remit of this work to develop a Chum

Flow Coalescer (CFC) model that could be employed in designing the preconditioner to the

GLCC. The model will be eventually obtained after a series of detailed and in-depth

experiments. The measured flow parameters such as cross-sectional averaged void fraction

will help form a database that will be used eventually in the CFC design. On the other hand,

the predictive model will estimate with reasonable uncertainty the optimum height for the

CFC to induce coalescence of small bubbles/drops. Therefore, this will avert to a large extent

problems of LCO and GCU in the downstream GLCC separators. Having said this, the

objectives include:

./ Establishing the bubble to chum flow regime boundary in a large diameter pipe .

./ Performing air-water chum flow development experiments .

./ Investigating the effect of viscosity in chum flow. Comparisons were made to the air-

water data .

./ Establishing a predictive model for the upstream vertical pipe after data reconciliation.

1.4. Methodology

1.4.1. Experimental methods

The experimental campaigns to achieve the stated objective above were performed on two

different rig facilities. The first experimental rig was built, commissioned and experiments

were performed accordingly. The aim of the experiments was to delineate the bubble to churn

flow transition in a large diameter pipe. The test section has an internal diameter of 121mm
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and is 5.3m in length. Air and water were used as the operating fluids. An injection device

was used to introduce the two phase flow mixture into the test section. The phase fraction

data was obtained using a 32 x 32 capacitance wire mesh sensor (WMS) at a frequency of

1000Hz and an acquisition time of 30s at un = 35 . These experiments were carried out at

atmospheric conditions.

From the field experiments performed by Kouba and Shoham (1995), the chum flow pattern

has been identified as the desirable flow regime that induces a high degree of coalescence in

both gas and liquid phases. As a result of the coalescence in the liquid phase, larger liquid

structures are formed that are easily separated within the GLCC. To this end, experiments

have been conducted within the chum flow pattern on a second experimental facility. The

rationale for performing the experiments in this facility is because the facility offered a wider

range of operating conditions compared to the first experimental rig facility. It was purposely

built for chum and annular flow experiments.

The experimental rig is a large-scale closed loop Transient Multiphase Flow (TMF) facility.

It has an internal diameter of 127mm and is I1m in length. The aim of the experiments was to

have better insights into the chum flow pattern and suggest the optimum conditions needed

for the chum flow coalescer (CFC). Air and water were used as the operating fluids. A phase

mixer at the base of the test section was used to introduce the two phase flow mixture into the

test section. The phase fraction data was obtained using a 32 x 32 capacitance wire mesh

sensor (WMS) at a frequency of 1000Hz and an acquisition time of 30s at five axial distances

from the injection, un = 2.4, 7.1, 30.7,35.4 and 82.7.

Further tests investigating the effect of liquid viscosity using air-glycerol/water at 12.2cP and

16.2cP respectively were performed. The WMS that was used in the first rig experiments to

acquire data was used in this facility for the same purpose. Also, high speed imaging was
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used and the frames were acquired at 1000frames per second. All experiments were carried

out in the L3 Chemical Engineering Laboratory at the University of Nottingham.

1.5. Structure of Thesis

The overall layout of the thesis is given below:

• Chapter 1: Introduction

This chapter gives an introduction to the research project. It discusses on the rationale for

the use of a GLCC and the need for detailed experiments to be performed on the

necessary upstream equipment to enhance its operation which is the chum flow coalescer

(CFC). The aforementioned equipment preconditions the flow before it eventually enters

the GLCe. Therefore, this leads to a more efficient separation of the gas-liquid mixtures

in the GLCC.

• Chapter 2: Literature review

In this chapter, a review of relevant literature is presented. It discusses the fundamentals

of multiphase flow and in particular two phase flow. The discussions focus on the bubble

and chum flow regimes since they were both investigated in this work.

• Chapter 3: Experimental arrangements

In this chapter, the experimental facilities used to perform vertical two phase upward flow

experiments are discussed. Two different facilities were used and the experimental

arrangement and operating procedures are discussed in detail.

• Chapter 4: Establishing flow pattern transition in eo-current vertical pipe

This chapter investigates the bubbly to chum transition and establishes the operating

range for the transition from the former to the latter in a large diameter pipe.
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• Chapter 5: Behaviour of churn flow and further insight into flow regime

phenomenon

From the work in chapter 4, the operating conditions for the inception of typical churn

flow is used as initial conditions amongst a full range of conditions. Experiments are

conducted at different axial distances from the injection. By doing this, the chum flow

behaviour is studied at different axial distances upstream from the injection and important

features within the regime are identified.

• Chapter 6: Effect of liquid viscosity on churn flow pattern

By changing the viscosity of the fluid from the reference case of air-water used in chapter

5, the effect of viscosity on chum flow behaviour has been investigated. Data has been

acquired at a suitable axial distance from the injection based on the work done in chapter

5. In this work, the CFC model has been proposed after taking into consideration the

liquid viscosity. The model is developed based on the most suitable operating conditions

which induces a high degree of coalescence to take place.

• Chapter 7: Conclusions and future work

This chapter discusses on the conclusions of the work carried out in this project and

future work has also been suggested.

Figure 1.5 gives a summary of the research layout for the experiments performed in this

work.
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CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

When more than one phase flows in a conduit, namely: gas, liquid and solid, this occurrence

is considered as rnultiphase flow. In consideration of the flows in industrial equipment such

as in the production of hydrocarbons, power generation and those in chemical industries,

multiphase flow occurs in all facets of these industrial applications. The flow can be of

various forms, that is, by the combination of the phases above: Gas-Liquid-Solid, Gas-

Liquid-liquid and Solid-Liquid-liquid. However, for the remit of this work, this thesis

·concentrates on an aspect of multiphase flow, two phase gas-liquid flows.

When these two phases, gas and liquid, flow in the same pipe for instance, a deformable

interface is formed between them. Furthermore, the gas or liquid occupies a certain fraction

of the pipe cross-sectional area. From general consensus, the fraction of the pipe cross-

section occupied by the gas phase is known as the void fraction, (Azzopardi, 2(06). The term

liquid holdup or liquid fraction is given to the fraction of the pipe cross-section occupied by

the liquid phase. The section below sheds more light on related terms as regards two-phase

gas-liquid flow.

2.1.1. Two phase flow (Separated Flow concept)

2.1.1.1. Voidfraction

From the discussion above, the void fraction is mathematically given below as, (Azzopardi,

2(06):

Aa =_11
11 A

c

(2.1)
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where Ag and Ac are the area occupied by the gas phase and the cross-sectional area

respectively. The liquid holdup on the other hand is given as:

(2.2)

When these two phases flow in the pipe as shown in Figure 2.1, they travel at a particular

mass flowrate referred to as the total mass flowrate which is the sum of the flowrate of the

phases.

(2.3)

where M T' M g and M /are the total mass flowrate and mass flowrate of the gas and liquid

phases respectively.

The fraction of the flow travelling as gas/vapour is called the quality and is given as:

MR
X =. .

g M R +MI
(2.4)

The volume fluxes of the phases give the gas and liquid superficial velocities. This represents

the velocity at which each phase will travel as if occupying the entire pipe cross section.

mx
Gas superficial velocity, U liS = __ 11

Pg
(2.5)

m(1-x
lI
)

Liquid superficial velocity, U/s = ---'"-
PI

(2.6)

From equations (2.1) and (2.5), the mean gas velocity is given in equation (2.7). On the other

hand, the mean liquid velocity is given in equation (2.8) from equations (2.2) and (2.6).

U
Mean gas velocity, U g = ___E_

all
(2.7)

Mean liquid velocity, UI = U/ .•
aL

(2.8)
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In consideration of the mass balances for each phase, the void fraction can also be defined as:

(2.9)

where (V/V,) is the ratio of the mean velocities for the gas and liquid phases and is known as

the slip ratio, VR• When Vg = V" so that VR = 1, this is known as homogenous flow. In this

case the equation (2.9) becomes:

1
(2.10)

Predicted correlations also exist for void fraction. The ones used in the present work as in

chapter 6 are given in Appendix C.

liquid phase

..4.: = l-agJAc

Figure 2.1. Concept of gas-liquid flow in a pipe (Azzopardi, 2006).
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2.1.1.2. Pressure drop

In consideration of a finite fluid element within the pipe as shown in Figure 2.1, a force

balance can be written.

The net applied force in the
direction of the flow

= Rate of increase of momentum of the
fluid element in the flow direction

(2.11)

The net force is contribution of the effects of hydrostatic pressure due to the length of the

pipe, wall shear stress and the gravitational forces. Therefore, the net applied force which is

the left hand side (LHS) of equation (2.11) is given as:

(2.12)

where dpldz is the pressure drop.

On the other hand, RHS of equation (2.11) is given as:

(2.13)

By substituting equations (2.12) and (2.13) in the LHS and RHS of equation (2.11) and

dividing through by Ac and & •the pressure drop equation can be obtained. This is given as:

dp P r ( ) 1 d [ (X2 (1- X )2 )]--=r-+LagPg + I-ag ~/jgsinB+- rh2 --g-+ g
dz S dz agPg (l-ag)PI

I 1 r AJ'em'ion P"""" "'OP
Gravitational pressure drop

Frictional pressure drop

Total pressure drop

(2.14)

The equations (2.1) - (2.14) represent the fundamental two phase flow equations.
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2.2. Introduction to gas-liquidflow regimes

In a well shaken fizzy drink, there is the presence of gas represented as bubbles and the

surrounding liquid conceiving the existence of two fluid phases. When closely observed, the

lighter of the two phases, which are the gas bubbles, rise quickly and are arranged almost

uniformly within the liquid. A close interaction between the gas bubbles and the liquid can

also be observed. Similarly, when gas-liquid mixtures or liquid-liquid mixtures flow through

a pipe, the two phases arrange themselves in a variety of patterns known as flow regimes,

(Azzopardi, 2(06). These flow regimes are found in most industrial processes and are of four

major types: bubbly, slug, chum and annular flow patterns where the fizzy drink example

may probably be classified as bubbly flow regime.

2.2.1. Gas-liquidflow regimes in vertical pipe

The flow regimes present in vertical two-phase upward flow are discussed below.

2.2.1.1. Bubblyflow

In bubbly flow, the gas phase flows as discrete bubbles in a continuouslcontinuum phase.

This occurs at very low gas superficial velocities. The gas bubbles rise with a velocity greater

than that of the liquid. Figure 2.2(a) shows a schematic of the bubbly flow regime from the

work of (McQuillan and Whalley, 1985).

2.2.1.2. Slug flow

As the gas superficial velocity increases, the bubble number density increases accordingly.

The largest bubbles are of the same order of size with the diameter of pipe otherwise known

as "Taylor bubbles". By definition, a Taylor bubble is a constant pressure surface. whose

shape is that of a cylinder bounded on top by a bullet shaped nose and at the bottom by a

distorted flat tail, (Cheng, 1997). Leading and trailing Taylor bubbles are separated by

structures similar to bubbly flow beneath them commonly known as liquid slugs. Also,
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contributing to its formation is the presence of a downward moving thin liquid film between

the Taylor bubbles and the pipe wall. Figure 2.2(b) from the work of McQuillan and Whalley

(1985) shows the slug flow regime as one of the two phase gas-liquid flow regimes .

•• •,...•••
.' .
..'tt••

t •

" .
• •
~ .,
•••
. .

Figure 2.2. (a) Bubbly (b) Slug (c) Churn (d) Annular flow regimes in upward two-phase

flow in vertical pipes (McQuiIIan and Whalley, 1985).

2.2.1.3. Chum flow

Figure 2.2( c) shows the schematic of the churn flow regime. Therefore. from the slug flow

regime. as the gas flowrate increases bubbles become narrower and more or less irregular in

shape. The bullet shape nose of the Taylor bubbles is suppressed to form large irregular

shaped bubbles and the continuity of liquid slugs between successive Taylor bubbles is

repeatedly destroyed by the high gas inertia pertaining to the flow. This occurrence causes the

liquid slug to fall. thereby accumulating a volume of liquid with entrained bubbles that bridge

the pipe. This is occasionally lifted by the fast moving gas phase giving an oscillatory

behaviour. In addition. the faIling liquid film previously surrounding the Taylor bubbles is no

longer observed.
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Hewitt and Hall-Taylor (1970) initially identified that the behaviour above is a well-marked

region between slug and annular flow as shown in Figure 2.2(c). Therefore, they were the

first to ascribe the name "chum flow" to this flow behaviour. In large diameter pipes, they

added that this instability eventually results in the complete destruction of the slug flow

thereby translating into a direct transition from bubbly to chum flow accompanied with

'churning' or oscillatory motion. However, this may depend on the viscosity of the

continuous phase. Some other workers have referred to this flow regime as 'semi-annular

flow', (Nicklin and Davidson, 1962). However, Hewitt and Hall- Taylor (1970) stated that the

appellation, chum flow, should be given to it as it encompasses the whole flow region.

McQuillan and Whalley (1985) stated that the chum flow regime is a highly disordered

regime where the vertical motion of the liquid is oscillatory. Azzopardi and Wren (2004)

attributed the flow regime as the least understood of all of the flow patterns as regards

vertical two phase upward flow.

2.2.1.4. Annular flow

As the direct opposite to the bubbly flow regime, here, the gas flows continuously along the

core of the pipe. The more or less dispersed liquid phase flows partially as liquid films along

the pipe walls moving upwards in a wavy manner and as droplets in the gas core. The

schematic of the flow regime is shown in Figure 2.2(d). The liquid film mayor may not

contain gas bubbles and the continuous gas core which occupies most of the pipe cross-

section may not contain entrained droplets, (Hewitt and Hall-Taylor, 1970). In general, the

liquid film is typically uniform about the pipe cross-section.
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2.2.1.5. Wispy-annular flow

Another interesting behaviour that has been observed in vertical upward two phase flow is the

wispy-annular flow regime. The appellation 'wispy-annular flow' was initially given its name

by (Bennet et al., 1965). They stated that:

u ••••• wispy annular regime was characterised by the nature of the entrained phase. The phase

appeared toflow in large agglomerates somewhat resembling ectoplasm."

In agreement with Bennet et al. (1965), Hewitt and Hall- Taylor(1970) stated that the

entrained phases is agglomerated into large lumps or 'wisps' and the size of these 'wisps' are

dependent on the gas velocity. This is because when the latter increases, the size decreases.

Hewitt and Hall- Taylor (1970) added that this regime may occur as a result of the breakdown

of slug flow at high mass velocities. In this velocity range the behaviour below the large gas

bubbles tend to become unstable and a frothy "finger" is formed around the bubble axis. As

the velocity increases, annular flow is entered but the "fingers" still exist and require a finite

distance to breakup. From another perspective, as a result of the instabilities of the shear and

gravity forces which develop at the gas-liquid interface, this forms liquid structures in the

core. Hewitt and Hall- Taylor (1970) added that the wispy-annular flow regime can be entered

as a result of droplet coalescence when the gas velocity is reduced for any reason.

Hernandez-Perez et al. (2010) agreed with Hewitt and Hall-Taylor on the fact this regime

occurs at high flow rates in what should be the typical annular flow. They added that the

annular flow regime is made more complex by the presence of wisps in the gas core. They

identified them from visual observation of which they appear as dark patches when viewed

through a transparent pipe wall. Hawkes et al. (2001) pointed out that the views of these

wisps through the transparent pipe wall are blurred by the wavy liquid film interface.

McQuillan and Whalley (1985) suggested that the annular flow pattern can be subdivided

into two regimes: wispy-annular flow and non-wispy annular flow. In corroboration to the
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above workers, they stated that the wispy annular flow occurs as a result of the agglomeration

of droplets in the gas core to form streaks of liquid or wisps. Figure 2.3 shows the wisps

observed by (Hewitt and Roberts, 1969 and Hernandez et al., 2010).

Figure 2.3. (a) Wisp recorded by X-ray photography by Hewitt and Roberts (1969) 32mm

pipe diameter(left) (b) Type of wisps from Hernandez et al. (2010) 67mm pipe diameter

revealed by wire mesh sensor studies(right).

Froth and mist flow are other regimes that exist in vertical two phase gas-liquid flows. The

froth flow is covered partly by churn flow and annular flow. The mist flow regime is defined

as one of complete dispersion of the liquid in the gas phase.

2.3. Flow Pattern maps

The only way to represent results of observation of flow patterns described above is to plot

them on a graph where the x-y coordinates are represented by the gas and liquid superficial
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velocities respectively of the two phases. When the observations are recorded, transition lines

are drawn on this graph to represent the extent of the boundaries between the flow regimes.

From general consensus, this is known as "flow pattern map".

These flow pattern maps can be of two forms, (McQuillan and Whalley, 1985). They are

given as: (a) Experimental flow pattern map (b) Theoretical flow pattern map. This will be

discussed in the sections below.

2.3.1. Experimental flow pattern map

These flow pattern maps arise from experimental work done by researchers for a particular

fluid pair and pipe geometry. Baker (1954), Hewitt and Roberts (1969) and Taitel et al.

(1980), proposed their respective coordinate systems as shown in Table 2.1 below. Taitel et

al. (1980) concluded that all the flow patterns in Figure 2.2 cannot be represented by a single

coordinate pair. However, Weisman (1979) have identified different scaling parameters that

may be used to overcome this problem. An example of an experimental flow pattern is shown

in Figure 2.4 from the work of (Hewitt and Roberts, 1969).

Table 2.1. Review on flow pattern maps
Year Map Coordinates

Author of Publication x- abscissa y-ordinate
Baker 1954 UKS UIs

Hewitt and Roberts 1969 pgU:., PgU~
Taitel et al. 1980 UKS u;
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Figure 2.4. Experimental flow pattern map of (Hewitt and Roberts, 1969).

2.3.2. Theoretical pattern map

As an alternative to the experimental flow pattern maps, previous workers such as Taitel et

al. (1980) and Mishima and Ishii (1984) obtained theoretical flow pattern maps by initially

considering the conditions necessary for the existence of each of the flow pattern. This basis

allowed them to postulate mechanisms by which the transitions between the various flow

patterns might occur. Afterwards, these transitions were modelled to produce a series of

equations. Therefore, when the phase physical properties and pipe diameter are known, this

enabled the flow pattern boundaries to be calculated. Figure 2.5 shows an example of a

theoretical flow pattern map by (Taitel et al .• 1980).
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Figure 2.5. Theoretical flow pattern map of (Taitel et al., 1980).

2.3.3. Flow pattern transition mechanisms: Theoretical approach

2.3.3.1. Transition from Bubble flow

The presence of gas bubbles in a continuous liquid gives rise to bubble to bubble collisions

that mayor may not lead to the coalescence of bubbles. Coalescence occurs when two fluid

particles such as bubbles in this case join together to form a larger one. Coalescence of

bubbles is a phenomenon which occurs rapidly in pure liquids and at a slower rate in

mixtures, (Marrucci, 1968). According to Marrucci (1968), the coalescence process occurs in

three stages. Initially, there is collision between two bubbles that force them against each

other by the turbulent dynamic pressure. This forms a thin film between their interfaces.

Afterwards, the fluid within this film is drained until it reaches a critical thickness at which

molecular attractive forces dominate, quickly promoting film rupture and leading to

coalescence.

Chesters (1991) considered the coalescence mechanism described above to be a complex

phenomenon. This is because it not only involves the interaction of bubbles with surrounding

Page 123



liquid but between bubbles themselves when they are brought together by the external flow or

body forces.

Howarth (1964) suggested that whether coalescence will occur or not depends on the impact

of colliding bubbles. He suggested that when the approach velocity of two colliding bubbles

exceeds a critical value, during "energetic collisions", immediate coalescence without liquid

film capturing and thinning will be the dominant mechanism.

Other researchers such as Doubliez (1991) and Duinveld (1994) based on experimental

observation used the critical approach velocity model. Based on this model, Lehr and Mewes

(1999) and Lehr et al. (2002) suggested that small approach velocities lead to a high

probability of coalescence or high coalescence efficiencies. Therefore, the premise of

coalescence that has been corroborated among workers can be identified as both contact and

collision.

Liao and Lucas (2010) also identified collision between bubbles to be caused by their relative

velocity and added that the relative motion may occur due to the variety of mechanisms

classified into five sources in a turbulent flow:

(a.)Motion induced by turbulent fluctuations in the surrounding continuous phase

(b.)Motion induced by mean velocity gradient in the flow

(c.) Different bubble rise velocities induced by buoyancy and body forces

(d.)Bubble capture ill all eddy

(e.) Wake interactions or helical/zlgzag trajectories

Furthermore, since the collision between bubbles does not necessarily mean coalescence will

take place, the coalescence efficiency is introduced. The frequency of coalescence occurring

is determined by both collision frequency and coalescence efficiency. The former is

determined by the mechanism of bubble collisions and the latter is determined by the critical

velocity model, film drainage model and energy model. It is important to note that the
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deformation of the bubble is a prerequisite for coalescence to occur. Therefore, as suggested

by Hinze (1955), they can be of the following kinds.

Type l Lenticular deformation

The fluid particle is flattened, forming in the initial stages an oblate ellipsoid which further

deforms into a torus. Afterwards, due to stretching, breaks into many small fluid particles.

Type 2. Cigar-shaped deformation

The fluid particle becomes more elongated forming in the initial stages a prolate ellipsoid

until ultimately a long cylindrical thread is formed which breaks up into small fluid particles.

Type 3.Bulgy deformation

As the surface of the fluid particle is deformed locally, it bulges and protuberance occurs,

thus parts of the fluid particle become bodily separated. Figure 2.6 shows the schematic of

the types of deformation.

,. _ ............ ,
" .

~ '.. ~', .
..... , ........ *"

Ca) (b) (c)

Figure 2.6. (a)-(c) Various types of deformation from Lenticular to Bulgy respectively,

(Hinze, 1955).

The deformation can also occur due to a decrease in hydrostatic pressure with increase in

axial distance from the base a riser. This decrease will lead to an increase in the bubble size.

When this occurs, there is a tendency of the bubbles to either remain close to the wall or

travel within the core of the pipe. Serizawa and Kataoka (1988) classified regions of the

bubbly flow where bubbles exhibit a core and wall peak behaviour. Core peak behaviour

occurs when larger bubbles occupy most of the cross-section of the pipe and are basically
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travelling within the core/centre of the pipe. Wall peak behaviour on the other hand, occurs

when smaller bubbles occupy the wall region of the pipe. In between the core and wall peak

distribution, there is a transition region where bubbles exhibit an unstable behaviour. This has

been expressed by Zuber and Findlay (1965) as the churn-turbulent region.

This region is not similar to the typical churn flow regime and therefore should not be

confused with it. The churn turbulent behaviour of bubbles has also been observed by Ohnuki

and Akimoto (2000). The observations of Ohnuki and Akimoto (2000) can be shown in

Figure 2.7. Therefore, it can be agreed upon that the transition from the bubbly flow to the

succeeding regime is as a result of deformation and an increased degree of coalescence of

bubbles. By considering a situation where bubbles form a cubic lattice, Radovich and Moissis

(1962) have shown that the frequency of collision is proportional to the mean fluctuating

bubble velocity.

Agitated (b)
bubbly ~3IE

~ ... , **~if~ 0 •• **o. A. -
~~

~.. . .......... . ~ _ MlShima·lshll1lIa',.e :. ~ "'5 0.1o,~. ell
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Figure 2.7. Bubbly Flow pattern transitions from the work of (Ohnuki and Akimoto, 2000).
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To determine the frequency of collisions, they suggested equation (2.15) below:

(2.15)

where c is the mean fluctuating velocity, Db is the bubble diameter and as is the void

fraction. The frequency of collisions was found to be dependent on void fraction increasing

more than 0.25-0.30. For a void fraction value below 0.08 there are few collisions hence the

transition to slug flow would be extremely slow, (Hewitt and Hall Taylor, 1970).

Taitel et al. (1980) stated in their work that at very low liquid rate, with negligible degree of

turbulence present, the criteria for transition from bubbly to slug flow is that the void fraction

reaches 0.25. Taitel et al. (1980) suggested that the rise velocity of the bubbles can be given

as:

(2.16)

The equation (2.16) was obtained from the addition of equations (2.7) and (2.8). By

substitution as in equations (2.17) and (2.18), an equation, which gives the liquid superficial

velocity as the subject of formula is obtained in equation (2.19).

(2.17)

(2.18)

(2.19)
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From the equation proposed by Harmathy (1960) the relative velocity U0 of large bubbles is

given as:

(2.20)

where PI' Pg and (J are the density of the liquid, density of gas and the surface tension

respectively.

Substituting this equation in (2.19) gives:

U
Is
= Ug.,(I-ag) -1.53(g (PI-~g)(1'IJO.2S (I-ag)« PI

(2.21)

However if the above criterion of Taitel et al. (1980) for a critical void fraction of 0.25 is

used, the criterion for the bubble to slug transition is given in equation (2.22):

U = 3U -1.148[g(1'(PI - Pg )]0.25
Is g.' p/2

(2.22)

Mishima and Ishii (1984) suggested that a critical void fraction of 0.30 marks the bubble to

slug transition. By assuming that bubbles distribute themselves in a tetrahedral pattern in

which each bubble fluctuates, there is an existence of a sphere influence on each bubble.

Although this sphere can overlap, the summation of the sphere volumes equals the total

volume. ....-,
I ,
, I
, ~.1 SPHERE

__ -; , __ /OF INFLUENCEBUBBLE

Figure 2.8. Bubble packing and coalescing pattern (Mishima and Ishii, 1984).
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If the maximum possible gap between two bubbles is less than a bubble diameter (2 rb) the

number of collisions and the degree of coalescence is very large. This has been shown in

Figure 2.8.

Considering the geometric distribution in Figure 2.8, they derived the following equation

(2.23):

=(3.33 -IJV _ 0.76(Gg(PI-P/i)JO.
25

Vis C gs C 2
o 0 PI

(2.23)

where C; is the distribution parameter and is given as:

C = 1.2-0.2 rp; (Round tubes)
o fA (2.24)

C = 1.35- 0.35 fP: (Rectangular tubes)
o fP;- (2.25)

According to Hewitt and Hall-Taylor (1970), a factor which may be important in delaying the

transition from bubbly to slug flow is interfacial contamination. Radovcich and Moissis

(1962) initially stated that this contamination may increase when the water is circulated in a

loop. Consequently, coalescence changes and this may lead to progressive change in flow

pattern. Also the method of injection or production of the gas in pipe also affects coalescence.

2.3.3.2. Slug/Chum Transitions

As indicated in sub-section 2.2.1.2, when the gas superficial velocity increases from the

bubbly flow regime, it results into the formation of Taylor bubbles that almost occupy the

cross-section of the pipe. According to Van Hout et al. (1992) behind the Taylor bubble is the

wake region, in which discrete bubbles tom from the Taylor bubble follow the liquid wake

vortices and void fraction is large due to high degree of turbulence. Another region below the

wake region is the developed region in which the void distribution is similar to that in the
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bubbly flow pattern, (Chen and Brill, 1997). Between the two regions, i.e. the wake region

and the developed region there is an intermediate region where discrete gas bubbles are

injected into this intermediate region from the bottom of the wake region close to the centre

of the pipe. Therefore, with an increase in the gas superficial velocity there is an increase in

the degree of turbulence. Consequently, this leads to shrinking of the developed region and

hence the slug length decreases. Figure 2.9 shows the schematic of the transition from slug to

churn flow.

Taylorbubble

t

'Wake region {

Intennediate re:gi.on {

Developed region {

Figure 2.9. Transitions from slug to churn flow (Chen and Brill, 1997) (reproduced).
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Earlier workers such as Mishima and Ishii (1984), McQuillan and Whalley (1985), Dukler

and Taitel (1986), Brauner and Bamea (1986) and Jayanti and Hewitt (1992) have classified

the slug to chum flow regime transition into four general schools of thought which will be

discussed briefly below.

(a) Wake effect mechanism

Similar to the observations of Chen and Brill(1967) above, Mishima and Ishii (1984)

observed that before the slug to chum transition takes place the slug bubbles are lined up

right next to each other and the tail of the succeeding Taylor bubble starts to touch the nose of

the trailing Taylor bubble. Due to the strong wake effect formed, the liquid slugs become

unstable and unable to sustain its identity. Consequently, the destruction and creation of

liquid slugs occurs which bridges the pipe. They concluded that the transition of slug to chum

flow occurs when the void fraction in the pipe is greater than the mean void fraction over the

Taylor bubble region.

The cross-sectional void fraction was obtained using the drift flux model of Zuber and

Findlay, (1965). From Potential flow analysis, they obtained an expression for void fraction

in Taylor bubble. Their expressions are given as follows:

V/I"a =r-------~======~• [CoO. -Hl.35 gD(P~,-P.) ]

(2.26)

aTB ~ 1-0.813 x

0.75

(2.27)

where aTB is the void fraction in the Taylor bubble, Vm is the mixture velocity

(V Is + Vgs), ~P is the difference (PI - Pg) and VI is the kinematic viscosity (PI I PI)'
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(b) Flooding mechanism

Another mechanism for the slug to chum transition was proposed by (Nicklin and Davidson,

1962). This occurs when there is flooding in the liquid film flowing around the Taylor

bubble. This is manifested by the onset of upward liquid film flow in the countercurrent flow

of a falling liquid film and upward-flowing gas stream. This situation occurs inside the

Taylor bubble in slug flow and slug/chum transition is reached when the fluid velocities are

such that flooding occurs.

According to Hewitt and Hall-Taylor (1970), this phenomenon can also be arrived at when

gas and liquid are smoothly separated at the ends of the tube. They stated that if the gas

velocity is gradually increased in what they observed to be a falling film region, a point is

reached which large waves are formed on the liquid film and are carried upwards by the gas

phase. This results in the transport of liquid above the injection point. Therefore, a region

arises where both climbing and falling film flows are occurring simultaneously. This

transition is what they referred to as flooding.

Wallis (1962) proposed a semi-empirical equation given as:

I I

(U;)z + (U;)z =c (2.28)

where C is a constant whose value Wallis suggested should be around unity. U; and U; are

defined as:

(2.29)

(2.30)
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Since flooding has been observed to occur in Taylor bubbles, McQuillan and Whalley (1985)

proposed that the velocity of the phases can also be represented as the velocity of the Taylor

bubble (Ubs) and the liquid film velocity (U Is) respectively given as:

(2.31)

(2.32)

Nicklin and Davidson (1962) also proposed an equation for the velocity of Taylor bubbles

which is given as:

(2.33)

The film thickness can also be calculated using the expression for a laminar falling film

Nusselt (1916) in equation (2.34) and the film velocity in equation (2.32) can be obtained in

equation (2.35) as:

(2.34)

where 111 the dynamic viscosity and the film velocity can be given as:

(2.35)

(c) Entrance effect mechanism

From the perspective of Taitel et al. (1980), they considered the slug to chum transition as an

entrance phenomenon. At the inlet where the two phase flow is introduced into the test

section, there is the formation of short liquid slugs and Taylor bubbles. Due to a high degree

of turbulence at the entrance to the test section, this results into instabilities in the liquid slug.
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These slugs then collapse as they evolve along the vertical pipe and they can be referred to as

unstable slugs.

However, if the pipe is of a sufficient length, the unstable slugs collapse and merge with

incoming slugs to form stable slugs. Therefore, based on pipe diameter and velocity of the

fluid phases, a certain axial distance can be calculated for stable slugs to be formed. This has

been given by Taitel et al. (1980) as:

~ =40.{(U~,,) +0.22) (2.36)

(d) Bubble coalescence mechanism

For a constant liquid superficial velocity, an increase in gas superficial velocity from the slug

flow can also lead to the formation of highly aerated liquid slugs. Ordinarily, the bubbles in

the liquid slug region are dispersed and similar to the bubbly flow regime. The aerated slugs

are an indication of the fact that the void fraction in this region increases due to the close

contact between bubbles. In other words, more and more bubbles are closely packed in a

cubic lattice. Therefore, the close contact between them will give rise to the formation of thin

films discussed earlier in section 2.3.3.1, as prerequisites for coalescence to occur. The

critical void fraction is given by Brauner and Bamea (1986) as 0.52. They developed a model

for void fraction in liquid slug as follows:

(2.37)

where fw is the friction factor based on the mixture velocity.

2.3.3.3. Churn/Annular Transitions

The chum to annular flow transition is closely related to flooding and flow reversal.

According to Hewitt and Hall- Taylor (1970), if the upward flow of gas is gradually increased,
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a point is reached at which large waves are formed on the liquid film and are carried upward

by the gas phase.

DECREASING GAS FLOW

t

t

t

t

t
(a)

t
(b)

t

t

INCREASING GAS FLOW

Figure 2.10. Flow reversal and Flooding illustration in (a) and (b) respectively where the blue

and red arrows are the liquid and gas inlets, (Hewitt and Hall-Taylor, 1970).
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Consequently, the liquid is transported above the injection point as in Figure 2.10 and a

region is entered where climbing and falling film occur simultaneously. They termed the

transition to this region as flooding. On the other hand, the flow reversal point occurs when

the gas velocity is reduced and a point is reached at which the liquid phase, in addition to

flowing upwards, begins to drain below the injection point. Therefore, above the flow

reversal point, upward annular flow occurs and below the flow reversal point chum flow is

present. The flooding and flow reversal illustration are both shown in Figure 2.10.

