Impact of land cover patch size on the accuracy of patch area representation in HNN-based super resolution mapping

Muad, Anuar M. and Foody, Giles M. (2012) Impact of land cover patch size on the accuracy of patch area representation in HNN-based super resolution mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5 (5). pp. 1418-1427. ISSN 1939-1404

Full text not available from this repository.


Mixed pixels are one of the largest sources of error and uncertainty in mapping from remotely sensed data. A Hopfield neural network based approach to super-resolution mapping has become popular for mapping at a sub-pixel scale, partly because it seeks to maintain the class proportional information indicated by a soft classification analysis. The use of the approach is, however, handicapped by a lack of guidance on the parameter setting values and of the impacts of different landscape patterns on the analysis. Here, the sensitivity of the Hopfield neural network for super-resolution mapping is investigated with a focus on the effect of different landscape types and parameter settings using simulated and real data sets. It is shown that the method’s suitability varies between landscapes, being most suited to situations in which landscape patches are large (>1 pixel). Additionally, for such landscapes the widely used scenario in which the weighting parameters are set at equal values is successful but the approach is less effective for the mapping of small isolated land cover patches. With the latter, it is shown to be important to weight the area constraint highly and undertake a large number of iterations. Critically, it is shown that equal weighted parameter settings and imbalanced settings to emphasise the area constraint are most suitable for landscapes comprising large and small patches respectively. Moreover, the positive attributes of these two sets of parameter settings may be combined to yield an enhanced mapping method for landscapes that comprise a mixture of patch sizes.

Item Type: Article
Additional Information: Copyright IEEE
Schools/Departments: University of Nottingham, UK > Faculty of Social Sciences > School of Geography
Identification Number:
Depositing User: Foody, Prof Giles
Date Deposited: 31 Jan 2014 21:18
Last Modified: 04 May 2020 20:22

Actions (Archive Staff Only)

Edit View Edit View