Flooding studies have also been previously conducted by (Govan et al., 1991). They defined

flooding as the point where liquid begins to be carried upwards above the liquid injector.

From their point of view, the flooding condition may be approached by increasing the

velocity of either of the phases present.

,·zr-----~----r-----r-----~----~--~

..
"..: ,

Figure 2.11. Flooding data from McQuillan (1985) retrieved from (Govan et al., 1991).
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On the other hand, they defined a term "deflooding" as the point where the pure counter

current flow region is reinstated on reduction of flow after flooding occurs. They identified

the fact that the geometry of the test section has a major influence on the onset of flooding,

that is, the inlet and outlet configurations for gas and liquid phases.

As a result, there is a lot of disparity in the flooding data previously reviewed by McQuillan

(1985) as shown in Figure 2.11. The types of geometries used by researchers to investigate

flooding according to the review of Bankoff and Lee (1986) are the (a) Porous wall outlet ,(b)

and (c) tapered (or bell mouth) outlets, (d) and (e) square edged outlet as shown in Figure

2.12. These will be discussed below from the work of (Govan et al., 1991) as they suggested

that flooding and chum flow are closely related.

(a)

I~'" 7Dt~
LIquid t

Gas
Cb) (c) (d) (e)

Figure 2.12. Types of geometries used in flooding studies, (Govan et al., 1991).
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(a) Porous wall outlet

As regards the porous outlet in Figure 2.12(a), for a given liquid flowrate, the gas flowrate

was set at a low value so that a falling film is created. At a constant test-section pressure and

high liquid flowrates, the gas flowrate was then gradually increased until flooding occurred.

This was due to the formation of a single wave near the outlet sinter travelling upwards above

the liquid injection point.

Conversely, for a low liquid flowrate and increasing gas flowrate there was the formation of

small intermittent waves travelling upwards on the falling film. However, the intermittent

waves formed did not travel beyond the liquid injection point. Both of the above observations

have been shown in Figure 2.13.

When the gas flowrate was further increased, splashing occurred as a signature to the

flooding phenomenon above the liquid injection. The gas flowrate was further increased

above this point and the downflow of liquid or deflooding was measured.

From the relationship between the downflow curve and the flooding curve the following

observation were made:

(a) The downflow curve lies below the flooding curve at high flowrates. This is because

flooding corresponds to the formation of a huge (large) wave near the bottom of the test

section. These huge waves are transported upwards beyond the liquid injection point.

(b) At low liquid flow rates, the down flow curve is above the flooding curve. They explained

this occurrence in terms of the "hanging-film" phenomenon where the film exists but with

no net flow. The corresponding down flow near the wall balances the upflow near the

interface.
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Figure 2.13. flooding mechanism in test section with Porous outlet, (Govan et al., 1991).

(b) Tapered outlet

When the outlet was tapered the flooding and deflooding occurrences were similar.

Compared to the sequence of events observed using the porous section, here, as the gas

flowrate increases above flooding, an interaction occurs between the gas and the falling film

to form a standing wave at the narrowest part of the taper. When this happens the pipe is

filled with a chum-type flow as a result of the reduction in liquid penetration.

On the other hand, when the gas flowrate is reduced a smooth falling film is formed as shown

in Figure 2.14.
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Figure 2.14. Flooding mechanism in test section with Porous outlet, (Govan et al., 1991).

(c) Square-edged outlet

In this type of liquid outlet, there is the existence of thick standing waves formed at very low

gas flowrates. As will be discussed in a subsequent section, "entrainment" phenomenon

occurs when the gas flowrate is increased. This phenomenon is as a result of high gas inertia,

which tears the drops from the crest of the wave formed into the gas core. However, most of

these drops have been observed to be redeposited on the falling film. The waves formed

increase in height and they reduce the flow area and prevent the continuous flow of gas.

Therefore flooding takes place at lower gas flowrates than for the other geometries used

above and always occurs at the bottom of the test section. The reason behind the flooding

effect at the bottom of the test section is because as the gas flow rate increases the rate at

which water can escape from the bottom of the test section becomes less than the liquid input.

This means that the bottom part of the test section becomes filled with a churn-type flow

rising beyond the liquid injector. The effect of a square-edge outlet is shown in Figure 2.15.

Page 140



I
Liquid-I
11'1 I

"••• •

•

lr ~I
• I

-I I-
t I

: J :

l.IU le .ntralnmtnt
no liquid Clbov.
liquId tudpoinl
no flooding

: t :
OccasIonal droplets
aboye liquId
f"dpoint
no ftoodlng

Incr.osing gas flow rate -

I? )1
•I

-I
I

1-
I

•
.- -II ,

I
1-
1

•
• •

• Semi
gal
flow
rot.

Suddenly WO""
rUlOhup the pip.,
depressurizing the hlwer
pt."um. permitting liquid to
p.~elrate intermittently
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• •
,

The effect of geometry has also been summarized in Figure 2.16. In conclusion, it shows that

1991).

flooding phenomenon is influenced by the smoothness and sharpness of the gas-liquid

entrance conditions. From the work of McQuillan and Whalley (1985), before flooding

occurs, they observed the downward movement of interfacial waves on the surface of the

liquid film. As the flooding terrain is entered, the interfacial waves grow and move upwards

rapidly. Therefore, flooding occurs when only one wave is transported and the large upward

flowing waves can be repeatedly formed at the liquid injector since the liquid flowrate is

sufficient enough due to drainage from the preceding waves. Also, when flooding conditions

is present in the test section, there is the rapid growth of waves, which are transported

upwards and carried beyond the liquid injection point. Flooding and flow reversal both

constitute the major limiting factors in processes such as mass transfer in packed columns,
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reflux condensation and nuclear reactor cooling systems, (Jayanti et al.,1996, Vijayan et

al.,200l).

Both groups of authors mentioned above investigated the effect of tube diameter on flooding.

For example Vijayan et al. (2001) conducted experiments on three different inner diameters

namely 25, 67 and 99mm with smooth inlet and outlet conditions for air and water.
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Figure 2.16. Effect of liquid outlet geometry on Flooding, (Govan et al., 1991).
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They agreed with the work of Jayanti et al.(1996) who contributed theoretically to the notions

on flooding that the tube diameter has a determining effect in the way flooding occurs.

Similar to the work of Govan et al. (1991), they likened the flooding effect to the upward

transport of waves created near the liquid outlet and carryover of droplets in the test section.

From the above discussions on the flooding experiments conducted by previous workers, it

shows close ties exist with the chum flow phenomenon. Since chum flow studies will also be

conducted in this work, the following section discusses the mechanism of chum flow in

detail.

2.4. Further insights into churn flow

Chum flow regime is the most chaotic of all the regimes as shown in Figure 2.2. Hitherto,

there has not been any generalised model associated with this regime. However, observations

by Hewitt et al. (1985) using a photochromic dye tracing liquid, ascertained significant

occurrences within this regime. Their experimental arrangement is shown below in Figure

2.17. Similar to the flooding phenomenon described above by Govan et al. (1991), large

standing waves are formed near the liquid entrance point and eventually they grow to the

point that they are levitated by the high gas inertia and consequently transported upwards as

shown in Figure 2.18. Between successive standing waves, there is flow reversal. This

instantaneous countercurrent flow is in form of a falling film or base film as regarded by

other workers such as (Azzopardi and Wren, 2004). The liquid which is transported upwards

in form of large waves, pick up liquid from falling film ahead of them and also shed liquid in

the form of droplets. This falling film interrupts the trailing wave flowing upwards.
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Figure 2.17. Optical arrangement for photochromic dye tracing (Hewitt et al .• 1985)

Retrieved from Barbosa et al. (2001a). Hewitt et al. (1985) contributed immensely to the

understanding of the chum flow phenomenon.
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Figure 2.18. Postulated mechanism of churn flow (Hewitt et al., 1985).

According to Barbosa et al. (200 1b), there is a close relationship between flooding and churn

flow. However, they suggested the latter should not be confused with the former. Therefore,

to clarify to a reasonable extent the characteristics of the churn flow regime, the flow

characteristics and terminologies in corroboration with the general opinions of the flow will

be discussed.

2.4.1. Pressure effects

When the destruction of Taylor bubble occurs due to the inception of flooding type waves

this has an adverse effect on the system pressure. This has been illustrated from the data of

Owen (1986) shown in Figure 2.19.
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Figure 2.19. Pressure gradient distribution against dimensionless gas velocity for gas-liquid

flows in vertical pipes Owen (1986) retrieved from (Barbosa et al., 200 1b).

They plotted a graph of dimensionless pressure gradient against the dimensionless gas

velocity in equation (2.29). They observed that as the gas flowrate increases the pressure

gradient decreases with increasing gas flowrate.

Beyond, a dimensionless gas velocity of 0.4 for a constant liquid flowrate the pressure

gradient begins to increase. As shown in Figure 2.19, they stated that the decrease and

increase in profile is due to the presence of churn flow regime (gravity dominated) and

annular flow regime (friction dominated) respectively.
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2.4.2. Entrained fraction

Another facet of chum flow that has received great attention is the concentration of drops in

the gas core or entrained fraction. This has been previously addressed by (Barbosa et al.,

2002, Azzopardi and Wren, 2004 and Ahmad et al., 2010). As discussed earlier, these drops

are formed when high gas inertia tears off ligaments from the crest of the wave, (Azzopardi,

1983). Therefore, it can be said that the concentration of drops entrained in the gas core can

primarily be a function of the thickness of the liquid film or wave height.

The entrained fraction itself can be defined as follows, (Barbosa et al., 2002):

(2.38)

where AI is is the mass flowrate of entrained droplet and the M I is the mass flowrate of liquid

phase. In chum flow, the method of drop entrainment is known as bag-breakup occurring at

high flowrates as in Figure 2.20. This form of droplet entrainment occurs where the gas

'undercuts' a large wave forming and open-ended bubble with a thick filament rim.

Gas pressure builds up within the bubble or bag causing it to expand and eventually burst.

Azzopardi (1983) proposed that for drop breakup the boundary between bag and ligament

breakup can described using a dimensionless Weber number. Azzopardi (1983) used a wave

height to mean film thickness ratio of approximately 3.5.

He found a good agreement with a transition boundary for:

u28We= Pg g.• F =25
a

(2.39)

Barbosa et al. (2001 a) stated that in chum flow, liquid entrainment in the gas core can be

quite large. However, the entrainment fraction reduces with increasing gas velocity shown in

Figure 2.21, as the wave action is suppressed.
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Figure 2.20. Mechanism of drop breakup (Azzopardi, 1997).
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Figure 2.21. Effect of gas velocity on entrained fraction on different pipe diameter

(Barbosa et aI., 2002).

This is contrary to an increasing entrained fraction when the gas velocity increases in annular

flow. They investigated this further using an isokinetic probe technique to determine the

entrained fraction as shown in Figure 2.22. The probe can be used to measure the gas and

liquid volume flowrate as a function of position across the tube. The other method of

obtaining the entrained fraction is by sucking off all of the film and is known as the film

extraction method. This was used by Azzopardi and Zaidi (2000) to suck off the film with the

minimum amount of gas using either a porous wall or slot device.

This conventional method of obtaining the entrained fraction proposes a special challenge

because of the bi-directional nature of the flow in the wall region, (Barbosa et al., 2001a).

This also posed a special challenge to Azzopardi and Zaidi (2000) to the point that they

recorded an anomalous behaviour. From their work, they stated that in an attempt to execute

the film extraction method, there is a tendency for liquid take off to increase with gas take

off; two values of film flowrate might then be deduced.
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Barbosa et al. (2001) developed a correlation for entrained fraction of drops in the gas core

which is given as:
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Figure 2.22. Droplet concentration in chum flow and annular flow. (Barbosa et al .• 2002).

From the measurement using the isokinetic probe. they added that the in churn flow. as

regards drops concentration. there is a peak close to the wall as shown in Figure 2.22.

However, for annular flow the drop concentration is constant across the tube diameter. This is

due to the mechanisms of drop disintegration as in Figure 2.20. They plotted their predicted

values against experimental values in equation (2.40) as shown in Figure 2.23.

It is also interesting to note that the trend for increasing gas superficial velocity is the same

for the pressure gradient and entrained fraction in Figure 2.19 and 2.21. This is also due to the

different drop breakup mechanisms occurring when different forces dominate.
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Figure 2.23. Comparison of experimental entrained fraction with correlation proposed by

(Barbosa et al., 2002).

The transition to the annular flow regime occurs when the dimensionless gas velocity is equal

to 1. Van't Westende et al. (2007) used a dimensionless densimetric Froude number as a

transition criterion and is given as:

u2 P
F -'I( I( --1r=-

gD PI-Pg
(2.41)

They said this corresponds to when the gas superficial velocity equals 20mls. This has been

indicated with a red dashed line in Figure 2.21 of entrained fraction against gas superficial

velocity given by (Barbosa et al., 2002).

When the gas superficial velocity is less than 20mls, that is, for a Froude number of less than

1, the liquid film thickness and the wave height become much larger. This is as a result of a

decrease in interfacial shear stress. To transit to annular flow regime, the interfacial shear

stress has to increase to balance the increasing weight of the liquid film hence the pressure

gradient decreases.
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Compared to equation (2.40), Azzopardi and Wren (2004) used their T- junction data to

obtain dimensional equations for the entrained fraction. First, they argued that fluids with

lower momentum fluxes will be most easily diverted into the side arm of a T- junction.

Schematic ofT-junction has been shown in Figure 2.24 retrieved from (Azzopardi, 2005).

BRANCH

ro
-,
o

Figure 2.24. Schematic ofT-junction retrieved from (Azzopardi, 2005).

When conditions of the system pressure are low there is a likelihood that similar momentum

fluxes will exist for gas and liquid phases. However, this momentum fluxes are lower than

those for drops. Therefore gas and liquid will be diverted into the side arm. They said that the

entrained fraction can be backed out if phase splits were known, that is, using an equation

which describes phase mal distribution in annular flow below. This was based on the

perspective that in chum flow there is entrainment and the presence of a base film.
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Figure 2.25. Showing accuracy of proposed entrance fraction correlation, (Azzopardi and

Wren, 2004).

They identified various data from literature and backed out entrained fraction.

if g3 1 [( 21t if n ) . ( 21t if 13 )]

if 81 = 21t [i- ETF}K M'I -SIn {l- ETF}K M'I
(2.42)

where M 8 are M I the mass fIowrates if the gas and liquid and the subscripts 1 and 3 refer to

the main pipe and side arm respectively, ETF is the entrained fraction and K is a factor that

take into consideration the effect of side arm to main pipe diameters. The resulting

dimensional equations have an error of 3% and standard deviation of 11% is given below:

E - 0 47Uo.16U°.35 for UIIS < 5m1sTF -. gs Is (2.43)

ETF = 0.6U ~.35 for U liS> 5m1s (2.44)

According to Azzopardi and Wren (2004), they concluded that the entrained fraction is

carried upwards by the gas phase as drops. In addition, they are also carried as huge (large)

waves. This this will be discussed in the next section.
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2.4.3. Huge (Large) waves

When the liquid phase flowing as waves on the inner walls of the pipe has large amplitudes,

these are known as huge waves. Figure 2.26, shows the identification of huge waves based on

the work of (Barbosa et al., 2001b and Wang et al., 2012). To investigate the large waves

formed in the churn flow regime, Sekoguchi and Takeishi (1989) used a specially designed

phase-sensing device, Supermultiple-ring-electrode (Super-REP) probes, which consists of 94

pairs of ring-shaped electrodes probes.

Huge wave

It, It, A
I I I

I I I
I I I--'--'--7----

• '" ,It..- ---~--~--~---~I I I
I I I
I I I

Figure 2.26. Identification of huge wave according to Barbosa et al. (2001 b) and Wang et al.,

(2012) in the left and right respectively.
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These probes provide the time-varying cross-sectional mean liquid holdup value located 4.1m

from the bottom of their 9.5m test section that had an internal diameter of 25.8mm. They are

able to collect data at sample frequencies of 400Hz and the data was analysed using a novel

algorithm which they developed. The gas-liquid interfacial structures can be shown in Figure

2.27. The letters S, Hand E are liquid slugs, huge waves and ephemeral large waves. The

cross-sectional views of the boundaries of the red and blue lines are shown in Figure 2.28.

/oOOQOOOO0000000000000000
00000000
OOOOOOOC}

HUGE WAVES LIQUID SLUGS

Figure 2.28. Cross-sectional views of liquid lump, (Sekoguchi and Takeishi, 1989). The gas

and liquid are shown as white and black respectively. Sekoguchi and Takeishi (1989 pointed

out that huge waves have a higher transit velocity than liquid slugs.

This is for time interval of 1ms where the white is representative of the gas and the black is

that of the liquid. It shows that for the red line region, the gas occupies the pipe cross-section

over the period of time the data was acquired. This is referred by Sekoguchi and Takeishi

(1989) as when huge waves are present. They added that, huge waves are greater not only in

dimensions but have higher transit velocities.

The boundary for the blue line is the formation of liquid slug. This occurs upstream, close to

the injection. Initially, when the huge wave regime passes by, most of the cross-section is

occupied by gas core and there i a gradual but subsequent destruction of the huge waves by
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the formation of liquid slugs. In contrast to the instantaneous huge wave region, here, the

liquid slugs occupies nearly the whole of the pipe cross-section meaning that the void fraction

decreases and liquid holdup on the other hand increases. Sekoguchi and Takeishi (1989)

concluded that the huge waves have a higher velocity that the disturbance waves and the

ephemeral waves they observed in annular flow. However, they did not identify the facts that

within this huge wave regime, drops are being carried as per entrained fraction discussed

above and identified by (Azzopardi and Wren, 2004). Nonetheless, from their work,

Sekoguchi and Takeishi's Super REP probe can discriminate between bubbles, drops and

waves. However, it still shows that the 'fate' of drops within this huge wave regime needs to

be clearly ascertained. Sekoguchi and Takeishi (1989) added that a liquid slug moves with a

nearly constant velocity giving a linear trace. In contrast, the huge waves follow a zigzag path

and have varying velocities. They observed that ephemeral waves are frequently absorbed by

liquid slug and huge waves and are discharged from their rear.

2.5. Conclusion on Literature review

This chapter discusses on the fundamentals of multi phase flow in particular two phase gas-

liquid flows. For two phase gas-liquid flows in vertical pipes, the flow regimes that exist are

bubble, slug, chum and annular flow regimes. It is important to note that these flow regimes

are present in small diameter pipes. However, there is a direct transition from bubble to chum

flow regimes in large diameter pipes where slug flow pattern has not been observed for the

fluids used for experimentation.

The literature on the chum flow pattern which is the regime of interest is few. However, the

observation of liquid slugs and huge waves identified by Sekoguchi and Mori (1986) has

been taken into consideration and has also been identified in the chapters 4, 5 and 6. Further

references can also be made to their work as observed in chapters 4, 5 and 6.
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CHAPTER 3

EXPERIMENTAL ARRANGEMENTS

In this chapter, the experimental facilities used to conduct two phase upward flow

experiments will be described. The experimental facilities have test section geometries of

121mm internal diameter - 5.3m in length vertical pipe (chapter 4), 127mm internal diameter

- Urn in length vertical pipe in (chapters 5 and 6). Details of the rig configurations,

instrumentation and operating conditions will also be discussed.

3.1. 121mm internal diameter facility

3.1.1. Overview oJ experimental facility

In this experimental facility, bubble to chum flow experiments has been carried out to find

out the operation condition for the occurrence of typical chum flow. The schematic of the

experimental faci~ity is shown in Figure 3.1. The facility has a test section of 121mm internal

diameter and is 5.3m in length. The operating fluids used are air and water as the dispersed

and continuous phases respectively.

Compressed air was supplied through an injection device from the high-pressure laboratory

line at a pressure of 8bar. A total volume of 0.45m30f tap water was charged into the storage

tank (A). Below the storage tank, a valve was opened and this allowed the delivery of the

liquid to the centrifugal pump. The pump operating at 68m3Jhr was started and the liquid

flowed through two calibrated liquid rotameters before arriving at the main experimental

section. The calibration of the liquid rotameters is shown in Figure E.l, Appendix E. The

liquid phase from the pump entered two pipelines. The first line is equipped with a valve (B)

and an electro-magnetic flowmeter-EMF, (C), to adjust and monitor the flowrate of the liquid

while the second line has an injection device (D).
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of injection

11 Liquid phase to pump
~ suction

Pump discharge to main
experimental facility

Figure 3,1. Schematic of the main parts of the 121mm internal diameter experimental facility,

showing data acquisition location in red.

The orientation of valve CB) can be changed to observe the effect in the test section.

However, for the present experiments, the valve was kept fully open. The compressed air

from the laboratory line is supplied to the throat of the injection device while the liquid flows

through the core.
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3.1.2. Start-up considerations

During the start-up of the experimental facility, bubbles were noticed flowing through the

line equipped with the valve and EMF. This was because the storage tank was open to the

atmosphere. To avoid this, a star-shaped UPVC vortex breaker as shown in Figure 3.2(a) was

constructed and installed in the storage tank. This greatly reduced the amount of bubbles

formed and small diameter bubbles of less than Imm were occasionally observed.

(a) (b)

Figure 3.2. (a) Vortex breaker (b) Flow straighteners installed (second straightener rotated

900).

Also, it was noticed from test experiments that when two phase flow for instance enters the

line equipped with the (valve and EMF) into the test section, it followed a helical trajectory

due to the method of injection. Therefore, two UPVC flow straighteners with a diameter of

115mm (wall spacing of 3mm taken into consideration) were designed to ensure the velocity

profile was uniform. This has been shown in Figure 3.2(b). Holes were drilled in the flow

straightener to enable the flow of the liquid phase. The second flow straightener was rotated

900 to the first and placed 150mm downstream. The two-phase flows downstream and enters

a stainless steel cyclone eparator where the gas and liquid are separated centrifugally. The
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air is released to the atmosphere while the liquid flows back to the storage tank. The

operating conditions for gas and liquid superficial velocities ranged from Ugs = 0.21m1s to

3.58m1s and Ui, = 0.018m1s to O.l3m1s respectively, at atmospheric conditions. The full

experimental design can be found in Appendix B. The properties of the fluids used are shown

in Table 3.1. Based on the flowrate readings acquired from calibrated rotameters and the

properties of the fluids at an absolute pressure of Ibar, the gas and liquid superficial

velocities were calculated.

Table 3.1. Properties of fluids used on 121mrn internal diameter facility
Fluid Pressure Surface Density Viscosity

(bara) tension (kg/rrr') (Pa.s)
(N/m)

Air 1.2 1.78 x 10-'
0.072 (0.0178cP)

Water I 998 0.001
OcP)

3.1.3. Injection device

The injection device used is a novel designed venturi injection device with an air chamber

shown in Figure 3.3. The dimensions ofthe injection are shown in Figure A.1 in Appendix A.

Within the air chamber, a brass piece of 30mm in height, 2mm in wall thickness and 64 x

2mm drilled holes through the walls was placed to allow air flow. Six air inlets were used and

the air was introduced tangential to the brass piece placed inside the venturi injection device.

The air line was equipped with a non-return valve to prevent the flow of water into the gas

rotameters.
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Air chamber

Figure 3.3. Designed venturi injection device used on the 121rnm internal diameter, 5.3m in

length experimental facility. The injection used is a modified venturi injection device having

an air chamber to allow air flow. Schematic of injection is shown in Appendix A.

3.1.4. Electromagnetic flowmeter CEMF)

The liquid flowrate measurement on the side inlet to the test section was measured using an

electromagnetic flowmeter (EMF). The conventional form of an EMF is shown in Figure 3.4.

The EMF does not measure volume but velocity of the continuous phase and it is used after

the valve in this study to monitor the flow of the passing fluid. Based on Faraday's law of

induction an alternating magnetic field is produced with coils of copper wire. A coil current

which is controlled ensures that the magnetic field strength remains constant during the

measurements.
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Figure 3.4. Conventional electromagnetic flowmeter (EMF) from work done by (Cha et al.,

2002).

The only variable based on the Faraday's equation is the velocity of the fluid passing the

EMF. The voltage which is generated from AC is exactly proportional and linear to the

velocity of the fluid. The electromagnet of the EMF was excited by the AC current from the

mains power supply. Cha et al. (2002) identified the main noise sources of electromagnetic

flowmeter excited by AC power and they are given as follows:

(a) The transformer signal from the alternating magnetic field (including the effect of eddy

current in the flowtube)

(b) Noise from the capacitive and resistive coupling between signal and power circuits

In addition, the following effects that distort the flow signal corresponding to the flow rate

are:

(a) Fluctuation of the magnetic field due to fluctuation of the power input

(b) Iron loss and hysteresis effects of the electromagnet

(c) Amplified loading from the impedance of measuring devices

Figure 3.5 shows the block diagram for detecting and processing of signals according to (Cha

et al., 2002).

Page 163



r··-SiGNACDETEcrC5R----;
B

,.••.••..••..............................•.......
: SIGNAL PROCE SSSOR·•! .15 V
•••

F=low :
S"lnel:

••·•••·••••·••..................................................1SV

.......•...•.•.••.... ~

Figure 3.5. Block diagram for detecting and processing of signals, (Cha et al. 2002).

3.1.5. Wire mesh sensor (WMS) data acquisition electronics

The electronics used to acquire void fraction data in the above experiments was a capacitance

wire mesh sensor. Details of the sensor operation have also been reported by (Thiele et al.,

2009). The WMS has two electrode wires stretching across the cross-sectional area of the

flow. The electrode wires are on two planes designed orthogonal to each other where one set

of wires serves as transmitters and the other set as receivers. The block diagram of the

electronics is shown in Figure 3.6.

The transmitter electrodes are connected to a sinusoidal excitation voltage in a successive

order while the other non-active transmitter electrodes are grounded. A sensing block

converts the electrical currents from the activated transmitter electrode to all receiver

electrodes into proportional DC voltages. All DC voltages are simultaneously analog to

digital converted at the rising edge of the sample-and-hold signal and their values are stored

into the RAM module of the data logger.
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Figure 3.6. (a) Block diagram of capacitance sensor(b) Temporal excitation scheme of the

transmitter electrodes with sinusoidal voltage excitation and the point of digitization with a

an ADC controlled by the sample-and-hold signal, (Thiele et al., 2009).

Once all 32 transmitter electrodes have been activated and all currents have been measured, a

data matrix of 1024 electrical current values corresponding to the distribution of the

permittivity over the sensor can be obtained. The data matrix is an instantaneous phase

distribution across the sensor. A microcontroller controls the excitation and acquisition signal

timing as well as the frequency of the excitation signal.

Page 165



The data logger is connected to a computer through a USB wire interface, where the digitized

data is reprocessed and visualized. The WMS employs the use of permittivity of fluids to

infer the void fraction at crossing points of the wires. The sensor used in these set of

experiments is 32 x 32 WMS with a resolution of 4mm obtained by dividing the pipe

diameter by number of electrode wires.

3.1.5.1. Permittivity measurement

According to Thiele et al. (2009), the sensing circuit for the WMS is formed by three basic

stages. The transmitter electrodes are excited by a sinusoidal alternating voltage. The receiver

currents are converted to a voltage by a transimpedance amplifier circuit, which is then

followed by a logarithmic demodulation circuit. The circuit layout for the wire mesh sensor is

shown in Figure 3.7. The sensor generates a voltage Vo,which is proportional to logarithm of

the root mean square value of the transmitted alternating current, which itself is proportional

to the relative permittivity, er , of the fluids present at a crossing point (Da Silva, 2007). The

relative permittivity of water compared to air is in the ratio of 80 to 1. The relative

permittivity is related to the output voltage as in equation (3.1):

(3.1)

where a and b are constants that depend on the sensor geometry and circuit parameters. The

advantage is that it allows the measurement of electrical permittivity for a range of substances

used in any experimental campaign.
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Figure 3.7. Equivalent one-channel circuit for measuring the permittivity using the

Capacitance wire mesh sensor (WMS), (Thiele et al., 2009).

The WMS produces sequences of cross-sectional images and voltage mappings which are

further processed as a three-dimensional data matrix to permittivity values at each mesh

crossing point. The permittivity distribution map is further processed to produce the void

fraction image. The indices i and j are the spatial indices of the image pixels that correspond

to the number of wires and k is the temporal index of each image. The above equation (3.1)

holds for every crossing point in the wire mesh grid.

3.1.5.2. Calibration routine

The WMS has to be calibrated for the high and low values of permittivity that corresponds to

the fluids in order to extract sensible phase fraction parameters from the raw data. The

calibration routine is performed by acquiring data from measurements in conditions where

the pipe is first 'completely filled with gas' and then then 'completely filled with liquid',

represented by air and water respectively, (Thiele et al., 2009 and Szalinski et al., 2010).

In this study, the same method of calibration was applied with air and then water

respectively. This is because the existence of drops on the WMS affected the calibration for
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the air. that is. if the calibration for water is done prior to air. The calibration files are then

saved in matrices. To obtain the void fraction a linear relationship which is known as the

parallel model can be used. It gives the functional relationship between the void fraction

ag (i.i,k) and relative permittivity values according to (MeKeen and Pugsley 2002).

E -E·(. . k) - r,water r,mlXag I.}. -
Er,water - Er,air

(3.2)

The measured mixture permittivity can be calculated as follows

{
v., (i, j. k) - v.,u, j) ( )J

.,. . =ex In Eco r mIX • • •• r,water
, Vo,water (I. t.k) - Vo,air (I.})

(3.3)

where Vo,mix (i, j, k) represents the voltage of the two-phase mixture. and the subscripts 'air'

and 'water' indicates the values from the calibration when the pipe is empty and filled with

water respectively. The three-dimensional matrix of the void fraction, axial and radial void

fraction profiles can be determined by the integration of the measured data over appropriate

partial volumes. The disadvantage of using this method of calibration compared to the

histogram calibration Lucas et al. (2010) is that the conductivity of the water changes during

the course of the experiments due to temperature increase from the heating pumps, which will

affect the cross-sectional averaged void fraction. However, this will not have a considerable

effect as such since the permittivity of the fluids is being measured not the conductivity. The

phase fraction data for the experiments conducted on the 121mm internal diameter facility

was acquired at un = 35. This was done at a frequency of 1000 Hz for 30 seconds, which

gives a total number of 30,000 frames.

Overall, the WMS is a very powerful tool in acquiring cross-sectional and time averaged data

due to its high resolution. However, during the experiments, a relaxation time is needed

between measurements to prevent the electronics from triggering off during data acquisition
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for a particular experiment. The relaxation time required in this case should be at least 20

minutes based on test experiments. This also depends on the operating conditions used.

Figure 3.8 shows the picture of a 32 x 32 WMS.

grid and having same
diameter with that of test

section

Slots for Transmitter modules

12inch holes to connect to
test section

Slots for Receiver modules

Figure 3.8.32 x 32 Wire mesh sensor manufactured by Helmholtz-Zentrum Dresden-

Rossendorf (HZDR) formerly known as Forschungszentrum Dresden-Rossendorf (FZDR).

3.1.5.3. Wire mesh sensor performance evaluation

The WMS performance evaluation addresses the issues surrounding the accuracy of the void

fraction data obtained from the WMS. This was not carried out in this work but has been

presented in the work of Thiele et al. (2009) for the same capacitance type sensor. Based on

the understanding of their work, this will be briefly discussed in this sub-section.

(a) Wire mesh sensor accuracy

The experiments carried out by Thiele et al. (2009) as regards the WMS accuracy used five

different substances and air (empty sensor) to evaluate the ability of the sensor to distinguish

between various sub tance . Therefore, permittivity values ranging from 1 to 80 were

measured. For each substance, ten frames were acquired at 10000 Hz and an average value

was taken to reduce the influence of statistical signal fluctuation. The Figure 3.9 shows the

measured voltage value for all substances analysed. It can be observed in Figure 3.9, that the
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measured voltage values for water presents a small deviation from the expected linear

relationship. However, when the calibration routine was applied, those values fall within 10%

deviation lines. In other words, the nonlinear effect can be neglected.

1
1
I
I

1 1 1
- - - -1 - - t- -1-

I I I
1 I I
I I 1
I I I

I I I I I I
11 r 1 I I

1 1 11 1 1 1 1 1_____ ~_l_·_LU_L ~ __ L_Ll __
I 1 I 1 I I I I I 1

1 1 1 I 1 I 1 1

1 10
roto ro nee po rmitlivity (-)

Figure 3.9. Measured voltages from the measurement of different substance in a relative

permittivity range of 1 - 80 according to (Thiele et al., 2009). Substances used are Air, Oil,

2-Propanol, Ethyl alcohol, Ethyl glycol and Deionized water having permittivity values of

1.0,2.1,20.1,25.1,40.3 and 79.9 respectively.

(b) Instrumental noise

To investigate for instrumental noise, the surface of the sensor was fully covered with 2-

propanol solution. The standard deviation of the measured voltages over 1000 frames at a

frequency of 10000 Hz was taken to estimate the instrumental noise. The histogram of the

standard deviation is shown in Figure 3.10. For their experiments, they encountered a

maximum value of 6.62m V. Also, using uncertainty propagation rules, they calculated the

maximum noise in the permittivity measurement caused by the noise in the voltage

measurement as in equation (3.4)
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O"e(%) = 0"0 .100%
a

(3.4)

Using a value of a = 0.57V, they obtained a noise in the permittivity measurement of ±1.16%.

The uncertainty value is much lower than the obtained accuracy and is negligible.

160~~~~~~~----~~
S 140-
>-g 120-
~ 100-
er
: 80·
q.o 60-
:515 40-
1] 20,
ra

~~~~~~~~~~~~~N~~~~~~~~~~-N~~~~~N.O~~-N~~~~~~~••~••~~~~~~wwoo
standard deviation ('I,. (mV)

Figure 3.10. Histogram of the standard deviation in the measures voltages on each

transmitter-receiver pair from 1000 frames for the evaluation of instrumental noise

according to (Thiele et al., 2009).

(c) Time response

The step response of the WMS was analysed to estimate the maximum achievable frame rate.

To achieve this, two transmitter electrodes were activated consecutively where one of them

was covered with water the other empty (air). Figure 3.11, shows the variation of measure

voltage with time response. A 1% error settling time was determined and for a 32 x 32

sensor, a maximum frame rate of 15.32 kHz is possible.
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Figure 3.11. Electronics time response for a permittivity step according to (Thiele et al.,

2009).

(D) Cross-talk

To experimentally investigate the channel to channel crosstalk, a planar phase distribution

with a well-defined phase boundary was measured. The sensor was placed in an upright

position (tilted 45°) and was immersed half way inside an acrylic box with 2-propanol. The

phase fraction distribution was measured at a rate of 10000 Hz and ten frames were averaged.

To analyse the data, interpolated lines of equal phase fraction values (0.25, 0.5, and 0.75)

were calculated. These lines represent the 2-propanol-air interface.

(a) (b)

Figure 3.12. (a) Measured phase fraction distribution. (b) Calculated lines of equal phase

fraction according to (Thiele et al., 2009).
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From Figure 3.12 (a), it can be observed that the interface is imaged abruptly without any

transition layer. In Figure 3.12(b), the lines of equal phase fraction are nearly straight and

distanced equally. Thus, both characteristics indicate a very low channel-to-channel crosstalk.

Thiele et al. (2009) sugge ted that a ignificant crosstalk would cause the distortion of these

lines and the phase di tribution would appear smeared in the image. Therefore, Images

produced by the capacitance WMS are free of crosstalk artefacts.

(E) Depth Sensitivity

In addition to the above performance evaluation study, Thiele et al. (2009) suggests that an

important parameter for the correct interpretation of the cross-sectional images generated by

the WMS is the determination of depth ensitivity.

ethyl alcohol PVC plate

/
1.Smm

sensor (a)

110

~
Q) 80

~
0170
c::=
~ 60

50 ~•• 4"_ •• ' _ __ ..__ _ ~ _ _ __ .

400~--~=---77--~~--~----~--__J
025 0.5 075 1 1,25 1.5

liquid thickness z (mm)

(b)

Figure 3.13. Experimental etup for the depth sensitivity estimation (b) Wetting level as a

function of liquid film thickne mea ured in the experimental evaluation of depth sensitivity

according to (Thiele et al., 2009).
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To investigate this, they initially placed an electrically non-conducting PVC plate over the

sensor as in Figure 3.13. One of the endpoints was raised using a thin spacer and the other

side was in direct contact with the sensor. This was immersed in ethyl alcohol which results

into a liquid film of continuously increasing thickness over the surface of the sensor. Ten

frames at 10000 Hz were acquired and averaged. They eventually obtained a maximum liquid

thickness of 0.75mm that influences the measurements of the sensor. This has also been

considered to be negligible.

3.1.6. High speed visualization

High speed images were acquired below the wire mesh sensor in this facility at LID = 35. A

Phantom v12.1 high speed camera at 1000 fps (frames per second) was used in this study.

I

Laser sheet

~

• •
•••
• ••
• •Light source

J
flow

Phantom \'12.l High
speed camera

computer-

Figure 3.14. High-speed setup for the 121mm internal diameter, 5.3m in length facility
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The high speed videos helped to provide additional evidence that may not be clearly

ascertained from visual observations. For these experiments, a laser sheet was folded and

placed on one side of the test section to reduce reflection of any rays of light that may be

emitted. Spot lights were used to also provide sufficient illumination to the test section.

Figure 3.14 shows the setup of the high-speed video imaging setup.

3.2. 127mm internal diameter facility

The process flow diagram of the large scale closed loop facility for chum flow development

experiments is shown in Figure 3.15 and other components are shown in Figures 3.16 and

3.17. The facility was previously used by Omebere (2006) to conduct chum to annular flow

transition experiments. The facility was used for air-water and air-glycerol/water experiments

in chapters 5 and 6 respectively. Both operating procedures are discussed below. The

rationale for performing the experiments in this facility is because the facility offered a wider

range of operating conditions compared to the first experimental rig facility. It was purposely

built for chum and annular flow experiments.

3.2.1. Operating procedures for air-water experiments on 127mm ID facility

Before the start of experiments the separator is filled with tap water and the flow loop is

pressurised to 1barg using air from the mains supply. During the experiments, air is supplied

to the mixing unit at the bottom of the riser test section from the compressor. The compressor

unit consists of liquid ring pumps driven by two 55kW motors.

The air is supplied under 1bar gauge pressure to the phase mixer while the liquid is driven by

the centrifugal pump. The mixing unit adopted at the injection point is an annulus injection

method. The schematic of the phase mixer injection are shown in Figure A.l in Appendix A.

The air flows through the core while the liquid flows through the annulus section. The water

flowing from the periphery of the injection and air through the core form a two-phase mixture
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that enters the test section. Downstream from the injection point, the two phases travel

through the test section which is I1m in height and has an internal diameter of 127mm. The

test section is made of UPVC but a perspex section of 700mm in length is used to observe the

flow pattern present at respective axial locations from the injection point. The phase fraction

data is extracted using a capacitance wire mesh sensor discussed in section 3.1.5. The

location of the capacitance wire mesh sensor was varied for five axial distances from the

injection position (base oftest section) at VD = 2.4, 7.1, 30.7, 35.4 and 82.7.

Beyond the riser test section, the two-phase flow travels for 2.34m horizontally, through a 90°

bend, a further 9.63m vertically downwards and 1.47m horizontally to the two-phase

separator. The separator is a cylindrical stainless steel vessel of 1.6m3 in volume, a diameter

of Irn and height of 4m.

The liquid collected at the bottom of the separator is recycled to the test section. Therefore,

this required that the liquid inventory be changed after each set of experiments has been

completed. The valve located on the gas return line exiting the separator is used to control the

air supply to the compressor section. This means that the gauge pressure can be increase to

about 3barg. The speed of the compressor motors can be varied up to 1500rpm and together

with associated valves just below the gas flowmeters regulate the pressure in the test section.

The operating conditions for gas and liquid superficial velocities ranged from Ugs = 3.26m/s

to 17.46 m/s and Uu= 0.03 to 0.24 m/s respectively, at an operating pressure of 1 barg. This

was done to achieve chum flow regime within the test section. The full operational matrix

can be found in Appendix B. Table 3.2 shows the properties of the fluids.
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Liquid phase injection Drain valve Aerial view of injection

Gas phase injection
(a)

Vertical test section Two phase separator Compressor tank

(b)

Figure 3.16. (a) Pipe-in-pipe annulus type injection (b) Other component of the 127mrn

internal diameter facility.
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Compressor motor

Figure 3.17. Liquid ring compressor motors as components of the 127mm internal diameter

experimental facility.

Table 3.2. Propertie of fluids used on 127mm diameter facility(air-water experiments)

Fluid Pressure Surface Density Viscosity
(bara) tension (kg/rrr') (Pa.s)

(N/m)
Air 2.35 1.78 x 10-)

0.072 (0.0178cP)
Water 2 998 0.001

(1cP)

3.2.2. Operating procedures for air-glycerol/water experiments on 127mm ID facility

For the air-glycerol/water experiments performed, the same test facility with similar

operational procedures to the air-water experiments has been used. However, Figure 3.18-

3.22 shows the procedure pecific to the air-glycerol/water experiments. The rationale for

the air-glycerol/water experiment wa to investigate the effect of viscosity on the churn flow

behaviour.

The separator tank wa filled with tap water and the system run severally to flush out debris

that may have ettled in the y tern. This was done because when the water from separator

tank was initially drained, the liquid had a black colour. Due to the fact that it is a large scale
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facility, it required that the system be flushed until the inventory drained from the tank

became clear water. However, this can take several runs to establish, approximately 4 - 5

hours. Eventually, clear water was obtained and the system was run again several times to

check consistency. After this, the glycerol was then charged into the separator tank as shown

in Figure 3.18.

From calculations, to achieve 12.2cP glycerol-water solution for instance, 0.5m3 volume of

water and 0.728m3 pure-glycerol are needed. That is, while keeping the volume of water

constant and at a reference mixture temperature of 25°C.

Pump
discharge

----Io--l-~
to tank

Pump

inlet

Separator Tank
equipped with sampling

point at side

Hose
connection

Barrel containing pure
glycerol

Figure 3.18. Procedure for charging separator tank with glycerol and water respectively.

For the large scale closed loop facility used in this work, it was rather impossible to get rid of

all the water in the system. Therefore, even if proper calculations have been carried out in

priori, there will still be some pockets of water trapped in the joints and elbows of the facility.

Therefore, when the tank was filled with pure glycerol some of it spilled from the separator to

the floor of the facility. Thi is because no mixing had taken place with the water that was

initially charged into the tank. The spillage was taken care of, and the separator tank closed

properly in order to pres urize and run the system. Figure 3.18 shows the sample from the
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side of separator tank obtained at the minimum operation conditions after running for 20-

30minutes. This shows a clear glycerol/water solution. It was initially assumed that efficient

mixing may not take place. However, it shows that the due to the energy from the system, this

gives a rather clear glycerol/water solution. A Brookfield viscometer was used to measure the

viscosity of the glycerol/water mixture as shown in Figure 3.19. The nominal temperature of

the mixture between experiments was kept at 27 ± 2°C. The surface tension measurements

were also made to obtain the surface tension of the glycerol/water solution as shown in

Figure 3.20. Two glycerol/water solutions of 12.2cP and 16.2cP were used for these

experiments. The summary of the fluid properties are shown in Table 3.3. The operating

conditions for gas and liquid superficial velocities are 3.98m/s - 13.36mJs and 0.036mJs -

0.27mJs respectively to achieve churn flow regime. The full operational matrix can be found

in Appendix B.

Spindle Thermocouple
(Temperature sensor)

Clear glycerol/water
solution

Figure 3.19. Beaker containing clear glycerol/water solution after 20-30 minutes of start-up

and shutdown of test facility. System power contributes significantly to mixing of pure

glycerol and water to give a clear glycerol/water solution.
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Spindle rate

Temperature of
solution

Vi cometer

Viscosity reading

Beaker with

Figure 3.20. Brookfield Viscometer used in measuring viscosity.

Figure 3.21. Obtaining urface tension of glycerol-water.

Table 3.3. Propertie of fluids u ed on 127mm diameter facility with water as the
reference case for glycerol-water solutions at 25°C

Fluid Pre ure Surface Density Viscosity
(bara) tension (kg/nr') (Pa.s)

(N/m)
Air 2.35 1.78 x 10-)

0.072 (0.0178cP)
Water 998 0.001

2 (lcP)
Glycerol- water 0.0635 1151.6 0.0122

solution (12.2cP)
Glycerol- water 0.0612 1166.3 0.0162

solution (16.2cP)
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Void fraction data was acquired at a uitable axial distance from injection at LID = 65.5. This

because, according to Ornebere-Iyari (2006) who worked on the same facility, the flow can

be considered to be fully developed at this axial location from the injection.

3.2.2.1. WMS data extraction applicable to air-glycerol/water experiments

As stated earlier, pha e fraction data was acquired using the wire mesh sensor. This was done

at LID = 65.5 from the injection point. A 32 x 32 capacitance wire mesh sensor was used to

acquire the phase fraction data. The location of the wire mesh sensor is shown in Figures

3.22 and 3.23. The calibration pecific to these set of experiments was carried out with the

pipe empty representing air, and filled with glycerol-water as shown in Figure 3.21 for

glycerol/water mixture respectively.

Wire mesh sensor

Support clamp

Glycerol-water solution
after startup and shutdown

Figure 3.22. Data acqui ition part of the test section showing test section clear glycerol/water

olution.
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The instantaneous values of void fraction as in equation(3.5) is obtained by the relating the

mixture permittivity to the reference signal for the liquid phase only where the relative

permittivities of the glycerol/water solutions used are 60.34 and 57.76 respectively.

E r .glvcerol Lwater - £ r.mixag = ___::::..;"'-------
I:: r.glvcerol l water - I:: r .air

(3.5)

(
Vc.m;'\(i, j, k)- Vc.air (i, j) 1 ( )~

I:: '. = ex n I::
r,nu> P V (i . k)- V . (.. ) r·glycerol/water

C.glvcerol l water ,}, e .arr l,}

(3.6)

Wire me h
electronic box

Test section

Wire mesh sensor

Wire mesh output

Figure 3.23. Data acqui ition workstation for air-glycerol/water experiments.

where 'mix' denotes the voltage measurement of the two phase mixture, 'glycerol/water' for

the condition of pipe filled with 'glycerol/water' and 'air' for the condition of the pipe empty.

A three dimen ional void data, (i, j, k) is acquired by reconstructing the data set at each

crossing point where i and j repre ent the wire location and k represents the number of frames

or time sequence. The acqui ition rate was at 1000 Hz for a total time of 30 s.
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3.2.3. Control processes for the 127mm internal diameter facility

Emergency stop buttons for the compressor and liquid ring pumps are located on the three

levels of the facility. Relief valves and bursting disc are fitted on the compressor tank in the

compressor section and the separator respectively for emergency pressure relief. Air and

water mixtures at low pressures present no toxic hazards. Although, glycerol is flammable,

care was taken to prevent large spillage from occurring during charging and discharging into

separator tank. Oil absorbent granules were available to help clean up spillage.

3.2.4. Flowrate data acquisition

The operating conditions were set and measured using vortex and turbine flow meters

supplied by Kuppers Electromechanik GmbH. The gas and liquid flowmeter have

measurement ranges of 35 to1030m3/hr and 40 to 500litres/min respectively. Based on the

flowrate readings acquired from calibrated rotameters and the properties of the fluids at an

absolute pressure of 2bar as shown for both air-water and air-glycerol/water in Tables 3.2 and

3.3 respectively, the gas and liquid superficial velocities were calculated.

The calibration of the devices was previously performed by Omebere-Iyari (2006) for air and

water. This was done for both air-water and air-glycerol/water experiments in this study. The

data was acquired using a DAQ (Data acquisition) card from National Instruments at a

frequency of 1000 Hz for a total time of 60 seconds. The relationship between the voltage

output and flow rate was inputted in the Labview program in Figure E.3, Appendix E. Data

was also acquired simultaneously with void fraction data.
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CHAPTER 4

ESTABLISHING FLOW PATTERN TRANSITIONS FOR A CO-CURRENT AIR-

WATER FLOW IN A LARGE DIAMETER VERTICAL PIPE

4.1. Introduction

A thorough understanding of the behaviour of gas-liquid flows is very important prior to the

design of any industrial equipment. At low gas flowrates, bubbly flow pattern is the presiding

regime and is characterized by the flow of dispersed gas bubbles-in a continuous liquid.

These bubbles have various sizes and their behaviours are different in small and large

diameter pipes. However, in small and large diameter pipes, the bubble flow structure has

been classified by its tendency to move towards the wall or core of the pipe, (Lucas et al.,

2005).

At higher gas flowrates, slug flow is present where the slug unit is made up of a Taylor

bubble and a liquid slug. This has been found to occur only in small diameter pipes using air

and water as the operating fluids, (Szalinski et al., 2010, Hernandez-perez et al., 2010 and

Abdulkadir, 2011) in a 67mm diameter vertical pipe. In a larger diameter vertical pipe, slug

flow has not been observed. Instead the presiding regime is chum turbulent, (Omebere-Iyari

et al., 2008 and Schlegel et al., 2009) in 194mm, 102mm and 152mm diameter pipe using

steam-water and air-water as the operating fluids respectively.

Taitel et al. (1980) earlier established a transitional criterion for the bubble to chum flow

transition in small and large diameter pipes based on the following:

[
2 2 ]0.25

PI gD ~4.36
(PI - p,)a

(4.1)

where PI' Pg' g, (J and D are the liquid density, gas density, gravitational force, surface

tension and pipe diameter respectively. Ohnuki and Akimoto (2000) also reported the

presence of chum flow as a dominant regime instead of slug flow when the gas flowrate is
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further increased from bubbly flow for their experiments in a 200mm diameter vertical pipe.

Based on their observation they classified the regimes present into undistributed bubbly,

agitated bubbly, chum bubbly, chum slug and churn froth regimes as shown in Figure 2.7.

Recently, Smith et al. (2012) also suggested that the fundamental changes to the flow occur

when the pipe diameter is larger than the maximum bubble size formed based on the work of

(Kataoka and Ishii, 1987). They suggested that slug bubbles that bridge the pipe cross-section

can no longer be sustained due to Taylor instability.

Consequently, the upper surface of the bubbles formed in a large diameter vertical pipe

become distorted and collapse breaking the large bubble into two or more daughter bubbles.

This behaviour causes a significant change in the void fraction and results in a different

behaviour compared to flows in smaller diameter pipes where Taylor bubbles are sustained.

There is therefore a need to clearly predict these behaviours in large diameter vertical pipes

especially where an appropriate model for CFC is required and in other cases were reactor

safety is concerned.

Therefore, the present work investigates the bubble to chum transition from data acquired in

the 121mm internal diameter facility that is 5.3m in length using a capacitance wire mesh

sensor. Details of the experimental facility and method of data acquisition have been

described in chapter 3, section 3.1. The data was acquired at 35 pipe diameters from the

injection (UD = 35). The operating conditions for gas and liquid superficial velocities ranged

from 0.21m1s to 3.58m1s and 0.018m1s to 0.13m1s respectively, at atmospheric conditions.

The results are presented and discussed in the following sections.
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4.2. Results

4.2.1. Time series analysis

As indicated above, a capacitance wire mesh sensor was used to acquire void fraction data

during the experiments at un = 35. Air and water were used as operating fluids indicative of

the gas and liquid phases respectively. To distinguish between both phases, a calibration

routine was initially carried out. The measurement/raw data acquired during the experiments

were processed taking the calibration information into consideration to obtain the void

fraction at each time sequence. The variation of the void fraction with time has been shown in

Figure 4.1.

The black, red and green lines represent increasing gas superficial velocities of 0.21m1s,

1.03m1s and 3.58m1s respectively. This has been done for constant liquid superficial

velocities ofO.018m1s, O.04lmls, 0.075m1s and O.13m1s from top to bottom respectively.

In reference to when the gas and liquid superficial velocities are 0.21m1s and 0.018m1s

respectively, regular intervals of broad peaks can be observed having a peak void fraction of

approximately 0.6. In between the broad peaks, shorter peaks can be observed with a peak

void fraction at approximately 0.2. From visual observation, the flow is characterized by

large bubbles that almost occupy the pipe cross-section, which flow intermittently with

smaller bubbles behind them. This has a similar pattern as the slug flow in small diameter

pipes as observed for instance by (Kaji et al., 2010). However, the large bubbles are not as

long as the Taylor bubbles in small diameter pipes and does not have a bullet-shaped nose.

When the gas superficial velocity is increased to 1.03m1s, regular occurrences of bubbles

such as those at lower gas superficial velocities are not present.

This is because there is a distortion in the shape of the large bubbles and more irregular sized

bubbles are formed. At this operating condition, the behaviour has an oscillating nature and

liquid bridging of the gas core with entrained gas bubbles in the base film flowing on the
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inner walls of pipe occurs. Increasing the liquid superficial velocity for a constant gas

superficial velocity causes the void fraction to decrease. For instance, when Ui, = O.13m1s and

Ugs = 0.2Imls, the number of peaks for the 10s time interval presented increases. This is

indicative of the occurrence of more small diameter bubbles compared to the same gas

superficial velocity when Ui, = O.03m1s.
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Figure 4.1. (a)-(d) Void fraction variation with time for constant liquid superficial velocities

ofO.018mJs, O.041m1 ,O.075mJ and O.13m/s respectively. The gas superficial velocities are

indicated in plot (d).
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From the analysis of the graphs above, it was identified above that when the gas and liquid

superficial velocities are 0.21rnls and 0.03rn1s respectively, the peak at a void fraction of 0.6

is indicative of large bubbles and the smaller bubbles have a short peak at 0.2. However,

when the gas and liquid superficial velocity are 0.2 1rnIs and O.13rn1s respectively, the shorter

peaks as observed for lower liquid superficial velocities cannot be observed in Figure 4.l(d).

Therefore, this implies that the smaller bubbles which occur at the gas and liquid superficial

velocities of 0.21rnls and O.l3rn1s are made to coalesce with each other. This is because at

this particular condition the smaller bubbles are much closer to each other and are forced to

coalesce due to their geometric arrangement. Schlegel et al. (2009) also reported that

geometric considerations dictate the maximum packing of bubbles within a control volume

for coalescence to occur. They suggested that above a critical void fraction of 0.3 the bubbles

are made to coalesce. In addition to the above argument, it is also possible that because more

number of smaller bubbles are formed at higher liquid superficial velocities the relative

motion of the bubbles increases. This effectively increases the frequency of collisions

resulting into coalescence.

When the gas superficial velocity is 3.58rn1s, the void fraction is greater than the critical void

fraction as regards the maximum packing of bubbles in a control volume of 0.3 suggested by

(Schlegel et al., 2009). Therefore, there should be a transition to a more chaotic regime. In

the light of this, when the time series of void fraction is considered, there is an increased

fluctuation in the void fraction as the liquid superficial velocity is increased. Based on visual

observation this condition has a frothy nature and so chum turbulent flow can be inferred.
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4.2.2. Extracted high-speed images

In order to clearly clarify the nature of structures identified from the time series, high-speed

videos were acquired at 1000 fps using a Phantom v12.1 high-speed camera.

(a)

Close cluster of
small diameter

bubbles
indicative of a
Frothy flow
behaviour

Cb)
Figure 4.2. High speed image captured u ing a Phantom v12.1 camera for (a) Ugf= 0.21m1s

and (b) Ugs= 3.58ml while keeping the liquid superficial velocity constant at Uu = 0.018m1s.
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The high-speed videos were acquired below the location of the WMS at 35 pipe diameters

away from the injection, un = 35. The sequence of extracted images has been shown in

Figures 4.2 and 4.3 for constant liquid superficial velocities of O.OI8m1s and O.13m1s

respectively. When the gas superficial velocity is O.21m1s in Figure 4.2(a), it shows a dense

cluster of bubbles (the white colour region) and a region of leaner widely spread out bubbles

indicated in the figure by the darker colour. From the visual observation, the latter is a

situation where a large diameter bubble passes through and pushes small bubbles to the inner

walls of the pipe.

On the other hand, the former shows a liquid slug region with bubbles packed closely

together. After the unit which comprises of a large bubble and liquid slug flows pass, a

similar occurrence was observed at this operating condition and the pattern is intermittent. At

a higher gas superficial velocity of 3.58m1s as in Figure 4.2(b), the first image shows the

whole axial section of the pipe having a very white region indicative of the frothy nature of

the flow. The frothy nature which is essentially a very close cluster of bubbles was also

observed at the same condition in the work of (Omebere-Iyari, 2006). In the subsequent

images, the close cluster of bubbles does not occupy the entire axial section of the pipe.

However, some portions of the axial section of the pipe have this frothy nature while others

have the cross-section of the pipe occupied mainly by gas with entrained bubbles at the walls.

The effect of increasing the liquid superficial velocity to O.l3m1s is shown in Figure 4.3. It

shows that the liquid slug region clearly observed in Figure 4.2(a) is less apparent in the first

two sequences but can be observed in the third image/sequence. This is due to the fact that

more volume of liquid is present. At this liquid superficial velocity, increasing the gas

superficial velocity as in Figure 4.3(b) shows a frothier flow compared to Figure 4.2(b). This

is because the degree of instability increases as the liquid superficial velocity increases.

Therefore, this forms clusters of bubbles which almost occupy the axial section of the pipe.
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In consideration of the high- peed images, it can be said that both Figures 4.2 and 4.3 agree

with the time series of void fraction obtained from the wire mesh sensor at the respective

operating conditions.

Closecluster of
smalldiameter

bubbles
indicative of a
Frothy flow
behaviour

Ca)

Cb)
Figure 4.3. High speed image captured u ing a Phantom v12.1 camera for (a) Vgs = O.21m1s

and (b) Vgs= 3.58m1 while keeping the liquid uperficial velocity constant at Vis = O.13m1s.
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4.2.3. Cross sectional phase distribution

The cross-sectional phase distribution was extracted from the wire mesh sensor and is shown

in Figure 4.4. The red and blue are indicative of gas and liquid phases respectively. This is

shown for a constant liquid superficial velocity of O.13m1s and increasing gas superficial

velocities of 0.21m1s, 1.03m1s and 3.58m1s respectively for frames 1000 to 5000 or time

sequence of I-Ss. Clearly, it shows that increasing the gas superficial velocity causes the pipe

cross-section to be occupied more by the gas phase. More significantly, when the gas

superficial velocity is 0.21m1s, it shows a large distorted bubble and small bubbles dispersed

in liquid in subsequent frames. This is essentially typical of the bubbly flow behaviour.

Gas
Ug;= O.21ms

Ug,= l.03m s

Liquid

1 1000 2000 3000 4000 5000
J

Frame number

Figure 4.4. Frame sequence for Vgs= 0.21m1s, 1.03m1s and 3.58m1s from top to bottom

respectively at constant liquid superficial velocity of 0.13m1s extracted from the wire mesh

sensor data.

However, increasing the gas superficial velocity to 1.03m1s initially shows a distorted bubble,

then dispersed bubbles in the liquid followed by large bubbles in subsequent frames. This

may probably be an operating condition within the bubble to churn transition region.
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Increasing the gas superficial velocity to 3.58rn1s shows that the gas phase almost occupies

the entire pipe cross-section. From visual observation of the flow and further clarification by

the high speed image in Figure 4.3(b), this is essentially a cluster of bubbles, which has a

frothy nature.

4.2.4. Statistical analysis of time series of void fraction

Statistical analysis of the time series data was carried out as a quantitative measure to

distinguish between the presiding regimes present. Also, to identify whether analysing the

data set statistically can reveal the transition from the bubble to churn flow regime.
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Figure 4.5. Variation of PDF with void fraction for increasing gas superficial velocities at

con tant liquid superficial velocity.
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The probability density function (PDF), standard deviation, skewness, kurtosis and mean of

time series data set have ~een applied as the relevant statistical tools. The probability density

function of the void fraction has been shown in Figure 4.5. The PDF is the probability that

the void fraction for a given data set lies within a particular range, 0 to 1. This is given as:

(4.1)

From Figure 4.5, it shows that as the gas superficial velocity is increased there is a shift in

peak from left to right. Increasing the liquid superficial velocity from 0.0l8m1s to O.l3m1s,

causes a corresponding shift in probability distributions to lower void fractions. The single

peak at a gas superficial velocity of 0.21m1s is indicative of bubbly flow pattern, which

agrees with the PDF signature for this regime as suggested by (Costigan and Whalley, 1997).

However, this can be considered as the latter end of the bubbly flow pattern. This is because

the tail of the probability distribution is distorted, and is indicative of the occurrence of large

spherical cap bubbles that were observed for the flow.

At a gas superficial velocity of 3.58m1s, chum flow can be considered to be the prevailing

flow pattern where the peak void fraction decreases from 0.8 to 0.58 as the liquid superficial

velocity is increased. It cannot be fully distinguished from the analysis shown in Figure 4.5

the operating conditions for which typical chum flow occurs. It is possible that at a gas

superficial velocity of 1.03m1s this represents a transition region to typical chum flow as the

peaks in the distribution are not well-defined.

The standard deviation, skewness and kurtosis variation with gas superficial velocity has

been shown in Figure 4.6. The equations are given as follows:

(4.2)

(4.3)
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(4.4)

As the gas superficial velocity increases the standard deviation of the void fraction decreases

from 0.18 to 0.08 for bubble to churn flow. There is an initial increase, which is followed by

a decrease then a constant value is more or less attained. It also shows that the profile

decreases with increasing liquid superficial velocity.
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Figure 4.6. Variation of tandard deviation, skewness and kurtosis of the time series data with

ga uperficial velocity.
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From the standard deviation plot. the flow regimes present can be inferred. The region

showing an initial increase is indicative of occasional occurrence of large spherical cap

bubbles as shown in the time series plots. The reason for the increase is because the void

fraction changes when large spherical cap bubbles and smaller bubbles that are closely

packed flows pass. This regular intermittent nature leads to an increase in the standard

deviation of void fraction. As the gas superficial velocity increases, the negative slope of

decreasing standard deviation can be considered to be the churn turbulent regime, (Schlegel

et al .• 2009). Therefore, the plateau reached shows the inception of typical churn flow.

However, compared to lower liquid superficial velocities, it shows that the plateau begins to

form at lower gas superficial velocities for a liquid superficial velocity of O.13m/s. Therefore,

this shows that the transition to typical churn flow is also dependent on the liquid superficial

velocity. This is because as the liquid superficial velocity increases the flow tends to become

more oscillatory. Therefore. if regime boundaries for bubble to churn transition should be

eventually obtained. this will be with respect to specific operating conditions.

The skewness reveals the degree of asymmetry of the particular distribution. If for instance

the probability distribution is bell-shaped, the skewness value will be zero. If the distribution

shifts to the right of the bell-shaped curve. it means the void fraction is higher and is

indicative of negative skewness or skewness values of less than zero. On the other hand,

when the distribution shifts to the left of the bell-shaped curve, the void fraction is lower and

this gives a positive skewness or a skewness values greater than zero. This statistical method

has also been used by previous workers to reveal the wall and core peaking nature of the

bubbles present. (Shen et al., 2005 and Qi et al .• 2012).

From their work. when bubbles tend towards the core of the pipe the skewness is less than

zero. A wall peak profile occurs when the skewness is greater than zero and the transition

from wall to core profile occurs when the skewness is equal to zero.
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From both explanations given above, it shows that as the gas superficial velocity increases

the bubbles formed tends more towards the core of the pipe. Since, this is also dependent on

liquid superficial velocity, there is a shift towards a wall peaking behaviour when the liquid

superficial velocity is increased at a constant gas superficial velocity. It is also important to

note that the value of skewness decreases to a gas superficial velocity of 1.37m1s for each

case of liquid superficial velocity. This may also probably indicate a transition condition to

typical chum flow regime.

Further analysis of the time series data in form of kurtosis has also being investigated. The

kurtosis reveals the modality of a probability distribution. This means that if the probability

distribution is unimodal it has one well-defined peak whereas if it is bimodal, two peaks can

be observed. For bubbly flow, the former may be the case as this can be observed in Figure

4.5. Since the flow becomes more chaotic in transiting to chum flow, bimodal or even

multimodal distributions may probably be obtained. In consideration of the kurtosis variation

in Figure 4.6, the profile decreases with increasing liquid superficial velocity. However there

is an increase in profile when the liquid superficial velocity increases from 0.018m1s -

0.13m/s. At a constant liquid superficial velocity, increasing the gas superficial velocity

causes the profile to decrease, increase to maximum and then decrease. Consequently, this

gives an apparent peak occurring at a gas superficial velocity of 1.72m1s.

From the instantaneous values of void fraction at each period of acquisition, the time

averaged void fraction for the whole data set was obtained. This value was varied with

dimensionless gas velocity as shown in Figure 4.7 in order to make further comparisons with

the data of (Szalinski et al., 2010). They acquired data in 67mm internal diameter pipe, and

6m in length test section using air and water and air and silicone oil as the fluid pairs.

The dimensionless gas velocity term used in this case is given as:

Page 199



(4.5)

As the gas superficial velocity increases there is a logarithmic increase in void fraction. For

the experimental conditions, it shows a decrease in profile as the gas superficial velocity is

increased. The air-water data from Szalinski et al. (2010) shows a close agreement with the

experimental data when the liquid superficial velocities are 0.095m/s and 0.13m/s.

Present Experiments
o O.OISmis
o 0.095mis
A O.13mis

• Szalinm et at 0010)
U«=0.25m!s, .ljr-\\'aler

• Szalmm et at 0010)
UIoi"'" 0.25m's, .ljr-silicone oil

o 0.05 0.1
Dimensionless gas ve1ocity( -)

0.15

Figure 4.7. Variation of mean void fraction with dimensionless gas velocity. Further

comparisons have been made to the data of Szalinski et al. (2010) where bubble, slug and

churn flows were observed in a 67mm diameter pipe having a length of 6m.

Interestingly, their air-silicone oil data shows close agreement with the data from the present

experiments at VIs = 0.018m/s. Comparing both cases, the higher void fraction at lower gas

superficial velocity is due to a higher viscosity of silicone oil compared to water used in the

present experiments. Also, Taylor bubbles were observed in their experiments having a

diameter almost equivalent to the pipe diameter. At higher gas superficial velocities the

Taylor bubbles are destroyed and the churn flow pattern is present. The air-silicone oil data

from Szalinski et al. (2010) and those for present experiment at Vis = 0.018m/s, become
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closer as the gas uperficial velocity increases showing that as the churn flow pattern is

entered, the void fraction doe not change considerably with pipe diameter.

4.2.5. Interfacial structures

The interfacial structures have been obtained by further post processing of the three

dimensional void data u ing a MATLAB program.
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Figure 4.8. Interfacial structure at ga uperficial velocities of 0.21m1s, 1.03m1s and 3.58m1s,

for a con tant liquid superficial velocity of 0.018m1s.
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This is shown for selected gas superficial velocities with reference to previous discussions in

section 4.2.1 and 4.2.3 of O.21mJs, l.03mJs and 3.58mJs as (a), (b) and (c) respectively.

Figures 4.8, 4.9 and 4.10 represent the interfacial structures at the respective aforementioned

gas superficial velocities and at constant liquid superficial velocities of 0.018mJs, 0.075mJs

and 0.13mJs respectively.

Since the data was acquired at 1000Hz for 30s the total number of frames extracted is 30,000.

However, the number of frames presented in the Figures is for 5000 frames with an interval

of 10 frames. The dark blue, light blue and purple represents the liquid phase, the gas phase

and the containing pipe. Only the significant structures are shown and the continuous liquid

phase was eliminated for clarity.

The structure in Figure 4.8(a) shows the occurrence of the large diameter bubbles occurring

intermittently. It should be noted that since 10 frames have been read intervally, the axial

length of the large diameter bubble is smaller. Nonetheless, the observed axial length of the

large diameter bubbles is smaller than the pipe diameter. Unlike the Taylor bubbles, a bullet

shaped nose cannot be observed but a bubble that almost occupies the pipe cross-section.

Also, the axial length of Taylor bubbles is greater than the pipe diameter, therefore, the

difference in comparison to the present experiments. Further inspection shows that the large

bubbles have liquid structures present within them. Also, below the large bubbles, there are

smaller diameter bubbles present in the liquid phase.

As the gas superficial velocity increases in (b), the axial length of bubbles increases due to

coalescence, and the intermittent nature can also be observed. At this condition in (b), the

irregular portions of liquid (darker blue regions) can be observed to be present within the gas

core. Furthermore, from visual observation, complete liquid bridging of the gas core occurs,

which is characterised by small diameter bubbles of about 3 - 5mm in diameter entrained in

the liquid. This has been shown as a pure liquid phase due to the fact that the bubbles
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entrained have a small diameter. A the gas superficial velocity further increases in (c), the

core is occupied by gas and more liquid structures are present within the core of the pipe.

These liquid structures entrained in the gas core have been previously characterized by

previous authors such as Hernandez- Perez et al. (2010) as wisps.
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liquid bridging
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Figure 4.9. Interfacial tructure at ga uperficial velocities of 0.21m1s, 1.03m1s and 3.58m1s,

for a con tant liquid superficial velocity of 0.075m1s
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Page 1104



Increasing the liquid superficial velocity to 0.075m/s and 0.13m/s respectively has been

earlier ascertained to reduce the void fraction therefore the axial length of bubbles reduces as

in Figures 4.9(a) and 4.1O(a). Also, the cross-section of the pipe is not entirely occupied by

gas phase compared to a lower liquid superficial velocity in Figure 4.8.

Comparing the interfacial structures in Figures 4.9( c) and 4.1O(c), more of the wisps as

identified by Hemandez-Perez et al. (2010) are present in latter case than in the former. Also,

large liquid structures occupying the entire pipe cross-section, entrained in the gas core, can

be observed in Figure 4.IO(c). These are different in size from the wisps identified by

(Hemandez-Perez et al., 2010). In general, as the liquid superficial velocity increases for a

constant gas superficial velocity, this increases the frequency of wisps entrained in the gas

core.

When the liquid superficial velocity increases to 0.13m/s, it shows the formation of huge

waves in Figure 4.1O(c). Incomplete liquid bridging of the gas core compared to the cases in

Figure 4.8(b) and 4.9(b) occurs in Figure 4.1O(c). Although the operating condition differs in

the former compared to the latter, this has been highlighted to show the stability of the huge

wave structure or the absence of radial coalescence of the huge waves. In addition, this

further distinguishes between complete liquid bridging of the gas core caused by the radial

coalescence of the huge waves flowing on the inner walls of the pipe, about the pipe centre

line, and incomplete liquid bridging of the gas core.

It is possible that the entrained liquid structures occupying the entire pipe cross-section are

formed from the radial coalescence of huge wave propagated upwards by the gas phase

inertia from an upstream location. On the other hand, the wisps are sheared off from the crest

of the huge waves. In the latter, it means that the huge waves are the source of the wisps or

drops entrained in the gas core and are incompletely atomised by the gas phase inertia to form

them. Therefore, when huge waves are formed about the pipe centreline and the gas shears
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off the crest of the huge waves, these form wisps or drops due to the absence of radial

coalescence of huge waves. On other hand, when the huge waves radially coalesce, with the

simultaneous occurrence of gas flowing upwards, this forms large liquid structures entrained

in the gas core. From this perspective, the entrained fraction of drops in chum flow is a

function of both the shedding of wisps or drops from large liquid structures as a result of

complete liquid bridging(radial coalescence of the crest of huge waves) and incomplete

liquid bridging(absence of radial coalescence of huge waves).

4.2.6. Spectral analysis

To further investigate the periodicity of the interfacial structures, spectral analysis of the time

series data in the frequency domain has been employed. The spectral analysis in form of

power spectral density (PSD) is used to quantify the strength of the time series signal across

different frequency bands. To obtain the PSD, the Fourier transform of the time series signal

is initially carried out and the equation is defined as:

..
F{x): Jag (t}(-i2/fr)dl (4.6)

The power spectral density function is then obtained by taking the Fourier transform of the

auto covariance function (ACF) which is given as:

(4.7)

where T is the sampling duration kl1 t is the time delay t is the interrogating time delay. The

power spectrum density is then obtained as:

(4.8)

A cosine windowing function in equation (4.8) w{kl1 r) is used to suppress the spectrum

leakage similar to work of (Kaji et al., 2009). This is given as:
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(1lkAT)w{kAT)= COS --
2·T

(4.9)

The variation of power spectral density with frequency is shown in Figures 4.11 and 4.12.

This has been done to show the effect of constant liquid and gas superficial velocities in the

respective figures. In Figure 4.11, when the liquid superficial velocity is 0.018m1s, increasing

the gas superficial velocity decreases the profile and no changes in the peak frequency exist.

However, increasing the liquid superficial velocity to 0.075m1s shows a shift in peak

frequency as the gas superficial velocity is increased. The peak in the profile increases then

decreases, and this is also accompanied by a slight shift in the profile from right to left.
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Figure 4.11. Variation of PSD with Frequency for constant liquid superficial velocity and

increasing gas superficial velocity as indicated.
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When the liquid superficial velocity is 0.075m1s, the flow is more oscillatory than at

0.018m1s. Therefore, it i expected that the peak increases as the gas superficial velocity

increases. However thi i not the case as there is a subsequent decrease in profile when the

gas superficial velocity is 3.58m1s than at 1.03mls.

0.006 0.006

0.005 0.005
UgJ= O.4Sm's

O.Oo.t
Ug:=O.~lm s

O.OO.t

0.003 0.003

0.002 0.002

0.001 0.001
,-.... 0 0I
'-"
.?;- O.Oo.t 0.002.;J

0.0035 0.0018 ,\.....
Qi Lg:;= 1.03ms 0.0016 Ug!=Ulms

I ,

-0 0.00" I ,

0.001 I ,

-a 0.0025 0.0012
, ,

.b -,-,-----;
o 0.002 O.oot
Cl) ----_ 0.0008~ 0.0015 -- ..
:i- O.OOt 0.0006
Cl) 0.000~
!:: 0.0005 0.00020
P-l 0 0

0.0016 0.001&
0.001 0.0016 '"

Ugs=3.sSms ' ,Ugr=2..tlms
, ,

0.0012 0.001 ,
0.0011

,
0.001 I

I

0.0008 0.001 1

0.0008 I

0.0006 ",
0.0006 ----"

0.000-1 0.000-1
0.0002 0.0002

0 __._._._ ....>..J 0
0.01 0.1 1 10 0.01 0.1 10

Frequency(Hz) Frequency(Hz)
U..

--O.OlSm s -----0.0 5m s --0.13mls

Figure 4.12. Effect of liquid uperficial velocity on the variation of PSD with Frequency for

constant gas superficial velocity. Two distinct peaks can be observed. The peak at higher end

of the spectrum can be attributed to the formation of wisps/huge waves.
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Increasing the liquid superficial velocity to 0.13m1s gives an apparent shift in profile when

the gas superficial velocity is 3.58m1s. In relation to the actual flow behaviour, at this

operating condition the flow is frothier as this can be observed in the high speed image in

Figure 4.3. Consequently, this gives a shift in the profile to lower frequencies.

The effect of increasing the liquid superficial velocity on the spectral profile for a constant

gas superficial velocity has also been investigated and is shown in Figure 4.12. At low gas

superficial velocities of 0.21mls and 0.48m1s respectively, the profile decreases with

increasing liquid superficial velocity. Also, there is a slight shift in the profile to the right at

these gas superficial velocities. On the other hand, the profiles at gas superficial velocities of

1.03m1s, 1.72m1s, 2.41mls and 3.58m1s respectively show an increase in profile and a

decrease when the liquid superficial velocity increases from 0.018m1s - 0.13m1s. Also short

peaks are present for each liquid superficial velocity condition at the higher end of the

spectrum. This may be attributed to the presence of wisps or huge waves.

Hernandez-Perez et al. (2010) have also observed the presence of two peaks for their

experiments in a 67mm diameter pipe using air-water as the operating fluids. However, the

peaks present are higher than they observed. They attributed it to the occurrence of Taylor

bubbles with liquid slugs and shorter peaks as the occurrence of huge waves.

In present work, huge waves cannot be observed with reference to the interfacial structures in

Figures 4.8(b), 4.9(b) and 4.1O(b). This is for when the gas superficial velocity is 1.03m1s for

respective liquid superficial velocities of 0.018m1s, 0.075m1s and 0.13m1s. However, what is

common in all cases is the presence of wisps. At these operating conditions, huge waves may

be present if the experiments were conducted in the smaller diameter pipe of 67mm as in

(Hernandez-Perez et al., 2010).
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Figure 4.13. Variation of dominant frequency with gas superficial velocity. Further

comparison to the work done in a 67mm internal diameter pipe of (Hernandez -Perez et al.,

2010).

Therefore, in their case it will be more than reasonable to attribute the second distinctive peak

to huge waves. On the other hand, in Figure 4.12, the second distinctive peak at the higher

end of the spectrum can only be attributed to the occurrence of wisps entrained in the gas

core. This is essentially due to the transition from bubbly/spherical cap bubbly flow, of which

no distinctive peak is present as shown in Figure 4.12, to chum turbulent flow (transition

region) and typical churn flow, where the second peak occurs at a higher frequency than the

first peak.

The dominant frequencies have been extracted from spectral plots and have been plotted

against gas superficial velocity as shown in Figure 4.13. The profile is similar in trend to that

obtained when the standard deviation is varied with gas superficial velocity in Figure 4.6.

Therefore, similar regions identified in the standard deviation plot can be also used, namely:

the bubbly, spherical cap. chum turbulent and typical chum flow regime.

Further comparison has been made to that data of (Hernandez-Perez et al., 2010). The data

from the present experiments at a liquid superficial velocity of O.13m1s more or less agrees
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with theirs at low gas superficial velocities where they observed bubble and slug flows. This

diverges at higher gas superficial velocities and become closer to the frequency at lower

liquid superficial velocities. This may probably be due to the fact that their liquid superficial

condition is higher compared to the present experiments.

The degree of instability can be further examined using a dimensionless parameter, which is

the Strouhal number. Azzopardi (2004) showed that the frequency of periodic structure can

be correlated using the gas based Strouhal number and Lockhart-Martinelli parameter for

bubbly and slug flow regimes. Both Strouhal number and Lockhart-Martinelli parameters are

given in equations (4.10) and (4.11) as:

IDStrn= -VRS

(4.10)

(4.11)

Slug flow has not been observed in the present experiments. Nonetheless, the above

quantities have been plotted and compared with data in small diameter pipes in Figure 4.14.

Also comparison has been made to the large diameter data retrieved from the work of

(Hemandez et al., 2010).

The data of Hernandez-Perez et al. (20 I0) in a 67mm diameter pipe and the larger diameter

data are quite close to that obtained from the present experiments. However, there is a large

discrepancy compared to the data with (Mao and Dukler, 1989 and Legius et al., 1997). Mao

and Dukler (1989) conducted their experiments in a 50.8mm diameter pipe with a length of

12.03m. On the other hand, Legius et al. (1997) conducted their experiments in a 50mm

diameter pipe joined by a contraction to an 80mm diameter pipe section upstream with a

length of 17m. Therefore, it is possible that the flow is more developed in both cases. In
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addition, another reason may be that the frequency of the slug flow decays downstream,

which has been previously identified by (Kaji et al., 2009).

100
A Pre sent Experim eftsAA .0.0.tlmls OO.07'm/s

10 XAA ~0.13m/s
,....... ~ .Hemandez etaU2010)•

"'k~~X

.._"
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0.1

~
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".~ •.i Al9.tmm

0.01
0.1 I 10 100 1000

Lockhart-Martinelli Parameter( -)

Figure 4.14. Variation of gas based Strouhal number against Lockhart -Martinelli parameter

by method of Azzopardi (2004).

The gas based Strouhal number and the Strouhal number based on mixture velocity was

further compared with the suggested Strouhal number correlations of (Kaji et al., 2009). The

Strouhal number based on mixture velocity is also compared with that of Kaji et al. (2009) as

the frequency of the periodic structure decreases with increasing distance from the injection.

Both quantities show quite a good agreement with experimental data in Figures 4.15 and 4.16

respectively. Their correlations are given as:

( L)~·7Sso; = AB D (4.12)

where the coefficients A and B are given by A = Ugs·1.2 and B = 4.94Uls + 0.368.

( L)~·6Str = ID =CE -mUD
m

(4.13)

where Urn is the mixture velocity coefficients C and D are given by C = Ugs·O.75 and E =
0.74Uls + 0.53.
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The gas based Strouhal number variation with void fraction has been compared with the data

from Kaji et al. (2009) in Figur 4.17. The MTLOOP and TOPFLOW facilities they

conducted their experiment have diameter of 51.2mm and 52.3mm respectively. The data
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from TOPFLOW facility shows a closer agreement with the data from the present

experiments. The lengths of the test section for TOPFLOW and MTLOOP facilities are 9m

and 3.Sm. Therefore, it is possible that the flow is not developed in case of the MTLOOP

facility. More significantly, although slug flow was observed in their experiements, it implies

that there is a similarity in the degree of instability of the present experiment with that in the

TOPFLOW facility.

Figure 4.18 shows that the latter reason above also holds when further comparisons are made

to the data of Hemandez-Perez et al. (2010) in a 67mm diameter pipe. However, in both

cases, the argument may fail as this is dependent on where the data is acquired along the test

section.
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Figure 4.17. Variation of gas based Strouhal number with mean void fraction comparison

with (Kaji et al., 2009).
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Figure 4.18. Variation of the gas based Strouhal number against dimensionless gas velocity in

equation (4.5) showing comparison with (Hemandez- Perez et al .• 2010). The periodicity of

the structures for bubbly. slug and chum flows obtained by spectral analysis for data in the

67mm internal diameter pipe of Hemandez- Perez et al. (2010) can be said to be similar to

the periodicity of the structures in the present work for a direct transition from bubbly to

churn flows when air-water are the operating fluids.

4.2.7. Radial phase distribution

Apart from the cross-sectional area averaged void fraction data. the time averaged radially

resolved void fraction data can be obtained from the wire mesh sensor. The radial void

fraction reveals the phase distribution from the centreline of the pipe to the walls. Also. it

shows the tendency of the bubbles flowing within the cross section of the pipe to move

towards the wall (wall peaking) or travel within the core (core peaking) of the pipe. A flat

phase distribution profile shows a wall peak distribution while a parabolic profile a core peak

distribution.
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at constant liquid superficial velocities

Since the sub-regimes for bubbly to churn transitions for large diameter pipes have not been

clearly defined, this analysis contributes to establishing the sub-regimes present. Figure 4.19

shows the radial phase distribution from the centre of the pipe to the wall, that is, from 0 to 1

respectively. This has been plotted against dimensionless radius, which is, the spatial distance

between two successive wires in the radial direction divided by the pipe diameter (rlR) for

constant liquid superficial velocities of 0.0 I8m/s, 0.075m/s and O.13m/s respectively.

For all cases of liquid superficial velocity presented, the void fraction profile increases

towards 1 as the gas superficial velocity is increased. However. when the liquid superficial
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velocity is increased, the profile becomes less parabolic which is apparent when the gas

superficial velocity is 3.lOmls. Also, at low gas superficial velocities of O.21m1s and

0.48m1s, the void fraction increases gradually to a dimensionless radial distance of 0.3 which

is then followed by a decrease. This behaviour is more prominent at higher gas superficial

velocities as the liquid superficial velocity increases. It is possible that this is due to the

distorted shape of the large diameter bubble that almost occupies the cross-section of the pipe

as earlier identified in the interfacial structures in section 4.2.5.

Further analysis on the radial phase distributions were carried out to obtain predicted radial

void fraction values. The comparison of both experimental and predicted radial void fraction

is shown in Figure 4.20. The equation used to predict the radial void fraction is given as:

( n+2 X (r)"]a -a I-e-
r - g n+2-2c R (4.14)

where a., a
g
and rlR are the radial void fraction, cross sectional averaged void fraction and

dimensionless radius. The other parameters nand c take into consideration the steepness of

the profile and hold up close to the wall. The equation is of the same form used for bubbly

flow to predict the radial profile according to (Luo and Svendsen, 1991).
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Furthermore, their equation has also been applied to predict the parameters nand c, which

also change depending on the presiding flow regime. Based on these parameters the

transition from bubbly to churn flow can also be delineated. The equation (4.14) has been

used by Wu et al. (200 1) to predict the radial void fraction for a large bank of data. They also

suggested expressions for nand c based on dimensionless parameters.

There is a good agreement between experimental and predicted radial void fraction as shown

in Figures 4.20(a) and (b). However, the profile does not correctly predict the exact behaviour

between a dimensionless radius of 0 and 0.3 when the gas superficial velocity is 0.21m1s for

all liquid superficial velocities presented. The parameter nand c from the predicted values

have been obtained and varied against gas superficial velocity shown in Figures 4.21 and 4.22

respectively. The power law exponent, n, has been further compared with the work of

Szalinski et al. (2010) for their air-water and air-silicone oil experiments in Figure 4.21.
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Figure 4.21. Power law exponent variations with gas superficial velocity and comparison

with the work of (Szalinski et al., 2010).

The data from the present experiments agrees quite well with those from (Szalinski et al.

(2010). As regards the data from the present experiments, there is a decrease in trend to a gas

Page 1119



superficial velocity of 1.03m1s followed by an increase in trend. A sharp increase in trend can

be observed beyond this gas superficial velocity, for a liquid superficial velocity of 0.018m1s.

This is in comparison to other liquid superficial velocities greater than this value.

In addition, there is a divergence in comparison with air-water and air-silicone oil data of

Szalinski et al. (2010) when the gas superficial velocity is greater than 1.03m1s. However,

this later converges at higher gas superficial velocities for just the air-silicone oil data of

(Szalinski et al., 2010). The decrease and a subsequent increase is a probable transition from

bubbly to chum flow. Therefore, based on subjection and subdividing according to the trend,

four regimes can be vaguely identified. The regime where values are more or less constant at

low gas superficial velocity can be regarded as the bubbly regime. The spherical cap bubbly

regime is associated by a decrease to a gas superficial velocity of 1.03m1s and chum flow

regime after this gas superficial velocity. The chum flow regime can be further divided into

chum turbulent and typical chum flow.

1
-. 0.9 ~S~ X

X X• 11 X';; 0.8 Q9~ 11
~ ~ fi ULr(mis)~ 0.7 s Q 11(!) e oO_018mis..... 0 Q ~§ 0.6 ~ Q DO.04tm/sa O~ o

0. OO_075m/s
0. 0.4
~ 0.3 AO.09Smis
0 xO.13m/s::r: 02

0.1
0

0 1 2 3 4
Gas superficial ,'elocity(m/s)

Figure 4.22. Holdup parameter against gas superficial velocity.

The chum turbulent or transition to chum flow occurs from gas superficial velocity of

1.03m1s-1.72m1s, and beyond this gas superficial velocity, a well-formed or typical chum
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flow may be present. Compared to Figure 4.21, Figure 4.22 shows a transition from bubbly to

chum when the holdup parameter is plotted against the gas superficial velocity, which

increases in trend as the liquid superficial velocity increases. This is because the two-phase

flow becomes more wall peaking as the liquid superficial velocity is increased. This has been

earlier revealed by the skewness analysis of the time series data in Figure 4.6.

4.2.8. Bubble size distribution

The size distribution of bubbles has been obtained from further analysis of the 3D void data

as shown in Figure 4.23. According to Prasser et al. (2001), using a recursive fill algorithm,

bubbles are identified by extracting the contribution of each statistical bubble diameter bin to

the overall void fraction.

The bubble size distribution is given as:

(4.15)

where the bubble diameter Db is obtained as follows:

(4.16)

For gas superficial velocities of 0.21 mls, 0.48m1s and 1.03m1s, bi-modal peaks can be

identified having a broad and narrow area respectively. This has been shown for liquid

superficial velocities of 0.0 18m1s, 0.075m1s and 0.13m1s from left to right respectively.

When the gas superficial velocity is 0.21 mls, increasing the liquid superficial velocity does

not decrease the height of the peak for the first peak. However, there is a decrease in height

for the second peak. The first peak can be classified as small bubbles that flow behind the

large diameter bubble, having a narrow area. The above reason can also be applied for gas

superficial velocities of 0.48m1s and 1.03m1s respectively.
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When the gas superficial velocity is 3.58m1s the second peak that was identified above is not

present. However, peaks appear when the liquid superficial velocity is O.13m1s. This is

because the flow behaviour had been indicated above to be more oscillatory thereby giving

bubbles entrained in liquid.
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Figure 4.23. Bubble size distributions for selected gas superficial velocity and increasing

liquid superficial velocity ofO.018m1s, 0.075m1s and O.13m1s from left to right respectively.

The bubble size distribution was further compared with the air-water and air-silicone oil data

of Szalinski et al. (2010) as shown in Figure 4.24. This size distribution has been varied with

a dimensionless bubble diameter, which is divided by pipe diameter in the present
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experiments of 121mm and their of 67mm respectively. Approximate gas superficial

velocities have been compared with their liquid superficial velocity of 0.2rn1s.
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Figure 4.24. Bubble ize distribution variation with dimensionless bubble diameter and

compari on with (Szalinski et al., 2010).

Interestingly, the di tribution i lightly higher for their air-water data compared to the

present experiment . However, the mean bubble diameter is approximately the same. Based

on their experiments, they obtain churn flow at this condition after a slug flow pattern at a gas

superficial velocity of 0.33mJ . Since the Taylor bubbles have been destroyed, large irregular

shaped bubbles are pre ent. Thi maybe the reason for a higher distribution compared to the
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present experiment. At a gas superficial velocity of 0.48m1s in the present experiments, large

bubbles have also being observed instead of churn flow.

The increase in frequency can also be attributed to the fact that for a smaller pipe diameter

the critical bubbles size for transition from wall to core peaking is less than that for a large

diameter pipe. As expected, the air-silicone oil distribution is higher than that of present

experiments accompanied by a slight shift to the right. This is in comparison to both air-water

data from theirs and the present experiments.

4.3. Further analysis to establish the bubble to churn transition

Based on the analysis above. the flow patterns above observed above can be classified

according to bubbly, spherical cap bubbly. churn turbulent and typical churn flow. Further

analysis is carried out in this section to delineate between the observed regimes.

4.3.1. Drift flux model

A drift flux model proposed by Zuber and Findlay (1965) shows the relationship between the

mean gas velocity and the drift velocity of the two-phase flow. The model is given as:

(4.17)

where Ug• Ug.r. ag• C; Um and Ugd are the mean gas velocity, gas superficial velocity, void

fraction. distribution coefficient. mixture velocity and drift velocity respectively.

When the mean gas velocity is plotted against the mixture velocity, the distribution

coefficient and drift velocity are given as the slope and intercept accordingly. The drift flux

relationship from the present work has been compared with the work of (Ohnuki and

Akimoto, 1996 and Omebere-Iyari et al., 2(08). The motivation for this comparison is based
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on the fact that both carried out experiments in large diameter pipes of 480mm and 194mm

using air-water and steam-water as the operating fluids respectively.

3
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+Omebere-Iyari et at (2008)
Ohnulci and Akimoto (1996)
• N ozzl e irj ection
le Sintef" injection

o
o O~ 1 u
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Figure 4.25. Variation of mean gas velocity with mixture velocity. Comparisons with the

work of Ornebere-Iyari et al. (2008) and Ohnuki and Akimoto (1996) from the conditions

they observed bubbly flow to the churn-turbulent regime.

It shows in Figure 4.25 that there is a close agreement with the data of Ohnuki and Akimoto

(1996) when they used a Nozzle type of injection compared to when they used a sinter

injection. The nozzle injection is similar to the method of injection used in the present study.

The data of Omebere-Iyari et al. (2008) agrees quite well with the data of Ohnuki and

Akimoto (1996) but not the present experiments.

Ohnuki and Akimoto (1996) and Omebere-Iyari et al. (2008) have observed bubbly and

churn turbulent regimes for the operating range shown. Therefore. if this is tallied with their

experimental data. it means that the gas superficial velocity for the transition to chum

turbulent regime occurs at a gas superficial velocity of 1.03m/s for the present experiments,

which agrees with the analysis in the present work.
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However, this also depends on the liquid superficial velocity. From the drift flux relationship

in Figure 4.25, the values of the distribution parameter are 1.57, 1.46, 1.11, 1.78, and 2.20

respectively. On the other hand, the drift velocities are 0.66m1s, 0.78m1s, 1.13m1s, 0.82m1s

and 0.73m1s. Kataoka and Ishii (1987) suggested a value of 1.19 and 0.45 for C» and Ugd

respectively based on their equations for both quantities. The value obtained in this

experiment is higher than those predicted from Kataoka and Ishii (1987) which may be due to

a high degree of liquid recirculation. Hibiki and Ishii (2003) suggested that the liquid

recirculation is more prevalent in large diameter pipes compared to smaller ones such as that

used in (Szalinski et al., 2010).

4.3.2. Flow regime identification

Figure 4.26 shows the operating conditions on a flow pattern map in red markers. The blue

line represents the bubble to slug transition line of Taitel et al. (1980) in a 50mm diameter

pipe and red and green transition line of Schlegel et al. (2009) from 102mm diameter pipe.

The red line indicates the transition from bubbly to spherical cap bubbly flow.

This agrees reasonably well with that observed in the present experiments with a critical void

fraction of 0.3. The transition from spherical cap bubbly flow to churn turbulent occurs at a

higher critical void fraction of 0.51 indicated by the green transition line.

Based on the experiments, the transition gas superficial velocity to the aforementioned

regime has been identified to occur at 1.03m1s, which is just right of the green transition line

suggested by (Schlegel et al., 2009). Therefore, in this case, three regimes I, 11 and III can be

clearly established namely bubbly, spherical cap bubbly and churn turbulent regime.
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The dotted red and green tran ition line from the experiments conducted in larger diameter

pipe of 152mm by Schlegel et al. (2009) is shown in Figure 4.27. It shows that for a larger

diameter pipe the shift in tran ition line i not significant.

Further compari ons have al 0 been made to the transition lines obtained from the work of

Omebere-Iyari et al. (2008) in Figure 4.28. The thin black transition line was obtained by

modifying the model of Taitel et al. (1980) u ing a critical void fraction of 0.38 and 0.68 for

the broken black tran ition line.

10
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Figure 4.28. Compari on with tran ition lines of (Omebere-Iyari et al., 2008).

The thick black tran ition repre ent their steam-water experimental transition line.

Interestingly, both thick and broken line coincide with the transition lines of Schlegel et al.

(2009) at lower liquid uperficial vel citie but divergence occurs at higher liquid superficial

velocities. However, Omeb re-Iyari et al. (2008) ascertained both thick and broken lines to

be a transition to churn turbulent flow. For both Omebere-Iyari et al. (2008) and Schlegel et

al. (2009), the tran ition to typical churn flow was not clarified. Schlegel et al (2009)
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characterized the region to the right of their green transition line as churn turbulent flow,

which is essentially not the ca e.

10

0.01
0.01 0.1 10

Gas superificial ,"elocity(mls)

100

Figure 4.29. Establi hing the tran ition to typical churn flow with the inclusion of transition

lines from the work done by pre iou authors. Hewitt and Robert (1969) (dash black line),

Taitel et al (1980)(purpJe line), Sekoguchi and Takeishi (l989)(light-red line), Jayanti and

Hewitt (1992)(Iight-blue line) and Sekoguchi and Mori (1997)(orange line).

To further establish the condition for which typical churn flow occurs the transition lines of

Hewitt and Robert (1969) Taitel et al (J980)(purple line), Sekoguchi and Takeishi

(1989)(1ight-red line), Jayanti and Hewitt (1992)(light-blue line) and Sekoguchi and Mori

(1997)(orange line) have been plotted. According to Hewitt and Robert (1969) they identified

four regimes ba ed on their experiment namely the bubbly, slug, churn, wispy-annular and

annular regime. The region identified by Omebere- Iyari et al. (2008) and Schlegel et al.

(2009) as churn turbulent flow i within the churn flow region of (Hewitt and Robert, 1969).

From the work of Taitel er al. (1980), they uggested that the transition from slug to churn

flow is an entrance phenomenon. Their tran ition line at UD = 200 has been plotted and
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coincides with the experimental conditions for a gas superficial velocity of 2,41m1s. Their

transition line agrees with lines of Jayanti and Hewitt (1992) and Sekoguchi and Takeishi

(1989) at lower liquid superficial velocities. Also. transition lines of Jayanti and Hewitt

(1992) and Sekoguchi and Takeisihi (1989) have a close agreement at higher liquid

superficial velocities. Right of light-red line of Sekoguchi and Takeishi (1989) they suggested

this region to be a transition to huge wave regime. On the other hand. Sekoguchi and Mori

(1997). suggested the liquid sluglbridging frequency have the same frequency as the huge

wave based on the orange line. Since the churn turbulent flow occurs between a gas

superficial velocity of 1.03m1s and 1.72m1s from the analysis in the present work. a gas

superficial velocity beyond 2,41-3.10mls can be regarded as the operating condition that

marks the inception of typical churn flow. This gas superficial velocity range has been given

because this is also dependent on liquid superficial velocity since the flow is more oscillatory

when the liquid superficial velocity increases. It also means that beyond a gas superficial

velocity of 3.1Omls churn flow occurs.

7 ! ! !
I I I

6 I I II . n I m I IV--.. I I--E S.._, R.~ I X
g 4 . . 0
Ci ! P Q>- f : <t~ 3
01) o I tI
~ 2 £I~
~ ,iI

I

0 i

0 1 2 1
Mixture '"elocit}~mls)

0

~
0 0

~
Q

Q

o;
<>O.OUm/s

DO.041m/s
OO.07Sm/s
AO.09Sm/s
XO.13m/s

4

Figure 4.30. Variation of mean gas velocity with mixture velocity and identification of

regimes present.
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Consequently, when the drift flux relationship is again considered four regions can be

identified. The bubbly, the spherical cap bubbly, chum turbulent (heterogeneous bubbly/

transition regime) and typical chum flow regimes are given as regions I, 11. III and IV in

Figure 4.30. The transition gas superficial velocity of 1.72m1s has been used as a benchmark

to typical chum flow as it marks the absence of chum turbulent flow.

4.4. Summary

The present experiments for bubble to chum transition have been carried out in a large

diameter vertical pipe of 121mm internal diameter and 5.3m in length. The operating fluids

employed are air and water respectively. A wire mesh sensor has been used to acquire the

phase fraction data at un = 35. Based on the analysis of the phase fraction data, the

following summaries have been made:

1. At low gas superficial velocity, the presiding regime is bubbly and spherical cap bubbly

flow pattern characterised by large distorted shaped bubbles almost occupying the entire

cross section of the pipe. In spherical cap bubbly flow, the structure travels intermittently

with smaller diameter bubbles flowing behind them. At higher gas superficial velocities.

churning behaviour is present and the degree of instability increases with increasing

liquid superficial velocity. Compared to the bubbly flow/spherical cap bubbly flow, it has

a frothy nature depicted as clusters of closely packed small diameter bubbles.

2. The 3-D surface plots, which reveal the interfacial structures present similar to the work

of Sekoguchi and Takeishi (1989) in Figure 2.26 of chapter 2, have also been used to

distinguish the bubbly and chum flow patterns. For chum flow, liquid bridging of the gas

core and huge waves are present. Incomplete atomisation of the huge waves gives wisps.

On the other hand, coalescence of huge waves about the pipe centreline give large liquid

structures entrained in the gas core, which occupy the entire cross-section of the pipe.
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3. Statistical analysis such as the probability density function, standard deviation, skewness

and kurtosis has proved useful in depicting the transition from the bubbly to churn flow.

4. The spectral analysis of time series was also used to ascertain the frequency of the

periodic structures present. The dominant frequencies extracted have the same profile as

the standard deviation profile in the statistical analysis section. However the frequencies

increases with increasing liquid superficial velocity while the reverse is the case in the

standard deviation profiles.

5. The gas based Strouhal number and Lockhart-Martinelli parameter initially correlated by

Azzopardi (2004) for bubbly and slug flows, shows a close agreement with the data of

Hernandez-perez et al. (2010) in a small diameter pipe. Further comparison of both gas

and mixture based Strouhal number was made with data of Kaji et al. (2010), in small

diameter pipes. Also, the variation of gas based Strouhal number with void fraction

showed good agreement with (Kaji et al., 2009).

6. Four enduring regimes are present based on comparison made with respect to small and

larger diameter pipes. These are bubbly, spherical cap bubbly, churn-turbulent flow and

typical churn flow.

In consideration of the present work, the operating condition for the inception of typical

churn flow has been delineated. Churn flow has a frothy nature and is also characterised by

liquid bridging of the gas core and formation of huge waves. Wisps and large liquid

structures entrained in the gas core are also present. The large liquid structures entrained in

the gas core that occupies most of the pipe cross-section and the frothy nature of the flow is

the desirabJe condition for the downstream GLCe. However, it is necessary to know the

operating conditions that give a high degree of frothing as well as a high frequency of large

liquid structures entrained in the gas core. These will be further investigated for a wider range

of conditions in chapter 5 at different axial distances from the injection for a longer pipe.
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CHAPTER 5
BEHAVIOUR OF CHURN FLOW AND INSIGHTS INTO FLOW REGIME

PHENOMENON

S.l. Introduction

The churn flow regime has been found to be the required flow regime for the coalescence of

liquid structures entrained in the core in order to achieve downstream purity in the GLCC

separator gas-leg. The fact is that the two-phase flow pattern present in offshore vertical

risers is due to the conditions from the well-head. However, in most cases it is possible to

divert the flow from the well-head into a particular riser or manifold of pipelines using a

valve or T-junction.

At higher gas flowrates than the churn flow, the flow pattern present is annular flow.

According to Hewitt and Hall- Taylor (1970), the annular flow pattern as discussed in chapter

2, is characterised by the presence of a thin liquid film flowing on the pipe wall and a

continuous gas core flowing in the centre. Therefore, one may probably suggest operating

within the annular flow regime since it is more stable than the churn flow regime. However,

large liquid structures that exist in chum flow, which are easily separated in downstream

GLCC separators are not present in annular flow.

Within the churn flow regime, two enduring phenomena are present, namely: liquid bridging

of the gas core (liquid slugs) and huge waves. Both liquid slugs and huge waves have been

observed by (Sekoguchi and Takeishi, 1989 and Sekoguchi and Mori, 1997). According to

Sekoguchi and Takeishi (1989), the liquid slugs have the same nature and form as the liquid

slugs in slug flow. The liquid slugs bridge the pipe cross section and travel almost equal to

those present in slug flow. They suggested that huge waves are present when the gas core is

fully formed. It has been termed huge waves because the waves have larger amplitudes

compared to those in annular flow.
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Therefore, it is in the remit of this work to study the behaviour of liquid slugs and huge

waves, and where they occur more frequently along a vertical pipe. The experiments were

carried out in the large scale closed loop facility described in chapter 3 having a vertical test

section that is 127mm in internal diameter and l l m in length. Air and water were used as the

operating fluids and the phase fraction data was acquired using high-resolution capacitance

wire mesh sensor instrumentation. The sensor was placed at different locations to acquired

void fraction data at these locations. In effect, the present study is based on chum flow

development.

The experiments performed in chapter 4 established the conditions when typical chum flow

occurs in large diameter pipes. It has paved way for in-depth chum flow studies to be

conducted in this work. The gas and liquid superficial velocities ranged from Vgs = 3.26m1s

to 17,46m1s and Ui;= 0.03m1s to 0.24m1s respectively, at an operating pressure of 1 barg. The

full operational matrix is found in Appendix B. Since the experimental facility is a closed

system, the gas superficial velocities at the respective liquid superficial velocity conditions

are not exactly the same.

By carrying out chum flow development experiments in this work, this will provide further

insights into the flow regime phenomenon and provide a fulcrum for the development of the

CFC model in the subsequent chapter.

5.2. Results

The wire mesh sensor gives a three dimensional volume data from which further processing

of the data reveals the inherent nature of the flow. The wire mesh sensor was placed at five

locations from the injection, L'D = 2.4, 7.1, 30.7, 35.4 and 82.7. In most cases, the analysis

of data from two or three of the five locations will be presented, for instance, LzD = 7.1, 35.4

and 82.7, as they represent bottom, middle and top of the test section respectively.
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5.2.1. Time Series of void fraction

Figures 5.1(a), 5.l(b) and 5.2 how the variation of the void fraction with time using a

moving average. The moving average i obtained by taking the average of sub-sets of the

overall data set. The data wa acquired at a frequency of 1000Hz and total time of 30s. This

gives 30000 void fraction value from which 15 sub-sets of 2000 values from the total data

set were extracted and averaged.

Ugs=3."I6m;'s

f..lgs = 11.l7mts

f..lg:; = l6.95m!s

1 4 6
Tmle(s)

S 10

Figure 5.1(a). Time erie of void fraction at LID = 35.4 and 82.7 axial distance from the

injection for a liquid uperficial velocity of 0.03m1s.

The essence of applying thi method i because the test section vibrated considerably due to

the chaotic nature of the flow. Thu , the application of this method was to eliminate the

background noise and effectively provide clarity in the presented time series data.

The Figure 5.1(a) give the time erie of void fraction comparing the data acquired at two

axial distances from the injection. The e are at VD = 35.4 and 82.7 respectively for a liquid

superficiaJ veJocity of O.03m/ . Wh n the ga uperficial velocity is 3.26m1s, from visual
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observation the behaviour has a clear-cut churning motion. Therefore, this results into the

presence of fluctuations in time series of void fraction as shown above.

Also, at L'D = 35.4, the overall void fraction is higher compared to the void fraction

downstream at un =82.7. This is because at this condition, the gravitational forces from the

liquid phase have a larger effect compared to the inertia forces from the gas phase. In other

words, there is more liquid accumulation upstream than downstream for this condition. This

agrees with the visual observation of the flow as it tends to be frothier upstream compared to

the downstream conditions.

However, when the gas superficial velocity is increased to 11.17rn1s, the reasoning above

does not hold as regards the churn flow behaviour with axial distance. This is because at L'D

= 35.4, the gas phase begins to occupy more of the pipe cross-section thereby restraining

some of the liquid to the inner walls of the pipe. This behaviour tends towards the semi-

annular flow regime, (Spedding et al., 1998). Still, more liquid occupies the pipe cross-

section upstream at un = 35.4 compared to UD = 82.7.

Figure 5.1 (b) shows the time series of void fraction for a higher liquid superficial velocity

compared to Figure 5.l(a). Therefore, this means that there is more volume of liquid in the

test section. As a result, the frequency of churning motion increases, which was also visually

observed. For all three plots shown in Figure 5.l(b), when the gas superficial velocity is

increased there is a near superimposition of void traces from the data acquired upstream and

downstream of the test section.

At un = 35.4, it seems that it takes less time for the pipe cross-section to be occupied by the

gas phase. On the other hand, the gas phase occupies the pipe cross-section for a longer

period of time downstream at un = 82.7. It may probably be that the frequency of liquid

bridging of the gas core decreases downstream when the liquid superficial velocity is

increased beyond a critical liquid superficial velocity compared to that in Figure 5.l(a).
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This occurrence i very apparent when the gas superficial velocity is increased to 13.39m/s in
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Figure 5.1(b)
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Figure 5.1 (b). Time serie of void fraction at LID = 35.4 and 82.7 axial distance from the

injection for a liquid uperficial velocity of O.24m/s. The dash line represents the occurrence

of liquid bridging or the time between successive troughs.

Furthermore, the time erie of the void fraction at this condition shows that the gas occupies

the pipe cross- ection for a longer p riod of time before liquid bridging of the gas core takes

place. As regards :flow development, thi condition means that the gas phase occupies the

pipe cross-section for approximately twice the time it does upstream than downstream of the

test section.
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The time between successive troughs is longer downstream than upstream. This has also been

indicated in Figure 5.1 (b). This is a possible indication that axial coalescence' of huge waves

occurs as they propagate downstream.

~jbi~i~~
1 1
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Figure 5.2. Time series of void fraction at each axial distance shown in the graph(left) from

the injection point for constant superficial gas velocity Vgs = 3.26m/s for (a) Vis=O.03m/s (b)

Vis = O.24m/s.

The void fraction variation with time at each axial distance as shown in Figure 5.2 has a

different behaviour at low liquid superficial velocity in Figure 5.2(a) than at high liquid

1Please note that Radial coalescence of huge waves has been identified in chapter 4, Figure 4.1O(c) at VD = 35
for the experiments in the 121mm internal diameter, 5.3 in length facility.
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superficial velocity in Figure 5.2(b). Towards the bottom of test section, at VD = 2.4, this is

in close proximity to the injection point and as indicated in the time series of void fraction,

there are more oscillations compared to downstream conditions due to turbulence. This

turbulence is caused as a result of the injection of gas and liquid into the test section, which

can be visually observed as vibrations close to the base of the test section.

In Figure 5.2(b), when the liquid superficial velocity increases to 0.24m1s, the void fraction is

lower as the liquid holdup or the amount of liquid present increases. However, the inception

of liquid bridging of the gas core begins to take effect at VD = 30.7 and increases

downstream which is typical of condition when the gas superficial velocity is low, in this case

3.26m1s.

5.2.2. Interfacial structures present

From the wire mesh sensor data, the interfacial structures present can be obtained. These

interfacial structures have been presented in subsequent Figures in form of surface plots from

post processing of the wire mesh sensor three dimensional data in MATLAB. From this data,

surfaces can be made by patching and interfacial surfaces/structures can be distinguished.

In the Figures below, the dark blue patch represents liquid, light blue patch represents gas and

the purple colour is the containing pipe. The method is applied to reveal the interfaces present

for 5000 frames. Since the data was acquired at 1000Hz this represents a time scale of 5

seconds. An interval of 10 frames was used in this case thus a total number of 500 frames

have been read and presented in the following Figures. The interfacial structures shown

below are at dimensionless axial distances of VD = 7.1, 35.4 and 82.7 respectively. These

axial distances have been selected as they represent the bottom, middle and top of test

section, hence an overall axial insight can be obtained. Further reference of the interfacial

structures can be made to those obtained in chapter 4, section 4.2.5.
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5.2.2.1. Interfacial structure at VD = 7.1

Figures 5.3 - 5.5 show the interfacial tructures with increasing liquid superficial velocity

close to the injection, at LID = 7.1.
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Figure 5.3. Interfacial tructure of operating conditions at LID = 7.1 for constant liquid

superficial velocity ofO.03m1 ,(a) UliS = 3.70mls (b) 6.59m/s(c) 8.81m1s (Dark blue-

suspended liquid, light blue - ga and purple - containing pipe) and the continuous phases

were removed for clarity.
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At a liquid superficial velocity of 0.03 m/s and at this axial distance from the injection, it

shows that liquid bridging of the ga core does not occur. However, there is the formation of

wisps similar to tho e ob erved in chapter 4, section 4.2.5, due to incomplete atomisation of

waves, (Azzopardi, 1997, Azzopardi and Wren, 2004 and Hernandez-Perez et al., 2010). In

addition, bubbles are entrained in the liquid base film.
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i-direction( -) 0 0 o 0 o 0
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Figure 5.4. Interfacial tructure of operating conditions at LID = 7.1 for constant liquid

superficial velocity ofO. 13mi (a) 5.28m/s (b) 7.08m/s(c) 10.58m/s. (Dark blue - suspended

liquid, light blue - ga and purple - containing cylinder) and the continuous phases were

removed for clarity.
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Figure 5.5. Interfacial tructure of operating conditions at UD = 7.1 for constant liquid

superficial velocity of O.24mf (a) Ugs = 4.54m1s (b) 7.20mls(c) 11.42m1s (Dark blue-

suspended Jiquid, light blue - ga and purple - containing cylinder) and the continuous

pha e were removed for clarity.
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Entrainment occurs when the gas is forced into the liquid base film as a result of the high

inertia of the gas phase. Therefore, the base film has been observed to be aerated due to

entrainment of gas bubbles and this oscillates continuously. The entrainment of these bubbles

has also been observed during experiments to cause the base film to flow downwards.

Increasing the liquid superficial velocity to O.13m1s and O.24m1s respectively as shown in

Figures 5.4 and 5.5, increases the frequency of wisps entrained within the gas core.

Furthermore, the amplitude of the waves flowing on the inner walls of the pipe increases with

increasing liquid superficial velocity. However, the huge waves that should be present on the

inner walls of the pipe are not clearly formed even when the liquid superficial velocity is

increased. Instead, smaller amplitude waves can be observed as in Figure 5.5. The reason for

this is because the waves grow downstream when they are propagated by the gas phase.

Therefore, instead of huge waves, complex patterns of small amplitude waves are formed

flowing on the inner walls at this axial location as the liquid superficial velocity increases.

5.2.2.2. Interfacial structures at VD = 35.4

The interfacial structures at un = 35.4 further downstream from the injection has been

shown in Figures 5.6 - 5.8. This is for the same operating conditions as L'D = 7.1, and also at

un = 82.7 in Figures 5.9 - 5.11.

In Figure 5.6(a), it shows that there are bubbles entrained in the base film. The presence of

bubbles entrained in the base film increases as the gas superficial velocity increases in

subsequent interfacial structures. However, the frequency of wisps within the core decreases

at this operating condition and at this axial distance from the injection. It also shows that at

low liquid superficial velocity, the pipe cross-section begins to be properly occupied by the

gas phase indicative of flow development.
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Figure 5.6. Interfacial tructure of operating conditions at LID = 35.4 for constant liquid

superficial velocity ofO,03mJ (a) 3.70mJ (b) 6.59mJs(c) 8.81mJs (Dark blue - suspended

liquid, light blue - ga and purple - containing cylinder) and the continuous phases were

removed for clarity.
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Figure 5.7. Interfacial tructure of operating conditions at UD = 35.4 for constant liquid

superficial velocity ofO.13mJ (a) 5.2SmJs (b) 7.0SmJs(c) lO.58mJs (Dark blue - suspended

liquid, light blue - ga and purple - containing cylinder) and the continuous phases were

removed for clarity. Outline of huge waves indicated in red.
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When the liquid superficial velocity i O.13m1s as in Figure 5.7, liquid bridging of the gas

core is not apparent. However, huge wave are still not well defined at this axial location. The

entrainment of bubble in the ba e film can be observed when the gas superficial velocity

further increases as in Figure S.7(c). At this condition, only bubbles entrained in the base film

and streaks of liquid tructure entrained in the core can be observed.
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400 400 400
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Huge wave
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Figure 5.8. Interfacial tructure of operating conditions at LID = 35.4 for constant liquid

superficial velocity of 0.241111 (a) 4.S4m1s (b) 7.20m/sCc) 11.42m1s. (Dark blue - suspended

liquid, light blue - ga and purple - containing cylinder) and the continuous phases were

removed for clarity.
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When the liquid superficial velocity is increased to O.24m1s as in Figure 5.8(a), complete

liquid bridging as a result of radial coalescence of huge waves occurs to form what may be a

section of liquid slug. From the visual observation at this condition, the liquid slug is

characterised as small diameter bubbles entrained in the liquid and they have a frothy nature.

In addition, the interfacial structure in frame 300 of Figure 5.8(a) may be classified as a huge

wave. As the gas superficial velocity increases in Figure 5.8(b), smaller wisp structures and

little entrainment of bubbles in the base film can be observed. This is still due to the fact that

the gas phase almost occupies the entire pipe cross-section. Entrainment of gas bubbles in the

base film does not significantly occur until the gas superficial velocity is further increased as

shown in Figure 5.8(c).

5.2.2.3. Interfacial structures at UD = 82.7

Further downstream at un = 82.7, when the gas superficial velocity is 3.70mls in Figure

5.9(a), the structures present cannot be thoroughly justified. However, it may be that due to

the decrease in hydrostatic pressure with increase in axial distance from injection and because

the gas superficial velocity is quite low, the inertia forces of the gas phase are not sufficient to

overcome the gravitational forces of the liquid phase. In addition, the fact that this occurrence

takes place is dependent on the pipe diameter.

For the present pipe internal diameter of 127mm and for this operating condition, the large

diameter does not permit the gas phase to fully occupy the pipe cross-section at this axial

location. Therefore, the interfacial structure revealed at this condition is in form of large

liquid structures that occupy the entire pipe cross-section as observed in Figure 5.9(a).

The reason behind this argument is because for the same condition and almost the same

length of pipe of 9.Sm, Sekoguchi and Takeishi (1989) have not reported the occurrence of

this sort of structures in their experiements in a smaller pipe diameter of 25.8mm. Further

references can be made to their work or as discussed in section 2.4.3 in chapter 2.
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When the gas superficial velocity is increased as shown in Figure 5.9 (b), there is mostly the

formation of wisps as well as bubbles entrained in the base film. In Figure 5.9(c), wisps and

long segments of gas can be observed on the wall of the pipe. The long segments of gas are

different from when the pipe walls have entrained bubbles in the liquid base film. This is

because the segment on the wall will be shorter such as in Figure 5.9(b). However, as

observed visually, it is possible to have a situation where there are bubbles entrained in the

liquid film on the wall as well as "dry patches". From visual observation, the latter is when

there is an absence of liquid on the inner walls of the pipe occurring momentarily. This

should be expected at the walls when examining the interfacial structure for annular flow

regime.

In terms of the precedence of which comes before the other, that is, base film with entrained

gas bubble or "dry patch", this depends on the gas and liquid superficial velocities. Generally,

a single phase liquid will flow quickly downwards under gravity. This will effectively have a

higher velocity than gas bubbles entrained in the base film flowing downwards. When gas

bubbles are entrained in the base film and flowing downwards, this will experience an

opposite buoyancy force. The bubbles entrained in the base film at the walls behave like

those in bubbly flow, (Barnea, 1986). Therefore, the presence of gas bubbles reduces the

downward base film velocity. Also the non-drag lift force, which has a radial resultant force

towards the core of the pipe, will affect the velocity of the downward moving base film.

In Figure 5.10, these show the interfacial structures when the liquid superficial velocity is

increased to O.13m1s at respective gas superficial velocities. In Figure 5.1O(a), larger liquid

structures entrained in the gas core can be observed at higher frequencies compared to the

interfacial structures obtained upstream for the same condition.

As earlier stated, they are formed due to the radial coalescence of the huge wave structure.

When the gas superficial velocity is increased in Figure 5.1O(b), the frequency of these

entrained liquid structures decreases compared to Figure 5.10(a). Furthermore, there is the
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presence of wisps within the core and bubbles entrained in the base film. Huge waves cannot

be observed in Figure 5.1O(c) but entrained bubbles in the liquid base film. However,

increasing the liquid uperficial velocity to O.24mJs as in Figure 5.11(a) increases the

appearance frequency of huge wave . As the gas superficial velocity increases, the dominant

occurrence is the entrainment of bubble in the base film.
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Figure 5.9. Interfacial tructure of operating conditions at LID = 82.7 for constant liquid

superficial velocity of O.03mi (a) 3.70mJ (b) 6.S9mJs(c) 8.81rn1s (Dark blue - suspended

liquid, light blue - ga and purple - containing cylinder) and the continuous phases were

removed for clarity.
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Figure 5.10. InterfaciaJ tructure of operating conditions at un = 82.7 for constant liquid

superficial velocity ofO.13mJ (a) 5.28m/ (b) 7.08m/s(c) 10.58m/s (Dark blue - suspended

liquid, light blue - ga and purple - containing cylinder) and the continuous phases were

removed for clarity.
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Figure 5.11. Interfacial tructure of operating conditions at LID = 82.7 for constant liquid

superficial velocity ofO.24m1 (a) 4.54m1s (b) 7.20mls (c) 1l.42m1s. (Dark blue - suspended

liquid, light blue - ga and purple - containing cylinder) and the continuous phases were

removed for clarity.

From the interfacial tructure pre ented above, it can be said that the frequency of huge

waves and liquid structure entrained in the gas core increases downstream. In comparison to

the interfacial structure obtained for the 121mm internal diameter experiments at LID = 35,

in reference to Figure 4.1 OCc), it how that the large liquid structures entrained in the gas

core have the ame ize a in the pre ent tudy at UD = 82.7. Also, when comparisons are

made to the liquid tru ture entrained in the gas core for the present study at LID = 35.4
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compared to Figure 4.1O(c) at un = 35, the frequency and size of the liquid structures are

larger for the latter compared to the former. The difference in both cases can be attributed to

the hydrostatic pressure effect. In both experiments the hydrostatic pressure is lower

downstream compared to upstream. Consequently, this makes the liquid structures entrained

in the gas core appear similar.

However, if the liquid superficial velocity is kept constant for diameters of 121mm and

127mm in both experiments, which can be considered to be approximately within the same

range, the volume of liquid (hydrostatic pressure) will be higher for the latter case of llm

compared to the former of 5.3m. Also, for a constant gas superficial velocity in both

experiments, it means that with the presence of a higher volume of liquid in the latter

compared to the former, the frequency of liquid structures entrained in the core may be higher

as well.

Furthermore, although, the size of the liquid structures has been ascertained to be similar, a

longer length of pipe for the same operating condition and approximately the same diameter

increases the production rate. This may also increase the coalescence efficiency of liquid

structures entrained in the gas core.

5.2.3. Qualitative assessment on the cross section phase distribution

Similar to the work of Sekoguchi and Takeishi (1989) shown in Figure 2.27, the behaviour or

stability of the interfacial structures per number of frames can also be elucidated. This has

also been shown in Figure 5.12 as cross sectional phase distribution with huge waves in (a)

and liquid slugs in (b). The frames were selected just to distinguish between the phenomena

present.

In corroboration with Sekoguchi and Takeishi (1989), huge waves are formed when the gas

phase occupies most of the pipe cross-section. As shown in Figure 5.12(a) and (b), huge
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waves have a higher transit velocity than liquid slugs based on the number of frames before

the inception of the liquid lug.

When liquid slugs occur, the ga pha e becomes entrained in liquid, thereby forming clusters

of closely packed bubble of various izes within the liquid mass as shown especially in

frame 895. This has been pre ented to clarify the sub-regimes within the churn flow pattern.

Frame 472

Frame 580

Frame 720

Frame 504 Frame 800 Frame 809

Frame 686 Frame 848 Frame 895

Frame 782 Frame 996Frame 945

Ca) (b)

Figure 5.12. Stability of Huge wave and Liquid slugs within pipe cross-section in (a) and (b)

Ga.__ ===__L.iquid

re pectiveJy. Selected frame were extracted from the data at LID = 35.4.
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5.2.4. Extraction of chordal data

There are two methods of di tingui hing the interfacial structures above obtained from the

time series data. The widely u ed approach method is by applying a void fraction threshold to

the time series data and identifying the relevant structures. However, a more interesting

method is to extract the chordal void fraction data or point values. The latter method has been

applied here since the wire me h en or has crossing points. Also, using this method of void

data extraction in mo t case can be more appropriate compared to the former.

The void data obtained from the wire mesh sensor is a three dimensional data, (i, j, k). The (i,

andj) are the wire location while (k) is the number of frames. The cross-sectional averaged

void fraction for a particular frame represents a single instantaneous void fraction amongst

the 30000 void fraction value . Thi is obtained by the addition of the void fraction in the i-

direction and j-direction re pectively. The addition in the i-direction should be similar to that

in the j-direction, thereby confirming the cross-sectional averaged void fraction for that

particular frame or time. Therefore, it means that the void fraction at a particular crossing

point location pair (i, j) within the wire me h sensor cross-section can be obtained and the

variation with time can be extracted. The illustration has been shown in Figure 5.13.

Reference frame

t= 1K

Final frame

Data reveals behaviour at the
wall of the pipe

i.direction (-)
Data reveals behaviour at the

core of the pipe

Figure 5.13. Illu tration of chordal void fraction extraction from wire mesh sensor data.
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It is important to note that the void fraction at a particular crossing point location or point

values has a lower value than the overall cross-sectional void fraction and also the time

averaged void fraction in comparison to Figures 5.1 and 5.2.

In Figures 5.14 and 5.15, it shows the extracted void fraction time series data for gas

superficial velocities of 4.54m1s, 5.76m1s 7.20mls, 8.11m1s and 11.42m1s respectively at

constant liquid superficial velocity of O.24m1s. The data was extracted at location i = 16 andj

= 16 (centre location) with reference to the cross sectional illustration shown on the right of

both plots. This is shown for the data acquired at un = 7.1 and 35.4 in Figures 5.14 and 5.15

respectively.

In Figure 5.14, the interfacial structures on the left hand side of the time series plots show the

presence of wisps structures and the corresponding time series plot gives peaks that tend

towards zero. It is important to note that the presence of dense peaks in the chordal time

series data is because of the different sizes of wisp structures present. These are formed due

to the fact that the flow is very unstable close to the injection. In general, there is a high

entrainment of liquid structures within the gas core but the liquid structures formed are not

large enough to occupy the entire pipe cross-section.

Further downstream, as shown in Figure 5.15, when the gas superficial velocity is 4.54m1s,

the representation of liquid slugs and huge waves can be distinguished. When the liquid slugs

are present, they block the entire cross section of the pipe and this can be observed in the time

series. The liquid slugs at this condition have a trace close to zero. This is because as earlier

stated, the liquid slug is characterised as clusters of small bubbles dispersed in liquid.

Therefore, a void trace of zero clearly indicates the presence of liquid.
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On the other hand, when the interfacial plot and the chordal time series information are

matched, the huge wave signature can also be identified. The huge waves do not block the

entire pipe cross section and one may not entirely agree that if the data is extracted from the

centre location, huge waves can be identified. On the contrary, the indication of liquid

structures entrained in the core beside the huge wave points to the fact that the gas phase

shears off liquid from the crest of the huge waves and entrains them in the core.

As earlier stated, the huge waves have a higher transit velocity than the liquid slug, which

lasts for shorter periods. This has also been shown in Figure 5.15. Also, as time evolves, there

is the formation of shorter peaks after the huge waves (t = 4s). This seems to be formed due

to the shedding of some of the huge wave structure. This can be attributed to the formation of

ephemeral waves. The ephemeral waves have also been reported from the interfacial

structures observed by (Sekoguchi and Takeisihi, 1989). For this operating condition, the

occurrence of liquid slugs and huge waves can be observed as time evolves. As the gas

superficial velocity increases, as shown in subsequent plots, the frequency of liquid slugs

decreases. However, huge waves and ephemeral waves are still present. The peaks close to

zero at higher gas superficial velocities is an indication of the presence of wisps/drops.

Although, their sizes cannot be ascertained, however, a large or small wisp/drop can be

distinguished depending on the proximity of the peak to zero. For large wisps, the peak is

approximately zero. For smaller wisps or drops, the peaks do not tend towards zero but

around 0.02 and 0.04.

For another spatial location within the pipe cross-section close to the inner wall, the chordal

void fraction data was also extracted from the data acquired at un = 82.7 as shown in Figure

5.16. Comparison with the high speed images acquired at this location has also been made.
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Figure 5.16. (la-d) High speed images at gas superficial velocity of 3.26rnJs and 11.42rnJs for

2

constant liquid superficiaJ velocity of 0.24 at VD = 82.7.
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The high-speed images were acquired at each axial distance location below the wire mesh

sensor acquisition point at 1000 frames per second (fps). The acquisition rate is similar to the

wire mesh sensor in order to make necessary comparisons. The first set of image frames

presented is for a gas superficial velocity of 3.26m1s while the second set is at 11.42m1s at a

constant liquid superficial velocity of 0.24m1s.

It can be observed in I (a)-(d) that the nature of the flow is made up of bubbles enriching the

wall of the pipe in the base film. The sequence of images presented shows the dominance of

the liquid slugginglliquid bridging phenomena at this operating condition. At a higher gas

superficial velocity of 11.42m1s in 2(a)-(d) the pipe cross section can be observed to be

occupied by the gas phase with definite entrainment of bubbles in the liquid base film. Also,

dry patches can also be observed and these have been indicated in Figure 5.16.

Comparing the chordal data extracted from the wire mesh sensor at i = I and j = 16 to the

high speed images in I(a) - (d), it shows the oscillating nature of the flow close to the wall

when liquid bridging of the gas core takes place. A chordal void fraction value of 0.05

indicates the occurrence of bubbles present at the walls of the pipe. On the other hand, as the

gas phase occupies the core of the pipe. the chordal void fraction value increases to 0.15. As

the gas superficial velocity is increased from 3.26m1s to 11.42m1s in Figure 5.16, the gas

phase almost occupy the pipe cross-section. However, because gas bubbles are entrained in

the base film restrained to the pipe wall, this shows a decrease in void fraction to 0.05.At

about 1.80s, the void fraction decreases to zero, which is indicative of the absence of bubbles

in the base film. Subsequently, the core of the pipe is completely occupied by gas phase and

bubbles are entrained in the base film.

Based on the above analysis, the characteristic natures of huge waves and liquid slugs have

been identified. However, to extract finer details from the void data, it is necessary that
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further analysis of the void fraction data should be carried out. This has been presented in the

subsequent sections.

5.2.5. Statistical analysis of time series data

As a means of distinguishing the occurrence of both liquid slugs and huge waves, statistical

analysis has been carried out. From the cross sectional averaged void fractions, time averaged

values can be obtained. The mean void fraction values are obtained by taking the average of

the instantaneous void fraction values over the total time. The standard deviation on the other

hand, reveals the deviation from mean void fraction.

Figure 5.17 shows the mean void fraction variation with axial distance. At a liquid superficial

velocity of O.03m1s, the mean void fraction does not change considerably. This is with

respect to higher gas superficial velocities than 3.26m1s. When the liquid superficial velocity

increases to O.13m1s, O.18m1s and O.24m1s respectively, there is general increase in void

fraction with increasing gas superficial velocity and axial distance from the injection. The

variation of mean void fraction with axial distance gives a logarithmic increase. It also shows

that the void fraction values obtained at un = 35.4 and UD = 82.7 are of approximately the

same magnitude. However, this does not mean that the flow is developed at un = 35.4

because other flow phenomena such as the frequency of liquid bridging of the gas core, huge

waves and entrained liquid structures change with increasing axial distance from the

injection.

The standard deviation and skewness variation are shown in Figure 5.18. The standard

deviation of the time series data generally increases with axial distance from the injection. On

the other hand, the skewness increases then decreases with axial distance from the injection.
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Figure 5.17, Variation of mean oid fraction with axial distance from injection for liquid

superficial velocitie of 0.03111/,0.13m1 ,0.18m1s and 0.24m1s as indicated in the respective

plots.

It is possible that the in rea ing trend of the standard deviation with dimensionless axial

distance is related to the incr e in the frequency of huge waves downstream. On the other
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hand, the skewness profile implies a general decrease in liquid bridging frequency

downstream. This is because, at higher gas superficial velocities liquid bridging of the gas

core does not occur downstream because it has been established earlier that the gas phase

begins to occupy the pipe cross section more as the flow develops. Consequently, this gives

an increasing negative value of skewness, which is probably an indication of the reduction in

frequency of liquid bridging downstream.
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5.2.6. Spectral analysis of time series data

The spectral analysis in terms of power spectral density (PSD) has been used as a measure of

analysing the time series data in the frequency domain. This has been done to obtain the

dominant frequency of the structures present. The PSD is essentially the Fast Fourier

transform (FFT) of the auto covariance function (ACF) as explained in section 4.2.6. The

power spectrum variation with frequency is shown in Figure 5.19 for a constant liquid

superficial velocity of O.18m/s at VD = 35.4 and 82.7 respectively.

__- ......'\ Up.8.lSm/s,,
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,-...i:0.0012 T" .. 7"'-' 00.0.00°1
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Figure 5.19. Power spectral density variation with frequency at a constant liquid superficial

velocity of O.18m/s.

It shows that when the gas superficial velocity is 4.70m/s, well-defined peaks can be

observed. The peaks at both axial distances from the injection occur at about the same

frequency but the profile downstream is higher. As the gas superficial velocity is increased,

the profile for VD = 35.4 gradually decreases. On the other hand, although the profile is

higher downstream at VD = 82.7, there is a slight shift to lower frequencies.
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Since the flow is more developed at VD = 82.7 compared to VD = 35.4, the oscillations in

the flow are greatly reduced downstream compared to the upstream location. Therefore, this

implies a higher frequency of huge waves occurring downstream.

When the dominant frequencies are further extracted in Figure 5.20, for the liquid superficial

velocities of 0.03m1s, 0.13m1s, 0.18m1s and 0.24m1s respectively, it can be observed in most

cases that the structure frequency has its lowest values downstream at un = 82.7. This

occurs especially when Uu > 0.03m1s. The reason for this occurrence is due to the decrease in

hydrostatic pressure along the vertical test section with increase in axial distance from the

injection. The decrease in hydrostatic pressure causes the expansion of the gas phase, which

increases the likelihood of coalescence of entrained liquid structures in the core. Also, the

decrease in pressure causes the frequency of liquid bridging of the gas core to decrease

downstream. In this case, this is indicative of a decrease in the radial coalescence frequency

of huge waves. However, large liquid structures entrained in the core have been observed

downstream compared to upstream locations when the gas superficial velocity is low and the

liquid superficial velocity is high. This is because when liquid bridging occurs for instance, at

VD = 35.4, the large liquid structures entrained in the gas core are not formed at that axial

location. On the other hand, they travel further downstream and can be observed at VD =
82.7.

Further comparisons of dominant frequency variation with gas superficial velocity have been

made to the data of Omebere-Iyari (2006) in Figure 5.21. Omebere-Iyari (2006) investigated

the chum-annular regime transition and acquired void fraction data using conductance probes

at axial distances of VD = 3.5, 30.9, 62.7, 63.8 and 65.5. Necessary Comparisons have been

made to the frequency data obtained from the time series of the void fraction at VD = 65.5.

From Figure 5.21, this shows that at low liquid superficial velocity of O.03m1s there is no

particular trend. However, when the liquid superficial velocity is increased, the trend
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becomes more apparent as there is a decrease in the structure frequency with increase in axial

distance from the injection. A further decrease in frequency can also be observed at L'D =

82.7, compared to un = 65.5, where Omebere-Iyari (2006) suggested that the flow with

respect to the void fraction is developed. Therefore, it can be said at this point that the rate of

coalescence of liquid structures entrained in the core increases downstream.

A dimensionless frequency known as the Strouhal number has been used to characterize the

degree of instability in the flow. This encapsulates the frequency of periodic structures

identified above (Azzopardi (2004), Kaji et al., (2009) and Hernandez-Perez et al., 2010).

The gas based Strouhal number is given as:

iD
StrG =t:

gs

(5.1)

where/is the frequency, D is the diameter and Ugs is the gas superficial velocity.

Kaji et al. (2009) predicted another form of gas based Strouhal number which is given as:

(
L )-{).7S

StrG =AB D (5.2)

where the coefficients A and B are given by A = Ugs·!.2 and B = 4.94Uls + 0.368. Also, the

dimensionless axial distance is represented as UD. They used this form of Strouhal number

to obtain a good correlation having a coefficient of determination of 97.3%. Both forms of

Strouhal number in equations (5.1) and (5.2) have been varied with liquid holdup as shown in

Figure 5.22.
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Figure 5.22. Compari on of experimental and predicted gas-based Strouhal number according

to Kaji et al. (2009) against liquid holdup.

For both experimental and predicted Strouhal number variations, when the liquid holdup

increases, there i an increa ing trend with the Strouhal number at each axial distance from

the injection. Al 0, ther i a hift in the data for each liquid superficial velocity from right of

a liquid holdup of 0.4 to the left. Thi i e sentially because of flow development. The

profiles at higher liquid up rfi ial velocitie are almost the same at LID = 82.7. Compared to

the experimental Strouhal numb r ariation with liquid holdup, the predicted values shows a

better defined exponential 1 incr a ing trend a the liquid holdup increases. In general, it

shows that for churn fl w r girn when the liquid holdup increases, the periodicity of the
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Figure 5.23. Compari on of experimental and predicted gas based Strouhal number according

to (Kaji et al., 2009).

Both experimental and predicted Strouhal number has been compared as shown in Figure

5.23. It show that there i a good agreement when the liquid superficial velocity is greater

than 0.03mJs.

The Strouhal number in term of mixture velocity has also been used to characterise the

liquid bridging behaviour or fr quency of liquid slugs with increase in axial distance, (Kaji et

al., 2009). The predicted form of the Strouhal number based on mixture velocity according to

Kaji et al. (2009) i gi en a :

(
L )-0.6

Str == CE -
m D

(5.3)

where C = UIlS·O.75 and E = .74Ur + 0.53 re pectively. The variation of the Strouhal number

based on mixture vel it ith dimen ionle axial distance is shown in Figure 5.24 at

respective liquid up rficial velociti

When the liquid sup rfi ial O.03mJ , the profile can be observed to increase with

axial distance f r ga up rficial itie of 3.26m/s and 6.59mJs respectively. However,
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the Strouhal number ba ed on mixture velocity generally decreases with axial distance. This

is apparent for liquid uperficial velocities greater than O.03mJs. Therefore, this means the

liquid bridging frequency decrea e downstream.

On the contrary, the increa e in frequency of huge waves occurs as the flow travels

downstream. The trend in Figure 5.24 have also been observed in the skewness of the time

series data in Figure 5.18.
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Figure 5.24. Variation f Str uhal number based on mixture velocity with dimensionless

axial di tance (compar d t the kewne variation with axial distance in Figure 5.18)
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5.2.7. Stability analysis by method of Bamea (1986)

Barnea (1986) obtained a criterion for the transition from annular flow to intermittent flow.

They classified intermittent flow as either slug or chum flow. Slug flow has not been

observed in the present experiments. Also, this is the case in previous large diameter pipe

experiments by (Omebere-iyari 2006, Omebere-iyari et al., 2008 and Ali 2009). Therefore,

this can be considered as the transition to churn flow.

Barnea (1986) suggested that when the liquid films are thick as a result of an increased liquid

superficial velocity, they have a void fraction similar to that of bubbly liquid slugs. They also

stated that the transition from annular to churn flow is as a result of the blockage of gas core

by bubbles entrained in liquid. The latter has also been observed as the formation of liquid

with entrained bubbles that bridges the pipe or liquid slugs as termed by (Sekoguchi and

Takeishi. 1989).

Barnea (1986) suggested that the blockage of the core may result from two possible

mechanisms:

(a) Instability of annular flow that prevent stable annular flow conditions

(b) The liquid film being large enough to cause spontaneous blockage as a result of axial

transfer of liquid in the film.

The criterion for the blockage to occur is given as:

(5.4)

where AI is the area occupied by the liquid phase, Ac is the pipe cross sectional area and Rsm

is the minimal liquid holdup within the liquid slug that will allow complete blockage of the

gas passage. Since there is the presence of waves on the interface, the fluid is transferred

axially from the wave trough to the crest. Therefore. when sufficient liquid is accumulated at

the crest. the transition to chum flow occurs. The accumulation of sufficient liquid at the crest
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as observed by Barnea (19 6) i imilar to the occurrence of huge waves. She came up with a

dimensionless parameter, given a :

(5.5)

(5.6)

where the parameter X2 i the Lockhart-Martinelli parameter.

Based on the phenomenon of (a) and (b) outlined above, Barnea (1986) developed a

dimensionle map by plotting the parameter Y against X, which is the Lockhart-Martinelli

parameter. The data at the e axial di tances from the injection is shown in Figures 5.25-5.27.

The curve repre ent the tability line according to the mechanisms (a) and (b) respectively.

00 ~----------------------------~

o

- Bamea(l986), StabilityC1lt"\'e
o U.. =0.03mls

e Uis =O.13mls
o [lis =O.lSm's
l!. Uis =O.24m"s

-- Bamea{l9S6), Liquid holdup= 0.24
- - -. (Experiment, Liquid ha1.dup=O.24)

600 Mechanism (a)

100

o l..-_,__o.....w. ...........L.-_.___ ............-UJ u,__._.._ ...........I...I.LL. ........ --'-'--U-J..u.J

0.001 0.01 0.1 1 10

Lockhart-Martinclli parameterf-)

Figure 5.25. Variati n of dim n i nle parameter with Lockhart-Martinelli parameter by

meth d f (Barn a, 19 6) for data acquired at LID = 7.1.
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According to Bamea and Brauner (1985), Rsm in equation (5.4) is related to the maximum

bubble volumetric packing in the liquid slug which equals approximately 0.48. Therefore,

half of 0.48 according to equation (5.4) gives a liquid holdup value of 0.24, which is when

blockage will occur. This was substituted in equation (5.5) for all experimental data, to obtain

the dashed trend line. This can be shown to merge with the line from the data of Barnea

(1986) represented by the filled square marker-line in the figures above. By doing this, three

regions have been identified in the above figures as A, Band C.

There is a general shift in data from left to right as the liquid superficial velocity is increased

for all axial distances from the injection point. To left of the filled square line of Barnea

(1986), namely in region C. is the stable annular flow whereas to the right, annular flow is not

present. The region to the right of the dashed trend line given as region A, has liquid holdup

values greater than 0.24.

When the liquid holdup is lower than 0.24 this is represented by the region B with colored

data points. If region A is where liquid bridging occurs frequently, region B is where the huge

wave frequency is high. On the other hand, region C is the annular region.

In Figure 5.25, liquid bridging is present for all of the data when the liquid superficial

velocities are 0.13m1s. 0.18m1s and 0.24m1s. For a liquid superficial velocity of 0.03m1s and

gas superficial velocities of 3.26m1s and 3.70mls respectively this show a high degree of

intermittency. When, the gas superficial velocity is 6.59m1s there is a transition from a high

frequency of liquid bridging to that of huge waves.

It has been established that liquid bridging decays downstream, therefore, there is shift in data

points from region A- liquid bridging dominant regime, to B-huge wave dominant regime.

This also agrees with the analysis that the huge wave frequency increases downstream.

At un = 35.4 and 82.7 in Figures 5.26 and 5.27, it shows that when the liquid superficial

velocity is 0.03m1s, all the data points are present in the region B. In Figure 5.27, there are
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more data point at higher liquid uperficial velocities as result of high frequency of huge

waves. However, when the liquid uperficial velocity is O.03mJs and gas superficial velocities

are 3.26mJs and 3.70ml the data points are present within the liquid bridging regime since

the inertia force are not ufficient enough compared to the gravitational forces. Interestingly,

at higher ga uperficial elocitie ome data points are present within region C. This is the

annular flow region a indicated by (Barnea, 1986). However, based on visual observation

this is not the exi ting regime pre ent.
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Figure 5.28, Variation f dimen ionle parameter suggested by Barnea (1986) against

dirnens i nle axial di tance for constant liquid superficial velocities.
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It shows that for data points within this region there is a tendency for the flow pattern to be

annular or semi-annular as the liquid superficial velocity is low and the gas superficial

velocity is high. This also ascertains the fact that at un = 82.7 when the liquid superficial

velocity is O.03m1s and the gas superficial velocity is 17.46m1s, the flow is fully developed.

The values of dimensionless parameter, Y, at each axial distance from the injection have been

obtained to clarify its variation with axial distance as shown in Figure 5.28.

It shows from Figure 5.28 that for higher liquid superficial velocities than O.03m1s, there is a

decreasing trend with increasing axial distance from the injection. The profiles at higher

liquid superficial velocity also confirms the fact that liquid bridging of the gas core decreases

downstream, similar to Figure 5.24. This has also been reported in the work of (Kaji et al.,

2009). However, just as shown in Figure 5.24, they ascertained this effect when they varied

the Strouhal number based on mixture velocity with dimensionless axial distance. Therefore,

since Y and Str.m decreases with increasing distance from the injection, this implies that they

can be further correlated as shown in Figure 5.29.

In Figure 5.29, the data at un = 82.7 for each liquid superficial velocity have quite a good

agreement. However, this does not mean that the flow is developed at higher superficial

liquid velocities but that both parameters can be used to characterize the nature of liquid

bridging as it travels downstream. For un =7.1 and 35.4, the data agree quite well for higher

liquid superficial velocities compared to when the liquid superficial velocity is O.03m1s.
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Figure 5.29. Variation of dimen ion le s parameter according to Barnea (1986) against

predicted Strouhal number ba ed on mixture velocity according to (Kaji et al., 2009). The

data eem to be well correlated at LID = 82.7 for the liquid superficial velocities.

5.3. Summary

This study examined th patio-temporal evolution of churn flow with increasing axial

distance from the inj ti n. The re ult obtained can be summarised as follows:

1. Churn flow regim i mad up f two ub regimes namely: the formation of liquid slugs

and huge wave. Th tran it itie of the liquid slugs are lower than the huge waves.
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2. The liquid slugs are made of a cluster of small diameter bubbles dispersed in the liquid

and when they are present, temporary blockage of the pipe cross-section occurs. At higher

gas superficial velocities the gas core is formed and there is the presence of liquid

structures entrained in the gas core. In this case, huge waves are present.

3. Surface plots formed from volume rendering of the 3D void data revealing the interfacial

structures present have also been used to clarify the nature of liquid slugs and huge waves

at various axial distance from the injection.

4. The extraction of chordal void fractions from the WMS data was used to discriminate

between the sub-regimes present. This was varied with time for a particular crossing point

location to discriminate between the presence of liquid slugs and huge waves.

5. The Statistical measures used give good prediction of the sub-regimes present. The

standard deviation with axial distance increases downstream which has been denoted as

the increase in frequency of huge waves. The Skewness decreases downstream which

reveals that the frequency of liquid slugging decreases downstream.

6. Extraction of dominant frequencies by spectral analysis of the time series data shows that

the dominant frequency decreases with axial distance, which is clearly and indication of

the decay of liquid slugging downstream.

7. Further analysis using prediction of Kaji et al. (2009) and Barnea (1986) have been used

to show the dominance of both liquid slugging and huge waves. The Strouhal number

predicted by Kaji et al. (2009) and the dimensionless parameter by Bamea are well

correlated further downstream from the injection at UD = 82.7.

From the above result and analysis, the nature of both liquid slugs and huge waves has been

ascertained for air-water experiments. The effect of viscosity will be investigated in chapter 6

using air-glycerol/water as the fluid phases and making necessary comparisons to air-water

experiments. Based on the subsequent comparative study, the CFC model has been proposed.
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CHAPTER 6

EFFECT OF LIQUID VISCOSITY ON CHURN FLOW PATTERN IN VERTICAL

UPWARD GAS-LIQUID FLOW

6.1. Introduction

Most of the research carried out on two phase flow studies use air-water as the operating

fluids. Both have been the most appropriate fluid pair to use for experimentation. However,

engineers dealing with fluids typical of industrial applications observe that water has

inappropriate values of physical properties especially with reference to a surface tension that

is much higher than many of the materials they deal with, (Szalinski et al., 2010). This is

because water is cheap and harmless to the environment even when large volumes of spillage

occur. On the other hand, air is mostly released into the atmosphere as can be observed for

the experiments in chapter 4. Szalinski et al. (2010) indicated that electrical resistance

methods can be employed on water but non-conducting organic liquids would have to employ

the more difficult capacitive approach.

There is a need to carry out research on fluids that have similar properties to those used in the

oil and gas industries. This is not only to ensure that the data banks for the experiments are

filled for further reference, but to draw conclusions taking into consideration the effect of

fluid properties. Thus, this is the reason for investigating the effect of liquid viscosity in this

study, especially as regards churn flow.

Studies on the effect of liquid viscosity on the two phase flow have been carried out by few

workers, (Furukawa and Fukano, 2001 and Szalinski et al., 2010). Consequently, there is a

dearth of data when necessary comparisons are to be made with literature. From the work of

Furukawa and Fukano (2001), they compared their air-water data to air-glycerol/water data.

Their glycerol/water solutions had viscosities of 6cP and 17cP respectively. Szalinski et al.
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(2001) also carried out a comparative study for their air-water and air-silicone oil data, where

the viscosity of continuous phase for the latter was 5cP. Both workers performed their

experiments on what can be considered as small diameter pipes of internal diameters of

19.2mm and 67mm respectively. In the work of Furukawa and Fukano (2001), when the

liquid viscosity increased, the void fraction was higher for their air-water data compared to

air-glycerol/water in the case of bubbly to slug flow transition. As a result, this led to them

plotting a transition line that was to the right hand side of their air-glycerol/water data based

on high speed video observation and further analysis of their liquid holdup data. The reverse

occurred for slug to churn and churn to annular flows as they observed a higher void fraction

for air-glycerol/water compared to air-water.

They further examined the applicability of the Baker (1954) parameters that takes into

consideration the fluid properties that were obtained for horizontal flows, in their vertical

upflow experiments. They found out that irrespective of the pipe orientation using the Baker

parameters give good predictions for the slug to churn and churn to annular flows.

Conversely, the Baker parameters give poor prediction for bubbly to slug flows. On the other

hand, the experiments conducted by Szalinski et al. (200 1) gives a higher void fraction for

air-silicone oil experiments compared to air-water experiments. This was observed for the

transition from bubble to churn flows. The experiments performed above investigate the

effect of viscosity on the transition between subsequent two phase flow regimes. The

question arises as to the effect of viscosity on the behaviour of the two phase flow within a

specific flow regime.

Therefore, the work presented investigates the effect of liquid viscosity within the two phase

churn flow regime. The experiments were performed in the same facility used in chapter 5 of

127mm internal diameter and I1m in length test section. Detailed description of the operating

procedures is given in chapter 3. The operating conditions for gas and liquid superficial
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velocities are 3.98m/s - 13.36m/s and 0.036m/s - 0.27m/s respectively. The full operational

matrix can be found in Appendix B. Comparisons of the void fraction data was made to the

air-water experiments (chapter 5). Based on this, the CFC model has also been presented.

6.2. Results

From the wire mesh sensor, the three-dimensional volume data can be extracted, which is

essentially the void fraction data set. The time series of the void fraction or the void fraction

variation with time is shown in Figures 6.1 - 6.3. The comparisons are made for air-water

(black line) and air-glycerol/water solutions of 12.2cP and 16.2cP indicated as green and red

lines respectively. The plots in Figure 6.1 - 6.3 are at an average constant liquid superficial

velocity of Orl lm/s, O.l7m/s and 0.26m/s respectively. It was not possible to set the gas and

liquid superficial velocities to be the same for both experimental campaigns since the

experiments were carried out on a closed loop test facility. Therefore, approximate range

value comparisons are made and maintained throughout the present work to draw necessary

conclusions.

6.2.1. Comparison of time series data for air-water and air-glycerol/water

In Figures 6.1 (a)-(c). the time series of the void fraction overlap each other for both

glycerol/water viscosities. In Figure 6.1 (a). for about 0-3s. the void fraction does not change

considerably for the 16.2cP data compared to 12.2cP glycerol-water data. This behaviour can

also be observed around 5-lOs and 1O-15s. This probably means that the core is occupied

more by gas phase when the viscosity is 16.2cP compared to when it is 12.2cP.

The addition of pure glycerol to water certainly increases the viscosity of the resultant

mixture but this reduces its surface tension. A lower surface tension means that the liquid

holdup decreases when the viscosity increases. In comparison to the air-water data, this is

probably the reason for a lower time series of void fraction.
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However, the increa ed vi eo ity from air-water as the base case probably increases the

stability of the interfacial wave. Therefore, from this explanation, the interfacial wave should

be thinner when the vi eo ity i increa ed before incipient breakdown of the two phase flow

structure occurs. A can al 0 be ob erved, this seems to be more frequent for the air-water

compared to air-glycerol/water data in Figures 6.1 - 6.3.

It should be noted that the moving average technique of averaging sub-sets of data has not

been applied to the glycerol/water data but to the air-water data. This means that there is less

dissipation of energy a the i eo ity increases.
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Figure 6.1. Variation f id fraction with time showing comparison of the air-water data

(black line) with air-glycer l/wat r data at 12.2cP (green line) and 16.2cP (red line) at an

a erag liquid uperficial velocity of O.llm1s.
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Hewitt and Hall- Taylor (1970) explained the effect of an increase in viscosity from the

understanding of the behaviour around the critical layer. Far from the gas-liquid interface, the

gas moves faster than the wave. On the other hand, close to the gas-liquid interface, the wave

moves faster than the gas. A point is reached away from the wall where the velocity is zero.

This point or interface i known as the critical layer. They stated that due to an increase in

viscosity sufficient energy i needed to overcome the vortices created in the critical layer. In

relation to the present cenario, the abstraction of energy causes the interface to be more

stable as the viscosity increa e from air-water. Therefore, this leads to a higher time series of

void fraction.
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(black line) with air-glycerol/water data at 12.2cP (green line) and 16.2cP (red line) at an

average liquid uperficial velocity of O.26m/s.

As the liquid uperficial velocity increa es in Figure 6.2 compared to Figure 6.1, the liquid

holdup increa e . A higher liquid holdup would probably cause the amplitude of the wave or

the wave height to be large to the point that the crest of the waves about the pipe centreline

radially coale ce with each other. It may also be that as the wave propagates downstream

from the injection they grow over and above a critical wave height due to axial coalescence.

Therefore, the effect of gra ity on the wave can be considered to be higher for air-water than

air-glycerol/water data. In addition, thi means there will be higher drag force acting on the

wave in the ea e of air-wat r ompared to air-glycerol/water.
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The time series data in Figure 6.2 shows that the void fraction traces for air-water and air-

glycerol/water at 12.2cP are quite close. This indicates that the increased viscosity begins to

have a lesser effect on void fraction when the liquid superficial velocity is increased. Still, the

data for 16.2cP has a higher void fraction trace compared to air-water data.

When the liquid superficial velocity is further increased in Figure 6.3, the time trace for

12.2cP air-glycerol/water data more or less coincides with that for air-water. In addition,

there are more fluctuations for the air-glycerol/water data at 12.2cP compared to the air-water

data. On the other hand, the glycerol/water data at 16.2cP now begins to coincide with the

data for air-water.

When the viscosity increases it takes less time for the mixture to flow in and out of a

reference control volume before liquid bridging takes place. This is because as the mixture

flows into a reference control volume, the wave height increases due to axial coalescence of

large amplitude waves with smaller ones. In other words, due to an increase in viscosity, it

takes more time for the amplitude of the wave to grow to eventually result into the liquid

bridging of the gas core.

Figure 6.4 gives the variation of mean void fraction with gas superficial velocity with

comparisons made to the air-water data. The plots shown in (a)-(d) of Figure 6.4 are at

constant average liquid superficial velocities of 0.03m1s, 0.11 mls, 0.17m1s and 0.26m1s

respectively. Comparisons are made to mean void fraction from the air-water data acquired at

two axial distances from the injection, L'D = 35.4 and L'D = 82.7. The blue filled diamond

represents the former while the orange filled circle is for the latter case. The glycerol-water

data of 12.2cP and 16.2cP acquired at L'D = 65.5, are given as square and triangle

respectively.

For each liquid superficial velocity, the mean void fraction obtained from the air-water data

at both axial distances does not change considerably. In further comparison with the glycerol-
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water data, a higher profile can be ob erved. However, the data seems to be close together as

the liquid superficial velocity increase, which is reflected in (c) and (d).
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Figure 6.4. Variation of mean void fraction with gas superficial velocity for 12.2cP glycerol

solution (0) and 16.2cP glycerol olution (ll.) with comparisons made with air-water data at

LID = 35.4(+) and 82.7 C ) re pectively. (aj-td) represent constant average liquid superficial

velocitie of 0.03m1 ,0.11 m1s, 0.17m1s and 0.26m1s respectively.

6.2.2. Compari on lycerol-water data with void fraction correlations

Apart from the comparative tudy of the time spatial maps of air-water and air-glycerol/water

carried out by Furukawa and Fukano (2001) for bubbly to annular flows, the experimental

mean void fraction data ha not been compared to predicted values. In this sub-section, the
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experimental void fraction values have been compared to predicted values as shown in

Figures 6.5.
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Figure 6.5. Compari on f e perimental void fraction for air-glycerol/water at 12.2cP and air-

water with predicted id fra ti n value obtained from correlations proposed by Wallis

(1969), Prernoli et al. (1970), hi holm (1972), Hassan (1988) and Cioncolini and Thome

(2012) re pectively. The c rrelation propo ed by these workers can be found in Appendix C.

Average liquid up rfi ial el itie have been indicated in plots (a) - (d) respectively.
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The correlations used from the oldest to the most recent ones are: Wallis (1969), CISE

correlation given by Premoli et al. (1970), Chisholm (1972), Hassan (1988) and Cioncolini

and Thome (2012). Details of the correlations can be found in Appendix C. The comparisons

were made to the mean void fraction values obtained from glycerol-water data at 12.2cP and

air-water data in chapter 5. It is important to note that most of these correlations have been

obtained in small diameter pipes hence may only be suitable for them. On the other hand, the

void fraction is a dimensionless quantity and the correlations can be applied to data obtained

from large diameter pipes.

The Wallis (1969) correlation was obtained for the transition to annular flow. He pointed out

that the boundary to annular flow is governed by two mechanisms: (a) Liquid bridging of the

gas core and consequent transition to slug flow, and (b) Entrainment of droplets from the

liquid film and transition to annular mist flow. For the present work, liquid bridging of the

gas core has been observed at low gas superficial velocities for air-glycerol/water

experiments at 12.2cP and in the air-water experiments. Therefore, this encourages the use of

the correlation. Although there is entrainment of drops occurring in churn flow, for which

established correlations exist as discussed in section 2.4.1 by (Barbosa et al., 2002 and

Azzopardi and Wren, 2004), however, the magnitude and method of entrainment is not the

same as in annular flow. Therefore, Wallis (1969) correlation satisfies its usage on one

ground but on the other it may fail to predict the mean void fraction.

It shows in Figure 6.5 that the predicted void fraction values does not agree well with the

experimental void fraction value for the air-glycerol/water data when the liquid superficial

velocities are 0.03m1s and 0.13m1s respectively. However, the predicted void fraction values

begins to agree well with the experimental void fraction values when Uu > O.13m1s. In the

case of the air-water predicted void fraction values, the Wallis (1969) correlation agrees quite

well for liquid superficial velocities of O.13m1s, 0.18m1s and 0.24m1s respectively. The main
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difference between both cases is that at a liquid superficial velocity of 0.13m/s, liquid

bridging of the gas core was not observed for the air-glycerol/water experiments compared to

the air-water experiments.

The Premoli et al. (1970) correlation also known as the CISE does not properly predict the

void fraction for both air-glycerol/water and air-water experiments at respective liquid

superficial velocities. Szalinski et al. (2010) also showed that this correlation over predicts

the void fraction when used in their case for air-water and air-silicone oil. The Chisholm

(1972) correlation agrees quite well at lower liquid superficial velocities, that is, at 0.03m/s

and O.13m/s for air-glycerol/water. When the liquid superficial velocity is increased, the

correlation over predicts the void fraction. The prediction of void fraction by the Chisholm

(1972) for air-water is not successful for each respective liquid superficial velocity. The

correlation of Hassan (1988) agrees quite well with the experimental void fraction for both

air-glycerol/water and air-water for Uu > 0.03m/s. This equation was retrieved from the work

of (Wang et al., 2012). They used it to predict the total pressure drop.

Interestingly, the correlation of Cioncolini and Thome (2012) used in predicting the void

fraction, follows the same trend to the simple correlation of Chisholm (1972) for both air-

water and air-glycerol/water. The correlation of Chisholm (1972) used a slip ratio, which is

substituted in the homogenous void fraction equation to obtain a predicted mean void

fraction. On the other hand, the correlation of Cioncolini and Thome (2012) uses the Hill

function to predict the void fraction. The void fraction correlation developed by Cioncolini

and Thome (2012) is specifically designed for cases were annular flow is the presiding flow

pattern. Therefore, this agrees with the data when the liquid superficial velocity is low. In

fact, they suggested the correlation works well when the void fraction is between 0.7-1.

In consideration of the established correlation above, there may not be anyone correlation

that can predict the void fraction in chum flow, even when the liquid viscosity is taken into
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consideration. However, one thing is certain, which is that some predicted correlations work

well at low liquid superficial velocity but not at high liquid superficial velocity and vice

versa. This is because as the liquid superficial velocity in chum flow increases, the flow is

more oscillatory and has a chaotic nature.

From work of Azzopardi (2012), he stated that chum flow fits into the Edward Lorenz

definition of chaos "it is not random but looks random". Using Lorenz (1963) approach, a

reasonable void fraction model may probably be obtained that predicts the void fraction

under chum flow operating conditions. However, based on Figure 6.5, the equation of Wallis

(1969) and Hassan (1988) give good prediction of the void fraction in chum flow.

6.2.3. Probability density function (PDF) of time series data

In addition to the mean void fraction of the time series data set earlier obtained, the

probability density distribution of the void fraction has also been used as a quantitative

measure. This shows that the probability of the void fraction is within a specific range, in

this case, 0 - 1.

Comparisons were made with the air-water data on the same plot in Figures 6.6 and 6.7.

Since it has been clarified above that increasing the viscosity increases the void fraction,

there is a shift in the probability distribution from left to right. The proximity to a void

fraction value of 1 at low liquid superficial velocity is indicative of an annular flow pattern

distribution as suggested by (Costigan and Whalley, 1997). The characteristic of the annular

flow pattern PDF has the void fraction tending to 1 and a short tail towards low void fraction.

Therefore, it can be said that the second and third plots at low liquid superficial velocity,

although within the chum flow, have a probability distribution typical of annular flow.

However, this is in reference to glycerol/water data. From visual observation, the flow is not
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annular, that is, the film does not move continuously upwards as the gas inertia is not

sufficient to cause thi to occur.

Increasing the liquid superficial velocity in (1b) and (1c) increases the area under the

probability distribution re pectively. For the glycerol/water data, one will expect that the

distribution will have the ame hape as that of air-water with a shift to the right. However,

this is not the ea e a another distinct peak apart from the peak at the mean value can be

observed. The other peak appears under the air-water probability distribution for (lb) and

(l c).
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For a higher liquid superficial velocity in Figure 6.7, more compansons can be found

between operating condition utilized. Compared to the air-water, two peaks can be clearly

identified. Thi i because for air-glycerol-water, the frequency and size of the liquid

strictures entrained in the core increases. Therefore, this gives a second peak at lower void

fractions.
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6.2.4. Comparison of interfacial structures for air-glycerol/water and air-water

The interfacial structures represent the formation of structures that are present within the pipe

cross-section for a particular gas and liquid superficial velocity. The reason for the presence

of structures in the core is because there is a competition between flow field forces that give

rise to them. The interfacial plots have been obtained from the three dimensional void

fraction data.

Figure 6.8 shows the interfacial plots for glycerol/water data at 12.2cP, 16.2cP and air-water

data at VD = 82.7 and 35.4 respectively. Huge waves can be observed for the 12.2cP data at

frame number-200, but this is not the case when the glycerol/water viscosity is 16.2cP. For

the latter case, smaller amplitude waves than huge waves can be observed. The air-water data

on the other hand. has more huge waves present compared to the glycerol/water viscosities at

frame number-300 and between 100 and 150.

Although no dry patches have been visually observed for the air-glycerol/water experiments,

the interfacial plots shows they are present on the inner walls of the pipe. To avoid confusion,

this situation is indicative of a thin liquid film. It shows that they are more frequent for the

glycerol/water viscosities compared to the air-water case at UD = 82.7.

In addition, there are no dry patches at un = 35.4. In fact, liquid can be observed to be

present around the core. Therefore. as indicated in the previous chapter 5, because of this,

liquid bridging of the gas core becomes frequent at this location. Small amplitude waves are

present for all cases and there are also entrained liquid structures present. However, the

frequency of the entrained liquid structures is lowest for air-water at VD = 35.4. This

confirms the fact that when the liquid viscosity increases, the liquid structures entrained in

the core are larger for air-glycerol/water compared to the air-water case because less energy

is being dissipated. This is the reason for the other distinct peak at a lower void fraction for

the air-glycerol/water cases in the POF plots in Figure 6.6 and 6.7.
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Figure 6.8. Compari on of interfacial tructures for 12.2cP, 16.2cP glycerol solutions and air-

water data at LID = 82.7 and 35.4 re pectively for an average constant liquid superficial of

O.24m1s. Ga up rficial velocity are indicated atop structures. The small waves that have

been identified have smaller amplitudes than huge waves.

On the other hand, wh n the liquid viscosity is increased, the liquid holdup decreases.

Therefore, thi make th film thinner having a similar behaviour to annular flow. Since in

annular flow the wave v 10 ity i low, (Azzopardi, 1997), this also gives a low wave velocity

for the air-glycerol/water e periment . Therefore, a higher Weber number may be obtained
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for glycerol/water compared to the air-water scenario. This is based on the definition of

Weber number given by (Azzopardi, 2012). However, although, the Weber number may be

higher for air-glycerol/water experiments, the size of liquid structures entrained in the gas

core is not dependent on the Weber number since the viscosity term is not included in the

Weber number.

6.2.5. Extraction of base film and huge wave characteristics from liquid holdup

The huge wave clearly identified above and the base film comprises the thick liquid film,

which is the case in chum flow, (Sawai et al., 2004). When the liquid holdup increases, it

means that there is an accumulation of liquid within a reference control volume. This

considerably affects the characteristics of both the huge wave and the base film. Figures 6.9

and 6.10, shows the probability density function variation with the liquid holdup in 2-D area

graph for an average constant liquid superficial velocity of O.17m1s. This was done to

highlight the areas were the base film and huge waves are present.

This analysis is done based on the method of (Sawai et al., 2004). They previously used this

method of identification by assuming symmetry about the mean liquid holdup. In their case,

the pipe diameter was 25.8mm and air and water were used as the fluid phases. The

probability distribution of the liquid holdup in their work did not have distortions to the peak.

Therefore, it was easier to assume symmetry around the mean liquid holdup. However, this

is not the case in the present work as can be observed in Figures 6.9 and 6.lO.

To overcome this problem, two peaks occurring at low liquid holdup were identified. The

base film liquid holdup may not be the same as the overall liquid holdup as proposed by

(Sawai et al., 2004). However in corroboration with their work and as a method of

simplification, the base film symmetry has been assumed. The symmetry in the base film

means that the structures of the base film about the pipe centre line, flowing below the huge
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wave are the ame. A expected, the area for the huge waves is larger for the 12.2cP

glycerol/water data compared to l6.2cP glycerol/water data. The huge wave area is indicated

as green and purple re pectively for both glycerol/water probability distributions were the

demarcated area decrea e with increasing gas superficial velocity.
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Figure 6.9. Extracting probability density distributions of huge waves and base film from

liquid holdup for ga up rfi ial v I itie indicated in plots at an average constant liquid
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The probability di tribution for the huge wave has various peaks. This is indicative of large

liquid structure formed fr m the huge wave. It also means that the probability distribution

of the liquid tructure may not b uc e fully extracted. Therefore, it is probably better to

approach it from lh p r p ti that the wisps/large liquid structures are formed from the
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huge wave rather than a separate entity. In other words, the well-defined peaks on the

demarcated huge wave region at high liquid holdup refer to the presence of large liquid

structures entrained and flowing within the core of the pipe.

In addition, peaks can be observed to occur more for the glycerol/water data at 12.2cP

compared to that at 16.2cP. In the fourth set of plots in Figure 6.9, peaks are still present for

the gas superficial velocities of 1O.28m1s for glycerol-water viscosity of 12.2cP compared to

1O.17m1s for 16.2cP respectively. It should be noted, that the white area between the base

film and huge wave is as a result of assuming symmetry of the base film.

When the liquid superficial velocity is 0.27m1s in Figure 6.10, the area for huge wave

increases for both glycerol/water viscosities compared to the liquid superficial velocity of

0.17m1s in Figure 6.9. For gas superficial velocities of 4. 19m1s and 3.98m1s for 12.2cP and

16.2cP respectively, the base film area is approximately the same for both distributions.

However, it is larger for 12.2cP than 16.2cP when the huge wave area is considered. Also, the

peak is more defined for the huge wave area at 16.2cP compared to 12.2cP. This point to the

fact that the sizes of the entrained liquid structures vary when viscosity is 12.2cP compared to

when the viscosity is 16.2cP. In addition, distortions are still present in the peaks when the

gas superficial velocity is increased.

Comparisons were also made to the of air-water data at the two axial distances from the

injection where data was acquired. This has been shown in Figures 6.11 and 6.12. The blue,

red, green and purple distributions are for air-water two axial distances (upstream-VD = 35.4

and downstream- UD= 82.7) and glycerol-water viscosity of 12.2cP and 16.2cP respectively

at UD = 65.5. The operating condition used in the previous plots above is the same here with

approximate conditions for air-water. The shift in probability distribution from right to left is

in the direction of lower liquid holdup. Clearly, this means that the liquid holdup is highest

for air-water at UD = 35.4 than at UD = 82.7 and glycerol-water data.
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Figure 6.11, Area plot of huge wave and base film showing comparison with glycerol-water

solutions and air-water data with ga superficial velocities indicated in plots for an average

con tant liquid uperficial velocity of 0.11 mls.

In comparing both air-war r data, the area under the huge wave probability distribution is

larger down tream than up tream. From visual observation and the analysis carried out in

chapter 5, the frequen y of liquid bridging of the gas core is higher upstream than

downstream. Since th hydr tatic pre sure increases with height, there is more volume of

liquid accumulated up tr am. Therefore, the gas flowing upwards encounters more volume of
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liquid upstream. Con equently, this induces the formation of huge waves, which coalesces to

give frequent liquid bridging of the gas core upstream at LID = 35.4. The surface tension

effect cause the probability di tribution to shift to lower liquid holdup for glycerol-water

cases.
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Figure 6.12. Area plot of huge wave and base film showing comparison with glycerol-water

solution and air-water data with ga uperficiaJ velocities indicated in plots for an average

con tant liquid uperficial velocity of 0.27m1s.
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On the other hand, as regards the base film probability distribution, bubble entrainment in the

base film should cause the base film to depart from the form of pure liquid. The area under

the base film is larger for the air-water data compared to both glycerol/water data. Although,

when the liquid holdup is low, the peak of the base film is highest for glycerol/water at

16.2cP compared to the other data. This is a clear indication of a thin base film, which was

identified earlier.

The effect of increase in liquid superficial velocity is shown in Figure 6.12. The same shift in

trend to lower liquid holdup can be observed for increase in liquid viscosity. As the viscosity

increases, although there is a shift to lower liquid holdup, the area under the graph is larger

compared to air-water. A large area under the graph has been earlier identified to be the

presence of an increased frequency of liquid structures, which tends to be largest for glycerol-

water viscosity of 12.2cP. However, this decreases as shown in the third plot and the area

under the huge wave graph is largest for air-water at L'D = 35.4.

On the other hand, the base film probability distribution gives the largest area for air-water at

un = 35.4 compared to the others. However, it has the least area as the gas superficial

velocity is increased. The area under the graph becomes large for air-water at VD = 82.7 and

glyceroVwater at 12.2cP and 16.2cP respectively, which is indicative of a thin base film but

thicker compared to lower liquid superficial velocities. Overall, this method distinguishes the

huge wave and base film probability distributions when comparisons are made for air-water

and air-glyceroVwater.
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6.2.6. Analysis of time series infrequency domain

In chum flow, the flow is inherently chaotic and has this behaviour to the highest degree

compared to other flow regimes: bubbly, slug and annular. Spectral analysis of the time series

data in the frequency domain reveals the inherent chaotic flow behaviour. Auto-correlation

function has been initially used as a method of revealing this behaviour by correlating the

time series signal with itself. It can be referred to as the normalized auto-covariance function

given below with reference to equation (4.7) in chapter 4:

(6.1)

According to Cai et al. (1995), for a chaotic time series data such as in the case of chum flow,

information about its past is lost. Therefore, the signal is only correlated with its recent past.

The importance of calculating the auto-correlation function is to have knowledge of the

optimum time delay. This value is estimated to be the smallest time at which the first

minimum in the auto-correlation function occurs. Also, calculating the auto-correlation

function enables dominant periods to be identified. The auto-correlation has been carried out

and presented in the subsequent plots for air-glycerol/water and further comparisons have

been made to air-water.

In Figure 6.13, the auto-correlation is varied with delay time for the glycerol/water viscosity

of 12.2cP and a liquid superficial velocity of O.17m1s. When the gas superficial velocity is

increased from 4. 19m1s, a large dip in the profile can be observed. Also, there a shift in the

profile to a higher delay time when the gas superficial velocity is 7.l7m1s. An increase to a

gas superficial velocity of 7.98m1s gives the same delay time but with an increase in profile.

This shows that the periodicity of the structures present decreases at higher gas superficial

velocities. In relation to the physical nature of the flow. this can be interpreted to be the

occurrence of liquid bridging of the gas core and the presence of entrained liquid structures.
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Figure 6.13. Autocorrelation variations with delay time at liquid superficial velocity of

0.27m!s for glycerol-water solution of 12.2cP. Auto-correlation of the time series data is

carried out ince we are dealing with a chaotic time series data.

Liquid bridging ha been ob erved to have lower transit velocities compared to huge waves

from the air-water experiment in chapter 5, section 5.2.3. Therefore, it is possible that the

lower time lag with a dip at' a gas superficial velocity of 4.81mfs is indicative of liquid

bridging and imultaneou entrainment of liquid structures, while the higher time lag with the

absence of a dip i f r the oc urrence of only liquid structures entrained in the core.

The same behaviour of delay tim hift can also be observed when the viscosity is increased

to 16.2cP in Figure 6.14. Kaji (2008) also calculated the auto-correlation from their void

fraction data and u ed it to dis tinguish between slug, slug-churn transition, churn and annular
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flows for their air-water experiments. For slug flow they observed a large dip of negative

auto-correlation compared to churn flow. The dip in the data was slightly beyond the negative

x-axis for churn flow conditions. For annular flow, there was a large dip in their data such as

for slug flow but had a maller time delay.
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Figure 6.14. Autocorrelation variations with delay time at liquid superficial velocity of

0.26m1s for glycerol-water olution of 16.2cP. Auto-correlation of the time series data is

carried out ince we are dealing with a chaotic time series data.

In compari on to Kaji' air-water ACF plots, it shows that there is a discrepancy between the

periodicity of churn flow in their experiment and the present case. This is because the delay

time is larger for the pre ent work compared to his. It is important to note that his data was

obtained in a 19mm internal diameter pipe, thus could be a plausible reason for the marked

difference.
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Figure 6.16. Autocorrelation variation with time and power spectral density against frequency

placed side by ide for glycerol-water olutions and air-water data at axial distances of LID =

35.4 and 2.7 for con tant liquid superficial velocity of 0.27m1s.

Figure 6.15 and 6.16, how the comparison of the auto-correlation functions with data for

air-water at LID = 35.4 and 2.7. Increa ing the viscosity leads to an increase in the profile of

the auto-correlation functi n. Al 0 there i a shift to the right to a higher time delays. Fourier

transform of the aut -co ariance function wa also used to obtain the power spectral density
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in Figures 6.15 and 6.16. Power spectral density denotes the strength of the time series signal.

It reveals the distribution of the power of the time series at various frequencies.

In Figure 6.15. the power spectral density variation has the lowest power profile at un =
35.4 compared to UD = 82.7 and the glycerol-water data. Also. there is no considerable shift

in profile. indicating a frequency change. However. a slight shift exists in most cases. For the

liquid superficial velocity of 0.11m1s in Figure 6.15, power spectrum profiles does not show a

trend when comparing the data at un = 82.7 and the glycerol-water data. However, as the

gas superficial velocity increases, a peak. in the profiles begins to occur.

Increasing the liquid superficial velocity to 0.27m1s in Figure 6.16 still gives a shift to higher

time lag for air-water at un = 82.7 and the glycerol-water data, compared to UD = 35.4. On

the other hand, the power spectral density profiles increases and decreases with increase in

viscosity. Also, there is the presence of a peak in each of the profiles. This is becomes less

pronounced for air-water at un = 82.7 and glycerol-water viscosity of 16.2cP in (c). The

increase in peak can be attributed to the fact that the largest liquid structures are formed for

12.2cP glycerol-water viscosity. Although, liquid structures are present for air-water at L'D =
35.4. the lower profile is due to the dominance of liquid bridging of the gas core over the

occurrence of liquid structures or wisps entrained in the gas core.

The dominant frequencies from the power spectral densities in each case above can also be

obtained. Firstly, that of air-glycerol/water case is shown in Figure 6.17. The dominant

frequency variation with gas superficial velocity does not have a particular trend. However,

when comparing the red lines on both plots for the highest liquid superficial velocity used in

both glycerol-water experiments, the dominant frequency generally decreases and increases.

Since, liquid bridging of the gas core does not occur at the point of a sudden increase in the

dominant frequency, this is probably the occurrence of huge waves or wisps. At lower liquid

superficial velocities, indicated by the green line in both plots, the dominant frequency
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decreases. Thi i becau e the flow becomes less oscillatory as the liquid superficial velocity

decreases. Intere tingly, the dominant frequency gives a high value at a low liquid superficial

velocity and high ga uperficial velocity. This may probably be the occurrence of smaller

amplitude wave than huge wave previously identified in the interfacial plots in Figure 6.8.

1
0.9
0.8 12.2cP Q

,,-...go. Q Q
.... 0.6 - 110
§ 0.5 / Q b.
~ O ..t
f 03
~ 0.2

0.1
0 b. Q <ll. <fJ

0 1 ..f 6 S 10 12 14

l:.: o 0.039m s O.llm s t:. 0.17m's ___ 0.2 m's

1.2

'N'
16.2cP

...... QQ
60.8
~
§ 0.6 Q
=er
Q) 0.4ICo
~ Q

0.1

0
0 1 6 S 12 1

Gas superficial velocityfm/s)
L.o O.036m s 0.091m's t:. O.I6m 's ---01.6m s

Figure 6.17. Dominant frequency against gas superficial velocity for glycerol-water solutions

indicated in plots.

To be able to further di tingui h the occurrence of liquid bridging, huge waves and the

occurrence of liquid tructure, the threshold method to the time series data needs to be

applied. E tabJi hing a thre hold will enable distinguishing the structures present with

reference to the dominant frequency plot. However, before going further to address this issue,
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qualitative assessment of liquid structures entrained in the gas core is carried out in the

subsection below.

6.2.6.1. Qualitative assessment of entrained liquid structures

From the interfacial plots above, it has been ascertained that the liquid phase also flows as

large entrained liquid structures/wisps in the gas core. Figures 6.18 and 6.19 presents the

vertical and horizontal projections of the cross-section obtained from the reconstruction of the

three-dimensional void fraction data.

Bennet et al. (1965) were the first to identify these structures and classify them as wisps. The

structures were present in their work at high liquid flowrates. Since they were also working at

high gas flowrates, they termed the presiding regime wispy-annular flow regime as discussed

in section 2.2.1.5. They added that the structures were difficult to observe using high-speed

cine imaging. However, their challenge was resolved using X-ray radiography. Bennet et al.

(1965) stated that the wispy-annular flow is characterized by slow moving liquid film on the

tube walls and more rapidly moving entrained liquid phase. The entrained liquid phase

appeared to flow in form of large liquid agglomerates somewhat resembling ectoplasm.

In contrast to their work, no X-ray radiography method was used to obtain the gas-liquid

phase distribution with respect to showing the entrained liquid structures as in Figures 6.18

and 6.19. This has been done similar to work of (Hernandez-Perez et al., 2010). From the

void data, vertical and horizontal projections of the entire cross section can be obtained.

Random frame numbers have been selected that show the entrained liquid structures.

The vertical and horizontal projections are shown on the left and right respectively for each

frame number at a 4s time interval. Also, the cross-sectional projection is shown below the

vertical and horizontal projections. The view of the cross section X-X is shown for each

frame. This has been done for glycerol-water viscosities of 12.2cP and 16.2cP at approximate
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gas and liquid superficial velocities respectively. For the frames shown in Figure 6.18, the

core is mostly occupied by the gas phase with entrained liquid structures. This has the same

form as those observed for wispy-annular flows by (Bennet et al., 1965).

The structures present are irregular and do not have a definite shape. Furthermore, if the

frequency should be obtained to ascertain the contribution to the overall dominant frequency

in Figure 6.17, they have to be grouped into different sizes. Estimating the size of liquid

structures according to its major/minor dimensions and classifying them into probably small,

medium and large, could give a more realistic value to the wisp frequency. Wisps greater

than a particular threshold size can be considered to be an agglomeration of wisps and should

be termed differently. The effect of the increase of liquid viscosity on the size of liquid

structures present is shown in Figure 6.19. The sizes of the entrained liquid structures are

smaller compared to the 12.2cP phase distributions.

A method of estimating the entrained liquid structures cross-sectionally can be shown in

Figure 6.20. The void data of frames 3547 and 10843 in Figure 6.18 were extracted and

converted into contour filled plots in MATLAB as shown in Figure 6.20. The gas is indicated

as orange while the liquid is blue. This method ensures that a grid is applied to the data

thereby giving an estimate of the cross-sectional dimension. This also enables better

classification of the entrained liquid structures.

Inview of the gas-liquid phase distributions in Figure 6.18 and 6.19 respectively, Figure 6.21

shows the projections of the gas-liquid phase distribution for the same operating conditions in

Figure 6.18. The essence of presenting the gas-liquid phase distribution in Figure 6.21 in this

manner is to elucidate the behaviour of the liquid film that causes the entrainment of large

liquid structures in the gas core. It was earlier ascertained that less energy is dissipated as the

viscosity increases. As a result of this, the liquid film becomes more stable.
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I ~

Horizontal
projection

Vertical ----
projection

x ----t..,.O-

Figure 6.18. A

phase

Gas

-- - - ---- Frame
25082

Frame
3547

Frame
10843

m nt of the wi p tructures from selected frames of 12.2cP glycerol-water

data. Ga and liquid up rficial velocity are given as of 4. 19mJs and O.27mJs respectively.

The proce e that giv fI the entrained 1iquid phase in the gas core can be summarized

as follow: (a) P aking f th liquid film into the gas core (b) Coalescence of propagating

huge wave fr m an up tr am I ation to augment the amplitude of the wave within a

reference contr lum . ( ) Pr tru i n of the augmented huge wave structure into the gas

core after a criti al wa amplitud Iheight has been attained. This is also where radial

Page 1212



coalescence of the huge waves takes place. (d) Shearing-off of the huge wave structure from

the liquid film and the formation of the entrained liquid structure. This depends on the

pressure force exerted by the gas phase on the windward side of the structure. Figure 6.21 has

also been annotated for clarity.

Horizontal
projection

I ~

-x

Vertical _

projection

X ----r-10-

- -- -- -Frame
2412

Frame
12176

Frame
18046

Figure 6.19. A e ing the wi p tructure from selected frames of 16.2cP glycerol-water

data. Ga and liquid uperficial velocity are given as of 3.98mJs and O.26mJs respectively.
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6.2.6.2. Establishing relevant threshold from time series data

In establishing relevant thresholds as discussed above, quasi-steady state conditions are

assumed. The schematic has been shown in Figure 6.22 and further reference can be made to

the work of (Wang et al., 2012).

Huge wa ve with a
liquid holdup of 0.2 5

~I ,
I
I
I

I,

D
I ~
I
I

Theoretical approach ••-------.1
·200 - Experimental observation

Base film

Huge wave

t=tO

+200-

GAS CORE with a
r oid fraction ofOj

Figure 6.22. Schematic of the quasi-steady condition of churn flow on the left hand side has

been used to obtain relevant churn flow thresholds based on theoretical approach. This may

only hold for when the flow can be considered to be developed at LID = 65.5 as suggested by

Omebere-Iyari (2006) and a in the present work. Reference can be made to the work of

(Wang et al., 2012). Meanwhile, the gas-liquid phase distribution from the experimental

perspective is hown on the right hand side depicting the occurrence of huge waves. The

vertical projection (for a 1 time interval) and cross-sectional projection are shown

respectively.

Page 1216



For huge waves to be present, the following equation has to be satisfied, that is, m

consideration of both air-water experiments and the present work.

AL :::0.5
Ac

(6.2)

where AL, Ac, are the areas occupied by the liquid and overall pipe cross-sectional area.

Therefore, theoretically, the huge wave moving upwards should have a liquid holdup of 0.25

about the pipe centreline with a gas core void fraction of approximately 0.50. On the other

hand, for complete liquid bridging to be present, giving rise to bubbles entrained in the liquid

volume, the model of Bamea (1986) has been adopted.

AL = aL ~0.5
AcRsm RSm

(6.3)

where Rsm is given as the minimum liquid holdup in the liquid bridge that will allow for

competent blockage of the gas core.

Therefore, three thresholds can be identified: (i) mean void fraction, (ii) huge wave and (iii)

complete liquid bridging thresholds. The void fraction within the liquid bridge according to

Barnea (1986), was found to be approximately 0.24. The applications of the thresholds are

shown in Figures 6.23 and 6.24.

The horizontal, vertical and cross sectional projections are matched to the time series data

using the relevant thresholds. The vertical projections are shown for a Is interval. When

liquid structures/wisps are present, the void fraction does not change considerably. This is

because the liquid structures are entrained in the gas core. However, this depends on the size

of the structures.
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With further increase in liquid superficial velocity to 0.27m1s in Figure 6.24 and application

of thresholds above, the liquid structures, waves and the occurrence of liquid bridging can be

identified. When liquid structures/wisps occur there is a distortion in the crest of the time

series signal. Hernandez-Perez et al. (20 I0) stated that the presence of wisps can be observed

in the time series of the void fraction. For their experiments with air-water in 67mm diameter

pipe, this would lower the void fraction by only 0.0225. Therefore in corroboration with their

work, the crest of the time series does not change considerably but distortions are present.

The presence of huge waves can also be distinguished as well as smaller amplitude waves.

The areas under the mean void fraction are troughs and have been highlighted to also

distinguish between liquid bridging of the gas core and those of huge waves. When liquid

bridging occurs the trough is longer with a short time interval. On the other hand, when the

huge waves or smaller amplitude waves are present the trough is smaller with a longer time

interval. With reference to Figure 5.12 in chapter 5, this ascertains the fact that liquid

bridging or the occurrence of liquid slugs has a shorter transit velocity than the huge waves.

By counting the troughs in Figures 6.23 and 6.24, the appearance frequency of huge waves,

smaller amplitude waves and liquid bridging can be estimated. The frequency of wisps was

not obtained based on the above qualitative assessment in section 6.2.6.1. Further work needs

to be done to size and classify the wisps appropriately.

The four plots shown in Figure 6.25 are the frequency obtained from the power spectral

density, the appearance frequency of small waves, huge waves and liquid bridging after

application of thresholds by counting method. Comparisons between glycerol-water

viscosities have been made for a liquid superficial velocity of 0.17m1s. It shows that, the

frequency of smaller amplitude wave decreases with increase in gas superficial velocity for

16.2cP glycerol/water data.
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Contrary to the trend for the 16.2cP data, the frequency of the smaller amplitude waves

increases for 12.2cP data. The huge wave frequency decreases with increase in viscosity and

also no liquid bridging of the gas core was observed for the experimental range for 16.2cP

glycerol/water experiment.
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Figure 6.25. Dominant frequency variations with gas superficial velocity showing

comparison of 12.2cP and 16.2cP data at an average constant liquid superficial velocity of

O.17rn1s. Sub-frequency variation which can be regarded as appearance frequencies are also

shown where N are mall amplitude waves compared to huge waves NH while NB is the

appearance frequency of liquid bridging of the gas core.
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The effect of increase in liquid superficial velocity is shown in Figure 6.26 for an average

constant liquid superficial velocity of O.27m1s. The profile of the small amplitude waves for

16.2cP does not have the same decreasing trend. However, it remains higher than that of

12.2cP data until a gas superficial velocity of 9.92m1s. The frequency of the small amplitude

waves increases beyond the gas superficial velocity of 9.92m1s for 12.2cP more than that of

16.2cP glycerol/water data.
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Figure 6.26. Dominant frequency variations with gas superficial velocity showing

comparison of 12.2cP and 16.2cP data at an average constant liquid superficial velocity of

O.24m1s.

Page 1222



Furthermore, the dominant frequency values obtained from the power spectral density

analysis, are compared to that of air-water at VD = 35.4 and 82.7 in Figure 6.27. It shows

that the frequency at VD = 35.4 is higher than air-water data downstream at VD = 82.7 and

that of glycerol/water. The dominant frequencies have been found to be close to each other

for air-water data at LID = 82.7 compared to the glycerol/water data. This can be observed

even at a high liquid superficial velocity of O.27m1s in (c).
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Figure 6.27. Dominant frequency from power spectral density analysis against gas superficial

velocity showing effect of liquid viscosity and axial distance. These are for an average

constant liquid uperficial velocity in (a)-(c) of O.llm1s, O.17m1s and O.26m1s respectively.

Square indicate air-water data at LID = 35.4. Blue, red and green circles represents 12.2cP,

16.2cP glycerol-water data and air-water data at VD = 82.7.
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Therefore, since there are more liquid structures entrained within the core for air-

glycerol/water due to a higher viscosity, this is effectively compensated for by an increased

frequency of huge wave with reference to the air-water at LID = 82.7. Consequently, this

makes the dominant frequency variations with gas superficial velocity close to each other as

shown in Figure 6.27.
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Nonetheless, the discrepancies in the magnitude of the dominant frequencies with respect to

the operating fluids can be shown in Figure 6.28. The air-water data is for VD = 82.7 since

the cause of the high frequency at VD = 35.4 has been attributed to liquid bridging. At low

liquid superficial velocity in (a)-i, this gives a decrease in frequency for an increasing

viscosity. This is with reference to the gas superficial velocity of 6.59m/s for the air-water

experiments.

Increasing the gas superficial velocity, increases the dominant frequency for 12.2cP data

compared to that obtained for air-water and a subsequent decrease for 16.2cP data. This is in

consideration of the plots from left to right respectively. Although bubble entrainment was

not observed for the glycerol/water experiments at this condition, the increase compared to

air-water at higher gas superficial velocities is due to the presence of ripple waves. For air-

water it was observed that more dry patches were present during experiments.

When the liquid superficial velocity is increased in (b)-i, this gives a similar trend to Ca)-i.As

the gas superficial velocity is further increased from left to right respectively in (b), the

dominant frequency is initially the highest for the air-water data probably indicating a high

frequency of huge waves. However, at a gas superficial velocity of 9.69m/s with reference to

air-glycerol/water at 12.2cP, the dominant frequency gives the largest value. This is also the

case in reference to (cj-ii due to the occurrence of large liquid structures entrained in the core.

In the plots in (d) the liquid superficial velocity is at an average constant value of O.27m1s.

There is a decrease and an increase in frequency with increase in viscosity making the

frequency value at 16.2cP the highest in Cd)-i. This may be due to the fact that the smaller

amplitude waves are more dominant. An increase in gas superficial velocity increases the

frequency and size of liquid structures present in the case of 12.2cP glycerol-water data

compared to 16.2cP and air-water. Comparing the dominant frequencies across the viscosity
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scale reveals that the frequency of the huge waves, small waves and liquid structures may be

dominant for a particular fluid pair but not for the other.

6.3. Further analysis of experimental data

From the analysis carried out above, due to an increase in viscosity the frequency and size of

the large liquid structures increases. However, liquid bridging occurs more for air-water

compared to air-glycerol/water. A schematic which represents the quasi-steady conditions for

both air-water and air-glycerol/water has been used to identify relevant thresholds in figure

6.22. According to Barnea (1986), for a transition from annular flow to intermittent flow, that

is, slug or chum flow, the minimum liquid holdup has been identified to be 0.24. On other

hand, Govan et al. (1990) proposed that the critical void fraction for the transition from chum

to annular is given as 0.75. This gives a liquid holdup value of 0.25, which is close to that

proposed by (Barnea, 1986). Therefore, since the effect of increase in liquid viscosity makes

the flow behaviour tend towards annular flow as identified earlier, the equation she proposed

stated in chapter 5 is plotted in Figure 6.29.

Comparison are made for both liquid viscosities to that of air-water at VD = 35.4 and 82.7,

for a liquid superficial velocity of 0.24m/s. Since the minimum liquid holdup that will cause

bridging is 0.24, isoholdup lines are shown for both plots. Isoholdup lines are lines of

constant liquid holdup. This has been shown for values ranging from that suggested by

Bamea (1986) of liquid holdup of 0.24 to higher values of 0.40. Below the stability curve,

she suggested annular flow conditions exist. To the right of the stability curve, is intermittent

flow. Therefore, this means that the data at the lowest liquid superficial velocity of 0.039m/s

and 0.036m/s is annular. For the 12.2cP data, most of the operating conditions are below the

stability curve, even some of data point for high liquid superficial velocities. Although

Barnea (1986) identified this to be annular, this is essentially not the case based on
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experimental ob er ation . The difference between the data at the low liquid superficial

velocity of O.039m1 and higher liquid superficial velocities within this region is that the

more like annular while the latter like wispy-annular.
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Therefore, region 'C' may cater for the annular and region 'B' for wispy annular region,

which was not previously identified by Barnea (1986) as she did not conduct experiments

with higher viscosities than water. The data points lying within the stability curve, region 'A'

and on the transition line denote chum flow behaviour. The only data point from the glycerol-

water data at 12.2cP that agree with the air-water data is found between an isoholdup value of

0.34 and 0.40. Complete liquid bridging has been observed at this operating condition as well

as large liquid structures entrained in the gas core. Further reference can be made to Figure

6.25.When the viscosity is 16.2cP, the data can be clearly distinguished from air-water data

because all of the data points are below the stability curve. There is just one data point

between isoholdup of 0.24 and 0.30. This is within the suggested wispy annular region, 'B'.

This is because liquid bridging of the gas core was not observed for this condition in the

frequency analysis. Left of the isoholdup of 0.24 gives the conditions at which large liquid

structures entrained in the core were also observed. These conditions are within the wispy-

annular regime, 'B'. Therefore, it means that the sizes of the liquid structures are smaller and

fewer for the data points below the stability curve and left of the isoholdup of 0.24.

6.3.1. Flow pattern map

The condition at which data was taken is shown in Figure 6.30. Also, the transition line of B

and C are from the work of Furukawa and Fukano (2001) for liquid viscosities of

approximately 6cP and 17cP. A transition line has been plotted on the flow pattern map for

the present work and is shown as A.

Beyond the line A. complete liquid bridging was not observed. In addition, Figure 6.30(b)

shows the operating conditions were huge waves occur. The lines of Furukawa and Fukano

(200 1) occur at higher gas superficial velocities as this takes into consideration both the

occurrence of liquid bridging and huge waves. There is no transition line for the 12.2cP and
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16.2cP data b eau e higher ga uperficial velocities were not experimented. Figure 6.31

shows the flow pattern m p at 16.2cP with the transition lines from Figure 6.30. Incomplete

liquid bridging and hug wa e both occur at one experimental condition.
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6.3.2. Flow stru tur cliaract ri iation II ing Weber number

A dimen ionJe num r ha: n It, d in term of the Weber number as discussed in section

6.2.4, to chara t riz th f ntrained liquid structures within the core. This is the

ratio of in rtia t . urfa rding to Azzopardi (2012), the Weber number that

where 11" i. th wa \ I it in mJ·. Th wa e velocity is obtained by cross-correlating the

time seri s data a quir d Ir m tv in, trurnent imultaneously. Based on the suggestion of

Azzopardi (201 _ • at hi h r W I' numb rs, drop are formed and at lower Weber numbers

liquid tru tur ~ ntrain in th . ... r at' f rmed due to incomplete atomisation. This is
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because at a low wave velocity, this gives a high driving force compared to high wave

velocity that gives a low driving force based on the square of the velocity difference.

One wire mesh sensor instrument was used to acquire the time series data in the present

work, hence, the wave velocity cannot be obtained. However to show the above behaviour as

suggested by Azzopardi (2012), the Weber number and relative velocity used in the present

work are given in equations (6.5) and (6.6).

U2D
TIT P/I /I.'n'e=

U
(6.5)

UIl.• UI .•
U =--

rel a (I-a)
/I /I

(6.6)

This also gives two distinct profiles for wisps structures and drops as shown in Figure 6.32.

This is similar to the observations of Azzopardi (2012) when they used the wave velocity.

This was further compared to the data of Azzopardi (2012) shown as green circles in Figure

6.33. It is important to note that he used the Weber number in equation (6.4) against the gas

superficial velocity to show this effect. Interestingly, this seems to agree with the air-water

data presented in chapter 5.

However, because there is tendency of the liquid film to behave more like annular flow as the

liquid viscosity increases, a modified Weber number is used. This is given in equation (6.7).

(6.7)

where n; can be considered to be an estimated mean wave height shown in the schematic of

Figure 6.22. The estimated mean wave height is obtained in equation (6.8) as:

(6.8)

In contrast to that suggested by Azzopardi (2012), based on the modified Weber number

used, a low Weber number means that the relative velocity is high and the wave height is
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small, therefore, this gives drops. At higher Weber number the relative velocity is low and the

wave height is large. Consequently, this leads to the formation of entrained liquid structures

in the gas core. This can be shown for both glycerol-water data in Figure 6.34.

Also, in comparison with the air-water experiments in Figure 6.35, this shows a decreased

profile for glycerol-water data. However, this should give a higher profile revealing that more

liquid structures are entrained in the gas core for the air-glycerol/water compared to air-water.
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Figure 6.32. Variation of weber number against relative velocity for 12.2cP and 16.2cP

glycerol-water data.
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6.4. Churn flow oal c r model dev elopment

The pre en e flare> liqui tru tur entrained within the core and having a size that almost

coalescence t cur. u t th rna f the large liquid structures present, they reach their

terminal v 1 it qui k r in rnpari n to mall liquid structures such as wisps or drops.
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travelling at much lower velocities. Within the churn flow regime, the following observations

have been made for both air-water and air-glycerol/water experiments with respect to Region

A (left plot) of Figure 6.29.

(a) The inertia from the gas phase forces an accumulated volume of liquid upwards, which is

formed due to radial coalescence of huge waves and the gas phase becomes entrained as

bubbles in the liquid phase. This condition has been termed flooding phenomenon by

previous workers such as (Cetinbudaklar and Jameson, 1969).

(b) At this same condition, the large entrained liquid structure forced upwards travels further

downstream. However, it also falls down due to gravity and less stable liquid structures

are sheared off from the total liquid mass. The less stable liquid structures are smaller in

size and they can be in form of wisps or drops. This second observation unlike the first is

a case of the liquid phase becoming entrained in the gas phase. The above phenomenon is

similar to the disintegration of the liquid structures due to gravity as in inverted annular

flow. (De Jarlais et al .• 1986 and Kolev, 1993). In this case, there will be a transition from

a continuous liquid jet into a flow with smaller entrained liquid structures.

(c) The small liquid structures that fall due to gravity, breakup by bag-breakup mechanism,

according to (Azzopardi, 1997). When they fall due to gravity, two processes may occur.

It is either they coalesce with the large liquid entrained liquid structures that are flowing

upwards from an upstream location or they breakup further.

(d) The latter may occur when the large liquid structures do not occupy the entire cross

section of the pipe. The gas travelling upwards finds its ways around the large liquid

structures and causes the further breakup of the smaller liquid structures. On the other

hand. this may carry the smaller liquid structures and cause them to impinge on the liquid

film (supposing the gas phase momentum flux is sufficient enough). However, the latter
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may occur at a reduced rate if the liquid structures are large enough to occupy the entire

pipe cross section.

Based on the outlined observations in (a) - (d), the model initially predicts the critical gas

superficial velocity for liquid bridging to occur. According to English et al. (1963), the

critical gas superficial velocity that leads to liquid bridging or flooding is given as:

{
Do.m p?419 0'0.091 )

V gc = 0.28 pO.461,,0.I~VO.07S
I I le

(6.8)

where Ut- is the corresponding critical liquid superficial velocity. In this case, the critical

liquid superficial velocity is the maximum liquid superficial velocity condition used for the

present experiments. Therefore, when the properties of air-water and air-glycerol/water are

substituted in equation (6.8), the plot in Figure 6.36 can be obtained. It is also important to

note that at the proposed critical gas superficial velocity predicted by equation (6.8), liquid

bridging has been observed to occur more frequently upstream (VD = 35.4) than downstream

(UD = 82.7) for the air-water experiments. This behaviour may also be applicable to air-

glycerol/water experiments. Further reference can be made to Figure 6.27, which shows the

variation of the dominant frequency with gas superficial velocity.

The decrease in flooding velocity with increase in viscosity as in Figure 6.36 has also been

observed by (Cetinbudaklar and Jameson, 1969). According to them, the reason for this is

because a certain proportion of the viscous damping in the liquid is due to the dissipation near

the wall, and as the liquid film becomes thicker, the effect of the wall will be reduced. Thus,

with increasing viscosity, the wall damping decreases at a constant Reynolds number so that

less energy is required to cause flooding, which will therefore take place at a lower gas

superficial velocity.
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In corrob rati n with u: aka er al. (2006), the critical flooding gas superficial velocity is a

function of th f 11wing:

(6.9)

where UD j th dim n i nl s a: ial di stance, We* is the modified Weber number given in

equation ( .7). Th ('ta~Rn lds numb r, liquid Reynolds number and liquid densimetric

Froude num r ar giv n b I \\ as:

(6.10)

(6.11)
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(6.12)

A trial and error method was used to obtain the length necessary for a high degree of

coalescence. This is based on the condition that give flooding as in Figure 6.36 or a high

frequency of liquid bridging of the gas core. The properties of the glycerol/water at 12.2cP

were used since the size and frequency of the structures entrained in the core was observed to

be the highest compared to air-water and air-glycerol/water at 16.2cP.

The pipe diameter used was 127mm as in the present experimental campaign. The initial

estimates for exponents were given based on the relationships in Figures 6.35 and 6.36 for the

modified Weber number and inverse liquid Reynolds number respectively. In addition, the

axial location of un = 35.4 was also implemented as an initial guess. This is because, the

void fraction does not change considerably from this location to un = 82.7 as observed for

the air-water experiments. Thus, the predicted flooding condition is given as:

(6.13)

The predicted length from equation (6.13) is 6.45m. This means that the distance from un =

35.4 to this length is approximately 1.95m. It is important to note that the large liquid

structures formed downstream that occupy the pipe cross-section, fall back upstream due to

gravity. As a result, smaller liquid structures such as wisps are sheared off.

As suggested above, this is similar to the disintegration of a liquid jet in inverted annular

flow. Therefore, the breakup length of the liquid structure as it falls due to gravity also needs

to be accounted for, (De Jarlais et al., 1986).

Page 1238.



According to De Jarlais et al. 1986, the breakup length is given in equation (6.14). Therefore,

the effective length of pipe can be obtained as in equation (6.15).

A. =5.8D (6.14)

(6.15)

where Lp is the predicted length of 6.45m obtained in equation (6.13) and EL is the effective

length of 7.19m.

6.5. Summary

The present experiments investigated the effect of liquid viscosity in churn flow. To this end,

the air-water data acquired and presented in chapter 5 was compared to the air-glycerol/water

data in this chapter for viscosities of 12.2cP and 16.2cP. The time series of void fraction was

extracted from the wire mesh sensor. Data was acquired at un = 65.5 from the injection

point. From the time series data acquired, further analysis was carried out and the ~ummary

on this work is given below:

1. For churn flow conditions, the time average void fraction is higher for air-glycerol/water

compared to air-water. The increase in void fraction is due to the fact that the surface

tension decreases with increase in the glycerol/water viscosity.

2. The liquid structures entrained in the gas core are larger for the glycerol/water viscosity

compared to air-water. In addition, the size and frequency of the liquid structures present

is highest for glycerol/water viscosity of 12.2cP.

3. Comparisons made of void fraction obtained from the present experiment with predicted

models show that correlation of Wallis (1962) and Hassan (1998) give reasonable

predictions of the observed void fractions.

4. The Dominant frequencies obtained for air-glycerol/water from spectral analysis are

similar to those for air-water. It is possible that a higher frequency of liquid structures
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entrained in the gas core for air-glycerol/water is compensated for by a higher frequency

of huge waves for the air-water.

5. The application of Bamea (1986) stability analysis to the experimental data has shown

that at low liquid superficial velocities, the data for air-glycerol/water at 12.2cP and

16.2cP is within the annular flow regime. However, some of the data points exist within

the stability curve at higher liquid superficial velocities for the 12.2cP glycerol/water

data. Others fall just below the stability curve at higher liquid superficial velocities. Since

liquid structures were present within the core for those conditions, the latter region can be

regarded as the wispy-annular regime. The Barnea (1986) stability analysis at higher

liquid superficial velocities for the 16.2cP glycerol/water has no data points within the

stability curve but in the wispy-annular regime.

6. The chum flow model is proposed in equation (6.13) to predict the height that should

induce a high degree of coalescence in the CFC. This is based on observation, in-depth

analysis and comparison with air-water experimental data.

The bubble to chum flow experiments, churn flow experiments using air-water and air-

glyceroVwater as respective fluid phases have been conducted in this research work. Taking

Figure 1.5 in chapter 1 into consideration, the conclusions and recommendation for future

work are discussed in chapter 7.
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CHAPTER7

CONCLUSIONS

This chapter presents the conclusions of the research work performed per experimental

chapter and recommendations for future work that may be considered in this area of research.

Reference can be made to Figure 1.5.

CHAPTER 4 Conclusions - Bubbly to Chum flow transition air-water experiments

The aim of these experiments was to delineate between the sub-regimes present for bubbly to

chum flows in a large diameter pipe. Using a 32 x 32 capacitance wire mesh sensor, the

spatio-temporal evolution in form of void fraction data was acquired. The void data is in form

of a three-dimensional matrix. Although, this instrumentation is flow intrusive, this gives a

high cross-sectional imaging resolution of the flow. The void data was acquired at 1000 cross

sections per second for 30s. After subjecting the void data to in-depth analysis and from high

speed camera and visual observations, the following conclusions can be drawn:

(a) Slug flow was not observed in these experiments but a transition from bubbly to churning

flows. The reason for this in agreement to previous workers can be attributed to Taylor

instability. The upper surface of the large diameter bubble occupying the pipe cross-

section become distorted and collapse thereby breaking up into daughter bubbles. The

large diameter bubble occupies the cross-section of the pipe having a distorted frontal

shape and a shorter axial length compared to Taylor bubbles.

(b) Smaller diameter bubbles in the liquid, flowing behind the distorted large diameter bubble

have the same nature as liquid slugs in slug flow. The unit, of a large diameter bubble and

small diameter bubbles in liquid occur intermittently. This forms the spherical bubbly

flow pattern. As regards the bubble size distribution this shows two distinctive peaks. The
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areas below the peaks are large and small respectively indicative of the small diameter

bubble distribution in the liquid and the large diameter bubble.

(c) In transiting to the chum flow pattern, at higher gas flowrates, these large diameter

bubbles are destroyed. This forms clusters of small diameter closely packed bubbles in

the liquid having approximately the same bubble diameter, that is, when bubble size

distribution analysis was performed. The latter is characterised as having a frothy nature.

The distance between the bubbles is less than the bubble diameter itself. Therefore, this

encourages coalescence of the bubbles within the frothy medium.

(d) For the typical chum flow regime, liquid slugs having a frothy nature as described in (c),

huge waves and liquid structures/wisps entrained in the gas core are the prevailing

phenomena occurring. However, this can be classified into two major sub-regimes, liquid

slugs and huge waves since the liquid structures are formed from radial coalescence of the

crest of the huge waves. The huge waves have a sinusoidal shape and in most cases are

axisymmetric.

(e) Statistical methods such as standard deviation, skewness and probability density function

of the time series data reveal the transition from bubbly to chum flow. The standard

deviation increases to a maximum then decreases and eventually forms a plateau with

increasing gas flowrate. The skewness demarcated between the wall and core peaking

nature of the flow. The probability density function gives a shift in the distribution from

left to right respectively of increasing void fraction.

(f) Spectral methods applied to the time series data also reveal the transition from bubble to

chum flows similar to the statistical analysis. Structure frequency at constant liquid

flowrate increases with gas flowrate to a maximum, decreases and eventually forms a

plateau when chum flow is the prevailing condition. This also shows that as the liquid

flowrate increases the profile increases as it becomes more oscillatory.
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In these experiments it was ascertained that the chum flow regime is made up of two sub-

regimes, which are formation of liquid slugs and huge waves. However, the dominance of

either of the phenomena upstream or downstream the vertical pipe was not ascertained.

Therefore, this prompted further detailed experiments to be conducted in a longer length of

pipe and within the chum flow regime.

CHAPTER 5 Conclusions - Further insights into Chum flow air-water experiments

The further detailed experiments were conducted within the chum flow regime at higher gas

flowrates. Data was acquired at five axial distances from the injection using the same WMS

instrumentation in the Chapter 4 experiments. The aim of the experiment was to identify were

the liquid slugs and huge waves occur more frequently along the vertical pipe. From these

experiments the following conclusions can be drawn:

(a) At the inception of chum flow as identified from the previous experiments liquid bridging

of the gas core takes place, which is essentially the formation of liquid slugs. This has the

same frothy nature as previously observed and is characterised as small diameter bubbles

entrained in the liquid phase. When this phenomenon occurs there is a momentary

blockage of the pipe cross-section.

(b) There is no shift in the bubble size distribution in chum flow as the gas flowrate

increases. This has been shown in Figure D.1 in Appendix D for the range of conditions

experimented. However, there is a decrease in size distribution. This is because the

mechanism of bubble formation is by gas entrainment in the liquid.

(c) When gas flows upwards it propagates the wave flowing on the inner walls of the pipe.

The waves grow and the amplitude of the wave reaches a critical wave amplitude and

liquid bridging of the gas core becomes the persisting condition upstream at the middle
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section of the test section (UD = 35.4) than further downstream due to the difference in

hydrostatic pressure. In other words, liquid bridging decays downstream.

(d) On the other hand, the well-defined sinusoidal shape of the huge wave observed in the

experiments in chapter 4 is similarly more frequent downstream, that is, close to the outlet

of the pipe at UD = 82.7, due to axial coalescence of the huge waves. The transit

velocities of the huge waves are longer in comparison to when liquid slugs are present. In

other words, the time it takes before discontinuity of the gas core or radial coalescence of

the huge waves is longer downstream than upstream. This also points to the fact that the

huge waves are more stable/frequent downstream at UD = 82.7 compared to upstream

locations.

(e) Apart from the liquid phase flowing as huge waves, they are entrained as large liquid

structures occupying the pipe cross-section. Their sizes are larger and at higher

frequencies downstream of the pipe at un = 82.7 than upstream. These liquid structures

entrained in the gas core are initially formed upstream and they are propagated by the gas

phase downstream.

(f) The void fraction upstream of the vertical pipe at un = 35.4 and further downstream at

un = 82.7 are more or less similar. Overall, this gives a logarithmic increase in void

fraction with increase in axial distance from the injection. Since the magnitude of

difference between the void fraction is not significant the flow can be considered

developed based on the void fraction at un = 82.7.

(g) The dominant frequency obtained from spectral analysis of the time series shows a

general decrease in structure frequency with increase in axial distance from the injection.

Comparison with the data of Omebere-Iyari (2006) who experimented at similar

conditions in this facility shows a further decrease in the structure frequency at un =
82.7 from his point of data acquisition at un = 65.5 using conductance probes.
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(h) Further Stability analysis according to Barnea proved useful in predicting the liquid

bridging and huge wave dominant regimes based on the variation of her dimensionless

parameter. Y. against the Lockhart-Martinelli parameter.

The experiments provided novel insight into the churn flow regime with increase in axial

distance from the injection. which has not been previously investigated. This motivated

further experiment to be carried out on the effect viscosity could have on the flow behaviour.

CHAPTER 6 Conclusions - Effect of liquid viscosity in Churn flow air-glycerol/water

experiments

The viscosity of the continuous phase was changed to glycerol/water solutions of 12.2cP and

16.2cP respectively. The data was acquired at un = 65.5 based on the work previously done

by (Omebere-Iyari. 2006). Comparative study was carried out with reference to air-water

experiments previously performed in the same facility. The capacitance WMS used in

previous experiments was used here for the same purpose. The aim of the experiments was to

identify the effect of viscosity in churn flow. Therefore. from this work. the following

conclusions can be drawn:

(a) Increasing the viscosity in churn flow increases the void fraction. This is due to the

decreasing surface tension as the viscosity of the continuous phase increases from air-

water to air-glycerol/water. Also, the increase in viscosity leads to less dissipation of

energy in the case of air-glycerol/water compared to air-water.

(b) From statistical analysis of time series data set. the increase in viscosity is reflected as an

increase in the mean void fraction and hence a shift in the probability distribution from

air-water to air-glycerol/water. However. the shift in the PDF is characterised by the

occurrence of two distinct peaks at high liquid flowrates for the glycerol/water

experiments compared to the air-water. This is due to the fact that the liquid structures
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observed for chum flow in the previous experiments are larger for air-glycerol/water

compared to air-water.

(c) A method for the formation of these large entrained liquid structures has been proposed

taking the viscosity of the glycerol/water into consideration. These are (a) Peaking of the

liquid film into the gas core (b) Coalescence of propagating huge waves from an upstream

location to augment the amplitude of the wave within a reference control volume. (c)

Protrusion of the augmented huge wave structure into the gas core after a critical wave

amplitude/height has been attained and (d) Shearing-off of the huge wave structure from

the liquid film and the formation of the entrained liquid structure.

(d) A threshold method has been successfully applied to the time series data to reveal the

occurrences that take place with respect to the operating conditions. The dominant

frequency obtained from spectral analysis of the time series data gives similar frequency

values for air-glycerol/water at un = 65.5 and air-water experiments at un = 82.7. The

frequency across the viscosity scale increases in most cases to a maximum for the 12.2cP

glycerol/water data.

(e) The increased frequency of large liquid structures entrained in the gas core for the air-

glycerol/water is compensated for, by an increased frequency of huge waves for air-water.

Due to the abstraction of energy for the air-glycerol/water experiments the atomising

force on the liquid film is much lower compared to air-water.

(f) The presence of large liquid structures entrained in the gas core has similarities to the

wispy-annular flow identified by (Bennet et al., 1965). Thus, carrying out the stability

analysis according to Barnea (1986) revealed that the region below the stability curve

where Barnea observed typical annular flow. this has been proposed in this study to be the

wispy-annular regime. That is, at high liquid flowrate, for 0 ~ y ~ 100. According to this

analysis, three regions have been identified namely: A - Liquid bridging region (Large
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liquid structures were observed), B - Wispy- annular flow region and C - Annular flow

region.

(g) In the liquid bridging region - A, liquid bridging phenomenon has been observed for both

air-glycerol/water and air-water. Based on this condition, the effective length of the CFC

with respect to the comparative study performed and for this pipe diameter is 7.15m.

The provision of novel experimental data has been obtained for the glycerol/water

experiments. The effective length of the CFC has been proposed based on the comparative

study with the air-water experiments previously performed. The required conditions for the

CFC are those that give a high frequency of liquid bridging hence high entrainment of large

liquid structures in the gas core, which should effectively improve coalescence.

FUTURE WORK AND RECOMMENDATIONS

The following future work and recommendations are given below based on the observations

and analysis of the data presented in this research work:

(a) The effect of fluid properties other than air-water and air-glycerol/water should also be

investigated. Air-silicone oil experiments may be conducted to investigate the effect of

surface tension. On other hand, sulphur hexafluoride-silicone or sulphur hexafluoride-

water experiments may also be used to investigate the effect of gas phase density. This

should be investigated as long as it is done safely.

(b) Two wire mesh sensors at a close distance should be used to acquire phase fraction data

simultaneously at least three axial distances from the injection. This is to know the

distance it takes for the huge wave to travel before liquid bridging takes place. Apart from

monitoring the huge wave structure, the structure velocity can be obtained to find out

what percentage of the gas superficial velocity it is. This percentage value may be may

compared to Barbosa et al. (200la) that suggested that the wave velocity is 20% of the
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gas superficial velocity. Using two wire mesh sensors may also help further size

characterisation of the liquid structures that are entrained In the gas core.

(c) From the further analysis of the wire mesh data from both sensors, the axial length of the

liquid slug can be determined to obtain a plot of dimensionless axial length of liquid

bridge against dimensionless axial distance. This is based on the recommendation that the

two wire mesh sensors should be used at different axial distances.

(d) Pressure drop experiments for the different fluid pairs should be carried out but this

means conducting experiment from the bubbly flow condition. This is because the

pressure drop will change significantly as the chum flow regime is entered. The region of

concentration should be to know the pressure drop trace at the transition from spherical

cap bubbly flow to liquid bridging conditions for large diameter pipes.

(e) An instrument may be used simultaneously with the WMS that gives the structure

frequency against time, that is, in comparison to the void fraction against time extracted

from the WMS sensor data. The frequency-time analysis can be compared to frequency-

time analysis obtained using Hilbert-Huang Transform (HHT). PDF of the experimental

frequency, predicted frequency (HHT) and void fraction can be obtained to improve the

understanding of chum flow.

(0 Computational fluid dynamics simulation of chum flow may be conducted using the VOF

method coupled with the Lagrangian model. This has been investigated and simulated but

not presented in this work. Results may also be validated with experimental data, which

will also help tune computational models.
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NOl\lEN CLA TURE

A Constant in equation (5.8) (-)
B Constant in equation (5.8) (-)

C Constant in equation (5.9) (-)

D Constant in equation (5.9) (-)

ag Void fraction (-)

a, Radial void fraction (-)

aL Liquid holdup (-)

age Critical void fraction (-)

arB Void fraction in Taylor bubble (-)

Xg Gas quality (-)

Co Distribution parameter (-)

c Gas holdup parameter (-)
rlR Dimensionless radial distance (-)
n Power law exponent (-)

er Relative permittivity (-)

Ag Area occupied by gas (rrr')

AI Area occupied by liquid (m2)

Ac Cross sectional area (m2)

MII Mass flowrate of gas (kg/s)

M, Mass flowrate of liquid (kg/s)

Mr Total mass flowrate of phases (kg/s)

Ugs Gas superficial velocity (m/s)

UIs Liquid superficial velocity (m/s)

Ugd Drift velocity (m/s)

p, Density of liquid (kg/rrr')

PII Density of gas (kg/nr')

rnll Gas mass flux (kg/m2s)

UN" Relative velocity (m/s)

Uw Wave velocity (m/s)

rn, Liquid mass flux (kglm2s)

f Frequency of collisions (S-I)

c Mean fluctuating velocity (m/s)

Db Bubble diameter (mm)

Uo Rise velocity of bubbles (m/s)

C7 Surface tension (N/m)

g Gravitational force (m/s2)

rb Bubble radius (mm)
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UF Liquid film velocity (m/s)
UTB Velocity of Taylor bubble (m/s)
Ls Length of Liquid Slug (mm)
LTB Length of Taylor bubble (mm)
Lv Total length of slug unit (mm)
bF Film thickness (mm)

Qv Liquid flowrate through bubble generator (m3/s)
D Pipe diameter (mm)
Urn Liquid film velocity (m/s)
~p Density difference (kg/rrr')

PI Liquid viscosity (kg/ms)

VI Kinematic viscosity (m2/s) .

le Entrance length (m)
L Pipe length (m)

Mu Mass flowrate of entrained droplet (kg/s)

MI Mass flow rate of liquid (kgls)

Vb Volume of bubble (mnr')
h Size distribution (%/mm)

hw Wave height (mm)
i Vertical projection (-)
j Horizontal projection (-)
k Time sequence (-)
t Delay time (s)
«; Minimum liquid holdup (-)
X Lockhart-Martinelli parameter (-)
y Dimensionless parameter in equation (6.6) (-)

Vo Voltage (volts)

Dimensionless Numbers

UI: Dimensionless gas velocity (-)

u;s Dimensionless gas velocity (-)

fw Friction factor (-)

We Weber number (-)

FrL Liquid based Froude number (-)

FrG Gas based Froude number (-)
StrG Gas based Strouhal number (-)
sv; Mixture based Strouhal number (-)
ReG Gas based Reynolds number (-)
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ApPENDIXA
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Figure A. 1. Ga Liquid injection used in the 121mm internal diameter, 5.3m in length facility

and 127mm internal diameter, llm in length facility in (a) and (b) respectively.
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ApPENDIXB

EXPERIMENTAL MATRIX

Below are the experimental matrices in order of experiments performed (test experiments not

included).

Table A.I. Matrix for air-water bubbly-chum transition experiments
(chapter 4)

Run# Vis VR,v Vis VRS Vis v; Vis VRS Vis u;
1 0.018 0.21 0.041 0.21 0.075 0.21 0.095 0.21 0.13 0.21
2 0.018 0.34 0.041 0.34 0.075 0.34 0.095 0.34 0.13 0.34
3 0.018 0.48 0.041 0.48 0.075 0.48 0.095 0.48 0.13 0.48
4 0.018 0.76 0.041 0.76 0.075 0.76 0.095 0.76 0.13 0.76
5 0.018 1.03 0.041 1.03 0.075 1.03 0.095 1.03 0.13 1.03
6 0.018 1.38 0.041 1.38 0.075 1.38 0.095 1.38 0.13 1.38
7 0.018 1.72 0.041 1.72 0.075 1.72 0.095 1.72 0.13 1.72
8 0.018 2.41 0.041 2.41 0.075 2.41 0.095 2.41 0.13 2.41
9 0.018 3.10 0.041 3.10 0.075 3.10 0.095 3.10 0.13 3.10
10 0.018 3.58 0.041 3.58 0.075 3.58 0.095 3.58 0.13 3.58

Table A.2. Matrix used for large-scale closed loop air-water experiments
(chapter 5)

Run# Vis VgS Vis Vf!S Vis u; Vis VRS

1 0.03 3.26 0.13 5.28 0.18 4.79 0.24 4.54
2 0.03 3.7 0.13 5.53 0.18 4.91 0.24 4.81
3 0.03 6.59 0.13 6.08 0.18 6.09 0.24 5.76
4 0.03 8.81 0.13 7.08 0.18 6.64 0.24 6.58
5 0.03 11.17 0.13 8.64 0.18 8.18 0.24 7.2
6 0.03 11.77 0.13 8.87 0.18 8.58 0.24 7.69
7 0.03 12.28 0.13 9.28 0.18 8.97 0.24 8.11
8 0.03 13.65 0.13 10.58 0.18 10.14 0.24 9.39
9 0.03 15.37 0.13 12.44 0.18 12.18 0.24 11.42
10 0.03 16.27 0.13 13.44 0.18 12.98 0.24 12.48
11 0.03 16.95 0.13 14.36 0.18 13.94 0.24 13.39
12 0.03 17.46 0.13 15.24 0.18 14.86 0.24 14.23
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Table A.3. Matrix used for air-glycerol water experiments(cbapter 6)
12.2cP Air-Glycerol/water experiments

Vh (m/s) 0.039 0.11 0.17 0.27
Run# VpsCm/s)

1 6.21 4.85 4.41 4.19
2 6.72 5.53 5.12 4.81
3 8.34 6.22 5.81 5.51
4 10.17 7.86 7.52 7.17
5 10.9 9.69 8.31 7.98
6 12.04 9.84 9.58 9.31
7 12.6 10.46 10.28 9.72
8 13.06 11.04 10.74 10.33

16.2cP Air-Glycerol/water experiments
Vh (m/s) 0.036 0.091 0.16 0.26
Run# VJ1s(m/s)
I 6.19 5.77 4.86 3.98
2 8.06 6.59 5.58 4.74
3 9.25 7.28 6.44 5.41
4 10.74 8.82 8.12 7.12
5 11.39 9.65 8.94 8.02
6 12.52 10.66 10.17 9.46
7 12.98 11.19 10.67 9.92
8 13.36 11.62 11.12 10.44
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ApPENDIXC

VOID FRACTION CORRELATIONS

Wallis (1969)
U· U·

__ __;8'-- __ + I = 0.775
(1- 2.85(1- a

8
» 2.85(1- ag)

where

(C.l)

(C.2)

Premoli et al. (1970)

(C.3)

(C.4)

(C.5)

Chisholm (1972)
1a =-----

8 1-x P
I+UR--8 _8

X8 PI

(C.6)

where

(C.7)

Hassan (1988)

u;
a =-------~~~=====

g gD
1.15U m +0.345 -(PI - P )

PI g

(C.8)

where Um = Ugs + Uu
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Cioncolini and Thome (2012)
hX"

a = ; 0 < x< 1,
g l+(h-l)x"

10-3 < Pg < 1, 0.7 < ag < 1
PI

( J
-002186

h = -2.129 + 3.129 ;:

( J
005150

n = 0.3487 + 0.6513 ;~
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Figure D.l. Bubble size distribution from experiments performed on the large-scale closed
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Diameter(mm)

loop facility. Air and water are the operating fluids for data at LID = 35.4. An indication of

the decrea e in gas entrainment as gas superficial velocity increases.
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ApPENDIXE

CALIBRA TION RELATIONSHIPS
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Figure E.I. Re ult for Calibration relationship for the gas and liquid flowmeters on the

121mm internal diameter facility. Flowrate conditions were set and data acquired manually

from Rotameters.
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Figure E.2. Calibration relationship for gas and liquid flowmeters used on the 127mm

internal diameter facility similar to Omebere(2006) who experimented on the same facility.

FJowrate condition were set and data acquired using a Labview program as shown in figure

D.3.

Page 1270



rP-. ~1~...J=~;;;;;---""1

~ ~....f'4.l-oI--------'

...
~ "",
El ~

.....
@

~
~

Ell

~

8

:._U:'-~~I ~
Figure E.3. Labview Data acquisition program used in flowrate acquisition for experiments

on the 127mm internal diameter facility.

Page 1271



ApPENDIXF

UNCERTAINTY ANALYSIS

Kirkup and Frenkel (2006) defined an error to be the difference between the measured and

true value. Taylor (1997) suggested that analysis of the error is the study and evaluation of

the degree of uncertainty which is inevitable in measurements. Holman (2002) also stated that

the uncertainty estimates the limits of error with some level of confidence. Overall,

uncertainty analysis is a method by which the limits of error are estimated which in turn

describes the quality/integrity of the acquired experimental data.

Systematic Error

A systematic error causes a measured value to be consistently greater or less than the true

value. These sorts of error can be revealed in two ways: by means of specific information or

when the experimental setup is changed.

For void fraction data acquired in this research work, the systematic uncertainty could not be

appropriately determined. However, since the temperature of the continuous phase varies

with time, this affects the surface tension, hence the void fraction.

When using conductivity instrumentation to acquire void fraction data, the above will be

taken into consideration. However, in this study, void fraction data has been derived using

permittivity of the continuous phase. Therefore, the effect of temperature difference is

negligible.

Random Error

The difference between random errors and systematic error is best observed when the

experiments are repeated using the same flow parameters. The aim of repeating the

experiments or carrying out test experiments is to check the error while obtaining
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reproducible results. However, since the WMS instrument will be affected by uncontrollable

and small changes in the environment, exact results may not be obtained.

For instance, when using the WMS to acquire data under Chum flow conditions, the chaotic

nature of the flow (during liquid bridging of the gas core) vibrated the test section. This in

turn vibrates the WMS transmitter and receiver wires respectively, thus, generating

instrumental noise that will affect the void fraction. However, as discussed in chapter 3,

Thiele et al. (2009), suggested that this has a negligible effect on the void fraction itself.

Uncertainty propagation

When a parameter is not directly measured, but calculated from two or more directly

measured parameters, the uncertainty in the derived parameter must be determined from the

uncertainties in the measured parameters. This is the concept of propagation of uncertainty.

Uncertainty propagation analysis was carried out for both gas and liquid superficial

velocities.

If y is a given function of the independent variables x,, x2 , ...... x,.. The relationship can then be

given as:

(E.l)

If ay is the uncertainty in the result and ax,.ax2 ...... ax,. are the uncertainties in the

independent variables then ay can be given as:

ay ay avay =-a' dx, +-'-dx2 +...... -·-dXIIx, dX2 dXII

where dy I ax,. ay I dX2 ...... ay I aXil are the first-order partial derivatives of y with respect to

(E.2)

(a) Uncertainty ill gas superficial velocity

The gas superficial velocity U /IS is calculated from the measured mass flowrate of air Mg and

the density of air. PR'
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MU =-ggs Pg (E.3)

Also,

PV =nRT (E.4)

where P, V, n, Rand T are the pressure, volume, number of moles, Molar gas constant and

temperature of the gas phase respectively. The number of moles can be calculated as follows:

mn=-
M

(E.5)

where m and M are the mass and molar mass respectively of the gas phase.

When equation (E.5) is substituted in equation(E.4), taking equationCE.3) into consideration,

the density of the gas phase and gas superficial velocity can also be calculated as:

PM P
Pg = RT = RT

MgRT
Ug s = P

CE.6)

(E.7)

The partial derivatives of Ugs with respect to T ,M and Pare:
g

aUI/.• =l_(MgRT)= MgR
st aT P P

»u, s _ a (MgRT)_ MgT---- ---aM, aM, P P

aug .• =j_(MIIRT)= MI/RTap ap p p2

(E.8)

(E.9)

(E. 10)

The uncertainties in the calculated values of Ugs are then calculated as

(E.ll)

where ap,aM g,aT are the uncertainties in the pressure, mass flux and temperature within the

test section respectively.
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(b) Uncertainty in liquid superficial velocity

The liquid superficial velocity, Uu , is calculated from the measured flow rate of the liquid

and the cross-sectional area of the test section Ac.

U =M,
Is Ac

(E.l2)

This can also be expressed as a function of M I and D as follows:

U = 4M,
Is 1ClJ2

(E.13)

The partial derivatives of U» with respect to M I and D are

aul.< =_±__a_(M )_ _±_
aM, JdJ2 aM, ,- JdJ2

(E.14)

(E.15)

The uncertainties in Uls are then calculated as following:

(E.I6)

where aD the uncertainty in the diameter and aMI is the uncertainty in the measured liquid

flow rate.

(c) Uncertainty in mixture velocity

The mixture velocity is obtained from both gas and liquid superficial velocities.

(E.I7)

The uncertainties in both phase velocities are:

(E. IS)
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(E.19)

The values of aUls and au gs in equations (E. 11) and (E.16) are then substituted in the above

equation (E.19) to obtain au m •
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